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Abstract

Parsing was for decades considered as a rather difficult task from both theoretical and practical points
of view. We believe that complexity is not an inherent property of this area of computer science. Two
fundamental language-independent approaches can significantly simplify dealing with parsers and
eliminate entire classes of problems:

• using recognition-based Parsing Expression Grammars (PEGs) instead of generative context-
free grammars (CFG) as the formalism for definition of languages;

• using combinator parsers instead of parser generators as the design pattern for implementing
parsers.

Additional advantage comes from the use of Scala as the implementing language, whose syntactical
flexibility and a number of special language features make possible to write readable and concise
definitions of grammars directly as Scala code.

We analyse the relationship of PEGs and combinators to the traditional parsing approaches, show
advantages of Scala as the host language, go stepwise through basic usage patterns of parsing tech-
niques (validator, interpreter, compiler) including working with intermediate representations (imple-
mentation and evaluating of abstract syntax trees, AST), investigate common problems that can arise
during parsing and usage of Scala, and describe in details implementations of two parsing projects:
propositional logic and lambda calculus.
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Preface

Origins of this thesis

Parsing has always been one of the most interesting areas of computer science for me. Not only to
implement programming languages, but to perform general data analysis, too. In the last months I
was also learning Scala, this exciting language that extended my thinking about languages and pro-
gramming, and showed that many problems can be solved in an elegant and concise way. I learned
about combinator parsing in Scala and found this technique very promising. I decided to explore this
topic in depth.

Goals

The main goal of my investigations was to learn how to use combinator parsing techniques to solve
practical tasks. I hope that this thesis will also be useful for those who studies combinator parsing in
Scala. For this purpose the explanations contain a lot of thoroughly tested1 code examples. And last
but not least, this was a great opportunity to practice my written English.

Overview of the content

Chapter 1 first introduces basic notions: parser, combinator parsing, primitive parser, combinator.
Then Scala combinators are compared with competitors from different points of view:

• as a notation system: with other familiar grammar notation systems (EBNF and regex),

• as a design pattern: with specialized parsing systems (parser generators),

• by host language (Scala): with other programming languages.

Chapter 2 investigates relationships of combinator parsers to other notions and approaches widely
known in the area of parsing methods (recursive-descent, scannerless, top-down, bottom-up, LL, LR),
grammars (generative / CFG, recognition-based / PEG), and definitions of languages.

Chapter 3 shows basic usage patterns of parsing techniques along a stepwise development of an
arithmetical parser. At the beginning, the parser acts as a validator of the user input. Then it is
exended to a interpreter, that computes the result of an expression. Introducing an intermediate
representation (IR), which can be evaluated independently, turns the parser into a compiler.

Chapter 4 describes some problems that may arise during development of parsing programs with
Scala, and shows how they can be solved.

1Java 6, Scala 2.9
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Chapter 5 presents two projects developed using combinator parsers in Scala: propositional logic,
and lambda calculus.
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Chapter 1

Introduction

This chapter introduces basic notions related to combinator parsing and compares it to some other
parsing techniques and approaches. Combinators in Scala are also compared with combinators in
other languages.

1.1 Basic notions

Parsers are computer programs that transform flat text streams into some data structures, which are
(hopefully) more suitable for further processing. Sometimes, programs that traverse and transform
structured data are also called parsers. Nevertheless, the common meaning of parsers is to work with
flat streams as their input.

There are many different approaches how to build parsers. One of them are combinators.

A combinator parsing system consists of primitive parsers and combinators.

Primitive parsers recognize some flat subsequence of the input (such as a given string literal), or have
a special meaning (such as parsers that always succeed or always fail regardless of the input).

Combinators are functions that combine parsers into bigger building blocks to enrich, change or cre-
ate a new behavior of the combined parsers as a whole. The result is again a parser, which can be
used for further compositions. I.e. class of parsers is closed under combinator operations. The most
important combinators are:

• sequencing (several parsers in the given order must succeed on the input),

• alternation (one of the given parsers must succeed), and

• repetitions (repeated applying of a parser to the input):

– zero or more,

– one or more,

– zero or one (option).

Making a parser for some concrete purpose means to compose that parser, using parser combinators,
from primitive and already combined parsers.

Thus combinators are a concept of the programming interface, a design pattern. They are closely
related to the composite1 pattern.

1http://en.wikipedia.org/wiki/Composite_pattern
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1.2 Combinators vs EBNF and regular expressions

The common grammar notations, EBNF and regex2 (as well as their numerous variants), can be con-
sidered as combinator-like systems: they also use small primitive building blocks that can be com-
posed by means of sequencing, alternation, repetition, and so on. For instance, consider the following
grammar that recognize a whole number (assuming, “digit” and “\d” are already defined):

EBNF number = ["-"], digit, {digit};

regex number = -? \d+

In both cases, the common meaning is that a whole number is comprised by a sequence of the fol-
lowing elements: 1) an optional sign, and 2) one or more digits. What differs is only the notation for
abstractions “sequence”, “option” (zero or one repetition), “one or more” repetition.

The set of primitive building blocks (“terminals”) can be considered as fixed in all three systems: com-
binators, EBNF, and regex.

The adavantage of combinators and EBNF over the most regex implementations is the possibility to
name the newly composed building blocks, and use them for further compositions, especially for
nested recursive constructions. The digit and number elements in the EBNF example above are such
composed building blocks. On the other hand, regex implementations usually come with a rich set
of powerful predefined building blocks, such as \d in the regex example above. Nevertheless the most
regex implementations do not support referencing already created building blocks (such as number in
the regex example above) by name in another or the same regex expressions. Some regex implemen-
tations allow them to be referenced by value (thereby treating them as macros); an attempt to define
a recursive macro would lead to an infinite macro expansion though.

EBNF and regex have fixed sets of available compositions to build expressions: an (often implicit)
sequencing, alternation, option, some kinds of repetitions.

The crucial advantage of combinator parsing over (E)BNF and regex is the possibility to introduce
new composition abstractions, that is building blocks with new behavior that are parameterized with
other building blocks. Such parameterized combinators can be used for:

• recognizing elements separated or surrounded by other elements (e.g. comma-separated lists,
parenthesed expressions),

• dynamic creating of parsers based on already parsed information (can be used, for example, to
match closing XML tags).

• transformation (“rewriting”) of recognized parts of the input into some data structures (e.g.
creating of AST nodes, left- or right-folding of lists with recognized elements),

• associating any actions with parsing rules.

These new abstractions can be used in turn to create further building blocks or new abstractions. This
ability is extensively used in combinator parsing systems.

EBNF is a notation, not an implementation. They cannot use anything but a few predefined construc-
tions. Nevertheless, EBNF grammars are independent from the language, in which the parser will be
finally implemented. They have to be ported to that language though.

Combinators are libraries in some host languages. One one side, they can use the full power of that
languages for parsing purposes. On the other side, they have concrete notations bound to their host
languages. The code of parsers implemented as combinators in different host languages is not di-
rectly interchangable.

2We use the term “regex” to refer to advanced implementations of regular expressions (as found in the most modern pro-
gramming languages) that go beyond Type-3 regular grammars of the Chomsky hierarchy, mainly thanks to backreferences
and lookarounds.
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1.3 Combinators vs specialized parsing systems

Specialized parsing systems, such as ANTLR or JavaCC, imply at least:

1) an own grammar notation system, which is usually based on EBNF / regex, and

2) a parser generator: a program that generates the parser (in the target language, e.g. Java or C++)
that in turn can parse the input as defined in the grammar.

Auxiliary structures and routines (such as actions) have to be programmed in the target language. The
parser writer has therefore to deal with two languages (including their associated tools and workflow):
with the grammar language3 of the parser generator, and with the target language.

In contrast, combinator parsers are implemented in the host language as a library. The parsing rules
as well as auxiliary routines are both written in the host language. This eliminates an indirection level
and the corresponding production step between the grammar and the parser. The parser writer has
to deal with only one language4 (and the corresponding infrastructure).

Specialized parsing systems have full control on parser code generation. They can apply arbitrary
optimizations to the code. Capabilities of combinators are rather limited in this aspect. They are
instructions in some host language, that get compiled by compiler of that language. Generally5, they
cannot affect the logic of compilation.

The parser construction phase occurs only once in a specialized parsing system. Combinators have to
buid the parser structure on each program start.

1.4 Combinators in Scala vs other languages

The basic idea of the combinator parsing dates back to 1970s and became popular since 1980s in a
variety of functional programming languages. In the meantime combinator parsing libraries have
been written for virtually all programming languages regardless of their functional nature (in object-
oriented languages, such as Java or Scala, combinators are implemented as methods).

The expressive power of languages, naturally limited by their syntax and features, differs though. That
means that the parser programs also look and work differently.

Scala is a modern general purpose language that allows for concise yet type-safe syntax. Combinator
parsers written in Scala are very expressive and good readable.

As an example, consider a parser that recognizes an expression consisting of 1) a sum of two numbers,
or, alternatively, 2) a variable. In an EBNF notation it can be expressed as:� �
expr = number "+" number | variable� �
In Java, it could look like this:� �
class Expr {

static Expression parse() {

return Alt.parse(Seq.parse(Number.parse(), Lit("+").parse(), Number.parse()),

Variable.parse())

}

}� �
3External DSL (DSL: domain specific language) from the viewpoint of the target language, in which the parser and the

main program are implemented.
4The parser library acts as an internal DSL from the viewpoint of the host language.
5Scala supports compiler plugins (which can be triggered e.g. with annotations in source code) that can modify the

intermediate AST during compilation.
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And in Scala it could be as concise as:� �
def expr = number ~ "+" ~ number | variable� �
It is only marginaly more verbose than the shortest EBNF notation, but it is a valid Scala code: com-
pilable and typechecked by compiler. A number of language features make such concise notation
possible. The most important are:

• symbols as legal identifiers: “~” and “|” in the example above are in fact names of methods in
the Parser class;

• implicit conversions of values to values of other types: “+” is a string literal that gets automati-
cally converted to a parser instance (via insertion of a conversion method, like lit("+"), in the
code by compiler);

• method calls in infix notation (also called dotless-, or operator-notation): the example above is
in fact the same as (number.~("+").~(number)).|(variable)

• carefully choosed predefined precedences for methods in infix notation: no parentheses are needed
in the example above, since “~” binds more tightly than “|”.

• by-name parameters make possible to construct recursive parsers without entering an infinite
loop. For example, the recursive parser definition� �
def expr: Parser[Expr] = number | "(" ~ expr ~ ")"� �
is correct in Scala as is (i.e. it doesn’t cause a stack overflow due to recursive calls of expr at
the time of the parser construction) because the “~” combinator takes its argument by name
[OSV10, 9.5 p.218] [Ode11, 4.6.1 p.47] without evaluation. (The only drawback is that recursive
methods require specifying of the return type.)

The most other languages (even the functional ones) perform eager evaluation of method pa-
rameters and need some additional tricks to work around this problem. For instance, the Java
version of parboiled6 parsing library reads parser definitions through reflection and modifies
the code before actual parser construction7. The FParsec8 library (written in F#) requires from
the user to explicitly create a forwarding parser that at the beginning gets initialized with a
dummy parser that has to be replaced with a real parser after finishing constructing the parser
hierarchy9:� �
// This is F#
let expr, exprImpl = createParserForwardedToRef()

// parser definitions go here
do exprImpl := number <|> between (str_ws "(") (str_ws ")") expr� �
One might wonder how the usual recursive functions work without such problems. The point
is that a conditional (enclosed in an if-then-else construct) reduction of parameters takes place
at each recursive invocation, eventually ending up in some elementary case without further
recursion. This is not the case with the parsing examples above, where the expr method is pa-
rameterless and references itself uncoditionally.

6http://parboiled.org
7https://github.com/sirthias/parboiled/wiki/Rule-Construction-in-Java,

https://github.com/sirthias/parboiled/blob/develop/parboiled-java/src/main/java/org/parboiled/Parboiled.java#L33-60
8http://www.quanttec.com/fparsec/
9http://www.quanttec.com/fparsec/reference/primitives.html#members.createParserForwardedToRef,

http://hestia.typepad.com/flatlander/2011/07/recursive-parsers-in-fparsec.html,
http://www.quanttec.com/fparsec/tutorial.html

http://parboiled.org
https://github.com/sirthias/parboiled/wiki/Rule-Construction-in-Java
https://github.com/sirthias/parboiled/blob/develop/parboiled-java/src/main/java/org/parboiled/Parboiled.java#L33-60
http://www.quanttec.com/fparsec/
http://www.quanttec.com/fparsec/reference/primitives.html#members.createParserForwardedToRef
http://hestia.typepad.com/flatlander/2011/07/recursive-parsers-in-fparsec.html
http://www.quanttec.com/fparsec/tutorial.html
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Note that the combinator methods, such as “~” or “|”, do not do any parsing. They build parser in-
stances whose implementation methods (called apply in Scala std. lib.) perform actual parsing ac-
cording to semantics of the corresponding combinators. E.g. the expression “p | q” creates an in-
stance of the alternation parser that holds references to parsers p and q and whose apply method first
calls p.apply and then q.apply if p failed.

The language features of Scala make the syntax of combinators one of the most concise, readable,
and expressive across all existing programming languages.
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Chapter 2

Theoretical Background

In this chapter we investigate relationships of combinator parsers to parsing methods, to grammar
types, and to approaches of language definitions.

2.1 Parsing methods

As a design pattern of the programming interface, combinators are not bound to a concrete parsing
method. In principle they can implement any. In praxis many combinator parsing libraries are build
upon the same design decisions.

2.1.1 Recursive-descent

The most combinator parsing libraries (including the one shipped with Scala) implement a recursive-
descent parsing method.

In a recursive-descent parser each nonterminal is represented via a procedure that recognizes that
nonteminal. These procedures (methods or functions) may be mutually recursive. To recognize a
nonterminal X the parser descents into the right-hand side of the rule that describes X and tries to
recognize elements that comprise the X . For nonterminals the same process as described repeats
again, for terminals a direct comparison with the input is performed. Thus, the grammar iteself serves
as a guide to the parser’s implementation: the same principle as for parser combinators. (Combina-
tors extend this principle with the possibility to seamlessly combine those parsing routines.) So the
choice to use a recursive-descent parsing for combinators implementation looks very natural.

2.1.2 Scannerless

Traditionally the parsing process is splitted into two parts:

• lexical analysis: building a stream of tokens from the input text. This task is performed by a
scanner (also called lexer), usually powered by regular expressions.

• syntactical analysis: building hierarchical structures from the stream of tokens. Performed by
a parser (in the narrow sense of the word), powered by context-free grammars.

Sometimes this design is less than satisfying though. For instance:

1) The lexer might depend on surrounding syntactical context to decide, which token type to cre-
ate. For example, the input part “>>” in C++ can be:

19
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(a) a “right_shift_operator” token (as in “x >> 2;”), or

(b) two “right_angle_bracket” tokens (as in “vector<vector<float>> MyMatrix;”).

2) The lexer might also lack parser’s possibilities of nested / hierarchical matching, e.g. to rec-
ognize nested comments. (A token is always a flat subsequence of the input in the traditional
approach.)

In such cases the so called scannerless parsing can help. In this approach the both parts of analysis are
specified in one unified grammar and performed by the same piece of software: the parser. Freeing
lexical syntax from the restrictions of regular expressions also enables tokens to have hierarchical
characteristics, or even to refer back to the hierarchical portion of the language.

Whether a certain parsing method is a scannerless or a “scannerful” one, sometimes cannot be def-
initely answered though. The part of a parser that performs matching of terminals corresponds in
principle to a lexer. If the other part of the parser doesn’t access the input text directly and works only
with tokens supplied by the “lexer”-part, then such a system can be considered as a traditional two
way parsing described above. There is nothing wrong with that modular design. Important is, that
either part of the parser can access the input text directly when it’s needed. Such implementations we
will call “scannerless”.

Most combinator parser implementations, including the standard Scala one, feature scannerless pars-
ing.

2.1.3 Top-down / bottom-up, LL / LR question

The terms top-down, bottom-up, LL (“left-to-right, left-most derivation”), LR (“left-to-right, right-most
derivation”) are addicted to the understanding of parsing as a reconstruction of the implied generating
of the input in accordance with a context-free grammar. Different ways and different results of such a
reconstruction process are possible because context-free grammars (as well as any purely generative
grammar) do not define operational semantics for recognizing.

We believe that a better approach for parsing is to use recognition-based grammars, where semantics
of recognizing are precisely defined. In this case the questions of top-down vs bottom-up, LL vs LR
parsing methods, and the whole class of the related problems (such as resolving of “shift-reduce” and
“reduce-reduce” conflicts) are not more existing. The section about grammars explains the details
about generative and recognition-based grammars.

2.2 Grammars

A parser is usually implemented in accordance with a formal grammar. But what for a grammar can
it be?

2.2.1 Unsuitability of context-free grammars (and generative grammars in general)

Over decades, the syntax of programming languages (or data structures to parse) was described by
their designers almost exclusively with context-free grammars. Being designed for modelling natu-
ral (human) languages, this grammar type (as well as any other grammar type from the Chomsky
hierarchy) is not well suited for parsing formal languages though. The points are the following:

• The grammars of the Chomsky hierarchy are generative: they only define how to produce strings
that belong to a language (hence the term “production rules” and the right arrow “→” between
the left- and the right-hand side of a rule). The parser’s task is opposite: to recognize whether
a given string belongs to a language. Since operational semantics for recognizing are generally
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not defined for these grammars, this question is often not easy to answer. The issue is handled
separately as a so called word problem. Attempts to solve this problem led to arising of nu-
merous parsing techniques, such as LR, LL, LALR, CYK, GLR and their subtypes, just to name
some. Unfortunately these parsing techniques also often impose different requirements on the
grammar specification and can treat the same specification in different incompatible ways, so
that many concrete subtypes of context-free grammars exist today (usually named by the pars-
ing method used, as in “LR(1) grammar”), and a grammar developed for a specific parser type
usually cannot be used for another parser type.

– Example of restrictions on the grammar notation that different parsing techniques may
require:

The LR parser generators yacc and bison cannot understand such convenient construc-
tions as “zero or more repetition”, “one or more repetition”, “option”. All these notions
must be encoded using recursive rules and empty alternatives. So if you have a grammar
specification in EBNF (which do allow those notions), it cannot be used “as is” with this
parsing method. Needeless to say that conversions between the grammar notation types
do not improve maintainability and readability of grammars, and can also introduce sub-
tle differences in the recognized language.

– Example of different treatment of a grammar by different parsing methods:

Even in case of an unambiguous context-free grammar one might be surprised that its
interpretation may vary across different parsing techniques. For instance, consider the
following unambiguous context-free grammar that produces an odd number of “x”:� �
S -> x S x | x� �
An LR or LL parser will not recognize this language though [For02] (for example, the se-
quences composed of 5, 9 or 11 “x”s will not be recognized), whereas a general context-free
parser, such as Earley, will do.

• The grammars in the Chomsky hierarchy (intentionally) allow for ambiguities (i.e. multiple
derivations for the same input). This might be useful for modelling natural languages. But it’s
definitely not for formal (machine-oriented) languages, such as programming languages, that
are intentionally designed to avoid ambiguities. An ambiguous program has no meaning [CT12,
p.2]. Examples of requirements that are difficult or impossible to express unambiguously in a
context-free grammar:

– an identifier matches the longest possible sequence of characters;

– “else” belongs to the innermost “if” in an “if-then-else” construct (“dangling ELSE prob-
lem”), so that the input� �
if (cond1) then if (cond2) then expr1 else expr2� �
gets parsed as� �
if (cond1) then (if (cond2) then expr1 else expr2)� �
and not as� �
if (cond1) then (if (cond2) then expr1) else expr2� �

Sometimes such cases can be handled by introducing additional rules into the grammar, or by
specifying additional meta-rules informally, i.e. independently of the formal grammar (”longest
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match”, ”definition over statement”, etc.), or by some parser-implementation specific solu-
tions. Ambiguity in CFGs is difficult to avoid even when we want to, and it makes general CFG
parsing (such as GLR, GLL, CYK, Earley parsing methods, see above) an inherently super-linear-
time problem [For04] (for instance, GLL: O(n3) in the worst case, GLR: O(n4) in the worst case1).

2.2.2 PEG: a recognition-based grammar formalism

Given the problems with generative grammars, one can reasonably ask:

“Why not to specify languages by means of recognizing, not by means of generating?”

Indeed, we can. The recognition-based systems TS/TDPL and gTS/GTDPL were developed as early
as around 1970. A modern, extended reincarnation of them is PEG (parsing expression grammars)
[For04]. Via introducing a very simple principle this formalism eliminates the whole class of problems
discribed above. Moreover, the grammars specified using PEG are fully interchangable regardless of
concrete PEG-parser implementations. Here are the keynotes about PEG:

• PEG solves the ambiguity problem “by not introducing ambiguity in the first place” [For04]:

– instead of nondeterministic choice between alternatives, PEG uses prioritized choice:

* it tries the alternatives in their order,

* it unconditionally consumes the first successful match.

– the repetitions (e? “zero or one”, e* “zero or more”, e+ “one or more”) unconditionally con-
sume the longest possible sequence2.

For example, the above mentioned “dangling ELSE problem” does not exist in PEG. The follow-
ing simple PEG grammar recognizes an arbitrary nested “if-then-else” construct as desired:� �
"if" condition "then" expression ("else" expression)?� �

• PEG also introduces syntactic predicates (syntactic conditions, which do not consume3 any in-
put, but influence whether the current sequence succeeds or fails as a whole):

– &e is a positive look-ahead. It succeeds if e succeeds.

– !e is a negative look-ahead. It succeeds if e fails.

Syntactic predicates are not directly related to ambiguity-problem, but they can simplify gram-
mar specification considerably and make possible to recognize more complex languages than
context-free ones. For example the classical context-sensitive language anbncn can be recog-
nized using PEG as follows [For04]:

A ← a A b /ε
B ← b B c /ε
D ← &(A !b) a∗B !.

where “D” denotes the root rule, and “!.” stands for “not a char” thereby denoting the end of the
input.

• PEG combines the possibilities of two popular notations for generative grammars – regular ex-
pressions and EBNF – in one fomalism equally suitable for lexing, parsing, or scannerless pars-
ing. The operators for constructing parsing expressions are shown in table 2.1.

• PEG defines well-formedness criteria for grammars. They allow to check grammars automati-
cally for common mistakes, which can lead e.g. to infinite looping. (See [For02] for details).
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Operator Type Precedence Description
’ ’ primary 5 Literal string
" " primary 5 Literal string
[ ] primary 5 Character class
. primary 5 Any character
(e) primary 5 Grouping
e? unary suffix 4 Optional
e* unary suffix 4 Zero-or-more
e+ unary suffix 4 One-or-more
&e unary prefix 3 And-predicate
!e unary prefix 3 Not-predicate

e1 e2 binary 2 Sequence
e1 / e2 binary 1 Prioritized Choice

Table 1. Operators for Constructing Parsing ExpressionsTable 2.1: PEG operators [For04]

The most combinator parsing systems, including the one from the Scala standard library, use PEG
semantics for recognizing. Table 2.2 shows how PEG operators are implemented in Scala combinator
parsing library (class RegexParsers and its ancestors). Note that in Scala the pipe symbol “|” is used
instead of a slash “/” for prioritized choice, and PEG’s “←” is replaced with an “=” symbol.

Description PEG notation Scala notation

Literal string ′ ′ “ ”

Literal string " " “ “

Character class [ ] “[ ]“.r

Any character . “.”.r

Grouping (e) (e)

Optional e? (e?) or opt(e)

Zero-or-more e* (e*) or rep(e)

One-or-more e+ (e+) or rep1(e)

And-predicate &e guard(e)

Not-predicate !e not(e)

Sequence e1 e2 e1 ~ e2

Prioritized Choice e1 /e2 e1 | e2

Table 2.2: Implementation of PEG operators in Scala

2.3 Languages

“To the computer scientist, a language is a probably infinitely large set of sentences, each composed
of tokens in such a way that it has structure; the tokens and the structure cooperate to describe the
semantics of the sentence, its “meaning” if you will.” [GJ08]

One and the same language can be defined in different ways, for instance:

• by means of a generative or a recognition-based grammar, or using a specific combinator pars-
ing syntax;

1https://github.com/djspiewak/gll-combinators
2This is a corollary of the previous point, if expressing repetitions via recursion.
3I.e. the current parsing position remains the same as before applying the predicate to the input.

https://github.com/djspiewak/gll-combinators
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• when using generative grammars of the Chomsky hierarchy, it has not necessarily to be a certain
grammar type. Often, the same language can be defined using different types of generative
grammars.

We will illustrate that on examples of two simple languages.

2.3.1 Example: language "odd number of x"

2.3.1.1 Using generative grammars

1) This language (see also section 2.2.1) can be defined by the following (generative) Type 2 context-
free grammar:� �
S -> x S x | x� �
The problem with this grammar is that many parser types (LL, LR and their subtypes, any
recursive-descent) will not recognize this language (as already mentioned in 2.2.1). Those who
can (general CFG parsers), cannot work with this grammar effectively.

2) But nothing prevents us to define the same language in a better way: for both to comprehend
and to parse. Here is a (generative) Type 3 regular grammar:� �
S -> x (xx)*� �

The problem with both generative grammars is that it’s not defined, how they should behave during
parsing. For example, if the input consists of six x, will they report a success by recognizing the first
five x and retaining the last x unconsumed, or not?

2.3.1.2 Using recognition-based grammars

For recognition-based grammars, the operational semantics for parsing are precisely defined, so that
the questions like the above do not arise.

1) Here is a PEG grammar:� �
S <- x (xx)* !.� �
A repetition (’*’) in PEG consumes uncoditionally so long as it can. The construction “!.” means
“not a char”, that is the input has to end here (after an odd number of x recognized before).

2) Using combinators, we can rewrite the above PEG grammar into the Scala syntax:� �
S = x ~ rep(x ~ x) ~ eoi� �
where eoi means “end of input”.

Alternatively, we can use the fact that the repetion in Scala combinator parsing library returns
a list of parsed items, so that we can simply parse a “one or more” repetition of x, and then
directly retrieve the size of the list and check whether it is odd or even:� �
S = (x+) <~ eoi >> {xs => if (xs.size % 2 != 0) success() else failure()}� �
The validating function above plays the role of a semantic predicate.



2.3. LANGUAGES 25

2.3.2 Example: anbncn language

Yet another example shows how semantic predicates implemented as constructs of the host language
can be used to optimize grammar implementation. The goal in this example is to recognise the clas-
sical context-sensitive language anbncn (note that no CFG grammar exists for this language):

2.3.2.1 Using a generative grammar

Here is a (generative) monotonic4 Type 1 grammar for that language [GJ08, p.22]:

S → a b c | a S Q
b Q c → b b c c
c Q → Q c

Disadvantage of this grammar is that it’s very hard to comprehend. How much time is needed to prove
that it realy produces the desired language? And we have yet to find a parsing method that can deal
with this grammar. . .

2.3.2.2 Using a PEG grammar

This PEG grammar (from page 22):

A ← a A b /ε
B ← b B c /ε
D ← &(A !b) a∗B !.

is already a big improvement regarding its comprehensibility for a human, and it can be easily parsed.

2.3.2.3 Using combinators

Can combinators provide a better solution? Let us think about how would a human describe a way
to recognize that language. He would probably say something like “first take all as, then take all bs,
then take all cs, then check that the number of items in all three categories is equal”. This logic can be
directly expressed with combinator parsers (implementation in Scala):� �
def S = (a*) ~ (b*) ~ (c*) >> { case as~bs~cs =>

if (as.size == bs.size && bs.size == cs.size) success() else failure()

}� �
Since this chapter should not assume that the reader is already familiar with the syntax of Scala parser
combinators, here is a commented version:� �
def S = (a*) ~ (b*) ~ (c*) // match all as, then all bs, then all cs

// (note: each repetition returns a l i st of items)

>> // then feed that sequence of three lists
// i nto the following function

{ case as~bs~cs => // this construct mainly binds variables as, bs, cs
// to the individual lists of matched items

if (as.size == bs.size // this should be self-explanatory:

4Type 1 grammars of the Chomsky hierarchy are often loosely named as “context-sensitive”. More precisely, two subtypes
of Type 1 grammars exist: monotonic and context-sensitive. They are equivalent in their strengths though, i.e. are able to
describe the same set of languages. For details see [GJ08, p.20].
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&& bs.size == cs.size) // if sizes of lists are equal,
success() // then parsing succeeds,

else // else
failure() // fails!

}� �
Note that the combinator parser implementation can be easily extended to recognize anbncnd n ,
anbncnd nen , etc. languages as well.



Chapter 3

Usage Patterns

This chapter describes a few concrete usage patterns of combinator parsers: validating the input,
direct evaluation, working with intermediate representations (including AST definition and evalua-
tion). As a workhorse example serves a calculator-implementation. By the way various combinators
(“^^”, “^^^”, “chainl1”) are introduced and explained.

3.1 Pure parser, or Validating the input

The simplest usage of parsers is validating the input against a grammar. We will show how to build a
parser that validates correctness of simple arithmetical expressions.

3.1.1 Objectives

The parser should be able to recognize expressions built of:

• integer and floating-point numbers;

• infix operators: +, −, ∗, /;

• parentheses.

The parser should treat operators according to the usual precedence rules known from math.

3.1.2 PEG grammar

A PEG grammar can be defined as follows:� �
expr <- term ("+" term / "-" term)*
term <- factor ("*" factor / "/" factor)*
factor <- number / "(" expr ")"� �
3.1.3 Encoding precedences in grammar rules

Defining the grammar in a top-down decomposition fashion allows to easily encode precedences of
arithmetical operations directly in the grammar rules:

• We start with a top rule that should represent the entire input: expression (expr for short).

27
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• An expression consists of parts separated with “+” or “-” operators, which bind more loosely as
compared to “*” and “/” operators. We name those parts terms. At least one term is required.

• Terms consist of parts separated with “*” or “/” operators, which bind more tightly than “+” and
“-” operators do. We name those parts factors. At least one factor has to be there.

• A factor is either a number or a parenthesed expresssion.

Alternatively we could also do a bottom-up composition of rules, starting with factors as the most
“atomic” parts and working up to the whole expression. That would lead to the same grammar struc-
ture. So writing out grammar rules in a top-down or a bottom-up order is merely a matter of taste.

3.1.4 PEG to Scala conversion

Our PEG grammar can be easily translated into the syntax of Scala combinator parsers1:

• the concatenation of rules on the right side will be specified with tildes (~),

• the predefined rep-combinator is used for zero-or-more repetitions,

• the predefined parser floatingPointNumber (provided by the library) can be used to recognize
numbers that are represented as integer or floating-point literals.

The result of translation is shown below:� �
expr = term ~ rep("+" ~ term | "-" ~ term)

term = factor ~ rep("*" ~ factor | "/" ~ factor)

factor = floatingPointNumber | "(" ~ expr ~ ")"� �
3.1.5 From Scala grammar to a full program

Only a few additional details turn the above Scala grammar into a full stand-alone program that can
validate the user input:� �
import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers {

def expr: Parser[Any] = term ~ rep("+" ~ term | "-" ~ term)

def term = factor ~ rep("*" ~ factor | "/" ~ factor)

def factor = floatingPointNumber | "(" ~ expr ~ ")"

}

object ArithParserCLI extends ArithParser {

def main(args: Array[String]) {

for (arg <- args) {

println("input: " + arg)

println("output: " + parseAll(expr, arg))

}

}

}� �
Listing 3.1: Parser that validates arithmetic expressions

1See also table “Implementation of PEG operators in Scala” on page 23 showing how primitive parsers and main combi-
nators are implemented.
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The program consists of two parts:

• trait ArithParser that encapsulates the grammar definition,

• object ArithParserCLI that mixes in the trait and provides a command-line interface (CLI) to the
user.

These parts are explained below.

The trait ArithParser extends scala.util.parsing.combinator.JavaTokenParsers that provides the definition
of the floatingPointNumber2 parser. The non-terminals become method definitions (defs). Since the
expr-parser is recursive (via term and factor) its return type cannot be inferred by the actual Scala com-
piler, and therefore needs explicit specifying: we use Parser[Any]. The return type Parser[Any] means
that (at the moment, because of a pure validating parser) we don’t bother about the specific type of
the return value.

The object ArithParserCLI contains the main-method that iterates over the command-line parame-
ters printing the results of parsing. The method parseAll(root-parser, input) is inherited from the
trait scala.util.parsing.combinator.RegexParsers, which is a parent trait of JavaTokenParsers. The result
“parsed” means that the input is valid against the grammar, the result “failure” means the opposite.

3.1.6 Usage

After compiling the program file (Listing 3.1) with Scala compiler3� �
> scalac calc1.scala� �
we can use the program as follows:� �
> scala ArithParserCLI "10.5 - 4*2"

input: 10.5 - 4*2

output: [1.11] parsed: ((10.5~List())~List((-~(4~List((*~2))))))

> scala ArithParserCLI "5 % 2"

input: 5 % 2

output: [1.3] failure: string matching regex `\z' expected but `%' found

5 % 2

^� �
Notes about format of the command line Double quotes in the command line� �
> scala ArithParserCLI "10.5 - 4*2"� �
prevent that the input string gets split by the shell into multiple parameters (the space is a default
separator of parameters in the most shells), and that ’*’ is expanded into the list of files in the current
directory. To be sure, which input string is actually parsed by the the program, that string is printed
out before parsing (see main method in object ArithParserCLI in listing 3.1).

2https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/JavaTokenParsers.scala#L21-22
3Symbol “>” represents the shell prompt.

https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/JavaTokenParsers.scala#L21-22
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Notes about the parser responce The numbers in square brackets in the parser responce, as “[1.11]”
in� �
output: [1.11] parsed: ((10.5~List())~List((-~(4~List((*~2))))))� �
mean a position “[line, column]”, where both numbers are 1-based.

In case of success this is the position of a (potential) next portion of the input. Since the parseAll

method requires that the whole input is matched, that position is always at the end of the input. An-
other API method parse may succeed without consuming the entire input, in which case the resulting
position points to the beginning of the remaining input.

In case of failure the position shows where an error is happened.

The actual error message� �
string matching regex `\z' expected but `%' found� �
is not very user friendly though. Ways of improving error messages will be discussed in section 4.1 on
page 45.

3.1.7 Parsing tree

The result of a successful parsing, when no rewrite rules were applied, is represented in Scala com-
binator parsing library as a (concrete) parsing tree. Our validating parser prints out in case of success
such a parsing tree in form of a parenthesed expression:

((10.5~List())~List((-~(4~List((*~2))))))4

Parsing trees are composed of the results of individual parsers:

• A concatenation of results a and b (which is produced by the a ~ b construction in the gram-
mar) is displayed as a ∼ b. Concatenations are implemented as instances of the case class that
is named “~” (exactly as the corresponding parser combinator).

• Repeated results of the same type x1, x2, . . . , xn (which are produced by the rep(x) construction
in the grammar) are displayed as Li st (x1, x2, . . . , xn). Lists are implemented as instances of
Scala’s immutable List.

The default parsing tree (more precisely, its toString result) is not good readable for a human, but this
doesn’t matter for a validating parser, since only the type of the overall result is important: a Success,
or a Failure.

The default results of individual parsers (and therefore, the parsing tree) can be easily rewritten, for
example, to produce a directly evaluated result of a computation, or to create an intermediate repre-
sentation of the input in form of an abstract syntax tree (AST). Next sections will show how to achieve
that.

3.2 Interpreter, or Direct evaluation of the input

As stated before, it is possible to evaluate arithmetical expressions directly with a parser, upon the
very same parsing process:

4Strictly speaking, the tree in this example is already to some extent abstracted from the original input, e.g. whitespace
chars are already stripped from the input. By disabling the automatic whitespace handling around terminals, a true parsing
tree can be created. But this would also require to change the grammar to handle the whitespace explicitly, and would also
make the rewrite rules more complicated (since they would need to take the potential whitespace in results into account).
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Input Parser/Evaluator Result

This effectively turns the parser into an interpreter.

All we need to do is to rewrite the results of specific parsers immediately after they succeed. (Recall
that combinator parsers always carry the result of the own parsing process.)

3.2.1 Rewriting results with the ^^ combinator

The ^^ combinator is essential and probably the most used rewriting method.

3.2.1.1 Converting String to Double

The successful result of the floatingPointNumber parser is5 a String that represents an integer or a float-
ing point literal. That string can be converted to a numeric value of the type Double by applying the
toDouble method. To integrate such conversion into a chain of parsers we would need a combina-
tor that takes a conversion function as a parameter (a function and not a method because methods
are not values, and therefore cannot be passed as arguments to other methods) and apply it to the
previous parsing result. The predefined ^^ combinator does exactly that.

As a function we use _.toDouble, which is a short notation for x => x.toDouble. Note the abscence of the
parameter type. Since the result type of the previous parser floatingPointNumber is String, the compiler
can infer the type of the function: String => Double, so that we don’t need to specify it explicitly. Here
is the whole parsing and result conversion expression:

floatingPointNumber ^^ {_.toDouble}.

Note that the type of the expression (i.e. the result type of the ^^ combinator) is Parser[Double]. So
we are free to use this expression in further compositions of parsers. And we actually do that in the
factor rule, which is then used in the term rule. The complete factor rule will be shown in section 3.2.2,
which also explains additional combinators used there.

3.2.1.2 Performing arithmetical operations

Using ^^ combinator, a multiplication of two numbers can be immediately replaced with the product
of those numbers. Here is the simplified term rule:

factor ~ "*" ~ factor ^^ {case t1 ~ _ ~ t2 => t1 * t2}.

So far so good. Now, the real term rule includes not only the “*”, but also the “/” operator. Moreover,
the chain can include more than one operation. How to handle such chains? Let’s look at the full term
rule:� �
term = factor ~ rep("*" ~ factor | "/" ~ factor)� �
The term returns a sequence of two elements: a result of the factor parser, and a result of the rep parser.
The first one should be already a number (we rewrote the result of factor from String to Double in
the previous step), the second is a List (each rep parser returns a List). So we can start rewriting by
decomposing the sequence as follows:� �
term = factor ~ rep("*" ~ factor | "/" ~ factor) ^^ { case number ~ list => ...� �

5More precisely, the parsing result is a container that contains that string as its “main” datum. Besides that it contains
other data such as a reference to the next portion of the input. Nevertheless the result type is parameterized with the type
of its main datum, and other data are mostly not important on the level of parser composition. So while speaking about
parsing results we will ignore existence of that other data.
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Now lets look closer at the list. Its elements are again sequences that consist of two elements: a String
and a number. If the string equals “*”, then the previous number (i.e. the number that accumulates
the result) should be multiplied by the current one. If it is a “/”, then the previous number should be
divided by the current one. We can express this logic with a list folding and pattern matching on list
elements:� �
term = factor ~ rep("*" ~ factor | "/" ~ factor) ^^ { case number ~ list =>

(number /: list) { case (acc, "*" ~ nextNum) => acc * nextNum

case (acc, "/" ~ nextNum) => acc / nextNum }� �
Note that we used the left folding of the list (number /: list) {...}, which can also be expressed with
list.foldLeft(number){...}, because of the left-associativity of “*” and “/” operations in math.

The expr rule can be redefined analogously:� �
expr = term ~ rep("+" ~ term | "-" ~ term) ^^ { case number ~ list =>

(number /: list) { case (acc, "+" ~ nextNum) => acc + nextNum

case (acc, "-" ~ nextNum) => acc - nextNum }� �
These pretty verbose definitions make the grammar poorly readable though. With help of chainl1

combinator (section 3.2.3) they can be significantly reduced.

3.2.2 ~> and <~ combinators

Due to rewriting of the result of the floatingPointNumber parser to Double in the factor rule (section
3.2.1.1), we have to ensure that each alternative in factor also returns a Double. Otherwise we will not
be able to perform computations.

Consider the original factor rule:� �
factor = floatingPointNumber | "(" ~ expr ~ ")"� �
The result of the recursively defined expr should be a Double (after we have succeeded with the cur-
rent issue). So the only remaining task is to strip parentheses from the sequence "(" ~ expr ~ ")".
This can be done with the already known ^^ combinator:

"(" ~ expr ~ ")" ^^ {case _ ~ e ~ _ => e}

But there is also another, more concise way: if in the paar p ~ q only the left, or only the right part
have to be retained for the further processing, then the combinators “<~”, or “~>” respectively can be
used instead of “~”. The arrow points to the part that should be retained. So we can simply write:

"(" ~> expr <~ ")"

instead of above. The complete factor rule becomes:� �
factor = floatingPointNumber ^^ {_.toDouble} | "(" ~> expr <~ ")"� �
Using ~> and <~ combinators requires understanding of precedences of combinators to avoid subtle
errors (not an issue here). Section 4.2 discusses this question in details.

3.2.3 The chainl1 combinator

Parsing a chain of elements separated with some other elements, which prescribe the functions to
combine the elements of the first type, is a frequently occuring parsing task. Such functionality is
required, for example, to implement operators in nearly all programming languages.
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In our case (section 3.2.1.2), factors are separated with ’*’ and ’/’ that prescribe multiplication and
division functions, respectively. Similarly, terms are separated with ’+’ and ’-’ that dictate addition
and subtraction functions. We have seen that this can be implemented using ^^ combinator, yet the
grammar definition becomes too verbose.

The predefined chainl1 combinator allow to make such definitions more compact via specifying only
the parser for (possibly repeated) main elements, and the mapping from separators to the functions
belonging to that separators. Applying the functions to the parsed elements will be performed inside
chainl1 combinator, thus freeing the grammar of the boilerplate code.

The previous version of the expr parser:� �
expr = term ~ rep("+" ~ term | "-" ~ term) ^^ { case number ~ list =>

(number /: list) { case (acc, "+" ~ nextNum) => acc + nextNum

case (acc, "-" ~ nextNum) => acc - nextNum }� �
reduces using chainl1 combinator to:� �
expr = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)� �
where term is the parser for main elements, Add and Sub are references to arithmetic functions that we
will define later, and “^^^” is a new combinator explained below in section 3.2.4.

Formally, the chainl1 combinator takes two parsers as arguments: the first one with some parsing
result of type “T”, and the second one whose parsing result is a function of type “(T,T) => T”. That
function will be applied to the consecutive results returned by p, like a left fold. Of course, the function
is applied only if p succeeded more than once, otherwise the result of a single p is returned. And p must
succeed at least once, as is indicated by the ’1’ in the parser name. The ’l’6 means that the chain of
ps will be concatenated from the left to the right, producing a left-associated grouping. And if we
want a right-associated grouping, then there is the chainr1 combinator implemented analogous to
the chainl1.

Here is the current state of our arithmetic parser:� �
trait ArithParser extends JavaTokenParsers {

def expr: Parser[Double] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ {_.toDouble} | "(" ~> expr <~ ")"

}� �
Note that the overall result is of type Double.

3.2.4 The ^^^ combinator

The predefined ^^^ combinator is used to directly replace the previous parsing result with a given
value, as in:

"+" ^^^ Add

"true" ^^^ true

The difference to the ^^ combinator is that the last takes a function that converts the previous parsing
result to some other value (using the the previous parsing result as its input argument). In contrast,
the ^^^ combinator simply takes a value that directly replaces the previous parsing result, effectively
discarding it. The ^^^ combinator is useful in situations where the previous result is always the same,
as in case of the “+” parsers whose result is always the string “+”.

6You probably see that ’1’ and ’l’ are not good distinguishable when written together. With a capitalized ’L’, the name of
the combinator would be better readable: “chainL1”.
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Why not to overload the ^^ combinator One might wonder, why not to overload the ^^ combina-
tor to take either a function of type “T => U” (where “T” denotes the result type of the previous parser)
or a value of type “U”, rather than introducing a new combinator. There is no problem to define such
two overloaded versions of the ^^ method.

When calling such method with a function conforming to the type “T => U” (i.e. when the parameter
type of the function equals to the result type of the previous parser) as a parameter, the Java runtime
system will dispatch the call to the overloaded version of ^^ that takes a function (since this version
is more specific for the given case than another one); the combinator will then apply that function to
the previous parsing result to compute a new value. When passing some value that is not a function,
or is a function that is not conforming to the type “T => U”, then the call will be properly dispatched to
the other (less specific) overloaded version. So far, so good.

The only issue seems to be in the case where we would want to replace the previos parsing result with
a function that conforms to the type “T => U”. We would not be able to do that with an overloaded ^^

combinator. Hence two different names: ^^ and ^^^.

3.2.5 Alternative notation for chainl1

It should be mentioned that there is also an alternative short notation for chainl1:

term * ("+" ^^^ Add | "-" ^^^ Sub).

This notation has in our opinion some drawbacks:

• The common meaning of “*” is “zero or more”. In this case it works as “one or more”, which can
be misleading.

• There is no similar notation for chainr1.

• The names chainl1 / chainr1 express their meanings more explicitly.

Therefore we prefer here the longer notation chainl1 / chainr1.

3.2.6 Definitions of arithmetic functions

The only remaining task is to define the arithemtic functions Add, Sub, Mul, Div, which will perform the
actual computation.

Inline definitions The first attempt results in the following definition:� �
trait ArithParser extends JavaTokenParsers {

def expr: Parser[Double] = chainl1(term, "+" ^^^ {_+_} | "-" ^^^ {_-_})

def term = chainl1(factor, "*" ^^^ {_*_} | "/" ^^^ {_/_})

def factor = floatingPointNumber ^^ {_.toDouble} | "(" ~> expr <~ ")"

}� �
where the expression “{_+_}” should mean a short form of the function literal “{(a,b) => a+b}”. Other
function expressions are analogous.

Unfortunately, this definition is not working. The compiler issues the following errors:� �
error: missing parameter type for expanded function ((x$5, x$6) => x$5.$times(x$6))

def term = chainl1(factor, "*" ^^^ {_*_} | "/" ^^^ {_/_})

^

error: missing parameter type for expanded function ((x$1, x$2) => x$1.$plus(x$2))

def expr: Parser[Double] = chainl1(term, "+" ^^^ {_+_} | "-" ^^^ {_-_})

^� �



3.2. INTERPRETER, OR DIRECT EVALUATION OF THE INPUT 35

What is happening here? At first, the compiler expands the shortcuts of function literals into their
longer forms, i.e. {_*_} becomes {(a,b) => a*b}. The next step would be to infer the type of the
function: types of parameters and type of result. And here the compiler fails. This might seem strange.

Given the signature of the chainl1-combinator:

def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T]

and the concrete expression (a simplified form from above that leads to the same error as well):

chainl1(factor, "*" ^^^ {_*_}),

where factor is known to be of type Parser[Double], the compiler could conclude that the type of
the second parameter “"*" ^^^ {_*_}” must be Parser[(Double, Double) => Double]. Since the ^^^

combinator directly replaces the previous parsing result, the type of its argument “{_*_}” must be
(Double, Double) => Double. But obviously the compiler utilizes another type inferencing strategy.
Perhaps also another considerations, which prevents such type inferencing, are taken into account
by compiler.

Therefore we should specify the parameter types in our functions explicitly:� �
trait ArithParser extends JavaTokenParsers {

def expr: Parser[Double] = chainl1(term, "+" ^^^ {(a: Double, b: Double) => a + b}

| "-" ^^^ {(a: Double, b: Double) => a - b})

def term = chainl1(factor, "*" ^^^ {(a: Double, b: Double) => a * b}

| "/" ^^^ {(a: Double, b: Double) => a / b})

def factor = floatingPointNumber ^^ {_.toDouble} | "(" ~> expr <~ ")"

}� �
This works and computes the result as expected:� �
> scala ArithParserCLI "10.5 - 4*2"

input: 10.5 - 4*2

output: [1.11] parsed: 2.5� �
Separate definitions The code would look more clean and better readable, if the function defini-
tions were separated from the grammar.

Here is the revised parser definition:� �
trait ArithParser extends JavaTokenParsers {

def expr: Parser[Double] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

val Add = (a: Double, b: Double) => a + b

val Sub = (a: Double, b: Double) => a - b

val Mul = (a: Double, b: Double) => a * b

val Div = (a: Double, b: Double) => a / b

val Number = (a: String) => a.toDouble

}� �
Inline vs. separate definitions: performance considerations Would separate definitions also result
in a better performance as compared to inline versions? The point is that the ^^^ combinator takes its
parameter by name. So at a first look it might seem that the function objects were generated anew for
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each occurrence of any operator in the input. Though the by-name parameter is cached in a local lazy
val inside the ^^^ method7. Therefore it will be evaluated only once in either case. So the performance
should be equal in both cases.

3.2.7 The final touch

The function definitions can be a little bit shorter if using the type ascription notation:

val Add = (_:Double) + (_:Double).

This notation also allows to abstract over names of the function parameters (note the “_”s instead of
concrete names), which is good, as the parameter names have no semantic meaning here. What is
really matters is only the operation itself (including associated types). This is the final touch to our
arithmetic parser that directly evaluates the user input:� �
import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers {

def expr: Parser[Double] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

val Add = (_:Double) + (_:Double)

val Sub = (_:Double) - (_:Double)

val Mul = (_:Double) * (_:Double)

val Div = (_:Double) / (_:Double)

val Number = (_:String).toDouble

}

object ArithParserCLI extends ArithParser {

def main(args: Array[String]) {

for (arg <- args) {

println("input: " + arg)

println("output: " + parseAll(expr, arg))

}

}

}� �
Listing 3.2: Parser that directly evaluates the input

3.3 Compiler, or Working with intermediate representations

Direct evaluation is a concise and convenient method, but sometimes it is preferable to decouple the
evaluation from parsing. This implies existence of some intermediate data structure (intermediate
representation, IR), which at the beginning represents the parsing result and then, possibly modified
in between, gets passed to the evaluator:

Input Parser IR Evaluator Result

The reasoning behind this schema can be, for instance:

7https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L333-343

https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L333-343
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• a better modularity (parser and evaluator can be independently developed, compiled, tested,
and replaced with another implementations),

• the need to perform analysis and rewrite of the parsing results in multiple independent steps
(this is very common for compilers).

The fact of existing of an IR structure that can be evaluated independently of the original input, turns
the parser into a compiler. The evaluator represents the target machine, which can execute a program
denoted in the specific IR language. The IR acts as an interface between the parser and the evaluator.
From now on two “times” can be distinguished: the compile-time (parser) and the run-time (evalua-
tor).

An intermediate representation often takes the form of an abstract syntax tree (AST), a hierarchical
structure constituted by nodes. The word “abstract” stands for discarding of semantically irrelevant
parts from a concrete representation (as found in the input).

3.3.1 Concrete vs abstract syntax

The concrete syntax of the input string “10.5 - 4*2” can be represented by the following abstract one:
Sub(Number(10.5),Mul(Number(4),Number(2))). The abstract syntax may represent multiple different
concrete representations, such as:

• the original notation,

• a notation like the original with additional (or removed) whitespace chars or parentheses, e.g.
“(10.5-( (4*( 2 )) ))”,

• the same expression in the prefix (“polish”) notation: “- (* 4 2) 10.5”,

• the same expression in the postfix (“reverse polish”) notation: “10.5 4 2 * -”,

• the same expression expressed in words in some natural language,

and so on. Alternatively, we could also choose another abstract representation, for example, the post-
fix notation.

In fact, the abstract representation can be viewed as standardizing of one arbitrarily choosed concrete
representation.

3.3.2 AST definition

A convenient way to define an AST in Scala is to use a hierarchy of case classes with a sealed abstract
class at the top.

Let’s look at the AST definition for the arithmetic parser:� �
trait ArithAST {

sealed abstract class Expr

case class Add(e1: Expr, e2: Expr) extends Expr

case class Sub(e1: Expr, e2: Expr) extends Expr

case class Mul(e1: Expr, e2: Expr) extends Expr

case class Div(e1: Expr, e2: Expr) extends Expr

case class Number(e: String) extends Expr

}� �
Listing 3.3: AST definition for the arithmetic parser
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Case classes, powered by pattern matching, provide a convenient notation for creation and decompo-
sition of nodes. For example, a node that represents an addition of “2” and “3”:

• can be created (using the above AST definition) via construct Add(Number("2"), Number("3"));

• can be decomposed with pattern matching case Add(Number(x), Number(y)) => ..., where the
variables x and y will be bound to the actual content of the Number-subnodes (strings "2" and
"3" in this example).

The “sealed” modifier on the base class restricts the immediate subtypes to be in the current source
file only. Besides the clarity for the programmer (“which subclasses should be handled in the eval-
uator?”) this make possible an automatic control by the Scala compiler, whether all subtypes of the
sealed class are handled in the evaluator. The compiler will warn if pattern matching on subtypes of
Expr is not exhaustive, ensuring that no case is forgotten. This is a very useful feature, especially if the
AST gets changed during development.

The main node type in our AST is Expr, all other node types inherit from it. The subtypes are the four
arithmetical operations and the type for number literals.

The Number node takes a String, which represents the number, as a parameter. Thus the result of the
floatingPointNumber parser (a string) can be passed directly to this node. Alternatively, we could define
the node to take a Double, and convert the parsed string to a Double in the parser, before the node
creation. Here we decided to leave this task to the evaluator.

3.3.3 Building the AST

The only parser’s task now is to build the AST for the given input. To create AST-nodes we use the same
base technique as for the direct evaluation: rewriting of parsing results with ^^ and ^^^ combinators.
The difference is that instead of supplying the functions that do actual arithmetic computations, we
pass the functions that create AST nodes:� �
trait ArithParser extends JavaTokenParsers with ArithAST {

def expr: Parser[Expr] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

}� �
Names of case classes as functions The parser code, as written above, is working and can build
AST nodes. But where are the functions Add, Sub, Mul, Div, and Number specified? Actually, we defined
those names only as case classes? Here is an explanation. For each case class Scala compiler creates a
companion object with the same name as the case class. This companion object has an apply-method
with the same parameters as the constructor parameters in the case class definition. Besides that,
the companion object extends formally the appropriate FunctionN class (for example, Function2 for two
parameters). Thus the companion object of a case class is a function! This allows to use the companion
object’s name everywhere when a function of a corresponding arity is expected. Therefore the names
Add, Sub, Mul, Div, and Number are references to the automatically generated companion objects of case
classes from AST.

The complete program code is in listing 3.4.� �
trait ArithAST {

sealed abstract class Expr

case class Add(e1: Expr, e2: Expr) extends Expr

case class Sub(e1: Expr, e2: Expr) extends Expr
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case class Mul(e1: Expr, e2: Expr) extends Expr

case class Div(e1: Expr, e2: Expr) extends Expr

case class Number(e: String) extends Expr

}

import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers with ArithAST {

def expr: Parser[Expr] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

}

object ArithParserCLI extends ArithParser {

def main(args: Array[String]) {

for (arg <- args) {

println("input: " + arg)

println("output: " + parseAll(expr, arg))

}

}

}� �
Listing 3.4: Parser that builds the AST representation of the input

And here is an example of usage:� �
> scala ArithParserCLI "10.5 - 4*2"

input: 10.5 - 4*2

output: [1.11] parsed: Sub(Number(10.5),Mul(Number(4),Number(2)))� �
Note how the output of result has changed. The result “Sub(Number(10.5),Mul(Number(4),Number(2)))”
means that the overall expression is a subtraction, which is composed of the number 10.5 and of the
multiplication of 4 and 2.

3.3.4 "Mutating" parser

The actual code of the trait ArithParser (listing 3.4) is very similar to the direct-evaluating parser (listing
3.2). Except for the return type of the expr parser (Expr vs Double), the code is identical!

This opens interesting opportunities: we can define a generic parser, which can become an inter-
preter or a compiler (“mutating”), depending on the function definition that will be mixed in: those
for direct evaluation or those for AST building. Moreover, the choice can be made dynamically, based
on the user input. The full code of such “mutating” parsers is shown in listing 3.5.

An interesting point, in both cases we implement abstract methods from the ArithParser trait (see
under “abstract semantic action” in code), and in both cases this is not a usual implementation of
abstract methods:

• in trait DirectEvaluation function values implement them,

• in trait ASTBuilding case classes (more precisely, apply methods of their companion objects) im-
plement them.

What a flexibility of Scala!

And here is an example of interaction with the user:
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� �
import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers{

type T // return type of the expr-parser
def expr: Parser[T] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

// abstract semantic actions
def Add: (T,T) => T

def Sub: (T,T) => T

def Mul: (T,T) => T

def Div: (T,T) => T

def Number: String => T

}

trait DirectEvaluation {

type T = Double

val Add = (_:Double) + (_:Double)

val Sub = (_:Double) - (_:Double)

val Mul = (_:Double) * (_:Double)

val Div = (_:Double) / (_:Double)

val Number = (_:String).toDouble

}

trait ASTBuilding {

type T = Expr

sealed abstract class Expr

case class Add(e1: Expr, e2: Expr) extends Expr

case class Sub(e1: Expr, e2: Expr) extends Expr

case class Mul(e1: Expr, e2: Expr) extends Expr

case class Div(e1: Expr, e2: Expr) extends Expr

case class Number(e: String) extends Expr

}

object Interpreter extends ArithParser with DirectEvaluation

object Compiler extends ArithParser with ASTBuilding

object Arith {

def main(args: Array[String]) {

val arg = args.toList

val parser: ArithParser = if (arg.head == "eval") {

println("Now I'm interpreter!"); Interpreter

} else {

println("Now I'm compiler!"); Compiler

}

arg.tail foreach { x =>

println("input: " + x)

println("result: " + parser.parseAll(parser.expr, x))

println()

}

}

}� �
Listing 3.5: “Mutating” arithmetic parser
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� �
> scala Arith eval "10.5 - 4*2"

Now I'm interpreter!

input: 10.5 - 4*2

result: [1.11] parsed: 2.5

> scala Arith compile "10.5 - 4*2"

Now I'm compiler!

input: 10.5 - 4*2

result: [1.11] parsed: Sub(Number(10.5),Mul(Number(4),Number(2)))� �
3.3.5 Separate evaluation of the AST

A hierarchy of AST-nodes that represents an arithmetical expression can be evaluated independently
of the parser. The code of the evaluator is shown in listing 3.6.� �
trait ArithEvaluator extends ArithAST {

def eval(e: Expr): Double = e match {

case Add(e1: Expr, e2: Expr) => eval(e1) + eval(e2)

case Sub(e1: Expr, e2: Expr) => eval(e1) - eval(e2)

case Mul(e1: Expr, e2: Expr) => eval(e1) * eval(e2)

case Div(e1: Expr, e2: Expr) => eval(e1) / eval(e2)

case Number(e: String) => e.toDouble

}

}� �
Listing 3.6: Evaluator of arithmetic expressions

The evaluation algorithm is straightforward: we start with the root class of the AST-hierarchy and
go with the case-construct through all subclasses accordingly to the AST definition. Each node is
decomposed into its parts, the parts are evaluated, and then merged again with the operation that
corresponds to the node type (’+’ for Add, ’−’ for Sub, etc.). The Number-node is a special case, since this
is an atomic expression that does not consist of any subexpressions.

The common source of errors in various parser generators is forgetting to handle some node type after
a change in the AST definition. We make an experiment, and “forget” to handle the Div-case via com-
menting out the corresponding line. What happens? A compiler warning: “match is not exhaustive!”
This is the effect of the “seal” modifier on the corresponding superclass in the AST definition.

Now we will compose the full program, which should first try to parse the input into an AST represen-
tation, and then, if the previous step was successfull, evaluate the AST. The code is shown in listing
3.7.

Example of usage:� �
input: 10.5 - 4*2

parse result: [1.11] parsed: Sub(Number(10.5),Mul(Number(4),Number(2)))

AST: Sub(Number(10.5),Mul(Number(4),Number(2)))

evaluation result: 2.5� �
Note that the AST output and the evaluation will only be performed if parsing was successful. In case
of syntactical errors in the input, a message explaining the error is issued:� �
input: 10.5 - 4*2)

parse result: [1.12] failure: string matching regex `\z' expected but `)' found
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� �
trait ArithAST {

sealed abstract class Expr

case class Add(e1: Expr, e2: Expr) extends Expr

case class Sub(e1: Expr, e2: Expr) extends Expr

case class Mul(e1: Expr, e2: Expr) extends Expr

case class Div(e1: Expr, e2: Expr) extends Expr

case class Number(e: String) extends Expr

}

import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers with ArithAST {

def expr: Parser[Expr] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

}

trait ArithEvaluator extends ArithAST {

def eval(e: Expr): Double = e match {

case Add(e1: Expr, e2: Expr) => eval(e1) + eval(e2)

case Sub(e1: Expr, e2: Expr) => eval(e1) - eval(e2)

case Mul(e1: Expr, e2: Expr) => eval(e1) * eval(e2)

case Div(e1: Expr, e2: Expr) => eval(e1) / eval(e2)

case Number(e: String) => e.toDouble

}

}

object ArithParserCLI extends ArithParser with ArithEvaluator {

def main(args: Array[String]) {

for (arg <- args) {

println("input: " + arg)

val parseResult = parseAll(expr, arg)

println("parse result: " + parseResult)

parseResult match {

case Success(ast, _) =>

println("AST: " + ast)

println("evaluation result: " + eval(ast))

case _ =>

// no action if no success!
}

}

}

}� �
Listing 3.7: Arithmetic parser combined with evaluator
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10.5 - 4*2)

^� �
The actual error message is not very helpful. The ways of improving will be discussed in section 4.1.

3.3.6 AST that can evaluate itself

The structure of the actual evaluator closely resembles the structure of the AST definition. This is a
sign for an optimization potential. The idea is simple: Why not to define the eval-method immediately
in the corresponding node types? And this is in fact feasible. Look at the code in listing 3.8: the trait
SmartAST contains definitions of nodes with eval-methods. Note that the root node type of the AST is
parameterized now with the target type of evaluation (Double in our case). Evaluating the AST is now
as easy as to call eval on the root node instance: “ast.eval”. That’s all, no separate evaluator required.

Example of usage:� �
> scala Arith "10.5 - 4*2"

input: 10.5 - 4*2

parse result: [1.11] parsed: Sub(Number(10.5),Mul(Number(4),Number(2)))

AST: Sub(Number(10.5),Mul(Number(4),Number(2)))

evaluation result: 2.5� �
Along eval, it is possible to add other actions that can be useful on AST nodes, such as various trans-
formations or pretty printing of arithmetical expressions.

A self-evaluating-AST might seem convenient in this very simple case, but it’s a good idea to keep the
AST definition and the evaluation logic distinct, especially if they become more complex (consider,
for example, working with context upon implementing closures, or promoting data types during type-
checking).

Self type annotation The code in listing 3.8 uses yet another Scala feature: the self type annotation.
Consider the line:� �
trait ArithParser extends JavaTokenParsers { this: ArithAST =>� �
The self type annotation “this: ArithAST =>” means, that the concrete class that will extend Arith-

Parser have to be also an ArithAST. That is, the self type annotation specifies dependencies of the current
trait on other traits. Now it is possible to use all members that are defined in the ArithAST in the body of
the ArithParser as well. Those members are abstract semantic actions for building AST nodes: Add, Sub,
Mul, Div, Number. Trait SmartAST provides the concrete implementations. Everything is wired together in
the definition of the main object:� �
object Arith extends ArithParser with SmartAST� �
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� �
trait ArithAST { // Interface for AST subtypes

type T

def Add: (T,T) => T // Abstract
def Sub: (T,T) => T // semantic
def Mul: (T,T) => T // actions
def Div: (T,T) => T // to build
def Number: String => T // AST nodes.

}

trait SimpleAST extends ArithAST {

type T = Expr

sealed abstract class Expr

case class Add(a:T, b:T) extends T

case class Sub(a:T, b:T) extends T

case class Mul(a:T, b:T) extends T

case class Div(a:T, b:T) extends T

case class Number(e:String) extends T

}

trait SmartAST extends ArithAST {

type T = Expr[Double]

sealed abstract class Expr[+T] {def eval: T}

case class Add(a:T, b:T) extends T {def eval = a.eval + b.eval}

case class Sub(a:T, b:T) extends T {def eval = a.eval - b.eval}

case class Mul(a:T, b:T) extends T {def eval = a.eval * b.eval}

case class Div(a:T, b:T) extends T {def eval = a.eval / b.eval}

case class Number(e:String) extends T {def eval = e.toDouble}

}

import util.parsing.combinator.JavaTokenParsers

trait ArithParser extends JavaTokenParsers { this: ArithAST =>

def expr: Parser[T] = chainl1(term, "+" ^^^ Add | "-" ^^^ Sub)

def term = chainl1(factor, "*" ^^^ Mul | "/" ^^^ Div)

def factor = floatingPointNumber ^^ Number | "(" ~> expr <~ ")"

}

object Arith extends ArithParser with SmartAST {

def main(args: Array[String]) {

for (arg <- args) {

println("input: " + arg)

val parseResult = parseAll(expr, arg)

println("parse result: " + parseResult)

parseResult match {

case Success(ast, _) => println("AST: " + ast)

println("evaluation result: " + ast.eval)

case _ => // no action if no success!
}

}

}

}� �
Listing 3.8: Arithmetic parser with a “smart” AST



Chapter 4

Common Problems

Parsers do not always work “out of the box” as they should (by intention of programmers). This sec-
tion describes some common problems, investigates their origins, and shows the ways on improving
the situation.

4.1 Generating helpful error messages

4.1.1 Issue

Error messages, automatically produced by parsers in case of an illegal input, are often inadequate.

The standard advise to improve the situation is to add an explicit failure(“error message”) to each
parser as the (last) alternative. For instance, the factor-parser could be rewritten as follows:� �
def factor = ( floatingPointNumber ^^ Number

| "(" ~> expr <~ ")"

| failure("factor expected")

)� �
Unfortunately (and surprisingly) this does not always work as desired. Consider the following input:� �
input: 10.5 - x*2

output: [1.8] failure: `(' expected but ` ' found // Scala 2.8.x branch
output: [1.8] failure: `(' expected but `x' found // Scala 2.9.x and 2.10.x branches

10.5 - x*2

^� �
The new explicit failure rule has been ignored. Why is this happening?

4.1.2 Explanation

The first thing to know is that the primitive regex- and string literal parsers (as “(“ in the example
above) do automatically skip whitespace in the input before trying to recognize the given pattern.
Thereafter, if the pattern has not been matched, the parser reports a failure at the first non-whitespace
position (after the skipped whitespace) in the input, but the current parsing position remains at the
initial position (before the skipped whitespace). While the most combined parsers (such as floating-

PointNumber) are ultimately based on these primitive parsers and therefore behave accordingly con-
cerning the whitespace and the current position, the special failure-parser is different: it fails “right
now”, on the currrent parsing position, without skipping whitespace.

45
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The second thing is the logic of failure recording. There is only one dedicated (global) variable that
holds only one failure. If a new failure is reported during parsing at a later or the same position in
the input, then this new failure overwrites the old one. As such, a good and simple mechanism that
ensures that the final failure message has the largest position across all failures encountered during
parsing.

But see how these implementation details play together in the aforementioned example (recognizing
of erroneous input “10.5 - x*2”):

1) After a successful recognizing of the minus-operator, the current position is 7 (a whitespace-
symbol):

� �
pos: 123456789...

--------------------

input: 10.5 - x*2

cur.pos: ^� �
2) Now, the floatingPointNumber parser is tried and fails, recording its failure at the position 8 (after

the skipped whitespace). The current parsing position is still 7.

3) “)” parser is tried and fails at the position 8 just like the floatingPointNumber overwriting the last
failure value (that was coming from the floatingPointNumber) with its own failure. The current
position is still 7.

4) The last alternative in the factor rule is tried: an explicit failure-parser. It fails on the current
position (7), without skipping whitespace. Since the last recorded failure (from the “)”-parser
in step 3) belongs to a greater position (8), the failure-message from the failure-parser is com-
pletely ignored.

5) The final failure message is the last recorded one, that is the message from the failed “)” parser
(step 3).

4.1.3 Proof

The above explanation can be proved with a simple test: delete the whitespace between “-” and “x”.
Now all three failures should happen on the same position, and the last one (from the explicit failure-
parser) should be emitted. The test shows that the hypothesis is correct:� �
input: 10.5 -x*2

output: [1.7] failure: factor expected

10.5 -x*2

^� �
Requiring a whitespace-free input is not an option, of course. How to work around this problem?

4.1.4 Solution

A solution is to force the failure-rule to skip the whitespace too, like string and regex parsers do. This
can be achieved in multiple ways:

• prepend each use of failure parser with an “empty string” parser, as shown here:
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� �
def factor = ( floatingPointNumber ^^ Number

| "(" ~> expr <~ ")"

| "" ~> failure("factor expected")

)� �
Note the "" ("empty string" parser) before the failure. The solely purpose of the ""-parser is to
skip whitespace. Now the failure parser starts from the same position as string- or regex parsers
in other alternatives.

• override the definition of the failure parser using the same principle as above:

override def failure(msg: String) = "" ~> super.failure(msg)

and use failure parsers as usual.

• override failure and reimplement its logic to explicitly skip whitespace like regex and string
parsers do.

• refactor the parsing library to skip whitespace after terminals, instead of doing it before in the
current implementation of the RegexParsers trait.

With any of these variants the original input is parsed as expected issuing a reasonable error message:� �
input: 10.5 - x*2

output: [1.8] failure: factor expected

10.5 - x*2

^� �
4.2 Precedences of infix combinators

4.2.1 Operators and infix notation

There are no real operators in Scala. Everything that looks like an operator is a method used in the
infix (operator) notation. The infix notation (sometimes also called “dotless”) means that instead of
“object.method(parameter)” we can write “object method parameter”. Even the familiar arithmetic opera-
tions are nothing else as methods in Scala, which are defined on various numeric types.

Just like multiple method calls can be chained (provided that the return type of each method has the
next chained method as its member), the infix notation can be chained as well: instead of “object.
method(parameter).method2(parameter2)...” we can write “object method parameter method2 parameter2...”.
For example, these notations are equivalent: “5 + 3 - 2” and “5.+(3).-(2)”.

Parsing combinators are methods in Scala. Many of them are almost exclusively used in the infix
notation. Consider:� �
"var" ~ id ~ "=" ~ expr ^^ {case _ ~ id ~ _ ~ e => VarAssignment(id,e)}� �
The combinators “~” and “^^” are used here as infix operators. (Note that the “~” in the case expression
is a part of the pattern, not a parser combinator.) For comparison, here is the traditional (“dotfull”)
method call notation:� �
"var".~(id).~("=").~(expr).^^({case _ ~ id ~ _ ~ e => VarAssignment(id,e)})� �
As with any infix operators we should think about precedences to ensure the correct usage of them.
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4.2.2 Precedence rules

Precedence of operators1 defines how operations are grouped in abscence of parentheses. The rules
for precedences of infix operators in Scala are defined in the Scala Language Specification (SLS)
[Ode11, 6.12.3 Infix Operations]. The precedence is determined by the operator’s first character. The
following table shows a summary from the SLS2, extended with concrete method names used for
parsing:

Precedence according to SLS Related parser methods not in std. lib.
lowest → (all letters) into named withFailureMessage

| | |||

^ ^^ ^^^ ^?

&

= !

< > <~ >> <~!

:

+ -

* / % *
highest → (all other special characters) ~ ~> ~! ~< ~>! ~<!

Notes to the table:

1) Combinator withFailureMessage is introduced in Scala 2.10M1 (first milestone of the future ver-
sion 2.10).

2) Parser method “*” means here the alias to the (binary) chainl1 combinator 3, not the (unary)
postfix “*” combinator (see also notes below).

3) The rep, opt, etc. methods from Parsers trait4(which encloses the Parser class5) are not affected,
since they are “global” methods, not methods on Parser class, and therefore cannot be used to
combine parsers in infix notation.

4) Also not affected are unary6 postfix methods from the Parser class (“*”, “+”, “?”), as they inher-
ently cannot be used in the infix notation. Specifics of their usage as unary postfix operators
will be explained in section 4.3.

5) Operators on the “not in std. lib.” side are not included in the official Scala distribution, but are
sometimes used in custom extensions of Scala standard library.

6) Method “named” (as well as some other methods not mentioned in the table) is used mostly for
inner purposes, not in the user code.

4.2.3 Precedence vs Order of application

Note that the order of application of parsers to the input always corresponds to the left-to-right order
of parsers in expression, independently of their grouping order (which is based on precedences).

Precedences determine eventually the order, in which the individual parsing results are combined
together.

1As well as “methods in infix notation”.
2Note that the current version of the SLS (v2.9) has an error in the operator precedence table (https://issues.scala-lang.

org/browse/SI-5209), which is already corrected here.
3https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L402-407
4https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L53
5https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L191
6Sometimes referred to as “nullary” (i.e. methods that do not take any parameters)

https://issues.scala-lang.org/browse/SI-5209
https://issues.scala-lang.org/browse/SI-5209
https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L402-407
https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L53
https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L191
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4.2.4 Effect of precedences in typical usage scenarios

Generally, the symbols for combinators with their associated precedences are well choosed by the
parsing library designers. In typical usage scenarios individual parsers often consist of a few alterna-
tives (“|”), where each alternative is a sequence (“~”), that gets rewritten into some value (using “^^”
or “^^^”), as in:� �
a ~ b ~ c ^^ Node1 | x ~ y ~ z ^^ Node2 | "(" ~> w <~ ")"� �
This plays very well together, exactly as the user probably expects: the “~” binds tightest, followed by
“^^”, and then by “|”, which binds most loosely. So, no parentheses to change the grouping order are
needed.

4.2.5 Effect of precedences in special cases

Care should be taken in the following cases.

4.2.5.1 "Letter-named" operators

The “letter-named” combinators (such as into, named) have the lowest precedence, that is they bind
most loosely. Often this is perfectly suitable, e.g. to give a name to the newly defined parser:� �
def p = a ~ b ~ c ^^ Node1 named "node1-parser"� �
The name method will be called on the whole parser “a ~ b ~ c ^^ Node1”, as probably intended by the
user. In cases where such behavior is not appropriate parentheses have to be used.

4.2.5.2 Mixing ^^ and >>

The >> combinator binds more tightly than ^^.

Example 1: ”a ^^ b >> c“ means “a ^^ (b >> c)”.

Example 2: The following parser (which recognizes a comma-separated list, enclosed in curly braces)� �
def set[T](p: => Parser[T]) = "{" ~! repsep(p, ",") ~ "}" ^^ {case _~x~_ => x} >> mkSet� �
causes the following error message (which is unfortunately not very helpful):� �
error: missing parameter type for expanded function ((x0$1) => x0$1 match {

case $tilde($tilde(_, (x @ _)), _) => x})� �
The problem will be remedied by inserting parentheses around the receiver7 of the ^^ combinator:� �
def set[T](p: => Parser[T]) = ("{" ~! repsep(p, ",") ~ "}" ^^ {case _~x~_ => x}) >> mkSet� �
4.2.5.3 ~ / ~> and <~ in one parsing expression

This is probably the main source of precedence issues with parser combinators. The combinators
~ / ~> and <~ have different precedences. Namely, ~ / ~> bind more tightly than <~.

7Expression that returns an object on which a given method should be called.
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Example 1: There is no problem in the expression� �
"(" ~> w <~ ")"� �
from the above example, since the operator that binds more tightly (“~>”) preceedes the operator that
binds more loosely (“<~”), so that the grouping order coincides with the left-to-right reading order.

Example 2: But consider the following parser:� �
def varDef = id ~ ":" ~ typeRef� �
Suppose we would want to leave only id and typeRef parts on the right-hand-site to pass them to a
function to create an AST node. A naive definition� �
id <~ ":" ~ typeRef� �
wouldn’t produce the desired result. According to the precedence rules, this expression will be treated
as� �
id <~ (":" ~ typeRef)� �
throwing away all but id from the parsing result. A type mismatch (e.g. when the result of the chain
should be converted into an AST node via function that takes two parameters: id, and typeRef), or
other kind of compile error is the best that can happen. In worst case the code will compile, but the
parser will return wrong result. So, we have to use parentheses properly to enforce the right grouping:� �
def varDef = (id <~ ":") ~ typeRef� �
Example 3: The problem with different precedences of “~>” and “<~” can become very annoying in
bigger expressions. Consider the following parser:� �
def relVarDef = "var" ~ id ~ "real" ~ "relation" ~ "{" ~ schema ~ "}" ~ "key" ~ "{" ~ key ~

"}"� �
To create the corresponding AST node (RelVarDef(id, schema, key)) we need only three elements (id,
schema, and key) from the 11-elements-chain. How to express this aim? Possible solutions include:

1) Use only “~” combinators, and filter the chain elements in the pattern match expression on the
right-hand-side of the ^^ combinator:� �
def relVarDef = "var" ~ id ~ "real" ~ "relation" ~ "{" ~ schema ~ "}" ~ "key" ~ "{" ~

key ~ "}" ^^ {case _~i~_~_~_~s~_~_~_~k~_ => RelVarDef(i,s,k)}� �
2) Use “~>” / ”<~” and parentheses. Many different versions are possible. After some exercise, a

probably one of the best versions is:� �
def relVarDef = ("var" ~> id <~ "real" <~ "relation") ~ ("{" ~> schema) <~ "}") ~

("key" ~> "{" ~> key <~ "}") ^^ RelVarDef� �
3) Define an alias for “<~” with the same precedence as other two sequence combinators. The alias

can be named as “~<”:
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� �
def ~< [U](q: => Parser[U]): Parser[T] = this <~ q� �
Now the whole expression can be written without parentheses:� �
def relVarDef = "var" ~> id ~< "real" ~< "relation" ~< "{" ~ schema ~< "}" ~< "key"

~< "{" ~ key ~< "}" ^^ RelVarDef� �
Unfortunately, none of the proposed solutions is completely satisfying:

• it is not always obvious, how to correctly write the code, e.g. how to place parentheses correctly,
or where to use which of the sequence combinators;

• it is not always obvious, how to correctly read the code, e.g. to see quickly, which parts of the
parsed chain will be retained and which wiil be ignored.

4.3 Specifics of postfix combinators

4.3.1 Postfix notation

Methods that do not take any parameters can be used in the postfix operator notation in Scala. For
example, a well-known toString method can also be used in the postfix notation: “myVar toString”.
Another example is the method “r” on the StringLike class that is mostly used to trigger the implicit
conversion of a String to a Regex8, as in ”[A-Za-z][0-9A-Za-z]*”r.

4.3.2 Postfix combinators

Combinator parsing library includes three methods in Parser class that can be used in postfix notation:
“*”, “+”, and “?”. Each method has also an alias (in the parent Parsers trait), which can be used with the
same effect. The following table shows these combinators and their usage:

Combinator
Usage as

Alias in the Parsers trait
postfix operator method call

* r* p.* rep(p)

+ p+ p.+ rep1(p)

? p? p.? opt(p)

There are two important nuances related to postfix operator notation in Scala, which will be explained
below:

1) Postfix operations have lower precedence (bind more loosely) than infix operations.

2) A postfix operation is only allowed at the end of an infix expression.

8A String will be implicitly converted to a StringLike, then the method “r” is called on the resulting object, which returns
an instance of Regex built up from the underlying String instance.
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4.3.3 Relative precedence of postfix, prefix, and infix operations in Scala and other lan-
guages

In math and many programming languages, including C, C++, and Java, postfix operations have the
highest precedence (bind more tightly), followed by prefix, and then by infix operations: postfix ->

prefix -> infix. See an example expression and its treatments in the table:

Language Expression Interpretation
Math / C / C++ / Java Z +−x! Z + (−(x!))

However these languages have a fixed set of symbols that denote all three kinds of operations, which
is disjunct from the set of allowed identifiers. Each expression is also required to be explicitly termi-
nated with a semicolon. This make possible an unambiguous interpretation of expressions.

On the contrary, Scala has a different rule: prefix -> infix -> postfix, i.e. postfix operations got the
lowest precedence. Notice a different interpretation of the same example expression:

Language Expression Interpretation
Scala Z +−x! (Z + (−x))!

But Scala also largely does not restrict the set of symbols that denote operations9. Every operation
is an (arbitrary) identifier, that is the name of a method, which can also be used in infix or postfix
notation. The semicolons are generally not required. This makes the language very expressive, but
also challenging to parse.

4.3.4 Reasoning and explanation of design decisions in Scala

Given that both the names of variables and operations come as identifier tokens from the scanner to
the Scala parser, the above example “Z + -x!” looks for the parser like a chain of five id tokens: “id
id id id id“. In a context-free parsing (which is how Scala parser currently works) it is impossible to
distinguish, which id denotes which kind of operation: prefix, infix, or postfix.

The situation is even more difficult if the next line formally looks like it could belong to the expression
on the previos line. Consider� �
def m(a: Int, b: Int) = {

val c = a + b!

-c

}� �
What happens in the body of the method?

Whereas for a human there are probably no ambiguities (compute “c“ value, then return “-c“), how
to avoid that the parser recognizes this as

• val c = a + b! - c

(i.e. by combining both lines into one expression)

or as

• val c = a + b ! (-c)

(i.e. by treating “!” as an infix operation)?

9The only exception are prefix operations, which are restricted to the set {’+’, ’-’, ’!’, ’~’}.



4.3. SPECIFICS OF POSTFIX COMBINATORS 53

To disambiguate such situations, a few rules were introduced in the Scala grammar:

1) The aforementioned restriction of the set of symbols that denote prefix operations. If one of
the symbols {’+’, ’-’, ’!’, ’~’} is found at the beginning of a (sub)expression, it is uncondi-
tionally treated as a prefix operation1011. In such way the problem is narrowed now to infix and
postfix operations only.

Here is the related PrefixExpr definition from the Scala grammar:� �
PrefixExpr ::= ['-' | '+' | '~' | '!'] SimpleExpr� �

2) Giving the lowest precedence to postfix operations, thereby allowing them to appear only at
the end of an (infix) expression. The SLS says: “Postfix operators always have lower precedence
than infix operators. E.g. e1 op1 e2 op2 is always equivalent to (e1 op1 e2)op2.” [Ode11, § 6.12.3].

Here is the related PostfixExpr definition from the Scala grammar:� �
PostfixExpr ::= InfixExpr [id [nl]]� �
where id denotes a postfix operation.

As an example, consider the following parser definiton: “a ~ b*”. At a firtst look, it might seem,
that this parser first applies “a”, an then the repetition of ”b“. But this is not correct. According
to the relative precedence of postfix and infix operations, the expression will be interpreted as
“(a ~ b)*”.

3) An infix expression is only allowed to expand to the next line, if the infix operator was at the
end of the current line. Consider the following examples:

This is one expression, “a + b + (-c)”:� �
a + b +

- c� �
These are two expressions, “a + b”, and “-c”:� �
a + b

- c� �
Here is the related InfixExpr definition from the Scala grammar:� �
InfixExpr ::= PrefixExpr

| InfixExpr id [nl] InfixExpr� �
where id denotes an infix operation. This definiton can also be rewritten without left recursion
as:� �
InfixExpr ::= PrefixExpr {id [nl] PrefixExpr}� �
Note the absence of an optional nl (newline) token before id token.

4) Unfortunately, even with these restrictions, the following situation is still ambiguous:� �
PrefixExpr id [nl]

PrefixExpr� �
10https://github.com/scala/scala/blob/v2.9.1/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala#L1408
11Excluding the case, where the ’-’ is a part of a numerical literal, https://github.com/scala/scala/blob/v2.9.1/src/compiler/

scala/tools/nsc/ast/parser/Parsers.scala#L1411.

https://github.com/scala/scala/blob/v2.9.1/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala#L1408
https://github.com/scala/scala/blob/v2.9.1/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala#L1411
https://github.com/scala/scala/blob/v2.9.1/src/compiler/scala/tools/nsc/ast/parser/Parsers.scala#L1411
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Is this a single infix expression (PrefixExpr id PrefixExpr) or two expressions: a postfix expres-
sion (PrefixExpr id), and an infix expression (PrefixExpr12)? As mentioned above, it is impossible
to know at the context-free phase whether an id represents an infix or a postfix operation.

As a pragmatic solution, Scala always treats the id in such situations as an infix operation.

This leads sometimes to undesired behavior though.

Example 1: Consider:� �
val x = 5 toString

println("OK")

error: too many arguments for method toString: ()java.lang.String

val x = 5 toString

^� �
What is happening here, is that the println expression is syntactically a PrefixExpr, so that

the parser sees:� �
val x = PrefixExpr id nl PrefixExpr� �

and treats that as an infix expression:� �
val x = 5 toString println("OK")� �

First at the typechecking phase the compiler sees that the method toString doesn’t take param-
eters, and issues an error message.

Example 2: The same happens also with with postfix combinators. Consider the following
parser definition:� �
("a" ~ "b")* ~ "c"� �
which leads to the error:� �
unary ~ is not a member of java.lang.String� �
What is happening here? The compiler tries to treat * as an infix operation with the parameter
~“c”. The parameter will be typechecked first. But this fails, since the String class, to which the
expression “c” belongs, has no unary prefix methods named “~”. Neither Parser class, to instance
of which the string could be implicitly converted, has such an unary method. This results in the
shown error message.

4.3.5 Practical tips

The shown pitfalls are easy to overcome. It is enough to choose one of the following approaches:

1) If using an expression consisting of a single postfix operation, ensure that the next line doesn’t
start with an expression that can be syntactically treated as a continuation of the current one.
For example, if the next line starts with a val, var, def, class, or object definition, there is no
reason to worry.

2) Enclose usages of postfix operators in parentheses, e.g. (("a" ~ "b")*) ~ "c", (digit+).

3) Use method-call notation instead of postfix operator notation, as in a ~ b.* (notice a dot be-
tween b and *).

4) Use the letter-named equivalents of the postfix operators: rep("a" ~ "b") ~ "c". They take the
same number of characters (as compared to enclosing postfix operators in parentheses) and
look less cryptic.

12Note that a single PrefixExpr is also an InfixExpr according to the Scala grammar.
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4.4 Performance optimizations

Parser combinators in Scala are lightweight and fast enough for many applications. Still, there is a
potential for some performance improvements. We show a few simple approaches.

4.4.1 Avoiding reevaluation of parsers: lazy vals instead of defs

In examples we mostly used defs for parser definitions. A def is a method. That means that every
reference to the method’s name leads to evaluation of the method’s body. This could be costly if the
method is referenced in multiple places (i.e. the defined parser is used in another parsers), and even
more costly if the method’s body references several other parsers, which have to be reevaluated in
turn.

Clearly, it’s better to evaluate the parser only once. This can be achieved with a val or a lazy val

definition instead of a def.

In case of val one should keep in mind that all parsers referenced in the definition have to be ini-
tialized before and independently of the current definition. If the programmer arranges the parser
definitions in the top-down order, or if some parsers are recursive, then the code will compile fine,
but the forward references will not be properly initialized at run time13.

A lazy val definition deffers the body evaluation till the time, when it’s eagerly (as opposed to call-
by-name passing) referenced. The order of parser definitions does not matter (as opposed to val).
Obtaining a reference to a lazy val variable (e.g. when a parser definition refers to another parser,
which is defined as a lazy val) goes through a small indirection that checks whether the referenced
parser is already initalized, and triggers initialization if it was not. The footprint is very small and can
be neglected. Moreover, many combinators cache the computed references to underlying parsers in
their local variables, so that they don’t need to be computed again.

So, the proposed approach is to use lazy vals for parser definitions, for example:

before:� �
def stmt = varDef | varAssign� �

after:� �
lazy val stmt = varDef | varAssign� �

With this change, the body of the parser will be evaluated only once. The overhead of parser reeval-
uation on its subsequent uses is eliminated. Given an arbitrary complexity of subparsers that can be
involved into construction of the current parsers, this approach can significantly improve the runtime
characteristics of the parsing program.

4.4.2 Reducing backtracking with ~! combinator

Normally, if one alternative of the alternation combinator “|” fails, then the next alternative will be
tried starting from the same (initial) input position. This is called backtracking. Generally, combi-
nator parsers in Scala are capable of unlimited backtracking, that makes them also very powerful.
Yet too much backtracking negatively influences the runtime characteristics of a parser. Reducing or
even complete elimination of backtracking is the general approach to increase the performance of
parsers regardless of used parsing techniques.

By factoring out the common parts of alternatives, the parsing can be made predictive, so that only
one character (or, more commonly, a token) is sufficient to decide, which alternative should be taken.

13This problem has been discussed multiple times and is not so simple as it might seem. Here is a recent
thread on scala-user http://groups.google.com/group/scala-user/browse_thread/thread/bda2a0a0017342a9/, on scala-internals
http://groups.google.com/group/scala-internals/browse_thread/thread/c8c512eac68b6d26/, and a related ticket https://issues.

scala-lang.org/browse/SI-4856 (the one that has been left open among a lot of duplicates).

http://groups.google.com/group/scala-user/browse_thread/thread/bda2a0a0017342a9/
http://groups.google.com/group/scala-internals/browse_thread/thread/c8c512eac68b6d26/
https://issues.scala-lang.org/browse/SI-4856
https://issues.scala-lang.org/browse/SI-4856
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Though by overdoing, this can easily lead to a poorly readable grammar (and parser code) with a
negative impact on maintainability.

Fortunately, in Scala we are not forced to take any of extremes. We can decide flexible, where the
backtracking is acceptable and where it is not.

Let’s see how it works by a simple example. Consider the factor rule from the arithmetical parser
(augmented with an improved error reporting from the section 4.1):� �
def factor = ( floatingPointNumber ^^ Number

| "(" ~> expr <~ ")"

| "" ~> failure("illegal start of expression")

)� �
Now imagine, we have found a "(" in the input (i.e. the first part of the second alternative succeeded).
Which next input is allowed to follow? Clearly, it only may be the rest of a parenthesed expression.
That is the next expected input should be an expression (expr), and then the closing parenthesis (")")
according to the parser definition "(" ~> expr <~ ")" . If this sequence not succeeds, it makes no sence
to check whether any other alternative could succeed on this input; such an input cannot be legal any-
more; the parsing must be terminated with an error message.

The ~! combinator14 expresses exactly the above idiom. It can be used as follows:� �
"(" ~! expr ~! ")" ^^ {case _ ~ e ~ _ => e}� �
The ~! combinator ensures that if any of the following parsers in the current sequence fails, then a
special (fatal) error is produced, which immediately breaks the parsing process, effectively disabling
backtracking for the current sequence.

Unifying the non-backtracking ( ~! ) and the keep-left / keep-right (~>, <~ / ~<) functionality Note
that we had to explicitly rewrite the parsing result in the last example, because the ~! combinator
returns both sides of the sequence as its parsing result. The standard Scala library does not provide
combinators that unify the non-backtracking ( ~! ) and the keep-left / keep-right (~>, <~ / ~<) function-
ality. But such combinators can be easily introduced:� �
def ~>! [U](q: => Parser[U]): Parser[U] = this ~! q ^^ {case a ~ b => b} named ("~>!")

def <~! [U](q: => Parser[U]): Parser[T] = this ~! q ^^ {case a ~ b => a} named ("<~!")

def ~<! [U](q: => Parser[U]): Parser[T] = this <~! q named ("~<!")� �
The previous example would then become "(" ~>! expr <~! ")" or "(" ~>! expr ~<! ")".

Note also that we used non-backtracking combinators instead of all sequence combinators, notwith-
standing that the first one had to work for the whole current sequence. This is due to specifics of
the current implementation, which does not always automatically work up to the end of the current
sequence.

14https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L266-278

https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L266-278


Chapter 5

Example Projects

This chapter presents a few projects developed using combinator parsers, with explanation of tech-
niques used for implementation.

5.1 Propositional Logic

5.1.1 Objectives

The program should be able to understand expressions of propositional logic consisting of constants
(true, false), variables, operators (xor, equivalence, implication, or, and, not), and parentheses. If the
expression is syntactically valid, the program should print a truth table for that expression.

5.1.2 Preliminary considerations

At first we need to specify the input language, i.e. the syntax of expressions.

5.1.2.1 Elementary elements

The elementary elements of expressions are constants and variables; obviously, they should be distin-
guishable. This can be achieved in two ways:

• Define a single syntactical class of words that will enclose both names of variables and names
of constants; define reserved words that will be used for constants and may not be used for
variables; check for each word found in the input whether it is reserved to distinguish between
variables and constants.

or

• Define two syntactically different classes for variables and for constants, e.g. require that vari-
ables starts with a lower-case letter whereas constants must start with an upper-case letter.

We decide to go the second way here because of simplicity. The variables should start with a lower-
case letter and continue with letters, digits, or underscore; the constants for true and false will be the
upper-case letter “T” and “F”.

5.1.2.2 Operators

Further, we look at the operators.

57
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Arity The operators of propositional logic can be classified by arity into:

1) binary: xor, equivalence, implication, or, and;

and

2) unary prefix: not.

Precedences We will give our operators precedences to make possible writing expressions without
parentheses:

• the precedence of unary operators should be higher (bind more tightly) than that of binary,

• the precedences of binary operators should be as follows (from low to high):

xor, equivalence, implication, or, and.

Associativity By associativity, all operators are left-associative, except implication, which is right-
associative.

Symbolic notation for operators We will use the following symbolic notation for operators:

xor x ^ y

equivalence x <-> y

implication x -> y

or x | y

and x & y

not !x

5.1.2.3 Miscellaneous

Parentheses We specify two kinds of parentheses to better visual representation of expressions: “()”
and “[]”, which may be used interchangeably.

Whitespace Whitespace in expressions between syntactic elements should be ignored.

5.1.3 Implementation

The first version of the program has been written using ANTLR1 / Java, and later rewritten in Scala.
This offers an opportunity to compare these two techniques. We will show how the parser component
is implemented in both variants.

5.1.3.1 Parser

The parser recognizes input expressions and builds an internal representation in form of an AST. The
parser can be considered as the core component of the program.

1http://www.antlr.org/

http://www.antlr.org/
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ANTLR The following listing shows the parser grammar written in ANTLR. The ANTLR parser gener-
ator uses this grammar to produce the source code in Java (divided into lexer and parser parts, 48 KB
in total) that performs the actual parsing.� �
// Parser rules
input : expr;

expr : xor;

xor : equiv ('^'^ equiv)*;

equiv : impl ('<->'^ impl)*;

impl : or ('->'^ impl)?; // right-associative via tail recursion
or : and ('|'^ and)*;

and : not ('&'^ not)*;

not : '!'^? atom;

atom : ID

| CONST

| '(' expr ')' -> expr

| '[' expr ']' -> expr;

// Lexer rules
ID : 'a'..'z' ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*;

CONST : 'T'|'F';

NEWLINE : '\r'? '\n' {skip();};

WHITESPACE : ('\t'|' ')+ {skip();};� �
Listing 5.1: Propositional logic: ANTLR Grammar

Note the ANTLR’s operator “^” (as in '->'^), which is used to create AST nodes.

Another insteresting point is the way to implement right-associative operators (see the impl rule):
the head is formed from the production with the next higher precedence (or), followed by the (tail)
recursion of the impl itself. This is a common method to implement right-associativity in a variety of
grammars and parser generators.

Scala The grammar written in Scala looks similar. As opposed to ANTLR, the Scala grammar is also
a self-contained executable Scala code. No further source code for parsing is required.� �

// Parser
def expr = xor

def xor = rep1sep(equiv, "^") ^^ {_.reduceLeft(Xor)}

def equiv = rep1sep(impl, "<->") ^^ {_.reduceLeft(Equiv)}

def impl = rep1sep(or, "->") ^^ {_.reduceRight(Impl)} // right-associative
def or = rep1sep(and, "|") ^^ {_.reduceLeft(Or)} // via right folding
def and = rep1sep(not, "&") ^^ {_.reduceLeft(And)}

def not = opt("!") ~ atom ^^ {case Some(_)~x => Not(x)

case _~x => x}

def atom = ( const ^^ Const

| id ^^ Id

| "(" ~> expr <~ ")"

| "[" ~> expr <~ "]"

)

def const = "T" | "F"

def id = """[a-z]\w*""".r� �
Listing 5.2: Propositional logic: Scala Grammar
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Since Scala version uses specific node types (whereas all AST nodes created by ANTLR are of the same
type), the nodes are explicitly created for each recognized input construction. The AST definition is
shown below.

Chains of operators of the same precedence are stored in lists (since the rep1sep combinator returns its
result as a list), then these lists are folded from the left to the right or vice versa to model the desired
associativity. E.g. for the impl, which should be right associative, the right folding (reduceRight) is
applied. Note that instead of the tandem rep1sep + left / right folding, the chainl1 / chainr1 combinators
could be used as well.

Both grammars ANTLR and Scala utilize a top-down decomposition of the input, beginning from the
operators with the lowest precedence toward the operators with the highest precedence.

5.1.3.2 AST

The parsed expression is represented in Scala nodes belonging to a hierarchy of specific types. Typed
trees have the advantage of static typechecking of instructions for node creation and evaluation.
Trees, where all nodes are of the same type, are easier to traverse.

The AST definition for Scala is based on the techniques from the section 3.3.� �
// AST
sealed abstract class Expr

case class Xor(l: Expr, r: Expr) extends Expr

case class Equiv(l: Expr, r: Expr) extends Expr

case class Impl(l: Expr, r: Expr) extends Expr

case class Or(l: Expr, r: Expr) extends Expr

case class And(l: Expr, r: Expr) extends Expr

case class Not(v: Expr) extends Expr

case class Const(name: String) extends Expr {

override def toString = name}

case class Id(name: String) extends Expr {

varNames += name; override def toString = name}

var varNames = mutable.Set[String]()� �
Listing 5.3: Propositional logic: AST

Note that the constructor of Id node adds itself to the variable varNames holding a set of variables found
during parsing. Because of using a set, the duplicates (which could normally occur, since a variable
can be used multiple times within an expression) are automatically eliminated. A better from archi-
tectural point of view, but also more expensive solution would be to discover the names of variables
in a separate evaluation pass (by traversing the AST), independently of the parsing.

5.1.3.3 Evaluation

To print a truth table the expression must be evaluated for all variants of variables’ allocation. A single
allocation is represented via the map (varValues) from a name to its value. Assuming that varValues is
already filled in, the evaluation of the AST is straightforward: first the children of a node are evaluated,
then they are combined with a logical operation corresponding to the node type.� �

// Interpreter
def eval(e: Expr): Boolean = e match {
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case Xor(l, r) => eval(l) ^ eval(r)

case Equiv(l, r) => eval(l) == eval(r)

case Impl(l, r) => !eval(l) || eval(r)

case Or(l, r) => eval(l) || eval(r)

case And(l, r) => eval(l) && eval(r)

case Not(x) => !eval(x)

case Const(x) => x == "T"

case Id(x) => varValues(x)

}

var varValues = mutable.Map[String, Boolean]()� �
Listing 5.4: Propositional logic: Interpreter

The main processing logic is concentrated in the process method. To give the variables the alphabet-
ical order, we first convert the set varNames to a collection that preserves the order of elements (a Set
doesn’t), and then sort it: varNames.toArray.sorted.� �

def process(input: String) {

println("input: " + input)

varNames.clear

varValues.clear

val res = parseAll(expr, input)

println("result: " + res)

if (res.successful)

printTruthTable(res.get, varNames.toArray.sorted)

println()

}� �
Listing 5.5: Propositional logic: Processing

5.1.3.4 Printing truth table

The method printTruthTable does exactly that: prints a truth table.� �
71 def printTruthTable(tree: Expr, varNames: Array[String]) {

72 val (varCount, resLabel, colSpace, resColSpace) =

73 (varNames.length, "Result", " ", " ")

74

75 // Header
76 println("TRUTH TABLE:\n------------")

77 println(varNames.mkString(colSpace) + resColSpace + resLabel)

78

79 // Body
80 val rowCount = 1 << varCount

81 for (r <- 0 until rowCount) {

82 // Evaluate the expression-tree for each state of variables and print the result:
83 // State of variables as an array of Booleans
84 val state = Array.tabulate[Boolean](varCount)(i => (r & (1<<i)) > 0)

85 // Store the current state of variables in the varVals map
86 varValues ++= varNames.zip(state)

87 print(varNames map (v => centered(varValues(v), v.length)) mkString colSpace)
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88 println(resColSpace + centered(eval(tree), resLabel.length))

89 }

90

91 // helper functions
92

93 /** Returns the Boolean value <code>v</code> printed as "0" or "1"
94 in the middle of a String of length <code>w</code>. */
95 def centered(v: Boolean, w: Int) = {

96 val spaceBefore = (w-1)/2; val spaceAfter = w-spaceBefore-1

97 val buf = new StringBuilder;

98 // '1' in the prev. line is the length of a boolean if printed as "0" or "1"
99 for (i <- 0 until spaceBefore) buf += ' '

100 // We don't use (" " * Int) since it clashes with * method in Parsers
101 buf += (if (v) '1' else '0')

102 for (i <- 0 until spaceAfter) buf += ' '

103 buf.toString

104 }

105 }� �
Listing 5.6: Propositional logic: Printing Truth Table

There are a few interesting fragments in this code worth to be noted:

• parallel assignment of several values to several variables: lines 72–73 (colSpace is the space be-
tween columns of variables, resColSpace is the space between the block of variables’ values and
the last column that shows evaluation results);

• to iterate over all possible states of variables the following approach is used:

– it will be iterated over integer values from 0 until 2number−o f −var i abl es (lines 80–81);

– for each number, the binary representation of that number is used as states of boolean
variables (saved in the variable state), from left to the right, where 0 is interpreted as false

and 1 as true (line 84);

– then the list of variables’ names varNames will be paired with state from the previos step and
added to the map varValues, effectively overwriting previos bindings stored there (line 86);

– then the current states of variables are printed, centered under their labels (line 87), fol-
lowed by the result column, where the actual evaluation of the AST (variable tree) is exe-
cuted (line 88);

• the helper method centered returns a string of a given length with a boolean value printed in the
middle (lines 95–103). The code that constructs the result string:� �

97 val buf = new StringBuilder;

98 // '1' in the prev. line is the length of a boolean if printed as "0" or "1"
99 for (i <- 0 until spaceBefore) buf += ' '

100 // We don't use (" " * Int) since it clashes with * method in Parsers
101 buf += (if (v) '1' else '0')

102 for (i <- 0 until spaceAfter) buf += ' '

103 buf.toString� �
could be also expressed shorter as:� �
(" " * spaceBefore) + (if (v) '1' else '0') + (" " * spaceAfter)� �
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but, as noted in the comment, there is a problem with the method * in the Parser class. What
is happening here exactly? The method intended to be used in the shorter version of the code
is defined on the StringLike2 class, to a subtype of which, a StringOps, a string can be implicitly
converted3. But the RegexParsers class, which our program extends (see below), also has an
implicit conversion from a string to a Parser, and the latter also has a method * (two of them4).
Despite of different signatures of all three methods, the compiler cannot disambiguate between
and issues an error message:� �
... error: type mismatch;

found : java.lang.String

required: ?{val *: ?}

Note that implicit conversions are not applicable because they are ambiguous:

both method literal in trait RegexParsers of type (s: String)P.Parser[String]

and method augmentString in object Predef of type (x: String)scala.collection.immutable.StringOps

are possible conversion functions from java.lang.String to ?{val *: ?}� �
Fortunately, the last Scala version, where this error happens, is 2.8.0. In all later versions (checked
in 2.8.1, 2.8.2, 2.9.0, 2.9.1) the compiler can pick the right implicit conversion, so that the shorter
code can be used without problems.

5.1.3.5 The whole program

The whole program is composed by the parts shown above, augmented by a preamble, and a main
method:� �
import util.parsing.combinator.RegexParsers

import collection._

object PropositionalLogic extends RegexParsers {

// Parser
// AST
// Interpreter
// process
// printTruthTable

def main(args: Array[String]) {

if (args.length > 0)

process(args(0))

}

}� �
Listing 5.7: Propositional logic: Preamble and the main method

5.1.3.6 Testing

Let’s proof the first De Morgan’s law a ∧b = a ∨ b . For this purpose we will print truth tables for
expressions “!(a & b)” and “!a | !b”, and verify that they are in fact equal:� �
input: !(a & b)

result: [1.9] parsed: Not(And(a,b))

2https://github.com/scala/scala/blob/v2.9.1/src/library/scala/collection/immutable/StringLike.scala#L68-74
3https://github.com/scala/scala/blob/v2.9.1/src/library/scala/Predef.scala#L312
4https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L396-407

https://github.com/scala/scala/blob/v2.9.1/src/library/scala/collection/immutable/StringLike.scala#L68-74
https://github.com/scala/scala/blob/v2.9.1/src/library/scala/Predef.scala#L312
https://github.com/scala/scala/blob/v2.9.1/src/library/scala/util/parsing/combinator/Parsers.scala#L396-407
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TRUTH TABLE:

------------

a b Result

0 0 1

1 0 1

0 1 1

1 1 0

input: !a | !b

result: [1.8] parsed: Or(Not(a),Not(b))

TRUTH TABLE:

------------

a b Result

0 0 1

1 0 1

0 1 1

1 1 0� �
The next test shows that the implication will be handled correctly as a right associative operator:� �
input: a -> b -> c

result: [1.12] parsed: Impl(a,Impl(b,c))

TRUTH TABLE:

------------

a b c Result

0 0 0 1

1 0 0 1

0 1 0 1

1 1 0 0

0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 1� �
Yet another test with more operators mixed together. Notice correctly recognized precedences ac-
cording to the defined grammar:� �
input: a & b ^ c | !a

result: [1.15] parsed: Xor(And(a,b),Or(c,Not(a)))

TRUTH TABLE:

------------

a b c Result

0 0 0 1

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 0� �
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5.2 Lambda Calculus

5.2.1 Objectives

The program should be able to understand a notation for nameless (lambda) functions. The body of
a lambda function may use free variables, i. e. variables that are defined before the lambda definition.
A lambda application should always use the values of free variables that were valid at the time of the
lambda definition.

A variable may hold values of different types at different times.

The program should support integer and string literals, usual arithmetic operations, concatenation
of strings with other types, and a println command to output the results of computations.

5.2.2 Preliminary considerations

5.2.2.1 Notation for lambda expressions

A common notation for lambda functions is “λ
〈

par am
〉

.
〈

bod y
〉

”.

“λ” symbol The Greek letter “λ” denoting the start of a lambda definition has the following specific:
it is syntactically a letter. This has a consequence that the usual rules for parsing identifiers5 will
recognize the input “λx” as “I denti f i er (λx)”, and not as “Lambd a ∼ I denti f i er (x)”. We have
three reasonable alternatives to handle this situation:

• either define special rules for identifiers (where “λ” is prohibited),

or

• always require whitespace around “λ”, and handle “λ” as a reserved identifier (keyword),

or

• use another symbol (syntactically not a letter) instead of the “λ”.

We decide to go the last alternative and use a backslash “\” instead of the “λ”: it is visually similar to a
lambda glyph, and is also much simpler to type6. A disadvantage is that a backslash must be escaped
in string literals and console inputs (“\\”), but it can still be used “as is” in Scala raw (triplequoted)
strings.

Params We will allow multiple parameters (zero or more) separated by comma.

“.” symbol Instead of the “.” we will use a “=>” (in the style of Scala function literals) for better
visual separation of “

〈
par ams

〉
” and “

〈
bod y

〉
” parts, especially in presence of several parameters

and numerical literals that may start with a dot.

The final syntax of the lambda expression (using combinator parsing syntax to better express such
idioms as “repetition with separator”) is: "\\" ~ repsep(param, ",") ~ "=>" ~ body.

Example of a lambda expression: \x,y => x + y.

5E.g. the parser ident in StdTokenParsers or ident in JavaTokenParsers.
6Typing unicode symbols, such as “λ”, is desktop specific. For example, in GTK+ based environments, one can use

Ctrl+Shift+U+3BB. See also http://en.wikipedia.org/wiki/Unicode_input.

http://en.wikipedia.org/wiki/Unicode_input
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5.2.2.2 Types and typechecking

The language being implemented will be a dynamically typed language, in the sense that the type-
checking will be performed at runtime (the time of evaluating the IR language), not at compile time
(the time of creating and transforming the IR until the actual evaluation).

“Dynamic typed” is not an inherent property of this languge though. It could also be implemented
as a statically typed language, in the sense that the typechecking would be performed before actual
execution, and if it succeeded, then it’s guaranteed that no type errors will occur at runtime.

It is just the overhead of a preliminary typecking (which involves the full traversing of the AST and
is almost as expensive as the actual execution) that suggests to perform the only typechecking at
runtime (combined with the evaluation).

If the underlying system (target machine) would have a more relaxed type system as compared to the
input language (for example, if it would be allowed to perform, to say, an integer addition on the con-
tents of two arbitrary memory cells or registers, as in case of the Java bytecode), this would justify the
expensive static (i.e. compile-time) typechecking. Because in this case the original rich type system
of the input language would be projected onto a more simple target type system, necessarily loosing
information needed for the type checking (in terms of the input language) at runtime. The advantage
would be a performance gain coming from absence of runtime typechecking.

Variables Objectives say “a variable may hold values of different types at different times”. So we
cannot statically bind a type to a variable. Variables will be untyped. The values of variables are
always typed by means of the underlying system (Scala language).

Lambdas Like variables, types of lambda parameters will be not specified as well. I.e. we are going
to implement an untyped lambda calculus. This design has some interesting implications:

1) Applying lambda to arguments of different types:

Let’s take a simple lambda expression \x,y => x + y. The types of parameters x and y are not
specified, so the expression can be successfully applied to both numeric and string arguments.
In the first case a numerical addition will be performed, in the latter a string concatenation:

• (\x,y => x + y) (5,3) // OK, the result is 8

• (\x,y => x + y) ("Sca","la") // OK, the result is "Scala"

Also values of mixed types, where one of them is a string, could be allowed (the non-string value
will be implicitly converted to a string, as usual in Scala and Java):

• (\x,y => x + y) (5, " times") // OK, the result is "5 times"

The following might be unexpected, but should also be legal:

• (\x,y => x + y) ("Hello", (\a => a*2)) // OK, the result should be a concatenation
// of "Hello" and .toString called on the AST node representing the expression
// (\a => a*2)

But applying a lambda expression to arguments that cannot be reasonably “added together”
should result in a (runtime) error:

• (\x,y => x + y) (5, (\a => a*2)) // Error

2) Possibility of non-termination of lambda application:

In the untyped lambda calculus, the lambda application (which is a β-reduction) need not ter-
minate. For instance, consider the term (λx.xx)(λx.xx)7. Here, we have:

7The example is taken from http://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction

http://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction
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• (λx.xx)(λx.xx) → (xx)[x :=λx.xx] = (x[x :=λx.xx])(x[x :=λx.xx]) = (λx.xx)(λx.xx).

That is, the term reduces to itself in a single beta reduction, and therefore reduction will never
terminate. Expressed in our input language:

• (\x => x x) (\x => x x)

or

• f = \x => x x; f f

Since each recursive evaluation cicle opens a ne stack frame, the above constructions should
lead to StackOverflowError. We will prove that during testing.

5.2.2.3 Lambda and Closure

Let’s look at the requirement “a lambda application should always use the values of free variables that
were valid at the time of the lambda definition”. This means that each lambda definition during eval-
uation should be taken together with the current environment at the point of the lambda definion,
and saved for the latter usage in applications. Such saved combination of a function and environment
is called closure. An environment are bindings from names of variables to their values.

So, here are some important points to keep in mind upon implementing the evaluation procedure:

• Each lambda application will use one and the same closure of itself, which gets created at the
point of the lambda definition.

• We need to keep an account of the current environment to be able to pass it into a closure
creation when needed.

• Free variables are variables that are not defined inside lambda.

The concrete implementation will be shown in section Interpreter (page 70).

5.2.2.4 Println command

One way to implement a custom command, like println, is to introduce a keyword into the language.
The AST should then define a dedicated node type for that command, and the parser would then
have to create an instance of that node if it finds the command in the input. The command would be
defined as a top level construct in the language grammar.

Another, and perhaps a more interesting way, is to handle the command in question as a part of
the standard library for the language to be implemented. But what is a standard library from the
technical point of view? A standard library is nothing else as an initial environment for a program,
that is a predefined list of bindings from names to values. Admittedly we will be not able to implement
the println in terms of more elementary parts of our language. So the implementation will have to be
done in terms of the underlying language (which is Scala), much like native methods in Java or system
calls in C.

5.2.3 Implementation

The implementation of this program is based on the excellent article series [Zei08].
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5.2.3.1 Parser

The source code is shown in listing 5.8. We are not going to give a separate PEG grammar here because
of better expressivity of the grammar written directly in the combinator parsers syntax.

The parser is based on the StandardTokenParsers to take advantage of some useful predefined parsers
(see ident, numericLit, stringLit on lines 42–44), and automatic distinction between identifiers and
keywords / delimiters (see lexical.reserved and lexical.delimiters on lines 18–19).� �

1 package lambda
2

3 import util.parsing.combinator.syntactical.StandardTokenParsers
4 import util.parsing.combinator.ImplicitConversions
5

6 object Parser extends StandardTokenParsers with ImplicitConversions {
7

8 import AST._

9

10 // API
11 def parse(input: String): Either[String, Expr] =
12 phrase(program)(new lexical.Scanner(input)) match {
13 case Success(ast, _) => Right(ast)
14 case e: NoSuccess => Left("parser error: " + e.msg)
15 }
16

17 // Impl.
18 lexical.reserved ++= ("if then else" split ' ')
19 lexical.delimiters ++= ("\\ => + - * / ( ) , == = ;" split ' ')
20

21 type P[+T] = Parser[T] // alias for brevity
22

23 def program = rep1sep(expr, ";") <~ opt(";") ^^ Sequence
24 def expr: P[Expr] = lambda | ifExpr | assign | operations
25

26 def lambda = ("\\" ~> repsep(ident, ",")) ~ ("=>" ~> expr) ^^ Lambda
27 def ifExpr = ("if" ~> expr) ~ ("then" ~> expr) ~ ("else" ~> expr) ^^ IfExpr
28 def assign = ident ~ ("=" ~> expr) ^^ Assign
29 def operations = infixOps
30

31 def infixOps = equality
32 def equality = sum * ("==" ^^^ Equal)
33 def sum = product * ("+" ^^^ Add | "-" ^^^ Sub)
34 def product = postfixOps * ("*" ^^^ Mul | "/" ^^^ Div)
35

36 def postfixOps = application
37

38 def application = simpleExpr ~ rep(argList) ^^ {case e~args => (e /: args)(Application)}
39

40 def argList = "(" ~> repsep(expr, ",") <~ ")" | simpleExpr ^^ {List(_)}
41

42 def simpleExpr = ( ident ^^ Var
43 | numericLit ^^ {x => Lit(x.toInt)}
44 | stringLit ^^ Lit
45 | "(" ~> expr <~ ")"
46 | failure ("Expression expected")
47 )
48 }� �

Listing 5.8: λ calculus: Parser

The parser is intended to be used via a single API method parse (lines 11–15), which takes an input
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string and returns either the root node of the AST created from the input, or a string with an error
message. The return type is expressed using the Scala type Either, a disjoint union, where the right
part means (by convention) “some successful result” and the left part stands for “failure”.

The line 21 defines a short alias for the Parser type. It can be useful to save some horizontal space,
where a return type of parsers has to (or should) be given, as in the recursive parser expr (line 24).

The grammar that defines the input language is given in the lines 23–47.

A program in the input language is a sequence of expressions terminated or separated by semicolons,
so that both should be valid “expr1; expr2;” and “expr1 ; expr2”. This idiom is achieved via rep1sep

combinator with an optional semicolon at the end. How about an empty input, is it a legal program?
No, we require at least one expression (note the “1” in ”rep1sep”).

The top-level expressions are lambda, if-expression, assignment, and operations. The lambda syn-
tax follows the design worked out above. The if-expression should be self-explanatory. Assignments
use the most simple form “name = value” without any additional keywords (like “let”) or special as-
signment operators (like “:=”). Since we use “=” for assignment, an “==” will be used for equality
comparison. The fourth element “operations” requires more detailed attention.

The operations parser represents the main precedence chain of supported operations. The infix op-
erations have the lowest precedence, followed by prefix, and then by postfix operations (cf. explana-
tions in 4.3.3 on page 52).

• The infix operations (infixOps) are represented by an equality chain (equality), which is de-
composed into additive operations (sum), which in turn are decomposed into multiplicative
ones (product). The “*” is another notation for chainl combinator, that is all operations are
grouped in a left-associative fashion.
Note that it is not required that each level is represented in the input via two or more elements
separated with an operator, it can can be a single elment as well. For instance, a “5” is not only
a numerical literal according to the grammar, it is also a “product” (which is defined as a chain
of one or more elements separated by given operators), it is also a “sum”, it is also an “equality”
and so on.
Note also that we are not creating dummy nodes that only forward to the next node; a node is
only created if an operation is encountered or an elementary element is reached. So, the input
“5” will not result in something like “InfixOps(Equality(Sum(Product(PostfixOps(...Lit(5)...)))))”,
but simply in “Lit(5)”.

• There are no prefix operations in our language, so we are going straight to

• Postfix operations (postfixOps), which is represented via (function) application: a construction
like f(z) or (\x => x/2) 4. Note that chained applications will be left folded, and that single
arguments need not be enclosed in parentheses.

At the bottom level is a simple expression (simpleExpr): an identifier, a numerical literal, a string
literal, or a parenthesed expression that recurses the recognition back to the top level expr parser. If
nothing from above is found, an error message "Expression expected" is issued.

5.2.3.2 AST

The AST definition is shown in listing 5.9. There is nothing spectacular here. The definitions of nodes
correlate with the definitions of parsers from the previos section.

Note that there is no mention of a „closure“ neither in the parser nor in the AST. The „closure“ is a
runtime construction, which comes into play during evaluation of the AST, not during parsing. (We
will see in the next secion how lambda definitions get converted into closures.)

An expression representing a function in the App node (field func) might not be really a function that
can be applied to the given arguments. The parser only ensures that it is a simpleExpr, nothing more.
These checks will be performed in a separate semantical step, the next section is dedicated to.
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� �
package lambda

object AST {

sealed abstract class Expr

case class Sequence(l: List[Expr]) extends Expr {

override def toString = l.mkString("\n")

}

case class Lambda(params: List[String], body: Expr) extends Expr {

override def toString = "Lambda(Params("+params.mkString(", ")+"), Body("+body+"))"

}

case class IfExpr(e1: Expr, e2: Expr, e3: Expr) extends Expr

case class Assign(name: String, expr: Expr) extends Expr

case class Equal(e1: Expr, e2: Expr) extends Expr

case class Add(e1: Expr, e2: Expr) extends Expr

case class Sub(e1: Expr, e2: Expr) extends Expr

case class Mul(e1: Expr, e2: Expr) extends Expr

case class Div(e1: Expr, e2: Expr) extends Expr

case class Application(func: Expr, args: List[Expr]) extends Expr {

override def toString = "App(Func("+func+"), Args("+args.mkString(", ")+"))"}

case class Var(name: String) extends Expr

case class Lit(v: Any) extends Expr {

override def toString = if (v.isInstanceOf[String]) "\""+v+"\"" else v.toString}

}� �
Listing 5.9: λ calculus: AST

5.2.3.3 Interpreter

This is the crucial, and probably the most interesting part of the program. The code is organized into
the parts:

• API

• Type aliases

• Runtime types

• Evaluation

The first half of the Interpreter containing the parts “API”, “type aliases”, and “runtime types” is shown
in Listing 5.10.� �
package lambda

object Interpreter {
import AST._

// API
def eval(ast: Expr): Unit = {
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try { (new Context) eval ast }
catch { case e => val msg = e.getMessage

println("eval error: " + (if (msg != null && msg != "") msg else e)) }
}

// Impl.

// Type aliases
type VarName = String
type VarValue = Any
type Environment = collection.immutable.Map[VarName, VarValue]

// Runtime types
sealed abstract class Func extends (List[Any] => Any)

case object Println extends Func {
override def toString = "println (built-in)"
def apply(args: List[Any]) = println(args mkString (", "))

}

case class Closure(env: Environment, lam: Lambda) extends Func {

override def toString = "Closure(Env(" + env.mkString(",") + "), Params(" +
lam.params.mkString(",") + "), Body(" + lam.body + "))"

def apply(args: List[Any]) = {
if (args.length != lam.params.length)

error("Wrong number of arguments for function: expected " +
lam.params.length + ", found " + args.length)

else (new Context(env ++ lam.params.zip(args))) eval lam.body
}

}� �
Listing 5.10: λ calculus: Interpreter (part 1 of 2)

API We define a simple API method “eval” that triggers the evaluation of a given AST node.

In this implementation, the eval method does not return anything (this is expressed via a formal re-
turn type Unit). The output will be done directly to the standard output (via println), as a side effect of
the evaluation.

The catch clause could also be defined more simple as� �
catch { case e => println("eval error: " + e.getMessage) } // suboptimal� �
This would work well for our own exceptions with a message (see below in listing 5.11), but is subop-
timal when an exception doesn’t have a message. For instance, if an evaluation enters infinite loop
causing a stack overflow (see an example on page 66), then the exception being caught is a StackOver-

flowError. A simple getMessage may return null in this case, resulting in printed message “eval error:
null”, which is undesirable. Hence additional checks introduced to print the name of the exception in
such situations, for instance: “eval error: java.lang.StackOverflowError”.

Type aliases If the code itself documents its purpose, then the comments become obsolete. We
define some type aliases to follow that concept. Compare “immutable.Map[VarName, VarValue]” vs
“Map[String, Any]”. The missing information in the latter case should have been otherwise added
using comments. Yet with the type aliases it’s already documented directly in the code (and the type
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conformance will be enforced by compiler): e.g. an Environment (see below) is an immutable map from
names to values of variables.

Runtime types We try to keep the IR language definition (i.e. the AST, see 5.2.3.2) free of constructs
and information that can be computed, so that the abstract syntax remains abstract as much as pos-
sible. Yet during evaluation we need additional, runtime types to keep track of the computational
process. These types are Environment, Func (with its subclasses Println and Closure), and Context.

• Environment

Instances of this type hold bindings of variables N ame → V alue. Important is the decision to
use an immutable collection (an immutable Map) for the environment. This makes possible to
simply pass the current environment into a new closure without worrying about anything. The
immutability of the map “freezes” the values of variables in the passed environment instance.
This works because the values of variables are themselves represented via immutable objects:
instances of case classes from the AST definition.

In such way closures can receive a freezed state of the current environment, and look up into it
for free variables when needed.

• Func / Println / Closure

The sealed type Func, which extends Function from List[Any] to Any, has two concrete subclasses:
Println (singleton), and Closure.

– The Println object implements our “library” function println (see p. 67). In its apply method
it simply prints out the given list of arguments. Printed arguments are separated with
comma. The list can also be empty, so that println() is a perfectly legal construct in the
input language.

– The Closure class implements the closure (see p. 67). It takes as constructor parameter an
environment and a lambda definition. In its apply method it first checks that the number
of actual arguments passed into is equal to the number of formal parameters from the
lambda definition. If all is correct, then we enter the most magical moment: evaluation of
a closure. Take a look at the corresponding code:

� �
(new Context(env ++ lam.params.zip(args))) eval lam.body� �

* lam.params.zip(args) creates a list of pairs par ameter N ame → ar g umentV alue.
Both the parameter names (from the lambda definition) and the argument values
(from the application of that lambda) are taken in their order, how they have been
found in the input and returned by the parser (see listing 5.8: repsep(ident, ",") in
lambda parser, and argList parser).

* All those pairs are added to the current environment (which is a map name → value)
replacing already existing bindings of the same names. (Recall that environment ob-
jects are immutable maps, so that the ++ operation creates a new environment object
here.)

* A new Context object (see below) is created from the newly created environment,
which performs the evaluation of the body of the original lambda definition.

This implementation achieves an important semantical goal: names of formal parameters
should shadow / overwrite names of free variables, or in other words, the names inside the
body will in doubt always be treated as parameter names. In such way we perform the β-
reduction8 of the lambda: the names of parameters inside the body will now refer to the
values of passed arguments, in order of parameter declaration.

8http://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction

http://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction
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Of course, this will also work when the lambda has an empty parameter list (then nothing
gets changed in the current environment) or the names of parameters do not clash with
the names of free variables. If the body of the lambda does not make use of free variables,
such a lambda is a pure function.

Creating closures for pure functions is pretty useless. We could introduce a special class
for pure functions, but this would also require investigation of bodies of the lambda defi-
nitions for usages of free variables, to decide which type of the function to create: a closure
or a pure function. For the simplicity, in this implementation we decided to treat all func-
tions as closures (even when they not really are) and simply overwrite the bindings in the
environment (even when this doesn’t really overwrite anything).

Both Println and Closure assume that arguments of their apply methods have already been
evaluated by the Interpreter.

• Context

Instances of this class hold the current environment and have an eval method to perform the
evaluation of a given expression in context of the environment.

The environment is held in a var, that allows to reassign it to a new value9, if it should be
changed in the current scope, as it happens in assignments.

Another solution, suggested in [Zei08], could be passing the environment as a parameter into
every eval call. The eval method would also have to return both an evaluation result and (per-
haps changed) environment. This would avoid the mutable member holding the environment,
thus making the code more “functional”. But additional parameters in a lot of eval calls, the
need to handle the returned environments (drop, reuse, or combine with the current one), per-
forming every eval as a recursion (for instance, the evaluation of a Sequence would have to be
recursively left-folded) would also make the code less readable. We could improve readability
by declaring the environment as an implicit parameter, but this increases the overall complex-
ity.

So we decided to use a more simple design, where the (immutable) environment is a (mutable)
member of Context class, which in turn defines the evaluation method. The environment is
always available and can be flexibly changed in place (by assigning a new value to the member
variable) by any part of the evaluation mechanism.

The second half of the Interpreter with the evaluation routine is shown in Listing 5.11.� �
// Evaluation
val initEnv: Environment = Map("println" -> Println)

class Context(private var env: Environment = initEnv) {
override def toString = "Environment: " + env.mkString(", ")
def eval(e: Expr): Any = e match {

case Sequence(exprs) => exprs foreach eval
case lam: Lambda => Closure(env, lam)
case IfExpr(e1, e2, e3) => eval(e1) match {

case b:Boolean => eval(if(b) e2 else e3)
case _ => error("Not a boolean value in condition of IF expression")

}
case Assign(id, expr) => env += (id -> eval(expr))

case Equal(e1, e2) => eval(e1) == eval(e2)
case Add(e1, e2) => (eval(e1), eval(e2)) match {

case (v1:String, v2) => v1 + v2.toString
case (v1, v2:String) => v1.toString + v2

9Remember that the referenced object of the type Environment is always immutable.
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case (i1:Int, i2:Int) => i1 + i2
case _ => error("'+' requires two Int values or at least one String")

}
case Sub(e1, e2) => (eval(e1), eval(e2)) match {

case (i1:Int, i2:Int) => i1 - i2
case _ => error("'-' requires two Int values")

}
case Mul(e1, e2) => (eval(e1), eval(e2)) match {

case (i1:Int, i2:Int) => i1 * i2
case _ => error("'*' requires two Int values")

}
case Div(e1, e2) => (eval(e1), eval(e2)) match {

case (i1:Int, i2:Int) => i1 / i2
case _ => error("'/' requires two Int values")

}

case Application(expr, args) => eval(expr) match {
case f:Func => f(args map eval)
case x => error(expr + " cannot be applied as a function to argument(s) " + args +

".\n(Only functions can be applied)")
}
case Var(id) => env getOrElse(id, error("Undefined var " + id))
case Lit(v) => v

}
}

}� �
Listing 5.11: λ calculus: Interpreter (part 2 of 2)

Evaluation By default, the evaluation is started with an initial environment consisting of a single
binding: "println" -> Println. This is how our “standard library” function println comes into play.

The evaluation is implemented as a series of case statements performing pattern matching on the
given AST node.

• In case of a Sequence, the evaluation will be performed iteratively for each expression in the list.
Note how it is expressed using the infix (dotless) notation: “exprs foreach eval”. But, wait,
how can it work, if the foreach method takes a function object as a parameter, whereas eval is a
method? This is yet another (very convenient) syntactical sugar from Scala: implicit convertion
of a method to a function (eta-expansion) where needed. Eta-expansion is implemented in
Scala in the way that the compiler generates and inserts a function object that calls the original
method (e.g. our eval method) from the apply method of the newly generated function.

• In case of a Lambda definition, a Closure of that lambda will be returned.

• For an If expression is important to make sure that only one part (“then” or “else”) is evaluated.
It checks also that the condition evaluates to a value of type Boolean.

• An Assignment is the only case that changes the environment. It is implemented in the way that
the current environment gets replaced with a new one containing an additional binding from
the assignment. The old binding of the same name (if any) will be overwritten. In such way a
variable can receive a new value (without type restrictions, as required in Objectives).

• The Equality relies on the default equal implementations of case classes, which is what all AST
nodes are. Remember, that “==” in Scala is a semantical equality (which corresponds to equals

in Java), not a comparison of references.



5.2. LAMBDA CALCULUS 75

• The Addition is an interesting operation, because it implements not only an integer addition,
but also a string concatenation, including the cases where only one part of the expression is a
string.

• The Sub / Mul / Div are simple integer operations. They also check for the proper types of evalu-
ated operands.

• The Application handles the cases where one expression follows another one in the input. The
first expression must evaluate to a function, that is to an instance of Func (see above). Thus
it could be either a Closure or the Println. Note that it cannot happen that we test a Lambda
definiton to be a function: since the expression that represents a potential function is evaluated
before pattern matching, it’s guaranteed that if it was a Lambda, it got replaced with a Closure (see
the implementation of the Lambda case above). In the next step all arguments are mapped to their
evaluated values (see “args map eval”), and the function is simply applied to these arguments.
10. Note yet another example of the eta-expansion in “args map eval”.

• The Var case performs a lookup into the environment for the value of a given name.

• The Lit simply returns the own literal value, which can be a string or an integer number.

5.2.3.4 Main

The Main object is the starting point of the application. The code is shown in listing 5.12. The Main
object extends the App trait that allows to put the processing logic directly in the body of the object.
The predefined variable args is automatically filled in by Scala with the command line arguments, just
like the args variable in def main(args: Array[String]).

All command line arguments will be iteratively processed with a dedicated method process. Following
a defensive programming style, we also catch unforeseen exceptions here.� �
package lambda

object Main extends App {

for (a <- args) {

try { process(a) }

catch { case e => println("unexpected error: " + e.getMessage) }

}

def process(input: String) {

println("\nINPUT:\n" + input)

(Parser parse input) match {

case Right(ast) =>

println("\nTREE:\n" + ast)

println("\nEVAL:"); Interpreter eval ast

case Left(errMsg) =>

println(errMsg)

}

println("====================")

}

}� �
Listing 5.12: λ calculus: Main

10Remember that the function call syntax f(x) is a syntactic sugar for f.apply(x)



76 CHAPTER 5. EXAMPLE PROJECTS

Each input will be first echoed to the standard output to make verifiable that the program really evalu-
ates what the user expected (this can go wrong when entering some special symbols in the command
line, for instance, a “*” can be expanded by the shell into the list of files in the current directory).

If the parsing was successful (i.e. the input was syntactically correct), the abstract syntax tree of the in-
put is printed, followed by the result of the evaluation. A double line separates processing of different
arguments.

5.2.3.5 Testing

Empty input:� �
INPUT:

parser error: Expression expected� �
Polymorphic addition:� �
Polymorphic addition:

INPUT:
f = \x,y => x + y;
println(f(5, 3)); // OK
println(f("Sca", "la")); // OK
println(f("Hello ", \a => a*2)); // OK! (String + Closure.toString)
f(5, \a => a*2); // eval error

TREE:
Assign(f,Lambda(Params(x, y), Body(Add(Var(x),Var(y)))))
App(Func(Var(println)), Args(App(Func(Var(f)), Args(5, 3))))
App(Func(Var(println)), Args(App(Func(Var(f)), Args("Sca", "la"))))
App(Func(Var(println)), Args(App(Func(Var(f)), Args("Hello ", Lambda(Params(a),

Body(Mul(Var(a),2)))))))
App(Func(Var(f)), Args(5, Lambda(Params(a), Body(Mul(Var(a),2)))))

EVAL:
8
Scala
Hello Closure(Env(println -> println (built-in),f -> Closure(Env(println -> println (built-in)),

Params(x,y), Body(Add(Var(x),Var(y))))), Params(a), Body(Mul(Var(a),2)))
eval error: '+' requires two Int values or at least one String� �
Aliasing println:� �
INPUT:
println(println);
f = println; f(5);
println(f)

TREE:
App(Func(Var(println)), Args(Var(println)))
Assign(f,Var(println))
App(Func(Var(f)), Args(5))
App(Func(Var(println)), Args(Var(f)))

EVAL:
println (built-in)
5
println (built-in)� �
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Shadowing println:� �
INPUT:
println("Hello"); // printls Hello
println = \x => x+x; // shadows the original println binding
println("Hello"); // does not print anything
println(5); // does not print anything

TREE:
App(Func(Var(println)), Args("Hello"))
Assign(println,Lambda(Params(x), Body(Add(Var(x),Var(x)))))
App(Func(Var(println)), Args("Hello"))
App(Func(Var(println)), Args(5))

EVAL:
Hello� �
Non-termination:� �
INPUT:
f = \x => x x ; f f;
(\x => x x) (\x => x x);

TREE:
Assign(f,Lambda(Params(x), Body(App(Func(Var(x)), Args(Var(x))))))
App(Func(Var(f)), Args(Var(f)))
App(Func(Lambda(Params(x), Body(App(Func(Var(x)), Args(Var(x)))))), Args(Lambda(Params(x),

Body(App(Func(Var(x)), Args(Var(x)))))))

EVAL:
eval error: java.lang.StackOverflowError
eval error: java.lang.StackOverflowError� �
Illegal operations:� �
INPUT:
3 * "xyz"; // own exception
3 / 0; // Scala/Java exception

TREE:
Mul(3,"xyz")
Div(3,0)

EVAL:
eval error: '*' requires two Int values
eval error: / by zero� �
The following three examples were adapted from [Zei08].

Reassignment of a free variable does not change the closure:� �
INPUT:
s = "foo";
println("s = " + s);
ls = \x => s + x;
println("ls = " + ls);
s = "bar";
println("s = " + s);
println("ls = " + ls);
println( ls("!") ); // prints "foo!"
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TREE:
Assign(s,"foo")
App(Func(Var(println)), Args(Add("s = ",Var(s))))
Assign(ls,Lambda(Params(x), Body(Add(Var(s),Var(x)))))
App(Func(Var(println)), Args(Add("ls = ",Var(ls))))
Assign(s,"bar")
App(Func(Var(println)), Args(Add("s = ",Var(s))))
App(Func(Var(println)), Args(Add("ls = ",Var(ls))))
App(Func(Var(println)), Args(App(Func(Var(ls)), Args("!"))))

EVAL:
s = foo
ls = Closure(Env(println -> println (built-in),s -> foo), Params(x), Body(Add(Var(s),Var(x))))
s = bar
ls = Closure(Env(println -> println (built-in),s -> foo), Params(x), Body(Add(Var(s),Var(x))))
foo!� �
Equivalence of N-ary and curried functions:� �
INPUT:
add1 = \a,b => a+b; // N-ary function
println(add1(3,4)); // 7
add2 = \a => \b => a+b; // curried function
println(add2(3)(4)); // 7
println(add2 3 4); // 7 (using arguments without parentheses)

TREE:
Assign(add1,Lambda(Params(a, b), Body(Add(Var(a),Var(b)))))
App(Func(Var(println)), Args(App(Func(Var(add1)), Args(3, 4))))
Assign(add2,Lambda(Params(a), Body(Lambda(Params(b), Body(Add(Var(a),Var(b)))))))
App(Func(Var(println)), Args(App(Func(App(Func(Var(add2)), Args(3))), Args(4))))
App(Func(Var(println)), Args(App(Func(App(Func(Var(add2)), Args(3))), Args(4))))

EVAL:
7
7
7� �
Y combinator11 (allows to define recursive functions):� �
INPUT:
Y = \f =>

(\x => f (\y => x x y))
(\x => f (\y => x x y));

// Define a faculty function using Y
fact = Y(\fact => \n => if n == 0 then 1 else n*fact(n-1));
println("6! = " + fact(6)); // prints "6! = 720"

TREE:
Assign(Y,Lambda(Params(f), Body(App(Func(Lambda(Params(x), Body(App(Func(Var(f)),

Args(Lambda(Params(y), Body(App(Func(App(Func(Var(x)), Args(Var(x)))), Args(Var(y)))))))))),
Args(Lambda(Params(x), Body(App(Func(Var(f)), Args(Lambda(Params(y),
Body(App(Func(App(Func(Var(x)), Args(Var(x)))), Args(Var(y))))))))))))))

Assign(fact,App(Func(Var(Y)), Args(Lambda(Params(fact), Body(Lambda(Params(n),
Body(IfExpr(Equal(Var(n),0),1,Mul(Var(n),App(Func(Var(fact)), Args(Sub(Var(n),1))))))))))))

11See “call-by-value Y combinator” (a version of the Y combinator that can be used in call-by-value (applicative-order)
evaluation) in http://en.wikipedia.org/wiki/Fixed-point_combinator#Other_fixed-point_combinators,.

http://en.wikipedia.org/wiki/Fixed-point_combinator#Other_fixed-point_combinators
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App(Func(Var(println)), Args(Add("6! = ",App(Func(Var(fact)), Args(6)))))

EVAL:
6! = 720� �
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Conclusion

It turned out that the subject of this thesis is large and complex. However I got an impression that
many of the traditional approaches from textbooks are unnecessarily overcomplicated. For instance,
formal languages will be often defined in terms of ambiguos generative grammars (mostly CFG), just
to laboriously develop recognizers for that generative grammars and to fight with ambiguities in ev-
ery practical parser implementation. Usage of recognition-based grammars (such as PEG), where
operational semantics for recognizing are defined unambiguously, saves a lot of work by eliminat-
ing that problems. And as a bonus, one has a much better expressivity and interchangeability of the
grammars. Combinator parsing, instead of parser generators, are the next step in gaining more pro-
ductivity. They allow to create new parsing abstractions and are seamlessly incorporated in the host
language, in which the main program is written. And Scala, across many programming languages, of-
fers probably the best set of features that facilitate readable and concise grammar definitions. Numer-
ous code examples in this thesis demonstrate, that even parsers that implement relatively complex
languages, fit easily into one printed page.

Many interesting areas are left to explore. For example, it would be interesting to perform a perfor-
mance comparison between combinator parsers and parser generators, based on some real-world
task, such as parsing Java or Scala code. Yet another field of further investigations would be trans-
formation libraries, such as Stratego/XT12 and Kiama13. It would be also interesting to research how
advanced Scala features, such as compiler plugins, macros14, and parameterized extractors15, can help
in parser writing.

12http://strategoxt.org/
13http://code.google.com/p/kiama/
14New feature, expected in Scala 2.10.
15Not yet implemented.
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