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Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

dog bird invertebrate vehicle good, covering building
commodity

Low-level: Pool4 High-level: FC¢

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]



Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

Maximal activations of pool, units [R-CNN]

conv, DeConv visualization

Rich visual structure of features deep in hierarchy. Zeiler-Fergus]



Why Deep Learning?

The Unreasonable Effectiveness of Deep Features
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image patches that strongly activate 1st layer filters [Zeiler-Fergus]




What is Deep Learning?

Compositional Models
Learned End-to-End



What is Deep Learning?

Compositional Models
Learned End-to-End

Hierarchy of Representations
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete abstract
learning



What is Deep Learning?

Compositional Models
Learned End-to-End

Trainable Trainable Trainable
Feature Feature »| Classifier/ —
Transform Transform Predictor

Learned Internal Representations

figure credit Yann LeCun, ICML ‘13 tutorial



What is Deep Learning?

Compositional Models
Learned End-to-End

Back-propagation: take the gradient of
the model layer-by-layer by the chain rule
to yield the gradient of all the parameters.
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figure credit Yann LeCun, ICML ‘13 tutorial



What is Deep Learning?

Deep (sparse/denoising)
Autoencoder

=
Recurrent -
Neural Net 'j ®

Convolutional < Boosting
Neural Net =
) N

Neural Net Percetron:
SUPERVISED SVM
UNSUPERVISED

BayesNP

DEEP

PROBABILISTIC °P*™¢
@ ODeep Belief Net

Neural Net O

Restricted BM

Vast space of models!

Caffe models are loss-driven:
- supervised
- unsupervised

slide credit Marc’aurelio Ranzato,
CVPR ‘14 tutorial.



Convolutional Neural Nets (CNNs): 1989

C3:f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT
32%32 6@28x28

S2:1. maps
6@14x14

I
Full conrlection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [ LeNet ]



Convolutional Nets: 2012
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AlexNet: a layered model composed of convolution, + data
subsampling, and further operations followed by a holistic + gpu

representation and all-in-all a landmark classifier on
ILSVRC12. [ AlexNet ]

+ non-saturating nonlinearity
+ regularization



Convolutional Nets: 2012
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AlexNet: a layered model composed of convolution, pooling,
and further operations followed by a holistic representation
and all-in-all a landmark classifier on

ILSVRC12. [ AlexNet ]

The fully-connected “FULL” layers are linear classifiers /
matrix multiplications. ReLU are rectified-linear non-
linearities on layer output.



Convolutional Nets: 2014
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ILSVRC14 Winners: ~6.6% Top-5 error

GoogLeNet: composition of multi-scale dimension- + depth
reduced modules + data
- VGG: 16 layers of 3x3 convolution interleaved with + dimensionality reduction

max pooling + 3 fully-connected layers



Why Caffe? In one sip...

e Expression: models + optimizations are plaintext schemas, not code.
e Speed: for state-of-the-art models and massive data.

e Modularity: to extend to new tasks and settings.

e Openness: common code and reference models for reproducibility.

e Community: joint discussion and development through BSD-2 licensing.



So what is Caffe?

e Pure C++ / CUDA architecture for deep learning
o command line, Python, MATLAB interfaces
e Fast, well-tested code
e Tools, reference models, demos, and recipes
e Seamless switch between CPU and GPU
0 Caffe::set mode(Caffe::GPU);

Prototype Training Deployment

All with essentially the same code!



Caffe is a Community project pulse

| BVLC / caffe @Unwatch~ 282 drUnstar 1404 Y Fork 750

October 4, 2014 — November 4, 2014 Period: 1 month ~
O

Overview
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60 Active Pull Requests 127 Active lssues i
na9 I’ 31 @ 67 060

Merged Pull Requests Proposed Pull Requests Closed Issues New Issues

Excluding merges, 36 authors have pushed 16 commits to 30
master and 274 commits to all branches. On master, 9 files 20

A

have changed and there have been 59 additions and 55 10
0 "
S AGERLA A

1129 Pull requests merged by 13 people

deletions.



https://github.com/BVLC/caffe/pulse/monthly

Reference Models

AlexNet: ImageNet Classification

.....

R-CNN: Regions with CNN features

Sl warped region ﬂJ acroplane? =

' =

—L LY :
'l i@%\ﬁﬂ person? yes.
. CNNN 2

wmonitor? no

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Caffe offers the

e model definitions

e optimization settings

e pre-trained weights

SO you can start right away.

The BVLC reference models
are for unrestricted use.



Open Model Collection

The Caffe Model Zoo
- open collection of deep models to share innovation
- VGG ILSVRC14 + Devil models in the zoo
- Network-in-Network / CCCP model in the zoo
- MIT Places scene recognition model in the zoo
- help disseminate and reproduce research
- bundled tools for loading and publishing models
Share Your Models! with your citation + license of course



https://github.com/BVLC/caffe/wiki/Model-Zoo

Architectures

DAGs
multi-input
multi-task

HEHHI
JIRLTITIY

.

[ Karpathy14 ]

Define your own model from our catalogue

Weight Sharing
Recurrent (RNNs)
Sequences

[ Sutskever13 ]

of layers types and start learning.

Siamese Nets
Distances

Convelutiorzl Ceavalutional

[ Chopra05 |



Brewing by the Numbers...

e Speed with Krizhevsky's 2012 model:
o K40/ Titan: 2 ms /image, K20: 2.6ms
o Caffe + cuDNN: 1.17ms / image on K40
o 60 million images / day
o 8-core CPU: ~20 ms/image
e ~ 9K lines of C/C++ code
o with unit tests ~20k

®C++ : ® Python 10. Cuda 3.6 Other 1.

* Not counting I/O time. Details at http://caffe.berkeleyvision.org/performance_hardware.html



http://caffe.berkeleyvision.org/performance_hardware.html

CAFFE INTRO



Net

©
e A network is a set of layers
connected as a DAG: el
name: "dummy-net" ‘a'
layers { name: "data" ..}
layers { name: "conv" ..}
layers { name: "pool" ..} LogReg 1
. more layers ..
layers { name: "loss" ..} =
e Caffe creates and checks the net from -1-
the definition. LeNet — ry
e Data and derivatives flow through the ';;
net as blobs — a an array interface ImageNet, Krizhevsky 2012 —



Forward / Backward the essential Net computations

Forward:
inference f w (:U)

“espresso”
+ loss

Backward:
Vfw(:l?) learning

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.



Layer

name: "convl" 1 name, type, and the

type: CONVOLUTION connection structure

bottom: "data" " (input blobs and

top: "convl" | output blobs) o

convolution param {
num output: 20
kernel size: 5

stride: 1 layer-specific
weight filler { " parameters
type: "xavier" @
}
}
- Setup
e Every layer type defines - Forward

- Backward * Nets + Layers are defined by protobuf schema


https://developers.google.com/protocol-buffers/

Layer Protocol

Setup: run once for initialization.
Reshape: set dimensions.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Model Composition
The Net forward and backward passes
are the composition the layers’.

Layer Development Checklist



https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Blob

Blobs are 4-D arrays for storing and
communicating information.
e hold data, derivatives, and parameters
e |azily allocate memory
e shuttle between CPU and GPU

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution Blas
96 x 1 x 1 x 1 for CaffeNet conv1

name: "convl"
type: CONVOLUTION
bottom: "data"
top: '"convl"

. definition ..

top
blob

bottom
blob



Blob

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions

- make SyncedMem -- but only lazily
allocate I
cpu_data(), mutable_cpu_data() SyncedMem
- host memory for CPU mode allocation + communication
gpu_data(), mutable_gpu_data()
- device memory for GPU mode l

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward




Model Schema: Protocol Buffer

name: "convl"

type: CONVOLUTION

bottom: "data"

top: '"convl"

convolution param {
num output: 20
kernel size: 5
stride: 1
weight filler {

type: "xavier"

e Defines domain-specific language
in caffe.proto to determine
o text schema
o binary model format
e Generates programmer API
e Makes configuring, saving, and
loading models simple

}



Solving: Training a Net

Optimization like model definition is configuration.
train net: "lenet train.prototxt”

base 1r: 0.01

momentum: 0.9

weight decay: 0.0005

max iter: 10000

snapshot prefix: "lenet snapshot”

All you need to run things
1 de: GPU f[=
[ So-ver_Toce A on the GPU.

> caffe train -solver lenet solver.prototxt

Stochastic Gradient Descent (SGD) + momentum -
Adaptive Gradient (ADAGRAD) - Nesterov’'s Accelerated Gradient (NAG)



Step-by-Step Recipe...

e Convert the data to a Caffe format
o Imdb, leveldb, hdf5 / .mat, list of images, etc.

e Define the Net
e Configure the Solver
e caffe train -solver solver.prototxt

e Examples are your friends
o caffe/examples/mnist,cifarl0, imagenet
o caffe/build/tools/*



(Examples)
Loqistic Regression
Learn LeNet on MNIST



http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
http://caffe.berkeleyvision.org/gathered/examples/mnist.html

EXAMPLES + APPLICATIONS



Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org

demo code open-source and bundled

Maximally accurate Maximally specific

cat [ 1.80727 ]
domestic cat (174727
feline [ 1.72787
tabby

domestic animal 0.78542


http://demo.caffe.berkeleyvision.org/
http://demo.caffe.berkeleyvision.org/

Scene Recognition by MIT

15 ‘.-,‘”“'

Predictions:
* Type of environment: outdoor

» Semantic categories: rock_arch:0.63, arch:0.30,
» SUN scene attributes: rugged, natural light, dry, climbing, far-away horizon, touring, rocky, open area, warm, sand

Places CNN demo B. Zhou et al. NIPS 14



http://places.csail.mit.edu/demo.html
http://places.csail.mit.edu/demo.html

Object Detection

R-CNN: Regions with Convolutional Neural Networks
http://nbviewer.ipython.org/qithub/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at
https://github.com/rbgirshick/rcnn

Ross Girshick et al. wof
Rich feature hierarchies for accurate 0l
object detection and semantic
segmentation. CVPR14.

200 |
250 A==

300 |



http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/rcnn

Visual Style Recognition

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.

Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

Other Styles:

Ethereal HDR Melancholy Minimal

Vintage

Long Exposure
Noir

Pastel

Macro

... and so on.

[ Image-Style]


http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/

Embedded Caffe

Caffe on the NVIDIA Jetson TK1 mobile board

- 10 watts of power
- inference at 35 ms per image
- NVIDIA acceleration just released
- how-to guide
courtesy of Pete Warden
- cuDNN for TK1 recently released!



http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/
http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/

In [8]:

In [9]:

+

The first layer filters, convl

# the parameters are a list of [weights, biases]

filters = net.params['convl'][0].data
vis_square(filters.transpose(0, 2, 3, 1))

Tng,first layer output, conv1 rectified responses of the fiters above, first 36

feat = net.blobs('convl'].data[4, :36]
vis_square(feat, padval=1l)

In [14]:

In [15]:

feat = net.blobs['convé'].data[4]
vis_square(feat, padval=0.5)

‘The fifth layer output, convs (rectified, all 256 channels)

feat = net.blobs('conv5'].data[4]
vis_square(feat, padval=0.5)

The fifth layer after pooling, pools

feat = net.blobs['pool5']. data[A]
vis_square(feat, padval=l

Feature Extraction + Visualization

In [13]:

o O )

The second fully connected layer, £c7 (rectified)

feat = net.blobs['fc7'].data[4]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)

uby ) 1, 2)
plt.hist(feat.flat[feat.flat > 0], bins=100)

. e xl
i

feat = net.blobs['prob'].data[4]
plt.plot(feat.flat)

(<matplotlib.lines.Line2D at 0x12b260710>]



http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb

Editing Model Parameters
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3x16x16  convalution pooling conv conv conv

[ OverFeat]

Transform fixed-input models into any-size
models by translating inner products to
convolutions.

The computation exploits a natural
efficiency of convolutional neural network
(CNN) structure by dynamic programming in
the forward pass from shallow to deep
layers and analogously in backward.

Net surgery in Caffe

how to transform models:
- make fully convolutional
- transplant parameters



http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb

FINE-TUNING



F| ne'tu Ni ng Transferring learned weights to kick-start models

e Take a pre-trained model and fine-tune to new tasks
[DeCAF] [Zeiler-Fergus] [OverFeat]

Ethergal‘ HDR A

w
!{‘- y

Style

> Recognition
Dogs vs.
. . Cats
A 1 2 top 10 in
- 10 minutes

© aie‘.éom

Your Task



From ImageNet to Style

Simply change a few lines in the layer definition.

layers { layers {
name: "data" name: "data"
type: DATA type: DATA
data param { data param {
|[source: "ilsvrcl2 train leveldb" (:::) source: "style leveldb"|
mean file: "../../data/ilsvrcl2" mean file: "../../data/ilsvrcl2"
} }
}
layers { layers {
(name: "fca" {—» name: "fc8-style" ) new name = new params

type: INNER PRODUCT
blobs_1r: 1

blobs_1lr: 2

weight decay: 1
weight decay: 0
inner product param {

type: INNER PRODUCT
blobs 1r: 1

blobs_1lr: 2

weight decay: 1
weight decay: 0
inner_ product param {

L=

num output: 20 ]

( num_output: 1000

}

Input:
A different source

Last Layer:
A different classifier



From ImageNet to Style

> caffe train -solver models/finetune flickr style/solver.prototxt

-welghts bvlc reference caffenet.caffemodel

Under the hood (loosely speaking):

net = new Caffe: :Net (
"style solver.prototxt");

net.CopyTrainedNetFrom (

pretrained model) ;

HDR  Melancholy Minimal

solver.Solve (net) ;

Vintage




When to Fine-tune?

A good first step!
- More robust optimization — good initialization helps
- Needs less data s
- Faster learning 70
. 255

State-of-the-art results in e
- recognition N

. 35 —=—Qur Model
- detection " — oot
- segmentation S N I I

Training Images per—class

[Zeiler-Fergus]



Training & Fine-tuning Analysis

- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes “for free” in deep representation

fealure map binarize ' sp-shuffle ! sp-max
v ' cow
500 1t oo |9 1|0,
1
1
Filter 1 0 2 0 0 1 Q 0 2 5 : 9
s o 5 - 1
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™ ® ® ™ | e
1
0 2 3 0 1 3 0 3 " [
Filter N 0|7 |0 0 0 o 7|0 7
0 3 0 0 0 0 2 0

(;) E © EE P. Agarwal et al. ECCV 14
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Fine-tuning Tricks

Learn the last layer first

- Caffe layers have local learning rates: blobs 1r

- Freeze all but the last layer for fast optimization
and avoiding early divergence.

- Stop if good enough, or keep fine-tuning

Reduce the learning rate

- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid thrashing



(Example)
Fine-tuning from ImageNet to Style



http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html

LOSS



Loss

What kind of model is this?




Loss

What kind of model is this?

Who knows! Need a loss function.

Classification
SOFTMAX LOSS
HINGE LOSS

Linear Regression
EUCLIDEAN LOSS

Attributes / Multiclassification
SIGMOID CROSS_ENTROPY LOSS

Others...

New Task
NEW LOSS



Loss

Loss function determines the learning task.

Given data D, a Net typically minimizes:
DI

1 .
LW) = = ) fw (XP) +4r(W)

Data term: error averaged Regularization
over instances term: penalize
large weights to

improve
generalization



Loss

e The data errorterm /fw (X) is computed
by Net::Forward

e Loss is computed as the output of Layers

e Pick the loss to suit the task — many different

osses for different needs




SOLVER



Optimization

How to minimize loss?  4(f,(x,y)) f,:\\\
Descend the gradient. V/ / - \\
| |

1 mn
Wi41 = wt—'YT_LvaQ(Ziawt)

=1

Fast, incremental learning by
Stochastic Gradient Descent (SGD)




Solver
e Solver optimizes the network weights W

to minimize the loss L(W) over the data D

1 DI |
LW) = 7= > fw (XP) +ar(W)

e Coordinates forward / backward, weight
updates, and scoring.



Solver

e Computes parameter update AW , formed

from
o The stochastic error gradient Viw

o The regularization gradient V(W)
o Particulars to each solving method
N

1 |
LW) = = D fw (X©) +ar(W)



SGD Solver

e Stochastic gradient descent, with momentum
® solver type: SGD

Vier = uVy — aVL(W,)

Wr+l =W, + Vr+l



SGD Solver
e “AlexNet” [1] training strategy:

o Use momentum 0.9
o Initialize learning rate at 0.01
o Periodically drop learning rate by a factor of 10

e Just a few lines of Caffe solver specification:

base 1r: 0.01

lr policy: "step"
gamma: 0.1
stepsize: 100000
max _iter: 350000
momentum: 0.9

[11 A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural
Information Processing Systems, 2012.


http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Solver Showdown: MNIST Autoencoder

AdaGrad

10901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627
10901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set
10901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

10901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)
10901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: 12_error = 2.40951

10901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498
10901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#@) # train set
10901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

10901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)
10901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: 12_error = 2.02321
Nesterov

10901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

10901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#@) # train set

10901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

10901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)
10901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: 12 _error = 1.79998



DAG

Many current deep models
have linear structure

but Caffe nets can have any
directed acyclic graph (DAG)
structure.

Define bottoms and tops
and Caffe will connect the net.

SDS two-stream net

Filter
concatenation

_—7

3x3 convoluti 5x5 i 1x1 convolutions

1x1 convolutions [} [) [}

1x1 cor { 1x1 cor i 3x3 max pooling

Previous layer

GoogleNet Inception Module

LRCN joint vision-sequence model



WEIGHT SHARING

e Name parameters
by the param field

e Layers with the same param
name share the parameter,
accumulating gradients
accordingly

e Use cases
o multi-scale pyramid
o sequences
o regularization

layers: |{
name: 'innerproductl'
type: INNER PRODUCT
inner product param {
num output: 10
bias term: false
weight filler ({
type: 'gaussian'
std: 10
}
}

param: 'sharedweights'
bottom: 'data'

top: 'innerproductl'
}
layers: {

name: 'innerproduct2'

type: INNER PRODUCT
inner product param {
num output: 10
bias term: false
}
param: 'sharedweights'
bottom: 'data'
top: 'innerproduct2?'

}



RECENT MODELS

- Network-in-Network (NIN)
- GooglLeNet
- VGG



Network-in-Network

- filter with a nonlinear
composition instead of a
linear filter

- 1x1 convolution + M- { NEE H
nonlinearity |

) reduce dimenSiona”ty’ Linear Filter NIN / MLP filter
deepen the CONV 1x1 CONV
representation




GooglLeNet

Y 2
WL
WA Ut
g 38g35d |
o 1 AAUE Rt
gg3808g8 gl _u; e
T At L =l
@ 3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions

[} [}

Q‘i’tms 1x1 convolutions

P —

- composition of multi-scale dimension-reduced
“Inception” modules
1x1 conv for dimensionality reduction

- concatenation across filter scales
multiple losses for training to depth

Previous layer

“Inception” module

f

3x3 max pooling




VGG

ConvNet Configuration

A A-LRN B C D E .
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight - 3X3 ConVOIUtlon a" the Way down
layers layers layers layers layers layers f .
: : - fine-tuned progression of deeper models
input (224 x 224 RGB image) )
3-64 3-64 3-64 3-64 3-64 3-64 - 1ati
conv ] conv364 | conv3-64 | conv3-64 | conv3-64 | conv3-64 j6 and 19 parameter layer variations
maxpool in the model zoo

conv3-128

conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
cony3-128 | conv3-128 | conv3-128 | conv3-128

maxpool

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv1l-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).
[ Network [AALRN][ B [ C [ D [ E
| Numberof parameters | 133 | 133 | 134 | 138 [ 144 |




NOW ROASTING

- Parallelism

- Pythonification

- Fully Convolutional Networks
- Sequences

- cuDNN v2

- Gradient Accumulation

- More
- FFT convolution
- locally-connected layer



Parallelism

Parallel / distributed training across
GPUs, CPUs, and cluster nodes

- collaboration with Flickr + open source community
- promoted to official integration branch in PR #1148

- faster learning and scaling to larger data



https://github.com/BVLC/caffe/pull/1148

Pythonification

Python Layer
- layer prototyping and ease of expression

- call Python from C++, C++ from Python,
and around we go

Complete instrumentation in Python
- data preparation
- solving
- inference
- model definition Jon Long



Fully Convolutional Network: FCN

A framework for spatial prediction by conv. net

applied to semantic segmentation

- end-to-end learning

- efficiency in inference and learning
0.3 s for whole image prediction

- multi-modal, multi-task

Further applications
- depth estimation
- denaoising

arXiv

Jon Long & Evan Shelhamer


http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038

Sequences

Recurrent Net RNN and Long Short Term Memory LSTM
are sequential models

- video
- language
- dynamics

learned by back-propagation through time.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition
- image captioning
- video captioning

arXiv A group of young men playing a game of
E— soccer.

Jeff Donahue et al.


http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4389

NVIDIA® cuDNN / Caffe Roadmap

Release 1
September 2014

Layers (foward & backprop)
Convolutional
Pooling
Softmax
Relu/Sigmoid/Tanh

High performance
convolution

Release 2

Layers

- Local receptive field
- Contrast normalization
- Fully-connected

- Recurrent

 Targeting 1.5x faster on

convolutional layers

Release 3

 Support for multiple GPUs
per node

— Tuning for future chips

GANVIDIA.




Gradient Accumulation

- decouple computational and learning mini-
batch size

- tune optimization independently of
resource constraints

- conserve memory

...and share convolution buffers for further memory savings.

Jon Long & Sergio Guadarrama



LAST SIP

Caffe...

Is fast

Is state-of-the-art

has tips, recipes, demos, and models
brings together an active community
...all for free and open source



Thanks to the Caffe crew

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev
Jonathan Long, Ross Girshick, Sergio Guadarrama

...plus the
cold-brew

and our open source contributors!



https://github.com/BVLC/caffe/graphs/contributors
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UPCOMING GTC EXPRESS WEBINARS

{&}ARRAYFIRE Wednesday, December 10 ArrayFire: A Productive Open Source GPU

Software Library
Shehzan Mohammed, ArrayFire

Thursday, December 18  Photorealistic Visualization with Speed and

Ease Using Iray+ for Autodesk 3ds Max
Shehzan Mohammed, ArrayFire

www.gputechconf.con/gtcexpress

ANVIDIA.


http://www.gputechconf.con/gtcexpress
http://www.gputechconf.con/gtcexpress

REGISTRATION IS OPEN!

March 17-20, 2015 | San Jose, CA
www.gputechconf.com #GTC15

CONNECT LEARN DISCOVER INNOVATE

Connect with experts Get key learnings and Discover the latest Hear about disruptive

from NVIDIA and other hands-on training in the technologies shaping innovations as early-stage
organizations across a 400+ sessions and 150+ the GPU ecosystem start-ups present their work
wide range of fields research posters

4 Days | 3400+ Attendees | 400+ Sessions | 150+ Research Posters
40+ Countries | 180+ Press & Analytics | 100+ Exhibitors


http://www.gputechconf.com/
http://www.gputechconf.com/

