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DIY Deep Learning for Vision:
the Caffe framework

caffe.berkeleyvision.org

github.com/BVLC/caffe

adapted from the Caffe tutorial with
Jeff Donahue, Yangqing Jia, and Ross Girshick.

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p


Why Deep Learning? 
The Unreasonable Effectiveness of Deep Features

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]



Why Deep Learning? 
The Unreasonable Effectiveness of Deep Features

Rich visual structure of features deep in hierarchy.

[R-CNN]

[Zeiler-Fergus]

Maximal activations of pool5 units

conv5 DeConv visualization



Why Deep Learning? 
The Unreasonable Effectiveness of Deep Features

[Zeiler-Fergus]

1st layer filters

image patches that strongly activate 1st layer filters



What is Deep Learning? 

Compositional Models
Learned End-to-End



What is Deep Learning? 

Compositional Models
Learned End-to-End

Hierarchy of Representations
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete abstract
learning



What is Deep Learning? 

Compositional Models
Learned End-to-End

figure credit Yann LeCun, ICML ‘13 tutorial



What is Deep Learning? 

Compositional Models
Learned End-to-End

figure credit Yann LeCun, ICML ‘13 tutorial

Back-propagation: take the gradient of 
the model layer-by-layer by the chain rule 
to yield the gradient of all the parameters.



What is Deep Learning? 

Vast space of models!

Caffe models are loss-driven:
- supervised
- unsupervised

slide credit Marc’aurelio Ranzato, 
CVPR ‘14 tutorial.



Convolutional Neural Nets (CNNs): 1989

LeNet: a layered model composed of convolution and 
subsampling operations followed by a holistic representation 
and ultimately a classifier for handwritten digits. [ LeNet ]



Convolutional Nets: 2012

AlexNet: a layered model composed of convolution, 
subsampling, and further operations followed by a holistic 
representation and all-in-all a landmark classifier on
ILSVRC12. [ AlexNet ]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization



Convolutional Nets: 2012

AlexNet: a layered model composed of convolution, pooling, 
and further operations followed by a holistic representation 
and all-in-all a landmark classifier on
ILSVRC12. [ AlexNet ]

The fully-connected “FULL” layers are linear classifiers / 
matrix multiplications. ReLU are rectified-linear non-
linearities on layer output.



Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale dimension-

reduced modules
- VGG: 16 layers of 3x3 convolution interleaved with 

max pooling + 3 fully-connected layers 

+ depth
+ data
+ dimensionality reduction



● Expression: models + optimizations are plaintext schemas, not code.

● Speed: for state-of-the-art models and massive data.

● Modularity: to extend to new tasks and settings.

● Openness: common code and reference models for reproducibility.

● Community: joint discussion and development through BSD-2 licensing.

Why Caffe? In one sip… 



So what is Caffe?

Prototype Training Deployment

All with essentially the same code!

● Pure C++ / CUDA architecture for deep learning
○ command line, Python, MATLAB interfaces

● Fast, well-tested code
● Tools, reference models, demos, and recipes
● Seamless switch between CPU and GPU

○ Caffe::set_mode(Caffe::GPU);



Caffe is a Community                                          project pulse

https://github.com/BVLC/caffe/pulse/monthly


Reference Models
Caffe offers the
● model definitions
● optimization settings
● pre-trained weights
so you can start right away.

The BVLC reference models
are for unrestricted use.



The Caffe Model Zoo
- open collection of deep models to share innovation

- VGG ILSVRC14 + Devil models in the zoo
- Network-in-Network / CCCP model in the zoo
- MIT Places scene recognition model in the zoo

- help disseminate and reproduce research
- bundled tools for loading and publishing models
Share Your Models! with your citation + license of course

Open Model Collection

https://github.com/BVLC/caffe/wiki/Model-Zoo


Architectures
Weight Sharing
Recurrent (RNNs)
Sequences

Define your own model from our catalogue
of layers types and start learning.

DAGs
multi-input
multi-task

Siamese Nets
Distances

[ Karpathy14 ] [ Sutskever13 ] [ Chopra05 ]



Brewing by the Numbers...

● Speed with Krizhevsky's 2012 model:
○ K40 / Titan: 2 ms / image, K20: 2.6ms
○ Caffe + cuDNN: 1.17ms / image on K40
○ 60 million images / day
○ 8-core CPU: ~20 ms/image

● ~ 9K lines of C/C++ code
○ with unit tests ~20k

* Not counting I/O time. Details at http://caffe.berkeleyvision.org/performance_hardware.html

http://caffe.berkeleyvision.org/performance_hardware.html


CAFFE INTRO



Net

name: "dummy-net"

layers { name: "data" …}

layers { name: "conv" …}

layers { name: "pool" …}

    … more layers …

layers { name: "loss" …}

● A network is a set of layers 
connected as a DAG:

LogReg ↑

LeNet →

ImageNet, Krizhevsky 2012 →

● Caffe creates and checks the net from 
the definition.

● Data and derivatives flow through the 
net as blobs – a an array interface



Forward / Backward the essential Net computations

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.



Layer
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
        type: "xavier"
    }
}

name, type, and the 
connection structure
(input blobs and 
output blobs)

layer-specific 
parameters

* Nets + Layers are defined by protobuf schema
● Every layer type defines

- Setup
- Forward
- Backward

https://developers.google.com/protocol-buffers/


Setup: run once for initialization.
Reshape: set dimensions.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Layer Protocol

Layer Development Checklist

Model Composition
The Net forward and backward passes 
are the composition the layers’.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers


Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are 4-D arrays for storing and 
communicating information.
● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Blob
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
… definition …

top 
blob

bottom 
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution BIas
96 x 1 x 1 x 1 for CaffeNet conv1



Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions
- make SyncedMem -- but only lazily 
allocate

Blob

cpu_data(), mutable_cpu_data()
- host memory for CPU mode
gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward

SyncedMem 
allocation + communication



Model Schema: Protocol Buffer
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
        type: "xavier"
    }
}

● Defines domain-specific language
in caffe.proto to determine
○ text schema
○ binary model format

● Generates programmer API
● Makes configuring, saving, and 

loading models simple



Solving: Training a Net
Optimization like model definition is configuration.
train_net: "lenet_train.prototxt"

base_lr: 0.01

momentum: 0.9

weight_decay: 0.0005

max_iter: 10000

snapshot_prefix: "lenet_snapshot"

solver_mode: GPU All you need to run things 
on the GPU.

> caffe train -solver lenet_solver.prototxt

Stochastic Gradient Descent (SGD) + momentum ·
Adaptive Gradient (ADAGRAD) · Nesterov’s Accelerated Gradient (NAG)



Step-by-Step Recipe...
● Convert the data to a Caffe format

○ lmdb, leveldb, hdf5 / .mat, list of images, etc.
● Define the Net
● Configure the Solver
● caffe train -solver solver.prototxt -gpu 0

● Examples are your friends
○ caffe/examples/mnist,cifar10,imagenet
○ caffe/build/tools/*



(Examples)
Logistic Regression

Learn LeNet on MNIST

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
http://caffe.berkeleyvision.org/gathered/examples/mnist.html


EXAMPLES + APPLICATIONS



Share a Sip of Brewed Models
demo.caffe.berkeleyvision.org

demo code open-source and bundled

http://demo.caffe.berkeleyvision.org/
http://demo.caffe.berkeleyvision.org/


Scene Recognition by MIT

Places CNN demo B. Zhou et al. NIPS 14

http://places.csail.mit.edu/demo.html
http://places.csail.mit.edu/demo.html


Object Detection
R-CNN: Regions with Convolutional Neural Networks
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at
https://github.com/rbgirshick/rcnn

Ross Girshick et al.
Rich feature hierarchies for accurate 
object detection and semantic 
segmentation. CVPR14.

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/rcnn


Visual Style Recognition

Other Styles:

Vintage
Long Exposure
Noir
Pastel
Macro
… and so on.

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.
Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

[ Image-Style]

http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/


Embedded Caffe
Caffe on the NVIDIA Jetson TK1 mobile board

- 10 watts of power
- inference at 35 ms per image
- NVIDIA acceleration just released
- how-to guide

courtesy of Pete Warden
- cuDNN for TK1 recently released!

http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/
http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/


Feature Extraction + Visualization

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb


Editing Model Parameters
Transform fixed-input models into any-size 
models by translating inner products to 
convolutions.

The computation exploits a natural 
efficiency of convolutional neural network 
(CNN) structure by dynamic programming in 
the forward pass from shallow to deep 
layers and analogously in backward.

Net surgery in Caffe 
how to transform models:
- make fully convolutional
- transplant parameters

[ OverFeat]

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb


FINE-TUNING



Dogs vs.
Cats
top 10 in
10 minutes

Fine-tuning Transferring learned weights to kick-start models

● Take a pre-trained model and fine-tune to new tasks 
[DeCAF] [Zeiler-Fergus] [OverFeat]

© kaggle.com

Your Task

Style
Recognition



From ImageNet to Style
Simply change a few lines in the layer definition.

Input:
A different source

Last Layer:
A different classifier

layers {
  name: "data"
  type: DATA
  data_param {
    source: "ilsvrc12_train_leveldb"
    mean_file: "../../data/ilsvrc12"
    ...
  }
  ...
}
...
layers {
  name: "fc8"
  type: INNER_PRODUCT
  blobs_lr: 1
  blobs_lr: 2  
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 1000
    ...
  }
}

layers {
  name: "data"
  type: DATA
  data_param {
    source: "style_leveldb"
    mean_file: "../../data/ilsvrc12"
    ...
  }
  ...
}
...
layers {
  name: "fc8-style"
  type: INNER_PRODUCT
  blobs_lr: 1
  blobs_lr: 2  
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 20
    ...
  }
}

new name = new params



> caffe train -solver models/finetune_flickr_style/solver.prototxt

              -weights bvlc_reference_caffenet.caffemodel

Under the hood (loosely speaking):
  net = new Caffe::Net(
     "style_solver.prototxt");

 net.CopyTrainedNetFrom(

     pretrained_model);

 solver.Solve(net);

From ImageNet to Style



When to Fine-tune?
A good first step!
- More robust optimization – good initialization helps
- Needs less data
- Faster learning

State-of-the-art results in
- recognition
- detection
- segmentation

[Zeiler-Fergus]



Training & Fine-tuning Analysis
- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes “for free” in deep representation

P. Agarwal et al. ECCV 14



Learn the last layer first
- Caffe layers have local learning rates: blobs_lr
- Freeze all but the last layer for fast optimization

and avoiding early divergence.
- Stop if good enough, or keep fine-tuning

Reduce the learning rate
- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid thrashing

Fine-tuning Tricks



(Example)
Fine-tuning from ImageNet to Style

http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html


LOSS



Loss

What kind of model is this?



Classification
SOFTMAX_LOSS
HINGE_LOSS

Linear Regression
EUCLIDEAN_LOSS

Attributes / Multiclassification
SIGMOID_CROSS_ENTROPY_LOSS

Others…

New Task
NEW_LOSS

Loss

What kind of model is this?

Who knows! Need a loss function.

loss (LOSS_TYPE)



Loss function determines the learning task.
Given data D, a Net typically minimizes:

Loss

Data term: error averaged 
over instances

Regularization 
term: penalize 

large weights to 
improve 

generalization



Loss

● The data error term                   is computed 
by Net::Forward

● Loss is computed as the output of Layers
● Pick the loss to suit the task – many different 

losses for different needs



SOLVER



Optimization

How to minimize loss?
Descend the gradient.

Fast, incremental learning by 
Stochastic Gradient Descent (SGD)



● Coordinates forward / backward, weight 
updates, and scoring.

● Solver optimizes the network weights W
to minimize the loss L(W) over the data D

Solver



● Computes parameter update         , formed 
from
○ The stochastic error gradient
○ The regularization gradient
○ Particulars to each solving method

Solver



● Stochastic gradient descent, with momentum
● solver_type: SGD

SGD Solver



● “AlexNet” [1] training strategy:
○ Use momentum 0.9
○ Initialize learning rate at 0.01
○ Periodically drop learning rate by a factor of 10

● Just a few lines of Caffe solver specification:

[1] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural 
Information Processing Systems, 2012.

SGD Solver

base_lr: 0.01
lr_policy: "step"
gamma: 0.1          
stepsize: 100000
max_iter: 350000
momentum: 0.9

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627

I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

I0901 13:36:33.019356 24952 solver.cpp:302]     Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)

I0901 13:36:33.019773 24952 solver.cpp:302]     Test net output #1: l2_error = 2.40951

AdaGrad

SGD

Nesterov

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

I0901 13:35:22.780138 20072 solver.cpp:302]     Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)

I0901 13:35:22.780146 20072 solver.cpp:302]     Test net output #1: l2_error = 2.02321

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

I0901 13:36:55.068410 22488 solver.cpp:302]     Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)

I0901 13:36:55.068418 22488 solver.cpp:302]     Test net output #1: l2_error = 1.79998

Solver Showdown: MNIST Autoencoder



DAG
Many current deep models
have linear structure

but Caffe nets can have any 
directed acyclic graph (DAG) 
structure.

Define bottoms and tops
and Caffe will connect the net. LRCN joint vision-sequence model

GoogLeNet Inception Module

SDS two-stream net



WEIGHT SHARING
● Name parameters

by the param field
● Layers with the same param 

name share the parameter, 
accumulating gradients 
accordingly

● Use cases
○ multi-scale pyramid
○ sequences
○ regularization

layers: {
  name: 'innerproduct1'
  type: INNER_PRODUCT
  inner_product_param {
    num_output: 10
    bias_term: false
    weight_filler {
      type: 'gaussian'
      std: 10
    }
  }
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct1'
}
layers: {
  name: 'innerproduct2'
  type: INNER_PRODUCT
  inner_product_param {
    num_output: 10
    bias_term: false
  }
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct2'
}



- Network-in-Network (NIN)
- GoogLeNet
- VGG

RECENT MODELS



Network-in-Network
- filter with a nonlinear 

composition instead of a 
linear filter

- 1x1 convolution + 
nonlinearity

- reduce dimensionality, 
deepen the 
representation

Linear Filter
CONV

NIN / MLP filter
1x1 CONV



GoogLeNet

- composition of multi-scale dimension-reduced 
“Inception” modules

- 1x1 conv for dimensionality reduction
- concatenation across filter scales
- multiple losses for training to depth

“Inception” module



VGG
- 3x3 convolution all the way down...
- fine-tuned progression of deeper models
- 16 and 19 parameter layer variations 

in the model zoo



NOW ROASTING

- Parallelism
- Pythonification
- Fully Convolutional Networks
- Sequences
- cuDNN v2
- Gradient Accumulation
- More

- FFT convolution
- locally-connected layer
- ...



Parallel / distributed training across
GPUs, CPUs, and cluster nodes
- collaboration with Flickr + open source community
- promoted to official integration branch in PR #1148
- faster learning and scaling to larger data

Parallelism

https://github.com/BVLC/caffe/pull/1148


Pythonification
Python Layer

- layer prototyping and ease of expression
- call Python from C++, C++ from Python, 

and around we go
Complete instrumentation in Python

- data preparation
- solving
- inference
- model definition Jon Long



A framework for spatial prediction by conv. net
applied to semantic segmentation

- end-to-end learning
- efficiency in inference and learning

0.3 s for whole image prediction
- multi-modal, multi-task

Fully Convolutional Network: FCN

Further applications
- depth estimation
- denoising

Jon Long & Evan Shelhamer

arXiv

http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038


Recurrent Net RNN and Long Short Term Memory LSTM 
are sequential models

- video
- language
- dynamics

learned by back-propagation through time.

Sequences

Jeff Donahue et al.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition
- image captioning
- video captioning

arXiv

http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4389




Gradient Accumulation

- decouple computational and learning mini-
batch size

- tune optimization independently of
resource constraints

- conserve memory

...and share convolution buffers for further memory savings.
Jon Long & Sergio Guadarrama



LAST SIP

Caffe...
● is fast
● is state-of-the-art
● has tips, recipes, demos, and models
● brings together an active community
● ...all for free and open source



Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev
Jonathan Long, Ross Girshick, Sergio Guadarrama

Thanks to the Caffe crew

...plus the 
cold-brewand our open source contributors!

https://github.com/BVLC/caffe/graphs/contributors
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