RAQ: A Range-Queriable Distributed Data Structure

Hamid Nazerzadeh * Mohammad Ghodsi T

Abstract

Different structures are used in peer-to-peer networks to represent their inherently dis-
tributed, self-organized and decentralized memory structure. In this paper, a simple range-
queriable distributed data structure, called RAQ), is proposed to efficiently support exact
match and range queries over multi-dimensional data. In RAQ, the key space is partitioned
among the network with n nodes, in which each element has links to O(logn) other elements.
We will show that the look-up query for a specified key can be done via O(logn) message
passing. In addition, RAQ handles range-queries in at most O(logn) communication steps.
We also present a probabilistic variation of RAQ in which each node has O(loglogn) links on
the average and look up and range queries are resolved with O(log® n) latency. At the end we
evaluate RAQ through simulation.

1 Introduction

Distributed and peer-to-peer networks are significant components of recent research on networking.
There is a simple idea behind the peer-to-peer networks: each node maintains its own index and
searching mechanism compared to the traditional client-server architecture with global information.
The significant growth in the scale of such networks, (e.g. Gnutella [4]), reveals the critical emerging
need to develop decentralized searching methods. A peer-to-peer storage system can be considered
as a large scale distributed decentralized data structure. We use the term Queriable Distributed
Data Structure (QDS) to denote such a self-organized, decentralized, distributed, internet-scale
structure which provides searching and data transferring services. In QDS, every node of the
network is an element of the whole structure, which provides decentralized searching services over
the data scattered among the nodes of the network. New file sharing systems such as Scour,
FreeNet, Ohaha, Kazaa and Jungle Monkey are examples of QDS from current internet systems.

Distributed Hash Table (DHT) [15, [11] can be viewed as a QDS. In DHT systems, keys and
data are stored in the nodes of the network using a hash function, in which data can be the
addressing information (e.g. 1P address of the server containing the data), rather than its actual
data. Searching mechanism in these systems consists of two main phases: (1) hashing the key, and
(2) querying the network to find the node that contains the key. This node resolves the query by
providing the actual data or its addressing information. Similarly, some other systems like SkipNet
[6] which are based on more theoretical data structures like skip graphs [2], allow more flexibility
on the location of data on the nodes of the network.

In this paper, we propose RAQ, a range-queriable distributed data structure to resolve exact
match and range queries over multi-dimensional data efficiently. In RAQ, the key space is par-
titioned among the n nodes of the network, in which each element has links to O(logn) other
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elements of the network. We will show that the look-up query for a specified key can be done, in
our structure, via O(logn) message passing. The bound on the out-degree of the nodes and the
exact-match query cost are both comparable to those in DHT systems like Chord [15], CAN [I1],
Pastry [I3] and Viceroy [9].

The main contribution of RAQ is that it is simple and can handle range-queries in multi-
dimensional space. Our data structure supports such queries in at most O(logn) communication
steps. Split the Space, Duplicate the Query is a novel approach used by the RAQ to resolve range-
queries. This method anticipates the answer space of the query at the source and spreads the query
only through the appropriate nodes by duplicating the query; each of these new queries addresses
a reduced subspace.

Most other QDS systems do not support multi-dimensional range-queries, because they mostly
use one-dimensional key space. CAN [II] supports multi-dimensional key space, but in spite of
its similarity to RAQ’s basic structure, the out-degree of node and its routing cost depend on the
dimension of the key space. For a d dimensional space, the average routing path length in CAN is
(d/4)(n*/%) hops and individual nodes maintain 2d neighbors. This limitation forces the system to
use hashing to reduce the dimension in some applications. But, since hashing destroys the logical
integrity of the data, CAN cannot support range queries over multi-dimensional data efficiently.

We also present, PRAQ, a probabilistic variation of RAQ in which the connection rule of RAQ
is modified in such a way that each node has O(loglogn) links on average. We will show that the
look up and range queries can be handled in PRAQ via O(log2 n) communication steps.

In this paper, we first overview the related works briefly, followed by the principal ideas and
structures of RAQ. Query handling methods are discussed in sections [section 5| and [section 6]
followed by the algorithms for joining and leaving a node. In section we describe the
probabilistic model and at the end, go through the experimental results.

2 Related Works

Supporting range queries in QDS systems has been the subject of several recent works. In SWAM
[3], for example, the key space is partitioned according to Voronoi Tesselation. By this property,
and using links based on Small-World Phenomenon [8, [10], SWAM resolves k-nearest-neighbor
search and range queries via O(logn + R) message passing, where R is the size of the answer. But,
the number of links of each node grows exponentially with the dimensions of search space [14].

Prefiz Hash Tree is a solution proposed by Rantasamy et. al [I2] to face the problem of
hashing used in DHTs that destroys the integrity of data. Their approach is based on distributed
trie. Given a query, this system attempts to recognize the longest prefix of the query that appears
as a trie-node. The complexity of this operation is O(loglogd x logn), where d is the size of the
discrete domain.

Recently, some authors have addressed the problem from the load balancing viewpoint. Karger
and Ruhl [7], offer an approach to overcome the known limitation of hash functions, by designing
an algorithm to maintain load balance in non-uniform distributed key space. Aspens et al. [I]
have proposed a similar solution based on skip graphs.

Gao and Steenkiste [5], present a QDS that relies on a logical tree data structure, the Range
Search Tree (RST), to support range queries in one dimensional space. In this system, nodes in
RST are registered in groups. To handle the range queries, queries are decomposed into a small
number of sub-queries where the cost depends on the load factor of the data and query capacity
of the nodes in the network.
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Figure 1: The partition tree, P, on the left corresponds to the points on the right.

3 Partition Tree

We have n points in our d-dimensional space. The Partition Tree, Pg, is the main data structure
used in RAQ. Similar to the data structure used in [I1], P4 partitions the d-dimensional space, so
that in the final level, each region has only one point. Each internal vertex of the tree corresponds
to a region in space, and the root represents the whole space. Each pair of the sibling vertices
divide their parent region into two parts, and each leaf represents an undivided region called a cell,
each corresponding to a single point in that region. portrays the partitioning of Ps.
Each vertex x is assigned a label to specify its corresponding subspace. We define xjqpe; =

((ph dl)a (p2a d2)7 B (pr(x)7 dr(z))) where:
r(x): The distance of x from the root of the tree.
pi: The plane equation that partitions the ith region into two parts.

d;: Determines one side of the plane p;.

pa/rent(-r)label = ((pla dl)a Tty (pr(z)fh dr(z)fl))
sibling(x)iaper = ((p1,d1),- -, (Pr(a) cir(m))), where d; is the opposite side of d;.

700t1ape; = A, i.€. the empty string.

We treat the labels as strings. The expression I; T lo means that Iy is a prefix of lo, |l
represents the size of [ (i.e. the number of (p;,d;) pairs) and + is the concatenation operator.

Also, [] e {z € V|l C Ziaber} where [ is a label and V is the vertex set of the partition tree.
Obviously, for a vertex z, |Zigper| = r().

4 Design Principles of RAQ

RAQ is a structure on the nodes of a network. Each node maps to one point in the d dimensional
search space. A partition tree Ptree is constructed over the points and thus each node corresponds
to a single cell. We say that a node owns its cell and is responsible for providing data to the queries
targeting any point in that cell. Since there is a one-to-one map between nodes and the leaf points
of the partition tree, we use them interchangeably. So, for example, we assume having labels for
each node.

Moreover, each node has several links to other nodes of the network. Each link is basically the
addressing information of the target node which can be its 1P address. The links are established
based on the partition tree information and the following rule:



Connection Rule: Consider node z and its label zj4pe; = ((p1,d1), (p2,d2), -, (pk,dx)). The
connection rule of node x implies that x is connected to exactly one node in each of these |z;4pei|
sets:

[((plvgl))]ﬂ [((p17d1)7(p27(22))]7 R [((pl,dl),(pg,dg),--y(pm(j@)]

For example, in node 1 is connected to one node in each of these sets: {2}, {4}, {6,7, 8}.
We will show that the joining and leaving mechanisms guarantee the maintenance of connection
rule over the network.

Lemma 1 An arbitrarily chosen vertex has links to O(logn) other nodes in the network.

It is important to note that the partition tree is not directly maintained by the elements of
RAQ); given the coordinates and the labels of the leaves, all information of the partition tree can be
uniquely obtained, and these are the only data which are maintained by the nodes of the network.
In fact, the partition tree is the virtual data structure of RAQ.

It is obvious that Ptree is a balanced tree with the height of O(logn) when it is first constructed.
We will show that this property holds even in the dynamic environment where the nodes join and
leave the network frequently.

5 Exact Match Query

In RAQ, exact-match queries are of the form Exact-Query(target, metadata). The value of target
is the coordinate of the point that we are searching for, and meta-data contains the data to be
used after the query reaches the target. Note that the queries aim to reach the target and the
responses may vary in different cases. As mentioned, the target of a query is a node whose region
contains the query’s target point.

We say, a point p matches a label [ at level k, if k is the greatest value of ¢ such that the subspace
induced by a Py vertex & with zjape; = ((p1,d1), (P2,d2), -+, (pi,d;)) contains p and xjape; C 1. In
other words, say [ represents a leaf y in Ptree, then, x is the lowest common ancestor of y and the
node containing p.

Lemma 2 Suppose node x receives a query targeting point p and p matches Tiqpe; at level k. If
k = |xiaper| then the cell of © contains p. Otherwise, x has a link to a node y so that yiape; matches
p at a level greater than k.

Proof: Let zjaper = ((P1,d1), -+ (Pr(a)sdr(a))). If & = [Ziaber|, then, obviously, z contains
p. If not, from the connection rule, we know that z is linked to a node y with ((p1,d1), ---,
(Pra1,drt1)) © Yiaper- Therefore, according to the definition, p matches yjape; at a level not less
than k£ + 1. a

Now, the algorithm for exact match routing becomes clear. Once the query @ is received by a
node z, if x contains the target point, then we are done. Otherwise, x sends the query via a link
to a node y with a label that matches the target point at a higher level. This will continue until
the query reaches the target.

Theorem 1 The exact match query is resolved via O(logn) message passing.

Proof: Suppose the target of query @ is the node z. From lemmal[2] @ will reach to z in at most
|T1aber| steps and |ziaper| = O(logn). So, the routing operation is performed by O(logn) message
passing. a



6 Range Query

We assume that a range query @ is of the form Range-Query(label, pivot, func, dy, da, metadata)
where label implies that (Q must be sent only to the nodes x so that label T xjqpe;, we denote the
label of @ by Qape;- The initial value of Q;qpe; is set to empty string. The value of pivot is the
coordinate of the point that the distances are measured from, and func is the distance function.

The above range query means that ) should be sent to every node in the network with the
distance of dy < d < dy from pivot. func can be any distance function F with the following
characteristic: Given a point p, a hyper-cubic subspace S and a distance d, let A = {z|z € S and
F(z,p) < d}. The problem of whether or not A is empty must be computable. For example, F
can be L,-norm function, in which case the answer space of Q is {z|d; < (3> (pi — z:)P)Y/? < do}.

To handle the range queries, we use split the space, duplicate the query method, or split-duplicate
for short. Suppose that node x receives a range query Q and Zjaper = ((P1,d1), -+, (Pr(a), dr(a)))-
Obviously, Qiaver T Tiaper- If Qiabel = Tiapel, then x itself will give the appropriate response.
Otherwise, we iterate the following sequence of operations:

1. Duplicate @ and name the results Q1 and Q2. Set Q1,,,., = Quaber + (Pjij+1,djj+1) and
Q21001 = Quaver + (P1j+15 )i 41)-

2. If the answer space of () has intersection with the subspace induced by @3,,,.,, then send Q2
via the link to node y where Q2,,,., T Yiaber- Note that by the connection rule, y exits.

3. Iterate split-duplicate operation subsequently on @); while the splitted subspace has inter-
section with the answer space.

Lemma 3 If node x receives range query Q, then Q will be routed to all nodes y where Qape; T
Yiabel and the intersection of the cell of y and answer space of @ is not empty.

Proof: We prove this by backward induction on |Qaper|- If |Qraber] > |Tiaber|, then obviously
Qiavel I Tiaper thus the induction basis holds.

Suppose that = receives the query and the induction hypothesis holds for k& > |zigper|- If
Qlabel = Tiaper then z is the only target of the query and we are done. Otherwise, two new queries
are generated by the algorithm, while the second query s is sent to its adjacent node via the
appropriate link if the subspace induced by @s,,,., has nonempty intersection with the answer
space. The size of the labels of these new queries is increased by one. Thus, by the induction
hypothesis, @ will be routed to all nodes z with Qupe; T Ziape;r Where the cell of z has a nonempty
intersection with the answer space. The union of the induced spaces of these labels covers the
whole space of Qqpe;- The claim is therefore correct. O

Theorem 2 RAQ resolves range queries in at most O(logn) communication steps. In other words,
a query will be received by a target node by crossing O(logn) intermediate hops.

Proof: As we mentioned, the basic query enters the system by initializing its label to an empty
string. By lemma [3| the range-query will be received by all nodes whose cells have nonempty
intersections with the query answer space. In each communication step, the size of the query label
is increased at least by 1. Thus, when a node receives a query, the distance to the source must be
O(logn). O

7 Joining and Leaving

In this section, we describe the joining and leaving mechanism and demonstrate the validity of our
claim in section that the partition tree always remains balanced.



7.1 Joining Mechanism

Suppose that node = wants to join to the network. = chooses a fairly random point p in the space
and then finds y, one of the active nodes in the network. Several mechanism can be adopted for
the arriving node to find an active node; we assume that RAQ uses the same mechanism as in CAN
[i1].

Sending an exact match query by y, the node z whose cell contains p is found. z divides its
cell into two parts, with one containing the corresponding point of z and the other including p.
We assume that x possesses the cell containing p. This is just a simple insertion into the partition
tree. This is done by updating the labels of x and z. Since we are not directly maintaining this
tree, this update is sufficient.

The connections are now updated to follow the given connection rule: = chooses one random
point in each of the subspaces induced by the labels specified by the connection rule. For each of
these points, say 7, z routes an exact match query to find the node that owns r. Consequently, x
establishes a connection link to this node.

Theorem 3 Join operation is done via O(log2 n) message passing.

Proof: The arriving node finds its region by an exact match query. By lemma [l the arriving
node has to create O(logn) connections. Establishing each connection is done by an exact-match
lookup, via O(logn) message passing. Therefore, the whole operation is completed by O(log2 n)
message passing. a

7.2 Leaving Mechanism

Let = be the node that wants to leave the network. After x leaves the network, its sibling in
Ptree will maintain the region once belonging to x. From Ptree viewpoint, leaving is just a simple
deletion of a leaf in a binary tree, so zjqpe; and thus Ptree will be updated easily. The difficult part
is updating the connection links of the nodes that have links to x. To handle this issue, Departure
Links or for short dlinks are defined below.

In RAQ, node b maintains addressing information of a, or a dlink to a, when node a establishes
a connection link to node b. When b decides to leave the network, it sends a message to each of
the nodes referred to by its dlinks. In the following, we refer to the number of dlinks of b as its
d-degree.

Theorem 4 The expected value of d-degree is O(logn).

Proof: Here we argue the validity of our claim. From the mechanism described above to establish
a connection link and from the dynamic structure of the network where the nodes frequently join
and leave the network, we can fairly conclude that the probability that a node v has a link to a node
u is equal to the probability that u has a link to v. We avoid discussing the unimportant details
of this claim. Accordingly, E[vgegrec] = E[Vi—degree] for an arbitrary node v in the network. O

Corollary 1 By lemma[1] and theorem [Theorem J), each node of the network maintains the ad-
dressing information of O(logn) nodes of the network.

Consider the time when x is leaving the network. z sends a departure message to all of the
nodes on its dlinks. As mentioned, every connection in RAQ is a link to a subspace. Each of the
nodes that receives this departure message chooses a new random point, say p, in the corresponding
subspace and sends an exact match query via = to establish a new connection link to the node that
possesses p. After these operations, x will peacefully leave the network and the connection rule of
RAQ is maintained.



Theorem 5 The leave operation is done via O(log2 n) message passing.

Proof: According to theorem [Theorem 4| w O(logn) links must be updated. Each update is per-
formed by O(logn) message passing, thus the total number of passed messages is O(log?n). O

According to the discussion, arriving nodes are distributed all over the space. Thus, the par-
tition grows uniformly and remains balanced. Uniform distribution of the nodes also implies that
the nodes leave the network randomly in the entire space. We can thus conclude that the claimed
proposition is valid.

8 Probabilistic RAQ

In this section, we describe the idea of PRAQ), a probabilistic variation of RAQ. The deterministic
and nondeterministic models are different mainly in connection rule and consequently exact match
query handling. Due to lack of space, we will not go through the details.

In nondeterministic structure, there are additional links called Cyclic Links. Consider the leaves
of Ptree in order that they appear in Post-Order Traversal of the tree and name the sequence A.

Ilustratively, for the tree presented in[Figure I]the A sequence is: 1,2, 4, 6,7, 8. Let A = aq, ..., ap.

def def ‘- . .
ai,,., = a;i—1 and a;,,,, = a;;1 where the additions and subtractions are done in modular n. A

node z has two cyclic links to ©prep and Zpeze. These links form the Universal Cycle which includes
all the network’s nodes. Universal Cycle assures us that nodes are always connected. Accordingly,
connection rule is modified:

Connection Rule . Consider node = with label ((p1,d1), (p2,d2), - -, (Pk,dk)). The connection
rule of node x implies that z is connected to one of the vertices of [((p1,d1), -+, (pi,d;))] with
probability k%m for 2 <i<k.

Theorem 6 The average number of links of a node in the probabilistic model is O(loglogn).

Proof: The expected value of the number of the links of node z is Z
inequality below the claim is proven.

i— 2m+23ndbythe

logn 1
Z 7S < loglogn
i=1
O
Now we show how we can emulate RAQ by PRAQ with dilation O(logn). From to the con-
nection rule of RAQ we know that the link from a node z to a neighbor y, is in fact a link to a
subspace induced by a label.

Theorem 7 A single message passing step in RAQ can be emulated in PRAQ in O(logn) steps.

Proof: Suppose x wants to send a message to the subspace induced by label [. If x has no link to
a node in [{], it sends the message to its immediate neighbor in Universal Cycle in the direction of
l. This operation will be repeated until the message is received by a node which is either connected
to [!] or itself is in [/]. Each node y in the path has a link to [I] with probability (y) ;= O(

Thus the expected number of traversed nodes before reaching [I] is O(logn). O

logn)

Corollary 2 PRAQ resolves exact-match and range queries in O(log2 n) communication steps.

Departure and arrival of the nodes in the probabilistic model is similar to the deterministic one
and is done by emulating message passing. Inserting a node to the Universal Cycle is as simple as
inserting a node in a cyclic link list.
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Figure 2: Left: The histogram of the number of peers with a specific degree, Right: The plot of
the average number of the messages passed once a node inserts.
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9 Experimental Evaluation

We have performed simulation to evaluate RAQ. We have simulated networks with 28 to 2'6 nodes
to measure different metrics of the structure. A network is constructed by inserting nodes one by
one using the methods discussed in section [section 7} In [Figure 2| a histogram of the number of
links of each of the nodes in the network for networks of different sizes is presented. As we argued
in lemma (1} the average is in O(logn). Theorem claims that the join operation is done
via O(log”n) message passing which is the same as what we get through the experiment. The
next plot in shows the average number of the messages that are transferred in inserting
a single node.

The principal metric in evaluating RAQ is the number of the messages passed to answer a
single exact match query. We generate exact match queries with random source and destination.

According to the simulation’s result, the average number of the messages is approximately
Fiaure

log 2. In 3l the distribution of the length of routing paths is displayed. These results confirm

our arguments in section [section 3
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To evaluate the fault tolerability of RAQ, we have simulated the case that a node fails to handle
a query by a 10 percent probability. In this situation, when node u sends a query to node v and v
rejects the message, u will send the query randomly to one of its other neighbors. The simulation
results in show that RAQ is still doing well in this case and routes the queries only slightly
slower. Thus it is a reliable structure.

presents the results of simulating range queries. We generate 500 range queries for
small networks and 5000 queries for the larger ones. A range query is generated by choosing a
hypercubic subspace as the answer space which has about 0.05 percent length along each dimension.
The left plot in represent the number of duplicate queries generated to solve the query.
As is illustrated by the graph, the number of target nodes of the range queries and the number
of messages grow linearly by the size of the network due to the constant size of the answer space.
Similar to the exact match queries, the average length of routing latency is about log" which
confirms our claims in section [section G

10 Conclusion

In this paper we presented RAQ, a range-queriable distributed data structure for peer-to-peer
networks to organize its multi-dimensional data, and to efficiently support exact and range queries
on the data. Our structure is easy to implement and uses O(logn) memory space for each of its n
nodes. The exact match query can be performed, as in other works, by O(logn) message passing.
The main contribution of this paper is that the structures broadcast the range query to the target
nodes within at most O(logn) link traversing steps. We showed that all properties of RAQ can be
maintained when nodes join the network or leave it. Also, we have discussed a probabilistic model
with fewer number of links at each node. We demonstrated our claims by results of simulation.

We are currently working on other extensions of the RAQ model to reduce the complexity of the
degree of network’s nodes. We also intend to validate our results through experimental evaluation
using real data. Other ideas can be to design a fault tolerant model to handle different faults such
as the situation that the nodes abruptly leave the network. Load balancing is another important
property of the RAQ to look at. In this case, we are going to study the situations that the data
points are not uniformly distributed in the search space; also, the computing power of the nodes
of network can be different. Further works on these topics are underway.
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