

Advanced Access Content System (AACS)

Introduction and
Common Cryptographic Elements Book

Intel Corporation
International Business Machines Corporation

Microsoft Corporation
Panasonic Corporation

Sony Corporation
Toshiba Corporation

The Walt Disney Company
Warner Bros.

Revision 0.952
Final

July 14, 2011

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page ii

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page iii

Preface

Notice
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE. IBM, Intel, Microsoft Corporation, Panasonic Corporation, Sony
Corporation, Toshiba Corporation, The Walt Disney Company and Warner Bros. disclaim all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.
This document is subject to change under applicable license provisions.
Copyright © 2005-2011 by Intel Corporation, International Business Machines Corporation, Microsoft
Corporation, Panasonic Corporation, Sony Corporation, Toshiba Corporation, The Walt Disney Company, and
Warner Bros. Third-party brands and names are the property of their respective owners.

Intellectual Property
Implementation of this specification requires a license from AACS LA LLC.

Contact Information
Please address inquiries, feedback, and licensing requests to AACS LA LLC:

• Licensing inquiries and requests should be addressed to licensing@aacsla.com.
• Feedback on this specification should be addressed to comment@aacsla.com.

The URL for the AACS LA LLC web site is http://www.aacsla.com.

mailto:licensing@aacsla.com�
mailto:comment@aacsla.com�
http://www.aacsla.com/�

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page iv

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page v

Table of Contents

Notice .. iii
Intellectual Property.. iii
Contact Information.. iii

CHAPTER 1 INTRODUCTION ...1
1.1 Purpose and Scope ...1
1.2 Objectives and Design Criteria...1
1.3 Organization of this Document...2
1.4 References...2
1.5 Document History ..3
1.6 Future Directions ...3
1.7 Notation ..3

1.7.1 Numerical Values ...3
1.7.2 Bit and Byte Ordering...3
1.7.3 Operations...4

1.8 Terminology ...4
1.9 Abbreviations and Acronyms ...5

CHAPTER 2 AACS COMMON CRYPTOGRAPHIC FUNCTIONS.......................7
2. INTRODUCTION ..7

2.1 AES Symmetric Block Cipher Algorithm..7
2.1.1 ECB Mode (AES-128E and AES-128D) ..7
2.1.2 CBC Mode (AES-128CBCE and AES-128CBCD) ..7
2.1.3 AES-based One-way Function (AES-G) ..8
2.1.4 AES Hashing Function (AES-H) ..8
2.1.5 SHA Hashing Function ...9
2.1.6 Message Authentication Code (CMAC) ...9

2.2 Random/Pseudorandom Number Generation...9
2.3 Digital Signature (AACS_Sign and AACS_Verify) ..10

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page vi

CHAPTER 3 AACS COMMON CRYPTOGRAPHIC KEY MANAGEMENT13
3. INTRODUCTION ..13

3.1 Device Keys...14
3.2 Media Key Block (MKB)...14

3.2.1 Subset-Difference Tree Overview (Informative) ..14
3.2.2 Calculation of Subsidiary Device Keys and Processing Keys ..15
3.2.3 Storing Device Keys ...15
3.2.4 Calculation of Media Key...16
3.2.4.1 Class of Devices...17
3.2.5 Media Key Block Format..17
3.2.5.1 Records Used by Both Class I and Class II Licensed Products ...17
3.2.5.2 Additional Records for Class II Licensed Products ...29
3.2.6 Read/Write Media Key Blocks ...32

CHAPTER 4 ADDITIONAL PROCEDURES FOR DRIVE-HOST
CONFIGURATIONS..35
4. INTRODUCTION ..35

4.1 Drive Certificate...40
4.2 Host Certificate ..40
4.3 AACS Drive Authentication Algorithm (AACS-Auth)...41
4.4 Protocol for Transferring Volume Identifier ..44
4.5 Protocol for Transferring Pre-recorded Media Serial Number...45
4.6 Protocol for Transferring Media Identifier...45
4.7 Protocol for Updating the Protected Area and Associated Data ...46

4.7.1 Protocol for Writing Protected Area Data...47
4.7.2 Protocol for Reading Protected Area Data..48

4.8 Protocol for Transferring Media Identifier from CPRM-capable Media.................................49
4.9 Protocol for Transferring Media Identifier from +R / +RW ...50
4.10 Protocol for Reading Media Key Block of CPRM ..50
4.11 Procedure for Bus Encryption..52
4.12 Updating Host Revocation List in Non-volatile Memory of Licensed Drive...........................54
4.13 Updating Drive Revocation List in Non-volatile Memory of Host...55
4.14 Mt. Fuji Command Extensions for AACS ...55

4.14.1 AACS Feature...55

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page vii

4.14.2 REPORT KEY Command Extensions ..57
4.14.2.1 Getting Authentication Grant ID for AACS ..59
4.14.2.2 Returning Drive Certificate Challenge...59
4.14.2.3 Returning Drive Key..60
4.14.2.4 Generating and Reporting Binding Nonce...61
4.14.2.5 Reading Binding Nonce ...62
4.14.2.6 Reading Drive Certificate ..62
4.14.3 READ DISC STRUCTURE Command Extensions ...64
4.14.3.1 Volume Identifier (Format Code 8016)...65
4.14.3.2 Pre-recorded Media Serial Number (Format Code 8116) ...66
4.14.3.3 Media Identifier (Format Code 8216) ...66
4.14.3.4 MEDIA KEY BLOCK (Format Code 8316)...67
4.14.3.5 Returning the Data Keys (Format Code 8416) ..69
4.14.3.6 Returning the Bus-Encryption Sector Extents (Format Code 8516)70
4.14.3.7 Media Key Block of CPRM (Format Code 8616)...71
4.14.4 SEND KEY Command Extensions...71
4.14.4.1 Sending Host Certificate Challenge ...72
4.14.4.2 Sending Host Key ..73
4.14.5 SEND DISC STRUCTURE Command Extensions..74
4.14.5.1 Sending the Write Data Key (Format Code 8416) ..75
4.14.5.2 Setting the Bus-Encrypted Sectors Extents (Format Code 8516)..76

4.15 MMC Command Extensions for AACS...77
4.15.1 READ DISC STRUCTURE Command Extensions ...77
4.15.1.1 Media Identifier (Format Code 8216) ...78

CHAPTER 5 USES OF ON-LINE CONNECTIONS ..79
5. INTRODUCTION ..79

5.1 AACS On-line Enabled Content and AACS Stream Content..81
5.1.1 Permission Types..82
5.1.1.1 Default Permission...82
5.1.1.2 Instant Permission..82
5.1.1.3 Cacheable Permissions...82

5.2 The Title Usage File ...83
5.2.1 The Per-Title Information in the Title Usage File...83
5.2.2 Errors in the Title Usage File..84

5.3 Connection Protocol ..84
5.4 AACS Network Download ..86
5.5 AACS Media Binding ..86

A APPENDIX - CALCULATING THE “UV” VALUES OF DEVICE KEYS.......89
B APPENDIX - EXAMPLE PROTOCOL FOR ONLINE ENABLED CONTENT91

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page viii

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Revision 0.952 Page ix

List of Figures

Figure 2-1 – AES-based One-way Function.. 8
Figure 2-2 – AES-based Hashing Function ... 8
Figure 2-3 – Random/pseudorandom Number Generator Example .. 9
Figure 3-1 – Common AACS Cryptographic Key Management Procedure.. 13
Figure 3-2 Subset-difference Tree .. 14
Figure 3-3 – Triple AES Generator (AES-G3) .. 15
Figure 3-4 Example of Type 3 or Type 4 Media Key Block Showing a Possible Valid Order of Records......... 29
Figure 3-4 Example of Type 10 Media Key Block Showing a Possible Valid Order of Records 32
Figure 4-1 – Reading of Volume Identifier in a PC–based System... 35
Figure 4-2 – Reading of Pre-recorded Media Serial Number in a PC-based System .. 36
Figure 4-3 – Reading of Media Identifier in a PC-based System .. 36
Figure 4-4 – Generating, Transferring, and Writing of Protected Area Data in a PC-based System................... 37
Figure 4-5 – Reading of Protected Area Data in a PC-based System.. 37
Figure 4-6 – Reading of Media Identifier of CPRM in a PC-based System.. 38
Figure 4-7 – Reading of Media Identifier of +R / +RW in a PC-based System .. 39
Figure 4-8 – Reading of Media Key Block of CPRM in a PC-based System.. 39
Figure 4-8 – AACS Drive Authentication Algorithm for AACS .. 42
Figure 4-9 – Protocol Flow of transferring Volume Identifier .. 44
Figure 4-10 – Protocol Flow of transferring Pre-recorded Media Serial Number ... 45
Figure 4-11 – Protocol Flow of transferring Media Identifier ... 46
Figure 4-12 – Protocol Flow of writing Protected Area Data.. 47
Figure 4-13 – Protocol Flow of reading Protected Area Data ... 48
Figure 4-14 – Protocol Flow of transferring Media Identifier from CPRM-capable Media................................ 49
Figure 4-14 – Protocol Flow of transferring Media Identifier from +R / +RW... 50
Figure 4-15 – Protocol Flow of transferring Media Key Block of CPRM .. 51
Figure 4-16 – Bus Encryption During Data Read... 53
Figure 4-17 – Bus Encryption During Data Write.. 54
Figure 5-1 – Example Titles (Using HD DVD)... 80
Figure 5-2 – Transaction Protocol API.. 85

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page x

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Revision 0.952 Page xi

List of Tables

Table 2-1 – ECC Parameters ... 10
Table 3-1 – Common Cryptographic Key Management Elements.. 13
Table 3-2 – Type and Version Record Format... 18
Table 3-3 - Host Revocation List Record... 19
Table 3-4 – Host Revocation List Entry .. 21
Table 3-5 - Drive Revocation List Record ... 22
Table 3-6 – Verify Media Key Record Format... 24
Table 3-7 – Explicit Subset-Difference Record Format ... 25
Table 3-8 – Subset-Difference Index Record Format... 26
Table 3-9 – Media Key Data Record Format... 27
Table 3-10 – End of Media Key Block Record Format .. 28
Table 3-11 – Media Key Variant Data Record Format ... 30
Table 3-12 – Variant Number Record Format... 31
Table 4-1 – Drive Certificate... 40
Table 4-2 – Host Certificate .. 40
Table 4-3 – AACS Feature .. 56
Table 4-4 – AACS Feature Descriptor .. 56
Table 4-5 – REPORT KEY Command.. 58
Table 4-6 – Key Format Code Definition for REPORT KEY command (Key Class = 0216).............................. 58
Table 4-7 – REPORT KEY Data Format (with Key Format = 0000002, Key Class = 0216) 59
Table 4-8 – REPORT KEY Data Format (with Key Format = 0000012, Key Class = 0216) 59
Table 4-9 – REPORT KEY Data Format (with Key Format = 0000102, Key Class = 0216) 60
Table 4-10 – REPORT KEY Data Format (with Key Format = 1000002, Key Class = 0216) 61
Table 4-11 – REPORT KEY Data Format (with Key Format = 1000012, Key Class = 0216) 62
Table 4-12 – REPORT KEY Data Format (with Key Format = 1110002, Key Class = 0216) 62
Table 4-13 – READ DISC STRUCTURE Command ... 64
Table 4-14 – AACS Format Code definitions for READ DISC STRUCTURE command 65
Table 4-15 – READ DISC STRUCTURE Data Format (With Format Code = 8016).. 65
Table 4-16 – READ DISC STRUCTURE Data Format (With Format Code = 8116).. 66
Table 4-17 – READ DISC STRUCTURE Data Format (With Format Code = 8216).. 66
Table 4-18 – READ DISC STRUCTURE Data Format (With Format Field = 8316).. 67
Table 4-19 – READ DISC STRUCTURE Data Format (Format 8416) ... 69
Table 4-20 – READ DISC STRUCTURE Data Format (Format 8516) ... 70
Table 4-21 – READ DISC STRUCTURE Data Format (Format Code 8616).. 71

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page xii

Table 4-22 – SEND KEY Command... 71
Table 4-23 – Key Format Code Definition for SEND KEY command (Key Class = 0216)................................. 72
Table 4-24 – SEND KEY Parameter List (with Key Format Code = 0000012, Key Class = 0216) 73
Table 4-25 – SEND KEY Parameter List (with Key Format Code = 0000102, Key Class = 0216) 73
Table 4-26 – SEND DISC STRUCTURE Command.. 74
Table 4-27 – AACS Format Code definitions for SEND DISC STRUCTURE command.................................. 75
Table 4-28 – SEND DISC STRUCTURE Parameter List (Format Code = 8416).. 75
Table 4-29 – SEND DISC STRUCTURE (Format Code 8516) ... 76
Table 4-30 – READ DISC STRUCTURE Command ... 77

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page xiii

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 1

Chapter 1
Introduction

1.1 Purpose and Scope
The Advanced Access Content System (AACS) specification defines an advanced, robust and renewable
method for protecting audiovisual entertainment content, including high-definition content. The specification is
organized into several “books”. This document, the Introduction and Common Cryptographic Element Book 1,
which is a format-independent book, describes the overall goals of AACS, and defines cryptographic
procedures that are common among its various defined uses. Other books provide additional details specific to
particular optical media types and formats. Those available at or around the time of this publication are:

• Prepared Video Book (format-independent)
• Pre-recorded Video Book (format-independent)
• Recordable Video Book (format-independent)
• Signed CSS Book (format-specific)
• Blu-ray Disc Prepared Video Book (format-specific)
• Blu-ray Disc Pre-recorded Book (format-specific)
• Blu-ray Disc Recordable Book (format-specific)
• HD DVD and DVD Prepared Video Book (format-specific)
• HD DVD and DVD Pre-recorded Book (format-specific)
• HD DVD and DVD Recordable Book (format-specific)

When there is a discrepancy between a format-independent book and a format-specific book then the format-
specific book takes precedence.
The use of this specification and access to the intellectual property and cryptographic materials required to
implement it are the subject of a license. A license authority referred to as AACS LA LLC (hereafter referred
to as AACS LA) is responsible for establishing and administering the content protection system based in part on
this specification.

1.2 Objectives and Design Criteria
AACS is designed to meet the following general criteria:

• Meet the content owners’ requirements for robustness and system renewability
o Content encryption based on a published cryptographic algorithm.
o Limit access to protected content to only licensed compliant implementations.
o Support revocation of individual compromised devices’ keys.
o Limit output and recording of protected content to a list of approved methods.

• Suitable for implementation on both general-purpose computer and fixed-function consumer
electronics platforms.

• Applicable to both audio and video content, including high-definition video.
• Applicable to various optical media formats.
• Transparent to authorized use by consumers.

To meet these general objectives, AACS is based in part on the following technical elements:
• Robust encryption of protected content using the AES cipher.

1 The word Book is sometimes omitted in references to this document.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 2

• Key management and revocation using advanced Media Key Block technology.

Additional specific criteria and technical elements apply to particular uses of AACS, as described in other
books of this specification.

1.3 Organization of this Document
This document is organized as follows:
• Chapter 1 provides an introduction.
• Chapter 2 describes core cryptographic functions, based on the AES cipher algorithm.
• Chapter 3 describes a cryptographic key management procedure using the Media Key Block.
• Chapter 4 describes the AACS Drive Authentication scheme in common use for AACS media.
• Chapter 5 describes the use of AACS media in combination with an on-line connection.
• Appendix A provides a sample program for calculating “uv” values in the MKB.
• Appendix B provides a sample protocol for online content enablement.

1.4 References
This specification shall be used in conjunction with the following publications. When the publications are
superseded by an approved revision, the revision shall apply.
AACS Approved Licenses.
ANSI X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA), ANSI, September 9, 1998. (Informative)
National Institute of Standards and Technology (NIST), DIGITAL SIGNATURE STANDARD (DSS), FIPS
Publication 186-2 (+Change Notice), January 27, 2000.
National Institute of Standards and Technology (NIST), A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications, NIST Special Publication 800-22, with revisions dated
May 15, 2001.
National Institute of Standards and Technology (NIST), Recommendation for Block Cipher Modes of Operation
– Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition
National Institute of Standards and Technology (NIST), Secure Hash Standard, FIPS Publication 180-2, August
1, 2002.
National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), FIPS
Publication 197, November 26, 2001.
National Institute of Standards and Technology (NIST), Cipher-based Message Authentication Code (CMAC),
NIST Special Publication 800-38B, May, 2005.
RSA Laboratories, PKCS #1 (v2.1): RSA Cryptography Standard, June 14, 2002.
Mt. Fuji Commands for Multimedia Devices Version 7, Revision 1.0, or later
Internet Engineering Task Force (http://www.ietf.org), The TLS Protocol. Version 1.0 (RFC 2246)
D. Naor, M. Naor, and J. Lotspiech. “Revocation and Tracing Schemes for Stateless Receivers”. In Advances in
Cryptology - CRYPTO 2001.Springer-Verlag Inc. LNCS 2139, 2001, 41-62.
Information and documentation - International Standard Audiovisual Number (ISAN, ISO 15706:2002,
http://www.isan.org)
Information and documentation - International Standard Audiovisual Number – Part 2: Version identifier (V-
ISAN, ISO 15706-2:2007, http://www.isan.org).
4C Entity, LLC, CPRM Media Verification Book, Revision 0.92.
4C Entity, LLC, CPRM Introduction and Common Cryptographic Elements book Revision 1.01

http://www.ietf.org/�
http://www.isan.org/�
http://www.isan.org/�

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 3

1.5 Document History
This document version 0.952 supersedes version 0.951 dated September 28, 2009. It provides clarifications on
the use of the Content ID.
Document version 0.951 superseded version 0.95 dated May 21, 2009 which contained minor editorial revisions.
The document version 0.95 superseded version 0.91 dated February 17, 2006. It contained various clarifications,
the major one being the renaming of the “Default Protocol” to the “Example Protocol” and moving it to
Appendix B. It also contained the following changes:

• Bus Encryption is defined.
• The “network download” section has been greatly reduced, and replaced by a new book, AACS

Prepared Video Book.
• Support for the “Unified-MKB” which replaces sequence key blocks.
• Updates to support Red Laser recording.

The document version 0.91 superseded version 0.90 dated April 13, 2005. It contained editorial improvements
since the 0.90 version, plus the following changes:

• Two-way drive/host authentication replaces the previous one-way authentication method.
• The number of permissible random number generators has been reduced.
• An AES-based hash has been defined for use in some calculations involving keys.
• A Media Key Block type field has been defined.
• All devices are now required to check the signature on the Media Key Block.
• A new Host Revocation List record has been added to the Media Key Block.
• Added clarifying language for the purpose of KCD.
• A definition of Partial MKB has been added.
• Moved Managed Copy to Pre-recorded Video book
• Added ISAN as a requirement for the Content ID defined in chapter 5

1.6 Future Directions
With its advanced, robust cryptography, key management and renewal mechanisms, it is expected that this
technology will develop and expand, through additions to this specification, to address content protection for
additional storage types, application formats and usage models, as authorized by AACS LA.

1.7 Notation

1.7.1 Numerical Values
This specification uses three different representations for numerical values. Decimal numbers are represented
without any special notation. Binary numbers are represented as a string of binary (0, 1) digits followed by a
subscript 2 (e.g., 10102). Hexadecimal numbers are represented as a string of hexadecimal (0..9, A..F) digits
followed by a subscript 16 (e.g., A3C216).

1.7.2 Bit and Byte Ordering
Certain data values or parts of data values are interpreted as an array of bits. Unless explicitly noted otherwise,
bit positions within an n-bit data value are numbered such that the least significant bit is numbered 0 and the
most significant bit is numbered n-1.
Unless explicitly noted otherwise, big-endian ordering is used for multiple-byte values, meaning that byte 0 is
the most significant byte.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 4

1.7.3 Operations
The following notation is used for bitwise and arithmetic operations:
[x]msb_z The most significant z bits of x.
[x]lsb_z The least significant z bits of x.
[x]y:z The inclusive range of bits between bit y and bit z in x.
~x Bit-wise inversion of x.
x || y Ordered concatenation of x and y.
x ⊕ y Bit-wise Exclusive-OR (XOR) of two strings x and y.
x + y Modular addition of two strings x and y.
x * y Multiplication of x and y.
x – y Subtraction of y from x.
The following assignment and relational operators are used:
= Assignment
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

1.8 Terminology
This section contains definitions of terms used in this document for which the definitions could not easily be
obtained from other sources. Standard cryptographic or multi-media terms are not defined. In addition to terms
that are unique to AACS, some common terms such as “Title” or “Format” are defined because they are often
used in different contexts and may have multiple or misleading definitions. A definition of these “common
terms” has been provided in order to convey the precise meaning as used in this specification. Also note that
capitalized terms in any Book of this Specification shall have the same meaning as defined in the AACS
Adopter Agreement.

AACS Optical Drive
 Refers to a Licensed Drive.

Binding Nonce

A value used to control access to data items stored in the Protected Area of AACS Recordable Media
and to prevent “Rollback” Attacks. It also serves to cryptographically bind content to that instance of
AACS Recordable Media.

Bus Key
A key calculated as part of the AACS Drive Authentication protocol. It is used by the host to verify
integrity of various values from the Licensed Drive, and to protect the Data Key.

Data Key
A key used to encrypt and decrypt AACS-protected sectors while in transmission to and from the
Licensed Drive.

Device Binding Nonce
A value unique to a device which is used to bind content to that device.

Format
This term is used as a reference to the underlying physical format which will store the content being
protected by AACS. Examples include HD DVD and Blu-ray.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 5

Media Identifier
An identifier that is unique to each AACS Recordable Media. It is used to cryptographically bind
content to that instance of AACS Recordable Media and to prevent indiscriminate copying to other
media.

Media Key
A key that is used to unlock the Title Keys stored on a media that contains Titles protected by AACS.
The Media Key is computed by successfully processing a MKB.

Media Key Block (MKB)
A critical component of the subset difference tree key management system. The MKB is a data block
that provides access to a common key (Media Key) that is accessible by any device that contains the
necessary secret keys and has not been revoked. Refer to Chapter 3 for additional details.

Pre-recorded Media Serial Number
Each piece of media may have a unique identifier. The Serial Numbers do not have to be unique across
different Content IDs, although they may. If the media is an optical disc, it might be recorded in the
Burst Cutting Area to enable Licensed Replicators to record unique values for each disc.

Protected Area
A section of data storage on AACS Recordable Media that is both readable and writable but only by
the Encryption Drive. On systems that require AACS Drive Authentication, the host shall only read
data values from the Protected Area by using the AACS Drive Authentication process and the host
shall use the AACS Drive Authentication process to request the Encryption Drive to write data to the
Protected Area but shall not specify the actual data values to be written to the Protected Area.

Subset Difference Tree or NNL-Tree
A tree-based key management system based on broadcast encryption.

Title Key
The key used to encrypt a Title.

Volume Identifier
An identifier that is unique to each individual item of content. This identifier is stored onto Pre-
recorded media in a way that can not be duplicated on AACS Recordable Media. This prevents
content stored on Pre-recorded media from being indiscriminately copied to AACS Recordable Media.
This identifier will not be unique to each individual instance of a media.

1.9 Abbreviations and Acronyms
The following are alphabetical lists of abbreviations and acronyms used in this and other books that make up the
complete AACS technical specifications:

Industry Standard Acronyms:
AES Advanced Encryption Standard
ANSI American National Standards Institute
BCA Burst Cutting Area
BD Blu-ray Disc
CBC Cipher Block Chaining
CE Consumer Electronics
CMAC Cipher based Message Authentication Code
CPRM Content Protection for Recordable Media
CPR_MAI Copyright Management Information
CSS Content Scramble System
DHCP Dynamic Host Configuration Protocol
DSA Digital Signature Algorithm

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 6

DVD Digital Versatile Disc
ECB Electronic Codebook
ECDSA Elliptic Curve based Digital Signature Algorithm
FIPS Federal Information Processing Standards
HD DVD High-Definition Digital Versatile Disc
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
MAC Message Authentication Code
MPEG Moving Picture Experts Group
NIST National Institute of Standards and Technology
PC Personal Computer
SHA Secure Hashing Algorithm
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML eXtensible Markup Language

AACS Acronyms:
AACS Advanced Access Content System
AACS LA AACS Licensing Administrator, LLC
CHT Content Hash Table
CRL Content Revocation List
DRL Drive Revocation List
HRL Host Revocation List
KCD Key Conversion Data
MKB Media Key Block
TUF Title Usage File.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 7

Chapter 2
AACS Common Cryptographic Functions

2. Introduction
This chapter describes common cryptographic functions upon which protection mechanisms described in this
specification are based. The functions are described here in isolation; their specific uses as part of encryption,
key management and renewability mechanisms are described elsewhere in this document, as well as in other
books of this specification.

2.1 AES Symmetric Block Cipher Algorithm
Symmetric cryptographic functions are based on the Advanced Encryption Standard (AES) block cipher
algorithm, as specified in FIPS Publication 197 (see reference in Section 1.4). Unless otherwise specified, the
AES algorithm is used with data blocks of 128 bits and keys with lengths of 128 bits.

2.1.1 ECB Mode (AES-128E and AES-128D)
For purposes such as management of cryptographic keys, the AES cipher is used with the Electronic Codebook
(ECB) mode of operation specified in NIST Special Publication 800-38A (see reference in Section 1.4).
Hereafter, encryption using the AES algorithm in ECB mode as just described is represented by the function
 AES-128E(k, d)
 where d is a 128-bit data value to be encrypted, k is a 128-bit key, and AES-128E returns the 128-bit

encryption result.
Decryption using the AES algorithm in ECB mode as described above (using either the “inverse cipher” or
“equivalent inverse cipher” specified in FIPS Publication 197) is represented by the function
 AES-128D(k, d)
 where d is a 128-bit data value to be decrypted, k is a 128-bit key, and AES-128D returns the 128-bit

decryption result.

2.1.2 CBC Mode (AES-128CBCE and AES-128CBCD)
For purposes such as encryption and decryption of AACS Content, the AES cipher is used with the Cipher
Block Chaining (CBC) mode of operation specified in NIST Special Publication 800-38A (see reference in
Section 1.4).
Hereafter, encryption using the AES algorithm in CBC mode as just described is represented by the function
 AES-128CBCE(k, d)
 where d is a frame of data to be encrypted, k is a 128-bit key, and AES-128CBCE returns the

encrypted frame.
Decryption using the AES algorithm in CBC mode as described above (using either the “inverse cipher” or
“equivalent inverse cipher” specified in FIPS Publication 197) is represented by the function
 AES-128CBCD(k, d)
 where d is a frame of data to be decrypted, k is a 128-bit key, and AES-128CBCD returns the

encrypted frame.
The size of the frame of data to be encrypted or decrypted (i.e. how often a new CBC chain is started) depends
on the particular application, and is defined for each in the corresponding format specific books of this
specification. Unless otherwise specified, the Initialization Vector used at the beginning of a CBC encryption
or decryption chain is a constant, iv0, which is:
 0BA0F8DDFEA61FB3D8DF9F566A050F7816

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 8

2.1.3 AES-based One-way Function (AES-G)
AACS uses a cryptographic one-way function based on the AES algorithm. This function is referred to as the
AES-based One-way Function, and is represented by
 AES-G(x1, x2)
 where x1 and x2 are 128-bit input values, and AES-G(x1, x2) returns the 128-bit result.
Figure 2-1 depicts the AES-based One-way Function.

AES-128DAES-128Dx
1

x2

AES-G(x
1
, x

2
)

Figure 2-1 – AES-based One-way Function

The AES-based One-way Function result is calculated as
 AES-G(x1, x2) = AES-128D(x1, x2) ⊕ x2.

2.1.4 AES Hashing Function (AES-H)
For the purpose of processing data to produce a condensed representation in certain calculations involving keys,
a hashing procedure based on the AES algorithm is used. This procedure, referred to as the AES-based Hashing
Function, is represented by
 AES-H(x)
 where x is input data of arbitrary length, and AES-H(x) returns the corresponding 128-bit hash value.
Prior to hashing, the data to be hashed (x) is padded using the standard SHA-1 method, to wit: The message or
data file is considered to be a bit string. The length of the message is the number of bits in the message (the
empty message has length 0). The purpose of message padding is to make the total length of a padded message
a multiple of 128 bits. The AES hash sequentially processes blocks of 128 bits when computing the message
digest. The following specifies how this padding shall be performed. As a summary, a "1" followed by m "0"s
followed by a 64-bit integer are appended to the end of the message to produce a padded message of length 128
* n. The 64-bit integer is the length of the original message in bits. By way of example, a 56-bit message would
be padded with 72 bits as follows: 80000000000000003816. A 64-bit message would be padded with 192 bits as
follows: 80…04016. A 128-bit message would be padded with 128 bits as follows: 80…08016.
The padded data x’ is divided into n 128-bit blocks, represented as x’1,x’2,…,x’n, which are used in calculating
the hash as shown in Figure 2-2.

AES-GAES-Gx’i

h
 i-1

hi
Figure 2-2 – AES-based Hashing Function

A 128-bit initial value h0 is given by the following constant:
2DC2DF39420321D0CEF1FE2374029D9516

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 9

For i from 1 to n, the 128-bit value hi is calculated as
 hi = AES-G(x’i , hi-1).
The value hn is the result of the hashing function, i.e., AES-H(x) = hn.

2.1.5 SHA Hashing Function
For the purpose of processing data to produce digital signatures, the Secure Hashing Algorithm (SHA-1), as
defined in Federal Information Processing Standards Publication 180-2, is used.

2.1.6 Message Authentication Code (CMAC)
For the purpose of generating a Message Authentication Code to protect the integrity of information, the
Cipher-based Message Authentication Code (CMAC), as defined in the National Institute of Standards and
Technology Special Publication 800-38B, is used. This standard requires the use of a symmetric key block
cipher for which the Advanced Encryption Standard (AES), as defined in Federal Information Processing
Standards Publication 197, is used.

Hereafter, using the CMAC to create a message authentication code is represented by the following function:
 M = CMAC(k, D)
 where k is the key to be used to create the MAC, D is the data to be authenticated and M is the
resulting MAC. The 128-bit length of MAC is used in this specification.

2.2 Random/Pseudorandom Number Generation
This section describes random/pseudorandom number generators for use in generating values such as
cryptographic keys. Unless specifically noted otherwise, one or plural of the following random/pseudorandom
number generators shall be used. (1) Pseudorandom number generator based on a design described in ANSI
X9.31 (see reference in Section 1.4) that is illustrated in Figure 2-3 and described below (2) Pseudorandom
number generators defined in FIPS PUB 186-2 (+Change Notice) (see reference in Section 1.4) (3) Random or
pseudorandom number generator of equal or higher quality that passes the tests described in NIST Special
Publication 800-22 when using the default parameters and other recommendations provided therein (see
reference in Section 1.4)

AES-128DAES-128Dk

DTi

Ii

Ri

Si

AES-128DAES-128Dk

Ii

Si+1

Ri

AES-128DAES-128Dk

Figure 2-3 – Random/pseudorandom Number Generator Example

In the figure, k is a 128-bit constant value, DT is a 128-bit value that is updated on each iteration (such as a
date/time vector or monotonic counter) and S is a seed value.
The combination of fixed value k and initial seed value S0 shall be unpredictable and unique per Licensed
Product, and S shall be maintained in a non-volatile register, in which case a source of entropy is not required
and DT shall be ensured to be non-repeating only until the next time the Licensed Product is re-started.
128-bit random values Ri (i=0,1,…) are generated via the following calculations:

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 10

 Ii = AES-128D(k, DTi),
 Ri = AES-128D(k, Ii ⊕ Si), and
 Si+1 = AES-128D(k, Ii ⊕ Ri).
Unless explicitly noted otherwise, the values k and S shall be treated as highly confidential as described in the
AACS License Agreements.

2.3 Digital Signature (AACS_Sign and AACS_Verify)
All digital signatures in AACS utilize the ECDSA digital signature scheme defined in American National
Standard for Financial Services publication X9.62, FIPS PUB 186-2 (+Change Notice) (see reference in Section
1.4).

The following table shows parameter values of the curve that shall be used in conjunction with ECDSA.

Table 2-1 – ECC Parameters

ECC Parameter Value
p 900812823637587646514106462588455890498729007071
a -3
b 366394034647231750324370400222002566844354703832

264865613959729647018113670854605162895977008838 Base Point (G)
51841075954883162510413392745168936296187808697

Order of Base Point (r) 900812823637587646514106555566573588779770753047

All operations in the elliptic curve domain are calculated on an elliptic curve defined over GF(p). The public
key Kpub (a point on the elliptic curve) and private key Kpriv (a scalar value satisfying 0 < Kpriv < r) shall satisfy
the equation:
 Kpub = Kpriv G

Hereafter, using ECDSA to create a digital signature is represented by the following function:
 S = AACS_Sign(Kpriv, D)
 where Kpriv is the private key to be used for the signature, D is the data to be signed, and S is the
resulting signature.

Hereafter, using ECDSA to verify a digital signature is represented by the following function:

AACS_Verify(Kpub, S, D)
 where Kpub is the public key to be used to verify the signature, S is the signature to be verified, and D is
the data for which the signature is being verified.
All devices are required to store the AACS LA’s root public key, denoted AACS_LApub, in a way that resists
malicious modification. For certain applications, such as content signing, the AACS LA defines additional
public keys. Devices supporting those applications shall, in addition, store those keys, as defined in other books
in this specification.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 11

Chapter 3
AACS Common Cryptographic Key

Management
3. Introduction
This chapter describes an advanced cryptographic key management procedure, depicted in Figure 3-1, which
uses a Media Key Block, based on the subset-difference tree method, to provide system renewability in the form
of device revocation. The procedure is described here in isolation; its use as part of the overall protection
system is described elsewhere in this specification.

Process_MKB

Device Keys

Media Key

MKB

Figure 3-1 – Common AACS Cryptographic Key Management Procedure

Device Keys (Kd_0,Kd_1,…,Kd_n-1) are used to decrypt one or more elements of a Media Key Block (MKB), in
order to extract a secret Media Key (Km). Table 3-1 lists the elements involved in this process, along with their
sizes.

Table 3-1 – Common Cryptographic Key Management Elements

Key or Variable Size
Device Keys (Kd_0,Kd_1,…,Kd_n-1) 128 bits each
Media Key Block (MKB) Variable, multiple of 4 bytes
Media Key (Km) 128 bits

The remainder of this section describes this cryptographic key management procedure in detail.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 12

3.1 Device Keys
Each compliant device is given a set of secret Device Keys when manufactured. The actual number of keys may
be different in different media types. These Device Keys, referred to as Kd_i (i=0,1,…,n-1), are provided by
AACS LA, and are used by the device to process the MKB to calculate Km. The set of Device Keys may either
be unique per device, or used in common by multiple devices. The license agreement describes details and
requirements associated with these two alternatives. A device shall treat its Device Keys as highly confidential,
as defined in the license agreement.

3.2 Media Key Block (MKB)
The Media Key Block (MKB) enables system renewability. The MKB is generated by AACS LA, and allows
all compliant devices, each using their set of secret Device Keys, to calculate the same Km. If a set of Device
Keys is compromised in a way that threatens the integrity of the system, an updated MKB can be released that
causes a device with the compromised set of Device Keys to be unable to calculate the correct Km. In this way,
the compromised Device Keys are “revoked” by the new MKB. Compliant devices shall be able to locate the
MKB on media as defined in the format specific books of this specification.

3.2.1 Subset-Difference Tree Overview (Informative)
The technology used for the MKB is referred to as the subset-difference approach. The size of the MKB in a
subset-difference tree system is of the same order as the size of a public key certificate revocation list, making
the subset-difference tree equivalent in revocation power to a public key system.
The system is based on a large master tree of keys, where each device is uniquely associated with a leaf node of
the tree. Each device receives a set of Device Keys. Each set of Device Keys contains exactly one unique
“Leaf Key”. A given set of Device Keys enables derivation of every key in the master tree except the keys
between its leaf and the root (lower level keys are picked to be robust
one-way functions of higher level keys, such that it is possible to calculate
a key lower in the tree given a key higher in the tree). So, a device with a
given set of Device Keys cannot derive its own Leaf Key, but any device
with any other Device Key set can. Further, corresponding to every sub-
tree in the master tree is another system of keys. For example, one level
down from the root of the master tree there are two sub-trees, each with
its own system (tree) of keys, in addition to the system of keys in the
master tree. Likewise, in the next level down in the master tree there are
four sub-trees, each with its own system of keys. By the time you reach
the bottom of the tree, each pair of devices belongs to their own sub-tree
of height 1. For each sub-tree corresponding to a node in the master tree
between a given device’s leaf and the root, that set of Device Keys
enables derivation of every key in that sub-tree except the keys between
its leaf and the root within that sub-tree. The figure on the right illustrates
the system of keys from the point of view of a single device, with sub-
trees shadowing off to the right. The nodes in white correspond to keys
that cannot be derived using that set of Device Keys.

 Figure 3-2 Subset-difference Tree

This scheme enables efficient revocation of any combination of Leaf Keys. To revoke only a single Leaf Key
(i.e., to enable calculation of the Media Key by any set of Device Keys except the set containing that Leaf Key),
the Media Key Block shall include the Media Key encrypted only by the master tree’s Leaf Key that is being
revoked. If the Media Key is encrypted using a key located higher in the tree, the effect is the revocation of a
contiguous range of Leaf Keys which are commonly rooted at that node. Efficient revocation of noncontiguous
Leaf Keys can be accomplished through use of the sub-tree key systems; a key associated with a single
contiguous group of revoked Leaf Keys in a single sub-tree is used to encrypt the Media Key. This encryption
entry in the MKB allows devices that do not have that key to successfully compute the Media Key while
simultaneously preventing all devices containing the revoked Leaf Keys from successfully computing the
Media Key because they do contain that key in their Device Key set. A similar encryption is repeated with other

. . .

device

. .
 .

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 13

sub-trees, until all devices containing the revoked Leaf Keys are unable to compute the Media Key and all other
devices can. It is this mechanism that gives this method its name. Sub-trees identify subsets, and each subset has
a set of contiguous revoked nodes, the “difference”.
Thus, the subset-difference tree has to store at least encryption for each revoked Leaf Key, and occasionally
additional encryptions to pick up non-revoked sets not covered by the smaller sub-trees. On average, there are
1.28 encryptions per revocation. Various optimizations are possible that influence MKB size and/or device
requirements, which are not described here. The following sections describe the details of the subset-difference
tree MKB as used by AACS.

3.2.2 Calculation of Subsidiary Device Keys and Processing Keys
For the purpose of processing an MKB to calculate Km, Device Keys are used to calculate subsidiary Device
Keys and Processing Keys using the AES-G3 function depicted in Figure 3-3.

AES-128DAES-128Dk

seed registers0 ++ 1

Figure 3-3 – Triple AES Generator (AES-G3)

A 128-bit input Device Key (which may be a subsidiary Device Key) is denoted ‘k’ in this diagram. This loop
is executed three times to produce 384 output bits, incrementing the seed register by one each time. The output
of AES-128D is XORed with the seed register’s output at each step. For each AES-G3 calculation, the seed
register is initialized by the 128-bit value “s0”, which is given by the following constant:

7B103C5DCB08C4E51A27B01799053BD916

The 384 output bits are interpreted as follows:

1. The first 128 bits is the subsidiary Device Key for the left child of the current node, or it is ignored if
the Device Key ‘k’ is a leaf Device Key, AES-128D(k, s0) ⊕ s0.

2. The second 128 bits is the Processing Key, AES-128D(k, s0+1) ⊕ (s0+1).
3. The third 128 bits is the subsidiary Device Key for the right child of the current node, or it is ignored if

the Device Key ‘k’ is a leaf Device Key, AES-128D(k, s0+2) ⊕ (s0+2).
By using the AES-G3 function in this way, the device calculates all subsidiary Device Keys that it needs from
the few Device Keys that it stores at manufacturing time.

3.2.3 Storing Device Keys
Each device is given its Device Keys and a 31-bit number d called the device number. For each Device Key,
there is an associated number denoted the path number, and the “u” bit mask, mu, and the “v” bit mask, mv. The
path number denotes the position in the tree associated with the Device Key. This path number defines a path
from the root to that node in the tree as follows: starting with the most significant bit, a ‘0’ value indicates the
path takes the ‘left’ branch of the tree and a ‘1’ value indicates the path takes the ‘right’ side. These masks are
always a single sequence of 1-bits followed by a single sequence of 0-bits. The bit masks indicate “don’t care”
bits in the path number; if a bit is zero, that corresponding bit in the uv number is “don’t care”; i.e., the path
ends at this point. The device number, path number, and masks denote nodes within a binary tree, where u is an
ancestor of v. These masks represent the depth of the respective nodes, u and v, from the root of the tree. The
deeper the position of a node in the tree, the shorter the sequence of 0-bits in the mask associated to that node.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 14

As a result, the mu mask always has more 0 bits than the mv mask. The subset-difference is the subtree rooted at
node u minus the sub-tree rooted at node v.
For conciseness, the path number and the “v” mask are encoded in a single 32-bit number, referred to as the uv
number. The mask for v is given by the first lower-order 1-bit in the uv number. That bit, and all lower-order 0-
bits, are zero bits in the “v” mask. The following C code fragment illustrates one way to calculate the v mask
from the uv number:

long v_mask = 0xFFFFFFFF;
while ((uv & ~v_mask) == 0) v_mask <<= 1;

By the same token, AACS distinguishes between device numbers (d) and device node numbers (Dnode), and uses
the latter in the key order format. Device node numbers are device numbers which include the encoded mask.
Since device numbers always correspond to leaves in the tree, the device node numbers always have their low-
order bit on, and their mask is always FFFFFFFE16. In other words, the device node number is the device
number shifted left by 1, with the low-order bit set.

3.2.4 Calculation of Media Key
The Media Key Block includes two major parts: the subset-difference identification part, and the key data part.
For each subset-difference included in the identification part, there are 16 bytes of key data in the key data part.
The key data is one-for-one with the identified subset-differences. For example, the 23rd subset-difference is
associated with the 23rd section of the Media Key Data field; that is, it begins at offset (23-1)*16 from the start
of the Media Key Data field of the Media Key Data Record.
Subset-differences are encoded as uv numbers and two masks, a “u” mask denoted mu and a “v” mask denoted
mv. A subset-difference applies to a device if the u node is on a path from the device’s node to the root of the
tree, but the v node is not. This is simple to calculate using the uv number, the appropriate mask, and the device
node number Dnode. By definition, a device “Dnode” is on a path to a “uv” number with mask “m” if and only if:

 (Dnode & m) == (uv & m)

Thus, a subset-difference applies if and only if:

 ((Dnode & mu) == (uv & mu)) and ((Dnode & mv) != (uv & mv))

The first part of the “and” statement tests that the device’s node is in the subset, i.e. the device’s node is in the
sub-tree rooted in u. The second part of the ‘and’ statement tests that the device’s node is not in the sub-tree
rooted in v. Hence, the full statement tests if the device’s node is in the subset difference “u minus v”. This
subset difference uv contains the nodes in the sub-tree rooted at u that do not belong to the sub-tree rooted at v.
The device searches through the Explicit Subset-Difference Record fields, looking at the identified subset-
differences, until it finds the one that applies to it. At that point the device either has the Device Key, or is able
to derive the subsidiary Device Key, associated with that subset-difference. It finds the appropriate stored
Device Key as follows: assuming the Explicit Subset-Difference Record value is uv, mu, and mv, and the stored
Device Key has uv’, m’u, and m’v, the appropriate Device Key is the one that meets the following condition:
 (mu == m’u) and ((uv & m’v) == (uv’ & m’v))

If m’v equals m v, the starting Device Key is the final Device Key, and is used directly to derive the Processing
Key, as described above. Usually, however, the starting Device Key’s node is further up in the tree, and the
actual Device Key will have to be derived. The device does that as follows:
1. Initialization. m = the stored v mask m’v. Dk = the starting Device Key.
2. Use AES-G3 on Dk, as described above, to determine a left subsidiary Device Key, a Processing Key, and a

right subsidiary Device Key.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 15

3. Look at the most significant zero bit in m. If the corresponding bit in the incoming uv number is 0, Dk =
left subsidiary Device Key from step 2. Otherwise, Dk = right subsidiary Device Key from step 2.

4. Iteration. Arithmetic shift m right one bit. If it does not equal the incoming v mask mv, repeat starting at
step 2.

Once the device has the correct Device Key Dk, it calculates a Processing Key K using AES-G3 as described
above. Using that Processing Key K and the appropriate 16 bytes of encrypted key data C, the device calculates
the 128-bit Media Key Km as follows:

 Km = AES-128D(K, C) ⊕ (00000000000000000000000016 || uv)
The appropriate encrypted key data C is found in the Media Key Data Record in the Media Key Block.
A device may discover, while processing the Media Key Block, that none of the subset-differences identified in
the block apply to it. In that case, the device shall conclude that it is revoked. Device behavior in this situation
is implementation defined. As an example, a device could exhibit a special diagnostic code, as information to a
service technician.

3.2.4.1 Class of Devices
AACS defines two types of devices, Class I Licensed Products and Class II Licensed Products. Class I Licensed
Products are:

1. Licensed Players that use Sequence Keys and process Sequence Key Blocks as explained in the AACS
Prerecorded Video Book.

2. Licensed Recorders that do not play prerecorded or prepared AACS Content and only support recorded
video as specified in the AACS Recordable Video Book.

Class II Licensed Products process a new type of Media Key Block, called a Class II Media Key Block (also
referred to as a Unified Media Key Block), instead of a Sequence Key Block. Adopters may always choose to
implement Class II Licensed Products if they wish. The AACS License describes the circumstances under
which adopters are allowed to continue to manufacturer Class I Licensed Products. AACS Pre-recorded Media
must contain both Sequence Key Blocks and Unified Media Key Blocks, so both classes of devices can process
all discs.
This paragraph is informative. Class II MKBs have better long-term forensic capabilities than SKBs. Also,
whereas Sequence Key Blocks have a finite, albeit large, capacity to respond to attacks, Unified MKBs have an
effectively unlimited capacity.

3.2.5 Media Key Block Format
A Media Key Block is formatted as a sequence of contiguous Records. Each Record begins with a one-byte
Record Type field, followed by a three-byte Record Length field. The Record Type field value indicates the
type of the Record, and the Record Length field value indicates the number of bytes in the Record, including the
Record Type and the Record Length fields themselves. Record lengths are always multiples of 4 bytes.
Using its Device Keys, a device calculates Km by processing Records of the MKB one-by-one, in order, from
first to last. The device shall not make any assumptions about the length of Records, and shall instead use the
Record Length field value to go from one Record to the next. If a device encounters a Record with a Record
Type field value it does not recognize, that is not an error; it shall ignore that Record and skip to the next.
Likewise, if a Record Length indicates a record is longer than the device expects, that is also not an error; it
shall ignore the additional record data.
The following subsections describe the currently defined Record types, and how a device processes each. All
multi-byte integers, including the length field, are “Big Endian”; in other words, the most significant byte
comes first in the record.
If an MKB contains duplicate or unexpectedly missing records, or the MKB is otherwise improperly formatted,
the device behavior shall be manufacturer specific.

3.2.5.1 Records Used by Both Class I and Class II Licensed Products

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 16

3.2.5.1.1 Type and Version Record

Table 3-2 – Type and Version Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 1016
1
2
3

Record Length: 00000C16

4
5
6
7

MKBType: 000x100316

8

9

10

11

Version Number

A properly formatted Media Key Block shall have exactly one Type and Version Record as its first record.
Recording devices shall use the Version Number in this record to determine if a new Media Key Block is, in
fact, more recent than the Media Key Block that is currently on the media. The Version Number is a 32-bit
unsigned integer. Each time the AACS LA changes the revocation, it increments the version number and inserts
the new value in subsequent Media Key Blocks. Thus, larger values indicate more recent Media Key Blocks.
The Version Numbers begin at 1; 0 is a special value used for test Media Key Blocks.
For AACS applications, the MKBType field is one of three values:
0003100316 (Type 3). This is a normal Media Key Block suitable for being recorded on a AACS
Recordable Media. Both Class I and Class II Licensed Products use it to directly calculate the Media Key.
0004100316 (Type 4). This is a Media Key Block that has been designed to use Key Conversion Data
(KCD). Thus, it is suitable only for pre-recorded media from which the KCD is derived. Both Class I and Class
II Licensed Products use it to directly calculate the Media Key.
000A100316 (Type 10). This is a Class II Media Key Block (one that has the functionality of a Sequence
Key Block). This can only be processed by Class II Licensed Products; Class I Licensed Products are revoked
in Type 10 Media Key Blocks and cannot process them. This type does not contain the Host Revocation List
Record, the Drive Revocation List Record, and the Media Key Data Record, as described in the following
sections. It does contain the records shown in Section 3.2.5.2, which are only processed by Class II Licensed
Products.
It is not an error for a Type 3 Media Key Block to be used for controlling access to AACS Content on pre-
recorded media. In this case, the device shall not use the KCD.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 17

3.2.5.1.2 Host Revocation List Record

Table 3-3 - Host Revocation List Record

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 2116
1
2
3

Record Length

4
...
7

Total Number of Entries

8
...
11

Number of Entries in this Signature Block (N1)

12
…
19

Host Revocation List Entry (0)

20
...

(12+ (N1-1)*8)-1

Host Revocation List Entry (1)
...

Host Revocation List Entry (N1 - 2)

(12+ (N1-1)*8)

…
(12+ N1*8)-1

Host Revocation List Entry (N1 - 1)

(12+ N1*8)

(52+ N1*8)-1
Signature for Block 1

(52+ N1*8)
(53+ N1*8)
(54+ N1*8)
(55+ N1*8)

Number of Entries in this Signature Block (N2)

(56+ N1*8)
…

(56+(N1+N2)*8)-1
Host Revocation List Entries…

(56+(N1+N2)*8)
…

(96+(N1+N2)*8)-1
Signature for Block 1 and 2

(96+(N1+N2)*8)
…

Length – 1
More Signature Blocks…

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 18

A properly formatted type 3 or type 4 Media Key Block shall have exactly one Host Revocation List Record as
its second record. This record provides a list of hosts that have been revoked by the AACS LA. The AACS
specification is applicable to PC-based system where a Licensed Drive and PC Host act together as the
Recording Device and/or Playback Device for AACS Content. AACS uses a drive-host authentication protocol
for the host to verify the integrity of the data received from the Licensed Drive, and for the Licensed Drive to
check the validity of the host application. The Type and Version Record and the Host Revocation List Record
are guaranteed to be the first two records of a Media Key Block, to make it easier for Licensed Drives to extract
this data from an arbitrary Media Key Block.

The Licensed Drive shall keep the highest-version-number Host Revocation List Record it has seen. (The
version number is found in the previous Type and Version Record.) During authentication, the Licensed Drive
shall check that the Host ID in the Host Certificate is not in its host revocation list. These first two records
combined together, i.e. the Type and Version Record followed by the Host Revocation List Record, are also
referred to as a Partial Media Key Block or Partial MKB for the purpose of storing the HRL in the Licensed
Drive.

A Host Revocation List Record consists of:
• A 1-byte Record Type value, where 2116 shall be used to indicate a Host Revocation List Record.
• A 3-byte Record Length field value that indicates the number of bytes in the Record, including the

Record Type and the Record Length fields themselves.
• The total number of Host Revocation List Entry fields that follow.
• The number of Host Revocation List Entry fields in the first signature block.
• A list of 8-byte Host Revocation List Entry fields, the length of this list being equal to the number in

the first signature block.
• A signature verifiable using the AACS_LApub on the fields. This signature covers the entire Type and

Version Record, and also the data in the Host Revocation List Record beginning with the type byte and
ending with the byte immediately preceding the signature. For the first signature block, the data being
signed together with the signature itself shall not exceed 32KB. Licensed Drives shall verify the
signature using the following procedure.

AACS_Verify(AACS_LApub, Signature Data, Type and Version and Host Revocation List)

• If there are more Host Revocation List Entry fields than fit within the 32KB limit, there shall be one or
more subsequent signature blocks. Each block begins with a four-byte “number of entries in this
signature block” field, a list of that number of Host Revocation List Entry fields, and a signature.
Within the signature block, the Host Revocation List Entry fields shall be sorted by Host ID in
ascending order, without duplication. The signature covers the entire list, not just that signature block.
In other words, the subsequent signatures cover the entire Type and Version Record, and the data in
this HRL record up to, but not including, the signature itself. Licensed Drives only need to verify the
signature on the block(s) they intend to store, and then only if the version number is more recent than
the one that they have previously stored.

Licensed Drives are required to store only the data being signed for the first signature block, but not required to
store the signature itself. Furthermore Licensed Drives are not required to, but may store subsequent signature
blocks.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 19

Table 3-4 – Host Revocation List Entry

Bit
Byte 7 6 5 4 3 2 1 0

0
1

Range

2
3
4
5
6
7

Host ID

A Host Revocation List Entry includes:

• A 2-byte Range value indicates the range of revoked ID’s starting from the ID contained in the record.
A value of zero in the Range field indicates that only one ID is being revoked, a value of one in the
Range field indicates two ID’s are being revoked, and so on.

• A 6-byte Host ID value identifying the host being revoked (or the first in a range of hosts being
revoked, in the case of a non-zero Range value).

The length of the Host Revocation List Record is always a multiple of four bytes.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 20

3.2.5.1.3 Drive Revocation List Record

Table 3-5 - Drive Revocation List Record

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 2016
1
2
3

Record Length

4
...
7

Total Number of Entries

8
...
11

Number of Entries in this Signature Block (N1)

12
…
19

Drive Revocation List Entry (0)

20
...

(12+ (N1-1)*8)-1

Drive Revocation List Entry (1)
...

Drive Revocation List Entry (N1 - 2)

(12+ (N1-1)*8)

…
(12+ N1*8)-1

Drive Revocation List Entry (N1 - 1)

(12+ N1*8)

(52+ N1*8)-1
Signature for Block 1

(52+ N1*8)
(53+ N1*8)
(54+ N1*8)
(55+ N1*8)

Number of Entries in this Signature Block (N2)

(56+ N1*8)
…

(56+(N1+N2)*8)-1
Drive Revocation List Entries…

(56+(N1+N2)*8)
…

(96+(N1+N2)*8)-1
Signature for Block 1 and 2

(96+(N1+N2)*8)
…

Length – 1
More Signature Blocks…

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 21

A properly formatted type 3 or type 4 Media Key Block contains exactly one Drive Revocation List Record. It
follows the Host Revocation List Record, although it may not immediately follow it.

The Drive Revocation List Record is identical to the Host Revocation List Record, except it has type 2016, and it
contains Drive Revocation List Entries, not Host Revocation List Entries. The Drive Revocation List Entries
refer to Drive IDs in the Drive Certificates.

The signature for each signature block covers the entire Type and Version Record, and also the data in the Drive
Revocation List Record beginning with the Record Type byte and ending with the byte immediately preceding
the signature. For the first signature block, the data being signed together with the signature itself shall not
exceed 32KB. Hosts shall verify the signature using the following procedure.

AACS_Verify(AACS_LApub, Signature Data, Type and Version and Drive Revocation List)

Within the signature block, the Drive Revocation List Entry fields shall be sorted by Drive ID in ascending
order, without duplication.

Hosts are required to store only the data being signed for the first signature block, but not required to store the
signature itself. Furthermore, hosts are not required to, but may store subsequent signature blocks.

The host shall keep the highest-version-number Drive Revocation List Record it has seen. The host shall check
that the Drive ID in the Drive Certificate is not in the Drive Revocation List Record during the authentication
process.
A Drive Revocation List Entry includes:

• A 2-byte Range value indicates the range of revoked ID’s starting from the ID contained in the record.
A value of zero in the Range field indicates that only one ID is being revoked, a value of one in the
Range field indicates that two ID’s are being revoked, and so on.

• A 6-byte Drive ID value identifying the Licensed Drive being revoked (or the first in a range of
Licensed Drives being revoked, in the case of a non-zero Range value).

The length of the Drive Revocation List Record is always a multiple of four bytes.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 22

3.2.5.1.4 Verify Media Key Record

Table 3-6 – Verify Media Key Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 8116
1
2
3

Record Length: 00001416

4

…

19

Verification Data (Vd)

A properly formatted MKB shall have exactly one Verify Media Key Record. It shall precede the Explicit Subset
Difference Record, the Subset Difference Index Record, and the Media Key Data Record, although it may not
immediately precede them. Bytes 4 through 19 of the Record contain the ciphertext value
 Vd = AES-128E (Km, 0123456789ABCDEF16 || XXXXXXXXXXXXXXXX16)

where XXXXXXXXXXXXXXXX16 is an arbitrary 8-byte value, and Km is the correct final Media
Key value.

The presence of the Verify Media Key Record in an MKB is mandatory. The device may use the Verify Media
Key Record to verify the correctness of a given MKB, or of its processing of it. The device shall verify the
correctness of the MKB by observing the following condition:
 [AES-128D(Km, Vd)]msb_64 == 0123456789ABCDEF16
 where Km is the Media Key value.

Note that for a device that is required to use Key Conversion Data (KCD), processing of a Type 4 Media Key
Block results in a Media Key Precursor Kmp instead of a Media Key. The rules applicable to devices that use
KCD are in the AACS Compliance Rules. The use of Kmp in devices prevents the direct use of compromised
Device Keys from those devices in a different type of device that does not use Kmp.
A Licensed Product that is not PC-based and that does not implement Proactive Renewal as defined in the
AACS Compliance Rules, shall incorporate Device Keys that utilize KCD.
To obtain the actual Media Key, the Media Key Precursor shall be processed with KCD using the following
process:

Km = AES-G(Kmp, KCD)
The device obtains the Key Conversion Data by mechanisms that are independent of the Media Key Block.
These mechanisms are defined in the format-specific books of this specification. A device that is using KCD,
generally shall apply the KCD before verifying the correctness of its processing of the Media Key Block.
However, it is possible that it may be processing an old Media Key Block to which the KCD data has not been
incorporated in its part of the tree. Therefore, such a device shall use the Verify Media Key Record to determine
if it needs to apply the KCD data or not. In other words, if the purported Media Key Precursor actually verifies
as the Media Key, then it shall not apply the KCD data, even if it is a type of device that normally would use
KCD data.
Devices that do not use the KCD are not required to verify the Media Key, although they may.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 23

3.2.5.1.5 Explicit Subset-Difference Record

Table 3-7 – Explicit Subset-Difference Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0416
1
2
3

Record Length

4 U Mask (0)
5
…
8

UV Number (0)

9 U Mask (1)
10
...
13

UV Number (1)

14
.
.
.

Length-1

.

.

.

In this record, each subset-difference is encoded with 5 bytes. The mask for u is given by the first byte. That
byte is treated as a number, the number of low-order 0-bits in the mask. For example, the value 0116 denotes a
mask of FFFFFFFE16; value 0A16 denotes a mask of FFFFFC0016.
The last 4 bytes are the uv number, most significant byte first. (See section 3.2.3 for a definition of the uv
number.)
If a device encounters a u mask value whose high-order two bits are non-zero, without finding an applicable
subset, it may conclude it is revoked. In other words, if the u mask is not of the form 00xxxxxx2, this marks the
end of the list. The device’s action in this case is manufacturer-specific. However, it is common for proactively-
renewed devices to find themselves revoked if they are at a down-level version. In this case, the update to the
new version should be as seamless as possible for the consumer.
The length of this record is always a multiple of 4 bytes. Thus, there may be unused bytes at the end of the
record.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 24

3.2.5.1.6 Subset-Difference Index Record

Table 3-8 – Subset-Difference Index Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0716
1
2
3

Record Length

4
…
7

Span (number of devices)

8
9

10
Offset 0

11
12
13

Offset 1

14

…

Length-1

Offsets 2 – Offset N

This is a speed-up record which may be ignored by devices not wishing to take advantage of it. It is a lookup
table which allows devices to quickly find their subset-difference in the Explicit Subset-Difference Record,
without processing the entire record. This Subset-Difference Index Record is always present, and always
precedes the Explicit Subset-Difference Record in the MKB, although it does not necessarily immediately
precede it. Furthermore, the Subset-Difference Index Record is guaranteed to be within the first one megabyte of
the Media Key Block. For the purpose of designing for performance, a one megabyte buffer is sufficient to
process the MKB; however, it is the manufacturer's choice how large a buffer is devoted to that purpose.
(Informatively, it is always possible to treat the Media Key Block as a stream using a relatively small buffer.)
Nonetheless, devices shall always be capable of processing Media Key Blocks exceeding one megabyte in size.
This record contains a “span”, the number of devices per index offset, and a number of 3-byte offsets. These
offsets refer to the byte offset within the following Explicit Subset-Difference Record, with 0 being the start of
the record. Devices whose device number is between 0 and span-1 shall begin processing the Explicit Subset-
Difference Record at Offset 0. Devices whose number is between span and 2*span-1, shall begin processing the
Explicit Subset-Difference Record at Offset 1, and so on. Equivalently, if a device’s number is d, it finds its
offset within the Explicit Subset-Difference Record at offset 3*(d/span) + 8 in this record.
Note that a device’s number d is its node number Dnode shifted right by 1, because the low-order bit of the node
number is always 1 to denote a leaf node.
The length of this record is always a multiple of 4 bytes. Thus, there may be unused bytes at the end of the
record.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 25

3.2.5.1.7 Media Key Data Record

Table 3-9 – Media Key Data Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0516
1
2
3

Record Length

4

…

19

Media Key Data (0)

20

...

35

Media Key Data (1)

36
.
.
.

Length-1

.

.

.

This record, which is only present in type 3 and type 4 MKBs, gives the associated encrypted Media Key Data
for the subset-differences identified in the Explicit Subset-Difference Record. Each subset-difference has its
associated 16 bytes in this record, in the same order it is encountered in the Explicit Subset-Difference Record.
This 16-byte is the ciphertext value C in the Media Key calculation in Section 3.2.4
The Explicit Subset-Difference Record always precedes this record, although it may not immediately precede it.
The length of this record is always a multiple of 4 bytes.
Notice that adding a new cover sub-tree to the MKB or new encryption requires 21 bytes: 5 bytes for its “uv”
data and 16 bytes for the Media Key Data. On average there are 1.28 encryptions per revocation.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 26

3.2.5.1.8 End of Media Key Block Record

Table 3-10 – End of Media Key Block Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0216
1
2
3

Record Length

4
…

Length-1
Signature Data

A properly formatted MKB shall contain an End of Media Key Block Record. When a device encounters this
Record it stops processing the MKB, using whatever Km value it has calculated up to that point as the final Km
for that MKB (pending possible checks for correctness of the key, as described previously).
The End of Media Key Block Record contains the AACS LA’s signature on the data in the Media Key Block up
to, but not including, this record. Devices shall verify the signature, using the following procedure.

AACS_Verify(AACS_LApub, Signature Data, MKB)
If any device determines that the signature does not verify or is omitted, it shall refuse to use the Media Key.
Devices that are accessing the Media Key Block solely to use the Host Revocation List Record or the Drive
Revocation List Record, which have their own embedded signatures, are not required to check the signature on
the entire Media Key Block. Of course, they are required to check the signatures on the records they actually
use, as specified in sections 3.2.5.1.2 and 3.2.5.1.3.
The length of this record is always a multiple of 4 bytes.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 27

Figure 3-4 shows an example type 3 or type 4 MKB with an example record ordering. However, it is possible to
construct many other valid sequences. Notice that for every “uv” related field there is a Media Key Data field
and for the record types shown in the left, there is only one record.

Verify Media Key

End of Media Key Block

Explicit Subset Difference

Subset Difference Index

Type and Version

Media Key Data

type

U Mask, UV Number (n)

U Mask, UV Number (0)
U Mask, UV Number (1)

length

…

type

Media Key Data (n)

Media Key Data (0)
Media Key Data (1)

length

…

UV-subtree
Data

Media Key
Data

Example Media Key
Block Format Records

Host Revocation List

Drive Revocation List

Figure 3-4 Example of Type 3 or Type 4 Media Key Block Showing a Possible Valid Order of

Records

3.2.5.2 Additional Records for Class II Licensed Products
Devices manufactured under the AACS interim license are required to ignore records that they do not recognize
in the MKB. Likewise, Class I Licensed Products manufactured after the release of this specification shall
ignore these records.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 28

3.2.5.2.1 Media Key Variant Data Record
Table 3-11 – Media Key Variant Data Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0C16
1
2
3

Record Length

4

…

19

Media Key Variant Data (0)

20

...

35

Media Key Variant Data (1)

36
.
.
.

Length-1

.

.

.

This record gives the associated encrypted Media Key Variant Data for the subset-differences identified in the
Explicit Subset-Difference Record. It is analogous to the Media Key Data Record (Section 3.2.5.1.7). A Media
Key Block has either a Media Key Data Record or a Media Key Variant Data Record. Each subset-difference
has its associated 16 bytes in this record, in the same order it is encountered in the Explicit Subset-Difference
Record. This 16-byte ciphertext value C is used to calculate the Media Key Variant.
The Media Key Variant Kmv is calculated from C as follows:

Kmv = AES-128D(Kp, C) ⊕ (00000000000000000000000016 || uv))
Where Kp is the particular Processing Key of the subset-difference, and uv is the relevant value from the
Explicit Subset-Difference Record.
The Media Key Variant is used to calculate the keys for particular variants in the AACS Content, as explained
in the format-specific books of this specification.
The Media Key Variant calculation does not use the hardware KCD value.
The Explicit Subset-Difference Record always precedes this record, although it may not immediately precede it.
The length of this record is always a multiple of 4 bytes.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 29

3.2.5.2.2 Variant Number Record
Table 3-12 – Variant Number Record Format

Bit
Byte 7 6 5 4 3 2 1 0

0 Record Type: 0D16
1
2
3

Record Length

4

…

19

Nonce

20 Variant Number(0)
21 Variant Number(1)
22
…

Length
…

This record gives the associated encrypted variant number data for the subset-differences identified in the
Explicit Subset-Difference Record. Each subset-difference has its associated 10 bits in this record, in the same
order it is encountered in the Explicit Subset-Difference Record. These 10-bit fields are tightly packed in the
“Variant Number Data” field.
Using the “Nonce” field in this record and the Processing Key (Kp) associated with the subset-difference, the
Class II Licensed Product calculates a 10-bit key value as follows:
 Kvn = [AES-G(Kp, Nonce)]lsb_10

It then XORs the Kvn value with the appropriate 10 bits in the “Variant Number Data” field to obtain the variant
number, from 0 to 1023. The Variant Number is used to identify the appropriate content variations as described
in the format-specific books of this specification.
The Explicit Subset-Difference Record always precedes this record, although it may not immediately precede it.
The length of this record is always a multiple of 4 bytes. If necessary, it is padded with bits of value 02.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 30

Figure 3-4 shows an example type 10 MKB with an example record ordering. However, it is possible to
construct many other valid sequences. Notice that for every “uv” related field there is a Media Key Variant
Data field and for the record types shown in the left, there is only one record.

Verify Media Key

End of Media Key Block

Explicit Subset Difference

Subset Difference Index

Type and Version

Media Key Variant Data

type

U Mask, UV Number (n)

U Mask, UV Number (0)
U Mask, UV Number (1)

length

…

type

Media Key Variant Data (n)

Media Key Variant Data (0)
Media Key Variant Data (1)

length

…

UV-subtree
Data

Media Key
Data

Example Media Key
Block Format Records

Figure 3-5 Example of Type 10 Media Key Block Showing a Possible Valid Order of Records

3.2.6 Read/Write Media Key Blocks
Media Key Blocks shall be updated to later versions on AACS Recordable Media when appropriate. Additional
details on this process can be found in the Recordable book portion of this specification.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 31

Chapter 4
Additional Procedures for Drive-Host

Configurations
4. Introduction
AACS specification is applicable to a PC-based system. In such a system, a Licensed Drive and PC Host2 act
together as the Recording Device and/or Playback Device for AACS Content. Note that a new, robust and
renewable form of drive authentication is introduced; recording or playback of AACS Content is not permitted
using Licensed Drives that only support authentication associated with the Content Scramble System (CSS) for
DVD-Video. The procedure for recording or playback of the AACS Content is the same as described in
relevant document of AACS specification, except for additional steps that are required for the host to read and
verify the integrity of the Volume Identifier, Pre-recorded Media Serial Number, Media Identifier, Protected
Area Data values, Media Identifier of CPRM, Media Identifier of +R / +RW (see the AACS Blu-ray Disc
Recordable Book, Section 1.1 for more information) and Media Key Block of CPRM it receives from the
Licensed Drive, and to ensure the Protected Area Data is securely written to the media. The following figures
(Figure 4-1 through Figure 4-8) illustrate these procedures.

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Pre-recorded
Optical Media

Volume ID

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Decryption
Module

see
Pre-recorded
Video Book

Decryption
Module

see
Pre-recorded
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Pre-recorded
Optical Media

Volume ID

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Decryption
Module

see
Pre-recorded
Video Book

Decryption
Module

see
Pre-recorded
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Figure 4-1 – Reading of Volume Identifier in a PC–based System

2 Note that the term “host” can refer to a PC Host, or a combination of a PC Host and a server.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 32

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Pre-recorded
Optical Media

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Decryption
Module

see
Pre-recorded
Video Book

Decryption
Module

see
Pre-recorded
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Pre-recorded Media
Serial Number MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Pre-recorded
Optical Media

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Decryption
Module

see
Pre-recorded
Video Book

Decryption
Module

see
Pre-recorded
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Pre-recorded Media
Serial Number

Figure 4-2 – Reading of Pre-recorded Media Serial Number in a PC-based System

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media

Media ID

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Encryption
or

Decryption
Module

see
Recordable
Video Book

Encryption
or

Decryption
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media

Media ID

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Encryption
or

Decryption
Module

see
Recordable
Video Book

Encryption
or

Decryption
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Figure 4-3 – Reading of Media Identifier in a PC-based System

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 33

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media
AACS Optical Drive HostDrive-Host

Interface

Protected Area
Control
Module

see
Recordable
Video Book

Protected Area
Control
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Data Associated
with Protected Area

Random Number GeneratorProtected Area Data

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media
AACS Optical Drive HostDrive-Host

Interface

Protected Area
Control
Module

see
Recordable
Video Book

Protected Area
Control
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Data Associated
with Protected Area

Random Number GeneratorProtected Area Data

Figure 4-4 – Generating, Transferring, and Writing of Protected Area Data in a PC-based System

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media

Protected
Area Data

AACS Optical Drive HostDrive-Host
Interface

Protected Area
Control
Module

see
Recordable
Video Book

Protected Area
Control
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Data Associated
with

Protected Area

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media

Protected
Area Data

AACS Optical Drive HostDrive-Host
Interface

Protected Area
Control
Module

see
Recordable
Video Book

Protected Area
Control
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys

MKB

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Data Associated
with

Protected Area

Figure 4-5 – Reading of Protected Area Data in a PC-based System

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 34

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media

Media ID of CPRM

AACS Optical Drive HostDrive-Host
Interface

Encrypted
Content

Encryption
or

Decryption
Module

see
Recordable
Video Book

Encryption
or

Decryption
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys
AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation ListMedia Key Block
of CPRM

Constant

Figure 4-6 – Reading of Media Identifier of CPRM in a PC-based System

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 35

MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media
AACS Optical Drive HostDrive-Host

Interface

Encryption
or

Decryption
Module

see
Recordable
Video Book

Encryption
or

Decryption
Module

see
Recordable
Video Book

AACS_LApub,
Drive Private Key,
Drive Certificate

Device Keys
AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation ListMedia Key Block

AES-H

Disc ID 1

MAC CalculationMAC Calculation

Disc ID 2

Encrypted
Content

Figure 4-7 – Reading of Media Identifier of +R / +RW in a PC-based System

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media
AACS Optical Drive HostDrive-Host

Interface

Media
Verification

Module

see
CPRM Media
Verification

Book

Media
Verification

Module

see
CPRM Media
Verification

Book

AACS_LApub,
Drive Private Key,
Drive Certificate

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Media Key Block
of CPRM

Device Keys
for CPRM

MAC CalculationMAC Calculation MAC VerificationMAC Verification

AACS Protected
Recordable

Optical Media
AACS Optical Drive HostDrive-Host

Interface

Media
Verification

Module

see
CPRM Media
Verification

Book

Media
Verification

Module

see
CPRM Media
Verification

Book

AACS_LApub,
Drive Private Key,
Drive Certificate

AACS_LApub,
Host Private Key,
Host Certificate

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Authentication
and Key Sharing

Mechanism
(AACS-Auth)

Bus Key

Drive Revocation ListHost Revocation List

Media Key Block
of CPRM

Device Keys
for CPRM

Figure 4-8 – Reading of Media Key Block of CPRM in a PC-based System

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 36

4.1 Drive Certificate
The Licensed Drive shall have the AACS_LApub, a Drive Certificate and a Drive Private Key in order to
perform the required AACS Drive Authentication. Table 4-1 shows the format of the Drive Certificate.

Table 4-1 – Drive Certificate

Bit
Byte 7 6 5 4 3 2 1 0

0 Certificate Type: 0116
1 Reserved BEC

2
3 Length: 005C16

4
:
9

Drive ID

10
11 Reserved

12
:

51
Drive Public Key

52
:

91
Signature Data (Drive_Certsig)

Each Drive Certificate includes:
• An 8-bit Certificate Type value, where 0116 shall be used to indicate a first-generation Licensed Drive
• A Bus Encryption Capable (BEC) bit, where 12 shall be used to indicate that the Licensed Drive is

capable of performing the Bus Encryption as specified in section 4.8. If the Licensed Drive is not
capable of performing the Bus Encryption, the BEC bit shall be set to 02.

• A 2-byte Length of the certificate data including signature.
• A 6-byte unique Drive ID.
• A 40-byte Drive Public Key.
• A 40-byte Signature Data (Drive_Certsig), that is to be verified by using the AACS_LApub.

AACS_Verify(AACS_LApub, Drive_Certsig, Drive_Cert)
where Drive_Certsig is Byte 52 through Byte 91 of the Drive Certificate and Drive_Cert is Byte 0
through Byte 51 of the Drive Certificate.

4.2 Host Certificate
AACS licensed PC Host shall have the AACS_LApub, a Host Certificate and a Host Private Key in order to
perform the required AACS Drive Authentication. Table 4-2 shows the format of the Host Certificate.

Table 4-2 – Host Certificate

Bit
Byte 7 6 5 4 3 2 1 0

0 Certificate Type: 0216

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 37

1 Reserved DKS BEC
2
3 Length: 005C16

4
:
9

Host ID

10
11 Reserved

12
:

51
Host Public Key

52
:

91
Signature Data (Host_Certsig)

Each Host Certificate includes:
• An 8-bit Certificate Type value, where 0216 shall be used to indicate a first-generation AACS PC Host
• A 1-bit Bus Encryption Capable (BEC) bit, where 12 shall be used to indicate that the PC Host is

capable of performing the Bus Encryption specified in section 4.8. If the PC Host is not capable of
performing the Bus Encryption, the BEC bit shall be set to 02. If a Licensed Drive capable of Bus
Encryption encounters a host not capable of Bus Encryption, the Licensed Drive shall refuse to
complete AACS Drive Authentication with the host. Thus, the Licensed Drive cannot be used by such
a host to play AACS Content.

• A 1-bit Data Key Settable (DKS) flag, where 12 shall be used to indicate that the PC Host is permitted
to establish a specific Data Key and 02 shall be used to indicate that the PC Host is not permitted to
establish a specific Data Key.

• A 2-byte Length of the certificate data including signature.
• A 6-byte unique Host ID.
• A 40-byte Host Public Key.
• A 40-byte Signature Data (Host_Certsig), that is to be verified by using the AACS_LApub.

AACS_Verify(AACS_LApub, Host_Certsig, Host_Cert)
where Host_Certsig is Byte 52 through Byte 91 of the Host Certificate and Host_Cert is Byte 0 through
Byte 51 of the Host Certificate.

4.3 AACS Drive Authentication Algorithm (AACS-Auth)
By the AACS Drive Authentication, the Licensed Drive and the PC Host verify each counterpart is an AACS
compliant device that has a valid certificate signed by the AACS LA and can sign and verify digital signatures
specified in this document. In addition, the Licensed Drive and the PC Host verify each counterpart is not
revoked by checking the Host Revocation List (HRL) and the Drive Revocation List (DRL), respectively.
Furthermore, if the Licensed Drive is capable of Bus Encryption, it shall verify that the host is also so capable.
To check for revocation, the Licensed Drive shall store the most recent HRL it has encountered and the PC Host
shall store the most recent DRL it has encountered. When the AACS Drive Authentication is successful, the
Licensed Drive and the PC Host have a shared Bus Key (BK), and proceed to the further steps. Figure 4-9
shows the protocol flow for AACS Drive Authentication and key sharing used in AACS.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 38

HostAACS Optical Drive

Check MKB version and determine which DRL
of the MKB or DRL stored in Host is used

Generate 160 bits Nonce (Hn)

Verify Dcert
Check Drive ID in the DRL

Verify Dsig by
AACS_Verify(Dpub, Dsig, Hn || Dv)

Generate 160 bits Nonce (Hk)
Calculate Hv = Hk G on the elliptic curve
where G is the Base Point of ECDSA
Calculate Hsig = AACS_Sign(Hpriv, Dn || Hv)

Calculate Bus Key (BK) by
BK = Hk Dv on the elliptic curve

Check MKB version and determine which HRL
of the MKB or HRL stored in Drive is used

Verify Hcert
Check Host ID in the HRL

Generate 160 bits Nonce (Dn)

Generate 160 bits Nonce (Dk)
Calculate Dv = Dk G on the elliptic curve
where G is the Base Point of ECDSA
Calculate Dsig = AACS_Sign(Dpriv, Hn || Dv)

.

Verify Hsig by
AACS_Verify(Hpub, Hsig, Dn || Hv)

Calculate Bus Key (BK) by
BK =Dk Hv on the elliptic curve

MKB

AGID

Hn || Hcert

Dn || Dcert

Dv || Dsig

Hv || Hsig

Figure 4-9 – AACS Drive Authentication Algorithm for AACS

The AACS Drive Authentication is performed in the following procedure.
1. For the first authentication to the media inserted, the host reads an MKB recorded on the media to check if

its version is higher than the version of DRL that it has stored in its non-volatile memory. If not, the host
determines to use the DRL in its non-volatile memory for the subsequent AACS Drive Authentication
procedure and go to step 3.

2. If the version of MKB recorded on the media is higher than the version of DRL that the host has stored in
its non-volatile memory, the host verifies the signature in the Drive Revocation List Record of MKB. If
the signature is correctly verified, the host determines to use the DRL in the MKB for the subsequent
AACS Drive Authentication procedure; otherwise, the host shall abort the AACS Drive Authentication
procedure.

3. For the first authentication to the media inserted, the Licensed Drive reads an MKB recorded on the media
to check if its version is higher than the version of HRL that it has stored in its non-volatile memory. If
not, the Licensed Drive determines to use the HRL in its non-volatile memory for the subsequent AACS
Drive Authentication procedure and go to step 5. The location of the MKB is described in the relevant
Format-specific book in this specification. This step and the next step may be deferred after step 5 but
shall be performed before step 9.

4. If the version of MKB recorded on the media is higher than the version of HRL that the Licensed Drive
has stored in its non-volatile memory, the Licensed Drive verifies the signature in the Host Revocation List
Record of MKB. If the signature is correctly verified, the Licensed Drive determines to use the HRL in
the MKB for the subsequent AACS Drive Authentication procedure; otherwise, the Licensed Drive shall
abort the AACS Drive Authentication procedure.

5. The host acquires an Authentication Grant Identifier (AGID) from the Licensed Drive. The AGID is used
to manage multiple threads of AACS Drive Authentications up to 4, if the Licensed Drive supports the
multiple threads.

6. The host generates 160 bits random number as nonce Hn

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 39

7. The host sends the nonce Hn generated in step 6 and the Host Certificate to the Licensed Drive.
8. The Licensed Drive checks if the value of the Certificate Type is 0216 and the value of the Length is

005C16 in the Host Certificate. Furthermore, if the Licensed Drive is capable of Bus Encryption, it shall
check the BEC bit is 12 in the Host Certificate. If any of these checks fail, the Licensed Drive shall
determine the host is not compliant and shall abort the AACS Drive Authentication procedure.

9. The Licensed Drive verifies the signature of the Host Certificate using the AACS LA Public Key.
AACS_Verify(AACS_LApub, Host_Certsig, Host_Cert)
where Host_Certsig is Byte 52 through Byte 91 of the Host Certificate and Host_Cert is Byte 0 through
Byte 51 of the Host Certificate.

If the verification fails, the Licensed Drive shall determine the host is not compliant and shall abort the
AACS Drive Authentication procedure.

10. The Licensed Drive checks the Host Revocation List determined in either step 3 or step 4 to ensure that the

Host ID of the Host Certificate has not been revoked. If the Host ID is found revoked, the Licensed Drive
shall abort the AACS Drive Authentication procedure.

11. The host sends a request to the Licensed Drive to return a nonce Dn and the Drive Certificate.
12. The Licensed Drive generates 160 bits random number as nonce Dn
13. The Licensed Drive sends the nonce Dn generated in step 11 and the Drive Certificate to the host.
14. The host checks if the value of the Certificate Type is 0116 and the value of the Length is 005C16 in the

Drive Certificate. If these checks fail, the host shall determine the drive is not compliant and shall abort
the AACS Drive Authentication procedure.

15. The host verifies the signature of the Drive Certificate using the AACS LA Public Key.
AACS_Verify(AACS_LApub, Drive_Certsig, Drive_Cert)
where Drive_Certsig is Byte 52 through Byte 91 of the Drive Certificate and Drive_Cert is Byte 0
through Byte 51 of the Drive Certificate.

If the verification fails, the host shall determine the drive is not compliant and shall abort the AACS Drive
Authentication procedure.

16. The host checks the Drive Revocation List determined in either step 1 or step 2 to ensure that the Drive ID
of the Drive Certificate has not been revoked. If the Drive ID is found revoked, the host shall abort the
AACS Drive Authentication procedure.

17. The host sends a request to the Licensed Drive to return a point on the elliptic curve Dv and its associated
signature.

18. The Licensed Drive generates 160 bits random number as Dk
19. The Licensed Drive calculates a point on the elliptic curve Dv.

Dv = Dk G
where G is the base point of the elliptic curve

20. The Licensed Drive creates a digital signature of the concatenation of the nonce Hn received in step 7 and
the point on the elliptic curve Dv calculated in step 17.

Dsig = AACS_Sign(AACS_Drivepriv, Hn || Dv)
21. The Licensed Drive sends the point on the elliptic curve Dv calculated in step 17 and the digital signature

Dsig created in step 18 to the host.
22. The host verifies the signature of the concatenation of the nonce Hn and the point on the elliptic curve Dv.

AACS_Verify(AACS_Drivepub, Dsig , Hn || Dv)
If the verification fails, the host shall determine the drive is not compliant and shall abort the AACS Drive
Authentication procedure.

23. The host generates 160 bits random number as Hk
24. The host calculates a point on the elliptic curve Hv.

Hv = Hk G

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 40

where G is the base point of the elliptic curve
25. The host creates a digital signature of the concatenation of the nonce Dn received in step 12 and the point

on the elliptic curve Hv calculated in step 22.
Hsig = AACS_Sign(AACS_Hostpriv, Dn || Hv)

26. The host sends the point on the elliptic curve Hv calculated in step 22 and the digital signature Hsig created
in step 23 to the Licensed Drive.

27. The Licensed Drive verifies the signature of the concatenation of the nonce Dn and the point on the elliptic
curve Hv.

AACS_Verify(AACS_Hostpub, Hsig , Dn || Hv)
If the verification fails, the Licensed Drive shall determine the host is not compliant and shall abort the
AACS Drive Authentication procedure.

Then, the Licensed Drive and the host share a Bus Key as follows:
28. The Licensed Drive calculates the Bus Key from a point of the elliptic curve as follows

BK = [x-coordinate of Dk Hv]lsb_128

where BK is the least significant 128-bit of x-coordinate.
29. The host calculates the Bus Key from a point of the elliptic curve as follows

BK = [x-coordinate of Hk Dv]lsb_128

where BK is the least significant 128-bit of x-coordinate.

4.4 Protocol for Transferring Volume Identifier
The Volume Identifier is securely transferred between the Licensed Drive and the host using the following
procedure: Figure 4-10 shows the protocol flow of transferring the Volume Identifier (Volume ID).

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Volume_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Volume_ID from the media
Calculate Dm = CMAC(BK, Volume_ID)

AACS-Auth

Request Volume_ID

Volume_ID || Dm

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Volume_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Volume_ID from the media
Calculate Dm = CMAC(BK, Volume_ID)

AACS-Auth

Request Volume_ID

Volume_ID || Dm

Figure 4-10 – Protocol Flow of transferring Volume Identifier

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Volume ID from the Licensed Drive
3. The Licensed Drive reads Volume ID (Volume_ID) from the media and calculates a message

authentication code (Dm) from the Volume ID and the Bus Key (BK) calculated in step 26 in Section 4.3.
Dm = CMAC(BK, Volume_ID)

4. The Licensed Drive sends Volume_ID read in step 3 and the message authentication code Dm calculated in
step 3 to the host.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 41

5. The host calculates a message authentication code (Hm) from the Volume_ID received in step 4 and the
Bus Key (BK) calculated in step 27 in Section 4.3.

Hm = CMAC(BK, Volume_ID)
6. The host verifies if the Dm received in step 4 matches the Hm calculated in step 5. If the verification

succeeds, then the host may trust the Volume ID; otherwise, the host shall stop processing the media.

4.5 Protocol for Transferring Pre-recorded Media Serial Number
The Pre-recorded Media Serial Number is securely transferred between the Licensed Drive and the host using
the following procedure: Figure 4-11 shows the protocol flow of transferring the Pre-recorded Media Serial
Number (PMSN).

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, PMSN)
Verify Dm == Hm

If AACS-Auth successful

Read PMSN from the media
Calculate Dm = CMAC(BK, PMSN)

AACS-Auth

Request PMSN

PMSN || Dm

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, PMSN)
Verify Dm == Hm

If AACS-Auth successful

Read PMSN from the media
Calculate Dm = CMAC(BK, PMSN)

AACS-Auth

Request PMSN

PMSN || Dm

Figure 4-11 – Protocol Flow of transferring Pre-recorded Media Serial Number

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Pre-recorded Media Serial Number from the
Licensed Drive

3. The Licensed Drive reads Pre-recorded Media Serial Number (PMSN) from the media and calculates a
message authentication code (Dm) from the PMSN and the Bus Key (BK) calculated in step 26 in Section
4.3.

Dm = CMAC(BK, PMSN)
4. The Licensed Drive sends PMSN read in step 3 and the message authentication code Dm calculated in step

3 to the host.
5. The host calculates a message authentication code (Hm) from the PMSN received in step 4 and the Bus

Key (BK) calculated in step 27 in Section 4.3.
Hm = CMAC(BK, PMSN)

6. The host verifies if the Dm received in step 4 matches the Hm calculated in step 5. If the verification
succeeds, then the host may trust the Pre-recorded Media Serial Number; otherwise, the host shall stop
processing the media.

4.6 Protocol for Transferring Media Identifier
The Media Identifier is securely transferred between the Licensed Drive and the host using the following
procedure: Figure 4-12 shows the protocol flow of transferring the Media Identifier (Media ID).

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 42

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Media_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Media_ID from the media
Calculate Dm = CMAC(BK, Media_ID)

AACS-Auth

Request Media_ID

Media_ID || Dm

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Media_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Media_ID from the media
Calculate Dm = CMAC(BK, Media_ID)

AACS-Auth

Request Media_ID

Media_ID || Dm

Figure 4-12 – Protocol Flow of transferring Media Identifier

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Media ID from the Licensed Drive
3. The Licensed Drive reads Media ID (Media_ID) from the media and calculates a message authentication

code (Dm) from the Media ID and the Bus Key (BK) calculated in step 26 in Section 4.3.
Dm = CMAC(BK, Media_ID)

4. The Licensed Drive sends Media_ID read in step 3 and the message authentication code Dm calculated in
step 3 to the host.

5. The host calculates a message authentication code (Hm) from the Media_ID received in step 4 and the Bus
Key (BK) calculated in step 27 in Section 4.3.

Hm = CMAC(BK, Media_ID)
6. The host verifies if the Dm received in step 4 matches the Hm calculated in step 5. If the verification

succeeds, then the host may trust the Media ID; otherwise, the host shall stop processing the media.

4.7 Protocol for Updating the Protected Area and Associated Data
The Protected Area is used to store and restore the Binding Nonce (Protected Area Data) created by the
Licensed Drive as described in the Recordable Video Book of this specification. Because the data flows for the
Protected Area is bi-directional, there are two protocols for transferring the Protected Area Data.
• Protocol for writing Protected Area Data
• Protocol for reading Protected Area Data
When requesting the Licensed Drive to update the Binding Nonce, the host shall use the following sequence:
1. Read the current value of the Binding Nonce as specified in Section 4.7.2 and cache that current value to be

used in Step 3.
2. Request the Licensed Drive to commit a new Binding Nonce to the Protected Area as specified in Section

4.7.1.
3. Read the new value of the Binding Nonce as specified in Section 4.7.2 and verify that the new value is not

the same value that was retrieved and cached in Step 1. If the Binding Nonce has not been correctly
updated, then the host shall abort the procedure that necessitated the update of the Binding Nonce.

During the operation of Step 2, the host may verify whether the new value of the Binding Nonce is not the same
value that was retrieved and cached in Step 1. If these values are same, the host shall abort the current process
and re-start Step 2 again.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 43

4.7.1 Protocol for Writing Protected Area Data
The Protected Area Data is written using following procedure. Figure 4-13 shows the protocol flow of writing
the Protected Area Data.

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK,
Binding_ Nonce || Starting_LBA)

Verify Dm == Hm

Calculate Kpa = AES-G(Km, Binding_Nonce)
Encrypt data associated with Protected Area
using Kpa

If AACS-Auth successful

Generate Binding_Nonce
Calculate Dm = CMAC(BK,

Binding_Nonce || Starting_LBA)

Write the encrypted data, Binding_Nonce and
the association between the two to the media

AACS-Auth

Request to generate Protected Area Data
with specifying LBA extent

Binding_Nonce || Dm

Request to write the encrypted data with
specifying the LBA extent

Encrypted Data (ED)

Figure 4-13 – Protocol Flow of writing Protected Area Data

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to generate a new 128-bit Binding Nonce that shall be
written into the Protected Area. The command data includes the LBA extent with which to associate the
new Binding Nonce.

3. The Licensed Drive generates the Binding Nonce and caches it along with the LBA extent from step 2.
4. The Licensed Drive calculates a message authentication code (Dm) from the concatenation of the Binding

Nonce and the starting address of the LBA extent (Starting_LBA) and the Bus Key (BK) calculated in step
26 in Section 4.3.

Dm = CMAC(BK, Binding_Nonce || Starting_LBA)
5. The Licensed Drive sends the newly created Binding Nonce and the message authentication code Dm

calculated in step 4 to the host.
6. The host calculates a message authentication code (Hm) from the concatenation of the Binding Nonce and

the starting address of the LBA extent (Starting_LBA) and the Bus Key (BK) calculated in step 27 in
Section 4.3.

Hm = CMAC(BK, Binding_Nonce || Starting_LBA)
7. The host verifies if the Dm received in step 5 matches the Hm calculated in step 6. If the verification fails,

the host shall abort the current write operation.
8. The host calculates the Protected Area Key (Kpa) as follows:

Kpa = AES-G(Km, Binding_Nonce)

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 44

9. The host encrypts the Data associated with Protected Area (D) using Kpa as specified in the Recordable
Video book of this specification.

10. The host requests to write the encrypted Data associated with the Protected Area (ED) as a user data file
whose LBA extent was specified in step 2.

11. Upon receiving the write request the Licensed Drive writes the encrypted Data associated with the
Protected Area (ED), the Binding Nonce, and the association between the two to the media.

4.7.2 Protocol for Reading Protected Area Data
The Protected Area Data is read by the host using the following procedure. Figure 4-14 shows the protocol
flow of reading the Protected Area Data.

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK,
Binding_ Nonce || Starting_LBA)

Verify Dm == Hm

Calculate Kpa = AES-G(Km, Binding_Nonce)

Decrypt data associated with Protected Area
using Kpa

If AACS-Auth successful

Read Binding_Nonce from the media
Calculate Dm = CMAC(BK,

Binding_Nonce || Starting_LBA)

Write the encrypted data, Binding_Nonce and
the association between the two to the media

AACS-Auth

Request to read Protected Area Data with
specifying LBA extent

Binding_Nonce || Dm

Request to read the encrypted data with
specifying the LBA extent

Encrypted Data (ED)

Figure 4-14 – Protocol Flow of reading Protected Area Data

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to read the Binding Nonce from the Protected Area. The
command data contains the LBA extent for the user data file that is associated with the Protected Area
Data.

3. Upon request from the host, the Licensed Drive reads the Binding Nonce from the designated Protected
Area specified in step 2.

4. The Licensed Drive calculates a message authentication code (Dm) from the concatenation of the Binding
Nonce and the starting address of the LBA extent (Starting_LBA) and the Bus Key (BK) calculated in step
26 in Section 4.3.

Dm = CMAC(BK, Binding_Nonce || Starting_LBA)
5. The Licensed Drive sends the Binding Nonce and the message authentication code Dm calculated in step 4

to the host.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 45

6. The host calculates a message authentication code (Hm) from the concatenation of the Binding Nonce and
the starting address of the LBA extent (Starting_LBA) and the Bus Key (BK) calculated in step 27 in
Section 4.3.

Hm = CMAC(BK, Binding_Nonce || Starting_LBA)
7. The host verifies if the Dm received in step 5 matches the Hm calculated in step 6. If the verification fails,

the host shall abort the current read operation.
The following steps are not directly related to Reading Protected Area Data and may be skipped.
8. The host calculates the Protected Area Key (Kpa) as follows:

Kpa = AES-G(Km, Binding_Nonce)
9. The host reads the encrypted Data associated with the Protected Area (ED) as a user data file whose LBA

extent was specified in step 2.
10. The host decrypts the encrypted Data associated with the Protected Area (ED) using Kpa as specified in

the Recordable Video book of this specification.

4.8 Protocol for Transferring Media Identifier from CPRM-capable Media
The Media Identifier is securely transferred between the Licensed Drive and the host using the following
procedure: Figure 4-15 shows the protocol flow of transferring the Media Identifier (Media ID) from CPRM-
capable media.

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Media_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Media_ID_of_CPRM from the media
Calculate Media_ID = 25B946EBC0B3617316
|| Media_ID_of_CPRM
Calculate Dm = CMAC(BK, Media_ID)

AACS-Auth

Request Media_ID

Media_ID || Dm

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Media_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Media_ID_of_CPRM from the media
Calculate Media_ID = 25B946EBC0B3617316
|| Media_ID_of_CPRM
Calculate Dm = CMAC(BK, Media_ID)

AACS-Auth

Request Media_ID

Media_ID || Dm

Figure 4-15 – Protocol Flow of transferring Media Identifier from CPRM-capable Media

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Media ID from the Licensed Drive
3. The Licensed Drive reads Media ID of CPRM from the media
4. The Licensed Drive calculates Media ID from the Media ID of CPRM and calculates a message

authentication code (Dm) from the Media ID and the Bus Key (BK) calculated in step 28 in Section4.3.
Media_ID = 25B946EBC0B3617316 || Media_ID_of_CPRM
Dm = CMAC(BK, Media_ID)

5. The Licensed Drive sends Media_ID calculated in step 4 and the message authentication code Dm
calculated in step 4 to the host.

6. The host calculates a message authentication code (Hm) from the Media_ID received in step 5 and the Bus
Key (BK) calculated in step 29 in Section 4.34.3.

Hm = CMAC(BK, Media_ID)

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 46

7. The host verifies if the Dm received in step 5 matches the Hm calculated in step 6. If the verification
succeeds, then the host may trust the Media ID; otherwise, the host should stop processing the media.

4.9 Protocol for Transferring Media Identifier from +R / +RW
The Media Identifier is securely transferred between the Licensed Drive and the host using the following
procedure: Figure 4-16 shows the protocol flow of transferring the Media Identifier (Media ID) from +R /
+RW.

HostAACS Optical Drive

If AACS-Auth successful

Calculate Hm = CMAC(BK, Media_ID)
Verify Dm == Hm

If AACS-Auth successful

Read Disc ID 1 and Disc ID 2 from the media
Calculate Media_ID = AES-H(Disc ID 1 || Disc ID 2)
Calculate Dm = CMAC(BK, Media_ID)

AACS-Auth

Request Media_ID

Media_ID || Dm

Figure 4-16 – Protocol Flow of transferring Media Identifier from +R / +RW

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Media ID from the Licensed Drive
3. The Licensed Drive reads Disc ID 1 and Disc ID 2 from the disc. If Disc ID 1 and Disc ID 2 have not yet

been recorded on the disc, the Licensed Drive shall record Disc ID 1 and Disc ID 2 on the disc as
explained in Section 3.1.2 of Blu-ray Disc Recordable Book.

4. The Licensed Drive calculates Media ID from Disc ID 1 and Disc ID 2 and calculates a message
authentication code (Dm) from the Media ID and the Bus Key (BK) calculated in step 28 in Section 4.3.

Media_ID = AES-H(Disc ID 1 || Disc ID 2)
Dm = CMAC(BK, Media_ID)

5. The Licensed Drive sends Media_ID calculated in step 4 and the message authentication code Dm
calculated in step 4 to the host.

6. The host calculates a message authentication code (Hm) from the Media_ID received in step 5 and the Bus
Key (BK) calculated in step 29 in Section 4.3.

Hm = CMAC(BK, Media_ID)
7. The host verifies if the Dm received in step 5 matches the Hm calculated in step 6. If the verification

succeeds, then the host may trust the Media ID; otherwise, the host should stop processing the media.

4.10 Protocol for Reading Media Key Block of CPRM
The Media Key Block of CPRM is securely transferred between the Licensed Drive and the host using the
following procedure: Figure 4-17 shows the protocol flow of transferring the Media Key Block of CPRM
(Media_Key_Block_of_CPRM).

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 47

HostAACS Optical Drive

If AACS-Auth successful

Calculate h = C2_H(MKB and trailing zeros),
including any unused bytes that follow the MKB
in the MKB frame.
Calculate m2 = CMAC(BK, h)
Verify m1 == m2
If fails, there could be an alternative verification
as follows (see text below in this section)
Calculate h’ = C2_H(MKB and trailing
zeros || 800000000000000016), including any
unused bytes that follow the MKB in the MKB
Frame.
Calculate m3 = CMAC(BK, h’).
Verify m1 == m3

If AACS-Auth successful

Read Media_Key_Block_of_CPRM and
MKB_Hash from disc

Using MKB_Hash field,
Calculate m1 = CMAC(BK, MKB_Hash),
and replace MKB Descriptor with m1.

AACS-Auth

Request Media Key Block of CPRM

Modified Media_Key_Block_of_CPRM

HostAACS Optical Drive

If AACS-Auth successful

Calculate h = C2_H(MKB and trailing zeros),
including any unused bytes that follow the MKB
in the MKB frame.
Calculate m2 = CMAC(BK, h)
Verify m1 == m2
If fails, there could be an alternative verification
as follows (see text below in this section)
Calculate h’ = C2_H(MKB and trailing
zeros || 800000000000000016), including any
unused bytes that follow the MKB in the MKB
Frame.
Calculate m3 = CMAC(BK, h’).
Verify m1 == m3

If AACS-Auth successful

Read Media_Key_Block_of_CPRM and
MKB_Hash from disc

Using MKB_Hash field,
Calculate m1 = CMAC(BK, MKB_Hash),
and replace MKB Descriptor with m1.

AACS-Auth

Request Media Key Block of CPRM

Modified Media_Key_Block_of_CPRM

Figure 4-17 – Protocol Flow of transferring Media Key Block of CPRM

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3. If the AACS-Auth procedure is successful, the Licensed Drive and the host
proceed with the remaining steps.

2. The host sends a request to the Licensed Drive to return Media Key Block of CPRM from the Licensed
Drive.

3. The Licensed Drive reads Media Key Block of CPRM (Media_Key_Block_of_CPRM) and MKB_Hash3
from the media and calculates a message authentication code (m1) from the MKB_Hash and the Bus Key
(BK) calculated in step 28 in Section 4.3.

m1 = CMAC(BK, MKB_Hash)
4. The Licensed Drive sends Media_Key_Block_of_CPRM read in step 3 and the message authentication

code m1 calculated in step 3 to the host.
5. The host calculates a hash value (h) from the Media_Key_Block_of_CPRM received in step 4 and trailing

zeros.
h = C2_H4(Media_Key Block_of_CPRM and trailing zeros)

6. The host calculates a message authentication code (m2) from the hash value calculated in step 5 and the
Bus Key (BK) calculated in step 29 in Section 4.3.

m2 = CMAC(BK, h)
7. The host verifies if the m1 received in step 4 matches the m2 calculated in step 6. If the verification

succeeds, then the host may trust the Media Key Block of CPRM. If the verification fails and if the media
is DVD-RW media, or if the host implementation does not distinguish DVD-RW media from DVD-R and
DVD-RAM media, the host proceeds to the step 8. Otherwise, the host should stop processing the media.

8. The host calculates another hash value (h’) from the Media_Key_Block_of_CPRM received in step 4 and
trailing zeros.

3 See 4C Entity, LLC’s, CPRM Media Verification book for an explanation of the MKB_Hash

4 See 4C Entity, LLC’s, CPRM Introduction and Common Cryptographic Elements book for an explanation of
the C2_H.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 48

h’ = C2_H(Media_Key Block_of_CPRM and trailing zeros || 800000000000000016)
9. The host calculates another message authentication code (m3) from the hash value calculated in step 8 and

the Bus Key (BK) calculated in step 29 in Section 4.3.
m3 = CMAC(BK, h’)

10. The host verifies if the m1 received in step 4 matches the m3 calculated in step 9. If the verification
succeeds, then the host may trust the Media Key Block of CPRM; otherwise, the host should stop
processing the media.

4.11 Procedure for Bus Encryption
AACS-protected sectors on both read-only media and AACS Recordable Media for Prepared Video are further
protected by Bus Encryption; in other words, the protected sectors are further encrypted on-the-fly by the
Licensed Drive during reading, or further encrypted by the host during writing, with this outer level of
encryption removed on-the-fly by the Licensed Drive before actually writing the data on the media.
For information on if and when Licensed Drives and PC Hosts shall implement Bus Encryption, refer to the
AACS license. PC Hosts supporting Bus Encryption shall work with Licensed Drives that do not support Bus
Encryption; in this case, Bus Encryption is not used. However, the reverse is not true. Licensed Drives
supporting Bus Encryption shall only work with PC Hosts that also support Bus Encryption.
From the Licensed Drive’s point of view, sectors requiring Bus Encryption are denoted by a Bus Encryption
flag in the sector header. The location of this flag is described in the format-specific books of this specification.
From the host’s point of view, sectors requiring Bus Encryption are determined by the file system and/or the
application layer. The format-specific books of this specification describe which files, and which parts of which
files, shall be bus-encrypted. Discs released prior to the 0.93 specification do not have the Bus Encryption flag
set in the sector headers; thus, it is important for the host to know whether it is playing a legacy disc without
Bus Encryption, or a newer disc. New discs are denoted by a bit in the Content Certificate or the Prepared
Video Token, see the AACS Prerecorded Video book and the AACS Prepared Video book for details.
In general, Bus Encryption is not applied across an entire AACS-protected sector; some part of the sector is not
protected by Bus Encryption. The amount of the sector that is bus-encrypted is format-specific, and is given in
the format-specific books of this specification.
The Bus Key defined in section 4.3 is not used to actually encrypt the data across the bus. Instead there is a
level of indirection: the data between the host and the Licensed Drive is encrypted with two 128-bit Data Keys,
one for reading and one for writing. The Bus Key is used to protect the Data Keys using AES-128E. The
Licensed Drive uses the Read Data Key to encrypt data during sector reads, and the Write Data Key to decrypt
data during sector writes, using AES-128CBCE and AES-128CBCD respectively, with the default iv0.
The Read Data Key (Krd) is determined by two values, the Drive Seed Sd and the Media ID, IDm, as follows:

Krd = AES-128E(Sd, IDm)
Pre-recorded media does not have a Media ID, so if the media is pre-recorded, the Volume ID, IDv, is used in
place of the Media ID. The Drive Seed is a secret 128-bit value. The Licensed Drive shall compute the Drive
Seed as follows:
 Sd = AES-G([AACS_Drivepriv]msb_128, Cmfg)
Where Cmfg is a 128-bit confidential constant picked by the manufacturer, and placed in the Licensed Drive at
manufacturing time.
The Licensed Drive sets the Write Data Key to the same values as the Read Data Key whenever a disc is
inserted, the Licensed Drive is reset, or the Licensed Drive is powered on. However, the Write Data Key may
be later set to a different value by the host application and could be generated by a random number generator in
the host.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 49

Drive

DriveSeed (128bits)

AES-E

Media ID or Volume ID

AACS-Auth

Host

AACS-Auth

AES-E

Bus Key

AES-D

Bus Key

Data
Key

Encrypted Content AES-E AES-D

Data
Key

Disc

Encrypted Content

1

2

3

Figure 4-18 – Bus Encryption During Data Read

On sector reads, for sectors that are flagged as requiring Bus Encryption in the sector header, the Licensed
Drive encrypts the sector data using the Read Data Key, and the host decrypts the sector data using the Read
Data Key, as described in the relevant format-specific books of this specification.
To enable and perform Bus Encryption during reads, the host and Licensed Drive perform the following steps:
1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),

as described in Section 4.3, establishing a Bus Key. If the AACS-Auth procedure is successful, the
Licensed Drive and the host proceed with the remaining steps.

2. The host requests the Licensed Drive to report the Read Data Key. The host decrypts it using the Bus Key.

3. The Licensed Drive encrypts sectors marked as needing Bus Encryption using the Read Data Key, as they
are read from the host. The host decrypts the sectors using the same key.

Note that the Licensed Drive always uses Bus Encryption for those sectors so designated, regardless of whether
or not the authentication step has been performed. This prevents non-compliant hosts from successfully
decrypting the sectors that require Bus Encryption. In the case that the Media ID (or Volume ID) is not
readable or corrupted, the Licensed Drive shall return an error, 5/6F/01 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT PRESENT, when the host reads bus-encrypted sectors.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 50

Drive

AACS-Auth

Host (or Server)

AACS-Auth

AES-D

Bus Key

AES-E

Bus Key

Encrypted Content AES-D AES-E

Data
Key

Pre-determined

Data Key (128bits)

Encrypted Content

Disc

1

2*

3

Data Key

* If the host is setting the Write Data Key

(default)
Krd

Figure 4-19 – Bus Encryption During Data Write

To enable and perform Bus Encryption during data write, the host and Licensed Drive perform the following
steps:

1. The Licensed Drive and the host carry out the AACS Drive Authentication and key sharing (AACS-Auth),
as described in Section 4.3, establishing a Bus Key. If the AACS-Auth procedure is successful, the
Licensed Drive and the host proceed with the remaining steps.

2. If the host wants to use the default Write Data Key value (the same as the Read Data Key), the host
requests the Licensed Drive to report the Write Data Key. The host decrypts it using the Bus Key.

If the host wants to set the Write Data Key to a value different than the Read Data Key, the host sends the
Write Data Key, encrypting it with the Bus Key using AES-128E. The Licensed Drive decrypts that
encrypted data using the Bus Key, yielding the Write Data Key (Kwd). The Licensed Drive shall check to
see if the host is entitled to do this by examining the DKS bit in the host’s certificate. If the DKS bit is not
set, the Licensed Drive returns the appropriate error; otherwise the Licensed Drive and host proceed to the
next step.

3. On subsequent sector writes, the host sets the “bus-encrypted sectors extents”, defining the sectors in which
it wants the “bus-encryption” flag set in the sector headers. For each extent, the host encrypts the sector
data using the Write Data Key and the Licensed Drive decrypts the sector data using the Write Data Key as
described in the relevant format-specific books of this specification.

Note: if the host recording application is using the operating system’s file system to write the disc, keeping the
Write Data Key as the same value as the Read Data Key will prevent any file cache coherency problems.

4.12 Updating Host Revocation List in Non-volatile Memory of Licensed Drive
A Licensed Drive shall retain in non-volatile storage, the most recent Host Revocation List (HRL) data which it
encounters and has verified. To do this, for the first AACS Drive Authentication to the media inserted, the
Licensed Drive shall read an MKB recorded on the media to check if its version is higher than the version of
HRL that it has stored in its non-volatile memory. The location of the MKB is described in the relevant
Format-specific book in this specification. The version of HRL is represented by the Version Number recorded
in the Type and Version Record of the MKB. If the version of MKB recorded on the media is higher than the

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 51

version of HRL that the Licensed Drive has stored in its non volatile memory, the Licensed Drive verifies the
signature in the Host Revocation List Record of MKB as specified in section 3.2.5.1.2. If the signature is
successfully verified, the Licensed Drive shall replace the previously stored HRL data, if any, with the newly
read HRL data. Note that the replacement process need not be performed during the AACS Drive
Authentication procedure but shall be performed before the media is ejected.

When persistently storing HRL data, the Licensed Drive shall have at least 32K bytes of non-volatile memory
for that purpose. This size is sufficient to store the first signature block of the Host Revocation List Record.

4.13 Updating Drive Revocation List in Non-volatile Memory of Host
An AACS licensed PC Host shall retain in non-volatile storage, the most recent Drive Revocation List (DRL)
data which it encounters and has verified. To do this, for the first AACS Drive Authentication to the media
inserted, the host shall read an MKB recorded on the media to check if its version is higher than the version of
DRL that it has stored in its non-volatile memory. The version of DRL is represented by the Version Number
recorded in the Type and Version Record of the MKB. If the version of MKB recorded on the media is higher
than the version of DRL that the host has stored in its non volatile memory, the host verifies the signature in the
Drive Revocation List Record of MKB as specified in section 3.2.5.1.3. If the signature is successfully verified,
the host shall replace the previously stored DRL data, if any, with the newly read DRL data. Note that the
replacement process need not be performed during the AACS Drive Authentication procedure but shall be
performed before the media is ejected.

When persistently storing DRL data, the host shall have at least 32K bytes of non-volatile memory for that
purpose. This size is sufficient to store the first signature block of the Drive Revocation List Record.

4.14 Mt. Fuji Command Extensions for AACS
The Mt. Fuji specification defines commands and related structures used to control the Licensed Drive (logical
unit). This section describes extensions to that specification for logical unit that support AACS functionality.
Some additional information that is not found in the Mt. Fuji specification is also given, including the precise
format of AACS data values returned by the logical unit.

4.14.1 AACS Feature
The Mt. Fuji specification defines a number of Features, which are sets of commands, mode pages, and
behaviors or operations supported by a logical unit. Features implemented by a logical unit are reported to the
host via the GET CONFIGURATION command. This command is used to identify all possible Features, as
well as those Features that are current (i.e. currently available, which may depend on factors such as the type of
media currently loaded). The AACS Feature is defined as shown in Table 4-3.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 52

Table 4-3 – AACS Feature

Feature
Code

Feature
Name Description Mandatory Commands

010D16 AACS Ability to perform
AACS authentication

REPORT KEY (Key Class 0216)
(Support of KEY Format 1000002 and 1110002
is conditional)
SEND KEY (Key Class 0216)
READ DISC STRUCTURE
(Format Codes 8016, 8116, 8216 and 8316, plus Format
Codes 8416 and 8516 if the logical unit supports Bus
Encryption, and Format Code 8616 if the logical unit
supports transferring Media Key Block of CPRM)

The AACS Feature Descriptor, obtained via the GET CONFIGURATION command, is shown in Table 4-4.

Table 4-4 – AACS Feature Descriptor

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

Feature Code = 010D16 (lsb)
2 Reserved Version Persistent Current
3 Additional Length = 0416

4 Reserved RDC RMC WBE BEC BNG
5 Block Count for Binding Nonce
6 Reserved Number of AGIDs
7 AACS version

The Current bit, when set to zero, indicates that this Feature is not currently active. When set to one, the
Feature is active. The AACS Feature shall be active if and only if an AACS compliant media is loaded. A
method to determine whether the loaded media is AACS compliant is format specific.
The Version field shall be set to 00102.
If Binding Nonce generation is supported, the BNG bit shall be set to 12 and KEY Format 1000002 shall be
supported. Otherwise it shall be set to 02.
If the logical unit supports Bus Encryption, the Bus Encryption Capable bit (BEC) shall be set to 12. Otherwise,
it shall be set to 02.
If the logical unit supports Bus Encryption and supports writing, the Write Bus Encryption (WBE) bit shall be
set to 12. Otherwise, it shall be set to 02.
The PC Host shall not trust the values of either the BEC or the WBE bit, and shall use the BEC bit in the signed
Drive Certificate to determine if the logical unit supports Bus Encryption. Note that if Drive Certificate
indicates that the logical unit supports Bus Encryption, and the logical unit supports writing, it shall support
WBE.
If the logical unit supports transferring Media Key Block of CPRM by READ DISC STRUCURE Command
(Format Code=8616), the Return MKB of CPRM (RMC) bit shall be set to 12. Otherwise, it shall be set to 02.
If the logical unit supports reading the Drive Certificate of the logical unit by REPORT KEY Command (with
Key Format 1110002, Key Class 0216), the Read Drive Certificate (RDC) bit shall be set to 12. Otherwise, it
shall be set to 02.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 53

The Block Count for Binding Nonce shall specify how many blocks are required to store the Binding Nonce for
the media.
The Number of AGIDs field indicates the maximum number of AGIDs that the logical unit supports
concurrently.
The AACS version field shall be set to 0116.
The other fields of the AACS Feature Descriptor shall be set as described in the Mt. Fuji specification.

4.14.2 REPORT KEY Command Extensions
The REPORT KEY command with Key Class 0216 is used for AACS. The REPORT KEY command with Key
Class 0216 requests the start of the AACS authentication process, requests data necessary for authentication and
for generating a Bus Key, generates and returns or just returns the Binding Nonce and ends the AACS
authentication process. Additionally the REPORT KEY command with Key Class 0216 requests a Drive
Certificate stored in a Licensed Drive.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 54

Table 4-5 – REPORT KEY Command

Bit
Byte 7 6 5 4 3 2 1 0

0 Operation code (A416)
1 LUN (Obsolete) Reserved
2 (msb)
3
4
5

Reserved/Address

(lsb)
6 Reserved/Block Count
7 Key Class
8 (msb)
9

Allocation Length
(lsb)

10 AGID Key Format
11 Vendor-Specific Reserved NACA Flag Link

The Key Format field indicates the type of information that is requested to be sent to the host. Key Format
values defined for AACS are shown in Table 4-6.

Table 4-6 – Key Format Code Definition for REPORT KEY command (Key Class = 0216)

Key
Format

Returned
Data Description AGID Use

0000002
AGID for

AACS
Returns an AUTHENTICATION GRANT ID for
Authentication for AACS Reserved & N/A

0000012
Drive

Certificate
Challenge

Returns a Drive Certificate Challenge Valid AGID required

0000102 Drive Key Returns a Drive Key Valid AGID required
1000002 Binding Nonce Generates and stores a Binding Nonce and returns it Valid AGID required
1000012 Binding Nonce Returns a Binding Nonce Valid AGID required

1110002
Drive

Certificate
Returns a Drive Certificate stored in a Licensed
Drive Reserved & N/A

1111112 None Invalidate specified AGID for AACS Valid AGID required

The Reserved/Address field contains a value which depends on the value in the Key Format field.
• For Key Format field = 1000002 (Generate Binding Nonce), the Reserved/Address field contains the

starting address of the LBA Extent to which the Binding Nonce is to be recorded.

• For Key Format field = 1000012 (Read Binding Nonce), the Reserved/Address field contains the starting
address of the LBA Extent from which the Binding Nonce is to be read.

• For other Key Format values - The Reserved/Address field shall be reserved.

The Reserved/Block Count field specifies a value which depends on the value in the Key Format field.
• For Key Format field = 1000002 (Generate Binding Nonce), the Block Count field contains the length of

the LBA Extent to which the Binding Nonce is to be recorded. The length of the LBA Extent shall be no

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 55

less than the value in the Block Count for Binding Nonce field in the AACS Feature Descriptor shown in
Table 4-4

• For Key Format field = 1000012 (Read Binding Nonce), the Block Count field contains the length of the
LBA Extent from which the Binding Nonce is to be read. The range of LBAs shall be no less than the value
in the Block Count for Binding Nonce field in the AACS Feature Descriptor shown in Table 4-4

• For other Key Format values - The Reserved/Block Count field shall be reserved.

The AGID field identifies the Authentication Grant ID that was used for the authentication process.
The other fields of the REPORT KEY Command Descriptor Block shall be set as described in the Mt. Fuji
specification.

4.14.2.1 Getting Authentication Grant ID for AACS
Table 4-7 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 0000002 are used.

Table 4-7 – REPORT KEY Data Format (with Key Format = 0000002, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (000616) (lsb)
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 AGID Reserved

This Key Format requests the logical unit to return an Authentication Grant ID for AACS. After an AACS
Authentication Grant ID is obtained, the AACS Authentication procedure defined in this Book is carried out,
using the REPORT KEY and SEND KEY commands as described in the Mt. Fuji specification.

4.14.2.2 Returning Drive Certificate Challenge
Table 4-8 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 0000012 are used.

Table 4-8 – REPORT KEY Data Format (with Key Format = 0000012, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (007216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

23
Nonce (Dn)

(lsb)
24 (msb) Drive Certificate

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 56

:
115 (lsb)

This Key Format is used to carry out steps 10 through 12 of the protocol shown in Section 4.3.
The REPORT KEY Data Length field specifies the length in bytes of the following REPORT KEY data that is
available to be transferred to the host. The REPORT KEY Data Length value does not include the REPORT
KEY Data Length field itself. For the Key Format of 0000012, the value of this field is 007216.
Bytes 4 through 23 return the 160-bit nonce Dn value.
Bytes 24 through 115 return the 92-byte Drive Certificate specified in Section 4.1.
When the loaded disc is not AACS compliant media, this command with Key Format = 0000012 shall be
terminated with CHECK CONDITION Status, 5/6F/01 COPY PROTECTION KEY EXCHANGE FAILURE –
KEY NOT PRESENT.

4.14.2.3 Returning Drive Key
Table 4-9 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 0000102 are used.

Table 4-9 – REPORT KEY Data Format (with Key Format = 0000102, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (005216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

43
Elliptic Curve Point (Dv)

(lsb)
44 (msb)
:

83
Signature (Dsig)

(lsb)

This Key Format is used to carry out steps 15 through 19 of the protocol shown in Section 4.3.
The REPORT KEY Data Length field specifies the length in bytes of the following REPORT KEY data that is
available to be transferred to the host. The REPORT KEY Data Length value does not include the REPORT
KEY Data Length field itself. For the Key Format of 0000102, the value of this field is 005216.
Bytes 4 through 43 return the 320-bit elliptic curve point Dv value specified in step 17 in Section 4.3.
Bytes 44 through 83 return the 320-bit signature Dsig value specified in step 18 in Section 4.3.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 57

4.14.2.4 Generating and Reporting Binding Nonce
Table 4-10 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 1000002 are used.

Table 4-10 – REPORT KEY Data Format (with Key Format = 1000002, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (002216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Binding Nonce

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

This Key Format is used to carry out steps 2 through 5 of the protocol shown in Section 4.7.1.
The REPORT KEY Data Length field specifies the length in bytes of the following REPORT KEY data that is
available to be transferred to the host. The REPORT KEY Data Length value does not include the REPORT
KEY Data Length field itself. For the Key Format of 1000002, the value of this field is 002216.
Bytes 4 through 19 return the 128-bit Binding Nonce value.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 4 in Section 4.7.1.
When the logical unit has not established a Bus Key for the authentication process, this command with Key
Format = 1000002 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.
When the media does not support a Binding Nonce, this command with Key Format = 1000002 shall be
terminated with CHECK CONDITION Status, 5/30/02 CANNOT READ MEDIUM – INCOMPATIBLE
FORMAT.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 58

4.14.2.5 Reading Binding Nonce
Table 4-11 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 1000012 are used.

Table 4-11 – REPORT KEY Data Format (with Key Format = 1000012, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (002216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Binding Nonce

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

This Key Format is used to carry out steps 2 through 5 of the protocol shown in Section 4.7.2.
The REPORT KEY Data Length field specifies the length in bytes of the following REPORT KEY data that is
available to be transferred to the host. The REPORT KEY Data Length value does not include the REPORT
KEY Data Length field itself. For the Key Format of 1000012, the value of this field is 002216.
Bytes 4 through 19 return the 128-bit Binding Nonce value.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 4 in Section 4.7.2.
When the logical unit has not established a Bus Key for the authentication process, this command with Key
Format = 1000012 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.
When the media does not support a Binding Nonce, this command with Key Format = 1000012 shall be
terminated with CHECK CONDITION Status, 5/30/02 CANNOT READ MEDIUM – INCOMPATIBLE
FORMAT.

4.14.2.6 Reading Drive Certificate
Table 4-12 shows the format of the data returned by the REPORT KEY command when Key Class of 0216 and
Key Format of 1110002 are used.

Table 4-12 – REPORT KEY Data Format (with Key Format = 1110002, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

REPORT KEY Data Length (005E16) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

Drive Certificate

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 59

95 (lsb)

This Key Format is used to read the Drive Certificate stored in the Licensed Drive.
The REPORT KEY Data Length field specifies the length in bytes of the following REPORT KEY data that is
available to be transferred to the host. The REPORT KEY Data Length value does not include the REPORT
KEY Data Length field itself. For the Key Format of 1110002, the value field is 005E16.
Byte 4 through 95 return the 92-byte Drive Certificate specified in Section 4.1.
This command does not require the AACS Drive Authentication process, i.e. the logical unit may execute the
command without the AACS Protected Medium in the logical unit (AACS Feature current bit = 0).

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 60

4.14.3 READ DISC STRUCTURE Command Extensions
Logical units that implement the AACS Feature support extensions to the READ DISC STRUCTURE
command. The READ DISC STRUCTURE command, shown in Table 4-13, requests that the logical unit
transfers data from areas on the specified media to the host.

Table 4-13 – READ DISC STRUCTURE Command

Bit
Byte 7 6 5 4 3 2 1 0

0 Operation code (AD16)
1 LUN (Obsolete) Reserved Sub-command
2 (msb)
3
4
5

Address

(lsb)
6 Layer Number
7 Format Code
8 (msb)
9

Allocation Length
(lsb)

10 AGID Reserved
11 Vendor-Specific Reserved NACA Flag Link

The Sub-command field indicates the type of command definition to expand this command for other media type
than DVD. This value shall be set to 00002 for DVD or HD DVD media and shall be set to 00012 for BD media.
The Format Code field indicates the type of information that is requested by the host. New Format Code values
defined for AACS are shown in Table 4-14, along with corresponding usage of the Layer Number and Address
fields.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 61

Table 4-14 – AACS Format Code definitions for READ DISC STRUCTURE command

Format
Code

Returned
Data

Layer Number
Field Usage

Address Field
Usage Description

8016
Volume Identifier

of AACS Reserved Reserved Returns the Volume Identifier
specified by AACS

8116
Pre-recorded
Media Serial

Number of AACS
Reserved Reserved Returns the Pre-recorded Media

Serial Number specified by AACS

8216
Media Identifier

of AACS Reserved Reserved Returns the Media Identifier
specified by AACS

8316
Media Key Block

of AACS Layer Number Pack number Returns the Media Key Block in
Lead-in specified by AACS

8416
Data Keys
of AACS Reserved Reserved Returns the Data Keys specified by

AACS

8516
Bus-Encryption
Sector Extents

of AACS
Reserved Reserved

Returns the maximum number of
Bus-Encryption Sector Extents,
and the current Bus-Encryption
Sector Extents specified by AACS

8616
Media Key Block

of CPRM Reserved Pack number
Returns the Media Key Block of
CPRM in Lead-in specified by
AACS

The AGID field identifies the Authentication Grant ID that was used for the authentication process.
For Format Code 8316 and 8616, the Address field is used to specify which MKB Pack is to be read. This field
enables the host to read a Media Key Block Frame contained in multiple Packs. The Pack number of FF16
specifies to return only the 4 bytes header of the DISC STRUCTURE data.
The other fields of the READ DISC STRUCTURE Command Descriptor Block shall be set as described in the
Mt. Fuji specification.

4.14.3.1 Volume Identifier (Format Code 8016)

Table 4-15 – READ DISC STRUCTURE Data Format (With Format Code = 8016)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (002216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Volume Identifier

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 62

This command with this Format Code is used to carry out steps 2 through 4 of the protocol shown in Section
4.4.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself. For the Format Code of 8016, the value of this field is 002216.
Bytes 4 through 19 return the 128-bit Volume Identifier value.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 3 in Section 4.4.
When the logical unit has not established a Bus Key for the authentication process, this command with Format
Code = 8016 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.

4.14.3.2 Pre-recorded Media Serial Number (Format Code 8116)

Table 4-16 – READ DISC STRUCTURE Data Format (With Format Code = 8116)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (002216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Pre-recorded Media Serial Number

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

This Command with this Format Code is used to carry out steps 2 through 4 of the protocol shown in Section
4.5.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself. For the Format Code of 8116, the value of this field is 002216.
Bytes 4 through 19 return the 128-bit Pre-recorded Media Serial Number value.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 3 in Section 4.5.
When the logical unit has not established a Bus Key for the authentication process, this command with Format
Code = 8116 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.

4.14.3.3 Media Identifier (Format Code 8216)

Table 4-17 – READ DISC STRUCTURE Data Format (With Format Code = 8216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (002216) (lsb)
2 Reserved

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 63

3 Reserved
4 (msb)
:

19
Media Identifier

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

This Command with this Format Code is used to carry out steps 2 through 4 of the protocol shown in Section
4.6 and steps 2 through 5 of the protocol shown in Section 4.8.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself. For the Format Code of 8216, the value of this field is 002216.
Bytes 4 through 19 return the 128-bit Media Identifier value. If the Media Identifier is being derived from a
CPRM disc, the 128-bit Media Identifier shall be formed from the 64-bit “CPRM Media Identifier”, preceded
by the constant 25B946EBC0B3617316.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 3 in Section 4.6 and
step 4 in Section 4.8.
When the logical unit has not established a Bus Key for the authentication process, this command with Format
Code = 8216 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.

4.14.3.4 MEDIA KEY BLOCK (Format Code 8316)

Table 4-18 – READ DISC STRUCTURE Data Format (With Format Field = 8316)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length
(lsb)

2 Reserved
3 Total Packs
4 (msb)
:

32,771
MEDIA KEY BLOCK Pack Data

(lsb)

This Command with this Format Code is used to transfer the Media Key Block (MKB) recorded in the Lead-in
Area of a pre-recorded and AACS Recordable Media that exist in format specific manner. Please note that the
Media Key Block is transferred without using the AACS authentication process.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself.
The Total Packs field reports the total number of MKB Packs that are available for transfer to the host, which is
calculated by dividing total MKB data length by 32,768 with counting fractions as one.
The Address field in the command specifies which of the available MKB Packs shall be read. The first MKB
Pack shall be addressed as MKB Pack number 0000000016 and the nth MKB Pack shall be addressed as MKB
Pack number n-1. The last MKB Pack may end with unused bytes, which shall be zero-filled.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 64

The MEDIA KEY BLOCK Pack Data field returns the requested MKB Pack. The MEDIA KEY BLOCK Pack
Data length is 32,768 and the DISC STRUCTURE Data Length is 800216.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 65

4.14.3.5 Returning the Data Keys (Format Code 8416)
Table 4-19 shows the format of the data returned by the READ DISC STRUCTURE command when the format
is 8416.

Table 4-19 – READ DISC STRUCTURE Data Format (Format 8416)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (002216) (lsb)
2
3

Reserved

4 (msb)
:

19
Read Data Key

(lsb)
20 (msb)
:

35
Write Data Key

(lsb)

This Format is used to carry out steps of the protocol shown in Section 4.8.
The READ DISC STRUCTURE Data Length field specifies the length in bytes of the following READ DISC
STRUCTURE data that is available to be transferred to the host. The READ DISC STRUCTURE Data Length
value does not include the READ DISC STRUCTURE Data Length field itself. For the Format code 8416, the
value of this field is 002216.
Bytes 4-19 contain the Read Data Key value, encrypted with the Bus Key from the authentication protocol
using AES-128E.
Bytes 20-35 contain the Write Data Key value, encrypted with the Bus Key from the authentication protocol
using AES-128E. The host shall ignore this field if the logical unit is read-only or the current disc is read-only.
The logical unit shall retain the Write Data Key until it is overwritten, the media is ejected, the logical unit is
powered-off, or the logical unit is reset.
If the Read Data Key is not defined because the appropriate ID (either the Media ID or the Volume ID) is
corrupted or not present, the logical unit shall return error 5/6F/01 (KEY NOT PRESENT).
When the logical unit is not in the Bus Key established state of the AACS authentication, this command with
Format Code = 8416 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION
KEY EXCHANGE FAILURE – KEY NOT ESTABLISHED.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 66

4.14.3.6 Returning the Bus-Encryption Sector Extents (Format Code 8516)
Table 4-20 shows the format of the data returned by the READ DISC STRUCTURE command when the format
is 8516.

Table 4-20 – READ DISC STRUCTURE Data Format (Format 8516)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length
(lsb)

2 Reserved
3 (msb) Maximum Number of Bus-Encryption Sector Extents (lsb)
4
:

11
Reserved

12 (msb)
…
15

Start LBA
(lsb)

16 (msb)
…
19

LBA Count
(lsb)

… …

4+n*16
:

11+n*16
Reserved

12+n*16 (msb)
…

15+n*16
Start LBA

(lsb)
16+n*16 (msb)

…
19+n*16

LBA Count
(lsb)

The READ DISC STRUCTURE Data Length field specifies the length in bytes of the following READ DISC
STRUCTURE data that is available to be transferred to the host. The READ DISC STRUCTURE Data Length
value does not include the READ DISC STRUCTURE Data Length field itself. For the Format 8516, the value
of this field is N*16+2, where N is the number of Bus-Encryption Sector Extents are currently defined in the
logical unit (in the table above, n=N-1). If no Bus-Encryption Sector Extents are currently defined, the Data
Length field shall be 2.
For each such Bus-Encryption Sector Extent, there is a “Start LBA” field and an “LBA Count”, defining the
starting sector and the number of sectors respectively. The Bus-Encryption Sector Extents are ordered by LBA
starting number. In addition, the “Maximum Number of Bus-Encryption Sector Extents” field defines the
maximum number of such extents the logical unit can store at one time, from 1 to 256. The value 256 is denoted
by a “0” in the field.
This command does not require AACS authentication.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 67

4.14.3.7 Media Key Block of CPRM (Format Code 8616)

Table 4-21 – READ DISC STRUCTURE Data Format (Format Code 8616)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length
(lsb)

2 Reserved
3 Total Packs
4 (msb)
:

24,579
MEDIA KEY BLOCK Pack Data

(lsb)

This Command with this Format Code is used to transfer the Media Key Block (MKB) of CPRM recorded in
the Lead-in Area of a AACS Recordable Media that exist in format specific manner. This Command may or
may not be supported by the Licensed Drive, and the host can ask the availability of this command by use of
AACS Feature as defined in Section 4.14.1. Please note that the first pack of the Media Key Block of CPRM is
transferred with using the AACS authentication process.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself. When the Address field is set to 000000FF16, the DISC
STRUCTURE Data Length field shall be set to 000216.
The Total Packs field reports the total number of MKB Packs that are available for transfer to the host, which is
calculated by dividing total MKB data length by 24,576 with counting fractions as one.
The Address field in the command specifies which of the available MKB Packs shall be read. The first MKB
Pack shall be addressed as MKB Pack number 0000000016 and the nth MKB Pack shall be addressed as MKB
Pack number n-1. The last MKB Pack may end with unused bytes, which shall be zero-filled by media
manufacture. An Address field of 000000FF16 specifies that only the 4-byte header of DISC STRUCURE data
shall be returned. No MEDIA KEY BLOCK Pack Data is included in the returned DISC STRUCTURE data.
The host can use this function to obtain the Total Packs of the MKB of CPRM on the media without the AACS
authentication.
The MEDIA KEY BLOCK Pack Data field returns the requested MKB Pack. The MEDIA KEY BLOCK Pack
Data length is 24,576 and the DISC STRUCTURE Data Length is 600216. For the first Pack only (command
Address field = 0000000016), the host must supply a valid AGID field, and the Licensed Drive modifies the first
16 bytes of the Pack before returning it to the host. Specifically, the first 16 bytes of the MKB Descriptor are
replaced with a message authentication code (MAC) of the MKB Hash, as calculated below.
 CMAC(BK, MKB_Hash)

4.14.4 SEND KEY Command Extensions
The SEND KEY command with Key Class 0216 is used for AACS. The SEND KEY command with Key Class
0216 provides data necessary for authentication and for generating a Bus Key and ends the authentication
process.

Table 4-22 – SEND KEY Command

Bit
Byte 7 6 5 4 3 2 1 0

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 68

0 Operation code (A316)
1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Key Class
8 (msb)
9

Parameter List Length
(lsb)

10 AGID Key Format
11 Vendor-Specific Reserved NACA Flag Link

The Key Format field indicates the type of information that is sent to the logical unit. Key Format values
defined for AACS are shown in Table 4-23.

Table 4-23 – Key Format Code Definition for SEND KEY command (Key Class = 0216)

Key
Format

Data to be
Sent Description AGID Use

0000012
Host

Certificate
Challenge

Send a Host Certificate Challenge to logical unit Valid AGID required

0000102 Host Key Send a Host Key to logical unit Valid AGID required
1111112 None Invalidate specified AGID for AACS Valid AGID required

The AGID field identifies the Authentication Grant ID that was used for the authentication process.
The other fields of the SEND KEY Command Descriptor Block shall be set as described in the Mt. Fuji
specification.

4.14.4.1 Sending Host Certificate Challenge
Table 4-24 shows the format of the data sent by the SEND KEY command when Key Class of 0216 and Key
Format of 0000012 are used.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 69

Table 4-24 – SEND KEY Parameter List (with Key Format Code = 0000012, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

SEND KEY Parameter List Length (007216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

23
Nonce (Hn)

(lsb)
24 (msb)
:

115
Host Certificate

(lsb)

This Key Format Code is used to carry out steps 7 through 9 of the protocol shown in Section 4.3.
The SEND KEY Parameter List Length field specifies the length in bytes of the following SEND KEY
Parameter List that is transferred from the host. The SEND KEY Parameter List Length value does not include
the SEND KEY Parameter List Length field itself. For the Key Format Code of 0000012, the value of this field
is 007216.
Bytes 4 through 23 specify the 160-bit nonce Hn value.
Bytes 24 through 115 specify the 92-byte Host Certificate specified in Section 4.2.
When the loaded disc is not AACS compliant media, this command with Key Format Code = 0000012 shall be
terminated with CHECK CONDITION Status, 5/6F/01 COPY PROTECTION KEY EXCHANGE FAILURE –
KEY NOT PRESENT.
When the Host Certificate verification fails or the Host ID of the Host Certificate is found revoked, the
command with Key Format Code = 0000012 shall be terminated with CHECK CONDITION status, 5/6F/00
COPY PROTECTION KEY EXCHANGE FAILURE – AUTHENTICATION FAILURE.

4.14.4.2 Sending Host Key
Table 4-25 shows the format of the data sent by the SEND KEY command when Key Class of 0216 and Key
Format Code of 0000102 are used.

Table 4-25 – SEND KEY Parameter List (with Key Format Code = 0000102, Key Class = 0216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

SEND KEY Data Length (005216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

43
Elliptic Curve Point (Hv)

(lsb)
44 (msb)
:

Signature (Hsig)

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 70

83 (lsb)

This Key Format Code is used to carry out steps 24 through 25 of the protocol shown in Section 4.3.
The SEND KEY Parameter List Length field specifies the length in bytes of the following SEND KEY
Parameter List that is transferred from the Host. The SEND KEY Parameter List Length value does not include
the SEND KEY Parameter List Length field itself. For the Key Format Code of 0000102, the value of this field
is 005216.
Bytes 4 through 43 specify the 320-bit elliptic curve point Hv value specified in step 22 in Section 4.3.
Bytes 44 through 83 specify the 320-bit signature Hsig value specified in step 23 in Section 4.3.
When the signature verification fails, the command with Key Format Code = 0000102 shall be terminated with
CHECK CONDITION status, 5/6F/00 COPY PROTECTION KEY EXCHANGE FAILURE –
AUTHENTICATION FAILURE.

4.14.5 SEND DISC STRUCTURE Command Extensions
Table 4-26 – SEND DISC STRUCTURE Command

Bit
Byte 7 6 5 4 3 2 1 0

0 Operation code (BF16)
1 LUN (Obsolete) Reserved Media Type
2
3
4
5
6

Reserved

7 Format Code
8 (msb)
9

Parameter List Length
(lsb)

10 AGID Reserved
11 Vendor-Specific Reserved NACA Flag Link

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 71

 Table 4-27 below shows the Format Codes AACS has defined for the SEND DISC STRUCTURE command.
They are defined in detail in the following sub-sections.
Table 4-27 – AACS Format Code definitions for SEND DISC STRUCTURE command

Format
Code

Returned
Data

Applicable
Media Type Description

8416
Write Data Key

of AACS
All writeable AACS

media types
Sends the Write Data Key specified
by AACS

8516
Bus-Encryption
Sector Extents

of AACS

All writeable AACS
media types

Sends the Bus-Encryption Sector
Extents specified by AACS

4.14.5.1 Sending the Write Data Key (Format Code 8416)
This subcommand sets a specific Write Data Key.
Table 4-28 Below describes the format of the data sent by the SEND DISC STRUCTURE command when the
Format Code is 8416.

Table 4-28 – SEND DISC STRUCTURE Parameter List (Format Code = 8416)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (001216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Write Data Key

(lsb)

The SEND DISC STRUCTURE Data Length field specifies the length in bytes of the following SEND DATA
STRUCTURE Data Length that is transferred from the Host. The SEND DISC STRUCTURE Data Length
value does not include the SEND DISC STRUCTURE Data Length field itself. For the Format Code of 8416,
the value of this field is 001216.
Bytes 4 through 19 specify the Write Data Key value, encrypted by the Bus Key using AES-128E.
When new media is inserted, the Licensed Drive sets the Write Data Key value to the same value as the Read
Data Key.
When the host is not authorized to send the Write Data Key but does send it, this command shall return error
5/6F/08 INSUFFICIENT PERMISSION. When the logical unit is not in the Bus Key established state of the
AACS Authentication, this command shall return error 5/6F/02 COPY PROTECTION KEY EXCHANGE
FAILURE - KEY NOT ESTABLISHED.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 72

4.14.5.2 Setting the Bus-Encrypted Sectors Extents (Format Code 8516)
Table 4-29 shows the format.

Table 4-29 – SEND DISC STRUCTURE (Format Code 8516)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length
(lsb)

2 Reserved
3 Reserved
4
:

11
Reserved

12 (msb)
…
15

Start LBA
(lsb)

16 (msb)
…
19

LBA Count
(lsb)

… …

4+n*16
:

11+n*16
Reserved

12+n*16 (msb)
…

15+n*16
Start LBA

(lsb)
16+n*16 (msb)

…
19+n*16

LBA Count
(lsb)

The SEND DISC STRUCTURE Data Length field specifies the length in bytes of the following SEND DATA
STRUCTURE Data Length that is transferred from the Host. The SEND DISC STRUCTURE Data Length
value does not include the SEND DISC STRUCTURE Data Length field itself. For the Format Code of 8516,
the value of this field is 2+N*16, where N is the number of Bus-Encrypted Sector Extents that the host is
sending. (In the table above, n=N-1.) If N is zero, the logical unit shall clear its Bus-Encrypted Sector Extents.
This command is used by the host to establish one or more sector extents for which the Bus Encryption Flag
shall be set when data is written. Furthermore, during the subsequent data transfer, the host shall encrypt the
data using the Data Key and the logical unit shall decrypt the data before writing on the media, as described in
section 4.8 and in the format-specific books of this specification.
The host shall sort the list of Bus-Encrypted Sector Extents by “Start LBA”, and ensure that the extents it
defines are not overlapping. It is not an error if the host does not deliver all the actual data corresponding to the
sector extents. The logical unit deletes the old Bus-Encryption Sector Extents if new Bus-Encryption Sector
Extents are defined, or if the media is ejected, or if the logical unit is reset.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 73

If the LBA Extents contain overlapping regions, or if the LBA Extents are not sorted, or if any LBA Extent is
located beyond the maximum capacity of the current media, or if an LBA Count is zero, the logical unit shall
return an error 5/26/00 INVALID FIELD IN PARAMETER LIST.

When the number of LBA Extents specified in the LBA Extent Structure data exceeds the maximum number of
LBA Extents that the logical unit can store (as returned in the Read Bus-Encryption Sector Extents
subcommand), the Licensed Drive shall return an error 5/55/00 SYSTEM RESOURCE FAILURE.

This command does not require the AACS Authentication.

4.15 MMC Command Extensions for AACS
The MMC specification defines commands and related structures used to control the Licensed Drive (logical
unit). This section describes extensions to that specification for logical unit that support AACS functionality
with +R / +RW Media, in addition to the extensions specified in Section 4.14. Some additional information that
is not found in the MMC specification is also given, including the precise format of AACS data values returned
by the logical unit.

4.15.1 READ DISC STRUCTURE Command Extensions
Logical units that implement the AACS Feature support extensions to the READ DISC STRUCTURE
command. The READ DISC STRUCTURE command, shown in Table 4-30, requests that the logical unit
transfers data from areas on the specified media to the host.

Table 4-30 – READ DISC STRUCTURE Command

Bit
Byte 7 6 5 4 3 2 1 0

0 Operation code (AD16)
1 LUN (Obsolete) Reserved Sub-command
2 (msb)
3
4
5

Address

(lsb)
6 Layer Number
7 Format Code
8 (msb)
9

Allocation Length
(lsb)

10 AGID Reserved
11 Vendor-Specific Reserved NACA Flag Link

The Sub-command field indicates the type of command definition to expand this command for other media
types than DVD. This value shall be set to 00002.
The Format Code field indicates the type of information that is requested by the host. New Format Code values
defined for AACS are shown in Table 4-Table 4-30, along with corresponding usage of the Layer Number and
Address fields.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 74

Table 4-30 – AACS Format Code definitions for READ DISC STRUCTURE command

Format
Code

Returned
Data

Layer Number
Field Usage

Address Field
Usage Description

8216
Media Identifier

of AACS Reserved Reserved Returns the Media Identifier
specified by AACS

The AGID field identifies the Authentication Grant ID that was used for the authentication process.
The other fields of the READ DISC STRUCTURE Command Descriptor Block shall be set as described in the
MMC specification.

4.15.1.1 Media Identifier (Format Code 8216)

Table 4-31 – READ DISC STRUCTURE Data Format (With Format Code = 8216)

Bit
Byte 7 6 5 4 3 2 1 0

0 (msb)
1

DISC STRUCTURE Data Length (002216) (lsb)
2 Reserved
3 Reserved
4 (msb)
:

19
Media Identifier

(lsb)
20 (msb)
:

35
Message Authentication Code

(lsb)

This Command with this Format Code is used to carry out steps 2 through 5 of the protocol shown in Section
4.9.
The DISC STRUCTURE Data Length field specifies the length in bytes of the following DISC STRUCTURE
data that is available to be transferred to the host. The DISC STRUCTURE Data Length value does not include
the DISC STRUCTURE Data Length field itself. For the Format Code of 8216, the value of this field is 002216.
The 128-bit Media Identifier shall be formed from Disc ID 1 and Disc ID 2, by calculating AES_H(Disc ID 1 ||
Disc ID 2). If Disc ID 1 and/or Disc ID 2 have not been recorded on the media, the Licensed Drive shall record
Disc ID 1 and/or Disc ID 2 prior to finishing the Command. See also Blu-ray Disc Recordable Book.
If the Licensed Drive fails to record Disc ID 1 and/or Disc ID 2, this command with Format Code = 8216 shall
be terminated with CHECK CONDITION Status, 5/6F/01 ILLEGAL REQUEST/COPY PROTECTION KEY
EXCHANGE FAILURE - KEY NOT PRESENT.
Bytes 20 through 35 return the 128-bit message authentication code value specified in step 4 in Section 4.9.
When the logical unit has not established a Bus Key for the authentication process, this command with Format
Code = 8216 shall be terminated with CHECK CONDITION Status, 5/6F/02 COPY PROTECTION KEY
EXCHANGE FAILURE – KEY NOT ESTABLISHED.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 75

Chapter 5
Uses of On-line Connections

5. Introduction
This chapter specifies details regarding the use of an on-line connection to enable certain enhanced uses of
AACS Content. From the AACS point of view, a device is not required to have an on-line connection capability
or support enhanced uses. However, individual format licenses may require it. AACS defines several different
enhanced modes for using AACS Content with on-line connections:

• AACS Network Download Content. This on-line AACS Content is intended to be recorded on AACS-
protected media. An on-line transaction serves to bind the AACS Content to a particular piece of
media.

• AACS On-line Enabled Content. This AACS Content is pre-recorded on pre-recorded media, or part of
the initial download in AACS Network Download content, but only made playable by an on-line
transaction.

• AACS Streamed Content. This is stream AACS Content logically associated with pre-recorded or
AACS Network Download Content, but delivered on demand across the Internet.

• AACS Managed Copy. Content protected by AACS and contained on Pre-recorded Media includes an
offer to allow at least one copy of that title onto alternative media such as a Home Media Server. The
device performing the Managed Copy shall obtain authorization from a Managed Copy Server as a part
of making this copy. The requirements to support AACS Managed Copy are defined in the Pre-
recorded Video book.

In addition, AACS Content may be used in other unspecified ways as part of an on-line transaction. As a rule, if
the transaction requires the use of AACS-defined keys such as device keys or media keys, the AACS
specification applies, and the specification defines a minimum support level for that transaction in every AACS
device. If, on the other hand, the transaction is accomplished using non-AACS generated secrets such as Title
Keys, the transaction is outside of the scope of the AACS specification, and it is not mandatory for AACS
devices to support it. In all cases, however, the AACS compliance rules shall apply.
The word “title” is often overloaded. For example, a title can refer to a full-feature movie, a TV program, a
music album, etc. Thus, the word is also commonly used to refer to entire DVD-Video disc. However, for the
purpose of the primary AACS specification books, we follow existing DVD-Video usage and define Title to be
a distinct path through a piece of content. That is, a Title is a logical grouping of content material to be
presented in a specific order in time. The correspondence between movie titles (i.e. titles as we see them listed
in the theaters) and AACS Titles is not necessarily a one-to-one mapping. If so designed by the content author,
a movie might have several AACS Titles associated with it. Figure 5-1 shows such an example, where each line
represents a Title, or path through the content. In this example, Title1 might correspond to the movie as is
shown in the theaters and Title2 might correspond to the full-featured version of the movie with some extra
scenes. Notice that both titles share content ‘elements’. Playback of Title1 does not require an on-line
connection, whereas playback of Title2 does. Figure 5-1 also shows that one or more Titles may be encrypted
by the same Title Key. Following existing DVD-Video usage, AACS defines a Title Set to be a group of Titles
that are encrypted with the same Title Key. Figure 5-1 shows two Title Sets. In this terminology, a Title Key is
actually a Title Set Key, although we use the terms interchangeably. The equivalence mapping to the
corresponding terminology for each Format is provided in the format specific books of this specification.
The following are examples of enhanced uses:

1. Access to Titles on Pre-recorded media where the Title Keys for that AACS Content is already on the
media but an on-line connection is needed to grant access to the title. (Type B in Figure 5-1)

2. Access to Titles on Pre-recorded media where the Title Keys for that AACS Content were not included
on the media (Type C in Figure 5-1)

3. Download of new Title Sets to be recorded on AACS Recordable Media

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 76

Video Title Set 1

Video Title Set 2

Title1

Title key file

Online
Enable

Title usage file
URL [,price]

Inst

Inst

Inst

VOBU VOBU VOBU VOBU

VOBU VOBU

VOBU VOBU VOBU

URL [,price]

TYPE A

TYPE B

TYPE C

Title key fileX

Online
Enable

Title usage file

Title2

Title3

Figure 5-1 – Example Titles (Using HD DVD)

For the sake of clarity in this section, the precise definition of relevant terms is given as follows:

Basic Title A Title (on Pre-recorded or AACS Recordable Media) that is readily
accessible by the set of Device Keys currently embedded in the device and
the Encrypted Title Keys already present in the media. No on-line
connection is required to access a Basic Title. All AACS compliant devices
shall be able to access and playback Basic Titles.

Basic Playback Fundamental behavior expected when playing any given Title. It refers to a

baseline playback user experience that is analogous to the one currently
provided by a standard DVD-Video player, i.e. menus, navigation, play
title, scenes grouping, random playback, etc. Basic Playback is the only
type of user experience that is available for Basic Titles,

Enhanced Title A Title that requires an on-line connection or extended function in the

player in order to grant its access.

Basic Device A device that only provides a Basic Playback experience. A device that

does have network connectivity but does not include the features defined in
this chapter for accessing an Enhanced Title is considered a Basic Device.

Enhanced Device A device that is capable of establishing an on-line connection and providing

full access to both Basic and Enhanced Titles. An Enhanced Device, when
the user has elected not to connect it to the Internet, shall operate as a Basic
Device.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 77

Remote Server The remote computer that grants Enhanced Devices the right to play
Enhanced Titles. The appropriate Remote Server for a particular Title shall
be identified in a Title Usage File. An Enhanced Device usually establishes
an on-line connection to the Remote Server before playing Enhanced Titles.

Permission A data record which is created during communication between an Enhanced

Device and a Remote Server. The data record specifies whether that device
is allowed to playback an Enhanced Title.

Title ID Title IDs identify Titles within each Content ID. A single piece of AACS

Content with a single Content ID may have many Titles (paths through the
content) and therefore many Title IDs associated with it. Title IDs are
defined by the given format groups and are generally small numbers. For
example, the existing DVD standard defines that each Title Set may have up
to 99 Titles numbered 1:99. In this case, the numbers 1 through 99 would be
the Title IDs.

Content ID The Content ID uniquely identifies the AACS Content to the Remote Server

in an on-line transaction. The Content ID shall contain a registered number
obtained from ISAN.

The Content ID shall be represented by a 128 bit value as follows

Content ID Type: 4 bits
1000 : ISAN number
Other values are reserved for future use.

Reserved: 28 bits (All zeros)

ISAN number: 96 bits. This value shall contain an International Standard Audiovisual
Number (ISAN, ISO 15706:2002, http://www.isan.org) in 96-bit form with the version
segment of 0, i.e., 0000-0000, or a versioned International Standard Audiovisual Number (V-
ISAN, ISO 15706-2:2007, http://www.isan.org).
The selection of an ISAN number shall follow the guidelines provided in the “ISAN User
Guide” (http://www.isan.org/docs/isan_user_guide.pdf).

Use of the Content ID is optional, although recommended. If it is present and needed by the Managed
Copy Server to distinguish between two different discs in terms of the Managed Copy obligations
associated with each disc (as defined in the AACS License), then they shall have different ISAN or V-
ISAN (versioned ISAN) numbers.

5.1 AACS On-line Enabled Content and AACS Stream Content
On-line Enabled Content and Streamed Content are very similar: in On-line Enabled Content, the AACS
Content is already present on the media and an on-line transaction is needed to unlock it. In Streamed Content,
the AACS Content is not present, and is delivered as a stream as part of the transaction. Note that Streamed
Content shall never be permanently stored on the media or in the device, that is, Streamed Content is always
transient.
AACS Content consists of one or more Title Sets, each of which consists of one or more Titles. All the Titles in
a Title Set are encrypted with a single key. A single transaction enables the playing of a single Title. A Title is a

Content ID Type (4 bits) Reserved (28 bits) ISAN number: (96 bits)

http://www.isan.org/�
http://www.isan.org/docs/isan_user_guide.pdf�

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 78

particular path through the AACS Content. As shown in Figure 5-1, two Titles may share substantial elements,
and it is perfectly normal for some elements within a priced Title to be common with elements in a free title.
Thus, in general, titles are not one-to-one with encryption keys, so the external permissions do not necessarily
involve the delivery of more Title Keys, although they may. Regardless, players shall obtain external
permission to play a Title if it is denoted as an Enhanced Title, even if they can otherwise decrypt the AACS
Content in that title.

5.1.1 Permission Types
Three types of on-line permissions are defined, Default, Instant, and Cacheable. The following sub-sections
provide precise definitions of each of these permission types. On-line Enabled Content shall be associated with
either an Instant or a Cacheable Permission. Streamed Content shall only be associated with an Instant
Permission.

5.1.1.1 Default Permission
A Basic Title contains a Default Permission, the right to play. All titles in the Title Usage File are denoted as
either Basic or Enhanced.

5.1.1.2 Instant Permission
An Instant Permission is acquired from a Remote Server and allows the Enhanced Device to begin playing an
Enhanced Title at the moment in time the Permission is acquired. The Permission shall be re-acquired from the
Remote Server before the device starts playing that Title again, and each acquisition may include a monetary
transaction.
Fast forward and rewind within a Title shall not require a new Permission. If the player leaves the Title to play
another Title, or to display a navigation menu, and later is directed to play the Title again, it shall obtain a new
Instant Permission.

5.1.1.3 Cacheable Permissions
A Cacheable Permission is merely an Instant Permission with an additional keyword in the Title Usage File
marking it as “cacheable”. A device is allowed to store a Cacheable Permission and use it in the future without
requiring any additional on-line connections to the Remote Server. It is the manufacturer’s option to support
Cacheable Permissions. There are no specific requirements for how much space a device shall provide for
caching Permissions. If the space is fully utilized, the device shall treat all new Permissions as Instant
Permissions until either more space is made available or some of the existing Permissions have been deleted.
If an Enhanced Device wishes to utilize “Cacheable Permissions”, then the device shall provide for storage of
that Permission. If no storage is provided, then all Cacheable Permissions shall be treated as “Instant
Permissions”. Different classes of devices shall store Cacheable Permissions in one of three ways:

1. Persistent storage can be used to store Permissions until the Permission expires.
2. Temporary storage may be used to store Permissions but the Permission shall be re-acquired if the

device loses power.
3. Devices that do not provide any local storage for Cacheable Permissions shall connect to the Remote

Server to re-acquire a Cacheable Permission.

A Cacheable Permission may contain an expiration period after which the device shall destroy the Permission
and acquire a new Permission from the Remote Server. Devices that support Permission caches are not required
to support Cacheable Permissions with expiration periods. In that case, however, the device shall treat the
Permission with an expiration period as an Instant Permission. It is also possible that a device would lose its
period timer when it powers off. Such a device shall forget the Cacheable Permission when it powers off.
Permissions may include an expiration time or a “do not play until” time. To acquire a Permission that contains
a time, Enhanced Devices shall provide a secure mechanism for determining the time that cannot be reset by the
end-user. In the case that a device does not support secure time, it shall treat every time-related Permission as an
Instant Permission, with one exception: a device, having once successfully acquired a “do not play until”
Permission, may cache it indefinitely.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 79

5.2 The Title Usage File
A Title Set shall contain one Title Usage File (TUF). Fields contained in the TUF that may not be modified by
compliant recorders are cryptographically bound to the AACS Content by including a hash of those fields in the
content signature. Fields that may be modified by compliant recorders are cryptographically bound to the Title
Key. The name and syntax of the TUF is Format-specific, as specified in the Format-specific books of this
specification. The TUF denotes which Titles require the player to obtain external permission or keys before it
plays them. If the Title is Enhanced, then the TUF contains additional information that identifies how a device
acquires the necessary Permission to allow access to that Title. Each Title protected by AACS shall be covered
by an entry in the TUF.
Each On-line Enabled Content or Streamed Content Title is associated with a URL of the Remote Server which
will permit it to be played.
The TUF shall identify the Content ID, and shall give information about each Title as explained below.

5.2.1 The Per-Title Information in the Title Usage File
The Title records shall, at a minimum, contain the following information. For preciseness of description, this
information below is shown in a XML-like syntax; however, the actual syntax is Format-specific and may not
be XML-like.

<title id=titleID
type=basic | enhanced
[url=url]
 [cacheable [period=hours]
 [after=date/time]
 [before=date/time]]
></title>

This record identifies the title. The “type” attribute indicates whether the Title is an Enhanced Title or a Basic
Title. In some formats, the TUF may be the only indication that a Title is an Enhanced Title. Thus, players shall
check the TUF before playing any Title the first time, even if the player knows the Title Key.
If the Title is an Enhanced Title, the “url” attribute is mandatory and specifies the URL of the Remote Server
that can provide the Permission to play the Title. The “url” attribute shall be omitted if the Title is a Basic Title.
If a Permission obtained for this Title may be cached, the Title Record shall have the “cacheable” attribute.
Titles whose Permissions are cacheable may be further optionally modified by the “period”, “after”, or “before”
attributes. These attributes have the following precise meanings:

• The “period” attribute indicates the amount of time that the Permission may stay in the cache until it
shall be deleted. A player may always delete it earlier.

• The “after” attribute indicates that a player shall not begin playing the title until the date and time
specified.

• The “before” attribute indicates that a player shall not begin playing the title after the date and time
specified.

The dates and times in the “after” and “before” attributes shall specify global rather than local time. For
example, the date and time might be specified in Greenwich Mean Time. Note that since Permissions govern
the right to start playing the Title, it is irrelevant if a time-based permission expires during the play of a Title.
The player shall continue to play the Title, including any user interactions within the Title such as rewind.
Players are not required to support any time-based conditions; the Remote Server is certainly capable of
enforcing those conditions. A player that does not support a time-based condition shall ignore the “cacheable”
attribute and treat any Permission obtained as an Instant Permission, with one exception: a player obtaining a
Permission for a Title that is denoted as “after” in the TUF may cache that permission. If a player supports a
time-based condition, it shall have a Secure Clock for that purpose.
It is always optional for a device to implement a Secure Clock. It is also very possible that a device has a
Secure Clock for the purpose of measuring elapsed time, but does not have a Secure Clock for the purpose of
determining the calendar time (in which case the device shall fall back to the server for permissions with the

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 80

“after” or “before” attributes). It is also possible that a device has a secure calendar clock set at manufacturing
time, but after some years, due to expected clock drift, the device shall no longer treat its clock as a Secure
Clock. Of course, a device that can periodically consult a trusted clock source can maintain a Secure Clock
indefinitely. A trusted clock source may be, for example, a cryptographically secured time value from an
Internet server, or an in-the-clear over-the-air broadcast signal such as WWV in the United States.
A Secure Clock is defined as a clock that shall keep sufficiently accurate time even in the presence of attacks
designed to modify the clock. Alternatively, it is a clock that shall detect such attacks and shall cease acting as
a Secure Clock if tampering is suspected. In other words, the device shall discard all time-based permissions
from its cache and cease caching new time-based permissions until and unless its tampered clock reacquires its
Secure Clock state. The assumptions on the attackers’ resources are defined in the AACS compliance rules. For
calendar time purposes, a Secure Clock shall keep time to within 10 minutes of Greenwich Mean Time. For
elapsed time purposes, a Secure Clock shall not gain or lose more than 1 minute in 24 hours.

5.2.2 Errors in the Title Usage File
Since the integrity of the TUF is guaranteed cryptographically, any syntax or logic errors in the TUF are due to
authoring errors. Therefore, in general, the player action in the case of detecting syntax errors in the TUF is
manufacturer-specific.
However, to remain compatible with potential future extensions to the TUF, the following shall not be treated as
errors:

1. Any unknown attributes associated with a Title. There are two cases:
a. If there are any unknown attributes in a Basic Title, they are ignored.
b. If there are any unknown attributes in an Enhanced Title, the Title shall be treated as an

Enhanced Title with Instant Permissions only, even if it has the “cacheable” attribute. In
other words, the Remote Server shall handle any Enhanced Titles with unknown attributes.

2. Any non-zero values in reserved fields. The player shall ignore values in reserved fields. Likewise, it
shall ignore any data outside of the fields associated with the individual Titles.

5.3 Connection Protocol
In general, the protocol a player uses to connect to the Internet and obtain a Permission is format-specific, and is
described in the relevant Format-specific book in this specification. Regardless of the protocol used, players
shall use the following Application Programming Interface between the AACS secure layer in the player and
the not-necessarily-secure Internet application layer in the player. This API is shown in the following figure:

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 81

AACS Layer

Application Layer

1) Content ID
Title ID

2) & 3)
Status,
[nonce]

5), 6) & 7)
Encrypted
Title Key,

[+MKB] from
server

4) Send
nonce to
server

8) Verify,
enable play

of Title

call callreturn

Figure 5-2 – Transaction Protocol API

The API works as follows:
1. The application layer desires to play an Enhanced Title (being asked to do so by user navigation). It

calls the AACS layer, passing the Content ID and the Title ID of the Title it wants to play.
2. If the permission is already in the cache, AACS Layer sets the status to “Permission Already

Obtained” and returns. The Enhanced Title shall be playable.
3. If the permission is not in the cache, the AACS layer generates a 128-bit nonce (random number). The

AACS layer returns the nonce and one of two status states:
a. “Normal”. This state is returned if the permission is an Instant Permission, or if it is a

Cacheable Permission and the player knows it has not been previously obtained.
b. “Potentially Lost”. This state is returned if the Permission is a Cacheable Permission, and the

player does not have a cache. This state is also returned if the player has a cache, but has
deleted entries from the cache that potentially cover this Content ID. This state is also
returned if the Cacheable Permission has a time-based condition, and the player has not
cached the Permission because it does not have a Secure Clock. This state is intended to allow
the application layer to query the server and have a more user-friendly interaction with the
user, in the case that the user has already purchased the Permission.

4. The application layer sends the nonce to the Remote Server, together with whatever other information
is defined in the protocol. This additional information is usually the Content ID, the Title ID, and the
financial information for the transaction.

5. If the transaction succeeds at the Remote Server it shall send an Encrypted Title Key by way of
granting the permission. The formula of the Encrypted Title Key is called out in the specific Format
books of this specification, with the addition that the Remote Server shall have XORed the Title Key
with the nonce and with a hash of the Content ID and Title ID before encrypting it. In general, this
means that the Encrypted Title Key formula is of this form:

 AES-128E(Kvu, Kt ⊕ nonce ⊕ AES-H(Content ID || Title ID) ⊕ …)

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 82

6. In addition, the Remote Server may send a new Media Key Block in the case that Media Key Block on
the media is out-of-date. In this case, the Volume Unique Key Kvu is calculated assuming the Media
Key is the XOR of the Media Key on the media with the Media Key in the new Media Key Block.

7. The application layer passes the Encrypted Title Key to the AACS Layer, together with the new Media
Key Block if there is one.

8. The AACS layer calculates the Title Key from the formula in step 5, and uses it to play the Enhanced
Title, in lieu of any Title Key it finds on the media. In this calculation, the AACS layer shall remember
and use the nonce it created in the previous call; it shall not trust the application layer to pass the nonce
to it.

This paragraph is informative: The Remote Server has a database which, at the very least, will contain the Title
Keys that are missing on pre-recorded media. It is convenient that this database might contain other data, such
as the Media Key and version number of the Media Key Block in use in this particular Content ID. The
database might also contain the attributes found in the AACS Content’s Title Usage File. So, in general, the
protocol need not require the player to send the MKB or the TUF to the Remote Server.

5.4 AACS Network Download
AACS has defined a primary specification book, the AACS Prepared Video Book to describe AACS Network
Download Content for video. Refer to that book and its associated adaptation books for further information. It
is anticipated that other approaches will be specified in a future release of the specification.

5.5 AACS Media Binding
AACS Content is content that is bound to AACS media even if the AACS Content is stored in bulk storage and
not actually stored on AACS media. AACS defines five optional methods of binding for this purpose. The
source of AACS Content that utilizes these binding methods may be via Network Download as defined in
Section 5.4 or an alternative source such as a Pre-recorded media. Requirements for using any of the five
defined binding methods are described below. In the following descriptions the term “Binding Device” means
either a stand-alone device, or a device acting with the assistance of a server.

1. Media Binding. The unique Media ID and Binding Nonce on AACS Recordable Media, or the Serial
Number and Volume ID on the pre-recorded media, are transmitted from the Client to the Binding
Device. The Binding Device generates a MAC on the Media ID or the Serial Number and returns it as
part of the binding. In the case of AACS Recordable Media, the Binding Device encrypts the Title Key
with the Protected Area Key as described in the AACS Recordable Video Book of this specification. In
the case of pre-recorded media, the Binding Device encrypts the Title Key with the Volume Unique
Key as described in the AACS Pre-recorded Video Book of this specification.

2. Content Binding. In this case, the downloaded AACS Content is bound to any copy of a particular
content item, not to a particular piece of media. One of the following two options shall be used. The
downloaded AACS Content itself shall be delivered encrypted using the Title Key already present on
the media, in which case no transaction with an authorizing server is necessary. Alternatively, for pre-
recorded media only, the Client shall deliver the pre-recorded media’s Volume ID to the authorizing
server, and the authorizing server shall provide an Encrypted Title Key, encrypted in the Volume
Unique Key. The following sentence is informative: Note that this binding permits sharing of the
downloaded AACS Content amongst all users who have the original AACS Content, so this binding
method should not be used for high-value downloaded AACS Content.

3. Device/Content Binding. In this case, the downloaded AACS Content is bound to a particular device
in addition to being bound to any copy of a particular content item. In this case, a nonce is generated
by the device and stored in a way that shall not be modifiable by the user. This Device Binding Nonce
N is combined with the content item’s Media Key and is used to produce a device-and-content unique
key as follows:
 Kdc = AES-G(Km, N)
The Binding Device shall provide an Encrypted Title Key, encrypted in Kdc.

4. Device/Media Binding. In this case, the most restrictive binding, the downloaded AACS Content is
bound to both a particular piece of media, and a particular device. The device, acting as a Client,

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 83

creates a nonce for a device-and-content key as in the Device/Content Binding case and sends this
Device Binding Nonce to the authorizing server. The Client also sends the Media ID in the case of
AACS Recordable Media and the Serial Number in the case of pre-recorded media. The authorizing
server responds with a MAC on the Media ID or Serial Number, and an Encrypted Title Key,
encrypted in Kdc.

5. Media Binding for Download. This case is described in the AACS Prepared Video Book. Although it
is similar to case 1 above, the binding is provided by an authorizing server, not by an individual
device.

If specified by instructions associated with the AACS Content, devices may use AACS cryptography to provide
a secure “per-Content-Provider” partitioning of local bulk storage, as may be required by some Format groups.
If the Format requires this, then the player shall calculate a per-Content-Provider key Kcp, as follows:
 Kcp = AES-G(Kd, IDcp || 000000000000000000000000000016)
The Kd is a unique device key provided by the device (and is not an AACS key), and IDcp is the Content
Provider ID (Applicant ID) from the Content Certificate, as described in the AACS Pre-recorded Video Book of
this specification. Prior to computing Kcp, a device shall verify the signature of the Content Certificate and
verify that it corresponds to the actual AACS Content on the media as described in the AACS Pre-recorded
Video Book. The device shall then use Kcp to encrypt and decrypt the partition of its local storage that is
assigned for that Content Provider.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 84

This page is intentionally left blank.

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 85

A Appendix - Calculating the “uv” Values of Device Keys

A.1 Calculating the “uv” Values of Device Keys
It is not necessary for a device to store the uv values associated with its device keys. It is sufficient for a device
to store only its device node; from that, it calculates the uv values of its device keys. The following working
Java program illustrates this calculation. The calculation determines the root of every sub-tree for which the
device knows every key.
This program lists all possible such keys. In most AACS applications, the number of keys will actually be less,
because the keys in large sub-trees (high u) are not actually populated. This program lists keys in the reverse
order of the size of the sub-trees. If your AACS application has fewer keys, just ignore the later uv values.

package com.aacsla;

import java.util.Enumeration;
import java.util.Vector;

public class ListKeys
{

 /**
 * @param args "deviceNode treeheight"
 */
 public static void main(String[] args)
 {
 if (args.length != 2) {
 System.out.println("Format: deviceNode treeheight");
 return;
 }
 long deviceNode;
 if (args[0].startsWith("0x")) {
 deviceNode = Integer.parseInt(args[0].substring(2),16);
 } else {
 deviceNode = Integer.parseInt(args[0]);
 }
 int height = Integer.parseInt(args[1]);
 deviceNode |= 1L << height; // we turn on a high bit for formatting
purposes only
 Vector uvs = listKeys(deviceNode, height);
 for (Enumeration i = uvs.elements(); i.hasMoreElements();) {
 Object uv = i.nextElement();
 System.out.println(uv);
 }
 }

 /**
 * The recursive function actually listing the keys
 */
 public static Vector listKeys(long deviceNode, int height)
 {
 Vector r;
 if (height > 1) {
 r = listKeys(deviceNode, height - 1);
 } else {
 r = new Vector();
 }
 Node u = new Node(deviceNode, height);
 while (--height >= 0) {
 int mask = 1 << height;
 Node v = new Node(deviceNode ^ mask, height);

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 86

 r.addElement(new UV(u, v));
 }
 return r;
 }

 /**
 * Holds and formats a node in a tree
 */
 static private class Node
 {
 private final static String x = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
 private long path;
 private int height;

 private Node(long path, int height)
 {
 this.path = path;
 this.height = height;
 }

 public String toString()
 {
 String r = Long.toString(path, 2);
 // here is where we strip out the high order bit we turned on
 return r.substring(1, r.length() - height)
 + x.substring(0, height);
 }
 }

 /**
 * Holds and formats a subset difference (node u
 * minus node v)
 */
 static private class UV
 {
 private Node u,v;

 private UV(Node u, Node v)
 {
 this.u = u;
 this.v = v;
 }

 public String toString()
 {
 return ("U = " + u + "; V = " + v);
 }
 }
}

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 87

B Appendix - Example Protocol for Online Enabled Content
This appendix describes some specific ways to satisfy the requirements for supporting Online Enabled Content.
It gives an example protocol; in general, the actual protocol is specified by the particular format group. Devices
shall support the protocol(s) defined in the formats they recognize.

B.1 Example Platform Requirements
It is the choice of the device manufacturer which Internet connection method is supported, for example,
Ethernet, IEEE 1394, wireless, etc. Here are some example requirements:

1. DHCP client.
2. HTTPS client. In particular, the device is required to support Transport Layer Security (TLS) 1.0 with

server-side authentication using RSA, AES-128, and SHA-1 only. (In other words, the supported
cipher suite is TLS_RSA_WITH_AES-128_CBC_SHA.) The key length of RSA is 2048 bits. The ‘e’
of Public Key is 216+1. The only certificate authority that the device needs to recognize is the AACS
LA. The device connecting using HTTPS can assume that the server has a certificate signed by AACS
LA.

B.2 Example User Accounts
This paragraph describes a way in which On-line Enabled Content and Streamed Content features is paid for by
consumers. The end-user interested in invoking the On-line Enabled Content or Streamed Content functions is
expected to set up an account with the content provider, or with a service center acting on the content owner’s
behalf. There may be many different ways for the user to register, for example, he may connect to a Web site,
call an 800 number, or mail in a form provided with the media packaging. It can be assumed that registration
information would be available in printed material with the media packaging, and/or playable on the media
itself. In any event, the registration process does not involve the player. After registration, the user will have
received an account number (a decimal number), and a personal identification number (PIN), also a decimal
number.
The player prompts the user to enter the account number and PIN when certain navigation paths through the
disc AACS Content require additional payment. As explained below, the additional payment requires the player
to connect to a URL. At the player’s option, the player may offer to remember the account number, to simplify
future user interactions. In that case, the player shall assume that each domain name in a URL shall be
associated with a single account number. Also at the player’s option, the player may offer to remember the PIN
associated with the account number. It is strongly recommended that players selecting this option shall make it
part of any parental guidance features that they provide.
Player shall always ask for positive acknowledgement from the user before proceeding through an additionally
priced AACS Content, even if the player has remembered the necessary account information. Players shall also
provide a way for the user to delete the stored information, for example, when the user wants to sell the player.

B.3 Example User Interface Requirements
If access to a Title requires a monetary transaction or the transmission of user account information to a Remote
Server, then the Device shall provide for a mechanism to notify the user that this is the case. It shall also
provide a way to cancel the transaction if so desired.
The players shall ask for user permission before performing a transaction. However, in the case of a free
transaction, the player may, at its option, accept a stated user preference in lieu of an individual confirmation.
Of course, if a free transaction requires an account/PIN the user would have authorized the player to have
cached the account/PIN in order to avoid the confirmation.

B.4 Example Protocol Syntax
When a player needs an On-line Enabled Content Permission or a Streamed Content key, the player connects to
the Internet and does an HTTPS POST to the URL associated with that Title. The post data it sends shall be in
the following format, in readable ASCII:

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 88

version=1.0
title=id
nonce=nonce
contentId=contentID
[serialNo=serialNo]
playerId=playerId
[language=language]
[price=price
account=nnnnnn…nnnnnn
pin=nnnnn…nnnnnn]

Initially, the price and account/PIN information are omitted. Only if the initial transaction fails (as described
below) would a subsequent request include this information. The Serial Number line shall be omitted if the disc
does not have a unique machine-readable Serial Number. The “language” line may be omitted, but if the end
user has expressed a language preference to the player, the player may use the “language” line to communicate
that to the service center. The service center, in turn, may use that preference to format potential error messages.
The language is denoted with the English name for the language, for example, “English”, “Japanese”,
“Spanish”, “Mandarin”, etc. The number of the title shall be in decimal. All other IDs and the nonce shall be in
readable hexadecimal, with ‘a-f’ in lower case. The price is in the form currency:nnn, e.g., USD1.00 means
$1.00. The account number and PIN shall be decimal digits. Each line is ended by the line feed character ‘\n’
(0x0A). There shall be no imbedded white space characters within the lines.
The service center responds to the POST in one of three ways:

1. “go=< data>\n
[date=yyyy/mm/dd hh:mm:ss+ts]
[mkb=<mkb>\n]”

2. “price=<price>\n”
3. “error=<message>”

The first is the normal response permitting play. The data is readable hexadecimal of the Encrypted Title Key.
The Title Key is encrypted as described in Section 5.3. This Title Key applies to both Streamed Content and
On-line Enabled Content. It is often the case that the player already knows the Title Key. In that case, it shall
ignore the old Title Key and use the Title Key decrypted from the “go” response.
Optionally, the service provider may follow the “go” line with a “date” line, for the benefit of players that are
implementing cacheable periods, but cannot maintain the period when powered off. In this case, the player shall
record the time when the original Permission was received. When the player powers on again and gets the
original Permission a second time, it calculates the difference in time in order to determine how much time
remains in the period.
Optionally, the service provider may also follow the “go” line with an “mkb” line, transmitting a new MKB.
This might be used, for example, if the MKB on the media was seriously down-level. If the player receives a
new MKB, it shall recalculate the content unique key using a new Media Key that is the bitwise XOR of the
Media Key on the media and the Media Key calculated from the new MKB in the response. That new content
unique key shall be used to decrypt the data in the “go” line.
The second response (“price”) occurs if the Permission is offered for sale. If the player receives the “price=”
response, it shall stop for confirmation from the user before proceeding. If the user confirms the purchase, the
player shall repeat the transaction, this time sending the price and the user’s account information. The format
for the price is the same currency:nnn format. If the price is offered in more than one currency, they are listed in
a comma-delimited list surrounded by braces. For example:
 {USD2.00,YEN150}

The Remote Server may respond with a “price” response, but indicate that the price is zero. The content owners
may choose this option when they want to offer a free feature, in return for learning the identity of the
consumer. The player shall treat this “price=0” feature identically to non-zero priced features; in other words, it
shall ask for user confirmation before continuing. In this case, however, the player may use a previously stated
user preference in lieu of asking for confirmation.
If the permission was previously purchased by the user, but had merely fallen out of the player’s cache, the
service center shall transmit the “go” response without demanding payment. However, service centers may use

Advanced Access Content System: Introduction and Common Cryptographic Elements

 Final Revision 0.952 Page 89

their own criteria in determining if a key has been previously purchased and therefore may be given again for
free. For example, they might use the media ID, the player ID, the account number, or some combination of
these things. Whatever heuristics the service center uses to determine that a permission request is a repeat, the
service center shall guarantee that repeats due to connectivity problems shall not yield duplicate charges.
If the response from the service center begins “error=”, the response shall be an explanatory response intended
for human eyes, for example, “your credit card has expired”. The first six characters are in ASCII; the
remaining characters immediately after the ‘=’ character are in Unicode. How the player handles this response
is player specific.

	Notice
	Intellectual Property
	Contact Information
	Chapter 1Introduction
	1.1 Purpose and Scope
	1.2 Objectives and Design Criteria
	1.3 Organization of this Document
	1.4 References
	1.5 Document History
	1.6 Future Directions
	1.7 Notation
	1.7.1 Numerical Values
	1.7.2 Bit and Byte Ordering
	1.7.3 Operations

	1.8 Terminology
	1.9 Abbreviations and Acronyms

	Chapter 2AACS Common Cryptographic Functions
	2. Introduction
	2.1 AES Symmetric Block Cipher Algorithm
	2.1.1 ECB Mode (AES-128E and AES-128D)
	2.1.2 CBC Mode (AES-128CBCE and AES-128CBCD)
	2.1.3 AES-based One-way Function (AES-G)
	2.1.4 AES Hashing Function (AES-H)
	2.1.5 SHA Hashing Function
	2.1.6 Message Authentication Code (CMAC)

	2.2 Random/Pseudorandom Number Generation
	2.3 Digital Signature (AACS_Sign and AACS_Verify)

	Chapter 3AACS Common Cryptographic Key Management
	3. Introduction
	3.1 Device Keys
	3.2 Media Key Block (MKB)
	3.2.1 Subset-Difference Tree Overview (Informative)
	3.2.2 Calculation of Subsidiary Device Keys and Processing Keys
	3.2.3 Storing Device Keys
	3.2.4 Calculation of Media Key
	3.2.4.1 Class of Devices

	3.2.5 Media Key Block Format
	3.2.5.1 Records Used by Both Class I and Class II Licensed Products
	3.2.5.1.1 Type and Version Record
	3.2.5.1.2 Host Revocation List Record
	3.2.5.1.3 Drive Revocation List Record
	3.2.5.1.4 Verify Media Key Record
	3.2.5.1.5 Explicit Subset-Difference Record
	3.2.5.1.6 Subset-Difference Index Record
	3.2.5.1.7 Media Key Data Record
	3.2.5.1.8 End of Media Key Block Record

	3.2.5.2 Additional Records for Class II Licensed Products
	3.2.5.2.1 Media Key Variant Data Record
	3.2.5.2.2 Variant Number Record

	3.2.6 Read/Write Media Key Blocks

	Chapter 4Additional Procedures for Drive-Host Configurations
	4. Introduction
	4.1 Drive Certificate
	4.2 Host Certificate
	4.3 AACS Drive Authentication Algorithm (AACS-Auth)
	4.4 Protocol for Transferring Volume Identifier
	4.5 Protocol for Transferring Pre-recorded Media Serial Number
	4.6 Protocol for Transferring Media Identifier
	4.7 Protocol for Updating the Protected Area and Associated Data
	4.7.1 Protocol for Writing Protected Area Data
	4.7.2 Protocol for Reading Protected Area Data

	4.8 Protocol for Transferring Media Identifier from CPRM-capable Media
	4.9 Protocol for Transferring Media Identifier from +R / +RW
	4.10 Protocol for Reading Media Key Block of CPRM
	4.11 Procedure for Bus Encryption
	4.12 Updating Host Revocation List in Non-volatile Memory of Licensed Drive
	4.13 Updating Drive Revocation List in Non-volatile Memory of Host
	4.14 Mt. Fuji Command Extensions for AACS
	4.14.1 AACS Feature
	4.14.2 REPORT KEY Command Extensions
	4.14.2.1 Getting Authentication Grant ID for AACS
	4.14.2.2 Returning Drive Certificate Challenge
	4.14.2.3 Returning Drive Key
	4.14.2.4 Generating and Reporting Binding Nonce
	4.14.2.5 Reading Binding Nonce
	4.14.2.6 Reading Drive Certificate

	4.14.3 READ DISC STRUCTURE Command Extensions
	4.14.3.1 Volume Identifier (Format Code 8016)
	4.14.3.2 Pre-recorded Media Serial Number (Format Code 8116)
	4.14.3.3 Media Identifier (Format Code 8216)
	4.14.3.4 MEDIA KEY BLOCK (Format Code 8316)
	4.14.3.5 Returning the Data Keys (Format Code 8416)
	4.14.3.6 Returning the Bus-Encryption Sector Extents (Format Code 8516)
	4.14.3.7 Media Key Block of CPRM (Format Code 8616)

	4.14.4 SEND KEY Command Extensions
	4.14.4.1 Sending Host Certificate Challenge
	4.14.4.2 Sending Host Key

	4.14.5 SEND DISC STRUCTURE Command Extensions
	4.14.5.1 Sending the Write Data Key (Format Code 8416)
	4.14.5.2 Setting the Bus-Encrypted Sectors Extents (Format Code 8516)

	4.15 MMC Command Extensions for AACS
	4.15.1 READ DISC STRUCTURE Command Extensions
	4.15.1.1 Media Identifier (Format Code 8216)

	Chapter 5Uses of On-line Connections
	5. Introduction
	5.1 AACS On-line Enabled Content and AACS Stream Content
	5.1.1 Permission Types
	5.1.1.1 Default Permission
	5.1.1.2 Instant Permission
	5.1.1.3 Cacheable Permissions

	5.2 The Title Usage File
	5.2.1 The Per-Title Information in the Title Usage File
	5.2.2 Errors in the Title Usage File

	5.3 Connection Protocol
	5.4 AACS Network Download
	5.5 AACS Media Binding

