
Paxos Made Simple

Presented by Nakul Bhasin

Rahul Choudhari

Dharmesh Jagadish

Paxos

• Algorithm given by Leslie Lamport in 2001.

• Paxos is a family of protocols for solving

consensus in a network of unreliable consensus in a network of unreliable

processors (a fault tolerant distributed

system).

Consensus Algorithm

• A consensus algorithm ensures that a single

one among the proposed values is chosen.

• If no value is proposed, then no value should

be chosen.be chosen.

• If a value has been chosen, then all the other

processes should be able to learn the chosen

value.

Safety Requirements for Consensus

• Only a value that has been proposed may be

chosen.

• Only a single value is chosen• Only a single value is chosen

• A process never learns that a value has been

chosen unless it actually has been.

Goal of Consensus algorithm

• Ensure that some proposed value is eventually

chosen

• If a value has been chosen, then a process can

eventually learn the value.

Roles in the consensus algorithm

• Three roles in the consensus algorithm

performed by three classes of agents

�Proposers- propose a value to be chosen

�Acceptors- decide which value to choose�Acceptors- decide which value to choose

�Learners- learn which value was chosen

• A single process may act as more than one

agent.

• Agents can communicate by sending messages

Assumptions in Model

• asynchronous & non-Byzantine model

- Agents operate at arbitrary speed.

- Agents may fail after a value is chosen

and restartedand restarted

- Messages:

- can take long to be delivered

- can be duplicated

- can be lost

- but not corrupted.

Approaches for Choosing a Value

Single Acceptor(Easiest way): choose a value to

have a single acceptor agent.

• A proposer sends a proposal to the acceptor.• A proposer sends a proposal to the acceptor.

• The acceptor who chooses the first proposed

value that it receives.

.

Choosing a value (contd.)

Using multiple acceptor agents:

• Proposer sends a proposed value to a set of

acceptors.acceptors.

• An acceptor may accept the proposed value.

• The value is chosen when a large enough set

of acceptors have accepted it.

Requirement P1
• Paxos should work even if only one proposal is ever made

(ignoring message loss).

• P1:

An acceptor must accept the first proposal that it receives.

But what if multiple proposals are made simultaneously?But what if multiple proposals are made simultaneously?

• There might not be a majority of acceptors that accepted the
same proposal.

• Therefore acceptors must be able to accept more than one
proposal.

• P1 isn't enough.

Solution for P1

• keeping track of the different proposal:

< proposal number ; value >

• Different proposals have different numbers.

• Value chosen when single proposal with that value • Value chosen when single proposal with that value

accepted by a majority of the acceptors

• Guarantees safety property that only a single value

is chosen

• Allow multiple proposals to be chosen

Requirement P2

We don't really need to require that only one

proposal is chosen, as long as:

P2:If a proposal with value v is chosen, then P2:If a proposal with value v is chosen, then

every higher-numbered proposal that is

chosen has value v.

• condition P2 guarantees that only a single

value is chosen

Requirement P2a

• To be chosen, a proposal must be accepted by at

least one acceptor.

So, we can satisfy P2 by satisfying:

P2a:

If a proposal with value v is chosen, then every

higher numbered proposal accepted by any acceptor

has value v.

• If P2a holds, then P2 holds

Requirement P2b

• Maintaining both P1 and P2a requires

strengthening P2a to:

P2b:

If a proposal with value v is chosen, then every If a proposal with value v is chosen, then every

higher-numbered proposal issued by any

proposer has value v.

• If P2b holds, then P2a must hold ,i.e.,

P2b � P2a �P2

P2c:

• For any v and n, if a proposal with value v and

number n is issued then there is a set S

consisting of a majority of acceptors such that

either

(a) no acceptor in S has accepted any proposal (a) no acceptor in S has accepted any proposal

numbered less than n or

(b) v is the value of the highest-numbered

proposal among all proposals numbered less

than n accepted by the acceptors in S

Proposers Algorithm

STEP 1: Prepare request:

Send by the proposer with proposal number n

to each member of some set of acceptors,

asking it to respond with:asking it to respond with:

(a) A promise never again to accept a proposal

numbered less than n, and

(b) The proposal with the highest number less

than n that it has accepted.

Proposers Algorithm contd:

Step 2 :

• proposer receives the responses from a

majority of the acceptors,

• issue a proposal with number n and value v• issue a proposal with number n and value v

v->value of the highest-numbered proposal

among the responses

• This is an accept request send by proposer

What Acceptors do

• receive two kinds of requests from proposers:

prepare requests and accept requests

• It can always respond to a prepare request

• It can respond to an accept request, if the • It can respond to an accept request, if the

following requirement is satisfied:

P1a :An acceptor can accept a proposal

numbered n iff it has not responded to a

prepare request having a number greater

than n.

• Together, P1a and P2c give us the consensus

algorithm.

• P2c tells proposers what proposals they can

issue.

• P1a tells acceptors what proposals they can

accept.accept.

• Only one value can ever be chosen.

• Only a majority of acceptors need to accept a

proposal to choose that value.

Message Flow in Paxos

Client Proposer Acceptor Learner

X --------------------> Request

X ---------------> |X|X|X| Prepare (N)

|<------------------X-X-X Promise(N,Va,Vb,Vc)

X ----------------->|->|->| Accept(N, Vn)

|<-----------------X-X-X------------------>|->| Accepted(N,Vn)

<---X---X Response

Paxos Algorithm phase 1

Algorithm has two phases:

Phase 1 [prepare request]

• Proposer chooses number n; sends a request

to some majority of acceptors asking each for:to some majority of acceptors asking each for:

(a) a promise not to accept proposals < n, and

(b) the highest-numbered proposal < n that it

has already accepted, if any

Paxos Algorithm: phase 2

Phase 2 [accept phase]

If majority of acceptors respond, issue proposal

n whose value is:

(a) the value of the highest-numbered (a) the value of the highest-numbered

proposal among the responses, or

(b) anything we want if there weren't any such

proposals.

Message Flow in Paxos

Client Proposer Acceptor Learner

X --------------------> Request

X ---------------> |X|X|X| Prepare (N)

|<------------------X-X-X Promise(N,Va,Vb,Vc)

X ----------------->|->|->| Accept(N, Vn)

|<-----------------X-X-X------------------>|->| Accepted(N,Vn)

<---X---X Response

Example

• Proposers are p1 and p2.

• Acceptors are a1, a2, and a3.

• p1 sends prepare for proposal 1 to a1 and a2.

• a and a reply to p .• a1 and a2 reply to p1.

• p2 sends prepare for proposal 2 to a2 and a3.

• a2 and a3 reply to p2.

Example (contd.)

• p1 sends accept request to a1 and a2 for

proposal 1 with value “X”

– p1 got to select which value to propose.

• a accepts proposal 1.• a1 accepts proposal 1.

• a2 does not accept proposal 1.

– a2 promised p2 it wouldn't accept proposals

< 2

Example contd.

• p2 sends accept request to a2 and a3 for

proposal 2 with value “Y”

– p2 also got to select which value to propose.

• a accepts proposal 2.• a2 accepts proposal 2.

• a3 accepts proposal 2.

• {a2, a3} is a majority of acceptors, so proposal

2 is chosen.

– The chosen value is “Y”

Example contd.

• p1 sends prepare for proposal 3 to a1 and a2.

• a1 replies; it last accepted proposal 1 for

“X”.

• a2 replies; it last accepted proposal 2 for• a2 replies; it last accepted proposal 2 for

“Y”.

• p1 sends accept request to a1 and a2 for

proposal 3 with value “Y”

– Value must match the one from proposal 2.

• a1 and a2 accept proposal 3.

Learning a chosen value

How Do Learners Learn?

• Each acceptor informs each learner.

nresponses = nlearners x nacceptors

• Each acceptor informs a distinguished learner,• Each acceptor informs a distinguished learner,

who relays to the other learners

• acceptors respond with their acceptances to a

distinguished Learner

nresponses = nlearners + nacceptors

Learning contd.

• assumption of non-Byzantine failures

• requires lots of messages to be sent

• extra round required for all the learners to

discover the chosen valuediscover the chosen value

• single point of failure

• less reliable, since the distinguished learner

could fail

Learner algorithm (contd.)

• hybrid solution: set of distinguished learners

• Compromise with a set of distinguished

Learners

– Limits number of messages needed.– Limits number of messages needed.

– All distinguished learners need to fail to

cause a problem.

Optimization

• acceptor ignore to respond to a prepare

request numbered n when a prepare m, with

m > n has been already responded.

• It should ignore a prepare request for a• It should ignore a prepare request for a

proposal it has already accepted

• An acceptor should inform a proposal when it

has delivered a proposal, while the acceptor

already responded to an higher one.

Progress

• Solution: allow only a distinguished proposer
to prepare and issue proposals.

– Proposers send their proposals to the
distinguished proposer, who organizes
them.them.

– Doubles as distinguished learner.

• Can we avoid single-point-of-failure?

– New distinguished proposer is elected if
the current one fails.

– Two or more processes can think they're
distinguished without compromising
correctness (but can prevent progress).

Implementation

• Each process plays the role of proposer,

acceptor, and learner

• Leader election for the distinguished proposer

and the distinguished learnerand the distinguished learner

• An acceptor records its intended response in

stable storage before actually sending the

response.

Implementation contd.

• Guarantee that no two proposals are ever

issued with the same number

-> every proposer choose their numbers from

disjoint sets of numbersdisjoint sets of numbers

-> each proposer remembers (in stable

storage) the highest-numbered proposal it has

tried to issue, and begins phase 1 with a

higher proposal number than any it has

already used.

So what is it good for?

Is a consensus on a single arbitrary value

actually useful?

Yes! Yes!
The Paxos consensus algorithm can be used to

construct a distributed system of state

machines.

Distributed system: collection of clients issuing

commands to central server.

• If single central server fails, system fails.

• State machine approach: implement fault-

State Machine

• State machine approach: implement fault-

tolerant service by replicating servers and

coordinating client interactions with server

replicas.

1. Place State Machine copies on multiple,

independent servers.

2. Receive client requests (Inputs) to State Machine.

3. Choose ordering for Inputs.

Implementing a State Machine

3. Choose ordering for Inputs.

4. Execute Inputs in chosen order on each server.

5. Respond to clients with Output from the State

Machine.

6. Monitor replicas for differences in State or Output.

• Paxos can be used to implement distributed state

machine:

- values being agreed upon are commands to

execute (commands by client).

- one instance of Paxos executed for each

Implementing a State Machine

- one instance of Paxos executed for each

command (value chosen by ith instance is the ith

state machine command).

- infinite number of instances executed

simultaneously.

- leader is elected to be the distinguished

proposer and distinguished learner.

Isn't Infinity Too Big?

• Phase 1 doesn‘t require knowing the value

being proposed

• Leader can execute Phase 1 immediately, wait

until something to propose for Phase 2.

• Phase 1 for all instances can be done with a

single prepare request.

• E.g “this is a prepare request for proposal n for

all instances > 30.”

Implementing State Machine

contd.

• If leader fails, new leader appointed.

• New leader already a learner in previous

instances(first i instances)

• Sends prepare request for instances > i, uses • Sends prepare request for instances > i, uses

same proposal no.

• If values had been chosen for any instances

> i, the replies will include those proposals.

State Machine Example

• New leader knows commands 1-134, 138,

and 139.

• Sends prepare requests for instances 135-137

and 140+.and 140+.

• Receives replies with existing proposals for

instances 135 and 140.

• Issues accept requests for instances 135

and 140 with the appropriate values.

Filling in the Gaps

• There may be “gaps” --

instances where no value had been proposed.

– State machines can't execute command i

until all commands < i executeduntil all commands < i executed

• Leader chooses values to propose to fill those

gaps in.

• Safest choice: no-op command.

State Machine Example (2)

• Commands 136, 137, and 141+ are still

undecided.

• To fill the gap, leader issues accept requests

for instances 136 and 137 with a value offor instances 136 and 137 with a value of

“no-op”.

• When the next command request arrives, the

leader issues an accept request for instance

141 with that command as the value.

• Then issue 142, 143,

Application of Paxos

• Google Megastore used for 3 billion writes and 20

billion read transactions daily.

• It uses Paxos to manage synchronous replication

between datacenters.between datacenters.

• Provides the highest level of availability for reads

and writes at the cost of higher-latency writes.

• Paxos is also used to perform write operations.

Conclusion

• Safety is a guarantee in Paxos despite

asynchrony.

• Once a the distinguish leader is elected,

liveness is guaranteed.liveness is guaranteed.

• According to paper: phase 2 has the minimum

possible cost of any algorithm for reaching

agreement in presence of faults.

