
www.allitebooks.com

http://www.allitebooks.org

Akka Essentials

A practical, step-by-step guide to learn and build
Akka's actor-based, distributed, concurrent, and
scalable Java applications

Munish K. Gupta

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Akka Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1171012

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-828-4

www.packtpub.com

Cover Image by Eleanor Bennett (eleanor.ellieonline@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Munish K. Gupta

Reviewers
Jonas Bonér

David Y. Ross

Domingo Suarez Torres

Acquisition Editor
Usha Iyer

Lead Technical Editor
Unnati Shah

Technical Editors
Mayur Hule

Devdutt Kulkarni

Ankita Shashi

Copy Editor
Insiya Morbiwala

Project Coordinator
Joel Goveya

Proofreader
Julie Jackson

Indexer
Monica Ajmera

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Munish K. Gupta is a Senior Architect working for Wipro Technologies. Based in
Bangalore, India, his day-to-day work involves solution architecture for applications
with stringent non-functional requirements (NFRs), Application Performance
Engineering, and exploring the readiness of cutting-edge, open source technologies
for enterprise adoption.

He advises enterprise customers to help them solve performance and scalability
issues, and implement innovative differentiating solutions to achieve business and
technology goals. He believes that technology is meant to enable the business, and
technology by itself is not a means to an end.

He is very passionate about software programming and craftsmanship. He is always
looking for patterns in solving problems, writing code, and making optimum
use of tools and frameworks. He blogs about technology trends and Application
Performance Engineering at http://www.techspot.co.in and about Akka at
http://www.akkaessentials.in

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Writing a book is never a single person's job. During the course of this journey, I
have relied on many people, both directly and indirectly. I would like to thank the
Akka community, from whom I have learned, and continue to learn, every day.

I would like to especially thank Jonas Bonér and David Ross, who reviewed and
contributed many helpful suggestions and improvements to my drafts.

I am grateful to my editors, Usha Iyer, Unnati Shah, and Joel Goveya at Packt
Publishing for their help in preparing this book. I would like to thank all my
colleagues at Wipro Technologies, especially Hari Burle, Sridhar PV, and Aravind
Ajad for all their support and encouragement. I have learned so much from each one
of you, and for that I am grateful.

Last but not the least, I would like to thank my family. My wife Kompal, who has
been a source of constant support throughout this journey. She single-handedly
managed the kids and other chores around the house while I was working late
nights and on weekends. She was the constant motivator who egged me on to go
that extra mile whenever I felt that it was too big a task. I also want to thank my
parents and brother Nitin, who provided the moral support throughout this
journey. I love you all.

To my children, Dale and Sabal, I am sorry I couldn't be around with you as much
as we all wanted, and many times had to get you away from the laptop. I love you
very much.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jonas Bonér is a geek, programmer, speaker, musician, writer, and Java champion.
He is the CTO and co-founder of Typesafe, and is an active contributor to the
open source community. Most notably, he founded the Akka project and the
AspectWerkz AOP compiler (now AspectJ). You can know more about him at
http://jonasboner.com.

David Y. Ross is a Scala enthusiast and Software Engineer at Klout, the social
media startup that empowers its users to discover and be recognized for how they
influence the world. As a member of Klout's platform team, David uses Scala and
Akka to scale the Klout API to over a billion requests per day. Having previously
worked on enterprise Java systems at a large tech company, he is constantly amazed
by the productivity and elegance of Scala and Akka.

David attends Bay Area Scala meetups and has given a talk on Klout's use of Akka.
He is a fan of Boston's sports teams and esoteric Jazz guitar players.

Domingo Suarez Torres is a Software Developer from Mexico City. He is
always looking for tools that can make him a more productive developer. He likes
to adopt frameworks that are in their early stages. In Mexico, he has been a pioneer
in adopting several languages for the JVM, such as Groovy and Scala, programming
languages that are used to build successful businesses. He has founded several user
groups to spread the word about new technology.

www.allitebooks.com

http://www.allitebooks.org

In the professional field, he has worked for big companies as well as small ones in
different sectors, such as financial, health, media, sales, and e-commerce. Currently,
he is the CTO for a succesful e-commerce company in Mexico (clickOnero).

He has helped as a technical reviewer for other books, such as Camel In Action, Claus
Ibsen and Jonathan Anstey, Manning Publications and Making Java Groovy, Kenneth A.
Kousen, Manning Publications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Pack's online digital book
library. Here, you can access, read and search across Pack's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to Akka	 7

Background	 7
Microprocessor evolution	 7
Concurrent systems	 8
Container-based applications	 10
Actor Model	 10
Akka framework	 12

Actor systems	 13
What is an actor?	 13
Fault tolerance	 17
Location transparency	 18
Transactors	 19

Akka use cases	 21
Summary	 22

Chapter 2: Starting with Akka	 23
Application requirements	 23
Application design	 24
Start development	 26

Prerequisites	 26
Java	 26
Eclipse	 27
Maven	 27
Scala	 27
Akka	 28

Java application	 30
Creating the Akka Maven project	 30
Defining message classes	 35
Defining actor classes	 36
Defining the execution class	 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Scala application 46
Defining message classes 47
Defining actor classes 47
Defining the execution class 55

Summary 58
Chapter 3: Actors 59

Actors 59
Defining an actor 61
Creating actors 61

Actor with default constructor 62
Actor with non-default constructor 62
Creating an actor within an actor hierarchy 63

Messaging model 64
Sending messages 65

Fire and forget messages – tell() 66
Send and receive messages – ask() 67

Receiving messages 69
Replying to messages 70
Forwarding messages 70

Stopping actors 71
Killing actors 73
Actor lifecycle monitoring 73
HotSwap 74
Summary 76

Chapter 4: Typed Actors 77
What are typed actors? 78
Defining an actor 80
Creating actors 82

An actor with a default constructor 83
An actor with a non-default constructor 83

Messaging model 84
Sending messages 84

Fire and forget messages 85
Send and receive messages 85

Stopping actors 86
Actor lifecycle monitoring 87

Lifecycle callbacks 87
Receiving messages 88
Supervisor strategy 90

Creating an actor hierarchy 91
Dispatchers and routers 92

Table of Contents

[iii]

Using dispatchers 92
application.conf 93

Using routers 93
Summary 94

Chapter 5: Dispatchers and Routers 95
Dispatchers 95

Dispatcher as a pattern 97
Executor in Java 97
Dispatchers in Akka 99
Types of dispatcher 100

Dispatcher 101
Pinned dispatcher 102
Balancing dispatcher 103
Calling thread dispatcher 103

Types of mailboxes 104
Dispatcher usage 105

Routers 109
Router usage 110
Router usage via application.conf 112
Router usage for distributed actors 113
Dynamically resizing routers 114
Custom router 115

Summary 121
Chapter 6: Supervision and Monitoring 123

Let It Crash 123
Actor hierarchy 124

Supervision 127
Supervision strategies 130

One-For-One strategy 133
All-For-One strategy 146

Lifecycle monitoring 154
Fault tolerance 161
Summary 163

Chapter 7: Software Transactional Memory 165
Transaction management 165

What is software transactional memory? 166
Coordinated transactions 169

Money transfer between two accounts 171
Transactor 184

Money transfer between two accounts – take two 185

Table of Contents

[iv]

Agents 187
Creating agents 188
Updating agent values 188
Reading agent values 189
Stopping agents 190

Summary 190
Chapter 8: Deployment Ready 191

Testing your Akka application 191
Writing the first unit test with TestActorRef 192
Access to the underlying actor reference 194
Testing actor behavior 195
Testing exception scenarios 196
Integration testing with TestKit 197

EchoActor testing 202
ForwardingActor testing 203
SequencingActor testing 203
SupervisorActor testing 205

Remote actors testing 207
Managing application configuration using Akka extensions 208
Deployment mode 213

Microkernel 214
Summary 216

Chapter 9: Remote Actors 217
Distributed computing 217

Actor path 221
Remote actors 223

Creating the remote node application 225
Creating the local node application 228
Creating remote actors programmatically 232

Message serialization 234
Creating your own serialization technique 235

Remote events 242
Summary 246

Chapter 10: Management 247
Application monitoring 247
Typesafe console 248

Typesafe console modules 249
Trace 250
Analyze 252
Query 254
Typesafe console 255

Table of Contents

[v]

Graphical dashboard 257
System overview 259

Node 260
Dispatchers 262

Actors 264
Tags 266
Errors 268

Limitations 270
JMX and REST interfaces 270

RESTful API 270
JMX 272

Summary 274
Chapter 11: Advanced Topics 275

Durable mailboxes 275
Akka support 277

Dispatcher usage 277
FileDurableMailboxStorage 279

Actors and web applications 281
Installing play 282
Creating the first HttpActors application 282
Launching the console 283

Integrating actors with ZeroMQ 289
Publisher-subscriber connection 290

Usage 290
Request-reply connection 294

Usage 295
Router-dealer connection 298

Usage 299
Push-pull connection 302

Usage 303
Summary 306

Index 307

Preface
Akka Essentials is meant as a guide for architects, solution providers, consultants,
engineers, and anyone planning to design and implement a distributed, concurrent
application based on Akka. It will refer to easy-to-explain concept examples, as
they are likely to be the best teaching aids. It will explain the logic, code, and
configurations needed to build a successful, distributed, concurrent application, as
well as the reason behind those decisions.

This book covers the core concepts to design and create a distributed, concurrent
application, but it is not meant to be a replacement for the official documentation
guide for Akka published at Typesafe.

The driving force of Akka's Actor Model
The existing, Java-based concurrency model does not lend well to the underlying,
hardware multiprocessor model. This leads to the Java application not being able
to scale up and scale out, to handle the demands of a distributed, scalable,
concurrent application.

The Akka framework has taken the "Actor Model" concept to build an
event-driven, middleware framework that allows the building of concurrent,
scalable, and distributed systems. Akka uses the Actor Model to raise the
abstraction level that decouples the business logic from the low-level
constructs of threads, locks, and non-blocking I/O.

The Akka framework provides the following features:

•	 Concurrency: The Akka Actor Model abstracts concurrency handling and
allows the programmer to focus on the business logic

•	 Scalability: The Akka Actor Model's asynchronous message passing allows
applications to scale up on multicore servers

Preface

[2]

• Fault tolerance: Akka borrows the concepts and techniques from Erlang to
build the "Let It Crash", fault tolerance model

• Event-driven architecture: Akka provides an asynchronous messaging
platform for building event-driven architectures

• Transaction support: Akka implements transactors that combine the actors
and software transactional memory (STM) into transactional actors

• Location transparency: Akka provides a unified programming model for
multicore and distributed computing needs

• Scala/Java APIs: Akka supports both Java and Scala APIs for
building applications

The Akka framework is envisioned as a toolkit and runtime for building highly
concurrent, distributed, and fault-tolerant, event-driven applications on the JVM.

What this book covers
Chapter 1, Introduction to Akka, covers the background on the evolution of the
microprocessor, the current problems met in the building of concurrent applications,
and the Actor Model. We will then jump into what Akka provides, and the high-level
features of the Akka framework.

Chapter 2, Starting with Akka, covers the motions of the installation of the
development environment and the writing of the first Akka application.

Chapter 3, Actors, covers the overview of the actors. The chapter covers the lifecycle of
an actor, how to create actors, how to pass and process messages, and how to stop or
kill the actor.

Chapter 4, Typed Actors, covers the overview of the typed actors. It also covers the
lifecycle of a typed actor, how to create actors, how to pass and process messages,
and how to stop or kill the actor.

Chapter 5, Dispatchers and Routers, covers dispatchers and their workings. The chapter
covers the various types of dispatchers and their usage and configuration settings,
and the different types of mailboxes and their usage and configuration. This chapter
also covers routers, and their different types and usage.

Chapter 6, Supervision and Monitoring, covers fault tolerance, the lifecycle, supervision
strategies, and linking strategies when writing large-scale, concurrent programs.
The chapter covers the "Let It Crash" paradigm, and how it is managed in the Actor
Model using the various supervision strategies.

Preface

[3]

Chapter 7, Software Transactional Memory, covers the various Akka constructs
provided for the transactional concepts (begin/commit/rollback semantics). The
chapter walks us through the basics of transaction management and explores the
Akka constructs provided for STM—transactors and agents.

Chapter 8, Deployment Ready, covers the three, critical gating criteria that an
application needs to pass in order to go into production. This chapter covers the
unit and integration testing employed for the Akka application, how to manage
environment-specific configuration, and the deployment strategies.

Chapter 9, Remote Actors, covers the requirements of a distributed computing
environment and how Akka implements these. It also covers the various methods
of creating remote actors, how object serialization happens in Akka, the various
serializers provided by Akka, and how you can write your own serializers.

Chapter 10, Management, covers the monitoring capabilities provided by the Typesafe
console—the Akka monitoring tool, various graphical dashboards, and real-time
statistics. The chapter also covers the key JMX and REST interfaces.

Chapter 11, Advanced Topics, covers topics such as durable mailboxes, the integration
of Akka with the play framework, and actor integration with ZeroMQ.

What you need for this book
The book is technical in nature, so the reader needs to have a basic understanding of
the following:

• Java/Scala programming language
• Java's thread and concurrency model

Who this book is for
This book is aimed at developers and architects, who are building large distributed,
concurrent, and scalable applications using Java/Scala. The book requires the reader
to have a knowledge of Java/JEE concepts, but a knowledge of the Actor Model is
not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows:"The /lib folder holds the
scala-library.jar file."

A block of code is set as follows:

package akka.first.app.mapreduce.messages;
import java.util.List;
public final class MapData {
 private final List<WordCount> dataList;
 public List<WordCount> getDataList() {
 return dataList;
 }
 public MapData(List<WordCount> dataList) {
 this.dataList = dataList;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package akka.first.app.mapreduce.actors;
import akka.actor.ActorRef;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.Result;

public class MasterActor extends UntypedActor {
 ActorRef mapActor;
 ActorRef reduceActor;
 ActorRef aggregateActor;
 @Override
 public void onReceive(Object message) throws Exception {

 }
}

Any command-line input or output is written as follows:

$ cd HttpActors

$ ls

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:"Open
Eclipse and go to File | New | Project...."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Akka
Akka is one of the most popular Actor Model frameworks that provide a complete
toolkit and runtime for designing and building highly concurrent, distributed, and
fault-tolerant, event-driven applications on the JVM. This chapter will walk you
through the motivation and need for building an Akka toolkit.

As Java/Scala developers, we will see the usage of creating applications using the
Akka Actor Model, which scales up and scales out seamlessly, and provides levels
of concurrency, which is simply difficult to achieve with the standard Java libraries.

Background
Before we delve into what Akka is, let us take a step back to understand how the
concept of concurrent programming has evolved in the application development
world. The applications have always been tied to the underlying hardware
resource capacity. The whole concept of building large, scalable, distributed
applications needs to be looked at from the perspective of the underlying
hardware resources where the application runs and the language support
provided for concurrent programming.

Microprocessor evolution
The advancement of the microprocessor architecture meant the CPU kept becoming
faster and faster with doubling of the transistors every 18 months (Moore's law).
But soon, the chip design hit the physical limits in terms of how many transistors
could be squeezed on to the printed circuit board (PCB). Subsequently, we moved
to multicore processor architecture that has two or more identical processors or
processor cores physically close to each other, sharing the underlying bus interface
and the cache.

Introduction to Akka

[8]

These microprocessors having two or more cores effectively increased the processor's
performance by the same factor as the number of cores, limited only by the amount
of serial code (Amdahl's law).

The preceding diagram from wiki, http://en.wikipedia.org/wiki/
Transistor_count shows how the transistor count was doubled initially over
the period of 18 months (following the Moore's Law) and how the multiprocessor
architecture for consumer machines has evolved over the last 6-7 years.

Clock speeds are not increasing; processors are getting
more parallel and not faster.

Concurrent systems
When writing large concurrent systems, the traditional model of shared state
concurrency makes use of changing shared memory locations. The system uses
multithreaded programming coupled with synchronization monitors to guard
against potential deadlocks. The entire multithreading programming model is based
on how to manage and control the concurrent access to the shared, mutable state.

Chapter 1

[9]

Manipulating shared, mutable state via threads makes it hard at times to
debug problems. Usage of locks may guarantee the correct behavior, but it is
likely to lead to the effect of threads running into a deadlock problem, with
each acquiring locks in a different order and waiting for each other, as shown
in the following diagram:

Working with threads requires a much higher level of programming skills and it is
very difficult to predict the behavior of the threads in a runtime environment.

Java provides shared memory threads with locks as the primary form of concurrency
abstractions. However, shared memory threads are quite heavyweight and incur
severe performance penalties from context-switching overheads.

A newer Java API around fork/join, based on work-stealing algorithms, makes the
task easier, but it still takes a fair bit of expertise and tuning to write the application.

Writing multithreaded applications that can take
advantage of the underlying hardware is very
error-prone and not easy to build.
Scaling up Java programs is difficult; scaling out
Java programs is even more difficult.

Introduction to Akka

[10]

Container-based applications
Java Platform, Enterprise Edition (JEE) was introduced as a platform to develop and
run distributed multitier Java applications. The entire multitier architecture is based
on the concept of breaking down the application into specialized layers that process
the smaller pieces of logic. These multitier applications are deployed in containers
(called application servers) provided by vendors, such as IBM or Oracle, which host
and provide the infrastructure to run the application. The application server is tuned
to run the application and utilize the underlying hardware.

The container-based model allows the applications to be distributed across nodes
and allows them to be scaled. The runtime model of the application servers has its
own share of issues, as follows:

• In case of runtime failures, the entire request call fails. It is very difficult to
retry any method execution or recovery from failures.

• The application scalability is tagged to the underlying application container
settings. An application cannot make use of different threading models to
account for different workloads within the same application.

• Using the container-based model to scale out the applications requires a
large set of resources, and overheads of managing the application across
the application server nodes are very high.

Container-based applications are bounded by the rules of
the container's ability to scale up and scale out, resulting
in suboptimal performance.

The JEE programming model of writing distributed applications is not the best fit for
a scale-out application model.

Given that the processors are becoming more parallel, the applications are getting
more distributed, and traditional JVM programming techniques are not helpful. So,
there is a need for a different paradigm to solve the problem.

Actor Model
In 1973, Carl Hewitt, Peter Bishop, and Richard Steiger wrote a paper—A Universal
Modular ACTOR Formalism for Artificial Intelligence, which introduced the concept of
Actors. Subsequently, the Actor Model was implemented in the Erlang language by
Joe Armstrong and Ericsson implemented the AXD 301 telecom switch that went
onto achieve reliability of 99.9999999 percent (nine 9's).

Chapter 1

[11]

The Actor Model takes a different approach to solving the problem of concurrency,
by avoiding the issues caused by threads and locks. In the Actor Model, all objects
are modeled as independent, computational entities that only respond to the
messages received. There is no shared state between actors, as follows:

Actors change their state only when they receive a stimulus in the form of a message.
So unlike the object-oriented world where the objects are executed sequentially, the
actors execute concurrently.

The Actor Model is based on the following principles:

• The immutable messages are used to communicate between actors. Actors do
not share state, and if any information is shared, it is done via message only.
Actors control the access to the state and nobody else can access the state.
This means there is no shared, mutable state.

• Each actor has a queue attached where the incoming messages are enqueued.
Messages are picked from the queue and processed by the actor, one at a
time. An actor can respond to the received message by sending immutable
messages to other actors, creating a new set of actors, updating their own
state, or designating the computational logic to be used when the next
message arrives (behavior change).

• Messages are passed between actors asynchronously. It means that the
sender does not wait for the message to be received and can go back to its
execution immediately. Any actor can send a message to another actor with
no guarantee on the sequence of the message arrival and execution.

• Communication between the sender and receiver is decoupled and
asynchronous, allowing them to execute in different threads. By having
invocation and execution in separate threads coupled with no shared state,
allows actors to provide a concurrent and scalable model.

Introduction to Akka

[12]

Akka framework
The Akka framework has taken the Actor Model concept to build an event-driven,
middleware framework that allows building concurrent, scalable, distributed
systems. Akka uses the Actor Model to raise the abstraction level that decouples the
business logic from low-level constructs of threads, locks, and non-blocking I/O.

The Akka framework provides the following features:

• Concurrency: Akka Actor Model abstracts the concurrency handling and
allows the programmer to focus on the business logic.

• Scalability: Akka Actor Model's asynchronous message passing allows
applications to scale up on multicore servers.

• Fault tolerance: Akka borrows the concepts and techniques from Erlang to
build a "Let It Crash" fault-tolerance model using supervisor hierarchies to
allow applications to fail fast and recover from the failure as soon as possible.

• Event-driven architecture: Asynchronous messaging makes Akka a perfect
platform for building event-driven architectures.

• Transaction support: Akka implements transactors that combine actors and
software transactional memory (STM) into transactional actors. This allows
composition of atomic message flows with automatic retry and rollback.

• Location transparency: Akka treats remote and local process actors the
same, providing a unified programming model for multicore and distributed
computing needs.

• Scala/Java APIs: Akka supports both Java and Scala APIs for
building applications.

The Akka framework is envisaged as a toolkit and runtime for building highly
concurrent, distributed, and fault-tolerant, event-driven applications on the JVM.

Akka is open source and available under the Apache License,
Version 2 at http://akka.io.

Akka was originally created by Jonas Bonér and is currently available as part of the
open source Typesafe Stack.

Next, we will see all the key constructs provided by Akka that are used to build a
concurrent, fault-tolerant, and scalable application.

Chapter 1

[13]

Actor systems
Actor is an independent, concurrent computational entity that responds to messages.
Before we jump into actor, we need to understand the role played by the actor in the
overall scheme of things. Actor is the smallest unit in the grand scheme of things.
Concurrent programs are split into separate entities that work on distinct subtasks.
Each actor performs his quota of tasks (subtasks) and when all the actors have
finished their individual subtasks, the bigger task gets completed.

Let's take an example of an IT project that needs to deliver a defined functionality to
the business. The project is staffed with people who bring different skill sets to the
table, mapped for the different phases of the project as follows:

The whole task of building something is divided into subtasks/activities that are
handled by specialized actors adept in that subtask. The overall supervision is
provided by another actor—project manager or architect.

In the preceding example, the project needs to exist and it should provide the
structure for the various actors (project manager, architect, developer, and so on) to
start playing their roles. In the absence of the project, the actor roles have no meaning
and existence. In Akka world, the project is equivalent to the actor system.

The actor system is the container that manages the actor behavior,
lifecycle, hierarchy, and configuration among other things. The
actor system provides the structure to manage the application.

What is an actor?
Actor is modeled as the object that encapsulates state and behavior. All the messages
intended for the actors are parked in a queue and actors process the messages from
that queue.

Actors can change their state and behavior based on the message passed. This allows
them to respond to changes in the messages coming in. An actor has the constituents
that are listed in the following sections.

Introduction to Akka

[14]

State
The actor objects hold instance variables that have certain state values or can be
pure computational entities (stateless). These state values held by the actor instance
variable define the state of the actor. The state can be characterized by counters,
listeners, or references to resources or state machine. The actor state is changed only
as a response to a message. The whole premise of the actor is to prevent the actor
state getting corrupted or locked via concurrent access to the state variables.

Akka implements actors as a reactive, event-driven, lightweight thread that
shields and protects the actor's state. Actors provide the concurrent access to
the state allowing us to write programs without worrying about concurrency
and locking issues.

When the actors fail and are restarted, the actors' state is reinitialized to make sure
that the actors behave in a consistent manner with a consistent state.

Behavior
Behavior is nothing but the computation logic that needs to be executed in response
to the message received. The actor behavior might include changing the actor state.
The actor behavior itself can undergo a change as a reaction to the message. It
means the actor can swap the existing behavior with a new behavior when a certain
message comes in. The actor defaults to the original behavior in case of a restart,
when encountering a failure:

Chapter 1

[15]

Mailbox
An actor responds to messages. The connection wire between the sender sending a
message and the receiver actor receiving the message is called the mailbox. Every
actor is attached to exactly one mailbox. When the message is sent to the actor, the
message gets enqueued in its mailbox, from where the message is dequeued for
processing by the receiving actor. The order of arrival of the messages in the queue
is determined in runtime based on the time order of the send operation. Messages
from one sender actor to another definite receiver actor will be enqueued in the
same order as they are sent:

Akka provides multiple mailbox implementations. The mailboxes can be bounded or
unbounded. A bounded mailbox limits the number of messages that can be queued
in the mailbox, meaning it has a defined or fixed capacity for holding the messages.

At times, applications may want to prioritize a certain message over the other.
To handle such cases, Akka provides a priority mailbox where the messages
are enqueued based on the assigned priority. Akka does not allow scanning of
the mailbox. Messages are processed in the same order as they are enqueued in
the mailbox.

Akka makes use of dispatchers to pass the messages from the queue to the actors for
processing. Akka supports different types of dispatchers. We will cover more about
dispatchers and mailboxes in Chapter 5, Dispatchers and Routers.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Akka

[16]

Actor lifecycle
Every actor that is defined and created has an associated lifecycle. Akka provides
hooks such as preStart that allow the actor's state and behavior to be initialized.
When the actor is stopped, Akka disables the message queuing for the actor before
PostStop is invoked. In the postStop hook, any persistence of the state or clean up
of any hold-up resources can be done:

Further, Akka supports two types of actors—untyped actors and typed actors. We
will cover untyped and typed actors in Chapter 3, Actors, and Chapter 4, Typed Actors,
respectively.

Chapter 1

[17]

Fault tolerance
Akka follows the premise of the actor hierarchy where we have specialized actors
that are adept in handling or performing an activity. To manage these specialized
actors, we have supervisor actors that coordinate and manage their lifecycle. As
the complexity of the problem grows, the hierarchy also expands to manage the
complexity. This allows the system to be as simple or as complex as required based
on the tasks that need to be performed:

The whole idea is to break down the task into smaller tasks to the point where the
task is granular and structured enough to be performed by one actor. Each actor
knows which kind of message it will process and how he reacts in terms of failure.
So, if the actor does not know how to handle a particular message or an abnormal
runtime behavior, the actor asks its supervisor for help. The recursive actor hierarchy
allows the problem to be propagated upwards to the point where it can be handled.
Remember, every actor in Akka has one and only one supervisor.

This actor hierarchy forms the basis of the Akka's "Let It Crash" fault-tolerance
model. Akka's fault-tolerance model is built using the actor hierarchy and
supervisor model. We will cover more details about supervision in Chapter 6,
Supervision and Monitoring.

Introduction to Akka

[18]

Location transparency
For a distributed application, all actor interactions need to be asynchronous and
location transparent. Meaning, location of the actor (local or remote) has no impact
on the application. Whether we are accessing an actor, or invoking or passing the
message, everything remains the same.

To achieve this location transparency, the actors need to be identifiable and
reachable. Under the hood, Akka uses configuration to indicate whether the actor is
running locally or on a remote machine. Akka uses the actor hierarchy and combines
it with the actor system address to make each actor identifiable and reachable.

Akka uses the same philosophy of the World Wide Web (WWW) to identify and
locate resources on the Web. WWW makes use of the uniform resource locator
(URL) to identify and locate resources on the Web. The URL consists of—scheme://
domain:port/path, where scheme defines the protocol (HTTP or FTP), domain
defines the server name or the IP address, port defines the port where the process
listens for incoming requests, and path specifies the resource to be fetched.

Akka uses the similar URL convention to locate the actors. In case of an Akka
application, the default values are akka://hostname/ or akka://hostname:2552/
depending upon whether the application uses remote actors or not, to identify the
application. To identify the resource within the application, the actor hierarchy is
used to identify the location of the actor:

Chapter 1

[19]

The actor hierarchy allows the unique path to be created to reach any actor within
the actor system. This unique path coupled with the address creates a unique
address that identifies and locates an actor.

Within the application, each actor is accessed using an ActorRef class, which is
based on the underlying actor path. ActorRef allows us to transparently access
the actors without knowing their locations. Meaning, the location of the actor is
transparent for the application. The location transparency allows you to build
applications without worrying how the actors communicate underneath.

Akka treats remote and local process actors the same—all
can be accessed by an address URL.

Transactors
To provide transaction capabilities to actors, Akka transactors combine actors with
STM to form transactional actors. This allows actors to compose atomic message
flows with automatic retry and rollback.

Working with threads and locks is hard and there is no guarantee that the
application will not run into locking issues. To abstract the threading and locking
hardships, STM, which is a concurrency control mechanism for managing access to
shared memory in a concurrent environment, has gained a lot of acceptance.

STM is modeled on similar lines of database transaction handling. In the case of
STM, the Java heap is the transactional data set with begin/commit and rollback
constructs. As the objects hold the state in memory, the transaction only implements
the characteristics—atomicity, consistency, and isolation.

For actors to implement a shared state model and provide a consistent, stable view
of the state across the calling components, Akka transactors provide the way. Akka
transactors combine the Actor Model and STM to provide the best of both worlds
allowing you to write transactional, asynchronous, event-based message flow
applications and gives you composed atomic arbitrary, deep message flows. We will
cover transactors in more details in the Chapter 7, Software Transactional Memory.

Introduction to Akka

[20]

So far, we have seen the key constructs that form the basis of Akka:

As we move ahead and delve deep into the constructs provided by the Akka
framework, we need to make sure that we keep in mind the following concepts:

• An actor is a computation unit with state, behavior, and its own mailbox
• There are two types of actors—untyped and typed
• Communication between actors can be asynchronous or synchronous
• Message passing to the actors happens using dispatchers
• Actors are organized in a hierarchy via the actor system
• Actors are proxied via ActorRef
• Supervisor actors are used to build the fault-tolerance mechanism
• Actor path follows the URL scheme, which enables location transparency
• STM is used to provide transactional support to multiple actor state updates

We will explore each of these concepts in detail in the coming chapters.

Chapter 1

[21]

Akka use cases
Now that we have seen what Akka is and the key features of Akka, let's delve
into the use cases where Akka fits in best. Any business use case that requires the
application to scale up and scale out, be fault tolerant, or provide High Availability
(HA), requires massive concurrency/parallelism, which is a prime target for use of
the Akka Actor Model. The following are the use cases for Akka:

• Transaction processing: This includes processing large data streams, where
the incoming data is either time series or transactional data. The stream
pumps in large amount of data that needs to be processed in parallel and
concurrently. The output of the data processing might be used in real time
or might be fed into analytical systems. Finance, banking, securities, trading,
telecom, social media, analytics, and online gaming are some of the domain
enterprises that deal with large data coming in from multiple sources, which
needs to be processed, analyzed, and reported.

• Service providers: Another area is where the application provides services
to various other clients via variety of service means such as SOAP, REST,
Cometd, or WebSockets. The application generally caters to a massive
amount of stateless requests that need to be processed fast and concurrently.

• Batch processing: Batch processing used across enterprise domains is
another area where Akka shines very well. Dealing with large data, applying
paradigms such as divide and conquer, map-reduce, master-worker, and grid
computing allows massive data to be processed. The data might be coming in
via real-time feeds, or it might be unstructured data (coming via logfiles) or
data read from existing data stores.

• Data mining/analytics/Business Intelligence: Most enterprises generate
large amounts of data—structured as well as unstructured. Applications that
mine this data from existing transactional stores or data warehouses can use
Akka to process and analyze these massive sets of data.

• Service gateways/hubs: Service gateways or hubs connect multiple systems
or applications together, and provide mediation and transformation services.
An Akka-based application can provide those scale-up and scale-out options
along with high availability for applications in this space.

• Apps requiring concurrency/parallelism: Any application that needs to
process data in parallel or provide/support concurrency can make use of
Akka. Akka provides a faster time to market for such applications, as writing
and testing such applications is far easier and less error-prone compared to
traditional thread-based concurrent applications. Akka JARs can be easily
dropped into existing Java or Scala applications and the applications can start
making use of the Actor Model.

Introduction to Akka

[22]

At times, Akka needs to be used in conjunction with other frameworks or libraries
to build the complete application. Some of the common frameworks that work
very well with Akka are Play framework, ZeroMQ, Apache Camel, and Spring
framework, among others. We will explore the usage of Play framework and
ZeroMQ with Akka.

Summary
This completes the introduction to Akka, where we saw the evolution of the
microprocessors, the problems with writing/using the Java concurrency models for
distributed applications, and how Akka's Actor Model provides an answer to the
two problems. We also learned the key constructs that define the Akka framework
and sample use cases where Akka is a prime candidate for use.

In the next chapter, we will get started with Akka, we will go through the motions of
installing the development environment and write our first Akka application.

Starting with Akka
In this chapter we will go through the motions of installing and configuring our
development environment and writing our first Akka application.

We will use Eclipse as our medium of Integrated Development Environment (IDE)
and go through the motions of installing, configuring, and doing development
with Akka.

We assume that you are well aware of Java/Scala and starting your Akka
actor's journey.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register
to have the files e-mailed directly to you.

Application requirements
For our first Akka application, we are going to implement the Word Count using the
MapReduce method. The premise of the application is to accept complete sentences as
a string and count the number of words across the input sentences.

We will take certain English sentences and run them through our Word Count Map
Reduce application to count the number of occurrences of each word. The overall
application will be broken into multiple tasks, such as performing specialized
computations and computing the word count. The following diagram explains the
different computational duties that will be assigned for each of the tasks:

Starting with Akka

[24]

Each sentence goes through the notions of the following:

• Map task: It is defined as mapping the words within the sentence. We count
the actual words in the sentence and discard certain STOP words such as "a",
"is", "the", "to", and so on. For the selected words, we assign the numerical
count value of 1. Subsequently, the list is passed on to the Reduce task.

• Reduce task: It is defined as reducing the list of words to individual
occurrences for each sentence. Here, we check the occurrences of the same
word within the first list and if certain words are found, we increase the
count. The reduced list is further passed to the Aggregate task.

• Aggregate task: It is defined as aggregating the reduce lists across sentences
into one common list.

Application design
We have the basic computational units identified in the beginning for each of the
tasks that will be performed on the sentence in order to count the words. We model
our actors around the same computational task model and create the following three
actors for each task:

• Map actor
• Reduce actor
• Aggregate actor

Chapter 2

[25]

To create and manage the lifecycle of these actors, we create another actor called
Master actor. The communication between actors will happen via immutable
messages as follows:

1. The Master actor sends the sentence as a string to the Map actor.
2. The Map actor maps the words in the sentence and returns the MapData

message to the The Master actor. Master actor sends the MapData message
to the Reduce actor.

3. The Reduce actor acts on the MapData message and reduces the words.
The reduced word list is sent to the Aggregate actor as ReduceData via the
Master actor.

4. The Aggregate actor receives ReduceData and updates its internal state,
which has the complete list of the data.

5. The Master actor can send a Result message to the Aggregate actor and it
will return the aggregated list as a response to that message.

All the actors are created and running within an actor system, as shown in the
following diagram:

As part of the application development, we need to perform the following activities:

• Define structure for the messages
• Define four actors and write the respective computational logic in each of them
• Write an actor system that will create the actors and run against a set of data

to perform the calculations

Starting with Akka

[26]

Start development
Let's get started for the development of the solution. To start working on the
solution, we need to get the development environment set up. Let's understand
what we need for the development environment and prerequisites.

The following are the tooling requirements for development of the application in
Java or Scala. If you already have some of these tools installed, you can skip those
particular sections and just deploy the rest of the tooling:

Tooling/framework Java Scala
Java Java SDK 1.6 minimum Java SDK 1.6 minimum
Akka 2.0.1 and above 2.0.1 and above
Maven plugin for Eclipse 3.0.2 3.0.2
Scala IDE plugin for Eclipse NA 2.0.2
Eclipse 3.6 and above 3.6 and above
Scala Simple Build Tool
(SBT) (an alternative for Scala
IDE plugin for Eclipse)

NA 0.10 and above

Prerequisites
Let's get the prerequisites for having the application development environment
installed and configured.

Java
Based on your OS—Windows/Mac/Linux, please download and install Java
6 or Java 7.

Check out the Java installation options at the following website:
http://www.oracle.com/technetwork/java/javase/
downloads/index.html

After installation of Java, make sure you set up the %JAVA_HOME% environment
variable to point to the Java installation. Also add the JAVA_HOME variable to the
PATH environment variable.

Chapter 2

[27]

Eclipse
For the development environment, we will download and install Eclipse. For Akka
development, we will download Eclipse 4.2 (Juno) version. If you have earlier
versions such as Indigo or Helios, they will work fine as well.

Eclipse 4.2 (Juno) can be downloaded from the following
website: http://www.eclipse.org/downloads/

Maven
Maven is a well-known application build automation tool. Maven uses an XML
file (pom.xml) to manage the application dependencies on external modules and
libraries. Maven supports both Java and Scala.

We will install Maven plugin for use within our Eclipse IDE. We will use the Eclipse
update site URL to add the Maven plugin to the Eclipse IDE. Refer to the following
URL for the Maven Eclipse update site:

http://www.eclipse.org/m2e/download/

If you can access source code repositories from Maven, then you need not install
Akka or Scala separately. Once you specify the dependent modules and repository
source, Maven can download and make the right JARs available.

Scala
If you intend to build the Akka application using Scala, there are two options
as follows:

• Use the Scala IDE plugin for Eclipse
• Download and install SBT

To install the Scala IDE plugin for use within our Eclipse, we will use the Eclipse
update site URL to add the Scala IDE plugin to the Eclipse IDE. Refer to the
following URL for the Scala Eclipse update site:

http://typesafe.com/stack/scala_ide_download

When you install the plugin, the required Scala language libraries will be
downloaded and installed, so you do not need to do any separate Scala installation.

Starting with Akka

[28]

SBT or Simple Build Tool is a build system written in Scala. You can install SBT
and refer to https://github.com/harrah/xsbt/wiki or https://github.com/
harrah/xsbt/wiki/Getting-Started-Setup for details about creating a
Scala project.

Akka
If we are building projects using Maven, then we specify the Akka repository URL
and the required module name; Maven will automatically download and add the
dependency to the project.

In case you do not want to use Maven, Typesafe provides a simple way to install
the SBT along with giter8, which provides starter templates for Scala/Akka
projects. Check out http://typesafe.com/resources/typesafe-stack/
downloading-installing.html.

You can also download the current, stable release version of Akka from
http://akka.io/downloads/. Once you have downloaded the Akka distribution,
unzip it in the folder you would like to have Akka installed in. I am choosing to
install Akka in D:\tools, simply by unzipping it to this directory.

Once unzipped, the Akka folder structure looks as shown the following screenshot:

Chapter 2

[29]

The directory structure of Akka is divided into the following folders, and in each of
the folders the following files are kept:

Folder Usage
bin Holds the scripts to start/stop the Akka microkernel
config Placeholder for the Akka application configuration files
deploy Holds the Akka application JAR files that will be run within microkernel mode
doc Holds the documentation about Akka usage, APIs, and doc JARs
lib Holds the Scala JAR files
lib/akka Holds the Akka JAR files
src Holds the source code for the Akka JAR files

The /lib folder holds the scala-library.jar file, which is the core Scala JAR for
running the Scala code, and /lib/akka holds the Akka JARs. All the core Akka JARs
along with the required external dependency JARs are available here.

Akka has a modular approach and each of the Akka functional modules have
been packaged as a separate JAR. Based on the functional modules being used,
module-specific JARs need to be added to the project.

The Akka modules are as follows:

Modules Functionality
akka-actor Standard actors, untyped actors
akka-remote Remote actors
akka-slf4j Simple Logging Facade for Java (SLF4J) event-handler listener for

logging with SLF4J
akka-testkit Testing toolkit for actors
akka-kernel Microkernel for running a bare-bones mini application server
akka-<storage-
system>-mailbox

File-based Akka durable mailboxes

akka-transactor software transactional memory (STM) support
akka-agent STM agent support
akka-dataflow Oz-style dataflow concurrency support
akka-camel Apache Camel support
akka-osgi OSGI deployment support
Akka-zeromq ZeroMQ support

Starting with Akka

[30]

Java application
Once we have finished with the basic installation prerequisites, let's go ahead and
create the project and start writing code for our first Akka application.

Creating the Akka Maven project
To create the Akka Maven project, perform the following steps:

1. Open Eclipse and go to File | New | Project.... In the Select a wizard dialog
box, type in maven under the Wizards section to get the focus on Maven
Project, as shown in the following screenshot:

Chapter 2

[31]

2. Select the Maven Project option and click on Next. The New Maven Project
dialog box appears, which asks for project name and workspace, as shown in
the following screenshot:

Starting with Akka

[32]

3. Click the on the Next button and move on to the next step:

4. In this step, Maven displays multiple Maven project tooling templates. In this
entire list, we will filter for the template with maven-archetype-quickstart as
Artifact Id, as shown in the preceding screenshot.
Once we have selected the template type, we will click on the Next button.

Chapter 2

[33]

5. Here, we will provide FirstAkkaApplication as Group Id and Artifact Id
and akka.first.app.mapreduce as Package. Click on the Finish button and
the project will be created in the workspace. The project layout will look like
the following screenshot:

Starting with Akka

[34]

There is already one Java source file—App.java. Just go ahead and delete
that file.

6. Next, we will open the pom.xml file and make the necessary changes. We will
add the module dependency and the repository from where the dependency
can be downloaded as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>FirstAkkaApplication</groupId>
 <artifactId>FirstAkkaApplication</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>FirstAkkaApplication</name>
 <url>http://maven.apache.org</url>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.
sourceEncoding>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-actor</artifactId>
 <version>2.0.3</version>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>typesafe</id>
 <name>Typesafe Repository</name>
 <url>http://repo.typesafe.com/typesafe/releases/</url>
 </repository>
 </repositories>
</project>

We added the repository name and location to http://repo.typesafe.com/
typesafe/releases/ and added the akka-actor dependency module with version
number 2.0.3, to specify that the application uses akka-actor JAR and the associated
version being used is 2.0.3. The actor JAR has no dependency on any other module
and is sufficient for demonstrating our example.

Chapter 2

[35]

In case you are not using Maven, you can also create a simple Java project in Eclipse
and add the following JAR dependencies:

Dependent JARs Location
scala-library.jar <akka unzip path>akka-2.0.3\lib\

akka-actor-2.0.3.jar <akka unzip path>akka-2.0.3\lib\akka

Defining message classes
Once the bare project skeleton is set up, we will start with writing message classes.
So for the messages, we define the message classes in the package—akka.first.
app.mapreduce.messages.

MapData.java
The following code snippet shows a MapData message:

package akka.first.app.mapreduce.messages;
import java.util.List;
public final class MapData {
 private final List<WordCount> dataList;
 public List<WordCount> getDataList() {
 return dataList;
 }
 public MapData(List<WordCount> dataList) {
 this.dataList = dataList;
 }
}

MapData is the message that is passed from the Map actor to the Reduce actor. The
message consists of a list of the WordCount objects. The WordCount object holds the
word along with the associated number of instances occurring within the sentence.

WordCount.java
The WordCount class is defined as follows:

package akka.first.app.mapreduce.messages;

public final class WordCount {
 private final String word;
 private final Integer count;
 public WordCount(String inWord, Integer inCount) {
 word = inWord;
 count = inCount;
 }

www.allitebooks.com

http://www.allitebooks.org

Starting with Akka

[36]

 public String getWord() {
 return word;
 }
 public Integer getCount() {
 return count;
 }
}

ReduceData is the message passed between the Reduce actor and the Aggregate
actor. The Reduce actor will reduce the message passed in MapData and pass the
results as ReduceData to the Aggregate actor.

ReduceData.java
The ReduceData class can be defined as follows:

package akka.first.app.mapreduce.messages;
import java.util.HashMap;
public final class ReduceData {
 private final HashMap<String, Integer> reduceDataList;
 public HashMap<String, Integer> getReduceDataList() {
 return reduceDataList;
 }
 public ReduceData(HashMap<String, Integer> reduceDataList) {
 this.reduceDataList = reduceDataList;
 }
}

Result is the message passed by the Master actor to the Aggregate actor
whenever the aggregated results need to be obtained. In this case, the class
has no instance variable.

Result.java
The Result class can be defined as follows:

package akka.first.app.mapreduce.messages;
public final class Result {
}

Defining actor classes
Next, we will start with the definition of the actor classes. The actors are created in
the akka.first.app.mapreduce.actors package.

Chapter 2

[37]

MapActor.java
Let's start with the MapActor class whose responsibility was to take in the English
sentence as a String object, identify the words in the sentence, and not count the
STOP words. Once finished, MapActor will send the mapped data list to the Master
actor, who will send it to Reduce actor:

package akka.first.app.mapreduce.actors;
public class MapActor extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof String) {
 String work = (String) message;
 // map the words in the sentence and send the result
 to MasterActor
 getSender().tell(evaluateExpression(work));
 } else
 unhandled(message);
 }
 private MapData evaluateExpression(String line) {
 //logic to map the words in the sentences
 }
}

We create the MapActor class, which extends UntypedActor. The UntypedActor
class requires you to implement the onReceive() method call, where the messages
passed on to the actor are received. The onReceive() method is the message handler
for the actor:

• In the onReceive() method call, messages are received as Java objects.
• For MapActor , we are interested in the String messages. We check for

the String messages, and if found we cast the object to the string and
pass the message to another private method—evaluateExpression(). If
another message type is passed, we invoke the unhandled() method. The
unhandled() method is provided by the UntypedActor class.

• evaluateExpression() takes in the string and performs the logic for
the string being mapped. The data is enclosed in the MapData object and
passed back.

• Once the sentence has been mapped into the MapData object, we need to pass
MapData as a message to the Master actor.

Starting with Akka

[38]

Next, to evaluate the sentence and not count the STOP words, we will need the list of
STOP words. So we will define the STOP words' list, as something like the following
code snippet:

String[] STOP_WORDS = { "a", "am", "an", "and", "are", "as", "at",
"be","do", "go", "if", "in", "is", "it", "of", "on", "the", "to" };
List<String> STOP_WORDS_LIST = Arrays.asList(STOP_WORDS);

Further, in order to pass the message to the Master actor, we will need reference to
the MasterActor object. In this case, we get the reference for the Master actor via the
getSender() construct.

Next, we will define the logic in the evaluateExpression() method to complete the
logic as follows:

private MapData evaluateExpression(String line) {
 List<WordCount> dataList = new ArrayList<WordCount>();
 StringTokenizer parser = new StringTokenizer(line);
 while (parser.hasMoreTokens()) {
 String word = parser.nextToken().toLowerCase();
 if (!STOP_WORDS_LIST.contains(word)) {
 dataList.add(new WordCount(word,Integer.valueOf(1)));
 }
 }
 return new MapData(dataList);
}

In evaluateExpression (), we use StringTokenizer to break down the string into
individual words. Subsequently, we loop through the list and cross-check whether
the word is a STOP word or not. If not a STOP word, we add the word along with
the default instance count—1 into a map, which is added to the MapData message
and returned back.

The complete source code for Map actor looks like the following code snippet:

package akka.first.app.mapreduce.actors;
import java.util.*;
import java.util.StringTokenizer;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.MapData;
import akka.first.app.mapreduce.messages.WordCount;

public class MapActor extends UntypedActor {
 String[] STOP_WORDS = { "a", "am", "an", "and", "are", "as", "at",
 "be",
 "do", "go", "if", "in", "is", "it", "of", "on", "the",
 "to" };

Chapter 2

[39]

 private List<String> STOP_WORDS_LIST =
 Arrays.asList(STOP_WORDS);
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof String) {
 String work = (String) message;
 // map the words in the sentence and send the result
 to MasterActor
 getSender().tell(evaluateExpression(work));
 } else
 unhandled(message);
 }
 private MapData evaluateExpression(String line) {
 List<WordCount> dataList = new ArrayList<WordCount>();
 StringTokenizer parser = new StringTokenizer(line);
 while (parser.hasMoreTokens()) {
 String word = parser.nextToken().toLowerCase();
 if (!STOP_WORDS_LIST.contains(word)) {
 dataList.add
 (newWordCount(word,Integer.valueOf(1)));
 }
 }
 return new MapData(dataList);
 }
}

ReduceActor.java
Map actor will send the MapData message to the Master actor, who passes it to the
Reduce actor. The Reduce actor will go through the list of words and reduce for
duplicate words, and accordingly increase the number of instances counted for such
words. The reduced list is then sent back to the Master actor:

package akka.first.app.mapreduce.actors;
import java.util.*;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.MapData;
import akka.first.app.mapreduce.messages.ReduceData;
import akka.first.app.mapreduce.messages.WordCount;

public class ReduceActor extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof MapData) {
 MapData mapData = (MapData) message;
 // reduce the incoming data and forward the result to
 Master actor

Starting with Akka

[40]

 getSender().tell(reduce(mapData.getDataList()));
 } else
 unhandled(message);
 }
 private ReduceData reduce(List<WordCount> dataList) {
 HashMap<String, Integer> reducedMap = new HashMap<String,
 Integer>();
 for (WordCount wordCount : dataList) {
 if (reducedMap.containsKey(wordCount.getWord())) {
 Integer value = (Integer)
 reducedMap.get(wordCount.getWord());
 value++;
 reducedMap.put(wordCount.getWord(), value);
 } else {
 reducedMap.put(wordCount.getWord(),
 Integer.valueOf(1));
 }
 }
 return new ReduceData(reducedMap);
 }
}

The ReduceActor class is very similar to MapActor. We extend the ReduceActor
class with UntypedActor and implement the onReceive() method. We capture the
messages that belong to the MapData type and ignore the rest. When the MapData
message is received, we extract the data list from the message and pass the same
to the reduce() method, which reduces this list and returns back the ReduceData
message, which is then passed on to the Master actor.

AggregateActor.java
Aggregate actor receives the reduced data list from the Master actor and aggregates
it into one big list. Aggregate actor will maintain a state variable that will hold the
list of words and get updated on receipt of the reduced data list message:

package akka.first.app.mapreduce.actors;
import java.util.*;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.*;

public class AggregateActor extends UntypedActor {
 private Map<String, Integer> finalReducedMap =
 new HashMap<String, Integer>();
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof ReduceData) {
 ReduceData reduceData = (ReduceData) message;

Chapter 2

[41]

 aggregateInMemoryReduce(reduceData.
 getReduceDataList());
 } else if (message instanceof Result) {
 getSender().tell(finalReducedMap.toString());
 } else
 unhandled(message);
 }
 private void aggregateInMemoryReduce(Map<String,
 Integer> reducedList) {
 Integer count = null;
 for (String key : reducedList.keySet()) {
 if (finalReducedMap.containsKey(key)) {
 count = reducedList.get(key) +
 finalReducedMap.get(key);
 finalReducedMap.put(key, count);
 } else {
 finalReducedMap.put(key, reducedList.get(key));
 }
 }
 }
}

We define the AggregateActor class and extend UntypedActor. In this actor,
we also define a state variable that holds the final reduced map across multiple
sentences, as follows:

 private Map<String, Integer> finalReducedMap = new
 HashMap<String, Integer>();

In the onReceive() method, we intercept two kinds of messages as follows:

• ReduceData messages are received from the Master actor. These messages
are then sent to the private method—aggregateInMemoryReduce(),
where we add the data to the existing data set stored in the
finalReducedMap variable.

• A Result message is sent from the Master actor, and as a response to this
message, we send back the results of the finalReducedMap variable.

MasterActor.java
Master actor is a Supervisor actor and responsible for the instantiation of the child
actors. Master actor is the gateway for all messages that are passed on to the other
actors, namely the Map actor and Aggregate actor.

Starting with Akka

[42]

Let's go ahead and create the MasterActor class as follows:

package akka.first.app.mapreduce.actors;
import akka.actor.ActorRef;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.Result;

public class MasterActor extends UntypedActor {
 ActorRef mapActor;
 ActorRef reduceActor;
 ActorRef aggregateActor;
 @Override
 public void onReceive(Object message) throws Exception {

 }
}

The MasterActor class extends UntypedActor and implements the onReceive()
message handler method for the Master actor. The onReceive() method listens to
the following kinds of messages:

• String messages that need to be passed to the Map actor
• MapData objects received from the Map actor that are passed to the

Reduce actor
• ReduceData objects received from the Reduce actor that are passed to the

Aggregate actor
• Result messages that need to be forwarded to the Aggregate actor for

getting the result

The key here is the creation of the child actors—Map actor, Reduce actor, and
Aggregate actor. We have defined state variables for the Master actor and the
next step will be instantiating these actors as follows:

ActorRef mapActor = getContext().actorOf(
 new Props(MapActor.class).withRouter(new
 RoundRobinRouter(5)), "map");

Here we instantiate the Map actor, using the getContext().actorOf() method.
The method takes in Props with the class name of the actor that needs to be created.
In this case, we want to create the Map actor as a router actor. So, on the Prop we
invoke the withRouter() method passing the RoundRobinRouter type and number
of instances. The router allows us to create a pool of similar actors (called routes),
enabling us to spread the load across multiple actors.

Chapter 2

[43]

Next, we will create the Reduce actor as follows:

ActorRef reduceActor = getContext().actorOf(
 new Props(ReduceActor.class).withRouter(new
RoundRobinRouter(5)),"reduce");

We use the same method for creating the Aggregate actor, but without the router.
We skip the router, because the Aggregate actor has states, and having multiple
instances of the same actor defeats the purpose:

ActorRef aggregateActor = getContext().actorOf(
 new Props(AggregateActor.class), "aggregate");

The complete code for the Master actor is as follows:

package akka.first.app.mapreduce.actors;
import akka.actor.ActorRef;
import akka.actor.Props;
import akka.actor.UntypedActor;
import akka.first.app.mapreduce.messages.*;
import akka.routing.RoundRobinRouter;

public class MasterActor extends UntypedActor {
 ActorRef mapActor = getContext().actorOf(
 new Props(MapActor.class).withRouter(new
 RoundRobinRouter(5)), "map");
 ActorRef reduceActor = getContext().actorOf(
 new Props(ReduceActor.class).withRouter(new
 RoundRobinRouter(5)),"reduce");
 ActorRef aggregateActor = getContext().actorOf(
 new Props(AggregateActor.class), "aggregate");
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof String) {
 mapActor.tell(message,getSelf());
 } else if (message instanceof MapData) {
 reduceActor.tell(message,getSelf());
 } else if (message instanceof ReduceData) {
 aggregateActor.tell(message);
 } else if (message instanceof Result) {
 aggregateActor.forward(message, getContext());
 } else
 unhandled(message);
 }
}

This completes the definition of the actors. Next, we create the runtime class that will
instantiate and invoke these actors.

Starting with Akka

[44]

Defining the execution class
This class will bring together all the pieces and provide us the executable to run and
test our program. We create the Java class—MapReduceApplication.java in the
akka.first.app.mapreduce package.

MapReduceApplication.java
The MapReduceApplication.java class can be defined as follows:

package akka.first.app.mapreduce;
import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;
import akka.dispatch.Await;
import akka.dispatch.Future;
import akka.first.app.mapreduce.actors.MasterActor;
import akka.first.app.mapreduce.messages.Result;
import akka.pattern.Patterns;
import akka.util.Duration;
import akka.util.Timeout;

public class MapReduceApplication {
 public static void main(String[] args) throws Exception {
 Timeout timeout = new Timeout(Duration.parse("5 seconds"));
 ActorSystem _system = ActorSystem.create("MapReduceApp");
 ActorRef master = _system.actorOf(new
 Props(MasterActor.class),
 "master");
 master.tell("The quick brown fox tried to jump over the
 lazy dog and fell on the dog");
 master.tell("Dog is man's best friend");
 master.tell("Dog and Fox belong to the same family");
 Thread.sleep(5000);
 Future<Object> future = Patterns.ask(master, new
 Result(), timeout);
 String result = (String) Await.result(future,
 timeout.duration());
 System.out.println(result);
 _system.shutdown();
 }
}

Chapter 2

[45]

MapReduceApplication can be seen as a series of steps, as follows:

1. First we go ahead and create ActorSystem—a container in which the actors
are instantiated. Using ActorSystem, we create the Master actor as follows:
ActorSystem _system = ActorSystem.create("MapReduceApp");
ActorRef master = _system.actorOf(new
Props(MasterActor.class),"master");

2. Using the MasterActor reference, we pass sentence string messages to the
actor as follows:
master.tell("The quick brown fox tried to jump over the lazy dog
and fell on the dog");
master.tell("Dog is man's best friend");
master.tell("Dog and Fox belong to the same family");

3. Next, we send the Result message to the Master actor to see the results as
follows:
Future<Object> future = Patterns.ask(master, new Result(),
timeout);
String result = (String) Await.result(future,
timeout.duration());
System.out.println(result);

4. Lastly, we shut down the actor system as follows:
_system.shutdown();

We have Thread.sleep() because there is no guarantee in which order the
messages are processed. The first Thread.sleep() method ensures that all the string
sentence messages are processed completely before we send the Result message.

With this, we completed the application part. Let's compile and execute the
application to see the results. From within the Eclipse you can use the Run command
to run MapReduceApplication. When you run the application, you should see the
following in the console window:

{fell=1, fox=2, belong=1, quick=1, tried=1, man's=1, same=1, jump=1,
over=1, family=1, best=1, brown=1, lazy=1, dog=4, friend=1}

Congratulations, you just wrote your first Word Count Map Reduce program for
Java using the Akka Actor Model.

Starting with Akka

[46]

Scala application
For the Scala developers, we will use SBT to create and build the Scala project. Once
you have followed the instructions to install the SBT, we will go ahead to create our
first Akka application. Perform the following steps to do so:

1. We will create the firstAkkaApplication project directory in a working
folder. In this case we are using the folder—/home/ubuntu to create the
firstAkkaApplication folder.

2. Once the project folder is created, create a build.sbt file and add the
contents to it, as shown in the following screenshot:

Key parameter values are the name of the project, version of the project, Scala
version being used, URL for Typesafe repository, and library dependencies
for Akka. In this case we are only using the akka-actor library.

3. Next, we create the folder—src/main/scala in the firstAkkaApplication
project and within the same, we will create our package structure—akka.
first.app.mapreduce:

4. Once we have finished this, we can go ahead and write our Scala code in the
defined package structure.

Chapter 2

[47]

In case you are not using the SBT, you can also create a simple Scala project in
Eclipse and add the following JAR dependencies:

Dependent JARs Location
scala-library.jar <akka unzip path>akka-2.0.3\lib\

akka-actor-2.0.3.jar <akka unzip path>akka-2.0.3\lib\akka

Defining message classes
Once the bare project skeleton is set up, we will start with writing message classes.
We will define the classes in MapReduceApplication.scala, which is created in the
akka.first.app.mapreduce package as follows:

sealed trait MapReduceMessage
case class WordCount(word: String, count: Int) extends
MapReduceMessage
case class MapData(dataList: ArrayBuffer[WordCount]) extends
MapReduceMessage
case class ReduceData(reduceDataMap: Map[String, Int]) extends
MapReduceMessage
case class Result extends MapReduceMessage

A WordCount object holds the word along with the associated number of instances
occurring within the sentence. MapData is the message that is passed from the Map
actor to the Reduce actor. The message consists of a list of WordCount objects.

ReduceData is the message passed between the Reduce actor and the Aggregate
actor. The Reduce actor will reduce the message passed in MapData and pass the
results as ReduceData to the Aggregate actor.

Result is the message passed by the Master actor to the Aggregate actor
whenever the aggregated results need to be obtained. In this case, the class
has no instance variable.

We have also defined a sealed marker trait—MapReduceMessage, which is extended
by all the case classes.

Defining actor classes
Next, we will start with the definition of the actor classes. The actors are created in
the akka.first.app.mapreduce.actors package.

Starting with Akka

[48]

MapActor.scala
Let's start with the MapActor class, whose responsibility is to take in the English
sentence as a String object, identify the words in the sentence, and not count the
STOP words. Once finished, the Map actor will return the mapped data list back to
the Master actor:

class MapActor extends Actor {
 def receive: Receive = {
 case message: String =>
 reduceActor ! evaluateExpression(message)
 }
 def evaluateExpression(line: String): MapData = MapData {
 //logic to map the words in the sentences
 }
}

We create the MapActor class, which extends Actor. Actor, requiring you to
implement the receive() method call, where the messages passed on to the actor
are received. The receive() method is the message handler for the actor. The
following steps are needed to be performed:

1. We implement the receive() method calls, which intercepts and filters the
incoming messages based on the instance type.

2. For the MapActor class, we are interested in the String messages. We check
for the String messages, and if found we cast the object to the string and
pass the message to another private method—evaluateExpression().

3. evaluateExpression() takes in the string and performs the logic for the
string being mapped. The data is enclosed in the MapData object and is
passed back.

4. Once the sentence has been mapped into the MapData object, we need to pass
the MapData as a message to the Master actor. We use the implicit sender
actor to pass the result back.

Next, to evaluate the sentence and not count the STOP words, we will need the list of
STOP words. So we will define the STOP words' list, as something like the following
line of code:

val STOP_WORDS_LIST = List("a", "am", "an", "and", "are", "as", "at",
"be","do", "go", "if", "in", "is", "it", "of", "on", "the", "to")

Chapter 2

[49]

Next, we will define the logic in the evaluateExpression() method to complete the
logic as follows:

 def evaluateExpression(line: String): MapData = MapData {
 line.split("""\s+""").foldLeft(ArrayBuffer.empty[WordCount]) {
 (index, word) =>
 if(!STOP_WORDS_LIST.contains(word.toLowerCase))
 index += WordCount(word.toLowerCase, 1)
 else
 index
 }
 }

In the evaluateExpression() method, we use the split() method to break down
the string into individual words and return the same result as Array[String]. On
the array, we invoke the foldLeft() method with an empty map as the return type.
foldLeft() applies a binary operator to a start value and all elements of the array,
going left to right. Subsequently, we loop through the list and cross-check whether
the word is a STOP word or not. If not a STOP word, we add the word along with
the default instance count—1 into a map, which is added to the MapData message
and returned back.

The complete source code for the MapActor class looks like the following
code snippet:

package akka.first.app.mapreduce.actors

import akka.actor.Actor
import akka.actor.ActorRef
import akka.first.app.mapreduce.MapData
import akka.first.app.mapreduce.WordCount
import scala.collection.mutable.ArrayBuffer

class MapActor extends Actor {
 val STOP_WORDS_LIST = List("a", "am", "an", "and", "are", "as",
 "at", "be", "do", "go", "if", "in", "is", "it", "of", "on", "the",
 "to")
 val defaultCount: Int = 1
 def receive: Receive = {
 case message: String =>
 sender ! evaluateExpression(message)
 }
 def evaluateExpression(line: String): MapData = MapData {
 line.split("""\s+""").foldLeft(ArrayBuffer.empty[WordCount]) {
 (index, word) =>

Starting with Akka

[50]

 if(!STOP_WORDS_LIST.contains(word.toLowerCase))
 index += WordCount(word.toLowerCase, 1)
 else
 index
 }
 }
}

ReduceActor.scala
Master actor will send the MapData message to the Reduce actor. The Reduce actor
will go through the list of words and reduce it by looking for duplicate words, and
accordingly, increase the count for the number of instances of such words. The
reduced list is then sent to the Aggregate actor:

class ReduceActor extends Actor {

 def receive: Receive = {
 case MapData(dataList) =>
 sender ! reduce(dataList)
 }
def reduce(words: IndexedSeq[WordCount]): ReduceData = ReduceData {
 //Reduces the list for duplicate words in
 the mapped data list
 }
}

The ReduceActor class is very similar to the MapActor class. We extend the
ReduceActor class with Actor and implement the receive() message handler
method as follows:

 def receive: Receive = {
 case MapData(dataList) =>
 sender ! reduce(dataList)
 }

We filter the messages that belong to the MapData type and ignore the rest. When the
MapData message is received, we extract the data list from the message and pass the
same to the reduce() method. The reduce()method reduces this list and returns
back the MasterData message, which is then passed on to the Aggregate actor.

Chapter 2

[51]

The complete code for the ReduceActor class looks like the following code snippet:

package akka.first.app.mapreduce.actors
import scala.collection.immutable.Map

import akka.actor.Actor
import akka.first.app.mapreduce.MapData
import akka.first.app.mapreduce.ReduceData
import akka.first.app.mapreduce.WordCount

class ReduceActor extends Actor {
 def receive: Receive = {
 case MapData(dataList) =>
 sender ! reduce(dataList)
 }
 def reduce(words: IndexedSeq[WordCount]): ReduceData = ReduceData {
 words.foldLeft(Map.empty[String, Int]) { (index, words) =>
 if (index contains words.word)
 index + (words.word -> (index.get(words.word).get + 1))
 else
 index + (words.word -> 1)
 }
 }
}

AggregateActor.scala
Aggregate actor receives the reduced data list from the Master actor and aggregates
it into one big list. The Aggregate actor will maintain a state variable that will hold
the list of words and get updated on the receipt of the reduced data list message. In
addition, the Aggregate actor will also receive the Result message and reply with
the result of the state variable as a response to the message:

class AggregateActor extends Actor {
 val finalReducedMap = new HashMap[String, Int]
 def receive: Receive = {
 case ReduceData(reduceDataMap) =>
 aggregateInMemoryReduce(reduceDataMap)
 case Result =>
 sender ! finalReducedMap.toString()
 }
 def aggregateInMemoryReduce(reducedList: Map[String, Int]):
 Unit = {
 //add the received Map to the state variable finalReduceMap
 }
}

Starting with Akka

[52]

We define the AggregateActor class and extend Actor. In this Actor, we also define
a state variable that holds the final reduced map across multiple sentences:

 val finalReducedMap = new HashMap[String, Int]

In the receive() method, we intercept two kinds of messages as follows:

• ReduceData messages are received from the Master actor. These messages
are then sent to the private method—aggregateInMemoryReduce(),
where we add the data to the existing data set stored in the
finalReducedMap variable.

• A Result message is sent from the Master actor, and as a response to this
message, we return the results of the finalReducedMap variable as string.

The complete code for the AggregateActor class looks like the following
code snippet:

package akka.first.app.mapreduce.actors

import scala.collection.immutable.Map
import scala.collection.mutable.HashMap

import akka.actor.Actor
import akka.first.app.mapreduce.ReduceData
import akka.first.app.mapreduce.Result

class AggregateActor extends Actor {
 val finalReducedMap = new HashMap[String, Int]
 def receive: Receive = {
 case ReduceData(reduceDataMap) =>
 aggregateInMemoryReduce(reduceDataMap)
 case Result =>
 sender ! finalReducedMap.toString()
 }
 def aggregateInMemoryReduce(reducedList: Map[String, Int]): Unit = {
 for ((key,value) <- reducedList) {
 if (finalReducedMap contains key)
 finalReducedMap(key) = (value + finalReducedMap.get(key).get)
 else
 finalReducedMap += (key -> value)
 }
 }
}

Chapter 2

[53]

MasterActor.scala
Master actor is a Supervisor actor and responsible for the instantiation of the child
actors. Master actor is the gateway for all messages that are passed on to the other
actors, namely the Map actor and Aggregate actor.

Let's go ahead and create the MasterActor class as follows:

class MasterActor extends Actor {

 val mapActor
 val reduceActor
 val aggregateActor

 def receive: Receive = {
 case line: String => mapActor ! line
 case mapData: MapData => reduceActor ! mapData
 case reduceData: ReduceData =>
 aggregateActor ! reduceData
 case Result => aggregateActor forward Result
 }
}

The MasterActor class extends Actor and implements the receive() message
handler for the Master actor. The receive() method listens to the following
kinds of messages:

• String messages that need to be passed to the Map actor
• MapData objects received from the Map actor that are passed to the

Reduce actor
• ReduceData objects received from the Reduce actor that are passed to the

Aggregate actor
• Result messages that need to be forwarded to the Aggregate actor for

getting the result

The key here is the creation of the child actors—Map actor, Reduce actor, and
Aggregate actor, as follows:

 val mapActor
 val reduceActor
 val aggregateActor

We have defined state variables for the Master actor and the next step will be
instantiating these actors as follows:

val mapActor = context.actorOf(Props[MapActor].withRouter(
 RoundRobinRouter(nrOfInstances = 5)), name = "map")

Starting with Akka

[54]

Here we instantiate the Map actor, using the context.actorOf() method. This
method takes in Props with the class name of the actor that needs to be created.
In this case, we want to create the Map actor as a router actor. So, on the Prop we
invoke the withRouter() method, passing the RoundRobinRouter type and number
of instances. The router allows us to create a pool of similar actors (called routes),
enabling us to spread the load across multiple actors.

Next, we will create the Reduce actor as follows:

val reduceActor:ActorRef = context.actorOf(Props(new ReduceActor
(aggregateActor)),name="reduce")

We use the same method for creating the Aggregate actor, but without a router. We
skip the router because the Aggregate actor has state, and having multiple instances
of the same actor defeats the purpose:

 val aggregateActor = context.actorOf(Props[AggregateActor],
 name = "aggregate")

The complete code for the MasterActor class looks like the following code snippet:

package akka.first.app.mapreduce.actors

import akka.actor.Actor
import akka.actor.ActorRef
import akka.actor.Props
import akka.first.app.mapreduce._
import akka.routing.RoundRobinRouter

class MasterActor extends Actor {
 val mapActor = context.actorOf(Props[MapActor].withRouter(
 RoundRobinRouter(nrOfInstances = 5)), name = "map")
 val reduceActor = context.actorOf(Props[ReduceActor].withRouter(
 RoundRobinRouter(nrOfInstances = 5)), name = "reduce")
 val aggregateActor = context.actorOf(Props[AggregateActor],
 name = "aggregate")

 def receive: Receive = {
 case line: String =>
 mapActor ! line
 case mapData: MapData =>
 reduceActor ! mapData
 case reduceData: ReduceData =>
 aggregateActor ! reduceData
 case Result =>
 aggregateActor forward Result
 }
}

Chapter 2

[55]

This completes the definition of the actors. Next we create the runtime class that will
instantiate and invoke these actors.

Defining the execution class
This class will bring together all the pieces and provide us the executable to run and
test our program. We create the Scala class—MapReduceApplication.scala in the
akka.first.app.mapreduce package.

MapReduceApplication.scala
The MapReduceApplication.scala class can be defined as follows:

package akka.first.app.mapreduce

import scala.collection.immutable.Map
import scala.collection.mutable.ArrayBuffer

import akka.actor.actorRef2Scala
import akka.actor.ActorSystem
import akka.actor.Props
import akka.dispatch.Await
import akka.first.app.mapreduce.actors.MasterActor
import akka.pattern.ask
import akka.util.duration.intToDurationInt
import akka.util.Timeout

sealed trait MapReduceMessage
case class WordCount(word: String, count: Int) extends
MapReduceMessage
case class MapData(dataList: ArrayBuffer[WordCount]) extends
MapReduceMessage
case class ReduceData(reduceDataMap: Map[String, Int]) extends
MapReduceMessage
case class Result extends MapReduceMessage

object MapReduceApplication extends App {
 val _system = ActorSystem("MapReduceApp")
 val master = _system.actorOf(Props[MasterActor], name = "master")
 implicit val timeout = Timeout(5 seconds)

 master ! "The quick brown fox tried to jump over the lazy dog and
fell on the dog"
 master ! "Dog is man's best friend"
 master ! "Dog and Fox belong to the same family"

Starting with Akka

[56]

 Thread.sleep(500)

 val future = (master ? Result).mapTo[String]
 val result = Await.result(future, timeout.duration)
 println(result)
 _system.shutdown
}

MapReduceApplication can be seen as a series of steps, as follows:

1. First we go ahead and create ActorSystem—a container in which the actors
are instantiated. Using ActorSystem, we create the Master actor as follows:
 val _system = ActorSystem("MapReduceApp")
 val master = _system.actorOf(Props[MasterActor],
 name = "master")

2. Using the MasterActor reference, we pass sentence string messages to
the actor:
 master ! "The quick brown fox tried to jump over the lazy dog
and fell on the dog"
 master ! "Dog is man's best friend"
 master ! "Dog and Fox belong to the same family"

3. Next, we send the Result message to the Master actor to see the results
as follows:
 val future = (master ? new Result).mapTo[String]
 val result = Await.result(future, timeout.duration)
 println(result)

4. Lastly, we shut down the actor system as follows:
_system.shutdown

We have Thread.sleep() because there is no guarantee in which order the
messages are processed. The first Thread.sleep() method ensures that all the string
sentence messages are processed completely before we send the Result message.
The second Thread.sleep() method ensures that the shutdown message is not
processed before the Result message.

Chapter 2

[57]

With this, we have completed the application part. Let's compile and execute the
application to see the results.

For compiling the application, we go to the command prompt in the project folder
and run the sbt command. Once we get the sbt prompt, we can type the compile
command. Once the Scala application compiles, we can call the run command to
run MapReduceApplication.scala as a Scala application, as shown in the
following screenshot:

When we run the application, we will see the following in the console window:

Map(best -> 1, brown -> 1, jump -> 1, fell -> 1, fox -> 2, belong -> 1,
over -> 1, quick -> 1, family -> 1, dog -> 4, man's -> 1, same -> 1, lazy
-> 1, tried -> 1, friend -> 1)

Congratulations, you just wrote your first Word Count Map Reduce program for
Scala using the Akka Actor Model. You can enhance this program to read large text
files and pump in the data, and see how the application performs and scales up.

Starting with Akka

[58]

Summary
In this chapter, we saw and learned the following:

• How to set up the development environment for Java/Scala
• How to write and create actors—state and behavior
• How to pass the messages across actors
• How to create and execute ActorSystem and run the actors within

ActorSystem

• How to model and create a Word Count Map Reduce application using the
Akka actors

This provided a summary of the Actor Model and some of the runtime constructs.
In the coming chapter, we will discuss actors further, and see the features and
functionality provided by them.

Actors
In this chapter, we will see more on the actors. We will cover the following:

• How to create actors
• How to send/receive messages
• How to reply to messages
• How to forward messages
• How to stop actors

This will provide an understanding of the core building blocks. Actors provide the
higher level of abstraction that allows us to build highly scalable and concurrent
applications. Actors are the entities that define the Actor Model.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Actors
Actors are the constructs that provide the basis for the Akka application. Actors
provide the abstraction for transparent distribution and the basis for a truly scalable
and fault-tolerant application. Actors provide the following:

• Simple and high-level abstracted toolkit for concurrency and parallelism
• Asynchronous, non-blocking, event-driven programming model

(using messages)
• Lightweight event-driven processes

Actors

[60]

Actors are objects that encapsulate state and behavior. An actor can change another
actor's state only by sending it a message. From the Actor Model perspective, the
actors are the computational units that react to the messages sent to them, and can
reply or send messages to other actors. Actors communicate with other actors using
the address of the target actor's mailbox. Communication between actors is completely
asynchronous and non-blocking; actors only react to the messages being sent to them.

An actor's lifecycle has multiple stages. When the actor is created, it moves into the
start stage where it picks up the messages from its mailbox and starts processing
them. The messages are processed one at a time in the order they are received.
When the actor gets a signal to shut down, it stops processing the messages and
terminates itself.

An actor's lifecycle broadly consists of three phases as follows:

• Actor is initialized and started
• Actor receives and processes messages by executing a specific behavior
• Actor stops itself when it receives a termination message

Additionally, an Akka actor has additional, optional hooks that can be used to
manage the state where it experiences a lifecycle change. The additional hooks
are as follows:

• preStart() and postStop() can be implemented to initialize/clean any
resources used by the actor to process the messages

• preRestart() and postRestart() allow the actor to manage the state in
case an exception has been raised and Supervisor actor restarts the actor

Next, we will cover how to create actors, how they handle messages, and how to stop
actors. So, we will cover the three important phases of an actor's lifecycle, as shown
in the following diagram:

Chapter 3

[61]

Defining an actor
To define an actor, the class needs to extend the actor and implement the required
abstract method for handling messages.

Java:

public class MyActor extends UntypedActor {
 public void onReceive(Object message) throws Exception {
 }
}

Scala:

class MyActor extends Actor {
 def receive = {
 }
}

An Actor class can also have non-default constructors. So any data that needs to be
passed at the time of the object creation can be passed to the Actor object. In Scala,
the receive block is actually a partial function, which allows the usage of pattern
matching syntax.

Creating actors
Once an actor is defined, the Actor instance needs to be created and started. All
actors are created in the context of an actor system or another actor. As part of the
actor creation itself, the actor gets started. Before it starts accepting and processing
messages, the actor can implement a method called preStart, which can handle any
initialization required by the actor:

Actors

[62]

To create an actor, Akka provides a construct called Props. Props is a configuration
class, which takes in the actor along with the various configurations that need to be
applied to it.

Actor with default constructor
Let's first take an example of creating an Actor object having a default constructor.

Java:

ActorSystem _system = ActorSystem.create("MyActorSystem");
ActorRef myActor = _system.actorOf(new Props(MyActor.class),
"myActor");

Scala:

val system = ActorSystem("MyActorSystem")
val myActor = system.actorOf(Props[MyActor], name = "myActor")

To create an Actor, we created the ActorSystem class and invoked the actorOf()
method on the same. The actorOf() method accepted two arguments—first was the
Props object and second was the actor's name passed as a String object. The Props
object accepted the Actor class object, which needed to instantiated and started. The
actor is started after the object has been instantiated. In the preceding example, we
have created an actor using a default constructor.

The instantiated actor is held using ActorRef. ActorRef provides an immutable and
serial able handle to the underlying actor. In essence, ActorRef encapsulates the
actor and only supports the passing of messages to the actor. Each actor can access
internally its local instance reference through the self field. The ActorRef classes
can be shared among other actors by passing them as messages.

Actor with non-default constructor
Next, we will create an actor with a non-default constructor. Let's say we have an
actor class that looks like the code snippets given next.

Java:

public class MyActor extends UntypedActor {
 public MyActor(int initialise){
 }
 public void onReceive(Object message) throws Exception {
 }
}

Chapter 3

[63]

Scala:

class MyActor(initialise:Int) extends Actor {
 def receive = {
 }
}

Now, to create an actor with the non-default constructor, the syntax is given next.

Java:

ActorSystem _system = ActorSystem.create("MyActorSystem");
ActorRef myActor = _system.actorOf(
new Props(new UntypedActorFactory() {
 public UntypedActor create() {
 return new MyActor(10);
 }
}),
"myActor");

Scala:

val system = ActorSystem("MyActorSystem")
val myActor = system.actorOf(Props(new MyActor(10)), name = "myActor")

In case of Java, we used the UntypedActorFactory function to create an instance of
the actor with the non-default constructor and pass it on to the Props object.

In case of Scala, we created new MyActor(10) using the Scala call-by-name block.
The call-by-name block passes a code within the block to the callee. Each time the
callee accesses the parameter, the code block is executed and the value is calculated.

In all of the preceding cases, we created the actor as a top-level Actor object
managed directly by ActorSystem.

Creating an actor within an actor hierarchy
Now, Akka follows the premise of an actor hierarchy where we have specialized
actors that are adept in handling or performing an activity, and, we have Supervisor
actors that coordinate and manage the lifecycle of the specialized actors. We will
cover Supervisor actors in more detail in Chapter 6, Supervision and Monitoring. In
case we want to create actors that are part of the actor hierarchy, then we use the
following syntax to create actors.

Actors

[64]

Java:

public class SupervisorActor extends UntypedActor {
 ActorRef myWorkerActor = getContext().actorOf(new
Props(MyWorkerActor.class), "myWorkerActor");
}

Scala:

class SupervisorActor extends Actor {
val myWorkerActor = context.actorOf(Props[MyWorkerActor],
"myWorkerActor")
}

In this case, within the Actor object, we created the child using the parent context.

As part of starting the actor, the preStart() method is invoked before the actor
can start processing the messages. Any initializations required for functioning of
the actor can be handled here. For example, if the actor needs to get data from a
database, then the connection object can be initialized and opened here.

Java:

@Override
public void preStart() {
 //Initialise the resources to be used by actor e.g. db
 //connection opening
}

Scala:

override def preStart() = {
//Initialise the resources to be used by actor e.g. db
//connection opening
}

Messaging model
The basic premise of an Actor Model is communication via messages. Actor state
responds or reacts based on the message that is passed on to the actor. All messages
passed should be immutable. In case you pass mutable messages to the actors, the
application might behave in weird ways because of the shared mutable message.

Chapter 3

[65]

Sending messages
Once the actor reference is available, messages can be passed to an actor in two
modes, as follows:

• Fire and forget: This is a one-way message model, where the producer
of the message expects no reply from the consumer. The message is sent
asynchronously and the method returns immediately. Akka actors make
use of the tell() method to indicate the fire and forget mode of messaging.

• Send and receive: In this mode, the producer of the message expects a
reply from the consumer and will wait for that reply. In this mode also, the
message is sent asynchronously and future is returned, which represents a
potential reply. In the case of send and receive message mode, actors use the
ask() method for sending a message and wait on future for the reply.

future is a data structure used to retrieve the result of
some concurrent operation.

Remember, in the preceding diagram the caller may or may not be an actor.

Actors

[66]

Fire and forget messages – tell()
Sending a message using the tell() method is the easiest way. Get hold of the actor
reference and invoke the tell() method by passing the message object. The tell()
method returns immediately and provides the best concurrency and scalability
performance, as there is no dependency or waiting on other threads.

Java:

actor.tell(msg);

Scala:

actor ! msg
//or
actor.tell(msg)
//or
actor tell msg

In Scala, the tell() method can be invoked using the ! notation.

The tell() method accepts two arguments. First is the message object and
second is the sender actor's reference. The target actor can then use the passed-
by-actor reference to reply back. By default, the caller's actor reference is passed
implicitly if nothing is specified. But if the caller is not an actor or if the actor that
invoked no longer exists, then the reply is sent to the dead letter actor. In Akka,
DeadLetterActorRef is the default implementation of the dead letters' service,
where all messages are rerouted whose callers are shut down or nonexistent.

You can also pass the reference of another actor who might be interested in the reply.

Java:

//explicit passing of sender actor reference
actor.tell(msg, getSelf());
//explicit passing of another actor reference
actor.tell(msg, anotherActorRef);

Scala:

//implicit passing of sender actor reference
actor ! msg
//explicit passing of another actor reference
actor.tell(msg, anotherActorRef)

Chapter 3

[67]

Send and receive messages – ask()
The mode of sending a message and receiving a reply is a two-step process. In
order to avoid blocking calls, the future constructs are used along with actors.
The future construct is used to retrieve the result of a concurrent operation. The
operation is invoked by the actor and the result can be accessed synchronously or
asynchronously. As both actors and future constructs are involved in sending and
receiving messages, the ask() method is implemented as a use pattern, where the
actor along with the message and time to wait for a reply is passed. Pattern.ask()
returns a Future object on which we await the results.

Java:

//Key Imports
import static akka.pattern.Patterns.ask;
import static akka.pattern.Patterns.pipe;
import java.util.concurrent.TimeUnit;
import akka.dispatch.Future;
import akka.dispatch.Futures;
import akka.dispatch.Mapper;
import akka.util.Duration;
import akka.util.Timeout;

public class ProcessOrderActor extends UntypedActor {
 final Timeout t = new Timeout(Duration.create(5,
 TimeUnit.SECONDS));
 ActorRef orderActor = getContext().actorOf(
 new Props(OrderActor.class));
 ActorRef addressActor = getContext().actorOf(
 new Props(AddressActor.class));
 ActorRef orderAggregateActor = getContext().actorOf(
 new Props(OrderAggregateActor.class));

 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof Integer) {
 Integer userId = (Integer) message;
 final ArrayList<Future<Object>> futures =
 new ArrayList<Future<Object>>();
 //make concurrent calls to actors
 futures.add(ask(orderActor, userId, t));
 futures.add(ask(addressActor, userId, t));

 //set the sequence in which the reply are expected
 final Future<Iterable<Object>> aggregate =
 Futures.sequence(futures,
 getContext().system().dispatcher());

Actors

[68]

 //once the replies comes back, we loop through the
 // Iterable to get the replies in same order
 final Future<OrderHistory> aggResult =
 aggregate.map(new Mapper<Iterable<Object>,
 OrderHistory>() {
 public OrderHistory apply(Iterable<Object> coll) {
 final Iterator<Object> it =
 coll.iterator();
 final Order order = (Order) it.next();
 final Address address = (Address)
 it.next();
 return new OrderHistory(order,
 address);
 }
 });
 //aggregated result is piped to another actor
 pipe(aggResult).to(orderAggregateActor);
 }
 }
}

Scala:

import akka.pattern.ask
import akka.pattern.pipe
import akka.util.Timeout
import akka.util.duration._
import akka.dispatch.Future

class ProcessOrderActor extends Actor {
 implicit val timeout = Timeout(5 seconds)
 val orderActor = context.actorOf(Props[OrderActor])
 val addressActor = context.actorOf(Props[AddressActor])
 val orderAggregateActor = context.actorOf(
 Props[OrderAggregateActor])
 def receive = {
 case userId: Integer =>
 val aggResult: Future[OrderHistory] =
 for {
 // call pattern directly
 order <- ask(orderActor, userId).mapTo[Order]
 // call by implicit conversion
 address <- addressActor ask userId mapTo
 manifest[Address]
 } yield OrderHistory(order, address)
 aggResult pipeTo orderAggregateActor
 }
}

Chapter 3

[69]

In the preceding example, we saw the use case where a message comes in with
user ID and we need to get the user's order and address details. We make use of
the ask() pattern to invoke the actors concurrently, and their future results are
composed into a new future construct for comprehension. On completion of the
future, we pipe the aggregated results (OrderHistory) into the third actor. All the
preceding calls are non-blocking and asynchronous.

Fire and forget will always give a very good performance,
as there is no waiting for a reply.

Receiving messages
An actor needs a mechanism for receiving messages being sent by other threads
or actors. All actors extend the UntypedActor class and implement the method
as follows:

void onReceive(Object message)

This method is the entry point for all the messages that are received by the actor.
Let's see an example of the actor and the onReceive() method implementation.

Java:

public class DemoActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(
 getContext().system(), this);
 public void onReceive(Object message) throws Exception {
 if (message instanceof String)
 log.info("Message Received by Actor ->{}", message);
 else
 unhandled(message);
 }
}

Scala:

class DemoActor extends Actor with ActorLogging {
 def receive = {
 case message:String =>
 log.info("Message Received by Actor -> {}",message)
 case _ => log.info("unknown message")
 }
}

The messages are passed as a base object, which is mapped based on the type of
instance, and appropriate actions are tagged.

Actors

[70]

Replying to messages
One of the key aspects of communicating via messages is the ability to reply back to
the actors. When an actor receives a message and a reply is expected back, the actor
can make use of the sender available within the actor to reply back.

Java:

public void onReceive(Object request) {
 if (message instanceof String)
 getSender().tell(message + "world");
 }
}

Scala:

 def receive = {
 case message:String =>
 sender ! (message + "world")
 }

In case, no sender is specified or available, the reply is sent back to the
DeadLetterActorRef. Non-availability of a sender can be because of various
reasons, such as the sender dies before the message could be sent back, or the
caller is a non-actor.

Forwarding messages
At times, the actor might be acting as a forwarding agent. When writing an actor that
provides functionality such as routing or load balancing or replication, the incoming
messages will get forwarded to the target actors. In this case, it is very important that
the original sender reference is maintained and passed on to the target actors. This
makes sure that the replies go to the original sender and not the mediator actor.

Java:

actor.forward(message, getContext());

Scala:

actor.forward(message)

In case of Java, we need to pass the context variable too.

Chapter 3

[71]

Stopping actors
Once the actors have processed the messages, it may be imperative to stop them.
Stopping of actors may be required because we have created a large number of actors
and now the load has come down, so we can stop some to conserve resources. In this
section, we will see the various options available to stop actors.

Actor termination involves multiple steps. Once the STOP signal is received by the
actor, the following actions take place:

1. Actor stops processing the mailbox messages.
2. Actor sends the STOP signal to all the children.
3. Actor waits for termination message from all its children.
4. Next, Actor starts the self-termination process that involves the following:

 ° Invoking the postStop() method
 ° Dumping the attached mailbox
 ° Publishing the terminated message on DeathWatch
 ° Informing the supervisor about self-termination

Each actor at any level will follow the same set of steps when it receives the STOP
signal. The stop action is performed asynchronously. In case of an actor system
shutting down, the preceding set of activities is performed for the top-level actors
initiated as part of the actor system.

Actors

[72]

Actors are stopped in the following ways:

• When the actor system calls the shutdown() method, this technique shuts
down all the actors and the actor system.

• By sending a PoisonPill message to an actor—PoisonPill is like any
message that goes and sits in the mailbox of the actor. A PoisonPill
message is processed by initiating the shutdown of the actor.

• By calling context.stop(self) for stopping itself and calling context.
stop(child) to stop the child actors.

Java:

//first option of shutting down the actors by shutting down
//the ActorSystem
system.shutdown();
//second option of shutting down the actor by sending a
//poisonPill message
actor.tell(poisonPill());
//third option of shutting down the actor
getContext().stop(getSelf());
//or
getContext().stop(childActorRef);

Scala:

//first option of shutting down the actors by shutting down
//the ActorSystem
system.shutdown()
//second option of shutting down the actor by sending a
//poisonPill message
actor ! PoisonPill
//third option of shutting down the actor
context.stop(self)
//or
context.stop(childActorRef)

As part of the actor shutdown, the postStop() method is invoked, which can be
used to free up any resources held by the actor. Other actors in a different supervisor
hierarchy can also be informed about actor shutdown.

Java:

@Override
public void postStop() {
// free up the resources held by actor e.g. db connection
//closing
}

Chapter 3

[73]

Scala:

override def postStop() = {
// free up the resources held by actor e.g. db connection
//closing
}

Killing actors
An actor can be killed when a kill() message is sent to it. Unlike PoisonPill,
which is an asynchronous way to shut down the actor, kill() is a synchronous
way. The killed actor sends ActorKilledException to its parent.

Java:

actor.tell(kill());

Scala:

actor ! Kill

Actor lifecycle monitoring
Akka provides a mechanism to monitor the lifecycle of an actor. An actor is
automatically the supervisor for all its children and manages their error conditions.
Monitoring provides the ability to monitor the health of any actor other than its
own children so that you can manage the impact on your own processing logic.
Monitoring is observation of error, while supervision is management of error.

For example, if the Monitor actor wants to be notified of another actor's (worker)
termination, the Monitor actor will watch for the reception of the terminated message
dispatched by the worker actor upon termination. When the message is received, the
Monitor actor can take appropriate action (including trying to instantiate and create
another instance of the worker actor):

We will cover lifecycle monitoring in more detail in Chapter 6, Supervision
and Monitoring.

Actors

[74]

HotSwap
Another key functionality of Akka is the ability to HotSwap an actor's message
loop functionality at runtime. The functionality is provided via the getContext().
become() and getContext().unbecome() methods. The HotSwapped code is kept
in a stack, which can be pushed and popped when the become() or unbecome()
methods are invoked.

Let's see a simple Ping Pong example, where we develop a logic to handle the
messages swapped at runtime.

Java:

public class PingPongActor extends UntypedActor {
 static String PING = "PING";
 static String PONG = "PONG";
 int count = 0;

 public void onReceive(Object message) throws Exception {
 if (message instanceof String) {
 if (((String) message).matches(PING)) {
 System.out.println("PING");
 count += 1;
 Thread.sleep(100);
 getSelf().tell(PONG);
 getContext().become(new Procedure<Object>() {
 public void apply(Object message) {
 if (message instanceof String) {
 if (((String) message).
 matches(PONG)) {
 System.out.println("PONG");
 count += 1;
 try { Thread.sleep(100); }
 catch
(Exception e) { }
 getSelf().tell(PING);
 getContext().unbecome();
 }
 }
 }
 });
 if (count > 10)
 getContext().stop(getSelf());
 }
 }
 }
}

Chapter 3

[75]

Scala:

case class PING
case class PONG

class PingPongActor extends Actor {
 import context._
 var count = 0
 def receive: Receive = {
 case PING =>
 println("PING")
 count = count + 1
 Thread.sleep(100)
 self ! PONG
 become {
 case PONG =>
 println("PONG")
 count = count + 1
 Thread.sleep(100)
 self ! PING
 unbecome()
 }
 if(count > 10) context.stop(self)
 }
}

We defined the PingPongActor class with two message types—PING and PONG. In
the message loop, we checked for PING messages. When a PING message is received,
the following actions are performed:

1. Print a message.
2. Increment the counter.
3. Send a PONG message to self.
4. Call the become() method where we swap the message loop for handling the

PONG message.

When the PONG message comes, similar steps are performed, but in the end, the
unbecome() method is invoked, which restores the original message handling loop
for PING messages.

In case of Java, we use akka.japi.Procedure to write the message receive function,
which makes the code look a little complex. All this complexity will vanish with the
Lambda feature of Java 8.

www.allitebooks.com

http://www.allitebooks.org

Actors

[76]

Next, we will invoke the actor and see the output.

• Java:
ActorSystem _system = ActorSystem.create("BecomeUnbecome");
ActorRef pingPongActor = _system
 .actorOf(new Props(PingPongActor.class));
pingPongActor.tell(PingPongActor.PING);
Thread.sleep(2000);
_system.shutdown();

• Scala:
val _system = ActorSystem("BecomeUnbecome")
val pingPongActor = _system.actorOf(Props[PingPongActor])
pingPongActor ! PING
Thread.sleep(2000)
_system.shutdown

The output of the program is simple as follows:

PING

PONG

PING

PONG

PING

Summary
This completes the overview of actors. We saw the lifecycle of the actor, how to
create actors, how to pass and process messages, and how to stop or kill the actor.
In addition, we saw the HotSwap feature of Actors, which allows us to swap the
message loop of the actor at runtime and replace with another procedure.

In the next chapter, we will cover typed actors, which are a special case of actors.
Typed actors are especially useful when you have an existing POJO-based
application, which you want to migrate to the Akka world.

Typed Actors
In this chapter, we will cover typed actors, how to define them, how to create
instances of them, how to send/receive messages, how to reply to messages, how to
forward messages, and how to stop actors. We will also cover the use of dispatchers
and routers with respect to typed actors.

In the previous chapter, we saw how the actors are defined and created, and how
they process the messages. In the case of untyped actors, any message can be passed,
meaning the service-level contracts are not strictly defined. So, if a message is passed
to an untyped actor, and if the actor does not have any handling mechanism, then
the message is relegated as an unhandled message.

In order to define strict contracts for actors that can respond to only the predefined
set of messages, the Typed Actor Model is used. In this case, every message need
not be encapsulated as one object; typed actors allow us to define separate methods
that accept multiple inputs as defined by the contract. In Java parlance, typed actors
provide the Java interface in the object-oriented world.

Untyped actors respond to messages sent, while typed
actors respond to method calls.

Typed Actors

[78]

What are typed actors?
A typed actor has two parts—a publicly defined interface, and secondly, an
implementation of the interface. Calls to the publicly defined interface are delegated
asynchronously to the private instance of the implementation. In effect, the public
interface provides the service contract that bridges the Actor Model to the
object-oriented paradigm.

The explicit public interface makes the actors more clear and concise, lending an
object-oriented design paradigm to the Actor Model, as opposed to an event-driven
design paradigm. So, if you have existing Plain Old Java Object (POJO) code or are
writing an object-oriented application, typed actors allow you to integrate the Actor
Model within the existing object-oriented paradigm.

For converting the POJO bean objects into asynchronous actors that process method
calls, or writing strict contract-based, object-oriented applications, typed actors can
be used. Typed actors are on the cusp where the Actor Model meets the POJO world.

In Akka, typed actors have been implemented using the Active Object pattern. We
will cover the basics of the Active Object pattern which will provide us with the
understanding of how the typed actors are implemented.

The Active Object Design pattern decouples method
execution from method invocation, which reside in
their own threads of control. The goal is to introduce
concurrency and fault tolerance, by using asynchronous
method invocation and a scheduler for handling requests.

The key objective of the Active Object pattern is to decouple the method execution
from the method invocation. We have to move the method execution and invocation
to separate threads. Having invocation and execution in separate threads allows us
to provide concurrent and synchronized access to the object state.

Chapter 4

[79]

How do we decouple?

To decouple the method invocation and execution, the Active Object pattern uses the
proxy pattern (interface) to separate the interface and implementation of the object.
The idea is to run the proxy and the implementation in separate threads, as shown in
the following diagram:

Let's go ahead and see how the Active Object pattern decouples the method
invocation from method execution as follows:

1. At runtime, the client calls the proxy object and invokes the method.
2. The proxy in turn passes the method calls as method requests to a

scheduler or invocation handler that intercepts the call.
3. Scheduler or invocation handler enqueues the method requests on a queue.
4. The scheduler continuously monitors the queue and determines which

method request(s) have become runnable, that is when their synchronization
constraints are met. At this point, the scheduler or invocation handler
dequeues the requests from the queue.

5. Scheduler or invocation handler dispatches the requests to the
implementation object.

6. The implementation object, running on the same thread as the scheduler,
processes the request and returns any value to the client as Future.

Typed Actors

[80]

In Akka, the proxy pattern is implemented using the JDK proxies, which allow us
to use the class interface to be specified as a proxy at runtime. Method invocations
through the interface of the class are dispatched to another object implementing
that interface.

Each proxy instance has an associated invocation handler. Method invocation on the
proxy instance is dispatched to the invoke method of the instance's invocation handler.
The invoke method takes in the proxy instance, a java.lang.reflect.Method object
identifying the method invoked, and lastly an array of the Object type containing
the arguments.

You can read more about implementation of dynamic proxy classes in JDK at http://
docs.oracle.com/javase/6/docs/technotes/guides/reflection/proxy.html

Typed actors are implemented as an extension in Akka.

Defining an actor
To define a typed actor, two things are required—a public interface, and secondly,
an implementation of the interface. Let's create a simple calculator interface that does
some simple tasks such as addition, subtraction, and counter updating.

Java:

public interface CalculatorInt {

 public Future<Integer> add(Integer first, Integer second);

 public Future<Integer> subtract(Integer first,
 Integer second);

 public void incrementCount();

 public Option<Integer> incrementAndReturn();

}

Scala:

trait CalculatorInt {

 def add(first: Int, second: Int): Future[Int]

 def subtract(first: Int, second: Int): Future[Int]

 def incrementCount(): Unit

 def incrementAndReturn(): Option[Int]
}

Chapter 4

[81]

An important thing to note here is the method return types as follows:

• Methods with the void return type are dispatched in a fire and forget
manner similar to tell() for untyped actors.

• Methods with the Future return type are dispatched in a request-reply
manner similar to the ask() method for untyped actors. There calls are
non-blocking.

• Methods with the Option return type are also dispatched in a request-reply
manner, but these calls are blocking. The calling thread will wait for an
answer or the call will return "None" in case of timeout where the answer
is not received within the defined time period (default timeout period
is 5 seconds).

• Methods with any other return type make use of the request-reply
dispatcher. In case of timeout, the java.util.concurrent.
TimeoutException is thrown.

Next, let's go ahead and implement the interface.

Java:

public class Calculator implements CalculatorInt {
 Integer counter = 0;

 //Non-blocking request response
 public Future<Integer> add(Integer first, Integer second) {
 return Futures.successful(first + second,
 TypedActor.dispatcher());
 }
 //Non-blocking request response
 public Future<Integer> subtract(Integer first,
 Integer second) {
 return Futures.successful(first - second,
 TypedActor.dispatcher());
 }
 //fire and forget
 public void incrementCount() {
 counter++;
 }
 //Blocking request response
 public Option<Integer> incrementAndReturn() {
 return Option.some(++counter);
 }
}

Typed Actors

[82]

Scala:

class Calculator extends CalculatorInt {

 var counter: Int = 0

 import TypedActor.dispatcher

 def add(first: Int, second: Int): Future[Int] =
 Promise successful first + second

 def subtract(first: Int, second: Int): Future[Int] =
 Promise successful first - second

 def incrementCount(): Unit = counter += 1

 def incrementAndReturn(): Option[Int] = {
 counter += 1
 Some(counter)
 }
}

The Calculator class implements the interface and provides the concrete
implementation of the methods defined in the interface. The method based on the
return type makes use of the explicit Future or Option calls to return the appropriate
type back to the calling thread. Here Future is akka.dispatch.Future<?> and
Option is akka.japi.Option<?>. In Scala, you can also make use of scala.Option.

In addition, we make use of Futures.successful or Promise successful,
which creates an already completed promise with the specified result. Futures.
successful takes in a strict value and blocks till the call is finished. However, the
call to the TypedActor method is asynchronous.

With this, we saw how to define a typed actor having a public interface and
corresponding implementation class.

Although typed actors can be extended to work and behave like normal actors,
such behavior is not inherent in them. Actors are entities that change their state by
processing the incoming messages and generating other messages in response. Typed
actors are not modeled on the same premise. Use typed actors sparingly and avoid
blocking behavior by writing methods that either return Unit or Future.

Creating actors
Next we will go ahead and try creating the TypedActor objects within the
ActorSystem context.

Chapter 4

[83]

An actor with a default constructor
When the typed actor implementation has a default constructor, it is constructed
using the following syntax.

Java:

ActorSystem _system = ActorSytem.create("TypedActorsExample");
CalculatorInt calculator = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class, Calculator.class));

Scala:

 val _system = ActorSystem("TypedActorsExample")
 val calculator1: CalculatorInt =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]())

The typed actor has been implemented as an Akka extension. So to get hold of the
extension, the following call gets the extension object—TypedActor.get(_system).

Once we get the TypedActor extension handle, we invoke the typedActorOf() call
by passing the TypedProps parameter. The TypedProps class takes in the interface
and the implementation class name. The typedActorOf() method call returns the
instance of the dynamic proxy object for the Calculator class.

An actor with a non-default constructor
In case we have typed actor implementation with a non-default constructor, it is
constructed using the following syntax.

Java:

ActorSystem _system = ActorSytem.create("TypedActorsExample");

CalculatorInt calculator = TypedActor.get(_system)
.typedActorOf(new TypedProps<Calculator>(CalculatorInt.class,
new Creator< Calculator >() {
 public Calculator create() {
 return new Calculator ("foo");
 }
 }
));

Typed Actors

[84]

Scala:

 val _system = ActorSystem("TypedActorsExample")

 val calculator1: CalculatorInt =
 TypedActor(_system).typedActorOf(
 TypedProps(classOf[CalculatorInt],
 new Calculator("foo")))

In this case, we use the Creator() method to create the object of the implementation
class by calling the non-default constructor and passing on to the TypedProps method.

Messaging model
The basic premise of the Typed Actor Model is communication via method calls. The
parameter values are the messages and these need to be immutable. The actor's state
responds or reacts based on the method that is invoked onto it.

Sending messages
Once the actor reference is available, messages can be passed to an actor in two
modes, as follows:

• Fire and forget: This is a one-way method call model, where the caller of the
method does not expect any reply. All methods with return types void or
Unit belong to this category.

• Send and receive: In this mode, the caller of the method expects a reply
from the implementation class and will wait for that reply. In this mode,
the method may be invoked asynchronously and a Future is returned
representing a potential reply. In the case of send and receive method calls
with blocking mode, caller threads wait for the response.

Chapter 4

[85]

Fire and forget messages
To invoke the fire and forget messages, get the dynamic proxy object and invoke
the call.

Java:

CalculatorInt calculator = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class,Calculator.class));

calculator.incrementCount();

Scala:

val calculator: CalculatorInt =
TypedActor(_system).typedActorOf(TypedProps[Calculator]())

calculator.incrementCount()

Invoking the method here is as simple as invoking the method on the
proxy interface.

Send and receive messages
To invoke the send and receive messages in the blocking or non-blocking mode, once
again get the dynamic proxy object and invoke the respective call.

Java:

Timeout timeout = new Timeout(Duration.parse("5 seconds"));

CalculatorInt calculator = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class, Calculator.class));

// Invoke the method and wait for result
Future<Integer> future = calculator.add(Integer.valueOf(14),
 Integer.valueOf(6));
Integer result = Await.result(future, timeout.duration());

Scala:

val calculator: CalculatorInt =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]())
// Invoke the method and wait for result
val future = calculator.add(14,6);
val result = Await.result(future, 5 second);

Typed Actors

[86]

In the preceding example, we invoked the method that returns a Future object.
Subsequently, we wait for the reply from the Future object.

For the blocking method calls, the calls to the methods are in a straightforward
manner.

Java:

CalculatorInt calculator = TypedActor.get(_system)
.typedActorOf(new TypedProps<Calculator>(
CalculatorInt.class, Calculator.class));

//Method invocation in a blocking way
Option<Integer> counterResult = calculator.incrementAndReturn();

Scala:

val calculator: CalculatorInt =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]())

//Method invocation in a blocking way
val result = calculator.incrementAndReturn()

Stopping actors
Typed actors can be stopped via calling the Stop or PoisonPill method on the
TypedActor extension and passing the reference of the dynamic proxy instance.

Java:

//To shut down the typed actor, call the stop method on the //
TypedActor extension and providing the proxy instance
TypedActor.get(system).stop(calculator);

//Other way to stop the actor is invoke the Poisonpill method //on the
TypedActor extension and passing the proxy instance
TypedActor.get(system).poisonPill(calculator);

Scala:

//To shut down the typed actor, call the stop method on the //
TypedActor extension and providing the proxy instance
TypedActor(system).stop(calculator)

//Other way to stop the actor is invoke the Poisonpill method //on the
TypedActor extension and passing the proxy instance
TypedActor(system).poisonPill(calculator)

Chapter 4

[87]

Actor lifecycle monitoring
We saw the typed actor being defined and created, methods getting invoked,
and how to stop the actors. In the case of untyped actors we saw support for the
preStart() and postStop() methods where any resource initialization and
subsequent cleaning could be handled.

So, in the case of typed actors, additional hooks can be implemented by making
the implementation class implement additional interfaces. These interfaces can be
overridden to initialize resources on actor start and clean up resources on actor stop.

Lifecycle callbacks
Typed actors can implement the TypedActor.PreStart and TypedActor.PostStop
interfaces to add the additional hooks into the code.

Java:

public class Calculator implementsCalculatorInt, PreStart, PostStop {

 LoggingAdapter log = Logging.getLogger(
 TypedActor.context().system(), this);
 //Allows to tap into the Actor PreStart hook
 public void preStart() {
 log.info("Actor Started !");
 }
 //Allows to tap into the Actor PostStop hook
 public void postStop() {
 log.info("Actor Stopped !");
 }
}

Scala:

class Calculator extends CalculatorInt with PreStart
 with PostStop {
 import TypedActor.context
 val log = Logging(context.system,
 TypedActor.self.getClass())
 def preStart(): Unit = {
 log.info ("Actor Started")
 }

 def postStop(): Unit = {
 log.info ("Actor Stopped")
 }
}

Typed Actors

[88]

By implementing the TypedActor.PreStart and TypedActor.PostStop interfaces,
we can add the required functionality before the actor starts responding to the
method calls:

Similarly, we can also implement the TypedActor.PreRestart and TypedActor.
PostRestart interfaces to add functionality on actor restart as part of the supervision.

Now, we have added hooks to manage the typed actor's lifecycle, but how do we
extend the typed actor for receiving messages similar to actors or how are the typed
actors managed in case of a fault or an exception. For this, the typed actor provides
additional interfaces that can be implemented to add the requisite functionality
to the actor.

Receiving messages
Typed actors can implement the akka.actor.TypedActor.Receiver interface in
order to process messages coming to them. Now, the typed actor can handle the
arbitrary messages in addition to the method calls. Adding this interface is useful
when the typed actor is managing standard child actors and it wants to be notified
of their termination (DeathWatch).

By implementing this interface, typed actors can receive any arbitrary message, like
the standard actors.

Java:

public class Calculator implements Receiver, CalculatorInt {
 LoggingAdapter log = Logging.getLogger(
 TypedActor.context().system(), this);
 public void onReceive(Object msg, ActorRef actor) {
 log.info("Received Message -> {}", msg);
 }
}

Chapter 4

[89]

Scala:

class Calculator extends CalculatorInt {
 import TypedActor.context
 val log = Logging(context.system,
 TypedActor.self.getClass())
 def onReceive(message: Any, sender: ActorRef): Unit = {
 log.info("Message received->{}", message)
 }
}

In case of Java, the implementation class needs to implement the interface and
the method to be able to receive any arbitrary messages. For Scala, the existing
trait—CalculatorInt extends the Receiver trait, which is subsequently implemented
in the Calculator class. This allows the typed actor to handle messages:

To pass a message to the typed actor, we need to get hold of the ActorRef associated
with the dynamic proxy interface. We can get access to the ActorRef with the
following code snippet.

Java:

ActorSystem _system = ActorSystem.create("TypedActorsExample",
 ConfigFactory.load().getConfig("TypedActorExample"));

CalculatorInt calculator = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class, Calculator.class));
//Get access to the ActorRef
ActorRef calActor = TypedActor.get(_system)
 .getActorRefFor(calculator);
//pass a message
calActor.tell("Hi there");

Typed Actors

[90]

Scala:

val _system = ActorSystem("TypedActorsExample")

val calculator: CalculatorInt =
TypedActor(_system).typedActorOf(TypedProps[Calculator]())

//Get access to the ActorRef
val calActor:ActorRef = TypedActor(_system)
 .getActorRefFor(calculator)

//pass a message
calActor.tell("Hi there")

Supervisor strategy
When the typed actor is dealing with child actors and the parent actor needs to
manage the faults or failures of the child actors, the supervisor strategy needs to
be defined.

Remember, Akka's approach to handling fault tolerance, or the "Let It Crash"
model, is implemented by linking actors in a hierarchy. Akka promotes that instead
of each actor trying to figure out who is alive or who is dead, let somebody else
handle my failure. We will cover supervisors in more detail in Chapter 6, Supervision
and Monitoring.

For implementing the supervisor strategy in typed actors, another interface/trait has
been provided that allows us to implement the supervisor strategy applicable for the
child actors.

Java:

public class Calculator implements Supervisor {

 public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }

 private static SupervisorStrategy strategy =
 new OneForOneStrategy(10, Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) {
 return resume();
 } else if (t instanceof IllegalArgumentException) {
 return restart();

Chapter 4

[91]

 } else if (t instanceof NullPointerException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });
}

Scala:

class Calculator extends CalculatorInt with Supervisor {

 def supervisorStrategy(): SupervisorStrategy =
 OneForOneStrategy(maxNrOfRetries = 10,
 withinTimeRange = 10 seconds) {
 case _: ArithmeticException => Resume
 case _: IllegalArgumentException => Restart
 case _: NullPointerException => Stop
 case _: Exception => Escalate
 }
}

The defined supervisor strategy will be applicable to the actors created within the
context of the actor.

Creating an actor hierarchy
To create child actors under a typed actor, we need to get the TypedActor context
and then invoke the actorOf method.

Java:

//create a child actor under the Typed Actor context
ActorRef childActor = TypedActor.context().actorOf(
 new Props(ChildActor.class), "childActor");

Scala:

import TypedActor.context
//create a child actor under the Typed Actor context
val childActor:ActorRef = context.actorOf(Props[ChildActor],
name="childActor")

Remember, TypedActor.context() is only valid within
methods of a TypedActor implementation.

Typed Actors

[92]

Dispatchers and routers
A dispatcher controls and coordinates the message dispatching to the actors that is
mapped on the underlying threads. Akka provides multiple dispatch policies that
can be customized according to the underlying hardware resource (number of cores
or memory available) and type of application workload.

In Akka, a router is also a type of actor, which routes the incoming messages to the
outbound actors. When a large number of actors are working in parallel to process
the incoming stream of messages, the router actor directs the message from the
source to the destination actor.

Refer to Chapter 5, Dispatchers and Routers for more details on dispatchers and routers.
Here we will cover how to make use of dispatchers and routers with
typed actors.

Using dispatchers
In simple terms, the dispatcher controls and coordinates the message dispatching to
the actors that are mapped on the underlying threads. For using the dispatcher with
typed actors, use the following syntax.

Java:

ActorSystem _system = ActorSystem.create("TypedActorsExample",
 ConfigFactory.load().getConfig("TypedActorExample"));

CalculatorInt calculator = TypedActor.get(_system).typedActorOf(
 new TypedProps<Calculator>(CalculatorInt.class,
 Calculator.class).withDispatcher("defaultDispatcher"));

Scala:

val _system = ActorSystem("TypedActorsExample",ConfigFactory.load().
getConfig("TypedActorExample"))

val calculator: CalculatorInt =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]()
 .withDispatcher("defaultDispatcher"))

For a definition of the dispatcher, look at the following section.

Chapter 4

[93]

application.conf
For the application.conf class, look at the following code snippet:

TypedActorExample{
 defaultDispatcher {
 type = Dispatcher
 executor = "fork-join-executor"
 fork-join-executor {
 parallelism-min = 2
 parallelism-factor = 2.0
 parallelism-max = 4
 }
 }
}

Using routers
Ideally, typed actors are used at the intersection of POJO and the Actor Model. At
times, there are situations where we may want to spread the number of messages
being passed across in a round robin way. Unlike actors, routing is not available
as a method on TypedProps.

We need to get ActorRef for all the typed actors, combine those in a vector, and use
that to create the router.

Java:

ActorSystem _system = ActorSytem.create("TypedActorsExample");

CalculatorInt calculator1 = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class, Calculator.class));

CalculatorInt calculator2 = TypedActor.get(_system)
 .typedActorOf(new TypedProps<Calculator>(
 CalculatorInt.class, Calculator.class));

// Create a router with Typed Actors
ActorRef actor1 = TypedActor.get(_system)
 .getActorRefFor(calculator1);

ActorRef actor2 = TypedActor.get(_system)
 .getActorRefFor(calculator2);

Typed Actors

[94]

Iterable<ActorRef> routees = Arrays.asList(new ActorRef[] {
actor1,actor2 });

//Create the router actor
ActorRef router = _system.actorOf(new Props()
 .withRouter(BroadcastRouter.create(routees)));

router.tell("Hello there");

Scala:

val _system = ActorSystem("TypedActorsExample")

val calculator1: CalculatorInt2 =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]())

val calculator2: CalculatorInt2 =
 TypedActor(_system).typedActorOf(TypedProps[Calculator]())

// Create a router with Typed Actors
val actor1: ActorRef = TypedActor(_system).getActorRefFor(calculator1)

val actor2: ActorRef = TypedActor(_system).getActorRefFor(calculator2)

val routees = Vector[ActorRef](actor1, actor2)

//Create the router actor
val router = _system.actorOf(new Props().withRouter(
 BroadcastRouter(routees = routees)))

router.tell("Hello there")

Summary
This completes the overview of typed actors. We saw the lifecycle of the actor, how
to create actors, how to pass and process messages, how to stop or kill the actors.
We also saw how typed actors can be extended for additional hooks—preStart,
postStop, Receiver, and Supervisor, which allow extending their functionality
and becoming a bridge between the Actor Model and the object-oriented application.

In the next chapter, we shall cover the dispatchers and routers. Dispatchers are the
heart of the Akka application and this is what makes it humming. Routers on the
other hand, route incoming messages to the outbound actors.

Dispatchers and Routers
Dispatchers are the heart of the Akka application and this is what makes it
humming. Routers on the other hand, route incoming messages to outbound actors.
In this chapter we will cover the following:

• What a dispatcher is and how it works, various types of dispatchers and their
usage and configuration settings

• Different types of mailboxes, and their usage and configuration
• What a router is, and different types of routers and their usage
• How to write a custom router

Dispatcher is the engine that powers the Akka application. It is very important to
understand the switches and knobs that need to be tuned to extract the maximum
concurrency and scalability out of the application.

Dispatchers
In the real world, dispatchers are the communication coordinators that are
responsible for receiving and passing messages. For the emergency services
(for example, in U.S. – 911), the dispatchers are the people responsible for taking
in the call, and passing on the message to the other departments (medical, police,
fire station, or others). The dispatcher coordinates the route and activities of all
these departments, to make sure that the right help reaches the destination as
early as possible.

Dispatchers and Routers

[96]

Another example is how the airport manages airplanes taking off. The air traffic
controllers (ATCs) coordinate the use of the runway between the various planes
taking off and landing. On one side, air traffic controllers manage the runways
(usually ranging from 1 to 3), and on the other, aircrafts of different sizes and
capacity from different airlines ready to take off and land. An air traffic controller
coordinates the various airplanes, gets the airplanes lined up, and allocates the
runways to take off and land:

As we can see, there are multiple runways available and multiple airlines, each
having a different set of airplanes needing to take off. It is the responsibility of air
traffic controller(s) to coordinate the take-off and landing of planes from each airline
and do this activity as fast as possible.

Chapter 5

[97]

Dispatcher as a pattern
Dispatcher is a well-recognized and used pattern in the Java world. Dispatchers are
used to control the flow of execution. Based on the dispatching policy, dispatchers
will route the incoming message or request to the business process. Dispatchers as a
pattern provide the following advantages:

• Centralized control: Dispatchers provide a central place from where various
messages/requests are dispatched. The word "centralized" means code is
re-used, leading to improved maintainability and reduced duplication
of code.

• Application partitioning: There is a clear separation between the business
logic and display logic. There is no need to intermingle business logic with
the display logic.

• Reduced inter-dependencies: Separation of the display logic from the
business logic means there are reduced inter-dependencies between the two.
Reduced inter-dependencies mean less contention on the same resources,
leading to a scalable model.

Dispatcher as a concept provides a centralized control mechanism that decouples
different processing logic within the application, which in turn reduces
inter-dependencies.

Executor in Java
Before we jump into the Akka dispatchers, it is important to understand the
underlying constructs provided by the language (Java) to support the dispatcher
features and functionality.

In Akka, dispatchers are based on the Java Executor framework (part of java.util.
concurrent). Executor provides the framework for the execution of asynchronous
tasks. It is based on the producer–consumer model, meaning the act of task
submission (producer) is decoupled from the act of task execution (consumer).
The threads that submit tasks are different from the threads that execute the tasks.

Dispatchers and Routers

[98]

Two important implementations of the Executor framework are as follows:

• ThreadPoolExecutor: It executes each submitted task using thread from a
predefined and configured thread pool.

• ForkJoinPool: It uses the same thread pool model but supplemented with
work stealing. Threads in the pool will find and execute tasks (work stealing)
created by other active tasks or tasks allocated to other threads in the pool
that are pending execution.

Fork/join is based a on fine-grained, parallel, divide-and-
conquer style, parallelism model. The idea is to break down
large data chunks into smaller chunks and process them in
parallel to take advantage of the underlying processor cores.

Executor is backed by constructs that allow you to define and control how the tasks are
executed. Using these Executor constructor constructs, one can specify the following:

• How many threads will be running? (thread pool size)
• How are the tasks queued until they come up for processing?
• How many tasks can be executed concurrently?
• What happens in case the system overloads, when tasks to be rejected

are selected?
• What is the order of execution of tasks? (LIFO, FIFO, and so on)
• Which pre- and post-task execution actions can be run?

In the book Java Concurrency in Practice, Addison-Wesley Publishing,
the authors have described the Executor framework and its usage
very nicely. It will be useful to read the book for more details on
the concurrency constructs provided by Java language.

Chapter 5

[99]

Dispatchers in Akka
In the Akka world, the dispatcher controls and coordinates the message
dispatching to the actors mapped on the underlying threads. They make sure
that the resources are optimized and messages are processed as fast as possible.
Akka provides multiple dispatch policies that can be customized according to the
underlying hardware resource (number of cores or memory available) and type
of application workload.

If we take our example of the airport and map it to the Akka world, we can see
that the runways are mapped to the underlying resources—threads. The airlines
with their planes are analogous to the mailbox with the messages. The ATC tower
employs a dispatch policy to make sure the runways are optimally utilized and the
planes are spending minimum time on waiting for clearance to take off or land:

Dispatchers and Routers

[100]

For Akka, the dispatchers, actors, mailbox, and threads look like the
following diagram:

The dispatchers run on their threads; they dispatch the actors and messages from
the attached mailbox and allocate on heap to the executor threads. The executor
threads are configured and tuned to the underlying processor cores that available
for processing the messages.

Types of dispatcher
In the case of Akka, the framework provides the following four types of dispatchers
out of the box:

• Dispatcher
• Pinned dispatcher
• Balancing dispatcher
• Calling thread dispatcher

Similarly, there are four default mailbox implementations provided as follows:

• Unbounded mailbox
• Bounded mailbox
• Unbounded priority mailbox
• Bounded priority mailbox

Chapter 5

[101]

Threads are the underlying resources and they are optimized based on the available
CPU cores and the type of application workload. The number of threads is
configured in conjunction with the dispatcher policy employed for the application.

Akka allows you to write your own dispatcher
implementation or your own mailbox implementation.

Dispatcher
This is the default dispatcher used by the Akka application in case there is nothing
defined. This is an event-based dispatcher that binds a set of actors to a thread pool
backed up by a BlockingQueue method.

The following are the characteristics of the default dispatcher:

• Every actor is backed by its own mailbox
• The dispatcher can be shared with any number of actors
• The dispatcher can be backed by either thread pool or fork join pool
• The dispatcher is optimized for non-blocking code

Dispatchers and Routers

[102]

Pinned dispatcher
This dispatcher provides a single, dedicated thread (pinned) for each actor. This
dispatcher is useful when the actors are doing I/O operations or performing
long-running calculations. The dispatcher will deallocate the thread attached to
the actor after a configurable period of inactivity.

The following are the characteristics of the pinned dispatcher:

• Every actor is backed by its own mailbox.
• A dedicated thread for each actor implies that this dispatcher cannot be

shared with any other actors.
• The dispatcher is backed by the thread pool executor.
• The dispatcher is optimized for blocking operations. For example, if the code

is making I/O calls or database calls, then such actors will wait until the task
is finished. For such blocking operation, the pinned dispatcher performs
better than the default dispatcher.

Chapter 5

[103]

Balancing dispatcher
The balancing dispatcher, as the name suggests is an event-based dispatcher that
tries to redistribute work from busy actors and allocate it to idle ones. Redistribution
of tasks can only work if all actors are of the same type (requirement). This task
redistribution is similar to the work-stealing technique, as described in the fork join
pool. The dispatcher looks for actors that are idle and dispatches the message(s) to
them for processing.

The following are the characteristics of the balancing dispatcher:

• There is only one mailbox for all actors
• The dispatcher can be shared only with actors of the same type
• The dispatcher can be backed by a either thread pool or fork join pool

Calling thread dispatcher
The calling thread dispatcher is primarily used for testing. This dispatcher runs the
task execution on the current thread only. It does not create any new threads and
provides a deterministic execution order. The dispatch strategy is to run on the
current thread, unless the target actor is either suspended or already running on
the current thread. If the invocation is not run immediately, the task is queued in a
thread-local queue to be executed once the active invocation(s) further up in the call
stack are finished. If you make use of blocking code with calling thread dispatcher,
then the blocking code will hold the thread for processing, leaving other messages in
the queue for a long time.

Dispatchers and Routers

[104]

The following are the characteristics of the calling thread dispatcher:

• Every actor is backed by its own mailbox
• The dispatcher can be shared with any number of actors
• The dispatcher is backed by the calling thread

Types of mailboxes
Mailboxes are backed by queue implementation from the Java concurrent package.
The queues are characterized by two factors as follows:

• Blocking queue: Blocking queue means a queue that waits for space to
become available before putting in an element and similarly waits for the
queue to become non-empty before retrieving an element

• Bounded queue: Bounded queue means a queue that limits the size of the
queue; meaning you cannot add more elements than the specified size

In Akka, the following queue implementations are based on the blocking/bounded
factors available:

Types Implementation Blocking Bounded
Unbounded
mailbox

java.util.concurrent.ConcurrentLinkedQueue No No

Bounded
mailbox

java.util.concurrent.LinkedBlockingQueue Yes Yes

Unbounded
priority
mailbox

java.util.concurrent.PriorityBlockingQueue Yes No

Bounded
priority
mailbox

java.util.concurrent.PriorityBlockingQueue
wrapped in akka.util.BoundedBlockingQueue

Yes Yes

You can choose between the unbounded and bounded mailbox via the configuration.
In the case of a priority mailbox (unbounded or bounded), a simple implementation
needs to be provided to for use by the dispatcher.

Chapter 5

[105]

Dispatcher usage
The Executor contexts supported by Akka are as follows:

• Thread pool executor: Here, the idea is to create a pool of worker threads.
Tasks are assigned to the pool using a queue. If the number of tasks exceeds
the number of threads, then the tasks are queued up until a thread in the
pool is available. Worker threads minimize the overhead of allocation/
deallocation of threads.

• Fork join executor: This is based on the premise of divide-and-conquer. The
idea is to divide a large task into smaller tasks whose solution can then be
combined for the final answer. The tasks need to be independent to be able
run in parallel.

For each of these execution contexts, Akka allows us to specify the configuration
parameters that will define and construct the underlying resources. The parameters
define the following:

• Minimum number of threads that will be allocated
• Maximum number of threads that will be allocated
• Multiplier factor to be used (based on number of CPU cores available)

For example, if the minimum number is defined as 3 and the multiplier factor is
2, then the dispatcher starts with a minimum of 3 x 2 = 6 threads. The maximum
number defines the upper limit on the number of threads. If the maximum number is
8, then the maximum number of threads will be 8 x 2 = 16 threads.

Next, we will see which key configuration parameters are used for each of
the executors.

Thread pool executor
The following are the key parameters that need to be configured for the thread
pool executor:

 # Configuration for the thread pool
 thread-pool-executor {
 # minimum number of threads
 core-pool-size-min = 2
 # available processors * factor
 core-pool-size-factor = 2.0
 # maximum number of threads
 core-pool-size-max = 10
 }

Dispatchers and Routers

[106]

Fork join executor
The following are the key parameters that need to be configured for the fork
join executor:

Configuration for the fork join pool
 fork-join-executor {
 # Min number of threads
 parallelism-min = 2
 # available processors * factor
 parallelism-factor = 2.0
 # Max number of threads
 parallelism-max = 10
}

Depending on the type of dispatcher being used and support provided for the
executor, the preceding configuration parameters can be used in conjunction with
other settings.

To define the dispatcher for a set of actors, the following are the important
configuration parameters:

Parameter name Description Potential values
type Identifies the name of the

event-type dispatcher being used
Dispatcher or PinnedDispatcher
or BalancingDispatcher
or FQCN of a class extending
MessageDispatcherConfigurator

executor Decides what kind of Executor
service to use

fork-join-executor or
thread-pool-executor
or FQCN of a class extending
ExecutorServiceConfigurator

fork-join-
executor

Section for defining the
fork-join-executor
parameters as defined above

thread-pool-
executor

Section for defining the
thread-pool-executor
parameters as defined previously

throughput Identifies the maximum number
of messages to be processed per
actor before the thread jumps to
the next actor

One (to be fair for everyone)

Chapter 5

[107]

Parameter name Description Potential values
mailbox-
capacity
(optional)

Specifies the mailbox capacity to
be used for the actor queue

Negative (or zero) implies usage of an
unbounded mailbox (default).
A positive number implies bounded
mailbox and with the specified size.

mailbox-type
(optional)

Specifies the mailbox type to be
used

Bounded or unbounded mailbox used
if nothing is specified (dependent on
mailbox capacity) or FQCN of the
mailbox implementation (for example,
priority mailbox implementations if
defined, need to be specified here)

The sample Dispatcher parameter's definition in application.conf looks
something like the following code snippet:

my-dispatcher {

 type = Dispatcher

 executor = "fork-join-executor"

 fork-join-executor {
 parallelism-min = 2
 parallelism-factor = 2.0
 parallelism-max = 10
 }
 throughput = 100

 mailbox-capacity = -1

 mailbox-type =""
}

Or another example can be the PinnedDispatcher parameter's definition along with
the thread-pool-executor parameter as follows:

my-dispatcher {

 type = PinnedDispatcher

 executor = "thread-pool-executor"

 thread-pool-executor {
 core-pool-size-min = 2
 core-pool-size-factor = 2.0
 core-pool-size-max = 10
 }
 throughput = 100

 mailbox-capacity = -1

 mailbox-type =""
}

Dispatchers and Routers

[108]

We define the dispatcher identifier that will be used to inform the underlying actors
about the dispatcher policy to be used. Next we define the type of the dispatcher
being used, executor policy being used, the parameters required for the executor
policy, and the throughput parameter. In case we are using a bounded mailbox, we
will define the mailbox size. When using custom-defined mailboxes, we will specify
the FQCN of the mailbox class.

The following are the key parameters for your application performance:

• Choice of dispatcher: Based on the type of activity being performed by your
actor, the right dispatcher needs to be selected. Look at parameters such as
blocking versus non-blocking operations, homogeneity versus heterogeneity
of actors, to determine the right choice of dispatcher.

• Choice of executor: Choosing between thread pool or fork join depends upon
the characteristics of your application logic. The choice of executor comes into
play in the case of default dispatcher and balancing dispatcher. For most cases,
fork join is excellent when large numbers of tasks can be forked (started).

• Number of threads (min/max) factored to the CPU cores: The number of
min/max threads that are deployed for the dispatcher and mapped to the
underlying cores determine the processing power of the application. Define
it too high and threads might end up doing a lot of context switching; define
too low and the processing power is not fully optimized.

• Throughput factor: This determines the number of messages that are
processed by one actor as a batch or in one go. For example, if the throughput
is 50, then the actor will process 50 messages (if available in the queue)
before returning the thread to the pool. On the flip side, other actors will
wait for the thread (using the same dispatcher) to be available before they
begin to process their set of messages. The optimal value depends upon the
processing time taken by your message.

Once the dispatcher configuration has been defined in application.conf, the
application needs to specify which dispatcher policy is used for which actors.
Using the combination of the right type of dispatcher and supported executor,
the various combinations of the dispatcher policy are realized. Remember, you
can define a different dispatcher policy for a different set of actors depending
upon the functionality of the actors.

Java:

ActorSystem _system = ActorSystem.create("dispatcher",
 ConfigFactory.load().getConfig("MyDispatcherExample"));

ActorRef actor = _system.actorOf(new Props(MsgEchoActor.class)
 .withDispatcher("my-dispatcher"));

Chapter 5

[109]

Scala:

val _system = ActorSystem("dispatcher", ConfigFactory.load().getConfig
("MyDispatcherExample"))

val actor = _system.actorOf(Props[MsgEchoActor].withDispatcher
("my-dispatcher"))

When defining the actor, the Props class provides the withDispatcher() method,
which is invoked by passing the string name of the dispatcher configuration defined
in application.conf.

You can define multiple instances of an actor of the same type and pass the
dispatcher policy. The dispatcher is mostly used in conjunction with the router
functionality provided by Akka. We will see routers in the next section of the chapter.

Routers
In the previous section, we saw how we can use dispatchers to increase the message
processing throughput by using the right dispatching policy. When a large number
of actors are working in parallel to process the incoming stream of messages, there
is need of an entity that directs the message from the source to the destination actor.
This entity is called the router.

In Akka, a router is also a type of actor, which routes the incoming messages to the
outbound actors. For the router, the outbound actors are also called routees. The
router employs a different set of algorithms to route the messages to the routee actors:

Dispatchers and Routers

[110]

In order to avoid the single point of bottleneck, the router actors are
of a special type—RouterActorRef. RouterActorRef does not
make use of the store-and-forward mechanism to route the messages
to it routees. Instead, routers dispatch the incoming messages
directly to the routee's mailboxes and avoid the router's mailbox.

By default, the Akka router supports the following router mechanisms:

• Round robin router: It routes the incoming messages in a circular order to all
its routees

• Random router: It randomly selects a routee and routes the message to
the same

• Smallest mailbox router: It identifies the actor with the least number of
messages in its mailbox and routes the message to the same

• Broadcast router: It forwards the same message to all the routees
• Scatter gather first completed router: It forwards the message to all its

routees as a future, then whichever routee actor responds back, it takes
the results and sends them back to the caller

Router usage
In order to create the router and set the number of routee actors, we need to have
the following information—the router mechanism to be used and the number of
instances of routee actors.

Java:

ActorRef router = system.actorOf(new Props(MyActor.class).
withRouter(new RoundRobinRouter(nrOfInstances)),"myRouterActor");

Scala:

val router = system.actorOf(Props[MyActor].withRouter(RoundRobinRouter
(nrOfInstances = 5)) , name = "myRouterActor")

Here, when defining the actor, we pass the router instance, which in this case
is RoundRobinRouter, whose constructor takes in the number of instances
(nrOfInstances) that need to be created for the routees.

Chapter 5

[111]

When we defined the router actor, we provided a
name—myRouterActor. As one actor can only have one given
name within the parent context, the router actor becomes the
parent (head) and the routees are the child actors spawned by
the parent. The parent actor is now the supervisor for the routees
(there's more on supervisors in the next chapter) and manages the
lifecycle—creation, restarting, and termination—of the actors.

All of the router types are used in a similar manner; we pass the router object along
with the necessary constructor parameters.

We will examine router-type definitions and their usage as follows:

Router type Usage
RoundRobinRouter Java:

ActorRef router = system.actorOf(new Props
(MyActor.class).withRouter(new RoundRobinRouter
(nrOfInstances)));

Scala:
val router = system.actorOf(Props[MyActor].
withRouter(RoundRobinRouter(nrOfInstances = 5)))

RandomRouter Java:
ActorRef router = system.actorOf(new
Props(MyActor.class).withRouter(new
RandomRouter(nrOfInstances)));

Scala:
val router = system.actorOf(Props[MyActor].
withRouter(RandomRouter(nrOfInstances = 5)))

SmallestMailbox
Router

Java:
ActorRef router = system.actorOf(new Props(MyActor.
class).withRouter(new SmallestMailboxRouter
(nrOfInstances)));

Scala:
val router = system.actorOf(Props[MyActor].
withRouter(SmallestMailboxRouter
(nrOfInstances = 5)))

Dispatchers and Routers

[112]

Router type Usage
BroadcastRouter Java:

ActorRef router = system.actorOf(new Props
(MyActor.class).withRouter(new BroadcastRouter
(nrOfInstances)));

Scala:
val router = system.actorOf(Props[MyActor].
withRouter(BroadcastRouter (nrOfInstances = 5)))

ScatterGatherFirst
CompletedRouter

Java:
ActorRef router = system.actorOf(new Props(MyActor.
class).withRouter(new ScatterGatherFirstCompletedRo
uter(nrOfInstances, Duration.parse("5 seconds"))));

Scala:
val router = system.actorOf(Props[MyActor].
withRouter(ScatterGatherFirstCompletedRouter
(nrOfInstances = 5, within = 5 seconds)))

In this case, in addition to the number of instances, we also pass the
future duration timeout period.

Router usage via application.conf
The router for the actor can also be described using the configuration
file—application.conf. In application.conf, we describe the router
configuration as follows:

MyRouterExample{
 akka.actor.deployment {
 /myRandomRouterActor {
 router = random
 nr-of-instances = 5
 }
 }
}

Next, in the code, we load the application.conf file using ActorSystem.

Java:

ActorSystem _system = ActorSystem.create("RandomRouterExample",
 ConfigFactory.load().getConfig("MyRouterExample"));

ActorRef randomRouter = _system.actorOf(
 new Props(MsgEchoActor.class).withRouter(new FromConfig()),
"myRandomRouterActor");

Chapter 5

[113]

Scala:

val _system = ActorSystem.create("RandomRouterExample",
ConfigFactory.load()
 .getConfig("MyRouterExample"))

val randomRouter = _system.actorOf(Props[MsgEchoActor].
withRouter(FromConfig()), name = "myRandomRouterActor")

When defining the router to be used, we pass on the FromConfig() parameter and
the name of the router actor—myRandomRouterActor, which is used to read the
config file settings for the router information.

Router usage for distributed actors
It is possible that we may want to make use of distributed actors and route the
incoming message to them. In this case, each actor has a different address. For
handling such cases, we first need to create the different Address objects with
the remote node details and add them to an array. Subsequently the array of the
addresses is passed as a parameter to the router.

Java:

Address addr1 = new Address("akka", "remotesys", "host1", 1234);
Address addr2 = new Address("akka", "remotesys", "host2", 1234);

Address[] addresses = new Address[] { addr1, addr2 };

ActorRef routerRemote = system.actorOf(new Props(MyEchoActor.class)
 .withRouter(new RemoteRouterConfig(new RoundRobinRouter(5),
addresses)));

Scala:

val addresses = Seq(Address("akka", "remotesys", "host1",
1234),Address("akka", "remotesys", "host2", 1234))

val routerRemote = system.actorOf(Props[MyEchoActor].withRouter(
 RemoteRouterConfig(RoundRobinRouter(5), addresses)))

The remote nodes' addresses can also be read via application.conf. So, in addition
to defining the router configuration, we can also define the target nodes' address for
each of the participating remote nodes:

akka.actor.deployment {
 /myRandomRouterActor {
 router = round-robin

Dispatchers and Routers

[114]

 nr-of-instances = 5
 target {
 nodes = ["akka://app@192.168.0.5:2552",
"akka://app@192.168.0.6:2552"]
 }
 }
}

Dynamically resizing routers
To handle the variability of the incoming message traffic, it might be important
to increase the number of actors available to handle the load at runtime. For this,
routers provide a construct called resize, which allows us to define the range
bound in terms of minimum and maximum instances.

Java:

int lowerBound = 2;
int upperBound = 15;
DefaultResizer resizer = new DefaultResizer(lowerBound, upperBound);

ActorRef randomRouter = _system.actorOf(new Props(MsgEchoActor.class).
withRouter(new RandomRouter(resizer)));

Scala:

val resizer = DefaultResizer(lowerBound = 2, upperBound = 15)

val randomRouter = system.actorOf(Props[MsgEchoActor].withRouter(
 RandomRouter (resizer = Some(resizer))))

The range can also be specified in application.conf as follows:

akka.actor.deployment {
 /myRandomRouterActor {
 router = round-robin
 nr-of-instances = 5
 resizer {
 lower-bound = 2
 upper-bound = 15
 }
 }
}

Chapter 5

[115]

Custom router
In case the default router types are not sufficient, Akka also allows you to write your
own custom router. Akka provides the RouterConfig interface, which can be used to
write your own router. Akka also provides the ScatterGatherFirstCompletedLike
interface, which can be used to implement your own implementation of the scatter
gather first completed router model. In our custom router, we will make use
of RouterConfig.

Let's go ahead and create a custom router. We will create a bursty message
router—meaning the router will route a predefined number of messages to one
actor before moving to the next one.

If we define 10 as the message burst size and if there are five instances of actors
running, then 1 to 10 messages will go to actor 1, 11 to 20 messages will go to
actor 2, and so on:

We define the BurstyMessageRouter class and create a constructor that takes in two
parameters. First is the number of instances that needs to be created for the actor and
second is the messageBurst rate, which identifies the number of messages that need
to be passed on to one actor before moving to next.

Java:

public class BurstyMessageRouter extends CustomRouterConfig {

 int noOfInstances;
 int messageBurst;

Dispatchers and Routers

[116]

 public BurstyMessageRouter(int inNoOfInstances, int
inMessageBurst) {
 noOfInstances = inNoOfInstances;
 messageBurst = inMessageBurst;
 }
}

Scala:

class BurstyMessageRouter(noOfInstances: Int, messageBurst: Int)
extends RouterConfig {

}

Next, we define the dispatcher and supervisor policy for the router. In our case we
are using the default policies only.

Java:

public String routerDispatcher() {
 return Dispatchers.DefaultDispatcherId();
}

public SupervisorStrategy supervisorStrategy() {
 return SupervisorStrategy.defaultStrategy();
}

Scala:

def routerDispatcher: String = Dispatchers.DefaultDispatcherId

def supervisorStrategy: SupervisorStrategy = SupervisorStrategy.
defaultStrategy

Next is the key piece of the router, which is defining the routing mechanism of our
bursty message router.

Java:

public CustomRoute createCustomRoute(Props props,
 RouteeProvider routeeProvider) {

 //create the routee actors and register with routeeprovider

 //return CustomRoute()

}

Chapter 5

[117]

Scala:

def createRoute(props: Props, routeeProvider: RouteeProvider):
Route = {

}

In this, we override the createCustomRoute() method. There are two distinct parts
of this method. First, we need to create the number of instances passed for the routee
actors. We create the list of routee actors and register it with routeeProvider.

Java:

// create the arraylist for holding the actors
final List<ActorRef> routees = new ArrayList<ActorRef>(noOfInstances);

for (int i = 0; i < noOfInstances; i++) {
 // initialize the actors and add to the arraylist
 routees.add(routeeProvider.context().actorOf(props));
}

// register the list
routeeProvider.registerRoutees(routees);

Scala:

def createRoute(props: Props, routeeProvider: RouteeProvider): Route =
{

 routeeProvider.createAndRegisterRoutees(props,
noOfInstances, Nil)

}

Next, we return the CustomRoute() method, which needs to be used for routing the
messages to the routee actors.

Java:

return new CustomRoute() {
 public Iterable<Destination>
 destinationsFor(ActorRef sender,
 Object message) {
 //logic for routing goes here
 }
};

Dispatchers and Routers

[118]

Scala:

 {
 case (sender, message) =>
 List(Destination(sender, actor))
 }

Here we created the CustomRoute class and implemented the destinationsFor()
method, which returns the Iterable<Destination> object with the destination
logic implemented.

Here is the complete code for BurstyMessageRouter, for your reference.

Java:

public class BurstyMessageRouter extends CustomRouterConfig {

 int noOfInstances;
 int messageBurst;

 public BurstyMessageRouter(int inNoOfInstances,
 int inMessageBurst) {
 noOfInstances = inNoOfInstances;
 messageBurst = inMessageBurst;
 }

 public String routerDispatcher() {
 return Dispatchers.DefaultDispatcherId();
 }

 public SupervisorStrategy supervisorStrategy() {
 return SupervisorStrategy.defaultStrategy();
 }

 @Override
 public CustomRoute createCustomRoute(Props props,
 RouteeProvider routeeProvider) {

 // create the arraylist for holding the actors
 final List<ActorRef> routees =
 new ArrayList<ActorRef>(noOfInstances);
 for (int i = 0; i < noOfInstances; i++) {
 // initialize the actors and add to the arraylist
 routees.add(routeeProvider.context().actorOf(props));
 }
 // register the list
 routeeProvider.registerRoutees(routees);

Chapter 5

[119]

 return new CustomRoute() {
 int messageCount = 0;
 int actorSeq = 0;

 public Iterable<Destination>
 destinationsFor(ActorRef sender,
 Object message) {
 ActorRef actor = routees.get(actorSeq);
 List<Destination> destinationList = Arrays
 .asList(new Destination[]
 { new Destination(sender,
 actor) });
 //increment message count
 messageCount++;
 //check message count
 if (messageCount == messageBurst) {
 actorSeq++;
 //reset the counter
 messageCount = 0;
 //reset actorseq counter
 if (actorSeq == noOfInstances) {
 actorSeq = 0;
 }
 }
 return destinationList;
 }
 };
 }
}

Scala:

class BurstyMessageRouter(noOfInstances: Int, messageBurst: Int)
extends RouterConfig {
 var messageCount = 0
 var actorSeq = 0

 def routerDispatcher: String = Dispatchers.DefaultDispatcherId

 def supervisorStrategy: SupervisorStrategy =
 SupervisorStrategy.defaultStrategy

 def createRoute(props: Props, routeeProvider:
 RouteeProvider): Route = {
 routeeProvider.createAndRegisterRoutees(props,
 noOfInstances, Nil)

Dispatchers and Routers

[120]

 {
 case (sender, message) =>
 var actor = routeeProvider.routees(actorSeq)
 //increment message count
 messageCount += 1
 //check message count
 if (messageCount == messageBurst) {
 actorSeq += 1
 //reset the counter
 messageCount = 0
 //reset actorseq counter
 if (actorSeq == noOfInstances) {
 actorSeq = 0
 }
 }
 List(Destination(sender, actor))
 }
 }
}

That's it. We have written our own custom router. We can invoke the custom router
as any other router call.

Java:

ActorSystem _system = ActorSystem.create("CustomRouterExample");

ActorRef burstyPacketRouter = _system.actorOf(new Props(
 MsgEchoActor.class).withRouter(new BurstyMessageRouter(5,2)));

Scala:

val _system = ActorSystem.create("CustomRouterExample")

val burstyMessageRouter = _system.actorOf(Props[MsgEchoActor].
withRouter(new BurstyMessageRouter(5,2)))

The message burst size can be configured along with the dispatcher throughput
setting to get the optimal throughput.

This brings us to the completion of the router usage within an Akka application.

Chapter 5

[121]

Summary
We saw the role played by dispatchers and how they can be chosen and configured
based on the type of application. Dispatcher's tuning will have maximum impact
on the application throughput, so make sure you tune your engine to extract the
maximum power. On the other hand, routers allow us to load-balance the incoming
message traffic and distribute the same to the routee actors. Application scalability is
achieved by using the appropriate router type. Together, dispatchers and routers are
responsible for achieving the maximum throughput and scalability of the application.

In the next chapter, we will cover techniques for building fault tolerance and actor
supervision strategies when writing large-scale concurrent programs. We will look
at the "Let It Crash" paradigm and how it is managed in the Actor Model using the
various supervision strategies.

Supervision and Monitoring
This chapter will cover fault tolerance lifecycle, supervision strategies, and linking
strategies when writing large-scale concurrent programs. The reader is introduced
to the "Let It Crash" paradigm and how it is managed in the Actor Model using the
various supervision strategies, which are as follows:

• One-For-One strategy
• All-For-One strategy

In addition, we will cover actor state transitions that are not bound by parent-child
relationship via lifecycle monitoring.

Let It Crash
When an actor crashes or throws an exception, who is responsible to catch
the exception?

One way to look at it is to make sure that every actor knows how to handle failures,
but then it becomes more defensive programming. The actor keeps adding code for
handling various exceptions and soon, instead of lightweight units, they become
large, bloated actors that do not scale very well.

What if the actors are dependent on each other? Meaning the data processing is done
in a series of steps, as shown in the following image:

Supervision and Monitoring

[124]

As we see in the previous image, when actor number 4 fails, the other actors may
be in an unstable state and we may need to reset the state of all the actors (1-5) to
process the message correctly. So, the question arises, how is the failure of one actor
handled, how the other actors are made aware of the failure of one actor, and how
consistent state is maintained across the actors.

To keep the actors as small computation units and still provide a mechanism to
handle actor failures, Akka organizes the actors into a hierarchy model. Let's go
ahead and delve into what actor hierarchy is and why it is needed.

Actor hierarchy
Actors are the computational units in their purest form. The whole design idea of the
Actor Model is to break down the large task into smaller tasks to the point where the
task is granular and structured enough to be performed by one specialized actor.

To manage these specialized actors, we have Supervisor actors that coordinate and
manage the lifecycle of the specialized actors. As the complexity of the problem
grows, the hierarchy also expands to manage the complexity. This allows the
system to be as simple or as complex as required based on the tasks that need to
be performed. As we see in the following image, the depth of the actor hierarchy is
determined by the complexity of the problem:

Chapter 6

[125]

Each actor knows what kind of message it will process and how to react in terms
of failure. So, if the actor does not know how to handle a particular message or
an abnormal runtime behavior, it asks its supervisor for help. The recursive actor
hierarchy allows the problem to be propagated upwards to the point where it can be
handled. Remember, every actor in Akka will have one and only one supervisor. This
actor hierarchy forms the basis of the Akka's "Let It Crash" fault-tolerance model:

To use a simple analogy, when we have a small IT project, we usually staff the
project with a couple of developers reporting to a project lead. The developers
design and architect the solution components. The project lead supervises and
manages the developer team. In a large program, you will have multiple teams
(lead + developers) that report to a project manager, and multiple project managers
will report to a program manager, and so on. So, the developers are the main
computational workers (we all agree to that) and project leads (PLs) and project
managers (PMs) form the supervisor hierarchy. PLs and PMs know how to manage
the team and how to respond to situations.

Supervision and Monitoring

[126]

The Akka fault-tolerance model is built upon the actor hierarchy and supervisors.
Akka provides a default supervisor – "user"–under whose context all the
application-specific actor hierarchy is created. The whole concept of fault
tolerance is built on the following principles:

• Any actor that creates another actor becomes the parent of that actor. The
parent actor is expected to know what the child actor is doing and how to
handle failures or exceptions from the child actor.

• The actor hierarchy is formed in such a way that the actors at the bottom
of the hierarchy are performing the computational tasks. The Supervisor
actor concerns itself with the child actor's failure or exception scenarios.
By splitting the computational task and failure handling, the actors become
lean and focused. This separation of fault handling from the computational
task, allows the Supervisor actor to retry or handle runtime failures scenarios
more elegantly.

• If two actors are dependent upon each other but under different supervisors,
then the dependent actor should watch the other actor's liveliness and
watch out for termination notices from the other actor. This is different from
supervision, as the dependent actor watching the other actor has no effect
on the other actor's lifecycle. The dependent actor can only change its own
behavior based on termination of the watched actor.

So, when you are building a large application, the actors will have implicit
dependencies when they are handling or implementing a service, maintaining user
session, or performing some computations. In this case, it is very important to have
actor linkages, because for consistent state and behavior, an application requires
all actors to be either running or dead. Otherwise, the application will be in an
inconsistent state where some actors process or persist messages when the entire
computation logic has not been finished.

Akka promotes the idea that instead of each actor trying to figure out who is alive or
who is dead, let somebody else handle my failure. Inform somebody who oversees
all the actors and knows how to handle failure of any actor under its hierarchy.

Remember, if you keep starting actors that are not managed, how will you ever
know whether they are working or not, or how many are running. Initializing new
actors blindly will soon lead to resource crunch scenarios. If you cannot control and
measure something, the whole idea of somebody working for you is missing.

To help manage the fault tolerance and manage the actors, Akka provides a concept
called supervisors.

Chapter 6

[127]

Supervision
Supervision in simple terms means overseeing the performance or operations of a
group. In our case, we are creating hundreds of actors to do work for us, it is possible
that some of these actors might fail or throw exceptions in certain situations.

Supervisors provide a dependency relationship between the actors – in the sense
that every actor has a supervisor attached to it. The supervisor is responsible for
delegating the tasks to the actors – called subordinates and manage the lifecycle of
the Subordinate actors. This is shown in the following image:

If any of the subordinates report a failure or exception, the supervisor is informed
and is expected to know how to handle the failure:

When the supervisor is informed of the failure of a Subordinate actor, the possible
choices for the supervisor are as follows:

1. Restart the Subordinate actor – means kill the current actor instance and
instantiate a new actor instance.

2. Resume the Subordinate actor – means the actor keeps its current state and
goes back to its current state as though nothing has happened.

3. Terminate the Subordinate actor permanently.
4. Escalate the failure to its own supervisor.

Supervision and Monitoring

[128]

These steps are shown in the following image:

We can see how the supervisor has multiple options to handle the Subordinate
actor's failure(s).

But at times, a large computation may be implemented via actors that are bound in
a series of steps and all need to be restarted to make sure that they are all in a stable
and consistent state:

For this we need to understand that each actor is part of the overall supervision
hierarchy, meaning for a Subordinate there is always a supervisor higher up. So, in
this case, having a supervisor for managing these steps will automatically allow us
to handle their failures. It is good practice to group actors together in a hierarchy that
work together or are dependent on each other, shown as follows:

Chapter 6

[129]

Supervisor actor 1 manages all the Subordinate actors. Supervisor actor 0 in turn
manages Supervisor actor 1. When Subordinate actor 4 reports a failure, the same
is reported to Supervisor actor 1. Supervisor actor 1 further escalates to Supervisor
actor 0 for handling the failure. Now Supervisor actor 0 has the same choices as
earlier mentioned:

1. Restart actor S1, which in turn will definitely stop all the Subordinate
actors (1-5).

2. Resume actor S1, which in turn will resume actor 4.
3. Terminate actor S1, which in turn will terminate all the actors (1-5).
4. Still escalate the failure further up.

Every supervisor is capable of taking a decision to handle the failure scenarios
and translate it into an action as described in the previous steps. Based on how the
scenarios need to be handled, the actor-supervisor hierarchy can be suitably defined.
For example, if a particular supervisor hierarchy needs to be restarted versus another
supervisor hierarchy that only needs to be resumed, the super-supervisor can make
an appropriate decision based on where the failure is originating. This allows us to
handle failures in a recursive way and without adding additional burden on each
and every actor.

Shut down of the actor system becomes very clean. Each of the actors will wait for
the actors in its own hierarchy to terminate before terminating itself. Actors will be
left dangling in the absence of this hierarchical process. This tree structure of the
actor hierarchy provides a convenient and elegant way to organize, run, and shut
down the actors:

Supervision and Monitoring

[130]

Unlike resume, where the actors go back to the current state when the failure
happened, the restart of the actors is a little different. Restart of the actor means:

• All the child actors in the hierarchy will undergo the restart process. All the
child actors are sent the termination request. The parent actor waits for all the
child actors to stop before terminating itself.

• As part of the restart, the parent-child will be restarted, the child actors get
stopped and restarted. The mailbox attached to the child actors is retained
and they start processing the next message from their mailbox. If you want
to destroy the child actors' mailboxes as well, then the child actors need to be
terminated and recreated via the supervisor.

• In case the child actors need to carry across the initialized state, the Actor
instance restarts. Then they need to tap into the postStop and postRestart
lifecycle hooks of the actor.

Akka by default provides a parental supervisor – "user". This parental supervisor
creates the rest of the actors and the actor hierarchy. Having the system define
a parental supervisor makes sure there is no orphan actors and there is one
top-level supervisor that handles the entire actor hierarchy. It is bad practice
to create too many top-level actors, as you end up losing fine-grained control over
the actor hierarchy.

Supervision strategies
We saw how every Supervisor actor has four choices when it comes to handling
failures. Akka provides two supervision strategies:

• One-For-One strategy
• All-For-One strategy

Chapter 6

[131]

Supervision strategies define how the failure of the child actors are handled, how
often the child is allowed to fail, and how long to wait before the child actor is
recreated. As the name suggests, One-For-One strategy means the supervision
strategy is applied only to the failed child. All-For-One strategy means that the
supervision strategy is applied to all the actor siblings as well:

One-For-One strategy is the default strategy if a strategy
is not defined explicitly. This strategy works fine in
most use cases.

All-For-One strategy is used when the actor and its children have tight inter-
dependencies. For example, if you are processing stock feed data, the data processing
is a series of steps, and a failure on one step leads to an inconsistency of state in
the other actors. In this case, it becomes pertinent to restart all the actors to make
sure that they all have a consistent state. When your actor hierarchy is using this
strategy, failure of one actor will lead to the supervisor sending a command to stop
and restart. But this does not mean that all the sibling actors will restart. The sibling
actors will need to be restarted explicitly by the supervisor.

Akka implements the two strategies via two classes:

• akka.actor.OneForOneStrategy

• akka.actor.AllForOneStrategy

Supervision and Monitoring

[132]

Constructing the Strategy object is straightforward, shown as follows:

• OneForOneStrategy(maxNrOfRetries: int, withinTimeRange:
Duration, decider: Decider)

• AllForOneStrategy(maxNrOfRetries: int, withinTimeRange:
Duration, decider: Decider)

It takes in the following three arguments:

• maxNrOfRetries: This defines the number of times an actor is allowed
to be restarted before it is assumed to be dead. A negative number implies
no limits.

• withinTimeRange: This defines the duration of the time window for
maxNrOfRetries. The value – Duration.Inf means no window defined.

• decider: This is the function defined where the Throwable are mapped to
the directives that allow us to specify the actions – resume(), restart(),
stop(), or escalate().

Ideally, you should not define a large number for maximum number of retries
(maxNrOfRetries) within a given time range (withinTimeRange). If the actor is
encountering a large number of retries very rapidly, then it could point towards a
problem in the logic or the external resource not being available. For example, if
the socket connection is not opening, then trying again and again within the time
period may not help, and we may need to handle the socket unavailable condition
differently. The whole idea behind limiting maxNrOfRetries is to prevent a situation
where an actor repeatedly dies for the same reason, only to be restarted again.

Let's go ahead and see examples of both the strategies to understand how the
supervision works.

Chapter 6

[133]

One-For-One strategy
Let's take the previous example and see how we can implement the same. The
One-For-One strategy implies that in case of failure of any one actor under the
supervisor, the strategy will apply to that actor alone. Meaning, if a Supervisor
actor is managing actor 1 and actor 2 and employing the One-For-One strategy,
then failure of actor 1 will have no impact on the lifecycle of actor 2, and vice versa:

Let's implement the actors and see how the supervisor strategy works. Let's start
with WorkerActor.

Java:

public class WorkerActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(

 getContext().system(), this);
private int state = 0;

 public static class Result {}

Supervision and Monitoring

[134]

 @Override
 public void preStart() {
 log.info("Starting WorkerActor instance hashcode # {}",
 this.hashCode());
 }

 public void onReceive(Object o) throws Exception {
 if (o == null) {
 throw new NullPointerException("Null Value Passed");
 } else if (o instanceof Integer) {
 Integer value = (Integer) o;
 if (value <= 0) {
 throw new ArithmeticException("Number equal or
 less than zero");
 } else
 state = value;
 } else if (o instanceof Result) {
 getSender().tell(state);
 } else {
 throw new IllegalArgumentException("Wrong
 Argument");
 }
 }

 @Override
 public void postStop() {
 log.info("Stopping WorkerActor instance hashcode # {}",
 this.hashCode());
 }
}

Scala:

case class Result
class WorkerActor extends Actor with ActorLogging {
 var state: Int = 0

 override def preStart() {
 log.info("Starting WorkerActor instance hashcode # {}",
 this.hashCode())
 }
 override def postStop() {
 log.info("Stopping WorkerActor instance hashcode # {}",
 this.hashCode())
 }

Chapter 6

[135]

 def receive: Receive = {
 case value: Int =>
 if (value <= 0)
 throw new ArithmeticException("Number equal or less
 than zero")
 else
 state = value
 case result: Result =>
 sender ! state
 case ex: NullPointerException =>
 throw new NullPointerException("Null Value Passed")
 case _ =>
 throw new IllegalArgumentException("Wrong Argument")
 }
}

If we see the code for WorkerActor, we have created an actor that holds its state
using the int state variable.

Java:

public class WorkerActor extends UntypedActor {
private int state = 0;

}

Scala:

class WorkerActor extends Actor with ActorLogging {
 var state: Int = 0
}

We have overloaded preStart() and postStop() in order to keep track of when the
actor is getting created or destroyed.

In the OnReceive() method, we implement the following checks:

• Check whether the message is not NULL, if yes, then throw a
NullPointerException ()

• If the message is of type integer but its value is less than or equal to zero, we
throw ArithmeticException()

• If the message is of instance Result(), then we return the current state
of the actor

• Any other message sent is responded back with
IllegalArgumentException()

www.allitebooks.com

http://www.allitebooks.org

Supervision and Monitoring

[136]

Java:

public void onReceive(Object o) throws Exception {
if (o == null) {

 throw new NullPointerException("Null Value Passed");
} else if (o instanceof Integer) {

 Integer value = (Integer) o;
 if (value <= 0) {
 throw new ArithmeticException("Number equal or

 less than zero");
 } else
 state = value;

} else if (o instanceof Result) {
 getSender().tell(state);

} else {
 throw new IllegalArgumentException("Wrong

 Argument");
}

}

Scala:

 def receive: Receive = {
 case value: Int =>
 if (value <= 0)
 throw new ArithmeticException("Number equal or less
 than zero")
 else
 state = value
 case result: Result =>
 sender ! state
 case ex: NullPointerException =>
 throw new NullPointerException("Null Value Passed")
 case _ =>
 throw new IllegalArgumentException("Wrong Argument")
 }

Next, let's move to the SupervisorActor. SupervisorActor will be the parent of the
WorkerActor and also implement the SupervisorStrategy.

Java:

public class SupervisorActor extends UntypedActor {

private ActorRef childActor;

Chapter 6

[137]

 public SupervisorActor() {
 childActor = getContext().actorOf(new Props(WorkerActor.
class),
 "workerActor");
 }

 private static SupervisorStrategy strategy =
 new OneForOneStrategy(10,Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) {
 return resume();
 } else if (t instanceof
NullPointerException) {
 return restart();
 } else if (t instanceof
IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });

 @Override
 public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }

 public void onReceive(Object o) throws Exception {
 if (o instanceof Result) {
 childActor.tell(o, getSender());
 } else
 childActor.tell(o);
 }
}

Scala:

class SupervisorActor extends Actor with ActorLogging {

 val childActor = context.actorOf(Props[WorkerActor],
 name = "workerActor")

Supervision and Monitoring

[138]

 override val supervisorStrategy = OneForOneStrategy(
 maxNrOfRetries = 10, withinTimeRange = 10 seconds) {

 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }
 def receive = {
 case result: Result =>
 childActor.tell(result, sender)
 case msg: Object =>
 childActor ! msg
 }
}

We create the SupervisorActor and it holds the reference to the WorkerActor. We
create the WorkerActor as part of the Supervisor constructor.

Java:

public class SupervisorActor extends UntypedActor {

private ActorRef childActor;

public SupervisorActor() {
childActor = getContext().actorOf(new Props(WorkerActor.

class),
 "workerActor");
}

}

Scala:

class SupervisorActor extends Actor with ActorLogging {

 val childActor = context.actorOf(Props[WorkerActor],
 name = "workerActor")

}

Chapter 6

[139]

Next, we define the SupervisorStrategy that will be applicable for supervising the
WorkerActor.

Java:

private static SupervisorStrategy strategy =
 new OneForOneStrategy(10,Duration.parse("10 second"),
 new Function<Throwable, Directive>() {

 public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) {
 return resume();
 } else if (t instanceof

NullPointerException) {
 return restart();
 } else if (t instanceof

IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

Scala:

 override val supervisorStrategy = OneForOneStrategy(
 maxNrOfRetries = 10, withinTimeRange = 10 seconds) {

 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }

Supervision and Monitoring

[140]

Let's examine the key components of the SupervisorStrategy. The first two
arguments define the maximum number of tries and time limit within which the
maximum number of tries are valid. For our SupervisorStrategy, the third
argument is important. Let's examine the decider for more details.

Java:

public Directive apply(Throwable t) {
if (t instanceof ArithmeticException) {

 return resume();
} else if (t instanceof NullPointerException) {

 return restart();
} else if (t instanceof IllegalArgumentException) {

 return stop();
} else {

 return escalate();
}

}

Scala:

 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate

What we have done for each of the exceptions we have identified, we have mapped
the strategy for the actor. For example, if the actor throws ArithmeticException(),
our SupervisorStrategy is to resume() the processing as though nothing has
happened. In case IllegalArgumentException() is thrown, our strategy is to
stop() the actor, so that it can process no messages.

So, we have created WorkerActor and SupervisorActor, let's see how the whole
thing works. Let's put together ActorSystem and see SupervisorStrategy working.
Let's pass the messages and see what is displayed on the console.

Java:

ActorSystem system = ActorSystem.create("faultTolerance");

LoggingAdapter log = Logging.getLogger(system, system);

Integer originalValue = Integer.valueOf(0);

ActorRef supervisor = system.actorOf(new
 Props(SupervisorActor.class), "supervisor");

Chapter 6

[141]

log.info("Sending value 8, no exceptions should be thrown! ");
supervisor.tell(Integer.valueOf(8));

Integer result = (Integer) Await.result(
 Patterns.ask(supervisor, new Result(), 5000),
 Duration.create(5000, TimeUnit.MILLISECONDS));

log.info("Value Received-> {}", result);

Scala:

val system = ActorSystem("faultTolerance")
val log = system.log
val originalValue: Int = 0

val supervisor = system.actorOf(Props[SupervisorActor],
 name = "supervisor")

log.info("Sending value 8, no exceptions should be thrown! ")
var mesg: Int = 8
supervisor ! mesg

implicit val timeout = Timeout(5 seconds)
var future = (supervisor ? new Result).mapTo[Int]
var result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

The output on console is as follows:

We create an instance of Supervisor actor, in whose constructor WorkerActor gets
instantiated. On the console we can see the preStart() method of the WorkerActor
indicating the start of the WorkerActor instance.

We pass on the Integer value of 8, which is then passed on to the WorkerActor. The
Integer value is correct and is set as the state of the actor.

Next, we get the state of WorkerActor by sending the message Result() and asking
for the result.

As we can see, the result returned is 8.

Supervision and Monitoring

[142]

Next, lets try sending a negative value for which our WorkerActor should throw an
exception – ArithmeticException().

Java:

log.info("Sending value -8, ArithmeticException should be thrown!
 Our Supervisor strategy says resume !");
supervisor.tell(Integer.valueOf(-8));

result = (Integer) Await.result(
 Patterns.ask(supervisor, new Result(), 5000),
 Duration.create(5000, TimeUnit.MILLISECONDS));

log.info("Value Received-> {}", result);

Scala:

log.info("Sending value -8, ArithmeticException should be thrown!
 Our Supervisor strategy says resume!")
mesg = -8
supervisor ! mesg

future = (supervisor ? new Result).mapTo[Int]
result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

The output on console is as follows:

Chapter 6

[143]

We send the message with the value -8, and as expected the WorkerActor throws
the exception – ArithmeticException. Now, our SupervisorStrategy for
handling ArithmeticException was resume(), which means the actor can continue
with its current state.

Next, we get the state of WorkerActor by sending the message Result() and asking
for the result.

As we can see the result returned is 8, which is consistent because we asked the
Actor to resume. As a result, the previous state of WorkerActor should be retained.

Java:

log.info("Sending value null, NullPointerException should be thrown!
 Our Supervisor strategy says restart !");
supervisor.tell(null);

result = (Integer) Await.result(
Patterns.ask(supervisor, new Result(), 5000),
Duration.create(5000, TimeUnit.MILLISECONDS));

log.info("Value Received-> {}", result);

Scala:

log.info("Sending value null, NullPointerException should be thrown!
 Our Supervisor strategy says restart !")
supervisor ! new NullPointerException

future = (supervisor ? new Result).mapTo[Int]
result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

Supervision and Monitoring

[144]

The output on console is as follows:

Next, we try sending a null object to WorkerActor. WorkerActor will throw a
NullPointerException when the passed message is null.

The SupervisorStrategy configured for NullPointerException is to restart. We
can see that WorkerActor is stopped and restarted.

Next, we get the state of WorkerActor by sending the message Result() and asking
for the result.

As we can see the result returned is 0, which is the original default state value of
WorkerActor because we asked the actor to restart.

Chapter 6

[145]

Java:

log.info("Sending value \"String\", IllegalArgumentException should be
thrown! Our Supervisor strategy says Stop !");

supervisor.tell(String.valueOf("Do Something"));

Scala:

log.info("Sending value \"String\", IllegalArgumentException should be
thrown! Our Supervisor strategy says Stop !")

supervisor ? "Do Something"

The output on console is as follows:

Next, we try sending an invalid message object to WorkerActor. WorkerActor
will throw an IllegalArgumentException when the passed message is invalid
or not recognized.

The SupervisorStrategy configured for IllegalArgumentException is to stop.
We can see that WorkerActor is stopped.

This completes the example. We saw how the supervisor handles the actor's failure
and how the supervisor can take the right calls to deal with those failures.

Supervision and Monitoring

[146]

All-For-One strategy
The All-For-One strategy implies that in case of failure of any one actor under the
supervisor, the strategy will apply to all the actors under its supervision. Meaning,
if we as SupervisorActor are managing actor 1 and actor 2 and employing the
All-For-One strategy, then the supervisor strategy will be applicable to both actor 1
and actor 2:

This example is similar to the example we saw in the One-For-One strategy,
except that SupervisorActor here manages two actors – WorkerActor1 and
WorkerActor2.

Java:

public class SupervisorActor2 extends UntypedActor {

public ActorRef workerActor1;
public ActorRef workerActor2;

public SupervisorActor2() {
workerActor1 = getContext().actorOf(

 new Props(WorkerActor1.class),"workerActor1");
workerActor2 = getContext().actorOf(

 new Props(WorkerActor2.class),"workerActor2");
}

Chapter 6

[147]

 private static SupervisorStrategy strategy =
 new AllForOneStrategy(10,
 Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) {
 return resume();
 } else if (t instanceof
NullPointerException) {
 return restart();
 } else if (t instanceof
IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });

 @Override
 public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }

 public void onReceive(Object msg) throws Exception {
 if (msg instanceof Result) {
 workerActor1.tell(msg, getSender());
 } else
 workerActor1.tell(msg);
 }
}

Scala:

class SupervisorActor extends Actor with ActorLogging {
 import akka.actor.OneForOneStrategy
 import akka.actor.SupervisorStrategy._
 import akka.util.duration._
 import org.akka.essentials.supervisor.example2.Result

 val workerActor1 = context.actorOf(Props[WorkerActor1],
 name = "workerActor1")
 val workerActor2 = context.actorOf(Props[WorkerActor2],
 name = "workerActor2")

 override val supervisorStrategy = AllForOneStrategy(
 maxNrOfRetries = 10, withinTimeRange = 10 seconds) {

Supervision and Monitoring

[148]

 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }

 def receive = {
 case result: Result =>
 workerActor1.tell(result, sender)
 case msg: Object =>
 workerActor1 ! msg

 }
}

The Worker actors are similar to each other. The key difference in SupervisorActor
is SupervisorStrategy.

Java:

private static SupervisorStrategy strategy =
 new AllForOneStrategy(10,

 Duration.parse("10 second"),
 new Function<Throwable, Directive>() {

 public Directive apply(Throwable t) {
 if (t instanceof ArithmeticException) {
 return resume();
 } else if (t instanceof

NullPointerException) {
 return restart();
 } else if (t instanceof

IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });

@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

Chapter 6

[149]

Scala:

 override val supervisorStrategy = AllForOneStrategy(
 maxNrOfRetries = 10, withinTimeRange = 10 seconds) {

 case _: ArithmeticException => Resume
 case _: NullPointerException => Restart
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }

Here we define AllForOneStrategy() with similar arguments as defined in the
previous one.

Let's put together ActorSystem and see SupervisorStrategy working. Let's pass
the messages and see what is displayed on the console.

Java:

ActorSystem system = ActorSystem.create("faultTolerance");

LoggingAdapter log = Logging.getLogger(system, system);

Integer originalValue = Integer.valueOf(0);

ActorRef supervisor = system.actorOf(
 new Props(SupervisorActor2.class),"supervisor");

log.info("Sending value 8, no exceptions should be thrown! ");
supervisor.tell(Integer.valueOf(8));

Integer result = (Integer) Await.result(
Patterns.ask(supervisor, new Result(), 5000),
Duration.create(5000, TimeUnit.MILLISECONDS));

log.info("Value Received-> {}", result);

Scala:

val system = ActorSystem("faultTolerance")
val log = system.log
val originalValue: Int = 0

val supervisor = system.actorOf(Props[SupervisorActor],
 name = "supervisor")

Supervision and Monitoring

[150]

log.info("Sending value 8, no exceptions should be thrown! ")
var mesg: Int = 8
supervisor ! mesg

implicit val timeout = Timeout(5 seconds)
var future = (supervisor ? new Result).mapTo[Int]
var result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

The output on console is as follows:

We create an instance of ActorSupervisor, in whose constructor WorkerActor1
and WorkerActor2 gets instantiated. On the console we can see the preStart()
method of WorkerActor1 and WorkerActor2 indicating the start of the
WorkerActor instance.

We pass on the Integer value of 8, which is then passed on to WorkerActor1.
The Integer value is correct and is set as the state of the actor.

Next, we get the state of WorkerActor1 by sending the message Result() and
asking for the result.

As we can see the result returned is 8.

Next, let's try sending a negative value for which our WorkerActor1 should throw
an exception – ArithmeticException().

Java:

log.info("Sending value -8, ArithmeticException should be thrown!
 Our Supervisor strategy says resume !");
supervisor.tell(Integer.valueOf(-8));

result = (Integer) Await.result(
Patterns.ask(supervisor, new Result(), 5000),
Duration.create(5000, TimeUnit.MILLISECONDS));

Chapter 6

[151]

log.info("Value Received-> {}", result);

Scala:

log.info("Sending value -8, ArithmeticException should be thrown!
 Our Supervisor strategy says resume !")
mesg = -8
supervisor ! mesg

future = (supervisor ? new Result).mapTo[Int]
result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

The output on console is as follows:

We send the message with the value -8, as expected WorkerActor throws the
exception – ArithmeticException. Now, our SupervisorStrategy for handling
ArithmeticException was resume(), which means the actor can continue with
its current state.

Next, we get the state of WorkerActor by sending the message Result() and asking
for the result.

As we can see the result returned is 8, which is consistent because we asked the actor
to resume. As a result, the previous state of WorkerActor should be retained.

Supervision and Monitoring

[152]

Java:

log.info("Sending value null, NullPointerException should be thrown!
 Our Supervisor strategy says restart !");
supervisor.tell(null);

result = (Integer) Await.result(
Patterns.ask(supervisor, new Result(), 5000),
Duration.create(5000, TimeUnit.MILLISECONDS));

log.info("Value Received-> {}", result);

Scala:

log.info("Sending value null, NullPointerException should be thrown!
Our Supervisor strategy says restart !")
supervisor ! new NullPointerException

future = (supervisor ? new Result).mapTo[Int]
result = Await.result(future, timeout.duration)

log.info("Value Received-> {}", result)

The output on console is as follows:

Chapter 6

[153]

Next, we try sending a null object to WorkerActor1. WorkerActor1 will throw a
NullPointerException when the passed message is null.

The SupervisorStrategy configured for NullPointerException is to restart.
We can see that both WorkerActor1 and WorkerActor2 are stopped and restarted.
Failure of one actor meant that SupervisorStrategy applied to all the actors,
leading to the restart of both the actors.

Next, we get the state of WorkerActor1 by sending the message Result() and
asking for the result.

As we can see the result returned is 0, which is the original default state value of
WorkerActor1 because we asked the actor to restart.

Java:

log.info("Sending value \"String\", IllegalArgumentException should be
thrown! Our Supervisor strategy says Stop !");

supervisor.tell(String.valueOf("Do Something"));

Scala:

log.info("Sending value \"String\", IllegalArgumentException should be
thrown! Our Supervisor strategy says Stop !")

supervisor ? "Do Something"

The output on console is as follows:

Supervision and Monitoring

[154]

Next, we try sending an invalid message object to WorkerActor1. WorkerActor1
throws an IllegalArgumentException when the passed message is invalid or
not recognized.

SupervisorStrategy configured for IllegalArgumentException is to stop().
We can see both the Worker actors are stopped, implying that the configured
AllForOneStrategy is applied to the actors managed by the supervisor.

This completes the second example. We saw how the supervisor handles the actor's
failure and how the supervisor can take the right calls to deal with those failures. The
strategy employed by the supervisor is applied to all the actors managed.

Lifecycle monitoring
Besides SupervisorStrategy, there is another way to monitor the actor lifecycle.
The monitoring strategy provides a mechanism where any actor can listen to certain
events on another actor. Based on these events, the listening actor can direct another
actor or it can take decisions on how to handle the actor termination. Some of the
guidelines when lifecycle monitoring is required are as follows:

• The actor monitoring is usually used when the actors in question are not
part of your hierarchy. So actors at the horizontal level are primarily the
candidates for monitoring.

• When the supervisor wants to terminate the child actors instead of just
restarting (in order to clear the mailbox attached to the actors), monitoring
on the actor's termination is used.

• When the child actor is terminated because of an external event (such as
PoisonPill from another actor or a system.stop() request), in this case,
the supervisor will be required to monitor and take an action.

The listener's events provided are only for actor's termination events, unlike
supervisor's where the SupervisorActor reacts to the failures also. This service
is provided by the DeathWatch component of the ActorSystem.

Chapter 6

[155]

In order to monitor an actor for termination, the actor needs to register itself with the
Monitoring actor:

Let's go ahead and create a simple WorkerActor that accepts the message of type
instanceof Integer only. If you send any other message, the WorkerActor
shuts itself down.

Java:

public class Result {}
public class DeadWorker {}public class RegisterWorker {

ActorRef worker;
ActorRef supervisor;

public RegisterWorker(ActorRef worker, ActorRef supervisor) {
this.worker = worker;
this.supervisor = supervisor;

}

public ActorRef getWorker() {
return worker;

}

public ActorRef getSupervisor() {
return supervisor;

}
}

Supervision and Monitoring

[156]

public class WorkerActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext().system(),
 this);
 private int state = 0;

 @Override
 public void preStart() {
 log.info("Starting WorkerActor instance hashcode # {}",
 this.hashCode());
 }

 public void onReceive(Object o) throws Exception {
 if (o instanceof Integer) {
 Integer value = (Integer) o;
 state = value;
 log.info("Received a message " + value);
 } else if (o instanceof Result) {
 getSender().tell(state);
 } else {
 throw new IllegalArgumentException("Wrong Argument");
 }
 }

 @Override
 public void postStop() {
 log.info("Stopping WorkerActor instance hashcode # {}",
 this.hashCode());

 }
}

Scala:

case class Result
case class DeadWorker
case class RegisterWorker(val worker: ActorRef,
 val supervisor: ActorRef)

class WorkerActor extends Actor with ActorLogging {
 import org.akka.essentials.supervisor.example1.Result
 var state: Int = 0

 override def preStart() {
 log.info("Starting WorkerActor instance hashcode # {}",
 this.hashCode())
 }
 override def postStop() {

Chapter 6

[157]

 log.info("Stopping WorkerActor instance hashcode # {}",
 this.hashCode());
 }
 def receive: Receive = {
 case value: Int =>
 state = value
 case result: Result =>
 sender ! state
 case _ =>
 context.stop(self)
 }
}

Next, we will create MonitorActor, that will watch WorkerActor for termination
and will be intimated via the Terminated message.

Java:

public class MonitorActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(),

 this);

Map<ActorRef, ActorRef> monitoredActors =
 new HashMap<ActorRef, ActorRef>();

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof Terminated) {
 final Terminated t = (Terminated) message;
 if (monitoredActors.containsKey(t.getActor())) {
 log.info("Received Worker Actor Termination

Message ->
 {}", t.getActor().path());

 log.info("Sending message to Supervisor");
 monitoredActors.get(t.getActor()).tell(

 new DeadWorker());
 }

} else if (message instanceof RegisterWorker) {
 RegisterWorker msg = (RegisterWorker) message;
 getContext().watch(msg.worker);
 monitoredActors.put(msg.worker, msg.supervisor);

} else {
 unhandled(message);

}
}

}

Supervision and Monitoring

[158]

Scala:

class MonitorActor extends Actor with ActorLogging {

 var monitoredActors = new HashMap[ActorRef, ActorRef]

 def receive: Receive = {
 case t: Terminated =>
 if (monitoredActors.contains(t.actor)) {
 log.info("Received Worker Actor Termination Message -> "
 + t.actor.path)
 log.info("Sending message to Supervisor")
 val value: Option[ActorRef] = monitoredActors.get(t.actor)
 value.get ! new DeadWorker()
 }

 case msg: RegisterWorker =>
 context.watch(msg.worker)
 monitoredActors += msg.worker -> msg.supervisor
 }
}

In order to monitor WorkerActor, the MonitorActor needs to be passed the
ActorRef of the WorkerActor. In this case, we have passed the WorkerActor
reference along with the supervisor reference as a message via RegisterWorker
to be watched by the MonitorActor.

The key here is the statement that registers the actor to watch for termination events.

Java:

this.getContext().watch();

Scala:

getContext().watch()

When WorkerActor terminates, a Terminated event is sent to MonitorActor, which
can then be used to notify other actors about WorkerActor termination.

Let's just run the actor and see how MonitorActor receives the Termination
message when WorkerActor dies.

Chapter 6

[159]

Java:

ActorSystem system = ActorSystem.create("faultTolerance");

ActorRef supervisor = system.actorOf(
 new Props(SupervisorActor.class),"supervisor");

supervisor.tell(Integer.valueOf(10));
supervisor.tell("10");

Thread.sleep(5000);

supervisor.tell(Integer.valueOf(10));

system.shutdown();

Scala:

val system = ActorSystem("faultTolerance")

val supervisor = system.actorOf(Props[SupervisorActor],
 name = "supervisor")

var mesg: Int = 8
supervisor ! mesg

supervisor ! "Do Something"

Thread.sleep(4000)
supervisor ! mesg

system.shutdown

We create ActorRef for the two actors – SupervisorActor and MonitorActor.
Then we pass an Integer message to the supervisor and, subsequently, we pass a
string message to SupervisorActor. The first message should process normally;
the second message will lead to the shutdown of WorkerActor. As part of the actor
shutdown process, a Terminated message is published.

Supervision and Monitoring

[160]

The output on console is as follows:

So, we see how when WorkerActor shuts down, MonitorActor receives the
Terminated message. It is able to match the terminated actor to the ActorRef
already stored. If it matches, then it publishes the message to the supervisor to
restart WorkerActor.

Java:

if (message instanceof Terminated) {
final Terminated t = (Terminated) message;
if (monitoredActors.containsKey(t.getActor())) {

log.info("Received Worker Actor Termination Message ->
 {}", t.getActor().path());

Chapter 6

[161]

 log.info("Sending message to Supervisor");
 monitoredActors.get(t.getActor()).tell(
 new DeadWorker());
}

Scala:

case t: Terminated =>
 if (monitoredActors.contains(t.actor)) {
 log.info("Received Worker Actor Termination Message -> {}",
 t.actor.path)
 log.info("Sending message to Supervisor")
 val value: Option[ActorRef] = monitoredActors.get(t.actor)
 value.get ! new DeadWorker()
}

Fault tolerance
The key to a fault-tolerant application is to make use of the supervisors and lifecycle
monitoring techniques. These techniques can be used to manage not only the local
actors, but also remote actors. The supervisor hierarchy can be composed of local and
remote actors. Similarly, the application can monitor remote actors for Termination
messages. We cover remote actors in more detail in Chapter 9, Remote Actors.

In a large, distributed application, actors can fail when:

• There is a logic programming error when the message is received
(for example, you received a message with incomplete data)

• There is a failure of an external resource on which the actor is dependent (for
example, database connection, socket connection, file connection, and so on)

• The actor's internal state is corrupted over a period of time (especially when
the cause of the corruption is not known)

In any of the previous conditions, the actor may need to be resumed, restarted,
or stopped.

Supervision and Monitoring

[162]

Let's take an example of a Master–Slave kind of application where the Master
node passes messages to the Slave nodes for processing. The Master node uses
a RoundRobin Router to pass the messages to the remote actors on the Slave
nodes. The Master node and the Slave nodes are running in their JVM instances,
shown as follows:

Now, if we have to design such an application, the role of the supervisors and
lifecycle monitoring is very important. Let's go ahead and see how the actor
hierarchy is designed to handle failures in such a kind of application:

Chapter 6

[163]

In the previous solution, we have the Supervisor actor (S1) on the Master node,
which creates the actor references to each of the actors (A1-A4) on the Slave nodes.
Now the supervisor strategy in this case will be One-For-One, because the remote
actors on the Slave nodes are independent of each other and their failures are
isolated from each other. So in the case of any failure, the respective remote actors
can be restarted or resumed.

In addition, we have one Monitoring actor (M) that monitors the lifecycle of the
remote actors. So, in the case of any failure conditions, Monitor actor gets notified
of the remote actor's termination. Subsequently, the supervisor is informed of the
remote actor's failure. The idea is to make sure we do not pass any message to the
remote actor that is not available, and meanwhile we try to restart the remote actor.

To manage and monitor the lifecycle of the Monitoring actor (M) and Supervisor
actor (S1), we may create another Supervisor actor (S0) to manage both.

The more we monitor and respond to actor failures, the more our application will be
resistant to failures.

Summary
In this chapter, we have seen how we can use the supervisor strategy to build
linkages between the actors and handle failure of the actors in the hierarchy. The
actor hierarchy can go to any level of depth. In case the actors are not managed via
the same supervisor hierarchy, we can make use of lifecycle monitoring that
allows us to be notified when the actor terminates, so that the application can take
corrective action.

In the next chapter, we will examine how to have concurrency control using the
software transactional memory (STM). We will cover how to apply the transactional
concepts (begin/commit/rollback semantics) within the Actor Model.

Software Transactional
Memory

In this chapter, we shall cover the transactional model applicable to the actors.
We will see the various Akka constructs provided for the transactional concepts
(begin/commit/rollback semantics).

We will cover the following topics:

• Basics of transaction management and examine what is software
transactional memory

• Explore the Akka constructs provided for STM — transactors and agents

Transaction management
Transactions provide a mechanism to manage the application access to data (read or
write) in a multiuser environment. In a multiuser environment, concurrent access to
the data needs to be controlled to ensure data integrity. The transaction is designated
as a unit of work that contains a sequence of reads and writes.

The application must ensure that a transaction is fully committed if successful or
the entire unit is fully rolled back in case of failure. A very important characteristic
of transactions is that they are atomic, meaning that the user will assume either
all the actions that are part of the transaction are executed or none are executed.
The transaction should leave the data in a consistent state. Another important
characteristic of a transaction is isolation. Isolation mandates that each transaction
sees a consistent view of the data while manipulating the same. Other transactions
might be running in parallel, but each transaction should not see intermediate data
manipulations unless those transactions have successfully completed and committed
their actions.

Software Transactional Memory

[166]

In traditional applications where the data is stored in an underlying file system,
the transaction should also ensure durability. Durability means that transactional
changes persist in the data store once commit has been issued and any subsequent
failure will allow us to recover to the last commit. All in all, these are called the
ACID (atomicity, consistency, isolation, and durability) capabilities that guarantee
the reliable processing of a transaction. ACID is routinely used in the context of
database operations. A single logical operation on the data is called a transaction.
The transaction provides a reliable mechanism to ensure the concurrency control of
the shared access data. Data managed in storage (using DBMS or other mechanisms)
have well defined transaction mechanisms.

For the data/state held in memory, the concurrent programs generally need to
manipulate mutable data, and it may not be possible to roll back the set of actions.
Since the rollbacks are not easy, the handling of concurrency control in programming
languages means relying on conflict avoidance instead of conflict resolution. Java
supports concurrent access to the MUTABLE state by allowing multiple threads to
be created and executed simultaneously. In Java, every object has a synchronization
lock that can be held by only one thread at a time and be used to control access to
the object's state.

What is software transactional memory?
The whole concept of threads is based on the model of synchronized access to
the shared mutable state. Shared state means the same instance variables will be
accessed by multiple threads. Mutable means the value of the instance will change
over the lifetime and that change in the value needs to be managed.

For example, when two threads running simultaneously read a certain variable and
try to update the shared object. If the operations are not atomic and access to the
shared state is not mutually exclusive, the threads' execution tends to get interleaved,
leaving the mutable state in an incorrect state. Usage of locks may guarantee the
correct behavior, but it is likely to affect threads running into a deadlock problem,
with each acquiring locks in a different order and waiting for each other. As the
complexity of the application increases, the number of shared state variables along
with the number of locks required to manage those state variables keeps increasing.
Soon you end up with a situation where every thread or task requires some subset of
locks, and very soon you are facing the deadlock situation.

Chapter 7

[167]

To abstract the threading and locking hardships, software transactional memory
(STM), a concurrency-control mechanism for managing access to shared memory
in a concurrent environment has gained a lot of acceptance.

STM makes use of two concepts – optimism and transactions to manage the shared
concurrency control. Optimism means that we run multiple atomic blocks in
parallel, assuming there will be no errors. When we are done, we check for any
problems. If no problems are found, we update the state variables in the atomic
block. If we find problems then we roll back and retry. Optimistic concurrency
typically provides better scalability options than any other alternate approaches.
Secondly, STM is modeled on similar lines of database transaction handling. In the
case of STM, the Java heap is the transactional data set with begin/commit and
rollback constructs. As the objects hold the state in memory, the transaction only
implements the following characteristics – atomicity, consistency, and isolation.

STM as a concept has been implemented by multiple languages
and at times multiple implementations are available for one
language. Refer to the following website for more details:
http://en.wikipedia.org/wiki/Software_
transactional_memory#Implementations

Akka uses the ScalaSTM for implementing the STM model within Akka. STM treats
the entire Java heap as the transaction data set. If every memory location had to be
tracked and managed, even when not required, for access and update, that would
demand a huge amount of resources. So memory locations that need to be managed
are marked, resulting in a smaller number of memory locations to be managed.
ScalaSTM makes use of Refs (transactional references) that are bound to a single
memory location for its lifetime. Ref is a mutable cell that should only contain
IMMUTABLE data.

The Refs ensure that these mutable storage locations can only be modified within
a transaction. So, whenever there is a need to manage and track multiple pieces of
state variables and to perform operations that update these state variables all at once,
using Refs is the key. Whenever a state needs to be synchronized between threads,
we can use Refs.

Software Transactional Memory

[168]

Refs use Compare and Swap (CAS) semantics to enforce coordinated changes across
all Refs participating in the transaction:

The concept of optimistic concurrency is implemented using the CAS semantics.
We compare the values at a particular memory location to a given value, and if they
are the same, then we can modify the values at that particular location. The whole
idea is, before we enter the transaction, we read the values of the location we want
to modify. We go through the logic to modify the values. Once the logic is over, we
verify our initially read values against the current memory location value. If the
values are the same, we go ahead and update the memory locations. If not, we roll
back the transaction.

Let's take a simple example of ScalaSTM and see how the whole transactional model
works. The following is a ScalaSTM example, where we have two variables x and y
that have been declared as Ref and initialized to values 10 and 0 respectively:

val (x, y) = (Ref(10), Ref(0))

def swap = atomic { implicit txn =>
 x = x + y
 y = x - y
 x = x - y
}

def transfer(n: Int) {
 atomic { implicit txn =>
 x -= n
 y += n
 }
}

Chapter 7

[169]

We define two methods: swap() that takes in x and swaps their values; and
transfer() that takes in an integer n and removes the same from x and adds it into
y. The set of instructions that need to be performed as a transaction are grouped with
the atomic block.

When the two methods are executed in parallel by two threads, both the threads
read the initial values of the variables x and y. At the time of commit, the values of x
and y that were read originally are compared with the current values of x and y. In
the case of Thread 2, the values match. Thread 2 goes ahead and updates the x and
y values. When Thread 1 tries to commit the transaction, at that time, the values of x
and y do not match, making the transaction roll back, shown as follows:

For more details on ScalaSTM, please refer to the following website:
http://nbronson.github.com/scala-stm/index.html

Coordinated transactions
The Actor Model is based on the premise of small independent processes working in
isolation and where the state can be updated only via message passing. The actors
hold the state within themselves, but the asynchronous message passing means
there is no guarantee that a stable view of the state can be provided to the calling
components. For transactional systems like banking where account deposit and
withdrawal need to be atomic, this is a bad fit with an Actor Model.

So, if your Akka applications need to be implementing a shared state model and
providing a consensual, stable view of the state across the calling components, STM
provides the answer.

Software Transactional Memory

[170]

To manage multiple transactions running on separate threads as a single atomic
block, the concept of CommitBarrier is used. CommitBarrier is a synchronization
aid that is used as a single, common barrier point by all the transactions across
multiple threads. Once the barrier is reached, all the transactions commit
automatically. It is based on the Java's CountDownLatch.

Read more details on CountDownLatch here:
http://docs.oracle.com/javase/6/docs/api/
java/util/concurrent/CountDownLatch.html

Akka transactors are based on CommitBarrier, where the atomic blocks of each
actor (member) participating are treated as one, big single unit. Each actor will block
until everyone participating in the transaction has completed. This means that all the
actions executed as part of the atomic blocks by members of the CommitBarrier will
appear to occur as a single atomic action even though the members may be spread
across multiple threads. If any of the atomic blocks throw an exception or a conflict
happens, all the CommitBarrier members will roll back.

Akka provides a construct for coordinating transactions across actors called
coordinated.coordinated, which is used to define the transaction boundary in
terms of where the transaction starts, and the coordinated.coordinate() method
is used to add all the members that will participate in the same transaction context.
The following image shows how the actor's atomic blocks get added to the
coordinated block:

Chapter 7

[171]

Money transfer between two accounts
Let's take an example and see how the actors can participate in the transactions.
We will use the classic example of transfer of funds between two bank accounts.
We have an AccountActor that holds the account balance and account number
information. It has two operations – credit (add money to the account) and debit
(take money away from the account). In addition, we have the TransferActor object
that will hold the two AccountActor objects and then invoke the debit and credit
operations on the account objects. TransferActor is supervised by BankActor. From
the supervisor hierarchy perspective, the actors are aligned as follows:

To make sure that the money transfer in the account happens in a synchronized way,
we need to implement the following:

• In the account object, the state variable that needs to participate in the
transaction should be of type Ref (transaction reference). In our case, the
account balance will be Refs.

• The credit and debit operations in the account object need to be atomic.
• In the transfer object, the transaction boundary needs to be defined and the

account objects need to participate in the same transaction context.
• In addition, we define the supervisor policy in TransferActor and

BankActor to handle the transaction exceptions:

Software Transactional Memory

[172]

TransferActor on receiving the transfer message will begin the transaction context
to transfer the amount from one account to another. The two account objects will
then join the coordinated transaction so that the atomic methods of each of the
account objects will join the same transaction context. The following diagram depicts
the changes that need to be made for each of the objects:

To use transactors within your application, the following dependency needs to be
added to the maven pom.xml file:

<dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-transactor</artifactId>
 <version>2.0.1</version>

</dependency>

Let's jump into the code for these two actors and see how the transactor
mechanism works.

First, let's go through the AccountActor.

Java:

public class AccountActor extends UntypedActor {

LoggingAdapter log = Logging.getLogger(getContext()
 .system(), this);

String accountNumber;
//Use the scala STM Ref for state variables that need to
//participate in transactions
Ref.View<Float> balance = STM.newRef(Float.parseFloat("0"));

Chapter 7

[173]

 public AccountActor(String accNo, Float bal) {
 this.accountNumber = accNo;
 balance.set(bal);
 }

 @Override
 public void onReceive(Object o) throws Exception {
 if (o instanceof Coordinated) {
 Coordinated coordinated = (Coordinated) o;
 final Object message = coordinated.getMessage();
 if (message instanceof AccountDebit) {
 coordinated.atomic(new Runnable() {
 public void run() {
 AccountDebit accDebit =
 (AccountDebit) message;
 //check for funds availability
 if (balance.get() > accDebit.
 getAmount()) {
 Float bal = balance.get()
 - accDebit.getAmount();
 balance.set(bal);
 } else {
 throw new
 IllegalStateException(
 "Insufficient Balance");
 }
 }
 });
 } else if (message instanceof AccountCredit) {
 coordinated.atomic(new Runnable() {
 public void run() {
 AccountCredit accCredit =
 (AccountCredit) message;
 Float bal = balance.get()
 + accCredit.getAmount();
 balance.set(bal);
 }
 });
 }
 } else if (o instanceof AccountBalance) {
 // reply with the account balance
 sender().tell(new AccountBalance(accountNumber,
 balance.get()));
 }
 }
}

Software Transactional Memory

[174]

Scala:

class AccountActor(accountNumber: String, inBalance: Float)
 extends Actor {
 val balance = Ref(inBalance)
 def receive = {
 case value: AccountBalance =>
 sender ! new AccountBalance(accountNumber,
 balance.single.get)
 case coordinated @ Coordinated(message: AccountDebit) =>
 // coordinated atomic ...
 coordinated atomic { implicit t =>
 //check for funds availability
 if (balance.get(t) > message.amount)
 balance.transform(_ - message.amount)
 else
 throw new IllegalStateException(
 "Insufficient Balance")
 }
 case coordinated @ Coordinated(message: AccountCredit) =>
 // coordinated atomic ...
 coordinated atomic { implicit t =>
 balance.transform(_ + message.amount)
 }
 }
}

In the AccountActor, the first thing is the account balance state value that needs to
be implementing Ref. In this case, we have defined balance using the STM library
Ref.View<>.

Java:

Ref.View<Float> balance = STM.newRef(Float.parseFloat("0"));

Scala:

val balance = Ref(inBalance)

Next thing to define in the AccountActor are the atomic blocks for the credit and
debit operations.

For the credit operation, the change to the balance Ref is updated with the new value
within the atomic block.

Chapter 7

[175]

Java:

coordinated.atomic(new Runnable() {
public void run() {

AccountCredit accCredit = (AccountCredit) message;
Float bal = balance.get() + accCredit.getAmount();
balance.set(bal);

}
});

Scala:

case coordinated @ Coordinated(message: AccountCredit) =>
 // coordinated atomic ...
 coordinated atomic { implicit t =>
 balance.transform(_ + message.amount)
 }

For the debit operation, the check is done to make sure that the amount to be
withdrawn is less than the balance amount of the account. If not, an exception
is thrown.

Java:

coordinated.atomic(new Runnable() {
public void run() {

AccountDebit accDebit = (AccountDebit) message;
//check for funds availability
if (balance.get() > accDebit.getAmount()) {

 Float bal = balance.get()
 - accDebit.getAmount();

 balance.set(bal);
} else {

 throw new IllegalStateException(
 "Insufficient Balance");

}
}

});

Scala:

coordinated atomic { implicit t =>
//check for funds availability
 if (balance.get(t) > message.amount)
 balance.transform(_ - message.amount)
 else
 throw new IllegalStateException(
 "Insufficient Balance")
}

Software Transactional Memory

[176]

Moving on to the TransferActor, where we will start the transaction and pass the
messages on to the account actors for making the transfer. In the TransferActor, we
need to perform the following:

1. Initialize the two AccountActor objects with appropriate balances.
2. When the TransferMsg is received, start a new coordinated transaction and

pass the message to the two account actors in an atomic block.
3. If any of the account actors throw an exception, we capture the exception

in a try-catch block and cancel the transaction, leading to the rollback of the
account actor's state.

4. TransferActor also employs a fault-tolerant supervisor policy to handle the
account actors throwing exceptions.

First, we initialize the account actors with appropriate amounts.

Java:

 String fromAccount = "XYZ";
String toAccount = "ABC";
// sets the from account with initial balance of 5000
ActorRef from = context().actorOf(new Props(

 new UntypedActorFactory() {
public UntypedActor create() {

 return new AccountActor(fromAccount,
 Float.parseFloat("5000"));

}
}), fromAccount);
// sets the to account with initial balance of 1000
ActorRef to = context().actorOf(new Props(

 new UntypedActorFactory() {
public UntypedActor create() {

 return new AccountActor(toAccount,
 Float.parseFloat("1000"));

}
}), toAccount);

Scala:

 val fromAccount = "XYZ";
 val toAccount = "ABC";

 val from = context.actorOf(Props(new AccountActor(
 fromAccount, 5000)), name = fromAccount)
 val to = context.actorOf(Props(new AccountActor(
 toAccount, 1000)), name = toAccount)

Chapter 7

[177]

Next, we define the block to receive messages. Once we receive the message, we
start the coordinated transaction and send the messages to the account actors in
an atomic block.

Java:

 if (message instanceof TransferMsg) {
 final TransferMsg transfer = (TransferMsg) message;
 final Coordinated coordinated =

 new Coordinated(timeout);
 coordinated.atomic(new Runnable() {
 public void run() {
 // credit amount - will always be

//successful
 to.tell(coordinated.coordinate(

 new AccountCredit(transfer
 .getAmtToBeTransferred())));
 // debit amount - throws an exception if

 // funds insufficient
 from.tell(coordinated.coordinate(

 new AccountDebit(transfer

.getAmtToBeTransferred())));
 }
 });

}

Scala:

 case message: TransferMsg =>
 val coordinated = Coordinated()
 coordinated atomic { implicit t =>
 to ! coordinated(new AccountCredit(
 message.amtToBeTransferred))
 from ! coordinated(new AccountDebit(
 message.amtToBeTransferred))
 }

The last and most important part is the fault tolerance strategy to handle
the exceptions thrown when the transaction fails. We are tracking two
different transactions here – one is IllegalStateException, which is
thrown by the AccountActor in case of insufficient funds, and the second
is CoordinatedTransactionException, which is thrown when one of the
CommitBarrier members is unable to go through the transaction.

Software Transactional Memory

[178]

Java:

//catch the exceptions and apply the right strategy, in this
//case resume()
private static SupervisorStrategy strategy =
 new AllForOneStrategy(10,Duration.parse("10 second"),
 new Function<Throwable, Directive>() {

public Directive apply(Throwable t) {
 if (t instanceof CoordinatedTransactionException) {
 return resume();
 } else if (t instanceof IllegalStateException) {
 return resume();
 } else if (t instanceof IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
}

});
@Override
public SupervisorStrategy supervisorStrategy() {

return strategy;
}

Scala:

override val supervisorStrategy =
 AllForOneStrategy(maxNrOfRetries = 10,
 withinTimeRange = 10 seconds) {
 case _: CoordinatedTransactionException => Resume
 case _: IllegalStateException => Resume
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }

We are using the Resume directive here, which allows the Subordinate actors
(in this case the account actors) to go back to working mode and keep their existing
accumulated state. This means that, the account actors hold the previous known
stable view of the balance amount before the rolled-back transaction.

The Stop directive means the actors are stopped and they lose their existing state.
To use the actors again, you will need to initialize them again.

The Restart directive means the actors in question are stopped and restarted,
effectively meaning the actors are reinitialized to their original state.

Chapter 7

[179]

Here is the complete code of the TransferActor for reference. In addition, we have
included the code to get the current balance of the account after transfer messages.

Java:

public class TransferActor extends UntypedActor {
LoggingAdapter log = Logging.getLogger(getContext().system(),

 this);
 String fromAccount = "XYZ";

String toAccount = "ABC";

// sets the from account with initial balance of 5000
ActorRef from = context().actorOf(new Props(

 new UntypedActorFactory() {
public UntypedActor create() {

 return new AccountActor(fromAccount,
 Float.parseFloat("5000"));

}
}), fromAccount);
// sets the to account with initial balance of 1000
ActorRef to = context().actorOf(new Props(

 new UntypedActorFactory() {
public UntypedActor create() {

 return new AccountActor(toAccount,
 Float.parseFloat("1000"));

}
}), toAccount);

 Timeout timeout = new Timeout(5, TimeUnit.SECONDS);

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof TransferMsg) {
 final TransferMsg transfer = (TransferMsg) message;
 final Coordinated coordinated =

 new Coordinated(timeout);
 coordinated.atomic(new Runnable() {
 public void run() {
 // credit amount - will always be
 successful
 to.tell(coordinated.coordinate(

 new AccountCredit(transfer

 .getAmtToBeTransferred())));
 // debit amount - throws an exception if

 // funds insufficient

Software Transactional Memory

[180]

 from.tell(coordinated.coordinate(
 new AccountDebit(transfer

 .getAmtToBeTransferred())));
 }
 });
 } else if (message instanceof AccountBalance) {
 AccountBalance accBalance = (AccountBalance) message;
 // check the account number and return the balance
 if (accBalance.getAccountNumber().
 equals(fromAccount)) {
 from.tell(accBalance, sender());
 }
 if (accBalance.getAccountNumber().equals(toAccount))
{
 to.tell(accBalance, sender());
 }
 }else if(message instanceof AccountMsg){
 from.tell(message);
 }
 }

// catch the exceptions and apply the right strategy,
// in this case resume()
private static SupervisorStrategy strategy =
 new AllForOneStrategy(10,Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof CoordinatedTransactionException) {
 return resume();
 } else if (t instanceof IllegalStateException) {
 return resume();
 } else if (t instanceof IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
});

@Override
public SupervisorStrategy supervisorStrategy() {
 return strategy;
}
}

Chapter 7

[181]

Scala:

class TransferActor extends Actor {

 val fromAccount = "XYZ";
 val toAccount = "ABC";

 val from = context.actorOf(Props(new AccountActor(
 fromAccount, 5000)), name = fromAccount)
 val to = context.actorOf(Props(new AccountActor(
 toAccount, 1000)), name = toAccount)
 implicit val timeout = Timeout(5 seconds)
 override val supervisorStrategy =
 AllForOneStrategy(maxNrOfRetries = 10,
 withinTimeRange = 10 seconds) {
 case _: CoordinatedTransactionException => Resume
 case _: IllegalStateException => Resume
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }

 def receive: Receive = {
 case message: TransferMsg =>
 val coordinated = Coordinated()
 coordinated atomic { implicit t =>
 to ! coordinated(new AccountCredit(
 message.amtToBeTransferred))
 from ! coordinated(new AccountDebit(
 message.amtToBeTransferred))
 }
 case message: AccountBalance =>
 if (message.accountNumber.equalsIgnoreCase(fromAccount)) {
 from.tell(message, sender)
 } else if (message.accountNumber
 .equalsIgnoreCase(toAccount)) {
 to.tell(message, sender)
 }
 }
}

Software Transactional Memory

[182]

In TransferActor, we saw the actor managing the lifecycle of the account
actors created. The TransferActor initiates the coordinated transaction, which
means the exception occurring at the TransferActor needs to be managed by
its SupervisorActor, which in this case is the BankActor as defined in the actor
hierarchy earlier. This is shown in the following diagram:

BankActor is responsible for initializing TransferActor, and has an appropriate
supervisor strategy to manage the exceptions or failures coming from TransferActor.

Java:

public class BankActor extends UntypedActor {

ActorRef transfer = getContext().actorOf(
 new Props(TransferActor.class),"TransferActor");

@Override
public void onReceive(Object message) throws Exception {

if (message instanceof TransferMsg) {
 transfer.tell(message);

} else if (message instanceof AccountBalance) {
 AccountBalance account = (AccountBalance) Await.

result(
 ask(transfer, message, 5000),

 Duration.parse("5 second"));

 System.out.println("Account #" +
 account.getAccountNumber() + " , Balance "
 + account.getBalance());

 getSender().tell(account);

Chapter 7

[183]

 }else if(message instanceof AccountMsg){
 transfer.tell(message);
 }
 }

// catch the exceptions and apply the right strategy, in this case
//resume()
 private static SupervisorStrategy strategy = new
 OneForOneStrategy(10,Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof
CoordinatedTransactionException) {
 return resume();
 } else if (t instanceof IllegalStateException)
{
 return stop();
 } else if (t instanceof
 IllegalArgumentException) {
 return stop();
 } else {
 return escalate();
 }
 }
 });
 @Override
 public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }
}

Scala:

class BankActor extends Actor with ActorLogging {
 val transferActor = context.actorOf(Props[TransferActor],
 name = "TransferActor")
 implicit val timeout = Timeout(5 seconds)
 def receive = {
 case transfer: TransferMsg =>
 transferActor ! transfer
 case balance: AccountBalance =>
 val future = ask(transferActor,
 balance).mapTo[AccountBalance]
 val account = Await.result(future, timeout.duration)
 log.info("Account #{} , Balance {}", account.accountNumber,
 account.accountBalance)
 }

Software Transactional Memory

[184]

override val supervisorStrategy = AllForOneStrategy(maxNrOfRetries =
10, withinTimeRange = 10 seconds) {
 case _: CoordinatedTransactionException => Resume
 case _: IllegalStateException => Stop
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }
}

This completes the example where we saw how the actors can participate in a
transaction and how STM is used to commit or roll back the transaction.

Transactor
In the previous section, we saw the usage of coordinated transactions in untyped
actors. Now, it is possible to have scenarios where one operation participates in a
transaction if applicable; otherwise, it can perform independently
of the transaction as well.

Akka transactors combine the Actor Model and STM to provide the best of
both worlds, allowing you to write transactional, asynchronous, event-based
message flow applications, and gives you composed ATOMIC, arbitrary, deep
message flows.

For example, in the money transfer example, the debit/credit operations for the
account can be used outside the client-initiated transactions. So when the user just
withdraws money from his account or deposits money in the account, the update to
the account balance initiates a new transaction. But the same debit/credit operation
can participate as part of the larger transfer transaction.

For this recurrent pattern, Akka provides a construct called UntypedTransactor in
Java and Transactor in Scala. UntypedTransactor extends the UntypedActor, but
provides methods to handle and join coordinated transactions.

Transactor allows us to segregate the message flow into two parts – one that
participates in transactions and needs to execute within the atomic block and one
where the messages are normally processed. When we use the transactor model, we
need not directly deal with the coordinated object. The wrapping of the messages
within the coordinated object is done transparently by the transactor construct.

Chapter 7

[185]

Money transfer between two
accounts – take two
Let's go back to our previous money transfer example between two accounts and
enhance the same to understand how the transactors can be used. In the previous
example, AccountActor was defined as UntypedActor and we had one message
loop. Within that message loop, we segregated the messages using coordinated.
atomic() block for messages that needed to be processed as atomic blocks of
transaction versus processing of normal messages.

Transactor provides methods such as:

void atomically(Object msg)

The message can either be a coordinated message or a normal message. When a
coordinated message comes, the method participates in the incoming coordinated
transaction context. If a normal message comes, it creates a new coordinated
transaction context and runs the method within that context.

To completely bypass coordinated transactions, override the normal method. Any
message matched by normal will not be matched by the other methods, and will not
be involved in coordinated transactions:

boolean normally(Object message)

If you want to coordinate with other transactors, then override the coordinate
method. The coordinate method maps a message to a set of SendTo objects, pairs
of ActorRef, and a message:

Set<SendTo> coordinate(Object message)

Let's go ahead and rewrite the code for AccountActor using the transactor model.

Java:

public class AccountActor extends UntypedTransactor {
String accountNumber;
// Use the scala STM Ref for state variables that need to
// participate in transactions
Ref.View<Float> balance = STM.newRef(Float.parseFloat("0"));

public AccountActor(String accNo, Float bal) {
this.accountNumber = accNo;
balance.set(bal);

}

Software Transactional Memory

[186]

 // default method to be overridden
 @Override
 public void atomically(Object message) throws Exception {
 if (message instanceof AccountDebit) {
 AccountDebit accDebit = (AccountDebit) message;
 // check for funds availability
 if (balance.get() > accDebit.getAmount()) {
 Float bal = balance.get() - accDebit.
getAmount();
 balance.set(bal);
 } else {
 throw new IllegalStateException(
 "Insufficient Balance");
 }
 } else if (message instanceof AccountCredit) {
 AccountCredit accCredit = (AccountCredit) message;
 Float bal = balance.get() + accCredit.getAmount();
 balance.set(bal);
 }
 }

 // To completely bypass coordinated transactions override the
 //normally method.
 @Override
 public boolean normally(Object message) {
 if (message instanceof AccountBalance) {
 // reply with the account balance
 sender().tell(new AccountBalance(accountNumber,
 balance.get()));
 return true;
 }
 return false;
 }
}

Scala:

class AccountActor(accountNumber: String, inBalance: Float)
 extends Transactor {

 val balance = Ref(inBalance)
 def atomically = implicit txn => {
 case message: AccountDebit =>
 if (balance.single.get < message.amount)
 throw new IllegalStateException("Insufficient Balance")
 else
 balance transform (_ - message.amount)

 case message: AccountCredit =>
 balance transform (_ + message.amount)
 }

Chapter 7

[187]

 override def normally: Receive = {
 case value: AccountBalance =>
 sender ! new AccountBalance(accountNumber,
 balance.single.get)
 }
}

In AccountActor, we have overridden the methods atomically(Object msg) and
normally(Object msg) to filter out messages according to whether they require
transactions or not.

When the messages are received by the transactor (AccountActor in this case) for
action and are received as part of the atomic block, the transactor will check for an
existing coordinated transaction. If it exists, then the messages will participate as
members in the bigger transactions.

This completes the view of the various constructs provided by the transactor as part
of the Akka STM.

Agents
Akka provides another construct called agents. As part of the transactors we saw
the usage of Refs and how they support and coordinate synchronous change of
multiple locations in a transaction. On the other hand, agents provide independent,
asynchronous change of individual locations. Agents provide shared access to the
immutable state.

Akka agents are modeled on the Clojure agents. Clojure agents are reactive, not
autonomous, that is, there is no imperative message loop and no blocking received.
Clojure agents are native threads that are managed in thread pools for performance.
Agents' primary plus point is that they run on a different thread. One can get the
value of the agent without any block calls, and any state changes are effected by
applying a function to its value. These state changes are applied in an asynchronous
way, so that there is no way to know when the function will run and its changes will
be applied.

Akka's Actor Model is based on the message-passing
model made popular by Erlang. In an Actor Model, state is
encapsulated within an Actor and can only be mutated via the
passing of values. In the Actor Model, even for reading the
actor state, you need to pass a message and wait before the
Actor responds back. Agent is modeled on the premise that
reading the state should not be a blocking call.

Software Transactional Memory

[188]

Agents are integrated with STM. Whenever an agent is used within the context of
the transaction, it will participate in the transaction. Any updates made within the
transaction are held until the transaction commits or the update is discarded in the case
of an aborted transaction. You make use of agents wherever you want parallel reads
with serial updates of the immutable state. Agents are used outside the Actor Model.

To use agents within your application, the following dependency needs to be added
to the maven file:

<dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-agent</artifactId>
 <version>2.0.1</version>

</dependency>

Creating agents
Agent creation is simple and straightforward. Agents are defined by passing the
generic type and initialized with the value along with the ActorSystem.

Java:

ActorSystem system = ActorSystem.create("agent-example");

Agent<String> agent = new Agent<String>(String.valueOf("default-
value"), system);

Scala:

implicit val system = ActorSystem("agent-example ")

val agent = Agent("default-value")

Updating agent values
Agent values can be updated by sending the new value or sending a function that
transforms the current value. Updates to agents are atomic and asynchronous,
meaning that there is no guarantee when the update will be applied, but they will be
applied definitely. From a single thread, all updates to the agent occur in the same
order as they are applied.

Simply sending the new value is easy.

Java:

agent.send("change value");

Chapter 7

[189]

Scala:

agent send "change value"

Another method to update the agent value is to apply a function.

Java:

agent.send(new Function<String, String>() {
 public String apply(String inStr) {
 return inStr.toLowerCase();
 }

});

Scala:

agent send (_ toLowerCase())

There is another method provided – sendOff that can be used to pass on long-running
functions. In the case of sendOff, the functions are computed on a separate thread so
as not to block the agent thread. The ability to compose agents using functions, which
allows you to send different values depending on context, makes agents shine.

Reading agent values
To read an agent's current value, there is no need to pass any message, and it
happens immediately. Agent reads for the state are synchronous.

Java:

String result = agent.get();

Scala:

val result = agent()

Read for the agent returns immediately, but at times, you may have to read the agent
value after all the updates to that agent have been applied. In that case, you can use
the Timeout mechanism to wait for a certain period before reading the agent value.

Java:

String result = agent.await(new Timeout(5, SECONDS));

Scala:

implicit val timeout = Timeout(5 seconds)
val result = agent.await

Here the SECONDS is imported via java.util.concurrent.TimeUnit.SECONDS.

Software Transactional Memory

[190]

Stopping agents
Once the agent usage is complete, the application can call the close() method on
the agent, so that garbage collection can take place unless, a reference is held.

Java:

agent.close();

Scala:

agent.close()

In Akka, agent is implemented as a wrapper over
ScalaSTM Refs.

Summary
In this chapter, we covered the basics of the transaction management and STM.
We explored the Akka construct for STM – transactors that are implemented via
Refs, and UntypedTransactor instances that provide the automated, coordinated
services for managing and updating Refs. Lastly, we explored the agents, modeled
on the Clojure agents that provide an uncoordinated, asynchronous change of
individual locations.

In the next chapter, we will cover what it takes to make an Akka application ready
for production. We will explore how to write unit tests involving actors, managing
environment configuration changes and deployment strategy.

Deployment Ready
An application, to be ready to go to production, needs to pass certain gating criteria;
the criteria are as follows:

• Has the application been tested?
• How is the environment-specific information managed?
• What is the deployment mode or strategy?

In this chapter, we will cover the testing library approach provided by Akka to
test your actor-based applications. We will also see how the Akka extension model
can be used to extend the configuration (using application.conf) to add custom
parameter values. Lastly, we will touch upon the microkernel-based and embedded
mode of application deployment.

Testing your Akka application
Testing of the application is an integral step of the standard Software Development
Lifecycle (SDLC). With the advent of Continuous Integration (CI) tools, the test
units need to be automated, and every commit to the source control initiates the
execution of the test regression suite. This makes sure that none of the code being
committed is breaking the application.

Akka provides a comprehensive mechanism to perform unit and integration tests on
the application. Akka has a dedicated module, TestKit, that provides the requisite
libraries with support in writing test cases. The premise of the TestKit is to enable the
developers to test the functional code that is written.

Deployment Ready

[192]

The Akka TestKit is geared to support testing at the following two levels:

• Unit testing: It is the ability to test the code in an isolated manner. The basic
idea is to test the functional logic that is written, since this logic comes with
completely deterministic behavior. At this level, we need not worry about
actors, threads, ordering of messages, or concurrency.

• Integration testing: It is all about testing actors, including the multithreaded
scheduling and non-deterministic ordering of message events.

The TestKit is more geared to support Scala development at this point in time. The
TestKit provides the basic constructs that can be used to write JUnits in Java. We
will cover the various constructs that can be used commonly in both Scala and Java.
For the examples, we will be using the JUnit 4.1 library; please refer to http://www.
junit.org/ for more details.

To use the Akka TestKit within your application, the following dependency needs to
be added to the Maven pom.xml file:

 <dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-testkit</artifactId>
 <version>2.0.1</version>
 </dependency>

Writing the first unit test with TestActorRef
Let's take the example of an actor that takes in the message, and based on the
message received, performs a set of actions.

Java:

public class TickTock extends UntypedActor {
 public static class Tick {
 String message;
 public Tick(String inStr) {
 message = inStr;
 }
 };
 public static class Tock {
 String message;
 public Tock(String inStr) {
 message = inStr;
 }
 };

 public boolean state = false;

Chapter 8

[193]

 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof Tick) {
 tick((Tick) message);
 } else if (message instanceof Tock) {
 tock((Tock) message);
 } else
 throw new IllegalArgumentException("boom!");
 }

 public void tock(Tock message) {
 // do some processing here
 if (state == false)
 state = true;
 else
 state = false;
 }

 public void tick(Tick message) {
 // do some processing here
 sender().tell("processed the tick message");
 }
}

Scala:

case class Tick(message: String)
case class Tock(message: String)

class TickTock extends Actor {

 var state = false

 def receive: Receive = {
 case message: Tick => tick(message)
 case message: Tock => tock(message)
 case _ => throw new IllegalArgumentException("boom!")
 }

 def tock(message: Tock) = {
 // do some processing here
 if (state == false)
 state = true
 else
 state = false
 }

 def tick(message: Tick) = {
 // do some processing here
 sender.tell("processed the tick message")
 }
}

Deployment Ready

[194]

Testing the TickTock actor in this case will be a two-step process. In the first step, we
need to make sure that the business logic written to process the message works fine.
In this case, it means testing whether the methods have been written correctly and
are performing the business logic as expected:

public void tock(Tock message) {}
public void tick(Tick message) {}

The second step would be to test the TickTock actor by passing in the message and
verifying the behavior of the actor and its state. In this step, the messages will be
passed in a variable order, and our actor will need to act on them.

Let's go ahead with the basic business logic testing. For testing the business logic,
the TestKit provides TestActorRef. The TestActorRef is a special type of actor
reference that is to be used for testing purposes only.

TestActorRef provides access to the actor in two ways, as follows:

• It provides a reference to the underlying Actor object reference. This is in
contrast to ActorRef, which mandates that access to the actor is only via
mailbox messages.

• It allows the actor behavior to be invoked/queried.

Access to the underlying actor reference
To get access to the actor reference, we make use of TestActorRef to create the
instance of our TickTock actor. Once we have the TestActorRef to the actor, we
invoke the method actorRef.underlyingActor() to get access to the underlying
instance of the Actor object. Once we have access to the instance, we can invoke the
methods on the object as any Java class and write our unit tests.

Java:

TestActorRef<TickTock> actorRef = TestActorRef.apply(new Props(
TickTock.class), _system);

 // get access to the underlying actor object
 TickTock actor = actorRef.underlyingActor();

// access the methods the actor object and directly pass arguments
// and test
actor.tock(new Tock("tock something"));

Assert.assertTrue(actor.state);

Chapter 8

[195]

Scala:

val actorRef = TestActorRef[TickTock]

 // get access to the underlying actor object
 val actor: TickTock = actorRef.underlyingActor

// access the methods the actor object and directly pass arguments
// and test
actor.tock(new Tock("some message"))

Assert.assertTrue(actor.state)

In the preceding unit test case, we saw how the access to the underlying actor
Java class is made, and subsequently we can make method calls on the same. The
actor class cannot be instantiated directly using the new() method; the Actor Model
does not allow such an initialization method. As a result, we use TestActorRef to
provide us access to the underlying Actor object.

Testing actor behavior
The second step in testing the actor is to pass the messages to it and see how it
responds back. The TestActorRef reference extends the standard LocalActorRef.
In addition to the standard methods available on LocalActorRef, TestActorRef
also provides an additional method, namely receive(), that returns the changed
state of the actor in response to the message. TestActorRef processes the messages
synchronously on the current thread and uses CallingThreadDispatcher for
the same purpose. In short, when we use TestActorRef, it sets the dispatcher to
CallingThreadDispatcher.global and receiveTimeout to None. This means that
all the operations are invoked synchronously, because CallingThreadDispatcher
uses the single thread model to execute the Actor Model. We have learned about
CallingThreadDispatcher in Chapter 5, Dispatchers and Routers.

Let's see how we can use TestActorRef, and pass messages to our TickTock actor
instance of TestActorRef.

Java:

TestActorRef<TickTock> actorRef = TestActorRef.apply(new Props(
TickTock.class), _system);

 String result = (String) Await.result(ask(actorRef,
 new Tick("msg"), 5000),Duration.parse("5 second"));

 Assert.assertEquals("processed the tick message", result);

Deployment Ready

[196]

Scala:

val actorRef = TestActorRef[TickTock]

implicit val timeout = Timeout(5 seconds)
 val future = (actorRef ? new Tick("")).mapTo[String]
 val result = Await.result(future, timeout.duration)
Assert.assertEquals("processed the tick message", result)

In the preceding code snippet, we created an instance of TestActorRef and then
passed a message to our TickTock actor. The TickTock actor responds back to
the sender with the message. In this case, we receive the message and check for
its correctness.

Testing exception scenarios
In our TickTock actor, if the message passed is not of type Tick or Tock, then
the actor throws an IllegalArgumentException. When we want to test such an
exception condition, we can invoke the receive() method on TestActorRef, which
passes the message to the underlying actor and propagates back any exceptions that
are thrown.

Java:

TestActorRef<TickTock> actorRef = TestActorRef.apply(new Props(
 TickTock.class), _system);
 try {actorRef.receive("do something");
 //should not reach here
Assert.fail();

}
catch (IllegalArgumentException e) {
 Assert.assertEquals(e.getMessage(), "boom!");
}

Scala:

val actorRef = TestActorRef[TickTock]

try {
 actorRef.receive("do something")
 //should not reach here
 Assert.fail()

} catch {
 case e: IllegalArgumentException =>
 Assert.assertEquals(e.getMessage(), "boom!")
}

Chapter 8

[197]

We have seen three ways where we can use TestActorRef to write the unit tests.
These tests can be written utilizing one or all of the approaches simultaneously.
Using TestActorRef, we can write individual unit tests to check the business
logic of our actors.

Once we have unit tested and confirmed the unit tests, we need to test how our
actors interact with each other and how their behavior changes when processing
the messages.

Integration testing with TestKit
Unlike the traditional integration testing that tests the various components of the
system, in Akka, integration testing means testing the actor functionality. It means
that we need to have a test suite with the actors under test and the actors that intend
to get the replies. The actor functionality is tested by passing messages, which based
on the functionality, are either processed, replied back, or forwarded to another actor.

In order to test the actors, TestKit provides a default TestActor. The test
specification extends the TestKit, and the default TestActor() is provided to assist
in the testing of the custom-written actor classes. TestActor is implicit within the
TestKit and we need not create anything explicitly for.

The TestKit also provides a number of assertions (expectMsg*) that can be used to
verify the correctness of the actor's behavior.

In addition, an interface/trait, ImplicitSender, is provided as part of the TestKit.
ImplicitSender allows the custom actor messages to be passed to TestActor, on
which we can run the various assertions. In case of Java, ImplicitSender does not
work; as a result, we need to pass the sender ActorRef as TestActor().

Let's check out some testing code that tests out the following different sets of actors:

• EchoActor: It responds back with whatever has been passed to it
• BoomActor: It responds back with an exception to the string or integer passed
• ForwardingActor: It forwards the message to another actor
• SequencingActor: It replies back in a series of messages, but assumes we are

interested in only one message
• SupervisorActor: It manages a worker actor, and based on the exception

thrown by it, applies the appropriate supervisor strategy

Deployment Ready

[198]

Let's quickly look at the code for each of these actors, and later we will see how the
TestKit helps in writing test cases for such actor scenarios.

EchoActor

Java:

public class EchoActor extends UntypedActor
{
 @Override
 public void onReceive(Object message) throws Exception {
 sender().tell(message);
 }
}

Scala:

class EchoActor extends Actor {
 def receive: Receive = {
 case message => sender ! message
 }
}

BoomActor

Java:

public class BoomActor extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof String)
 throw new IllegalArgumentException("boom!");
 else if (message instanceof Integer)
 throw new NullPointerException("caput");
 }
}

Scala:

class BoomActor extends Actor {
 def receive: Receive = {
 case message: String =>
 throw new IllegalArgumentException("boom!")
 case message: Integer =>
 throw new NullPointerException("caput")
 }
}

Chapter 8

[199]

ForwardingActor

Java:

public class ForwardingActor extends UntypedActor {
 ActorRef next;
 public ForwardingActor(ActorRef next) {
 this.next = next;
 }
 @Override
 public void onReceive(Object message) throws Exception {
 next.tell(message);
 }
}

Scala:

class ForwardingActor(next: ActorRef) extends Actor {
 def receive: Receive = {
 case message => next ! message
 }
}

SequencingActor

Java:

public class SequencingActor extends UntypedActor {
 ActorRef next;
 List<Integer> head;
 List<Integer> tail;
 public SequencingActor(ActorRef next,
 List<Integer> head, List<Integer> tail)
{
 this.next = next;
 this.head = head;
 this.tail = tail;
 }

 @Override
 public void onReceive(Object message) throws Exception {
 for (Integer value : head) {
 sender().tell(value);
 }
 sender().tell(message);
 for (Integer value : tail) {
 sender().tell(value);
 }
 }
}

Deployment Ready

[200]

Scala:

class SequencingActor(next: ActorRef, head:
 List[Integer], tail: List[Integer]) extends Actor {
 def receive: Receive = {
 case message =>
 head map (next ! _)
 next ! message
 tail map (next ! _)
 }
}

SupervisorActor

Java:

public class SupervisorActor extends UntypedActor {
 private ActorRef childActor;
 private static SupervisorStrategy strategy =
 new OneForOneStrategy(10, Duration.parse("10 second"),
 new Function<Throwable, Directive>() {
 public Directive apply(Throwable t) {
 if (t instanceof IllegalArgumentException) {
 return stop();
 } else if (t instanceof NullPointerException) {
 return resume();
 } else
 return escalate();
 }
 });
 @Override
 public SupervisorStrategy supervisorStrategy() {
 return strategy;
 }
 public void onReceive(Object o) throws Exception {
 if (o instanceof Props) {
 this.childActor = getContext()
.actorOf((Props) o, "childActor");
 sender().tell(childActor);
 } else
 childActor.tell(o, sender());
 }
}

Scala:

class SupervisorActor() extends Actor {
 var childActor: ActorRef = _
 def receive: Receive = {
 case message: Props =>

Chapter 8

[201]

 childActor = context.actorOf(message, name = "childActor")
 sender ! childActor
 case message =>
 childActor.tell(message, sender)
 }
 override val supervisorStrategy = OneForOneStrategy(
maxNrOfRetries = 10, withinTimeRange = 1 minute) {
 case _: NullPointerException => Resume
 case _: IllegalArgumentException => Stop
 case _: Exception => Escalate
 }
}

Let's check the various test cases that can be written to verify the actor integration. In
order to use the TestKit, we need to extend our test suite example with TestKit. The
TestKit constructor takes in ActorSystem as the input.

Java:

public class ExampleUnitTest extends TestKit {
 static ActorSystem _system = ActorSystem.create("TestSys",
 ConfigFactory.load().getConfig("TestSys"));
 LoggingAdapter log = Logging.getLogger(_system, this);
 public UnitTestExample() {
 super(_system);
 }
}

Scala:

@RunWith(classOf[JUnitRunner])
class ExampleUnitTest(_system: ActorSystem) extends TestKit(_system)
with ImplicitSender with WordSpec with MustMatchers with
BeforeAndAfterAll with ShouldMatchersForJUnit {
 def this() = this(ActorSystem("TestSys",
 ConfigFactory.load().getConfig("TestSys")))

}

The following is the code snippet for application.conf:

TestSys {
 akka {
 mode = test
 event-handlers = ["akka.testkit.TestEventListener"]
 loglevel = DEBUG
 actor {
 debug {
 receive = on
 autoreceive = on

Deployment Ready

[202]

 lifecycle = on
 }
 }
 }
}

In the preceding case, there is a small difference when initializing the Scala example.
For unit testing Scala code, we are making use of the ScalaTest library for
providing the extension points to write the unit test cases. For more details, please
refer to the Scala test documentation available at http://www.scalatest.org/

Once we have initialized the TestKit, we can start writing the test cases. We will go
over some of the message passing patterns and see how we can test those patterns
using the TestKit.

EchoActor testing
In order to test our first actor, namely EchoActor, we write the following test code.

Java:

@Test
public void testEchoActor() {
 ActorRef echoActorRef = _system.actorOf(
 new Props(EchoActor.class));

 // pass the reference to implicit sender testActor() otherwise
 // message end up in dead mailbox
 echoActorRef.tell("Hi there", super.testActor());
 expectMsg("Hi there");
}

Scala:

"Test Echo actor" must {
 "send back messages unchanged" in {
 val echo = system.actorOf(Props[EchoActor])
 echo ! "Hi there"
 expectMsg("Hi there")
 }
}

In the Java case, we create the actor and pass the message along with super.
testActor() as the implicit sender. Next, we use expectMsg() to verify the
message received from EchoActor. If we do not pass the reference to the implicit
sender testActor(), the messages end up in the dead mailbox. In the case of Scala
code, the implicit sender is automatically passed as testActor.

Chapter 8

[203]

ForwardingActor testing
For testing ForwardingActor, we need two actors; the first is our ForwardingActor
and the second is the forwarded actor, where the message ends up. In this case, we can
use the implicit sender testActor() as the actor to which the message gets forwarded.

Java:

@Test
public void testForwardingActor() {
 ActorRef forwardingActorRef = _system.actorOf(new Props(
 new UntypedActorFactory() {
 public UntypedActor create() {
 return new ForwardingActor(testActor());
 }
 }));
// pass the reference to implicit sender testActor() otherwise
 // message end up in dead mailbox
 forwardingActorRef.tell("test message", super.testActor());
 expectMsg("test message");
}

Scala:

 "Test Forwarding actor" must {
 "forwards the messages unchanged to another actor" in {
 val forwarding = system.actorOf(Props(
 new ForwardingActor(this.testActor)))
 forwarding ! "test message"
 expectMsg("test message")
 }
 }

SequencingActor testing
In the SequencingActor test, we want to test for one particular message in a series
of messages passed to the actor.

Java:

@Test
public void testSequencingActor() {
 final List<Integer> headList = new ArrayList<Integer>();
 final List<Integer> tailList = new ArrayList<Integer>();

 int randomHead = new Random().nextInt(6);
 int randomTail = new Random().nextInt(10);

 for (int i = 0; i < randomHead; i++)
 headList.add(i);

Deployment Ready

[204]

 for (int i = 1; i < randomTail; i++)
 tailList.add(i);

 ActorRef sequencingActorRef = _system.actorOf(new Props(
 new UntypedActorFactory() {
 public UntypedActor create() {
 return new SequencingActor(testActor(),
 headList,tailList);
 }
 }));

 // pass the reference to implicit sender testActor() otherwise
 // message end up in dead mailbox
 sequencingActorRef.tell("do something", super.testActor());

 for (Integer value : headList) {
 expectMsgClass(Integer.class);
 }
 expectMsg("do something");
 for (Integer value : tailList) {
 expectMsgClass(Integer.class);
 }
expectNoMsg();
}

Scala:

"Test Sequencing actor" must {
 "checks for one message" in {
 val randomHead = new Random().nextInt(6)
 val randomTail = new Random().nextInt(10)

 val headList = List().padTo(randomHead, new Integer(0))
 val tailList = List().padTo(randomTail, new Integer(1))

 val sequencing = system.actorOf(Props(
 new SequencingActor(this.testActor, headList, tailList)))
 sequencing ! "test message"
 ignoreMsg {
 case msg: Integer => msg != Integer.valueOf(100)
 }
 expectMsg("test message")
 ignoreMsg {
 case msg: Integer => msg == Integer.valueOf(1)
 }
 expectNoMsg
 }
 }

In this case, we are using the following new assertions ignoreMsg() and
expectNoMsg().

Chapter 8

[205]

SupervisorActor testing
Let's see another example where SupervisorActor manages the worker actor and
how the supervisor strategy can be tested. In our case, we will use BoomActor as the
child actor. BoomActor throws an IllegalArgumentException for a string message
and a NullPointerException for an integer message. In our SupervisorActor,
we will trap both the exceptions. In the case of IllegalArgumentException, we
will stop BoomActor, and in the case of NullPointerException, we will resume
BoomActor for processing more messages.

Java:

@Test
public void testSupervisorStrategy1() throws Exception {

 ActorRef supervisorActorRef1 = _system.actorOf(new Props(
 SupervisorActor.class), "supervisor1");

 Duration timeout = Duration.parse("5 second");

 // register the BoomActor with the Supervisor
 final ActorRef child = (ActorRef) Await.result(
 ask(supervisorActorRef1, new Props(BoomActor.class),
 5000),timeout);

 child.tell(123);
 Assert.assertFalse(child.isTerminated());
}

Scala:

"Test Supervisor Strategy 1" must {
 "checks for terminated workers" in {
 implicit val timeout = Timeout(5 seconds)

 val supervisor = system.actorOf(Props[SupervisorActor])
 val future = (supervisor ? Props[BoomActor]).mapTo[ActorRef]
 val child = Await.result(future, timeout.duration)

 child.tell(Integer.valueOf(123))
 Assert.assertFalse(child.isTerminated)
 }
}

In this case, we have created BoomActor as a child actor of SupervisorActor. When
we pass an integer to BoomActor, it should throw a NullPointerException. The
SupervisorActor will catch hold of and ask the actor to resume().

Deployment Ready

[206]

Let's take the next case, where we will pass a string message that should lead to our
BoomActor getting stopped. In this case, we will make use of TestProbe. It provides
a simple way to filter out the messages being sent to testActor(). TestProbe
keeps a track on the actors for messages, and it can be used along with the assert
statements to validate the expected response. So in case the supervisor is managing
multiple actors, TestProbe can be initialized and made to monitor different actors
for different messages.

Java:

@Test
public void testSupervisorStrategy2() throws Exception {

 ActorRef supervisorActorRef2 = _system.actorOf(new Props(
 SupervisorActor.class), "supervisor1");

 final TestProbe probe = new TestProbe(_system);

 // register the BoomActor with the Supervisor
 final ActorRef child = (ActorRef) Await.result(
 ask(supervisorActorRef2, new Props(BoomActor.class), 5000),
 Duration.parse("5 second"));

 probe.watch(child);
 // second check
 child.tell("do something");
 probe.expectMsg(new Terminated(child));

 }

Scala:

"Test Supervisor Strategy 2" must {
 "checks for terminated workers" in {
 implicit val timeout = Timeout(5 seconds)

 val supervisor = system.actorOf(Props[SupervisorActor])
 val probe = TestProbe()

 val future = (supervisor ? Props[BoomActor]).mapTo[ActorRef]
 val child = Await.result(future, timeout.duration)
 probe.watch(child)
 child.tell("do something")
 probe.expectMsg(Terminated(child))
 }
}

Chapter 8

[207]

In the preceding code, we saw how the TestKit can be used to write test cases for
integration testing on the actors.

TestKit by default makes use of the following configuration:

akka {
 test {
 # factor by which to scale timeouts during tests
 timefactor = 1.0

 # EventFilter.intercept wait duration
 filter-leeway = 3s

 # expectMsg default wait duration
 single-expect-default = 3s

 # implicit DefaultTimeout
 default-timeout = 5s

 calling-thread-dispatcher {
 type = akka.testkit.CallingThreadDispatcherConfigurator
 }
 }
}

Based on the number of tests, the time taken to run the test suite, and the wait time
required or used by the actors, you may need to tune the parameters.

This completes the overview of the TestKit functionality, provided as part of the
toolkit to help test your actors. In the current version, the Scala support is much
better and well documented compared to Java.

In the upcoming Akka 2.1 release, a JavaTestKit will be released. The JavaTestKit
will provide a number of assertions (expectMsg*) that can be used to test the
assumptions about your program, when writing Java-based tests.

Remote actors testing
One of the key features of the Akka application is its scale-out model. The Akka
application can span across multiple nodes. Everything in Akka is designed to work
in a distributed setting. Akka's location transparency means there is no specific API
for the remoting of actors. We write the application assuming everything is local, and
at the time of deployment, we can configure the location of the actors. This means
that the writing of the test case for the actors that will be deployed remotely can be
written using the same principles as outlined in the previous sections.

Deployment Ready

[208]

But there are times, when you want to distribute your application to run across
multiple JVMs, with the actor hierarchy spawning across the distributed JVMs.
For these cases, Typesafe has released a multi-JVM SBT plugin. The plugin is
available at http://github.com/typesafehub/sbt-multi-jvm

Using this plugin, you can write test cases that can test message passing across JVMs.
The plugin currently supports writing Scala-based test cases only.

Managing application configuration
using Akka extensions
In a typical application, the application configuration settings are managed outside
the application. So when the application moves from the development to testing
to staging to production environment, the application configuration settings can
be updated to match the environment. This allows the core deployable unit to be
independent of the underlying environment. Examples of such configuration settings
can be the application database connectivity options or service end points.

Akka provides a powerful mechanism called extensions. Extensions are loaded in a
static way with only one instance per ActorSystem. Extensions are implemented as
a factory pattern. Akka extensions are comprised of two parts, given as follows:

• Extension: Extension is the interface that needs to be implemented by the
class and registered with ActorSystem, and ActorSystem will register the
class and make the result available.

• ExtensionId: It is the unique ID of the extension that is used to identify the
extension within ActorSystem.

Chapter 8

[209]

In the real-world application, the environment-specific configuration settings are
managed in multiple ways and integrated with your build tool.

One of the common ways is to have specific configuration files depending on each
environment. Based on the environment specified in the build file, an appropriate
configuration file is chosen. This method requires an application build to be done
for every environment.

Another way is to have all the environment configurations in one configuration file.
A system variable is used to identify which environment is currently deploying the
application, and based on that, the appropriate selection is made. In this case, any
wrong system setting means the application can choose the wrong configuration.

Let's go ahead and create an extension to load the configuration settings for
connecting to the MySQL database from application.conf. Here, we are creating
the basic environment configuration usage:

TestApp {
 connecton {
 db {
 mysql {
 url = "jdbc:mysql://localhost:3306/"
 dbname = "sampleDB"
 driver = "com.mysql.jdbc.Driver"
 username = "root"
 userpassword = "password"
 }
 }
 }
}

Let's go ahead and create the extension.

Java:

public class MySQLJDBCSettingsImpl implements Extension {
 public final String DB_URL;
 public final String DB_NAME;
 public final String DB_DRIVER;
 public final String DB_USER_NAME;
 public final String DB_USER_PASSWORD;

 public MySQLJDBCSettingsImpl(Config config) {
 DB_URL = config.getString("connection.db.mysql.url");

Deployment Ready

[210]

 DB_NAME = config.getString("connection.db.mysql.dbname");
 DB_DRIVER = config.getString("connection.db.mysql.driver");
 DB_USER_NAME =
 config.getString("connection.db.mysql.username");
 DB_USER_PASSWORD =
 config.getString("connection.db.mysql.userpassword");
 }
}

Scala:

class MySQLJDBCSettingsImpl(config: Config) extends Extension {
 val DB_URL: String = config.getString("connection.db.mysql.url")
 val DB_NAME: String =
 config.getString("connection.db.mysql.dbname")
 val DB_DRIVER: String =
 config.getString("connection.db.mysql.driver")
 val DB_USER_NAME: String =
 config.getString("connection.db.mysql.username")
 val DB_USER_PASSWORD: String =
 config.getString("connection.db.mysql.userpassword")
}

We define the class MySQLJDBCSettingsImpl that extends the Extension interface.
The class implements the constructor that takes in the config object. The config
object provides various methods to read the data. In this case, the example is using
config.getString(). We can also write additional custom methods that we may
want to expose to the ActorSystem. As Extension is loaded in a static way, this can
be an easy reference point for accessing common information across the actors.

Next, we write the Factory class that will provide access to the Extension.

Java:

public class MySQLJDBCSettings extends
 AbstractExtensionId<MySQLJDBCSettingsImpl> implements
 ExtensionIdProvider {

 public final static MySQLJDBCSettings SettingsProvider =
 new MySQLJDBCSettings();
 public MySQLJDBCSettings lookup() {
 return MySQLJDBCSettings.SettingsProvider;
 }
 public MySQLJDBCSettingsImpl createExtension(
 ExtendedActorSystem system) {
 return new MySQLJDBCSettingsImpl(
 system.settings().config());
 }
}

Chapter 8

[211]

Scala:

object MySQLJDBCSettings extends ExtensionId[MySQLJDBCSettingsImpl]
with ExtensionIdProvider {
 override def lookup = MySQLJDBCSettings
 override def createExtension(system: ExtendedActorSystem) =
 new MySQLJDBCSettingsImpl(system.settings.config)
}

In this case, the MySQLJDBCSettings class extends AbstractExtensionId<MySQLJ
DBCSettingsImpl> and implements the ExtensionIdProvider interface. The class
creates a static instance of MySQLJDBCSettings and implements two methods.

Java:

public MySQLJDBCSettings lookup()
public MySQLJDBCSettingsImpl createExtension(ExtendedActorSystem
system)

Scala:

override def lookup : MySQLJDBCSettings
override def createExtension(system: ExtendedActorSystem)

The first method lookup() is used by the ActorSystem to load up the
Extension when it is starting up. The second method, createExtension
(ExtendedActorSystem) is used by Akka to instantiate the extension class
MySQLJDBCSettingsImpl.

The usage of Extension is very easy. Just pass the ActorSystem to the provider and
get access to the Extension class. Once you get access to the Extension instance,
then it is just a matter of invoking calls on the same.

Java:

ActorSystem _system = ActorSystem.create("Extension-Test",
ConfigFactory.load().getConfig("TestApp"));
MySQLJDBCSettingsImpl mysqlSetting = MySQLJDBCSettings.
SettingsProvider.get(_system);

System.out.println(mysqlSetting.DB_NAME);
System.out.println(mysqlSetting.DB_URL);

Scala:

val system = ActorSystem("Extension-Test",
 ConfigFactory.load().getConfig("TestApp"))
val mysqlSetting = MySQLJDBCSettings(system)

println(mysqlSetting.DB_NAME)
println(mysqlSetting.DB_URL)

Deployment Ready

[212]

We create ActorSystem, and using ConfigFactory, load the configuration,
TestApp as defined in application.conf. We get the Extension instance
MySQLJDBCSettingsImpl from the extensionprovider class, MySQLJDBCSettings,
by passing the ActorSystem. Once we get the reference to Extension, we can access
the methods and variables defined in the Extension class.

If you want to access Extension within Actor, the following method is used.

Java:

public class MyActor extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 MySQLJDBCSettingsImpl mysqlSetting =
 MySQLJDBCSettings.SettingsProvider
 .get(getContext().system());
 System.out.println(mysqlSetting.DB_USER_NAME);
 System.out.println(mysqlSetting.DB_USER_PASSWORD);
 }
}

Scala:

class MyActor extends Actor {
 def receive: Receive = {
 case _ =>
 val mysqlSetting = MySQLJDBCSettings(context.system)
 println(mysqlSetting.DB_USER_NAME)
 println(mysqlSetting.DB_USER_PASSWORD)
 }
}

In Actor, we get ExtensionId (in this case, it is MySQLJDBCSettingsImpl) and pass
the system() using the context() actor. Once we get the reference to Extension,
then we can invoke the methods on the same.

As Extension is loaded as a singleton object, all state variables in the Extension
object need to be made thread-safe, in case Extension is being read and written.
Extensions provide an easy way to load the configuration data from application.
conf, for use within your Akka application.

Chapter 8

[213]

Overall, extension is a powerful concept that can be used to provide additional
services or functionality to your application. Features such as typed actors,
transactor, and ZeroMQ have been implemented using extensions.

Deployment mode
Akka application deployment is available as two options; the first is bundled as
a framework JAR within your Java or Scala application, and the second is to be
able to deploy the Akka application as a standalone application running within
its own microkernel.

The first option of bundling the Akka library JARs in your application is
straightforward. You need to add the dependency JARs to the class path using your
existing application packaging strategy. The Akka actors can be invoked and used
within your application using ActorSystem, which is is loaded in a static way, and
the actors can be created and invoked using the initialized ActorSystem.

The second option for running the Akka application using the microkernel provides
a smart way to run the actor application, without incurring any additional overheads
of a server container. The microkernel module provides a lightweight and free
application server bundle, so it's easy to distribute and run your Akka application.

When creating a large, distributed application, which makes use of remote nodes,
the remote node logic is the perfect candidate to be packaged as a microkernel
application. The microkernel application gets deployed on the remote nodes, and on
startup, they can connect to the server/master node to start working. Remote actors
can be packaged and deployed as a microkernel application that can be created or
invoked from the master node.

It means, when you want to scale out your application processing across JVMs
and nodes, there should be an easy way to deploy the code, without the additional
overheads of any additional application server licensing.

Deployment Ready

[214]

Microkernel
Akka, by default, is bundled with a microkernel. When you download the Akka
library and extract it into a folder, you will find the bin directory, as shown in the
following screenshot, which holds the executable script (akka.sh or akka.bat) to
run the microkernel:

In order to make your Akka application deployable within the microkernel, the
application needs to create a Bootable class, which handles the startup and
shutdown for the application.

Java:

public class ServerSystem implements Bootable {
 private ActorSystem system = ActorSystem.create("ServerSys");
 public void shutdown() {
 system.shutdown();

 }
 public void startup() {
 // create the actor
 ActorRef actor = system.actorOf(
 new Props(ServerActor.class),"serverActor");
 actor.tell("do something");
 }
}

Scala:

object ServerSystem extends Bootable {
 val system = ActorSystem("ServerSys")
 def startup = {
 val serverActor = system.actorOf(Props[ServerActor],

Chapter 8

[215]

 name = "serverActor")
 actor.tell("do something")
 }
 def shutdown = {
 system.shutdown()
 }
}

When the class extends the Bootable, there are two methods that need to
be implemented.

Java:

public void startup()
public void shutdown()

Scala:

def startup():Unit
def shutdown():Unit

In the startup, we initialize ActorSystem and actors that need to be started, and
start the processing of the application. In the shutdown method, we write the code
to clean up of any of the resources and then shut down ActorSystem. Once we have
written this class, we bundle the same within the application and create the required
deployable unit, which in this case is the JAR file. Once we have the JAR file, we
drop it in the deploy folder in the Akka deployment path. After dropping the JAR
file, we go to the akka folder and run akka.sh or akka.bat to start the application
by providing the complete path of the Bootable class.

For Windows users, the following path is used:

bin/akka.bat org.akka.essentials.server.ServerSystem

For Unix users, the following path is used:

bin/akka org.akka.essentials.server.ServerSystem

You can use the Ctrl + C command to interrupt and exit the microkernel application.

Deployment Ready

[216]

Summary
In this chapter, we saw the various gating criteria that need to be adhered to before
the application becomes deployable. We also understood how to write unit test cases,
how to move the environment-specific configuration out of the application, and
finally, how to use the built-in microkernel to deploy and run Akka applications.

In the next chapter, we will cover the different techniques available for scaling out
your application using the concept of remote actors. We will cover topics such as
remote actor setup, lookup, and deployment; routing and data serialization for
over-the-wire transmission; and the various events generated by remote actors
and how we can tap into them.

Remote Actors
In this chapter we will cover the different techniques available for scaling out
your application using the concept of remote actors. We will see how to create
remote actors and how to invoke distributed or remote actors. We will cover the
following concepts:

• Remote actor setup
• Remote actor lookup
• Remote actor deployment
• Routing and data serialization for over-the-wire transmission
• Remote events generated by remote clients and servers, and how we

can tap into them

Distributed computing
We have seen how the Akka actors allow the application to scale up and use
the processing power of the underlying hardware, and make use of all the cores
available to the application. Once the application has reached the machine limit
(in terms of hardware capacity), you may want to scale out or distribute the
application, so that the application can run on multiple machines. When the
application runs on multiple machines, the risk of the application going down
because one machine failed is also mitigated.

So, what does Akka provide that can be used to distribute the application? The
answer is remote actors. Before we jump into remote actors, let's take a step back
and understand some basics with respect to distributed computing.

Remote Actors

[218]

Distributed computing refers to the concept where individual compute nodes run as
autonomous entities, with each having their own local memory. The compute nodes
talk to each other via Remote Procedure Calls (RPC), which is like message passing.
Distributed computing systems require the ability to locate the nodes where the
individual compute nodes are running, in order to distribute the work.

In order to locate the nodes, we need to know the address of the nodes, the paths
required to reach the node, and the mode of transport needed to reach the node.

For example, in the preceding diagram, if my friends are at different places
(mountain top, countryside, or cloud), then I need to know the address where they
are located (mountain top name, countryside name, or which cloud), the path I need
to traverse to reach the address (mountain trails, street maps, or an airplane route),
and the mode of transportation required to reach the address (mule, bicycle, or
airplane). In the distributed world, if I need to locate the objects, I need to know the
address as well as the path of the object, along with the means of transport required
to reach the object.

Let's understand distributed computing using the Java EE EJB model of
distributed computing.

Chapter 9

[219]

If you have worked with the EJBs earlier, you will know that an EJB will have two
references, namely a local reference and a remote reference. The objects within the
same JVM use the local reference so as to not incur the overhead of data serialization.
The Java objects that are accessing the EJB from outside the container or JVM use the
remote reference:

The bean lookup involves knowing where the bean is installed, either in local or
remote, and then invoking a reference to the same:

java.lang.Object ejbHome = initialContext.lookup(
 "java:comp/env/com/mycompany/accounting/AccountEJB");

The application invoking the bean needs to specify whether the bean is locally
deployed or remotely deployed via the lookup URLs:

// Look up the home interface using the JNDI name.
try {
 java.lang.Object ejbHome = initialContext.lookup(
"java:comp/env/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)
 javax.rmi.PortableRemoteObject.narrow(ejbHome,
 AccountHome.class);
}
catch (NamingException e) {
 // Error getting the home interface
 ...
}

Remote Actors

[220]

The preceding code snippet shows how the lookup is being done and that
AccountEJB is locally deployed. For the same case, if the EJB was to be invoked
on another machine instance, the lookup would use the node address as follows:

// Look up the home interface using the JNDI name.
try {
 java.lang.Object ejbHome = initialContext.lookup(
 "cell/nodes/Node1/servers/machineA/com/mycompany/
 accounting/AccountEJB");

accountHome = (AccountHome)
 javax.rmi.PortableRemoteObject.narrow(ejbHome,
 AccountHome.class);
}
catch (NamingException e) {
 // Error getting the home interface

}

Based on the location where the EJB is deployed, the calling code needs to pass the
right name or path to invoke the same. This means that every bean needs to have a
name or path that can be used to reach it.

In order to reach the bean that is deployed both locally and remotely, the bean will
have two sets of unique addresses. Once we look up the bean, we get a reference to
the bean object, namely LocalReference or RemoteReference, based on the location
of the object.

Another key requirement of distributed computing is that whenever the objects
are passing the JVM boundaries, they need to be serializable. Since the object
reference from one JVM does not exist in the other, the objects being passed need
to be serialized before they are passed to the calling node. Without messages being
serialized, the data on the other side cannot be interpreted and utilized.

For any application to provide distributed computing capabilities, there are some
key elements that need to be used as follows:

• Each bean object should have a unique path that allows the calling client to
reach the bean object

• The lookup of the bean should provide a transparent bean reference
(local or remote) depending upon the unique path of the deployed bean

• When objects are crossing JVM boundaries, the objects being passed need
to be serializable

Chapter 9

[221]

Now let's see how the same concepts of distributed computing are implemented
in Akka. In Akka, everything is passed via messages and the actors communicate
asynchronously via immutable messages. It means that the sender does not wait
for the message to be received and can go back to its execution immediately, unlike
blocking calls in the standard Java world.

For passing the message, all you need is an access to ActorRef. The main purpose of
ActorRef is to allow messages to be passed to the actors it is referencing. ActorRef
is analogous to the bean reference in the EJB world.

Now Akka uses the concept of location transparency, which means that, for the
client sending the message, the location of the actor is transparent. Akka achieves
this location transparency using the concept of actor paths. The actor path concept is
analogous to the unique bean path. We will examine the actor path in the next section.

For object serialization, Akka provides multiple implementations that can be used
for message serialization as well.

Actor path
A path is defined as the concrete series of steps that will lead us to a destination.
Now the path to an actor is analogous to a filesystem or URL, where the file or
HTML content is located under a series of folders. Akka uses the same philosophy
as followed when identifying and locating resources on the Web. We make use of
the uniform resource locator (URL) to identify and locate resources on the Web. The
URL consists of the following:

scheme://domain:port/path

Here scheme defines the protocol (HTTP or FTP), domain defines the server name or
the IP address, port defines which process is listening and where, and path specifies
the resource to be fetched.

In the case of an Akka application, the default values are akka://hostname/ or
akka://hostname:2552/ depending on whether the application uses remote actors
to identify the application. To identify the resource within the application, the actor
hierarchy is used to identify the location of the actor.

Let's take an example to understand the different elements of the actor path:

"akka://ServerSys/user/SomeActor"

Remote Actors

[222]

Every Akka application that uses local actors runs at a default address of
akka://hostname/, and the actor system provides a default guardian actor—user
to manage the actors created underneath. The actor hierarchy allows a unique path
to be created to reach any actor within the actor system. This unique path coupled
with the address creates a unique address that identifies and locates an actor.

Every actor within the actor system can be identified and accessed using the actor
path. The actor path first identifies the actor system—/ServerSys followed by the
path—/user to the designated actor, which in this case is /SomeActor.

This path is used to identify the ActorRef that is local to the ActorSystem. In the
case of the remote actor lookups, the actor path includes the IP address and port
number of the machine where the actor, along with its actor system, is deployed:

akka://ServerSys@10.102.141.77:2552/user/SomeActor"

Looking up SomeActor from a distributed client means the ActorRef needs to pass
the server name or the IP address and port number, 10.102.141.77:2552 where the
ServerSys application is running.

At this point, let's just keep in mind that every actor has a path anchor that can
be used to identify and get a reference to the Akka Actor object. The path itself
signifies whether the reference is local or remote. The IP address, 10.102.141.77
is random. You may want to use the IP address of the location where the remote
actors are running.

As the remote actors are accessed over the network, by default Akka uses the
TCP-based remote transport mechanism based on Netty. This is pluggable. TCP
using Netty is just the default.

Netty is a New I/O (NIO) client-server framework that enables
the quick and easy development of network applications,
such as protocol servers and clients. It greatly simplifies and
streamlines network programming, such as the TCP and UDP
socket server; https://netty.io/.NIO was introduced as
part of the Java 1.4 to handle intensive I/O operations.

For the serialization of data when it is being sent across the JVMs, Akka provides
two serialization mechanisms out of the box. One technique makes use of standard
Java serialization and the second uses Google's protocol buffer library.

Chapter 9

[223]

Protocol buffers is a data interchange format from Google.
It specifies the way to encode/serialize structured data in a
language-neutral, platform-neutral way. Protocol buffers is binary
backward compatible. More about protocol buffers can be found at
https://developers.google.com/protocol-buffers/.

Akka provides a pluggable model where the third-party serialization module can
be plugged in. In fact, later in the chapter we will write our own object serialization
mechanism and see how it can be plugged in.

Remote actors
Running Akka applications with hundreds and thousands on one system is a
scale-up model, where we optimize the usage of the hardware resource available
to the application, but within the boundaries of one instance. Soon, the question
about how we can scale out our application arises. It explains how we can run our
Akka actors on different instances and how they can be managed and controlled
as a single entity:

Consider a large grid where various nodes are processing the data and all the worker
actors in each of the nodes are managed centrally. Alternatively, think of a map
reduce algorithm running where the data is mapped across nodes, which is passed
to other nodes for reduction and aggregation:

Remote Actors

[224]

In the previous diagram, we can see each of the nodes (node1 to node4) running
actors that are managed by the actor from the master node. In this case, we are have
a router actor whose routees are the remote actors on each of the nodes.

So in order to make use of actors that are not part of your own actor system, we
need to make use of the remote actors API. Now the remote actors may already be
running on remote nodes, in which case we need to get their remote actor reference.
In other cases, we can even instantiate new remote actors on the remote nodes.

Let's go ahead and start creating remote actors. We will take a simple example
of a two-node application that demonstrates how the RemoteActor API is used.
The RemoteActor system receives a message from the LocalActor system that is
appended and returned back to the local application. The local application then
prints out the message. The idea behind this application is to show how two actor
systems running as two different application instances communicate with each other:

The server actor will be running on a particular IP address and port number:

1. The LocalActor system will create a reference to the RemoteActor and pass
a message to RemoteActor.

2. The RemoteActor responds back to the client with the original message,
along with an additional message appended to the same.

Chapter 9

[225]

Creating the remote node application
Our remote node application basically consists of a RemoteActor and a
RemoteActorSystem that implements Bootable, so that we can deploy the
application as a microkernel application. We will start a new Java/Scala project
that will hold the remote node application and its components. First, we will see
the remote node code where we will create the actors that can be invoked remotely.

Let's go ahead and create a RemoteActor.

Java:

public class RemoteActor extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 if(message instanceof String){
 //Get reference to the message sender and reply back
 getSender().tell(message + " got something");
 }
 }
}

Scala:

class RemoteActor extends Actor {
 def receive: Receive = {
 case message: String =>
 // Get reference to the message sender and reply back
 sender.tell(message + " got something")
 }
}

We created a simple RemoteActor class, which extends the UntypedActor and
implements the method onReceive(). In this method we get the message and
check for the instanceof string. Once the message type is confirmed as the string,
we append our message (" got something") to the original message and send the
message to the sender via the getSender().

Next we will create the RemoteNodeApplication class, where we read the
application.conf configuration file and load the application configuration settings.

Java:

public class RemoteNodeApplication implements Bootable {
 final ActorSystem system = ActorSystem.create("RemoteSys",
 ConfigFactory.load().getConfig("RemoteSys"));

 public void shutdown() {
 system.shutdown();
 }

Remote Actors

[226]

 public void startup() {
 system.actorOf(new Props(RemoteActor.class), "remoteActor");
 }
}

Scala:

class RemoteNodeApplication extends Bootable {
 val system = ActorSystem("RemoteNodeApp", ConfigFactory
 .load().getConfig("RemoteSys"))

 def startup = {
 system.actorOf(Props[RemoteActor], name = "remoteActor")
 }

 def shutdown = {
 system.shutdown()
 }
}

That's all. We have created Bootable, RemoteNodeApplication, where we are using
the tag RemoteSys to read the block within the application.conf. In the startup
method, we create a reference of the RemoteActor.

Until now, what we have seen has not been different from what we have been doing.
So the question where we are specifying that these actors can be accessed over the
network is: what is the IP address and port numbers to be used?

Two key configurations that enable the actors to be accessed remotely are as follows:

• Provider: For enabling remote access to the actor, we need to specify the
provider class, in this case for akka.remote.RemoteActorRefProvider:
akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }

By default, the provider is akka.actor.LocalActorRefProvider, which
needs to be changed to the RemoteActorRefProvider.

• Remote Transport: The second key configuration is providing the remote
transport mechanism along with the hostname and port number where the
actor system will be running:
 remote {
 transport = "akka.remote.netty.NettyRemoteTransport"
 netty {
 hostname = "10.102.141.14"
 port = 2552
 }
 }

Chapter 9

[227]

All this magic is defined in the application.conf file given as follows:

RemoteSys {
 akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }
 remote {
 transport = "akka.remote.netty.NettyRemoteTransport"
 netty {
 hostname = "10.102.141.14"
 port = 2552
 }
 }
 }
}

The application.conf is defined under the resources folder in your project. These
are the bare minimum configurations required to enable remoting for actors. This
completes the minimum setup required to host the remote node application. We will
package this compiled remote node application as a microkernel application, and
deploy it on the 10.102.141.14 node where it will wait for remote invocations:

Remote Actors

[228]

We create the JAR file of the RemoteNodeApplication project and add the JAR to the
deploy folder under your Akka deployment folder. Next, we run the Akka script to
execute the remote node application.

Creating the local node application
Once the server is up and running along with the actors enabled for remoting, the
next step is to be able to look up the remote actors and invoke messages on the same.

Let's go ahead and create the LocalActor class and see its constituents.

Java:

public class LocalActor extends UntypedActor {
 LoggingAdapter log = Logging.getLogger(getContext()
 .system(), this);
 Timeout timeout = new Timeout(Duration.parse("5 seconds"));

 ActorRef remoteActor;

 @Override
 public void preStart() {
 //Get a reference to the remote actor
 remoteActor = getContext().actorFor(
 "akka://RemoteNodeApp@10.102.141.14:2552/user/remoteActor");
 }

 @Override
 public void onReceive(Object message) throws Exception {
 Future<Object> future = Patterns.ask(remoteActor,
 message.toString(),timeout);
 String result = (String) Await.result(future,
 timeout.duration());
 log.info("Message received from Server -> {}", result);
 }
}

Scala:

class LocalActor extends Actor with ActorLogging {

 //Get a reference to the remote actor
 val remoteActor = context.actorFor
 ("akka://RemoteNodeApp@10.102.141.14:2552/user/remoteActor")
 implicit val timeout = Timeout(5 seconds)

 def receive: Receive = {
 case message: String =>
 val future = (remoteActor ? message).mapTo[String]

Chapter 9

[229]

 val result = Await.result(future, timeout.duration)
 log.info("Message received from Server -> {}", result)
 }
}

The key here is to get access to the actor reference of the remote actor.

Let's write some sample code and see how it is done.

Java:
remoteActor = getContext().actorFor(

 "akka://RemoteNodeApp@10.102.141.14:2552/user/remoteActor");

Scala:

val remoteActor = context.actorFor(
 " akka://RemoteNodeApp@10.102.141.14:2552/user/remoteActor")

Now to create a reference to the remote actor, we need to provide the actor path to
the context.actorFor() call. We saw, in the previous sections, how every actor has
an actor path attached:

akka://<ActorSystem-name>@<hostname>:<port>/<actor path>

The path contains the name of the ActorSystem with the IP address and port number
specified, with the path of the Actor object within the context of the ActorSystem.

Once the RemoteActor reference has been created, the message can be passed to
the remote actor. In the following example, we are passing the message in the
request-reply mode, where we expect a response from the server.

Java:

Future<Object> future = Patterns.ask(remoteActor,
 message.toString(),timeout);

String result = (String) Await.result(future,timeout.duration());

log.info("Message received from Server -> {}", result);

Scala:

val future = (remoteActor ? message).mapTo[String]

. . .

val result = Await.result(future, timeout.duration)

log.info("Message received from Server -> {}", result)

Remote Actors

[230]

Even in the client application, the remote provider needs to be set up in order for
the client to be able to access the remote actor. We create application.conf under
the /resources folder and add it to the class path:

LocalSys {
 akka {
 actor {
 provider = "akka.remote.RemoteActorRefProvider"
 }
 }

Next, we need to initialize the LocalActor and pass the message so that it can
communicate with the remote actor.

Java:

public class LocalNodeApplication {
 public static void main(String[] args) throws Exception {
 ActorSystem _system = ActorSystem.create("LocalNodeApp",
 ConfigFactory.load().getConfig("LocalSys"));

 ActorRef LocalActor = _system.actorOf(
 new Props(LocalActor.class));

 LocalActor.tell("Hello");

 Thread.sleep(5000);

 _system.shutdown();
 }
}

Scala:

object LocalNodeApplication {

 def main(args: Array[String]): Unit = {
 val config = ConfigFactory.load().getConfig("LocalSys")
 val system = ActorSystem("LocalNodeApp", config)

 val clientActor = system.actorOf(Props[LocalActor])

 clientActor ! "Hello"

 Thread.sleep(4000)
 system.shutdown()
 }
}

Chapter 9

[231]

Now when we run the local node application, we pass a message to the LocalActor,
which in turn passes the same to the remote actor and waits for the reply. Once the
reply is received, it is printed to the console.

With this we saw our first demonstration of remote actors, and how they can
be deployed on one node and accessed from another. Let's see how the whole
thing worked:

There are two actor systems, namely LocalNodeApp and RemoteNodeApp. The
RemoteNodeApp has the RemoteActor, and LocalNodeApp hosts the LocalActor:

• The LocalActor needs to invoke the RemoteActor to pass the message
• The RemoteActor is created in the RemoteNodeApp by using the system.

actorOf() command
• In the LocalNodeApp, we need to create a remote reference to the

RemoteActor, which is created using the system.actorFor()
command and passing the RemoteActor path ("akka://
RemoteNodeApp@10.102.141.14:2552/user/ServerActor")

• Once the RemoteActor reference is available, the LocalActor invokes
methods on the RemoteActor reference object

actorOf(): It creates new actors and is created as a direct
child within the context where the method is invoked.
actorFor(): It only creates a reference to an existing actor.
It does not create a new one.

Remote Actors

[232]

In the previous example, we saw the LocalActor getting the reference to the
RemoteActor by passing the remote actor path. So what happens if the remote actor
is not running, and we need to initialize and start the remote actor instance from the
local actor? In that case, we can create remote actors programmatically.

Creating remote actors programmatically
We can create remote actors programmatically on the remote node. What this means
is that the client does not create a reference to an existing remote actor, but starts a
new instance of the remote actor, passes on the message, and can potentially shut
down the remote actor when the client shuts down.

Java:

Address addr = new Address("akka", "RemoteNodeApp", "10.102.141.14",
2552);

remoteActor = system.actorOf(new Props(RemoteActor.class)
 .withDeploy(new Deploy(new RemoteScope(addr))));

Scala:

val addr = Address("akka", "RemoteNodeApp", "10.102.141.14", 2552)

//another way
val addr = AddressFromURIString
 ("akka://RemoteNodeApp@10.102.141.14:2552/user/RemoteActor")

val remoteActor = system.actorOf(Props[RemoteActor]
 .withDeploy(Deploy(scope = RemoteScope(addr))))

What we are doing here is creating an address that takes in the
parameters — protocol, ActorSystem name, IP address, and port number.
Using this address object, we can create an instance of the remote actor on
the remote machine.

We need to pass on the fully qualified name of the remote
actor. This method requires access to the class files of the
Actor object with the client. The Actor class files also
need to be bundled on the client-side deployment.

Chapter 9

[233]

In case you do not want to hardcode the physical path of the actor in the code,
there is another one to specify the remote deployment location of the actor using
the application.conf file. So for the client-actor system, we define the actor
deployment location as follows:

 akka {
 actor {
 deployment {
 /remoteActorAddr {
 remote = "akka://RemoteNodeApp@10.102.141.14:2552"
 }
 }
 }

In the following code, we can create the actor using the system.actorOf() command.

Java:

remoteActor = system.actorOf(new Props(RemoteActor.class),
 "remoteActorAddr");

Scala:

val remoteActor = system.actorOf(
 Props[RemoteActor], name = "remoteActorAddr");

We need to pass on the fully qualified name of the server actor class name along with
the Actor identifier. In this case, remoteActorAddr is the key that is mapped to the
deployment name defined in the application.conf file.

This allows you to write code that does not worry about the location of the actor, and
at runtime, the location of the actor can be plugged in. This is a better way to access
remote actors, as the actor deployment becomes transparent to the application. This
method allows us to change the deployment location of the actor seamlessly, without
impacting on the actual code. As long as the actor reference name has been defined in
the code, the same can be used to map the actor to the remote deployment location.

In this method of remote actor creation, just by analyzing
the code, you may not be able to comprehend where the
actor gets deployed; so extra precaution needs to be taken
when debugging such deployments.

With this, we saw how one Akka application can access actors that are running on a
different node or in another instance. Here, the applications running on each of the
nodes are independent of each other and are instantiated separately.

Remote Actors

[234]

Message serialization
Another key aspect of distributed computing is the serialization of the message data
that passes the JVM boundaries. Message serialization allows us to save the state of
an object into a sequence of bytes, in order to allow us to rebuild the object with the
state using the byte sequence.

In the case of Akka as well, whenever the message passes the JVM boundary, the
principles of object serialization get applied. In Java, the serialization of a class is
enabled when the class implements the java.io.Serializable interface. The
serialization interface does not impose that any methods be implemented, but only
serves to identify the semantics of being serializable. The serializable interface only
saves the object state and not the object definition.

Akka has an inbuilt extension for serialization. Akka allows us to use the built-in
serializers, or be able to define our own serializable extensions.

By default, Akka uses the built-in serialization technique to serialize messages when
they are crossing the JVM boundaries. Akka provides two serialization techniques.
One is the default Java serialization (java.io.Serializable) and another is Google's
Protobuf serialization (com.google.protobuf.GeneratedMessage) technique.

In Akka, you can specify which class needs to use which serialization technique.
Let's see how we can define the protocols available and map them to the classes.

So in the application.conf file, we can define the list of available serializers
as follows:

akka {
 actor {
 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.serialization.ProtobufSerializer"
 }
 }
}

In case we are using any custom, third-party serializers, they can also be defined in
the application.conf file.

Once the serializers have been defined, we need to define the classes and bind those
serializers to the classes we want, as given in the following code:

akka {
 actor {
 serialization-bindings {
 "java.lang.Integer" = java

Chapter 9

[235]

 "java.lang.Boolean" = java
 "com.google.protobuf.Message" = proto
 }
 }
 }

We define the class with their fully qualified names and map them to the serializer
names, as defined in the serializer's section.

The complete application.conf looks as shown in the following code:

akka {
 actor {

 serializers {
 java = "akka.serialization.JavaSerializer"
 proto = "akka.serialization.ProtobufSerializer"
 }

 serialization-bindings {
 "java.lang.Integer" = java
 "java.lang.Boolean" = java
 "com.google.protobuf.Message" = proto
 }

 }
}

So what we see is that we need to define the available serializers in akka | actor
| serializers (as defined in the application.conf) section, with a name that is
used to define and subsequently bind the serializers to the class files. By default,
Akka provides the serializers for Java and Protobuf, so you need not add them to
the configuration file.

Next, we define the serialization bindings in the akka | actor | serialization-
bindings section. Here the classes are identified by their fully qualified names and
then mapped to the serializers that need to be used for that class.

Creating your own serialization technique
In the previous section, we saw how the various serializations that are available can
be defined and mapped to the class files. Now let's try to create our own serialization
technique and see how it can be used to serialize and de-serialize the object state.

Remote Actors

[236]

For writing your own serializer in Java, Akka provides the class JSerializer that
needs to be extended.

Java:

public class MySerializer extends JSerializer {

 public int identifier() {
 return 12062010;
 }

 public boolean includeManifest() {
 return false;
 }

 public byte[] toBinary(Object arg0) {

 …

 }
 @Override
 public Object fromBinaryJava(byte[] arg0, Class<?> arg1) {

 …
 }
}

You need to implement four methods in order to write your serializable. Let's go
through each of the methods and see what we need to implement there:

• identifier(): In this we need to specify a unique identifier. It can be any
number. The numbers from 0 to 16 are reserved by Akka, so you can use
that range.

• includeManifest(): This method indicates whether we need a class
definition when de-serializing the byte array.

• toBinary(Object arg0): This method is where we write our logic of
serializing the object into the byte array.

• fromBinaryJava(byte[] arg0,Class<?> arg1): This method is where we
write our logic of converting the byte array into the object itself.

Let's implement a serializable technique. We will make use of the Gson libraries from
Google here (http://code.google.com/p/google-gson/), for serializing and
de-serializing the object state.

Gson is a Java library that allows you to convert Java objects
into their JSON representation. The library can also convert
a JSON string to an equivalent Java object.

Chapter 9

[237]

Java:

public class MySerializer extends JSerializer {
 // create the Gson object
 private Gson gson = new GsonBuilder().serializeNulls().create();
 public int identifier() {
 return 12062010;
 }
 public boolean includeManifest() {
 return true;
 }
 // "toBinary" serializes the given object to an Array of Bytes
 public byte[] toBinary(Object arg0) {
 return gson.toJson(arg0).getBytes();
 }

 // "fromBinary" deserializes the given array,
 // using the type hint (if any, see "includeManifest" above)
 // into the optionally provided classLoader.
 @Override
 public Object fromBinaryJava(byte[] arg0, Class<?> arg1) {
 return gson.fromJson(new String(arg0), arg1);
 }
}

Scala:

class MySerializer extends Serializer {
 def identifier = 12062010
 def includeManifest: Boolean = true
 val gson = new GsonBuilder().serializeNulls().create()

 // "toBinary" serializes the given object to an Array of Bytes
 def toBinary(obj: AnyRef): Array[Byte] = {
 gson.toJson(obj).getBytes()
 }
 // "fromBinary" deserializes the given array,
 // using the type hint (if any, see "includeManifest" above)
 // into the optionally provided classLoader.
 def fromBinary(bytes: Array[Byte],
 clazz: Option[Class[_]]): AnyRef = {
 gson.fromJson(new String(bytes), clazz.toList.first)
 }
}

Remote Actors

[238]

By using the Gson library, we convert the object state into the JSON array, which is
then converted into a byte array.

Java:

public byte[] toBinary(Object arg0) {
 return gson.toJson(arg0).getBytes();
}

Scala:

 def toBinary(obj: AnyRef): Array[Byte] = {
 gson.toJson(obj).getBytes()
 }

When it comes to de-serialization, we convert the byte array into a string and pass it
to the method call fromJson().

Java:

public Object fromBinaryJava(byte[] arg0, Class<?> arg1) {
 return gson.fromJson(new String(arg0), arg1);
 }

Scala:

def fromBinary(bytes: Array[Byte],
 clazz: Option[Class[_]]): AnyRef = {
 gson.fromJson(new String(bytes), clazz.toList.first)
}

Let's see how we can use this serializable in our code. The application.conf needs
to define the serializers and bindings to the respective class. We'll use the following
configuration as an example:

akka {
 actor {
 serialize-messages = on
 serializers {
 my-serialization = "org.akka.essentials.serializer.
MySerializer"
 }
 serialization-bindings {

 "org.akka.essentials.serializer.MyMessage" = my-serialization

 }
 }
 }

Chapter 9

[239]

Let's define a message class with which we will bind the custom serializer.

Java:

public class MyMessage {

 private String name;
 private Integer age;
 private String address;
 public MyMessage(String _name, Integer _age, String _address) {
 name = _name;
 age = _age;
 address = _address;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public Integer getAge() {
 return age;
 }
 public void setAge(Integer age) {
 this.age = age;
 }
 public String getAddress() {
 return address;
 }
 public void setAddress(String address) {
 this.address = address;
 }
 public String toString() {
 return new StringBuffer().append(name).append(",").append(age)
 .append(",").append(address).toString();
 }
}

Scala:

case class MyMessage(name: String, age: Int, city: String)

The message class is simple; it has three attributes, which are name, age, and
address. We have overridden the toString() method in the case of Java, so that
we can log the state of the object.

Remote Actors

[240]

Now, let's go ahead and define an ActorSystem and see how we can use the custom
serializer with the MyMessage object that we have defined.

Java:

ActorSystem system = ActorSystem.create("MySerializableSys",
 ConfigFactory.load().getConfig("MySerializableSys"));

Serialization serialization = SerializationExtension.get(system);

MyMessage originalMessage = new MyMessage("Munish", 36, "Bangalore");

System.out.println("The original message is as " + originalMessage);

// Get the Binded Serializer for it
Serializer serializer = serialization.findSerializerFor
(originalMessage);

// Turn the object into bytes
byte[] bytes = serializer.toBinary(originalMessage);

// Turn the byte[] back into an object,
MyMessage deSerializedMessage = (MyMessage) serializer.fromBinary(
 bytes, MyMessage.class);

System.out.println("The de-serialized message is as " +
deSerializedMessage);

system.shutdown();

Scala:

val system = ActorSystem("MySerializableSys", ConfigFactory.load()
 .getConfig("MySerializableSys"));
val log = system.log

// Get the Serialization Extension
val serialization = SerializationExtension(system)

val originalMessage = new MyMessage("Munish", 36, "Bangalore")

log.info("The original message is as {}", originalMessage)

// Get the Binded Serializer for it
val serializer = serialization.findSerializerFor(originalMessage);

Chapter 9

[241]

// Turn the object into bytes
val bytes = serializer.toBinary(originalMessage);

// Turn the byte[] back into an object,
val deSerializedMessage = serializer.fromBinary(
 bytes, classOf[MyMessage])

log.info("The de-serialized message is as {}",deSerializedMessage)

system.shutdown

Let's go through the code and understand what is happening. Now, we load the
config data for the actor system defined in the application.conf.

Next we get the SerializationExtension defined in the application.conf.

Java:

Serialization serialization = SerializationExtension.get(system);

Scala:

val serialization = SerializationExtension(system)

This loads the three extensions we had defined, namely java, proto, and
my-serialization.

We create the Message object with the attributes.

Java:

MyMessage originalMessage =
 new MyMessage("Munish", 36, "Bangalore");

Scala:

val originalMessage = new MyMessage("Munish", 36, "Bangalore")

With the object, we again look into the config to get the binary serialization attached
to the object. This refers to the following code:

Akka{
 actor {
 serialization-bindings {
 "org.akka.essentials.serializer.MyMessage" = my-serialization
 }
 }
}

Remote Actors

[242]

We had defined in the application.conf, using the serializer for the MyMessage
class, how we can serialize the object state into a byte array.

Java:

byte[] bytes = serializer.toBinary(originalMessage);

Scala:

val bytes = serializer.toBinary(originalMessage)

Next, we pass back the byte array to the serializer method to get the object state
back.

Java:

MyMessage deSerializedMessage =
 (MyMessage)serializer.fromBinary(bytes, MyMessage.class);

Scala:

 val deSerializedMessage =
 serializer.fromBinary(bytes, classOf[MyMessage])

Then we can dump the object state to verify whether the object got created
properly or not.

We saw the usage of the message serialization technique that allows us to pass
the messages in a format that is understood on both sides of the wire. The default
serializers, namely java.io.Serializer or protobuf, would suffice your needs for
most cases. If you are dealing with a proprietary message serialization technique,
you will need to override and write your serialization extension.

This completes the example that demonstrated how to write your own object
serialization technique and map the objects that are passed as messages between
the actors.

Remote events
To monitor the remote actors, Akka provides the functionality to listen to these
events. We can write an Actor class and register it as Listener to listen to these
events. The events are published to the event stream, and our actor subscribes to
the event stream for actor-specific, event notifications.

Chapter 9

[243]

The following remote events are provided, which our Listener can subscribe to:

Event name Description
RemoteClientConnected Whenever an outbound connection is made. The event has

information about the transport used and the outbound
address that was connected to it.

RemoteClientDisconnected Whenever an outbound connection is disconnected. The
event has information about the transport used and the
outbound address that the client was disconnected from.

RemoteClientStarted Whenever an outbound client is started. The event has
information about the transport used and the outbound
address that the client was connected to.

RemoteClientShutdown Whenever an outbound client is shut down. The event has
information about the transport used and the outbound
address that the client was connected to.

RemoteClientWriteFailed Whenever the outbound message was not delivered. The
event holds the information for the payload that was not
delivered, the cause of failure (throwable), the transport
used, and the outbound address that the client was
connected to.

RemoteClientError All other errors that are not classified in any other category
are caught via this event. The event holds the information
for the cause of failure (throwable), the transport used, and
the outbound address that the client was connected to.

RemoteServerStarted This event is generated when the inbound server is started.
The event has information for the remote transport used.

RemoteServerShutdown This event is generated when the inbound server is
shutdown. The event has information for the remote
transport used.

RemoteServerClient
Connected

Whenever an inbound client connection is established.
The event contains information about the transport used
and the outbound address that the client was connected
to (optional).

RemoteServerClient
Disconnected

Whenever an inbound client connection is disconnected.
The event contains information about the transport used
and the outbound address that the client was connected
to (optional).

RemoteServerClient
Closed

Whenever an inbound client connection is closed. The
event contains information about the transport used
and the outbound address that the client was connected
to (optional).

Remote Actors

[244]

Let's see how we can write a small Listener for subscribing to remote events, and
how we register the Listener.

Java:

public class RemoteClientEventListener extends UntypedActor {
 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof RemoteClientError) {
 //do something
 } else if (message instanceof RemoteClientConnected) {
 //do something
 } else if (message instanceof RemoteClientDisconnected) {
 //do something
 } else if (message instanceof RemoteClientStarted) {
 //do something
 } else if (message instanceof RemoteClientShutdown) {
 //do something
 } else if (message instanceof RemoteClientWriteFailed) {
 //do something
 }
 }
}

Scala:

class RemoteClientEventListener(val jobScheduler: ActorRef) extends
Actor with ActorLogging {

 def receive: Receive = {
 case event: RemoteClientError => //do something
 case event: RemoteClientConnected => //do something
 case event: RemoteClientDisconnected => //do something
 case event: RemoteClientStarted => //do something
 case event: RemoteClientShutdown => //do something
 case event: RemoteClientWriteFailed => //do something
 }
}

The Listener is a simple actor that listens to the various events. Based on the
events, the Listener can either forward a message for corrective action or take the
corrective action itself. For example, if the remote client has shut down, then one
corrective mode might restart the remote client actor.

Once Listener is created, we need to register the Listener on eventStream for
particular events.

Chapter 9

[245]

So to register Listener in the actor system, we instantiate the Listener actor and
then register it on the eventStream for particular messages.

Java:

//Actor creation
ActorRef remoteActorListener = system.actorOf(
 new Props(RemoteActorListener.class)),
 "RemoteClientEventListener");

//registration of listener on the stream
system.eventStream().subscribe(remoteActorListener,
 RemoteLifeCycleEvent.class);

Scala:

val remoteActorListener = system.actorOf(Props(
 new RemoteClientEventListener(jobControllerActor)),
 name = "RemoteClientEventListener")

system.eventStream.subscribe(remoteActorListener,
classOf[RemoteLifeCycleEvent])

The subscribe method takes two arguments, — one is actorref for the Listener
class and the second is the type of lifecycle events you want to subscribe to. There are
three main lifecycle events given, as follows:

• RemoteClientLifeCycleEvent: This is used when you want to listen
primarily to outbound events originating from the remote clients

• RemoteServerLifeCycleEvent: This is used when you want to listen
primarily to inbound events originating from the remote server

• RemoteLifeCycleEvent: This is used when you want to listen to all
remote events

Using the remote events, you can write programs to handle remote event
notifications that can then be potentially used by the supervisor strategy to
handle failures.

Remote Actors

[246]

Summary
In this chapter, we saw what the requirements of any distributed computing
environment are and how Akka implements them. We saw various methods of
creating actors using the remote deployment mode, and how to create remote
references to remote objects.

Next we saw how object serialization happens on Akka, the various serializers
provided by Akka, and how we can write our own serializers.

In the next chapter, we will the see the techniques available to monitor and manage
your large, distributed application. We will cover the Akka monitoring tools and the
various statistics provided by these tools.

Management
The availability of a large, distributed application is dependent on the quality of
application monitoring. If the application is not properly monitored, outages can go
undetected, leading to application unavailability. The ability to monitor the entire
application stack and take corrective actions is very important.

In this chapter we will cover the following advanced topics as follows:

• Typesafe console — an Akka monitoring tool
• Graphical dashboards
• Real-time statistics
• JMX and REST interfaces

Application monitoring
Knowing application failure alerts in real time helps you to respond to alerts
and take corrective actions, which in turn determines the agility of the overall
application. If you are not able to gauge the health of the application in real time,
you may not be able to respond to any signs of failure quickly. This leads to a
situation where you come to know of failure only when a major portion of the
application or service has gone down.

Management

[248]

In a large, distributed application, monitoring and alerting capabilities are all the
more important due to the sheer number of pieces that need to work together to
make sure that the application performs at its optimum. In addition, it is an expected
behavior to have the monitoring turned on in production systems, because, at times,
system behavior at runtime is unpredictable and very difficult to reproduce under
normal circumstances. This means that a monitoring system should ideally have the
following characteristics:

• Low overhead: The monitoring system in itself should have a very low
footprint and a very negligible impact on the running applications.

• Transparent: The application should not be aware of the monitoring solution.
The application need not take anything into account, and programmers need
not perform anything with respect to the monitoring solution.

• Real time: The monitoring system should provide runtime statistics on a
real-time basis.

Akka, via its commercial arm Typesafe, provides the application monitoring
capability. The Typesafe console provides a dashboard for monitoring the
application built using Akka. The Typesafe console is available only for Typesafe
subscription customers.

Typesafe console
The Typesafe console is a custom-built, tracing and monitoring solution for Akka's
actor-based applications. The Typesafe console captures the events emitting from
an actor system that are linked together via a trace ID, which is spanned across the
complete message flow (including remote nodes). These events are then aggregated,
consolidated, and made available to the administrators and developers via a web-
based interface.

The Typesafe console provides an insight into usage trends and performance
characteristics of the running system. Using the console, the operations staff can
detect potential bottlenecks, understand the underlying reasons, and take corrective
actions before they explode into a full-blown problem.

The Typesafe console monitoring solution is very lightweight and designed to be
used in a high-volume production environment. For a very high transaction rate
system, the Typesafe console uses sampling to reduce the overhead and the amount
of data to be collected.

Chapter 10

[249]

The Typesafe console provides a rich web interface to monitor the application. In
addition, it also exposes the aggregated metrics and monitoring data via RESTful
API and JMX. This allows the enterprise to take advantage of existing tools and
integrate the Typesafe console. The Typesafe console provides both historical and
current monitoring information, allowing comparison across time and trend analysis.

The Typesafe console has been implemented as a series of modules that combine
together to provide complete functionality. Let's go through the console modules
to understand their role, and how they integrate together to provide functionality.

Typesafe console modules
The Typesafe console is composed of the following modules:

• Trace: It is responsible for collecting the trace events being emitted by the
actor system and storing those trace events in storage.

• Analyze: It is responsible for taking raw trace events from storage
and producing aggregated results. These results are then stored in a
separate storage.

• Query: It is responsible for exposing the statistical data via REST and JMX.
• Typesafe console: It is the web interface that uses the REST API interface to

connect to the query module and provide the rich interface.

Management

[250]

The trace, analyze, and query modules together are referred to as Atmos, while the
frontend module is called either the Typesafe console or just console.

Atmos is able to track messages as they flow through the distributed systems
(across the actor system and across networks). This means that it is possible to
follow message chains in the distributed system. Atmos is able to follow distributed
control paths by relying entirely on the instrumentation of a few common libraries.

Trace events are captured in a very efficient way using a combination of threads, local
state, and local buffering, before they are emitted to storage for an offline analysis.

In the Akka application, we need to configure the three atmos modules, to be able
to make use of the monitoring capabilities of the Typesafe console.

Let's go through the atmos modules and see their usage and configuration.

Trace
Trace events are collected in the application using the instrumented versions of a
common library (akka-actor, akka-remote, akka-kernel, and akka-slf4j) of JAR
files. The trace events are buffered and then asynchronously written to storage.

Each trace event holds a UUID of the trace it belongs to, and also of the trace event
(the work unit) that happened in the trace before. Each trace event also carries
timestamps (currentTimeMillis and nanoTime), nodes, hosts, sampling factors,
and additional data, such as actor information and a string representation of the
sent message.

A trace allows three ways for the trace events to persist:

• By directly writing to MongoDB
• By sending the trace event to a remote actor, which writes to MongoDB
• By sending the trace event to a Flume agent that transports to a Flume

collector, which writes to MongoDB

Trace events are stored in MongoDB.

MongoDB is an open source, document-oriented NoSQL data store. It stores
structured data in a JSON-like document format and provides very good support
for indexing and ad hoc queries on document-style data.

For documentation and installation details on MongoDB,
please refer to the official MongoDB site:
http://www.mongodb.org/

Chapter 10

[251]

Flume is an Apache project that focuses on collecting, aggregating, and moving
large amounts of data. Flume was initially written to move data into the Hadoop
HDFS file system.

For more details about Apache Flume, refer to the following URL:
https://cwiki.apache.org/FLUME/

Trace configuration
In the application to be monitored, add the following minimum configuration
corresponding to the application.conf file:

akka {
 loglevel = INFO
 event-handlers = ["akka.atmos.trace.Slf4jTraceContextEventHandler"]

 atmos {
 mode = mongo

 trace {
 # Enable or disable all tracing
 enabled = true
 node = node1
 mongo {
 # Name of the Mongo database
 db-name = "atmos-monitoring"

 # Connection URI to MongoDB
 db-connection-uri = "mongodb://localhost"
 }
 }

 }
}

To get the tracing running, we need to define the following minimum properties:

• Tracing is disabled by default, so we need to enable it for the specific actor
systems that need to be monitored

• Define the node property for each node (ActorSystem) in the system, as this
is used to identify and tag the multiple actor systems that are running

https://cwiki.apache.org/FLUME/

Management

[252]

• Define the MongoDB name and URL, specifying the location of MongoDB

Analyze
The analyze module creates spans and then aggregates the statistics from the trace
events for that particular span. The trace events are extracted from the event storage,
and the statistics are then computed and stored in advance for various groupings in
time and scope.

A span is the path between two trace events, and the duration between these events is
the data that captures the essence of the availability and scalability of the application.

Chapter 10

[253]

The previous diagram shows a sample span that contains information between
client and server. For each activity happening on the client and server side, events
are generated that are annotated and tagged to the span ID. These events are then
correlated and aggregated by the analyze module.

Atmos supports the following span types:

• Message: A span for a message, from when it is sent until the processing of
the message is completed

• Mailbox: A span for the waiting time of the message in the actor mailbox
• Receive: A span for the processing time in the actor receive method
• Question: A span between ask (?) and future completed (reply)
• Remote: A span for remote latency
• Any user-defined marker span: A user-defined span may start and end at

any location in the message trace; that is, it may span over several actors

The trace events and span-aggregated statistics are grouped into two dimensions,
namely scope and time. The scope dimension group's actors are based on the
following properties:

• actorPath: The unique name of the actor
• tag: One or more tags can be assigned to an actor with configuration
• dispatcher: The name of the message dispatcher of the actor
• node: The logical name of the node, which corresponds to an actor system,

and typically also a JVM, even though it is possible to run several nodes
(actor systems) in the same JVM

Running analyze module
The analyze module is started with bin/atmos -analyze -name analyze
(or bin\bat\startAnalyze.bat on Windows) in the distribution.

It uses config/atmos/atmos.conf as an analyze configuration:

akka {
 loglevel = INFO
 event-handlers = ["akka.atmos.trace.Slf4jTraceContextEventHandler"]

 atmos {
 mode = mongo

Management

[254]

 analytics {
 mongo {
 # Name of the Mongo database
 db-name = ${akka.atmos.trace.mongo.db-name}

 # Connection URI to MongoDB
 db-connection-uri = ${akka.atmos.trace.mongo.db-connection-
uri}
 }
 }
}

In this configuration, it is very important to define the mongo.db-name and uri, as the
aggregated statistics are stored in the database.

Query
The query module exposes the aggregated statistics and underlying trace events and
spans via the REST API and JMX. Availability of the REST API and JMX allows the
integration of atmos with other enterprise products, for monitoring operations.

The JMX beans expose the information using the root name akka.atmos. JMX
information can be accessed with an ordinary JMX console, such as JConsole or
JVisualVM, connected to the query node.

The Typesafe console uses the query module's REST API to display statistics in a
rich web GUI.

Running query module
The query module is started with bin/atmos -query -jmx -name query
(or bin\bat\startQuery.bat and bin\bat\startJmx.bat on Windows) in the
distribution. It uses the config/atmos/atmos.conf as the query configuration.

As the query module accesses the same MongoDB instance in which the analyze
module stores the aggregated statistical data, the configuration read and used is
the same:

akka {
 loglevel = INFO
 event-handlers = ["akka.atmos.trace.Slf4jTraceContextEventHandler"]

 atmos {
 mode = mongo

Chapter 10

[255]

 analytics {
 mongo {
 # Name of the Mongo database
 db-name = ${akka.atmos.trace.mongo.db-name}

 # Connection URI to MongoDB
 db-connection-uri = ${akka.atmos.trace.mongo.db-connection-
uri}
 }

 jmx {
 # URL for the host and port of the REST API.
 base-url = "http://127.0.0.1:9898"

 # Time filter of the queries, such as rolling=2hours
 # "" means all time
 time-filter = ""
 }
 }

 collect {
 remote {
 hostname = "127.0.0.1"
 port = 2553
 }
 }
 }
}

Additional information is defined for the JMX and time-filter criteria.

Typesafe console
The Typesafe console retrieves the information from the query module and
visualizes the collected information in nice-looking graphs.

The Typesafe console has been built using the Play framework.

Management

[256]

Running Typesafe console
The console module is started with bin/console (or bin\bat\startConsole.bat
on Windows) in the distribution. It uses the config/console/console.conf as the
console configuration:

Get configuration from this file (not database)
app.config=true

The name of the application
app.name=Demo
The URL of the endpoint, i.e. where the Atmos Query API is found
app.url="http://localhost:9898/monitoring/"

User to login with
user.email="demo@typesafe.com"
user.password="demo"

Secret key
application.secret=<application secret key>

The setting app.config=true means that the settings in this configuration file will
be used to define the application's attributes. Any changes made in the console will
be temporary and will not persist.

Define the name of the application with the app.name parameter. This name is the
one that will be shown in the console.

The console uses the query module to retrieve information, so we need to configure
app.url to where the query module is running.

user.email and user.password are used when there are multiple users and
applications involved. application.secret is used by the Play framework to
secure cryptographic functions.

This completes the overview, setup configuration, and the procedure on how to run
the Typesafe console modules. Next, we will see what information is exposed via the
Typesafe console and how we can comprehend the same.

Chapter 10

[257]

Graphical dashboard
Let's hit the Typesafe console URL at http://localhost:9898/monitoring/ and
check out the graphical dashboard provided to monitor your Akka application.

The first screen to come up is the sign-in screen, as shown in the following
screenshot. By default, the user/password applicable is what we provided in the
previous section, Running Typesafe console.

user.email="demo@typesafe.com"
user.password="demo"

Management

[258]

We provide the user's Email and Password and click on SIGN IN. Once we
are successfully signed in, we are presented with the screen shown in the
following screenshot:

The following screenshot lists the applications that are currently being monitored. In
the preceding screenshot, it shows the Demo application.

We click on the Launch in console link mentioned against the Demo option, shown
in the preceding screenshot.

The preceding screenshot shows the overview of the whole SYSTEM to the right-
hand side and all NODES to the left-hand side.

Chapter 10

[259]

System overview
Let's look at the SYSTEM overview (present on the right-hand side) to see all the
details that are provided:

The SYSTEM overview displays information about the whole system. The
aggregated statistics are displayed across all the actors in the whole system
and all the nodes are combined.

Management

[260]

The individual graph sections illustrate the following information:

• QUERY (query time period): The data query range.
• PEAK (peak messages rate): The peak number of messages received

per second.
• ERRORS: The total number of errors and warnings recorded in

the application.
• THROUGHPUT: The total message rate at the number of messages

per second.
• TIME IN MAILBOX: The histogram shows the average time that the

messages spend waiting in the actor mailbox queue. Each bar corresponds
to 1 minute. The bar to the left-hand side is the average for the latest minute,
and the bar to the right-hand side is the average for 15 minutes ago.

• REMOTE THROUGHPUT: The message rate and serialized message size in
bytes per second.

• MEAN LATENCY: The histogram shows the average duration for the
messages. The duration is measured from when the message was sent
until the message processing has completed in the receiving actor.

Node
For each node (on the left-hand side), some key metrics are displayed. The statistics are
aggregated for all the actors living in this node, as shown in the following screenshot:

• The circle to the left-hand side gives a quick overview of the current health
of the node. Corresponding time series graphs are shown in the expanded
view in the previous screenshot. The inner circle becomes red if there are any
errors within the selected time period.

• The next circle from the middle shows the current GC Activity, which is the
time spent in garbage collection, in percentage.

Chapter 10

[261]

• The next circle shows the current CPU usage (user plus system mode)
in percentage.

• The outermost circle shows the current Java heap usage in percentage.

By clicking on the down arrow in the lower right-hand side corner, the view is
expanded with more graphs and values, which are displayed as shown in the
following screenshot:

The individual graph sections illustrate the following information:

• THROUGHPUT: The total message rate, displayed in number of messages
per second

• CPU (CPU user): The CPU usage in the user mode in percentage
• HEAP: The current maximum usage of the Java heap in percentage
• GC ACTIVITY: The time spent in garbage collection, as a percentage of the

wall-clock time
• LOAD: It displays the load in the node where the actor system is running

Management

[262]

• NETWORK: The amount of data received/sent, number of socket
connections, and send/receive errors

• ERROR: It displays the number of error/warnings recorded in the actor
hierarchy, the dead letters count, and any deadlocks encountered

Next, we check out the data available for other components available in the
node menu:

Dispatchers
For accessing the dispatchers data, click on the dispatcher link menu on the top right-
hand side of the node screen.

Chapter 10

[263]

On the right-hand side, we see all the DISPATCHERS associated with the
application showing up. For each dispatcher, some key metrics are displayed.
Note that a dispatcher belongs to a specific node, so two dispatchers with the same
name may exist on different nodes. The statistics are aggregated for all the actors
associated with the dispatcher.

Clicking on the down arrow in the lower right-hand side corner, the view is
expanded with more graphs and values, as displayed in the following screenshot:

Management

[264]

The spider illustrates the thread pool of the dispatcher, with one leg for each thread
in the pool. The legs are highlighted to indicate an active worker thread, but that is
an approximation as the dispatcher metrics are gathered periodically with a rather
low frequency.

The individual graph sections illustrate the following information:

• THROUGHPUT: The total message rate (messages per second) of sent and
received messages

• DISPATCHER THREADS: The number of dispatcher threads
• MAX MAILBOX SIZE: The maximum number of messages reached in the

mailbox queue
• LATENCY SCATTER: It indicates the time taken to dispatch each message

plus the time taken by the actor to process the message
• EXECUTOR: It indicates the type of dispatcher policy being used, along with

the thread pool size
• MESSAGE COUNTS: It indicates the number of messages that have been

processed until now
• ERROR: The number of error/warnings recorded in the actors associated

with this dispatcher, the dead letters count, and the number of unhandled
messages that were encountered

Actors
For accessing the ACTORS data, click on the menu in the top-right corner of the
node screen:

Chapter 10

[265]

Select one of the ACTORS on the right-hand side. For each actor, some key metrics
are displayed as follows:.

The individual graph sections illustrate the following information:

• THROUGHPUT: The total message rate displayed in number of messages
per second

• MAILBOX SIZE: The number of messages waiting in the actor mailbox
queue

• MAILBOX WAIT TIME: The time that the messages spend waiting in the
actor mailbox queue

• LATENCY SCATTER: It indicates the time taken by the actor to process
the message

Management

[266]

• ACTOR COUNTS: The number of times that the actors have been stopped/
started/failed

• MESSAGE COUNTS: It indicates the number of messages processed by this
actor until now

• ERROR: The number of errors/warnings that were recorded in the
actors, the dead letters count, and the number of unhandled messages
that were encountered

Tags
Tags is the way that is provided to aggregate information across the applications
running on different nodes. It is similar to the way that Twitter makes use of
hashtags to aggregate data across a common thread. Multiple tags can be associated
with different elements of the application.

For accessing the tag data, click on the FILTERS menu on the top right-hand side of
the screen, as shown in the following screenshot:

In the drop-down menu, select the Tags option.

Chapter 10

[267]

Select one of the TAGS displayed on the left-hand side in the previous screenshot.
One or more tags can be assigned to an actor with configuration. This is a nice way of
grouping the actors into logical units. For each tag, some key metrics are displayed.
The statistics are aggregated for all the actors associated with the tag:

Management

[268]

Errors
Error counts are displayed at several places, such as in the inner-red circle of the
node. You can click on those values to show more detailed information about the
errors, including the full tree of trace events:

After selecting one error message from the list of errors, additional details about the
error, such as when the error occurred, on which actor it occurred, and the link to the
stack trace are shown, as displayed in the following screenshot:

Chapter 10

[269]

On clicking the see trace tree link, the detailed information about the error and the
trace tree is only visible as raw JSON:

{
 "event" : {
 "id" : "/monitoring/trace/event/f1c42960-848f-11e1-a97f-
12313d2d1dd7",
 "trace" : "/monitoring/trace/tree/f1c20681-848f-11e1-a97f-
12313d2d1dd7",
 "parent" : "/monitoring/trace/event/f1c40250-848f-11e1-a97f-
12313d2d1dd7",
 "sampled" : 1,
 "node" : "node1",
 "host" : "ip-10-62-10-37.ec2.internal",
 "timestamp" : "2012-04-12T11:09:16:918",
 "nanoTime" : 172252222312236,
 "annotation" : {
 "type" : "ActorFailed",
 "reason" : "java.lang.RuntimeException: Simulated exception
in ActorE\n\tat akka.atmos.demo.ActorE$$anonfun$receive$2.
apply(ErrorDemo.scala:89)\n\tat akka.atmos.demo.
ActorE$$anonfun$receive$2.apply(ErrorDemo.scala:84)\n\tat akka.
actor.Actor$class.apply(Actor.scala:290)\n\tat akka.atmos.demo.
ActorE.apply(ErrorDemo.scala:83)\n\tat akka.actor.ActorCell.
invoke_aroundBody2(ActorCell.scala:617)\n\tat akka.actor.ActorCell.
invoke_aroundBody3$advice(ActorCell.scala:531)\n\tat akka.
actor.ActorCell.invoke(ActorCell.scala:1)\n\tat akka.dispatch.
Mailbox.processMailbox(Mailbox.scala:179)\n\tat akka.dispatch.
Mailbox.run(Mailbox.scala:161)\n\tat java.util.concurrent.
ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)\n\tat
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.
java:908)\n\tat java.lang.Thread.run(Thread.java:662)\n",
 "supervisor" : {
 "actorPath" : "akka://Demo/user/ActorD",
 "dispatcher" : "another-dispatcher",
 "remote" : false,
 "tags" : ["err-demo", "demo"]
 },
 "actorInfo" : {
 "actorPath" : "akka://Demo/user/ActorD/ActorE",
 "dispatcher" : "another-dispatcher",
 "remote" : false,
 "tags" : []
 }
 }
 }

Management

[270]

This completes the Typesafe console's overview. The monitoring solution allows
detecting and handling situations, as follows:

• The incoming message rate is higher than the speed at which the actors are
able to process the message, leading to backlogs

• The node level statistic provides the view of the overall application usage of
the resources, plenty versus starved

• Errors allow us to dig deeper and find out the cause of failure, allowing us to
take proactive actions before the situation becomes alarming

• Dispatcher utilization indicates whether the ForkJoin or ThreadPool
execution schemes are used, and how the underlying threads are performing

Limitations
The Typesafe console only shows a subset (via a predefined set of time periods) of all
the information available in atmos. The rest of the information is queryable using the
REST API. The default Typesafe console has certain limitations. The one that matters
when monitoring the application in real time is that all the actors with the same actor
path across all the nodes are aggregated and displayed in the current mode. When
you visualize the mailbox activity of the actors, the actor with the maximum value is
selected and displayed.

The Typesafe console is undergoing frequent releases, and additional features are
being added to make the console more robust and provide all kinds of information
about your Akka application. Some of its limitations might be getting fixed in or
already be fixed in the latest release of the Typesafe console.

JMX and REST interfaces
The Typesafe console's query module exposes the monitoring statistics via two
interfaces, given as follows:

• RESTful API
• JMX

RESTful API
The REST API provides an easy way to integrate atmos with other products for
monitoring and surveillance. Most of the REST API calls support the search in two
dimensions, namely scope and time.

Chapter 10

[271]

The scope dimension filters the actors according to the following information:

• Node: The logical name of the node, which corresponds to an actor system
• Dispatcher: The name of the message dispatcher of the actor
• Actor: The unique name of the actor by using the actor path
• Tag: One or more tags can be assigned to an actor with configuration

The time dimension can filter queries with a rolling window or an explicit time
period. The aggregated statistics are grouped by whole time period units, for
example, whole hours.

For span-related queries, the name of the span type is part of the URI. For example,
consider the following /monitoring/span/summary/{spanType} URI, which
provides the statistics of the overview character for the durations of the spans.

Following are some of the important parameters provided by the different
REST API calls:

Name Description
Metadata This parameter provides metadata about the system

(span types, actor addresses, and so on).

Metadata nodes This parameter contains details of the nodes in the system.
The logical name of the (JVM) node.

Metadata dispatchers This parameter provides names of the message dispatchers in
the system.

Metadata tags This provides the list of actor tags in the system. One or more tags
can be assigned to an actor with configuration.

Metadata span types This provides the predefined and user-defined span types in
the system.

Summary span statistics This parameter provides the statistics of the overview character for
the durations of the spans.

Span time series This parameter provides the time series for the durations of the
spans. This information is typically used for producing the time
series scatter plot of latencies.

Actor statistics This parameter provides the actor lifecycle events and message
processing statistics.

Mailbox time series This parameter provides the time series for the mailbox size and
message waiting time in the mailbox.

System metrics time
series

This parameter provides the JVM and OS health metrics. It's
possible to retrieve time series for system metrics.

Management

[272]

Name Description
System metrics point This parameter provides a specific point in a time series of system

metrics points.

Error statistics This parameter provides details on the number of errors, warnings,
dead letters, unhandled messages, and deadlocks in the whole
system or for a specific node.

Remote status This parameter provides details on the remote status events and
counts of the lifecycle events from RemoteSupport.

Trace events This parameter provides information about the trace events in
the system.

For the complete list of parameters, please refer to the official
documentation here:
http://resources.typesafe.com/docs/console/
manual/rest-api.html

JMX
JMX MBeans expose the information using the root name akka.atmos. JMX
information can be accessed using the JMX console provided along with JDK,
such as JConsole or JVisualVM, connected to the query node.

The JMX MBeans provide a consolidated view of the monitoring statistics
across all servers, which means that you do not connect to individual machines
during production.

Let's take a quick look at the JMX view. Start the demo application in the distribution
with bin/atmos-demo (or bin\bat\startDemo.bat on Windows).

Chapter 10

[273]

Open JConsole, which is part of the JDK, and connect to the Local Process
akka.atmos.demo.MixedDemo.local.jmx, as shown in following screenshot:

Go to the MBeans tab and expand the akka.atmos element by clicking on it,
as shown in the following screenshot:

Management

[274]

Note that you can double-click on a value to see a graph of that value, as shown in
the following screenshot:

Summary
This completes the management chapter, where we saw the capabilities provided
by the Typesafe console to monitor the Akka application. We explored the Typesafe
console's various modules, namely trace, analyze, query, and graphical console.
We saw the base configuration setting and usage for each of the modules.

We also looked at the Typesafe console, and the various dials and knobs provided
to understand the runtime health of your Akka application. We also saw how
monitoring data is exposed via the REST API and JMX.

In the next chapter we will cover some advanced topics, such as durable mailboxes,
accessing actors over HTTP, and ZeroMQ integration.

Advanced Topics
In this chapter, we will cover topics that will allow your Akka application to be
more resistant to failures (via durable mailboxes), interact over HTTP with other
applications, and talk to other enterprise applications (using messaging). The
following topics will be covered:

• Durable mailboxes
• Actors and web applications
• Integrating actors with ZeroMQ

Durable mailboxes
Imagine a large distributed application with the actor(s) running, with hundreds of
messages queued in the mailbox. Suddenly, the application node where the actor(s)
and its attached mailbox is hosted goes down. When the application node comes
back, the actor(s) will be (re)initialized but the mailbox will lose all the messages.

This kind of scenario is not acceptable in a production environment, where the
application is crunching critical data and any missing data can lead to serious
inconsistencies in the application.

So, what is the option? In the messaging world, this problem has been solved using
what is called persistent messages. It means that the messages coming in persist in
some storage. After the message has been successfully processed, the message is
removed from the queue.

Advanced Topics

[276]

Like any messaging system, Akka also supports the concept and notion of persistent
or durable mailboxes. The message being received by the actor can persist via a
variety of storage options. So in the case of an actor failure, when the actor node is
restarted, it will start processing the messages as though nothing has happened, and
the pending messages will be processed from the mailbox:

Until version 2.0.1, Akka supported durable mailboxes using the following
multiple options:

• File: Using a transaction log on a local filesystem
• Redis: Using the open source, key-value store (http://www.redis.io/)
• Zookeeper: A centralized service for maintaining configuration information,

and naming, providing distributed synchronization, and group services
(http://zookeeper.apache.org/)

• Beanstalkd: Using the work queue feature coupled with memcache
(http://kr.github.com/beanstalkd/)

• MongoDB: Using the open source NoSQL database storage
(http://www.mongodb.org/)

Except the file-based option, all the other options use
additional software to provide durable mailboxes. Using a
third-party persistent allows for a centralized storage in a
multinode environment. But these third-party software can
themselves become the single point of failure if not set up
and configured properly.

Chapter 11

[277]

From Akka 2.0.2, all the options except file-based durable mailboxes have been
deprecated, and the plan is to remove their support completely from version 2.1.
The idea behind deprecating the support of durable mailboxes using third-party
software was to cut down on the dependency on the core Akka libraries. All the
third-party durable options are now available to be taken over by the community.

We will examine the file-based option and see how our application can make use
of these.

Akka support
Akka supports the file-based, durable mailbox option, FileDurableMailboxStorage.

Akka supports durable mailboxes via dispatchers. Dispatchers are the entities
that are responsible for receiving and transmitting pure and reliable messages.
Dispatchers keep track of the messages and actors, allowing them to configure the
application for optimal throughput, scalability, and performance. Refer to Chapter 5,
Dispatchers and Routers, for more details on dispatchers.

The use of dispatchers allows the application to create partitions, where you can
group a set of actors to share the same dispatcher and underlying storage. The actor
is not aware of whether the mailbox is durable.

Dispatcher usage
The following code snippet shows how to configure the appropriate durable mailbox
scheme in the application.conf:

MyDurableMailBox {

 My-Dispatcher {
 type = PinnedDispatcher
 executor = "thread-pool-executor"
 thread-pool-executor {
 core-pool-size-min = 2
 core-pool-size-factor = 2.0
 core-pool-size-max = 10
 }
 throughput = 10
 mailbox-type = akka.actor.mailbox.FileBasedMailboxType
 }

akka {
 actor{ 0

Advanced Topics

[278]

 mailbox {
 file-based {
 directory-path = "./_mb"
 max-items = 2147483647
 max-size = 2147483647 bytes
 max-items = 2147483647
 max-item-size = 2147483647 bytes
 max-age = 0s
 max-journal-size = 16 MiB
 max-memory-size = 128 MiB
 max-journal-overflow = 10
 max-journal-size-absolute = 9223372036854775807 bytes
 discard-old-when-full = on
 keep-journal = on
 sync-journal = off
 }
 }
 }
 }
}

Java:

system = ActorSystem.create("DurableMailBoxApp",
 ConfigFactory.load().getConfig("MyDurableMailBox"));
actor = system.actorOf(new Props(WorkerActor.class).
 withDispatcher("My-Dispatcher"), "myActor");
actor.tell("Hello");

Scala:

val config = ConfigFactory.load()
val system = ActorSystem("DurableMailBoxApp" ,
 config.getConfig("MyDurableMailBox"))
val actor = system.actorOf(Props[WorkerActor].
 withDispatcher("My-Dispatcher"), name = "myActor")
actor ! "Hello"

We create DurableEventBasedDispatcher with a defined namespace, and a durable
mailbox scheme is to be used.

In this case, the FileDurableMailboxStorage scheme is being used to persist the
messages. To use the appropriate durable scheme, we need to specify the correct
storage option when defining the dispatcher.

Chapter 11

[279]

To use the durable mailboxes, your Maven projects need to define additional
dependencies in the pom.xml file:

 <dependency>
 <groupId>se.scalablesolutions.akka</groupId>
 <artifactId>akka-mailboxes-common</artifactId>
 <version>2.0</version>
 </dependency>

 <dependency>
 <groupId>se.scalablesolutions.akka</groupId>
 <artifactId>akka-file-mailbox</artifactId>
 <version>2.0</version>
 </dependency>

For the file-based, durable-persistent scheme, there are additional configurations that
need to be made.

FileDurableMailboxStorage
The simplest and easiest way to administer it is the file-based durable mailbox.
There is no extra piece of hardware or software that is required. In most cases
this option will suffice for your application needs. The file-based durable
mailbox can be fine-tuned to use additional settings in the section based on
akka.actor.mailbox.file of the akka.conf configuration file:

akka {
 actor {
 mailbox {
 file-based {
 directory-path = "./_mb"
 max-items = 2147483647
 max-size = 2147483647
 max-item-size = 2147483647
 max-age = 0
 max-journal-size = 16777216 # 16 * 1024 * 1024
 max-memory-size = 134217728 # 128 * 1024 * 1024
 max-journal-overflow = 10
 max-journal-size-absolute = 9223372036854775807
 discard-old-when-full = on
 keep-journal = on
 sync-journal = off
 }
 }
 }
}

Advanced Topics

[280]

The parameters that can be fine-tuned are as follows:

Parameter name Description
directory-path The directory location where the durable queue will reside.
max-items Defines the maximum number of messages that can be held in

the queue. Any attempts to add a message after this will fail.
max-size Defines the maximum size of the queue in bytes.
max-item-size Sets the maximum size of a message in the queue (in bytes).
max-age Defines the maximum expiration of a message in the queue.
max-journal-size Defines the maximum journal size before the journal is

rotated. Similar to log rotation, when the logfile reaches the
predefined size.

max-memory-size Defines the maximum size of the queue before it drops into the
read-behind mode, which means that the messages are coming
in faster than they are getting processed.

max-journal-overflow Defines the maximum overflow of the journal file before
it is recreated.

max-journal-size-
absolute

Defines the maximum size of the journal file until it is rebuilt.

discard-old-when-full Drops the old messages when the queue is full.
keep-journal Determines whether the journal file should be kept.
sync-journal Determines whether to keep the journal in sync for

every transaction.

To use the file-based durable mailboxes, your Maven projects need to define
additional dependencies in pom.xml:

 <dependency>
 <groupId>se.scalablesolutions.akka</groupId>
 <artifactId>akka-file-mailbox</artifactId>
 <version>2.0</version>
 </dependency>

The file-based durable mailbox is provided as a blueprint for implementations
around other storage mechanisms. The deprecated mailboxes are not part of Akka
but will be available as community-supported projects.

Chapter 11

[281]

Actors and web applications
If you are building a web-based application or distributed application, it becomes
very important that you can make use of the HTTP protocols for the received
messages to be processed by the actors.

To expose actors over the HTTP protocol, the recommended framework is the Play
framework (http://www.playframework.org/).

The Play framework is an open source, web application-development framework
based on the Model-View-Controller (MVC) paradigm. The framework is written
in Scala. The Play 2.0 is part of the Typesafe Stack 2.0. We will not cover the Play
framework in its entirety as a part of this section, but we will see how we can expose
the actors over REST using the framework.

For the purpose of exposing the actors via HTTP, we will cover the basic minimum
requirements. For additional details on the Play framework, please refer to the
official documentation of the Play framework at http://www.playframework.org/

The Play framework allows both Scala and Java to be used as the underlying
programming model for creating web applications. We will cover only the Java part
of exposing the actors.

Let's go ahead and create the project template for exposing our actor over HTTP.
Let's call our application HttpActors. Our application should be able to receive
the message over HTTP and pass the message to the actor, which will process the
message and return the message back to the client as a response:

We shall go through the basic setup requirements to get the Play framework up, and
to run and create the default project template.

Advanced Topics

[282]

Installing play
To run play, we need to have at least JDK 1.6 installed. Download the play package
from the site and extract the archive file to a suitable location.

After that, add the location of the folder where play is extracted to the system
PATH directive:

export PATH=$PATH:/<folder location>/play-2.0

In Windows, we set it in the global environment variables minus the export directive.

Next go to the shell prompt and launch the play help command as follows:

$ play help

If everything is properly installed, we should see the basic help screen as it is shown
in the following screenshot:

Creating the first HttpActors application
First let's move to the workspace folder where we want to generate the application
project files. Once there, the easiest way to create a new application is to use the play
new command as follows:

$ play new HttpActors

This will ask for some information, as follows:

• The application name: It is used just for displaying purposes and will be
used later in several messages.

Chapter 11

[283]

• The template to be used for this application: You can choose either a default
Scala application, a default Java application, or an empty application. In our
case, we choose a Java application as shown in the following screenshot:

This completes the default project application template that needs to be generated.

Launching the console
To launch the console, enter any existing play application directory and run the
play script as follows:

$ play

Advanced Topics

[284]

Next, we use the run command to run the current application in development mode:

In this mode the server will be launched with the auto-reload feature enabled, which
means that for each request, play will check your project and recompile the required
sources. If needed the application will restart automatically.

Next, we open the browser at localhost:9000 and see the default application
running, as shown in the following screenshot:

Chapter 11

[285]

We can see the complete structure of the project template in the preceding screenshot.

$ cd HttpActors

$ ls

The layout of the play application is standardized to keep things as simple
as possible.

We will be interested in the app directory, which contains all executable artifacts,
such as Java and Scala source code, templates, and compiled assets' sources.

There are three standard packages in the app directory, one for each corresponding
component of the MVC architectural pattern, as follows:

• app/controllers
• app/models
• app/views

The conf directory contains the application's configuration files. There are two main
configuration files, as follows:

• application.conf: It is the main configuration file for the application,
which contains standard configuration parameters

• routes: It is the routes definition file

Advanced Topics

[286]

In the conf directory we will add the following code snippet for the purpose of our
demo, and we will expose the /actor URI for which we will define the route in the
routes file:

GET /actor/:msg controllers.ServerActorApp.
process(msg: String)

Here we have defined the /actor URI with the dynamic part — msg. The URI is then
mapped to the controller class static method — process() with the parameter type
(in this case String).

In the /app/controllers folder, we will define the ServerActorApp controller
class, which will handle the HTTP request.

Java:

package controllers;

import play.*;
import play.mvc.*;

import views.html.*;

import static akka.pattern.Patterns.ask;
import play.libs.Akka;
import akka.actor.*;
import play.libs.F.Function;
import org.akka.essentials.remoteActor.sample.ServerActor;

public class ServerActorApp extends Controller {

 private static ActorRef myServerActor = Akka.system()
 .actorOf(new Props(ServerActor.class));

 public static Result process(String msg){

 return async(
 Akka.asPromise(ask(myServerActor,msg, 1000)).map(
 new Function<Object,Result>() {
 public Result apply(Object response) {
 return ok(response.toString());
 }
 }
)
);
 }
}

Chapter 11

[287]

ServerActorApp extends the controller and implements the process (String) as a
static method. We define our ServerActor instance as follows:

Java:

 private static ActorRef myServerActor = Akka.system()
 .actorOf(new Props(ServerActor.class));

In the process() method, we invoke ServerActor. As we are making a send and
receive request, our actor will return the Future object. We need to convert the
Future object to the play Promise using the conversion method provided in play.
libs.Akka.asPromise().

Java:

public static Result process(String msg){

 return async(
 Akka.asPromise(ask(myServerActor,msg, 1000)).map(
 new Function<Object,Result>() {
 public Result apply(Object response) {
 return ok(response.toString());
 }
 }
)
);

Our ServerActor class is defined as follows.

Java:

package org.akka.essentials.remoteActor.sample;

import akka.actor.UntypedActor;

public class ServerActor extends UntypedActor {

 @Override
 public void onReceive(Object arg0) throws Exception {

 if(arg0 instanceof String){
 getSender().tell(arg0 + " - got something from server");
 }
 }
}

That's it! We have exposed our actor on the HTTP protocol.

Advanced Topics

[288]

Let's hit the URL http://localhost:9000/actor/Hi, where we are invoking the
/actor URI with the Hi message, as shown in the following screenshot:

We can see our ServerActor responding back with the message, as shown in the
previous screenshot.

This completes a very simple demonstration on how to expose actors over HTTP.
For additional information on the play framework, refer to the play framework
documentation at http://www.playframework.org/.

If you do not want to develop the complete HTTP application but just want to
expose the actors as REST API, we can make use of the play-mini https://
github.com/typesafehub/play2-mini/. The play-mini provides REST API
on top of the play framework.

In addition, Akka integrates very well with the following frameworks, which allow
exposing actors over HTTP/REST API. All the frameworks are geared towards the
Scala developers:

• Spray (built using Akka): https://github.com/spray/spray
• Socko web (built using Akka): http://sockoweb.org/
• Unfiltered: http://unfiltered.databinder.net/Unfiltered.html
• Scalatra: http://www.scalatra.org/

Chapter 11

[289]

Integrating actors with ZeroMQ
ZeroMQ is a high-performance, asynchronous messaging library used for highly
scalable, distributed, or concurrent applications. ZeroMQ is an embeddable
networking library. ZeroMQ sockets provide a layer of abstraction on top of the
traditional socket AP, and carry whole messages across various transports, such
as in-process, inter-process, TCP, and multicast. Applications using sockets for
communication and data exchange, make use of patterns such as fanout, PubSub,
task distribution, and request-reply. ZeroMQ provides an asynchronous I/O
model, which allows you to write scalable multicore applications, built using
asynchronous, message-processing tasks. For more information on ZeroMQ,
refer to www.zeromq.org.

Akka provides an integrated ZeroMQ module that allows Akka actors to act
as listeners to the ZeroMQ connections. The message to be passed can be in the
proprietary format or can make use of Akka's supported ProtoBuf binary protocol.
The socket actor(s) is fault-tolerant by default, and when you use the newSocket
method to create new sockets, it will properly reinitialize the socket.

As ZeroMQ communication is done in an asynchronous fashion (by default), the
application using the ZeroMQ module needs to explicitly declare the number of
background I/O threads. The ZeroMQ library itself handles all the thread logic. As
a result, in Akka, akka.zeromq.socket-dispatcher always needs to be configured
to a PinnedDispatcher, because the thread that created it can only access the actual
ZeroMQ socket.

Akka provides native support to the ZeroMQ C++ library using Java Native Access
(JNA) support, with the ZeroMQ binding in Scala. As a result, to use and run
ZeroMQ with Akka, all you need is for the compiled ZeroMQ library to be in the
class path. This means that for accessing the ZeroMQ library, you do not need the
JNI-binding API library.

Akka supports the following connectivity patterns using ZeroMQ:

• Publisher-subscriber connection
• Request-reply connection
• Router-dealer connection
• Push-pull connection

For each of the supported connectivity patterns, we will explore the usage.

Advanced Topics

[290]

Publisher-subscriber connection
Publish-subscribe is a data distribution messaging pattern, where the senders of
messages, called publishers, do not program the messages to be sent directly to
specific receivers, called subscribers. The publisher publishes the message for a set of
topics, and subscribers can subscribe to one or more topics to receive those messages.
The publisher has no knowledge of the subscribers, and there is no direct interaction
between the publisher and subscriber.

In the context of the Akka environment, pub-sub connections are used when an
actor sends messages to one or more actors that do not interact with the actor that
sent the message.

The ZeroMQ pub/sub model requires multicast messaging to work properly, as the
filtering of events for the topics happens on the client side. This allows for all the
events to always be broadcasted to every subscriber:

Usage
ZeroMQ uses sockets for connecting or accepting connections. Akka supports socket
creation using akka.zeromq.ZeroMQExtension.

Chapter 11

[291]

Let's go ahead and create PublisherActor that encompasses the publisher socket.

Java:

public class PublisherActor extends UntypedActor {
 public static final Object TICK = "TICK";
 int count = 0;
 Cancellable cancellable;
 ActorRef pubSocket = ZeroMQExtension.get(getContext().system())
 .newPubSocket(new Bind("tcp://127.0.0.1:1237"));

 @Override
 public void preStart() {
 cancellable = getContext()
 .system()
 .scheduler()
 .schedule(Duration.parse("1 second"),
 Duration.parse("1 second"), getSelf(), TICK);
 }

 @Override
 public void onReceive(Object message) throws Exception {
 if (message.equals(TICK)) {
 pubSocket.tell(new ZMQMessage(
 new Frame("someTopic"), new Frame(
 "This is the workload " + ++count)));

 if(count==10)
 cancellable.cancel();
 }
 }
}

Scala:

case class Tick
class PublisherActor extends Actor with ActorLogging {
 val pubSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Pub, Bind("tcp://127.0.0.1:1234"))
 var count = 0
 var cancellable:Cancellable = null
 override def preStart() {
 cancellable = context.system
 .scheduler.schedule(1 second, 1 second, self, Tick)
 }
 def receive: Receive = {
 case Tick =>
 count += 1

Advanced Topics

[292]

 var payload = "This is the workload " + count;
 pubSocket ! ZMQMessage(Seq(Frame("someTopic"),
 Frame(payload)))
 if(count == 10){
 cancellable.cancel()
 }
 }
}

So we have created PubSocket using ZeroMQExtension, which is bounded on the
127.0.0.1 IP address with port 1237, using the TCP protocol.

Java:

ActorRef pubSocket = ZeroMQExtension.get(getContext().system())
 .newPubSocket(new Bind("tcp://127.0.0.1:1237"));

Scala:

val pubSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Pub, Bind("tcp://127.0.0.1:1234"))

The published socket can now publish the message on a given topic.

Java:

pubSocket.tell(new ZMQMessage(new Frame("someTopic"),
 new Frame("This is the workload)));

Scala:

var payload = "This is the workload " + count;
pubSocket ! ZMQMessage(Seq(Frame("someTopic"),
 Frame(payload)))

In this code, we are publishing a message using ZMQMessage, which takes in two
frames. The first frame signifies the topic name against which the message is to be
published. The second frame contains the message payload itself:

Chapter 11

[293]

Next, we will create the Subscriber actor that will implement the subscriber socket,
which will subscribe to the topic and receive the messages.

Java:

public class WorkerTaskA extends UntypedActor {
 ActorRef subSocket = ZeroMQExtension.get(getContext().system())
 .newSubSocket(new Connect("tcp://127.0.0.1:1237"),
 new Listener(getSelf()), new Subscribe("someTopic"));

 LoggingAdapter log = Logging.getLogger(
 getContext().system(), this);

 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String mesg = new String(m.payload(1));
 log.info("Received Message @ A -> {}",mesg);
 }
 }
}

Scala:

class WorkerTaskA extends Actor with ActorLogging {
 val subSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Sub,
 Connect("tcp://127.0.0.1:1234"),
 Listener(self), Subscribe("someTopic"))

 def receive = {
 case m: ZMQMessage =>
 var mesg = new String(m.payload(1))
 log.info("Received Message @ A -> {}", mesg)
 }
}

We create SubSocket using ZeroMQExtension. The socket connects to the IP address
and port. In addition, we define the actor self() to be Listener for the messages
and, lastly, we indicate the topic for which we want to subscribe the messages.

Whenever a message is published, our Subscriber actor will receive the message
that can be read and acted upon by the actor.

Advanced Topics

[294]

We can bind all the publishers and subscribers together to get the
communication going.

Java:

ActorSystem system = ActorSystem.create("zeromqTest");
system.actorOf(new Props(WorkerTaskA.class), "workerA");
system.actorOf(new Props(WorkerTaskB.class), "workerB");
system.actorOf(new Props(PublisherActor.class), "publisher");

Scala:

val system = ActorSystem("zeromqTest")
system.actorOf(Props[PublisherActor], name = "publisher")
system.actorOf(Props[WorkerTaskA], name = "workerA")
system.actorOf(Props[WorkerTaskB], name = "workerB")

You see two workers, A and B, defined and created above. The WorkerTaskB actor is
similar to WorkerTaskA and needs to be defined separately.

Request-reply connection
Request-reply is a simple, message exchange pattern, where the requester sends a
message to the replier system, which receives the message, processes the message,
and sends back a reply to the requester system. This pattern is implemented in
a synchronous way when implementing web service calls, where the requester
waits until the response is returned back. This pattern is typical of the client-server
implementation, as shown in following diagram:

Chapter 11

[295]

Usage
Let's go ahead and create an actor that encompasses the replier socket.

Java:

public class ServerActor extends UntypedActor {
 ActorRef repSocket = ZeroMQExtension.get(getContext().system())
 .newRepSocket(new SocketOption[] {
 new Bind("tcp://127.0.0.1:1237"),
 new Listener(getSelf()) });

 @Override
 public void onReceive(Object message) throws Exception {
 if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String mesg = new String(m.payload(0));
 repSocket.tell((new ZMQMessage(
 new Frame(mesg + " Good to see you!"))));
 }
 }
}

Scala:

class ServerActor extends Actor with ActorLogging {
 val repSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Rep, Bind("tcp://127.0.0.1:1234"),
 Listener(self))

 def receive: Receive = {
 case m: ZMQMessage =>
 var mesg = new String(m.payload(0));
 repSocket ! ZMQMessage(Seq(Frame(mesg +
 " Good to see you!")))
 }
}

So we have created RepSocket using ZeroMQExtension, which is bounded on the
127.0.0.1 IP address with port 1237, using the TCP protocol. In addition, we define
the actor self() to be Listener for the messages.

Now whenever a request comes, our replier socket can receive the message, process
the message, and send back the reply.

Advanced Topics

[296]

Next, we will create the requester actor that will implement the requester socket,
which will send a message to the replier system and get the response back.

Java:

public class ClientActor extends UntypedActor {
 public static final Object TICK = "TICK";
 int count = 0;
 Cancellable cancellable;
 ActorRef reqSocket = ZeroMQExtension.get(getContext().system())
 .newReqSocket(new SocketOption[] {
 new Connect("tcp://127.0.0.1:1237"),
 new Listener(getSelf()) });
 LoggingAdapter log = Logging.getLogger(
 getContext().system(), this);

 @Override
 public void preStart() {
 cancellable = getContext()
 .system()
 .scheduler()
 .schedule(Duration.parse("1 second"),
 Duration.parse("1 second"), getSelf(), TICK);
 }

 @Override
 public void onReceive(Object message) throws Exception {
 if (message.equals(TICK)) {
 // send a message to the replier system
 reqSocket.tell(new ZMQMessage(new Frame("Hi there! ("
 + getContext().self().hashCode() + ")->")));
 count++;
 if (count == 10)
 cancellable.cancel();
 } else if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String mesg = new String(m.payload(0));
 log.info("Received msg! {}", mesg);
 }
 }
}

Chapter 11

[297]

Scala:

case class Tick

class ClientActor extends Actor with ActorLogging {
 val reqSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Req,
 Connect("tcp://127.0.0.1:1234"), Listener(self))

 var count = 0
 var cancellable: Cancellable = null
 override def preStart() {
 cancellable = context.system.scheduler
 .schedule(1 second, 1 second, self, Tick)
 }

 def receive: Receive = {
 case Tick =>
 count += 1
 var payload = "Hi there! (" +
 context.self.hashCode() + ")->"
 reqSocket ! ZMQMessage(Seq(Frame(payload)))
 if (count == 5) {
 cancellable.cancel()
 }
 case m: ZMQMessage =>
 var mesg = new String(m.payload(0))
 log.info("recieved msg! {}", mesg)
 }
}

We create SubSocket using ZeroMQExtension. The socket connects to the IP address
and port. In addition, we define the actor self() to be Listener for the messages.

We will send a message to the replier system, and our requester actor will receive the
response message that can be read and acted upon by the actor.

We can bind all the request and reply actors together to get the communication
going. First, on the reply side, we get ActorSystem started and the actor created
and running.

Java:

ActorSystem system = ActorSystem.create("zeromqServerTest");
system.actorOf(new Props(ServerActor.class), "server");

Advanced Topics

[298]

Scala:

val system = ActorSystem("zeromqServerTest")
system.actorOf(Props[ServerActor], name = "server")

Similarly, on the request side, we will start another ActorSystem that connects to the
request sockets and starts the communication.

Java:

ActorSystem system = ActorSystem.create("zeromqClientTest");
system.actorOf(new Props(ClientActor.class)
 .withRouter(new RoundRobinRouter(3)), "client");

Scala:

val system = ActorSystem("zeromqTest")
system.actorOf(Props[ClientActor].withRouter(
 RoundRobinRouter(nrOfInstances = 3)), name = "client")

We use a RoundRobinRouter to create multiple request actors that will connect to the
same reply socket.

Router-dealer connection
The router-dealer message pattern helps in dealing with the tight coupling of the
request-reply connections. If I need to add additional replier systems to handle the
incoming, requester system requests, how do I do that? To help this, the concept
of the router-dealer connection comes into the picture. The router-dealer is a little
message queuing broker that has two endpoints, one that binds to the requester and
another that binds to the replier. The broker then monitors these two endpoints and
shuffles the messages between its two sockets.

So, the router-dealer provides a non-blocking, request-response mechanism:

Chapter 11

[299]

Usage
Let's go ahead and create an actor that encompasses the dealer socket.

Java:

public class WorkerTaskA extends UntypedActor {
 ActorRef subSocket = ZeroMQExtension.get(getContext().system())
 .newDealerSocket(new SocketOption[]
 { new Connect("tcp://127.0.0.1:1237"),
 new Listener(getSelf()),
 new Identity("A".getBytes()) });

 @Override
 public void onReceive(Object message) throws Exception {

 if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String mesg = new String(m.payload(0));
 subSocket.tell((new ZMQMessage(new Frame(mesg
 + " Processed the workload for A"))));
 }
 }
}

Scala:

class WorkerTaskA extends Actor with ActorLogging {
 val subSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Dealer,
 Connect("tcp://127.0.0.1:1234"),
 Listener(self),
 Identity("A".getBytes()))

 def receive = {
 case m: ZMQMessage =>
 var mesg = new String(m.payload(0))
 subSocket.tell((new ZMQMessage(Frame(mesg
 + " - Workload Processed by A"))))
 }
}

So we have created a DealerSocket using ZeroMQExtension, which connects to the
127.0.0.1 IP address with port 1237, using the TCP protocol. In addition, we define
the self()actor to be Listener for the messages. For example, for objects in Java,
we use this to indicate the object's own instance, in the same way that the actor's
self() refers to its own actor reference. We add another attribute called Identity,
which identifies the service name so that the message is routed to the right service.

Advanced Topics

[300]

Now whenever a request is received, our replier socket can receive the message,
process the message, and send back the reply.

Next, we will create the router actor that will implement the router socket, which
will send a message to the replier system and get the response back.

Java:

public class RouterActor extends UntypedActor {
 public static final Object TICK = "TICK";

 Random random = new Random(3);
 int count = 0;
 Cancellable cancellable;

 ActorRef routerSocket = ZeroMQExtension.get(
 getContext().system())
 .newRouterSocket(
 new SocketOption[] {
 new Listener(getSelf()),
 new Bind("tcp://127.0.0.1:1237"),
 new HighWatermark(50000) });

 LoggingAdapter log = Logging.getLogger(getContext().system(),
 this);

 @Override
 public void preStart() {
 cancellable = getContext()
 .system()
 .scheduler()
 .schedule(Duration.parse("1 second"),
 Duration.parse("1 second"), getSelf(), TICK);
 }

 @Override
 public void onReceive(Object message) throws Exception {
 if (message.equals(TICK)) {
 if (random.nextBoolean() == true) {
 routerSocket.tell(new ZMQMessage(new Frame("A"),
 new Frame("This is the workload for A")));
 } else {
 routerSocket.tell(new ZMQMessage(new Frame("B"),
 new Frame("This is the workload for B")));
 }
 count++;
 if (count == 10)
 cancellable.cancel();

Chapter 11

[301]

 } else if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String replier = new String(m.payload(0));
 String msg = new String(m.payload(1));
 log.info("Received message from {} with mesg -> {}",
 replier, msg);
 }
 }
}

Scala:

case class Tick

class RouterActor extends Actor with ActorLogging {
 val pubSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Router,
 Bind("tcp://127.0.0.1:1234"),
 Listener(self), HighWatermark(50000))

 var random = new Random(3);

 var count = 0
 var cancellable: Cancellable = null

 override def preStart() {
 cancellable = context.system.scheduler
 .schedule(1 second, 1 second, self, Tick)
 }

 def receive: Receive = {
 case Tick =>
 count += 1
 if (random.nextBoolean() == true) {
 pubSocket ! ZMQMessage(Seq(Frame("A"),
 Frame("This is the workload for A")))
 } else {
 pubSocket ! ZMQMessage(Seq(Frame("B"),
 Frame("This is the workload for B")))
 }
 if (count == 10) {
 cancellable.cancel()
 }

 case m: ZMQMessage =>
 var replier = new String(m.payload(0))
 var msg = new String(m.payload(1))
 log.info("received message from {} with mesg -> {}",
 replier, msg)
 }
}

Advanced Topics

[302]

We create RouterSocket using ZeroMQExtension. The socket binds to the IP
address and port. In addition, we define the self() actor to be Listener for the
messages. We also define the HighWatermark attribute that defines the maximum
queue limit.

We will send a message to the replier system, and our requester actor will receive the
response message that can be read and acted upon by the actor.

We define a random Boolean variable to send messages to the dealer sockets. When
the replier system responds back, we get both the requester name and message.

To get the communication started, we will use the ActorSystem and get the routers
and worker actors started.

Java:

ActorSystem system = ActorSystem.create("zeromqTest");
system.actorOf(new Props(WorkerTaskA.class), "workerA");
system.actorOf(new Props(WorkerTaskB.class), "workerB");
system.actorOf(new Props(RouterActor.class), "router");

Scala:

val system = ActorSystem("zeromqTest")
system.actorOf(Props[RouterActor], name = "router")
system.actorOf(Props[WorkerTaskA], name = "workerA")
system.actorOf(Props[WorkerTaskB], name = "workerB")

You see two workers, A and B, defined and created in the preceding code. The
WorkerTaskB actor is similar to WorkerTaskA and needs to be defined separately.

Push-pull connection
Another connection type is the push-pull pattern. The push socket distributes tasks
to the workers. The push-pull sockets function in a one-way pattern only:

Chapter 11

[303]

Usage
Let's go ahead and create an actor that encompasses the push socket.

Java:

public class PushActor extends UntypedActor {
 public static final Object TICK = "TICK";
 int count = 0;
 Cancellable cancellable;
 ActorRef pushSocket = ZeroMQExtension.get(
 getContext().system())
 .newPushSocket(new SocketOption[] {
 new Bind("tcp://127.0.0.1:1237"),
 new Listener(getSelf()) });

 @Override
 public void preStart() {
 cancellable = getContext()
 .system()
 .scheduler()
 .schedule(Duration.parse("1 second"),
 Duration.parse("1 second"), getSelf(), TICK);
 }

 @Override
 public void onReceive(Object message) throws Exception {
 if (message.equals(TICK)) {
 count++;
 pushSocket.tell(new ZMQMessage(
 new Frame("Hi there (" + count + ")")));
 if (count == 5)
 cancellable.cancel();
 }
 }
}

Scala:

case class Tick

class PushActor extends Actor with ActorLogging {
 val pushSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Push,
 Bind("tcp://127.0.0.1:1234"), Listener(self))

 var count = 0
 var cancellable: Cancellable = null

Advanced Topics

[304]

 override def preStart() {
 cancellable = context.system.scheduler
 .schedule(1 second, 1 second, self, Tick)
 }

 def receive: Receive = {
 case Tick =>
 count += 1
 var payload = "Hi there! (" + count + ")"
 pushSocket ! ZMQMessage(Seq(Frame(payload)))
 if (count == 5) {
 cancellable.cancel()
 }
 }
}

So we have created PushSocket using ZeroMQExtension, which binds to the
127.0.0.1 IP address with port 1237, using the TCP protocol. In addition, we
define the self() actor to be Listener for the messages.

Now, our actor can start sending the message out to the pull-socket actors.

Next, we will create the pull actor that will implement the pull socket, which will
pull the messages in load-balanced mode.

Java:

public class PullActor1 extends UntypedActor {
 ActorRef pullSocket = ZeroMQExtension.get(
 getContext().system())
 .newPullSocket(new SocketOption[] {
 new Connect("tcp://127.0.0.1:1237"),
 new Listener(getSelf()) });
 LoggingAdapter log = Logging.getLogger(
 getContext().system(), this);

 @Override
 public void onReceive(Object message) throws Exception {

 if (message instanceof ZMQMessage) {
 ZMQMessage m = (ZMQMessage) message;
 String mesg = new String(m.payload(0));
 log.info("Received Message -> {}", mesg);
 }
 }
}

Chapter 11

[305]

Scala:

class PullActor1 extends Actor with ActorLogging {
 val pullSocket = ZeroMQExtension(context.system)
 .newSocket(SocketType.Pull,
 Connect("tcp://127.0.0.1:1234"),
 Listener(self))

 def receive: Receive = {
 case m: ZMQMessage =>
 var mesg = new String(m.payload(0))
 log.info("Received Message -> {}", mesg)
 }
}

We create PullSocket using ZeroMQExtension. The socket connects to the IP
address and port. In addition, we define the self() actor to be Listener for
the messages.

The pull sockets will get the messages pushed by PushActor, and the pull actors can
then process the messages.

To get the communication started, we will use the ActorSystem and get the routers
and worker actors started.

Java:

ActorSystem system = ActorSystem.create("zeromqTest");
system.actorOf(new Props(PushActor.class), "push");
system.actorOf(new Props(PullActor1.class), "pull1");
system.actorOf(new Props(PullActor2.class), "pull2");

Scala:

val system = ActorSystem("zeromqTest")
system.actorOf(Props[PushActor], name = "push")
system.actorOf(Props[PullActor1], name = "pull1")
system.actorOf(Props[PullActor2], name = "pull2")

You will see two pull actors, A and B, defined and created above. The PullActor2
actor is similar to PullActor1 and needs to be defined separately.

This completes the ZeroMQ section, where we explored the various socket connection
types supported by ZeroMQExtension, and how it is very well integrated with the
actors' messaging system.

Advanced Topics

[306]

Summary
In this chapter, we learned techniques that come in handy when creating
enterprise-level applications.

We saw how durable mailboxes allow us to overcome the actor failure or crash and
not lose out on the messages, and how the actor application can be integrated with
the play framework to build an asynchronous web application; we also saw how to
make use of the ZeroMQ library with Akka actors, and integrate an Akka application
using the integration patterns within the enterprise.

Index
A
ACID (atomicity, consistency, isolation,

and durability) 166
Active Object pattern

used, for implementing typed actor 78, 79
actor behavior 14
actor classes, Java application

AggregateActor.java 40, 41
MapActor.java 37, 38
MasterActor.java 41-43
ReduceActor.java 39, 40

actor classes, Scala application
AggregateActor.scala 51
MapActor.scala 48, 49
MasterActor.scala 53-55
ReduceActor.scala 50

ACTOR COUNTS 266
actorFor() method 231
actor model

about 10
principles 11

actorOf() method 62, 231
actor path 221, 222
actorPath property 253
ActorRef class 19, 62, 221
actor reference

access to 194, 195
actorRef.underlyingActor() 194
actors

about 13, 59, 124
actor state 14
behavior 14
creating 61, 62
creating, with default constructor 62

creating, within actor hierarchy 63, 64
creating, with non-default

constructor 62, 63
defining 61
hierarchy 125
integrating, with ZeroMQ 289
killing 73
lifecycle, monitoring 73
lifecycle, phases 60
lifestyle 16
mailbox 15
recursive actor hierarchy 125
specialized actors, managing 124
stopping 71, 72
supervisor actors 124

ACTORS
individual graph section 265, 266

actor state 14
actor statistics parameter 271
actor system 13
ActorSystem class 62
ActorSystem context 82
Address objects 113
agents

about 187
creating 188
stopping 190
using, in application 188
values, reading 189
values, updating 188, 189

AggregateActor class 52
AggregateActor.java 40, 41
AggregateActor.scala 51
aggregate task 24
air traffic controllers. See ATCs

[308]

Akka
about 7
actor model 10, 11
actor system 13
background 7
concurrent systems 8, 9
container-based applications 10
directory structure 29
dispatchers 99, 100
fault tolerance 17
key constructs 20
location transparency 18
Maven project, creating 30-35
modules 29
transactions 19, 20
URL 12
URL, for downloading distribution 28
use cases 21

akka-actor 29
akka-agent 29
Akka application

actor behavior, testing 195, 196
actor reference, accessing 194, 195
deployment mode 213
exception scenarios, testing 196, 197
requisites 23, 24
testing 191, 192
unit test, testing with TestActorRef 192-194

akka-camel 29
akka-dataflow 29
Akka extensions

used, for managing application
configuration 208-213

akka.first.app.mapreduce package 47
Akka framework

features 12
akka-kernel 29
Akka Maven project

creating, steps for 30-35
Akka, modules

akka-<storage-system>-mailbox 29
akka-actor 29
akka-agent 29
akka-camel 29
akka-dataflow 29
akka-kernel 29
akka-osgi 29

akka-remote 29
akka-slf4j 29
akka-testkit 29
akka-transactor 29
Akka-zeromq 29

akka-osgi 29
akka-remote 29
akka-slf4j 29
akka-<storage-system>-mailbox 29
akka-testkit 29
akka-transactor 29
Akka-zeromq 29
All-For-One strategy 131, 146-153
analytics 21
analyze module, Typesafe console

about 252
running 253
scope dimension groups actors,

properties 253
span 252, 253
span, types 253

any user-defined marker span span 253
application.conf

router usage via 112, 113
application.conf class 93
application configuration

managing, Akka extensions used 208-213
application development environment,

prerequisites
Akka 28, 29
Eclipse 27
Java 26
Maven 27
Scala 27

application.secret 256
ask() method 65, 67, 81
ATCs 96

B
balancing dispatcher

about 103
features 103

batch processing 21
Beanstalkd

URL 276
blocking queue 104

[309]

BlockingQueue method 101
Boolean variable 302
BoomActor 197
Bootable class 214
bounded mailbox 104
bounded priority mailbox 104
bounded queue 104
broadcast router 110
BroadcastRouter, router type 112
BurstyMessageRouter class 115
business intelligence 21

C
Calculator class 82, 89
CallingThreadDispatcher.global 195
CAS 168
close() method 190
Compare and Swap. See CAS
compile command 57
conf directory 285
config.getString() 210
context() actor 212
context.actorOf() method 54
Continuous Integration (CI) 191
coordinated.atomic() block 185
coordinated.coordinate() method 170
coordinated transactions

about 169, 170
money, transferring between multiple

accounts 171-182
multiple transactions, managing 170

CPU (CPU user) 261
createCustomRoute() method 117
Creator() method 84
CustomRoute class 118
CustomRoute() method 117

D
data mining 21
decouple 79
destinationsFor() method 118
directory-path parameter 280
discard-old-when-full parameter 280
dispatcher, configuration parameters

executor parameter 106
fork-join-executor parameter 106

key parameters 108
mailbox-capacity (optional) parameter 107
mailbox-type (optional) parameter 107
thread-pool-executor parameter 106-108
throughput parameter 106
type parameter 106

dispatcher property 253
dispatchers

about 92, 95, 263
ACTORS 264, 265
application.conf class 93
as pattern 97
balancing dispatcher 103
configuration parameters 106
default dispatcher 101
default dispatchers, features 101
default mailbox implementations 100
ERRORS 268-270
fork join executor 105, 106
in Akka 99, 100
individual graph section 264
pinned dispatcher 102
TAGS 266, 267
thread dispatcher 103
thread pool executor 105
types 100
usage 105
using 92

DISPATCHER THREADS 264
distributed actors

router usage for 113
distributed computing

about 217
Java EE EJB model used 218-220
key elements 220

durability 166
dynamic proxy classes

implementing, in JDK 80

E
EchoActor testing 197, 202
Eclipse

URL, for downloading 27
ERROR 262-266
ERRORS 260
error statistics parameter 272

[310]

evaluateExpression() method 37, 38, 48, 49
execution class, Java application

defining 44
MapReduceApplication.java class 44, 45

execution class, Scala application
defining 55
MapReduceApplication.scala class 55-57

executor
constructor 98
ForkJoinPool 98
in Java 97
ThreadPoolExecutor 98

EXECUTOR 264
executor parameter 106
extension 208
ExtensionId 208
ExtensionIdProvider interface 211

F
fault tolerance model

about 161-163
let it crash 125, 126

file-based, durable mailbox option
about 277
dispatcher usage 277-279
FileDurableMailboxStorage 279, 280

FileDurableMailboxStorage scheme
about 277, 278
directory-path parameter 280
discard-old-when-full parameter 280
keep-journal parameter 280
max-age parameter 280
max-item-size parameter 280
max-items parameter 280
max-journal-overflow parameter 280
max-journal-size-absolute parameter 280
max-journal-size parameter 280
max-memory-size parameter 280
max-size parameter 280
sync-journal parameter 280

finalReducedMap variable 41, 52
Finish button 33
fire and forget messages 65, 66
fire and forget mode, typed actors 84, 85
Flume

about 251

URL 251
foldLeft() method 49
fork join executor 105, 106
fork-join-executor parameter 106
ForkJoinPool 98
ForwardingActor testing 197, 203
fromBinaryJava(byte[] arg0,Class<?> arg1)

method 236
future construct 67
Future object 287
Future return type 81

G
GC ACTIVITY 261
getContext().actorOf() method 42
getContext().become() method 74
getContext().unbecome() method 74
getSender() construct 38
graphical dashboard

about 257, 258
dispatchers 262, 263
limitations 270
SYSTEM overview 259

H
HEAP 261
High Availability (HA) 21
HighWatermark attribute 302
HotSwap 74, 75
HttpActors application

creating 282, 283

I
IDE 23
identifier() method 236
IllegalArgumentException

exception 196, 205
includeManifest() method 236
individual graph section, ACTORS

about 265
ACTOR COUNTS 266
ERROR 266
LATENCY SCATTER 265
MAILBOX SIZE 265
MAILBOX WAIT TIME 265

[311]

MESSAGE COUNTS 266
THROUGHPUT 265

individual graph section, dispatchers
DISPATCHER THREADS 264
ERROR 264
EXECUTOR 264
LATENCY SCATTER 264
MAX MAILBOX SIZE 264
MESSAGE COUNTS 264
THROUGHPUT 264

individual graph section, node
CPU (CPU user) 261
ERROR 262
GC ACTIVITY 261
HEAP 261
LOAD 261
NETWORK 262
THROUGHPUT 261

individual graph section, SYSTEM over-
view

ERRORS 260
MEAN LATENCY 260
PEAK (peak messages rate) 260
QUERY (query time period) 260
REMOTE THROUGHPUT 260
THROUGHPUT 260
TIME IN MAILBOX 260

instanceof string 225
Integrated Development Environment.

See IDE
integration testing 192
int state variable 135
isolation 165
Iterable<Destination> object 118

J
Java application

about 30
actor classes, defining 37, 38
Akka Maven project, creating 30-35
message classes, defining 35
URL, for installing 26

java.lang.reflect.Method object 80
Java Native Access (JNA) 289
Java Platform, Enterprise Edition (JEE) 10

java.util.concurrent.TimeoutException
exception 81

JMX MBeans 272, 273
JUnit 4.1 library

URL 192

K
keep-journal parameter 280
kill() message 73

L
LATENCY SCATTER 264, 265
Launch in console link 258
let it crash paradigm 123, 124
lifecycle monitoring

actor, monitoring for termination 155-160
guidelines 154

LOAD 261
LocalActor class 228
LocalActorRef 195
LocalActor system 224
local node application

creating 228-231
lookup() method 211

M
mailbox-capacity (optional) parameter 107
mailboxes

about 15, 104
bounded mailbox 104
bounded priority mailbox 104
bounded queue 104
durability 275
types 104
unbounded mailbox 104
unbounded priority mailbox 104

mailboxes, durability
Beanstalkd 276
file 276
MongoDB 276
options 276
Redis 276
Zookeeper 276

MAILBOX SIZE 265
mailbox span 253

[312]

mailbox time series parameter 271
mailbox-type (optional) parameter 107
MAILBOX WAIT TIME 265
MapActor class 37, 38, 48, 49
MapActor.java 37, 38
MapActor.scala 48, 49
MapData.java 35
MapData message 35, 38
MapData object 37, 42
MapReduceApplication.java class 44, 45
MapReduceApplication.scala class 55-57
MapReduce method 23
map task 24
master actor 25
MasterActor class 54
MasterActor.java 41, 42, 43
MasterActor object 38
MasterActor.scala 53, 55
Maven

URL, for downloading 27
max-age parameter 280
max-item-size parameter 280
max-items parameter 280
max-journal-overflow parameter 280
max-journal-size-absolute parameter 280
max-journal-size parameter 280
MAX MAILBOX SIZE 264
max-memory-size parameter 280
maxNrOfRetries argument 132
max-size parameter 280
MBeans tab 273
MEAN LATENCY 260
messageBurst rate 115
message classes, Java application

defining 35, 36
MapData.java 35
ReduceData.java class 36
Result.java class 36
WordCount.java class 35, 36

message classes, Scala application
defining 47

MESSAGE COUNTS 264, 266
messages

about 64
fire and forget messages 65, 66
forwarding 70
receiving 67, 69

replying to 70
sending 65-69
tell() method 66

message serialization
about 234, 235
serializations, creating 235-242

message span 253
messages, typed actors

receiving 88, 89
messaging model. See messages
metadata dispatchers parameter 271
metadata nodes parameter 271
metadata parameter 271
metadata span statistics parameter 271
metadata span types parameter 271
metadata tags parameter 271
Microkernel 214, 215
microprocessor evolution

advancement 7
URL 8

Model-View-Controller (MVC) 281
MongoDB

about 250
URL 250, 276

monitoring tool
pre-requisites 248
Typesafe console 248

multi-JVM sbt plugin
URL 208

mutable 166

N
Netty 222
NETWORK 262
New I/O (NIO) client server framework 222
new() method 195
node

about 260
individual graph section 261

node property 253

O
One-For-One strategy 131-145
onReceive() method 37, 40, 41, 69, 135
optimism 167
Option return type 81

[313]

P
pattern

dispatchers as 97
PCB 7
PEAK (peak messages rate) 260
persistent messages 275
PingPongActor class 75
pinned dispatcher

about 102
features 102

Plain Old Java Object (POJO) 78
play

console, launching 283-288
installing 282

play framework
URL 281

postRestart() method 60
postStop() method 60, 72, 87
preRestart() method 60
preStart method 61
preStart() method 60, 64, 87, 141
printed circuit board. See PCB
process() method 287
project leads (PLs) 125
project managers (PMs) 125
Props 62
protocol buffers

about 223
URL 223

publish-subscriber connection
about 290
usage 290-294

PubSocket 292
push-pull connection

about 302
usage 303-305

Q
query module, Typesafe console

about 254
running 254, 255

QUERY (query time period) 260
question span 253

R
random router 110
RandomRouter, router type 111
receive() method 48, 53, 196
receive span 253
Redis

URL 276
ReduceActor class 40, 50
ReduceActor.java 39, 40
ReduceActor.scala 50
ReduceData 47
ReduceData class 36
ReduceData.java class 36
ReduceData message 41
ReduceData object 42
reduce() method 40, 50
reduce task 24
RemoteActor class 225
remote actors

about 223, 224
creating, programmatically 232, 233
local node application 228-232
remote node application, creating 225-228

RemoteActor system 224
RemoteClientConnected, remote event 243
RemoteClientDisconnected, remote

event 243
RemoteClientError, remote event 243
RemoteClientLifeCycleEvent 245
RemoteClientShutdown, remote event 243
RemoteClientStarted, remote event 243
RemoteClientWriteFailed, remote event 243
remote events

about 242
RemoteClientConnected 243
RemoteClientDisconnected 243
RemoteClientError 243
RemoteClientShutdown 243
RemoteClientStarted 243
RemoteClientWriteFailed 243
RemoteServerClientClosed 243
RemoteServerClientConnected 243
RemoteServerClientDisconnected 243
RemoteServerShutdown 243
RemoteServerStarted 243

[314]

RemoteLifeCycleEvent 245
remote node application 225-227
RemoteNodeApplication class 225
Remote Procedure Calls (RPC) 218
RemoteServerClientClosed, remote

event 243
RemoteServerClientConnected,

remote event 243
RemoteServerClientDisconnected,

remote event 243
RemoteServerLifeCycleEvent 245
RemoteServerShutdown, remote event 243
RemoteServerStarted, remote event 243
remote span 253
remote status parameter 272
REMOTE THROUGHPUT 260
request-reply connection

usage 294-297
RESTful API

about 270
actor statistics parameter 271
error statistics parameter 272
mailbox time series parameter 271
metadata nodes parameter 271
metadata parameter 271
metadata span statistics parameter 271
metadata span types parameter 271
metadata tags parameter 271
parameters documentation, URL 272
remote status parameter 272
scope dimension 271
span-related queries 271
span time series parameter 271
system metrics point parameter 272
system metrics time series parameter 271
time dimension 271
trace events parameter 272

Result class 36
Result.java class 36
Result message 42
round robin router 110
RoundRobinRouter 111
routees 109
RouterActorRef 110
RouterConfig interface 115
router-dealer connection

about 298

usage 299, 302
routers

about 109
broadcast router 110
custom router 115-120
mechanisms 110
random router 110
RandomRouter 111
resizing, dynamically 114
round robin router 110
RoundRobinRouter 111
scatter gather first complete router 110
smallest mailbox router 110
SmallestMailboxRouter 111
usage 110
usage, for distributed actors 113
usage, via application.conf 112, 113
using 93

run command 284

S
SBT 26, 28
Scala application

about 46
actor classes, defining 47-49
execution class, defining 55-57
message classes, defining 47
URL, for downloading 27

ScalaSTM
about 167
example 168
URL 169

ScalaTest
URL 202

Scalatra
URL 288

ScatterGatherFirstCompletedLike
interface 115

ScatterGatherFirstCompletedRouter,
router type 112

scatter gather first completed router 110
scope dimension groups actors

actorPath property 253
dispatcher property 253
node property 253
tag property 253

[315]

self()actor 299
send and receive message mode 65, 67
send and receive mode, typed actors 84, 85
SequencingActor testing 197, 203, 204
ServerActorApp controller class 286
ServerActor class 287
service gateways/hubs 21
service providers 21
shared state 166
Simple Build Tool. See SBT
smallest mailbox router 110
SmallestMailboxRouter, router type 111
Socko web

URL 288
Software Development Lifecycle

(SDLC) 191
Software Transactional Memory. See STM
span time series parameter 271
span, types

mailbox span 253
message span 253
question span 253
receive span 253
remote span 253

split() method 49
Spray

URL 288
STM

about 19, 166, 167
optimism 167
principles 12
ScalaSTM 167
URL 167

STOP signal 71
String message 42
String object 48
sub-ordinates 127
Subscriber actor 293
super.testActor() 202
supervision

about 127
on failure of sub-ordinate actor 127
strategies 130

supervision, strategies
All-For-One strategy 131
One-For-One strategy 131

Supervisor Actor (S1) 163
SupervisorActor testing 197, 205-207
sync-journal parameter 280
system.actorOf() command 231
system metrics point parameter 272
system metrics time series parameter 271
SYSTEM overview

about 259
node 260

T
tag property 253
tell() method 65, 66
TestActor 197
TestActorRef reference

about 194-196
unit testing, writing with 192-194

TestKit
about 191, 192
integration testing with 197-202
using, within application 192

threaded dispatcher
calling 103
features 104

thread pool executor 105
ThreadPoolExecutor, router type 98
thread-pool-executor parameter 106-108
Thread.sleep() method 45, 56
THROUGHPUT 260, 264, 265
throughput parameter 106
TickTock actor

testing 194
TIME IN MAILBOX 260
toBinary(Object arg0) method 236
toString() method 239
trace events parameter 272
trace module, Typesafe console

about 249, 250
configuration 251
properties, defining 251
trace events, persisting ways 250

transaction
about 165
isolation 165

transaction processing 21

[316]

transactor
about 184
money, transfering between multiple

accounts 185-187
TransferActor object 171
TypedActor context 91
TypedActor implementation 91
typedActorOf() method 83
TypedActor.PostRestart interface 88
TypedActor.PostStop interface 87
TypedActor.PreStart interface 87
typed actors

about 78
creating 82
defining 80-82
fire-and-forget mode 85
hierarchy, creating 91
implementing, Active Object pattern

used 78, 79
lifecycle, callbacks 87, 88
lifecycle, monitoring 87
messages, receiving 88, 89
messages, sending 84
messaging model 84
send and receive mode 85
stopping 86
supervisor, strategy 90, 91
with default constructor 83
with non-default constructor 83, 84

TypedProps class 83
TypedProps parameter 83
type parameter 106
Typesafe console

about 248
features 248
JMX 272, 274
modules 249
RESTful API 270-272
running 256

Typesafe console, modules
about 249
analyze module 249-253
query module 249-255
trade module 249, 250

U
unbecome() method 75
unbounded mailbox 104
unbounded priority mailbox 104
unhandled() method 37
Uniform Resource Locator (URL) 18, 221
unit testing

about 192
writing, with TestActorRef 192, 194

UntypedActor class 69
UntypedActorFactory function 63
user.email 256
user.password 256

V
void return type 81

W
web-based application

building, on distributed application 281
withDispatcher() method 109
withinTimeRange argument 132
withRouter() method 42, 54
WordCount class 35
WordCount.java class 35, 36
WordCount object 35, 47
World Wide Web (WWW) 18

Z
ZeroMQ

about 289
connectivity patterns 289

Zookeeper
URL 276

Thank you for buying
Akka Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Maven 3 Cookbook
ISBN: 978-1-849512-44-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2. Implement engineering practices in your
application development process with
Apache Maven

3. Collaboration techniques for Agile teams with
Apache Maven

4. Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

Java 7 New Features Cookbook
ISBN: 978-1-849685-62-7 Paperback: 384 pages

Over 100 comprehensive recipes to get you
up-to-speed with all the exciting new features
of Java 7

1. Comprehensive coverage of the new features of
Java 7 organized around easy-to-follow recipes

2. Covers exciting features such as the try-with-
resources block, the monitoring of directory
events, asynchronous IO and new GUI
enhancements, and more

3. A learn-by-example based approach that
focuses on key concepts to provide the
foundation to solve real world problems

Please check www.PacktPub.com for information on our titles

Spring Security 3
ISBN: 978-1-847199-74-4 Paperback: 396 pages

Secure your web applications against malicious
intruders with this easy to follow practical guide

1. Make your web applications impenetrable.

2. Implement authentication and authorization
of users.

3. Integrate Spring Security 3 with common
external security providers.

4. Packed full with concrete, simple, and
concise examples.

Jenkins Continuous
Integration Cookbook
ISBN: 978-1-849517-40-9 Paperback: 344 pages

Over 80 recipes to maintain, secure, communicate,
test, build, and improve the software development
process with Jenkins

1. Explore the use of more than 40 best of
breed plugins

2. Use code quality metrics, integration testing
through functional and performance testing
to measure the quality of your software

3. Get a problem-solution approach enriched
with code examples for practical and easy
comprehension

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	About the Author
	Acknowledgement
	About the Reviewers
	Table of Contents
	Preface
	Index

