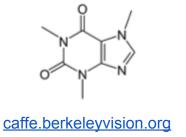
DIY Deep Learning for Vision: the Caffe framework

Maximally accurate	Maximally specific	
espresso		2.23192
coffee		2.19914
beverage		1.93214
liquid		1.89367
fluid		1.85519

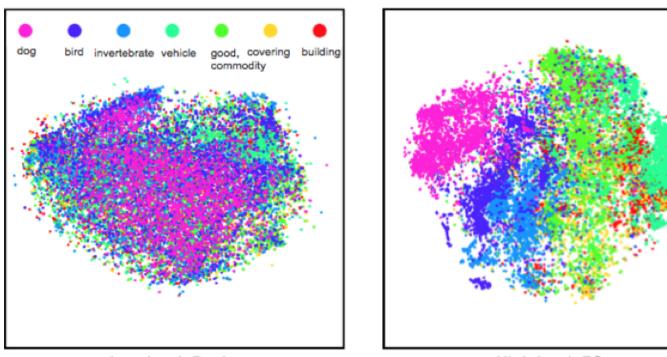


Evan Shelhamer

adapted from the <u>Caffe tutorial</u> with Jeff Donahue, Yangqing Jia, and Ross Girshick.

Why Deep Learning?

The Unreasonable Effectiveness of Deep Features



Low-level: Pool₁

High-level: FC6

Classes separate in the deep representations and transfer to many tasks. [DeCAF] [Zeiler-Fergus]

Why Deep Learning?

The Unreasonable Effectiveness of Deep Features

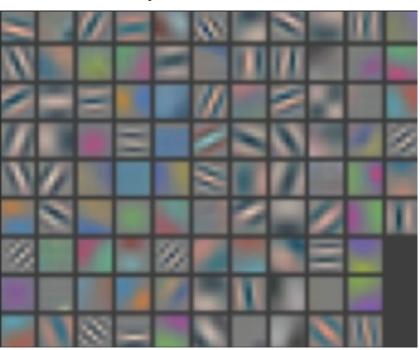
Maximal activations of pool₅ units

[R-CNN]

conv₅ DeConv visualization
[Zeiler-Fergus]

Why Deep Learning?

The Unreasonable Effectiveness of Deep Features



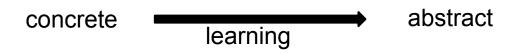
1st layer filters

Compositional Models Learned End-to-End

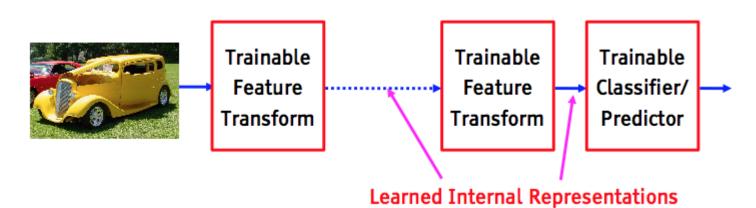
Compositional Models Learned End-to-End

Hierarchy of Representations

- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word



Compositional Models Learned End-to-End



Compositional Models Learned End-to-End

Back-propagation: take the gradient of the model layer-by-layer by the chain rule to yield the gradient of all the parameters.

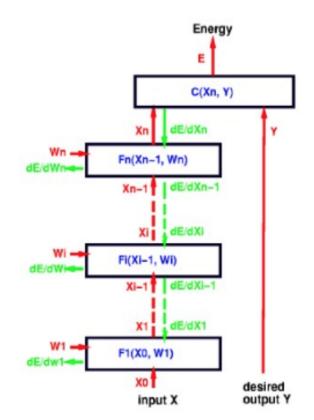
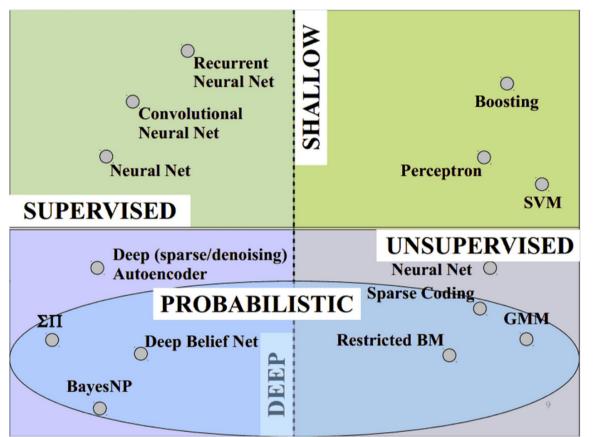


figure credit Yann LeCun, ICML '13 tutorial



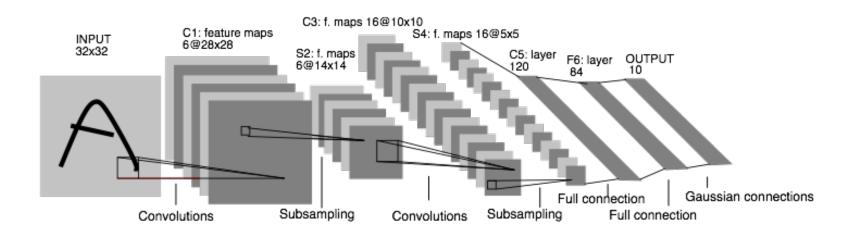
Vast space of models!

Caffe models are loss-driven:

- supervised
- unsupervised

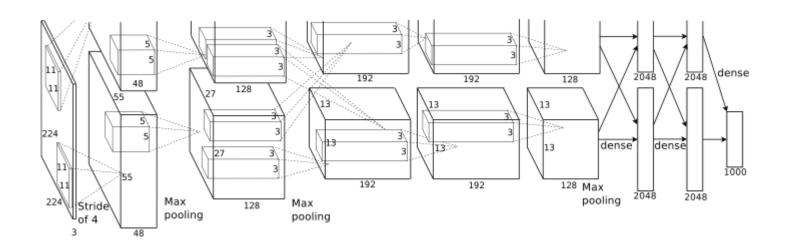
slide credit Marc'aurelio Ranzato, CVPR '14 tutorial.

Convolutional Neural Nets (CNNs): 1989



LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeNet]

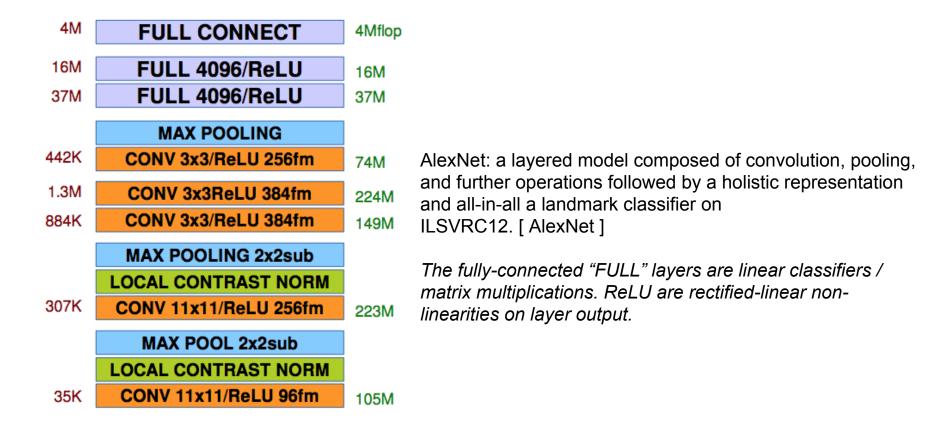
Convolutional Nets: 2012



AlexNet: a layered model composed of convolution, subsampling, and further operations followed by a holistic representation and all-in-all a landmark classifier on ILSVRC12. [AlexNet]

- + data
- + gpu
- + non-saturating nonlinearity
- + regularization

Convolutional Nets: 2012



Convolutional Nets: 2014 3x3 convolutions 5x5 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 1x1 convolutions 3x3 max pooling Previous layer

- ILSVRC14 Winners: ~6.6% Top-5 error
 - GoogLeNet: composition of multi-scale dimensionreduced modules
 - VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers
- + depth
- + data
- + dimensionality reduction

Why Caffe? In one sip...

- **Expression**: models + optimizations are plaintext schemas, not code.
- Speed: for state-of-the-art models and massive data.
- Modularity: to extend to new tasks and settings.
- Openness: common code and reference models for reproducibility.
- Community: joint discussion and development through BSD-2 licensing.

So what is Caffe?

- Pure C++ / CUDA architecture for deep learning
 - command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU
 - o Caffe::set mode(Caffe::GPU);

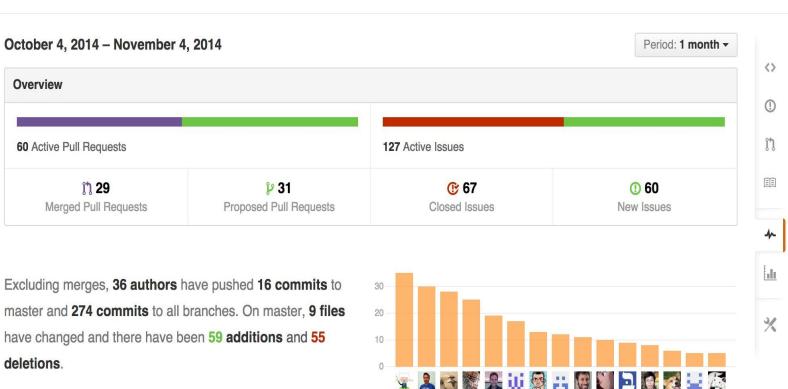
Prototype Training

Deployment

All with essentially the same code!

Caffe is a Community

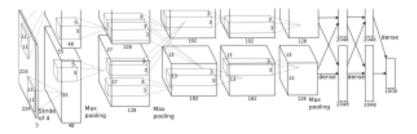
project pulse



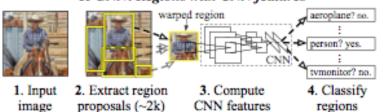
_ [1] 29 Pull requests merged by 13 people -

Reference Models

AlexNet: ImageNet Classification



R-CNN: Regions with CNN features



Caffe offers the

- model definitions
- optimization settings
- pre-trained weights
 so you can start right away.

The BVLC reference models are for unrestricted use.

Open Model Collection

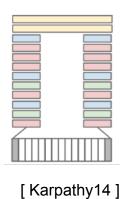
The Caffe Model Zoo

- open collection of deep models to share innovation
 - VGG ILSVRC14 + Devil models in the zoo
 - Network-in-Network / CCCP model in the zoo
 - MIT Places scene recognition model in the zoo
- help disseminate and reproduce research
- bundled tools for loading and publishing models

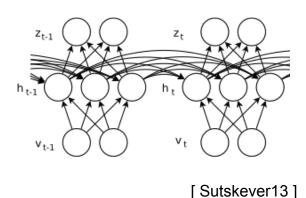
Share Your Models! with your citation + license of course

Architectures

DAGs multi-input multi-task



Weight Sharing Recurrent (RNNs) Sequences



Siamese Nets
Distances E_W $||G_W(X_1) - G_W(X_2)||$ $||G_W(X_1) - G_W(X_2)||$ $||G_W(X_1) - G_W(X_2)||$

Convolutional

[Chopra05]

Convolutional

Network

Define your own model from our catalogue of layers types and start learning.

Brewing by the Numbers...

- Speed with Krizhevsky's 2012 model:
 - K40 / Titan: 2 ms / image, K20: 2.6ms
 - Caffe + cuDNN: 1.17ms / image on K40
 - 60 million images / day
 - 8-core CPU: ~20 ms/image
- ~ 9K lines of C/C++ code
 - with unit tests ~20k

● C++ 84.2%

Python 10.5%

Cuda 3.9%

Other 1.4%

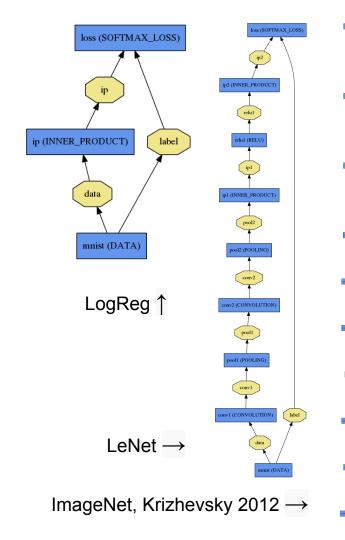
^{*} Not counting I/O time. Details at http://caffe.berkeleyvision.org/performance_hardware.html

CAFFE INTRO

Net

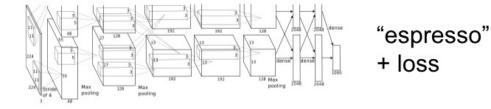
 A network is a set of layers connected as a DAG:

- Caffe creates and checks the net from the definition.
- Data and derivatives flow through the net as blobs – a an array interface



Forward / Backward the essential Net computations

Forward: $f_W(x)$



 $abla f_W(x)$ Backward: learning

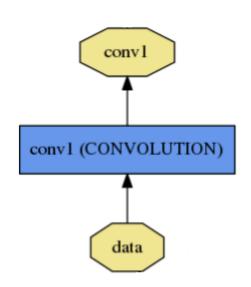
Caffe models are complete machine learning systems for inference and learning. The computation follows from the model definition. Define the model and run.

Layer

```
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution param {
    num output: 20
    kernel size: 5
    stride: 1
    weight filler {
        type: "xavier"
```

name, type, and the connection structure (input blobs and output blobs)

layer-specific parameters



- Every layer type defines
- Setup
- Forward
- Backward
- * Nets + Layers are defined by <u>protobuf</u> schema

Layer Protocol

Setup: run once for initialization.

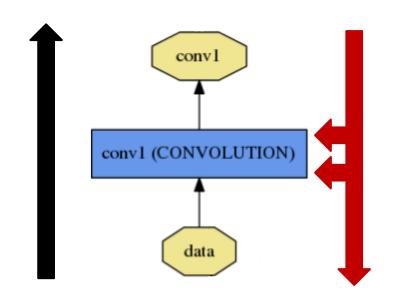
Reshape: set dimensions.

Forward: make output given input.

Backward: make gradient of output

- w.r.t. bottom
- w.r.t. parameters (if needed)

Model Composition
The Net forward and backward passes are the composition the layers'.

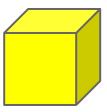


Layer Development Checklist

Blob

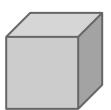
Blobs are 4-D arrays for storing and communicating information.

- hold data, derivatives, and parameters
- lazily allocate memory
- shuttle between CPU and GPU



Data

Number x K Channel x Height x Width 256 x 3 x 227 x 227 for ImageNet train input



Parameter: Convolution Weight

N Output x K Input x Height x Width 96 x 3 x 11 x 11 for CaffeNet conv1

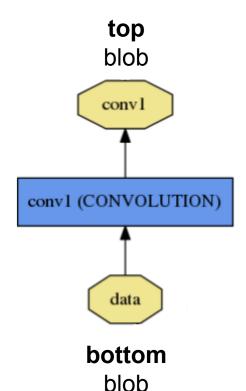
Parameter: Convolution Blas
96 x 1 x 1 x 1 for CaffeNet conv1

name: "conv1"

type: CONVOLUTION

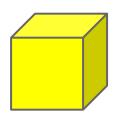
bottom: "data"
top: "conv1"

... definition ...



Blob

Blobs provide a unified memory interface.



Reshape(num, channel, height, width)

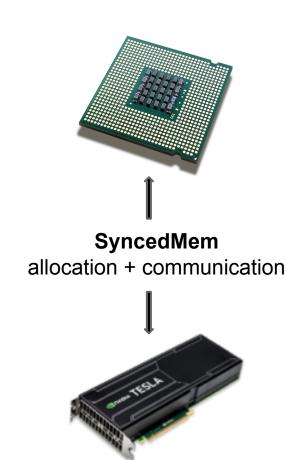
- declare dimensions
- make *SyncedMem* -- but only lazily allocate

cpu_data(), mutable_cpu_data()

- host memory for CPU mode
- gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()

- derivative counterparts to data methods
- easy access to data + diff in forward / backward



Model Schema: Protocol Buffer

- Defines domain-specific language in caffe.proto to determine
 - text schema
 - binary model format
- Generates programmer API
- Makes configuring, saving, and loading models simple

```
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution param {
    num output: 20
    kernel size: 5
    stride: 1
    weight filler {
        type: "xavier"
```

Solving: Training a Net

Stochastic Gradient Descent (SGD) + momentum ·

Optimization like model definition is configuration.

```
train net: "lenet train.prototxt"
base 1r: 0.01
momentum: 0.9
weight decay: 0.0005
max iter: 10000
snapshot prefix: "lenet snapshot"
                                          All you need to run things
solver mode: GPU
                                          on the GPU.
> caffe train -solver lenet solver.prototxt
```

Adaptive Gradient (ADAGRAD) · Nesterov's Accelerated Gradient (NAG)

Step-by-Step Recipe...

- Convert the data to a Caffe format
 - Imdb, leveldb, hdf5 / .mat, list of images, etc.
- Define the Net
- Configure the Solver
- caffe train -solver solver.prototxt -gpu 0
- Examples are your friends
 - o caffe/examples/mnist,cifar10,imagenet
 - o caffe/build/tools/*

(Examples)

Logistic Regression

Learn LeNet on MNIST

EXAMPLES + APPLICATIONS

Share a Sip of Brewed Models

demo.caffe.berkeleyvision.org

demo code open-source and bundled

Maximally accurate	Maximally specific
cat	1.80727
domestic cat	(1.74727)
feline	1.72787
tabby	0.99133
domestic animal	0.78542

Scene Recognition by MIT

Predictions:

- · Type of environment: outdoor
- Semantic categories: rock_arch:0.63, arch:0.30,
- SUN scene attributes: rugged, natural light, dry, climbing, far-away horizon, touring, rocky, open area, warm, sand

Object Detection

R-CNN: Regions with Convolutional Neural Networks

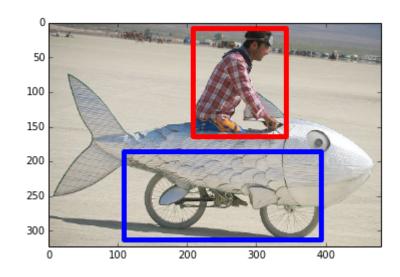
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at

https://github.com/rbgirshick/rcnn

Ross Girshick et al.

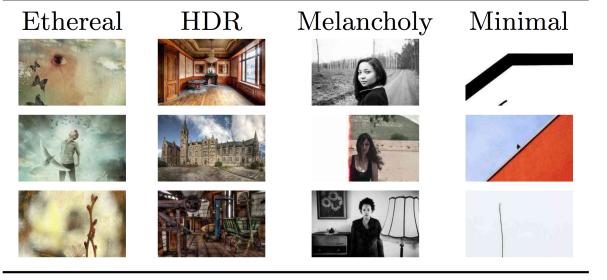
Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR14.



Visual Style Recognition

Karayev et al. Recognizing Image Style. BMVC14. Caffe fine-tuning example.

Demo online at http://demo.vislab.berkeleyvision.org/ (see Results Explorer).



Other Styles:

Vintage
Long Exposure
Noir
Pastel
Macro
and so on

[Image-Style]

Embedded Caffe

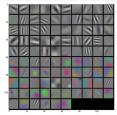
Caffe on the NVIDIA Jetson TK1 mobile board

- 10 watts of power
- inference at 35 ms per image
- NVIDIA acceleration just released
- how-to guide courtesy of Pete Warden
- cuDNN for TK1 recently released!

Feature Extraction + Visualization

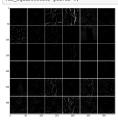
The first layer filters, conv1

In [8]: # the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
vis square(filters.transpose(0, 2, 3, 1))

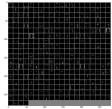


The first layer output, conv1 (rectified responses of the filters above, first 36

In [9]: feat = net.blobs['conv1'].data[4, :36]
 vis_square(feat, padval=1)

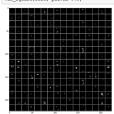


In [13]: feat = net.blobs['conv4'].data[4]
vis square(feat, padval=0.5)



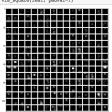
The fifth layer output, conv5 (rectified, all 256 channels)

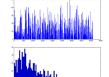
In [14]: feat = net.blobs['conv5'].data[4]
vis square(feat, padval=0.5)



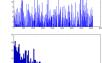
The fifth layer after pooling, pool5

In [15]: feat = net.blobs['pool5'].data[4]
 vis_square(feat, padval=1)



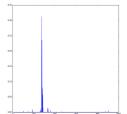


The second fully connected layer, fc7 (rectifier

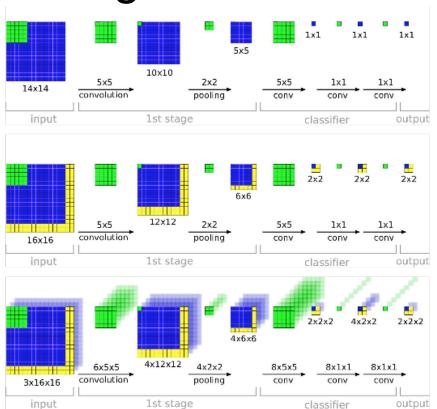


In [18]: feat = net.blobs('prob').data[4]
 plt.plot(feat.flat)

Out[18]: [<matplotlib.lines.Line2D at 0x12b260710>]



Editing Model Parameters



Transform fixed-input models into any-size models by translating inner products to convolutions.

The computation exploits a natural efficiency of convolutional neural network (CNN) structure by dynamic programming in the forward pass from shallow to deep layers and analogously in backward.

Net surgery in Caffe

how to transform models:

- make fully convolutional
- transplant parameters

[OverFeat]

FINE-TUNING

Fine-tuning Transferring learned weights to kick-start models

Take a pre-trained model and fine-tune to new tasks
 [DeCAF] [Zeiler-Fergus] [OverFeat]



Style Recognition

Dogs vs.
Cats
top 10 in
10 minutes

From ImageNet to Style

Simply change a few lines in the layer definition.

```
layers {
                                          lavers {
 name: "data"
                                            name: "data"
 type: DATA
                                            type: DATA
                                            data param -
 data param
                                                                                         Input:
   source: "ilsvrc12 train leveldb"
                                              source: "style leveldb"
   mean file: "../../data/ilsvrc12"
                                              mean file: "../../data/ilsvrc12"
                                                                                                A different source
lavers
                                          lavers -
 name: "fc8"
                                            name: "fc8-style" new name = new params
 type: INNER PRODUCT
                                            type: INNER PRODUCT
 blobs lr: 1
                                            blobs lr: 1
 blobs lr: 2
                                                                                         Last Layer:
                                            blobs lr: 2
 weight decay: 1
                                            weight decay: 1
                                                                                                A different classifier
 weight decay: 0
                                            weight decay: 0
 inner product param
                                            inner product param
   num output: 1000
                                              num output: 20
```

From ImageNet to Style

Under the hood (loosely speaking):

```
net = new Caffe::Net(
    "style_solver.prototxt");
net.CopyTrainedNetFrom(
    pretrained_model);
solver.Solve(net);
```


Vintage

HDR

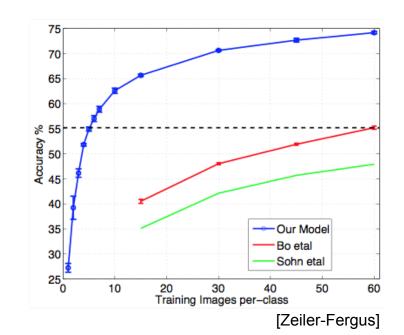
When to Fine-tune?

A good first step!

- More robust optimization good initialization helps
- Needs less data
- Faster learning

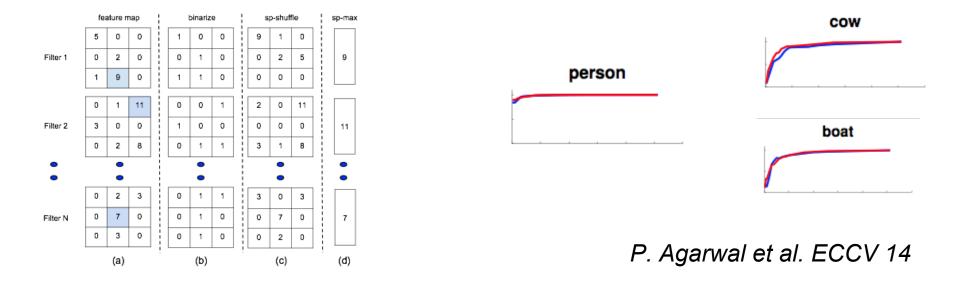
State-of-the-art results in

- recognition
- detection
- segmentation



Training & Fine-tuning Analysis

- Supervised pre-training does not overfit
- Representation is (mostly) distributed
- Sparsity comes "for free" in deep representation



Fine-tuning Tricks

Learn the last layer first

- Caffe layers have local learning rates: blobs lr
- Freeze all but the last layer for fast optimization and avoiding early divergence.
- Stop if good enough, or keep fine-tuning

Reduce the learning rate

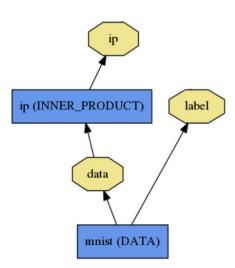
- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid thrashing

(Example)

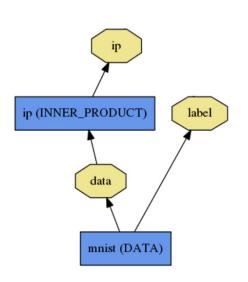
Fine-tuning from ImageNet to Style

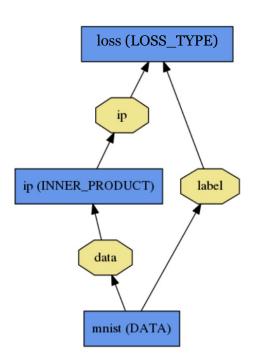
LOSS

What kind of model is this?



What kind of model is this?





Classification

SOFTMAX_LOSS HINGE_LOSS

Linear Regression

EUCLIDEAN LOSS

Attributes / Multiclassification

SIGMOID_CROSS_ENTROPY_LOSS

Others...

New Task

NEW_LOSS

Who knows! Need a loss function.

Loss function determines the learning task. Given data D, a Net typically minimizes:

$$L(W) = \frac{1}{|D|} \sum_{i}^{|D|} f_W \left(X^{(i)} \right) + \lambda r(W)$$

Data term: error averaged over instances

Regularization term: penalize large weights to improve generalization

- The data error term $f_W(X^{(i)})$ is computed by Net::Forward
- Loss is computed as the output of Layers
- Pick the loss to suit the task many different losses for different needs

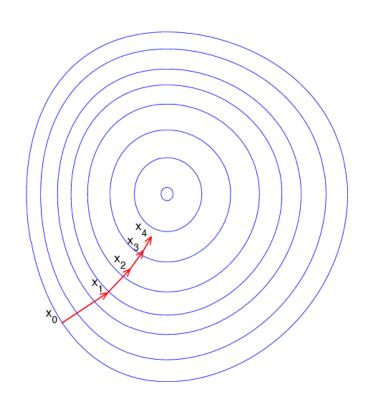
SOLVER

Optimization

How to minimize loss? $\ell(f_w(x,y))$ Descend the gradient. $\nabla \ell$

$$w_{t+1} = w_t - \gamma \frac{1}{n} \sum_{i=1}^n \nabla_w Q(z_i, w_t)$$

Fast, incremental learning by Stochastic Gradient Descent (SGD)



Solver

 Solver optimizes the network weights W to minimize the loss L(W) over the data D

$$L(W) = \frac{1}{|D|} \sum_{i}^{|D|} f_W \left(X^{(i)} \right) + \lambda r(W)$$

 Coordinates forward / backward, weight updates, and scoring.

Solver

- Computes parameter update ΔW , formed from
 - \circ The stochastic error gradient ∇f_W
 - \circ The regularization gradient $\nabla r(W)$
 - Particulars to each solving method

$$L(W) \approx \frac{1}{N} \sum_{i}^{N} f_{W} \left(X^{(i)} \right) + \lambda r(W)$$

SGD Solver

- Stochastic gradient descent, with momentum
- solver type: SGD

$$V_{t+1} = \mu V_t - \alpha \nabla L(W_t)$$

$$W_{t+1} = W_t + V_{t+1}$$

SGD Solver

- "AlexNet" [1] training strategy:
 - Use momentum 0.9
 - Initialize learning rate at 0.01
 - Periodically drop learning rate by a factor of 10
- Just a few lines of Caffe solver specification:

```
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
max_iter: 350000
momentum: 0.9
```

Solver Showdown: MNIST Autoencoder

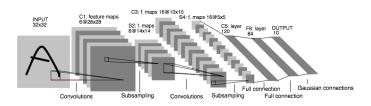
AdaGrad

SGD

Nesterov

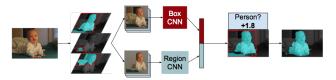
DAG

Many current deep models have linear structure

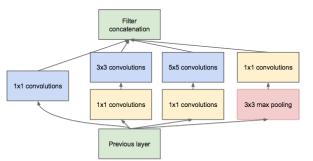


but Caffe nets can have any directed acyclic graph (DAG) structure.

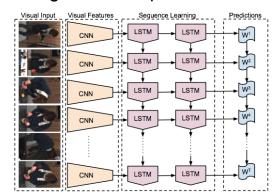
Define bottoms and tops and Caffe will connect the net.



SDS two-stream net



GoogLeNet Inception Module



LRCN joint vision-sequence model

WEIGHT SHARING

- Name parametersby the parameters
- Layers with the same param name share the parameter, accumulating gradients accordingly
- Use cases
 - multi-scale pyramid
 - sequences
 - regularization

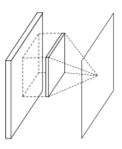
```
layers: {
  name: 'innerproduct1'
  type: INNER PRODUCT
  inner product param {
    num output: 10
    bias term: false
    weight filler {
      type: 'gaussian'
      std: 10
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct1'
lavers: {
  name: 'innerproduct2'
  type: INNER PRODUCT
  inner product param {
    num output: 10
    bias term: false
  param: 'sharedweights'
  bottom: 'data'
  top: 'innerproduct2'
```

RECENT MODELS

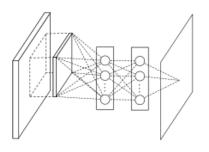
- Network-in-Network (NIN)
- GoogLeNet
- VGG

Network-in-Network

- filter with a nonlinear composition instead of a linear filter
- 1x1 convolution + nonlinearity
- reduce dimensionality, deepen the representation

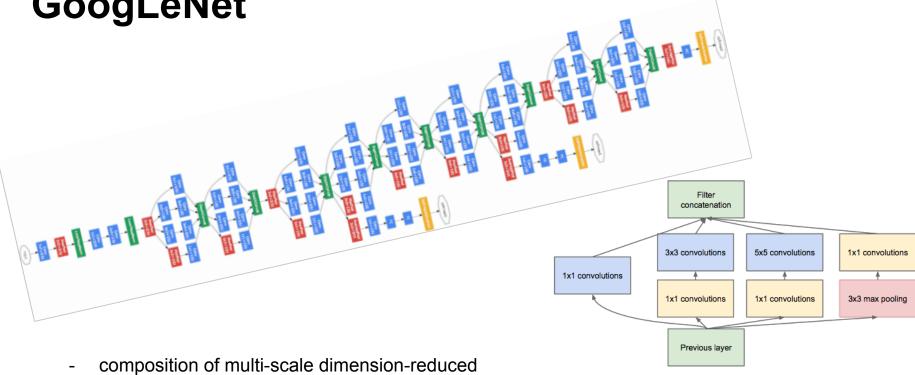


Linear Filter CONV



NIN / MLP filter 1x1 CONV

GoogLeNet



"Inception" module

- "Inception" modules
- 1x1 conv for dimensionality reduction
- concatenation across filter scales
- multiple losses for training to depth

VGG

ConvNet Configuration									
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
maxpool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
	FC-4096								
FC-4096									
FC-1000									
soft-max									

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144

- 3x3 convolution all the way down...
- fine-tuned progression of deeper models
- 16 and 19 parameter layer variations in the model zoo

NOW ROASTING

- Parallelism
- Pythonification
- Fully Convolutional Networks
- Sequences
- cuDNN v2
- Gradient Accumulation
- More
 - FFT convolution
 - locally-connected layer
 - ...

Parallelism

Parallel / distributed training across GPUs, CPUs, and cluster nodes

- collaboration with Flickr + open source community
- promoted to official integration branch in PR #1148
- faster learning and scaling to larger data

Pythonification

Python Layer

- layer prototyping and ease of expression
- call Python from C++, C++ from Python, and around we go

Complete instrumentation in Python

- data preparation
- solving
- inference
- model definition

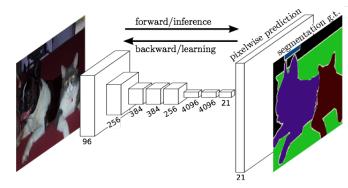
Fully Convolutional Network: FCN

A framework for spatial prediction by conv. net applied to semantic segmentation

- end-to-end learning
- efficiency in inference and learning
 0.3 s for whole image prediction
- multi-modal, multi-task

Further applications

- depth estimation
- denoising



Jon Long & Evan Shelhamer

Sequences

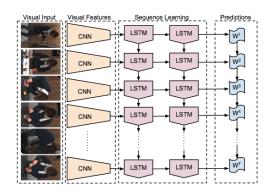
Recurrent Net RNN and Long Short Term Memory LSTM are sequential models

- video
- language
- dynamics

learned by back-propagation through time.

LRCN: Long-term Recurrent Convolutional Network

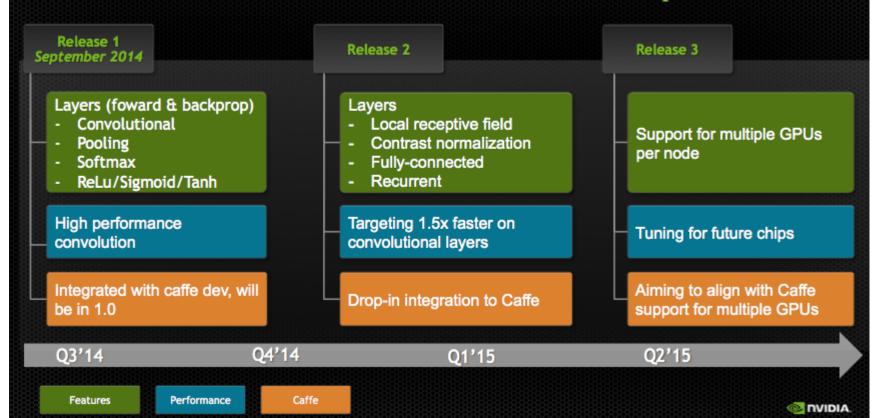
- activity recognition
- image captioning
- video captioning



A group of young men playing a game of soccer.

Jeff Donahue et al.

NVIDIA® cuDNN / Caffe Roadmap



Gradient Accumulation

- decouple computational and learning minibatch size
- tune optimization independently of resource constraints
- conserve memory

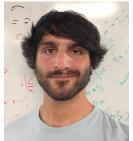
...and share convolution buffers for further memory savings.

LAST SIP

Caffe...

- is fast
- is state-of-the-art
- has tips, recipes, demos, and models
- brings together an active community
- ...all for free and open source

Thanks to the Caffe crew



Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev Jonathan Long, Ross Girshick, Sergio Guadarrama

and our open source contributors!

...plus the cold-brew

Acknowledgements

Thank you to the Berkeley Vision and Learning Center Sponsors.

Thank you to NVIDIA for GPU donation and collaboration on cuDNN

Thank you to A9 and AWS for a research grant for Caffe dev and reproducible research

Thank you to our 50+ open source contributors and vibrant community.

References

[DeCAF] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML, 2014.

[R-CNN] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR, 2014.

[Zeiler-Fergus] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. ECCV, 2014.

[LeNet] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 1998.

[AlexNet] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, 2012.

[OverFeat] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR, 2014.

[Image-Style] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, H. Winnemoeller. Recognizing Image Style. BMVC, 2014.

[Karpathy14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. CVPR, 2014.

[Sutskever13] I. Sutskever. Training Recurrent Neural Networks.

PhD thesis, University of Toronto, 2013.

[Chopra05] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. CVPR, 2005.

UPCOMING GTC EXPRESS WEBINARS

Wednesday, December 10 ArrayFire: A Productive Open Source GPU Software Library Shehzan Mohammed, ArrayFire

Thursday, December 18 Photorealistic Visualization with Speed and Ease Using Iray+ for Autodesk 3ds Max Shehzan Mohammed, ArrayFire

www.gputechconf.con/gtcexpress

GPU TECHNOLOGY CONFERENCE

March 17-20, 2015 | San Jose, CA www.gputechconf.com #GTC15

REGISTRATION IS OPEN!

20% OFF GM15WEB

CONNECT

Connect with experts from NVIDIA and other organizations across a wide range of fields

LEARN

Get key learnings and hands-on training in the 400+ sessions and 150+ research posters

DISCOVER

Discover the latest technologies shaping the GPU ecosystem

INNOVATE

Hear about disruptive innovations as early-stage start-ups present their work

4 Days | 3400+ Attendees | 400+ Sessions | 150+ Research Posters 40+ Countries | 180+ Press & Analytics | 100+ Exhibitors