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ABSTRACT
Distributed consensus is one of the most important building blocks for distributed systems. Fast Paxos is 
one of the latest variants of the Paxos algorithm for distributed consensus. Fast Paxos allows an acceptor to 
cast a vote for a value of its choice unilaterally in a fast round, thereby eliminating a communication step for 
reaching consensus. As a tradeoff, the coordinator must build a quorum that is bigger than the simple majority 
used in Classic Paxos. This article presents the theory, implementation, and a comprehensive performance 
evaluation of the Fast Paxos algorithm. The theory is described in an easier-to-understand way compared with 
the original article by Lamport. In particular, an easy-to-implement value selection rule for the coordinator is 
derived. In the implementation of Fast Paxos for state-machine replication, a number of additional mechanisms 
are developed to cope with practical scenarios. Furthermore, the experiments reveal that Fast Paxos is most 
appropriate for use in a single-client configuration. The presence of two or more concurrent clients even in a 
local area network would incur frequent collisions, which would reduce the system throughput and increase 
the mean response time as experienced by clients. Due to frequent collisions, Fast Paxos actually performs 
worse than Classic Paxos in the presence of moderate to large number of concurrent clients.
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INTRODUCTION

Distributed consensus is one of the most im-
portant building blocks for distributed systems 
(Zhao, 2014). For example, it is impossible to 
build a highly available cloud service without 
using some distributed consensus algorithm 
to ensure that all replicas remain consistent 
(Camargos, Madeira, & Pedone 2006; Camar-
gos, Schmidt, & Pedone, 2008; Zhao, Melliar-
Smith, & Moser, 2010; Zhao, 2010). Fast Paxos 
(Lamport, 2006) is one of the latest variants of 
the original Paxos algorithm (Lamport, 2001) 

(referred to as Classic Paxos) for distributed 
consensus. Classic Paxos is a good fit for 
state-machine replication and it has been used 
in a number of practical fault tolerant systems 
(Bolosky et al., 2011; Burrows, 2006; Hunt et 
al., 2010; Mao et al., 2008; Rao, Shekita, & 
Tata, 2011). Fast Paxos aims to further reduce 
the latency for reaching consensus by using a 
larger quorum size. Similar to Classic Paxos, 
Fast Paxos operates in rounds and there are 
two phases in each round. If a consensus is not 
reached within a round, a new round will be 
launched for liveness. In Fast Paxos, there can 

DOI: 10.4018/ijdst.2015010102



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16   International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

be two different types of rounds: fast rounds and 
classic rounds. A classic round would operate 
the same way as a round in Classic Paxos except 
that the value selection rule at the coordinator 
is different, as to be explained in later sections. 
In the original article published by Lamport 
(Lamport, 2006), the quorum requirement as 
well as the value selection rule depend on the 
evaluation of the following observation known 
as O4(v) in (Lamport, 2006):

A value has been or might yet be chosen in 
round k only if there exists a k-quorum R such 
that vr(a) = k and vv(a) = v for every acceptor 
a in RTQ. (Lamport, 2006)

Here Q refers to the quorum formed for 
the current round, k is the most recent round 
number in which an acceptor a has casted a vote, 
k-quorum means the quorum used in round k, 
vr(a) refers to the round number in which the 
acceptor a has casted a vote, and vv(a) refers to 
the value contained in that vote. O4(v) is true 
if and only if the above observation is true for 
some round k for the value v.

As we can see, to evaluate this observation, 
one must examine every previous round k, and 
determine whether or not a k-quorum exists for 
round k that satisfies the specific constraint on v. 
This implies that for the coordinator to evaluate 
whether or not a value v satisfies O4(v), it must 
collect votes from every acceptor of the system 
in every round, which is simply not practical 
in asynchronous environment.

In this article, we introduce a more im-
plementation-friendly value selection rule for 
the coordinator, and provide a more intuitive 
reasoning on the quorum requirements, both 
without the need to evaluate O4(v). To dem-
onstrate the practicality of the proposed value 
selection rule, we present an implementation 
of Fast Paxos for state-machine replication. 
We show that many additional mechanisms 
are needed to cope with practical scenarios. 
Furthermore, we have conducted a compre-
hensive evaluation of Fast Paxos using our 
research prototype. Our experiments reveal 
that Fast Paxos is most appropriate for use in 

a single-client configuration. The presence of 
two or more concurrent clients even in a local 
area network would incur frequent collisions, 
which would reduce the system throughput and 
increase the mean response time as experienced 
by clients. Due to frequent collisions, Fast Paxos 
actually performs worse than Classic Paxos in 
the presence of moderate to large number of 
concurrent clients.

The remaining of the article is organized as 
follows. Section 2 describes the system model 
used in Fast Paxos as well as Classic Paxos and 
their variants. Section 3 defines the safety and 
liveness requirements for distributed consensus 
solutions. Sections 4 and 5 introduce Classic 
Paxos and its application in state-machine 
replication (referred to as Multi-Paxos) as the 
foundation for Fast Paxos. In Section 6, we 
describe Fast Paxos and our theoretical contribu-
tions. In Section 7 and Section 8, we report the 
details of our implementation and performance 
evaluation of Fast Paxos. We conclude the article 
with the final two sections on related work and 
concluding remarks.

SYSTEM MODEL

We consider a distributed system with a number 
of processes, and any one of them may propose a 
value. A process may participate in a distributed 
consensus algorithm (such as Classic Paxos and 
Fast Paxos) in one of three roles: (1) proposer, 
(2) acceptor, or (3) learner. A proposer is one 
that proposes values to be chosen and learned 
by others. An acceptor participates in agreement 
negotiation on the values proposed. A learner is 
one that learns the value that has been chosen. 
Note that the roles are logical and a process can 
assume multiple roles, e.g., a process may act 
both as a proposer and an acceptor.

In a client-server system, the clients send 
their requests to the server for processing and 
expect to receive the corresponding replies. 
When state-machine replication of the server 
is used, it is essential to ensure that all replicas 
deliver and execute the requests in the same 
total order. For each request, its total order 
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constitutes the value that requires a distributed 
consensus among the replicas. To determine the 
total order for each request, typically one of 
the replicas is designated as the primary and it 
is responsible to determine the total ordering. 
Hence, the value to be agreed upon is typically 
contributed by both the client and the primary 
(i.e., they jointly serve as a proposer). The 
primary is also referred to as the coordinator.

We assume that the system and the con-
sensus algorithms operate in an asynchronous 
environment with crash faults only (i.e., no 
Byzantine faults). The asynchronous environ-
ment means that it may take a process arbitrary 
long time to complete a local task, and a message 
may take arbitrarily long time to be delivered at 
the intended destination process, possibly after 
many retransmissions. Furthermore, processes 
might fail and a failed process stops participat-
ing in the consensus algorithm, i.e., it crashes.

CORRECTNESS CRITERIA FOR 
DISTRIBUTED CONSENSUS

A sound consensus algorithm should ensure both 
the safety property and the liveness property 
defined below (Lamport, 2001):

•	 Safety property: The consensus algorithm 
should guarantee:
◦◦ (S.a): If a value is chosen by a process, 

then the same value must be chosen 
by any other process that has chosen 
a value;

◦◦ (S.b): The value chosen must have 
been proposed by one of the processes 
in the system;

◦◦ (S.c): Only the value that has been 
chosen by some process can be learned 
by a process;

•	 Liveness property: Eventually, some 
value is chosen. Furthermore, if a value has 
been chosen, then a process in the system 
can eventually learn that value.

The safety requirement (S.a) ensures that 
the same value is chosen by all processes. The 

requirements (S.b) and (S.c) rule out trivial so-
lutions, e.g., all processes choose a pre-defined 
value. The liveness property can be satisfied 
only during periods of system synchrony.

CLASSIC PAXOS

Classic Paxos (Lamport, 2001) operates in two 
phases, the prepare phase (i.e., phase one) and 
the accept phase (i.e., phase two), respectively, 
as shown in Figure 1. The prepare phase is 
initiated by a proposer sending a prepare re-
quest, referred to as P1a(n), to the acceptors 
in the system, where n is the proposal number 
selected by the proposer. At this stage, no value 
is included in the prepare request. This may 
appear to be counter-intuitive, but it is critical 
to limit the freedom of the proposer on what 
value it may propose because some acceptors 
might have accepted a value proposed by a 
competing proposer. Allowing a proposer to 
propose an arbitrary value at all times may lead 
to multiple values being accepted (as we will 
see, this limitation is lifted in Fast Paxos and 
mechanisms are defined so that at most one of 
the conflicting values is chosen in Fast Paxos 
(Lamport, 2006)).

In the prepare phase, when an acceptor 
receives a P1a(n) message, it does the following:

•	 If the acceptor has not responded to any 
P1a(n) message, it records the proposal 
number n, and sends its acknowledgment, 
referred to as P1b(n), to the proposer;

•	 If the acceptor has already responded 
to another P1a(m) message with a pro-
posal number m, and m < n, there are two 
scenarios:
◦◦ The acceptor has not received any 

accept request, which is sent by a 
proposer during the accept phase 
and referred to as P2a message, it 
records the higher proposal number 
n and sends its P1b(n) message to 
the proposer;

◦◦ The acceptor has already received a 
P2a(k) message with a proposal num-



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18   International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

ber k, it must have received a value 
proposed by some proposer in the past. 
This full proposal [k, v] is included in 
P1b(n, [k, v]) to the proposer. Obvi-
ously, k must be smaller than n.

The second phase (i.e., the accept phase) 
starts when the proposer could manage to collect 
responses from the majority of acceptors. The 
proposer determines the value to be included in 
the P2a message in the following way:

•	 If the proposer received one or more P1b 
messages with full proposals. it selects the 
value v in the proposal that has the highest 
proposal number;

•	 If none of the P1b messages received by 
the proposer contains a full proposal, the 
proposer has freedom to propose any value.

Once the value is selected, the proposer 
multicasts a P2a(n, v) message to the accep-
tors. When an acceptor receives a P2a(n, v) 
message, it accepts the proposal [n, v] only if 
it has responded to the corresponding P1a(n) 
message. Then, it sends an acknowledgment 
message, referred to as P2b(n).

Note that when an acceptor accepts a P2a 
message, it does not mean that the value con-
tained in the proposal included in P2a has been 
chosen. Only after the majority of acceptors 
have accepted the same P2a does the value is 
considered chosen. It is possible that no value 
is chosen or another value is eventually chosen 
after a minority of acceptors have accepted a 
P2a message.

There are a number of ways for a learner 
to find out the value that has been chosen. The 
most straightforward method is for an accep-
tor to multicast P2b to all learners, as shown 
in Figure 1. When a learner has collected P2b 
messages for the same proposal from the ma-
jority of acceptors, it will be rest assured that 
the value has been chosen. As an alternative, if 
the number of learners is large, a small group 
of learners can be selected to receive the mul-
ticasts from the acceptors and they can relay 
the accepted value to the remaining learners. 
Yet another alternative is for each learner to 
periodically poll the acceptors to see if they 
have accepted a value.

If a learner wants to make sure that the 
value it has learned is indeed the value that has 
been chosen, it can ask a proposer to issue a 

Figure 1. Normal operation of the Paxos algorithm
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new proposal. The result of this proposal would 
confirm whether or not the value is chosen.

MULTI-PAXOS

An immediate application of the Classic Paxos 
algorithm is to enable state-machine replication. 
As mentioned before, the value to be agreed on 
by the server replicas (i.e., acceptors) is the total 
order of the requests sent by the clients. The 
total ordering of a sequence of requests is ac-
complished by running a sequence of instances 
of the Classic Paxos algorithm. Each instance 
is assigned a sequence number, representing 
the total ordering of the request that is chosen. 
For each instance, the value to be chosen is 
the particular request that should be assigned 
to this instance.

The proposer in each instance is referred to 
as the coordinator (Lamport & Massa, 2004), the 
leader (Lamport, 2001), or simply the primary 
(Zhao, Zhang, Chai, 2009). The replica that 
serves as the proposer also acts as an accep-
tor. In a simple implementation, the primary 
propagates the chosen value to the remaining 
replicas (often referred to as backups) so that 
they can learn the value as well (Zhao, 2007; 
Zhao, Zhang, & Chai, 2009). Obviously, the 
primary would be the first to know that a value 
is chosen for each instance of the Classic Paxos 
algorithm, and usually the first to send the reply 
to the client. The backups can suppress their 
replies unless they have suspected the primary 
because the client needs only a single reply for 
each of its requests. It is also possible to en-
able a backup to learn the chosen value faster 
by multicasting each replica’s P2b message to 
all replicas (instead of only to the primary). A 
trade-off for this approach is more multicast 
messages being sent in the system. Furthermore, 
a backup might learn the chosen value ahead 
of the primary.

Normally, one of the server replicas is 
designated as the primary at the beginning of 
the system deployment. Only when the primary 
becomes faulty, which is rare, or being sus-
pected of being faulty by other replicas, another 

replica will be elected as the new primary. As 
long as there is a sole primary in the system, 
it is guaranteed that no replica would report 
having accepted any proposal to the primary, 
which would enable the primary to select any 
value (i.e., assigning any request to the current 
instance). Therefore, the first phase (i.e., the 
prepare phase) can be omitted during normal 
operation (i.e., when there is only a single 
primary in the system).

The full Classic Paxos algorithm is needed 
to elect a new primary. Furthermore, this run 
would effectively execute the first phase of all 
instances of the Classic Paxos as long as the 
current primary is operating correctly.

The above scheme of applying the Classic 
Paxos algorithm for state-machine replication is 
first proposed in (Lamport, 2001) and the term 
”Multi-Paxos” was first introduced in (Chandra, 
Griesemer, Redstone, 2007). TheMulti-Paxos 
algorithm during normal operation is illustrated 
in Figure 2. Note that the primary can execute 
the request as soon as it receives the P2b mes-
sages from a quorum of replicas.

FAST PAXOS

The objective of Fast Paxos (Lamport, 2006) 
is to reduce the end-to-end latency of reaching 
a consensus in scenarios where the clients are 
responsible to propose values to be chosen by 
the acceptors. In Multi-Paxos, we have shown 
that the first phase of Classic Paxos can be run 
once for all instances of the algorithm provided 
that initially there is a single leader. Hence, in 
Multi-Paxos, the cost of reaching agreement is 
the second phase of the Classic Paxos algorithm. 
Fast Paxos aims to further reduce the cost of 
reaching consensus by enabling the running of 
one P2a message for all instances of Fast Paxos 
in state-machine replication. This would enable 
an acceptor to select a value (provided by a 
client) unilaterally and sends the P2b message 
to the leader immediately, thereby reducing the 
end-to-end latency.

Because the Classic Paxos algorithm is 
proven to be optimal (Lamport, 2001)1, to re-
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duce the latency, we must sacrifice something 
else. In Fast Paxos, to tolerate f faulty replicas, 
more than 2f + 1 replicas are required. We will 
develop the criteria on the minimum number 
of replicas to tolerate f faults for Fast Paxos to 
work. Furthermore, because an acceptor (i.e., a 
server replica) unilaterally selects a value (i.e., 
a request message sent by a client), different 
acceptors might select different values. This 
scenario is referred to as a collision (in choosing 
a value) in (Lamport, 2006). Collision avoid-
ance and collision recovery are new problems 
that occur in Fast Paxos.

We first describe the basic steps of the Fast 
Paxos algorithm, then we discuss the quorum 
requirement and the value selection rule for 
the coordinator. We conclude the section by 
providing a proof of correctness of Fast Paxos 
with our modifications.

THE BASIC STEPS

Similar to Classic Paxos, Fast Paxos also oper-
ates in rounds (the round number corresponds 
to the proposal number in Classic Paxos) and 
each round has two phases, as shown in Figure 
3. The first phase is a prepare phase to enable 
the coordinator to solicit the status and promises 
from the acceptors. The second phase is for the 
coordinator to select a value and be voted on by 

the acceptors. When an acceptor has responded 
to a P1a message in a round i, it is said that the 
acceptor has participated the round i. When 
an acceptor has sent to the coordinator a P2b 
message in response to the P2a message from 
the coordinator, it is said that the acceptor has 
casted its vote for that round. When the coor-
dinator has collected P2b messages with the 
same value from a quorum of acceptors in that 
round, that value is said to have been chosen.

However, Fast Paxos has a number of dif-
ferences from Classic Paxos:

•	 In Fast Paxos, a round may be either a fast 
round or a classic round. A fast round may 
use a quorum of different size than that of 
a classic round. We refer to the quorum 
used in a fast round as fast quorum, and 
the quorum used in a classic round as 
classic quorum;

•	 The value selection rule at the coordinator 
is different from that of the Classic Paxos 
due to the presence of the fast round;

•	 In a classic round, the coordinator selects 
the value to be voted on, similar to that of 
Classic Paxos;

•	 In a fast round, if the value selection rule 
allows the coordinator to select its own 
value, it may send a special P2a message 
to the acceptors without any value selected. 

Figure 2. Normal operation of Multi-Paxos in a client-server system with 3 server replicas and 
a single client
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This special P2a message (referred to as 
any message in (Lamport, 2006)) enables an 
acceptor to select its own value (proposed 
by a client) to vote on.

A learner can learn the value that has been 
chosen using any of the learning mechanisms 
we outlined for Classic Paxos with one modi-
fication: instead of collecting from a majority 
of the acceptors to learn a value that has been 
chosen, the learner must collect from a classic 
quorum of acceptors in a classic round, and 
from a fast quorum of acceptors in a fast round.

Assuming that there has been a unique 
coordinator since the server started running, the 
first time a fast round is run will always allow 
the coordinator to send an any message in phase 
2. In a typical state-machine replicated system, 
this would allow the running of a single P2a 
message for all instances of Fast Paxos, which 
would eliminate one communication step, as 
shown in Figure 4. This is the sole advantage 
of Fast Paxos. Hence, whenever possible, a fast 
round is run and a classic round is used only 
when a consensus cannot be reached in the fast 
round due to the failure of the coordinator or 
due to a collision.

COLLISION RECOVERY, 
QUORUM REQUIREMENT, AND 
VALUE SELECTION RULE

During a fast round, if the coordinator issues 
an any P2a message, the acceptors would have 
freedom to select its only values. If there are 
several clients proposing different values con-
currently (i.e., they issue requests to the server 
replicas concurrently), it is likely that different 
acceptors could select different values, which 
would cause a collision. When this happens, 
the coordinator might see different values in the 
quorum of votes it has collected, which would 
prevent the consensus from being accomplished 
in this fast round.

Note that it is not an option for the coor-
dinator to block waiting until it has collected 
votes with the same value from a quorum of 
acceptors because it may never be able to build 
a quorum if less than a quorum of acceptors 
have voted for the same value. Therefore, on 
detecting a collision, the coordinator should 
initiate recovery by starting a new, classic round. 
In this new classic round, it is apparent that the 
coordinator would receive the same, or similar 
information from a quorum of acceptors in the 

Figure 3. Fast Paxos operates in rounds with each round consisting of two phases. A round can 
be a classic round, where the coordinator selects a value to be voted on, or a fast round, where 
each acceptor is allowed to propose its own value. The dotted arrowed lines means that they 
can be omitted when a unique coordinator exists in the system.
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first phase of the new round. Therefore, the first 
phase can be omitted and the coordinator can 
proceed to determining a value to be voted on 
in the second phase.

With a quorum of votes containing dif-
ferent values, the coordinator must be careful 
in selecting a value that has been chosen in a 
previous round, or might be chosen. Just like 
Classic Paxos, Fast Paxos does not terminate, 
and hence, once a value is chosen, the same 
value must also be chosen in any future round. 
A value is chosen or might be chosen if a quo-
rum of acceptors have voted the same value. 
Choosing any other value might cause two or 
more values be chosen, which would violate 
the safety property for consensus. However, 
it is not straightforward for the coordinator to 
determine if a value in the quorum of votes has 
been chosen or might be chosen.

Before we delve further on the value selec-
tion rule, we first show that the simple-majority 
based quorum formation in Classic Paxos is no 
longer valid in Fast Paxos. In Classic Paxos, 
to tolerate f faulty acceptors, a total of 2f + 1 
acceptors are required and the quorum size is a 
simple majority (f + 1). With a quorum size of 
f + 1, two quorums may intersect in as few as 
a single acceptor. Therefore, with this quorum 
formation, a coordinator cannot rule out the 
possibility that a value might have been chosen 
even if it has collected a single vote with that 

value. As such, the coordinator would not be 
able to determine which value to select if it sees 
different values in the quorum of votes it has 
collected. Note that only one of the different 
values could have been chosen because it is im-
possible for the acceptors to form two quorums 
each with a different value in the same round 
even if a quorum is formed by a simple majority. 
The problem then becomes to determine which 
of the values is the most likely candidate such 
that if a value has been chosen in a previous 
round, that value is guaranteed to be selected.

It should be apparent that a bigger quorum 
than the simple majority must be used in Fast 
Paxos. The most intuitive way for the coordi-
nator to determine whether or not a value has 
been chosen is to see whether or not there is 
a clear majority of votes for a common value 
in the current quorum. Note that the presence 
of a common value from the majority of votes 
in a quorum does not necessarily mean that 
the value has been chosen. Our next task is 
to ensure that a value in any of the minority 
votes could not have been chosen in the past. 
We can guarantee this property by imposing 
the following quorum requirement in addition 
to the basic quorum requirement:

•	 A fast quorum Rf and a classic quorum Rc 
must intersect in more than |Rc|/2 acceptors.

Figure 4. Normal operation of (Multi-) Fast Paxos in a client-server system
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Therefore, we have the following three 
quorum requirements:

1. 	 Any two classic quorums must intersect in 
at least one acceptor;

2. 	 Any two fast quorums must intersect in at 
least one acceptor;

3. 	 Any fast quorum Rf (with a size |Rf |) and 
any classic quorum Rc (with a size |Rc|) 
must intersect in more than |Rc|/2 acceptors.

With the list of quorum requirements in 
place, we are now ready to derive the quorum 
sizes. Let the total number of acceptors be n, the 
number of faulty acceptors that can be tolerated 
in a classic round be f, and the number of faulty 
acceptors that can be tolerated in a fast round be 
e. Hence, a classic quorum is formed by n − f 
acceptors and a fast quorum is formed by n − e 
acceptors. Based on our previous argument, it is 
clear that f ≥ e. The three quorum requirements 
are translated to the following:

(n − f) + (n − f) − n > 0	
(n − e) + (n − e) − n > 0	
(n − f) + (n − e) − n > (n − f)/2	

The requirements can be further reduced to:

n > 2f	
n > 2e	
n > 2e + f	

As we can see, the quorum requirement 
(2) is superseded by the quorum requirement 
(3) because the latter is more restrictive. We 
end up with only the following two quorum 
requirements:

n > 2f 	 (1)

n > 2e + f 	 (2)

We can have two different quorum forma-
tions by maximizing e or f:

•	 First quorum formation: Because f ≥ e, 
to maximize e, we have e = f and n > 3f. 
Hence, a classic quorum would be the same 
size of a fast quorum: |Rc| = n − f > 3f − f 
= 2f. For all practical purposes, the total 
number of acceptors would be set to n = 3f 
+ 1 and the quorum size (both classic and 
fast) would be 2f + 1. For example, if we 
choose f = 1, we would need a total of 4 
acceptors, and the quorum size would be 3;

•	 Second quorum formation: To maximize 
f, we can use the upper bound given in 
Equation 1 for f, therefore:

f < n/2	

We can derive the requirement on e from 
Equation 2:

e < (n − f)/2	

By replacing f with n/2 (i.e., f’s upper 
bound)), we have:

e ≤ (n − n/2)/2	

Finally, we have:

e ≤ n/4	

Therefore, the size of a classic quorum must 
be greater than n/2 (i.e., a simple majority), 
and the size of a fast quorum must be greater 
than 3n/4. For example, if we use the smallest 
e possible, i.e., e = 1, we need a minimum of 4 
acceptors. The size of a fast quorum would hap-
pen to be the same as that of a classic quorum, 
which is 3. Note that f = 1 as well. Furthermore, 
a classic quorum does not always have the same 
size as that of a fast quorum. Consider the case 
when e = 2. We would need to have 8 accep-
tors, which means that a classic quorum must 
consist of 5 acceptors while we would need 6 
acceptors to form a fast quorum. Hence, f = 3 
in this case.



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24   International Journal of Distributed Systems and Technologies, 6(1), 15-33, January-March 2015

Having fully defined the classic and fast 
quorums for Fast Paxos, it is time to define the 
value selection rule at the coordinator. We have 
already argued that in case of different values 
are present in the votes that the coordinator has 
collected, the coordinator should choose the 
value contained in the majority of the votes in 
the (classic) quorum, if such a value exists. If 
no such majority votes exist in the quorum, the 
coordinator is free to choose any value because 
no value could have been chosen in a previous 
round due to our quorum requirement 3. Hence, 
the value selection rule is defined below:

1. 	 If no acceptor has casted any vote, then 
the coordinator is free to select any value 
for phase 2;

2. 	 If at most a single value is present in the 
votes, then the coordinator must select that 
value;

3. 	 If the votes contain different values, a value 
must be selected if the majority of acceptors 
in the quorum have casted a vote for that 
value. Otherwise, the coordinator is free 
to select any value.

Rule 1 and rule 2 are the same as those for 
Classic Paxos. The rule 3 is specific for Fast 
Paxos. Compared with the original coordina-
tor’s rule in (Lamport, 2006), our value selec-
tion rule for the coordinator has the following 
characteristics in cases of collisions:

•	 If according to the original coordinator’s 
rule, a value is selected, the same value is 
guaranteed to be selected according to our 
rule. This is because if a value has been 
chosen previously, according to our quorum 
requirement, that value must be present in 
the majority of votes;

•	 However, a value that is selected accord-
ing to our rule might not have been chosen 
previously, in which case, the coordinator 
would have the freedom to select any value 
according to the original rule. Note that our 
rule in this respect does not have any nega-

tive impact to the consensus algorithm: if 
the coordinator has freedom to select any 
value, it sure is allowed to select the one 
that is present in the majority of votes.

PROOF OF CORRECTNESS

We prove that the modified Fast Paxos with our 
value selection rules satisfies the safety proper-
ties outlined previously. We choose not to prove 
the liveness property because our modifications 
to Fast Paxos is not related to liveness:

Theorem 1: Safety property S.a: If a value is 
chosen by a process, then thecsame value 
must be chosen by any other process that 
has chosen a value.

Proof: We prove by contradiction that S.a is 
satisfied by Fast Paxos. Assume value v is 
chosen in some round t, and another value 
u is chosen in some other round s. Without 
loss of generality, we assume t < s. From 
round t + 1 to round s, the coordinator for 
each round must collect information from 
a quorum of acceptors to select the value 
to be voted on in phase 2. If between two 
consecutive rounds r and r+1, the coordina-
tor is not changed, the coordinator obtains 
such information via the P2b messages in 
round r. If the coordinator is changed be-
tween round r and r+1, the new coordinator 
must collect P1b messages in the phase 1 
of round r+1.

There are only four scenarios for consecu-
tive rounds:

•	 Round r is a fast round and round r + 1 is 
also a fast round;

•	 Round r is a fast round and round r + 1 is 
a classic round;

•	 Round r is a classic round and round r + 1 
is a fast round;

•	 Round r is a classic round and round r + 1 
is also a classic round.
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We start by considering the case when r is 
t, where a value v is chosen. Furthermore, we 
assume that the coordinator might have been 
changed from round t to round t + 1. Therefore, 
phase 1 in round t + 1 might be necessary. Under 
the four scenarios we outlined above.

A fast quorum R1f of acceptors has voted 
for v in round t. In round t + 1, the coordinator 
would collect information from a fast quorum 
R2f of replicas to compute the value to be se-
lected for P2a. The size of two fast quorums is 
n − e (where n is the total number of acceptors 
and e is the number of faulty acceptors toler-
ated). R1f and R2f must intersect in a set S of 
at least 2n−2e−n = n−2e acceptors. According 
to the first quorum formation, f = e, and n = 
3f + 1. Hence, |R1f | = |R2f | = 2f + 1, and 
|S| = f + 1. According to the second quorum 
formation, n = 4e + 1. Hence, |R1f | = |R2f | = 
4e + 1, and |S| = 2e + 1. It is clear that for both 
quorum formations, a majority of the acceptors 
in R2 f are also in R1f. According to our value 
selection rule, the coordinator must select v in 
round t+1 for voting, if the coordinator could 
manage to complete the first phase in round t+1. 
Furthermore, if the coordinator could manage 
to finish the second phase, v must to be chosen 
in round t + 1.

In scenario 2, the coordinator in round t + 
1 collects information from a classic quorum 
Rc acceptors. The fast quorum R1f of acceptors 
that voted v in round t and the classic quorum 
Rc must intersect in at least (n−f)+(n − e) − n = 
n − f − e > (n − f)/2 acceptors due to Equation 
2, which is the majority of the classic quorum 
of acceptors in round t+1. This ensures that v 
will be selected if the coordinator could com-
plete the first phase in round t+1. Similar to 
scenario 1, if the coordinator could manage to 
finish the second phase, v must to be chosen 
in round t + 1.

In scenario 3, because v is chosen in a 
classic round t, the operation in this round is 
reduced to Classic Paxos, which means that 
only v could have been voted by any acceptor. 
Hence, in round t + 1, the coordinator would 
only see a single value v among the votes it 
collects. According to the value selection rule, 

the coordinator must select v in round t+1 if 
the coordinator could collect information from 
a quorum of acceptors. Furthermore, if the 
coordinator could manage to finish the second 
phase, v must to be chosen in round t + 1.

Due to the same reason, in scenario 4, the 
coordinator for round t+1 must also select v 
for voting in phase 2 if the coordinator could 
collect information from a quorum of acceptors. 
Furthermore, if the coordinator could manage 
to finish the second phase, v must to be chosen 
in round t + 1.

Therefore, we have the same conclusion 
for each scenario, i.e., the coordinator in the 
new round must select v for voting if it could 
manage to complete the first phase, and must 
chose v if it could complete the second phase of 
the new round. This conclusion is true for each 
new round until round s, which is conflicting 
with our assumption that a different value u is 
chosen in round s. This proves that the safety 
property S.a holds:

Theorem 2: Safety property S.b: The value 
chosen must have been proposed by one 
of the processes in the system.

Proof: In Fast Paxos, the value chosen is always 
selected by the coordinator according to the 
value selection rule. The value selected is 
proposed either by a proposer or one of the 
acceptor in a fast round. Hence, the safety 
property S.b holds.

Theorem 3: Safety property S.c: Only the value 
that has been chosen by some process can 
be learned by a process.

Proof: Any of the learning mechanisms we 
outlined for Fast Paxos can be used to learn 
the value chosen for Fast Paxos. It is easy 
see that the safety property S.c is satisfied 
trivially by any of the learning mechanisms.

IMPLEMENTATION

We implemented the Fast Paxos algorithm as 
part of a state-machine replication framework 
using the Java programming language. In the 
framework, Fast Paxos is used to ensure the 
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total ordering of requests for execution. The 
major components of the framework are shown 
in Figure 5.

The framework is designed for use in a local 
area network (LAN) where the client and the 
server replicas communicate via IP multicast. 
All incoming messages and outgoing messages 
at the server replica are controlled by the Rep-
lication Engine logic. There are two types of 
messages: (1) application messages (requests 
and replies), and (2) control messages used 
for total ordering of application requests such 
as P2a and P2b messages. A new application 
request is placed in the Request Queue immedi-
ately after received. When a replica is ready to 
order a request, it is removed from the Request 
Queue and placed in the Ordered Queue at the 
designated place. When an agreement on the 
total ordering of a request has been achieved 
using Fast Paxos, the request is dispatched to 
the server application for execution. A copy of 
the reply message resulted from the execution is 
stored in the Reply Cache for possible retrans-
mission before it is sent to the client. Because 
Fast Paxos is a quorum-based algorithm, a 
Quorum Manager is used to keep track of the 
status of the quorum building process by the 
primary replica (i.e., the primary serves both the 

coordinator and the acceptor roles as defined in 
Fast Paxos). The Quorum Manager is not used 
at the backup replicas.

The Replication Engine implements Fast 
Paxos and drives all operations. An event driven 
approach is used in our implementation where 
all events are handled by an event loop. The 
event loop blocks waiting for a new message 
from the network (i.e., waiting for the next 
event) at the beginning of each iteration, and 
invokes the appropriate event handler for the 
message received according to its type. There 
are four event handlers:

•	 Request handler: It hands application 
requests sent by a client;

•	 P2a handler: It handles P2a messages. 
It is used only by backup replicas (i.e., 
acceptors);

•	 P2b handler: It handles P2b messages. It 
is used only by the primary replica;

•	 Learn notification handler: It handles the 
notification message (which we refer to as 
the Learn message) sent by the primary 
regarding what value is chosen (i.e., the 
total ordering for a request). The handler 
is used only by backups.

Figure 5. Major components of the state-machine replication framework with Fast Paxos
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REQUEST HANDLER 
OPERATIONS

The request message is first checked to see 
if it is a duplicate. Duplicate requests are 
discarded. The Reply Cache is searched to 
see if a reply has been generated for the 
retransmitted request. If one is found, the 
reply is retransmitted. No further operation 
is carried out in this case.

Next, the request is checked to see if it is 
one of missing messages that the replica needs 
to execute. If it is, the message is placed in the 
Ordered Queue at the designated position for 
execution, all eligible ordered requests will be 
executed in the total order imposed by Fast 
Paxos.

If the received request is indeed a new 
request, it is appended to the Request Queue. 
The remaining operations depend on whether 
or not the replica is the primary or a backup, 
and whether or not it is in a fast round or it is 
in a classic round.

In a classic round, if the replica is the 
primary, a P2a message is prepared and 
multicast to all backups. The P2a message 
includes the next sequence number for the 
current request (which decides on the total 
ordering of the request). The request is also 
transferred from the Request Queue to the 
Ordered Queue. The primary then waits for 
the corresponding P2b messages from a 
quorum of replicas via the Quorum Manager. 
If the replica is a backup, it takes no further 
action (other than adding the request to the 
Request Queue).

In a fast round, both the primary and a 
backup replica order the request and prepare the 
corresponding P2b message independently. The 
P2b message carries the sequence number for 
the request and the request id. At the primary, 
the Quorum Manager creates a Certificate object 
for the corresponding sequence number and 
adds the P2b message prepared to the Certificate 
object. At a backup replica, the P2b message 
is sent to the primary.

P2A HANDLER OPERATIONS

Only a backup replica (i.e., an acceptor) receives 
the P2a message sent by the primary. First, the 
P2a message is checked to see if it is valid based 
on the sequence number included in P2a. If it 
is, the P2a message is handled according to the 
following mechanisms.

If it is in a classic round, the request being 
ordered is transferred from the Request Queue 
to the Ordered Queue, and the corresponding 
P2b message is prepared and sent to the primary.

If it is in a fast round, the very fact that 
a backup received a P2a message means that 
a collision has occurred and the primary is 
recovering the collision via the P2a message. 
In this case, the replica rolls back its choice of 
request for the corresponding sequence number 
by transferring the request from the Ordered 
Queue back to the Request Queue, and proceed 
to operating as if it is in a classic round by 
ordering the next request exactly as indicated 
in the P2a message, and responds with a P2b 
message to the primary.

P2B HANDLER OPERATIONS

The P2b message is only handled by the pri-
mary. The primary uses the Quorum Manager 
to build a quorum, and to select the value for a 
round of Fast Paxos using the value selection 
rule we described previously. If no collision is 
found (i.e., all replicas assigned the same request 
for the same sequence number), the primary 
proceeds to preparing and multicasting a Learn 
message to all backup replicas, informing them 
the chosen total ordering for a sequence number.

If a collision is detected, i.e., two or more 
different requests are selected for the same 
sequence number by different replicas, the 
primary selects at most one of them according 
to the value selection rule, and includes that 
value in the P2a message. To recover from the 
collision, the primary initiates a classic round 
by multicasting the P2a to backup replicas.
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For a classic round, it is guaranteed that 
a collision will never happen. Normally, the 
system is configured to start with a fast round 
to enjoy the benefits of Fast Paxos and remain 
operating in fast rounds until a collision is de-
tected. The primary uses a single classic round 
to recover from the collision. Once the classic 
round is over, the primary switches to fast 
rounds. The primary performs the switch-over 
when it is in a classic round and the quorum of 
P2b is complete.

LEARN NOTIFICATION 
HANDLER OPERATIONS

Only a backup replica may receive and handle 
a learn notification (i.e., Learn message). Upon 
receiving a Learn message, the replica knows 
that an agreement for a particular sequence 
number has been reached, and executes the 
ordered request in exactly the same order. Such 
a message also helps a slow replica catch up 
with other replicas by skipping the correspond-
ing round of Fast Paxos consensus. To reduce 
unnecessary network load, the reply generated 
by a backup replica is suppressed.

When a backup replica receives a Learn 
message and it is in a classic round, it may infer 
that the collision recovery is over and switches 
to the fast round operation.

PERFORMANCE EVALUATION

The performance of Fast Paxos is evaluated with 
our state-machine replication framework, using 
Classic Paxos as a reference for comparison. 
The evaluation is carried out using a testbed 
consisting of five compact computers connected 
via a Gigabit Ethernet. Each computer node is 
equipped with a Core i5-4250U CPU and 4GB 
of RAM, and runs the Ubuntu 14.04 Linux. Four 
of the nodes are used to run the server replicas, 
and the remaining one is used to run the clients. 
For Fast Paxos, four replicas are used to toler-
ate a single faulty replica. For Classic Paxos, 
three replicas are used to tolerate a single faulty 
replica. A single client-server application is 

used to benchmark the system’s performance. 
The server application is intentionally designed 
to perform no substantial processing for each 
request so that the end-to-end latency measured 
reflects primarily the communication and Fast 
Paxos consensus cost. The reply length is always 
set to be the same as the request length.

END-TO-END LATENCY

Because Fast Paxos is designed to eliminate one 
communication step in reaching a consensus, 
we expect that a major benefit of using Fast 
Paxos in state-machine replication is a reduced 
end-to-end latency as seen by a client. The end-
to-end latency is defined to be the time elapsed 
since the client issues a request, until it receives 
the corresponding reply. For the end-to-end 
latency evaluation, we use a single client with 
varying request/reply message lengths. We keep 
track of the round-trip time of each request and 
save the data at the end of each run. The data 
is then used to compute the median, mean, as 
well as the probability density function of the 
end-to-end latency.

As shown in Figure 6(a), the experimental 
results are consistent with our expectation for 
requests with short lengths (i.e., 128 bytes and 
256 bytes). However, the mean end-to-end 
latency for Fast Paxos is rather similar to that 
for Classic Paxos for longer requests. For a 
request with 1024 bytes, the mean latency for 
Fast Paxos is even slightly higher than that for 
Classic Paxos. This observation is rather puz-
zling initially. A closer look at the data shows that 
the median end-to-end latency for Fast Paxos is 
consistently smaller than that for Classic Paxos 
for all requests with different lengths (by about 
25%, which reflects the benefits of eliminating 
one communication step).

The unexpected large mean latency for 
longer requests for Fast Paxos is apparently 
caused by a small fraction of data with large 
end-to-end latency. This is indeed the case, as 
illustrated by the probability density function 
of the end-to-end latency in Figure 7. For both 
Fast Paxos and Classic Paxos, we can notice the 
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presence of the second broad peak for requests 
of 1024-bytes long. However, the second peak is 
positioned in larger end-to-end latency for Fast 
Paxos than that for Classic Paxos. The second 
peak is not present for requests of 128-bytes 
long. We speculate that this artifact is due to 
inefficiency of our implementation, rather than 
anything intrinsic to Fast Paxos. Future work is 
needed to identify the source of the problem.

SYSTEM THROUGHPUT

The system throughput is measured at the pri-
mary and it inevitably reflects the aggregated 
performance over a number of requests. To 
evaluate system throughput, we launch up to 
5 concurrent clients with each client issuing 
requests of 128-bytes long consecutively. As 
shown in Figure 6(b), Fast Paxos has slightly 

Figure 6. End-to-end latency (a) and throughput (b) for the replicated client-server application

Figure 7. Probability density function of the end-to-end latency for Fast Paxos and Classic Paxos, 
for requests of 128-bytes long (a), and for requests of 1024-bytes long (b)
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better system throughput than Classic Paxos in 
the presence of a single client or two concurrent 
clients. However, Fast Paxos performs worse 
in the presence of three or more concurrent 
clients. Other than the computational costs of 
building and processing a larger quorum com-
pared against Classic Paxos, the main reason 
for the lower system throughput is frequent col-
lisions and the ensuing recoveries. We observe 
that the collision rate is approximately 5% in 
the presence of concurrent clients. Hence, we 
conclude that Fast Paxos is not a good fit for 
high-throughput systems that must support large 
number of concurrent clients.

COLLISION RECOVERY 
LATENCY

The collision recovery latency is measured as 
the time elapsed since the detection of a collision 
until the ensuring classic round is completed. 
Shown in Figure 8 is the probability density 
function of the recovery latency for a run as 
part of our throughput measurement where the 
number of clients varies from 1 to 5 (with a total 
of 1460 collision recoveries). As can be seen, 
there is a major peak close to 0.6ms and there 
exists a long tail extending as large as nearly 

7ms. From Figure 8, we infer that the recovery 
latency distribution is relatively independent 
from the number of concurrent clients. This 
is expected because the recovery involves a 
single classic round regardless of the number 
of concurrent clients and the message lengths 
for P2a and P2b remain constant.

RELATED WORK

The impracticality of the coordinator’s value 
selection rule is pointed out in (Vieira & Bu-
zato, 2008). Not surprisingly, the rule derived 
in (Vieira & Buzato, 2008) is identical to ours. 
However, in (Vieira & Buzato, 2008), the rule 
is derived based on the quorum formation rule 
in (Lamport, 2006) (which is in turned derived 
from the requirement on O4(v)). In this article 
we essentially use this rule as the foundation to 
derive the quorum requirements without rely-
ing on the evaluation of O4(v). Furthermore, 
we recognize that the impracticality of the 
coordinator’s rule is due to the difficulty of 
evaluating O4(v) for every possible value v in 
practical scenarios.

In (Junqueira, Mao, Marzullo, 2007), the 
performance of the Fast Paxos algorithm is 
compared against that of the Classic Paxos 

Figure 8. Probability density function of the recovery latency
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algorithm via simulation instead of an actual 
implementation, for wide area networks. The 
authors discovered that under certain circum-
stances, Classic Paxos outperforms Fast Paxos. 
Furthermore, the study is done for cases in 
which collision is absent in Fast Paxos. Since 
this study is based on simulation and it is framed 
for wide area networks, the result is not directly 
comparable to ours.

In (Vieira & Bzato, 2013), the performance 
comparison between Classic Paxos and Fast 
Paxos is studied. The conclusion is rather similar 
to that in (Junqueira, Mao, Marzullo, 2007) in 
that Classic Paxos outperforms Fast Paxos when 
the replication degree is small with and without 
collision in Fast Paxos. With large replication 
degrees, the performance of Fast Paxos and 
Classic Paxos are similar. This result is not 
surprising in that multiple concurrent clients 
are simulated using local load generators (rather 
than real clients running at separate nodes from 
the server replicas). As we also observed, the 
throughput for Fast Paxos is actually lower in 
the presence of 3 or more concurrent clients. We 
believe that the lower throughput is due to col-
lisions. As such, we conclude that Fast Paxos is 
best used for achieving lower end-to-end latency 
in the presence of a single client and it is not 
appropriate for use in high throughput systems.

Charron-Bost & Schiper (2006) described 
a scheme to minimize the cost of collision 
recovery by using an optimistic approach. The 
primary goal of this paper is drastically different 
from ours, which focuses on the development of 
an easy-to-implement recovery rules instead of 
optimizing the Fast Paxos even further.

There is an open source implementa-
tion of the Fast Paxos algorithm at http://
libpaxos.sourceforge.net/paxosprojects.
php#libfastpaxos. Unfortunately, from the 
reading of the source code, we could locate 
neither the code that handles conflict resolu-
tions, and nor that for the value selection rule 
implementation.

OpenReplica is a well-known implementa-
tion of state-machine replication using Classic 

Paxos (Altinbuken and Sirer, 2012). However, 
our work is quite different from OpenReplica 
in two fronts: (1) We describe the theory and 
implement of Fast Paxos while OpenRep-
lica only implements Classic Paxos; (2) The 
goal of our work is to thoroughly present the 
algorithmic-level details and intricacies of 
Fast Paxos as well as its use for state machine 
replication, while OpenReplica is designed to 
achieve high performance for practical systems. 
Similarly, the tutorial summary by Meling and 
Jehl (2013) presented the details of the Classic 
Paxos, while we focus on the issues unique to 
Fast Paxos, such as collision detection, value 
selection rule, and collision recovery.

CONCLUSION

In this article, we presented the theory and 
implementation of the Fast Paxos algorithm. The 
theory is described in an easier-to-understand 
way compared with the original article by 
Lamport (Lamport, 2006). In particular, we 
introduced a new approach to deriving the 
quorum requirements based on an intuitive 
value selection rule for the coordinator in cases 
of collisions without relying on the evaluation 
of O4(v), which is difficult to do in practice. 
As expected, our quorum requirements lead to 
exactly the same set of inequalities in (Lamp-
ort, 2006) for quorum formation based on the 
cardinality of the system.

We show that in a Fast Paxos implementa-
tion, a number of additional mechanisms are 
needed to cope with practical scenarios in a 
state-machine replication system. Furthermore, 
we conducted comprehensive experiments to 
evaluate the performance of Fast Paxos for 
state-machine replication. We show that Fast 
Paxos is most appropriate for use in a single cli-
ent configuration. The presence of two or more 
concurrent clients even in a local area network 
would incur frequent collisions, which would 
reduce the system throughput and increase 
the mean response time as experienced by 

http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos
http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos
http://libpaxos.sourceforge.net/paxosprojects.php#libfastpaxos
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clients. Due to frequent collisions, Fast Paxos 
actually performs worse than Classic Paxos in 
the presence of moderate to large number of 
concurrent clients.
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