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A Survey of DHT Security Techniques

GUIDO URDANETA, GUILLAUME PIERRE and MAARTEN VAN STEEN
VU University, Amsterdam, The Netherlands

Peer-to-peer networks based on Distributed Hash Tables (DHTs) have received considerable at-
tention ever since their introduction in 2001. Unfortunately, DHT-based systems have shown to be
notoriously difficult to protect against security attacks. Various reports have been published that
discuss or classify general security issues, but so far a comprehensive survey describing the various
proposed defenses has been lacking. In this paper, we present an overview of techniques reported
in the literature for making DHT-based systems resistant to the three most important attacks
that can be launched by malicious nodes participating in the DHT: (1) the Sybil attack, (2) the
Eclipse attack, and (3) routing and storage attacks. We review the advantages and disadvantages
of the proposed solutions and in doing so, confirm how difficult it is to secure DHT-based systems
in an adversarial environment.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]: Distributed Applications; C.2.0 [General]:
Security and Protection

General Terms: Algorithms, Design, Security

Additional Key Words and Phrases: Peer-to-peer systems, Distributed Hash Tables, Sybil attack,
Eclipse attack, Secure P2P routing and storage

1. INTRODUCTION

The notion of a decentralized lookup service is very useful for many distributed applica-
tions [Cai et al. 2004; Ramasubramanian and Sirer 2004b; Zhou and van Renesse 2004;
Dabek et al. 2001; Rowstron and Druschel 2001b; Castro et al. 2002; Stading et al. 2002].
Such a service provides the fundamental operation lookup(k), which returns data associated
with a key k. A common approach studied in the literature to implement this functional-
ity is the use of structured peer-to-peer systems, also known as distributed hash tables
(DHTs) [Ratnasamy et al. 2001; Stoica et al. 2003; Rowstron and Druschel 2001a; Zhao
et al. 2004; Maymounkov and Mazières 2002]. Examples of deployed systems that rely on
DHTs include BitTorrent, the Kademlia-based KAD file sharing network used by eMule,
MLDonkey and other compatible programs, peer-to-peer search engines [Yang and Ho
2006; Tang et al. 2003], and botnets [Holz et al. 2008].

In a DHT, keys are distributed among a potentially very large number of nodes. Each
node needs to know the identity of only a small subset of other nodes, such that a lookup
can be routed deterministically to the node responsible for the requested key.
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This limited view of the membership, while essential for the system’s scalability, makes
it remarkably difficult to make DHTs tolerant to the presence of malicious and possibly
colluding nodes in an open environment such as the Internet, where mutually untrusted
parties are allowed to join the system. This limited knowledge about the system can be
exploited by malicious nodes to launch attacks that can compromise the integrity of the
system.

Besides generic attacks such as those for (distributed) denial-of-service and exploitation
of implementation bugs, which apply to any distributed system, DHTs present a number
of weaknesses specific to them. The most studied DHT attacks in the literature are: (1) the
Sybil attack, where an attacker introduces a large number of bogus nodes that can subvert
protocols based on redundancy, (2) the Eclipse attack, where the attacker tries to corrupt
the routing tables of honest nodes by filling them with references to malicious nodes, and
(3) routing and storage attacks, which cover various attacks where malicious nodes do
not follow the routing and storage protocols correctly, for example, by corrupting data, or
routing to incorrect or malicious nodes.

To illustrate, Figure 1 shows a typical organization of a DHT, in which each peer has an
m-bit identifier. (In the example, m = 5, but normally m = 128 or larger.) In a DHT, peers
are responsible for keeping information on entities, where each entity has a unique key,
drawn from the same space as peer identifiers. For example, in Chord, all entities with a
key k fall under the jurisdiction of the peer with the smallest identifier id ≥ k. To allow for
efficient lookups of keys, each peer maintains a routing table (to which we return below).

When focussing on the application-independent core of DHTs, one can indeed see that
there are two major problems: creating malicious nodes and isolating nodes from benign
ones. Creating malicious nodes is exactly what is done through a Sybil attack, whereas
isolation is done by means of an Eclipse attack. Once malicious nodes have been installed
and benign nodes have been eclipsed, the real damage to the DHT core can take place:
manipulating lookup requests by forwarding requests to malicious nodes in addition to
returning bogus results.

Apart from these, any application built on top of DHTs faces specific security threats.
For example, file-sharing applications built on DHTs are vulnerable to the introduction of
“poisoned data”, where seemingly correct but bogus files are introduced in the system by
an adversary with the purpose of disrupting user downloads. As previously said, DHTs can
be used for building a wide range of applications which can be subject to an equally varied
set of attacks. We do not consider application-specific attacks in this paper.

DHTs also have to deal with other issues that may be, but are not necessarily, the re-
sult of an attack. One of the most serious is churn, which consists of participating nodes
dynamically joining and leaving the system, requiring algorithms to efficiently handle con-
tinuous restructuring of the overlay in addition to migrating data. Another important issue
is the unequal popularity of the data stored in a DHT combined with the unequal capacity
of the participating nodes, which can lead to load-balancing problems. Related to this is
the possibility of flash crowds, where the popularity of specific items increases several or-
ders of magnitude in a short time. There is a vast amount of literature related to the study
of churn [Castro et al. 2004; Rhea et al. 2004; Godfrey et al. 2006; Li et al. 2005; Blake
and Rodrigues 2003], load balancing [Zhu and Hu 2005; Rao et al. 2003; Karger and Ruhl
2006; Godfrey et al. 2004] and flash crowds [Ramasubramanian and Sirer 2004a; Yu et al.
2005] in DHTs.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. The organization of a typical DHT, illustrating attacks on the core functionality.

Issues that are inherent to all DHT deployments, but which are independent of the as-
sociated protocols, such as churn and unbalanced loads, as well as application-specific
attacks, are out of the scope of this paper. In the same light, we do not discuss denial of
service attacks, which have been studied by Daswani [2004].

There have been several surveys that describe DHTs and peer-to-peer (P2P) systems in
general. However, not many survey solutions to security issues in DHTs. Sit and Mor-
ris [2002] explore the subject and provide general guidelines. Castro et al. [2002] study
DHT security issues under a generic DHT model, and provide solutions using Pastry as
a representative of their model. Wallach [2002] discusses a wide range of security issues
in several P2P systems, including Pastry, but does not enumerate the numerous proposals.
Srivatsa and Liu [2004] make an extensive quantitative analysis of security threats in DHTs
and some of the defenses. Levine et al. [2006] summarize general approaches to address
the Sybil attack in a variety of scenarios, but do not discuss any specific measures. Reide-
meister et al. [2005] study security issues specific to CAN [Ratnasamy et al. 2001]. Dahan
and Sato [2007] criticize several practical aspects related to DHT security as well as their
use in other systems that require security.

In this paper, we supplement these surveys by providing a comprehensive overview of
the research in the area of DHT security, concentrating on numerous specific solutions.
We focus on proposed defenses against the aforementioned attacks, discuss their advan-
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tages and disadvantages, and identify possible areas for future research. To the best of our
knowledge, this is the first study in security for DHT-based systems that provides such a
comprehensive overview. Given the volume and quality of the research in this area, we
come to the conclusion that developing secure DHTs is a far from trivial undertaking for
which acceptable solutions are still sought.

The rest of the paper is organized as follows. Section 2 gives an overview of DHTs.
Section 3 discusses the Sybil attack. Section 4 covers the Eclipse attack. Section 5 dis-
cusses routing and storage attacks. Section 6 discusses how security techniques have been
applied in deployed open systems based on DHTs, and Section 7 serves as our conclusion.

2. OVERVIEW OF DHTS

DHTs are distributed systems composed of many nodes that implement the operation
lookup(k), which returns data associated with a key k. The data typically contains the
network address of the node responsible for key k. Alternatively, a DHT may implement
the operation route(k), which simply routes a message to the node responsible for key k.

The most fundamental aspect of a DHT is the existence of a common identifier space
for both nodes and keys, with each key k stored in the node with identifier closest to k
according to some distance function.

In order to locate the node responsible for key k, a node forwards the lookup request
to another peer whose identifier is closer to k according to the distance function. All
nodes maintain links to a subset of the other nodes, thus forming an overlay network.
A lookup request is forwarded by nodes until no node is found with an identifier closer to
the requested key. In order to be scalable, the number of links per node must be small in
comparison to the total number of participating nodes, and is typically of size O(logN).
This partial view of the system makes DHTs scalable, but also makes them vulnerable to
malicious nodes that do not behave according to the protocols as originally set out.

There are many ways in which a DHT can implement these concepts. For example,
Chord [Stoica et al. 2003] uses an identifier space consisting of m-bit strings arranged in a
circle with points representing the integers from 0 to 2m−1. The distance from identifier
x to identifier y is the clockwise numerical distance (x− y) mod 2m. Each node with
identifier x builds and maintains a routing table consisting of its immediate predecessor
node on the circle, its immediate k successors, and a list of m fingers consisting of the
nodes whose identifiers immediately succeed

(
x+2 j−1

)
mod 2m, for 1 ≤ j ≤ m. Chord

provides logarithmic lookup time, and requires a logarithmic amount of memory per node.
Another popular DHT is Pastry [Rowstron and Druschel 2001a] which uses strings of l

digits with base b = 2p to identify nodes, where p is an integer. The distance is determined
by the number of common prefix digits and complemented by a network proximity metric.
Each node x maintains a routing table with ` rows that contain b−1 entries each. Each row
r (1 ≤ r ≤ `) contains links to nodes sharing the first r digits with x, but with the (r +1)st
digit being one of the b− 1 possible values other than the r + 1th digit of x. In addition,
each node maintains a neighborhood set and a leaf set. The neighborhood set consists of
the M closest nodes according to the network proximity metric, while the leaf set contains
the L/2 nodes with numerically closest smaller IDs, and the L/2 nodes with numerically
closest larger IDs relative to x. Pastry also provides logarithmic lookup time, and also
requires a logarithmic amount of memory per node.

One of the most widely used DHTs in real-world applications is Kademlia [Maymounkov
ACM Journal Name, Vol. V, No. N, Month 20YY.
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and Mazières 2002]. Like Chord, it uses m-bit strings as node identifiers. The distance be-
tween two nodes is determined by the application of the bitwise XOR operation on their
identifiers. This results in a metric similar to Pastry’s. Unlike Chord and Pastry, Kademlia
maintains redundant links to same fractions of the ID space. For each 0 ≤ i < m, each
node in Kademlia keeps a list of links for nodes of a distance between 2i and 2i+1 from
itself. The list can grow up to size s and is called an s-bucket. Links from an s-bucket are
selected to refer preferably to highly available nodes. To look up a key, a querying node
chooses α nodes from its closest non-empty s-bucket, and sends them requests for their s
closest known nodes to the target identifier. The querying node selects α nodes among the
responses and repeats the procedure until no nodes closer to the target are found. Data is
stored in the s closest nodes to a given key. When α = 1, routing is similar to Pastry’s and
Chord’s.

Routing tables in Kademlia can be augmented with network proximity information,
which can be used to improve lookup performance.

3. SYBIL ATTACK

The Sybil attack was first studied by Douceur [2002]. It exploits the fact that in a distributed
system, remote entities are perceived as informational abstractions known as identities. If
the system fails to guarantee that each logical identity refers to a single physical entity,
an attacker could create a large number of identities and dominate the overlay network by
fooling the protocols and subverting mechanisms based on redundancy. The Sybil attack
does not damage the DHT by itself, but can be used as a vector to artificially create a major-
ity of colluding malicious nodes in the overlay. Many DHT defenses have been designed
under the assumption that only a reasonably low fraction f of nodes are malicious. A Sybil
attack breaks these defenses by effectively increasing f .

This attack is not specific to DHTs, but it is important to study because DHTs are vul-
nerable to it and the attack can be used to facilitate the execution of many other attacks. For
example, if there are many malicious identities in the system, it becomes easier to pollute
the routing tables of honest nodes, and control the majority of the replicas for a given key.

The most important conclusion of Douceur’s study is that in a P2P system, having a
logically central, trusted authority to issue identities is the only practical way to guarantee
a one-to-one correspondence between the identities and the physical entities that operate
the participating nodes.

3.1 Castro et al.

Castro et al. [2002] argue that, as Douceur stated, the only practical solution to node iden-
tifier generation is to use a trusted authority and reject any form of distributed identifier
generation. They suggest using a set of trusted certification authorities to produce signed
certificates that bind a random node identifier to a public key and the node’s IP address.
They suggest including the IP address in the certificate so that it is difficult for an at-
tacker to swap certificates between nodes it controls and also to allow optimizations based
on minimizing communication delays. This type of certified identifiers works well with
DHTs such as Chord, Pastry, and Tapestry [Zhao et al. 2004], where the identifiers are
fixed. However, they are not suitable for systems such as CAN [Ratnasamy et al. 2001],
where the identifiers represent regions of a d-dimensional space that change when new
nodes join. Also, IP-based schemes require special solutions when having to deal with
machines behind NAT firewalls.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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In order to prevent Sybil attacks, the authors propose to make it difficult for an attacker
to obtain a large number of certified identifiers. One of their solutions is to charge money
for each certificate. Another is to bind node identifiers to real-world identities, but this
works only in systems that already have reliable authentication procedures.

We believe that using certificates is the most effective defense against the Sybil attack
as long as it is possible to have a trusted authority that is able to discern if an entity re-
questing a certificate is a Sybil attacker or not. The main advantage of this approach is that
it provides flexibility over what the system considers a “real” entity. For example, a crim-
inal organization running a botnet has many physical nodes with different IP addresses,
but it is possible that it is considered as a single entity by the certification authority. On
the other hand, running such a trusted authority implies an administrative overhead whose
feasibility depends on the application and real-world circumstances. Charging money for
the certificates would help fund the operation of the authority and limit the number of cer-
tificates that a malicious entity can acquire, but has the disadvantage that it can discourage
legitimate nodes from participating.

3.2 Dinger and Hartenstein

Dinger and Hartenstein [2006] propose a distributed registration procedure for Chord. Al-
though distributed schemes are known not to be totally Sybil-resistant, they use a number
of metrics to quantify a level of resistance. In their system, each virtual node calculates
its ID as a hash of its IP address and port number, and registers itself at r registration
nodes in the Chord ring. The r registration nodes are computed using the hash of the IP
address and an integer j (1≤ j ≤ r). Registration nodes maintain a list of registered virtual
nodes for each IP address and reject registration if the number of registered nodes for each
IP address exceeds a system-wide constant a. They also modify the Chord stabilization
algorithm in such a way that it confirms the legitimacy of the identifier, computes the ap-
propriate registration identifiers for the new node, and checks the correct registration of the
new node by asking the responsible registration nodes. If the number of positive replies
is greater than dr/2e, the new node will be accepted. If a new node joins successfully,
then it is also integrated in the registration process and registration data is migrated from
other nodes according to the standard Chord protocol. The basic idea of this system is to
implement an approximation of a trusted registration authority by assuming that a majority
of the non-trusted registration nodes will behave correctly.

In their simulation experiments, they use three measures to quantify the level of Sybil
resistance of their system. The first is the fraction of malicious identities with respect to
the total number of identities in the system. This value is calculated assuming that each
good participant obtains one identity and each malicious participant obtains a identities.
They compared the theoretical value with the actual value obtained in an experiment in
which the number of registered identities grows to around 500, with a 0.02 probability
that a participant trying to join is malicious, and with parameters a = 2 and r = 5. Once
a malicious participant is accepted it tries to create as many Sybil identities as possible.
Their result is that the fraction of malicious identities never exceeds its expected value,
which for this experiment was approximately 0.0392.

Their second measure is the probability of a false registration, which they define as the
probability that a malicious node is accepted, given a fraction of well-behaving nodes in
the overlay, and the parameters a and r. The results show that this probability decreases
if r increases. For r = 5 the probability is more than 0.3 with a fraction of 60% of honest
ACM Journal Name, Vol. V, No. N, Month 20YY.
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nodes and drops to a near-zero value with 90% of honest nodes. For r = 12 the probability
is close to zero with 60% of honest nodes. For values of r greater than 24 the probability
drops to zero with a fraction of honest nodes slightly greater than 40%. In all cases the
parameter a is set to 1.

Their third measure of Sybil resistance is the fraction w of well-behaving nodes nec-
essary to guarantee a probability of false registration less than 0.001. Their result is that
increasing the replication factor r decreases w, but w converges to 0.5 because at least 50%
of the nodes have to confirm the correct registration.

These results show that this approach provides a reasonable level of Sybil protection
by regulating the number of identities that a malicious IP address can get. However, it
introduces the possibility of new attacks. For example, consider the case where a coalition
of malicious nodes introduces fake registration values for potential legitimate nodes by
repeatedly joining and leaving in such a way that the fake registration values are moved to
good nodes. This would effectively reduce the probability of a legitimate node to join the
system, thus increasing the fraction of malicious identities in the system. Moreover, the
only notion of entity that the system allows is the IP address (or prefix), which is not very
useful if the adversary controls many IP addresses, something easy to achieve by assigning
many addresses to a single computer, or with a botnet. Again, IP-based schemes require
special attention when having to deal with NAT firewalls.

3.3 Wang et al.

Wang et al. [2005] propose a different approach to building secure DHTs. They reject
using the IP address or payed certificates to identify nodes and consider these approaches
impractical in a P2P environment. They argue that physical network characteristics can be
used to identify nodes. They introduce a concept called net-print for this purpose. The
net-print of a node is built using a node’s default router IP address, its MAC address and
a vector of RTT measurements between the node and a set of designated landmarks. This
is a form of self-certifying data, which can be verified by other nodes, making identity
theft difficult. The authors state that a machine may claim multiple identities in the same
subnetwork and launch a Sybil attack, but the scope of this attack would be limited and can
be detected by challenging every identity with a unique computational puzzle concurrently.

The main disadvantage of this approach is that changes in network conditions may cause
subsequent identity tests to fail. It is therefore necessary to tolerate a certain deviation
between the values reported by a node and the measures obtained in the verification, but
determining the appropriate tolerance requires a difficult trade-off between security (which
demands low tolerance), and resilience to network condition changes (which requires high
tolerance). Another problem is that any change in the network measurement infrastructure
implies a change in the identities of all nodes. In addition, it is not possible to support
mobile hosts with this system.

3.4 Bazzi and Konjevod

Bazzi and Konjevod [2005] propose a Sybil defense based on network coordinates. This
work exploits the fact that location is a physical property of entities that can help determine
their true identities. The model assumes that the participating nodes form a d-dimensional
Euclidean space Rd or a sphere Sd . The distances in this space are assumed to approxi-
mately satisfy the metric properties of symmetry and triangle inequality. It is also assumed
that the distance between two points in the space is a nondecreasing function of roundtrip
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delay between them. The proposed protocols distinguish two types of nodes: beacons and
applicants. Some applicants and some beacons may be malicious.

The two basic elements for the operation of the system are geometric certificates and a
distinctness test. A geometric certificate is a set of distance values between an applicant
and the beacons signed by both the beacons and the applicant. A geometric certificate is the
result of the execution of a protocol that might require the nodes (applicant and beacons)
to send and respond to probe messages as well as reporting the results to various beacons.
A distinctness test is a function D : C×C → {true,unknown} that assigns a value true or
unknown to a pair of geometric certificates. If the result is true, the entities are considered
distinct.

The authors present certification protocols for different settings, such as:

—Honest participants
—Non-colluding malicious applicant
—Multiple colluding applicants in a broadcast environment
—Multiple colluding applicants in a point-to-point environment
—A fraction of colluding beacons

The main practical property of this approach is that the distinctness test introduces an
equivalence relation where nodes in the same class cannot be distinguished from each other
using the test. This allows applications to implement more reliable redundancy protocols,
for example, by storing replicated data in nodes belonging to different classes. It should
be noted that this system does not aim to identify individual nodes, but to guarantee that
identities in different groups are not controlled by the same entity. A weakness is that an
adversary controlling real nodes in different groups can easily beat the defense: identified
by the protocol as belonging to different groups, the nodes are actually controlled by a
single entity, which is the essence of the Sybil attack. In addition, the authors assume
that there is a unique attainable distance between two nodes. Practical distance estimation
shows that this assumption may be false [Szymaniak et al. 2004; Szymaniak et al. 2008]
and that considerable effort is needed to come to stable estimates, if possible.

3.5 Bazzi et al.

Bazzi et al. [2006] propose a secure routing algorithm that can be used to defend against
Sybil attacks. The main idea is to determine hop-count distances to a set of beacons and
use these to tell nodes apart. Using hop-count coordinates has been studied notably in the
context of wireless networks [Fonseca et al. 2005].

In this system, each node has a public-private key pair. Each honest node can be identi-
fied by a unique public key, while a Sybil attacker can have multiple key pairs.

The proposed protocol for determining hop-count distances has two components: a pro-
tocol that allows a node to determine if another node is its physical neighbor (that is, a
neighbor that can be contacted without intervention of another node), and a protocol that
uses key chains to enable a destination node to certify its distance to other nodes in the
network.

To determine if a destination node is a physical neighbor, it is assumed that a broadcast
mechanism to physical neighbors exists. The algorithm has two phases. First, a node sends
a random bit encrypted with the public key of the destination node. The destination can
then recover the bit by decrypting the message. In the second phase, the sender broadcasts
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a cleartext message and the destination can XOR the first bit of the message with the pre-
viously recovered random bit and resend the message back to the sender. This algorithm
can be repeated multiple times to arbitrarily reduce the probability of a malicious node cor-
rectly guessing the correct answer. This allows the sender to determine that the destination
is a physical neighbor, or, more formally, that one of its physical neighbors has access to
the private key of the destination.

The second part of the protocol is to actually determine hop-count distances between
nodes. In this case, the main purpose of the protocol is to prevent malicious nodes from
reporting distances that are smaller than their actual distances to a given destination.

The basic algorithm calculates distances towards a destination node d by construct-
ing a minimum spanning tree. Initially, the tree includes only d and the distance to d
is infinite at all other nodes. Each member node x of the tree periodically advertises to
its physical neighbors its shortest known working path to d with a message of the form
adv(BKx,dt,Hx), where BKx is the public key of node x, dt is a timestamp updated pe-
riodically at each node, and Hx is a description of the path from d to x using the chain
< dt,BK0,BK1, · · · ,BKm,C0,C1, · · · ,Cm >. In this chain, BKi are the public keys of the
nodes in the path from d to x, C0 is a self-signed digital certificate generated by d, and Ci
are digital certificates for the i-th node in the path, signed by the (i−1)-th node in the path,
with C1 signed by d. The distance from x to d is the number of certificates in the chain Hx.

When a node y receives an advertisement adv(BKx,dt,Hx) from its physical neighbor
x, it checks if the timestamp dt is recent and whether it allows reducing y’s path length.
If this is the case, it sends a reply message rpl(BKx,BKy,dt) to x, which is essentially a
certificate request.

When x receives rpl(BKx,BKy,dt), it computes a certificate Cx consisting of a hash of
the pair (dt,BKy) signed with x’s private key. The certificate essentially means that x rec-
ognizes y as its physical neighbor of which a statement is sent to y in an acknowledgment
message ack(BKy,dt,Cx).

When y receives ack(BKy,dt,Cx), it checks the certificate Cx and, if correctly signed, it
updates its current path to d with the hop-chain

Hy =< dt,BK0,BK1, · · · ,BKm,BKx,C0,C1, · · · ,Cm,Cx >

which is the Hx received in the advertisement message sent by x with BKx and Cx ap-
pended. After this is done, y will periodically broadcast new advertisement messages
adv(BKy,dt,Hy) to its physical neighbors.

When a node y stops receiving the periodic advertisement messages of its parent x in the
routing tree, it resets its distance to d to an infinite value and stops advertising its route to
d through x.

This protocol tolerates malicious nodes without collusion, but the authors have extended
it to withstand the following attack models: (1) Initial collusion of nodes, in which all ma-
licious nodes share some initial information (e.g., included in a virus), but cannot commu-
nicate with other malicious nodes, (2) runtime collusion of adjacent nodes, and (3) runtime
collusion of non-adjacent nodes, but in the absence of collusion between adjacent nodes.

The authors claim that nodes can be identified with vectors consisting of hop-count
distances to a set of beacons calculated with the previously described protocol, since the
distances between nodes cannot be affected by malicious nodes, provided the network has
enough redundant paths to ignore.

We observe that this solution can be relatively simple to implement and looks very
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promising in wireless scenarios. However, it has not been tested experimentally, so it
is unclear how effective it really is, especially in a dynamic environment with frequent
changes in the network topology.

The implications of using this scheme in an overlay network on top of a wired network
are also not clear. If physical neighbors are defined as belonging in the same physical
underlying network link then it is possible that many participating nodes have no physical
neighbors. On the other hand if physical neighbor means that a node does not need to route
a message using other overlay nodes, then any node may have the possibility to become a
“physical” neighbor of any other node.

3.6 Danezis et al.

Danezis et al. [2005] offer a method that uses social information to make routing in DHTs
more resistant to Sybil attacks. More concretely, they propose changes to the Chord iter-
ative routing method so that it is less vulnerable to Sybil attackers attempting to disrupt
routing lookup requests.

Their approach relies on the bootstrap graph of the system, i.e., an initial overlay net-
work that connects designated attachment nodes that can be used by others to join the
network. They assume the bootstrap graph to be a tree. The reasoning is that the easiest
way for an adversary to add malicious nodes is to first convince a legitimate node to admit
a single malicious node, perhaps using social engineering, and then use the malicious node
as the entry point for adding a large number of additional attackers. Thus, the single good
node and the malicious node used as attachment point will appear in all routes from a good
node to a malicious node in the bootstrap graph.

The Chord protocol is modified so that, in addition to node identifiers and addresses,
each node stores the path in the bootstrap graph from itself to each node it knows (fingers,
successor and predecessor). Another modification to the Chord protocol is that in lookup
requests the current hop does not return a single next-hop node, but all the nodes it knows
about, together with the bootstrap paths. Then, the requester can decide on the next hop
using either the standard Chord strategy (the node numerically closest, yet less or equal to
the requested key) or a strategy based on diversity. The purpose of the diversity strategy
is to favor alternative paths that include nodes that are not frequently used. This is done
applying the following rule: The requester maintains a histogram with the frequency with
which each node in the network has been on the path of the queries so far. This histogram is
referred to as a trust profile. Then, for each possible next hop, the variation of the histogram
is computed, and the node chosen is the one that produces the least increase on the trust
put on a single node. This is implemented by sorting in descending order the trust profile
for each possible node, then ranking the nodes by lexicographically sorting the previously
sorted trust profiles, and choosing the smallest node in this rank as the next step.

The diversity strategy distributes queries across the network trying to avoid the bottle-
necks introduced by possible Sybil attacks. However, this strategy does not produce any
progress towards routing to the target node. For this reason, the authors implement a zigzag
strategy in which they use the standard and diversity strategies alternatively. In a simula-
tion of 100 lookups in a system with 100 good nodes, the zigzag strategy outperforms
the standard strategy as the number of malicious nodes grows. Zigzag produced better
results with as few as 50 malicious nodes. The case in which there are several malicious
attachment points was also studied. With 100 good nodes and 100 malicious nodes, zigzag
outperformed the standard strategy only if there were less than 80 attachment points. With
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200 malicious nodes, zigzag always outperformed the standard strategy, but the difference
decreases as the number of attachment points grows.

An additional modification to Chord that the authors tested was to modify the way the
finger table is constructed. A fraction of the fingers is selected in such a way that they
produce the least increase to a trust profile created using information provided by the suc-
cessor. A simulation experiment with 100 lookups in a system with 100 good nodes with
one Sybil attachment point shows that both the standard and zigzag strategies benefit from
the new finger table.

This system appears to have several disadvantages. First, it is unclear to what extent the
logarithmic lookup times as provided by Chord are maintained. Second, it increases the
overhead by requiring that each lookup step returns all neighbors plus the bootstrap paths.
Third, it assumes social relationships between participants, with an implicit capability to
detect if a node is malicious before joining. This requirement may prove to be difficult
to maintain in practice, and it is unclear whether it will necessarily lead to attacks against
only a few attachment points. Finally, the experiments were limited to simulated networks
with no more than 100 honest nodes, and it is not clear if the system can scale to larger
system sizes or with more attachment points.

3.7 Yu et al.

Yu et al. [2006] propose a decentralized protocol based on a social network that tries to
limit the influence of Sybil attacks. In the social network, the edges of the graph represent
a human trust relation such as friendship. The basic assumption is that a Sybil attacker can
create any number of identities and edges among the Sybil identities, but it is limited in
the number of edges that it can establish with honest nodes, which are referred to as attack
edges.

The SybilGuard protocol partitions the nodes into groups such that the number of groups
that include at least one Sybil identity (Sybil groups) is bounded by the number of attack
edges, independently of the number of Sybil identities.

Each node constructs its own partition of the network using a procedure based on ran-
dom routes. Random routes are a special kind of random walk where each node uses a
precomputed random permutation as a one-to-one mapping from incoming edges to out-
going edges. For example, if a node has 3 edges e1,e2,e3 and uses permutation (e2,e3,e1)
then all routes in the system that come from edge e1 will use edge e2 as the next hop.
Random routes have two important properties. First, once two routes intersect at an edge
in the same direction, they will merge. Second, the routes are back-traceable because the
permutation on each node is fixed.

Each node has a route of length w for each of its edges. The reasoning for defining
groups using random routes is that routes originating in the honest region of the network
are unlikely to include nodes in a Sybil region, since the number of attack edges is small.
Note that it turned out that w can be fairly large: 2000 for a one-million node network.

When a node wants to verify that another node is honest, it checks for intersections in
their routes. A verifier node V is said to accept a suspect node S only if at least half of V ’s
routes intersect with any of S’s routes, meaning that most likely S will belong to the same
(honest) region as V .

The authors provide algorithms for building the routes in a decentralized fashion. Apart
from the routing table defined by the random permutation, each node maintains two types
of data structures: registry tables and witness tables. The purpose of these data structures
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is to prevent nodes from lying about their routes.
Each node has a public/private key pair and a symmetric key for each edge, shared with

the corresponding neighbor in the social network, previously accepted as friend through
social interaction. The distribution of symmetric keys is done offline. Each node registers
with all the nodes in its random routes, and this information is maintained in registry tables.

Each node maintains a registry table per edge. The ith entry in a registry table for edge
e contains the public key of the node with a route that has e as its ith hop. The procedure
to construct registry tables is very simple. Suppose node A has an empty registry table and
has a neighbor B connected via edge x. Then A sends to B (via a secure channel encrypted
with their shared symmetric key) a table with A in its first position. Then B sends its table
for edge x to its friend C via edge y. The registry table for edge y in node C will have B
in position 1 and A in position 2. Since routes must be of size w, the wth entry is always
dropped when a node propagates a registry table to a neighbor.

Registry tables allow nodes to register with peers in their random routes, but nodes also
need to know which peers are on its random routes. This information is maintained in
witness tables. Each node maintains a witness table for each of its edges. The ith entry in a
witness table for edge e contains the public key and network address of the ith node in the
route starting on edge e. The witness tables are propagated in a similar way to the registry
tables, but in the reverse direction.

The verification procedure uses these tables in the following way. When node V wants
to verify a node S, it compares all of S’s witness tables with its own witness tables and
checks for intersections. Then, for each intersection node X , V contacts X and verifies that
S is registered with X . If the majority of V ’s routes have verifiable intersections with S
routes, then S is considered an honest node.

When users and edges are added to or deleted from the social network, the internal data
structures of the affected nodes must be updated as well. The most important change is
on the permutation-based routing table. In order to prevent drastic changes in registry and
witness tables, the change in the routing table is incremental. To add a new edge to a node
with d edges, the node chooses a random integer k between 1 and d + 1, inclusive, and
replaces the edge in position k of the routing table with the new edge, and puts the replaced
edge on position d + 1. To delete the edge in position k of the routing table from a node
with d edges, the node in position d is placed on position k and the table size is reduced
to d− 1. The churn is expected to be low, since social relationships are slow to change,
so the registry and witness tables are updated with the execution of the corresponding
maintenance protocols. These tables need to be updated only when there are changes in
the social relationships.

The authors tested the system with simulations using Kleinberg’s synthetic social net-
work model [Kleinberg 2000]. They tested networks of up to 1,000,000 nodes with degree
24. When no malicious nodes exist the results show that 99.96% of the nodes have at
least 10 intersections with a group size w as small as 300 (the protocol requires only one
intersection). They also tested the case with malicious nodes and g attack edges. For the
million-node network, they varied g from 0 to 2500. The results show that the probability
of all the routes remaining in the honest region is almost always 100% when g ≤ 2000.
When g = 2500 this probability drops to 99.8%. The probability that an honest node ac-
cepts another honest node is 99.8% as well.

These results show that this scheme provides a reasonable level of Sybil resistance re-
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gardless of the nature of the Sybil identities. However, there are several difficulties that
complicate its real-world deployment. First, it requires genuine, trustworthy relationships
among the participating entities that are accurately reflected in the system, a requirement
which may prove to be difficult to maintain. Second, it requires mechanisms to securely
establish these relationships in the system before the creation of links to other nodes ac-
cording to the rules of the higher level application (such as the DHT protocol). Finally,
it forces each user to securely distribute and administrate a different symmetric key with
each of its friends in the social network. Whether these conditions can be met for actual
applications remains to be seen.

3.8 Yu et al.

Yu et al. [2008] also proposed an update to SybilGuard called SybilLimit. Like in Sybil-
Guard, each node has a public/private key pair, each social connection has a unique sym-
metric key, and there are protocols for maintaining random routes and verifying nodes. The
SybilLimit random route protocol establishes permutation-based routing tables identical to
SybilGuard’s. However, instead of using a single routing table, each node must maintain
r = Θ(

√
m) independent routing tables, where m is the number of edges in the graph. Each

suspect node S will execute an instance of the random route protocol for each of its routing
tables. The protocol consists of S sending its public key KS and a counter initialized to 1
on each route. Each receiving node will increment the counter and propagate the message
according to its routing table, until the message reaches a value w = O(logn) in node B,
through its edge with node A. In this case, node B records the key KS under the name
“KA → KB”. This is known as S registering its public key with the tail “KA → KB”. The tail
“KA → KB” is sent back to S using the inverse route. Each verifier node V also executes r
independent instances of the protocol, the tails are propagated back to the verifier, but V
does not register its public key at the tails.

When a verifier V wants to decide whether to accept a suspect node S or not, V checks
that two conditions are satisfied: the intersection condition and the balance condition. The
intersection condition consists in that the intersection of the set of V ’s tails and the set
of tails with which S is registered must be non-empty. The authors show that this is an
instance of the Birthday Paradox and that having r = Θ(

√
m) is necessary and sufficient to

have this non-empty intersection.
Having many random routes increases the possibility that some routes enter a region

controlled by Sybil identities. It can then be expected that under a Sybil attack, the ver-
ifier tails that intersect with Sybil suspects’ tails (and thus belong to routes that enter the
Sybil region) will be used more often in the verification procedure. In order to detect this
imbalance, the verifier will associate a counter to each tail. Everytime a suspect satisfies
the intersection condition, the intersecting tail with the lowest counter will be selected and
compared with b = hmax(logr,(1+∑

r
i=1 ci)/r) where h is a positive constant (the authors

use h = 4 in their experiments), and ci are the counters for each intersecting tail. The sus-
pect is rejected if cmin + 1 > b, otherwise, cmin is incremented. The authors show that the
number of Sybil nodes accepted by V is bounded within O(g logb) where g is the number
of attack edges.

The procedure to estimate r uses a benchmarking technique. Every verifier V maintains
two sets of suspect nodes, a benchmark set K and a test set T . K is constructed by repeat-
edly executing random routes and adding the ending node to K. T contains the suspects
V wants to verify. r is initially set to 1, and is repeatedly doubled. For each value of r, V
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verifies all suspects in T and K and stops when a high fraction (e.g., 95%) of the nodes in
K is accepted. This method is shown to never overestimate r = r0

√
m.

To confirm their theoretical results, the authors evaluate SybilLimit with simulation ex-
periments using a synthetic network of 1 million nodes and 10.9 million edges, generated
using Kleinberg’s social network model with w = 10 and r = 10,000, and three real world
networks: Friendster with 932 thousand nodes and 7.8 million edges, w = 10, r = 8,000;
LiveJournal with 900 thousand nodes and 8.7 million edges, w = 10, r = 12,000; and
DBLP with 106 thousand nodes and 626 thousand edges, w = 15, r = 3000.

SybilLimit provides an asymptotic guarantee of O(logn) Sybil nodes accepted per attack
edge, where n is the number of honest nodes. The experiments show that this translates to
between 10 and 20 accepted Sybil nodes per attack edge.

In general, this work makes similar assumptions to its predecessor SybilGuard and thus
the same observations regarding the practical realization of these assumptions apply.

Lesniewski-Laas [2008] proposes to augment SybilLimit with routing tables of size r =
O(
√

m logm). The additional O(
√

logm) factor allows routing tables to be used for O(1)
DHT routing, similar to approaches described in [Gupta et al. 2003; Gupta et al. 2004].

3.9 Borisov

Borisov [2006] proposes to add computational puzzles to Chord in order to defend against
Sybil attacks. The proposed scheme consists in augmenting the periodic ping messages
every node sends to its neighbors with a sequence number and a challenge. If node x has
neighbors y1,y2, · · · ,ym, then x will send each yi a sequence number n(x) and a challenge
cn(x) together with each ping. The challenge cn(x) is defined as

cn(x) = H
(

y1||n(y1)||cn(y1) || · · · ||ym||n(ym)||cn(ym) ||rn(x) ||cn(x)−1

)
where H is the SHA1 hash function, || is the concatenation operation, n(yi) and cn(yi) are
the sequence number and challenge in the last ping message x received from each yi, rn(x)

is a random number chosen by x, and cn(x)−1 is the challenge generated by x in the previous
round.

Every t time steps, each node x must solve a puzzle based on the current value of n(x)

and cn(x) . The puzzle consists of finding a number sn(x) such that

H
(

x||BKx||n(x)||cn(x) ||sn(x)

)
= h

where the last p bits of h are all zeros, and BKx is x’s public key. Solving this puzzle
requires brute-force evaluation of up to 2p candidate values for sn(x) .

When a neighbor yi wants to confirm that cn(yi) was included in the computation of cn(x) ,
x can respond with the values y j, n(y j), c

n(y j) corresponding to all its other neighbors, as
well as cn(x)−1 and rn(x) together with the solution sn(x) . Once yi confirms that cn(yi) was
included in the computation of cn(x) , it can contact a neighbor z of x and verify that cn(z)

is based on cn(x) using the same procedure. It is possible that yi needs to use an older
challenge because cn(yi) may not have been propagated yet.

If the diameter of the overlay network is d, then yi can start from cn(yi)−d , and x can
prove that it has solved a challenge cn(x)−l that includes cn(yi)−d , and any subsequent node
z in a Chord lookup can prove that it has solved cn(z)−l′ which also includes cn(yi)−d .

The author proposes that every node x compute sn(x) every t time steps, which means that
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nodes must be fast enough to compute 2p hashes in no more than t time steps. In this case,
the author shows that if a node x needs to perform a lookup that involves node y, x can start
with cn(x)−d−2t and y will be able to prove that it has solved a puzzle cn(y)−l′ which is based
on cn(x)−d−2t and whose solution has been computed within the last d +2t time steps.

In order to tolerate churn, Chord’s network maintenance algorithm is modified so that
entries in the routing table remain at least d +2t time steps, even if better nodes are added
to the overlay within that period. In case of nodes leaving, the solution is to use suboptimal
entries in the routing table. The author points out that Chord has been shown to have a
high level of static resilience [Gummadi et al. 2003], with suboptimal routing being able
to correctly route the majority of requests. Moreover, if self-certifying data is used, two
separate routing tables could be used, one without the capability to do verifications and
another one with the proposed algorithm, to be used only when data verification tests fail.

This approach gives a node the flexibility to choose its position in the overlay, thus
making it easier to take advantage of load balancing algorithms. However, this flexibility
allows a relatively small fraction of malicious nodes to easily take control of a certain
region of the overlay, potentially blocking access to data stored in the attacked position.

3.10 Rowaihy et al.

Rowaihy et al. [2007] propose a hierarchical system based on computational puzzles to
defend against Sybil attacks. The system creates a tree where the root must be trusted and
reliable. The root allows other trusted nodes, such as major ISPs, to join the system. These
in turn allow smaller providers, which in turn allow ordinary, untrusted users.

When a node x wishes to join the system it must start an admission sequence that starts at
a leaf and ends at the root. Before joining the system, x generates a public-private key pair
and its identifier, with its identifier being a cryptographic hash of the public key. Then it
must discover a leaf node y and solve a puzzle generated by y, which consists of x guessing
a random number R such that H(BKx||T S||R) matches a value specified by y, where H is
the hash function, T S is a timestamp, BKx is x’s public key, and || is concatenation. Once x
proves that it has solved the puzzle, y generates a token that proves that x solved y’s puzzle.
This token is signed using a symmetric key shared between y and y’s parent node.

After solving y’s puzzle, x contacts y’s parent, shows the token and solves another puzzle.
x repeats this process until it reaches the root node, which provides a special token that
proves that x has been admitted. This final token is signed using the root’s private key,
which allows all participating nodes to authenticate the token.

Once x is accepted into the system, it is not included in the admission hierarchy until
it has been part of the network for a long time. When a node is promoted to be part of
the admission tree, it uses an authenticated Diffie-Hellman exchange with its parent to
establish the shared key used to validate intermediate tokens.

When a node that is part of the tree leaves the system gracefully, it informs its children
and the one with more time in the network takes the place of the node leaving. This
procedure is executed recursively in the children of the replacement node until a leaf is
reached. If a node leaves due to a failure, all its children must rejoin the network.

There are two attack models of interest in this system: when the attacker is a member of
the tree, and when it is not. In the first case, the attacker can generate tokens reducing the
number of puzzles that must be solved. This can be detected by the parent of the attacker by
observing the rate at which token requests are generated. In the second case, the only thing
an attacker can do is to slowly obtain identities. To counter this, token expiration times are
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introduced. Once a node knows its token will expire, it can get another one beforehand. If
the attacker has n identities, it will have to get n new tokens, which limits its capability to
maintain a large number of identities over time.

To protect the network during the startup process when there are few nodes, a startup
window is defined. During this time, the puzzle difficulty decays progressively until the
normal difficulty is reached. This makes it more difficult for malicious nodes to obtain
identities at the beginning.

The authors formally analyze the system in addition to running simulation experiments,
with the most important result being that the number of identities an attacker can accumu-
late is mt/l, where m is the number of real attackers, t is the expiration time for tokens,
and l is the time needed to solve all the puzzles required to obtain a token from root node.
Experimental results confirm the theoretical results.

We observe that this solution can limit Sybil attacks, but at the cost of requiring the
equivalent of a centralized online certification authority, reliable nodes at the top levels of
the hierarchy, and a continuous consumption of computing resources by honest nodes to
maintain their membership.

3.11 Margolin and Levine

Margolin and Levine [2007] propose a protocol called Informant which is based on game
theory principles to detect, rather than prevent, Sybil attacks. Informant makes the fol-
lowing assumptions: (1) all participants (including Sybil identities) are rational, (2) each
identity has a public-private key pair, (3) there is a currency system that can be used to
implement economic transactions, (4) benefits and harms associated with participation in
the system can be expressed in terms of this currency, and (5) there is a reliable broadcast
mechanism.

In Informant there are some trusted nodes known as detectives that are assumed to follow
the protocol correctly. When the protocol is activated, a detective x broadcasts a signed
message that signals the start of an instance of the protocol, specifying an identifier i for the
protocol instance, and the duration τ of the instance. Immediately afterwards, an auction
starts, in which x broadcasts a message indicating the reward R it is willing to provide for
knowledge of a single Sybil relationship. If no responses are received in τ time units, x
can increase R and start another round, until R reaches a maximum of B/2, with B being
the detective’s monetary benefit for learning about a Sybil relationship. If no responses are
received when R reaches its maximum, the protocol ends. If some informant node y decides
to report a Sybil relationship between itself and target z, it must report it to x together with
the payment of a security deposit of D monetary units. After x gets the payment D, it pays
D+2R monetary units to z, and broadcasts a message indicating that y and z are Sybils. If x
wants to learn more information about Sybils, it can start another instance of the protocol.

The authors analyze the protocol under the following conditions: (1) there is either a
single Sybil attacker with multiple rational identities or no Sybil attacker at all, (2) Sybil
attackers can be either low-cost, which reveal themselves with a reward C < B = 2R, or
high-cost which reveal themselves with a reward C′ > B = 2R, and (3) the detective runs
the protocol to decide whether to continue participating or to leave. They prove that the
detective will run the protocol unless (1−δ + δγ)B < δγH + 2δ (1− γ)R, where δ is the
probability that a Sybil attack is taking place, γ is the probability of a Sybil being high-cost,
B is the benefit of participating in the application, and H is the monetary value of the harm
caused by a Sybil attack. This means that this protocol is useful if the expected harm from
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high-cost Sybils (δγH) does not greatly exceed the benefit B provided by the application.
One problem with this protocol is that it may encourage Sybil attackers that have no

interest in subverting the application protocols, but that are interested in being paid to
reveal their presence. In this case, the authors propose running the protocol with frequency
and unpredictability such that the cost of maintaining a Sybil exceeds the potential profits.
The authors also show that if there is a cost E to enter each identity, having R < E makes
launching a Sybil attack not profitable.

We consider that a game-theoretic approach is an interesting way to address this prob-
lem, but it introduces a complex modeling problem. First, a digital currency must be
established, and second, utility functions, benefits and costs must be modeled in a way
compatible with the currency system. It is not clear that both of these problems can be
solved in the context of a Sybil attack against a DHT-type system (which is not the purpose
of the authors). It has been shown that these issues are common to the application of game
theoretic approaches to distributed computer systems in general and that they are difficult
to solve [Mahajan et al. 2004].

3.12 Discussion

Table I summarizes and provides a comparison of the defenses against Sybil attacks.

Table I: Comparison of defenses against Sybil attacks.

Technique Authors Advantages Disadvantages
Certificates signed
by a trusted
authority, possibly
payed.

Castro
et al.
[2002]

Allows good control over
who is allowed to join the
system.

Introduces processing and
administrative overhead.
Puts barriers to legitimate nodes
trying to join the system.
Certificate revocation may be
costly.

Distributed
registration.

Dinger
and
Harten-
stein
[2006]

Does not put barriers to
enter the system.
Decentralized.

Does not protect from attacks
involving a large number of IP
addresses.
The proposed protocols
introduce possibilities for new
attacks.

Use of physical
network
characteristics to
identify nodes.

Wang
et al.
[2005]

Does not put barriers to
enter the system.

Depends on network
measurements that can change
over time for the same node, thus
failing to provide a consistent
identity.
Changes to the network
measurement infrastructure may
invalidate the identity of all
nodes.

Continued on next page
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Table I – Continued
Technique Authors Advantages Disadvantages
Use of network
coordinates to
group nodes.

Bazzi
and Kon-
jevod
[2005]

It can prevent Sybil attacks
consisting of a single node
reporting multiple
identities, or many nearby
colluding nodes.

Does not prevent a Sybil attack
where the attacker controls a
sufficiently large number of
nodes in multiple network
positions.
May require a trusted network
measurement infrastructure.

Use of network
coordinates to
differentiate nodes.

Bazzi
et al.
[2006]

Simple algorithms.
Hop-count distance is not
used a stable node identifier,
but only to tell physically
separated nodes apart.

Concept of physical
neighborhood not clear for
overlay networks.
Does not prevent a Sybil attack
where the attacker controls a
sufficiently large number of
nodes in multiple network
positions.
Requires appropriately placed
trusted beacons.

Use of bootstrap
graph based on
social network.

Danezis
et al.
[2005]

Does not put barriers to
enter the system.
Decentralized.

Introduces significant overhead.
Requires social relationships
between participants.
Has not been shown to scale
beyond 100 honest nodes.

Use of social
network.

Yu et al.
[2006]
[2008]

Decentralized.
Scalable to large number of
nodes.
Relatively low barrier to
entry.
Simulation results show
good resistance to Sybil
attacks (improved in
SybilLimit over
SybilGuard).

Suitable only when a social
network is feasible.
Offline sharing of symmetric
keys might be difficult in
practice.

Computational
puzzles.

Borisov
[2006]

Can effectively limit the
number of Sybil identities
that computationally limited
adversaries can generate.
Decentralized.

Forces honest nodes to
continually spend computing
resources solving puzzles.
Nodes can choose their ID,
which facilitates targeted attacks.
It may be difficult to select the
appropriate puzzle’s difficulty in
a heterogeneous environment.

Continued on next page
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Table I – Continued
Technique Authors Advantages Disadvantages
Computational
puzzles generated
hierarchically.

Rowaihy
et al.
[2007]

Can effectively limit the
number of Sybil identities
that computationally limited
adversaries can generate.

Requires a centralized online
trusted authority.
Requires reliable nodes in the
upper levels of the certification
hierarchy.
Forces honest nodes to
continually spend computing
resources solving puzzles.
Nodes can choose their ID,
which facilitates targeted attacks.
It may be difficult to select the
appropriate puzzle’s difficulty in
a heterogeneous environment.

Use of economic
incentives (game
theory).

Margolin
and
Levine
[2007]

In principle, it is a
decentralized solution.

Requires the implementation of
a currency, which may carry
significant security issues with it.
Introduces a difficult modeling
problem, since it requires
expressing all costs and utilities
in terms of a currency.
Detects, but does not prevent
attacks.

As we can see in Table I, defenses against the Sybil attack belong to one of the following
categories: (1) centralized certification, (2) distributed registration, (3) physical network
characteristics, (4) social networks, (5) computational puzzles, and (6) game theory.

Centralized certification [Castro et al. 2002] provides the most effective Sybil defense,
but it relies on two assumptions: that it is possible to set up a central certification authority
trusted by all participating nodes, and that such an authority is able to accurately detect
Sybil attackers. These assumptions are strong, but they may be realized in certain contexts
such as registration-based services like Skype [Skype Limited 2008]; collaborative web
hosting [Pierre and van Steen 2006], where nodes may register with a trusted broker; or
systems where credentials issued by a commercial certification authority are acceptable.

A major inconvenience of this approach is that the cost of maintaining the central author-
ity may be high, and it constitutes a clear target for attackers. Having an offline CA makes
attacks more difficult and reduces their impact, but it is certainly not a perfect solution.
In addition, centralized management of identities carries with it the burden of certificate
revocation when identities are no longer valid for any reason, including online detection of
a Sybil attack.

Distributed registration [Dinger and Hartenstein 2006], while unable to fully prevent
Sybil attacks, tries to mitigate their effects while relaxing the assumptions made by cen-
tralized certification. The problem with decentralized approaches is that, like DHTs them-
selves, they are susceptible to attacks because of the limited view of the system and the
lack of mutual trust among participating nodes. The approach by Dinger and Hartenstein
[2006], in particular, is susceptible to attacks where a node has multiple IP addresses,
which is not difficult to produce.

Defenses that use physical network characteristics assume that these characteristics are
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difficult or impossible to fake, and that Sybil attacks are launched from either a single
computer, or a set of computers with very similar characteristics. They can try to identify
nodes [Wang et al. 2005], or just differentiate nodes with sufficiently different network
characteristics [Bazzi and Konjevod 2005; Bazzi et al. 2006]. One advantage of these
methods is that they are transparent to participating nodes, so they introduce fewer barriers
to entry for honest nodes. However, they require a trusted online infrastructure to produce
network measurements, which introduces requirements similar to the centralized certifica-
tion approach. Since this infrastructure must be online, it may be even more vulnerable
than a certification authority to many targeted attacks. Furthermore, an attacker could beat
this defense by controlling nodes placed at different geographical locations. It should also
be noted that stable network coordinates are difficult to produce [Szymaniak et al. 2004;
Szymaniak et al. 2008], which introduces a trade-off between security and resilience to
variable network conditions. This trade-off is especially difficult if network coordinates
are used to identify nodes.

Defenses that use social information [Yu et al. 2006; Yu et al. 2008; Danezis et al. 2005]
have been shown to be very effective at limiting Sybil attacks. In this approach, every
node acts like a small certification authority that is very accurate at identifying attackers.
The main disadvantage of this approach is that it requires participating nodes to form a
reasonably connected online social network. This is possible to realize in applications
that are inherently social, such as those that make use of instant messaging. Similar ideas
have also been applied to file-sharing applications [Pouwelse et al. 2007]. An important
disadvantage of the most effective social-based approaches is that they require offline sym-
metric key distribution among socially connected peers, but the practicality of a procedure
to achieve this has not yet been established.

Computational puzzle approaches try to limit the number of fake identities generated by
each physical attacker by having honest nodes request other nodes to solve puzzles that
require a significant amount of computational resources. The idea is that this limits the
capability of an attacker to generate multiple identities. Douceur [2002] proved that this
kind of direct validation works only if all identities are validated simultaneously. Since this
is impossible in a dynamic system where nodes can join and leave at any time, the proposed
Sybil defenses [Borisov 2006; Rowaihy et al. 2007] require a periodic revalidation of all
identities. One disadvantage of this approach is that honest nodes must continuously spend
valuable computing resources to remain in the system, and the complexity of the puzzles
must be selected such that the most limited honest node can be able to solve them and keep
some free capacity for other operations. It has been shown that heterogeneity in a practical
peer-to-peer system can be significant, with the most powerful nodes having several orders
of magnitude more CPU power than the least powerful nodes [Anderson and Fedak 2006].
Even more important, using computational puzzles alone does nothing to control node
identifier assignment, which means that malicious nodes may select their own identifiers
and thus control a region of the overlay with a relatively small number of nodes.

Finally, game theory has also been proposed to deal with Sybil attacks [Margolin and
Levine 2007]. Although intellectually appealing, this approach has the fundamental prob-
lem that it assumes that each Sybil identity is rational. However, Sybil identities are not
independent from each other; the only malicious entity that may be considered rational in
practice is the adversary. It is not likely that an attacker will give away Sybil identities for
an economic reward, unless its specific purpose was to get such a reward, in which case
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the attacker would not be attacking the system that is being protected, but the defense it-
self. This awkward model shows the main difficulty of applying game theory to distributed
systems, which is how to model the system as a set of players with utility functions. Most
game theory approaches use a currency to express utilities, but the utility for an adversary
and the costs for honest participants are generally too complex to be expressed with a single
number. Moreover, implementing a secure currency in a decentralized system is subject
to many security issues, possibly including Sybil attacks themselves. We believe that this
kind of approach has an interesting theoretical value, but is not likely to be effective in
practice to defend against a Sybil attack in a DHT.

4. ECLIPSE ATTACK

Nodes in an overlay network have links to a few other peers commonly referred to as neigh-
bors. If an attacker controls a sufficient fraction of the neighbors of correct nodes, then
some correct nodes can be “eclipsed” by the malicious nodes. This attack is also known in
the literature as routing table poisoning. An Eclipse attack can be used to facilitate other
attacks, especially routing and storage attacks.

Sit and Morris [2002] were the first to study this attack in the context of DHTs. They
state that systems in which the neighbors do not have special verifiable requirements are
the most vulnerable to this type of attack. The easiest way to exploit this weakness is
through incorrect routing updates. For example, as we explained in Section 2, the top levels
of Pastry’s routing tables require a common prefix of only a few digits. This increases
the number of valid identifiers that an attacker can supply during routing table updates in
comparison to systems that impose strong constraints, such as Chord [Stoica et al. 2003].
This particular attack can make the fraction of malicious entries in routing tables of honest
nodes to tend towards one, since the number of sources of malicious entries can increase
with every update.

Another possible attack scenario is the subversion of the network proximity measure-
ment mechanism. For example, Hildrum and Kubiatowicz [2003] show that an attacker
may reduce its apparent distance by using a colluder present in a shorter route to forward a
spoofed response to a heartbeat message. Castro et al. [2002] state that the measurements
can also be subverted with indirection mechanisms such as mobile IPv6, or if the attacker
controls a large infrastructure, such as an ISP or a large corporation. It should also be noted
that, if one assumes that large-scale subversion of network proximity measurements is not
possible, then network proximity can be used to help prevent the Eclipse attack [Hildrum
and Kubiatowicz 2003].

Another obvious scenario for attacking proximity-based DHTs, is to place many mali-
cious nodes in each other’s proximity. From there on, they can easily collude and attack
other nearby nodes.

An Eclipse defense can be considered successful if the fraction of malicious entries in
the routing tables of honest nodes does not differ much from the fraction f of malicious
nodes in the system, as this is the expected fraction of malicious entries in any random
sample of the nodes provided that identifiers are randomly generated. However, routing
using a single path may easily be unlikely to succeed. For example, if f = 0.25 and the
path length is 5, the probability of successful routing is (1− 0.25)5 ≈ 0.24, which would
be unacceptable in most applications. Hence, the routing-table update protocols are always
complemented with some form of redundant routing, which is the basis to defend against
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the routing and storage attacks that we discuss in Section 5.
The most common attack model used by the proposed solutions is one in which the

malicious nodes collude and try to maximize the poisoning of the routing tables of all hon-
est nodes by always supplying malicious references in the routing table update protocols.
However, this is not necessarily the only possible scenario. For example, the adversary
may try to attack only a small subset of the nodes, a specific key, or specific rows of the
routing tables. The attacker may also try to disseminate poisoning in a slow way, by at-
tacking nodes sequentially and behaving correctly most of the time. None of the proposed
solutions are evaluated against these more subtle attacks. Singh et al. [2006] discuss local-
ized attacks, which require an honest node to be surrounded by malicious nodes in terms of
network distance. They state that defending against such attacks remains an open problem.

4.1 Castro et al.

To defend against Eclipse attacks in systems that exploit network proximity, such as Pastry
or Tapestry, Castro et al. [2002] propose the use of two routing tables. One table (which we
refer to as the optimized routing table) exploits the potentially vulnerable network prox-
imity information while the other (referred to as the verified routing table) contains only
entries that can be verified and do not take into account network proximity. In normal
operation they use the optimized routing table and resort to the verified routing table using
a secure routing primitive in case of failures. Pastry’s normal routing table entry at level
l and for domain d for a node with identifier i contains a reference to a node that shares
the first l digits with i and has the value d in digit l + 1. Since several nodes may satisfy
this criteria, the one with the shortest network distance is selected. For example, in the
node with identifier 26AE9, the entry (2,5) is filled with the node that has shortest net-
work distance among those whose identifier has the form 265XX. For each entry (l,d), the
verified routing table of node i contains the node with identifier closest to the point that
shares the first l digits with i, has the value d in digit l + 1, and has the same remaining
digits as i. Taking our example, the entry (2,5) of node 26AE9 will be filled with the node
numerically closest to 265E9.

The authors define a routing failure test to determine if routing with the more efficient
network proximity-based routing table fails, and a secure routing primitive to be used with
the verified routing table. We describe these in Section 5.2.

The authors did not perform any experiment to evaluate the behavior of this scheme.
However, as shown by Condie et al. [2006], attacks will progressively poison the optimized
routing table. The result is that after some time, most of the routing would have to be
done using the verified routing table, with the additional overhead of first trying with the
poisoned, optimized routing table and the routing failure test. Under such a scenario, it
would be better to use only the verified routing table with redundant routing and discard
the routing failure test.

4.2 Condie et al.

Condie et al. [2006] propose a defense for the Eclipse attack based on induced churn. They
assert that the dual routing table strategy proposed by Castro et al. [2002] is vulnerable to
the fact that the poisoning in the optimized routing table tends to increase over time. Condie
et al. address this by periodically resetting the optimized routing table to the contents of
the verified routing table, and use the optimized routing table to perform lookups in most
cases. The verified routing table is used in conjunction with redundant routing in lookups
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that assist other nodes to join the overlay and to maintain the verified routing table itself.
This approach is useful provided that the poisoning of the optimized routing table increases
slowly over time. To keep this increase slow, they limit the rate at which routing tables are
updated, since this is the main source of this increase.

To prevent attacks exploiting knowledge of how routing tables are updated over time, an
unpredictable identifier assignment method is introduced. At each reset, every node gets
a new random identifier, positioning itself in a different part of the identifier space. The
authors affirm that if good nodes move continuously, then it is difficult for the malicious
nodes to attack them in the same way after every reset.

The system uses a trusted timed randomness service to obtain random numbers. This
service periodically generates a new random number placed into a signed certificate that
includes both the number and the timestep at which it was generated. When nodes update
their routing tables, they drop entries whose identifiers were generated using old random
numbers.

It is important that not all nodes churn periodically at the same time because this would
result in a very unstable and highly loaded system around the global churn time. It would
also move uniformly from less poisoned to more poisoned states, which can be exploited
by malicious nodes to select the appropriate time to attack. To prevent this, the authors
define a staggered churn, in which the set of nodes is partitioned into groups, with each
group churning at a different timestep. Churn groups are defined according to the prefix of
the IP addresses of the nodes.

Another optimization is the precomputation of the next routing state before the reset.
This requires each node to know its new identifier before performing the reset. This pre-
computation allows a smoother transition when a node moves.

The authors evaluate their proposal by simulating a network of 50,000 nodes with dif-
ferent values for the fraction of malicious nodes. The results show that their approach
significantly reduces the fraction of poisoned routing table entries and increases the prob-
ability of successful routing. They measure the probability of successful routing and show
that redundant routing with the verified routing table alone does not provide any signifi-
cant benefit when the fraction of malicious nodes exceeds 5%. Routing table reset without
redundant routing improves results significantly, but it is the combination of both tech-
niques that produces the best results. With a fraction of 15% of malicious nodes, the
combined approach has a probability of successful routing barely below 1, while routing
table reset alone achieves a probability of approximately 0.35 and redundant routing alone
around 0.15. With a fraction of 25% of malicious nodes, the combined approach achieves
a probability of approximately 0.8, a routing table reset about 0.3 and redundant routing
approximately 0.1.

This method seems to provide an adequate defense against the Eclipse attack. However,
the induced churn causes the stored data to be moved constantly, making the approach
more susceptible for storage attacks (which we discuss in Section 5). For each churn epoch,
every data item is moved at least once, which makes the overhead Ω(K) per epoch, where
K is the number of stored keys. The authors study the overhead of the system, but only
consider the costs of updating and maintaining routing tables, and liveness tests among
nodes. For many applications, the overhead caused by moving the keys and their associated
data will dominate bandwidth consumption, especially in a replicated environment. In
addition the system has the administrative cost of an online trusted randomness service,
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which would likely introduce a centralized component that may not perform appropriately
for all participating nodes.

4.3 Hildrum and Kubiatowicz

Hildrum and Kubiatowicz [2003] propose a solution for Pastry and Tapestry that assumes
a trusted mechanism for measuring network distance (e.g., by pinging). Their basic idea
is to fill each level l of the routing table with the closest neighbors in terms of network
distance among the neighbors that share the first l digits. The result is that each entry of
the routing table has the r entries closest in network distance. For example, in a node with
identifier 26AE9, the entry (2,5) is filled with the r closest nodes in network distance that
have the form 265XX.

The reason why this approach is resistant to an Eclipse attack is the fact that if the
fraction of malicious nodes is sufficiently small, then it is difficult for the malicious nodes
to be the closest in network distance to a large fraction of the good nodes. The redundancy
introduced in the routing table makes this even more difficult.

The authors test their algorithm in a simulation of 50,000 nodes with varying fractions of
malicious nodes that return information only about other malicious nodes. The underlying
topology used was a grid, where overlay nodes where chosen at random.

The results show that using a value of r = 3 with a fraction of malicious nodes equal to
50% provides a fraction of bad routing table entries of less than 15%, and changing r to 5
provides less than 10% of bad entries.

The main advantage of this system is its simplicity. However, it depends on trusted
and stable network distance measurements, and the authors do not mention how these can
be implemented in practice. Moreover, the underlying grid topology used in the experi-
ments may produce distance measurements that are not realistic in practice. According to
Singh et al. [2006], this defense works only in small overlays where nodes are sufficiently
separated.

4.4 Singh et al.

Singh et al. [2006] acknowledge the need for an Eclipse defense that allows network prox-
imity optimizations, but they state that the defense proposed by Hildrum and Kubiatowicz
[2003] is practical only if all pairs of nodes are sufficiently separated in the network, and
conclude, based on simulation experiments, that this defense may be effective only for
small overlays.

They propose a defense based on the fact that during an Eclipse attack, the in-degree
of the malicious nodes must be higher than the average in-degree of nodes in the overlay.
Thus, one way to prevent an Eclipse attack is forcing honest nodes to select only nodes
with an in-degree below a certain threshold.

Another related attack consists of malicious nodes exhausting the in-degree of honest
nodes by pointing to them. Thus it is also necessary to bound every node’s out-degree.

The degree bounds are enforced by a distributed auditing process. This system is im-
plemented by having each node x maintain a list of nodes that have x as a neighbor. This
list is referred to as the backpointer set of x. Node x forwards traffic only from nodes in its
backpointer set. Periodically, x challenges its neighbors requesting their backpointer list.
If the response has more entries than the in-degree threshold, or x is not included, then x
removes the node from its neighbor set. A similar procedure is applied to the members of
x’s backpointer list to ensure that their out-degree is below the threshold and includes x.
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The only way this system can work is if the node being challenged does not know the
identity of the challenger. To achieve anonymity, nodes forward their challenges through
intermediate nodes called anonymizers. Challenges are timed randomly to complicate the
detection of the identity of the challenger.

When node x wishes to challenge node y, the anonymizer is selected randomly among
the ` closest nodes to the hash H(y). Since node IDs are assumed random, the expected
fraction of malicious nodes in this subset is the same as the fraction f of malicious nodes
in the overlay.

Since it is possible to have malicious anonymizers, the authors propose to label a node
as malicious if it answers less than k out of n challenges correctly. With this approach, the
probability of an honest node to be considered malicious (false positive) is

k−1

∑
i=0

(
n
i

)
f n−i(1− f )i

and the probability that a malicious node passes the audit undetected is

k−1

∑
i=0

(
n
i

)
[ f +(1− f )c/r]i [(1− f )(1− c)]n−i

with c being the probability of the malicious node answering the challenge and r the ratio
of the size of the true set versus the maximum allowed. As an example, with n = 24,
k = 12, r ≥ 1.2, and assuming f ≤ 0.25, the probability of a false positive is around 0.2%
and malicious nodes are detected with a probability of at least 95.9%.

The authors evaluate their strategy through simulations. In their experiments the fraction
of malicious nodes is set to 20%. They first evaluate the effectiveness of an ideal degree-
bounding strategy independently of how it is enforced. The results show that when the
bound is tight, the fraction of malicious nodes in the routing tables of honest nodes is 0.24
for all overlay sizes from 1000 to 20,000 with a degree bound of 16 nodes per routing table
row. If the bound is loose, this fraction grows significantly with the size of the overlay
(0.24 for 1000 nodes and 0.45 for 20000 nodes with a degree bound of 48).

To evaluate the auditing technique they simulate a network with 2000 nodes, n = 24 and
k = 12. The degree bound is set to 16 per routing table row and backpointer set row, with
malicious nodes having no bounds. At one random instant in every two-minute period, a
node audits all its overlay neighbors. In a static membership scenario, the results show
that every node in the system reaches an in-degree equal or below the allowed bound 16.
This means that the procedure is able to detect malicious nodes that violate the in-degree
threshold, and thus reduce the scale of the attack.

The experiments showed that the auditing technique is able to reduce the fraction of
malicious entries in the first row of the routing tables to less than 30% and the general
fraction to less than 25%. These results are valid with stable membership, as well as with a
churn of 5% and 10% per hour. For higher rates of churn, the fraction of malicious entries
grows with the churn rate. The results suggest that there is a trade-off between the fraction
of malicious entries in routing tables and the auditing rate. With respect to false positives,
the auditing scheme exhibited only a 10−3 false positive rate.

One advantage of this defense is that it does not assume the existence of services that
are difficult to implement, and does not require cryptography. However, the experimental
results show that the system is effective only when the degree bound is small, which results
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in increased lookup times in the absence of attacks.

4.5 Awerbuch and Scheideler

Awerbuch and Scheideler [2006] propose a secure DHT scheme that introduces the concept
of regions in a [0,1) identifier space. For each node that joins the overlay with identifier x,
the k-region Rk(x) is a portion of the identifier space of size closest to k/n from above that
contains x, where n is the number of honest nodes. Routing is done from region to region
(for more details, see Section 5.10).

In this system, every time a new node joins the overlay, it receives a fresh random iden-
tifier generated by a group of participating nodes using a verifiable secret sharing scheme.
A malicious node could try to continuously join and leave the system until it receives some
desired identifier. This allows an attacker to concentrate many malicious nodes in one or
more regions, thus polluting routing tables of honest nodes.

The defense against this type of attack is a protocol referred to as the cuckoo rule. This
protocol establishes that when a new node joins the overlay, all nodes in the k-region of the
new identifier must leave the system and rejoin with new random identifiers. The authors
prove that this protocol guarantees that regions are balanced in the number of nodes within
a factor close to (1+ε +1/k), and that honest nodes are a majority in every region as long
as ε < 1−1/k, where ε is such that εn is the number of malicious nodes.

In [Awerbuch and Scheideler 2007], the authors propose an extension to the cuckoo rule,
called the cuckoo&flip rule, which protects the overlay not only from join-leave attacks, but
also from a combined attack in which the adversary is able to remove from the overlay a
limited number of honest nodes by means of a typical denial-of-service attack while a
join-leave attack is performed.

In the cuckoo&flip rule, whenever a node y leaves the system, a randomly selected region
R where the node y resides is flipped with a region R′ randomly selected from the whole
ID space; that is, all nodes in R are moved to R′ and vice versa. Then, all nodes in R must
leave and join using the cuckoo rule.

A previous work by Scheideler [2005] presents a simple protocol called the k-rotation
rule that can guarantee that if nodes are arranged in a ring, any sequence of O(logn) con-
secutive nodes contains a majority of honest nodes. However, this protocol does not take
into account the concept of nodes being laid out in an identifier space and consequently is
unable to establish any kind of balancing in such a space.

Another previous work by the authors [Awerbuch and Scheideler 2004] proposes to
maintain malicious nodes spread at random locations in the identifier space by using a
distributed random ID generation scheme and enforcing limited lifetimes for participating
nodes, which results in a continuous churn similar to the approach by Condie et al. [2006].
This is combined with a Chord-like routing protocol, but with messages forwarded between
regions of nodes instead of simple nodes.

4.6 Discussion

The most basic defense against the Eclipse attack is to constrain the identifiers of nodes
that can be used in routing tables, as is done in Chord [Stoica et al. 2003]. This is valid
only if node identifiers are random and stable, and malicious nodes are spread over the
identifier space. To achieve these conditions, the simplest approach is using stable node
identifiers issued by a central authority. As an alternative, Awerbuch and Scheideler [2006]
propose an approach based on inducing churn every time a node joins, assigning new
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random identifiers to the nodes participating in the churn.
On the other hand, using properties of node identifiers as the sole criterion to select rout-

ing table entries prevents performance optimizations such as proximity neighbor selection.
This type of optimization can be easily implemented in systems like Pastry because they
place weak requirements on the top levels of their routing tables. The result is that many
nodes satisfy the identifier requirements, and network measurements can be used to select
optimal neighbors.

The problem with this is that malicious nodes can easily find their way into the routing
tables of honest nodes by subverting routing table update protocols or network measure-
ment infrastructure. Condie et al. [2006] report that having 15% of malicious nodes in the
overlay results in around 80% of malicious entries in standard Pastry routing tables.

Most of the literature about the Eclipse attack is focused towards defenses that try to
preserve network optimizations with Pastry-like routing tables. The simplest approach is
probably the use of redundant routing table entries [Hildrum and Kubiatowicz 2003], where
it is expected that some the entries will be honest and thus sufficient to allow successful
redundant routing.

Another approach is to combine optimized routing tables with constrained routing ta-
bles [Castro et al. 2002]. The main drawback of this approach is that the optimized routing
table will be progressively poisoned, and the constrained table will eventually be used
most of the time, with the extra overhead of using a poisoned table and a complex failure
detection procedure.

Condie et al. [2006] propose to augment this method by forcing each node to periodically
leave the overlay and rejoin with a new identifier and two fresh routing tables, one of which
will be optimized until the node has to rejoin again. This is similar to the approach by
Awerbuch and Scheideler [2004].

Another way to defend against this attack is to control the number of incoming and
outgoing links per node. The reasoning is that the degree of malicious nodes is expected
to be greater than the degree of honest nodes. The approach by Singh et al. [2006] has the
advantage of being fully decentralized, but it requires small degree bounds which results
in an increase of the lookup time in the absence of attacks.

It can be seen that defending against the Eclipse attack involves a trade-off between
performance and complexity. Moreover, an Eclipse defense can be considered successful
if it can guarantee that the probability of a routing table entry being malicious is equivalent
to the general fraction of malicious nodes in the overlay, which means that these techniques
are not enough to guarantee proper operation of the DHT unless they are combined with
other mechanisms such as redundant routing.

Table II summarizes and provides a comparison of the defenses against Eclipse attacks.

Table II: Comparison of defenses against Eclipse attacks.

Technique Authors Advantages Disadvantages
Constrained routing
tables. Entries are
chosen based solely on
node ID.

Stoica
et al.
[2003]

Simplicity.
Effective against Eclipse
attacks by definition.

Prevents performance
optimizations based on
network measurement.
Requires stable random node
identifiers.

Continued on next page
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Table II – Continued
Technique Authors Advantages Disadvantages
Region-based
redundant routing
tables, consensus-based
node ID assignment,
and on demand churn
when nodes join.

Awerbuch
and
Schei-
deler
[2006]

Guarantees that malicious
nodes are spread over the
ID space and thus do not
pollute region-based
routing tables.
Does not depend on stable
identifiers.

Complex algorithms.
Likely to prevent
performance optimizations
based on network
measurements.

Use of two routing
tables. One optimized
with network
measurements and the
other constrained and
used in case of a test
failure.

Castro
et al.
[2002]

Does not assume the
existence of services that
may be difficult to
implement.

Does not address the issue of
progressive poisoning of the
optimized routing table.
The routing failure test is not
very accurate, is sensitive to
nontrivial parameters, and is
vulnerable to attacks.
Requires stable random node
identifiers.

Resetting of optimized
table entries and
continuous induced
churn.

Condie
et al.
[2006]

Limits the progressive
poisoning of the optimized
routing tables.

The induced churn introduces
a significant overhead.
The routing failure test is not
very accurate, although this is
mitigated with the resetting of
routing tables.
The administration of the
trusted randomness service
may be difficult in practice.

Use of redundant
routing table entries
based on network
proximity.

Hildrum
and
Kubia-
towicz
[2003]

Simplicity. Depends on trusted and stable
network distance
measurements, which may be
difficult to implement in
practice.

Control of the
in-degree and
out-degree of overlay
nodes via anonymous
auditing.

Singh
et al.
[2006]

Does not assume the
existence of services that
may be difficult to
implement.
Does not require
cryptography.

Experimental results show
that the system effectively
limits the poisoning of the
optimized routing tables only
when the degree bound is
small. This results in an
increase of the lookup time in
the absence of attacks.

5. ROUTING AND STORAGE ATTACKS

Sybil and Eclipse attacks do not directly disrupt the DHT, but they can be used as a vector
to permit or amplify future attacks. Such attacks may attempt to prevent a lookup request
from being successful. For example, an attacker may refuse to forward a lookup request. It
may forward it to an incorrect, non-existing, or malicious node. Finally, it may pretend to
be the node responsible for the key. Another possibility for an attacker is to route requests
correctly, but deny the existence of a valid key or to provide invalid data as a response.
These attacks are generally classified as routing attacks, which try to disrupt routing, and
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storage attacks, which attempt to provide bogus responses to queries. In this section we
study several solutions that have been proposed to deal with this type of attacks.

5.1 Sit and Morris

Sit and Morris [2002] were again the first to study these attacks. They proposed a general
solution based on three techniques. The first one requires to use iterative routing so that
the requester can check the lookup progress and detect anomalies such as responses that
get “far” from the requested key in overlays such as Chord, Pastry and Tapestry. Second,
one should assign keys to nodes in a verifiable way, so that it is difficult for a node to
claim responsibility for a specific key. In systems where keys are assigned to the closest
node in the identifier space, it is enough to derive node identifiers in a verifiable way. The
authors cite as an example the method used by Chord, in which the identifier is based on a
cryptographic hash of its IP address and port number. Third, they propose to use identities
based on public keys. This solution allows other nodes to check the origin of messages and
the validity of their content.

Regarding the possibility of attackers refusing to serve or store keys, Sit and Morris
assert the need for replication and provide some general guidelines, but no specific defense
mechanisms. Namely, replication must be implemented in such a way that no single node
is responsible for replication or for facilitating access to the replicas. Instead, all the nodes
holding replicas must ensure that the required number of replicas is maintained at all times.
Clients must consult at least two replicas in order to be sure of the lookup results.

The main contribution of this work is that they present the security issues affecting DHTs
and provide guidelines to address them. However, the proposed guidelines are not specific
enough to result in the construction of a secure system.

5.2 Castro et al.

Castro et al. [2002] propose a replica function that maps a key to multiple nodes. In the
case of Pastry, a key k is replicated to the members of the leaf set of the node responsible
for k according to the standard Pastry protocol.

The authors reject the use of checked iterative routing because it doubles the cost with
respect to recursive routing, and, to be effective, it requires tests at each hop. Their ex-
periments show that the possibility of false positives in these tests adds 2.7 extra hops on
average to the routes without significantly increasing the probability of successful routing.
As an alternative, they propose a secure redundant routing primitive for Pastry that takes
a message and a destination key, and ensures with high probability that at least one copy
of the message reaches all correct replicas. As described in Section 4.1, they implement
this by using two routing tables: an optimized table built taking network proximity into
account, and a verified routing table.

They normally use the optimized table, and resort to redundant routing with the verified
routing table when optimal routing fails. They introduce a routing failure test to decide
if optimal routing failed. This test compares the average distance dr between consecutive
node identifiers in the set of replicas returned by the lookup with the corresponding average
distance dp for the neighbor set of the requester. A result is rejected if dr < dp× γ , where
γ is a constant that controls a trade-off between the probability of false positives and false
negatives.

This test, however, is subject to a number of attacks, most notably, a node suppression
attack in which the adversary has enough malicious nodes near the sender or the receiver,
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and makes its nodes close to one of these locations when other nodes leave, thus altering
the average distances measured by the test and increasing either the probability of false
positives or false negatives. The attacker can alternate between the two modes, making
detection of this attack even more difficult. The authors ran simulations targeting a prob-
ability of false negatives of 0.001, and show that for a fraction of colluders equal to 0.3,
using γ = 1.23 and 256 samples to compute the distances in the test, the result is that the
probability of false positives is 0.77 under a node suppression attack, and 0.12 without the
attack.

Redundant routing is implemented by sending copies of the message over diverse routes
to the different replicas of a key. This is straightforward if the replicas are distributed
uniformly over the ID space, but it is not sufficient if the replicas are in the neighbor set
of the node originally responsible for the key. In this case, the lookup is sent through r
different members of the sender’s neighbor set using the verified routing table. Any honest
node that receives the message and has the node responsible for the key in its neighbor
set returns its own ID certificate (issued by a trusted certification authority). The sender
collects the certificates and makes a list L with the l/2+1 nodes numerically closest to the
key on the left and on the right and marks them as pending. After a timeout, or after the r
responses are received, the sender sends the list L to the nodes in L marked as pending, and
marks them as done. Any honest node that receives the list sends the original message to
the nodes in its neighbor set that are not in L, or it sends a confirmation to the sender if there
are no such nodes. As a result, the sender collects new certificates, updates L, and sends L
again to all nodes marked as pending. The definitive replica set is computed from L once
the procedure has been executed three times, or all nodes in L have sent a confirmation.

The authors state that with this procedure, the probability of reaching all correct replicas
is approximately equal to the probability that one of the original r messages is delivered
through a route without malicious nodes, which is (1− f )1+logb N , where b is the base for
node identifiers, f is the fraction of malicious nodes, and N is the expected number of
nodes in the overlay. It is not specified how to verify the integrity of the replicas, but this
can be accomplished using techniques such as majority voting.

A measure proposed to reduce the use of redundant routing and to address storage at-
tacks, is to use self-certifying data, that is, data whose integrity can be verified by the client
with mechanisms such as digital signatures. This allows the client to resort to redundant
routing only when the integrity check fails or there is no response. The technique can be
extended to mutable objects by storing group descriptors in the overlay. A group descrip-
tor for a data item contains the public keys and IP addresses of the item’s replica holders,
and it is signed by the item’s owner. To maintain consistency, the authors propose to use a
Byzantine-fault-tolerant replication algorithm, such as BFT [Castro and Liskov 2002].

Note that the number of redundant paths may be large because a single malicious node
completely invalidates all the paths in which it is included. Hildrum and Kubiatowicz
[2003] show that to make the probability of successful routing a constant, the number
of paths must be polynomial in the number of nodes, and this is under the assumption
that all paths are independent, which is not guaranteed. In addition, the performance is
highly dependent on how frequently the optimized routing table is used. The routing failure
test itself depends on the accuracy of the returned distances, which may be controlled by
malicious nodes and can thus lead to a significant increase of redundant routing. Moreover,
as we have seen in Section 4, under an Eclipse attack the optimized routing table is easily
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poisoned to the point that the expensive redundant routing will be used most of the time.

5.3 Hildrum and Kubiatowicz

Hildrum and Kubiatowicz [2003] show that the multiple path approach proposed by Cas-
tro et al. [2002] has an asymptotically low probability of success. Using the formulation
from Castro et al. [2002], the probability that all r routes fail is more than(

1− (1− f )1+logb n
)r
≈ exp

(
−r ·n

ln(1− f )
lnb

)
where f is the fraction of malicious nodes and b is the base for Pastry-like node identifiers.
To make this a constant, r must be a polynomial in the total number of nodes.

The authors propose two techniques for fault-tolerant routing using iterative routing as-
suming a trusted network proximity measurement service. As mentioned in Section 4.3,
each entry in the routing table stores not one neighbor, but l = O(logn).

With the first proposed technique, the request starts with a list of r level-l nodes. The
requester contacts each node and requests their r closest level-(l +1) nodes. The requester
then removes duplicates and measures the network distance to the remaining nodes, selects
the r closest and repeats the first step until there are no nodes at the next level, which
happens when the key is found. This results in a wide path that has the property that it
requires a message to reach only one good node at each level of the path.

With the second technique, the first step is to select all level-(l +2) nodes from the level-
l nodes (they prove that with high probability there is at least one such node), then request
the level-(l + 1) nodes from the level-(l + 2) nodes, and then pick the closest r of these
level-(l + 1) nodes to be the definitive set of level-(l + 1) nodes. These steps are repeated
until the key is found.

The authors analyze both solutions and conclude that the first algorithm is simpler and
more practical, but its analysis is more complicated and only holds when f c2 < 1, where
c is an expansion constant of the network such that c2 < b. The analysis for the second
algorithm holds for any value of f .

The authors test the first algorithm in a simulation of 50,000 nodes with varying fractions
of malicious nodes that always produce bogus responses. The underlying topology used
was a grid, where overlay nodes where chosen at random.

The results show that using a value of r = 3 with f = 0.3 provides a probability of
successful routing of greater than 0.9. Using r = 5 and f = 0.4 provides a probability of
success greater than 0.95.

We observe that this scheme has the advantage of simplicity, and the wide paths give
much greater fault tolerance than multiple paths without sacrificing the benefit of network
proximity. However, the system depends on secure and stable network distance measure-
ments, which may not be readily available in practice. Moreover, the underlying grid
topology used in the experiments may produce distance measurements that are not realis-
tic.

5.4 Sánchez et al.

Sánchez Artigas et al. [2005] propose a methodology to defend against routing attacks by
augmenting existing overlays with independent paths. Independent paths are presented as
an alternative to multiple non-independent paths like those proposed by Castro et al. [Cas-
tro et al. 2002] because a single malicious node is able to invalidate only one path, while
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in the non-independent case, it is possible for a malicious node to disrupt multiple paths.
The authors applied their methodology to build Cyclone, which is based on Chord. Cy-

clone partitions the nodes so that the finger tables of a node contain links only to other
nodes that share the p rightmost bits of the m-bit identifier. The result is that the system
is divided into r = 2m−p independent Chord rings. The successor lists do not have this
restriction and can be used as the first or last hop in a lookup. The independent paths are
realized by routing through the r independent Chord rings.

The authors tested Cyclone on simulation experiments. They first compared the average
path length of Cyclone with standard Chord in networks from 128 to 1024 nodes and found
that both exhibited nearly the same average path lengths.

Their second experiment evaluated the resiliency of Cyclone to malicious nodes. A
lookup is considered to have failed if no messages arrive at the destination from the r
independent paths. The results show that the probability of lookup failure decreases as
the number of independent paths increases. For example, for N = 1024 and r = 8 with a
fraction of 30% of malicious nodes, Cyclone failed 15% of the requests, while standard
Chord (r = 1) failed 70%.

This approach has the advantage that it leverages existing protocols to defend against
routing attacks. The required number of paths may be high because a single malicious
node invalidates the path in which it is included. This system, however, provides an im-
provement over multiple non-independent paths.

The definition of successful routing used in the experiments is useful only in applications
where the delivery of the message to the wrong destination does not result in corruption
of the application data. However, the topology is suitable to be extended to defend against
storage attacks by modifying the routing algorithm to make it aware of multiple replicas
and verification mechanisms such as majority voting.

5.5 Ganesh and Zhao

Ganesh and Zhao [2005] propose a defense against an attack where an intermediate node
along a lookup path maliciously claims to be responsible for the requested key. They
refer to this attack as the identity attack and propose a solution for DHTs with Pastry and
Tapestry-like routing tables.

The defense is based on existence proofs, which are signed certificates that prove the
existence of nodes in some range of the identifier space. When a node makes a lookup
request, it can use a namespace density estimate to determine if the node claiming to be
responsible for the key is likely to be telling the truth. If not, the querier estimates the
prefix the responsible node should share with the requested key, and send a verification
request to proof managers responsible for that prefix. If a better node exists, it will have
signed a recent certificate that allows the the querier to confirm the existence of the attack.

To implement existence proofs, an offline certification authority distributes to each par-
ticipating node public-private key pairs corresponding to each prefix included in the node
identifier. For example, node 2AF3 would receive key pairs for prefixes 2, 2A, 2AF and
2AF3. Periodically, each node publishes existence proofs for its prefixes signed with the
corresponding private key to a number of proof manager nodes. The proof managers for
a specific prefix are the participating nodes responsible for a hash of the concatenation
of the prefix together with salt values. For example, for prefix 2AF3, proof managers
could be nodes responsible for H(2AF3−1), H(2AF3−2), H(2AF3−3), where H is a
cryptographic hash function.
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To detect if a lookup response is suspicious, an honest querier checks its local routing
table to find the longest prefix column that has all its entries filled. If the length of this
column is greater than the common prefix of the requested key and the identifier of the
response node, the response is considered suspicious and the querier searches for exis-
tence proofs of nodes with a longer common prefix by querying the corresponding proof
managers. If proofs are found, the existence of an attack is confirmed.

Reporting existence proofs for all prefixes can be expensive. To reduce this cost, nodes
produce proofs only for prefixes in the cusp region. The cusp is a region of a node’s
routing table with a mixture of empty and nonempty entries. The authors show that, with
high probability, the cusp has a size ≤ 2 independent of network size, and use a cusp size
of 3 in their experiments. The start of the cusp is defined to be the first routing level that
contains an empty entry. For example, if the first routing level with an empty entry for
node 2AF3BC11 is the routing level corresponding to prefix 2AF, the node will produce
existence proofs corresponding to prefixes 2AF, 2AF3 and 2AF3B.

The authors evaluate this system with a variety of simulation experiments and measure
its effectiveness using two metrics: the trigger rate, which measures how often an attack
triggers a verification; and the verification rate, which measures how often an attack can
be proved. Their results show that the verification rate is 100% in all experiments, but false
positive rates were not measured. With an attack model where malicious nodes disturb
all possible lookups, including verification requests and the routing of existence proofs
en route to proof managers, but without churn, the verification rate is above 90% in a
network of 4096 nodes with 20% of malicious nodes and 2 proof managers per prefix. The
verification rate drops to 80% when the fraction of malicious nodes is 40%. When churn
is added to this attack model, increasing the replication factor for proof managers helps
improve the verification rate. In a network of 4096 nodes with an average node lifespan of
6 minutes and 20% of malicious nodes, the verification rate is above 95% with 8 or more
proof managers, and approximately 75% with 2 proof managers.

We observe that this system uses redundant routing and storage to ensure that existence
proofs, but not data, can be found reliably. The result is that the defense does not really
prevent or mitigate attacks, but merely helps detect them. If an existence proof includes the
node’s identifier and network address, then it may be possible to contact the real respon-
sible node and counter the attack. This would be equivalent to using redundant routing
towards a single node holding the data, but does not solve the problem of that single re-
sponsible node being malicious. Furthermore, online distribution of public-private key
pairs may lead to additional security issues. The implications of malicious nodes receiving
prefix private keys are not clear.

5.6 Harvesf and Blough

Harvesf and Blough [2006] propose to place replicas at equally-spaced locations in a Chord
ring. They state that this method is more robust than the standard method of placing repli-
cas at consecutive locations because the replicas are accessed using diverse routes instead
of a single route. They even prove that this method can produce d disjoint routes if 2d−1

replicas are placed in a fully populated Chord ring.
They evaluate this method using simulations. In the experiments, each key K has

a replication factor r and is inserted into a Chord ring at the locations responsible for
K,K +M/r,K +2M/r, . . . ,K +(d−1)M/r, where M = 2m, the size of the identifier space.
They compare this method with random replica placement, fixed but non-equally-spaced
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replicas, and a variant of the standard consecutive Chord replication approach using mul-
tiple routes instead of a single route. Their results show that equally spaced replication
provides a greater number of disjoint routes. In an experiment with 1024 nodes, using
20-bit identifiers, a replication degree of 4, and 25% of compromised nodes that do not
route correctly, the equally spaced approach produced at least one uncompromised path
98% of the time, just like using randomly-placed replicas, while the Chord variant and
non-equally-spaced replication routed successfully only 25-60% of queries.

Their measure of routing success assumes that the data in the system is self-verifying,
that is, they assume that having at least one route without compromised nodes is enough
to regard a query as successful. This assumption is not realistic unless a protocol to ensure
such self-verification is provided. Even with read-only self-certifying data, access to a
single replica node is not enough to reliably verify whether a key exists or not, thus, in
practice, it is usually necessary to have access to multiple replicas. The authors suggest a
voting mechanism as a possibility, but in that case, the reported figure for routing success
would be severely reduced.

In addition, the provided proof about disjoint paths is not practical, since it requires a
fully populated ring. In practice, the identifier space is selected to be large enough so that
the system can grow in size without worrying about a shortage of identifiers.

5.7 Wang et al.

Wang et al. [2007] propose a modification to Chord called Myrmic, based on a mechanism
that allows a requester to verify that a node is the correct holder of a given key.

Myrmic uses an offline certification authority to provide random identifiers to nodes,
similar to what we discussed in Section 3.1. In addition, it introduces a new online trusted
authority called Neighborhood Authority (NA). This NA is involved only in membership
management events, such as when a node joins or leaves. It is not required for lookups.

The main purpose of the certificates generated by the NA is to identify the range of keys
for which each node is responsible. A certificate Cert(x) for node x has the following
format:

Cert(x) = signNA{List(x)||issueTime||expireTime}
List(x) = {I(predl(x)), . . . , I(pred1(x)), I(x), I(succ1(x)), . . . , I(succl(x))}

I(x) = (nodeId(x), IPaddress(x))

where || is the concatenation operation, predk(x) is the k-th predecessor of node x, and
succk(x) the k-th successor:

predk(x) = pred(pred(. . . pred︸ ︷︷ ︸(x) . . .))
k times

succk(x) = succ(succ(. . .succ︸ ︷︷ ︸(x) . . .))
k times

Node x is responsible for keys in the interval (pred(x),x], with pred(x) and x included in
Cert(x).

When a new node joins the system, the NA issues a certificate and distributes it to the new
node, its l successors and its l predecessors. It also updates the certificates of the successors
and predecessors to include the new node, and distributes the updated certificates to their
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Survey of DHT Security Techniques · 35

respective neighbors.
The reason the certificates are copied to the nearest neighbors in the ring is that they

can serve as witnesses to the freshness of a certificate. When a certificate is revoked, the
neighbors are notified by the NA. When a node wants to verify that node x is responsible
for key K it first checks the certificate Cert(x) provided by x and verifies that K lies in
(pred(x),x]; then it obtains copies of Cert(x) from the witnesses, and if a copy Cert(x)′

has a more recent issue time, then x fails the test.
The only way a malicious node can claim responsibility for a key using a revoked certifi-

cate is by having all its neighbors as colluders. The probability of this case can be adjusted
by changing the parameter l.

Node leaves and stop failures are handled by a maintenance protocol that keeps certifi-
cates in a consistent state. Nodes periodically try to contact the nodes listed in their own
certificate. When a node does not respond it is considered out of the system, the NA is con-
tacted, and new certificates are issued so that they reflect the new range for the successor
of the left node. It would appear that this is a rather heavy setup in systems that subject to
considerable churn.

The lookup procedure in Myrmic is an iterative variant of the standard Chord lookup
protocol. Assuming that node y is the next step in the lookup for key K, the querying node
x contacts y and requests the certificates of each of its fingers and neighbors. If y or one of
the nodes specified in the received certificates is responsible for K, x executes the verifica-
tion procedure and if the result is correct, the lookup ends. Otherwise, the certificates are
added to a circular list. Node x selects the next step from the circular list until the correct
node is found. The selection of the next step is different from Chord. In Chord the next
step is always the nearest predecessor of the key, while in Myrmic the next step is normally
a random neighbor listed in the certificate of the nearest predecessor of the key. An ex-
ception is when the distance between K and the nearest successor succ(x) is smaller than
a predefined threshold. In this case, a random neighbor listed in the certificate of succ(x)
is selected as the next step. The reasoning for the random selection is that it strengthens
the protocol against attackers attempting to provide certificates that list colluders as the
deterministic next hop.

The lookup procedure fails if all nodes in the circular list are marked as contacted or if
the hop count exceeds a limit.

The authors show that Myrmic has three important properties. First, honest nodes always
have a correct certificate and a consistent neighborhood view. Second, the probability that
the verification procedure fails is small, namely f 2l where f is the fraction of malicious
nodes. Third, the iterative lookup procedure succeeds with high probability in O(logN)
steps.

An important design goal of Myrmic is to make the NA stateless, so that it is easy to
replicate. To accomplish this, the NA must generate the certificates without maintaining
any knowledge about the state of the system. When a new node z joins the network, it
contacts the existing node x responsible for the ID of z. Next, z contacts the NA. Then,
the NA obtains x’s certificate and builds the definitive neighbor list for z’s certificate by
contacting x’s neighbors.

The authors implemented Myrmic and tested its performance on a PlanetLab [Peterson
et al. 2006] testbed with 120 nodes. They used a certificate size of 7 (l = 3), and each
node sent 500 lookup requests at a rate of 1 message every 3 seconds. The 97th and 90th
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percentiles of the lookup times were 346ms and 281ms respectively and 93% of the lookups
were solved within 6 hops plus the verification procedure.

The PlanetLab test assumed that all nodes behaved correctly. In order to evaluate the
effect of malicious nodes Myrmic was evaluated in a LAN environment with 1000 nodes
and with the assumption that the verification procedure never fails. The results showed that
with a fraction with 30% of malicious nodes, only 0.0122% of the lookups failed.

Myrmic has several advantages. From a design perspective, it uses a lookup procedure
that seems as reliable as wide paths, and more efficient. From a practical point of view, it is
the only system among those reviewed in this survey that has a real implementation tested
in a wide-area environment, with reasonable performance results.

The biggest disadvantage of this system is the need for an online central point of trust
that, even though it is relatively easy to replicate, in practice would introduce a centralized
component. In addition, the real-world evaluation did not study the effect of malicious
nodes on latency. The experiments where malicious behavior was studied also did not
evaluate the accuracy of the verification procedure, which was assumed to be infallible.

Another important disadvantage is that no mechanisms to prevent storage attacks were
evaluated. It is clear that the proposed lookup method securely locates the replica-holding
successors of the node responsible for a key, which can be used to determine the true value
of the data associated with the key. The implementation of this mechanism would affect
the latency results obtained in the experiments.

5.8 Fiat et al.

Fiat et al. [2005] introduce S-Chord, a modification to Chord able to function in a scenario
referred to by the authors as Byzantine join attack. Under this scenario, (1/4− ε)N mali-
cious nodes join the network, which has at least N nodes in total, with no more than N p

honest nodes joining and leaving, for some parameter p < 1.
In S-Chord, nodes receive a random ID, which is a real number between 0 and 1, when

they join the network. A central concept in S-Chord is the notion of a swarm. For every
point x on the unit circle, its swarm S(x) is the set of nodes with ID’s located on the unit
circle within a clockwise distance of (c lnN)/N of x, for some design parameter c. A swarm
is considered good if it has a fraction of at least 3/4 of honest nodes. If the assumptions
mentioned above hold, with c large enough, it can be said that all swarms are good with
high probability.

All nodes maintain links to all peers in the following intervals:

—Center(x) is the set of peers in the interval [x− (2c lnN)/N,x+(2c lnN)/N].
—Forward(x, i) is the set of peers in the interval [x−(2c lnN)/N +2i/M,x+(2c lnN)/N +

2i/M], for i = 1,2, . . . , logM−1.

—Backward(x, i) is the set of peers in the interval [x−(2c lnN)/N−2i/M, p+(2c lnN)/N−
2i/M], for i = 1,2, . . . , logM−1.

where M is a number greater than the number of nodes (in practice, node identifiers are
m-bit strings and M = 2m is the maximum possible number of nodes).

The forward intervals are the equivalent to fingers in standard Chord. The difference is
that in Chord, the lookup procedure forwards a message to a single peer responsible for
key K, while in S-Chord, the message is forwarded to a whole swarm. The purpose of the
backward intervals (nonexistent in Chord) is that in S-Chord, a node does not trust a peer
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to tell its identifier. Thus, the only peers a node can receive messages from are those listed
in the backward intervals.

When a node x joins the system, it is assumed to contact an honest node y, which notifies
its own swarm S(y). The nodes in S(y) come to consensus on a random ID for x, and inform
nodes in Center(x) that x has joined the system and send to x the identifiers of and pointers
to nodes in Center(x). The nodes in Center(x) send to x the data items for all keys K such
that x ∈ S(K). Finally, all peers in S(x) notify the peers in their respective Forward and
Backward intervals about x’s existence, and provide x with pointers to those intervals. The
join procedure requires O(log3 N) messages.

The lookup procedure in S-Chord is analogous to Chord’s version, but exploiting swarms.
When a peer x requests a key K, x initially sends the request to all peers in S(x). The peers
in this swarm forward the message to all peers in S(z), where z is the point in the forward
intervals closest clockwise to K. The message is forwarded repeatedly in the same manner
until all peers in S(z) have pointers to all peers in S(K), which are sent backwards along the
same path. This lookup procedure has latency O(logN) and requires O(log3 N) messages.

Routing attacks are prevented by making nodes in a swarm S j forward a lookup request
to the nodes in the next swarm S j+1 only if the request was received from a majority of the
nodes in the previous swarm S j−1.

To reduce the number of messages in a lookup to O(log2 N), the procedure for sending
a message from a swarm S j−1 to swarm S j is changed so that each node x ∈ S j−1 will send
the message to a peer y ∈ S j only if h1(x) = h1(y)modlogN, and each node y ∈ S j will
accept a message from x ∈ S j−1 only if the same condition holds. The hash function h1
maps IDs to positive integers. Once the peer y∈ S j has received messages from at least two
thirds of the possible peers, y does a majority filtering on the received messages to decide
which message it will propagate.

Another characteristic of S-Chord is that it requires only a constant increase of the band-
width consumption in a lookup operation with respect to Chord. This is achieved by en-
coding the message in multiple pieces using an erasure code, sending each piece only to
nodes whose ID hash to the same hash value of the piece, and having the nodes in the des-
tination swarm execute a Byzantine agreement protocol to reach a consensus. If consensus
is not reached, a resend request is sent to the previous swarm. A separate hash function h2
is used to map pieces to positive integers.

This theoretical scheme gives Chord tolerance to routing and storage attacks by using
wide paths and majority voting. One aspect that is not clear in the join algorithm is how
the new node ensures that the node used to join the overlay is correct. Moreover, if there
is a set of known correct nodes in the system, perhaps the use of a consensus algorithm to
generate random identifiers is unnecessary.

Since the system is designed to be optimized asymptotically, one may expect some of
the proposed techniques to have a negative effect on the performance of a practical imple-
mentation. For example, the use of erasure codes and Byzantine agreement protocols to
make the bandwidth increase a constant with respect to Chord may have a negative overall
effect, as in practice it has been found that using erasure codes results in similar bandwidth
consumption than replication [Blake and Rodrigues 2003], and the processing burden may
significantly increase the latency.
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Bottom

Fig. 2. A butterfly network of supernodes. Each supernode has multiple nodes, and the connections between
supernodes are expander graphs between their constituent nodes.

5.9 Fiat and Saia

Fiat and Saia [2007] describe an approach to building a DHT capable of storing N data
items in N nodes. Their system is based on a butterfly network (see Figure 2), and is able
to resist the random deletion of a fraction of less than N/2 nodes. The vertices of the
butterfly network are called supernodes. Every supernode is associated with a set of real
nodes. Supernodes at the topmost level of the network are referred to as top supernodes,
those at the bottommost level are bottom supernodes, and the rest are middle supernodes.
The butterfly network has a depth of logN− log logN.

Nodes are mapped uniformly and independently at random to c top supernodes, c bottom
supernodes, and c logN middle supernodes. The two sets of nodes associated with two
connected supernodes in the butterfly network, are connected by a random expander graph
of constant degree d. In addition, every node chooses ctop random top supernodes and
points to all nodes in those supernodes. Each key is hashed to cbottom random bottom
supernodes, and is stored in all the nodes of the bottom supernodes to which it has been
hashed. The constants c, d, ctop and cbottom are determined by an error parameter ε > 0.

To perform a lookup starting from node x, multiple requests start in parallel in all top
supernodes pointed to by x. Each of these requests moves through links between the su-
pernodes until it ends in a bottom supernode to which the key is mapped or until all paths
between the starting top supernode and all bottom supernodes to which the key is mapped
are completely searched. In case of a successful search the results are returned backwards
along the same path that the query came in.

The authors show that this system has the following properties, given the error parameter
ε:

—Each node requires c1(ε) logN memory.

—Lookups take c2(ε) logN time and c3(ε) log2 N messages.

—At any time, all but εN nodes can find all but εN keys.

A proposed modification that can make the system resistant to nodes reporting false
versions of the data items is to make sure that there is a full bipartite graph between any
pair of connected supernodes instead of a constant degree expander graph. The search
procedure is modified so that a node will send a data item or request to the following
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Fig. 3. Classical de Bruijn graph over {0,1}3. It can be seen that every node b0b1b2 is connected to nodes b1b20
and b1b21.

supernode only if the majority of the items received from the previous supernodes have the
same value. This modification changes the properties of the system such that:

—Each node requires c1(ε) log2 N memory.
—Lookups take no more than c2(ε) logN time and c3(ε) log3 N messages.
—All but εN nodes can find all but εN of the true data items.

This system is a revision of previous work on butterfly networks [Fiat and Saia 2002;
Saia et al. 2002].

We note that this scheme is an interesting theoretical work backed with proofs of desir-
able properties. However, some aspects are not clearly defined such as node join and leave
protocols, or a generalization for storing an arbitrary number of data items.

5.10 Awerbuch and Scheideler

Awerbuch and Scheideler [2006] propose a DHT based on a dynamic variant of a de Bruijn
graph. In a classical de Bruijn graph, {0,1}m represents nodes. Each node x, identified by
the string (x1x2 · · ·xm) is connected either to nodes (0x1x2 · · ·xm−1) and (1x1x2 · · ·xm−1), or
nodes (x2x3 · · ·xm0) and (x2x3 · · ·xm1). That is, nodes that result either in a right or left shift
of the bits of x. Figure 3 shows a classical de Bruijn graph over {0,1}3. If the bit string
identifiers are considered as binary representations of fractional part of the real numbers in
the interval [0,1), then this is equivalent to saying that a node x is connected to nodes x/2
and (1+ x)/2, or 2x mod 1 and (2x−1) mod 1.

This system uses the real interval [0,1) as its identifier space. A region is an interval of
size 1/2m, where m is an integer. For any integer m, the identifier space is divided in 2m

regions, as required by a de Bruijn graph. A k-region is a region of size closest to k/N,
with N being the maximum number of honest nodes. For any point x ∈ [0,1), Rk(x) is
the unique k-region containing x. When a node joins, it is mapped to a random point y in
[0,1) using a verifiable secret sharing scheme. Every time a node joins the system with
identifier x, all the nodes in Rk(x) are moved to random points in [0,1). This is known as
the cuckoo rule (see Section 4.5) and guarantees that the number of nodes in k−regions
is balanced and that each k−region contains a majority of honest nodes, as long as the
ratio ε of malicious nodes to honest nodes satisfies ε < 1− 1/k. This holds even under
the presence of a join-leave attack, where malicious nodes continuously join and leave the
system until they get the identifier they want.
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In the dynamic variant of the de Bruijn graph used by the system, the quorum re-
gion Rx of a node identified by x ∈ [0,1) is defined as a unique region of size closest to
(γ logN)/N that contains x, where γ > 1 is a constant. For any set of nodes V ⊂ [0,1), ev-
ery node x∈V maintains connections to all nodes whose quorum regions contain a point in
{x,x/2,(1+x)/2,2x mod 1,(2x−1) mod 1}. When a node x joins or leaves, only quorum
regions containing a point in {x,x/2,(1 + x)/2,2x mod 1,(2x− 1) mod 1} are affected,
which according to the cuckoo rule, amount to O(logN) regions, with high probability.

To send a message from x ∈ [0,1) with binary representation (x1x2 · · ·xlogN) to y ∈ [0,1)
with binary representation (y1y2 · · ·ylogN), the message must be forwarded along the quo-
rum regions containing the points (x2x3 · · ·xlogNy1), (x3x4 · · ·xlogNy1y2), and so on, until
the quorum region containing the point (y1y2 · · ·ylogN).

The basic strategy to prevent storage attacks is to use 2c−1 = Θ(logN) hash functions
to map data items to 2c−1 points in [0,1). Each replica i of a data item x must be stored
in all nodes of the quorum region containing the point hi(x), where hi is one of the 2c−1
hash functions.

The lookup protocol proceeds in rounds and allows several attempts for each lookup
request and uses a mechanism to prevent congestion possibly caused by malicious nodes
generating bogus messages. In each round, a packet is sent to each of the 2c− 1 destina-
tions. The packets are routed level by level to each route according to the simple routing
protocol. If a region has more than γc log2 N packets for some level l, all of them are dis-
carded. Otherwise they are routed to the next level. The answers are sent backwards along
the same route.

The insertion protocol is similar, but for the destination level the bound is γ ′c logN,
which is more restrictive.

The authors show that for any set of n lookup or insert requests, the lookup protocol can
serve all requests in O(logn) attempts and O(c log4 n) communication rounds. For any set
of n insert requests, every node has to store at most O(c log2 n) copies.

This scheme is an interesting theoretical work backed with proofs of desirable proper-
ties, including a congestion control mechanism that may help defend against denial-of-
service attacks, and a mechanism to guarantee that malicious nodes are spread over the
identifier space. Some of the protocols seem complex, although this may be due to the fact
that this work provides detailed protocols for more operations than other theoretical solu-
tions. Still, some lower-level protocols need to be defined to cover all aspects of a DHT
operation, such as routing table maintenance.

5.11 Naor and Wieder

Naor and Wieder [2003] propose a DHT that tolerates an adversary able to remove random
peers in the system or to make them produce arbitrary false versions of the data items
requested.

This system is designed using a so-called continuous-discrete approach. The topology
of the system is initially defined as a continuous graph GC which is later discretized.

The vertex set of GC is the set of real numbers [0,1), and the edge set is defined such
that for each vertex x there exist the edges l(a) = (x,x/2) and r(a) = (x,(x + 1)/2). It
should be noted that this is essentially a de Bruijn graph, similar to the one described in
Section 5.10.

The authors show that it is possible to get within a distance of 2−p of any node y from any
node x if one has a prefix of length p of the binary representation σp of y. The procedure
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consists of doing a walk that starts in x and proceeds by processing σp from right to left
with 0 meaning that the edge l(x) should be traversed, and 1 traversal of r(x). For example,
if x = (.100)2 and y = (.110)2, the walk would successively pass points (.0110)2, (.00110)2
and would end at (.100110)2 which is indeed within a distance of 2−3 of x.

The discretization of the system proceeds as follows. When a node joins the system, it
chooses a random identifier xi ∈ [0,1) and estimates a bound qi ≈ logN/N. The node is
said to cover the segment [xi,xi + qi], and will have links to another node if the segments
covered by both nodes overlap or if they contain vertices connected by edges in GC. The
authors show that each data item is covered by Θ(logN) nodes.

The authors provide two lookup methods. The first one consists of an emulation of a
walk in the continuous graph towards a node that covers the requested item. It can tolerate
random fail-stop failures, but not Byzantine behavior. The second method is tolerant to
faulty nodes that produce false data items. It is also based on continuous walk emulation,
but the message is passed to all Θ(logN) nodes covering the requested item. At each step in
the walk, each node receives Θ(logN) messages, one from each node covering the previous
step. Each intermediate node continues sending the message only if it was received from a
majority of nodes in the previous step.

This scheme is another interesting theoretical work. It is defined at a high level of
abstraction and makes many assumptions about critical aspects of DHT operation such as
join and leave protocols, node identifier assignment, and routing table maintenance.

5.12 Discussion

Defenses against storage and routing attacks are based on two mechanisms: redundant
storage and redundant routing.

The most common way to achieve redundant storage is to replicate data, which allows
for relatively simple implementation of maintenance and verification algorithms. An al-
ternative method is erasure coding, as proposed by Fiat et al. [2005], Dabek et al. [2004]
and Mills and Znati [2008]. In theory, coding has the advantage of requiring less stor-
age and bandwidth at the cost of extra system complexity and possibly higher latencies.
However, a study [Rodrigues and Liskov 2005] has shown that while coding does provide
storage savings, the bandwidth required to maintain appropriate redundancy levels under
various degrees of churn is approximately the same for both coding and replication. This
study does not consider mutable data nor takes into account malicious nodes, which would
most likely increase the complexity of coding. It is clear that secure DHT designers have
considered this and have preferred to implement data redundancy using replication.

There are also several approaches to data replication. The first consists of storing replicas
in nodes that are numerically close in the identifier space. This is the method used by
Pastry, Chord, Kademlia, and many of the reviewed approaches in this section [Castro
et al. 2002; Hildrum and Kubiatowicz 2003; Fiat et al. 2005; Naor and Wieder 2003; Wang
et al. 2007]. The second method is to store replicas at locations spread over the identifier
space. This is the method used by Tapestry, which stores replicas at random locations,
and Harvesf and Blough [2006] who propose storing replicas at equally spaced locations.
Others combine both approaches and select locations spread over the identifier space, and
store multiple replicas in nodes that are in the vicinity of each location [Fiat and Saia 2007;
Awerbuch and Scheideler 2006].

One of the main advantages of having replicas at numerically close locations is that it
may be easier to maintain the desired replication degree and to keep replicas consistent
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in case of mutable data, since nodes keep links to numerically close peers in most DHT
topologies. However, this approach requires malicious nodes to be spread over the identi-
fier space. Otherwise a small number of malicious nodes could concentrate on a specific
region of the overlay and easily take control of all replicas in that region. Replicas spread
over the identifier space are not necessarily a big improvement in this respect, since DHT
placement algorithms are public knowledge, and malicious nodes may attack all relevant
locations for a specific key.

This shows that data redundancy is not enough to prevent storage attacks. It is also
necessary to guarantee that nodes are unable to select their own location in the identifier
space. In previous sections we have seen that the most straightforward way to achieve
this is by using random identifiers issued by a trusted certification authority able to limit
the fraction of malicious nodes [Castro et al. 2002]. Another possibility is to have a set
of participating nodes generate identifiers using a Byzantine-fault-tolerant consensus al-
gorithm [Awerbuch and Scheideler 2006] plus induced churn to prevent concentration of
malicious nodes at specific regions by means of a join-leave attack [Awerbuch and Schei-
deler 2006; Condie et al. 2006]. However, this does not limit the number of attackers, and
should be coupled with other techniques to limit Sybil attacks.

Another dimension of secure storage concerns data verification, which refers to how a
querier ensures that the results from a lookup are correct. The reviewed papers do not
concentrate most of their efforts on this issue as it is application dependent. The most im-
portant aspects to consider are the use of self-certifying data, and whether data is mutable
or not.

Read-only self certifying data is the most favorable case as it requires access to only one
valid replica, which increases the probability of successful routing even without redundant
routing. Redundant routing, however is needed both for inserting data and to determine if
a given key exists or not. If data is mutable, it may be possible to only retrieve metadata
from multiple replicas, full data from a single replica, and verify the data according to an
application defined rule (e.g., highest version number stored in the metadata or majority
voting). Castro et al. [2002] outlines the use of a Byzantine-fault-tolerant replication al-
gorithm [Castro and Liskov 2002] to provide strong consistency guarantees for mutable
data, but many other replication algorithms could be used as long as they are aware of the
overlay structure and the possibility of malicious behaviour, and provide the consistency
guarantees required by the application, which may not necessarily be strong.

If self-certifying data cannot be used, the most straightforward method to verify read-
only data is to retrieve multiple replicas and use majority voting. Storing mutable data
without any verification capability at the application level leaves the system open to data
poisoning attacks that may be executed by external entities that are not necessarily part of
the DHT.

Another storage issue that may arise is concurrent conflicting modification of mutable
data. Solving this problem may require adding transactional capabilities to the DHT. Such
systems have been proposed [Antony et al. 2008; Schütt et al. 2008; Plantikow et al. 2007;
Mesaros et al. 2005], but we are not aware of any transactional DHT design that tolerates
malicious nodes.

Finally, in order to reliably locate nodes responsible for a given key, it is necessary
to have some form of redundant routing. Redundant routing can be implemented using
multiple paths [Castro et al. 2002; Sánchez Artigas et al. 2005; Harvesf and Blough 2006],
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Fig. 4. Probability of success for redundant routing approaches using majority voting and assuming that malicious
nodes are randomly spread over the ID space. In both cases, the number of replicas equals the width or the number
of paths, and the number of hops is set to 5. The multiple paths are assumed to be disjoint.

wide paths [Hildrum and Kubiatowicz 2003; Fiat et al. 2005; Naor and Wieder 2003; Wang
et al. 2007; Maymounkov and Mazières 2002], or multiple wide paths [Fiat and Saia 2007;
Awerbuch and Scheideler 2006]. Wide paths are suitable to replicas stored at numerically
close nodes, while multiple paths are a better match for replicas spread over the identifier
space.

In a majority voting scenario, wide paths are much more reliable than multiple paths,
since they require only one good node at each intermediate routing step, while multiple
paths require a majority of paths to consist exclusively of honest nodes. If malicious nodes
are spread over the identifier space, the probability of successful routing using wide paths
and majority voting is
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while the probability of successful routing using multiple paths is no more than
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where f is the fraction of malicious nodes, r is the number of replicas, p is the number of
paths or path width (p = r for multiple paths), and h is the number of hops. Figure 4 shows
that the multiple path approach requires a low fraction of malicious nodes and a larger
number of replicas to achieve a high probability of success. Probably for this reason,
Castro et al. [2002] use multiple paths, but introduce a protocol that exploits the numerical
closeness of replicas to construct a definitive replica set, requiring approximately only one
correct path. This increases the probability of successful routing, but has the disadvantage
that it introduces additional complexity, and may reduce the probability that the multiple
paths are disjoint.

Multiple wide paths combine both approaches, by trying wide paths successively. A dis-
advantage of multiple wide paths is that maintaining consistency when replicas are mutable
may be more expensive in most DHT topologies.
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The approach by Wang et al. [2007] is similar to wide paths, but instead of trying mul-
tiple nodes simultaneously at each step, it tries only one node, and resorts to an alternative
only in case of failures.

Making a fair comparison of solutions for routing and storage attacks is difficult because
not all approaches try to solve the same problems or make the same assumptions regarding
the attack model. Some proposals pay little or no attention to storage attacks and are mostly
concerned with securely routing a message to a single node responsible for a key [Ganesh
and Zhao 2005; Sánchez Artigas et al. 2005; Wang et al. 2007], while others address both
problems with either a unified approach [Hildrum and Kubiatowicz 2003; Harvesf and
Blough 2006; Fiat and Saia 2007; Fiat et al. 2005; Awerbuch and Scheideler 2006; Naor
and Wieder 2003] or with separate protocols that complement redundant routing [Castro
et al. 2002].

Perhaps the clearest distinction between the different solutions is that some are based on
purely theoretical constructions defined at a very high level [Fiat and Saia 2007; Fiat et al.
2005; Awerbuch and Scheideler 2006; Naor and Wieder 2003], while others take a more
engineering approach and have their properties measured with experiments, but also with
mathematical analysis in many cases [Castro et al. 2002; Hildrum and Kubiatowicz 2003;
Harvesf and Blough 2006; Ganesh and Zhao 2005; Sánchez Artigas et al. 2005; Wang
et al. 2007]. Engineered solutions have the advantage that they may be reasonably easy
to implement in practice, while the main objective of theoretical solutions is to study the
feasibility of countering attacks while maintaining provable scalability properties, though
this may result in schemes that are difficult or impossible to implement in a secure way,
or that exhibit poor performance in practice. Nevertheless, both types of approach are
subject to assumptions that may be difficult to realize in real-world applications. Table III
summarizes and provides a comparison of experimentally tested defense against routing
and storage attacks, while Table IV does the same for theoretical defenses.

Table III: Comparison of experimentally tested defenses against routing and stor-
age attacks.

Technique Authors Advantages Disadvantages
Use of two routing tables:
one optimized with network
measurements, and one
constrained used in case of
a test failure. The
constrained table is used
with redundant routing over
multiple paths. Replicas are
placed at numerically close
locations, and there is a
protocol to determine the
replica set if at least one of
the multiple paths is correct.

Castro
et al.
[2002]

In principle, it allows
the use of proximity
routing.
Apart from the offline
CA, it does not assume
the existence of
services that may be
difficult to implement
and administrate.

The frequency of redundant
routing is increased due to
attacks against the routing
failure test and the
progressive poisoning of the
optimized routing tables.
The number of required paths
may be large because they are
not guaranteed to be disjoint
and a single malicious node
completely invalidates all the
paths in which it is included.

Continued on next page
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Table III – Continued
Technique Authors Advantages Disadvantages
Use of redundant routing
table entries based on
network proximity. Routing
uses wide paths, which take
advantage of the redundant
table entries.

Hildrum
and
Kubia-
towicz
[2003]

Uses proximity routing
and wide paths.

Depends on secure and stable
network distance
measurements, which may
not be readily available in
practice. The grid topology
used in the experiments may
produce distance
measurements that are not
realistic.

Multiple independent paths
constructed by partitioning
nodes using an equivalence
relation.

Sánchez
et al.
[2005]

Simple design that
leverages existing
protocols. Independent
paths are expected to
be more reliable than
non-independent paths.

Addresses only routing
attacks, but the topology is
suitable for the
implementation of traditional
DHT replication methods.

Certificates that prove the
existence of nodes
responsible for ID prefixes.
These proofs are placed at
random locations in a
Tapestry-style DHT.

Ganesh
and Zhao
[2005]

Very effective at
detecting attacks.

Does not prevent or mitigate
storage attacks.
Online distribution of key
pairs may lead to further
security issues.
Can be seen as a complicated
way to implement multiple
routes.

Replicas placed at
equally-spaced locations in
a Chord ring. Routing uses
multiple paths.

Harvesf
and
Blough
[2006]

The number of disjoint
paths is increased with
respect to other
approaches based on
multiple paths.

Tested only with self
verifying data, which is not a
realistic model.

Modification to Chord that
introduces a verification
procedure based on
certificates issued by an
online neighborhood
authority.

Wang
et al.
[2007]

Routing looks more
efficient than routing
using wide or multiple
paths, and as reliable as
using wide paths.
Tested on a real
implementation and
with simulations.

The neighborhood authority
introduces an online
centralized component and
administrative costs.
Experiments did not test the
verification procedure or the
effect of malicious nodes on
latency. Does not address
data replication, but the
topology is suitable for the
implementation of traditional
DHT replication methods.

6. IMPLEMENTATIONS

DHTs have been used in numerous popular peer-to-peer systems in the real world, such
as the KAD network (used by eMule and other compatible programs), BitTorrent and
LimeWire.
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Table IV: Comparison of theoretical approaches to defend against routing and
storage attacks.

Technique Authors Advantages Disadvantages
Topology based on a
variant of a de Bruijn
graph. Routing uses wide
paths.

Naor and
Wieder
[2003]

The topology is simple
and makes it relatively
easy to support mutable
data and defend against
storage attacks.

Makes more assumptions
about lower level protocols
such as node joins/leaves,
routing table maintenance,
and node ID assignment than
other theoretical proposals.

Modification to Chord that
uses swarms of nodes
instead of single nodes as
the basic construct. Each
step in routing is a swarm,
resulting in wide paths.

Fiat et al.
[2005]

Based on a well known
topology that makes it
straightforward to
protect against storage
attacks and support
mutable data.

The assumption that there are
well-known honest nodes
might make the distributed ID
generation scheme
unnecessary.
Use of erasure codes makes
the protocol more complex,
although it provides good
asymptotical properties for
bandwidth.

Topology based on a
dynamic de Bruijn graph.
Routing uses multiple wide
paths.

Awerbuch
and
Schei-
deler
[2006]

Provides a
decentralized node ID
assignment protocol
that does not depend on
trusted nodes.
The lookup procedure
introduces a congestion
control mechanism.
Provides algorithms to
defend against storage
attacks.

Supporting mutable data
would require non-trivial
protocols to efficiently keep
data in multiple regions
consistent.
Algorithms are complex,
though this may be due to this
work making fewer
high-level assumptions than
other theoretical proposals.

Topology based on a
butterfly network of
supernodes. Each
supernode contains
multiple real nodes, and
connections between
supernodes are expander
graphs between their
constituent sets of nodes,
which makes paths among
supernodes similar to wide
paths.
Replicas are placed at
several supernodes and are
looked up sequentially
until a correct replica
supernode is found.

Fiat and
Saia
[2007]

Provides algorithms to
defend against storage
attacks.

The model assumes that only
N data items are going to be
stored. It is not explained
how the model can be
extended to support an
arbitrary number of items.
The topology may make it
difficult to support mutable
data.
Makes more assumptions
about lower level protocols
such as node ID and
supernode assignment, node
joins/leaves and maintenance,
than other theoretical
proposals.
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It is interesting to see that all of these use the Kademlia protocol. We believe that the
main reason for this choice is Kademlia’s combined properties of performance and relative
security. For one, it is difficult to affect the routing tables of a Kademlia node, as each node
tends to keep only highly available peers in its routing table. This increases the required
costs for an attacker to convince honest nodes to link to the compromised nodes. Similarly,
Kademlia uses iterative routing, exploring multiple nodes at each step, making routing less
dependent on specific nodes and thus less vulnerable to attacks.

However, Kademlia is still vulnerable to Sybil and Eclipse attacks as nodes can generate
their own identifiers. In addition, because the protocol is based on UDP, spoofing other
nodes becomes relatively easy. Steiner et al. [2007] show that it is indeed very easy to
launch Sybil and Eclipse attacks in KAD, which is probably the largest DHT currently
deployed, with estimates between 1.5 million [Steiner et al. 2007] and 4 million [Crosby
and Wallach 2007] nodes. Moreover, they also show how honest nodes can be enlisted
against their will to participate in DDoS attacks against other systems.

Crosby and Wallach [2007] study two Kademlia implementations used by BitTorrent
clients. They concentrate on performance issues, but they also point out the security prob-
lems related to node identifier assignment. They argue that for this application, having a
central authority would not be politically feasible, and that NATs make it difficult to use
hashed IP addresses.

Kademlia is also used by the Storm botnet, which is used by its operators for criminal
activities such as DDoS attacks and sending of spam. Holz et al. [2008] study the botnet
and show that early versions of the bot code use the Kademlia-based Overnet network1,
which also contains benign peers, while newer versions connect to a separate DHT formed
exclusively by bots. The Storm operators use keys that depend on the current date to store
files whose contents encapsulate the IP addresses of nodes that provide commands to the
bots, and use data replication spread over the identifier space. The authors of the study
attack the botnet DHT with Sybil and Eclipse attacks similar to those performed against
KAD [Steiner et al. 2007] and found out that the Eclipse attack is less effective than in
KAD since they need to corrupt more routes as data is replicated over the identifier space.
They opted to mitigate the effects of the botnet by performing a successful DoS attack
where they rewrite existing keys by republishing them using bogus data. We note however,
that this mitigation technique could be easily defeated by Storm operators with the use of
digital signatures.

Another well documented DHT in operation is OpenDHT [Rhea 2005], which runs on
approximately 200 PlanetLab hosts, uses the Bamboo protocol [Rhea et al. 2004], and is
used for many academic applications that require a remote storage service. OpenDHT is
not designed to tolerate malicious nodes, but it assigns node identifiers using a hash of
the node IP address and port, uses redundant storage, and resorts to alternative routing
paths in case of failures. It supports mutable data and uses gossiping algorithms based on
anti-entropy [Demers et al. 1987] to maintain consistency.

It can be seen that real-world deployments, even though they are not optimized for se-
curity, employ protocols that use some form of redundant storage and routing, which im-
proves reliability and security. The nature of the applications that use the DHT dictates

1Overnet is a file sharing network used by the eDonkey program. In principle, it was shutdown in 2006 after
legal action by the recording industry [Los Angeles Times 2006], but due to its decentralized design, it is still in
operation.
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the identifier assignment method. File-sharing applications KAD, LimeWire and BitTor-
rent, as well as the Storm botnet, choose maximum flexibility over security and let nodes
choose their own ID, probably hoping that their sheer size will be enough to keep the frac-
tion of malicious nodes low; while OpenDHT, which runs on the more closed environment
of PlanetLab and does not have to deal with NATs, uses the stronger though imperfect
method of hashed IP addresses. Moreover, the Storm botnet, which publishes read-only
data, makes use of replicas spread over the ID space, while OpenDHT uses numerically
close replicas to easily support consistency protocols for mutable data.

This shows that there is no single best approach to implement a secure DHT, but that the
assumptions that can be made by the application using the DHT are what dictates which
techniques to employ. It is also clear that achieving security in a DHT application is diffi-
cult since it requires using complex techniques and solving difficult trade-offs, especially
in the node ID assignment procedures.

7. CONCLUSIONS

We have discussed some well-known security threats faced by distributed hash tables and
have reviewed several techniques proposed to solve or mitigate them. The variety of the
proposed solutions, and the trade-offs they introduce, show how difficult it is to secure a
DHT system in a hostile environment.

We can conclude that securing a DHT requires secure assignment of node identifiers,
a low fraction of malicious nodes, malicious nodes spread over the identifier space, data
replication, and a routing mechanism that provides a high probability of reaching a correct
replica set. We have reviewed techniques that aim to solve these problems, usually under
different assumptions. We consider that the best solution for a given application depends on
what assumptions can be made; it may require the combination of several of the reviewed
approaches.

Current DHT deployments are not specifically designed to tolerate the presence mali-
cious nodes. However, most of them are based on Kademlia, which provides relative se-
curity by using data replication and a redundant routing mechanism similar to wide paths.
However, it is still vulnerable to Sybil attacks, as nodes can generate their own identifiers.

The most challenging problem for securing DHTs and decentralized systems in general
is robust and secure assignment of node identifiers. This is crucial to guarantee that ma-
licious nodes represent a small fraction and that they cannot choose their location in the
overlay, thus preventing Sybil and Eclipse attacks. This conclusion is also drawn in other
studies [Baumgart and Mies 2007; Cerri et al. 2005] in which secure identifier assignment
is proposed.

In any case, although it may be clear that we may be able to reach a level of security that
is practically acceptable for various DHT-based applications, our survey shows that much
more work is needed if security requirements are demanding.
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MAYMOUNKOV, P. AND MAZIÈRES, D. 2002. Kademlia: A Peer-to-Peer Information System Based on the
XOR Metric. In Proc. 1st International Workshop on Peer-to-Peer Systems (Cambridge, MA). Lecture Notes
on Computer Science, vol. 2429. Springer-Verlag, Berlin, 53–65.

MESAROS, V., COLLET, R., GLYNN, K., AND VAN ROY, P. 2005. A Transactional System for Structured
Overlay Networks. Tech. Rep. RR2005-01, Universit Catholique de Louvain (UCL). March.

MILLS, B. N. AND ZNATI, T. F. 2008. SCAR - Scattering, Concealing and Recovering Data within a DHT. In
Proc. 41st Annual Simulation Symposium. IEEE Computer Society Press, Los Alamitos, CA., 35–42.

NAOR, M. AND WIEDER, U. 2003. A Simple Fault Tolerant Distributed Hash Table. In Proc. 2nd International
Workshop on Peer-to-Peer Systems (Berkeley, CA). Lecture Notes on Computer Science, vol. 2735. Springer-
Verlag, Berlin, 88–97.

PETERSON, L., BAVIER, A., FIUCZYNSKI, M. E., AND MUIR, S. 2006. Experiences Building PlanetLab. In
Proc. 7th Symposium on Operating System Design and Implementation (Seattle, WA). USENIX, Berkeley,
CA.

PIERRE, G. AND VAN STEEN, M. 2006. Globule: a Collaborative Content Delivery Network. IEEE Communi-
cations Magazine 44, 8 (Aug.), 127–133.

PLANTIKOW, S., REINEFELD, A., AND SCHINTKE, F. 2007. Transactions for Distributed Wikis on Structured
Overlays. In Proc. 18th Workshop on Distributed Systems: Operations and Management. Lecture Notes on
Computer Science, vol. 4785. Springer-Verlag, Berlin, 256–267.

POUWELSE, J., GARBACKI, P., WANG, J., BAKKER, A., YANG, J., IOSUP, A., EPEMA, D., REINDERS, M.,
VAN STEEN, M., AND SIPS, H. 2007. Tribler: A social-based peer-to-peer system. Concurrency & Compu-
tation: Practice and Experience 20, 2 (Feb.), 127–138.

RAMASUBRAMANIAN, V. AND SIRER, E. G. 2004a. Beehive: O(1) Lookup Performance for Power-Law Query
Distributions in Peer-to-Peer Overlays. In Proc. 1st Symposium on Networked Systems Design and Implemen-
tation (San Francisco, CA). USENIX, Berkeley, CA, 99–112.

RAMASUBRAMANIAN, V. AND SIRER, E. G. 2004b. The Design and Implementation of a Next Generation
Name Service for the Internet. In Proc. SIGCOMM (Portland, OR). ACM Press, New York, NY.

RAO, A., LAKSHMINARAYANAN, K., SURANA, S., KARP, R. M., AND STOICA, I. 2003. Load Balancing
in Structured P2P Systems. In Proc. 2nd International Workshop on Peer-to-Peer Systems (Berkeley, CA).
Lecture Notes on Computer Science, vol. 2735. Springer-Verlag, Berlin, 68–79.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A Scalable Content-
Addressable Network. In Proc. SIGCOMM (San Diego, CA). ACM Press, New York, NY, 161–172.

REIDEMEISTER, T., BOHM, K., WARD, P. A. S., AND BUCHMANN, E. 2005. Malicious Behaviour in Content-
Addressable Peer-to-Peer Networks. In Proc. 3rd Annual Communication Networks and Services Research
Conference. IEEE Computer Society Press, Los Alamitos, CA., 319–326.

RHEA, S., GEELS, D., ROSCOE, T., AND KUBIATOWICZ, J. 2004. Handling Churn in a DHT. In Proc. USENIX
Annual Technical Conference (Boston, MA). USENIX, Berkeley, CA, 127–140.

RHEA, S. C. 2005. OpenDHT: A Public DHT Service. Ph.D. thesis, University of California at Berkeley.
Adviser-John Kubiatowicz.

ACM Journal Name, Vol. V, No. N, Month 20YY.



52 · Guido Urdaneta et al.

RODRIGUES, R. AND LISKOV, B. 2005. High Availability in DHTs: Erasure Coding vs. Replication. In Proc. 4th
International Workshop on Peer-to-Peer Systems. Lecture Notes on Computer Science, vol. 3640. Springer-
Verlag, Berlin, 226–239.

ROWAIHY, H., ENCK, W., MCDANIEL, P., AND LA PORTA, T. 2007. Limiting Sybil Attacks in Structured
Peer-to-Peer Networks. In Proc. 26th INFOCOM Conference (St. Louis, MO). IEEE Computer Society Press,
Los Alamitos, CA., 2596–2600.

ROWSTRON, A. AND DRUSCHEL, P. 2001a. Pastry: Scalable, Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In Proc. Middleware. Lecture Notes on Computer Science, vol. 2218.
Springer-Verlag, Berlin, 329–350.

ROWSTRON, A. AND DRUSCHEL, P. 2001b. Storage Management and Caching in PAST, a Large-Scale, Persis-
tent Peer-to-Peer Storage Utility. In Proc. 18th Symposium on Operating System Principles (Banff, Canada).
ACM Press, New York, NY, 188–201.

SAIA, J., FIAT, A., GRIBBLE, S. D., KARLIN, A. R., AND SAROIU, S. 2002. Dynamically Fault-Tolerant
Content Addressable Networks. In Proc. 1st International Workshop on Peer-to-Peer Systems (Cambridge,
MA). Lecture Notes on Computer Science, vol. 2429. Springer-Verlag, Berlin, 270–279.
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