Paxos Made Simple

Presented by Nakul Bhasin
Rahul Choudhari
Dharmesh Jagadish

Paxos

e Algorithm given by Leslie Lamport in 2001.

e Paxos is a family of protocols for solving
consensus in a network of unreliable

processors (a fault tolerant distributed
system).

Consensus Algorithm

* A consensus algorithm ensures that a single
one among the proposed values is chosen.

* |f no value is proposed, then no value should
e chosen.

* |f a value has been chosen, then all the other

processes should be able to learn the chosen
value.

Safety Requirements for Consensus

* Only a value that has been proposed may be
chosen.

* Only a single value is chosen

e A process never learns that a value has been
chosen unless it actually has been.

Goal of Consensus algorithm

* Ensure that some proposed value is eventually
chosen

* |f a value has been chosen, then a process can
eventually learn the value.

Roles in the consensus algorithm

* Three roles in the consensus algorithm
performed by three classes of agents

» Proposers- propose a value to be chosen
» Acceptors- decide which value to choose
» Learners- learn which value was chosen

* Asingle process may act as more than one
agent.

* Agents can communicate by sending messages

Assumptions in Model

e asynchronous & non-Byzantine model
- Agents operate at arbitrary speed.
- Agents may fail after a value is chosen
and restarted

- Messages:
- can take long to be delivered
- can be duplicated
- can be lost
- but not corrupted.

Approaches for Choosing a Value

Single Acceptor(Easiest way): choose a value to
have a single acceptor agent.

* A proposer sends a proposal to the acceptor.

 The acceptor who chooses the first proposed
value that it receives.

Choosing a value (contd.)

Using multiple acceptor agents:

* Proposer sends a proposed value to a set of
acceptors.

* An acceptor may accept the proposed value.

 The value is chosen when a large enough set
of acceptors have accepted it.

Requirement P1

* Paxos should work even if only one proposal is ever made
(ignoring message loss).

 PI:
An acceptor must accept the first proposal that it receives.

But what if multiple proposals are made simultaneously?

 There might not be a majority of acceptors that accepted the
same proposal.

« Therefore acceptors must be able to accept more than one

proposal.

* Plisn't enough.

Solution for P1

keeping track of the different proposal:
< proposal number ; value >
Different proposals have different numbers.

Value chosen when single proposal with that value
accepted by a majority of the acceptors

Guarantees safety property that only a single value
is chosen

Allow multiple proposals to be chosen

Requirement P2

We don't really need to require that only one
proposal is chosen, as long as:

P2:If a proposal with value v is chosen, then
every higher-numbered proposal that is
chosen has value v.

e condition P2 guarantees that only a single
value is chosen

Requirement P22

* To be chosen, a proposal must be accepted by at
least one acceptor.

So, we can satisfy P2 by satisfying:

P22:
If a proposal with value v is chosen, then every
higher numbered proposal accepted by any acceptor
has value v.

e |f P22 holds, then P2 holds

Requirement P2°

 Maintaining both P1 and P22 requires
strengthening P22 to:

P2b:
If a proposal with value v is chosen, then every
higher-numbered proposal issued by any
proposer has value v.

e If P2° holds, then P22 must hold ,i.e.,
p2b > P22 P2

P2¢.
 Foranyvand n, if a proposal with value v and

number n is issued then there is a set S
consisting of a majority of acceptors such that

either

(a) no acceptor in S has accepted any proposal
numbered less than n or

(b) v is the value of the highest-numbered
proposal among all proposals numbered less
than n accepted by the acceptorsin S

Proposers Algorithm

STEP 1: Prepare request:

Send by the proposer with proposal number n
to each member of some set of acceptors,
asking it to respond with:

(a) A promise never again to accept a proposal
numbered less than n, and

(b) The proposal with the highest number less
than n that it has accepted.

Proposers Algorithm contd:

Step 2 :

e proposer receives the responses from a
majority of the acceptors,

* issue a proposal with number n and value v

v->value of the highest-numbered proposal
among the responses

e This is an accept request send by proposer

What Acceptors do

e receive two kinds of requests from proposers:
prepare requests and accept requests

* [t can always respond to a prepare request

* |t can respond to an accept request, if the
following requirement is satisfied:

P12 :An acceptor can accept a proposal
numbered n iff it has not responded to a

prepare request having a number greater
than n.

* Together, P12 and P2°¢ give us the consensus

algorithm.

e P2° tells proposers what proposals they can
Issue.

 P12tells acceptors what proposals they can

accept.

* Only one value can ever be chosen.

* Only a majority of acceptors need to accept a
proposal to choose that value.

Message Flow in Paxos

Client Proposer Acceptor Learner
) (R > Request
e > |X|X|X] Prepare (N)
[—— X-X-X Promise(N,V,,V,,V.)
. — >|->]->| Accept(N, V,)
[————) O G —— >|->| Accepted(N,V,)

S X---X Response

Paxos Algorithm phase 1

Algorithm has two phases:
Phase 1 [prepare request]

* Proposer chooses number n; sends a request
to some majority of acceptors asking each for:

(a) a promise not to accept proposals < n, and

(b) the highest-numbered proposal < n that it
has already accepted, if any

Paxos Algorithm: phase 2

Phase 2 [accept phase]

If majority of acceptors respond, issue proposal
n whose value is:

(a) the value of the highest-numbered
proposal among the responses, or

(b) anything we want if there weren't any such
proposals.

Message Flow in Paxos

Client Proposer Acceptor Learner
) (R > Request
e > |X|X|X] Prepare (N)
[—— X-X-X Promise(N,V,,V,,V.)
. — >|->]->| Accept(N, V,)
[————) O G —— >|->| Accepted(N,V,)

S X---X Response

Example

Proposers are p, and p,.

Acceptors are a,, a,, and a,.

P, sends prepare for proposal 1 to a, and a,.
a, and a, reply to p,.

P, sends prepare for proposal 2 to a, and a..
a, and a; reply to p,.

Example (contd.)

* p, sends accept request to a, and a, for
proposal 1 with value “X”
— p, got to select which value to propose.
* 3, accepts proposal 1.
* a, does not accept proposal 1.

— a, promised p, it wouldn't accept proposals
<2

Example contd.

* p, sends accept request to a, and a, for
proposal 2 with value “Y”
— p, also got to select which value to propose.

* a, accepts proposal 2.

* a5 accepts proposal 2.

* {a,, a5} is a majority of acceptors, so proposal
2 is chosen.

— The chosen value is “Y”

Example contd.

P, sends prepare for proposal 3 to a; and a,.
a, replies; it last accepted proposal 1 for
“X”.

a, replies; it last accepted proposal 2 for
“¥”.

p, sends accept request to a, and a, for
proposal 3 with value “Y”

— Value must match the one from proposal 2.
a, and a, accept proposal 3.

Learning a chosen value

How Do Learners Learn?
* Each acceptor informs each learner.

n X N

responses Nicarners acceptors

* Each acceptor informs a distinguished learner,
who relays to the other learners

* acceptors respond with their acceptances to a
distinguished Learner

N + N

responses Nicarners acceptors

Learning contd.

assumption of non-Byzantine failures
requires lots of messages to be sent

extra round required for all the learners to
discover the chosen value

single point of failure

less reliable, since the distinguished learner
could fail

Learner algorithm (contd.)

* hybrid solution: set of distinguished learners
 Compromise with a set of distinguished
Learners
— Limits number of messages needed.

— All distinguished learners need to fail to
cause a problem.

Optimization

e acceptor ignore to respond to a prepare
request numbered n when a prepare m, with
m > n has been already responded.

* |t should ignore a prepare request for a
proposal it has already accepted

* An acceptor should inform a proposal when it
has delivered a proposal, while the acceptor
already responded to an higher one.

Progress

e Solution: allow only a distinguished proposer
to prepare and issue proposals.

— Proposers send their proposals to the
distinguished proposer, who organizes
them.

— Doubles as distinguished learner.
* Can we avoid single-point-of-failure?

— New distinguished proposer is elected if
the current one fails.

— Two or more processes can think they're
distinguished without compromising
correctness (but can prevent progress).

Implementation

 Each process plays the role of proposer,
acceptor, and learner

* Leader election for the distinguished proposer
and the distinguished learner

* An acceptor records its intended response in
stable storage before actually sending the
response.

Implementation contd.

 Guarantee that no two proposals are ever
iIssued with the same number

-> every proposer choose their numbers from
disjoint sets of numbers

-> each proposer remembers (in stable
storage) the highest-numbered proposal it has
tried to issue, and begins phase 1 with a
higher proposal number than any it has
already used.

So what is it good for?

Is @ consensus on a single arbitrary value
actually useful?

Yes!

The Paxos consensus algorithm can be used to
construct a distributed system of state
machines.

State Machine

Distributed system: collection of clients issuing
commands to central server.

* |f single central server fails, system fails.

e State machine approach: implement fault-
tolerant service by replicating servers and
coordinating client interactions with server
replicas.

A S

Implementing a State Machine

Place State Machine copies on multiple,
independent servers.

Receive client requests (Inputs) to State Machine.
Choose ordering for Inputs.
Execute Inputs in chosen order on each server.

Respond to clients with Output from the State
Machine.

Monitor replicas for differences in State or Output.

Implementing a State Machine

e Paxos can be used to implement distributed state
machine:

values being agreed upon are commands to
execute (commands by client).

one instance of Paxos executed for each
command (value chosen by it" instance is the ith
state machine command).

infinite number of instances executed
simultaneously.

leader is elected to be the distinguished
proposer and distinguished learner.

Isn't Infinity Too Big?

Phase 1 doesn‘t require knowing the value
peing proposed

_eader can execute Phase 1 immediately, wait
until something to propose for Phase 2.

Phase 1 for all instances can be done with a
single prepare request.

E.g “this is a prepare request for proposal n for
all instances > 30.”

Implementing State Machine
contd.

If leader fails, new leader appointed.

New leader already a learner in previous
instances(first i instances)

Sends prepare request for instances > i, uses
same proposal no.

If values had been chosen for any instances
> i, the replies will include those proposals.

State Machine Example

New leader knows commands 1-134, 138,
and 139.

Sends prepare requests for instances 135-137
and 140+.

Receives replies with existing proposals for
instances 135 and 140.

Issues accept requests for instances 135
and 140 with the appropriate values.

Filling in the Gaps

* There may be “gaps” --
instances where no value had been proposed.

— State machines can't execute command i
until all commands < i executed

e Leader chooses values to propose to fill those
gaps in.
e Safest choice: no-op command.

State Machine Example (2)

Commands 136, 137, and 141+ are still
undecided.

To fill the gap, leader issues accept requests
for instances 136 and 137 with a value of
“no-op”.

When the next command request arrives, the
leader issues an accept request for instance

141 with that command as the value.
Then issue 142, 143,

Application of Paxos

Google Megastore used for 3 billion writes and 20
villion read transactions daily.

t uses Paxos to manage synchronous replication
between datacenters.

Provides the highest level of availability for reads
and writes at the cost of higher-latency writes.

Paxos is also used to perform write operations.

Conclusion

e Safety is a guarantee in Paxos despite
asynchrony.

* Once a the distinguish leader is elected,
liveness is guaranteed.

* According to paper: phase 2 has the minimum
possible cost of any algorithm for reaching
agreement in presence of faults.

