International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 15

Fast Paxos Made Easy:
Theory and Implementation

Wenbing Zhao, Department of Electrical and Computer Engineering, Cleveland State
University, Cleveland, OH, USA

ABSTRACT

Distributed consensus is one of the most important building blocks for distributed systems. Fast Paxos is
one of the latest variants of the Paxos algorithm for distributed consensus. Fast Paxos allows an acceptor to
cast a vote for a value of its choice unilaterally in a fast round, thereby eliminating a communication step for
reaching consensus. As a tradeoff; the coordinator must build a quorum that is bigger than the simple majority
used in Classic Paxos. This article presents the theory, implementation, and a comprehensive performance
evaluation of the Fast Paxos algorithm. The theory is described in an easier-to-understand way compared with
the original article by Lamport. In particular, an easy-to-implement value selection rule for the coordinator is
derived. Inthe implementation of Fast Paxos for state-machine replication, a number of additional mechanisms
are developed to cope with practical scenarios. Furthermore, the experiments reveal that Fast Paxos is most
appropriate for use in a single-client configuration. The presence of two or more concurrent clients even in a
local area network would incur frequent collisions, which would reduce the system throughput and increase
the mean response time as experienced by clients. Due to frequent collisions, Fast Paxos actually performs
worse than Classic Paxos in the presence of moderate to large number of concurrent clients.

Keywords: Distributed Consensus, End-to-End Latency, Fault Tolerance, Probability Density Function,
Quorum Requirements, State-Machine Replication, System Throughput
INTRODUCTION (referred to as Classic Paxos) for distributed

Distributed consensus is one of the most im-
portant building blocks for distributed systems
(Zhao, 2014). For example, it is impossible to
build a highly available cloud service without
using some distributed consensus algorithm
to ensure that all replicas remain consistent
(Camargos, Madeira, & Pedone 2006; Camar-
gos, Schmidt, & Pedone, 2008; Zhao, Melliar-
Smith, & Moser, 2010; Zhao, 2010). Fast Paxos
(Lamport, 2006) is one of the latest variants of
the original Paxos algorithm (Lamport, 2001)

DOI: 10.4018/1jdst.2015010102

consensus. Classic Paxos is a good fit for
state-machine replication and it has been used
in a number of practical fault tolerant systems
(Bolosky et al., 2011; Burrows, 2006; Hunt et
al., 2010; Mao et al., 2008; Rao, Shekita, &
Tata, 2011). Fast Paxos aims to further reduce
the latency for reaching consensus by using a
larger quorum size. Similar to Classic Paxos,
Fast Paxos operates in rounds and there are
two phases in each round. If a consensus is not
reached within a round, a new round will be
launched for liveness. In Fast Paxos, there can

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

be two different types of rounds: fastrounds and
classic rounds. A classic round would operate
the same way as around in Classic Paxos except
that the value selection rule at the coordinator
is different, as to be explained in later sections.
In the original article published by Lamport
(Lamport, 2006), the quorum requirement as
well as the value selection rule depend on the
evaluation of the following observation known
as O4(v) in (Lamport, 2006):

A value has been or might yet be chosen in
round k only if there exists a k-quorum R such
that vr(a) = k and v(a) = v for every acceptor
a in RTQ. (Lamport, 2006)

Here Q refers to the quorum formed for
the current round, k is the most recent round
number in which an acceptor a has casted a vote,
k-quorum means the quorum used in round k,
vr(a) refers to the round number in which the
acceptor a has casted a vote, and vv(a) refers to
the value contained in that vote. O4(v) is true
if and only if the above observation is true for
some round k for the value v.

Aswe can see, to evaluate this observation,
one must examine every previous round k, and
determine whether or not a k-quorum exists for
round k that satisfies the specific constraintonv.
This implies that for the coordinator to evaluate
whether or not a value v satisfies O4(v), it must
collect votes from every acceptor of the system
in every round, which is simply not practical
in asynchronous environment.

In this article, we introduce a more im-
plementation-friendly value selection rule for
the coordinator, and provide a more intuitive
reasoning on the quorum requirements, both
without the need to evaluate O4(v). To dem-
onstrate the practicality of the proposed value
selection rule, we present an implementation
of Fast Paxos for state-machine replication.
We show that many additional mechanisms
are needed to cope with practical scenarios.
Furthermore, we have conducted a compre-
hensive evaluation of Fast Paxos using our
research prototype. Our experiments reveal
that Fast Paxos is most appropriate for use in

a single-client configuration. The presence of
two or more concurrent clients even in a local
area network would incur frequent collisions,
which would reduce the system throughput and
increase the meanresponse time as experienced
by clients. Due to frequent collisions, Fast Paxos
actually performs worse than Classic Paxos in
the presence of moderate to large number of
concurrent clients.

Theremaining of the article is organized as
follows. Section 2 describes the system model
used in Fast Paxos as well as Classic Paxos and
their variants. Section 3 defines the safety and
liveness requirements for distributed consensus
solutions. Sections 4 and 5 introduce Classic
Paxos and its application in state-machine
replication (referred to as Multi-Paxos) as the
foundation for Fast Paxos. In Section 6, we
describe Fast Paxos and our theoretical contribu-
tions. In Section 7 and Section 8, we report the
details of our implementation and performance
evaluation of Fast Paxos. We conclude the article
with the final two sections on related work and
concluding remarks.

SYSTEM MODEL

We consider a distributed system with anumber
of processes, and any one of them may propose a
value. A process may participate in a distributed
consensus algorithm (such as Classic Paxos and
Fast Paxos) in one of three roles: (1) proposer,
(2) acceptor, or (3) learner. A proposer is one
that proposes values to be chosen and learned
by others. Anacceptor participates in agreement
negotiation on the values proposed. A learner is
one that learns the value that has been chosen.
Note that the roles are logical and a process can
assume multiple roles, e.g., a process may act
both as a proposer and an acceptor.

In a client-server system, the clients send
their requests to the server for processing and
expect to receive the corresponding replies.
When state-machine replication of the server
is used, it is essential to ensure that all replicas
deliver and execute the requests in the same
total order. For each request, its total order

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 17

constitutes the value that requires a distributed
consensus among the replicas. To determine the
total order for each request, typically one of
the replicas is designated as the primary and it
is responsible to determine the total ordering.
Hence, the value to be agreed upon is typically
contributed by both the client and the primary
(i.e., they jointly serve as a proposer). The
primary is also referred to as the coordinator.
We assume that the system and the con-
sensus algorithms operate in an asynchronous
environment with crash faults only (i.e., no
Byzantine faults). The asynchronous environ-
ment means that it may take a process arbitrary
long time to complete alocal task, and amessage
may take arbitrarily long time to be delivered at
the intended destination process, possibly after
many retransmissions. Furthermore, processes
might fail and a failed process stops participat-
ing in the consensus algorithm, i.e., it crashes.

CORRECTNESS CRITERIA FOR
DISTRIBUTED CONSENSUS

Asound consensus algorithm should ensure both
the safety property and the liveness property
defined below (Lamport, 2001):

* Safety property: The consensus algorithm
should guarantee:

o (S.a):Ifavalueischosenbyaprocess,
then the same value must be chosen
by any other process that has chosen
a value;

o (S.b): The value chosen must have
been proposed by one of the processes
in the system;

o (S.c): Only the value that has been
chosen by some process can be learned
by a process;

e Liveness property: Eventually, some
valueis chosen. Furthermore, ifa value has
been chosen, then a process in the system
can eventually learn that value.

The safety requirement (S.a) ensures that
the same value is chosen by all processes. The

requirements (S.b) and (S.c) rule out trivial so-
lutions, e.g., all processes choose a pre-defined
value. The liveness property can be satisfied
only during periods of system synchrony.

CLASSIC PAXOS

Classic Paxos (Lamport, 2001) operates in two
phases, the prepare phase (i.e., phase one) and
the accept phase (i.e., phase two), respectively,
as shown in Figure 1. The prepare phase is
initiated by a proposer sending a prepare re-
quest, referred to as Pla(n), to the acceptors
in the system, where n is the proposal number
selected by the proposer. At this stage, no value
is included in the prepare request. This may
appear to be counter-intuitive, but it is critical
to limit the freedom of the proposer on what
value it may propose because some acceptors
might have accepted a value proposed by a
competing proposer. Allowing a proposer to
propose an arbitrary value at all times may lead
to multiple values being accepted (as we will
see, this limitation is lifted in Fast Paxos and
mechanisms are defined so that at most one of
the conflicting values is chosen in Fast Paxos
(Lamport, 20006)).

In the prepare phase, when an acceptor
receivesaPla(n) message, itdoes the following:

« If the acceptor has not responded to any
Pla(n) message, it records the proposal
number n, and sends its acknowledgment,
referred to as P1b(n), to the proposer;

o If the acceptor has already responded
to another Pla(m) message with a pro-
posal number m, and m < n, there are two
scenarios:

o The acceptor has not received any
accept request, which is sent by a
proposer during the accept phase
and referred to as P2a message, it
records the higher proposal number
n and sends its P1b(n) message to
the proposer;

o The acceptor has already received a
P2a(k) message with a proposal num-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

Figure 1. Normal operation of the Paxos algorithm

Proposer i

Acceptor |

i ©
Acceptor \/
Acceptor I
Learner :
Learner !

ber k, it must have received a value
proposed by some proposer in the past.
This full proposal [k, v] is included in
P1b(n, [k, v]) to the proposer. Obvi-
ously, k must be smaller than n.

The second phase (i.c., the accept phase)
starts when the proposer could manage to collect
responses from the majority of acceptors. The
proposer determines the value to be included in
the P2a message in the following way:

o If'the proposer received one or more P1b
messages with full proposals. it selects the
value v in the proposal that has the highest
proposal number;

* If none of the P1b messages received by
the proposer contains a full proposal, the
proposer has freedom to propose any value.

Once the value is selected, the proposer
multicasts a P2a(n, v) message to the accep-
tors. When an acceptor receives a P2a(n, v)
message, it accepts the proposal [n, v] only if
it has responded to the corresponding Pla(n)
message. Then, it sends an acknowledgment
message, referred to as P2b(n).

Note that when an acceptor accepts a P2a
message, it does not mean that the value con-
tained in the proposal included in P2a has been
chosen. Only after the majority of acceptors
have accepted the same P2a does the value is
considered chosen. It is possible that no value
is chosen or another value is eventually chosen
after a minority of acceptors have accepted a
P2a message.

There are a number of ways for a learner
to find out the value that has been chosen. The
most straightforward method is for an accep-
tor to multicast P2b to all learners, as shown
in Figure 1. When a learner has collected P2b
messages for the same proposal from the ma-
jority of acceptors, it will be rest assured that
the value has been chosen. As an alternative, if
the number of learners is large, a small group
of learners can be selected to receive the mul-
ticasts from the acceptors and they can relay
the accepted value to the remaining learners.
Yet another alternative is for each learner to
periodically poll the acceptors to see if they
have accepted a value.

If a learner wants to make sure that the
value it has learned is indeed the value that has
been chosen, it can ask a proposer to issue a

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 19

new proposal. The result of this proposal would
confirm whether or not the value is chosen.

MULTI-PAXOS

An immediate application of the Classic Paxos
algorithmis to enable state-machine replication.
As mentioned before, the value to be agreed on
bytheserverreplicas (i.e., acceptors) is the total
order of the requests sent by the clients. The
total ordering of a sequence of requests is ac-
complished by running a sequence of instances
of the Classic Paxos algorithm. Each instance
is assigned a sequence number, representing
the total ordering of the request that is chosen.
For each instance, the value to be chosen is
the particular request that should be assigned
to this instance.

The proposer in each instance is referred to
asthe coordinator (Lamport & Massa, 2004), the
leader (Lamport, 2001), or simply the primary
(Zhao, Zhang, Chai, 2009). The replica that
serves as the proposer also acts as an accep-
tor. In a simple implementation, the primary
propagates the chosen value to the remaining
replicas (often referred to as backups) so that
they can learn the value as well (Zhao, 2007;
Zhao, Zhang, & Chai, 2009). Obviously, the
primary would be the first to know that a value
is chosen for each instance of the Classic Paxos
algorithm, and usually the first to send the reply
to the client. The backups can suppress their
replies unless they have suspected the primary
because the client needs only a single reply for
each of its requests. It is also possible to en-
able a backup to learn the chosen value faster
by multicasting each replica’s P2b message to
all replicas (instead of only to the primary). A
trade-off for this approach is more multicast
messages being sent in the system. Furthermore,
a backup might learn the chosen value ahead
of the primary.

Normally, one of the server replicas is
designated as the primary at the beginning of
the system deployment. Only when the primary
becomes faulty, which is rare, or being sus-
pected of being faulty by otherreplicas, another

replica will be elected as the new primary. As
long as there is a sole primary in the system,
it is guaranteed that no replica would report
having accepted any proposal to the primary,
which would enable the primary to select any
value (i.e., assigning any request to the current
instance). Therefore, the first phase (i.e., the
prepare phase) can be omitted during normal
operation (i.e., when there is only a single
primary in the system).

The full Classic Paxos algorithm is needed
to elect a new primary. Furthermore, this run
would effectively execute the first phase of all
instances of the Classic Paxos as long as the
current primary is operating correctly.

The above scheme of applying the Classic
Paxosalgorithm for state-machine replication is
first proposed in (Lamport, 2001) and the term
”Multi-Paxos” was first introduced in (Chandra,
Griesemer, Redstone, 2007). TheMulti-Paxos
algorithm during normal operation is illustrated
in Figure 2. Note that the primary can execute
the request as soon as it receives the P2b mes-
sages from a quorum of replicas.

FAST PAXOS

The objective of Fast Paxos (Lamport, 2006)
is to reduce the end-to-end latency of reaching
a consensus in scenarios where the clients are
responsible to propose values to be chosen by
the acceptors. In Multi-Paxos, we have shown
that the first phase of Classic Paxos can be run
once for all instances of the algorithm provided
that initially there is a single leader. Hence, in
Multi-Paxos, the cost of reaching agreement is
the second phase of the Classic Paxos algorithm.
Fast Paxos aims to further reduce the cost of
reaching consensus by enabling the running of
one P2a message for all instances of Fast Paxos
instate-machine replication. This would enable
an acceptor to select a value (provided by a
client) unilaterally and sends the P2b message
to the leader immediately, thereby reducing the
end-to-end latency.

Because the Classic Paxos algorithm is
proven to be optimal (Lamport, 2001)1, to re-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

Figure 2. Normal operation of Multi-Paxos in a client-server system with 3 server replicas and

a single client

Client
I

Replica 0 :
(Primary).
1

Replicall

Execution

(Backup) ¥

|
Replica2

%

2,
2
>

(Backup) I

i Accept Phase

duce the latency, we must sacrifice something
else. In Fast Paxos, to tolerate f faulty replicas,
more than 2f + 1 replicas are required. We will
develop the criteria on the minimum number
of replicas to tolerate f faults for Fast Paxos to
work. Furthermore, because an acceptor (i.e., a
server replica) unilaterally selects a value (i.e.,
a request message sent by a client), different
acceptors might select different values. This
scenario isreferred to as a collision (in choosing
a value) in (Lamport, 2006). Collision avoid-
ance and collision recovery are new problems
that occur in Fast Paxos.

We first describe the basic steps of the Fast
Paxos algorithm, then we discuss the quorum
requirement and the value selection rule for
the coordinator. We conclude the section by
providing a proof of correctness of Fast Paxos
with our modifications.

THE BASIC STEPS

Similar to Classic Paxos, Fast Paxos also oper-
ates in rounds (the round number corresponds
to the proposal number in Classic Paxos) and
each round has two phases, as shown in Figure
3. The first phase is a prepare phase to enable
the coordinator to solicit the status and promises
from the acceptors. The second phase is for the
coordinator to select a value and be voted on by

I
i
l
Learning Phase |

the acceptors. When an acceptor has responded
to a Pla message in a round i, it is said that the
acceptor has participated the round i. When
an acceptor has sent to the coordinator a P2b
message in response to the P2a message from
the coordinator, it is said that the acceptor has
casted its vote for that round. When the coor-
dinator has collected P2b messages with the
same value from a quorum of acceptors in that
round, that value is said to have been chosen.

However, Fast Paxos has a number of dif-
ferences from Classic Paxos:

* InFastPaxos, a round may be either a fast
round or a classic round. A fast round may
use a quorum of different size than that of
a classic round. We refer to the quorum
used in a fast round as fast quorum, and
the quorum used in a classic round as
classic quorum,;

* The value selection rule at the coordinator
is different from that of the Classic Paxos
due to the presence of the fast round;

e In a classic round, the coordinator selects
the value to be voted on, similar to that of
Classic Paxos;

e In a fast round, if the value selection rule
allows the coordinator to select its own
value, it may send a special P2a message
tothe acceptors without any value selected.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 21

Figure 3. Fast Paxos operates in rounds with each round consisting of two phases. A round can
be a classic round, where the coordinator selects a value to be voted on, or a fast round, where
each acceptor is allowed to propose its own value. The dotted arrowed lines means that they
can be omitted when a unique coordinator exists in the system.

Fast Round

Classic Round

. |
Coordinator

4‘7:

Acceptor

Acceptor

Acceptor

Acceptor

Learner

This special P2a message (referred to as
any message in (Lamport, 2006)) enables an
acceptor to select its own value (proposed
by a client) to vote on.

A learner can learn the value that has been
chosen using any of the learning mechanisms
we outlined for Classic Paxos with one modi-
fication: instead of collecting from a majority
of the acceptors to learn a value that has been
chosen, the learner must collect from a classic
quorum of acceptors in a classic round, and
from a fast quorum of acceptors in a fast round.

Assuming that there has been a unique
coordinator since the server started running, the
first time a fast round is run will always allow
the coordinator to send an any message in phase
2. In atypical state-machine replicated system,
this would allow the running of a single P2a
message for all instances of Fast Paxos, which
would eliminate one communication step, as
shown in Figure 4. This is the sole advantage
of Fast Paxos. Hence, whenever possible, a fast
round is run and a classic round is used only
when a consensus cannot be reached in the fast
round due to the failure of the coordinator or
due to a collision.

COLLISION RECOVERY,
QUORUM REQUIREMENT, AND
VALUE SELECTION RULE

During a fast round, if the coordinator issues
an any P2a message, the acceptors would have
freedom to select its only values. If there are
several clients proposing different values con-
currently (i.e., they issue requests to the server
replicas concurrently), it is likely that different
acceptors could select different values, which
would cause a collision. When this happens,
the coordinator might see different values in the
quorum of votes it has collected, which would
preventthe consensus from being accomplished
in this fast round.

Note that it is not an option for the coor-
dinator to block waiting until it has collected
votes with the same value from a quorum of
acceptors because it may never be able to build
a quorum if less than a quorum of acceptors
have voted for the same value. Therefore, on
detecting a collision, the coordinator should
initiate recovery by starting anew, classic round.
In this new classic round, it is apparent that the
coordinator would receive the same, or similar
information from a quorum of acceptors in the

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

Figure 4. Normal operation of (Multi-) Fast Paxos in a client-server system

Client

Replica0

(Primary)

Replica 1

(Backup)

VOJ
Replica2 ™%

(Backup)

Replica 3

(Backup) any message

for all instances .

first phase of the new round. Therefore, the first
phase can be omitted and the coordinator can
proceed to determining a value to be voted on
in the second phase.

With a quorum of votes containing dif-
ferent values, the coordinator must be careful
in selecting a value that has been chosen in a
previous round, or might be chosen. Just like
Classic Paxos, Fast Paxos does not terminate,
and hence, once a value is chosen, the same
value must also be chosen in any future round.
A value is chosen or might be chosen if a quo-
rum of acceptors have voted the same value.
Choosing any other value might cause two or
more values be chosen, which would violate
the safety property for consensus. However,
it is not straightforward for the coordinator to
determine if a value in the quorum of votes has
been chosen or might be chosen.

Before we delve further on the value selec-
tionrule, we first show that the simple-majority
based quorum formation in Classic Paxos is no
longer valid in Fast Paxos. In Classic Paxos,
to tolerate f faulty acceptors, a total of 2f + 1
acceptors are required and the quorum size is a
simple majority (f + 1). With a quorum size of
f+ 1, two quorums may intersect in as few as
a single acceptor. Therefore, with this quorum
formation, a coordinator cannot rule out the
possibility that a value might have been chosen
even if it has collected a single vote with that

value. As such, the coordinator would not be
able to determine which value to select if it sees
different values in the quorum of votes it has
collected. Note that only one of the different
values could have been chosen because itis im-
possible for the acceptors to form two quorums
each with a different value in the same round
evenifaquorumis formed by asimple majority.
The problem then becomes to determine which
of the values is the most likely candidate such
that if a value has been chosen in a previous
round, that value is guaranteed to be selected.

It should be apparent that a bigger quorum
than the simple majority must be used in Fast
Paxos. The most intuitive way for the coordi-
nator to determine whether or not a value has
been chosen is to see whether or not there is
a clear majority of votes for a common value
in the current quorum. Note that the presence
of'a common value from the majority of votes
in a quorum does not necessarily mean that
the value has been chosen. Our next task is
to ensure that a value in any of the minority
votes could not have been chosen in the past.
We can guarantee this property by imposing
the following quorum requirement in addition
to the basic quorum requirement:

* Afastquorum Rf and a classic quorum Rc
mustintersectin more than|Rcl|/2 acceptors.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 23

Therefore, we have the following three
quorum requirements:

1. Any two classic quorums must intersect in
at least one acceptor;

2. Any two fast quorums must intersect in at
least one acceptor;

3. Any fast quorum Rf (with a size |Rf|) and
any classic quorum Rc (with a size |Rc|)
mustintersectinmore than [Rc|/2 acceptors.

With the list of quorum requirements in
place, we are now ready to derive the quorum
sizes. Letthe total number of acceptors be n, the
number of faulty acceptors that can be tolerated
in a classic round be f, and the number of faulty
acceptors that can be tolerated in a fast round be
e. Hence, a classic quorum is formed by n — f
acceptors and a fast quorum is formed by n—e
acceptors. Based on our previous argument, it is
clear that f>e. The three quorum requirements
are translated to the following:

m-H+m-H-n>0
(n—e)+(n—e)—n>0
(m—f)+(n—e)—n>(n—1)72

Therequirements can be furtherreduced to:

n>2f
n>2e
n>2e+f

As we can see, the quorum requirement
(2) is superseded by the quorum requirement
(3) because the latter is more restrictive. We
end up with only the following two quorum
requirements:

n>2f (1)

n>2e+f

2)

We can have two different quorum forma-
tions by maximizing e or f:

* First quorum formation: Because f> e,
to maximize e, we have ¢ = f and n > 3f.
Hence, aclassic quorum would be the same
size of a fast quorum: |[Re|=n—{>3f—f
= 2f. For all practical purposes, the total
number of acceptors would be set ton=3f
+ 1 and the quorum size (both classic and
fast) would be 2f + 1. For example, if we
choose f= 1, we would need a total of 4
acceptors, and the quorum size would be 3;

* Second quorum formation: To maximize
f, we can use the upper bound given in
Equation 1 for f, therefore:

f<n/2

We can derive the requirement on e from
Equation 2:

e<(n—1)/2

By replacing f with n/2 (i.e., f’s upper
bound)), we have:

e<(n—n/2)2
Finally, we have:
e<n/4

Therefore, the size ofa classic quorum must
be greater than n/2 (i.e., a simple majority),
and the size of a fast quorum must be greater
than 3n/4. For example, if we use the smallest
e possible, i.e., e = 1, we need a minimum of 4
acceptors. The size of a fast quorum would hap-
pen to be the same as that of a classic quorum,
which s 3. Note that f=1 as well. Furthermore,
aclassic quorum does not always have the same
size as that of a fast quorum. Consider the case
when e = 2. We would need to have 8§ accep-
tors, which means that a classic quorum must
consist of 5 acceptors while we would need 6
acceptors to form a fast quorum. Hence, f=3
in this case.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

Having fully defined the classic and fast
quorums for Fast Paxos, it is time to define the
value selection rule at the coordinator. We have
already argued that in case of different values
are present in the votes that the coordinator has
collected, the coordinator should choose the
value contained in the majority of the votes in
the (classic) quorum, if such a value exists. If
no such majority votes exist in the quorum, the
coordinator is free to choose any value because
no value could have been chosen in a previous
round due to our quorum requirement 3. Hence,
the value selection rule is defined below:

1. If no acceptor has casted any vote, then
the coordinator is free to select any value
for phase 2;

2. If at most a single value is present in the
votes, then the coordinator must select that
value;

3. Ifthevotescontaindifferent values, a value
mustbe selected ifthe majority of acceptors
in the quorum have casted a vote for that
value. Otherwise, the coordinator is free
to select any value.

Rule 1 and rule 2 are the same as those for
Classic Paxos. The rule 3 is specific for Fast
Paxos. Compared with the original coordina-
tor’s rule in (Lamport, 2006), our value selec-
tion rule for the coordinator has the following
characteristics in cases of collisions:

» If according to the original coordinator’s
rule, a value is selected, the same value is
guaranteed to be selected according to our
rule. This is because if a value has been
chosen previously, according to our quorum
requirement, that value must be present in
the majority of votes;

e However, a value that is selected accord-
ing to our rule might not have been chosen
previously, in which case, the coordinator
would have the freedom to selectany value
according to the original rule. Note that our
rule in this respect does not have any nega-

tive impact to the consensus algorithm: if
the coordinator has freedom to select any
value, it sure is allowed to select the one
that is present in the majority of votes.

PROOF OF CORRECTNESS

We prove that the modified Fast Paxos with our
value selection rules satisfies the safety proper-
ties outlined previously. We choose not to prove
the liveness property because our modifications
to Fast Paxos is not related to liveness:

Theorem 1: Safety property S.a: If a value is
chosen by a process, then thecsame value
must be chosen by any other process that
has chosen a value.

Proof: We prove by contradiction that S.a is
satisfied by Fast Paxos. Assume value v is
chosen in some round t, and another value
u is chosen in some other round s. Without
loss of generality, we assume t < s. From
round t + 1 to round s, the coordinator for
each round must collect information from
a quorum of acceptors to select the value
to be voted on in phase 2. If between two
consecutiveroundsrandr+1, the coordina-
tor is not changed, the coordinator obtains
such information via the P2b messages in
round r. If the coordinator is changed be-
tweenroundrandr+1, the new coordinator
must collect P1b messages in the phase 1
of round r+1.

There are only four scenarios for consecu-
tive rounds:

* Roundrisa fast round and round r + 1 is
also a fast round;

* Roundrisa fast round and round r + 1 is
a classic round;

* Roundris a classic round and round r + 1
is a fast round;

* Roundris a classic round and round r + 1
is also a classic round.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 25

We start by considering the case when r is
t, where a value v is chosen. Furthermore, we
assume that the coordinator might have been
changed from round t to round t+ 1. Therefore,
phase | inroundt+ 1 mightbe necessary. Under
the four scenarios we outlined above.

A fast quorum R1f of acceptors has voted
for v in round t. In round t + 1, the coordinator
would collect information from a fast quorum
R2f of replicas to compute the value to be se-
lected for P2a. The size of two fast quorums is
n — e (where n is the total number of acceptors
and e is the number of faulty acceptors toler-
ated). R1f and R2f must intersect in a set S of
at least 2n—2e—n = n—2e acceptors. According
to the first quorum formation, f = e, and n =
3f + 1. Hence, |[R1f | = |[R2f | = 2f + 1, and
IS| = f + 1. According to the second quorum
formation, n =4e + 1. Hence, [R1f|=|R2f| =
4e+ 1, and |S| =2e + 1. It is clear that for both
quorum formations, a majority of the acceptors
in R2 fare also in R1f. According to our value
selection rule, the coordinator must select v in
round t+1 for voting, if the coordinator could
manage to complete the first phase inround t+1.
Furthermore, if the coordinator could manage
to finish the second phase, v must to be chosen
inround t + 1.

In scenario 2, the coordinator in round t +
1 collects information from a classic quorum
Rcacceptors. The fast quorum R 1fofacceptors
that voted v in round t and the classic quorum
Rc must intersect in at least (n—f)+(n—e) —n=
n—f—e>(n— f)/2 acceptors due to Equation
2, which is the majority of the classic quorum
of acceptors in round t+1. This ensures that v
will be selected if the coordinator could com-
plete the first phase in round t+1. Similar to
scenario 1, if the coordinator could manage to
finish the second phase, v must to be chosen
inround t + 1.

In scenario 3, because v is chosen in a
classic round t, the operation in this round is
reduced to Classic Paxos, which means that
only v could have been voted by any acceptor.
Hence, in round t + 1, the coordinator would
only see a single value v among the votes it
collects. According to the value selection rule,

the coordinator must select v in round t+1 if
the coordinator could collect information from
a quorum of acceptors. Furthermore, if the
coordinator could manage to finish the second
phase, v must to be chosen in round t + 1.

Due to the same reason, in scenario 4, the
coordinator for round t+1 must also select v
for voting in phase 2 if the coordinator could
collectinformation from a quorum ofacceptors.
Furthermore, if the coordinator could manage
to finish the second phase, v must to be chosen
inround t + 1.

Therefore, we have the same conclusion
for each scenario, i.e., the coordinator in the
new round must select v for voting if it could
manage to complete the first phase, and must
chose vifit could complete the second phase of
the new round. This conclusion is true for each
new round until round s, which is conflicting
with our assumption that a different value u is
chosen in round s. This proves that the safety
property S.a holds:

Theorem 2: Safety property S.b: The value
chosen must have been proposed by one
of the processes in the system.

Proof: In Fast Paxos, the value chosen is always
selected by the coordinatoraccording to the
value selection rule. The value selected is
proposed either by a proposer or one of the
acceptor in a fast round. Hence, the safety
property S.b holds.

Theorem 3: Safety property S.c: Only the value
that has been chosen by some process can
be learned by a process.

Proof: Any of the learning mechanisms we
outlined for Fast Paxos can be used to learn
the value chosen for Fast Paxos. It is easy
see that the safety property S.c is satisfied
trivially by any of the learning mechanisms.

IMPLEMENTATION

We implemented the Fast Paxos algorithm as
part of a state-machine replication framework
using the Java programming language. In the
framework, Fast Paxos is used to ensure the

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

total ordering of requests for execution. The
major components of the framework are shown
in Figure 5.

The framework is designed foruseinalocal
area network (LAN) where the client and the
server replicas communicate via IP multicast.
Allincoming messages and outgoing messages
at the server replica are controlled by the Rep-
lication Engine logic. There are two types of
messages: (1) application messages (requests
and replies), and (2) control messages used
for total ordering of application requests such
as P2a and P2b messages. A new application
requestis placed in the Request Queue immedi-
ately after received. When a replica is ready to
order a request, it is removed from the Request
Queue and placed in the Ordered Queue at the
designated place. When an agreement on the
total ordering of a request has been achieved
using Fast Paxos, the request is dispatched to
the server application for execution. A copy of
the reply message resulted from the execution s
stored in the Reply Cache for possible retrans-
mission before it is sent to the client. Because
Fast Paxos is a quorum-based algorithm, a
Quorum Manager is used to keep track of the
status of the quorum building process by the
primaryreplica (i.e., the primary serves both the

coordinator and the acceptor roles as defined in
Fast Paxos). The Quorum Manager is not used
at the backup replicas.

The Replication Engine implements Fast
Paxosand drives all operations. An eventdriven
approach is used in our implementation where
all events are handled by an event loop. The
event loop blocks waiting for a new message
from the network (i.e., waiting for the next
event) at the beginning of each iteration, and
invokes the appropriate event handler for the
message received according to its type. There
are four event handlers:

* Request handler: It hands application
requests sent by a client;

e P2a handler: It handles P2a messages.
It is used only by backup replicas (i.e.,
acceptors);

* P2b handler: It handles P2b messages. It
is used only by the primary replica;

* Learnnotification handler: Ithandles the
notification message (which we refer to as
the Learn message) sent by the primary
regarding what value is chosen (i.e., the
total ordering for a request). The handler
is used only by backups.

Figure 5. Major components of the state-machine replication framework with Fast Paxos

Server Application

Dispatch totally ordered request

Ordered
Queue

Replication
Engine

Reply
Cache

Request Quorum
Queue Manager
IP Multicast

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 27

REQUEST HANDLER
OPERATIONS

The request message is first checked to see
if it is a duplicate. Duplicate requests are
discarded. The Reply Cache is searched to
see if a reply has been generated for the
retransmitted request. If one is found, the
reply is retransmitted. No further operation
is carried out in this case.

Next, the request is checked to see if it is
one of missing messages that the replica needs
to execute. If it is, the message is placed in the
Ordered Queue at the designated position for
execution, all eligible ordered requests will be
executed in the total order imposed by Fast
Paxos.

If the received request is indeed a new
request, it is appended to the Request Queue.
The remaining operations depend on whether
or not the replica is the primary or a backup,
and whether or not it is in a fast round or it is
in a classic round.

In a classic round, if the replica is the
primary, a P2a message is prepared and
multicast to all backups. The P2a message
includes the next sequence number for the
current request (which decides on the total
ordering of the request). The request is also
transferred from the Request Queue to the
Ordered Queue. The primary then waits for
the corresponding P2b messages from a
quorum of replicas via the Quorum Manager.
If the replica is a backup, it takes no further
action (other than adding the request to the
Request Queue).

In a fast round, both the primary and a
backup replica order the request and prepare the
corresponding P2b message independently. The
P2b message carries the sequence number for
the request and the request id. At the primary,
the Quorum Manager creates a Certificate object
for the corresponding sequence number and
adds the P2b message prepared to the Certificate
object. At a backup replica, the P2b message
is sent to the primary.

P2A HANDLER OPERATIONS

Only abackupreplica(i.e.,an acceptor) receives
the P2a message sent by the primary. First, the
P2amessageis checked to seeifitis valid based
on the sequence number included in P2a. If it
is, the P2a message is handled according to the
following mechanisms.

Ifit is in a classic round, the request being
ordered is transferred from the Request Queue
to the Ordered Queue, and the corresponding
P2b message is prepared and sent to the primary.

If it is in a fast round, the very fact that
a backup received a P2a message means that
a collision has occurred and the primary is
recovering the collision via the P2a message.
In this case, the replica rolls back its choice of
request for the corresponding sequence number
by transferring the request from the Ordered
Queue back to the Request Queue, and proceed
to operating as if it is in a classic round by
ordering the next request exactly as indicated
in the P2a message, and responds with a P2b
message to the primary.

P2B HANDLER OPERATIONS

The P2b message is only handled by the pri-
mary. The primary uses the Quorum Manager
to build a quorum, and to select the value for a
round of Fast Paxos using the value selection
rule we described previously. If no collision is
found (i.e.,all replicas assigned the same request
for the same sequence number), the primary
proceeds to preparing and multicasting a Learn
message to all backup replicas, informing them
the chosen total ordering for a sequence number.
If a collision is detected, i.e., two or more
different requests are selected for the same
sequence number by different replicas, the
primary selects at most one of them according
to the value selection rule, and includes that
value in the P2a message. To recover from the
collision, the primary initiates a classic round
by multicasting the P2a to backup replicas.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

For a classic round, it is guaranteed that
a collision will never happen. Normally, the
system is configured to start with a fast round
to enjoy the benefits of Fast Paxos and remain
operating in fast rounds until a collision is de-
tected. The primary uses a single classic round
to recover from the collision. Once the classic
round is over, the primary switches to fast
rounds. The primary performs the switch-over
when it is in a classic round and the quorum of
P2b is complete.

LEARN NOTIFICATION
HANDLER OPERATIONS

Only a backup replica may receive and handle
alearn notification (i.e., Learn message). Upon
receiving a Learn message, the replica knows
that an agreement for a particular sequence
number has been reached, and executes the
ordered request in exactly the same order. Such
a message also helps a slow replica catch up
with other replicas by skipping the correspond-
ing round of Fast Paxos consensus. To reduce
unnecessary network load, the reply generated
by a backup replica is suppressed.

When a backup replica receives a Learn
message and it is in a classic round, it may infer
that the collision recovery is over and switches
to the fast round operation.

PERFORMANCE EVALUATION

The performance of Fast Paxos is evaluated with
our state-machine replication framework, using
Classic Paxos as a reference for comparison.
The evaluation is carried out using a testbed
consisting of five compact computers connected
via a Gigabit Ethernet. Each computer node is
equipped with a Core 15-4250U CPU and 4GB
of RAM, and runs the Ubuntu 14.04 Linux. Four
of the nodes are used to run the server replicas,
and the remaining one is used to run the clients.
For Fast Paxos, four replicas are used to toler-
ate a single faulty replica. For Classic Paxos,
three replicas are used to tolerate a single faulty
replica. A single client-server application is

used to benchmark the system’s performance.
The server application is intentionally designed
to perform no substantial processing for each
requestso that the end-to-end latency measured
reflects primarily the communication and Fast
Paxos consensus cost. Thereply lengthis always
set to be the same as the request length.

END-TO-END LATENCY

Because Fast Paxos is designed to eliminate one
communication step in reaching a consensus,
we expect that a major benefit of using Fast
Paxos in state-machine replication is a reduced
end-to-end latency as seen by a client. The end-
to-end latency is defined to be the time elapsed
since the clientissues a request, until itreceives
the corresponding reply. For the end-to-end
latency evaluation, we use a single client with
varying request/reply message lengths. We keep
track of the round-trip time of each request and
save the data at the end of each run. The data
is then used to compute the median, mean, as
well as the probability density function of the
end-to-end latency.

As shown in Figure 6(a), the experimental
results are consistent with our expectation for
requests with short lengths (i.e., 128 bytes and
256 bytes). However, the mean end-to-end
latency for Fast Paxos is rather similar to that
for Classic Paxos for longer requests. For a
request with 1024 bytes, the mean latency for
Fast Paxos is even slightly higher than that for
Classic Paxos. This observation is rather puz-
zling initially. A closer look at the data shows that
the median end-to-end latency for Fast Paxos is
consistently smaller than that for Classic Paxos
for all requests with different lengths (by about
25%, which reflects the benefits of eliminating
one communication step).

The unexpected large mean latency for
longer requests for Fast Paxos is apparently
caused by a small fraction of data with large
end-to-end latency. This is indeed the case, as
illustrated by the probability density function
of the end-to-end latency in Figure 7. For both
Fast Paxos and Classic Paxos, we can notice the

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 29

Figure 6. End-to-end latency (a) and throughput (b) for the replicated client-server application

12 |
é 1.0 +
>
é 08 |]
I+
-
5 06 M |
[~
w
g o4y 1
S Fast Paxos -- Median —+—
02 Classic Paxos -- Median B
Fast Paxos -- Mean —¥—
Classic Paxos -- Mean _E'_
0.0 , f |

0 200 400 600 800
Message Length (Bytes)
(@

1000

4000.0 T T T T T

3500.0 1
3000.0 - 1
2500.0 1
2000.0 1
1500.0 1
1000.0 1

500.0

System Throughput (calls/second)

Fast Paxos -- 128 ——
Classic Paxos -- 128

0.0 . .
0 1 2 3 4 5 6

Number of Concurrent Clients
(b)

Figure 7. Probability density function of the end-to-end latency for Fast Paxos and Classic Paxos,
for requests of 128-bytes long (a), and for requests of 1024-bytes long (b)

1

10° T T T T T T
Classic Paxos -- 128
s
k3]
5
T 102 |
>
=
7]
(=]
&
[
E 100 |
o
©
2
[
a
104 £ : . 4 b) —
0 1 2 3 4 5 6 7
-1
10 T T T T T
5 Fast Paxos -- 128
B
2 %
uj_) X
2 10°
@
[=4
5]
a
g 10—3 L
=
©
o t
[+ -
& ot b T IR J
0 1 2 3 4 5 6 7

End-to-End Latency (ms)
(@

presence of the second broad peak for requests
of'1024-bytes long. However, the second peak is
positioned in larger end-to-end latency for Fast
Paxos than that for Classic Paxos. The second
peak is not present for requests of 128-bytes
long. We speculate that this artifact is due to
inefficiency of our implementation, rather than
anything intrinsic to Fast Paxos. Future work is
needed to identify the source of the problem.

1

10 ‘ ‘ " Classic Paxos - 1024 |
S
B
S
T 102} E
z
|72}
[
[
[a}
2 10° |]
=)
©
¥l t
<] I o
a 1 HHI B4

10 & =)

0 1 2 3 4 5 6 7

107"
5 Fast Paxos -- 1024
£
f=4
Z 2
2> 10° H
|72}
[
f
[a}
Z10° | 1
"E + 4
8 -
[e AR
a 10-4 3 i LA | I iy

0 1 2 3 4 5 6 7
End-to-End Latency (ms)
(b)

The system throughput is measured at the pri-
mary and it inevitably reflects the aggregated
performance over a number of requests. To
evaluate system throughput, we launch up to
5 concurrent clients with each client issuing
requests of 128-bytes long consecutively. As
shown in Figure 6(b), Fast Paxos has slightly

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

better system throughput than Classic Paxos in
the presence of a single client or two concurrent
clients. However, Fast Paxos performs worse
in the presence of three or more concurrent
clients. Other than the computational costs of
building and processing a larger quorum com-
pared against Classic Paxos, the main reason
for the lower system throughput is frequent col-
lisions and the ensuing recoveries. We observe
that the collision rate is approximately 5% in
the presence of concurrent clients. Hence, we
conclude that Fast Paxos is not a good fit for
high-throughput systems that must support large
number of concurrent clients.

COLLISION RECOVERY
LATENCY

The collision recovery latency is measured as
the time elapsed since the detection ofacollision
until the ensuring classic round is completed.
Shown in Figure 8 is the probability density
function of the recovery latency for a run as
part of our throughput measurement where the
number of clients varies from 1 to 5 (with a total
of 1460 collision recoveries). As can be seen,
there is a major peak close to 0.6ms and there
exists a long tail extending as large as nearly

7ms. From Figure 8, we infer that the recovery
latency distribution is relatively independent
from the number of concurrent clients. This
is expected because the recovery involves a
single classic round regardless of the number
of concurrent clients and the message lengths
for P2a and P2b remain constant.

RELATED WORK

The impracticality of the coordinator’s value
selection rule is pointed out in (Vieira & Bu-
zato, 2008). Not surprisingly, the rule derived
in (Vieira & Buzato, 2008) is identical to ours.
However, in (Vieira & Buzato, 2008), the rule
is derived based on the quorum formation rule
in (Lamport, 2006) (which is in turned derived
from the requirement on O4(v)). In this article
we essentially use this rule as the foundation to
derive the quorum requirements without rely-
ing on the evaluation of O4(v). Furthermore,
we recognize that the impracticality of the
coordinator’s rule is due to the difficulty of
evaluating O4(v) for every possible value v in
practical scenarios.

In (Junqueira, Mao, Marzullo, 2007), the
performance of the Fast Paxos algorithm is
compared against that of the Classic Paxos

Figure 8. Probability density function of the recovery latency

-2

10
Median: 0.644ms

15 Mean: 0.867ms
g Stdv: 0.811ms
i
2
®
c
[}
=)
=
=
2
S 10° 1
o

Recovery Latency (ms)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 31

algorithm via simulation instead of an actual
implementation, for wide area networks. The
authors discovered that under certain circum-
stances, Classic Paxos outperforms Fast Paxos.
Furthermore, the study is done for cases in
which collision is absent in Fast Paxos. Since
this study is based on simulation and it is framed
for wide area networks, the result is not directly
comparable to ours.

In(Vieira & Bzato,2013), the performance
comparison between Classic Paxos and Fast
Paxosisstudied. The conclusionisrather similar
to that in (Junqueira, Mao, Marzullo, 2007) in
that Classic Paxos outperforms Fast Paxos when
the replication degree is small with and without
collision in Fast Paxos. With large replication
degrees, the performance of Fast Paxos and
Classic Paxos are similar. This result is not
surprising in that multiple concurrent clients
are simulated using local load generators (rather
than real clients running at separate nodes from
the server replicas). As we also observed, the
throughput for Fast Paxos is actually lower in
the presence of 3 or more concurrent clients. We
believe that the lower throughput is due to col-
lisions. As such, we conclude that Fast Paxos is
bestused forachieving lower end-to-end latency
in the presence of a single client and it is not
appropriate for use in high throughput systems.

Charron-Bost & Schiper (2006) described
a scheme to minimize the cost of collision
recovery by using an optimistic approach. The
primary goal of this paper is drastically different
from ours, which focuses on the development of
an easy-to-implement recovery rules instead of
optimizing the Fast Paxos even further.

There is an open source implementa-
tion of the Fast Paxos algorithm at http://
libpaxos.sourceforge.net/paxosprojects.
php#libfastpaxos. Unfortunately, from the
reading of the source code, we could locate
neither the code that handles conflict resolu-
tions, and nor that for the value selection rule
implementation.

OpenReplicais awell-known implementa-
tion of state-machine replication using Classic

Paxos (Altinbuken and Sirer, 2012). However,
our work is quite different from OpenReplica
in two fronts: (1) We describe the theory and
implement of Fast Paxos while OpenRep-
lica only implements Classic Paxos; (2) The
goal of our work is to thoroughly present the
algorithmic-level details and intricacies of
Fast Paxos as well as its use for state machine
replication, while OpenReplica is designed to
achieve high performance for practical systems.
Similarly, the tutorial summary by Meling and
Jehl (2013) presented the details of the Classic
Paxos, while we focus on the issues unique to
Fast Paxos, such as collision detection, value
selection rule, and collision recovery.

CONCLUSION

In this article, we presented the theory and
implementation of the Fast Paxos algorithm. The
theory is described in an easier-to-understand
way compared with the original article by
Lamport (Lamport, 2006). In particular, we
introduced a new approach to deriving the
quorum requirements based on an intuitive
value selection rule for the coordinator in cases
of collisions without relying on the evaluation
of O4(v), which is difficult to do in practice.
As expected, our quorum requirements lead to
exactly the same set of inequalities in (Lamp-
ort, 2006) for quorum formation based on the
cardinality of the system.

We show that in a Fast Paxos implementa-
tion, a number of additional mechanisms are
needed to cope with practical scenarios in a
state-machine replication system. Furthermore,
we conducted comprehensive experiments to
evaluate the performance of Fast Paxos for
state-machine replication. We show that Fast
Paxos is most appropriate for use in a single cli-
ent configuration. The presence of two or more
concurrent clients even in a local area network
would incur frequent collisions, which would
reduce the system throughput and increase
the mean response time as experienced by

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos
http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos
http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos

32 International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

clients. Due to frequent collisions, Fast Paxos
actually performs worse than Classic Paxos in
the presence of moderate to large number of
concurrent clients.

ACKNOWLEDGMENT

I sincerely thank the reviewers for their con-
structive criticism and valuable suggestions on
how to improve an earlier version of the article.
This research is supported in part by an award
from the Cleveland State University Graduate
Faculty Travel Program.

REFERENCES

Altinbuken, D., & Sirer, E. G. (2012). Commodify-
ing replicated state machines with OpenReplica.
Retrieved from http://openreplica.org/static/papers/
OpenReplica.pdf

Bolosky, W.J., Bradshaw, D., Haagens, R. B., Kusters,
N. P, & Li, P. (2011, March). Paxos replicated state
machines as the basis of a high-performance data
store. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation
(pp. 11-11). USENIX Association.

Burrows, M. (2006, November). The chubby lock
service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (pp. 335-350).
USENIX Association.

Camargos, L., Madeira, E. R., & Pedone, F. (2006).
Optimal and practical wab-based consensus algo-
rithms. In Proceedings of Euro-Par 2006 Parallel Pro-
cessing (pp. 549-558). Springer Berlin Heidelberg.

Camargos, L., Schmidt, R., & Pedone, F. (2008, July).
Multicoordinated agreement protocols for higher
availabilty. In Proceedings of Network Computing
and Applications, (pp. 76-84). IEEE. doi:10.1109/
NCA.2008.28

Chandra, T. D., Griesemer, R., & Redstone, J. (2007,
August). Paxos made live: An engineering perspec-
tive. In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing
(pp-398-407). ACM. doi:10.1145/1281100.1281103

Charron-Bost, B., & Schiper, A. (2006, December).
Improving fast paxos: Being optimistic with no
overhead. In Proceedings of the 12th Pacific Rim
International Symposium on Dependable Computing,
(pp. 287-295). IEEE. doi:10.1109/PRDC.2006.39

Hunt, P., Konar, M., Junqueira, F. P., & Reed, B.
(2010, June). ZooKeeper: wait-free coordination for
internet-scale systems. In Proceedings of the 2010
USENILX Conference on USENIX Annual Technical
Conference (Vol. 8, pp. 11-11). USENIX.

Junqueira, F.,Mao, Y., & Marzullo, K. (2007). Classic
paxos vs. fast paxos: Caveat emptor. In Proceedings
of USENIX Hot Topics in System Dependability
(HotDep). USENIX.

Lamport, L. (2001). Paxos made simple. ACM Sigact
News, 32(4), 18-25.

Lamport, L. (2006). Fastpaxos. Distributed Comput-
ing, 19(2),79-103.doi:10.1007/300446-006-0005-x

Lamport, L., & Massa, M. (2004, June). Cheap
paxos. In Proceedings of Dependable Systems
and Networks, (pp. 307-314). IEEE. doi:10.1109/
DSN.2004.1311900

Mao, Y., Junqueira, F. P., & Marzullo, K. (2008,
December). Mencius: Building efficient replicated
state machines for WANS. In Proceedings of OSDI
(Vol. 8, pp. 369-384). OSDI.

Meling, H., & Jehl, L. (2013). Tutorial summary:
Paxos explained from scratch. In Proceedings of
OPODIS (LNCS), (vol. 8304, pp. 1-10). Springer.

Rao, J., Shekita, E. J., & Tata, S. (2011). Using Paxos
to build a scalable, consistent, and highly available
datastore. Proceedings of the VLDB Endowment, 4(4),
243-254. doi:10.14778/1938545.1938549

Vieira, G., & Buzato, L. E. (2008). On the coordina-
tor’s rule for Fast Paxos. Information Processing Let-
ters, 107(5),183-187.doi:10.1016/5.ipl.2008.03.001

Vieira, G., & Buzato, L. E. (2013). The perfor-
mance of Paxos and Fast Paxos. arXiv preprint
arXiv:1308.1358.

Zhao, W. (2007, November). A lightweight fault
tolerance framework for web services. In Proceed-
ings of the IEEE/WIC/ACM International Conference
on Web Intelligence (pp. 542-548). IEEE Computer
Society. doi:10.1109/W1.2007.18

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://openreplica.org/static/papers/OpenReplica.pdf
http://openreplica.org/static/papers/OpenReplica.pdf
http://dx.doi.org/10.1109/NCA.2008.28
http://dx.doi.org/10.1109/NCA.2008.28
http://dx.doi.org/10.1145/1281100.1281103
http://dx.doi.org/10.1109/PRDC.2006.39
http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1109/DSN.2004.1311900
http://dx.doi.org/10.1109/DSN.2004.1311900
http://dx.doi.org/10.14778/1938545.1938549
http://dx.doi.org/10.1016/j.ipl.2008.03.001
http://dx.doi.org/10.1109/WI.2007.18

International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015 33

Zhao, W. (2010). Building highly dependable
wireless web services. Journal of Electronic Com-
merce in Organizations, 8(4), 1-16. doi:10.4018/
jeco0.2010100101

Zhao, W.(2014). Building dependable distributed sys-
tems.JohnWiley & Sons.doi:10.1002/9781118912744

Zhao, W., Melliar-Smith, P.M., & Moser, L. E. (2010,
July). Fault tolerance middleware for cloud comput-
ing. In Proceedings of the 3rd IEEE International
Conference on Cloud Computing, (pp. 67-74). IEEE.

Zhao, W., Zhang, H., & Chai, H. (2009). A light-
weight fault tolerance framework for web services.

Web Intelligence and Agent Systems, 7(3), 255-268.

Zhao is currently an Associate Professor at the Department of Electrical and Computer En-
gineering, Cleveland State University. He earned his Ph.D. at University of California, Santa
Barbara, under the supervision of Drs. Moser and Melliar-Smith, in 2002. Dr. Zhao has authored
a research monograph titled: Building Dependable Distributed Systems published by Scrivener
Publishing. Furthermore, Dr. Zhao published over 80 peer-reviewed papers in the area of fault
tolerant and dependable systems (three of them won the best paper award), computer vision
and motion analysis, and material sciences. Dr. Zhao's research is supported in part by the US
National Science Foundation, and by Cleveland State University. Dr. Zhao is currently serving
on the technical program committee for numerous international conferences and is a member
of editorial board for International Journal of Performability Engineering, International Journal
of Web Science, and several international journals of the International Academy, Research,
and Industry Association. Dr. Zhao is a senior member of IEEE and is currently serving on the
executive board of the IEEE Cleveland Section.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://dx.doi.org/10.4018/jeco.2010100101
http://dx.doi.org/10.4018/jeco.2010100101
http://dx.doi.org/10.1002/9781118912744

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Reference r16
	Reference r17
	Reference r18
	Reference r19
	Reference r20
	Reference r21
	Reference r22
	Figure f01
	Figure f02
	Figure f03
	Figure f04
	Figure f05
	Figure f06
	Figure f07
	Figure f08

