Large-scale Decentralized Storage Systems Used by
Volunteer Computing Systems

Iuliia Proskurnia, Arinto Murdopo, Enkhjin Bayarsaikhan and Diego Montero
Facultat Informatica de Barcelona
Universitat Politecnica de Catalunya
Barcelona, Spain

Abstract—Recently, Volunteer Computing (VC) is becoming
quite popular for providing its resources for large-scale computa-
tional problems in scientific researches. Centralized control of the
VC systems is the main bottleneck, since it introduces asymmetry
to the system. Several systems are already benefitting from VC
in terms of CPU sharing, e.g. SETI@home. Another side of the
problem is storage sharing, where volunteer nodes will dedicate
their free memory space to the system.

Introduction of Decentralized Storage System that is suitable
for the VC is appropriate, mainly, to reduce possible overhead
from the centralized part of the VC and provide available and
eventually consistent decentralized storage system with minimal
cost.

The focus of this paper is to thoroughly survey currently
existing decentralized storage systems, evaluate them according
to its suitability for VC system, and provide a state-of-the-art
solution for this issue.

Index Terms—Decentralized Storage Systems, Volunteer Com-
puting, Scalability, Replication.

I. INTRODUCTION

Large scale decentralized storage systems’ goals are decen-
tralization, reduced cost and fault tolerance. At the same time
decentralized storage systems provide inherent scalability and
availability of resources compared to its centralized counter-
part [4], [7], [8], (91, [10], [131], (14], [15].

Main design issues of decentralized storage systems are the
followings [6]:

o Decentralization. Decentralized storage systems, as the
name suggests, are decentralized by their nature. They
could support distributed storage, processing, information
sharing etc.

o Fault-tolerance. System should be resilient to removal
and failure of nodes at any moment.

o Fast Resource Location. Efficient mechanism for resource
location is an important point.

e Load Balancing. System should make optimal distribu-
tion of resources based on nodes’ capability and avail-
ability.

o Churn Protection. Denial of service attack from excessive
node churns should be handled by the system.

o Anonymity. Resistance to censorship is important charac-
teristic to be introduced by the system.

o Security. Security from attacks and system failure should
be ensured by the system.

e Scalability. Supporting millions of users are essential for
decentralized storage systems.

Achieving all these goals is still a huge challenge for
researchers. Existing decentralized storage system solutions
only could achieve some of them while sacrificing the others.

The most popular techniques to achieve all these proper-
ties among large-scale decentralized storage systems are the
following:

o Consistent Hashing. In consistent hashing, the output
range of a hash function is treated as a fixed circular
space or “ring”. Each node is assigned a random value
within this space. Each data item identified by a key is
assigned to a node by hashing the data item’s key to yield
its position on the ring.

e Active or passive replication. In active replication each
client request is processed by all the servers. In passive
replication there is only one server (called primary) that
processes client requests and subsequently propagates the
updates to back-up nodes.

e Gossip-based protocol for failure handling. The protocol
is based on the gossip/virus-based information distribu-
tion, including random destinations to spread the infor-
mation.

o Logging read/write operations. The main function of
logging is to store all the changes made which are reads
and writes by all nodes during the object life.

e Ring locality for load balancing. This technique should be
applied to deal with non-uniform data, load distribution
and heterogeneity of nodes performance.

Most of these properties can be found in Cassandra and
Dynamo systems and they are partly covered by other systems
like Ivy [4]], Squirrel [S], Pastis [18], PAST [12]], Riak [4],
Voldemort [8]], OceanStore [[7], [[19], Farsite [11].

Volunteer Computing (VC) uses the free resources in In-
ternet and Intranet for some computational or storage pur-
poses. It is important to discover the endless options for
its application. One of the differences between VC and P2P
systems is behavior of their nodes. Analysis of the real traces
from SETI@home [37] project proved clients contribution
consciousness. For example, SETI@home follows a typical
model of a volunteer computing project, in which an “agent”
is installed on the user’s machine after they register to par-
ticipate. All the registered participants are contributing with
their CPU to complete some important computational problem:
biological, chemical etc.

However, current architectures are based on the client-
server architecture. In such VC systems, cluster or group

of central servers assigns jobs to voluntarily-contributed-
machines/volunteers. This configuration may lead to bottle-
neck in the group of central servers, in terms of task distri-
bution or data movement between server and clients. Harvard
TONIC project tried to reduce the chance of bottleneck by
splitting centralized servers into central storage system and
lookup service. However, one point of failure still exists
and TONIC does not support storage sharing between its
users. P2P-Tuple [21] solution could be used to alleviate
aforementioned TONIC’S problems.

Until now VC popularity is focused on CPU sharing area.
As the volume of existing data and knowledge is growing
rapidly, the necessity of new approaches for storage is critical.
One of the solutions is employing scalable decentralized
storage systems in Volunteer Computing.

The main goal of this survey is to provide a comprehensive
description of the current decentralized storage systems and
the extent to which these systems could be combined with
VC, the last part of the paper will include proposal of a state-
of-the-art system that fits Volunteer Computing storage needs.

The rest of the paper is organized as follows. Section [II|in-
troduces background information about Decentralized Storage
Systems and Volunteer Computing. Section |lIl|covers a review
of the existing storage systems with their suitability for Volun-
teer Computing, which is referred as a Volunteer Computing
Extension. Section provides a proposal and design of the
most suitable state-of-the-art decentralized storage system for
VC. Finally the survey will end up with conclusion and list
of references.

II. BACKGROUND AND RELATED WORKS
A. Decentralized Storage Systems

Decentralized storage systems (DSS) are growing far more
attractive over the years, as they are being employed by the
popular networking corporations like Facebook [13]], Amazon
[15], LinkedIn [8] and etc. Behind the growing popularity is
the rising number of researches and developments in the field
of DSS. The coordination between nodes can be symmetric
as in P2P systems [12] where nodes have same capabilities
or responsibilities, or in some implementation it could be
asymmetric. Figure [I] illustrates a comparison of system ar-
chitectures in DSS and centralized storage systems. The data
in DSS are stored in several coordinating nodes, whereas in
centralized storage system, the data are stored in a single
server.

The goals of decentralized storage system are an ad hoc
connectivity between nodes, a decentralization of the system,
reduced cost of ownership, and anonymity [6]]. In this paper
we surveyed number of different decentralized storage systems
with their key features and pros-and-cons, and evaluated them
according to their suitableness in storage system for volunteer
computing. The characteristics that are important for storage
system in volunteer computing are availability, scalability,
eventual consistency, performance and security.

The design issues that associate with these characteristics
are implementation of read/write access, replication handling
among nodes in the system for fast resource location, sym-
metry design of the storage for load balancing, fault and

Decentralized Storage System

Centralized Storage System

Fig. 1. Decentralized Storage System

security handling for reliable storage, and the scalability
feature for handling thousands of nodes. Multi-writer designs
face numerable issues not found in read-only systems, such as
maintaining consistencies among replicas, handling concurrent
updates, and preventing malicious attacks [18]]. Similarly, one
can find multiple approaches in replication techniques within
the storage systems, for high reliability, churn protection,
and fast resource location. The same goes to fault tolerance;
there are multiple techniques to achieve certain tolerance level
against faulty nodes. For example Dynamo’s sloppy quorum
and hinted hand-off [[15] as well as Total Recall’s redundancy
management [[10]. In addition, security is equally important in
peer-to-peer storage systems for volunteer computing, consid-
ering the importance of data integrity and computing resources
of the volunteers in volunteer computing systems.

B. Volunteer Computing

Volunteer Computing (VC) is a distributed computing
paradigm based on computing and storage capabilities of
computers donated by volunteer individuals via the Internet.
The volunteer members donate their personal computers to
be used as hardware resources, when the computers are in
idle status. Through this arrangement, VC environments have
been very successful in harnessing idle hardware resources in
personal computers.

Another definition of Volunteer Computing is a type of
Desktop Grid (DG) computing, which is one of the largest
distributed systems in the world. DG aims to bring large
numbers of donated computing systems together to form
computing communities with vast resource pools. They are
well suited to perform highly parallel computations that do
not require any interaction between network participants.

VC is currently being used by many scientific research
projects. A well-known example of this is a project called
SETI@home, whose main purpose is to analyze radio-
telescopic signals in an attempt to detect extra-terrestrial
activities. In this project, SETI@home employed a volunteer
computing platform called BOINC.

BOINC, which stands for Berkeley Infrastructure for Open
Network Computing, relies on a publicly open system that
allows private individuals (i.e., “volunteers”) to install a soft-
ware program, which takes advantage of their computers’
processing power when it would otherwise be idle. In addition,
BOINC can also be used in multiple projects at once; hence

a single volunteer-computer can share its resources with dif-
ferent projects using this platform [46].

Another example of Volunteer Computing platforms is the
XtremWeb project. The main principle of this open source
research project is not only that any participant can volunteer
his computing resources, as in BOINC, but also can use other
participants’ computing resources or storage. In this scenario,
each participant has the ability to register new applications and
data and to submit new computational jobs [45]].

Architecture of a VC middleware - BOINC

From a general point of view, The BOINC architecture is
based on a strict master/worker model, as shown on the Figure
2t

e Client: allows platform users to interact with the platform
by submitting stand-alone jobs and retrieving results.

e Server: a coordination service which connects clients and
workers. It receives jobs submissions from clients and
distributes them to workers according to a scheduling
policy.

o Worker: the component running on the PC which is
responsible for executing jobs.

BOINC Architecture

W
<
Volunteers%® @ @ & %®

Fig. 2. VC BOINC Architecture

This architecture defines a Pull Model (workers pull tasks
from the server). The centralized server never initiates com-
munication with worker nodes. All the communications are
instantiated from the worker simplifying some communication
issues due to NAT and Firewalls. Besides, the central servers
do not have to keep track of the workers connections.

Critical scaling issues with VC may arise from the fact that
both VC and DG use centralized data storage, thus creating
a potential bottleneck in the system when tasks share large
input files or when the central server has limited bandwidth.
In this paper, we surveyed the use of decentralized data sharing
techniques that can be further introduced to VC and DG data
distribution system. The functionalities of decentralized data
sharing techniques may range from BitTorrent-style networks
where all participants share equally, to more constrained
and customizable unstructured networks where certain groups

are in charge of data distribution and discovery. Figure
shows decentralized data sharing technique with its relation to
Volunteer Computing.

Decentralized Data
Storage for VC

Query and Put
data to compute

VC Central
Server
Data & Computation
Result
Task Coordinati
as oordination %@
VC Participants @ @ &
<
Fig. 3. Decentralized Data Storage for VC

III. EXISTING SYSTEM REVIEW

In the quest for defining the state-of-the-art decentral-
ized storage system for volunteer computing, the following
well-known distributed storage systems were thoroughly sur-
veyed: FarSite, IVY, Overnet, PAST, PASTIS, Voldemort,
OceanStore, Glacier, Total Recall, Cassandra, Riak, Dynamo,
and Attic. The systems are arranged in the order of least
useful to most useful. The last two systems, TES and Squirrel,
are special type of decentralized storage systems, however
their implementations and characteristics make them equally
important for our research.

The survey is based on analysis of characteristics, im-
plementations and the system architecture of each storage
systems. The characteristics, on which we focused, in this
survey are Availability, Scalability, Eventual Consistency, Per-
formance and Security. Each distributed storage system was
evaluated by its advantages, disadvantages and VC compati-
bility.

In the end of this section, TableE]shows short description for
each system together with main characteristics of each system,
based on five aforementioned characteristics previously (AV
= Availability, SC = Scalability, ECO = Eventual Consistency,
P = Performance and SC = Security). Appendix contains more
comprehensive comparison table for surveyed storage systems
according to their read/write access, replication management,
symmetry, fault tolerance and security characteristics.

A. Farsite

FARSITE (Federated, Available, and Reliable Storage for
an Incompletely Trusted Environment) is designed to harness
collective resources of loosely coupled, insecure, and unre-
liable machines to provide logically centralized, secure, and
reliable file-storage services. It tries to solve the problem of
high cost in maintaining centralized server and its vulnerability
to geographically localized faults.

The foundation of FARSITE design is built on the fact
that there is a general increase in unused disk capacity and

a decrease in computational cost of cryptographic operation
relative to I/0.

To achieve file system capability, FARSITE should have
hierarchical directory namespace. FARSITE allows the flexi-
bility of having multiple roots (regarded as name of virtual
file server). Each root has designated set of machines to
manage it and these machines form a Byzantine-fault-tolerant
group to enhance their security. FARSITE manages trust in its
system by using public-key-cryptography, which is done by
introducing several types of certificates. Symmetric encryption
is used to encrypt users’ private keys of their certificates.
Note that in FARSITE, once encrypted, the private key of the
certificate is stored in globally readable directory in FARSITE
and it only can be accessed upon login.

In relation with Volunteer Computing, the notion of direc-
tory group is a good idea. It allows the protocol to distribute
the management job as well as the data into several machines.
Security is also handled well with encryption and public-key-
cryptography-based access list control. However, it is designed
to handle up to 10° nodes and it may not be sufficient
in Volunteer Computing context. Another drawback is its
design which is only intended for University or Workplace
environment (relatively slower churn rate and high machine
availability, as what have assumed by the writer of the paper),
which has different characteristics with Volunteer Computing
environment (relatively higher churn rate and low machine
availability).

Advantages

Disadvantages

Quantified scalability. Scal-
able up to 10° nodes. Se-
curity is really prioritized in
the design. Mimic the cen-

Limited uses, current design
and implementation is suit-
able for desktop machines
in academic and corporate

tralized file system. settings.
Volunteer Computing Extension

Scalability up to 107 nodes may not enough for vol-
unteer computing environment. Volunteer computing
environment has different characteristics to FARSITE
intended environment (University or Workplace environ-
ment).

B. IVY

Ivy is a read/write distributed storage system based on log
files of its clients. Each user takes periodic snapshots of all
other users’ logs, containing history of uploads and updates
to all files in the system. When a user makes updates to any
file, its log is saved in his/her own log. This setup makes the
Ivy storage system suitable for smaller group of cooperating
peers. In addition, use of client logs slow down the system,
despite that IVY uses periodic snapshots to mitigate this issue.
Non-conflicting concurrent file update logs are merged, and
conflicting files are resolved in application level. Ivy exposes
the whole operation history of files to every client. Hence,
security in Ivy is achieved by peers reviewing the log files of
faulty users, and choosing not to trust those bad users. In other
words, the security measures take place after the disaster. In
a large scale distributed storage system, clients expect global
security and stability, without having to choose which clients

to trust based on their user logs. This feature of Ivy makes it
less attractive as a potentially large scale distributed storage
system. Finally, [4] mentions that more work is required, in
order to improve IVY’s conflict resolution techniques.

Advantages
Decentralized storage — no
central point of failure.

Disadvantages

Security measures happen
after the disaster. Not so
scalable.

Volunteer Computing Extension
IVY is not scalable, does not provide enough security
tolerance. Therefore, it is not a recommended storage
system for volunteer computing.

C. Overnet/Kademlia

Overnet used to be popular decentralized peer-to-peer com-
puter network in 2006. It is based on Kademlia DHT; hence
there is no scientific paper that discuss about Overnet, we will
discuss Kademlia instead.

Kademlia is a symmetric DHT based on XOR-based metric
to perform the routing functionality. It treats nodes as leaves
in binary tree; with each node position is determined by ID
prefix. Kademlia ensures that every node knows of at least one
node each of its subtrees. Node ID is represented as 160-bit
number.

XOR metric is used to introduce the notion of distances
between nodes in Kademlia. However, it doesn’t consider the
actual location of the nodes since it uses the node ID to
determine the “distance” between them. XOR is unidirectional.

Kademlia nodes store contact information about each other
to route query message with maximum list of k. There are four
RPC protocols in Kademlia: PING, STORE, FIND_NODE
and FIND_VALUE. In Kademlia, the most important proce-
dure for each participant is called node lookup, where by
a node in Kademlia tries to find the k closest nodes to
some given node ID. Kademlia employs recursive algorithm
for node-lookup. The initiator is able to send parallel, asyn-
chronous FIND_NODE RPCs to the nodes it has chosen. This
parallelization is able to accelerate the lookup process although
it increases the number of messages that are circulating in
the network. Nodes in Kademlia also need to periodically
broadcast (key, value) pairs to keep them alive. The routing
table in Kademlia is in the form of binary trees and it is
always maintained to avoid unbalanced tree. In addition, some
optimization is performed in Kademlia to efficiently republish
key.

Advantages
The notion of symmetry using XOR metrics is good.
The concept of learning about neighbor when receiving
queries is interesting. It is resistant to certain degree of
DoS attack.

Disadvantages
Kademlia’s notion of distance does not consider the ac-
tual network distance. In the current era of geolocation,
this distance notion can be improved by considering the
actual network distance. Routing table in Kademlia is
in the form of binary trees and it needs to maintain
it periodically. This maintenance potentially has lots of
message to exchange in the network.
Volunteer Computing Extension

High churn rate causes lot of message overhead in
Kademlia and makes not really suitable for Volun-
teer Computing system. The message overhead here is
caused by maintenance of binary tree and parralelization
of node lookup message.

D. PAST

PAST is a large-scale archival storage system based on
Pastry P2P overlay network. Its main intended purpose is
an archival storage; hence the design of PAST was focused
on global balance of storage load while providing locally
available replicas. The overall load balance is achieved through
replica diversion, in which before a replica is stored to a node,
it considers the storage load surrounding the itself. If the node
is located (in terms of nodelDs) in a heavily packed area,
the replication is diverted to less loaded area. In addition, by
storing highly requested files in users’ available caches, PAST
achieves a graceful degradation of global performance when
the total storage reaches its limit. Therefore, in addition to
stability, PAST offers fast resource locating. Security in PAST
is achieved by issuing smart cards for writing users, and public
key cryptography is used in the overall system [12]. PAST
became a base overlay storage system to Pastis.

Advantages

Read and Write access.
Highly scalable and overall
reliable storage system.

Disadvantages
Writing users must have a
physical smart card, which
is a big liability. In addi-
tion PAST is intended as an
archival storage, which lim-
its resource management.
Volunteer Computing Extension
Although PAST is highly scalable, in terms of storage
nodes, the use of smart cards strongly limit the physical
scalability, in terms of clients. In addition, state-of-the
art distributed storage system requires more resource
management service than solely archiving.

E. Pastis

It’s a distributed storage system built on top of PAST. It’s
features of locality, scalability, and replication maintenance
are similar to those of PAST. Additional design features are
conflict-resolution mechanism, consistency, and security. The

main conflict arises when multiple users write to a file con-
currently, in which case Pastis’ conflict resolution mechanism
works by comparing each updates’ version number and the
unique ID of users who issued the updates. PASTIS supports
two consistency models: Close-to-open model, which is also
used in both Andrew File System (AFS) and Network File
System (NFS), and a more relaxed consistency model called
Read-Your-Writes model. Pastis uses write access control and
data integrity, and does not provide read access control. Write
access control works by by allowing the owner of the file to
issue write certificates to certain trustees, who must properly
sign the new version of inode and provide his own write
certificate when modifying content. This model assumes that
all users allowed to write to a given file trust one another [18]].

Advantages Disadvantages

Provides high scalability | Security based on trust be-
and locality. Read and | tween parties. Conflict reso-
write access. Up to | lution mechanism is not so-
twice as fast as Ivy or | phisticated enough for very
Oceanstore. Supports | large scale storage system.

multiple consistency

models.

Volunteer Computing Extension
Locally controlled write access to storage nodes requires
each storage nodes to fully trust volunteer computing
members. This may create security concerns that are not
suitable for distributed storage system used by volunteer
computing.

F. Project Voldemort

Voldemort can be described as a big, distributed and fault
tolerant hashtable. It promises high horizontal scalability and
higher availability in the cost of lesser convenience in using
it due to its primitive APL.

Voldemort consists of several layers and each layer in
Voldemort implements a simple storage interface that does put,
get, and delete operations. Generally, each layer is focused in
performing one function such as TCP/IP network communi-
cation, serialization, version reconciliation, inter-node routing.
Voldemort keeps each of these layers separate, that means they
can be configured (by mixing and matching) at runtime to meet
different needs.

In Voldemort, anyone can derive location of a value by
knowing its key, and lookup is performed in peer-to-peer
fashion. Consistent hashing is used to compute the location
of each key in the cluster and to prevent data shift between
servers when a server is added or removed from the cluster.

Voldemort supports pluggable serialization. We can choose
among these kinds of serialization procedure: json, string, java-
serialization, protobuf, thrift, avro-generic/avro-specific/avro-
reflective, and identity.

Voldemort tolerates the possibility of inconsistency, and
resolves inconsistencies at read time (versioning and read-
repair). Versioning scheme in Voldemort uses vector clock to
guarantee partial order over values.

Advantages

Disadvantages

Integrity of data is
preserved using versioning
and without compromising

No data found for its perfor-
mance analysis. However,
Voldemort has been effec-

system availability. Data | tively proven in produc-
replication, data partition | tion environment through
and server failure are | LinkedIn. Only support key-
handled transparently. | value store, that means if we
Voldemort layer is | want to improve the usabil-
built based on plug-in- | ity (such as a file system),

architecture, and we can | we need to add additional
configure these layers to | layer on top of Voldemort to
suit application needs. perform the job

Volunteer Computing Extension
We will need to fine-tune the module in each layer
to support volunteer computing, which initially can be
complicated, but once it is fine-tuned, it will be suitable

for volunteer computing.

G. OceanStore

OceanStore is a two-tiered, fully read/write distributed stor-
age system for any type of files and applications. The inner
tier consists of well-connected servers for primary replications
— Byzantine Fault Tolerant (BFT) algorithm is used in this tier.
The outer tier consists of loosely connected client computers
for storage and archives — aggressive replication is used for
client replicas and erasure coding is used for reliable archives.
In addition to being able to support all types of files and
applications in the system, OceanStore provides high fault
tolerance through the combined use of BFT and erasure
coding. With this design, they’ve achieved speedup of 4.6
over NFS in Read-only version, and 7.3 slower than NFS in
read-write version. For security, it uses threshold cryptography,
which allows host computers store files without knowing
the contents. They assume that all user infrastructures are
untrusted [19].

Advantages

Provides read and write
access. High fault toler-
ance and security is assured,
since none of the nodes are
trusted.

Disadvantages
Writing access slows down
the system, significantly.

Volunteer Computing Extension
High fault tolerance and security is achieved through the
use of complex algorithm - BFT. This comes with the
cost of limited scalability.

H. Glacier

Glacier is a highly durable read-only distributed storage
system. It is designed to provide availability during cases large
scale, correlated, Byzantine failures of storage nodes. As a
tradeoff for high durability, Glacier does not support remote
write-access. A prototype of Glacier is built on top of Pastry
overlay, and makes use of PAST distributed hash table.

Glacier uses a combination of full replicas and erasure cod-
ing. A few numbers of full replicas of each files is stored for
short-term availability. A redundant amount of erasure-coded

fragments are stored among nodes for long term archiving.
The nodes containing fragments communicate with each other,
and create extra fragment copies when needed. Durability is
ensured by spreading redundant amount of fragments across
randomly selected nodes in the system. Glacier uses erasure
codes and garbage collection for low storage cost, and loosely
coupled fragment maintenance protocol to reduce the message
costs among nodes.

A security in Glacier is achieved simply because there is
no remote write or update access to users. Since users can
only overwrite or modify their own local nodes, any mali-
cious activity cannot harm the storage system. Data integrity
is achieved by excessive amount of erasure-coded fragment
replications across the system.

Similar to Tapestry and CFS, Glacier [14] uses leasing to
control the lifetime of a stored data. Objects must be renewed
periodically, in order to keep them alive in the archive.
Experimental results of its prototype show that Glacier is able
to manage a large amount of data with low maintenance, while
ensuring high scalability in data size and system size. [14]]

Advantages Disadvantages
High durability. Far less | No remote write/update.
vulnerable to large scale | Excessive Redundancy

failures. within the storage system,
in order to ensure high
fault tolerance. Lifetimes of
stored data are limited.
Volunteer Computing Extension
Due to its high reliability, and security, this storage
system is suitable for Volunteer computing. However
since there’s no remote write and update, this system
could be used purely as an archival storage of computed
data.

1. Total Recall

Total Recall is a peer-to-peer storage system that is capable
of automatically managing its availability in dynamic changing
environment. It is able to perform availability prediction based
on empirical results, and to repair itself (dynamic repair)
automatically when hosts leave the system and decreasing re-
dundancy. It has redundancy management feature so that Total
Recall intelligently chooses between replication, erasure code,
and hybrid techniques based on system condition. However,
Total Recall is not symmetric. It introduces three types of
host in its implementation: master host, storage host and client
host. Total Recall’s lazy repair with erasure code is suitable for
Volunteer Computing environment since it is claimed to have
good performance for highly dynamic and highly unavailable
environment. However, [[10] does not really mention about the
security aspect of this storage system except of the usage of
erasure code to protect the data. Overall, it has potential for
Volunteer Computing environment if the security aspect of
Total Recall is designed and implemented fully.

Advantages
Peer-to-peer nature of Total Recall implies high scala-
bility. It offers flexibility for the system administrator
to specify availability target. Able to handle highly
dynamic and highly unavailable environment by using
lazy repair with erasure code technique.
Disadvantages
Security aspect of Total Recall is not really designed
and implemented fully.
Volunteer Computing Extension
Total Recall’s lazy repair with erasure code is suitable
and has potential to be used in Volunteer Computing
system as long as the security aspect of Total Recall is
designed and implemented fully.

J. Cassandra

Cassandra is a distributed storage system for managing
very large amount of structured data spread out across many
servers with high availability. The system doesn’t support a
full relational data model.

DHT in Cassandra is a distributed multi-dimensional map
indexed by a key. The row key in a table is a string with
no size restrictions. Every operation under a single row key is
atomic per replica. Columns are grouped into column families:
simple and super column families. Columns could be sorted
by time or by name.

API in Cassandra consists of three simple methods: insert,
get, delete. Distributed system techniques used in the system:

e PFartitioning. It is done by means of consistent hashing.
To deal with non-uniform data and load distribution and
heterogeneity of nodes performance, developers applies
nodes moving in the ring, according to their load.

e Replication. Each data replicated in N hosts, where N is
a replication factor per instance. Coordinator is in charge
of replication. Replication policies: Rack Unaware, Rack
Aware, Datacenter Aware. For the last two policies Cas-
sandra uses Zookeeper.

o Membership is based on Scuttlebutt, a very efficient anti-
entropy Gossip based mechanism.

o Fuailure handling. Cassandra uses a modified version of
o Accrual Failure Detector with Exponential Distribution
for inter-arrival time for other nodes gossip messages. ¢
is a value which represent a suspicion level for each of
monitored nodes. The more ¢ the less likelihood % of
mistake we will do in the future about its failing.

e Bootstrapping. For the fault tolerance, mapping is per-
sisted to disk locally and also in Zookeeper. Then the
token is gossiped around the cluster. When a node needs
to join a cluster, it reads its configuration file with a few
contact points (seeds) within the cluster.

e Scaling. Each new node is assigned with a token to
alleviate a heavily loaded nodes.

o Read/write requests. Write is a write to into a commit log.
Writing to in-memory is performed only after successful
write to commit log. When in-memory is full it dumps
itself to disk. Read operation queries the in-memory data
structure before looking into the file in disk. Lookup a

key could be done through many data files. But here
developers use bloom filter to summarize the keys in the
file.

Advantages Disadvantages
Linear scalability and fault- | Reads are slower than
tolerance. No single point of | writes. ~ Limitation for

column and row size in the
system. Cassandra is a bad
fit for large objects.
Volunteer Computing Extension

The main feature of the system is to perform writes
faster that reads. It could be a first barrier for VC
application, as the main idea of storage systems in
general to perform reads more that writes. Also, as the
system is highly scalable, VC availability feature could
be solved through replication techniques. Finally, fault-
tolerance could be handled quite well even with gossip
algorithm application. From the other point of view,
Cassandra has limitation on the object size, hence, big
object can’t be stored in the system. That’s why all files
should be partitioned. Overall, due to good replication
policy and fault-tolerance techniques the system could
be quite good platform for future VC application.

failure. Map/reduce possible
with Apache Hadoop.

K. Riak

Riak is a Dynamo-inspired database, which scales pre-
dictably and easily. It is a highly fault-tolerant, scalable and
higly available distributed database system with no single point
of failure. One important feature of Riak is the data organiza-
tion. Buckets and keys are the only way to organize data inside
of Riak. User data is stored and referenced by bucket/key
pairs and Riak uses a backend key/value storage system. This
feature allows the use of any kind of key/value storage system
as a backend such as Bitcask (Pluggable Backends). Buckets
are used to define a virtual keyspace and to provide some
per-bucket configurability, such as, replication factor. Riak’s
client interface speaks of buckets and keys. Internally, Riak
computes a 160-bit binary hash of the bucket/key pair, and
maps this value to a position on an ordered “ring” of all such
values. This ring is divided into partitions and each Riak node
is responsible for a partition. Replication is fundamental and
automatic in Riak, providing security that the data will still
be there if a node on the cluster goes down. All data stored
in Riak will be replicated to a number of nodes in the cluster
according to the ”N* property set on the bucket. It is based
on the N,R,W Dynamo values. Another feature is the object
versioning. Each update to a Riak object is tracked by a vector
clock. Vector clocks determine causal ordering and detect
conflicts in a distributed system. Each time an object is created
or updated, a vector clock is generated to keep track of each
version and ensure that the proper value can be determined
in the event that there are conflicting updates. Besides, when
there are update conflicts on objects, Riak allows the last
update to automatically “win” or returns both versions of the
object to the client who has to take a decision to resolve the
conflict.

Advantages

Disadvantages

Advantages

A distributed key/value stor-
age based on Dynamo. N, R
and W configurable values.
Support of pluggable back-

Riak aims for Availabil-
ity, and Partition (failure)
tolerance. The problem is
the eventually consistency

Optimized for storage system usage, whereby we need
highly availability for write (with consistency trade off
of course). Flexibility on local persistence component,
which implies that we can easily changes the storage en-

end storage systems. camp

Volunteer Computing Extension
Riak could be applicable to the volunteer computing, but
there should be defined the size of files that the volunteer
computer system uses in order to pick a suitable backend
storage.

gines implementation (Berkeley DB, MySQL, Berkeley
DB Java edition and in-memory buffer with persistent
backing store). Dynamo is highly configurable based on
R, W, and N values (number of replicas needed). It has
been used, deployed, tested and fine-tuned in Amazon’s
production environment.

L. Dynamo

Dynamo is a distributed storage system developed by Ama-
zon to support its online retail operation. Its main goals are
reliability at massive scale, and scalability. It should be able
to treat failure handling as a norm.

Dynamo satisfies eventual consistency and target design
space of an “always writable” data storage (highly available
for write). It allows the flexibility of deciding who performs
the conflict resolution, whether it is application layer or the
data store layer. It is able to perform incremental scalability
(scale out one storage host at a time). It maintains symmetry
in the network, which means there is no central server that
manages everything. It should be decentralized and able to
handle heterogeneity of the nodes.

Dynamo uses consistent hashing to handle partitioning
problem; it uses vector clocks for data reconciliation during
reads. Sloppy quorum and hinted handoff are used to handle
temporary failures. Merkle trees are used to provide data
integrity during failure recovery. Dynamo also it uses a gossip-
based membership protocol and failure detector.

Disadvantages
It has no security feature implemented because it is
run in Amazon’s internal non-hostile environment (no
malicious node). Gossip protocol to update group mem-
bership status in Dynamo may not be scalable when used
in thousands of nodes, due to overhead in maintaining
routing table.
Volunteer Computing Extension

Dynamo works well if the Volunteer Computing system
needs high write availability. However, it has no security
feature implemented since it is assumed to be used
in non-hostile environment. Therefore, current Dynamo
implementation is not suitable for Volunteer Computing
system unless the security feature is implemented and
tested well.

M. Attic

Attic [31] is a software project that creates a secure data
distribution network applicable to projects like BOINC that
employs P2P data sharing practices to share data across
the data distribution layer. This alternative provides a more
lightweight and dynamic environment for distributing data.
Four main elements: i) A data serving application that repli-
cates data on the network. ii) Data Centers (data cacher) that
cache data, providing the distributed data source overlay. iii) A
Look up service that keeps track of which Data Centers have
individual data items. iv) Client applications that download
data from Data Centers on the network.

Data Centers are interim storage facilities that provide a
buffer between the data serving application and the client
applications. This buffer is particularly important for vol-
unteer computing environments because it ensures that the
data sources can be trusted by clients. Trust plays a crucial
role in volunteer computing environments. If it is broken
then the project will fail to attract volunteers. Therefore, in
controlled environments, Data Centers are typically issued
with certificates signed by a trusted certificate authority al-
lowing client applications to verify the identity of the Data
Center when downloading. Attic is based on the Peer-to-Peer
Architecture for Data-Intensive Cycle Sharing (P2P-ADICS)
research project.

Advantages
It has been designed with volunteer computing in mind,
and does not require all participants to share data, or
share equally, therefore differing it from other types of
P2P file-sharing systems. Secure decentralized approach
and BitTorrent-like file swarming techniques to serve
data and manage load. It uses HTTP for the transfer
data transfer layer (multiple concurrent downloads). It
can be integrated with BOINC projects. “Trusted” peers:
secure data centers are a way of implementing a super-
peer topology for data sharing that would restrict the set
of peers that are allowed to propagate data.
Disadvantages
A point of failure: the Lookup Server
Volunteer Computing Extension
Attic can be integrated with BOINC using the Attic-
BOINC proxy.

N. Squirrel

It is a decentralized, P2P web cache with a behavior of a
centralized web cache system. The key point is to enable web
browsers on desktop machines to share their local caches to
form an efficient and scalable web cache, without the need
for dedicated hardware and the associated administrative cost.
Overall, Squirrel is a combination of cooperative web caching
and P2P request routing.

Squirrel uses a self-organizated P2P routing substrate Pastry.
Pastry is resilient to concurrent node failures and so is Squirrel.
The system has to re-fetch a small fraction of cached objects
from the origin web server.

Web caching is a different way of decentralized storage
application but it still uses similar techniques to provide
availability to its system. The main difference of the web
cache system is that still there is an opportunity to data
recovery from the original server, so that centralized part
supports decentralized components in the system. Hence, in
such systems there is less attention to the availability side.

Current system Squirrel [5] is a prototype of the volunteer
computing application with some centralized support. The
main point of the system is a request routing and handling
the presence of files inside the system according to clients’
needs.

Advantages

Latency comparable to the
centralized analog. Low-
management. Fault resilient

Disadvantages

Web-Cache storage only.
System for corporate LAN.
Failures result in loss of
content.

Volunteer Computing Extension
Decentralized Web Cache systems could be applicable
to the volunteer computing, but centralized control of
the system should be implemented as well. In this case
also replication and fault-tolerance techniques should be
developed further.

Overall, decentralized web caching in Squirrel, by its nature,
is volunteer computing application as users consciously con-
tribute to the system. Hence, their behavior is likely to be more
reliable. That’s why, usually, there is no need for supporting

more sophisticated replication and availability techniques as
the data could be accessed from the original server eventually.

O. Transparent File System (TFS)

A key barrier to the adoption of contributory storage systems
is that contributing a large quantity of local storage interferes
with the principal user of the machine. To overcome this
barrier, the Transparent File System (TES) [16]] is introduced.
It provides background tasks with large amounts of unreliable
storage without impacting the performance of ordinary file
access operations. TFS is a method for contributing disk space
in peer-to-peer storage systems.

Advantages

A file system that can contribute 100% of the idle
space on a disk while imposing a negligible performance
penalty on the local user. Operates by storing files in the
free space of the file system so that they are invisible to
ordinary files. Normal file allocation proceeds as if the
system were not contributing any space at all. Ensure
the transparency of contributed data: the presence of
contributed storage should have no measurable effect on
the file system, either in performance, or in capacity.
Transparent files: files that are transparent in the local
file system (local file system does not see these files).
Transparent data or transparent blocks: data belong-
ing to such transparent files. Treats transparent blocks
as if they were free, overwriting whatever data might
be currently stored in them. An ordinary file can be
allocated over a transparent file. TFS imposes nearly no
overhead on the local user. TFS is specifically designed
for contributory applications. The key benefit is that it
leaves the allocation for local files intact, avoiding issues
of fragmentation

Disadvantages
Sacrifices file persistence. When TFS allocates a block
for an ordinary file, it treats free blocks and transparent
blocks the same, and thus may overwrite transparent
data. Files marked transparent may be overwritten and
deleted at any time. Applications using transparent files
must ensure the correctness of all file data. Sensitive
information stored in ordinary files must be protected
from applications trying to read transparent files. The
unreliability of files in TFS produces a bandwidth con-
sumption due to the replication that is needed to handle
deleted files.
Volunteer Computing Extension

This technique cannot be used for storage in a volunteer
system because it requires changes in the local file
systems of the volunteers. It means that the all the local
file systems, such as Ext3, NTFS and others must be
modified

IV. STATE OF THE ART
A. Introduction

WHY? In current scientific volunteer computing software
infrastructures, such as BOINC and XtremWeb, data is dis-
tributed centrally from a project’s coordinating nodes or
servers. In BOINC, this is achieved through a set of HTTP mir-
rors, each providing clients with full copies of data input files.
Similarly, in XtremWeb, clients are given the URIs of data
input files. These centralized systems require projects to not
only have the necessary network capacity needed to provide
data to all volunteers, but also have data readily available and
persistent on their servers at all times to fulfill client requests.
Furthermore, the network throughput requirements of serving
so many client machines can prove to be an impediment
to projects wishing to explore new types of data intensive
application scenarios that are currently prohibitive in terms
of their large data transfer needs.

Alternatively, a viable approach to such centralized systems
is to employ the use of peer-to-peer (P2P) techniques to
implement data distribution.

GOALS?

e Offload the central network needs. P2P data storage
techniques can be used to introduce a new kind of data
distribution system for volunteer computing projects, one
that takes advantage of volunteer-side network capabili-
ties.

o Scalability not only needs to take into account the net-
work bandwidth, but also the potential sizes of data with
respect to the data and job throughput in a particular VC
project, and their distribution over time.

o Security in these systems goes beyond the traditional
notion of simply ensuring authentication or file integrity.
Due to the volatile and insecure nature of volunteer
networks, a product of their open participation policies,
there can be reason to enforce limitations on which nodes
are allowed to distribute and cache data. By opening
the data distribution channels to public participation,
security now becomes a larger concern for projects that
previously had centrally managed servers. The area of
security with respect to VCS can be roughly split into the
following: user security and data security. It is important
to support both data integrity and reliability, whilst also
providing safeguards that can limit a peer nodes’ exposure
to malicious attacks.

— User Security: any P2P data distribution scheme that
is implemented must allow users to opt-out if they do
not wish to share their bandwidth or storage capacity.

— Data Security: find security schemes and policies
and how to apply them to volunteer networks when
selecting and distributing data-sets to peers.

All mentioned above could be presented in the following
Figure [}

HOW? There are many ways this could be implemented,
ranging from a BitTorrent-style network, where data is cen-
trally tracked and all participants share relatively equal loads,
to KaZaa-like super-peer networks, where select nodes are
assigned greater responsibility in the network.

VC members as end users,
normal computer that
used by users

BFT, erasure coding
&=) and popularity-and-
geographic locality

Storage Resources
Contributor

based replication
techniques

S

Credit system and
certificate, like in
SETI@home

Task Coordination

Computing Resource
Contributor

Fig. 4. State-of-the-art Decentralized Storage System used by VC

However, applying a traditional P2P network infrastructure
to scientific computing, particularly in volunteer computing,
can be highly problematic. In such environments, policies and
safeguards for scientific data and users’ computers become
more critical concerns for limiting consumption rather than
any technical feasibility.

A tailor-made solution that could take into account the re-
quirements of scientific communities, as opposed to a generic
overarching P2P architecture, would have the advantage of
facilitating different network topologies and data distribution
algorithms, whilst retaining the safety of each participant’s
computer. Furthermore, each scientific application has dif-
ferent network and data needs, and customized solutions
would allow for tailoring the network towards individual
requirements, although with the disadvantage of increased
development effort, complexity, and code maintenance.

As example there is ADICS [47], a customizable and
brokered Peer-to-Peer Architecture for Data-Intensive Cycle
Sharing that allows fine-grained provisioning of resources
and application of project-based roles to network participants.
Specifically, ADICS provides a brokered P2P system that
offloads central network needs while limiting client exposure
to foreign hosts. The brokered network-overlay introduced in
ADICS acts as a buffer, in the form of a select group of trusted
data-sharing nodes, between the scheduler and the clients.

B. Characteristics

In designing of the state-of-the-art distributed storage sys-
tem for VC, it is important to bear in mind that the VC
members are the end users of the system. Hence, given the
right incentives to both VC members and storage nodes, the
following assumptions could be safely made:
o Storage nodes in this system are relatively trust-worthier
than those in more hostile systems surveyed in Section
M

« Not only are the storage nodes trustworthy, but also they
are more committed. Thus, we expect lower churn rate
among the nodes, and the system should not need to take
into account the worst-case scenarios mentioned in [14]].

By evaluating the successful deployments of other p2p
storage systems in our survey, the following characteristics

System Description Focus
Farsite Large scale persistent P2P storage system SE
Ivy P2P storage system based on Dhash table logs ECO, AV
OverNet P2P DHT-based storage system that used XOR-based metrics for | ECO
routing
PAST Large scale persistent P2P storage system SC, SE, AV
Pastis Highly scalable P2P storage system based on trust SC, ECO
Voldemort Big, distributed, fault tolerant hashtable AV
OceanStore Globally persistent DSS for any-file-anywhere SC, SE
Glacier Highly durable DSS for archiving, no remote write SC, AV, P
Total Recall P2P storage system. Automatically manage its availability in dynamic | AV, SC
changing environment
Cassandra DSS with no point of failure to store structured data SC, AV, ECO
Riak Dynamo-inspired NOSQL storage system SC, AV
Dynamo Large scale DSS developed by Amazon P, AV, ECO
Attic Secure DSS and BitTorrent-like file swarming techniques to serve data | SE, AC
and manage load
Squirrel Decentralized Web Cache P, ECO

TABLE I
COMPARISON OF DIFFERENT DECENTRALIZED STORAGE SYSTEM

were defined for state-of-the-art distributed storage system:
read/write access, replication and fault-tolerance, and sym-
metry and availability. A short suggestion of incentives is
mentioned, since incentives strongly influence the behavior of
any distributed systems.

Read and Write Access:

A need for read/write access for distributed storage system
depends entirely on the frequency of file updates. Implementa-
tion of file updates and the maintenance of their consistencies
among all replications in the distributed system create issues
mentioned in [18]. Consideration of updated files as different
from their older versions, therefore adding them as new files
in the distributed system is mentioned in [[L1]. This method is
more appropriate for distributed system with nodes that do not
frequently update data. Also, a distributed storage system can
be implemented as an archival storage for computed data from
volunteer computing system. Such storage systems designed
as archives are mentioned in [14], and [12]. The frequency
of file updates from the volunteer computing nodes, such as
re-submitting or correction of computational data, should be
rare. It is expected to see more of uploading of computational
data, rather than correction of one’s work. Therefore, the read
access vs. write access in our system should have a ratio of
about 7:3. Implementations of this type of read/write access
is very common in other distributed storage systems, such as
(L1

Fault Tolerance & Replication Techniques:

As with aforementioned assumptions, the necessity of ex-
tremely high fault tolerance is insignificant in the design of
a distributed storage system for volunteer computing. The
assumption of extremely high churn tolerance is unneces-
sary, but a reasonable amount of smart replication techniques
and fault tolerance is inevitably important. The replication
technique requirements should be low memory and resource
usage, and implementation of locality based load balancing.
Erasure coding and Byzantine-Fault-Tolerant (BFT) algorithm
provide certain amount of fault tolerance, load balancing and
lower memory usage, and they have been implemented in
(8], [11]], [14], and [19]. Also, a replication technique based

on popularity, access rate, and file types is used in [5],
[10], and [36]. The ideal distributed storage system should
use a combination of BFT, erasure coding and popularity-
and-locality based replication techniques. To further reduce
overhead from data fragment recovery, the storage system
could use network coding technique as presented in [32].

Availability and Symmetry:

We define data availability as data localization, an easy
location and acquisition of data when necessary. Therefore,
data availability and symmetry among the nodes goes hand-
in-hand. In the distributed storage system, however, a global
symmetry is not necessary, as shown in systems such as [7],
[9],[10] and [11]. One way to achieve high availability is by
employing geographic locality based replication techniques,
such as mentioned in [4]]. The majority of the volunteers
are located in USA, Germany, UK and Canada [28]. There-
fore, geographic locality awareness could improve fast data
acquisition as well as global traffic balancing. In addition
to geography-based locality, implementation of groups hash
tables containing metadata of file replicas is a common method
for increasing data acquisition. Finally, a use of BitTorrent like
swarming techniques was mentioned in [31] for data serving
and load managing. To further improve the availability, data
types classification to determine fault tolerance techniques
could be employed. One example of this technique is when
storing video files, the storage system could use technique
from P2P video streaming application.Several independent so-
called descriptions will be created from a video file. This
method is called Multiple Description Coding (MDC). Each
description is a video segment that contributes a certain
amount to the video quality and can be decoded independently.
The more descriptions are received, the higher is the received
quality. Hence, each data file could be divided into n amount
of pieces, e.g. odd and even horizontal and vertical frames for
the video file, and then erasure coding/network coding could
be applied to each of the piece itself.

Incentives:

The use of incentives in the distributed storage system
nodes, as well as the volunteers in the volunteer computing

system, is an effective way to increase and maintain highly
committed members. Incentives based on credit system, in
which individuals are granted credits and certificates for their
contribution of computing powers, have proven very effective
in systems like SETI@home [37]. These type incentives
encourage users to compete among each other with their
credits, thus contributing more towards the computing system.
Similarly, a credit and certificate based on amount of storage
shared, and available time in the system would contribute
towards a highly available distributed storage system. Another
possible incentive technique is a government tax break for
both volunteer computing members as well as the storage
node members. There are over 1 million volunteer computing
nodes in the world [31] and the majority of them are located
in four countries — USA, Germany, UK and Canada. Thus,
it is likely that the distributed storage nodes would be also
located in these countries. A collaboration and support of the
responsible government bodies in these countries would be a
powerful driving force in increased number of storage nodes
and volunteer members.

C. Challenges

Providing the right incentive

As mentioned in Section proposed distributed storage
system for VC is based on peer-to-peer concept, which in-
volves volunteer computing participants. The volunteer-nature
of this model requires appropriate incentive system to attract
participants. Our proposal here is to use existing models of
incentives, with further testing to prove its effectiveness in
volunteer-computing-based storage sharing

Security

Another challenge that may surface is security. The pro-
posed system should ensure that user data is not affected by
VC data that stored in participants’ system or user security
must be ensured [47]]. Client system should not provide
loophole for hackers to intrude the system. Existing security
techniques that are currently used in sharing computational
power need to be re-tested and re-evaluated before they are
re-used for storage sharing in VC environment.

VC system should also consider the security of the data that
are stored in volunteer nodes (data security), especially the
integrity of the data. It should be able to enforce and detect
the correctness of data stored in volunteer nodes and prevent
malicious user to change or remove the data. For example the
usage of Byzantine-Fault-Tolerant (BFT) replica in FARSITE,
extensive use of erasure coding in Glacier, and MD5 checksum
in Attic.

Integration into current VC Environment

Once we define or implement the decentralized storage
system, we need to integrate it to an existing VC environment.
Challenge in this area includes differences in programming
language in implementing the storage system and VC platform
(such as BOINC). This challenge is highlighted in [47]. To
solve this challenge, introduction of proxy solution to interface
both sides may be useful.

We may also need to introduce separate layer between VC
participants that contribute computing resources and storage

resources. These layers will provide several API as interface
hence we will have flexibility in interchanging the implemen-
tation of storage layer.

V. CONCLUSIONS

The implementation of decentralized storage system (DSS)
in volunteer computing (VC) field may open doors to numer-
ous research ideas for both VC and DSS fields. In this survey,
DSS characteristics critical for VC integration are identified.
They are availability, scalability, eventual consistency, perfor-
mance and security. In addition to those, various properties of
DSS were discussed and evaluated based on VC suitability.
Attic, Dynamo and Riak are the top-three most suitable DSS
for VC. Attic is built with VC in mind, and it focuses on
availability and security. Dynamo focuses in availability, which
is beneficial for VC. It has also been used in production
environment by Amazon, which brings significant advantage
over the other DSS. Riak is the third most useful DSS for
VC. It is inspired by Dynamo, and it focuses on scalability
and availability.

The main characteristics of ideal DSS for VS are proposed.
They are

o seven-to-three (7:3) read and write ratio
e VC-based membership in storage system
o BFT, erasure coding, and popularity-and-geographic lo-
cality based replication techniques
o Credit system and certificate for incentive
Challenges in designing and implementing the ideal DSS
are also discussed.

APPENDIX
Systems Read/Write Replication Symmetry Fault Handling Security
5 Erasure Code. Randomized file Mot symmetric: 3 type of § . Byzantine-Fault-Tolerant replica groups keep integrity of
FarSite Re?:,“gt:iér;w replication. Transfers the node hosts: Client, Directory Blzp‘anilr;neljn'?cﬂ;;‘:;rigteresprr;iEr;ug:' directory metadata. The metadata consists of access control
\f.friles functionality from one directory group Group node, and File 0gging dates p : is that provides RA'W access for clients. Data are encrypted
’ node to another node. Host ups ’ using symmetric cryptography
} DHash: replication placed on k servers)) ;
Iy Read/\Write. following successor Symmetric DHash Based on user-logs. Detect disaster after it happened
OverNet Read/Write Replication with configurable factor Symmetric Replication, maintaining the routing Not mentioned
table as balanced tree
Replication based on global load Uses k number of replication & - N
PAST Read/Write balancing (replica diversion) & locality Symmetric Meighborhood Table (Fastry) for Writing p:g;s o :nsi S‘L?EE;';T:; CC; rp[:g;ah:h;em of the
(local caching) availability :
Lazy replication: maintains k number of Uses k number of replication & Ny .
Pastis Read/Write replication blocks, with update version Symmetric Neighborhood Table (Pastry) for Based on Trust. Owr:;aurst:;;hs etlresguves write access to
stamp, availability .
“oldemort Read/Write Erasure Coding. Symmetric Erasure coding Mot mentioned
Aggressive replication outer tier peer | Not symmetric: 2 tiered - |Byzantine-Fault-Tolerant algorithm used y
QceanStore Read/Write storage and erasure coding for archival | inner tier servers, outer in inner tier. Erasure coding used in Threshold cryptography [oarrgsii;'er' erasure code usad for
storage tier peers archival storage. .
Fig. 5. Decentralized Storage Systems Features
Systems Read/Write Replication Symmetry Fault Handling Security
2-3 replicas stored in primary store, and| Not symmetric. Primary | Extensive redundancy of erasure coded . e
Glacier Read erasure coded fragments are distributed| store & erasure coded archives. Glacier claims it has the No renlg:?:niie\-!ztgrgas&uro:iro\;%n%rgl?r,:léh;:lzr;:g:i;nacks'
among peers for archiving. archive highest durability. :
Replication based on workload Mot symmetric: 3 type of Use redundancy management Erasure code provides some level of security in terms of
Total Recall Read/Write characteristics: file size, access patterns | hosts: Master, Storage, | (replication, erasure code, or hybrid) to ul p files ity
of RIW requests and Client maintain the availability level. }
Each data replicated at N hosts, where
M is a replication factor per instance. Modified version of phi Accrual Failure
Cassandra Read/Write Replication policies: Rack Unaware, Symmetric Dete_ctor th Exponennal Distribution Data protection based on authorization and authentification.
Rack Aware, Datacenter Aware. for inter-arrival time for other nodes
Zookeeper is employed for the last two gossip messages.
policies.
Read/Write (A All data stored will be replicated to a N ONS%E";ZEEEQ l;'ﬁeam | Hinted handoiff technique: Neighbors of Itis built for a trusted environment. Mot focused on the
Riak keyivalue number of nodes in the cluster distributed servérs and a failed node will pick up the slack and problem of
datastore) according to the N property. clients perform the work of the failed node. data integrity and security.
. Replication. The replicas are stored in . . . y
Dvnamo Re:edfll‘;'.r\’af:bee[ﬁ Data is replicated in N-1 successor in Symmetric multiple data centers. Merkle trees are No;ﬁgﬁi'g:;::{ t;e_gausss d?gll??aﬁl |si r:n,:\emn::[?r:nsr::ogﬂﬁzme
Y dal!;slore} Dynamao ring V! used to keep the replicas synchronized. noﬂe; irL:the networkyare trusted !
Hinted handoff is also employed. .
Read. A central Secure P2P data distribution layer zg:j:m:m:ilg:agoa;a Replication. The data center network MD5 checksums for different defined chunks of the file and
Attic data server based on Bittorrent replication Data Cengler?s[;re cacﬁe d P Ikee .re licas of the data also for the entire file.
shares the data. techniques. ps rep .
the data.
Coordinator and most frequently asked
node has the flle. In more advanced In case of failures information could be
Squirrel Read/Write scheme there is an extra list of nodes Mot symmetric reached on lh:' original ser:.fer anu ime, Mot mentioned
responsible for the file according for g ytime.
their file usage.
Read/\Write.
Require to be
TFS implemented with MNiA MNiA MNiA MNVA

a 05 File System
like ext2

Fig. 6. Decentralized Storage Systems Features

REFERENCES

[1] J.-M. Busca, E. Picconi, and P. Sens, Euro-Par 2005 Parallel Processing,
vol. 3648, Springer Berlin / Heidelberg, 2005, p. 644.

[2] Distributiveness. [Online]. Available: http://blog.proskurnia.in.ua/. [Ac-
cessed: 27-Mar-2012].

[3] A. Verma, S. Venkataraman, M. Caesar, and R. H. Campbell, Handbook
of Data Intensive Computing, Springer New York, 2011, pp. 109-127.

[4] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, Ivy: a read/write
peer-to-peer file system, SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp.
31-44, Dec. 2002.

[5] S. Iyer, A. Rowstron, and P. Druschel, Squirrel: a decentralized peer-
to-peer web cache, in Proceedings of the twenty-first annual symposium
on Principles of distributed computing, New York, NY, USA, 2002, pp.
213-222.

[6] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, A
survey of peer-to-peer storage techniques for distributed file systems,
in International Conference on Information Technology: Coding and
Computing, 2005. ITCC 2005, 2005, vol. 2, pp. 205-213 Vol. 2.

[7] OceanStore. Prototype:Pond. [Online]. Available:
http://static.usenix.org/events/fastO3/tech/rhea/rhea_html/.

[8] Voldemort, Project Voldemort. A distributed Database. [Online]. Avail-
able: http://project-voldemort.com/.

[9] Riak. [Online]. Available: http://wiki.basho.com/.

[10] R. Bhagwan, K. Tati, Y. C. Cheng, S. Savage, and G. M. Voelker, Total
recall: System support for automated availability management.

[11] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
FARSITE: Federated, available, and reliable storage for an incompletely
trusted environment, ACM SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 1-14, 2002.

[12] A. Rowstron and P. Druschel, Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility, in Proceedings of the
eighteenth ACM symposium on Operating systems principles, New York,
NY, USA, 2001, pp. 188-201.

[13] A. Lakshman and P. Malik, Cassandra, ACM SIGOPS Operating
Systems Review, vol. 44, no. 2, p. 35, Apr. 2010.

[14] A. Haeberlen, A. Mislove, and P. Druschel, Glacier: highly durable,
decentralized storage despite massive correlated failures, in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation - Volume 2, Berkeley, CA, USA, 2005, pp. 143-158.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo:
Amazon’s highly available key-value store, 2007, pp. 205-220.

[16] J. Cipar, M. D. Corner, and E. D. Berger, Contributing storage using
the transparent file system, Trans. Storage, vol. 3, no. 3, Oct. 2007.
[17] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.

Kaashoek, J. Kubiatowicz, and R. Morris, Efficient replica maintenance
for distributed storage systems in Proceedings of the 3rd conference on
Networked Systems Design & Implementation - Volume 3, Berkeley, CA,

USA, 2006, p. 4-4.

[18] J. Busca, F. Picconi, and P. Sens, Pastis: A highly-scalable multi-user
peer-to-peer file system, in in Euro-Par 2005, 2005.

[19] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubia-
towicz, Pond: the OceanStore Prototype, 2003, pp. 1-14.

[20] D. Toth, R. Mayer, and W. Nichols, Increasing Participation in Volunteer
Computing, in 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011, pp.
1878-1882.

[21] Lei Ni and A. Harwood, P2P-Tuple: Towards a Robust Volunteer Com-
puting Platform, in 2009 International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies, 2009, pp. 217-223.

[22] D. Lazaro, D. Kondo, and J. M. Marques, Long-term availability
prediction for groups of volunteer resources, Journal of Parallel and
Distributed Computing, vol. 72, no. 2, pp. 281-296, Feb. 2012.

[23] E. M. Heien, N. Fujimoto, and K. Hagihara, Computing low latency
batches with unreliable workers in volunteer computing environments, in
IEEE International Symposium on Parallel and Distributed Processing,
2008. IPDPS 2008, 2008, pp. 1-8.

[24] T. Ghafarian-M., H. Deldari, H. Mohhamad, and M. Yaghmaee,
Proximity-Aware Resource Discovery Architecture in Peer-to-Peer Based
Volunteer Computing System, in 2011 IEEE 11th International Conference
on Computer and Information Technology (CIT), 2011, pp. 83-90.

[25] FE Costa, L. Silva, and M. Dahlin, Volunteer Cloud Computing: MapRe-
duce over the Internet, in 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011,
pp. 1855-1862.

[26] D. Bermbach, M. Klems, S. Tai, and M. Menzel, MetaStorage: A Fed-
erated Cloud Storage System to Manage Consistency-Latency Tradeoffs,
2011, pp. 452-459.

[27] A. L. Beberg and V. S. Pande, Storage@home: Petascale Distributed
Storage, in Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, 2007, pp. 1-6.

[28] D. P. Anderson and G. Fedak, The Computational and Storage Potential
of Volunteer Computing, in Sixth IEEE International Symposium on
Cluster Computing and the Grid, 2006. CCGRID 06, 2006, vol. 1, pp.
73-80.

[29] SAN. [Online]. Available: http://snia.org/education/storage_networking
_primer/san.

[30] J. W. Mickens and B. D. Noble, Exploiting availability prediction in
distributed systems, in Proceedings of the 3rd conference on Networked
Systems Design & Implementation - Volume 3, Berkeley, CA, USA, 2006,
p. 6-6.

[31]7 A. Elwaer, A. Harrison, 1. Kelley, and 1. Taylor, Attic: A Case Study for
Distributing Data in BOINC Projects, in Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, 2011, pp. 1863-1870.

[32] M. Martalo and, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli,
Randomized network coding in distributed storage systems with layered
overlay, in Information Theory and Applications Workshop (ITA), 2011,
2011, pp. 1-7.

[33] An evaluation of distributed datastores using the appscale cloud plat-
form, pp. 305-312, 2010.

[34] Erasure coding vs. replication: A quantitative comparison, pp. 328-337,
2002.

[35] M. Brantner, D. Graf, D. Kossmann, T. Kraska, and D. Florescu,
Building a Database in the Cloud, ETH Ziirich, 2009.

[36] Wikipedia contributors, Overnet, Wikipedia, the free encyclopedia.
Wikimedia Foundation, Inc., 09-Apr-2012.

[37] SETI@ Home. [Online]: http://setiathome.berkeley.edu/cert_print.php

[38] S. Androutsellis-theotokis, A Survey of Peer-to-Peer File Sharing Tech-
nologies. 2002.

[39] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, and others, Tapestry: An
infrastructure for fault-tolerant wide-area location and routing, 2001.

[40] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, and others,
Oceanstore: An architecture for global-scale persistent storage, ACM
Sigplan Notices, vol. 35, no. 11, pp. 190-201, 2000.

[41] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, Network coding for distributed storage systems, Information
Theory, IEEE Transactions on, vol. 56, no. 9, pp. 45394551, 2010.

[42] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and 1. Stoica, Wide-
area cooperative storage with CFS, ACM SIGOPS Operating Systems
Review, vol. 35, no. 5, pp. 202-215, 2001.

[43] D. P. Anderson, BOINC: A system for public-resource computing and
storage, 2004, pp. 4-10.

[44] O. Costa, L. Silva, I. Kelley, I. Taylor, O. Costa, L. Silva, I. Kelley,
1. Taylor, and C. Tr, Peer-To-Peer Techniques for Data Distribution in
Desktop Grid Computing Platforms. 2007.

[45] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri, and
O. Lodygensky, Computing on large-scale distributed systems: XtremWeb
architecture, programming models, security, tests and convergence with
grid, Future Generation Computer Systems, vol. 21, no. 3, pp. 417-437,
Mar. 2005.

[46] D. P. Anderson, BOINC: A System for Public-Resource Computing and
Storage, in Grid Computing, IEEE/ACM International Workshop on, Los
Alamitos, CA, USA, 2004, vol. 0, pp. 4-10.

[47] 1. Kelley and 1. Taylor, A peer-to-peer architecture for data-intensive
cycle sharing, in Proceedings of the first international workshop on
Network-aware data management, New York, NY, USA, 2011, pp. 65-72.

[48] F. Desprez, Grids, P2P and Services Computing. Springer, 2010.

	Introduction
	Background and Related works
	Decentralized Storage Systems
	Volunteer Computing

	Existing System Review
	Farsite
	IVY
	Overnet/Kademlia
	PAST
	Pastis
	Project Voldemort
	OceanStore
	Glacier
	Total Recall
	Cassandra
	Riak
	Dynamo
	Attic
	Squirrel
	Transparent File System (TFS)

	State of the Art
	Introduction
	Characteristics
	Challenges

	Conclusions
	Appendix
	References

