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1. Hardware in context

Real-time computing and communication are key technologies required for modern automation control [1]. Lots of
research teams around the world develop different solutions to improve real-time parameters of software [2–5], wired
[6–9] and wireless [10–12] communication, the main of which is the worst-case clock jitter.

There are different ways to measure the jitter during experimental studies. In real-time software design the jitter is often
measured by a special precise hardware timer which works independently from the central processing unit. In communica-
tion tasks it is usually necessary to measure the clock jitter not for each single device, but between the clocks or different
devices and a chosen master clock. For the wired real-time networks there are special proprietary devices designed for jitter
measurement (such as B&R X20ET8819 for Ethernet POWERLINK [6]), but such kind of devices can work only in compliance
with specific communication protocols, thus restricting their use in scientific research.

The most general way to evaluate jitter in this case is to generate square-wave signals synchronized to the internal clocks
of the devices and to monitor them with a digital oscilloscope triggered by a square-wave based on a master clock [13]. If a
digital oscilloscope is switched into the Persistence mode, then the left-most and right-most edges of the overlapped square-
wave recorded during the measurement period will show the range DX corresponding to maximum device-device clock jitter
(Fig. 1).

Practically, the method described above suffers from several major drawbacks:

� Digital oscilloscopes are expensive and complex devices which makes their usage more complicated in areas with poten-
tially aggressive environment (outdoor, inside thermal cameras, etc.).

� Digital oscilloscopes have few independent channels (generally 2–4).
� The above described method makes possible to measure only absolute values of the worst-case jitter while statistical
parameters of jitter distribution using digital oscilloscopes in long terms still remains a challenge.

A logic analyzer can be used as an alternative. Unlike the digital oscilloscope, the logic analyzer does not include an ana-
logue to digital converters, and it measures only discrete signals with a standardized voltage levels. They are generally
cheaper than oscilloscopes and are equipped with much more channels (usually about 16–32). Some logic analyzers are
designed as a part of a digital oscilloscope (for example Keysight MSO-X 3024A [14]), while others can serve as a totally inde-
pendent device (Zeroplus Logic Cube [15] or similar).
Fig. 1. An example of worst-case device-device clock jitter measurements using oscilloscope.
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For the last decade several open-hardware logic analyzers were introduced. One of the oldest known open-hardware logic
analyzers is MiniLA [16]. It is designed on a basis of Complex Programmable Logic Device (CPLD) Xilinx XC95288XL and uses
Line Print Terminal (LPT) or Universal Serial Bus (USB) interfaces to communicate with a personal computer (PC). According
to the SourceForge information, the projects have not been updated since December 2012. Probably, the most well-known
open-hardware logic analyzer is SUMP [17]. It is built on a basis of Xilinx Spartan-3 Field-Programmable Gate Array (FPGA),
which communicates to a Java client on a PC using 115200 bps Universal Asynchronous Receiver-Transmitter (UART) inter-
face (or USB through USB-UART adapter). SUMP2 is also based on FPGA, but it has a more complex architecture compared to
SUMP making it more similar to proprietary FPGA vendor solutions, such as Xilinx ChipScope and Altera SignalTap [18]. Also
SUMP2 has PC software written on python instead of Java. A very similar solution compatible with original SUMP software
was designed by the team from the University of Alabama in Huntsville [19]. Finally, one of the most advanced open-
hardware logic analyzers, BitHound, was designed by the team from ETH Zurich [20]. It can process up to 16 channels at
400 MHz sampling rate, features 128 MB sample memory and is equipped with the 100 Mbps Ethernet interface. The last
feature not only reduces time required to download samples into PC, but also makes possible to place the logic analyzer
up to 100 m from PC, which makes it crucial for field experiments.

Unfortunately, the above described solutions, including proprietary commercial devices, have the same drawback, which
makes them non applicable for the long-term jitter analysis. All of them were designed mainly for hardware design and
debugging purposes, when developer records short sequences and then manually analyzes them. The operation sequence
of these devices can be basically described as ‘‘Wait for Trigger” – ‘‘Measure” – ‘‘Buffer” – ‘‘Transmit”. Unfortunately, even
quite large size of buffered data in advanced models does not guarantee that none of edges will be missed during data trans-
mission (Fig. 2). Therefore, these missing edges can result in/lead to faulty-lower jitter estimation. This problem becomes
crucial for the devices based on low-speed interfaces, such as LPT, UART and USB-UART (for example Zeroplus Logic cube
analyzer can record only one of two 50 ls sequences per second), but is real-time continuous acquisition is usually badly
supported by software even in the Ethernet-based devices. Another result of the debug-oriented usage model is the fact that
modern logic analyzers record signal levels with a fixed sample time (usually 5–20 ns), which is enough when it is needed to
analyze signal sequences with duration up to hundreds of milliseconds, but is not enough for long termmonitoring requiring
experiments to last several hours or even days. In this case, the amount of stored data will exceed dozen gigabytes per exper-
iment, thus compicating its processing even worse. On the other hand, making rare measurements will complicate the
understanding circumstances that cause jitter. The good solution would be to use dynamic acquisition rate, which will
become higher around points of interest with the jitter beyond some limit, but to the best of the Author’s knowledge, such
kind of mode is not supported in above described devices.

The design proposed in this paper aims to overcome the problems stated and provides an easy to implement solution for
long-term jitter monitoring.
2. Hardware description

The idea of the proposed device came to the Author’s mind in 2018, while he was verifying real-time communication
modules on Barneo Ice Camp near the North Pole. It was necessary to make long term jitter measurements for outdoor-
mounted devices. There were FPGA kits that were taken as spare part. One should also take into consideration that there
was no access to laboratory equipment, such as oscilloscopes or logic analyzers, as well as Internet access to download
any open-source logic analyzers described in the previous sections. The goal was to design a robust solution, which will
enable one to record measurements during several weeks and simultaneously reduce time for its software and hardware
debugging as much as possible/to a maximum rate. Then the proposed approach was successfully used/applied to several
times in other projects dedicated to wired [21] and wireless real-time communications [22]. Finally, now it is well com-
mented and documented to be ready for sharing with scientific community.
Fig. 2. Edge missing during long terms jitter timing analysis using logic analyzer.
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Fig. 3. A general structure of the proposed solution.
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A general structure of the proposed solution is shown in Fig. 3.
The first distinction from the widely used solutions is that it does not have any buffers to store Samples. Instead, it pro-

cesses the input signals by FPGA in real-time and transmits them using 100 Mbps Ethernet directly to PC. As it has been men-
tioned above, buffering does not provide any real benefits in long term monitoring because, in case the interface bandwidth
is not big enough, then any buffers will overflow anyway. At the same time, bufferless processing significantly simplifies
overall design dramatically reducing the time required to debug new signal processing functions, thus making it possible
to implement proposed logic analyzer on a wide range of low-cost FPGAs.

The second key difference is that, unlike special software on PC, the combination of Wireshark and Octave tools is used.
While other logic analyzers were designed as standalone self-contained devices with wide but predefined functionality, the
proposed solution is considered as a starting point for a rapid prototyping of a task-specific tool. Following this paradigm
Wireshark gives robust functionality to capture all the traffic from FPGA with regard to network settings and Octave provides
flexible tools to process and display captured data. A strict separation between capturing and data processing while using
two independent tools has a significant benefit: it ensures the safety of important experimental data and prevents from
its possible loss caused by the faulty processing software. The other benefit is that researchers can easily and separately
change both data capturing and data processing tools without introducing any changes in hardware or in the method in gen-
eral. For instance, Wireshark can be easily changed to dumpcat, and Octave – to MATLAB or Python. All the necessary scripts
can be adopted from the ones provided with this paper in no time.

Speaking of the implementation aspects of the proposed tool, one can point out that the overall design is extremely mod-
ular, and cross-platform makes it easy to modify it or port it to new FPGA architectures even for the researchers with min-
imum Hardware Description Language (HDL) design experience.

The proposed FPGA design contains 5 main modules, which can be combined in different ways to achieve the desired
level of performance and functionality. A structure of the FPGA design for a reference device implemented in this paper is
shown in Fig. 4.
Fig. 4. A structure of the FPGA design for the reference 4-channel logic analyzer.
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Fig. 5. Data acquisition timing diagram provided by ws_trigger_ch IP core.
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ws_trigger_ch Intellectual Property (IP) core detects edge on a master channel and creates a mutual time source for
another channel in a measurement window (Fig. 5). Generally, the measurement window has its center after Tp clock cycles
from the last edge of the master channel and has width Tm clock cycles. In the long-term jitter analysis application Tp is typ-
ically a value close to period of a square wave synchronous to master clock and Tm is at least two times higher than the
desired worst-case jitter.

ws_log_ch IP core timestamps edges using time source provided by ws_trigger_ch and should be used for all signals,
including the one, which feeds ws_trigger_ch. Both ws_log_ch and ws_trigger_ch have an internal synchronizer and a con-
figurable filter, which makes possible to safely connect their input directly to FPGA input buffers.

ws_log_max IP core takes output values of ws_log_ch blocks and evaluates the difference between edge timestamps for
signal corresponding to master clock and slave ones, which is then considered as the immediate jitter value. This IP core has
also a dynamically changing output rate, which provides highly detailed output with jitter being beyond the defined limit
and returns the worst-case jitter which occurred in the last 2Npr measurements every 2Npr measurements, while the jitter
is low. Moreover, those limits can be set individually for each channel. This makes possible to tune the amount of the data
collected during the experiment regardless of the frequency of measurements.ws_log_max is the example of an application-
specific IP core, which can be replaced by the other ones while performing tasks different from jitter analysis in multiple
device synchronization.

udp_send is a fully hardware generator of User Datagram Protocol (UDP) frames. It is designed in such a way, so that its
parameters and payload can be easily customized from the top module, while the IP core will require no additional
modifications.

rmii_send_byte and rmii_send_byte_v2 implement Reduced Media Interface (RMII) communication between FPGA and
Ethernet physical layer integrated circuit (PHY). rmii_send_byte should be used in designs clocked at 100 MHz, while rmii_-
send_byte_v2 is designed to operate with 50 MHz clock. This makes possible to implement the proposed logic analyzer on
ultra low-cost FPGA families, such as Lattiec iCE40, which cannot run complex designs at 100 MHz frequency due to internal
latencies.

All the designed IP cores work in a single clock domain. They are written on plain Verilog, do not include soft processors,
multipliers or RAM blocks and do not require any proprietary modules from FPGA vendors, even Phase-Locked Loop (PLL).
This makes them fully compatible with most FPGAs on the market including Intel, Xilinx, Lattice, etc. Moreover, the present
paper demonstrates the way to build and program proposed design with fully open-source FPGA toolchain and without any
additional proprietary software. Such flexibility and openness are the key advantages of the proposed architecture.

While carrying out long-term experiments, it is very important to ensure high reliability and to prevent the loss of col-
lected data. The proposed design provides several options in this regard. First of all, Ethernet interface makes possible to
move PC, which captures data, up to 100 m away from the experimental area and place it in a safe place with a redundant
power source (Fig. 6). This is very important for the experimental studies performed outdoor or in aggressive environments
because even if the logic analyzer board gets damaged, all the data it has measured will be transmitted to PC and not stuck in
the internal memory of the analyzer.

The next step to enhance reliability of the experimental setup is to increase the number of PCs simultaneously capturing
data from a logic analyzer (Fig. 6b). It can be done with the use of the common Ethernet switch as proposed FPGA firmware
transmits standard UDP broadcast frames.
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Fig. 6. A possible way to increase reliability of the experimental setup. (a) Move PC to a safe area. (b) Use several PCs. (c) Provide full hardware and wire
redundancy.
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In order to reach still higher level of reliability, the proposed design can be easily replicated inside of one FPGA and be
connected to different PCs with the use of independent Ethernet PHYs (Fig. 6c), taking into account its low area consumption.
In this case, the system will also become tolerant to/withstand single cable damages.

To summarize the above written, the proposed logic analyzer design perfectly meets the requirements for long-term jitter
monitoring. It is easily scalable, highly customizable and cross-platform, and it can be implemented with the use of low-cost
hardware and a fully open-source toolchain.

Application areas:

� in laboratory and field experimental studies requiring long terms monitoring;
� as a starting set of IP cores and software for the custom application specific FPGA-based laboratory equipment;
� for educational purposes, explaining the way how modern communication protocols can be implemented in FPGA with-
out the usage of proprietary vendor-specific IP cores.

3. Design files

3.1. FPGA IP cores
Design filename
 File
type
Open source license
6

Location of the file
crc32.v
 HDL
code
Creative Commons
Attributioann-ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in cores folder
rmii_send_byte.v HDL Creative Commons Attribution- http://doi.org/10.5281/zenodo.4034301

code
 ShareAlike license
 Should be placed in cores folder
rmii_send_byte_v2.v
 HDL
code
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in cores folder
udp_send.v
 HDL
code
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in cores folder
ws_log_ch.v
 HDL
code
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in cores folder
ws_log_max.v
 HDL
code
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in cores folder
ws_trigger_ch.v HDL Creative Commons Attribution- http://doi.org/10.5281/zenodo.4034301

code
 ShareAlike license
 Should be placed in cores folder

http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
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3.2. Top HDL files for reference designs and corresponding build scripts
Design filename
 File type
 Open source license
7

Location of the file
core_info_ice40.m
 Build script
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-ice40 folder
pins.pcf
 Pin assignment
file
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-ice40 folder
project.scr
 Build script
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-ice40 folder
synth_ice40.sh Build script Creative Commons Attribution- http://doi.org/10.5281/zenodo.4034301

ShareAlike license
 Should be placed in top-ice40 folder
ws_logger_ice40.bit
 FPGA
configuration
file
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-ice40 folder
ws_logger_ice40.v
 Software
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-ice40 folder
core_info.m HDL code Creative Commons Attribution- http://doi.org/10.5281/zenodo.4034301

ShareAlike license
 Should be placed in top-nexys4 folder
pins.ucf
 Pin assignment
file
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-nexys4 folder
ws_logger.bit
 FPGA
configuration
file
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-nexys4 folder
ws_logger.v
 HDL code
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301
Should be placed in top-nexys4 folder
3.3. Octave software for captured data processing
Design filename
 File type
 Open source license
 Location of the file
logdump.txt
 Sample
data
Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301 Should be
placed in octave folder
parse_log.m
 Software
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301 Should be
placed in octave folder
parse_k12.m Software Creative Commons Attribution- http://doi.org/10.5281/zenodo.4034301 Should be

ShareAlike license
 placed in octave folder
parsepack.m
 Software
 Creative Commons Attribution-
ShareAlike license
http://doi.org/10.5281/zenodo.4034301 Should be
placed in octave folder
3.4. Design file description

A brief description of the listed above design files is given in Tables 1–3. And additional information about FPGA resource
consumption of provided reference design can be found in Table 1. The proposed design has ultra-small area footprint and
doesn’t require any dedicated memory or Digital Signal Processing (DSP-blocks), which make it compatible with the widest
range of market-available FPGAs. HDL-related files listed in Table 2 contain full source code, required to build the projects or
to modify it for your own needs. It is worth to mention, that proposed design doesn’t use any of proprietary or vendor-
limited IP cores. Table 3 describes a set of Octave scripts, which serve as example, how the logic analyzer’s output data
can be automatically processed into long-term jitter timing diagrams. This example is accompanied with sample data cap-
tured during experiment described in a Section 7.

http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301
http://doi.org/10.5281/zenodo.4034301


Table 1
Pre-compiled FPGA firmware.

Design filename Target Resource consumption

ws_logger_ice40.bit Lattice iCEstick kit (Lattice iCE40HX1K FPGA) Logical cells: 988/ 1280
Flip Flops: 598
RAM blocks: 0/16

ws_logger.bit Digilent Nexys 4 DDR kit (Xilinx XC7A100T FPGA) Slices: 243/15850
LUTs: 693/63400
Flip Flops: 626/126800
RAM blocks: 0/270
DSP blocks: 0/240

Table 2
HDL-related design files.

Design filename Target Description

crc32.v Common Supplementary IP core used by udp_send module to evaluate Ethernet CRC-32 frame
checksum.

rmii_send_byte.v Common Reduced Media Interface (RMII) for designs clocked at 100 MHz

rmii_send_byte_v2.v Common Reduced Media Interface (RMII) for designs clocked at 50 MHz

udp_send.v Common UDP sender IP Core

ws_log_ch.v Common IP core, which timestamps edges using time source provided by ws_trigger_ch module

ws_log_max.v Common IP core, which dynamically controls an output rate of the logical analyzer and evaluates
maximum jitter value per defined time range.

ws_trigger_ch.v Common IP core, which detects edge on a master channel and creates a mutual time source for
one another channel in a measurement window (Fig. 5).

ws_logger_ice40.v Lattice iCEstick kit 2-channel logic analyzer reference design top module

pins.pcf Lattice iCEstick kit Pin assignment file for Lattice iCEstick evaluation kit

core_info_ice40.m Lattice iCEstick kit Design configuration file for COREbase automated building environment [23]

synth_ice40.sh Lattice iCEstick kit Bash build script for IceStorm [24] open-source FPGA toolchain

project.scr Lattice iCEstick kit Supplementary build script for Yosys [25]

ws_logger.v Digilent Nexys 4 DDR kit 4-channel logic analyzer reference design top module

pins.ucf Digilent Nexys 4 DDR kit Pin assignment file for Digilent Nexys 4 DDR

core_info.m Digilent Nexys 4 DDR kit Design configuration file for COREbase automated building environment [23]

Table 3
Data processing scripts and sample date.

Design
filename

Description

logdump.txt Contains sample data captured by reference design on a basis of Digilent Nexys 4 DDR kit during clock jitter monitoring between four
different devices.

parse_log.m Example script, which shows how to parse logdump.txt sample data file with the parse_k12 function and plot worst-case jitter timing
diagrams.

parse_k12.m Function, which parses frame capture files created with the use of a plain text K12 format, converts them to byte vectors and filter
frames generated by devices other than the proposed logic analyzer.

parsepack.m Supplementary function used by parse_k12.m.
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4. Bill of materials

A total cost of the components depends on a number of channels and the chosen FPGA platform. The most easy-to-
implement solution would be to buy one of the following Diligent FPGA kits: Nexys 4, Nexys 4 DDR (4-channel logic analyzer
reference design for this kit is provided with the paper in top-nexys4 folder) or Nexys A7. A new kit will cost 229–265 USD or
even lower if one is able to get Diligent Academic discount. Meanwhile, the design is written on pure Verilog and can be
synthesized nearly for any FPGA hardware architecture. In this case, in order to implement the proposed the logic analyzer
8
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the researcher will need to additionally purchase WaveShare LAN8720 ETH Board Ethernet communication module as well a
few wires to connect it to FPGA Printed Circuit Board (PCB). The sample bill of materials for one of the cheapest possible
configurations is provided below. As an additional feature, iCE40 FPGA, used in this configuration, can be programmed with
open-source software [26] provided by IceStorm project [24], which make this design fully proprietary-free in terms of both
hardware and software. The 2-channel logic analyzer reference design as well as build scripts for the open toolchain are pro-
vided with this paper in top-ice40 folder.
Designator
 Component
 Number
 Cost per unit
currency
9

Total
cost
Source of materials
 Material
type
Lattice
Semiconductor
ICE40HX1K-STICK-EVN
 1
 49.5 USD
 49.5
USD
Lattice
Semiconductor
portal
semi-
conductor
WireShare
 LAN8720 ETH Board
 1
 9 USD
 9 USD
 WireShare portal
 semi-
conductor
– Solderless Flexible 6 0.5 USD 3 USD Amazon metal

Breadboard Wires
5. Build instructions

5.1. Hardware wiring

Hardware wiring depends on the PCB board used to implement logic analyzer. The paper is provided with 2 reference
designs: one is based on Digilent Nexys 4 DDR and the second is based on low-cost Lattice iCEstick kit. Via the example
of these two development kits it will be shown how to implement and configure logic analyzer for long-term jitter monitor-
ing. Finally, it is possible to implement the proposed design nearly on any kind of FPGA kit in the market introducing min-
imal changes to the above mentioned reference designs.

The design requires FPGA, which is clocked at 50 or 100 MHz and is connected to at least 2 digital inputs dedicated for
measurement channels, one LED and Ethernet PHY with RMII. It is highly recommended to use Microchip Technology
LAN8720A Ethernet PHY, as all the tests carried out in the paper were performed with this integrated circuit.

The subject matter building device on a basis on Digilent Nexys 4 DDR kit is an easy task, as it already has everything
onboard. It is worth mentioning that after a brief documentation analysis it seems that the newer kit Digilent Nexys A7
is fully compatible with the design provided with the paper for Digilent Nexys 4 DDR without any additional changes (un-
fortunately, the Author didn’t have a chance to test it himself).

The location of the main logic analyzer elements when implemented on a basis of Nexys 4 DDR kit is shown in Fig. 7.
In difference to the previous example, Lattice iCEstick kit will require additional wiring because it is not equipped neither

with Ethernet PHY nor with a proper clock generator. Fortunately, both of these problems can be solved with one WireShare
LAN8720 ETH Board, which should be connected to the Lattice iCEstick board according the Table 4.

In order to reduce the number of the wires, WireShare LAN8720 ETH Board can be partially inserted in a Pmod connector
as it is shown in Fig. 8. In this case REFCLK pin of WireShare board will point directly to the Lattice iCEstick PCB, so this pin
should be bent a little bit to fit a solderless wire connector.

Adopting proposed design to other FPGA kits will require changing Pin assignment files to make them compliant with kit
schematics. If the clock generator of the kit is not 50 or 100 MHz, then, one of these frequencies can be usually synthesized
with the use of FPGA PLL module, but as far as it is crucial for Ethernet interface to have one of those frequencies, it is always
better to have a proper clock generator onboard or to use WireShare LAN8720 ETH Board kit, which is already equipped with
it.

5.2. Uploading FPGA firmware

The easiest way to run a reference design provided with this paper is to upload FPGA with one of the precompiled firm-
ware file. In order to do this for Digilent Nexys 4 DDR, you will need to use ws_logger.bit and follow instructions in Section 3
of the corresponding vendor’s guide [27]. Programming iCEstick kit is possible with the use of open-source tool iceprog from
IceStorm project [24] project. Just go to top-ice40 folder and run:

iceprog ws_logger_ice40.bit

5.3. Building FPGA firmware

There are several options to build FPGA firmware from the source. Before using any of them you should check that the file
structure and folder names are the same as described in the Section 3 tables.



Fig. 7. Logic analyzer on a basis of Digilent Nexys 4 DDR board.

Table 4
Logic analyzer pin description.

iCEstick Pmod pin LAN8720 ETH Board pin Logic analyzer

1 TX_EN Ethernet
2 TX1 Ethernet
3 – Channel ch0
4 – Channel ch2
5 – GND
6 +3.3 V
7 TX0 Ethernet
8 NC –
9 – Channel ch1
10 nINT/RETCLK 50 MHz clock from PHY
11 GND Ethernet power supply
12 VCC Ethernet power supply

Fig. 8. Logic analyzer on a basis of Lattice iCEstick.

A.M. Romanov HardwareX 9 (2021) e00164
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If you are using COREbase automated building environment [23], you can simply go to the folder with the corresponding
reference design and call the build_core function. Necessary core_info files with the right design file structure and chip infor-
mation are already stored in the folders with top HDL modules.

Building FPGA firmware manually is not much more difficult than using COREbase. One will need to add all HDL files from
the cores and top-nexys4 folders into one’s favorite Xilinx tool (Vivado or ISE), set ws_logger.v as top file, include pins.ucf as
User Constraints File and define XC7A100T-1CSG324C as target FPGA. Then one can build firmware according to Xilinx guide
to the chosen software.

In order to build FPGA firmware for iCEstick, one can use official Lattice iCE Cube 2 software [28] and follow the same
procedure as it has been described above for Xilinx, but using files from top-ice40 folder instead of using the ones from
top-nexys4. The other alternative is to install IceStorm tools [24] and run synth_ice40.sh script inside top-ice40 folder. The
script will build FPGA bitstream file using fully open-source IceStorm toolchain.
5.4. Modifying FPGA firmware

As it has been mention before the logic analyzer proposed in the present paper is not a stand-alone device with final func-
tionality, but rather a set of area-efficient cross-platform IP cores, which can be used to build an application specific tool with
minimum additional efforts. This section describes how these IP cores can be configured and customized to achieve the
desired functionality.

Any configuration of the logic analyzer should have one trigger signal. In the provided reference designs it is always ch0.
The signal should be passed to ch input of ws_trigger_ch IP core (Fig. 9), which will generate a set of output signals required
for edge capturing and timestamping according the algorithm described in Section 2 (Fig. 5):

� st_start – strobe indicating start of the acquisition period;
� st_rdy – strobe indicating end of the acquisition period;
� m_cnt – cycle counter, which starts after st_start and counts before st_rdy;
� p_cnt – counter of trigger events.

ws_trigger_ch has two main timing parameters passed as module inputs:

� period – the expected number of clock cycles between ch input edges (Tp).
� mes_period – the number of clock cycles between st_start and st_rdy (Tm).

If input signal is periodic with period close to 2 � periods, st_startwill be generated mes period
2 cycles before ch edge and st_rdy

will be generated mes period
2 cycles after it (Fig. 5).

Also module ws_trigger_ch has 4 parameters, each of which should be predefined before build procedure:

� Np – bit width of period input;
� Nm – bit width of mes_period input;
� Nc – bit width of p_cnt counter;
� Na – the number of clock cycles during which ch input shouldn’t change its level after each edge (used as filter to prevent
multiple edges caused by electromagnetic interference).
Fig. 9. ws_trigger_ch IP core block diagram.
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In order to timestamp signal edges occurred during acquisition period for each signal, including the one acting as trigger,
a ws_log_ch (Fig. 10) should be used. It takes input channel signal level and ws_trigger_ch outputs as its inputs and results
two values:

� edge_type – type of the timestamped edge (0 – negative, 1 – positive);
� ts – timestamp of the edge in clock cycles starting from st_start.

It should be mentioned that both of these outputs are generated on the next cycle after st_rdy, but not syncrhonously with
it.

ws_log_ch has 2 parameters, Nm and Na, which has the same meaning as for ws_trigger_ch module.
The output timestamp ts of each ws_log_ch module, excluding the one processing signal used as trigger, is driven to a ts

input of the separate ws_log_max module. tr input of all ws_log_max modules is connected to ts output of ws_log_ch mod-
ule, which is a processing trigger signal. The other 2 inputs, st_rdy and prescaler of each ws_log_max modules are connected
to st_rdy and st_pcnt outputs of ws_trigger_ch modules respectively.

The main aim of ws_log_max modules is to evaluate the jitter value (jtr output) for each input signal and generate strobe
for UDP processing IP core to transmit a new jitter value to PC. At the same time the module can dynamically change Eth-
ernet exchange rate, which can be configured by two parameters Npr and Nl. The last parameter Nm should be the same as
for the corresponding ws_log_ch module.

ws_log_max (Fig. 11) module evaluates jitter as difference between ts and tr edge timestamps accordingly (1).
jtr ¼ ts� tr ð1Þ
Fig. 10. ws_log_ch IP core block diagram.

Fig. 11. ws_log_max IP core block diagram.
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If the condition (2) is met, the output value of the module will be updated every 2Npr measurements, and it will be equal to
the jtr with maximum absolute value evaluated during the last 2Npr measurements. If condition (2) is not met, jtr output will
be updated after each measurements until Npr lower bits of prescaler input will not reach zero. Each time jtr output changes,
rdy strobe is generated on a ws_log_max module output to trigger outgoing UDP transmission.
� 2Nm�Nlþ1 � 1 < jjtrj < 2Nm�Nlþ1 ð2Þ

Thus, if jitter values are below the limits defined by (2), the logic analyzer switches to a low exchange data rate and sends

the worst-case jitter between transmissions. On the contrary, if jitter raises beyond the limit, it is considered as point of
interest and the logic analyzer starts to send each single measurement to PC.

ws_log_max is a simple example how input signal preprocessing with a variable data exchange rate can be implemented
for a specific application of long-term jitter analysis. Using such kind of modules is an effective way to optimize the trade-off
between the amount of the data collected during a long experiment and enough detail level around specific points of
interest.

Finally, as all the measurement channels are totally independent, then in order to increase their number a reference
design should be modified in a following way:

� Declare ts; jtr and rdy wires corresponding to additional channels in the beginning of the top module.
� Add a set of ws_log_ch, ws_log_max for each new channel and connect them in the same way it is done for the channels
already existing in the reference design.

� Add rdy output signals of the newws_log_maxmodules to the OR concatenation with rdy signals from otherws_log_max
modules.

� Add jtr values evaluated for the new signals to a UDP payload.

The clarification how to configure UDP transmissions parameters, including frame payload, will be provided in the next
subsection.

Ethernet communication as a part of design was created in a such a way to make it both easy to configure and compatible
with the most FPGAs available on the market. Generally, it consists of two modules and a payload memory block.

The main part, which shall be configured by the end-user is a distributed memory block described in one of the reference
designs as:

reg [7:0]payload[0:17];

always @(*)

begin

payload[0] = pcnt[7:0];

payload[1] = pcnt[15:8];

payload[2] = pcnt[23:16];

payload[3] = pcnt[31:24];

payload[4] = jtr1[7:0];

payload[5] = jtr1[15:8];

payload[6] = jtr2[7:0];

payload[7] = jtr2[15:8];

payload[8] = jtr3[7:0];

payload[9] = jtr3[15:8];

payload[10] = 0;

payload[11] = 0;

payload[12] = 0;

payload[13] = 0;

payload[14] = 0;

payload[15] = 0;

payload[16] = 0;

payload[17] = 0;

end

The first line of the above listing defines memory, which consists of 18 cells of 8 bits each. Such kind of memory will not
be generated in a memory block during synthesis but will be used as a simple user interface to define each byte of a payload
in UDP frames transmitted by the logic analyzer. If more data is needed, then the size of memory can be increased from 18 to
a bigger number of cells. The maximum size of the payload is limited by Maximum Transmission Unit (MTU) parameter of
13
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the PC Ethernet interface. Usually MTU is 1500, so the maximum size of the payload will be 1454 bytes. It is also important
that the payload memory size should never be less than 18 because in this case resulting UDP frames will be less than 64
bytes and thus can be declined by Ethernet interfaces of some PCs. If some part of payload is unused, it is better to force these
bytes to zero in the same the way it is done in the provided reference example.

The next ‘‘always” statement defines the values that will be stored in each byte of UDP payload. It is worth mentioning
that the bytes in the payload memory are addressed from 0, but when corresponding frames will be parsed in Wireshark
capture results zero byte of payload will become 43rd byte of captured frame as the first 42 bytes store service information
dedicated to Ethernet and UDP communication protocols.

On a basis of defined payload udp_send IP core generates UDP frame with structure provided in Table 5. It should be
noted, that according current standards most frames fields dedicated to Ethernet and IP headers are big-endian, while Eth-
ernet checksum is little-endian. Logic analyzer measurements transferred as UDP payload are also little-endian, but gener-
ally byte order of this data can be change in any way by modifying ‘‘always” statement, which defines content of payload
memory.

udp_send IP core has several parameters that should be configured before use:

� dst_addr – MAC address of the destination device. By default, it is set to broadcast, but can be changed to MAC address of
the PC to use unicast transmissions. The use of broadcast makes possible to receive the frames by any software on any
computer, without rebuilding FPGA firmware.

� src_addr – MAC address of the logic analyzer itself. If the logic analyzer has point-to-point connection with PC, it can take
any value different from the PC MAC address.

� dst_ip – IP address of the PC. By default, it is set to broadcast 192.168.0.255, and in case of point-to-point connection with
PC it should work with any address as Wireshark performs capturing on a pure Ethernet layer. Meanwhile, in case of using
switches between PC and the logic analyzer the IP address should be in the same subnetwork as PC. In case of using Wi-Fi
segment to connect logic analyzer, it is only IP address of the PC that should be used (broadcast transmissions should be
avoided).

� src_ip – IP address of the logic analyzer. It should be any free address in the network.
� dst_port – UDP port used for transmissions.
� src_port – UDP port used for transmissions.
� p_sz – Size of payload memory in bytes.
� Nsz – frame byte counter bit width. It should be chosen as ceil round value of log2ðp szþ 55Þ

Address signal used to access payload memory in line:
.payload(payload[addr[4:0]]),should be shrinked to ceilðlog2p szÞ to ensure correct synthesis.
udp_send module uses three signals: tx_start, tx_data and tx_rdy, to communicate with RMII transmitter module. There

are two versions of RMII transmitters provided with the paper.
rmii_send_byte – should be used on the devices clocked at 100 MHz. The example of its usage is provided in the refer-

ence design for Digilent Nexys 4 DDR kit.
rmii_send_byte_v2 – should be used on the devices clocked at 50 MHz. The example of its usage is provided in the ref-

erence design for iCEstick.
Table 5
UDP frame structure generated by udp_send IP core.

Frame bytes Value Field description

0–7 0xD555 5555 5555 5555 Ethernet preamble
8–13 dst_addr Destination MAC address (MAC address of the PC)
14–19 src_addr Source MAC address (MAC address of the logical analyzer)
20–21 0x08 00 Protocol type – IPv4
22–23 0x45 00 IP protocol version 4 with 20 bytes header size
23–24 28þ p sz Datagram length
26–29 0x0000 0000 IPv4 Service fields
30 0x40 Datagram time to live (TTL)
31 0x11 IP protocol type – UDP
32–33 ip_crc IP header checksum
34–37 src_ip Source IP address (IP address of the logical analyzer)
38–41 dst_ip Destination IP address (IP address of the PC)
42–43 src_port Source port
44–45 dst_port Destination port
46–47 8þ p sz UDP length
48–49 0x0000 UDP checksum. 0x0000 means, that checksum should be ignored
50-ð50þ p szÞ payload½0::ðp sz� 1Þ] Frame payload
ð51þ p szÞ – ð54þ p szÞ eth_crc Ethernet checksum
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It is worth mentioning that in case of rmii_send_byte_v2 module usage on FPGA kits, where RMII clock is generated by
FPGA (such as Digilent Nexys 4 DDR), this clock should have phase shift of 45, 90 or even 180 degree relative clk to compen-
sate clock skew introduced by FPGA logic, used for its generation [29]. This phase shift can be achieved by using PLL or in
some cases simple logical NOT operation can be used to create 180 phase shift.

Generally, both versions of the provided RMII transmitter IP cores do not require any tuning and should be used in the
same way as it is demonstrated in the reference design. The only input that can be changed is fast_eth. By default, it is
set to 1, which corresponds to Fast Ethernet (100 Mbps). In some cases, the project limitations may require switching to
the lower speed of 10 Mbps. In this case, this parameter should be changed by zero.

One should be aware that changing of RMII transmitter speed does not automatically imply that PHY switching to a lower
speed itself. The speed for LAN8720A used in the provided reference designs can be changed by setting MODE pins during
initialization procedure. It is important to mention that even these pins are not used for communication in the current logic
analyzer design. During regular operation they act as input signals from the PHY receiver, which means that connecting them
to any voltage level permanently may cause electrical damage to the PHY or FPGA. In order to do initialization correctly, the
pins should be configured as inout and switched to Z-state immediately after PHY reset switches to a high level. The example
of such speed initialization is demonstrated in the reference design for Digilent Nexys 4 DDR kit, where PHY is switched to
speed detection with the use of auto-negotiation. For information on other MODE states corresponding to a specific speed
please refer to PHY manual.

6. Operation instructions

A sequence of main operation procedures is shown on Fig. 12. A detailed description of each of them can be found in a list
below:

� Connect external devices with their ports, which generate 1 kHz square wave, to input ports of the logic analyzer.
Remember to connect ground pins of all the devices to a ground pin of the logic analyzer. The instruction generally
assumes that all the input signals are 3.3 LVCMOS. Digital signals of other types may need additional hardware or/and
additional configuration in synthesis tools before building FPGA hardware. If external devices generate square wave with
the frequency different to 1 kHz, you will need to rebuild FPGA firmware following instructions in Section 5.

� Connect logic analyzer to Ethernet interface of the PC.
� Disable all protocols in Ethernet interface settings of your PC to prevent generating of the additional traffic in Wireshark
capture. Generally, the proposed solution is very robust to any additional traffic, so it should not affect the measurements
but will only enlarge the overall size of file with experimental data.

� Switch on all devices.
� Check 100 Mbps LED on Ethernet PHY (Figs. 7 and 8). If it is off, then auto-negotiation algorithms switched the Ethernet
speed to 10 Mbps. Try to change Ethernet cable. If you are using FPGA kit different from the one used in the reference
designs provided with the paper, then check if MODE pins have proper state during PHY initialization and do not switch
off auto-negotiation. Finally, if you are not able to reach 100 Mbps mode, you can reduce Ethernet speed to 10 Mbps and
rebuild FPGA firmware following instructions in Section 5.

� Check trigger LED blinking. If it is not, check Channel 0 (ch0) wiring of the logic analyzer.
� RunWireshark and start capturing Ethernet interface. Check if the number of captured packets displayed in a status bar is
increasing.

� Stop capturing when it is necessary.
� Save captured data as ‘‘K12 text file” without compression.
� Run octave.
� Open parse_log.m.
� Set first parameter of the parse_k12 function to a filename of the saved K12 file with experimental data.
� Set second parameter of the parse_k12 function to a number of captured frames saved in K12 file with experimental data.
This parameter is used only to optimize memory management operations and reduce the overall Octave script runtime.
Generally, it is better to set the value bigger or equal to a number of captured frame because each frame parsed after the
number defined in the parameter will cause memory reallocation. If processing time is not important, the parameter can
be set to 1.

� Set the third parameter of the parse_k12 function to a MAC address of the logic analyzer predefined in FPGA firmware
during build procedure (see Section 5). The parameter should be a vertical vector of 6 elements corresponding to each
byte of MAC address.

� Set the forth parameter of the parse_k12 function to an IP address of the logic analyzer predefined in FPGA firmware dur-
ing build procedure (see Section 5). The parameter should be a vertical vector of 4 elements, corresponding to each byte of
IP address.

� Set ts variable to 10 if the logic analyzer is clocked at 100 MHz (Nexys 4 DDR kit) or to 5 if it is clocked at 50 MHz (iCEstick
kit).

� Set the master clock square wave frequency in freq variable to plot timing diagrams with the right scale.
15



Fig. 12. Flow chart of main operation procedures.
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� If UDP frame payload was changed in FPGA firmware, then modify corresponding ‘‘for” cycle according to new frame
structure (see Section 5).

� Run parse_log.m. If everything was done correctly, the data collected during the experiment will be displayed on the
screen. If you use sample experimental data from logdump.txt file, the output results will look the same as in Figs. 13
and 16. Of course, parse_log.m is only an example how a script for processing of data captured with proposed logic ana-
lyzer can look like. It can be modified in different ways during real experimental studies to provide automated result anal-
ysis and its demonstration in the most convenient way.
Fig. 13. The result of parsing experimental data from the capture file provided with the paper (see Section 7 for details of the experiment).

Fig. 14. Testbench structure.
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7. Validation and characterization

In order to verify the functionality of the proposed logic analyzer, a testbench was built (Fig. 14). It consists of 4 devices
synchronized to mutual master clock by 3 different methods: Device 1 by the most precise one, Devices 2 and 3 – less precise
and Device 4 by the least precise method characterized by an unstable synchronization period. The master clock generator
and all the slave devices generated 1 kHz square-wave signals were synchronized to their internal clock. The signals were
connected to the 4-channel logic analyzer reference design provided with the paper. Square waves synchronous to the mas-
ter clock generator and Devices 2, 3 were also connected to the digital oscilloscope TELEDYNE-LeCroy WaveRunner 610Zi.
This oscilloscope was working in a Persistence mode with synchronization on both edges of the trigger channel connected
to the master clock generator. The oscilloscope screen was cleared simultaneously with the start of capturing data from the
logic analyzer in Wireshark, and the data acquisition on oscilloscope was stopped immediately after stopping capturing in
Wireshark. The data captured during the experiment is provided with the paper in logdump.txt as a sample dataset for testing
Octave-based software.

After data acquisition was stopped, the maximum jitter was measured with the use of the oscilloscope cursors tool
(Fig. 15). The top oscillogram (C1) on (Fig. 15) is a reference square wave generated on a basis of master clock and captured
on both rising and falling edges. Middle (C2) and bottom (C3) oscillograms correspond to Device 2 and Device 3 respectively.
As it can be seen their edges have variable time shift to the edges of the reference C1 channel. The total range of those vari-
Fig. 15. The screenshot of the jitter measurements evaluated with the digital oscilloscope working Persistence mode. (a) Device 2-Master clock jitter
measurement. (b) Device 3-Master clock jitter measurement.
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ations correspond to the synchronization jitter of each of the devices. Part (a) of the Fig. 15 shows Device 2 jitter measure-
ment, while part (b) is dedicated to measuring of Device 3 jitter.

The data captured with Wireshark was processed with parse_log.m Octave script provided with the paper. The timing dia-
grams of the measurements for all 4 input channels of the logic analyzer are shown in Fig. 13. The measurements corre-
sponding to Devices 2 and 3 were additionally displayed on separate plot window (Fig. 16), while their minimum and
maximum values were evaluated using standard Octave functionality and printed in a console.

For sake of convenience, minimum and maximum values of immediate jitter evaluation with different methods are sum-
marized in the Table 6.

Theoretically, edge timestamping precision of the logic analyzer running at 100 MHz is �10 ns. The proposed logic ana-
lyzer evaluates the immediate jitter values as the difference between edge timestamps of input and reference channels, so
total theoretical error can vary �20 ns If we look at the achieved experimental results (Table 6), the differences between
oscilloscope and the logic analyzer measurements perfectly fit the above mentioned theoretical limits. Finally, experimental
Fig. 16. The immediate jitter evaluated with the logic analyzer. (a) Device 2-Master Clock. (b) Device 3-Master clock.

Table 6
Experimental results

Parameter Digital oscilloscope Proposed logic analyzer Absolute difference

Device 2 – Master minimum immediate jitter �193.2 ns �200 ns 6.8 ns
Device 2 – Master maximum immediate jitter 116.8 ns 120 ns 3.2 ns
Device 2 – Master jitter 310 ns 320 ns 10 ns
Device 3 – Master minimum immediate jitter �168.4 ns �170 ns 1.6 ns
Device 3 – Master maximum immediate jitter 87.2 ns 100 ns 12.8 ns
Device 3 – Master jitter 255.6 ns 270 ns 14.4 ns
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result shows that proposed logical analyzer provides 20 ns precision which is similar to the one achieved by industrial real-
time network analyzers such as B&R X20ET8819 [6] and is suitable for most tasks in real-time control and communication.
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