
www.allitebooks.com

http://www.allitebooks.org

Cassandra Design Patterns

Understand and apply Cassandra design and
usage patterns, and solve real-world business
or technical problems

Sanjay Sharma

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cassandra Design Patterns

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1200114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-880-9

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sanjay Sharma

Reviewers
William Berg

Mark Kerzner

Acquisition Editors
Pramila Balan

Sam Wood

Commissioning Editor
Sharvari Tawde

Technical Editors
Mario D'Souza

Dennis John

Gaurav Thingalaya

Pankaj Kadam

Copy Editors
Tanvi Gaitonde

Dipti Kapadia

Kirti Pai

Stuti Srivastava

Project Coordinator
Akash Poojary

Proofreader
Simran Bhogal

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sanjay Sharma has been the architect of enterprise-grade solutions in the software
industry for around 15 years and using Big Data and Cloud technologies over the past
four to five years to solve complex business problems. He has extensive experience
with cardinal technologies, including Cassandra, Hadoop, Hive, MongoDB, MPP DW,
and Java/J2EE/SOA, which allowed him to pioneer the LinkedIn group, Hadoop
India. Over the years, he has also played a pivotal role in many industries, including
healthcare, finance, CRM, manufacturing, and banking/insurance. Sanjay is highly
venerated for his technological insight and is invited to speak regularly at Big Data,
Cloud, and Agile events. He is also an active contributor to open source.

I would like to thank my employer, Impetus and iLabs, and its
R&D department, which invests in cutting-edge technologies. This
has allowed me to become a pioneer in mastering Cassandra- and
Hadoop-like technologies early on.

But, most importantly, I want to acknowledge my family, my
beautiful wife and son, who have always supported and encouraged
me in all my endeavors in life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

William Berg is a software developer for OpenMarket. He helps maintain
the Apache Cassandra cluster, which forms part of their internal, distributed
file storage solution.

Mark Kerzner holds degrees in Law, Math, and Computer Science. He has been
designing software for many years and Hadoop-based systems since 2008. He is
President of SHMsoft, a provider of Hadoop applications for various verticals, and
a co-founder of the Hadoop Illuminated training and consulting firm, as well as the
co-author of Hadoop Illuminated, Hadoop illuminated LLC. He has also authored and
co-authored other books and patents.

I would like to acknowledge the help of my colleagues, in particular
Sujee Maniyam and last but not the least, my multitalented family.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: An Overview of Architecture and Data Modeling in
Cassandra	 5

Understanding the background of Cassandra's architecture	 5
Amazon Dynamo	 6
Google BigTable	 7

Understanding the background of Cassandra modeling	 8
An overview of architecture and modeling	 8
A summary of the features in Cassandra	 10
Summary	 11

Chapter 2: An Overview of Case and Design Patterns	 13
Understanding the 3V Model	 14

High availability	 15
Columns on the fly!	 16
Count and count!	 16
Streaming analytics!	 17
Needle in a haystack!	 17
Graph problems!	 17
Analytics	 17
Blob store	 18
Design patterns	 18

Summary	 19
Chapter 3: 3V Patterns	 21

Pattern name – Web scale store	 22
Problem/Intent	 22
Context/Applicability	 22
Forces/Motivations	 22

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Solution	 23
Consequences	 24

Pattern name – Ultra fast data sink	 26
Problem/Intent	 26
Context/Applicability	 27
Forces/Motivations	 27
Solution	 28

Consequences	 29
Related patterns	 29

Pattern name – Flexi schema	 29
Problem/Intent	 30
Context/Applicability	 30
Forces/Motivations	 30
Solution	 31

Consequences	 31
Related patterns	 31

Summary	 32
Chapter 4: Core Cassandra Patterns	 33

Pattern name – Highly available store	 33
Problem/Intent	 33
Context/Applicability	 34
Forces/Motivations	 34
Solution	 35

Example	 36
Pattern name – Time series analytics	 36

Problem/Intent	 36
Context/Applicability	 37
Forces/Motivations	 37
Solution	 38

Example	 38
Pattern name – Atomic distributed counter service	 40

Problem/Intent	 40
Context/Applicability	 40
Forces/Motivations	 40
Solution	 40

Example	 40
Summary	 42

Chapter 5: Search and Analytics Applied Use Case Patterns	 43
Pattern name – Streaming/CEP analytics	 43

Problem/Intent	 43
Context/Applicability	 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Forces/Motivations	 44
Solution	 44

Pattern name – Needle in a haystack/search engine	 46
Problem/Intent	 46
Context/Applicability	 47
Forces/Motivations	 47
Solution	 47

Pattern name – Graph problems	 49
Problem/Intent	 49
Context/Applicability	 49
Forces/Motivations	 50
Solution	 50

Pattern name – Advanced analytics	 50
Problem/Intent	 50
Context/Applicability	 50
Forces/Motivations	 51
Solution	 51

Summary	 52
Chapter 6: Patterns and Anti-patterns	 53

Pattern name – Content/Document store	 53
Problem/Intent	 53
Context/Applicability	 54
Forces/Motivations	 54
Solution	 54
Example	 54
Caution	 55

Pattern name – Object/Entity store	 55
Problem/Intent	 55
Context/Applicability	 56
Forces/Motivations	 56
Solution	 56
Caution	 57

Pattern name – CAP the ACID	 57
Problem/Intent	 57
Context/Applicability	 57
Forces/Motivations	 57
Solution	 58
Caution	 59

Pattern name – Materialized view	 60
Problem/Intent	 60

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Context/Applicability	 60
Forces/Motivations	 60
Solution	 60
Caution	 61

Pattern name – Composite key	 62
Problem/Intent	 62
Context/Applicability	 62
Forces/Motivations	 62
Solution	 63

Additional interesting patterns	 65
Anti-pattern name – Messaging queue	 67

Problem/Intent	 68
Context/Applicability	 68
Liability/Issue	 68

Patterns and anti-patterns – Cassandra infrastructure/deployment
problems	 68
Summary	 69

Index	 71

Preface
Big Data has already become a buzzword in today's IT world and provides lots of
choices for end users. Cassandra is one of the most popular Big Data technologies
today and is used as a NoSQL data store to build web-scale applications in the Big
Data world.

The idea behind this book is for Cassandra users to learn about Cassandra's
strengths and weaknesses and, more importantly, understand where and how to use
Cassandra correctly, so as to use its strengths properly and overcome its weaknesses.

One of the most critical decisions taken while writing the book was using the term
design pattern to explain Cassandra's where and how usages. Traditionally, design
patterns are linked to object-oriented design patterns made popular by Gang of
Four (GoF).

However, in the context of this book, patterns refer to general, reusable solutions to
commonly recurring software problems and will be used interchangeably for use
case patterns, design patterns, execution patterns, implementation strategy patterns,
and even applied design patterns.

What this book covers
Chapter 1, An Overview of Architecture and Data Modeling in Cassandra, discusses the
history and origins of Cassandra. In this chapter, we understand the parentage of
Cassandra in Amazon Dynamo and Google BigTable and how Cassandra inherits
the best of the abilities as well as evolves some of its own. The importance of reading
this chapter lies in the fact that all the subsequent chapters refer to the capabilities
mentioned in this chapter that can be used for solving various business use cases in
the real world.

Chapter 2, An Overview of Case and Design Patterns, offers an overview of all the
patterns that will be covered in this book.

Preface

[2]

Chapter 3, 3V Patterns, covers the known 3V or Volume, Velocity, and Variety model
associated with Big Data and also how Cassandra fulfills all the requirements for
building Big Data applications facing the 3V challenge.

Chapter 4, Core Cassandra Patterns, describes how Cassandra can be used to solve
some interesting business problems due to its unique capabilities covering high
availability, wide rows, and counter columns.

Chapter 5, Search and Analytics Applied Use Case Patterns, takes the next step and goes
beyond using only Cassandra to solve some interesting real-world use cases. This
chapter covers how Cassandra can be used easily with other Big Data technologies to
solve various business problems.

Chapter 6, Patterns and Anti-Patterns, covers some design patterns and anti-patterns
that can be used to solve various software problems. The chapter also describes how
and where to use these patterns.

What you need for this book
The readers are advised to go through Cassandra basics before starting on the journey
of understanding Cassandra Design Patterns. A brief and good book to start with is
Instant Apache Cassandra for Developers Starter, Packt Publishing by Vivek Mishra.

Though, having prior knowledge of Cassandra is not mandatory, anybody with
some background in any application design and implementation, and RDBMS
experience will find it easy to relate to this book.

The book is not tied to any specific Cassandra version; however, some of the code
examples refer to Cassandra Query Language (CQL). So Cassandra 2.0 and above
is a preferred version for references.

Who this book is for
If you are an architect, designer, or developer starting with Cassandra, or an
advanced user who is already using Cassandra and looking for a brief summary of
the known patterns that Cassandra can be used to solve, this book is ideal for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Dynamo supports the get() and put() functions."

A block of code is set as follows:

SELECT *
FROM temperature_ts
WHERE weather_station_id='Station-NYC-1'
AND date='2013-01-01';

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

An Overview of
Architecture and Data

Modeling in Cassandra
The demand from web-scale applications in today's social and mobile-driven
Internet has resulted in the recent prominence of NoSQL data stores that can handle
and scale up to terabytes and petabytes of data.

An interesting fact is that there are more than 100 NoSQL data stores in the software
industry today, and clearly, Cassandra has emerged as one of the leaders in this
congested arena, thanks to its distinct capabilities that include easy scalability and
ease of usage.

Let us look at the Cassandra architecture and data modeling to figure out the key
reasons behind Cassandra's success.

Understanding the background of
Cassandra's architecture
Cassandra's architecture is based on the best-of-the-world combination of two
proven technologies—Google BigTable and Amazon Dynamo. So, it is important to
understand some key architectural characteristics of these two technologies before
talking about Cassandra's architecture.

An Overview of Architecture and Data Modeling in Cassandra

[6]

Before starting the discussion of these architectures, one of the important concepts to
touch upon is the CAP theorem, also known as the Brewer Theorem—named after
its author Eric Brewer. Without going into the theoretical details of the CAP theorem,
it would be simple to understand that CAP stands for Consistency, Availability, and
Partition tolerance. Also, the theorem suggests that a true distributed system can
effectively cater to only two of the mentioned characteristics.

Amazon Dynamo
Amazon Dynamo is a proprietary key-value store developed at Amazon. The key
design requirements are high performance and high availability with continuous
growth of data. These requirements mean that firstly, Dynamo has to support scalable,
performant architectures that would be transparent to machine failures, and secondly,
Dynamo used data replication and autosharding across multiple machines. So, if a
machine goes down, the data would still be available on a different machine. The
autosharding or automated distribution of data ensures that data is divided across
a cluster of machines. A very important characteristic of Amazon Dynamo design is
peer-to-peer architecture, which means that there is no master involved in managing
the data—each node in a Dynamo cluster is a standalone engine. Another aspect of
Dynamo is its simplicity in data modeling, as it uses a simple key-value model.

So where does Dynamo stand with respect to the CAP theorem? Dynamo falls
under the category of Availability and Partition tolerance above Consistency (AP).
However, it is not absolutely true that Dynamo does not support Consistency—this
cannot be expected from a production-grade, real-world data store. Dynamo uses the
concept of Eventual Consistency, which means that the data would eventually become
more consistent over time. Remember, Dynamo keeps replicas of the same data across
nodes, and hence, if the state of the same dataset is not the same as its copies due
to various reasons, say in the case of a network failure, data becomes inconsistent.
Dynamo uses gossip protocol to counter this, which means that each Dynamo node
talks to its neighbor for failure detection and cluster membership management without
the need for a master node. This process of cluster awareness is further used to enable
the passing around of messages in the cluster in order to keep the data state consistent
across all of the copies. This process happens over time in an asynchronous way and is
therefore termed as Eventual Consistency.

Chapter 1

[7]

Google BigTable
Google BigTable is the underlying data store that runs multiple popular Google
applications that we use daily, ranging from Gmail, YouTube, Orkut, Google
Analytics, and much more. As it was invented by Google, BigTable is designed to
scale up to petabytes (PB) of data and cater to real-time operations necessary for
web-scale applications. So, it has real fast reads and writes, scales horizontally, and
has high availability—how many times have we heard Google services failing!

Google BigTable uses an interesting and easy-to-understand design concept for
its data storage—the data writes are first recorded in a commit log and then the
data itself is written to a memory store. The memory store is then persisted in the
background to a disk-based storage called Sorted String Table (SSTable). The writes
are super fast because the data is actually being written to a memory store and not
directly to a disk, which is still a major bottleneck for efficient reads and writes.
The logical question to ask here is what happens if there is a failure when the data
is still in memory and not persisted to SSTable. A commit log solves this problem.
Remember that the commit log contains a list of all the operations happening on the
data store. So, in the case of failures, the commit logs can be replayed and merged
with the SSTable to reach a stage where all the commit logs are processed and
cleared and become a part of the SSTable. Read queries from BigTable also use the
clever approach of looking up the data in a merged view of the memory store and
the SSTable store—the reads are super fast because the data is either available in the
memory or because SSTable indexing returns the data almost immediately.

How fast is "super fast"?

Reads and writes in the memory are around 10,000 times
faster than in the traditional disks. A good guide for
every developer trying to understand the read and write
latencies is Latency Numbers Every Programmer Should
Know by Jeff Dean from Google Inc.

Google BigTable does have a problem; it falls under the category of Consistency and
Partition tolerance (CP) in the CAP theorem and uses the master-slave architecture.
This means that if the master goes down, there are chances that the system might not
be available for some time. Google BigTable uses a lot of clever mechanisms to take
care of high availability though; but, the underlying principle is that Google BigTable
prefers Consistency and Partition tolerance to Availability.

An Overview of Architecture and Data Modeling in Cassandra

[8]

Understanding the background of
Cassandra modeling
Dynamo's data modeling consists of a simplistic key-value model that would
translate into a table in RDBMS with two columns—a primary key column and an
additional value column. Dynamo supports the get() and put() functions for the
reads and the insert/update operations in the following API formats:

•	 get(key): The datatype of key is bytes
•	 put(key, value): The datatype of key and value is bytes

Google BigTable has a more complex data model and uses a multidimensional sorted
map structure for storing data. The key can be considered to be a complex key in the
RDBMS world, consisting of a key, a column name, and a timestamp, as follows:

(row:string, column:string, time:int64) -> string

The row key and column names are of the string datatype, while the timestamp is a
64-bit integer that can represent real time in microseconds. The value is a simple string.

Google BigTable uses the concept of column families, where common columns are
grouped together, so the column key is actually represented as family: qualifier.

Google BigTable uses Google File System (GFS) for storage purposes. Google
BigTable also uses techniques such as Bloom filters for efficient reads and
compactions for efficient storage.

An overview of architecture and modeling
When Cassandra was first being developed, the initial developers had to take a
design decision on whether to build a Dynamo-like or a Google BigTable-like system,
and these clever guys decided to use the best of both worlds. Hence, the Cassandra
architecture is loosely based on the foundations of peer-to-peer-based Dynamo
architecture, with the data storage model based on Google BigTable.

Cassandra uses a peer-to-peer architecture, unlike a master-slave architecture, which is
prone to single point of failure (SPOF) problems. Cassandra is deployed on multiple
machines with each machine acting as a node in a cluster. Data is autosharded, that is,
automatically distributed across nodes using key-based sharding, which means that
the keys are used to distribute the data across the cluster. Each key-value data element
in Cassandra is replicated across the cluster on other nodes (the default replication is
3) for high availability and fault tolerance. If a node goes down, the data can be served
from another node having a copy of the original data.

Chapter 1

[9]

Sharding is an old concept used for distributing data across
different systems. Sharding can be horizontal or vertical. In
horizontal sharding, in case of RDBMS, data is distributed on the
basis of rows, with some rows residing on a single machine and the
other rows residing on other machines. Vertical sharding is similar
to columnar storage, where columns can be stored separately in
different locations.

Hadoop Distributed File Systems (HDFS) use data-volumes-based
sharding, where a single big file is sharded and distributed across
multiple machines using the block size. So, as an example, if the
block size is 64 MB, a 640 MB file will be split into 10 chunks and
placed in multiple machines.

The same autosharding capability is used when new nodes are added to Cassandra,
where the new node becomes responsible for a specific key range of data. The details
of what node holds what key ranges is coordinated and shared across the cluster
using the gossip protocol. So, whenever a client wants to access a specific key, each
node locates the key and its associated data quickly within a few milliseconds. When
the client writes data to the cluster, the data will be written to the nodes responsible
for that key range. However, if the node responsible for that key range is down or
not reachable, Cassandra uses a clever solution called Hinted Handoff that allows
the data to be managed by another node in the cluster and to be written back on the
responsible node once that node is back in the cluster.

The replication of data raises the concern of data inconsistency when the replicas
might have different states for the same data. Cassandra uses mechanisms such as
anti-entropy and read repair for solving this problem and synchronizing data across
the replicas. Anti-entropy is used at the time of compaction, where compaction
is a concept borrowed from Google BigTable. Compaction in Cassandra refers to
the merging of SSTable and helps in optimizing data storage and increasing read
performance by reducing the number of seeks across SSTables. Another problem that
compaction solves is handling deletion in Cassandra. Unlike traditional RDBMS, all
deletes in Cassandra are soft deletes, which means that the records still exist in the
underlying data store but are marked with a special flag so that these deleted records
do not appear in query results. The records marked as deleted records are called
tombstone records. Major compactions handle these soft deletes or tombstones
by removing them from the SSTable in the underlying file stores. Cassandra, like
Dynamo, uses a Merkle tree data structure to represent the data state at a column
family level in a node. This Merkle tree representation is used during major
compactions to find the difference in the data states across nodes and reconciled.

www.allitebooks.com

http://www.allitebooks.org

An Overview of Architecture and Data Modeling in Cassandra

[10]

The Merkle tree or Hash tree is a data structure in the form of
a tree where every non-leaf node is labeled with the hash of
children nodes, allowing the efficient and secure verification
of the contents of the large data structure.

Cassandra, like Dynamo, falls under the AP part of the CAP theorem and offers
a tunable consistency level. Cassandra provides multiple consistency levels, as
illustrated in the following table:

Operation ZERO ANY ONE QUORUM ALL
Read Not supported Not

supported
Reads from
one node

Read from a
majority of
nodes with
replicas

Read from
all the nodes
with replicas

Write Asynchronous
write

Writes on
one node
including
hints

Writes on
one node
with commit
log and
Memtable

Writes on a
majority of
nodes with
replicas

Writes on
all the nodes
with replicas

A summary of the features in Cassandra
The following table summarizes the key features of Cassandra with respect to its
origins in Google BigTable and Amazon Dynamo:

Feature Cassandra implementation Google
BigTable

Amazon
Dynamo

Architecture Peer-to-peer architecture, ring-based
deployment architecture

No Yes

Data model Multidimensional map
(row,column, timestamp) -> bytes

Yes No

CAP theorem AP with tunable consistency No Yes

Storage
architecture

SSTable, Memtables Yes No

Storage layer Local filesystem storage No No

Fast reads and
efficient storage

Bloom filters, compactions Yes No

Chapter 1

[11]

Feature Cassandra implementation Google
BigTable

Amazon
Dynamo

Programming
language

Java No Yes

Client
programming
language

Multiple languages supported, including
Java, PHP, Python, REST, C++, .NET, and
so on

Not
known

Not
known

Scalability model Horizontal scalability; multiple nodes
deployment than a single machine
deployment

Yes Yes

Version conflicts Timestamp field (not a vector clock as
usually assumed)

No No

Hard deletes/
updates

Data is always appended using the
timestamp field—deletes/updates are soft
appends and are cleaned asynchronously
as part of major compactions

Yes No

Summary
Cassandra packs the best features of two technologies proven at scale—Google
BigTable and Amazon Dynamo. However, today Cassandra has evolved beyond
these origins with new unique and enterprise-ready features such as Cassandra
Query Language (CQL), support for collection columns, lightweight transactions,
and triggers.

In the next chapter, we will talk about the design and use case patterns that are used
in the world of Cassandra and utilize its architectural and modeling strengths.

An Overview of Case
and Design Patterns

The Wikipedia definition of Software Design Pattern states:

In software engineering, a design pattern is a general repeatable solution to a
commonly occurring problem in software design. A design pattern isn't a finished
design that can be transformed directly into code. It is a description or template for
how to solve a problem that can be used in many different situations.

Most of us have grown up using or listening about Gang of Four (GoF) patterns for
Object-Oriented Design and Programming (OOD/OOP). These object-oriented
design patterns are used to solve known problems of objects and are differentiated
as creational, structural, and behavioral patterns.

On the same lines, we have also been using architectural patterns in software,
which range from Extract/Transform/Load (ETL), Service Oriented Architecture
(SOA), Enterprise Application Integration/Enterprise Service Bus (EAI/ESB),
to Transactional Data Store/Online Transaction Processing (TDS/OLTP),
Operational Data Store (ODS), Master Data Hub (MDH), and many more.

So, what do we mean by "Cassandra Design Patterns" in the context of this book? This book
is an attempt to capture the common design patterns and use case patterns that can
be solved using Cassandra. We will go through some design patterns that follow the
traditional definition of design patterns. We will also include applied use case patterns
that Cassandra solves better than other solutions in the software world.

As we move forward with the various design patterns and applied use case patterns,
it is important to understand the 3V model as well as other key aspects such as high
availability, schemaless design modeling, counting features, and document storage.

An Overview of Case and Design Patterns

[14]

Understanding the 3V Model
The 3V Model (Volume, Velocity, and Variety) is the most common model that
defines the need for Big Data technologies ranging from Cassandra to Hadoop.

Simply speaking, the 3V model suggests that the traditional RDBMS or relational
databases are ineffective and are not capable of handling huge data volumes,
high ingestion rates, and different formats of data effectively. Hence, the need for
alternate solutions defined under the category of Big Data Technologies.

RDBMS or relational tables cannot really be scaled for both read/write functions and
huge data volumes—most of the application and SQL developers spend a lot of time
normalizing and then denormalizing data, indexing for reads, and removing indexes
for fast writes. Finally, they end up throwing the relations out of the relational
database to remove the bottleneck of constrains.

How do we decide when RDBMS solutions become
ineffective for huge data volumes, ingestion rates, or
different formats?

There is no good answer to this except the fact that whenever we
start throwing out relations in RDBMS (which means that you
start removing constraints and indexes for faster writes or start
denormalizing for faster reads by duplicating data), we should
start considering alternate solutions. Another indication to start
thinking about alternate solutions is the data volumes becoming
too big and starting to impact query or write throughput SLA.
Or, we start thinking about purging data so as to limit the data
managed by our RDBMS solution. Adding more hardware such
as RAM or CPU for vertical scalability is another indicator that
alternate solutions such as NoSQL might be a better solution.
Another indicator is the management of rapid schema changes,
where changing the schema in RDBMS is nontrivial since it
needs managing constraints, relationships, and indexes.

Most of the Big Data Technologies, especially NoSQL data stores, do not come with
any relational support. Cassandra also does not support relationships, so it can avoid
the limitations associated with a relational model.

Broadly speaking, the following use case patterns can be applied for Cassandra:

•	 Massive Store Pattern: This handles the Volume part of the 3V model
•	 Ultra fast data Sink Pattern: This handles the Velocity part of the 3V model
•	 Flexi Schema Pattern: This handles the Variety part of the 3V model

Chapter 2

[15]

High availability
Most modern software solutions require 365x24x7 availability and Cassandra,
inheriting its origin from Dynamo, strongly supports high availability.

In the traditional RDBMS world, the most common practice for high availability
is database replication, usually in a Master-Slave mode. The master node is used
for write operations while one or more slave nodes might be used for scaling
read operations. Master-Master replication is usually avoided in RDBMS due to
complexities around data synchronization and strict consistency requirements.

Cassandra uses P2P (peer-to-peer) architecture with auto-sharding and replication
so that the master does not lead to a single point of failure, as mentioned earlier.
Cassandra also has advanced capabilities for high availability across multirack/data
center deployment such as replica factor and replica placement strategy for detecting
and using network configuration efficiently.

These high availability features of Cassandra enable new use case patterns:

•	 Always ON pattern
•	 Using Cassandra as a nonstop data store

For Oracle users, the following table is an illustration of the complexities and
differences between Oracle Replication, Oracle RAC (Real Application Clusters),
and Cassandra:

Operation Oracle Replication Oracle RAC Cassandra
Load
balancing

Reads over multiple
databases

Read/write over
multiple instances

Automated over the
entire Cassandra data
store in/across data
center(s)

Survivability Good protection—
natural disasters, power
outages or sabotage,
or both because the
remaining replication
sites can be in a different
region geographically

Cannot protect against
physical problems
as RAC operates on
a cluster or other
massively parallel
systems and is located
in the same physical
environment

Great protection
within a single data
center or multiple
data centers using the
replication strategy

Cost High High No additional cost

An Overview of Case and Design Patterns

[16]

Columns on the fly!
Many real-world applications today can fall under the category of time series
applications that manage and store data generated over time, such as sever logs,
performance metrics, sensor data, stock ticker, and transport tracking.

Some of the key characteristics of this dataset are that it grows over time and usually
requires data to be queried or analyzed on time as the main criteria for that dataset.
Usually, this data is used for showing trends and boundaries of data on a line graph
using time as the x axis. Cassandra is a perfect fit for such kind of applications as it
can store fast-ingesting high volume data using the concept of wide rows.

Wide rows are not used too much in the RDBMS world and might seem an alien
concept for somebody coming from the traditional SQL modeling world. Cassandra
offers the flexibility of adding columns on the fly being schemaless in nature, and
allows columns to be used as an ever-growing placeholder for new data as it arrives.
For this kind of usage, each new event is added as a new column rather than as a
new row. This design also allows easy retrieval of data since all events against a
single event source can be accessed as a single row lookup because all events are in
a single row.

There are multiple strategies to store time series data in Cassandra and give us our
next use case pattern:

•	 Time Series Analytics Pattern: With this, we can build time series
applications using Cassandra

Count and count!
Cassandra supports a special kind of column used to store a number that can be
used to count the occurrences of events incrementally and can work in a distributed
atomic mode. This feature is very powerful if used correctly, as building a
distributed counter solution is one of the not-so-easy changes to solve.

The operations available with counter columns are the increment and decrement
counter values and form the basis of the following use case pattern:

•	 Distributed Counters Pattern: Building applications requiring
distributed counters

Chapter 2

[17]

Streaming analytics!
Cassandra is being successfully used along with other solutions such as Apache
Storm to build streaming and complex event processing applications. Cassandra's
fast ingestion and read capabilities are useful for building such solutions, and hence
the reason for including the following use case pattern:

•	 Streaming/CEP Analytics Pattern: Building a social media network like
graph applications

Needle in a haystack!
Cassandra can scale to millions and billions of rows over TBs and PBs of data. Its
architecture allows it to find and return the data for a single row key blazingly fast,
usually within milliseconds, irrespective of the scale of data volumes.

Did you know that Cassandra was created as part
of the Inbox Search for Facebook?

So, the origins of Cassandra actually started as a solution for Inbox Search for over
100 million users in the late 2000s.

Paying respect to the search origins of Cassandra, we define the following use
case pattern:

•	 Needle in a Haystack Pattern: Using Cassandra for search applications

Graph problems!
Cassandra has also been used to solve Graph problems, which involves representing
entities and relationships as nodes, edges, and properties to represent and store data.

Titan, an open source graph database built over Cassandra, is the reason for
including the following use case pattern:

•	 Graph Solution Pattern: Building a social media network such as
graph applications

Analytics
Since Cassandra can store massive amounts of data, running analytical queries is an
important requirement to harness the huge amount of data.

An Overview of Case and Design Patterns

[18]

Cassandra supports the leader (Hadoop, since its inception days) in Big Data
analytics, and can be easily integrated with it. In fact, Cassandra has been used as
a part of commercial distribution by DataStax—the company that commercially
supports Cassandra to have many Hadoop components such as Hive, Sqoop, and
Mahout, supported in Cassandra.

The use case patterns for analytics done over Cassandra systems are featured under
the following pattern:

•	 Advanced Analytics Pattern

Blob store
Cassandra schema flexibility has multiple advantages, given that the only native
datatypes that it supports are bytes. Although the recent addition of Cassandra
Query Language (CQL) in Cassandra does provide high level datatypes including
blob datatypes, the native datatype internally is still raw bytes. This same feature is
useful for using Cassandra as a content or document store in certain cases when this
blob size is in line with the following current limitations in Cassandra:

•	 Single column value may not be larger than 2 GB
•	 Single digits of MB are a more reasonable limit as there is no streaming or

random access available for blob values

Even with these limitations, the huge scalability and read/write performance enables
the following use case patterns:

•	 Content/Document Store Pattern: Building a content management service
•	 Object/Entity Store Pattern: Building an object store

Design patterns
There are some specific design patterns that have emerged as part of the discussion
and are used across the Cassandra community. They mostly cover best practices
around transaction management and data modeling designing in Cassandra. These
core design patterns can be defined as:

•	 CAP the ACID: This applied design pattern covers how to use transactions
correctly in Cassandra

•	 Materialized View: Designing query-driven tables to provide index-like
capabilities using denormalization as the key concept

Chapter 2

[19]

•	 Composite Key: Designing a composite row key to include more than one
logical key

•	 Anti-pattern Messaging Queue: Why Cassandra should not be used as a
messaging queue solution

We will also briefly cover some other design patterns such as Valueless columns,
Collection fields, Sorting, Pagination, Temporal data, Triggers, and Unique records
around some of the interesting and new features available in Cassandra since some
recent releases.

We will windup our compilation of Cassandra patterns by including some patterns
and anti-patterns around Cassandra's infrastructure/deployment problems.

Summary
We discussed some key use case and design patterns that we will cover in greater
detail in the subsequent chapters. Cassandra's key capabilities enable a solution
to be designed for these use cases in the form of some design patterns. We should
also note that Cassandra has a lot of interesting use cases and can solve multiple
challenges in the software world today.

We will start with the 3V model, with the use case and design patterns around it, in
the next chapter.

www.allitebooks.com

http://www.allitebooks.org

3V Patterns
3V patterns are the foundational patterns that can be used as deciding factors on
whether Cassandra should be used as a solution in the first place.

Strict believers of the design pattern definition might even disagree in considering
these patterns as design patterns; however, these patterns represent the common
recurring problems that Cassandra solves repeatedly and can also be used as smoke
tests to figure out whether Cassandra is actually a good fit or not for a given use case.

We will be using the following standard pattern definition structure to define
our patterns:

•	 Pattern name
•	 Problem/Intent
•	 Context/Applicability
•	 Forces/Motivation
•	 Solution

°° Optional consequences
°° Optional code samples

•	 Related patterns

Interestingly, the 3V patterns are applicable for many other NoSQL solutions.

These foundational patterns would most probably occur together, since the problems
that these patterns solve also occur together.

3V Patterns

[22]

Pattern name – Web scale store
A web scale store refers to web applications that serve and manage millions of
Internet users, such as Facebook, Instagram, Twitter, and banking websites, or even
online retail shops, such as Amazon.com or eBay, among many others. We will see if
Cassandra can be a possible candidate for building such web scale applications.

Problem/Intent
Which is the data store that can be used to manage a huge amount of data on
a web scale?

Context/Applicability
In today's Internet era, web applications are required to manage a lot of user traffic,
given the fact that the number of Internet users are increasing at an exponential rate.
This problem of managing data for the growing number of users is further aggravated
by the fact that more than 85 percent of the human population today has mobile
access, and these mobile users are slowly switching to smart phones. As the usage of
smart phones becomes more prevalent, Internet usage and hence data movement will
further increase. The current web and real-time applications require a data store that
can manage a huge amount of data running into terabytes and petabytes.

Wikipedia lists around 6.8 billion out of a 7 billion population as
having access to mobile phones today! This amounts to around
87 phones per 100 people.

Forces/Motivations
•	 The traditional model using RDBMS as the web applications store is being

challenged by the sheer data volume growth that RDBMS cannot scale to
cost effectively.

•	 End users are becoming more demanding and are disapproving the
traditional RDBMS approach of purging and archiving data after some time.

Ever wondered why your bank statements are only available
online for the last six months or a few years at the most?
The obvious reason might be rooted in the fact that the
RDBMS store being used is not efficient enough to store your
transactions online beyond those durations. Therefore, you
have to make special requests for historical statements, which
are then served from an archive or data warehouse store.

Chapter 3

[23]

•	 RDBMS relies on normalization and relationships for storing data efficiently.
This allows lesser file storage to be used, which was the need of the hour
when RDBMS principles were modeled 10 to 15 years ago when file storage
was very expensive. RDBMS was also designed to run on single machines to
easily manage ACID transaction compliance. However, this model does not
allow data to be scaled beyond a single machine.

RDBMS usually uses master-slave configuration and, in rare
cases, master-master strategies for horizontal scalability.
These strategies perform full replication of data; hence, the
data size in such architecture would still be bound by the
file storage available on a single machine instance.

Manual sharding can be used to manually distribute data
across multiple RDBMS stores, but it would require a
lot of application coding and effort to take care of the
arising issues.

Not everybody can afford Facebook's engineering
teams capable of using a manually sharded MySQL
store as its user profiles data store!

 -Sanjay Sharma

•	 Relationships in RDBMS require constraints to be used for ensuring data
consistency. Also, indexes are used as a powerful aid for fast queries.
However, constraints and indexes become a bottleneck for fast writes. Thus,
as data volumes grow, read and write tuning and optimizations slowly
become a balancing act, where only one out of the many reads or writes can
be kept happy.

•	 There are plenty of open source scalable NoSQL solutions available.
However, which is the solution that one can really scale to huge volumes of
data with lots of production use cases and is developer-friendly?

Solution
Cassandra is being used as a successful web scale data store solution, since it is
proven at scale and used across hundreds of production sites. It has a very good read
and write performance, and it is very versatile in solving most use cases, which is
expected from any real-time web application.

3V Patterns

[24]

Cassandra has an easy-to-use API and lots of clients in multiple languages, including
enterprise-prominent Java. It also has support for CQL (Cassandra Query Language)
for ease of usage and can be easily integrated with the existing web applications
using high-level interfaces such as Kundera, Spring Data, Playorm, and many more
interfaces, for easy migration from older RDBMS stores.

Cassandra is also easy to install and deploy and is cloud-deployment-friendly.
Cassandra has been used in production applications deployed in AWS and
Rackspace-like cloud providers. It is also supported on most IaaS (Infrastructure as
a Service) cloud vendors such as Cloud Foundry, Google Compute Cloud, Azure,
GoGrid, Terremark, and Savvis, because Cassandra can run on commodity-grade
hardware, and is resilient to the network issues usually associated with public
cloud environments.

NetflixTM is the poster child for Cassandra usage as a
scalable cloud-based web store, handling 60+ TBs of data.
Interestingly, Netflix is the biggest single Internet traffic
source as well as the largest pure cloud service for North
America. Netflix has also shared the publicly available
benchmark proving Cassandra's near-linear scalability.

Today, Cassandra powers hundreds of big web scale
applications for big names such as Netflix, eBay, Facebook,
Twitter, Cisco, Comcast, Disney, Ericsson, Instagram, IHG,
Intuit, NASA, PBS Kids, Travelocity, and others, which
which the majority of us use, today.

We can see many more examples of the production users
of Cassandra at PlannetCassandra.org—a website
dedicated to Cassandra information that lists more than
400 Cassandra users.

Consequences
Cassandra does come with certain nuances and possible considerations that apply to
successful Cassandra usage:

•	 Query-first-driven schema design: Unlike traditional RDBMS schema
modeling, all the possible queries should be identified first, and the schema
model designed accordingly. This is necessary, because Cassandra supports
only row key-based queries (the primary key in RDBMS world); hence, the
row key design is the best way to allow the accomplishment of all the queries.
It is also worthwhile mentioning that even though secondary index support is
now available in Cassandra, secondary indexes are nothing but inverted index
tables. So, as data volumes increase, the problems similar to read versus write
optimization for indexes in RDBMS would also appear in Cassandra.

Chapter 3

[25]

When to use or not use an index

Cassandra's secondary indexes work best on a table
having many rows that contain the indexed values. Also,
the indexing works best when the indexed column has a
less number of unique values. In case there are too many
unique values for the indexed column, there will be a lot of
overhead on querying as well as managing the index.

Also, we would not use an index to query a huge volume of
records for a small number of results, because if we create
an index on a high-cardinality column having many distinct
values, a query between the fields will incur many seeks for
very few results. In these cases, it might be more efficient to
manually maintain the table in the form of an index instead
of using secondary indexes. For columns containing unique
data, we might decide to use an index for convenience, as
long as the query volume to the table having an indexed
column is moderate and not under constant load.

This also means that we should not be creating an index for
extreme low cardinality columns, such as a Boolean column,
as each value in the index will become a single row in the
index. For example, for Boolean values, we will end up with
two big rows—one for true and the other for false values.

Cassandra does not have support for joins and hence denormalization is the
norm. Similarly, there is no support for GROUP BY and should therefore be
taken care of in the schema designing phase.
Cassandra also does not have direct support for sorting; hence, it is important
to model the column design carefully to take care of sorting in query results.
CQL does have ORDER BY support, but it has lots of restrictions; for example,
it is supported only on a single column and this single column has to be the
second column in a composite primary key.

3V Patterns

[26]

•	 Deployment across multiple machines: Cassandra is designed for
deployment across multiple machines and provides the best performance
in more than three nodes. The reason why multiple machine deployment
is important is because the number of nodes that can be used in parallel is
a factor of the read and write performances in Cassandra. So, the more the
number of machines, the more they can work in parallel for simultaneous
reads and writes. This is a bit different from traditional RDBMS, where
a single database engine is handling multiple reads and writes. While in
Cassandra, each node is a data store engine capable of handling multiple
requests across a single node. So, the cumulative requests that Cassandra
can handle can be calculated by multiplying the number of machines in the
Cassandra cluster with the number of requests per machine.

•	 Use of Commodity hardware and JBOD (Just a Bunch Of Disks): Cassandra
is best deployed across a cluster of commodity hardware nodes and with
simple disk drives rather than using expensive hardware and storage solutions
such as SAN. This is again different from traditional database usage, where
expensive SAN is used for high availability. However, Cassandra has inbuilt
support for high availability and relies on local hard drives for avoiding
network-related issues present with SAN. Thus, local hard drives are faster
and cheaper than SAN. Also, Cassandra scales horizontally, which means that
instead of having a resource heavy machine with expensive hardware, it is
better to use horizontal scalability by having multiple commodity machines.
Having multiple machines also helps in better performance.

Our subsequent chapters will cover patterns on how to take care of the previously
mentioned nuances and solve business problems successfully.

Pattern name – Ultra fast data sink
In today's world, we are not only talking about huge data volumes. Another problem
to solve is how to ingest these high volumes as fast as possible so that the end users
can be provided with a real-time experience. Let us see if Cassandra can serve as a
fast ingest store.

Problem/Intent
Which data store to use that can handle high ingestion rates?

Chapter 3

[27]

Context/Applicability
As the number of Internet users increase, there is also an increasing demand for
capturing data from sensors and other machine-generated data sources. Today, data
needs to captured from various sources at a mind boggling ingest speed of millions
of events or transactions per second.

We are sitting on the brink of a major data and IT revolution
(Internet of Things), which talks about the near future where
every object in the world can be RFID-tagged and can become
a source of far bigger informational datasets, unlike today's
world with human beings as the only source of data.

We already see this happening all around us today with
machines such as cars sending sensor data to centralized data
stores for predictive maintenance-driven analytics.

Forces/Motivations
•	 Traditional RDBMS has not been designed for ultra fast ingestion of millions

of inserts per second.
•	 A single machine deployment model in RDBMS usually restricts ingests

from scaling horizontally. Hence, the limiting factor becomes disk I/O on
a single machine.

•	 Web application middleware has since long been using stateless architectures
that are capable of scaling horizontally. In traditional multitiered architecture,
it is usually the RDBMS data tier that cannot be scaled horizontally and causes
a bottleneck.

*
*
*

*
*
*

Middleware
Server 1

Middleware
Server 2

Middleware
Server n

Web
Server 1

Web
Server 2

Web
Server n

Scale Horizontally
- Add more machines

RDBMS

Bottleneck

Traditional RDBMS-based web-tiered architecture

3V Patterns

[28]

•	 Traditional RDBMS writes become more problematic as the data sizes
increase due to the time spent in maintaining constraints and indexes.

Solution
Cassandra is unmatched with respect to fast ingestion of data, which is possible due
to its memory store, sequential writes, tunable consistency, and parallel writes across
cluster feature sets. Unlike RDBMS, Cassandra supports parallel writes where each
node in a cluster is responsible for a specific key range. Also, writes in Cassandra
are first written to a memory store and purged to a disk drive asynchronously. This
memory-backed design allows the writes per node capacity to be easily scaled to
10k+ for normal complexity data sets. This, combined with parallel writes to multiple
nodes in a cluster, theoretically allow a cumulative throughput of millions of inserts
per second.

*
*
*

*
*
*

Middleware
Server 1

Middleware
Server 2

Middleware
Server n

Web
Server 1

Web
Server 2

Web
Server n

Scale Horizontally
- Add more machines

Scale Horizontally
- Add more machines

Cassandra
Node 1

Cassandra
Node 3

Cassandra
Node n

Cassandra
Node 2

Cassandra Ring

Cassandra-based web-tiered architecture

Netfix has shared some interesting benchmarks for
Cassandra deployment in Amazon EC2 cloud with the open
source community easily accessible through any Internet
search. Netflix was able to achieve around 10k writes per
second per node with mean latencies in milliseconds on
16 GB RAM extra large EC2 machines. The results were
proven for 48, 96, 144, and 288 nodes, and 288 nodes could
achieve 1 million writes per second.

Chapter 3

[29]

Consequences
Enabling high ingestion rates in Cassandra does require careful planning around
consistency and partitioning.

•	 Let us start with understanding tunable consistency considerations.
Cassandra has a very powerful feature set of tunable consistency. A lower
write consistency level starting with ZERO, ANY,
ONE, QUORUM, and ALL usually have decreasing ingestion rates support.

ZERO ANY ONE QUORUM ALL

Generally Increasing Ingestion Rates

Write consistency level impact

•	 Another consideration is scaling ingestion rates by adding more nodes
and proper partitioning: Cassandra reads and writes can be scaled easily
by adding more nodes to a cluster. However, it is important to ensure that
both reads and writes are spread along the cluster by the proper designing
of the row key, which is the partitioning mechanism for Cassandra. Similarly,
proper rebalancing of data to take care of data skews and ensuring a
homogenous spread is important for both reads and writes.

Related patterns
This usage pattern is very closely related to the "web scale store" pattern and is
usually used together.

Pattern name – Flexi schema
One of the challenges that business applications face today is rapid changes
in requirements as well as new forms of end-user interactions with these
applications. These rapid changes are still a challenge in the RDBMS world,
especially semi-structured or flexible structure data in the form of JSON or XML, as
it is difficult to convert these flexi-schema structures into the strict schema world of
RDBMS. Let us see if Cassandra can provide some possible solutions for handling
such flexi-schema problems.

www.allitebooks.com

http://www.allitebooks.org

3V Patterns

[30]

Problem/Intent
Which data store to use that allows schema changes and multiple formats?

Context/Applicability
As Internet access becomes easily available, another major change happening in the
Internet users' world is the use of an Omni device and Omni channel. This means
that end users are using multiple channels and multiple devices to access the same
services, and the same data is being generated from different sources. Agility,
personalization, and rapid socio-driven changes are also enforcing the data structure
to change more frequently than during the traditional era, when data schema
changes were not prevalent.

It is also important to mention that there is a recent revelation in the world of data
analytics, which was the data collected from silo databases and brought together has
much more value than the silos of data. A loose structure is also required to join this
data on multiple varying parameters for maximizing the analytical value add out of
this data.

Forces/Motivations
•	 The RDBMS schema design follows a strict schema-first design. This means

that it is difficult to change the schema once designed. Changes in a schema
usually means including new fields, or modifying the existing fields, or
changing the datatypes. Queries and analytics against such a static schema
are bounded by the constraints of SQL syntax and modifying the existing
schema for alternative analytics is difficult.

•	 RDBMS schemas are difficult to be altered since relationship constraints and
indexes resist even minor changes in the schema.

•	 RDBMS also has a problem of storing null values, and most real-life data has
lots of such null values.

•	 JSON and XML formats are increasingly becoming the standard for web and
SOA (Service oriented architecture) applications. These formats have flexible
schemas; hence, they are not very friendly to be managed in RDBMS schemas.

Chapter 3

[31]

Solution
Cassandra uses a column-family-driven schema design approach, which means
that columns can be added on the fly. In fact, each row in Cassandra is actually a
flexible data structure in the form of a map where multiple key-value pairs can be
stored against a single row key, and each row in a Cassandra table can have its own
set of key-value pairs. An easy way of understanding this schema flexibility in the
Cassandra data model is by knowing that the column name is also stored as part of
the row data.

Column
name 1

Column
value 1

Column
name 2

Column
value 2

Column
name 3

Column
value 3

Row key 1

Column
name 4

Column
value 4

Column
name 2

Column
value 2

Row key 2

Flexi schema with column names as part of the data row

XML and JSON formats can be easily stored in the Cassandra data model by storing
each key-value pair in in separate columns JSON/XML documents.

Consequences
Flexible schema management in Cassandra does require the following consideration:

•	 Programming interface extensibility: The middleware tier should be
extensible to accommodate and use the changes in the schema without major
code, preferably using configuration-driven design and coding style

Related patterns
This usage pattern is very closely related to the "web scale store" and "ultra fast data
sink" patterns and is usually used together.

3V Patterns

[32]

Summary
We covered the foundational patterns that can be used for assessing whether
Cassandra is a good fit for solving some recurring problems that the web and
real-time application designers face.

These patterns are applicable for the NoSQL world in general and talk about how to
use Cassandra for solving these challenges.

In the next chapter, we will look at other important patterns such as highly
available stores, time series analytics, content/document stores, and an atomic
distributed counter service that Cassandra solves in ways better than any other
solutions out there.

Core Cassandra Patterns
We will continue our journey in understanding technical use cases and how
Cassandra solves the following problems:

•	 Highly available store
•	 Time series analytics
•	 Atomic distributed counter service

Pattern name – Highly available store
Building highly available applications has always been a challenge for both the
hardware and the software world. This high availability refers to seamless end
user experience even if the underlying application fails. This is usually achieved
by transparently passing user access to a standby application providing the same
service. Let us learn how Cassandra can enable you to build such highly available
applications in this pattern.

Problem/Intent
Which data store should we use such that it is highly available even across multiple
data centers at web scale?

Core Cassandra Patterns

[34]

Context/Applicability
Today's Internet era web applications require a lot of user traffic to be managed,
given that the number of Internet users is increasing at an exponential rate. Also,
the end users are truly global and need high availability to ensure competitiveness
against possible competitors. One of the traditional, proven approaches for high
availability is the deployment of applications across different data centers in an
active-active mode, where each active data center deployment is independent but
is always in a ready state to replace the other data center deployment as well as to
work in parallel. This approach allows traditional web applications to be deployed
across multiple data centers across geographical locations to ensure high availability.

An interesting aspect of today's web applications, especially social media applications,
is deployments in public clouds, that usually have different high availability SLA
(Service level agreement) than the web application itself. This is especially true for
a web/middleware application tier where a machine instance that deploys the
web/middleware tier can be restarted or reinstantiated but can take time running
into minutes or more, which might be beyond the application SLAs of a couple of
seconds or less. Cloud vendors typically provide hosting across geographically
located data centers for faster access similar to CDN (Content Delivery Network)
and also provide data replication services across data centers for disaster recovery.
Hence, deployment across multiple data centers in a Cloud vendor is commonplace,
where the web application is deployed in geographically located data centers.

Forces/Motivations
The traditional model of using RDBMS in a highly available mode generally
involves deploying multiple machines in a master-slave and sometimes in a
master-master architecture. The machines in the cluster usually replicate data
between the different machines. This data copy is sometimes problematic due to
various issues in networking.

GoldenGate is a standard tool for data synchronization
between Oracle machines in a cluster. One of
the biggest challenges that enterprises face with
multidatacenter cluster deployments is that the data
synchronization process becomes slow between nodes
across different data centers.

Chapter 4

[35]

Web applications with a huge user base in the Cloud particularly run into issues as
the hardware and network is usually shared in Cloud environments. This means
that although the web application might not be impacted significantly due to shared
CPU or RAM, there might be issues with respect to shared drive or network usage.
So, most web applications in the Cloud should ideally be designed to counter the
possible issues with network inconsistencies and high availability problems.

Solution
Cassandra was designed from the ground up to be deployable in multidatacenter
and cloud-like environments, given its origins in Amazon Dynamo and Google
BigTable. It has unmatched advanced features for data center deployment and
provides fine-grained control over how the data is spread and replicated across
different data centers.

Cassandra uses the concept of a snitch to allow how and what data is written to data
centers and racks. The following snitch implementations are available out of the box
in Cassandra:

•	 Simple snitch: This is used for a single data center or a single rack-based
deployment.

•	 Dynamic snitch: This is used to dynamically find the best read replica based
on the history of performance of the earlier reads of the replicas.

•	 Rack inferring snitch: This uses the IP address' third and second octets to
determine the location of racks and data centers.

•	 Property file snitch: This uses a property file to define and name data
centers, racks, and IP addresses of each node.

•	 Gossiping property file snitch: This uses a property file to define the
data center and rack information for a local node and a gossip protocol to
propagate this information to other nodes.

•	 EC2 snitch: This is used for Amazon Web Services (AWS) EC2-based cloud
deployment in a single AWS EC2 region. It uses private IPs; hence, it is not
usable across data centers.

•	 EC2 multi region snitch: This is used for multi region (multidatacenter)
AWS EC2 deployments.

A replication strategy can be used to control where and how many replicas are
placed in a data center across a multidatacenter deployment.

Core Cassandra Patterns

[36]

Cassandra is highly available as it uses a peer-to-peer architecture, so it does not
have a single point of failure as in the case of a master-slave architecture. This,
combined with advanced support for multidatacenter deployments, fine-grained
replica placement, asynchronous replication, and read/write consistency level
control, ensures that Cassandra can provide high availability for 4-nines more easily.

Example
A case study: An enterprise customer was facing issues with slow replication in an
Oracle database backed web application with Oracle 11i servers deployed across
multiple geographical locations using GoldenGate for replication. One of the
data centers was solely for disaster recovery, and the high availability requirements
were 99.99 percent. The latencies in data synchronization across the data centers
were reaching 5 minutes or so under peak loads. The system was replaced by a
Cassandra-based multidatacenter-based deployment with a data center-aware snitch.
The new system showed data synchronization being achieved in 2-3 seconds even
under peak loads. This new system also had very high availability, thanks to
a higher replication factor.

An interesting fact in the preceding case study was that the
replication factor could be used to affect high availability.
For example, for a 4 data center deployment with three
nodes each per data center, a replication factor of 12 would
mean that even if 11 machines go down, the system would
still be available for reads.

Pattern name – Time series analytics
Time series refers to the data generated at regular intervals and constitutes a sizable
number of business problems faced in enterprises. A stock ticker is a classic example
of time series data, where stock prices keep on changing continuously. Today, in
most stock markets across the world, stock prices are captured at millisecond levels
since multiple buy/sell decisions might be happening at the same time, and even a
small time lapse can result in millions of dollars gained or lost. Cassandra has lots of
feature sets that make it a perfect candidate for time series analytics, and this is what
we will be covering in this pattern.

Problem/Intent
Which data store should we use for time series analytics?

Chapter 4

[37]

Context/Applicability
Time series data is the data captured at regular time intervals and is a standard way
for capturing information of log captures and applications like stock prices. Time
series data is useful for predicting and forecasting analytics over time. One of the
bigger challenges with managing time series data is that while smaller intervals of
time help in better analytics, the sheer amount of data that needs to be captured
becomes too huge.

Sensor data generated in manufacturing processes is a
classic example of time series data where millisecond or
even nanosecond time series data analytics can be used
for predictive preventive maintenance.

Consider your car becoming intelligent to caution you to take
it to a repair shop as the time series forecast analyzed from the
car's sensors are predicting an engine failure!

Computer infrastructure monitoring is a multibillion dollar industry and is highly
characterized by time series data capture and the ability to provide analytical
capabilities around trend and root cause analysis. This infrastructure monitoring of
computer systems (operating systems, applications, hardware, network, and so on)
usually requires data to be captured at second or millisecond levels. And, depending
on the number of deployed machines, systems, and metrics, this data capture can run
into millions to hundreds of billions of data points per day!

Websites like BOX and TUMBLR capture tens of billions of
data points per day!

Forces/Motivations
Time series data capture involves two distinct challenges—possibly millions of
inserts per second as well as huge data volumes resulting from storage of billions
of data points per day. Both these challenges are difficult to solve using traditional
RDBMS technologies.

Also, the usual way of accessing time series data is by using graphical interfaces;
hence, a relational model of time series data might become cumbersome for building
queries required for graphs.

Core Cassandra Patterns

[38]

Solution
Cassandra writes data sequentially to a disk and in a sorted way in SSTable files.
This allows data retrieval by row key and range, which is really efficient, thanks to
minimal disk seek. Also, remember that Cassandra is designed to use wide rows. This
means that a row in Cassandra can potentially have around 2 billion columns. This
property is highly applicable for capturing and building time series data applications.

Example
Let us use the classic example of a weather forecasting system where temperature
readings need to be captured for each and every weather station. The schema for
such an application can be modeled in the following way:

Weather Station ID :
Date Temperature ValueTemperature Value

Timestamp Timestamp

Row Key
(Composite)

Additonal
Columns

The CQL (Cassandra Query Language) DDL (Data Definition Language) table
creates scripts that represent this data model as shown in the following query:

CREATE TABLE temperature_ts (
weather_station_id text,
capture_date text,
capture_time timestamp,
temperature int,
PRIMARY KEY ((weather_station_id,capture_date),capture_time)
);

The following screenshot is an example of the data captured using the previous data
model schema:

Row 1 ->
Station-SFO-1:
01/01/2013

00:00

65

00:10

64

23:50

62

Row 2 ->
Station-NYC-1:
01/01/2013

00:00

28

00:10

30

23:50

32

Chapter 4

[39]

The following insert commands represent the CQL equivalent for this data capture:

INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-SFO-1','2013-01-01','2013-01-01 00:00:00','65');
INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-SFO-1','2013-01-01','2013-01-01 00:10:00','64');
..
..
INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-SFO-1','2013-01-01','2013-01-01 23:50:00','62');
INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-NYC-1','2013-01-01','2013-01-01 00:00:00','28');
INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-NYC-1','2013-01-01','2013-01-01 00:10:00','30');
..
..
INSERT INTO temperature_ts (weather_station_id, capture_date,
capture_time, temperature)
VALUES ('Station-NYC-1','2013-01-01','2013-01-01 23:50:00','32');

Data retrieval is simple and can be represented by the following query:

SELECT *
FROM temperature_ts
WHERE weather_station_id='Station-NYC-1'
AND date='2013-01-01';

Another example of a time series application for log monitoring is an open source
project kariosdb hosted on Google Code. This application supports Cassandra as
the backend store and allows millisecond level events to be stored. The row key in
this data store consists of a metric name, row timestamp, and concatenated string of
tags. A single row can store three weeks of data for a single metric, which amounts to
1,814,400,000 columns.

OpenTSDB is another open source time series data store. The
next generation of OpenTSDB started as a rewrite of some
of the core features and was initially named OpenTSDB2.
However, it was later renamed to kariosdb—hence, kariosdb
is actually the next generation version of OpenTSDB.

www.allitebooks.com

http://www.allitebooks.org

Core Cassandra Patterns

[40]

Pattern name – Atomic distributed
counter service
Counters are simple mechanisms to keep a track of events or an inventory of items
in any business use case. Counters enable the avoidance of expensive aggregation
queries by preaggregation at an accessible location. Building a distributed counter has
traditionally been a daunting software design task, and hence, the reason to include
this pattern in this chapter in order to see how Cassandra can solve this problem.

Problem/Intent
How to build a distributed counter service?

Context/Applicability
Distributed counters are a major requirement for many applications, particularly
e-commerce applications. These services are required for quickly showing and
tracking user events or actions. Keeping a track of videos or website hits is a popular
use case for counters, where running a "count" query in the underlying database
would be too expensive and time consuming. Hence, video or web page hits are
managed as distributor counters for quick presentation on the user websites.

Forces/Motivations
Designing and implementing a counter service is a complicated task due to the
dependency on atomic updates, where at a given time, only one process/thread
can update the counter.

Solution
Cassandra has support for a special type—counter. A counter is a special kind
of column used to store a number that incrementally counts the occurrences of a
particular event or process. Counter column tables must use the counter datatype.
Counters may only be stored in dedicated tables.

Data is loaded into a counter column using the UPDATE command, instead of INSERT.
UPDATE is also used for increasing or decreasing the value of the counter.

Example
Let us use an example for keeping a track of the videos viewed/downloaded on a
media website.

Chapter 4

[41]

The keyspace for this counter service can be created as shown in the following query:

CREATE KEYSPACE counterkeyspace WITH REPLICATION =
{ 'class' : 'SimpleStrategy', 'replication_factor' : 3 };

The table for this counter service can be created as shown in the following query:

CREATE TABLE counterkeyspace.video_view_counts
 (counter_value counter,
 url_name varchar,
 video_name varchar,
 PRIMARY KEY (url_name, video_name)
);

Data can be loaded into this counter table as shown in the following query:

UPDATE counterkeyspace.video_view_counts
 SET counter_value = counter_value + 1
 WHERE url_name='www.youtube.com' AND video_name='cassandra';

The counter can be retrieved as shown in the following query:

SELECT * FROM counterkeyspace.video_view_counts;

The output obtained is shown in the following listing:

 url_name | video_name | counter_value
------------------+------------+---------------
 www.youtube.com | cassandra | 1

(1 rows)

The counter value can be incremented as shown in the following query:

UPDATE counterkeyspace.video_view_counts
 SET counter_value = counter_value + 2
 WHERE url_name='www.youtube.com' AND video_name='cassandra';

Core Cassandra Patterns

[42]

Summary
We covered some of the core use case patterns that can be easily catered to by some
core capabilities available as part of Cassandra.

In the next chapter, we will look at other important patterns such as highly available
store, time series analytics, content/document store, and atomic distributed counter
service that Cassandra solves in ways better than any other competitive solutions
out there.

Search and Analytics
Applied Use Case Patterns

So far, we have seen some core and applied design patterns using Cassandra's
unique capabilities as a leading NoSQL store. Now, let us look at some cases where
other technologies and solutions can be used along with Cassandra for additional
business use cases.

Cassandra is being used in conjunction with other leading solutions to solve many
challenging use cases including the following:

•	 Streaming/CEP analytics
•	 Needle in a haystack/search engine
•	 Graph problems
•	 Advanced analytics

Pattern name – Streaming/CEP analytics
Streaming analytics and Complex Event Processing (CEP) have traditionally been
used as standalone applications. However, combining streaming analytics with
real-time analytics provided by Cassandra offers a new way of enabling an all-round
analytical view of data throughout its lifecycle as it flows into a data store as well as
after it gets persisted in the data store.

Problem/Intent
How can Cassandra be used for streaming/CEP analytics?

Search and Analytics Applied Use Case Patterns

[44]

Context/Applicability
Streaming analytics is the process of extracting information from continuous data
records and is very helpful in building low-latency systems, especially applications
where early, real-time alerts and responses are a major requirement. An example can
be a manufacturing process stopped in case of some alert raised as a part of sensor
feed analysis.

Forces/Motivations
Traditional streaming and CEP engines are usually difficult to scale as CEP engines
work on rolling time windows and are restricted by CPU/memory constraints on
a single machine. The possible combination of Cassandra along with a Streaming/
CEP analytic platform could be potentially useful for solving multiple use cases. This
combination would allow us to use Cassandra's real-time analytics capability along
with streaming analytics.

Solution
Cassandra can easily be used in conjunction with popular parallel processing
streaming solutions for building applications that can handle streaming analytics as
well as real-time analytics. Cassandra is also great for high ingest rates, so multiple
data streams can be easily supported by Cassandra for fast storage.

The following figure shows a high-level architecture for representing such a solution:

Real Time Analytics

Visualization/Reporting Layer

Cassandra

Streaming Analytics

Alerts etc. Real time Queries

Chapter 5

[45]

The reference architecture depicts machine data being captured from multiple
sources and being ingested and processed though a streaming analytics platform.
The streaming solution works as a pass-through for the streaming data as it is finally
ingested in the Cassandra data store for long-term storage and analytics.

This solution can be used in the following ways:

•	 A streaming solution for alert management using a rule engine and CEP
along with Cassandra for real-time analytics and long term storage.

•	 A streaming solution for alerts as well as an aggregation solution for
using Cassandra as an aggregator/summarization data store. This pattern
solves the problem of aggregate functions being difficult to implement
in Cassandra.

For example, Apache Storm is an open source popular streaming solution that can
be easily used in conjunction with Cassandra to provide an implementation of the
reference architecture involving a streaming engine with a real-time engine.

Some of the characteristics of such a solution are as follows:

•	 Storm can run across multiple machines as a distributed grid engine for
streaming analytics

•	 It can be scaled linearly by adding more machines in a way similar
to Cassandra

•	 It is easy to integrate with other solutions such as Esper, which is an open
source SQL supporting the CEP engine

•	 It easily integrates with Cassandra

Storm-Cassandra is a standard bolt available in open source and offers an easy
implementation for integration with Cassandra. The CassandraBolt class provides a
convenience constructor that takes a column family name and row key field value as
arguments, as shown in the following code:

IRichBolt cassandraBolt = new CassandraBolt("myColumnFamily",
"myRowKey");

This statement creates a CassandraBolt object that writes to the myColumnFamily
column family, and will look for/use a field named myRowKey in the backtype.
storm.tuple.Tuple objects that it receives as the Cassandra row key.

Search and Analytics Applied Use Case Patterns

[46]

For each field received in the backtype.storm.tuple.Tuple object, the
CassandraBolt object will write a column name/value pair. For example, for a tuple
value of {rowKey: 54321, col1: "col1val", col2: "col2val"}, the following
Cassandra row would be seen in cassandra-cli:

 RowKey: 54321
 => (column=col1, value=col1val, timestamp=1921236503081009)
 => (column=col2, value=col2val, timestamp=1921236503081102)

Cassandra counter columns are also supported by this Storm-Cassandra
implementation.

So, a possible design pattern can involve using Storm for range window aggregations
such as keeping count of the URL or videos for the last-hour window and storing
hour-wise counters in Cassandra using a roll-up aggregator.

The following Cassandra bolt implementation can be used for counters:

CassandraCounterBatchingBolt myRollUpBolt = new
CassandraCounterBatchingBolt(
 "myColumnFamily", "myRowKeyField",
"myIncrementAmountField");

This statement will create a bolt that will write to the myColumnFamily column
family, and will use a field named myRowKeyField in the tuples that it receives.

Given a tuple {rowKey: 12345, IncrementAmount: 1L, IncrementColumn:
'SomeCounter'}, the myCounter counter column will be incremented by 1L.

Pattern name – Needle in a haystack/
search engine
Search applications are becoming an important tool across enterprises, enabling
business users to access the right information at the right time. Since the data volumes
across enterprises are becoming huge, searching for the right data is seemingly
similar to searching for a needle in a haystack. Also, more importantly, the results of
this search should be available in real time for the information to be used as early as
possible. Cassandra can offer some great options for enabling such search capabilities.

Problem/Intent
How can Cassandra be used for search engine-like solutions?

Chapter 5

[47]

Context/Applicability
Enterprise search is becoming a key business requirement across organizations as a
means of centralized knowledge management. A search engine usually comprises an
indexing mechanism and some means of querying capability over that index.

Forces/Motivations
Cassandra is great for storing huge amounts of data and fast reads, but it does face a
challenge in handling complex queries on multiple fields.

An interesting fact is that Cassandra was created for Facebook as a search engine and
was used to store the indexes to allow searches for keywords. The Facebook challenge
was about storing reverse indices of Facebook messages that Facebook users send and
receive while communicating with their friends on the Facebook network.

Also, proven search engines such as Solr and Elastic Search are built over Lucene
technologies that have specialized search capabilities such as wild, faceted search.

So, a combination of Cassandra with search capabilities can be a useful solution
for multiple search-related use cases across enterprises.

Solution
As mentioned earlier, Cassandra's origin is rooted in being created as a search engine
for Facebook messaging. This involved creating an inverted index with values as row
keys against primary keys in the following way:

jellis@cassandra.orgsanjay@cassandra.org

jellis@cassandra.org

sanjay@cassandra.org
name

Sanjay

state

CA

name state

Jonathan CA

Primary Table Row Key stored as
Column Names with no Column valueState -index

Main Table

Inverted Index Table

Row 1->

Row 2->

Row 1-> CA

Search and Analytics Applied Use Case Patterns

[48]

The schema example depicts an inverted index table for a query on a state field.
The inverted index table schema uses the design pattern of using column names
only, without the need for column values. The problem with such an inverted index
approach is that complex queries on multiple fields are still a problem.

Please note that Cassandra now has inbuilt secondary indexing that supports
inverted indexing capability since some recent releases. So instead of the manual
implementation of inverted index creation, a secondary index can be created easily
as follows:

CREATE INDEX state_key ON users (state);

This index allows the query to be executed on the state field directly as follows:

SELECT * FROM users where state="CA";

For advanced search capabilities, it is advisable to use Cassandra in combination
with a full-fledged indexing and search engine as creating too many secondary
indexes in Cassandra will, in the end, result in the same problems faced by the
traditional RDBMS.

A typical deployment of Cassandra with an indexing/search engine would involve
the source application sending data to be stored in Cassandra while the index would
be created and stored in the search engine's index store.

The following solutions are possible examples of implementing a search engine
solution along with Cassandra:

•	 Cassandra along with SOLR integration: This approach would require the
middle tier of the business application to write data to Cassandra along with
creating a SOLR document that can be submitted to the SOLR search engine.
The deployment would consist of Cassandra servers deployed alongside
SOLR servers. This approach does have the complexity of maintaining data
sync between the Cassandra store and the SOLR index.

Chapter 5

[49]

•	 DataStax Enterprise: DataStax is a commercial organization providing
enterprise distribution and support for Cassandra. The enterprise
distribution includes advanced search capability and includes a tight
integration between Cassandra and Lucene indexes. A distinct advantage of
this approach is that the DataStax solution takes care of the data state sync
between the Cassandra store and the Lucene search indexes. In fact, the tight
integration abstracts the complexity of creation of the index document by
enabling auto-indexing of Cassandra columns as defined by the end user.

•	 Kundera: This is an open source, high level client library that supports
JPA-compliant Object Relational Mapping (ORM) over Cassandra. Kundera
also allows indexing on entity fields and runs Lucene queries on the indexed
fields. Kundera has recently added support for a popular search engine
(Elastic Search) and it would be interesting to see if this integration can be
used to simplify Cassandra's integration with Elastic Search.

Pattern name – Graph problems
Another area of interest facing the software world today due to rising social media
growth is graph analysis. Graph analytics has been a part of statistical and analytical
solutions, traditionally in the scientific and research community. However, social
media is playing a powerful role in understanding customer profile better; graph
analytics is becoming a part of solving business problems. We will now see how
Cassandra can be used for building such graph analytical solutions.

Problem/Intent
How can Cassandra be used to solve graph problems?

Context/Applicability
Graph problems are very pertinent in this world of social media where social
interactions can be easily designed in the form of social graphs. A graph structure
uses nodes, edges, and properties to represent and store data.

www.allitebooks.com

http://www.allitebooks.org

Search and Analytics Applied Use Case Patterns

[50]

Forces/Motivations
Cassandra is a document store and is not directly suited for storage as a graph store.
However, Cassandra does have the capability of storing huge amounts of data and
their fast retrieval. This fast retrieval capability over large volumes of data along
with the wide row feature can be used to build a graph data store over Cassandra.

Solution
Cassandra can be used to store graph entities as vertexes with node properties and
relationships as edges with wide rowed columns. This pattern of storing edges and
properties against a node as a vertex has been used in a data store called Titan, which
is an open source implementation of a graph database using Cassandra as shown in
the following figure. Titan supports Cassandra as a persistent store since it relies on
Cassandra's high availability and linear scalability features.

vertex id

vertex id

vertex id

property edgeproperty

property

property property property

edge edge

edge edge edge edge

edge edge

Sorted
by ID

Sorted by type & sort key

Pattern name – Advanced analytics
In today's world, advanced analytics refers to using statistics and machine learning
to get more insights into the data. Predictive analytics or forecasting has many uses
for solving real-world business use cases, such as customer acquisition, preventive
maintenance, and campaign planning. Let us now look at how Cassandra can be
used alongside other advanced analytical solutions.

Problem/Intent
How can Cassandra be used for advanced analytics?

Context/Applicability
Cassandra is predominately a real-time data store used for OLTP applications.
Advanced analytics usually involves running complex batch queries and is useful
for solving multiple business use cases.

Chapter 5

[51]

Forces/Motivations
Cassandra is a real-time store and does not have a strong aggregation framework
that is usually required for advanced analytics. There has been a recent addition to
Cassandra's capabilities in the form of trigger support, but having a full batch-oriented
analytical mechanism is mandatory for solving all analytical challenges.

Hadoop has recently emerged as the standard batch analytical solution for Big Data
and hence Cassandra's integration with Hadoop is important for solving business
problems using real as well as batch analytics.

Solution
Cassandra's integration with Hadoop is a successful pattern applied multiple times
across production use cases of Cassandra to enable advanced analytical capabilities.

Cassandra supports integration with Hadoop in various ways and we can choose
between the following options depending on the technical and business requirements:

•	 Cassandra's direct integration with Hadoop: Cassandra provides
ColumnFamilyInputFormat and ColumnFamilyOutputFormat classes that
can be used for direct integration of Cassandra with Hadoop from map reduce
programs. This approach involves data being read from Cassandra column
families in map reduce mappers directly and does include data movement.

•	 DataStax Enterprise: DataStax includes an implementation of Hadoop
Distributed File System (HDFS) in the form of Cassandra File System
(CFS), where data is stored in Cassandra column families. DataStax does
provide support for Hive, PIG, and Sqoop, which are Hadoop ecosystem
components. DataStax deployment does not require data movement as the
data in HDFS-equivalent is also stored in Cassandra.

•	 Data warehousing approach: This is similar to the traditional data
warehousing approach, where data is copied from OLTP stores to data
warehouses. Here, in a similar fashion, data from the Cassandra OLTP store
is copied and/or moved to the Cassandra store. This approach should be
used only if the first approach does not work due to various issues such
as network restrictions. The approach might involve exporting data from
Cassandra using export tools such as the new support for the COPY TO CQL
command with the following syntax:

COPY <tablename> [(column [, ...])]

 TO ('<filename>' | STDOUT)

 [WITH <option>='value' [AND ...]];

Search and Analytics Applied Use Case Patterns

[52]

Summary
In this chapter, we saw some powerful combinations of using Cassandra along with
other solutions and tools to solve a variety of business challenges. We saw how
Cassandra can be utilized for building search applications and also for playing a
strong role in an upcoming technology area—streaming analytics.

Cassandra can also be easily integrated with today's de facto leader of big data
batch analytics—Hadoop. This allows us to build advanced complex analytical
applications, providing both real time as well as batch analytical capabilities.

As Cassandra's popularity grows, many other solutions might also provide
compatibility and integration with Cassandra to use its core capabilities around fast
ingestions, fast reads, and high scalability and availability.

We covered some of the core use case patterns, which can be easily catered by some
core capabilities available as a part of Cassandra.

In the next chapter, we will look at some patterns that should be used carefully and
also some anti-patterns that would tell us how not to use Cassandra.

Patterns and Anti-patterns
So far, we've looked at use cases and design patterns where Cassandra is a really
good candidate. However, as with any other solution, Cassandra can be used in the
wrong ways. So, in this chapter, we will be covering some patterns that should be
used carefully and those that could result in the wrong usage of Cassandra.

The software industry also uses a term called anti-patterns, which are basically
repetitive usage of certain patterns that are actually wrong and should be avoided
at all costs.

We will now look at some other interesting patterns that can be easily turned into
anti-patterns if misused as well as some known anti-patterns.

Pattern name – Content/Document store
Document or content stores are used in the software world for storing artifacts and
documents in the formats of Word, Excel, PDF, HTML, and so on, so that they can
be searched, used, read, and managed in a better way than if we rely on traditional
filesystems. Also, centralized content stores are becoming the need of the hour;
individuals can collaborate more easily using this central store. Let us see whether or
not Cassandra can be a potential candidate for building a content or document store.

Problem/Intent
Which data store to use as a content/document store?

Patterns and Anti-patterns

[54]

Context/Applicability
In today's world, content management systems face challenges related to huge data
volumes and high reads. Content management systems' data stores need to store
the document content and also the metadata related to the content. The metadata
associated with the content usually requires search capabilities on tags as well as
workflow management in complex systems.

Forces/Motivations
Content management systems are usually "write once and read multiple times",
but content updates are also an important requirement. The updates of the content
are managed through version management. This requires metadata management
through a fast read/write store.

Solution
Cassandra's data modeling provides a solution to this content storage by allowing
the storage of raw bytes. This byte storage model allows content or documents to be
stored as raw bytes as column values, while the metadata associated with the content
can be stored as key-value pairs in wide rows against the document itself. In fact,
CQL now has support for the BLOB (binary large object) type.

However, this pattern of storing bytes at the column level should be used with caution.
This is because Cassandra is not optimized specifically for large-file or BLOB storage.
So, storing large objects in Cassandra has to be done carefully, since it can cause
excessive heap pressure and hotspots. However, files of around 64 Mb and smaller can
be easily stored in the database without having to be split into smaller chunks.

Example
A client API for Cassandra called Astyanax has special support for storing large
objects. This client API provides utility classes that address this issue by splitting up
large objects into multiple keys and handles, which fetch those objects in random
order to reduce hotspots.

An object can be stored using the following approach:
ObjectMetadata meta = ChunkedStorage.newWriter(provider, objName,
 someInputStream)
.withChunkSize(0x1000) // Optional chunk size to override
 // the default for this provider
.withConcurrencyLevel(8) // Optional.Upload chunks in 8 threads
.withTtl(60) // Optional TTL for the entire object
 .call();

Chapter 6

[55]

An object can be read using the following approach:

ObjectMetadata meta = ChunkedStorage.newInfoReader(provider, objName).
call();
ByteArrayOutputStream os = new ByteArrayOutputStream(meta.
getObjectSize().intValue());

// Read the file
meta = ChunkedStorage.newReader(provider, objName, os)
.withBatchSize(11) // Randomize fetching blocks within a batch.
.withRetryPolicy(new ExponentialBackoffWithRetry(250,20))
 // Retry policy for when a chunk isn't
available. This helps implement retries in a cross region setup where
replication may be slow
.withConcurrencyLevel(2) // Download chunks in 2 threads
 .call();

Caution
This pattern can easily be misused if the document/content size is bigger than a
few kilobytes. As advised, Astyanax-like APIs have advanced support for breaking
bigger content into smaller, manageable chunks to reduce the risks involved with
bigger column values.

Pattern name – Object/Entity store
Entity or object stores are more suitable for managing objects in an object-oriented
architecture and design paradigm, compared to the previous pattern. There was a
rise in object databases in the early 2000s, but these data stores did not really gain
popularity. One of the reasons behind the apparent failure of such data stores was the
popularity of ORM (Object Relational Mapper) tools, which allowed OOP-managed
(Object-oriented Programming) objects to be stored in the RDBMS. Hibernate is one
of the popular examples of such an ORM tool, which allows Java objects to be stored
in RDBMS. Let us see what the best practices are for handling objects or entities
in Cassandra.

Problem/Intent
How do we use Cassandra as an Entity/Object store?

Patterns and Anti-patterns

[56]

Context/Applicability
Object-oriented programming is a prominent standard of enterprise-grade
development and implementation of software. The Java language is the poster
child of the OOP model's success.

Forces/Motivations
The storage of objects in Cassandra can be handled in multiple ways, such as
the following:

•	 A BLOB store, such as a JSON object, in one column
•	 Multiple columns
•	 Different programming models can also be used for interacting with the

Cassandra store
•	 A Cassandra native model using columns and rows
•	 An object-oriented model:

°° Using high level API interfaces
°° Using ORM tools

Solution
Cassandra should always be used for storing objects in multiple columns and not as
BLOBs such as JSON or XML representations. The solution is to represent the object
in key-value pairs and store these as columns against the object identifier or store the
primary key as the row key.

Cassandra's schemaless nature allows columns to be added on the fly so that
developers do not have to worry about modifying schema for storing new columns.
Cassandra recommends denormalization for managing relationships between
different data entities and now also has support for advanced structures, such as
maps and collections, as part of CQL.

The ORM usage of Cassandra should be used only in cases where OOP-based
development and the easy migration of existing Java applications is more important
than redesigning the application from scratch. Caution should be observed in selecting
the right ORM tool, so as to use the Cassandra feature set as well as OOP.

Chapter 6

[57]

Kundera—an open-source ORM supporting Cassandra—has some capabilities that
ensure that users are using the nest principles of Cassandra design modeling, such as
denormalization using embedded tags, and also ease of development, since Kundera
is a JPA (Java Persistence API). JPA compliance means that any existing Hibernate
developer can easily start developing Cassandra applications as well as migrate
existing RDBMS applications to Cassandra.

Caution
Using an ORM does not mean that the developer does not care about the best
practices and principles for Cassandra schema modeling. So, using the ORM
incorrectly can still result in the same bottlenecks that traditional RDBMS run into.

Pattern name – CAP the ACID
Traditional RDBMS applications have transactional or ACID (Atomicity,
Consistency, Isolation, and Durability) support as an integral part of the solution.
However, NoSQL solutions, including Cassandra, use the CAP (Consistency,
Availability, and Partition tolerance) theorem as their foundation. Let us see how
real-world applications can be tackled using Cassandra's CAP-based architecture.

Problem/Intent
How can we use Cassandra for seemingly transactional problems?

Context/Applicability
Many enterprise-grade applications seem to be dependent on transactional ACID
support usually provided by the underlying RDBMS. How can we build such
applications using Cassandra?

Forces/Motivations
Cassandra does not support ACID in the true RDBMS sense, but does provide
support for row-level transactions.

Cassandra sacrificed support joins or foreign keys for scalability and performance
and consequently does not offer consistency in the ACID sense. Cassandra supports
atomicity and isolation at the row level but trades transactional isolation and atomicity
for high availability and fast write performance. Cassandra writes are durable.

Patterns and Anti-patterns

[58]

Solution
Enterprise-grade applications can certainly be designed and used today using
Cassandra. One of the recommended approaches is to design the data model in such
a way that any update operation can be avoided using the INSERT statements. An
example can be treating all updates as new inserts as new columns added against
the same row. Cassandra has atomicity enabled at the row level, which means that
inserting or updating columns in a row is treated as one write operation.

Also, Cassandra supports full row-level isolation, which means that writes to a
row are isolated to the client performing those writes and not visible to any other
user until they are complete. Similarly, writes in Cassandra are completely durable.
This means that all writes to a replica node are recorded on disk before being
acknowledged as successful. The commit log can be replayed on restart to receive
any lost writes in case there is a crash or server failure before the memory tables are
flushed to disks.

Cassandra 1.2 and above also have support for atomic batch operations. In this
batch-statement context, atomic means that if even one of the batches succeeds,
all of them will. Cassandra internally uses a batchlog system table to achieve such
atomicity. Cassandra first writes the serialized batch to this batchlog system table
that consumes the serialized batch as BLOB data; when the rows in the batch have
been successfully written and persisted (or hinted), the batchlog data is removed.

One of the recent solutions to some parts of this problem is the introduction of the
lightweight transaction as part of Cassandra 2.0. This transaction support is similar
to RDBMS support for certain use cases, which require linearizable consistency or in
ACID terms, a serial isolation level. A serial consistency level allows us to read the
current (and possibly uncommitted) state of data without proposing a new addition
or update. If a serial read finds an uncommitted transaction in progress, it will
commit it as part of the read.

An example of such a scenario might be assigning a defective ticket to a user, so that
the ticket gets assigned only once. Cassandra uses a Paxos consensus-protocol-based
implementation that can provide distributed transaction in a masterless environment.

Paxos details would require a separate book, but the following
is a link to a simple explanation of this protocol: http://
www.cs.utexas.edu/users/lorenzo/corsi/cs380d/
past/03F/notes/paxos-simple.pdf.

Chapter 6

[59]

The lightweight transaction support in Cassandra is similar to the "compare and
set" operation and involves the new IF clause added to the INSERT and UPDATE
commands in CQL. This can be illustrated in the following example code:

INSERT INTO tickets_assigned (ticketID, userID)
VALUES ('1001', 'smith@cassandra.org')
IF NOT EXISTS;

DML modifications via UPDATE can also use the new IF clause by comparing one or
more columns to various values:

UPDATE tickets_assigned
SET userID= 'john@cassandra.org'
IF userID= 'smith@cassandra.org';

Caution
In fact, Cassandra does not support transactions in the sense of bundling multiple
row updates into one all-or-nothing operation. It will also not roll back when a write
succeeds on one replica, but fails on other replicas. It is also possible to have a write
operation report a failure to the client, but still actually persist the write to a replica.
Also note that Cassandra internally uses timestamps to determine the most recent
update to a column. The timestamp is provided by the client application. The latest
timestamp always wins when requesting data, so if multiple client sessions update
the same columns in a row concurrently, the most recent update is the one that will
eventually persist.

Cassandra's support for batch statements has a performance overhead for atomicity.
This penalty can be avoided using the UNLOGGED option in batch statements.
However, it should be noted that no other transactional enforcement is done at the
batch level. For example, there is no batch isolation, and other clients will be able
to read the first updated rows from the batch while the updating of other rows is
in progress. However, transactional row updates within a single row are isolated; a
partial row update cannot be read.

Please also note that the usage of lightweight transactions involves quorum-based
operations and updates will incur a performance hit with degradation by one-third
of the normal operation.

www.allitebooks.com

http://www.allitebooks.org

Patterns and Anti-patterns

[60]

Pattern name – Materialized view
A materialized view is usually a data-store object that contains the result of a database
query. Let us see how this pattern is useful as well as important for Cassandra.

Problem/Intent
How can we enable advanced queries in Cassandra using materialized views?

Context/Applicability
The materialized view pattern allows queries to be served faster in RDBMS, since
the query results are already cached as a snapshot representation. Cassandra has
a simple query-first data model, where queries are constrained around row-key
lookups only or rely on secondary indexes. A materialized view-like implementation
would allow end users to query Cassandra in more advanced ways than just relying
on row-key and secondary index-based queries.

Forces/Motivations
Cassandra's highly scalable architecture for supporting high reads and writes and
huge data volumes had to sacrifice support for aggregation, or join-like queries.
So, how do we solve the problem of queries that are difficult to resolve using just
row key or secondary indexes?

Solution
The solution lies in designing query-driven tables to provide index-like capabilities
using denormalization as the key concept. This means that the required query results
are created as separate tables in Cassandra and usually contain denormalized data
that needs to be updated when the underlying data in the main tables changes.

Please note that materialized views are not supported out-of-the-box in Cassandra as
in, say, RDBMS, where we can use create materialized view ….. as [select
query]. Instead, we will be creating new tables in Cassandra that will contain the
query results to be served by this materialized view.

Also note that challenges with JOIN queries in Cassandra can also be resolved
using this pattern. So, a join query between two or more tables in Cassandra can be
represented as a materialize view table to let us overcome the absence of the JOIN
queries in Cassandra.

Chapter 6

[61]

There are two ways of implementing materialized views in Cassandra:

•	 Application-tier-driven materialized view: Here, the application layer
will be writing to the main table(s) as well as the materialized view table in
Cassandra. This can provide both real-time read/write capabilities:

°° A Python or Java middleware application can be an example of
such an implementation, where the business layer is also calculating
the query results and then updating the table that represents the
materialized view.

°° Another example can be Apache Storm being used as an aggregation
processing layer. Please refer to Chapter 5, Search and Analytics Applied
Use Case Patterns, for more details regarding this example.

•	 Analytics-driven materialized view: Here, an analytical solution or
aggregation framework will be reading data from the main table(s)
and then updating the materialized view table in Cassandra. This can be
useful in scenarios where the aggregation or complex queries are time
consuming and the only way to run them is through batch frameworks
or fast-processing engines:

°° An example can be Hadoop being used as a batch-processing engine
for pulling data from the main table(s) in Cassandra, running the
query, and finally, updating the results in the materialized view table

°° An external aggregation engine such as Apache Storm can also be
used for computing intensive query-processing operations in the
same way as the Hadoop example does

Interestingly, Cassandra can also be used along with a search engine, such as Solr,
and this search capability can be a potential way of implementing materialized views
in the search engine itself.

Caution
The materialized view pattern uses denormalization as the underlying concept, and
denormalization always comes with data-consistency problems with various copies of
the same data. Given that Cassandra has limited support for transactions, materialized
views should be used carefully, ensuring that there are sufficient mechanisms for data
consistency between the main table(s) and the materialized view.

Patterns and Anti-patterns

[62]

Pattern name – Composite key
The Composite key or Compound key is a well-known RDBMS design pattern.
Let us see if it makes sense to use this in Cassandra.

Problem/Intent
How can we build advanced data models in Cassandra with multiple keys?

Context/Applicability
Composite keys allow two or more keys to represent and uniquely identify an
entity occurrence.

In database design, a compound key is a key that consists of two or more attributes
that uniquely identify an entity occurrence. Each attribute that makes up the
compound key is a simple key in its own right.

This is often confused with a composite key whereby even though this is also
a key that consists of two or more attributes that uniquely identify an entity
occurrence, at least one attribute that makes up the composite key is not a simple
key in its own right.

									 -Wikipedia

Forces/Motivations
Cassandra initially only had support for a single primary key, which allowed simple
data models to be designed.

Some ways of handling complex data structures traditionally involved using super
column family or aggregated keys while designing Cassandra's data model.

Super column family is a special type of data table structure supported in Cassandra
that allows a column to be complex and contain other columns within it, thus
providing a deeper nested structure represented as follows:

Map<RowKey, SortedMap<SuperColumnKey, SortedMap<ColumnKey,
ColumnValue>>>

Aggregated keys involved creating concatenated keys that are composed of two or
more primary keys using some delimiter.

Chapter 6

[63]

Super column family has an intrinsic problem involving memory loading of the entire
row in cache; hence, it is not recommended that you use super column families in
Cassandra anymore. Similarly, aggregated keys are difficult to manage from a coding
perspective and usually need expert data-modeling skills due to its complexities.

Solution
Cassandra added support for composite primary as part of CQL support, and
there have been some advanced capabilities added to it as part of CQL1.2 and its
subsequent versions.

This composite key support allows developers to apply traditional primary key
concepts to Cassandra data modeling and still use Cassandra's strengths internally
for high scalability and fast querying.

The composite key support in CQL is illustrated as follows:

Create Table <Table name> (
columnName1 type, columnName2 type, ..., columnNameN type,

);PRIMARY KEY (columnName1, columnName2,..)

Partition part

Compound Primary Key

Create Table <Table name> (
columnName1 type, columnName2 type, ..., columnNameN type,

);PRIMARY KEY (,columnName3,..)(columnName1, columnName2)

Composite key part Clustering part

Composite Partition Key

Cassandra uses the first column name in the primary key definition as the partition
key, which is the same as the row key, to the underlying storage engine. The data
for each partition key gets clustered by the remaining columns of the primary key
definition. Clustering means that the storage engine creates an index and always
keeps the data clustered in that index.

Patterns and Anti-patterns

[64]

Cassandra 1.2 documentation states that CQL3 transposes data
partitions (sometimes called "wide rows") into familiar, row-based
result sets, which dramatically simplifies data modeling.

Also, according to the documents, legacy tables from Cassandra
1.1 are supported in 1.2 and Cassandra 1.1 style tables can still
be created using the COMPACT STORAGE attribute in CQL 3.
However, the COMPACT STORAGE directive prevents the addition
of more than one column that is not part of the primary key.

Let us illustrate the use of the compound primary key using the following example:

CREATE TABLE employee (
 empID int,
 deptID int,
 first_name varchar,
 last_name varchar,
 PRIMARY KEY (empID, deptID));

The compound primary key is made up of the empID and deptID columns in this
example. The empID attribute acts as a partition key for distributing data in the table
among the various nodes that comprise the cluster. The remaining component of
the primary key, deptID, acts as a clustering mechanism and ensures that the data is
stored in ascending order on the disk. On a physical node, when rows for a partition
key are stored in order of clustering column, the retrieval of rows is very efficient.
For example, because empID in the employee table is the partition key, all deptID
attributes for an employee are clustered in the order of the deptID column.

It is also worthwhile to note that we can perform sorting or ordering operations on
the second key of our compound key. So, we can use this pattern to add the ORDER
BY support in Cassandra:

 CREATE TABLE employee (
 empID int,
 deptID int,
 first_name varchar,
 last_name varchar,
 PRIMARY KEY (empID, deptID))
 WITH CLUSTERING ORDER BY (deptID);

In this example, WITH CLUSTERING ORDER allows Cassandra to store the data in
descending order of deptID.

Chapter 6

[65]

Additional interesting patterns
The following are a few other interesting patterns worth mentioning, which are
useful for simplifying Cassandra usage:

Pattern
name

Context/problem Solution/usage

Valueless
columns

In a Cassandra data model, the
column name is stored against a
column value. This ability allows
schemaless data modeling in
Cassandra, where each row in a
Cassandra table can have its own
set of columns.

Valueless column usage means having
columns with just names and no values.
This can sometimes be useful for
inverted index tables where column
names would contain the required
information.
An easy way to implement this is using
byte[0] as the value against a column.
This pattern is useful for simplifying
data modeling.

Collection
fields

Collections are usually useful
in the database design for
managing relationships between
entities. Cassandra does not
have any join support. However,
storing collections such as Set,
List, or Map in Cassandra has
always been possible using
its flexible, column-based
representations. However, this
implementation has always been
complicated as these structures
need to be handled at the
application end.

Cassandra CQL1.2 has added support
for handling collection objects, such
as Map, Set, and List, and should be
used instead of implementing custom
solutions.
Internally, Cassandra uses internal
column structures for efficient storage
of these collections; so, it is a scalable
solution.
Please note that there are still some
precautions to be observed for these
new datatypes: A collection has to
be retrieved as a whole. This means
that collections are not meant to be
excessively large or a replacement for
proper modeling into tables.
Collections are typed, but
cannot currently be nested. This
means that it is possible to have
list<text> or list<int>, but not
list<list<int>>.
There is no support for secondary
indexes in collections.

Patterns and Anti-patterns

[66]

Pattern
name

Context/problem Solution/usage

Sorting Ordering or sorting is one of the
important functions required
by any data store and it has not
been a trivial task to provide
these capabilities in Cassandra.
Unlike with traditional RDBMS
applications, we need to use
design time sorting rather than
query time ordering. This means
that the ordering needs to be
designed as part of the data
model.

There are multiple ways of enabling the
sorting of results in Cassandra.
One of the easiest ones is using an
ordered partition, which allows row/
primary keys to be stored in a sorted
order. However, ordered partitions
are not recommended for use as these
can easily skew data. Skewed data is
dangerous, because it can result in only
a few Cassandra nodes being used while
the rest of the nodes are not being used
at all.
Another approach is using column-name
natural sorting, which can be controlled
using comparators to fine-tune the
sorting. This approach involves using
wide rows and the storing of the values
that need to be sorted as column names.
CQL3 provides sorting support using
compound key and, internally, would be
using the same mechanism as that in the
column-name sorting approach.

Pagination Pagination for web applications
is the process of dividing the
results to be shown on the
web page over multiple pages.
In Cassandra, the traditional
approach has been manual
pagination, usually using
column slicing. However,
this approach has always
been nontrivial and requiring
application-based page limits,
state management, and complex
coding.

CQL3 has inbuilt support for pagination
in the form of cursors, available as part
of the SELECT query. This provides
an easy and simple approach to
implementing pagination, as shown in
the following Java example:
Statement stmt = new
 SimpleStatement("SELECT
 * FROM employees");
stmt.setFetchSize(100);
ResultSet rs =
 session.execute(stmt);

This approach eliminates the need to use
the token function to page through the
results available in CQL2.0, illustrated as
follows:
SELECT * FROM employees
 WHERE token(k) > token(100);

Chapter 6

[67]

Pattern
name

Context/problem Solution/usage

Temporal
data

Some applications require data
that is temporal in nature, which
means that the data has some life
associated with it. TTL (time to
live) is the term used for finding
the life duration of a record in
Cassandra.

Cassandra allows setting TTL at the
column level and, after this time to live
is surpassed, the column is marked for
deletion as a tombstone record.
Please note that the precaution with
deletes in Cassandra holds true here too,
as the tombstone records might result
in performance degradation. Greater
degradation happens where there are
many tombstone records to be processed
during either query or compaction
process.

Triggers Cassandra traditionally did not
have support for DDL- or
DML-triggered events handling,
as in RDBMS or some NoSQL
stores such as HBase, which
have co-processor support.

Cassandra 2.0 and above now have
experimental support for triggers that
allow Java-based triggers to be coded
and used on all changes to a Cassandra
table using RowMutations.
Please note that such a prototype
implementation is subject to change
in future Cassandra releases, but is
certainly an important capability being
added to Cassandra.

Unique
records

Cassandra did not have support
for server-side, unique, or
distinct operations.

Cassandra 2.0 now has support for the
DISTINCT clause, but it is available
only for partition keys. Please remember
that the partition key, here, refers to the
primary key in a simple key or the first
key in a composite key.

Anti-pattern name – Messaging queue
Messaging queues are commonly used to build scalable applications, because these
provide interprocess communication by enabling asynchronous communication
protocol. Messaging usually involves producers generating messages, while
consumers listen to a queue from which the messages can be read and processed.
The queue that stores messages has to be fast, efficient, and reliable. So, let us see
whether or not Cassandra can be used as a scalable storage backbone required for
building a message queue implementation.

Patterns and Anti-patterns

[68]

Problem/Intent
Can Cassandra be used as a messaging queue?

Context/Applicability
Cassandra offers high ingest and read capabilities; hence, it can easily be considered
as a candidate for messaging-queue solutions.

Liability/Issue
Cassandra should not be used as a durable messaging queue due to a major problem
with the way that it handles deletes.

Cassandra uses a log-structured storage engine, so, deletes do not remove the rows
and columns immediately. Instead, Cassandra writes a special marker called a
tombstone, which indicates that a row, column, or range of columns was deleted.

In case of a message queue, the typical operation includes queuing and dequeuing,
which translate into inserts and subsequent deletes. These deletes would result
in multiple tombstone markers. So, a new message dequeue would need us to go
through all the tombstones and then finally the newly queued message.

Patterns and anti-patterns – Cassandra
infrastructure/deployment problems
The following is a list of recommendations from a Cassandra infrastructure and
deployment perspective:

•	 Cassandra on SAN is not recommended.
•	 Commit log and data directories should ideally be on separate hard drives

in case of SATA or SAS drives. This is due to the fact that commit log usage
is sequential, while data operations are sequential in addition to random
updates in some cases, during compactions or flush operations.

•	 Batch statements should be used carefully and, ideally, the size of the batch
should be carefully tested and set. A large batch will result in memory
overheads and bottlenecks, while a small batch can result in network
overheads; hence, benchmarking and testing is a reliable way of figuring and
defining the batch size based on the schema used in the batch statements.

•	 Placing the load balancer in front of the Cassandra cluster is not recommended.

Chapter 6

[69]

•	 Row cache, especially for large rows, should be used only in rare cases and
after proper testing.

•	 Ordered partitioning should be avoided as this can result in unmanageable,
skewed data and unbalanced clusters.

•	 In fact, OrderPreservingPartitioner and
CollatingOrderPreservingPartitioner have been deprecated in recent
Cassandra releases.

•	 Super columns should not be used and have been deprecated due to
challenges in memory management.

•	 Read repairs usually happen across all data centers in a multidatacenter
deployment. So, DC local read repair should be configured for efficiency.

•	 In case single nodes are slow, partition-aware clients such as Astyanax can
deal with this situation.

•	 Compression might become a bottleneck for fast reads, so it should be used
carefully. This is because of some code issue in Cassandra that disables the
optimization of some fast paths when using compression. Hopefully, these
bugs will be resolved in the near future. It would also be worthwhile to note
that LZ4 compression can now be used with Cassandra, which is around 50
percent faster than default snappy compression.

•	 SSD can also be beneficial for Cassandra. Cassandra is one of the few data
stores optimized for SSD. Cassandra can use SSD's high IOPS capabilities
for faster random reads and also minimize the undesirable effects of write
amplification, which is often associated with SSD.

Summary
In this chapter, we covered a lot of patterns, usage precautions, and anti-patterns
for using Cassandra successfully to solve various business challenges. Despite the
various usages and patterns that we have gone though, this journey is not complete.
The list of topics to discuss will keep evolving along with Cassandra's growth and its
emergence as the leader in the Big Data store arena.

Index
Symbols
3V Model

about 14
high availability 15

3V patterns 21

A
Advanced Analytics patterns

about 18, 50
context/applicability 50
forces/motivations 51
problem/intent 50
solution 51

Amazon Dynamo 6
analytics-driven materialized view 61
anti-entropy and read repair 9
Anti-pattern Messaging Queue pattern 19
anti-patterns 53
application-tier-driven materialized

view 61
architecture, Cassandra. See Cassandra

architecture
Astyanax 54
Atomic distributed counter service pattern

about 40
case study 40, 41
context/applicability 40
forces/motivations 40
problem/intent 40
solution 40

autosharding 8, 9
Availability and Partition tolerance above

Consistency (AP) 6
Azure 24

B
BLOB (binary large object) 54
Bloom filters 8

C
CAP the ACID pattern

about 18, 57
caution 59
context/applicability 57
forces/motivations 57
problem/intent 57
solution 58, 59

CAP theorem 6
Cassandra

design patterns 18
features 10, 11
high availability features 15
infrastructure/deployment problems 68, 69
use case patterns 14

Cassandra architecture
Amazon Dynamo 6
background 5
Google BigTable 7
overview 8

Cassandra-Hadoop integration 51
Cassandra modeling 8
Cloud Foundry 24
Collection fields pattern 65
commit log 7
compaction 9
Composite Key pattern

about 19, 62
context/applicability 62
forces/motivations 62

[72]

problem/intent 62
solution 63, 64

considerations, ultra fast data sink pattern
scale ingestion rates 29
tunable consistency 29

considerations, web scale store pattern
commodity hardware nodes 26
deployment across multiple machines 26
query-first-driven schema design 24

Consistency and Partition tolerance (CP) 7
Content/Document Store pattern

about 18, 53
case study 54, 55
caution 55
context/applicability 54
forces/motivations 54
problem/intent 53
solution 54

counters 40
CQL (Cassandra Query Language) 24, 38

D
DataStax Enterprise 51
Data warehousing approach 51
DDL (Data Definition Language) 38
design patterns

Anti-pattern Messaging Queue 19
CAP the ACID 18
Composite Key 19
Materialized View 18

distributed counters 40
Distributed Counters pattern 16
dynamic snitch 35

E
EAI/ESB 13
EC2 multi region snitch 35
EC2 snitch 35
Eventual Consistency 6
Extract/Transform/Load (ETL) 13

F
Flexi schema pattern

about 29
consequences 31

context/applicability 30
forces/motivations 30
problem/intent 30
related patterns 31
solution 31

G
Gang of Four (GoF) patterns 13
GoGrid 24
Google BigTable 7
Google Compute Cloud 24
Google File System (GFS) 8
gossiping property file snitch 35
gossip protocol 6
Graph Solution pattern

about 17, 49
context/applicability 49
forces/motivations 50
problem/intent 49
solution 50

H
Hadoop Distributed File Systems (HDFS) 9
Hash tree 10
Hibernate 55
Highly available store pattern

about 33
case study 36
context/applicability 34
forces/motivations 34
problem/intent 33
solution 35

Hinted Handoff 9

I
IaaS (Infrastructure as a Service) 24
infrastructure/deployment problems 68, 69

J
JPA (Java Persistence API) 57

K
kariosdb 39
Kundera 24 57

[73]

L
linearizable 58

M
Master Data Hub (MDH) 13
Master-Master replication 15
Master-Slave mode 15
Materialized View pattern

about 18, 60
caution 61
context/applicability 60
forces/motivations 60
problem/intent 60
solution 60

materialized views
about 61
analytics-driven materialized view 61

Merkle tree data structure 9, 10
Messaging queue anti-pattern

about 67
context/applicability 68
liability/issue 68
problem/intent 68

N
Needle in a Haystack pattern

about 17, 46
context/applicability 47
forces/motivations 47
problem/intent 46
search engine solution, implementing 48
solution 47, 48

Netflix 24

O
Object/Entity Store pattern

about 18, 55
caution 57
context/applicability 56
forces/motivations 56
problem/intent 55
solution 56

Operational Data Store (ODS) 13
ORM tool 55

P
P2P (peer-to-peer) 15
Pagination pattern 66
Playorm 24
property file snitch 35

R
rack inferring snitch 35
RDBMS or relational databases 14

S
Savvis 24
search engine solution, implementing

Cassandra along with SOLR integration 48
DataStax Enterprise 49
Kundera 49

serial isolation level 58
Service Oriented Architecture (SOA) 13
Sharding 9
simple snitch 35
single point of failure (SPOF) 8
snitch implementations

dynamic snitch 35
EC2 multi region snitch 35
EC2 snitch 35
gossiping property file snitch 35
property file snitch 35
rack inferring snitch 35
simple snitch 35

Sorted String Table (SSTable) 7
Sorting pattern 66
Spring Data 24
Storm-Cassandra 45
Streaming/CEP Analytics pattern

about 17, 43
context/applicability 44
forces/motivations 44
problem/intent 43
solution 44, 45

T
TDS/OLTP 13
Temporal data pattern 67
Terremark 24

[74]

Time series analytics pattern
about 36
case study 38, 39
context/applicability 37
forces/motivations 37
problem/intent 36
solution 38

Time Series Analytics pattern 16
tombstone records 9
Triggers pattern 67

U
ultra fast data sink pattern

about 26
consequences 29
context/applicability 27
forces/motivations 27, 28
problem/intent 26
related patterns 29
solution 28

Unique records pattern 67
use case patterns, Cassandra

Flexi Schema pattern 14
Massive Store pattern 14
Ultra fast data Sink pattern 14

V
Valueless columns pattern 65

W
web scale store pattern

about 22
consequences 24-26
context/applicability 22
forces/motivations 22, 23
problem/intent 22
solution 23, 24

Thank you for buying
Cassandra Design Patterns

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Cassandra for
Administrators
ISBN: 978-1-78216-817-1 Paperback: 120 pages

Optimize high-scale data by tuning and
troubleshooting using Cassandra

1.	 Install and set up a multi datacenter Cassandra

2.	 Troubleshoot and tune Cassandra

3.	 Covers CAP tradeoffs, physical/hardware
limitations, and helps you understand
the magic

4.	 Tune your kernel, JVM, to maximize the
performance

Cassandra High Performance
Cookbook: Second Edition
ISBN: 978-1-78216-180-6 Paperback: 350 pages

Collection of more than 100 recipes on how to design,
manage, and fine-tune your Cassandra data store for
high availability

1.	 Understand the Column Family data model
and other Big Data schema modeling
techniques from practical real-world examples

2.	 Write applications to store and access data in
Cassandra using both the RPC and Cassandra
Query Language interfaces

3.	 Deploy multi-node, multi-data center
Cassandra clusters for high availability

Please check www.PacktPub.com for information on our titles

Mastering Apache Cassandra
ISBN: 978-1-78216-268-1 Paperback: 340 pages

Get comfortable with the fastest NoSQL database,
its architecture, key programming patterns,
infrastructure management, and more!

1.	 Complete coverage of all aspects of Cassandra

2.	 Discusses prominent patterns, pros and cons,
and use cases

3.	 Contains briefs on integration with
other software

Instant Cassandra Query
Language
ISBN: 978-1-78328-271-5 Paperback: 54 pages

A practical, step-by-step guide for quickly getting
started with Cassandra Query Language

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 Covers the most frequently used constructs
using practical examples

3.	 Dive deeper into CQL, TTL, batch operations,
and more

4.	 Learn how to shed Thrift and adopt a
CQL-based binary protocol

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of
Architecture and Data Modeling in Cassandra
	Understanding the background of Cassandra's architecture
	Amazon Dynamo
	Google BigTable

	Understanding the background of Cassandra modeling
	An overview of architecture and modeling
	A summary of the features in Cassandra
	Summary

	Chapter 2: An Overview of Case
and Design Patterns
	Understanding the 3V Model
	High availability
	Columns on the fly!
	Count and count!
	Streaming analytics!
	Needle in a haystack!
	Graph problems!
	Analytics
	Blob store
	Design patterns

	Summary

	Chapter 3: 3V Patterns
	Pattern name – Web scale store
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Consequences

	Pattern name – Ultra fast data sink
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Consequences

	Related patterns

	Pattern name – Flexi schema
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Consequences

	Related patterns

	Summary

	Chapter 4: Core Cassandra Patterns
	Pattern name – Highly available store
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Example

	Pattern name – Time series analytics
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Example

	Pattern name – Atomic distributed counter service
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Example

	Summary

	Chapter 5: Search and Analytics
Applied Use Case Patterns
	Pattern name – Streaming/CEP analytics
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution

	Pattern name – Needle in a haystack/search engine
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution

	Pattern name – Graph problems
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution

	Pattern name – Advanced analytics
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution

	Summary

	Chapter 6: Patterns and Anti-patterns
	Pattern name – Content/Document store
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Example
	Caution

	Pattern name – Object/Entity store
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Caution

	Pattern name – CAP the ACID
	Problem/Intent
	Context/ Applicability
	Forces/Motivations
	Solution
	Caution

	Pattern name – Materialized view
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution
	Caution

	Pattern name – Composite key
	Problem/Intent
	Context/Applicability
	Forces/Motivations
	Solution

	Additional interesting patterns
	Anti-pattern name – Messaging queue
	Problem/Intent
	Context/Applicability
	Liability/Issue

	Patterns and anti-patterns – Cassandra infrastructure/deployment problems
	Summary

	Index

