
Evan Shelhamer

DIY Deep Learning for Vision:
the Caffe framework

caffe.berkeleyvision.org

github.com/BVLC/caffe

adapted from the Caffe tutorial with
Jeff Donahue, Yangqing Jia, and Ross Girshick.

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe
https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

Classes separate in the deep representations and transfer to many tasks.
[DeCAF] [Zeiler-Fergus]

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

Rich visual structure of features deep in hierarchy.

[R-CNN]

[Zeiler-Fergus]

Maximal activations of pool5 units

conv5 DeConv visualization

Why Deep Learning?
The Unreasonable Effectiveness of Deep Features

[Zeiler-Fergus]

1st layer filters

image patches that strongly activate 1st layer filters

What is Deep Learning?

Compositional Models
Learned End-to-End

What is Deep Learning?

Compositional Models
Learned End-to-End

Hierarchy of Representations
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete abstract
learning

What is Deep Learning?

Compositional Models
Learned End-to-End

figure credit Yann LeCun, ICML ‘13 tutorial

What is Deep Learning?

Compositional Models
Learned End-to-End

figure credit Yann LeCun, ICML ‘13 tutorial

Back-propagation: take the gradient of
the model layer-by-layer by the chain rule
to yield the gradient of all the parameters.

What is Deep Learning?

Vast space of models!

Caffe models are loss-driven:
- supervised
- unsupervised

slide credit Marc’aurelio Ranzato,
CVPR ‘14 tutorial.

Convolutional Neural Nets (CNNs): 1989

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [LeNet]

Convolutional Nets: 2012

AlexNet: a layered model composed of convolution,
subsampling, and further operations followed by a holistic
representation and all-in-all a landmark classifier on
ILSVRC12. [AlexNet]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Convolutional Nets: 2012

AlexNet: a layered model composed of convolution, pooling,
and further operations followed by a holistic representation
and all-in-all a landmark classifier on
ILSVRC12. [AlexNet]

The fully-connected “FULL” layers are linear classifiers /
matrix multiplications. ReLU are rectified-linear non-
linearities on layer output.

Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale dimension-

reduced modules
- VGG: 16 layers of 3x3 convolution interleaved with

max pooling + 3 fully-connected layers

+ depth
+ data
+ dimensionality reduction

● Expression: models + optimizations are plaintext schemas, not code.

● Speed: for state-of-the-art models and massive data.

● Modularity: to extend to new tasks and settings.

● Openness: common code and reference models for reproducibility.

● Community: joint discussion and development through BSD-2 licensing.

Why Caffe? In one sip…

So what is Caffe?

Prototype Training Deployment

All with essentially the same code!

● Pure C++ / CUDA architecture for deep learning
○ command line, Python, MATLAB interfaces

● Fast, well-tested code
● Tools, reference models, demos, and recipes
● Seamless switch between CPU and GPU

○ Caffe::set_mode(Caffe::GPU);

Caffe is a Community project pulse

https://github.com/BVLC/caffe/pulse/monthly

Reference Models
Caffe offers the
● model definitions
● optimization settings
● pre-trained weights
so you can start right away.

The BVLC reference models
are for unrestricted use.

The Caffe Model Zoo
- open collection of deep models to share innovation

- VGG ILSVRC14 + Devil models in the zoo
- Network-in-Network / CCCP model in the zoo
- MIT Places scene recognition model in the zoo

- help disseminate and reproduce research
- bundled tools for loading and publishing models
Share Your Models! with your citation + license of course

Open Model Collection

https://github.com/BVLC/caffe/wiki/Model-Zoo

Architectures
Weight Sharing
Recurrent (RNNs)
Sequences

Define your own model from our catalogue
of layers types and start learning.

DAGs
multi-input
multi-task

Siamese Nets
Distances

[Karpathy14] [Sutskever13] [Chopra05]

Brewing by the Numbers...

● Speed with Krizhevsky's 2012 model:
○ K40 / Titan: 2 ms / image, K20: 2.6ms
○ Caffe + cuDNN: 1.17ms / image on K40
○ 60 million images / day
○ 8-core CPU: ~20 ms/image

● ~ 9K lines of C/C++ code
○ with unit tests ~20k

* Not counting I/O time. Details at http://caffe.berkeleyvision.org/performance_hardware.html

http://caffe.berkeleyvision.org/performance_hardware.html

CAFFE INTRO

Net

name: "dummy-net"

layers { name: "data" …}

layers { name: "conv" …}

layers { name: "pool" …}

 … more layers …

layers { name: "loss" …}

● A network is a set of layers
connected as a DAG:

LogReg ↑

LeNet →

ImageNet, Krizhevsky 2012 →

● Caffe creates and checks the net from
the definition.

● Data and derivatives flow through the
net as blobs – a an array interface

Forward / Backward the essential Net computations

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.

Layer
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
}

name, type, and the
connection structure
(input blobs and
output blobs)

layer-specific
parameters

* Nets + Layers are defined by protobuf schema
● Every layer type defines

- Setup
- Forward
- Backward

https://developers.google.com/protocol-buffers/

Setup: run once for initialization.
Reshape: set dimensions.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Layer Protocol

Layer Development Checklist

Model Composition
The Net forward and backward passes
are the composition the layers’.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are 4-D arrays for storing and
communicating information.
● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Blob
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
… definition …

top
blob

bottom
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution BIas
96 x 1 x 1 x 1 for CaffeNet conv1

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions
- make SyncedMem -- but only lazily
allocate

Blob

cpu_data(), mutable_cpu_data()
- host memory for CPU mode
gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward

SyncedMem
allocation + communication

Model Schema: Protocol Buffer
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
 num_output: 20
 kernel_size: 5
 stride: 1
 weight_filler {
 type: "xavier"
 }
}

● Defines domain-specific language
in caffe.proto to determine
○ text schema
○ binary model format

● Generates programmer API
● Makes configuring, saving, and

loading models simple

Solving: Training a Net
Optimization like model definition is configuration.
train_net: "lenet_train.prototxt"

base_lr: 0.01

momentum: 0.9

weight_decay: 0.0005

max_iter: 10000

snapshot_prefix: "lenet_snapshot"

solver_mode: GPU All you need to run things
on the GPU.

> caffe train -solver lenet_solver.prototxt

Stochastic Gradient Descent (SGD) + momentum ·
Adaptive Gradient (ADAGRAD) · Nesterov’s Accelerated Gradient (NAG)

Step-by-Step Recipe...
● Convert the data to a Caffe format

○ lmdb, leveldb, hdf5 / .mat, list of images, etc.
● Define the Net
● Configure the Solver
● caffe train -solver solver.prototxt -gpu 0

● Examples are your friends
○ caffe/examples/mnist,cifar10,imagenet
○ caffe/build/tools/*

(Examples)
Logistic Regression

Learn LeNet on MNIST

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
http://caffe.berkeleyvision.org/gathered/examples/mnist.html

EXAMPLES + APPLICATIONS

Share a Sip of Brewed Models
demo.caffe.berkeleyvision.org

demo code open-source and bundled

http://demo.caffe.berkeleyvision.org/
http://demo.caffe.berkeleyvision.org/

Scene Recognition by MIT

Places CNN demo B. Zhou et al. NIPS 14

http://places.csail.mit.edu/demo.html
http://places.csail.mit.edu/demo.html

Object Detection
R-CNN: Regions with Convolutional Neural Networks
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at
https://github.com/rbgirshick/rcnn

Ross Girshick et al.
Rich feature hierarchies for accurate
object detection and semantic
segmentation. CVPR14.

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/rcnn

Visual Style Recognition

Other Styles:

Vintage
Long Exposure
Noir
Pastel
Macro
… and so on.

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.
Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).

[Image-Style]

http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Vintage/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Long_Exposure/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Noir/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Pastel/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/results/flickr_mar23/caffe_fc6%20None%20vw/style_Macro/test/all/positive/decreasing/1
http://demo.vislab.berkeleyvision.org/

Embedded Caffe
Caffe on the NVIDIA Jetson TK1 mobile board

- 10 watts of power
- inference at 35 ms per image
- NVIDIA acceleration just released
- how-to guide

courtesy of Pete Warden
- cuDNN for TK1 recently released!

http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/
http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/

Feature Extraction + Visualization

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb

Editing Model Parameters
Transform fixed-input models into any-size
models by translating inner products to
convolutions.

The computation exploits a natural
efficiency of convolutional neural network
(CNN) structure by dynamic programming in
the forward pass from shallow to deep
layers and analogously in backward.

Net surgery in Caffe
how to transform models:
- make fully convolutional
- transplant parameters

[OverFeat]

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/net_surgery.ipynb

FINE-TUNING

Dogs vs.
Cats
top 10 in
10 minutes

Fine-tuning Transferring learned weights to kick-start models

● Take a pre-trained model and fine-tune to new tasks
[DeCAF] [Zeiler-Fergus] [OverFeat]

© kaggle.com

Your Task

Style
Recognition

From ImageNet to Style
Simply change a few lines in the layer definition.

Input:
A different source

Last Layer:
A different classifier

layers {
 name: "data"
 type: DATA
 data_param {
 source: "ilsvrc12_train_leveldb"
 mean_file: "../../data/ilsvrc12"
 ...
 }
 ...
}
...
layers {
 name: "fc8"
 type: INNER_PRODUCT
 blobs_lr: 1
 blobs_lr: 2
 weight_decay: 1
 weight_decay: 0
 inner_product_param {
 num_output: 1000
 ...
 }
}

layers {
 name: "data"
 type: DATA
 data_param {
 source: "style_leveldb"
 mean_file: "../../data/ilsvrc12"
 ...
 }
 ...
}
...
layers {
 name: "fc8-style"
 type: INNER_PRODUCT
 blobs_lr: 1
 blobs_lr: 2
 weight_decay: 1
 weight_decay: 0
 inner_product_param {
 num_output: 20
 ...
 }
}

new name = new params

> caffe train -solver models/finetune_flickr_style/solver.prototxt

 -weights bvlc_reference_caffenet.caffemodel

Under the hood (loosely speaking):
 net = new Caffe::Net(
 "style_solver.prototxt");

 net.CopyTrainedNetFrom(

 pretrained_model);

 solver.Solve(net);

From ImageNet to Style

When to Fine-tune?
A good first step!
- More robust optimization – good initialization helps
- Needs less data
- Faster learning

State-of-the-art results in
- recognition
- detection
- segmentation

[Zeiler-Fergus]

Training & Fine-tuning Analysis
- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes “for free” in deep representation

P. Agarwal et al. ECCV 14

Learn the last layer first
- Caffe layers have local learning rates: blobs_lr
- Freeze all but the last layer for fast optimization

and avoiding early divergence.
- Stop if good enough, or keep fine-tuning

Reduce the learning rate
- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid thrashing

Fine-tuning Tricks

(Example)
Fine-tuning from ImageNet to Style

http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://tutorial.caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html

LOSS

Loss

What kind of model is this?

Classification
SOFTMAX_LOSS
HINGE_LOSS

Linear Regression
EUCLIDEAN_LOSS

Attributes / Multiclassification
SIGMOID_CROSS_ENTROPY_LOSS

Others…

New Task
NEW_LOSS

Loss

What kind of model is this?

Who knows! Need a loss function.

loss (LOSS_TYPE)

Loss function determines the learning task.
Given data D, a Net typically minimizes:

Loss

Data term: error averaged
over instances

Regularization
term: penalize

large weights to
improve

generalization

Loss

● The data error term is computed
by Net::Forward

● Loss is computed as the output of Layers
● Pick the loss to suit the task – many different

losses for different needs

SOLVER

Optimization

How to minimize loss?
Descend the gradient.

Fast, incremental learning by
Stochastic Gradient Descent (SGD)

● Coordinates forward / backward, weight
updates, and scoring.

● Solver optimizes the network weights W
to minimize the loss L(W) over the data D

Solver

● Computes parameter update , formed
from
○ The stochastic error gradient
○ The regularization gradient
○ Particulars to each solving method

Solver

● Stochastic gradient descent, with momentum
● solver_type: SGD

SGD Solver

● “AlexNet” [1] training strategy:
○ Use momentum 0.9
○ Initialize learning rate at 0.01
○ Periodically drop learning rate by a factor of 10

● Just a few lines of Caffe solver specification:

[1] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural
Information Processing Systems, 2012.

SGD Solver

base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
max_iter: 350000
momentum: 0.9

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627

I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

I0901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)

I0901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: l2_error = 2.40951

AdaGrad

SGD

Nesterov

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

I0901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)

I0901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: l2_error = 2.02321

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

I0901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)

I0901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: l2_error = 1.79998

Solver Showdown: MNIST Autoencoder

DAG
Many current deep models
have linear structure

but Caffe nets can have any
directed acyclic graph (DAG)
structure.

Define bottoms and tops
and Caffe will connect the net. LRCN joint vision-sequence model

GoogLeNet Inception Module

SDS two-stream net

WEIGHT SHARING
● Name parameters

by the param field
● Layers with the same param

name share the parameter,
accumulating gradients
accordingly

● Use cases
○ multi-scale pyramid
○ sequences
○ regularization

layers: {
 name: 'innerproduct1'
 type: INNER_PRODUCT
 inner_product_param {
 num_output: 10
 bias_term: false
 weight_filler {
 type: 'gaussian'
 std: 10
 }
 }
 param: 'sharedweights'
 bottom: 'data'
 top: 'innerproduct1'
}
layers: {
 name: 'innerproduct2'
 type: INNER_PRODUCT
 inner_product_param {
 num_output: 10
 bias_term: false
 }
 param: 'sharedweights'
 bottom: 'data'
 top: 'innerproduct2'
}

- Network-in-Network (NIN)
- GoogLeNet
- VGG

RECENT MODELS

Network-in-Network
- filter with a nonlinear

composition instead of a
linear filter

- 1x1 convolution +
nonlinearity

- reduce dimensionality,
deepen the
representation

Linear Filter
CONV

NIN / MLP filter
1x1 CONV

GoogLeNet

- composition of multi-scale dimension-reduced
“Inception” modules

- 1x1 conv for dimensionality reduction
- concatenation across filter scales
- multiple losses for training to depth

“Inception” module

VGG
- 3x3 convolution all the way down...
- fine-tuned progression of deeper models
- 16 and 19 parameter layer variations

in the model zoo

NOW ROASTING

- Parallelism
- Pythonification
- Fully Convolutional Networks
- Sequences
- cuDNN v2
- Gradient Accumulation
- More

- FFT convolution
- locally-connected layer
- ...

Parallel / distributed training across
GPUs, CPUs, and cluster nodes
- collaboration with Flickr + open source community
- promoted to official integration branch in PR #1148
- faster learning and scaling to larger data

Parallelism

https://github.com/BVLC/caffe/pull/1148

Pythonification
Python Layer

- layer prototyping and ease of expression
- call Python from C++, C++ from Python,

and around we go
Complete instrumentation in Python

- data preparation
- solving
- inference
- model definition Jon Long

A framework for spatial prediction by conv. net
applied to semantic segmentation

- end-to-end learning
- efficiency in inference and learning

0.3 s for whole image prediction
- multi-modal, multi-task

Fully Convolutional Network: FCN

Further applications
- depth estimation
- denoising

Jon Long & Evan Shelhamer

arXiv

http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038

Recurrent Net RNN and Long Short Term Memory LSTM
are sequential models

- video
- language
- dynamics

learned by back-propagation through time.

Sequences

Jeff Donahue et al.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition
- image captioning
- video captioning

arXiv

http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4389

Gradient Accumulation

- decouple computational and learning mini-
batch size

- tune optimization independently of
resource constraints

- conserve memory

...and share convolution buffers for further memory savings.
Jon Long & Sergio Guadarrama

LAST SIP

Caffe...
● is fast
● is state-of-the-art
● has tips, recipes, demos, and models
● brings together an active community
● ...all for free and open source

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev
Jonathan Long, Ross Girshick, Sergio Guadarrama

Thanks to the Caffe crew

...plus the
cold-brewand our open source contributors!

https://github.com/BVLC/caffe/graphs/contributors

Acknowledgements

Thank you to the Berkeley Vision and Learning Center Sponsors.

Thank you to NVIDIA
for GPU donation and
collaboration on cuDNN

Thank you to our 50+
open source contributors
and vibrant community.

Thank you to A9 and AWS
for a research grant for Caffe dev
and reproducible research

References
[DeCAF] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. ICML, 2014.

[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. CVPR, 2014.

[Zeiler-Fergus] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.

[LeNet] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. IEEE, 1998.

[AlexNet] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. NIPS, 2012.

[OverFeat] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional networks. ICLR, 2014.

[Image-Style] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller.
Recognizing Image Style. BMVC, 2014.

[Karpathy14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. CVPR, 2014.

[Sutskever13] I. Sutskever. Training Recurrent Neural Networks.
PhD thesis, University of Toronto, 2013.
[Chopra05] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to
face verification. CVPR, 2005.

http://sergeykarayev.com/
http://matttrent.com/
http://helenhan.me/
http://www.agarwala.org/
http://www.eecs.berkeley.edu/~trevor/
http://www.dgp.toronto.edu/~hertzman/
http://www.adobe.com/technology/people/seattle/holger-winnemoeller.html

UPCOMING GTC EXPRESS WEBINARS

Wednesday, December 10 ArrayFire: A Productive Open Source GPU
Software Library

Shehzan Mohammed, ArrayFire

Thursday, December 18 Photorealistic Visualization with Speed and
Ease Using Iray+ for Autodesk 3ds Max

Shehzan Mohammed, ArrayFire

www.gputechconf.con/gtcexpress

http://www.gputechconf.con/gtcexpress
http://www.gputechconf.con/gtcexpress

March 17-20, 2015 | San Jose, CA
www.gputechconf.com #GTC15

4 Days | 3400+ Attendees | 400+ Sessions | 150+ Research Posters
40+ Countries | 180+ Press & Analytics | 100+ Exhibitors

CONNECT
Connect with experts
from NVIDIA and other
organizations across a
wide range of fields

LEARN
Get key learnings and
hands-on training in the
400+ sessions and 150+
research posters

DISCOVER
Discover the latest
technologies shaping
the GPU ecosystem

INNOVATE
Hear about disruptive
innovations as early-stage
start-ups present their work

20% OFF
GM15WEB

REGISTRATION IS OPEN!

http://www.gputechconf.com/
http://www.gputechconf.com/

