Build Your Own PaaS
with Docker

Create, modify, and run your own PaaS with modularized
containers using Docker

PACKT



Build Your Own PaaS
with Docker

Create, modify, and run your own PaaS with
modularized containers using Docker

Oskar Hane

PUBLISHING
BIRMINGHAM - MUMBAI



Build Your Own PaaS with Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1010415

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-394-6

www . packtpub.com


www.packtpub.com

Credits

Author
Oskar Hane

Reviewers
Donald Simpson

Lawrence Taylor

Commissioning Editor
Sarah Crofton

Acquisition Editor
Rebecca Youe

Content Development Editor
Merwyn D'Souza

Technical Editors
Narsimha Pai

Mahesh Rao

Copy Editors
Dipti Kapadia
Vikrant Phadke

Project Coordinator
Neha Bhatnagar

Proofreaders
Ting Baker

Simran Bhogal

Indexer
Mariammal Chettiyar

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph



About the Author

Oskar Hane is a full stack developer, with 15 years of experience in the development
and deployment of web applications. During this period, he mostly worked with
start-ups and small, fast-moving companies. He is the cofounder of several companies
and has been working as an independent contractor for the past few years. These days,
Oskar works with Neo4j, the world's leading graph database, where he spends most of
his time on the frontend, writing JavaScript.

He lives in Sweden with his wife and daughter. He enjoys programming as well as
all kinds of sports and outdoor activities, such as hunting and fishing.



About the Reviewers

Donald Simpson is an experienced build manager, software developer, and
information technology consultant based in Scotland, UK.

He specializes in helping organizations improve the quality and reduce the cost
of software development through the adoption of continuous integration and
continuous delivery best practices.

He has designed and implemented fully automated code and environment build
solutions for a range of clients and Agile projects.

You can find out more about Donald on his website (www.donaldsimpson. co.uk).

Lawrence Taylor is armed with a PhD in mathematics. He has 7 years of
experience in developing software in a variety of sectors, from finance to travel.
Charred by his number-theoretic past, he is drawn to the abstractions and
techniques required to design and build extensible software systems.


www.donaldsimpson.co.uk

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com

and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢  On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt atwww. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.


www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface \4
Chapter 1: Installing Docker 1
What is Docker? 1
Docker on Ubuntu Trusty 14.04 LTS 2
Upgrading Docker on Ubuntu Trusty 14.04 LTS 3
User permissions 3
Docker on Mac OS X 3
Installation 3
Upgrading Docker on Mac OS X 6
Docker on Windows 6
Installation 6
Upgrading Docker on Windows 7
Docker on Amazon EC2 7
Installation 8
Open ports 12
Upgrading Docker on Amazon EC2 12
User permissions 12
Displaying Hello World 13
Summary 14
Chapter 2: Exploring Docker 15
The Docker image 15
The Docker container 16
The Docker command-line interface 17
The Docker Registry Hub 19
Browsing repositories 19
Exploring published images 21
Summary 27

[il




Table of Contents

Chapter 3: Creating Our First PaaS Image 29
The WordPress image 29
Moving from the defaults 31
Our objective 32

Preparing for caching 32
Raising the upload limit 34
Plugin installation 36
Making our changes persist 43
Hosting image sources on GitHub 44
Publishing an image on the Docker Registry Hub 46
Automated builds 47
Summary 50

Chapter 4: Giving Containers Data and Parameters 51

Data volumes 51
Mounting a host directory as a data volume 52
Mounting a data volume container 52
Backing up and restoring data volumes 53

Creating a data volume image 53
Data volume images 54

Exposing mount points 54
The Dockerfile 55

Hosting on GitHub 55

Publishing on the Docker Registry Hub 57

Running a data volume container 58

Passing parameters to containers 59

Creating a parameterized image 59

Summary 62

Chapter 5: Connecting Containers 63
Manually connecting containers 63
Exploring the contents of a data volume container 65
Connecting containers using Docker Compose 67

Installing Docker Compose 67
Basic Docker Compose commands 68
Service 68
Using the run command 69
Using the scale command 69
Setting up our PaaS with Docker Compose 69
Connecting containers using Crane 70
Installing Crane 71

Lii]




Table of Contents

Usage 71
Configuration 71
Summary 75
Chapter 6: Reverse Proxy Requests 77
Explaining the problem 78
Finding a solution 78
Implementing the solution 80
Implementation with HAProxy 81
Installing HAProxy 81
Configuring HAProxy 82
Adding more domains to HAProxy 85
Implementation with Nginx 86
Installing Nginx 87
Configuring Nginx 87
Adding more domains to Nginx 89
Automating the process of mapping domains 920
Summary 91
Chapter 7: Deployment on Our PaaS 93
The problem with our current setup 93
The tools/services available 94
Dokku — Docker-powered mini-Heroku 96
Installation 96
Creating a sample Dokku app 97
How Dokku works 100
The receive process 100
Dokku plugins 103
Dokku domains plugin 103
Dokku-docker-options 103
Volume plugin for Dokku 103
Dokku-link 104
MariaDB plugin for Dokku 104
Setting up a WordPress app with Dokku 104
Starting multiple apps 107
Adding a domain to Dokku 108
More notes on Dokku 109
Summary 110
Chapter 8: What's Next? 111
What is a Twelve-Factor app? 111
Flynn 113
Deis 114

[iii ]



Table of Contents

Rocket
Orchestration tools
Summary

Index

115
116
116

117

[iv]



Preface

Docker is an open source project with a high-level API that provides software
containers to run processes in isolation. Packaging an app in a container that can
run on any Linux server (as well as on OS X and Windows) helps developers focus
on developing the app instead of server setups and other DevOps operations.

What this book covers

Chapter 1, Installing Docker, takes you through the Docker installation process to start
a container.

Chapter 2, Exploring Docker, gives you an insight into how Docker works and the
terminology used and introduces public images.

Chapter 3, Creating Our First PaaS Image, shows you how to create your own custom
Docker image that will be a part of your PaaS.

Chapter 4, Giving Containers Data and Parameters, teaches you about the data storing
alternatives available and how to pass parameters to your PaaS containers.

Chapter 5, Connecting Containers, shows you how to manually connect containers
in order to form a complete platform, and introduces two tools that give you more
control over multicontainer platforms.

Chapter 6, Reverse Proxy Requests, explains the problem and provides a solution to
having multiple containers on the same host, where more than one host should be
reachable on the same port.

Chapter 7, Deployment on Our Paa$S, takes you through the process of deploying code
to your PaaS. Here, you learn how to create your own mini-Heroku with Dokku.

Chapter 8, What's Next?, introduces a few projects that are in their early stages and
look promising for the future of a Docker based PaaS.

[v]



Preface

What you need for this book
* A PC/laptop running OS X, Linux, or Windows

¢ Internet connection

Who this book is for

This book is intended for those who want to learn how to take full advantage of
separating services into module containers and connecting them to form a complete
platform. You may have, perhaps, heard of Docker but never installed or used it; or,
you may have installed it and run a full stack container, not separating services in
module containers that connect. In either case, this book will give you all the insights
and knowledge required to run your own PaaS.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"After some dependent images are downloaded, we should be able to see our
running container when we execute docker.ps."

A block of code is set as follows:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello</title>
</head>
<body>
<hl>First edit!</hl>
</body>
</html>

Any command-line input or output is written as follows:

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

[vil



Preface

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Open the Finder window and navigate to your Applications folder; locate
boot2docker and double-click on it."

“ Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

[ vii ]



www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the ErrataSubmissionForm link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ viii ]


http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Installing Docker

In this chapter, we will find out where to download and how to install Docker on
various operating systems. Some basic Docker commands will be used so that we
can verify whether the installation was successful and to interact with Docker for
the very first time.

The following topics are covered in this chapter:

*  Whatis Docker?
* Docker on Ubuntu Trusty 14.04 LTS
*  Docker on Mac OS X
* Docker on Windows
* Docker on Amazon EC2
This book will take you through all the steps, from installing Docker to running your

own Platform as a Service (PaaS) so that you can push your code without having to
think about infrastructure or server provisioning.

The theme of this book will be to create a modular web application using an isolated
web server and a database.

What is Docker?

On Docker's website, http: //www.docker . com, the following definition is provided
for Docker:

"Docker is an open platform for developers and sysadmins to build, ship, and run
distributed applications."


http://www.docker.com

Installing Docker

What this means in a more practical sense is that Docker is a way of enclosing
services in isolated environments, called containers, so that they can be packaged
with all they need in terms of libraries and dependencies and the developer can be
certain that the service will run wherever Docker runs.

Docker on Ubuntu Trusty 14.04 LTS

The OS, flavor and version, where it's easiest to install Docker is in Ubuntu Trusty
14.04 LTS. This is a pretty quick task since we can use the built-in package manager
apt-get.

Note that Docker is called docker. io here and just docker

on other platforms since Ubuntu (and Debian) already has a
"~ package named docker.

First we open a terminal and execute these commands one by one:

sudo apt-get update
sudo apt-get install docker.io
source /etc/bash completion.d/docker.io

Here, we first update the lists of the packet manager apt -get in order to
get information about all the packages, versions, and dependencies that are
available. The next line actually installs Docker, and after that, we enable
Ubuntu to tab-complete our Docker commands.

When you've done this without errors, run sudo docker.io version justto
verify that it works as expected.

Note that this installs the latest released Ubuntu package version,
s which might not necessarily be the latest released Docker version.

In order to have the latest version from an alternative Docker-maintained repository,
we can execute the following command:

curl -sSL https://get.docker.com/ubuntu/ | sudo sh

This adds an alternative repository maintained by the Docker team and installs
Docker for you as a much more updated version than the one that comes via the
Ubuntu repository. Note that the Docker package is named 1xc-docker when it
is installed this way. The command used to run Docker commands is still docker.

[2]




Chapter 1

Upgrading Docker on Ubuntu Trusty 14.04 LTS

To check and download upgrades, all you have to do is to execute this command in
a terminal:

sudo apt-get update && sudo apt-get upgrade

User permissions

For convenience, it's preferred to add our user to the system's Docker user group
so that we can control Docker without using sudo. This gives our user permission
to execute Docker commands.

Replace UsEr with your username before you run the code:

sudo gpasswd -a USER docker

You might have to log out and log in again for it to work. When you are logged
back in, run docker ps to verify that there are no permission problems.

[ More detailed information can be found in the official installation guide ]
K

athttps://docs.docker.com/installation/ubuntul inux/.

Docker on Mac OS X

To be able to use Docker on Mac OS X, we have to run the Docker service inside a
virtual machine (VM) since Docker uses Linux-specific features to run. We don't have
to get frightened by this since the installation process is very short and straightforward.

Installation

There is an OS X installer that installs everything we need, that is, VirtualBox,
boot2docker, and Docker.

VirtualBox is a virtualizer in which we can run the lightweight Linux distribution,
and boot2docker is a virtual machine that runs completely in the RAM and occupies
just about 27 MB of space.

[31]


https://docs.docker.com/installation/ubuntulinux/

Installing Docker

+ The latest released version of the OS X installer can be found at

https://github.com/boot2docker/osx-installer/

releases/latest.

Now, let's take a look at how the installation should be done with the following steps:

1. Download the installer by clicking on the button named
Boot2Docker-1.3.0.pkg to get the . pkg file, as shown in the
following screenshot:

ted  Vv1.3.0

1.3.0 ['] tianon released this 5 days ago - 2 commits to master since this release
v1.3.

-o-0c61a02

+ Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
+ Boot2Docker Management Tocl v1.3.0

* Docker v1.3.0

« \irtualBox v4.3.18-r96516

Please see the OS X installation documentation for more details.

[£] Source code (zip) [£] Source code (tar.gz)

2. Double-click on the downloaded .pkg file and go through with the
installation process.

3. Open the Finder window and navigate to your Applications folder;
locate boot2docker and double-click on it. A terminal window will
open and issue a few commands, as shown here:

[ ] w Install Boot2Docker for Mac 0OS X a

Welcome to the Boot2Docker for Mac OS X Installer

Boot2Docker for Mac OS X

Destination Select This installer will guide you through the steps to install Boot2Docker for
Mac 0S X v1.3.0.

Introduction

Installation Type

The docker and boot 2docker binaries will be installed to fusr/

local/bin, and can then be run from your Terminal.

Summary For further information, please see the Docker OS X installation
documentation.

Installation

To continue, click Continue.

Continue

[4]


https://github.com/boot2docker/osx-installer/releases/latest
https://github.com/boot2docker/osx-installer/releases/latest

Chapter 1

This runs a Linux VM, named boot2docker-vm, that has Docker
pre-installed in VirtualBox. The Docker service in the VM runs in
daemon (background) mode, and a Docker client is installed in OS X,
which communicates directly with the Docker daemon inside the VM
via the Docker Remote APL

4. You will see a screen similar to the following screenshot, which tells
you to set some environment variables:

. & oskarhane — Boot2Docker for OSX — bash — B9x21

To connect the Docker client to the Docker daemon, please set:
export DOCKER_HOST=tcp://192.168,59.183:2376
export DOCKER_CERT_PATH=/Users/oskarhane/ . boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1

oskarhane@0skardj ~ $ $(/usr/local/bin/boot2docker shellinit)
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/cert. pem
Writing /Users/oskarhane/.boot2docker/certs/boot2docker-vm/key . pem
oskarhane@0skardj ~ $ docker version

Client version: 1.3.0

Client API wversion: 1.15

Go version (client): gol.3.3

Git commit (client): c7B@BBf

05/Arch (client): darwin/amd&d

Server version: 1.3.8

Server API version: 1.15

Go version (server): gol.3.3

Git commit (server): c7BOBBF

oskarhane@0skardj ~ $ I

We open up the ~/.bash_profile file and paste three lines from our output,
as follows, at the end of this file:

export DOCKER HOST=tcp://192.168.59.103:2376

export.DOCKER_CERT PATH=/Users/xxx/.boot2docker/certs/
boot2docker-vm

export DOCKER TLS VERIFY=1

The reason why we do this is so that our Docker client knows where to find
the Docker daemon. If you want to find the IP in the future, you can do so
by executing the boot2docker ip command. Adding the preceding lines
will set these variables every time a new terminal session starts. When you're
done, close the terminal window. Then, open a new window and type echo
$DOCKER_HOST to verify that the environment variable is set as it should be.
You should see the IP and port your boot2docker VM printed.

[51]



Installing Docker

5. Type docker version to verify that you can use the Docker command.
An output that looks similar to the last few lines of the preceding screenshot
will mean that we have succeeded.

Upgrading Docker on Mac OS X

Since Docker is relatively new, there could be a lot happening in every update,
so make sure that you check for updates on a regular basis. From time to time,
go to the Mac OS X installer download page and check whether there is an
upgrade available. If there is, execute these commands to update it:

boot2docker stop
boot2docker download
boot2docker start

Docker on Windows

Just as we have to install a Linux virtual machine when installing Docker in OS X,
we have to do the same in Windows in order to run Docker because of the Linux
kernel features that Docker builds on. OS X has a native Docker client that directly
communicates with the Docker daemon inside the virtual machine, but there isn't
one available for Windows yet. There is a native Windows version of the Docker
client coming, but it will not be available by the time this book is published.

Installation

There is a Windows installer that installs everything we need in order to run
Docker. For this, go to https://github.com/boot2docker/windows-installer/
releases/latest.

Now, let's take a look at how the installation should be done with the help of the
following steps:

1. Click on the docker-install.exe button to download the . exe file, as shown
in the following screenshot:

[6]


https://github.com/boot2docker/windows-installer/releases/latest
https://github.com/boot2docker/windows-installer/releases/latest

Chapter 1

vi.3.0
(] tianon

* Boot2Docker 1.3.0 (Docker v1.3.0, Linux v3.16.4)
* Boot2Docker Management Tool v1.3.0

¢ \irtualBox v4.3.18-r96516

e msysGit v1.9.4-preview20140929

Please see the Windows installation documentation for more details.

[£) source code (zip) [{) Source code (tar.gz)

2. When the download is complete, run the downloaded installer. Follow
through the installation process, and you will get VirtualBox, msysGit, and
boot2docker installed.

3. Go to your program Files folder and click on the newly installed
boot2docker to start using Docker. If you are prompted to enter a passphrase,
just press Enter.

4. Type docker version to verify that you can use the Docker command.

Upgrading Docker on Windows

A new software changes often and to keep boot2docker updated, invoke
these commands:

boot2docker stop
boot2docker download
boot2docker start

Docker on Amazon EC2

Throughout this book, I will use an Amazon EC2 instance, and since it is a superb
place to host your Paa$S, I will recommend that you do the same.

EC2 stands for Elastic Compute Cloud, and it is an infrastructure type of service.
Amazon EC2 offers virtual servers that are created and available within a minute
of ordering them.

[71



Installing Docker

Amazon has instances named t [x] . micro that you can use for
free for 750 hours per month. You can read more about them at
http://aws.amazon.com/free.

Amazon has its own Linux named Amazon Linux AMI that can be used to run Docker.

Installation
Let's see how the installation is done with the following steps:
1. Create an account at http://aws.amazon.comand go to Amazon's Create

EC2 Instance Wizard at https://console.aws.amazon.com/ec2/v2/
home?#LaunchInstanceWizard.

The next steps are shown in the screenshot as follows:

. f Cancel and Exit
Step 1: Choose an Amazon Machine Image (AMI)
An AMI is a template that contains the software configuration (operating system, ication server, and ications) required to launch your instance. You can select an AMI provided by AWS,
our user community, or the AWS Marketplace; or you can select one of your own AMIs.

Quick Start 1to500f 22,285 AMIs > >
Q X
My AMIs
AWS Marketplace amzn-ami-hvm-2014.09.2.x86_64-ebs - ami-dfc39aef m
Amazon Linux AMI| 2014.09.2 x86_64 HVM EBS )
Community AMIs 64-bit
Root device type: ebs  Virtualization type: hvm
~ Operating system e RHEL-7.1_HVM_GA-20150225-x86_64-1-Hourly2-GP2 - ami-4dbf3e7d m
/= L Provided by Red Hat, Inc. it
~/Cent OS L3 Root device type: ebs  Virtualization type: hvm
_|Debian <
— Fedora 8 3 suse-sles-12-v20141023-hvm-ssd-xB86_64 - ami-d7450be7? m
~|Gentoo ) SUSE Linux Enterprise Server 12 (HVM, 64-bit, SSD-Backed) s4-bit
~|OpenSUSE o Root device type: ebs  Virtualization type: hvm
~Other Linux A
~|Red Hat (5] @ ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-20150123 - ami-23ebb519 m
—JSUSE Linux d i o )
—Ubunty ® Root device type: sbs  Virtualization type: hvm 64-bit
~|Windows o

2. Click on Community AMISs in the menu on the left-hand side and select
the latest amzn-ami -pv. Make sure that you select the pv version and not
the hvm version so that you have a virtualization that is more stable and
has less overhead, as shown here:

L i e e il e B B e e 1
: amzn-ami-pv-2014.09.1.x86_64-ebs - ami-55a7eab5 Select :
1 1
1 Amazon Linux AMI| 2014.09.1 xB6_64 PV EBS 1
1 64-bit 1
: Root device type: ebs  Virtualization type: paravirtual :

[8]


http://aws.amazon.com/free
http://aws.amazon.com
https://console.aws.amazon.com/ec2/v2/home?#LaunchInstanceWizard
https://console.aws.amazon.com/ec2/v2/home?#LaunchInstanceWizard

Chapter 1

3. When it's time to choose an instance type, you can choose tl.micro or
t2.micro for now if they are available. The micro instances are very limited
in their performance, but since they are available in the free usage tier in
some regions and this is not for a live site at the moment, we can use them.
Click on Next: Configure Instance Details and then click on the Review
and Launch button, as shown in the following screenshot:

Step 2: Choose an Instance Type

Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying
combinations of CPU, memory, storage, and networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about
instance types and how they can meet your computing needs.

Filter by:  All instance types Current generation ~  Show/Hide Columns

Currently selected: t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB memory, EBS only)

Family W vcPus (1 Memory (GiE) Instance Slrrage {GB) E:::ia:‘:“ied Network Pe:'formance
a General purpose 1 1 EBS only - Low to Moderate
General purpose t2.small 1 2 EBS only - Low to Moderate
General purpose t2.medium 2 4 EBS only - Low to Moderate
General purpose m3.medium 1 3.75 1x4(SSD) - Moderate
General purpose m3.large 2 7.5 1x32 (SSD) - Moderate

4. Verify all the details on the summary page and click on the Launch
Instance button.

5. You will be prompted whether you want to use an existing key-pair or
create a new one. If this is your first time creating an Amazon EC2 instance,
you will want to create a new key-pair. This makes it easy to securely connect
to your instances.

6. Download the new key-pair, move it to your ~/ . ssh/ folder, and remove
the .txt extension.

7. It's also important to set the correct user permissions on the file or SSH will
refuse to use it.

In Linux or on a Magc, this is how the terminal command to do this looks:
mv ~/Downloads/amz.pem.txt ~/.ssh/amz.pem

chmod 600 ~/.ssh/amz.pem

On Windows, save the key anywhere and use a tool such as PuTTYgen to
convert it to a . ppk file, so you can use it when connecting using PuTTY.

[o]



Installing Docker

8. You will be prompted to choose a security group for your instance. Pick the
default one since this won't be a production server. When it's time to use a
production server, we might want to add more security to our instance.

9. Now we're up and running! Let's connect to it. Click on the View Instances
button and select your newly created instance in the list, as shown here:

Launch Status

& Your instance is now launching

The following instance launch has been initiated: i-e14b89eb  View launch log

Q Get notified of estimated charges

Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an
amount you define (for example, if you exceed the free usage tier).

How to connect to your instance

Your instance is launching, and it may take a few minutes until it is in the running state, when it will be ready for you
to use. Usage hours on your new instance will start immediately and continue to accrue until you stop or terminate
your instance.

Click View Instances to monitor your instance's status. Once your instance is in the running state, you can connect
to it from the Instances screen. Find out how to connect to your instance.

~ Here are some helpful resources to get you started

« How to connect to your Linux instance « Amazon EC2: User Guide
« Learn about AWS Free Usage Tier « Amazon EC2: Discussion Forum

While your instances are launching you can also

« Create status check alarms to be notified when these instances fail status checks. (Additional charges may apply)
« Create and attach additional EBS volumes (Additional charges may apply)
« Manage security groups

10. In the bottom of the screen, you can see some information about the
instance. You should be looking for the public DNS information.
This is how it should look:

ec2-54-187-234-27.us-west-2.compute.amazonaws.com

11. On a Linux or Mac, open a terminal and connect to it:

ssh ec2-user@ec2-54-187-234-27.us-west-2.compute.amazonaws.com -i
~/ .ssh/amz.pem

[10]




Chapter 1

The screenshot is displayed as follows:

o (O] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 103x29

oskarhane@0skard] ~ § ssh ecZ-userBec2-54-187-234-27,us-west-2, compute. amazonaws,com -i —~/,ssh/amz.pem
The authenticity of host ‘ec?-54=187-234-27 us-west=-2,compute.amaronaws.com (54.187.234.27)° can't be &
stablished.

RSA kay fingerprint is 61:59:ce:Ba:45:51:67:59:d5:bc:ec:ed:81:d1:69:7a.

Are you sure you want to continue connecting (ves/no)? yes

Warning: Permanently added 'ec?-54-187-234-27.us-west-2.compute,amazonaws.com,54,187.234.27" (RSA) to t
he list of known hosts,

WARNING: UNPROTECTED PRIVATE KEY FILE!|
Permissions 8644 for '/Users/oskarhane/.ssh/amz.pem' are too open.

It is required that your private key files are MOT accessible by others.
This private key will be ignored.

bad permissions: ignore key: /fUsers/oskarhane/.ssh/amz.pem

Permission denied (publickey).

oskarhane@0skardj ~ $ chmod 680 ~/.ssh/amz.pem

oskarhane@0skardj ~ $ ssh ec2-user@ec2-54-187-234-27,us-west-2. compute. com =i ~/f,ssh/amz.pem

)
/  Amazon Linux AMI

https: //aws . amazon, com/amazon-1inuc-ami /2814 . 89-release-notes/

Mo packages needed for security; 4 packages available

Run “sudo yum update” to apply all updates.

-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-B): Mo such file or directory
[ec2-user@ip-172-31-32-58 ~1% ||

We use the ec2-user user that is the default user for Amazon's Linux
instances, and amz . pem is the key we downloaded earlier. Replace the
URL with your public DNS information from the last step.

When asked whether you want to continue because of an unknown host,
type yes.

On Windows, use PuTTY and make sure that you have specified the
converted private key from step 4 in the PuTTY Auth tab.

12. Once you are connected to the instance, install Docker:

sudo yum update
sudo yum install -y docker
sudo service docker start

13. To test whether it's working as expected, type docker version and make
sure there's no error. You should see a few lines with the client version,
API version, and so on.

[11]



Installing Docker

Open ports
Amazon's default security policy is to block the default ports used to expose services

from Docker, so we have to change this.

*  We go back to the EC2 dashboard and click on the Security Groups
option in the menu

* Select the security group that your EC2 instance uses and select the
Inbound tab

* Docker uses ports in a range from 49000 - 50000, so we add a rule
for this, as shown in the following screenshot:

Description Inbound Outbound Tags
Edit
Type (i Protocol (i Port Range (i Source (i
SSH TCP 22 0.0.0.0/0
HTTP TCP 80 0.0.0.0/0
Custom TCP Rule TCP 49000 - 50000 0.0.0.0/0

Upgrading Docker on Amazon EC2

Upgrading an Amazon Linux AMI instance is as easy as it is for Ubuntu. Type sudo
yum update and confirm whether there's an update waiting. This command will list
all the available updates and upon your confirmation, install them.

User permissions

Docker requires commands to be run by users in the docker user group.
For convenience, we add our user to the Docker group so that we can control
Docker without using sudo:

sudo gpasswd -a ec2-user docker

You might have to log out and log in again for it to work. When you are logged
back in, run docker ps to verify that there are no permission problems. You should
see a row of capitalized words, such as CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES.

[12]



Chapter 1

Displaying Hello World

Now that we have Docker running on a machine of our choice, it's time to make
Docker work for us. Here are a few very basic commands that we can use for some
basic interaction with the Docker daemon.

In the next chapter, all the concepts and phrases used in Docker will be explained:

* docker ps: This lists the running containers

* docker ps -a: This lists all the containers, both running and exited

* docker images: This lists local (downloaded and locally created) images
* docker run: This will launch a new instance container from an image

* docker stop: This is used to stop a container

Let's try the first one in the screenshot shown below:

@] @ oskarhane — bash — 127x6

Last login: Thu Oct 23 20:36:38 on ttyseal
oskarhane@0skardj ~ $ docker ps
CONTAINER ID IMAGE COMMAND

oskarhane@0skar4j ~ $ I

As expected, we have nothing running yet.

Launching a container is as easy as docker run [image] [command].If theimage
doesn't exist locally, Docker will download it from the Docker Registry Hub and
launch your container when it's downloaded.

The following steps are displayed as follows:

oskarhane@0skardj = $ docker run oskarhane/hello echo "Hello, let me out of here"
Unable to find image 'oskarhane/hello’ locally

Pulling repository oskarhane/hello

26c2a2935d3f: Download complete

511136ea3c5a: Download complete

d497ad3926cB: Download complete

c5fcd5669fas: Download complete

49bb1c57a82c: Download complete

67983a9b1599: Download complete

BBfba6fid2d8: Download complete

ecal’633ed783: Download complete

feaaa?9e24d9: Download complete

Status: Downloaded newer image for oskarhane/hello:latest
Hello, let me out of here

[13]



Installing Docker

Type the following command in a terminal to launch a container that prints the
string Hello, let me out of here and then exits:

docker run oskarhane/hello echo "Hello, let me out of here"
This is not very useful, but we just ran a command in Ubuntu inside the container.

If we type docker ps again, we can see that we still have no running containers
since we exited the one we just started straightaway. Try using docker ps -a
instead, and try docker images.

Summary

In this chapter, we learned that Docker can be used on most operating systems
and that the installation process varies a lot depending on the OS. We had our
first interaction with the Docker daemon and launched our first container in
Docker. Even though all the container did was write a command, that's how
easy it is to start and run something inside a guest operating system.

We have also introduced the theme that shows what this book is all about,
running a multicontainer web app of a web server container and a MySQL
container: your own PaaS.

In the next chapter, we will further explore Docker, its terminology, and the
community around it.

[14]




Exploring Docker

After reading this chapter, you will find yourself more comfortable talking about and
using Docker. The following topics will be covered here:

* The Docker image
e The Docker container

¢ The Docker command-line interface
* The Docker Registry Hub

You will find these topics important when building your PaaS, and you will use and
interact with all of them throughout this book.

The Docker image

In the beginning, it can be hard to understand the difference between a Docker
image and a Docker (or Linux) container.

Imagine that our Linux kernel is layer zero. Whenever we run a Docker image,
a layer is put on top of our kernel layer. This image, layer one, is a read-only
image and cannot be changed or cannot hold a state.

A Docker image can build on top of another Docker image that builds on top of
another Docker image and so on. The first image layer is called a base image, and
all other layers except the last image layer are called parent images. They inherit all
the properties and settings of their parent images and add their own configuration
in the Dockerfile.



Exploring Docker

Docker images are identified by an image ID, which is a 64-character long hexadecimal
string, but when working with images, we will almost never reference an image by this
ID but use the image names instead. To list all our locally available Docker images, we
use the docker images command. Take a look at the following image to see how the
images are listed:

® [ ] oskarhane — Boot2Docker for OSX — bash — 99x11

REPOSITORY IMAGE ID CREATED YIRTUAL SIZE
oskarhane,/docker-neod;j 3b4a67b40106 18 days ago 781.1 MB
neodj edd1917884eb 18 days ago 782.1 MB
necdj Sl 3b2beagfss1f 10 days ago 782.1 MB
<none> 2365ed7fd58c 10 days ago 782 MB

oskarhane/hello 26c2a2935d3fF 11 days ago 192.7 MB
dockerfile/java 913e453bd95f 12 days ago 710.2 MB
uburityu ecal633ed783 13 days ago 192.7 MB
<none> 63816933910 12 weeks ago 1.883
oskarhane@0skardj — % I

Images can be distributed with different versions for us to choose from, and the
mechanism for this is called tags. The preceding screenshot illustrates this with the
neo4j image that has a latest and a 2.1.5 tag. This is how the command used to pull
a specific tag looks:

docker pull ubuntu:14.04
docker pull ubuntu:12.02

The Docker container

A Docker container is created the moment we execute docker run imagename.
A writeable layer is added on top of all the image layers. This layer has processes
running on the CPU and can have two different states: running or exited. This is
the container. When we start a container with the Docker run command, it enters
the running state until it, for some reason, stops by itself or is stopped by us and
then enters the exited state.

When we have a container running, all the changes we make to its filesystem are
permanent between start and stop. Remember that changes made to the container's
filesystem are not written to the underlying Docker image.

[16]



Chapter 2

We can start as many instances of running containers as we want from the same
image; they will all live side by side, totally separated by each other. All the changes
we make to a container are limited to that container only.

If changes are made to the container's underlying image, the running container
is unaffected and there is no autoupdate happening. If we want to update our
container to a newer version of its image, we have to be careful and make sure
that we have set up the data structure in a correct way, otherwise we have the
risk of losing all the data in the container. Later in this book, I will show you
where to keep important data without the risk of losing it.

The corresponding screenshot is shown as follows:

@ oskarhane — Boot2Docker for 0SX — bash — 155x11

oskarhane@0skardj ~ $ docker ps -a
CONTAINER 1D TMAGE COMMAND CREATED STATUS NAMES

6a2356aB84a67 neodj:latest “fbin/bash -c flaunc 10 days ago Exited (-1) 19 days ago thirsty_yonath
b63bg99ad9ef 63816933910 */bin/bash -c flaunc 10 days ago Exited (=1) 10 days ago sleepy_hawking
36cBebB86d307 neodj:2.1.5 *fbin/bash -c flaunc 10 days ago Exited (@) 10 days ago tender_hawking

84702a68d226 2365ed7fd59¢ “fbin/bash -c flaunc 10 days ago Exited (-1) 1@ days ago hopeful _leakey
1becd926dee2 2365ed7fds%9¢ */bin/bash -c flaunc 10 days ago Exited (=1) 10 days ago nostalgic_curie
eddf 308cdadd oskarhane/hello:latest “echo ‘Hello, let me 11 days ago Exited (@) 11 days ago desperate_franklin
oskarhane@0skardj ~ $

(—

A 64-character long hexadecimal string called container ID identifies Docker
containers. This ID can be used when interacting with the container, and depending
on how many containers we have running, we will usually only have to type the first
four characters of the container ID. We can use the container name as well, but it's
often easier to type the beginning of the ID.

The Docker command-line interface

The command line interface is where we communicate with the daemon using the
Docker command. The Docker daemon is the background process that receives the
commands that are typed by us.

[17]



Exploring Docker

In the previous chapter, we ran a few Docker commands to start and stop containers
as well as to list containers and images. Now, we are going to learn a few more that
will help us when handling containers for our Paa$S, as follows:

* docker logs <container-ID|names>: Everything thatis written to
the sTDOUT containers will end up in the file that can be accessed via
this command. This is a very handy way to output information from
within a container, as shown here:

I [ ] oskarhane — Boot2Docker for OSX — bash — 95x7

oskarhane@0skardj ~ % docker run oskarhane/hello echo “Let's go for this container again. This
is written to the stdout from inside the container."

Let's go for this container again., This is written to the stdout from inside the container,
oskarhane@lskard] ~ $ docker logs Sad7

Let's go for this container again. This is written to the stdout from inside the container.
oskarhane@0skardj ~ $

(e

* docker export <container-ID|names:If youhave a container that holds
data that you want to export, this is the command to be used. This creates a
tar archive and sends it to STDOUT:

@ oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 155x16

[ec2-user@ip-172-31-32-58 ~1$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
fod9edfbFa44 oskarhane/hello:latest “echo 'Important dat 6 seconds ago Exited (@) 6 seconds ago backstabbing_wilson

[ec2-user@ip-172-31-32-58 ~1$ docker export f9 > exported_container_f9,tar
[ec2-user@ip=-172-31-32-58 1% 1s -la

------ 3 ec2-user ecZ-user 4896 Nov 3 21:46 .

drxr-xr-x 3 root root 4896 Oct 22 20:26 .

-rw-——--—-=- 1 ec2-user ec2-user 261 Oct 23 20:58 .bash_history
=rw=r=-r== 1 ec2-user ecZ-user 18 Sep 26 98:25 ,bash_logout
-rw-r--r-- 1 ec2-user ecz-user 176 Sep 26 99:25 .bash_profile
=rw-r=-r=- 1 ec2-user ecl-user 124 Sep 26 @9:25 .bashrc
drwx--——-- 2 ec2-user ec2-user 4896 Oct 22 20:26 h
-rw-rw-r-- 1 ec2-user ecZ-user 178564688 Nov 3 21:46
[ec2-user@ip-172-31-32-58 ~1$

* docker cp CONTAINER:PATH HOSTPATH: If you don't want the whole file
system from a container but just one directory or a file, you can use docker
cp instead of export, as shown in the following screenshot:

[18]



Chapter 2

oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 15737

[ec2-user@ip-172-31-32-58 ~1$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
f9d9ed fbfo44 oskarhane/hello:latest “echo 'Important dat 9 minutes ago Exited (@) 9 minutes ago backstabbing_wilson
[ec2-user@ip-172-31-32-58 ~1$ docker cp f9:/etc/passwd ./from_f9
[ec2-user@ip-172-31-32-58 ~1$ 1s -la
total 174412
------ 4 ec2-user ecZ-user 4896 Nov 3 21:56 .
drwxr=xr=x 3 root root 4896 Oct 22 20:26 ..
ec2-user ec2-user 261 Oct 23 20:58 .bash_history
-rw BC2-user ec2-user 18 Sep 26 99:25 ,bash_logout
-rw ec2-user ec2-user 176 Sep 26 8@:25 .bash_profile
-rw BC2-user ec2-user 124 Sep 26 8@:25 .bashrc
drw: 2 ecZ-user ecZ-user 4896 Oct 22 20:26 .ss
-rw-rw-r-- 1 ec2-user ecZ-user 178564688 Nov 3 21:46
drwxrwxr-x 2 ec2-user ec2-user 4896 Nov 3 21:56
[ec2-user@ip-172-31-32-58 ~1$ cat from_f9/passwd
root:x:8:0: root: /root: /bin/bash
1:daemon; fusr/sbin: fusr/sbin/nologin
:bin: H

60 : games: fusr/games: /usr/sbin/nologin
man: /var/cache/man: fusr/sbin/nologin
'var/spool/lpd: fusr/sbin/nologin
mail: /var/mail:fusr/sbhin/nologin
news: /var/spool /news: fusr/shin/nologin
uucp: /var/spool/uucp: fusr/sbin/nologin
13:proxy: /bin: fusr/sbin/nologin
33:33 :www-data: /var/www: fusr/sbin/nologin
4 : backup: /var/backups: fusr/sbin/nologin
Mailing List Manager:/var/list:/usr/sbin/nologin
red: fvar/run/ired: fusr/sbin/nologin
41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
534: 65534 :nobody : /nonexi stent: fusr/sbin/nologin
L] i/var/lib/libuuid;
1:104: : /home/syslog: /bin/false
[ec2-user@ip-172-31-32-58 ~1$

The Docker Registry Hub

One important part of Docker's popularity is its community and the ease with which
you can share, find, and extend Docker images. The central place for this is the
Docker Registry Hub that can be found at https://hub.docker.com/.

Browsing repositories

Here, we can search and, in many ways, browse for image repositories to find exactly
what we're after. If we take a look at the popular ones, we will see what others are
using the most.

If we click on the Ubuntu repository, we will see lots of information about the image,
the tags that are available, users' comments, the number of stars it has, and when it
was updated.

[19]


https://hub.docker.com/

Exploring Docker

The screenshot is displayed as follows:

® O ® /& ubuntu Repository | Docke *

& > C [ hitps//registry.hub.docker.com/_/ubuntu/ %0 & =
Browse Repos Decumentation Community Help (d oskarhane v
R OFFICIAL REPO Updated 1 week, 2 days ago
ubuntu Pull this repository  docker pull ubuntu
Official Ubuntu base image
877
Information Tags Properties

© 2013-04-30 22:54:50
& stackbrew

Supported tags and respective wcertie liNKS

« 12.84.5, 12.04, precise (precise/Dockerfile)
* 14.84.1, 14.04, trusty, latest (trusty/Dockerfile)
« 14.10, utopic (utopic/Dockerfile)

For mere information about this image and its history, please see the relevant manifest file
( Librarysubunty ) in the docker-1ibrary/official-images GitHub repo.

Ubuntu
sources.list

$ docker run ubuntu:l4.04 grep -v "A#' /etc/apt/sources.list

deb http://archive.ubuntu.com/ubuntu/ trusty main restricted
deb-src http://archive.ubuntu.com/ubuntu/ trusty main restricted

deb http://archive.ubuntu.com/ubuntu/ trusty-updates main restricted

deb-src http://archive.ubuntu.con/ubuntu/ trusty-updates main restricted

deb http://archive.ubuntu.com/ubuntu/ trusty universe

deb-src http://archive.ubuntu.com/ubuntu/ trusty universe

deb http://archive.ubuntu.com/ubuntu/ trusty-updates universe
deb-src http://archive.ubuntu.com/ubuntu/ trusty-updates universe

deb http://archive.ubuntu. com/ubuntl/ trusty-security main restricted
deb-src http://archive.ubuntu.com/ubuntu/ trusty-security main restricted
deb http://archive.ubuntu. com/ubuntu/ trusty-security universe

deb-src http://archive.ubuntu. com/ubuntu/ trusty-security universe

S docker run ubuntu:lZ.94 cat /etc/apt/sources.list

deb http://archive.ubuntu.com/Ubuntu/ precise main restricted
deb-src_http://archive.ubuntu. com/ubuntu/ precise main restricted

If we click on a tag in the main view, we'll see something called the Dockerfile.
This is the image description that runs when an image is being created. Further in
this book, we'll write our own.

If you're interested in an image in the Docker hub, I recommend that you read the
Information/README as well as the other users' comments. Often, you will find

valuable information there that will help you to choose the right image and show

you how to run it in the way the maintaining developer intended to.

Often, you will find images that almost fit your needs since most images are quite
general, but as a developer, you might need specific settings or services installed.

[20]



Chapter 2

Exploring published images

Take the official WordPress Docker image, for example (https://registry.hub.
docker.com/_/wordpress/). You'll find it on the Docker hub's browse page or you
can search for it.

Let's forget about these shortcomings for now and see what the information page says:

How to use this image

docker run --name some-wordpress --link some-mysql:mysql -d wordpress

The following environment variables are also honored for configuring your WordPress instance:

+ -e WORDPRESS_DE_USER=... (defaults to “root”)

+ -e WORDPRESS_DB_PASSWORD=. .. (defaults to the value of the MYSQL_ROOT_PASSWORD environment
variable from the linked mysqgl container)

+ -e WORDPRESS_DE_NAME=... (defaults to "wordpress”)

+ - WORDPRESS_AUTH_KEY=..., -e WORDPRESS_SECURE_AUTH_KEY=..., -e
WORDPRESS_LOGGED_IN_KEY=. .., -e WORDPRESS_NONCE_KEY=..., -e WORDPRESS_AUTH_SALT=..., -
e WORDPRESS_SECURE_AUTH_SALT=..., -e WORDPRESS_LOGGED_IN_SALT=..., -e
WORDPRESS_NONCE_SALT=... (default to unigue random SHA1s)

If the WORDPRESS_DB_NAME specified does not already exist in the given MySQL container, it will be
created automatically upon container startup, provided that the WORDPRESS_DE_USER specified has the
necessary permissions to create it.

If you'd like to be able to access the instance from the host without the container's |P, standard port
mappings can be used:

docker run --name some-wordpress --link some-mysql:mysql -p 8088:80 -d wordpress

Then, access it via http://localhost:808@ Or http://host-ip:8@8@ in a browser.

This image reads the settings from the Docker container's environment variables.
This means that image has to be started with the environment variables injected
using the docker run -e command, or you can --1ink another container to it
that injects these variables. We'll discuss container linking more later in this book.

[21]


https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/

Exploring Docker

Let's see what we'll get if we were to pull this image. Click on the link to the Dockerfile
in the apache directory:

FROM php:5.6-apache
RUN a2enmod rewrite

# install the PHP extensions we need

RUN apt-get update && apt-get install -y libpngl2-dev libjpeg-dev && rm
-rf /var/lib/apt/lists/* \

&& docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/
usr \

&& docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS VERSION 4.1.1
ENV WORDPRESS UPSTREAM VERSION 4.1.1
ENV WORDPRESS SHAl 15d38fe6c73121a20e63ccd8070153b89b2debal

# upstream tarballs include ./wordpress/ so this gives us /usr/src/
wordpress

RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-
${WORDPRESS UPSTREAM VERSION}.tar.gz \

&& echo "$WORDPRESS SHAl *wordpress.tar.gz" | shalsum -c - \
&& tar -xzf wordpress.tar.gz -C /usr/src/ \

&& rm wordpress.tar.gz
COPY docker-entrypoint.sh /entrypoint.sh

# grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]

CMD ["apache2-foreground"]

Ok, we see that it builds on Debian Wheezy and installs Apache2, PHP5, and
some other stuff. After that, it sets a bunch of environment variables and then
downloads WordPress.

[22]



Chapter 2

We see a few lines starting with the command copy. This means that files are
shipped with the Docker image and are copied to the inside of the container
when it's started. This is how the docker-apache. conf file shipped with the
WordPress image looks:

<VirtualHost *:80>
DocumentRoot /var/www/html
<Directory /var/www/html>
AllowOverride all
</Directory>
</VirtualHost>

# vim: syntax=apache ts=4 sw=4 sts=4 sr noet
The preceding line of code tells Apache where to look for files.
What about the docker-entrypoint. sh file?

The ENTRYPOINT keyword tells the Docker daemon that if nothing else is specified,
this file should be executed whenever the container is run. It is as if the whole
container is an executable file.

If we take a look at what is present inside this file, we'll see that it basically sets up
the connection to the MySQL database and configures .htaccess and WordPress:

#!/bin/bash

set -e

if [ -z "$MYSQL PORT 3306 TCP" ]; then
echo >&2 'error: missing MYSQL PORT 3306 TCP environment variable'
echo >&2 ' Did you forget to --link some mysqgl container:mysql ?'
exit 1

fi

The first thing that is done is to check whether the user has set environment variables
for the MySQL connection. If not, it exits and writes some info to STDERR.

[23]



Exploring Docker

Why don't you try and see whether you can trigger the MySQL error that writes
error: missing MYSQL_PORT_3306_TCP environment variable to the STDERR,
as follows:

docker run --name some-wordpress -d wordpress

oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 163x42

[ec2-user@ip-172-31-32-58 ~1% docker run --name some-wordpress -d wordpress
Unable to find image ‘wordpress' locally
Pulling repository wordpress
26844972df90: Download complete
511136ea3c5a: Download complete
638fd9704285: Download complete
61F7f4f722fb: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
89cTe5e37ba2: Download complete
e4d@87baebBb: Download complete
5d6e661adcB2: Download complete
1537¢7d99475: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
: Download complete
b76419c22che: Download complete
@f3fB0a0BBcA: Download complete
fB6952a71375: Download complete
cd6321c5aB3e: Download complete
2bac20b78312: Download complete
al1c1@1cacaf4d92ddc2b6134b477£61cfa771dd1 e102bad5f 29e590aceddfB1
[ec2-user@ip=172-31-32-58 ~1$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
[ec2-user@ip-172-31-32-58 ~1% docker ps -a
CONTAINER ID TMAGE COMMAND CREATED STATUS NAMES
allc1@lcacaf wordpress: latest “fentrypoint.sh apac 24 minutes ago Exited (1) 24 minutes ago some-wordpress
fod9ed4fhfo44 oskarhane/hello: latest “echo 'Important dat About an hour ago Exited (@) About an hour ago backstabbing wilson
[ec2-user@ip-172-31-32-58 ~1$ docker logs all
error: missing MYSQL_PORT_3386_TCP environment variable
Did you forget to =-link some_mysql _container:mysql 7
[ec2-user@ip-172-31-32-58 -1 I

The --name some-wordpress command names the container, so we can reference it
by this name later. Also, the -d argument tells the container to run in detached mode,
which means that it does not listen to commands from where we started it anymore.
The last wordpress argument is the name of the Docker image we want to run.

If we check the log for our new container, we'll see what the screenshot shows us:
the expected error message.

[24]



Chapter 2

Let's run a MySQL container and see whether we can get it to work. Navigate to
https://registry.hub.docker.com/_/mysql/ in order to get to the official MySQL
docker repository on the Docker registry hub. Here, it states that in order to start a
MySQL instance, we need to invoke docker run --name some-mysql -e MYSQL_
ROOT_PASSWORD=mysecretpassword -d mysql in the shell. Since we are doing
this for educational purposes at the moment, we don't have to choose a strong root
user password. After some dependent images are downloaded, we should be able to
see our running container when we execute docker ps. If we do, have a look at the
installation log by running docker logs some-mysgl, as shown here:

[ec2-user@ip-172-31-32-58 ~1% docker run —--name some-mysgl —e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
Unable to find image 'mysql' locally

Pulling repository mysql

601884ab1542: Download complete

511136ea3c5a: Download complete

f10807909bc5: Download complete

f6fab3b798be: Download complete

dB32c6f4Bec3: Download complete

cfab4f@dB972: Download complete

cfB221608a63: Download complete

4755681 2cdcf: Download complete

e012a865bacB: Download complete

d1fe641c4518: Download complete

9237c7d71a12: Download complete

1edcB3daab35: Download complete

63072de7f7fe: Download complete

e564e618e873: Download complete

91729f79abf2: Download complete

19a5518ebdde: Download complete

372b5492e145: Download complete
dd1f4cobadcBicdcT94deb265abadc3420b35efod] eB1f60e1b1d1aTed0BERGE
[ec2-user@ip-172-31-32-58 ~1% docker ps

CONTAINER ID IHAGE COMMAND CREATED STATUS PORTS NAMES

dd1f4cobadcB mysql:latest "fentrypoint.sh mysq 11 seconds ago Up 1@ seconds 3306/tcp some-mysql

[ec2-user@ip-172-31-32-58 ~1$ docker logs dd

2014-11-11 19:43:54 @ [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit _defaults for_timestamp server opt
ion (see documentation for more details).

2014-11-11 19:43:54 12 [Warning] Buffered warning: Changed limits: max_open_files: 1024 (requested 5008)

2014-11-11 19:43:54 12 [Warning] Buffered warning: Changed limits: table_cache: 431 (requested 2009)

2014-11-11 19:43:54 12 [Note] InnoDB: Using atomics to ref count buffer pool pages
20814-11-11 19:43:54 12 [Note] InnoDB: The InnoDB memory heap is disabled

2014-11-11 19:43:54 12 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builtins
2814-11-11 19:43:54 12 [Note] InnoDB: Memory barrier is not used

2014-11-11 19:43:54 12 [Notel : Compressed tables use zlib 1.2.3

2014-11-11 19:43:54 12 [Note] : Using Linux native AID

2914-11-11 19:43:54 12 [Notel : Using CPU crc32 instructions

2914-11-11 19:43:54 12 [Notel : Initializing buffer pool, size = 128.8M
2914-11-11 19:43:54 12 [Notel : Completed initialization of buffer pool
2914-11-11 19:43:54 12 [Notel : The first specified data file ./ibdatal did not exist: a new database to be created|
20814-11-11 19:43:54 12 [Notel : Setting file ./ibdatal size to 12 MB

2914-11-11 19:43:54 12 [Notel : Database physically writes the file full: wait...
2014-11-11 19:43:54 12 [Notel : Setting log file ./ib_logfileldl size to 48 MB
2914-11-11 19:43:56 12 [Notel : Setting log file ./fib_logfilel size to 48 MB

[25]


https://registry.hub.docker.com/_/mysql/

Exploring Docker

Great, now we have a running MySQL container that is needed to start a WordPress
instance. Let's start a new WordPress instance with the MySQL link in place:

docker run --name some-wordpress --link some-mysqgl:mysqgl -p 80 -d
wordpress

The --1ink parameter exposes the some-mysqgl containers' environment variables,
interface, and exposed ports via the environment variables injected to the some-
wordpress container.

To open a port that can be reached from the outside, port 80 is exposed via the -p
80 parameter.

If you get an error message saying Error response from daemon: Conflict, The
name some-wordpress is already assigned to allcl01cacaf., you have to delete

(or rename) that container to be able to assign some-wordpress to a container again.
You need to give the new container a new name or delete the old (failing) WordPress
container. Invoke docker rm some-wordpress to delete the old container using the
desired name.

When you have the container running, invoke docker ps command to find out which
of our ports was assigned to the container's private port 80.

We can either look at the ports column in the container list, or we can invoke docker
port some-wordpress 80 to explicitly find it, as shown here:

[ ] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 161x9
[ec2-user@ip-172-31-32-58 ~1$ docker run --name some-wordpress —-link some-mysql:mysql -p 88 -d wordpress
737125e61b92b18fa089cTbed8al505e596ccob] baBeddic3ada5138a667d8a
[ec2-user@ip-172-31-32-58 ~1$ docker ps
CONTATNER 1D TMAGE COMMAND CREATED STATUS PORTS: NAMES
737125e61b92 wordpress: latest “fentrypoint.sh apac 4 seconds ago Up 3 seconds 9.9.0,.0:49155->80/tcp  some-wordpress

dd1 f4cObadcB mysql:latest “/entrypoint.sh mysq About an hour ago Up About an hour 3306/tcp some-mysql , some-wordpress/mysql
[ec2-user@ip-172-31-32-58 ~1$ docker port 7371 8@

9.9.0.0:49155

[ec2-usergip-172-31-32-58 ~1$

In my case, it was port 49155.

Enter your Docker hosts' ip:port in your web browser to see whether you can reach
it. If you're on your local computer running Windows or OS X, you can find your
Docker IP by invoking boot2docker ip. If you're on a local Linux, 127.0.0.1 should
be fine.

I'm doing this on Amazon EC2, so I have to go to the EC2 Management console to
get my public IP or public DNS.

[26]




Chapter 2

Point your web browser to http://yourip:yourport (in my case,
http://myamazon-dns.com:49155) and you should be presented with this:

Al
Azarbaycan dili
Bbnrapcku
Bosanski

Catala

Cymraeg

Dansk

Deutsch

English (Canada)
English (UK)
English (Australia)
Espariol

Espafiol de Peru

The default Amazon AWS security policy is to block the
default Docker public ports, so we have to change this in
the Security Groups section in the EC2 dashboard. See
g the Docker on Amazon EC2 section in Chapter 1, Installing

Docker, for how to do this.

Wonderful, it works!

Summary

The Docker image can be seen as a read-only template for containers, specifying
what's supposed to be installed, copied, configured, and exposed when a container
is started.

We learned more about how we can interact with the Docker daemon and with
individual Docker containers to read logs, copy files, and export the complete
filesystem.

[27]



http://yourip:yourport
http://myamazon-dns.com:49155

Exploring Docker

The Docker hub was introduced and we looked at what the official WordPress
Docker image consisted of and how they configured the OS in the Dockerfile as
well as in an ENTRYPOINT file to some extent.

We downloaded and ran the WordPress image that failed as expected, and we
fixed it by linking the required MySQL container to it.

In the next chapter, we will create a Dockerfile and publish a Docker image to the
Docker registry hub so that we have a way to get our customized Docker images
to wherever we decide to place our PaaS.

[28]



Creating Our First
PaaS Image

You are now ready to write your own Dockerfiles, publish them to the Docker Registry
Hub, and create containers for them. In this chapter you will:

* Build your own image on top of another
* Host your Dockerfiles in your GitHub account

* Publish an image on the Docker Registry Hub

The WordPress image

For this project, we are going to use the official WordPress Docker image as a base,
which has Apache? as its web server.

If you plan to host sites with a lot of traffic, I would recommend
using an image based on Nginx instead of Apache?2 as the web
% server. | have had great success running WordPress sites with
Nginx and the memcached plugin, WP-FFPC. It can be a bit
tricky to set up, and that's why it's out of the scope of this book.

First of all, let's run a MySQL container and a WordPress container and link to them
to see what happens:

docker run --name some-mysql -e MYSQL ROOT PASSWORD=mysecretpassword -d
mysql

docker run --name some-wordpress --link some-mysqgl:mysgl -d -p 80
wordpress



Creating Our First PaaS Image

The -p 80 option tells Docker to expose the private port 8o to the outer world.

To find out which public port is bound to the private port 80, run docker ps
command and look in the ports column or invoke the docker port <container-
ID|name> 80 command.

The screenshot is shown below:

® [ ] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 148x13
[ec2-user@ip-172-31-32-58 ~1$ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
9d16db0a7208a116871ddb653da5187b7cbae4e410c5de82574b2e7b51a87hd4

[ec2-user@ip-172-31-32-58 ~]$ docker run --name some-wordpress --link some-mysql:mysql -d -p 88 wordpress
454F047e2e7c12e7958cbbf75d2458ed1a8F5d92db19c685dc857735edbbiefa

[ec2-user@ip-172-31-32-58 ~]1% docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
454F047e2e7c wordpress:latest "/entrypoint.sh apac 42 seconds ago Up 40 seconds 9.0.0.0:49154->80/tcp  some-wordpress

09d16db0a7208 mysql:latest "Jentrypoint.sh mysq 47 seconds ago Up 46 seconds 3306/tcp some-nysql
[ec2-user@ip-172-31-32-58 ~1$ docker port 454f 80
0.0.0.0:49154

[ec2-user@ip-172-31-32-58 ~1% docker port some-wordpress 8@
9.0.0.0:49154
[ec2-user@ip-172-31-32-58 ~]% I

In my case, the public port is 49154. Enter the full URL in the form of http://
public_ip:public_port in your web browser. I'm doing this on an Amazon EC2
instance. I get a public domain, which is http://ec2-54-187-234-27.us-west-2.
compute.amazonaws.com: 49154 in my case.

The screenshot is displayed below:

Ay edt
Azarbaycan dili
Bvnrapcku
Bosanski

Catala

Cymraeg

Dansk

Deutsch

English (Canada)
English (UK)
English (Australia)
Espariol

Espaiiol de Peru

The WordPress installation page welcomes us, which means that the WordPress and
the MySQL containers are working properly.

[30]


http://ec2-54-187-234-27.us-west-2.compute.amazonaws.com:49154
http://ec2-54-187-234-27.us-west-2.compute.amazonaws.com:49154

Chapter 3

Moving from the defaults

Now we have a default installation of WordPress run on Apache2. Some WordPress
plugins require you to make changes to the web server's configuration. How can we
do that? What if we want to edit some of the files in the WordPress directory?

The first thing we need to do is to get our own copy of the official WordPress
repository so that we can explore the Dockerfile. The current URL that is used
to get the repository is https://github.com/docker-library/wordpress.
Click on this link from the WordPress repo page on the Docker Registry Hub.

You can clone, fork, or just download the source for this Docker image. It doesn't
matter how you get it because we're not going to use it later on. This image is for
testing and exploring purposes. I used my EC2 instance to do this.

oskarhane — ubuntu@ip-172-31-32-26: ~/wordpress-master — ssh — 133x47

ubuntu@ip-172-31-32-26:~% wget https://github.con/docker-library/wordpress/archive/master.zip a
-=-2015-83-25 @9:05:56-- https://github.com/docker-library/wordpress/archive/master.zip
Resolving github.com (github.com)... 192.30,252.128

Connecting to github.com (github.com)|192.3@.252.128]:443... connected.

HTTP request sent, awaiting response... 302 Found

Location: https://codeload.github.com/docker-library/wordpress/zip/master [following]
--2015-03-25 @9:05:56-- https://codeload. github.com/docker-library/wordpress/zip/master
Resolving codeload.github.com (codeload.github.com)... 192.30.252,145

Connecting to codeload.github.com (codeload.github.com)|192.38.252,145]:443.,. connected.
HTTP request sent, awaiting response... 200 OK

Length: 17178 (17K) [application/zip]

Saving to: 'master.zip’

100%[: =>] 17,170
2015-@3-25 09:05:57 (288 KB/s) - 'master.zip’ saved [17170/1717@]

ubuntu@ip-172-31-32-26:~% unzip master.zip
Archive: master.zip
7714595d9b77c2eae478489e2F3a44c3248a20F
creating: wordpress-master/
inflating: wordpress-master/LICENSE
inflating: wordpress-master/README.md
creating: wordpress-master/apache/
inflating: wordpress-master/apache/Dockerfile
inflating: wordpress-master/apache/docker-entrypoint.sh
inflating: wordpress-master/docker-entrypoint.sh
creating: wordpress-master/fpm/
inflating: wordpress-master/fpm/Dockerfile
inflating: wordpress-master/fpm/docker-entrypoint.sh
inflating: wordpress-master/generate-stackbrew-library.sh
inflating: wordpress-master/update.sh
ubuntu@ip-172-31-32-26:~% cd wordpress-master/
ubuntu@ip-172-31-32-26:~/wordpress-master$ ls -la
total 56
drwxrwxr=x 4 ubuntu ubuntu 4896 Mar 10 20:56
drwxr-xr-x 5 ubuntu ubuntu 4896 Mar 25 09:06
=rw=rw=r== 1 ubuntu ubuntu 18892 Mar 1@ 20:56 LICENSE
-rw-rw-r-- 1 ubuntu ubuntu 468 Mar 1@ 20:56 README.md
drwxrwxr=x 2 ubuntu ubuntu 4096 Mar 10 20:56
-rwxr-xr-x 1 ubuntu ubuntu 475@ Mar 1@ 20:56 doc
drwxrwxr-x 2 ubuntu ubuntu 4896 Mar 1@ 20:
-rwxr-xr-x 1 ubuntu ubuntu 873 Mar 10 20:
-rwxr-xr-x 1 ubuntu ubuntu 621 Mar 1@ 20:
ubuntu@ip-172-31-32-26: ~/wordpress-master$ I

Open the file in any text editor to view its content. If you are —like me —using
the terminal, you can use vi apache/Dockerfile to open it in the vi file editor.
The current Dockerfile for the official WordPress image looks like this:

[31]


https://github.com/docker-library/wordpress

Creating Our First PaaS Image

FROM php:5.6-apache
RUN a2enmod rewrite

# install the PHP extensions we need
RUN apt-get update && apt-get install -y libpngl2-dev libjpeg-dev && rm
-rf /var/lib/apt/lists/* \

&& docker-php-ext-configure gd --with-png-dir=/usr --with-jpeg-dir=/
usr \

&& docker-php-ext-install gd
RUN docker-php-ext-install mysqli

VOLUME /var/www/html

ENV WORDPRESS VERSION 4.1.1
ENV WORDPRESS UPSTREAM VERSION 4.1.1
ENV WORDPRESS SHAl 15d38fe6c73121a20e63ccd8070153b89b2debal

# upstream tarballs include ./wordpress/ so this gives us /usr/src/
wordpress
RUN curl -o wordpress.tar.gz -SL https://wordpress.org/wordpress-
${WORDPRESS UPSTREAM VERSION}.tar.gz \

&& echo "$WORDPRESS SHAl *wordpress.tar.gz" | shalsum -c¢ - \

&& tar -xzf wordpress.tar.gz -C /usr/src/ \

&& rm wordpress.tar.gz

COPY docker-entrypoint.sh /entrypoint.sh

# grr, ENTRYPOINT resets CMD now
ENTRYPOINT ["/entrypoint.sh"]
CMD ["apache2-foreground"]

This image uses the php: 5. 6-apache image as a base and downloads and extracts
WordPress 4.1 to /usr/src/wordpress. Then it adds an ENTRYPOINT and starts
Apache? in the foreground.

Our objective

To make this WordPress image useable for more than demo purposes, we need to
modify the Dockerfile in three ways. Our objectives are as follows:

* Preparing Apache for caching (through the WP Super Cache plugin)
* Raising the upload limit in both PHP and Apache2
* Installing two plugins: WP Super Cache and WP Mail SMTP

Preparing for caching

There are two small steps to be performed to obtain website caching through
WP Super Cache —we need to enable the mod_headers and mod_expires modules
in Apache?2.

[32]




Chapter 3

On line 5 in the Dockerfile, you can see RUN a2enmod rewrite. The a2enmod
command enables modules in Apache2, and modules are disabled by the a2dismod
command. Enabling our desired modules is as easy as appending them to that line:

RUN a2enmod rewrite expires headers

We make those edits, build a new image, and see what happens. It takes a long
time to build these images, since PHP is built from source. What we are looking for
are lines that state that our modules are enabled. They will show up for just a few
seconds in the build process.

You initiate a build from a Dockerfile by executing this:

docker build -t mod-wp .
The -t mod-wp command sets the name of our new image to mod-wp.

The screenshot is shown below:

[ ] oskarhane — ec2-user@ip-172-31-32-58:~/wordpress-master — ssh — 118x44

[ec2-user@ip-172-31-32-58 wordpress-master]$ nano Dockerfile
[ec2-user@ip-172-31-32-58 wordpress-master]$ docker build -t mod-wp .
Sending build context to Docker daemon 11.26 kB
Sending build context to Docker daemon
Step @ : FROM php:5.6-apache
--=> 9a7aa4@9f758
Step 1 : RUN apt-get update && apt-get install -y rsync && rm -r /var/lib/apt/lists/%
--=-> Using cache
---> 3ebadad4304b4
Step 2 : RUN a2enmod rewrite expires headers
---> Running in 57ab871986ec
Enabling module rewrite.
Enabling module expires,
Enabling module headers
To activate the new configuration, you need to run:
service apache2 restart
--=> gcc7671e8459
Removing intermediate container 57ab871986ec
Step 3 : RUN apt-get update && apt-get install -y libpngl2-dev && rm -rf /var/lib/apt/lists/* && docker-php-ext-inst
all gd && apt-get purge --auto-remove -y libpngl2-dev
Running in 3c2c42a92c90
:1 http://security.debian.org jessie/updates InRelease [84.1 kB]
12 http://security.debian.org jessie/updates/main amd64 Packages [20 B]
:3 http://http.debian.net jessie InRelease [191 kB]
:4 http://http.debian.net jessie-updates InRelease [117 kB]
15 http://http.debian.net jessie/main amd64 Packages [9102 kB]
Get:6 http://http.debian.net jessie-updates/main amd64 Packages [20 B]
Fetched 9495 kB in 4s (1971 kB/s)
Reading package lists...
Reading package lists...
Building dependency tree...
Reading state information,..
The following packages were automatically installed and are no longer required:
libdpkg-perl libmagici libtimedate-perl patch
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
libpng12-@ zliblg-dev
The following NEW packages will be installed:
libpng12-@ libpngl2-dev zliblg-dev
@ upgraded, 3 newly installed, @ to remove and 37 not upgraded.
Need to get 626 kB of archives.
After this operation, 1348 kB of additional disk space will be used.
Get:1 hitp://http.debian.net/debian/ jessie/main libpngi12-¢ amd64 1.2.5@-2+b1 [172 kB]
Get:2 http://http.debian.net/debian/ jessie/main zliblg-dev amd64 1:1.2.8.dfsg-2 [205 kB]

[33]



Creating Our First PaaS Image

The build should run through the whole process without any errors, and then the
preparation for the cache plugin is done.

Raising the upload limit

The default upload size is limited to 2 MB by PHP. This limit is too low, especially
since blogging from mobile phones is popular and the size of a mobile phone photo
or video is often bigger than this. I would like to have the option to upload videos
directly on my blogs, and they can be up to 32 MB.

For this limit to be raised, we need to change the limit for two parameters in the
PHP configuration file: upload_max_filesize and post_max_size.

Looking at the php:5.6-Apache image, which is the base image of the WordPress
image, Dockerfile we see that it runs Debian and PHP configuration files are
supposed to be in the /usr/local/etc/php/conf.d/ directory. This means
that if we add a file to that directory, it should get read in and parsed.

The Dockerfile for PHP 5.6 can be found at https://github.com/
. docker-library/php/blob/master/5.6/Dockerfile.

To verify that the upload limit is as low as said before, I started and installed an
unmodified WordPress container. Then I clicked on the Add new media button.

Help
@ Dashboard Upload New Media

A Posts

0 Media

Library
Add New

I Pages Select Files

¥ Comments

J¥ Appearance

You are using the multi-file uploader. Problems? Try the browser uploader instead.

is Plugins @
- 8 Maximum upload file size: 2 MB.

s Users

# Tools
Settings

© Collapse menu

It says that the upload limit is 2 MB.

[34]


https://github.com/docker-library/php/blob/master/5.6/Dockerfile
https://github.com/docker-library/php/blob/master/5.6/Dockerfile

Chapter 3

Let's add a configuration file named upload-1limit.ini to the configuration
directory, and add the two parameters to the file.

These commands, all of which should be on a single line, are added to our Dockerfile
right above the line we modified when preparing Apache for caching;

RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \

&& echo "upload max filesize = 32M" >> /usr/local/etc/php/conf.d/
upload-limit.ini \

&& echo "post max size = 32M" >> /usr/local/etc/php/conf.d/
upload-limit.ini
#Paste above this line.
RUN a2enmod rewrite expires headers

Once again, build the image to ensure that no errors are produced. If you get an error
saying that the image name already exists, you can delete the old image with the
docker rmi mod-wp command or change the name to mod-wp: latest, which will
update the image's tag to latest.

When the build finishes, we run a new container from the new image to check out
what the WordPress administration interface says. We can run a container from our
new image, like this:

docker run --name some-mysqgl -e MYSQL ROOT PASSWORD=mysecretpassword -d
mysql

docker run --name some-wordpress --link some-mysqgl:mysqgl -d -p 80 mod-
wp:latest

& A med + New Howdy, admin [ff

Help
# Dashboard Upload New Media

A Posts

03 Media

Library
Add New
M Fages Select Files
P Comments

J¥ Appearance
You are using the multi-file uploader. Problems? Try the browser uploader instead.

i Plugins @
g Maximum upload file size: 32 MB.

Users

Toals

Settings

© Collapse menu

[35]



Creating Our First PaaS Image

We can now see that we can upload bigger files. Just to verify, if you upload a file
bigger than 2 MB, it will prove that the limit has been raised.

Plugin installation

Here, we are going to download and install two plugins that we want in all our
future WordPress sites. All the tasks for these plugins will be done in the entry
point file, since we have to edit a few files in the WordPress installation.

The first plugin is WP Super Cache. We prepared Apache?2 for this earlier, and
now it's time to use that. With this plugin, our site will run faster and demand
fewer resources from our host.

The second plugin is WP Mail SMTP, with the help of which WordPress can send
outgoing e-mails. This container does not (and should not) include a mail server.
With this plugin, we can make WordPress send e-mails via an external SMTP
(Gmail, your ISPs, or anything else).

Even though I have hosted and managed my own mail server

for a few years now, it is a hassle with keeping it up to date and
= managing spam filters and redundancy. We're better off leaving

that to the specialists.

All plugins will be downloaded with CURL and unpacked with unzip. CURL is
already installed but unzip is not, so we have to add it to our Dockerfile, close to
the top where the apt-get install command is running;

RUN apt-get update && apt-get install -y unzip rsync && rm -r /var/
lib/apt/lists/*

If we don't do this, we will get error messages during the build process.

Since there are two plugins we have to download, extract, and activate, we will create
a function in the docker-entrypoint . sh file.

[36]




Chapter 3

This function will go to Wordpress' plugin site and look for the download URL for
the latest version of the plugin. It will download and then extract it to the plugin
folder in our Wordpress installation:

dl _and move plugin() {
name="s1"
curl -0 $(curl -i -s "https://wordpress.org/plugins/$name/" | egrep

-0 "https://downloads.wordpress.org/plugin/ [*']+")
unzip -o "$name".*.zip -d $(pwd)/wp-content/plugins

}

Now that we have the function there, we can add these lines near the end of the file,
just above the line that says chown -R www-data:www-data

dl and move plugin "wp-super-cache"

dl and move plugin "wp-mail-smtp"

Place the function and the function calls close to the bottom —in the docker-
entrypoint. sh file, just above the exec command.

We will build the image again and start a container so that we can verify that
everything is working as we want:

docker build -t mod-wp:latest

This will take a while, and when it's ready, you can fire up a MySQL container and a
mod-wp container:

docker run --name some-mysqgl -e MYSQL ROOT PASSWORD=mysecretpassword -d
mysql

docker run --name some-wordpress --link some-mysqgl:mysqgl -d -p 80 mod-
wp:latest

If you get an error that tells you that you already have a container with that name,
either remove the old container with docker rm some-wordpress or use another
name for the new container.

[37]



Creating Our First PaaS Image

Get the port by invoking docker ps, and look for the port binding to port 80 on
the WordPress container. Then load the URL into your browser. This time, install
WordPress, log in, and go to the plugins page, as shown in the following screenshot:

@ mmm 4+ New Howdy, admin I

Screen Options Help
@ Dashboard Plugins Add New
# Posts All(5) | Inactive (5) | Update Available Search Installed Plugins
07 Media Bulk Actions % Apply 5 items

M Pages Plugin Description
B! p

¥ Comments Akismet Used by millions, Akismet is quite possibly the best way in the world to protect your blog from

Activate = Edit = Delete  comment and trackback spam. |t keeps your site protected from spam even while you sleep. To get

#¥ Appearance started: 1) Click the "Activate" link to the left of this description, 2) Sign up for an Akismet API key, and

3) Go to your Akismet configuration page, and save your AP key.

. Ins @

K Pluglns Version 3.0.2 | By Automattic | View details

Installed Plugins > There is a new version of Akismet available. View version 3.0.3 details or update now.

Add New

Editor Hello Dolly This is not just a plugin, it symbolizes the hope and enthusiasm of an entire generation summed up in
Activate  Edit | Delete  two words sung most famously by Louis Armstrong: Hello, Dolly. When activated you will randomly

& Users see a lyric from Hello, Dolly in the upper right of your admin screen on every page.

£ Tools Version 1.6 | By Matt Mullenweg | View details

Settings Two Factor Auth Secure your WordPress login with two factor auth. Users will be prompted with a page to enter a One
Activate  Edit = Delete  Time Password when they login.

© Collapse menu

Version 4.4 | By Oskar Hane | View details

WP-Mail-SMTP Reconfigures the wp_mail() function to use SMTP instead of mail() and creates an options page to
Activate | Edit | Delete  manage the settings.

Version 0.9.5 | By Callum Macdonald | View details

WP Super Cache Very fast caching plugin for WordPress.

Activate | Edit | Delete  yargion 1.42 | By Automattic | View details

Plugin Description

Bulk Actions & = Apply 5 items

This looks just like we want it to! Great!

[38]




Chapter 3

Let's go ahead and activate and set up these plugins just to verify that they work.
Start with the WP Mail SMTP plugin. I will use my Gmail account as the sender,
but you can choose which SMTP you want. Here is a screenshot showing the
settings for Gmail:

# mmm
Dashboard

Posts
Media
Pages

Comments

Appearance
Plugins @&
Users
Tools
Settings
General
Writing
Reading
Discussion
Media
Permalinks

Email

© Collapse menu

[ ] + New Howdy, admin [}

Advanced Email Options

Settings saved.

From Email oskar.hane@gmail.com You can specify the email
address that emails should be sent from. If you leave this blank, the default email will be
used.

From Name Wp You can specify the name that

emails should be sent from. If you leave this blank, the emails will be sent from WordPress.

Mailer » Send all WordPress emails via SMTP.

Use the PHP mail{) function to send emails.

Return Path ¥| Set the return-path to match the From Email

SMTP Options

These options only apply if you have chosen to send mail by SMTP above.

SMTP Host smtp.gmail.com
SMTP Port 587
Encryption No encryption.

Use SSL encryption.

.

Use TLS encryption. This is not the same as STARTTLS. For most servers SSL is the
recommended option.

Authentication No: Do not use SMTP authentication.
* Yes: Use SMTP authentication.
If this is set to no, the values below are ignored.

Username oskar.hanefigmail.com
Password hunterie
Save Changes

[39]




Creating Our First PaaS Image

From the bottom of this page, you can send a test e-mail. I strongly recommend
doing this because Gmail sometimes blocks new SMTP clients. If you get an error
message saying Please log in via your web browser and then try again, you've
triggered that. In that case, you'll soon get an e-mail from Google explaining
suspicious activity and asking you to go through a few steps to make it work.
This is annoying but it's a good thing.

Now let's move on to the WP Super Cache plugin. Go ahead and activate
the plugin from the plugin page. Before we can enable it, we have to go to
Settings | Permalinks, check the Post name button, and save.

Then go to Settings | WP Super Cache.

Click on Caching On and then on Update Status. Now click on the Advanced
tab and enable mod_rewrite caching, as shown:

WP Super Cache Settings

Easy Advanced CDN @ Contents Preload Plugins De

Caching ¥| Cache hits to this website for quick
access. (Recommended)

® Use mod_rewrite to serve cache
files. (Recommended)

Use PHP to serve cache files.

Legacy page caching.
Mod_rewrite is fastest, PHP is almost as
fast and easier to get working, while
legacy caching is slower again, but more
flexible and also easy to get working. New
users should use PHP caching.

Scroll down to the Miscellaneous section and check the boxes that are shown in the
following screenshot. If you want to know exactly what all of these checkboxes do,
you can refer to the plugins' documents.

[40]



Chapter 3

Miscellaneous

+| Compress pages so they're served more
quickly to visitors. (Recommended)
Compression is disabled by default because
some hosts have problems with compressed
files. Switching it on and off clears the cache.
304 Not Modified browser caching.

Indicate when a page has not been modified
since last requested. (Recommended)

Warning! 304 browser caching is only
supported when not using mod_rewrite
caching.

v| Don't cache pages for known users.
(Recommended)

Don't cache pages with GET parameters.
(?x=y at the end of a url)

Make known users anonymous so
they're served supercached static files.

+| Cache rebuild. Serve a supercache file to
anonymous users while a new file is being
generated. (Recommended)

Proudly tell the world your server is
Stephen Fry proof! (places a message in

your blog's footer)

When you've saved this, you'll get a notice at the top saying that you need to update

the rewrite rules, as shown:

WP Super Cache Settings

Rewrite rules must be updated

The rewrite rules required by this plugin have changed or are missing. Scroll down the
Advanced Settings page and click the Update Mod_Rewrite Rules button.

[41]



Creating Our First PaaS Image

Scroll down the page and click on the Update Mod_Rewrite Rules button to update
the rewrite rules, as shown:

</IfModule>
<IfMcdule mod_deflate.c>
SetEnvIfNoCase Request URI \.gz$ no-gzip
</IfModule>
<IfModule mod headers.c>
Header set Vary "Accept-Encoding, Cookie"
Header set Cache-Control 'max-age=3, must-revalidate'
</IfModule>
<IfModule mod expires.c>
ExpiresActive On
ExpiresByType text/html A3
</IfModule>

# END supercache

Update Mod_Rewrite Rules

The cache plugins' status should now be green, and all of the setup should be done.
Since we are logged in to this web browser, we will not be served cached pages.
This is important to know, and the advantage is that you won't have to disable the
whole cache plugin just to see the uncached version of your site. Open another web
browser (not just another window or tab in your current browser, unless you are
using incognito or private mode) and go to your WordPress instance. Click on the
Hello World title on the post. Go back to the start page. Click on the title again.

It feels pretty fast, right?

To verify that it works, you can open the development tools in your browser. Make
sure that you don't have caching disabled in your browser when the development
tolls are open. Click on the Network tab, then click on the post's title again, and
then inspect that call, as shown in the following screenshot:

[42]




Chapter 3

e

css?family=LatoX3A300%...
=1 fonts.googleapis.com

= genericons.css?ver=3.0.3
= /wp-content/themes/twe...

= style.css?ver=4.0.1
== /wp-content/themes /twe...

jguery.js?ver=1.11.1
= /wp-includes/js/jquery

L-—| fwp=includes/js/iquery

;| fwp-includes/js

functions.js?Tver=20140616
= /wp-content/themes /twe...

O.gravatar.com favatar

fonts.gstatic.com/s/flato/...

fonts.gstatic.com/s/lato/...

MgMNr3y1C_tIEuLEmicLm...
fonts.gstatic.com/s/lato/...

jquery-migrate.min.js?ver. ..

ad516503allcd5cad35ac...

comment-reply.min.js?ver...

22JRxvfANxSmnAhzbFHBP...

MDadn8D0Q_3oTokvnlg_2...

™\

Remote Address: 54.148.253.187: 49156
Request URL: http://ec2-54-148-253-187.us-west-2.compute. amazonaws . com: 49
156/hello—world/
Request Method: GET
Status Code: @ 200 0K
v Request Headers view source
Accept: text/html, applications/xhtml+xml,application/xml;g=8.2,image/webp
o= /*;0=0.8
Accept-Encoding: gzip, deflate, sdch
Accept-Language: sv-5E,sv;q=8.8,en-US;q=08.6,en;q=08.4
Connection: keep-alive
Host: ec2-54-148-253-187.us—west—2. compute. amazonaws. com: 49156
If-Modified-Since: Mon, 24 Nov 2814 19:56:18 GMT
Referer: http://ec2-54-148-253-187. us—west-2. compute. amazonaws. cam: 49156
/
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S5 X 10_18_1) AppleWebKit
/537.36 (KHTML, like Gecko) Chrome/39.8.2171.65 Safari/537.36
¥ Response Headers view source
Cache-Control: max—age=3, must-revalidate
Connection: Keep-Alive
Content-Encoding: gzip
Content-Length: 3565
Content-Type: text/html; charset=UTF-8
Date: Mon, 24 Nov 2814 19:57:26 GMT
Keep-Alive: timeout=5, max=95
Last-Modified: Mon, 24 Nov 2814 19:56:18 GMT

Server; b fOt L.
ry. Accept-Encoding,Cookie

WP=Super-Cache: Served supercache file from PHP
=Powered-By: PHP/5.6.3

This is just what we wanted to see. Great!

Making our changes persist

Now that we have made our changes, we want to create our own Dockerfile to build

on top of the official WordPress image.
This is what the Dockerfile should look like:

FROM wordpress:latest

RUN apt-get update && apt-get install -

lists/*

y unzip && rm -r /var/lib/apt/

RUN touch /usr/local/etc/php/conf.d/upload-limit.ini \

&& echo "upload max filesize
upload-limit.ini \

&& echo "post max size
upload-limit.ini

32M" >> /usr/local/etc/php/conf.d/

32M" >> /usr/local/etc/php/conf.d/

[43]




Creating Our First PaaS Image

RUN a2enmod expires headers

VOLUME /var/www/html

COPY docker-entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

CMD ["apache2", "-DFOREGROUND"]

Hosting image sources on GitHub

The Docker Registry Hub has very good support for automatic fetching of image
updates from both Bitbucket and GitHub. You can pick whatever you want, but
for this book, I will use GitHub. I have accounts on both services and they are
both excellent.

Owner Repository name
“ oskarhane ~ | / my-docker-images v
Great repository names are short and memorable. Need inspiration? How about yolo-tribble.

Description (optional)

Docker Images that the Docker Registry Hub can access.

(-] Public
Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with a README
This will allow you 1o git clone the repository immediately. Skip this step if you have already run git init locally.

Add .gitignore: None Add alicenze: None -

[44]



Chapter 3

At GitHub, create a new empty repository called my-docker-images and add an
appropriate license if you like.

_ This book will not go into how to add your SSH keys to GitHub
and so on. There are excellent guides for this online. GitHub has
i a great guide at https://help.github.com/articles/
generating-ssh-keys/.

Let's create a branch and copy our files for the modified Docker image to it.

Clone the repository locally so that you can add files to it. Make sure you are not
inside your wordpress-master directory, but on the same level as it is:

git clone git@github.com:yourusername/my-docker-images.git

The output of this command is as follows:

oskarhane — ec2-user@ip-172-31-32-58:~/my-docker-images — ssh — 100x18

[ec2-user@ip-172-31-32-58 ~]% git clone git@github.com:oskarhane/my-docker-images.git
Clening inte 'my-docker-images'...
remote: Counting objects: 3, done.
remote: Compressing cbjects: 100% (2/2), done.
remote: Total 3 (delta @), reused @ (delta @)
Receiving objects: 18€X (3/3), done.
Checking connectivity... done.
[ec2-user@ip-172-31-32-58 ~]% cd my-docker-images && ls -la
total 16
drwxrwxr=x 3 ec2-user ec2-user 4096 Nov 17 20:59
------ ec2-user ec2-user 4096 Nov 17 20:59
drwxrwxr-x 8 ec2-user ec?-user 4096 Nov 17 20:59
=rw-rw-r-- 1 ec2-user ec2-user 9@ Nov 17 2@:59 README.md
[ec2-user@ip-172-31-32-58 my-docker-images]$ git status
On branch master
Your branch is up-to-date with 'origin/master’.

nothing to commit, working directory clean
[ec2-user@ip-172-31-32-58 my-docker-images]$

We'll execute these commands one by one:

cd my-docker-images

git checkout -b wordpress

git add .

git commit -m "Adding new files."

git push origin wordpress

Go to your GitHub page and try to find the WordPress branch.

[45]


https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/

Creating Our First PaaS Image

For every new Docker image we want to create and publish on the Docker Registry
Hub, we need to create a new branch in this GitHub repository. If you have a lot of
Docker images and the images have a lot of versions, you might want to consider a
different structure, but for this book, this approach will be great!

oskarhane / my-docker-images @ Unwatch~ 1
Dacker Images that the Docker Registry Hub can access. — Edit
2 commits 3 branches 0 releases 1 contributor
Your recently pushed branches:

L¥ wordpress (2 minutes ago)

[,;;;] P branch: wordpress ~ | my-docker-images / +

ranch is 1 commit ahead of master

Add files.

m oskarhane authored 2 minutes ago latest commit 9f5568f7dB
E Dockerfile Add files. 2 minutes ago
@ README.md Add files. 2 minutes ago
B docker-enirypoint.sh Add files. 2 minutes ago
B generate-stackbrew-library.sh Add files. 2 minutes ago
B update.sh Add files. 2 minutes ago

All files are in place, and you can click on them to verify that the contents are what
we would expect.

Publishing an image on the Docker
Registry Hub

If you're not a member of the Docker Registry Hub (https://hub.docker.com),

now is the time to register so that you can publish your images on the public
Docker repository, which can be accessed from anywhere.

[46]


https://hub.docker.com

Chapter 3

Automated builds

When you add a repository, you should choose the Automated Build option so that
you can fetch code from GitHub (or Bitbucket), as shown in the following screenshot:

Select the source you want to use for your Automated Build

-
GitHub Bitbucket

=3

You are connected as oskarhane

We'll connect with our GitHub account and select the repository we just created
and pushed to my-docker-images.

We will start to add our WordPress image, so let's set the repository name to
wordpress on the next screen. It's important that you enter this name correctly,
since it cannot be changed later.

At this time, we will just use one tag for our image — the latest tag. Ensure that
the source: Type is set to Branch and that you've entered wordpress as its name.

[47]



Creating Our First PaaS Image

Choose to add this as a public repository and check the active checkbox. This means
that if you push any updates to this on GitHub, the Registry Hub will automatically
pull it and publish its changes, as shown in the following screenshot:

Namespace (optional) and Repository Name
oskarhane ~ / wordpress 4

New unigue Repo name; 3 - 30 characters. Only lowercase letters, digits and _ - . characters are allowed

Tags
Type Name Dockerfile Location Docker Tag Name
Branch ~ wordpress / latest
© Fublic

o Anycne can pull, and is listed and searchable on the docker index.
Private

& Only you can pull, and is not listed on the docker index.

Active:

When active we will build when new pushes occur

Create Repository

The Registry Hub will now pull your branch and try to build your Docker image to
verify that it works. You can head over to the Build Details tab to see the progress.
Since it's the official WordPress image base, it should go pretty fast if they cache
the images on their build servers. If not, it could take a few minutes, since PHP is
compiled from source.

[48]



Chapter 3

This is shown in the following screenshot:

0

Information Dockerfile Build Details Tags
Build Details Edit Build Details
Type Name Dockerfile Location Tag Name
Branch wordpress / latest
Builds History
build Id Status  Created Date Last Updated
bdebwe26bizth7xbhrovsyc Building  2014-11-24 22:59:33 2014-11-24 23:00:03

Wow! We've just published an image on the Docker Registry Hub, which means that
anyone can fetch and run containers on top of it. The status will go from Building to
Finished when the image is published.

The next step would be to actually pull it ourselves to verify that it works as expected:

docker pull oskarhane/wordpress

docker images

docker run --name mysgl -e MYSQL ROOT_ PASSWORD=mysecretpassword -d
mysqgl

docker run --name my-wordpress --link mysqgl:mysgl -d -p 80 oskarhane/
wordpress

docker ps

Open your web browser and head over to your new container. You should be
presented with the WordPress setup page.

[49]




Creating Our First PaaS Image

Summary

In this chapter, you learned quite a lot. The most part was about modifying the
Dockerfile and ENTRYPOINT files in order to get the Docker image that we wanted.
Bash knowledge and programming skills are very convenient, but since all of this
is mostly about installation, moving files, and editing settings files, very basic
knowledge can be enough.

GitHub is an excellent place to host your Docker repositories, and it's very easy to
set up a new repository to get started. The Docker Registry Hub takes your GitHub
repository and lets you pick a branch. This branch will be the source for a public
Docker image that anyone can pull and use.

One question arises though; what about our data? It's trapped inside these MySQL
and WordPress containers. The next chapter will show you how to handle your data.

[50]



Giving Containers Data
and Parameters

The WordPress data inside the WordPress container and the database's data inside
the MySQL container may not be what we want. It's considered good practice to
keep the data outside the service containers because you may want to separate the
data from the service container. In this chapter, we'll cover the following topics:

* Data volumes

* Creating a data volume image

* Host on GitHub

* Publishing on Docker Registry Hub

* Running on Docker Registry Hub

* DPassing parameters to containers

* Creating a parameterized image

Data volumes

There are two ways in which we can mount external volumes on our containers.
A data volume lets you share data between containers, and the data inside the data
volume is untouched if you update, stop, or even delete your service container.

A data volume is mounted with the -v option in the docker run statement:
docker run -v /host/dir:container/dir

You can add as many data volumes as you want to a container, simply by adding
multiple -v directives.



Giving Containers Data and Parameters

A very good thing about data volumes is that the containers that get data volumes
passed into them don't know about it, and don't need to know about it either. No
changes are needed for the container; it works just as if it were writing to the local
filesystem. You can override existing directories inside containers, which is a common
thing to do. One usage of this is to have the web root (usually at /var/www inside the
container) in a directory at the Docker host.

Mounting a host directory as a data volume

You can mount a directory (or file) from your host on your container:

docker run -d --name some-wordpress -v /home/web/wp-one:/var/
www wordpress

This will mount the host's local directory, /home/web/wp-one, as /var/www on
the container. If you want to give the container only the read permission, you can
change the directive to -v /home/web/wp-one:/var/www:ro where the :ro is the
read-only flag.

It's not very common to use a host directory as a data volume in production,
since data in a directory isn't very portable. But it's very convenient when testing
how your service container behaves when the source code changes.

Any change you make in the host directory is direct in the container's mounted
data volume.

Mounting a data volume container

A more common way of handling data is to use a container whose only task is
to hold data. The services running in the container should be as few as possible,
thus keeping it as stable as possible.

Data volume containers can have exposed volumes via the Dockerfile's VOLUME
keyword, and these volumes will be mounted on the service container while
using the data volume container with the - -volumes-from directive.

[52]




Chapter 4

A very simple Dockerfile with a VOLUME directive can look like this:

FROM ubuntu:latest
VOLUME ["/var/www"]

A container using the preceding Dockerfile will mount /var/www. To mount
the volumes from a data container onto a service container, we create the data
container and then mount it, as follows:

docker run -d --name data-container our-data-container

docker run -d --name some-wordpress --volumes-from data-container
wordpress

Backing up and restoring data volumes

Since the data in a data volume is shared between containers, it's easy to access the
data by mounting it onto a temporary container. Here's how you can create a . zip
file (from your host) from the data inside a data volume container that has VOLUME
["/var/www"] in its Dockerfile:

docker run --volumes-from data-container -v $(pwd):/
host ubuntu zip -r /host/data-containers-www /var/www

This creates a . zip file named data-containers-www.zip, containing what was in
the. www data container from var directory. This . zip file places that content in your
current host directory.

Creating a data volume images

Since our data volume container will just hold our data, we should keep it as small
as possible to start with so that it doesn't take lots of unnecessary space on the server.
The data inside the container can, of course, grow to be as big as the space on the
server's disk. We don't need anything fancy at all; we just need a working file
storage system.

For this book, we'll keep all our data (MySQL database files and WordPress files)
in the same container. You can, of course, separate them into two data volume
containers named something like dbdata and webdata.

[53]




Giving Containers Data and Parameters

Data volume image

Our data volume image does not need anything other than a working filesystem
that we can read and write to. That's why our base image of choice will be BusyBox.
This is how BusyBox describes itself:

"BusyBox combines tiny versions of many common UNIX utilities into a single
small executable. It provides replacements for most of the utilities you usually
find in GNU fileutils, shellutils, etc. The utilities in BusyBox generally have
fewer options than their full-featured GNU cousins; however, the options that
are included provide the expected functionality and behave very much like their
GNU counterparts. BusyBox provides a fairly complete environment for any
small or embedded system."

That sounds great! We'll go ahead and add this to our Dockerfile:

FROM busybox:latest

Exposing mount points

There is a vOLUME instruction for the Dockerfile, where you can define which
directories to expose to other containers when this data volume container is added
using - -volumes- from attribute. In our data volume containers, we first need to add a
directory for MySQL data. Let's take a look inside the MySQL image we will be using
to see which directory is used for the data storage, and expose that directory to our
data volume container so that we can own it:

RUN mkdir -p /var/lib/mysql
VOLUME ["/var/lib/mysql"]

We also want our WordPress installation in this container, including all . php files
and graphic images. Once again, we go to the image we will be using and find out
which directory will be used. In this case, it's /var/www/html. When you add this

to the Dockerfile, don't add new lines; just append the lines with the MySQL data

directory:

RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

[54]




Chapter 4

The Dockerfile

The following is a simple Dockerfile for the data image:

FROM busybox:latest

MAINTAINER Oskar Hane <oh@oskarhane.com>

RUN mkdir -p /var/lib/mysql && mkdir -p /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

And that's it! When publishing images to the Docker Registry Hub, it's good to
include a MAINTAINER instruction in the Dockerfiles so that you can be contacted
if someone wants, for some reason.

Hosting on GitHub

When we use our knowledge on how to host Docker image sources on GitHub and
how to publish images on the Docker Registry Hub, it'll be no problem creating our
data volume image.

Let's create a branch and a Dockerfile and add the content for our data volume image:

git checkout -b data
vi Dockerfile
git add Dockerfile

On line number 2 in the preceding code, you can use the text editor of your choice.
I'just happen to find vi suits my needs. The content you should add to the Dockerfile
is this:

FROM busybox:latest

MAINTAINER Oskar Hane <oh@oskarhane.com>

RUN mkdir /var/lib/mysql && mkdir /var/www/html
VOLUME ["/var/lib/mysql", "/var/www/html"]

Replace the maintainer information with your name and e-mail.

You can—and should —always ensure that it works before committing and pushing
to GitHub. To do so, you need to build a Docker image from your Dockerfile:

docker build -t data-test .

[55]




Giving Containers Data and Parameters

Make sure you notice the dot at the end of the line, which means that Docker should
look for a Dockerfile in the current directory. Docker will try to build an image from
the instructions in our Dockerfile. It should be pretty fast, since it's a small base
image and there's nothing but a couple of VOLUME instructions on top of it.

The screenshot is as follows:

oskarhane — ec2-user@ip-172-31-32-58:~/my-docker-images — ssh — 98x31

[ec2-user@ip-172-31-32-58 my-docker-images]$ docker build -t data-test .
Sending build context to Docker daemon 66.56 kB

Sending build context to Docker daemon

Step @ : FROM busybox:latest

busybox:latest: The image you are pulling has been verified

df7546F9F@6@: Pull complete

e433a6c5b276:
e72ac664F4fQ:
511136ea3cha:

Pull complete
Pull complete
Already exists

Status: Downloaded newer image for busybox:latest
--=> a72ach64F4Fe

Step 1 : MAINTAINER Oskar Hane <oh@cskarhane.com>
--=> Running in GeBea%@7fede
--=> d2adeec526F3

Removing intermediate container GeSead07fede

RUN mkdir /mysql_data && mkdir /www_data

Step 2 :
-=-=> Running in a315fcd38b5d
---> f@b@B557876a

Removing intermediate container a315fcd38b5d

Step 3 : VYOLUME mysql_data www_data

-=-=> Running in 9c87f4a1891f

-=-=> b5e344F268b3
Removing intermediate container 9c87f4a1891F
Successfully built b5e344f268b3
[ec2-user@ip-172-31-32-58 my-docker-images]$ docker images
REPOSITORY TAG IMAGE ID
data-test latest b5e344f268b3
oskarhane/hello latest 26c2a2935d3f
busybox latest el2ac664F4fe
[ec2-user@ip-172-31-32-58 my-docker-images]$ I

CREATED

9 seconds ago
3 weeks ago

6 weeks ago

VIRTUAL SIZE
2,433 MB
192.7 MB
2,433 MB

When everything works as we want, it's time to commit the changes and push it to
our GitHub repository:

git commit -m "Dockerfile for data volume added."
git push origin data

When you have pushed it to the repository, head over to GitHub to verify that your
new branch is present there.

[56]



Chapter 4

The following screenshot shows the GitHub repository:

O This repository Explore Gist Blog Help uoskamane +- O & P

oskarhane / my-docker-images @unwatch~ 1 #Star 0 YFork 0

m Yours Active Stale All branches 8 €
<«

Default branch

master Update 100 by oskathane .
I

Your branches

data 3 I Y ot i1 New pull request T "
Active branches a
data ate e 0|1 [ New pull request [ o

© 2014 GitHub, Inc. Terms Privacy Security Contact Status APl Training Shop Blog About

Publishing on the Docker Registry Hub

Now that we have our new branch on GitHub, we can go to the Docker Hub Registry
and create a new automated build, named data. It will have our GitHub data branch

as source.

Namespace (optional) and Repository Name
oskarhane ~ [/ data

New unique Repo name; 3 - 30 characters. Only lowercase letters, digits and _ - . characters are allowed

Tags

Type Name Dockerfile Location Docker Tag Name

Branch v data / latest

Wait for the build to finish, and then try to pull the image with your Docker daemon
to verify that it's there and it's working.

[57]



Giving Containers Data and Parameters

The screenshot will be as follows:

® @ oskarhane — ec2-user@ip-172-31-32-58:~/my-docker-images — ssh — 93x17

[ec2-user@ip-172-31-32-58 my-docker-images]$ docker pull oskarhane/data

Pulling repositery oskarhane/data

@al18c3872c3c: Download complete

511136ea3cha: Download complete

df7546Ff9f06@: Download complete

e433a6c5b276: Download complete

e72ac664F4F@: Download complete

24946a@61c77: Download complete

68e6271343fd: Download complete

Status: Downloaded mewer image for oskarhane/data:latest

[ec2-user@ip-172-31-32-58 my-docker-images]$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
oskarhane/data latest @al18c3872c3c 1@ minutes ago 2.433 MB
mysql latest 601884ab1542 8 days ago 235.5 MB
wordprass latest 260449f2df9e 3 weeks ago 196.5 MB
oskarhane/hello latest 26c2a2935d3f 3 weeks ago 192.7 MB
[ec2-user@ip-172-31-32-58 my-docker-images]$

Amazing! Check out the size of the image; it's just less than 2.5 MB. This is perfect
since we just want to store data in it. A container on top of this image can, of course,
be as big as your hard drive allows. This is just to show how big the image is.

The image is read-only, remember?

Running a data volume container

Data volume containers are special; they can be stopped and still fulfill their purpose.
Personally, I like to see all containers in use when executing docker ps command,
since I like to delete stopped containers once in a while.

This is totally up to you. If you're okay with keeping the container stopped, you can
start it using this command:

docker run -d oskarhane/data true

The true argument is just there to enter a valid command, and the -d argument
places the container in detached mode, running in the background.

If you want to keep the container running, you need to place a service in the
foreground, like this:

docker run -d oskarhane/data tail -f /dev/null

The output of the preceding command is as follows:

[58]



Chapter 4

oskarhane — ec2-user@ip-172-31-32-58:~/case — ssh — 154x22

[ec2-user@ip-172-31-32-58 case]$ docker run -d oskarhane/data true
148545daed6861ab784dc31d0352bedffecf96d72cdal9cT7aalle475a26a5094
[ec2-user@ip-172-31-32-58 casel$
ip-172-31-32-58 casel$
ip-172-31-32-58 casel$
ip-172-31-32-58 casel]$ docker run -d oskarhane/data tail -f /dev/null
3d1cb44720b9deb817bd456493681c8c4alcdbd19ab56091dbaTcd
-172-31-32-58 casel$
172-31-32-58 casel$
172-31-32-58 casel$
[ec2-user@ip-172-31-32-58 casel$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5c7e8317F13d oskarhane/data:latest "tail -f fdev/null” 11 seconds ago Up 18 seconds prickly_wilson
[ec2-user@ip-172-31-32-58 casel$
Lec2- 172-31-32-58 casel$
Lec2- 172-31-32-58 casel$
[ec2-user@ip-172-31-32-58 casel$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5c7e8317f13d oskarhane/data:latest "tail -f fdev/null” 16 seconds ago Up 15 seconds prickly_wilson
148545daed68 oskarhane/data:latest  "true” 29 seconds ago Exited (@) 28 seconds age naughty_euclid
[ec2-user@ip-172-31-32-58 casel$ [l

The tail -f /dev/null command is a command that never ends, so the container
will be running until we stop it. Resource-wise, the tail command is pretty harmless.

Passing parameters to containers

We have seen how to give containers parameters or environment variables when
starting the official MySQL container:

docker run --name mysql-one -e MYSQL ROOT PASSWORD=pw -d mysql

The -e MYSQL_ROOT PASSWORD=pw command is an example showing how you can
do it. It means that the MYSQL_ ROOT PASSWORD environment variable inside the
container has pw as the value.

This is a very convenient way to have configurable containers where you can have a
setup script as ENTRYPOINT or a foreground script configuring passwords; hosts; test,
staging, or production environments; and other settings that the container needs.

Creating a parameterized image

Just to get the hang of this feature, which is very good, let's create a small Docker
image that converts a string to uppercase or lowercase, depending on the state of
an environment variable.

The Docker image will be based on the latest Debian distribution and will have only
an ENTRYPOINT command. This is the Dockerfile:

FROM debian:latest

ADD ./case.sh /root/case.sh
RUN chmod +x /root/case.sh
ENTRYPOINT /root/case.sh

[59]



Giving Containers Data and Parameters

This takes the case. sh file from our current directory, adds it to the container,
makes it executable, and assigns it as ENTRYPOINT.

The case. sh file may look something like this:

#!/bin/bash

if [ -z "$STR" 1; then
echo "No STR string specified.™"
exit 0

fi

if [ -z "$TO CASE" ]; then
echo "No TO CASE specified."

exit 0

fi

if [ "$TO CASE" = "upper" ]; then
echo "${STR""*}n
exit 0

fi

if [ "$TO CASE" = "lower" ]; then
echo "${STR,,*}"
exit 0

fi

echo "TO CASE was not upper or lower"

This file checks whether the $STR and $TO CASE environment variables are set.
If the check on whether $TO CASE is upper or lower is done and if that fails,
an error message saying that we only handle upper and lower is displayed.

If $TO_STR was set to upper or lower, the content of the environment variable $STR
is transformed to uppercase or lowercase respectively, and then printed to stdout.

[60]



Chapter 4

Let's try this!

@ @ oskarhane — ec2-user@ip-172-31-32-58:~/case — ssh — 89x25

[ec2-user@ip-172-31-32-58 casel$ docker build -t case:latest .
Sending build context to Docker daemon 3.584 kB
Sending build context te Docker daemon
Step @ : FROM debian:latest
--->» f6fab3b798be
Step 1 : ADD ./case.sh /root/case.sh
---> Using cache
===> dc37401a78bf
Step 2 : RUN chmod +x froot/case.sh
--=» Using cache
--=> 4c309f47960d
Step 3 : ENTRYPOINT /root/case.sh
---> Using cache
===> 142e961d5173
Successfully built 142e961d5173
[ec2-user@ip-172-31-32-58 casel$ docker i case
No STR string specified.
[ec2-user@ip-172-31-32-58 case]$ docker i STR="My String" case
Mo TO_CASE specified.
[ec2-user@ip-172-31-32-58 casel]$ docker i STR="My String" -e TO_CASE=camel case
TO_CASE was not upper or lower
[ec2-user@ip-172-31-32-58 casel$ docker i STR="My String" -e TO_CASE=upper case
MY STRING
[ec2-user@ip-172-31-32-58 case]$ docker i STR="My String" -e TO_CASE=lower case
my string
[ec2-user@ip-172-31-32-58 casel$ I

Here are some commands we can try:

docker run -i case

docker run -i -e STR="My String" case

docker run -i -e STR="My String" -e TO CASE=camel case
docker run -i -e STR="My String" -e TO CASE=upper case
docker run -i -e STR="My String" -e TO CASE=lower case

This seems to be working as expected, at least for this purpose. Now we have created
a container that takes parameters and acts upon them.

[61]



Giving Containers Data and Parameters

Summary

In this chapter, you learned that you can keep your data out of your service
containers using data volumes. Data volumes can be any one of directories,
files from the host's filesystem, or data volume containers.

We explored how we can pass parameters to containers and how to read them
from inside ENTRYPOINT. Parameters are a great way to configure containers,
making it easier to create more generalized Docker images.

We created a data volume container and published it to the Docker Registry Hub,
preparing us for the next chapter, where we will connect our three containers to
create one loosely coupled unit.

[62]



Connecting Containers

It's time to connect all our three containers to form a single unit of modularized
parts. I'll introduce you to two services, Docker Compose and Crane, which can
be used to automate this. We'll go through the following topics in this chapter:

* Manually connecting containers together
* Exploring the contents of a data volume container
* Connecting containers to a configuration file using Docker Compose

* Connecting containers to a configuration file using Crane

Manually connecting containers

Let's take a look at how to connect our service containers to our data volume container.
First, we have to run our data volume container, then run our MySQL container, and
lastly run our WordPress container, as shown in the following command:

docker run -d --name data-one oskarhane/data tail -f /dev/null

docker run --name mysql-one --volumes-from data-one -e MYSQL ROOT
PASSWORD=mysecretpassword -d mysql

docker run --name wordpress-one --volumes-from data-one --link mysql-
one:mysql -d -p 80 oskarhane/wordpress

Here, we have fired up and named the data volume container data-one. The next
line fires up the MySQL container, named mysql-one, and gives it the data volume
container. The last line fires up our WordPress container, named wordpress-one,
links mysgl-one as the MySQL link, and gives it the data volume container.

[63]




Connecting Containers

The following output is displayed:

[ ] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 150x21

[ec2-user@ip-172-31-32-58 ~]$ docker run -d --name data-one oskarhane/data tail -f /dev/null
abc94cbd6bf59bb3@8efccI9cTbI9a2863aTed0e58c321620e671e8d703c998e

[ec2-user@ip-172-31-32-58 ~1$ docker run --name mysql-one --volumes-from data-one -e MYSQL_ROOT_PASSWORD=mysecretpassword -d mysql
8792609cbc9fbfc2b4105376dF4c5b52F0F9857a53602be56d4187b424F952d9

[ec2-user@ip-172-31-32-58 ~]$ docker run --name wordpress-one --volumes-from data-one --link mysql-one:mysql -d -p 80 askarhane/wordpress
95630d9b3d339e8db42d25F293498eeb28b98c6e96b092333d881cba8b277916

[ec2-user@ip-172-31-32-58 ~1% docker ps

CONTAINER ID TMAGE COMMAND CREATED STATUS PORTS NAMES
95630d9b3d33 oskarhane/wordpress:latest  "/entrypoint.sh apac 7 seconds ago Up 6 seconds 0.0.0.0:49161->80/tcp  wordpress-one

8792609cbcdf mysql:latest "fentrypoint.sh mysq About a minute ago Up About a minute  3306/tcp mysql-one

abc94cbdbbfs oskarhane/data:latest "tail -f /dev/null" 3 minutes ago Up 3 minutes data-one

[ec2-user@ip-172-31-32-58 ~]$

Open your web browser and head over to the container's URL and port in order to
verify that all the services are running and the containers are tied together as they
should be. You should see the, now familiar, WordPress installation page.

As you may have figured out by now, you can fire up another WordPress container
using the same MySQL link and the same data volume container. What do you think
will happen?

The new WordPress container will be another instance of the same WordPress site,
with the same files and the same database.

When you link containers, Docker will set some environment variables in the
target container in order to enable you to get information about the linked source
container. In our case, these environment variables will be set when we link the
MySQL container, as shown in the following command:

MYSQL NAME=/wordpress-one/mysgl-one
MYSQL PORT=tcp://ip:3306
MYSQL_3306_TCP=th://ip:3306
MYSQL_3306_TCP_PROTO=tcp

MYSQL 3306 _TCP_PORT=3306
MYSQL_3306_TCP_ADDR=ip

[64]



Chapter 5

Exploring the contents of a data volume
container

Is the data being written to the data volume container? Or, is the data stored inside
the MySQL and WordPress containers when connected? How can you tell?

One way to determine this is to enter a container via a shell so that you can navigate
around its filesystem. Since version 1.3, Docker has the ability to start a new instance
of a container's shell. Running the old docker attach command just gets you in

the current shell instance, which in our case has tail -f /dev/null running. If we
exit this tail command, the container will exit and shut down. Therefore, we need
a new shell instance in a running container so that we can invoke any commands
we want inside the container without the risk of the container exiting. The following
command can be used to do this:

docker exec -i -t data-one /bin/sh

The -i and -t flags mean that we want to keep the session interactive and allocate
a pseudo-TTY. data-one is the name of the container, but you can use the container
ID if you like. I would choose /bin/bash over /bin/sh, but the container runs
BusyBox and /bin/bash isn't available there. For the kinds of tasks that we are
about to perform, it doesn't matter which shell we use.

What we want to do is to take a look in the directories we exposed as VOLUMES in this
data volume container. The directories are /var/www/html and /var/lib/mysql.

Let's explore in the following command:

ls -la /var/www/html
ls -la /var/lib/mysql

[65]



Connecting Containers

The following output is displayed:

® [ ] oskarhane — ec2-user@ip-172-31-32-58:~ — ssh — 98x44

[ec2-user@ip-172-31-32-58 ~]% docker exec -i -t data-one /bin/sh
[/ # 1s -la /var/www/html

total 1588
drwxr=xr-x
drwxr=xr-x
=rW=r==r==

www-data www-data 4096

www-data www-data 4096

www-data www-data 163 .htaccess

www-data www-data 418 index.php

www-data www-data 1993@ license. txt

www-data www-data 7192 readme . html

www-data www-data 379037 two-factor-auth.4.4.zip
www-data www-data 4851 wp-activate.php
www-data www-data 4096

www-data www-data 27 wp-blog-header . php
www-data www-data 4946 wp-comments-post.php
www-data www-data 2746 wp-config-sample.php
www-data www-data 3147 wp-config.php

www-data www-data 4096

www-data www-data 2956 wp-cron . php

www-data www-data 4096

www-data www-data 238e wp=-links-cpml.php
www-data www-data 2714 H wp=load. php

www-data www-data 33043 H wp-login, php

www-data www-data 138096 H wp-mail-smtp.@.9.5.zip
www-data www-data 8252 H wp=mail . php

www-data www-data 11115 H wp-settings.php
www-data www-data 26256 H wp=signup.php

www-data www-data 905473 H wp-super-cache.1.4.2. zip
www-data www-data 4026 wp-trackback. php
-rW-r--r-- 1 www-data www-data 3e32 xmlrpc. php

[/ # 1s -la /var/lib/mysql

total 11@62@
drwxr-xr-x
drwxrwxr=-x
=FW=rW-———

=rW-r==r--
=rW=-r==r--
=rW=r=-r--
=rW=r==r--
=rW=r==r--
drwxr=xr=x
—rW-r--r--
—-rW-r--r--
—-rW-r--r--
-rW-r--r--
drwsr-xr-x
-rW-r--r--
drwxr-xr-x
=rW=-r==r--
=rW-r==r--
=rW=-r==r--
=rW=r=-r--
=rW=r==r--
=rW=r==r--
—rWef—-—
—rW-r--r--

B el B o B ol ok b b B = i = ek b ol 4 =B o8 b = o =3 L) N

—rw-r--r--

999

root

999 2 1 8792609cbe9f . pid
999 56 1 auto.cnf

999 50331648 1 ib_logfile®

999 508331648 ! ib_logfilel

999 12582912 ! ibdatal

999 4096

999 4096

999 4096

=FW=rW=-=-=-=-
=rW=rW=--=-=-
=IW=rw

=rW=rw----

R s |

We see files on both those directories, which indicates that the two other containers
are writing to this one. It separates the services with the data. If you want further
proof, launch vi in the shell, edit a file, and reload the site in your browser.

This worked out really smooth and easy, didn't it? The containers interact with each
other and all we have to do is to link them together with just one command.

[66]



Chapter 5

Connecting containers using Docker
Compose

Docker Compose was previously called Fig, but Docker acquired Fig and the name
was changed. This is how Docker describes Docker Compose:

"Compose is a tool for defining and running complex applications with Docker.
With Compose, you define a multi-container application in a single file, then spin
your application up in a single command which does everything that needs to be
done to get it running."

Docker Compose basically gives us a way to define settings in a configuration file,
so we don't have to remember all the names for all the containers when linking
them together, the ports to expose, the data volume container to use, and so on.

Installing Docker Compose

Docker Compose has regular releases on GitHub, and at the time of writing this book,
the latest release is 1.0.1.

We will install Docker Compose with the Python package manager, pip. Our EC2
instance does not come with pip installed, so we have to start with the installation,
as shown here:

sudo su
wget https://bootstrap.pypa.io/get-pip.py && python ./get-pip.py

The following output is displayed:

[ ] [ ] oskarhane — root@ip-172-31-32-58:/home/ec2-user — ssh — 97=20
[root@ip-172-31-32-58 ec2-user]# wget https://bootstrap.pypa.io/get-pip.py && python ./get-pip.py
converted 'https://bootstrap.pypa.io/get-pip.py’ (ANSI_X3.4-1968) -> 'https://bootstrap.pypa.io/g
et-pip.py"’ (UTF-8)

-=-2014-12-02 21:09:34-- https://bootstrap.pypa.io/get-pip.py

Resolving bootstrap.pypa.ie (bootstrap.pypa.iec)... 199.27.79.175

Connecting to bootstrap.pypa.io (bootstrap.pypa.io)]|199.27.79.175]|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1340903 (1.3M) [text/x-python]

Saving to: "get-pip.py.2'

get-pip.py.2 10@%[=== =zz===== ==zz======= 1.28M 3.49MB/s in 0.4s

2014-12-02 21:09:34 (3.49 MB/s) - 'get-pip.py.2' saved [13489@3/1340903]

Requirement already up-to-date: pip in fusr/lib/python2,6/site-packages
Cleaning up...

[root@ip-172-31-32-58 ec2-userl# pip -V

pip 1.5.6 from fusr/lib/python2.6/site-packages (python 2.6)
[root@ip=-172-31-32-58 ec?-user]# I

[67]



Connecting Containers

After pip is installed, you can go ahead and install Docker Compose:

sudo pip install -U docker-compose

Now, you'll see Docker Compose installed along with all of its dependencies.
Invoke docker-compose --version to verify that it works as expected.

Basic Docker Compose commands
The following are the basic Docker Compose commands that you should be
familiar with:

* build: This is used to build or rebuild services

* kill: This forces the service containers to stop

* logs: This views the output from the services

* port: This is used to print the public port for a port binding

* ps: This is used to list containers

* pull: This is used to pull service images

* rm: This is used to remove stopped service containers

* run: This is used to run a one-off command on a service

* scale: This sets the number of containers to be run for a service

* start: This is used to start existing containers for a service

* stop: This stops running containers without removing them

e up: This builds, recreates, starts, and attaches to containers for a service;

linked containers will be started, unless they are already running

As you can see, the commands are very similar to the Docker client commands and
most of them do the exact same thing by forwarding the commands to the Docker
daemon. We will go through some of them a little more in detail.

Service

When the word service is used with Docker Compose, it refers to a named
container in a docker-compose . yml configuration file.

[68]




Chapter 5

Using the run command

We are used to starting containers with the run command for the Docker client.

With docker-compose, the run command is very different. When you run a command
with docker-compose, it's a one-off command on a service. This means that if we name
a container configuration Ubuntu and invoke docker-compose run ubuntu /bin/
bash echo hello, the container will start and execute /bin/bash echo helloand
then shut down. The difference with this and running the command directly with
Docker is that all the linked containers and VOLUME containers will be started and
connected when you use docker-compose.

Using the scale command

The scale command is very interesting. When we invoke docker-compose scale
web=3, we actually start three containers of the service that we named web.

Setting up our PaaS with Docker Compose

Every Docker Compose instance lives in its own directory and has a configuration
file named docker-compose.yml inside it:

mkdir docker-compose-wp && cd $
touch docker-compose.yml

This is how the contents of our docker-compose . yml file will look:

wp:
image: oskarhane/wordpress
links:
- mysqgl:mysql
ports:
- N 8 0 (1]
volumes from:
- paasdata
mysqgl:
image: mysql
volumes from:
- paasdata
environment:
- MYSQL ROOT PASSWORD=myrootpass
paasdata:
image: oskarhane/data
command: tail -f /dev/null

[69]



Connecting Containers

You can see that we have defined three services here, namely wp, mysql,
and paasdata.

Lets try these services and the following output is displayed:

o & oskarhane — ec2-user@ip-172-31-32-58:~/docker-compose-wp — ssh — 92x12

[ec2-user@ip-172-31-32-58 docker-compose-wpl$ docker-compose up -d
Recreating dockercomposewp_paasdata_1l...

Recreating dockercomposewp_mysql_1...

Recreating dockercomposewp_wp_1...

[ec2-user@ip-172-31-32-58 docker-compose-wpl$ docker-compose ps

dockercomposewp_mysql_1 fentrypoint.sh mysqld --da ... 3306/ tcp
dockercomposewp_paasdata_1 tail -f fdev/null

dockercomposewp_wp_1 fentrypoint.sh apache2 -DF ... 2.0.0.0:49155->8@/tcp
[ec2-user@ip-172-31-32-58 docker-compose-wpl$

[ec2-user@ip-172-31-32-58 docker-compose-wpl$

Invoke docker-compose up -d to run docker-compose and the containers in
daemon mode.

That's how easy it is. Open your web browser and head to your Docker host and
the port stated in the table (in my case, port 49155); you should see the very familiar
WordPress installation page.

Connecting containers using Crane

Crane is much like Docker Compose, but it has more configuration possibilities.
This is how its creator describes Crane:

"Crane is a tool to orchestrate Docker containers. It works by reading in some
configuration (JSON or YAML) which describes how to obtain images and how to
run containers. This simplifies setting up a development environment a lot as you
don't have to bring up every container manually, remembering all the arquments
you need to pass. By storing the configuration next to the data and the app(s) in a
repository, you can easily share the whole environment."

This paragraph can be about Docker Compose as well, as you can see.

[70]



Chapter 5

Installing Crane

Crane is easy to install but not easy to keep updated. The same command is used to
install as well as update, so we have to invoke this once in a while in order to have
the latest version.

Invoke the following command on a single line to install Crane:

bash -c "“curl -sL https://raw.githubusercontent.com/michaelsauter/crane/
master/download.sh™" && sudo mv crane /usr/local/bin/crane

Crane is now installed in /usr/local/bin.

Usage
I won't go through all the commands here since they're similar to Docker Compose's
commands, but I'll comment on a few here:
e 1lift: This command, like Docker Compose's up command, builds and runs
containers from your configuration file
* graph: This prints your containers' relations from the configuration file

* logs: This maps to the Dockers Compose's command, but here you can
get the logs for a whole group

* status: This also maps to the Dockers Compose's command but lets you
get the logs for a group

Configuration
This is where Crane really leaves Docker Compose behind. You have many more
configuration options for Crane apps. The configuration file must be named crane.
json or crane.yaml. For every container, this is what you can configure:

* image (string, required): This is the name of the image to build/pull

* dockerfile (string, optional): This gives the relative path to the Dockerfile

* run (object, optional): These parameters are mapped to Docker's run and
create commands:

° add-host (array): This adds custom host-to-IP mappings
° cpuset (integer)
° cpu-shares (integer)

° detach (boolean) sudo docker attach <container names> will
work as normal

[71]



Connecting Containers

[e]

o

[e]

device (array): This adds host devices
dns (array)

entrypoint (string)

env (array)

expose (array): This denotes the ports to be exposed to linked
containers

hostname (string)

interactive (boolean)

link (array): This links containers

memory (string)

privileged (boolean)

publish (array): This maps network ports to the container
publish-all (boolean)

restart (string) Restart policy

rm (boolean)

tty (boolean)

volume (array): In contrast to plain Docker, the host path can be
relative

volumes-from (array): This is used to mount volumes from other

containers

workdir (string)

cmd (array/string): This command is used to append to docker run

(overwriting CMD)

* rm (object, optional): These parameters are mapped to Docker's
rm command:

o

* start (object, optional):These parameters are mapped to Docker's

volumes (boolean)

start command:

[e]

o

attach (boolean)

interactive (boolean)

[72]




Chapter 5

Set up the same configuration that you did in Docker Compose; it will look
something like the following code. As you might understand, you can write
this in the JSON format as well, but for the comparison to Docker Compose's
version to be as easy as possible, I'll keep it in the yaml format:

containers:
wp:
image: oskarhane/wordpress
run:
volumes-from: ["mydata"]
link:
- mymysqgl:mysql
publish: ["80"]
detach: true
mymysqgl:
image: mysql
run:
volumes-from: ["mydata"]
detach: true
env: ["MYSQL ROOT PASSWORD=rootpass"]
mydata:
image: oskarhane/data
run:
detach: true
cmd: "tail -f /dev/null"

Here, we specify three containers, where the data container is added as a data
volume container to the others and the MySQL container is linked to the
WordPress container.

Save this file as crane.yaml and type crane 1ift to run your app.

The following output is displayed:

® @] oskarhane — ec2-user@ip-172-31-32-58:~/crane-wp — ssh — 105x11

[ec2-user@ip-172-31-32-58 crane-wpl$ crane lift

Running container mydata ... 159e@c5b63bc52be4d93a8af625dF77186ea43538867d8debf587c7ef%e0bete

Running container mymysqgl ... 9919f@467d1cc@1f2adfc569b6bc8B54616e61a7159356976218248055eb113b

Running container wp ... ©369e142a23b7e69729f33308a71977F38bcba56d0f689a6b636754e7a081424
[ec2-user@ip=-172-31-32-58 crane-wpl$ crane status

NAME IMAGE 1D UP TO DATE IP PORTS RUNNING

mydata oskarhane/data 159a@c5b63be trua 172.17.@.161 - trua
mymysql mysql 9919F@467d1c true 172.17.0.162 3306/ tcp, true
wp oskarhane/wordpress 0369e142a23b true = - false
[ec2-user@ip-172-31-32-58 crane-wpl$

[73]



Connecting Containers

To see the containers' current statuses, we can type crane status. Take a look at the
last column in our wp container. It says it's not running. Type crane logs wp and see
what it says in following command:

wp * WordPress not found in /var/www/html - copying now...

wp * Complete! WordPress has been successfully copied to /var/www/html

wp |

wp | Warning: mysqli::mysqli(): (HY000/2002): Connection refused in - on
line 5

wp * MySQL Connection Error: (2002) Connection refused

It seems that our WordPress container starts faster than our MySQL container, so the
WordPress container can't find it when it starts.

This can happen in Docker Compose as well because there's no check if --1ink:ed
containers are up, at least not at the time when this is being written.

This cannot be solved in Docker Compose; we have to rely on pure luck that the
MySQL container will get ready before the WordPress container tries to use the
linked MySQL container.

With Crane, you can group containers inside the configuration file in different
groups and then run commands on that group instead of the whole configuration.

This is very easy; we just add these lines at the end of our crane . yaml file:

groups:
default: ['mydata', 'mymysqgl', 'wp'l
data db: ['mydata', 'mymysql']
web: ['wp'l]

Here, we have separated the WordPress container from the other two containers we
have so that we can run commands on them separately.

Let's start our data_db group first by invoking the crane 1lift data_db
--recreate command. I added the flag - -recreate and to make sure that we're
creating new containers and not reusing the old ones. Run crane status data_db
to make sure they're running.

Now that we know that the MySQL container is running, we can start the WordPress
container by invoking the crane 1ift web --recreate command.

[74]




Chapter 5

The following output is displayed:

I (O] oskarhane — ec2-user@ip-172-41-32-58:~/crane-wp — ssh — 104x10
[ec2-user@ip-172-31-32-58 crane-wpl$ crane lift web

Running container wp ... 87c5f51e32087b7bb4ebaafdab2785@9934157e47ddeBedc70abbebebfa21580
[ec2-user@ip-172-31-32-58 crane-wpl$

[ec2-user@ip-172-31-32-58 crane-wpl$

[ec2-user@ip-172-31-32-58 crane-wpl$ crane status

NAME IMAGE ID UP TO DATE IP PORTS RUNNING
mydata oskarhane/data @@9369d66F60 true 172.17.0.180 = true
mymysql mysql c@21b681b86G true 172.17.@.181 3306/ tcp, true
wp oskarhane/wordpress B87c5f51e3208 true 172.17.@.182 8@/tcp, true
[ec2-user@ip-172-31-32-58 crane-wpl$

Summary

Now, we can connect containers in different ways to keep different services separate
on different containers. We learned how to do this manually, which can be quite
hard when you have lots of dependencies between containers.

We had a brief look at two orchestration tools: Docker Compose and Crane. Crane
is an independent and more advanced tool for the administrators who want more
control over containers. The ability to group containers in Crane makes it more
reliable when there can be timing issues in dependencies.

In the next chapter, we will run two instances of our app using Crane to see what
problems and possibilities crop up when we want to make both our blogs publicly
accessible on the regular HTTP port (80).

[75]






Reverse Proxy Requests

One big problem in having many containers with public ports on the same server is
that they can't all listen to the standard ports for their kinds of services. If we have a
MySQL backend service and have 10 MySQL containers running, only one of them
can listen to the MySQL standard port 3306. For those who expose a web server,
the standard port 80 can only be used by one of their WordPress containers. In this
chapter, we'll cover the following topics:

* Explaining the problem
* Coming up with a solution to the problem
* Implementing the solution with Nginx and HAProxy

* Automating the process of mapping domains

[77]




Reverse Proxy Requests

Explaining the problem

The problem in having many containers with the same services on the same host is
that there are standard ports used by user applications. Using a web browser and
entering the IP to a Docker host running a WordPress container will ask for resources
on port 80 by default. You can't expect your users to remember a nonstandard port
in order to enter your website.

Web Page Title DOCker hOSt
€>Ch .
Docker containers
—_
http://domain1.com:49256 —
domaini.com
P: 80:49256
Web Page Title ~—
—_
€>2Ch
domain2.com
http://domain2.com:49257 Pr80asst
S~
—
Web Page Title [~
€srch e
. S
http://domain3.com

The only way to reach each of the three containers is to manually enter the containers' exposed port number.

Finding a solution

Before we head to the solution, let me explain what a regular proxy server is, in case
you're not familiar with it.

A proxy server is a server that connects to services on your behalf and forwards
all the results to you. After you've set up to route all your traffic through the proxy
server, you—as a user —won't notice it's there. Everything will work as usual.

[78]



Chapter 6

However, service owners only see that a certain machine (the proxy server) is

connected to them. If another user uses the same proxy server and the same service
as you do, the service owner can't tell the difference and will perceive you as one

single user.

.
“'\-\_\_\—'_,_:-'J
—

Youtube

——

—
e
"-~-\_,_\___,_,_-J

Proxy server
IP: 213.12.12.3

Google

———

—
\"—\—\_,—,_4—'—4
F——

Facebook

Different users connecting through a proxy server appear as one user.

As you can see in the preceding diagram, the service owners just see that someone
with an IP of 213.12.12.3 has connected to them.

So, what if we use this on the Docker host? What if we put something in front of all
the containers? Depending on which domain name is being requested, this thing
will forward the request to the right container and port and then just forward the
request's response to the requesting user.

There are things especially made to solve this kind of problem. They're called reverse
proxies (reverse because the proxy is at the other end, making the user only see one

IP and forwarding the request).

[79]




Reverse Proxy Requests

If we install and configure a reverse proxy on our Docker host server, then this is
how the diagram will look:

Web Page Title Docker host
€>3Ch .
Docker containers
. —
http://domain1.com ~— ]
domain.com
P: 80:49256
Web Page Title ——
€53 Ch < D
Reverse
domain2.com
. I — roxy P: 80:49257
http://domain.2.com P
P P: 80
—
—_—
Web Page Title "
€rca it
~—
http://domain3.com

A reverse proxy lets all Docker containers appear as one.

The reverse proxy listens to port 80 —the standard web port—and when a request for
domainl.com comes in, the proxy looks at its configuration to see whether there is a
specified forwarding endpoint for this domain. If there is, the reverse proxy forwards
the request to the right Docker container, waits for its response, and forwards the
container's response to the requesting users when it comes.

This is the solution we're after. The only question now is which reverse proxy we are
going to use. There are quite a bunch of them out there; some reverse proxies have
more specific purposes, such as load balancing, and some are services that do a lot
of other stuff and have this feature as well, such as a web server.

Implementing the solution

You will always have preferences when selecting a tool to solve a problem. Sometimes,
you select a tool because you're comfortable using it and it's good enough; sometimes,
you select it because it has great performance or because you just want to try
something new.

That's why we will go through this problem and solve it with two different tools.
The end result will be the same, but the tools have a slightly different setup.

[80]




Chapter 6

Before we start implementing the solutions, we use Crane to start an instance of our
three-container application and verify that it's working by connecting it to the site.
Have Docker decide the public port for you, so it's 491xx. Remember this port since
we will use it when implementing the solutions.

We need to point out the domain names we want to use to our Docker host's IP
address. We can do this either by setting the domain names A-record to our server's
IP address or by adding a line in our local /etc/hosts file, which directs requests to
the domain names to our server's IP address.

I'll go with the latter and enter this in my Mac's /etc/hosts file:

54.148.253.187 domainl.com
54.148.253.187 domain2.com
54.148.253.187 domain3.com

Make sure you replace the above IP address with your
s server's IP address.

Implementation with HAProxy

HAProxy (http://www.haproxy.org) is a load balancer, which has the role of
forwarding traffic to different services behind it.

This is how HAProxy describe themselves:

"HAProxy is a free, very fast and reliable solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. It is particularly
suited for very high traffic web sites and powers quite a number of the world's most
visited ones. Over the years it has become the de-facto standard open source load
balancer, is now shipped with most mainstream Linux distributions, and is often
deployed by default in cloud platforms."

This sounds like something that fits our needs.

Installing HAProxy

As noted in the quote, many systems are installed already and shipped with it. If
you can't find it, it should be available in you package manager if you use Ubuntu or
Debian (apt-get install haproxy) or in some other distro with a package manager.

On my Amazon EC2 instance that runs Amazon Linux, HAProxy can be installed
using yum install haproxy.

[81]



http://www.haproxy.org

Reverse Proxy Requests

The following output will be obtained as follows:

oskarhane — root@ip-172-31-32-58:/home/ec2-user — ssh — 117x43

[root@ip-172-31-32-58 ec2-user]# yum install haproxy

Failed to set locale, defaulting to C

Loaded plugins: priorities, update-motd, upgrade-helper
amzn-main/latest

anmzn-updates/latest

Resclving Dependencies

-=-> Running transaction check

---> Package haproxy.x86_64 @:1.4,22-5,3,amzn1 will be installed
--> Finished Dependency Resclution

Dependencies Resolved

Version

Installing
haproxy 1.4.22-5,3,amzn1

Transaction Summary
Install 1 Package

Total download size: 512 k

Installed size: 1.4 M

Is this ok [y/d/N]: y

Downloading packages:

haproxy-1.4,22-5.3,amzn1,x86_64. rpm

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction
Installing : haproxy-1.4.22-5.3.amzn1.x86_64
Verifying : haproxy-1.4.22-5,3.amzn1.x86_64

Installed:
haproxy.x86_64 @:1.4.22-5 3 amznl

Completel

[root@ip-172-31-32-58 ec2-userl# haproxy -v
HA-Proxy version 1.4.22 2012/08/09
Copyright 2000-2012 Willy Tarreau <w@lwt.eu>

[root@ip-172-31-32-58 ec2-user]# I

It's not the most recent version, but that's OK for the things we are about to do.

Configuring HAProxy

We'll write an HAProxy configuration in the file /etc/haproxy/docker.cfg so
that we don't have to remove everything in the default configuration file, as it may
be good for reference in the future.

HAProxy divides its configuration into four parts: global, defaults, frontend,
and backend. Don't confuse frontend and backend with frontend and backend
development. Here, frontend means the server part that's facing the Internet,
and backend is the server part that's behind HAProxy, which in our case are
the Docker containers.

[82]



Chapter 6

Open the configuration file and start by typing in the generic stuff, as shown here:

global
daemon
maxconn 4096
pidfile /var/run/haproxy.pid
defaults
mode http
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms
Now, we enter the port to listen on and the backend configurations to use for
which domain:

frontend http-in
bind *:80
acl is sitel hdr end(host) -i domainl.com
use backend sitel if is sitel

We define that regular incoming HTTP traffic on port 80 should be captured.

The acl here means access control list and is a flexible solution to take decisions
based on content extracted from the requests. The hdr end (host) -i domainl.
com function call means that the end of the header host is case-insensitive, matched
against the string domain1 . com. The result (Boolean) of this match is saved in the
is_sitel variable.

Note that this means that all the subdomains for domainl . com will be matched with
this setup. If you just want to match www.domain1l.com, you can use hdr (host) -i
www . domainl . com instead.

Now that we have the match result in the is_sitel variable, we can send the
request to a backend configuration, named sitel.

We append this to our configuration file:

backend sitel
balance roundrobin
option httpclose
option forwardfor
server sl 127.0.0.1:49187 maxconn 450

We define our backend name as sitel, set a few options, and add the server and the
port to our WordPress container.

[83]



Reverse Proxy Requests

Make sure you enter your WordPress container's exposed port
s instead of 49187 in the preceding code.

It's time to try this configuration. Save the configuration file and test it in a shell with
this command:

haproxy -f /etc/haproxy/docker.cfg -c

The output should say configuration file is valid.

Make sure you don't have something already listening to port 80 on your machine.
You can use something such as netstat -a to verify that 80 or HTTP isn't listed.
If they are, find the app that's listening and shut it down.

Start HAProxy with this command:
haproxy -f /etc/haproxy/docker.cfg -D

The -D option means that we want to run it as a daemon in the background.
You shouldn't see any output when you invoke this command.

Let's check whether HAProxy is running by invoking ps aux | grep haproxy.
You should see it listed there. Finally, let's verify that it is listening to port 80 by
invoking netstat -a | grep http. Now, you should have something in that list.

The output obtained is displayed here:

[ ] oskarhane — root@ip-172-31-32-58:/home/ec2-user/crane-wp — ssh — 103x9

[reot@ip-172-31-32-58 crane-wpl# haproxy -f /etc/haproxy/decker.cfg -D

[root@ip-172-31-32-58 crane-wpl# ps aux | grep haproxy

root 21322 8.8 @.@ 16852 956 7 £z 2@:57 @:0@ haproxy -f fetc/haproxy/docker,cfg -D
root 21324 0.0 0.€ 110256 640 pts/0 S+ 20:57 @:0@ grep haproxy

[root@ip-172-31-32-58 crane-wpl# netstat -a | grep http
tep [:] @ x:http *1k LISTEN
[root@ip=-172=-31-32-58 crane-wpl#

It all looks good!

Just to recap what we have done here: we set up a service that listens for incoming
requests on port 80 on our server. When a request on this port comes in, a check on
the request header's host is performed to see whether it matches domain1 . com. If we
have a match, the request is forwarded to the IP address 127.0.0.1 and to the port
49187. The response from this IP and port are sent back to the requester.

[84]




Chapter 6

cd crane-wp2

Now to the moment of truth. Open your web browser and enter the
URL domainl.com.

Make sure that you have entries for domainl . comin your host's file, pointing it
to your server.

After you perform the preceding instructions, you will see the following
website screen:

| " WordPress + Installation ®

&« C | [ domain1.com/wp-admin/install.php

Q| =

W

g palt
Azarbaycan dili
BErnrapciu
Bosanski

Catald

Cymraeg

Dansk

Deutsch

English {Canada)
English (UK}
English (Australia)
Espafiol

Esparfiol de Peri

Crmafal de S o

Adding more domains to HAProxy

We did not go through all this just to serve a single web application on port 8o,
which can be done without a reverse proxy. Start another WordPress application
with Crane by copying the old configuration to a new directory and change the
service's names, as shown here:

Cp -r crane-wp crane-wp2

You can see that in the location bar, no port is specified. Wonderful!

[85]



Reverse Proxy Requests

sed -i "s/wp/wp2/g" crane.yaml

sed -i "s/mydata/mydata2/g" crane.yaml
sed -i "s/mymysql/mymysqgl2/g" crane.yaml
crane lift data db

crane lift wp2

#icheck out port for new container named wp2
docker ps

Open the HAProxy configuration file again and add two lines in the frontend:

acl is site2 hdr end(host) -i domain2.com
use _backend site2 if is site2

After that, add a new backend configuration named site2:

backend site2
balance roundrobin
option httpclose
option forwardfor
server s2 127.0.0.1:49188 maxconn 450

Make sure that you replace the port with the one you got. Restart HAProxy and do
the checks we did the last time we started it.

To restart HAProxy, run /etc/init.d/haproxy restart.

_ HAProxy can reload a new configuration without dropping
% active sessions with this command:
'S

haproxy -f /etc/haproxy/docker.cfg -p /var/run/
haproxy.pid -sf $(cat /var/run/haproxy.pid)

Open your browser and go to domainl.com in order to make sure that the old
one is working. If it does, go to domain2 . com. You should see another WordPress
installation site. Just to be sure that it's not the same, go ahead and install one of
them. Or, go to domain3.comand see what happens when a domain points to the
server without having it match in HAProxy.

Implementation with Nginx

Now, we are going to do the same thing as we did with HAProxy, but we will use
the excellent web server Nginx (http://nginx.org/en/) as our reverse proxy
instead. Nginx is a full featured and really fast web server that leaves a small
footprint in the memory.

[86]


http://nginx.org/en/

Chapter 6

This is how Nginx is described:

"nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy
server, written by Igor Sysoev. For a long time, it has been running on many
heavily loaded Russian sites including Yandex, Mail.Ru, VK, and Rambler.
According to Netcraft, nginx served or proxied 20.41% busiest sites in November
2014. Here are some of the success stories: Netflix, Wordpress.com, FastMail. FM."

This also sounds like what we need, just like it did with HAProxy.

Installing Nginx

Nginx is available in all Linux package managers, such as aptitude/apt, yum,
and others, so an install can be simply done with apt-get install nginx or
yum install nginx. Since it's open source, you can, of course, install it from
the source as well.

Configuring Nginx

We are going to add the configuration to a file named /etc/nginx/conf.d/wpl. conf.
Create and open this file in your favorite text editor:

server {
listen 80;
server name domainl.com;
charset UTF-8;

if ($host !~ *(domainl.com)$ )
return 444;

}

This block, as you can see, makes the server listen to port 80 and to match the
domain domaini . com for this configuration to apply. It's always good to specify the
server charset so that the website text does not get the wrong encoding during the
forwarding process; so, we add that line as well. To just listen to domain1.comand
nothing else (Nginx uses the first configuration found as a default configuration if
there's no match in the server name part), we return the HTTP status code 444 (no
response) on the other requests that get in there.

What are we going to do with the requests on port 80 for domaini.com then?

[87]



Reverse Proxy Requests

Add this inside the server's scope (curly brackets):

location / {
proxy pass http://wpl;
proxy set header X-Real-IP S$remote addr;
proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy set header X-NginX-Proxy true;
proxy set header Host S$host;
proxy set header X-Forwarded-Proto $scheme;
proxy redirect off;

}

The location block will match all the requests since it matches /. We will get back
to the proxy_pass part in a while. Other than this, you'll see that we set a lot of
headers, most of them telling our Docker container the requesters' real IP address
and so on.

Back to the proxy_pass part. This is the part that actually forwards the request, to
something named wp1. This is called an upstream, which we have to define.

Add this outside the server's scope:

upstream wpl {
server 127.0.0.1:49187;

}

The complete configuration file named /etc/nginx/conf.d/wpl.conf should look
like this now:

upstream wpl {
server 127.0.0.1:49187;

server {
listen 80;
server name domainl.com;
charset UTF-8;

if ($host !~ *(domainl.com)$ )
return 444;

location / {
proxy pass http://wpl;
proxy set header X-Real-IP S$remote addr;

[88]




Chapter 6

proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy set header X-NginX-Proxy true;

proxy set header Host S$host;

proxy set header X-Forwarded-Proto $scheme;

proxy redirect off;

}

Save the file and on most Linux systems, you can test it for syntax errors using
the command sudo /etc/init.d/nginx configtest or sudo service nginx
configtest.

_ Make sure that you have shut down HAProxy before you start
& Nginx, or you will get an error saying that Nginx can't bind to
S port 80. You can do this with the following command:
/etc/init.d/haproxy stop

If the test was successful, we can now restart (or start) the Nginx server. Again,
use sudo /etc/init.d/nginx restart Or sudo service nginx restart on
most systems.

Head over to your web browser and enter the URL domainl . com to take a look
at our WordPress installation site. To make sure nothing but domain1.com works,
try to go to domain2 . com and expect no response.

Adding more domains to Nginx

To add another domain to match in Nginx, you can create a new file in the /etc/
nginx/conf.d/ directory and reload the Nginx configuration, as shown in the
following code:

cp /etc/nginx/conf.d/wpl.conf /etc/nginx/conf.d/wp2.conf
sed -i "s/wpl/wp2/g" /etc/nginx/conf.d/wp2.conf

sed -i "s/domainl/domain2/g" /etc/nginx/conf.d/wp2.conf
sed -1 "s/49187/49188/g" /etc/nginx/conf.d/wp2.conf

#test config
/etc/init.d/nginx configtest

#reload config
/etc/init.d/nginx reload

Copy the configuration file, replace a few names, run configtest, and reload Nginx.

[89]



Reverse Proxy Requests

Try domainl.comin your browser to make sure it still works. You should still see the
WordPress installation page (unless you installed WordPress, of course); head over
to domain2. com after that to see whether our new configuration is used.

If you want to take a site down, just change the file's extension from . conf to
something else and reload Nginx.

Automating the process of mapping
domains

The limitations in this setup are that it's manual and hands-on every time a new
domain is added. On my website (http://oskarhane.com), I've written some blog
posts about how this process could be automated and those posts are my most-read
posts of all time.

I was very glad when I found nginx-proxy by Jason Wilder. nginx-proxy solves this
problem in a more clever way than me by monitoring Docker events via the Docker
Remote APL

You can read more about nginx-proxy on its GitHub page
Ve (https://github.com/jwilder/nginx-proxy).

nginx-proxy comes as a container and we can run it by executing the
following command:

docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.sock jwilder/
nginx-proxy

We are giving the container our Docker socket, so it can listen for the events we are
interested in, which are container starts and stops. We also bind the Docker hosts'
port 80 to this new container, making it the entrance container for all incoming
web requests. Make sure you stop Nginx on the Docker host before starting the
nginx-proxy container. You can do this with the following command:

/etc/init.d/nginx stop

When a container starts, nginx-proxy creates an nginx reverse proxy config file
and reloads Nginx —just like we did, but fully automated with nginx-proxy.

To tell nginx-proxy which domain we want mapped to which container, we must
run our containers with an environment variable named VIRTUAL HOST.

[90]



http://oskarhane.com
https://github.com/jwilder/nginx-proxy

Chapter 6

In our crane.yaml file , we add an environment variable in the wp run section:

containers:
wp:

image: oskarhane/wordpress

run:
volumes-from: ["mydata"]
link:

- mymysqgl:mysql

publish: ["80"]
detach: true
env: ["VIRTUAL HOST=domainl.com"]

Now, we just have to lift this with crane again to have this container mapped to the
domain domainl.com on port 80:

crane lift web --recreate

Summary

In this chapter, we saw how you can solve the problem of having multiple containers
that want to serve data on the same public port. We learned what a proxy server and
reverse proxy server is and how a reverse proxy is used in load balancing.

We installed and configured two different reverse proxies: HAProxy and Nginx. In
my workflow, the Nginx setup fits better, just copying a file, replacing a few words,
and then reloading Nginx to have it working. HAProxy might work better in your
setup; the choice is yours and one cannot be said to be better than the other.

nginx-proxy automates the process of creating a reverse proxy for containers that are
started and is an OK solution for a PaaS, except for one thing: easy and straightforward
deployment. That's what the next chapter is all about.

[91]







Deployment on Our PaaS

In the previous chapters, we went from setting up our PaaS in a very hands-on
manner to a "hacked-together-automated" way by combining tools such as Crane
and nginx-proxy. One part is still missing—how to deploy your code.

In this chapter we will go through the following topics:

* The problem with our current setup
* The tools/services available
*  Dokku— mini-Heroku

* Setting up a WordPress app with Dokku

The problem with our current setup

Our current setup consists of three containers: a WordPress container, a MySQL
container and a data volume container, tied together with Crane.

The main problem with our current setup using a VOLUME container as file storage
is that we need a way into the volume to edit files. As of now, the only way to get
into it is by mounting it on another container.

Another problem is that we don't version control our source code. We have just
downloaded WordPress and some plugins and left it there. What if we update
WordPress or make some other changes? We surely want to have that under
version control.

[93]




Deployment on Our PaaS

If we want to keep the application architecture as it is, there are two options:

¢ (Create a new container that mounts our data volume container, install it,
and get access to it with SSH

* Install and open access to SSH in our WordPress container

With SSH installed, we can access the containers shell from a remote machine, and
so, we can install Git to version control to our files. In this way, we can connect and
push new code into the data volume container when we need to.

When connecting with SSH, you can go straight into the container without needing
to connect to the Docker hosts shell.

If you are okay with connecting to the Docker host, and from there, if you open

a new shell to get into your data volume container, a third option would be to
SSH into your Docker hosts and then access the container with docker exec -it
container name /bin/sh.

While this certainly works, there are easier ways to do it.

The tools/services available

When we look at hosted PaaS providers available today, two of them come to
mind — OpenShift and Heroku. Many developers love Heroku because of its
ease of use. Their philosophy gives a hint why:

"Developer Productivity:

Developer productivity is our battle cry, at the core of everything we do. Why
require three steps when one will do? Why require any action at all when zero steps
will do?"

Developers usually want to spend time on their code, not managing servers,
deployment, and so on.

[94]



Chapter 7

On Heroku, you get a remote Git repository into which you can push code. Your
app's language and dependencies are identified by special files, depending on
the language you use. Environment variables are used for configuration, and you
instruct Heroku what to execute by specifying commands in a special file, called
Procfile, that you include in your source code.

Whenever your push code into your remote Heroku Git repository, the app rebuilds
and you have it online right away. If you have special build requirements, Heroku lets
you create your own buildpacks where you can specify exactly what's to be done.

Basically, if you want to set up a WordPress blog on Heroku, you need to go through
these steps:
1. Locally download the latest version of WordPress.

2. Create a Procfile and define what to execute (a buildpack that runs PHP
and Apache? in this case).

3. Create a composer. json file that specifies that PHP is a dependency.
Make some changes to the WordPress config files.

Create the Heroku app, add add-ons (such as a database), and define
environment variables on Heroku.

6. Push your local code into Heroku.
When you make a change to the code, you just Git push to Heroku to deploy the new

code. You cannot edit code directly on Heroku's servers, nor can you install themes
or plugins (you have to do that locally and push the new code).

£33 OPENSHIFT

If you chose a provider such as OpenShift instead, you will have a bit more control
over your PaaS, You can connect to it with SSH and also store static files downloaded

by apps.

It is something like this we are looking for; it's just that we want to host our own
platform and have Docker containers used in the background.

[95]



Deployment on Our PaaS

Dokku — Docker-powered mini-Heroku

Dokku can be found at https://github.com/progrium/dokku. It is a project that
is described by its authors as follows:

"Docker powered mini-Heroku in around 100 lines of Bash."

Feature wise, Dokku carries out deployment in the same way as Heroku does.
Let's install Dokku and see what it can do for our PaaS.

Installation

Dokku requires Ubuntu 14.04 to run, and we start by creating a new EC2 instance
running that.

Here is a screenshot of what we see:

® Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-

3d50120d
Ubuntu )
Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD) Volume Type. B4-bit

Support available from Canonical (http:/fwww.ubuntu.com/cloud/services).

Root device type: ebs Virtualization type: hvm

When we have created an instance and have it up and running, we can start by
installing Docker itself:

sudo apt-get install docker.io
When that is done, we go ahead and install Dokku.

The recommended bootstrap bash installation didn't work for me, so I cloned the
repo instead:

cd /tmp

git clone https://github.com/progrium/dokku.git
cd dokku

sudo make install

dokku version

You can read about the installation process on the official installation
A pageathttp://progrium.viewdocs.io/dokku/installation.

[96]


https://github.com/progrium/dokku
http://progrium.viewdocs.io/dokku/installation

Chapter 7

The installation part will take a while, but it should succeed.

According to the document through the preceding link, we should edit the /home/
dokku/VHOST file to hold the content of a domain name we plan to use. We skip
this for now because it includes setting some DNS records. When we leave that file
empty, we will be reaching our PaaS in the form of http://ip:port. We will come
back to this step at a later point.

The only step left now is to create an ssh key pair on our local machine and add the
public part in the server user Dokku's authorized_keys file so that we can connect
with Git in a very secure way without using a password.

On your local machine, use these commands:

cd ~/.ssh

ssh-keygen -t rsa

#I named my key pair id rsa

cat id rsa.pub

#icopy the output so you have it in your clipboard

On the server, use the following:

#As your ubuntu user

#Replace <publickey> with the key you just copied

#<remoteuser> can be replaced with anything, like "remoteuser".
echo "<publickey>" | sudo sshcommand acl-add dokku <remoteusers>

If you name your ssh-key something other than id_rsa, you will have to edit your
local . ssh/config file to get it to work.

Now the Dokku configuration is done and we should be able to start using it.

Creating a sample Dokku app

It is time for us to set up a demo app just so that you can learn the process. In this
case, let's take Heroku's Node . js sample app.

We start off by cloning Heroku's node-js-sample GitHub repository to get the app's
content. The following tasks are all supposed to be done on your local machine, and
when I enter server.com, you should enter the URL or the IP address of your server.
If you use a domain, make sure that you've set up DNS records for it or entered a
record in your local /etc/hosts file:

#Clone the repo
git clone git@github.com:heroku/node-js-sample.git
cd node-js-sample

[97]



http://ip:port

Deployment on Our PaaS

#Add a Dokku git remote
git remote add dokku dokku@server.com:first-app

#Push to Dokku
git push dokku master

When we push to a non-existing branch or app name in Dokku, Dokku will create a
new app and deploy it. When the push is done, you should see something like this at
the bottom of the output:

=====> Application deployed:
http://54.191.69.5:49154

Of course, the IP address and port will not be the same for you.

The output is displayed, as follows:

node-js-sample — bash — 110x26

— etag@®1.5.1 (crc@3.2.1)
— debug@2.1.1 (ms@@.6.2)
— send@@.11.@ (destroy@l.@.3, ms@@.7.0, mime@1.2,11)
— on-finished@2.2.0 (ee-first@1.1.0)
— type-is@1.5.5 (mime-types@2.0.7)
|— proxy-addr@1.0.5 (forwarded@®.1.®, ipaddr.js@@.1.6)
L— accepts@1.2.2 (negotiator@@.5.8, mime-types@2.0.7)
Caching node_modules directory for future builds
Cleaning up node-gyp and npm artifacts
No Procfile found; Adding npm start to new Procfile
Building runtime environment
Discovering process types
Procfile declares types -> web
Releasing first-app ...
Deploying first-app ...
Running pre-flight checks
check-deploy: /home/dokku/first-app/CHECKS not found. attempting to retrieve it from container ...
CHECKS file not found in container. skipping checks.

> Running post-deploy

unsupported vhost config found. disabling vhost support

> Application deployed:

http://54,191.69.5:49154

To dokku@ohdokku.com: first-app
#* [new branch] master -> master
oskarhane@0skar4j-2 ~/tmp/paas/node-js-sample (master)$ I

Enter the ip:port in your web browser to find yourself a page saying Hello World.
We've just deployed our first app on Dokku!

To modify and redeploy the site, we can create a file named index.html inside
public/ folder in our node-js-sample project. This node app will always look
for files in the public folder. If the requested file isn't found, the app falls back to
just printing Hello World. So, if we create a file and request it, the node server
will serve it to us.

[98]



Chapter 7

Paste this as the content of the index.html file:

<!DOCTYPE html>
<html lang="en"s>
<head>
<meta charset="utf-8">
<title>Hello</title>
</head>
<body>
<hl>First edit!</hl>
</body>
</html>

It's a simple HTML page.

Let's go ahead and create the file and push it, as shown in the following code:

nano public/index.html
#paste the HTML
#save the file

#commit your changes
git add public/index.html
git commit -m "Added first HTML page."

#push to dokku
git push dokku master

Note from the output that the port will change every time you deploy,
s since a new container is created and your old container is shut down.

Later, when we add a domain name to deploy on, the URL will, of course, be the
same. The Nginx config file is updated upon deployment. Point your browser to the
new ip:port, and you should see a huge headline saying First edit!.

Whenever you make edits, just push them. Dokku will take care of the rest.

[99]



Deployment on Our PaaS

How Dokku works

As I described the basic step of Heroku earlier, you might recognize the steps when
deploying on Dokku, and that is also Dokku's goal. They want people like us to feel
comfortable with the deployment process.

Dokku can be seen as the glue between the following tools: Docker, Buildstep, ssh-
command, pluginhook, ssh, git, and nginx. The source code is just about 100 lines
long, and it ships with a few plugins that together contain about 500 lines of code.
This is the power of Dokku —anyone can write plugins to extend the functionality
of Dokku.

We have not yet installed any plugins, and a clean installation like ours can
do only basic stuff such as deploy, see an app's logs, delete an app, and run a
command in the app's container. There are quite a lot of plugins; they are all
listed at http://progrium.viewdocs.io/dokku/plugins.

The receive process

If we take a look at the main Dokku file (named dokku in the projects root), we notice
that whenever a receive action is triggered (which happens when we push to the
master branch), we see this code:

case "$1" in

receive)
APP="$2"; IMAGE="dokku/$APP"
echo "----- > Cleaning up ..."
dokku cleanup
echo "----- > Building S$APP ..."
cat | dokku build $APP
echo "----- > Releasing S$APP ..."
dokku release SAPP
echo "----- > Deploying $APP ..."
dokku deploy SAPP
echo "=====> Application deployed:"
dokku urls $APP | sed "s/*/ /"
echo

Through this output we can recognize when we have pushed to the master.

If we follow the plugin chain when deploy is called, we end up with a plugin

hook named post -deploy being called. A standard plugin, named nginx-vhosts,
is triggered, and this in turn calls a function inside that plugin named nginx:build-
config.

[100]



http://progrium.viewdocs.io/dokku/plugins

Chapter 7

A code snippet from that preceding file looks like this:

case "$1" in
nginx:build-config)
APP="$2"; DOKKU APP LISTEN PORT="$3"; DOKKU_APP_LISTEN_IP="${4}"
VHOST PATH="$DOKKU ROOT/$APP/VHOST"
WILDCARD SSL="$DOKKU ROOT/tls"
SSL="$DOKKU ROOT/$APP/tls"

if [[ -z "$DOKKU APP LISTEN PORT" ]] && [[ -f "S$DOKKU ROOT/SAPP/
PORT" ]]; then

DOKKU_APP LISTEN PORT=$ (< "$SDOKKU ROOT/$APP/PORT")

fi

if [[ -z "$DOKKU_APP_LISTEN_IP" 11 && [[ -f "$DOKKU_ROOT/$APP/IP"
11; then

DOKKU_APP_LISTEN_IP:$(< "$DOKKU_ROOT/$APP/IP")

fi

[[ -f "$DOKKU_ROOT/$APP/ENV" 11 && source $DOKKU_ROOT/$APP/ENV

if [[ ! -n "$NO_VHOST" 11 && [[ -f "$DOKKU_ROOT/$APP/VHOST" 11;
then

NGINX CONF="$PLUGIN PATH/nginx-vhosts/templates/nginx.conf"
SCHEME="http"

APP_NGINX TEMPLATE="$DOKKU ROOT/$APP/nginx.conf.template"
if [[ -f $APP _NGINX TEMPLATE ]]; then
echo "----- > Overriding default nginx.conf with detected
nginx.conf.template"
NGINX CONF=$APP NGINX TEMPLATE
fi

xargs -i echo "----- > Configuring {}..." < S$VHOST PATH

# Include SSL_VHOSTS so we can redirect http to https on that
hostname as well

NOSSL_SERVER NAME=$ (echo $NONSSL VHOSTS $SSL_VHOSTS| tr '\n' '
")

if [[ -n "$DOKKU APP LISTEN PORT" ]] && [[ -n "S$SDOKKU APP
LISTEN IP" ]]; then

echo "----- > Creating $SCHEME nginx.conf"

echo "upstream SAPP { server S$SDOKKU APP LISTEN IP:$DOKKU APP
LISTEN_PORT; oS $SDOKKU_ROOT/S$APP/nginx.conf

[101]




Deployment on Our PaaS

eval "cat <<< \"$ (< $NGINX_CONF)\" >> $DOKKU_ROOT/$APP/nginX.
conf™"

echo "----- > Running nginx-pre-reload"

pluginhook nginx-pre-reload $APP $DOKKU APP LISTEN PORT
$DOKKU APP_LISTEN IP

echo " Reloading nginx"
restart nginx

fi

else

if [[ -£f "$DOKKU_ROOT/$APP/VHOST" 11; then
echo "----- > VHOST support disabled, deleting $APP/VHOST"
rm "$DOKKU_ROOT/$APP/VHOST"

fi

if [[ -f "$DOKKU ROOT/$APP/nginx.conf" 11; then
echo "----- > VHOST support disabled, deleting nginx.conf"

rm "$DOKKU ROOT/S$APP/nginx.conf"

echo "----- > VHOST support disabled, reloading nginx after
nginx.conf deletion"

restart nginx
fi
fi

1

If we look through that code, we can see that it looks for a domain name in the
$DOKKU_ROOT/$APP/VHOST file, and if that is found, sets some config variables
and inserts them into a copy of the templates/nginx.conf file.

That file has these contents:

server {
listen [::1:80;
listen 80;
server name $NOSSL_ SERVER NAME;
location /|

proxy pass http://SAPP;

proxy http version 1.1;

proxy set header Upgrade \shttp upgrade;
proxy set header Connection "upgrade";
proxy set header Host \$http host;
proxy set header X-Forwarded-Proto \S$scheme;
proxy set header X-Forwarded-For \Sremote addr;
proxy set header X-Forwarded-Port \S$server port;

[102]




Chapter 7

proxy set header X-Request-Start \Smsec;

}

include $DOKKU ROOT/$APP/nginx.conf.d/*.conf;

}

Now that looks very much like the nginx config we created in the last chapter,
right? The post-deploy part of Dokku is basically Jason Wilder's nginx-proxy.
They accomplish the same result, but they get there in very different ways.

Dokku plugins
Add-ons in Heroku are called plugins in Dokku. Since we cannot specify docker run

command parameters directly from Dokku, we need plugins to connect containers and
add data volume containers.

Here's a list of a few usable Dokku plugins that we'll soon use.

Dokku domains plugin

Dokku domain plugin enables you to specify multiple domains in one app. By default,
only one URL can be mapped to an app:

dokku domains:set myawesomeapp.com www.myawesomeapp.com

URL: https://github.com/wmluke/dokku-domains-plugin

Dokku-docker-options

With this plugin, you can pass any options to the Docker daemon when docker run
command is executed. It can be used to mount volumes, link containers, and so on:

dokku docker-options:add myapp "-v /host/path:/container/path"
dokku docker-options:add myapp "-link container name:alias"

URL: https://github.com/dyson/dokku-docker-options

Volume plugin for Dokku

Here's a plugin that enables you to mount volumes on your service containers.
It also has commands to dump (export) and restore the data:

dokku volume:add foo /path/in/container
dokku volume:dump foo /path/in/container > foo.tar.gz

URL: https://github.com/ohardy/dokku-volume

[103]


https://github.com/wmluke/dokku-domains-plugin
https://github.com/dyson/dokku-docker-options
https://github.com/ohardy/dokku-volume

Deployment on Our PaaS

Dokku-link

You can link containers with this plugin:

dokku link:create <app> NAME [ALIAS]
dokku link:delete <app> NAME [ALIAS]

URL: https://github.com/rlaneve/dokku-1link

MariaDB plugin for Dokku
This plugin enables you to create and use MariaDB containers. MariaDB can be used
as a replacement for MySQL and is generally faster:

dokku mariadb:create <app>
dokku mariadb:link <app> <db>
dokku mariadb:dumpraw <app>

URL: https://github.com/Kloadut/dokku-md-plugin

MySQL plugin: https://github.com/hughfletcher/dokku-mysqgl-plugin

Setting up a WordPress app with Dokku

Now that we have played around with Dokku for a while, exploring how it works
and what plugins are available, it's time to set up a WordPress site. After all, that's
why we were exploring it in the first place.

This is what we are going to do:

1. Create a new local Git repository and download WordPress on it.
2. Install the MariaDB plugin, create a database, and link it to our app.

3. Configure WordPress to connect to our linked database.

On your local computer, download and unpack the latest version of WordPress and
create a new Git repository. Create a composer. json file to tell Dokku that this is a
PHP app we are creating,.

You can read more about how to hint Dokku on what type of
p app you are creating at ht tps: //devcenter.heroku. com/
articles/buildpacks (yes, Dokku uses Heroku buildpacks)
T and looks to detect functions. Dokku uses a library called Buildstep
to make application builds using Docker and Buildpacks.

[104]



https://github.com/rlaneve/dokku-link
https://github.com/Kloadut/dokku-md-plugin
https://github.com/hughfletcher/dokku-mysql-plugin
https://devcenter.heroku.com/articles/buildpacks
https://devcenter.heroku.com/articles/buildpacks

Chapter 7

Let's go ahead and get started now.

I used a server on my domain, ohdokku. com, for this app:

#Download Wordpress

curl -O https://wordpress.org/latest.zip
unzip latest.zip

mv wordpress wpl

cd wpl

#Create a new Git repo

git init

git add .

git commit -m "Initial commit."

#Create a composer.json file to tell Dokku we are using php
echo '{}' > composer.json

git add .

git commit -am "Add composer.json for PHP app detection."

#Add a remote so we can push to Dokku
git remote add dokku dokku@ohdokku.com:wpl

On the server we have to install the MariaDB or MySQL plugin:

cd /var/lib/dokku/plugins
sudo git clone --recursive https://github.com/Kloadut/dokku-md-plugin
mariadb

cd mariadb/dockerfiles/
git checkout master

cd ../../
sudo dokku plugins-install

Back to the client side (you can do this on the server as well, but the whole point of
this type of PaaS is being able to do all of this repetitive stuff on the client).

The result is as follows:

[ ] @ wp1 — bash — 86x11
oskarhane@0skar4j-2 ~/tmp/paas/wpl (master)$ ssh dokku@chdokku.com mariadb:create wpl

> MariaDB container created: mariadb/wpl

Host: 172.17.42.1

Port: 49153

User: 'root’

Password: 'mémgxgdWIhTFVNiu’
Database: 'db’

oskarhane@0skar4j-2 ~/tmp/paas/wpl (master)$ I

[105]


http://www.ohdokku.com

Deployment on Our PaaS

As you can see, the output from the create command will show our
database credentials.

Now that the database is set up, we can go ahead and push our app for the first time:

git push dokku master

You should notice that Dokku detects that you are pushing a PHP app. Since we
haven't specified anything at all in our composer. json file, a default package of
PHP and Apache2 will fire up.

Create a MariaDB database called wp1_db:

ssh dokku@ohdokku.com mariadb:create wpl_ db
ssh dokku@ohdokku.com mariadb:link wpl wpl db

If we enter ip:port in a browser, a known page welcomes us —the WordPress
installation page. When we click on the Continue button, we see that we can't
continue before we create a wp-config.php file.

We have just created the link between the MariaDB container and the WP container,
but we haven't made the link in code yet. WordPress has no idea how to connect to
the database.

We start off by renaming the wp-config-sample.php file to wp-config.php and
opening the file in an editor:

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for Wordpress */
define ('DB_NAME', getenv('DB NAME')) ;

/** MySQL database username */

define ('DB_USER', 'root');

/** MySQL database password */

define ( 'DB_PASSWORD', getenv ( 'DB_PASSWORD' )) ;

/** MySQL hostname */
define ('DB_HOST', getenv('DB HOST').":".getenv('DB_PORT')) ;

Edit the credentials as you just saw to make WordPress look for environment
variables that our linked MariaDB gives us:

git add -A .
git commit -m "Add wp-config.php and add credentials."
git push dokku master

[106]



Chapter 7

Wait until you get a new ip:port that our app is deployed to, and then enter the
info in your web browser.

Now you should be able to install WordPress.

The output is as follows:

Dashboard

Welcome to WordPress!
We've assembled some links to get you started:

Get Started

Customize Your Site

or, change your theme completely

Starting multiple apps

To start multiple apps with Dokku, just repeat the simple process, as follows:

1. Create a local Git repository with WordPress in it, and create a remote Git
repository.

2. Create and link a database with the MariaDB plugin.
Edit your wp-config.php file.

3. Push to deploy.

The name you set on your app when adding the remote from Git command:

git remote add dokku dokku@ohdokku.com:wpl

This command will create the URL to the WordPress site (wp1.ohdokku. com).

You can set a complete custom domain as the name like: git remote add dokku
dokku@ohdokku.com:wpl.oskarhane. com that will work if I point wp1.oskarhane.
com to my server.

[107]


wp1.ohdokku.com
wp1.oskarhane.com
wp1.oskarhane.com

Deployment on Our PaaS

Adding a domain to Dokku

I waited with setting up domains to Dokku, since it involves logging in to a DNS
provider and setting up DNS records to point the domain to our server. We set up
DNS records to point our domain name to our server's IP address so that our server
can be reached by entering our domain name in the web browser's location bar.

I usually use Amazon Route 53 to handle DNS for domains, since they're very stable
and easy to use. It costs about a dollar a month for low-traffic sites. The setup is the
same for any DNS provider. You have to add two records, one for yourdomain. com
and one for *.yourdomain. com.

The records we are going to enter are A-records, which means that we point the
domain names to a specific IPv4 address. The Time To Live (TTL) value is not
important right now, but it means TTL and tells all other DNS servers that get
requests for this domain how long they can cache the current value.

The output is as follows:

Create Record Set

Name: ohdokku.com.
Type: A — |Pvd address =

Alias: Yes @ Mo

TTL (Seconds): 3ga /| im || 5m || 1h || 1d

Value: 54191605

IPv4 address. Enter multiple addresses
on separate lines.

Example:
182.0.2.235
158.51.100.234

Routing Policy: Simple

Route 53 responds to gueries based only on the values in this record. Learn
Maore

[108]




Chapter 7

You should, of course, change the IP to the public IP your server has. When setting
the A-record for the wildcard subdomains, just enter *in the input field at the top.

To see whether your DNS provider can resolve your domain name, execute ping
yourdomain. comin a terminal. You'll see the resolved IP right there. If you've just
bought the domain, you should be able to see the result right away, but if you've
used the domain for a while, the old TTL value might delay the effect a bit.

If you want to wait for the setting of DNS records (which is common during
development), you can set local records on your computer by editing the
/etc/hosts file, as shown in the following command snippet:

sudo nano /etc/hosts

#Add this line to the file
54.191.69.5 ohdokku.com
#Save and exit

One thing to remember here is that you can't enter records for wildcard subdomains.
If you plan to develop multiple apps on subdomains, you have to enter one record
for each of them. Also, don't forget to remove these records when you're done; it

can get quite confusing (and interesting) when you forget you have records for the
domains you used.

On the Dokku server, create a file named /home/dokku/VHOST and enter
yourdomain.com in it.

All apps being created from now on will be subdomains of this domain, unless you
give the apps complete domain names.

More notes on Dokku

Just like Heroku, Dokku makes it easy for developers to deploy and push code.

If you download a WordPress plugin straight from your Dokku app, it will be gone
when you restart your Dokku app. It is advisable to keep a local copy that can easily
be started or a dev, test, and staging server that you can download new plugins on
and push to your Dokku app from to ensure they are persistent.

A\l

~ Images and videos should be uploaded to something such as
Amazon via a plugin when using this kind of infrastructure.

You must also have your WordPress site send e-mails from an external e-mail
provider, such as Mandrill. A plugin like WP Mail SMTP will solve that for you.

[109]




Deployment on Our PaaS

We still have a few manual steps (for example, downloading WordPress and editing
wp-config.php) to do when deploying a WordPress app on Dokku, but the task

of creating a custom Buildstep to remove the manual parts is beyond the scope of
this book.

Another option is to have Composer handle the installation of WordPress with the
composer . json file, but WordPress does not officially support this and it requires a
few hacks, so I'll leave that up to you.

If you want to learn more about composer, you can go to the
s provided link http://wpackagist.org.

Summary

In this chapter, we went all the way to create our own PaaS by adding deployment
to the process. What we looked into up to this chapter was all about organizing
containers and direct incoming traffic so that visitors can reach the correct container.

With Dokku, we don't have to worry about that; all we have to care about is our
code. As soon as we push our code, Dokku takes over and does the right things.
Dokku makes it look really easy and that is why, I started from manually creating
and linking containers and configuring reverse proxies —so that you would
understand what Dokku does.

The next chapter takes us to the bleeding edge: what's being developed right now
that can take private PaaS with Docker one step further?

[110]



http://wpackagist.org

What's Next?

So far, we have run our PaaS on a single host, which can be a problem if we need to
scale out. There is a lot happening in this space, and I have selected a few projects
that I will introduce in this chapter. These projects vary a lot in how mature they
are, one is ready for use in production while the other is in a prototype state. In this
hapter, we will cover the following topics:

*  What is a Twelve-Factor app?

* Flynn
e Deis
¢  Rocket

e Orchestration tools

What is a Twelve-Factor app?
Many of today's apps are, in fact, web apps that you run in your web browser.
Gmail, Slack, Wunderlist, Trello, and so on are all web apps or software-as-a-service.

It is these kind of apps that are suitable to be run on a PaaS.

The Twelve-Factor app is a methodology for building software-as-a-service apps that
fulfill the following criteria:

* Use declarative formats to set up automation as well as to minimize the time
and cost for new developers who join the project

* Have a clean contract with the underlying operating system, offering
maximum portability between execution environments

* Suitable for deployment on modern cloud platforms, obviating the need for
servers and systems administration

[111]




What's Next?

Minimize divergence between development and production,
enabling continuous deployment for maximum agility

Scale up without significant changes to tooling, architecture,
or development practices

The Twelve Factors are defined as follows:

Codebase (One codebase tracked in revision control, many deploys):
This puts your code in a version control system such as Git.

Dependencies (Explicitly declare and isolate dependencies): This lists all
the versions of all the libraries that your app depends on in a single place.

Config (Store config in the environment): Since config will vary between
environments such as the username or pass to a database, it should not be
part of the code. You can set the config file in environment variables and
have your app read them in at runtime.

Backing Services (Treat backing services as attached resources): These have
all the backing services, such as mail server, database, and cache system,
among others. These will be referenced by a URL endpoint. This way your
code doesn't have to care whether the backing service is running on the
same machine or across the world.

Build, release, run (Strictly separate build and run stages): The build stage
creates bundles, assets, and binaries. This is the developer's job. When you've
placed a package on a server, you are ready to enter the run stage by starting
your application and making it available on the server. This stage should be
as easy as possible so that anyone can do it.

Processes (Execute the app as one or more stateless processes): As stated
earlier in this book, you should separate your application data from your
application service, that is, it makes the service stateless. All the states
should be in the shared storages and databases.

Port binding (Export services via port binding): An example is backing
services; your service should be reachable via a URL endpoint.

Concurrency (Scale out via the process model): This keeps every process
as an independent service. This way you can scale just the parts of your
app that really need to be scaled.

Disposability (Maximize robustness with a fast startup and graceful
shutdown): This is for app startup, which should be fast, and your app
should be able to recover from a crash by itself.

[112]




Chapter 8

* Dev/prod parity (Keep development, staging, and production as similar as
possible): This keeps your development environment and setup as equal as
possible to your production environment and setup. Docker really excels
here.

* Logs (Treat logs as event streams): Place your app's error logs into a central
place where you get notified when a new error has occurred.

* Admin processes (Run admin/management tasks as one-off processes):
If you are doing administrative tasks, run them on a machine in the
production environment with the latest code base. You should run
queries directly against the database.

I encourage you to go to http://12factor.net in order to read more about each
one of the Twelve Factors. It's a good read; you will get an understanding of why
some design decisions were made on the following projects.

Flynn

Flynn

The guy who created Dokku, Jeff Lindsay, has also co-created Flynn. Flynn is like a
super-Dokku that, among other things, lets you run your PaaS on multiple hosts.

"Flynn is two things:

A distribution of components that out-of-the-box gives companies a reasonable
starting point for an internal platform for running their applications and services.

The banner for a collection of independent projects that together make up a toolkit
or loose framework for building distributed systems.

Flynn is both a whole and many parts, depending on what is most useful for you.
The common goal is to democratize years of experience and best practices in building
distributed systems. It is the software layer between operators and developers that
makes both their lives easier."

[113]


http://12factor.net

What's Next?

I have tried using Flynn a few times, but I have always gone back to using Dokku
again because I find Dokku easier to use, and my clients don't need the extra features
such as multihost PaaS.

URL: http://flynn.io

Status: This is not suitable for use in the production environment because it's in a
beta stage.

Deis

i DELS

Deis is built on a lightweight Linux distribution that is built to run containers, called
CoreOS, and on Docker to take advantage of the distributed services, such as etcd,
available there.

"Deis is a lightweight application platform that deploys and scales Twelve-Factor
apps as Docker containers across a cluster of CoreOS machines."

I found Deis to be a very promising project and would like to work with it more.
I have barely touched it but what I have seen so far looks good.

Deis can deploy any language or framework running on Linux using Docker, and
it also includes Heroku buildpacks for Ruby, Python, Node.js, Java, Clojure, Scala,
Play, PHP, Perl, Dart, and Go.

The workflow is Heroku-like and you just need to deploy twelve-factor apps, that is,
save the application state in a backing service.

Fun fact: Deis financially backs/supports Dokku.
URL: http://deis.io

State: Deis is ready for production from version 1.0.

[114]


http://flynn.io
http://deis.io

Chapter 8

Rocket

@Rocket

CoreOS has been one of the most popular ways to run a multihost Docker PaaS.
They have done excellent work and have built some multihost PaaS tools, such
as Deis, that use CoreOS tools and services to deliver their version of PaaS.

In December 2014, the CoreOS team decided to announce their own container
runtime: Rocket. Rocket is a direct competitor to the original Docker. The reason
why they are launching Rocket is because they believe Docker has lost its initial
idea: running reusable standard containers. The CoreOS team believes that Docker
is stepping away from the initial idea by adding more and more features and
services around the Docker environment.

"Rocket is a new container runtime, designed for composability, security, and
speed. Today we are releasing a prototype version on GitHub to begin gathering
feedback from our community and explain why we are building Rocket."

According to the CoreOS team, they will continue to have CoreOS to be the perfect
thing to run Docker. I guess we will see what happens in the future, but I hope they
stand by their words.

URL: https://github.com/coreos/rocket

State: Rocket is in its very early state and not ready for production.

[115]



https://github.com/coreos/rocket

What's Next?

Orchestration tools

The tools I have introduced now are tools that will help you keep your mind on the
code and give you an easy way to deploy your apps to production. If you are more
interested in an orchestration tool —a tool that helps you manage container clusters —
there are a few of them out there as well. The tools that currently come to mind are
Google's Kubernetes, Apache Mesos/Marathon, CoreOS Fleet, and the soon to be
released Swarm from Docker.

Summary

When you feel it's time to move your PaaS from a single host to scale across
multiple hosts, these tools are what you should be looking for. I'm sure some
worthy competitors will pop up in the future since this is a hot area right now.

[116]



A

Amazon
URL 8
Amazon EC2
Docker, installing 8-11
Docker, upgrading 12
using 7
Apache
preparing, for caching 32, 33

base image 15
Buildpacks
reference link 104
Buildstep 104
BusyBox 54

C

command-line interface 17, 18
commands, Docker
about 13, 14
docker images 13
docker ps 13
docker ps -a 13
docker run 13
docker stop 13
composer
reference link 110
container ID 17
containers
about 2,16, 17
connecting, Crane used 70
connecting, Docker Compose used 67
connecting, manually 63, 64

Index

parameters, passing 59

setup issue 93, 94
Crane

about 63,70

configuring 71-74

graph command 71

installing 71

lift command 71

logs command 71

status command 71

usage 71

used, for connecting containers 70

D

data volume container
contents, exploring 65, 66
executing 58
mounting 52
data volume image
BusyBox 54
creating 53
Dockerfile 55
mount points, exposing 54
data volumes
about 51
backup 53
data volume container, mounting 52
host directory, mounting 52
restoring 53
Deis
about 114
URL 114
Docker
about 1
URL 1

[117]



Docker Compose

about 63, 67

build command 68

installing 67, 68

kill command 68

logs command 68

PaaS, setting up 69, 70

port command 68

ps command 68

pull command 68

rm command 68

run command 68

run command, using 69

scale command 68

scale command, using 69

service 68

start command 68

stop command 68

up command 68

used, for connecting containers 67
Dockerfile

about 20

creating, on WordPress image 43
Dockerfile, for PHP 5.6

URL 34
Docker image

about 15, 16

base image 15

hosting, on GitHub 55, 56

parent images 15

publishing, on Docker Registry Hub 57
docker images command 13
Docker on Amazon EC2

installing 8-11

open ports 12

upgrading 12

user permissions 12
Docker on Mac OS X

installing 3-5

upgrading 6
Docker on Ubuntu Trusty 14.04 LTS

installing 2

upgrading 3

user permissions 3

Docker on Windows
installing 6, 7
upgrading 7
docker ps -a command 13
docker ps command 13
Docker Registry Hub
about 19
Docker image, publishing 57
image, publishing 46
image, publishing with automated
build option 47-49
published images, exploring 21-27
repositories, browsing 19, 20
URL 19
docker run command 13
docker stop command 13
Dokku
about 96
deploying 100
domains, adding 108, 109
installing 96, 97
multiple apps, starting 107
plugins 103
receive process 100-102
sample app, creating 97-99
URL 96
WordPress app, deploying 109, 110
WordPress app, setting up 104-106
Dokku-docker-options
about 103
URL 103
Dokku domains plugin
about 103
URL 103
Dokku-link plugin
about 104
URL 104
domains
adding, to Dokku 108, 109
mapping, nginx-proxy used 90, 91

F

Flynn
about 113,114
URL 114

[118]



G multiple containers, with same services

problem 78
GitHub solution, finding 78-80
Docker image, hosting 55, 56 solution, implementing 80, 81
image sources, hosting 44-46 MySQL docker repository
URL 45 URL 25
H N
HAProxy Nginx
about 81 about 86, 87
configuring 82-85 configuring 87-89
installing 81, 82 installing 87
multiple domains, adding 85, 86 multiple domains, adding 89
URL 81 URL 86
Heroku 94, 95 nginx-proxy
host directory URL 90
mounting, as data volume 52 used, for mapping domains 90, 91
I (o)
image sources OpenShift 94, 95
hosting, on GitHub 44-46 orchestration tools 116
installation, Docker OS X installer
on Amazon EC2 8-11 URL 4
on Mac OS X 3-5
on Ubuntu Trusty 14.04 LTS 2 P
on Windows 6,7
installation parameterized image
for Crane 71 creating 59-61
for Docker Compose 67, 68 parent images 15
for Dokku 96, 97 Platform as a Service (PaaS)
for HAProxy 81, 82 about 1
for Nginx 87 setting up, with Docker Compose 69, 70
for WP Mail SMTP 36-42 plugins, Dokku
for WP Super Cache 36-42 about 103
Dokku-docker-options 103
M Dokku domain plugin 103
Dokku-link plugin 104
Mac OS X MariaDB plugin 104
Docker, installing 3-5 volume plugin 103
Docker, upgrading 6 Procfile 95
MariaDB plugin proxy server 78
about 104 published images
URL 104 exploring 21-27

[119]



R

receive process, Dokku 100-102

repositories

browsing 19, 20
reverse proxies 79
Rocket

about 115

URL 115

S

solution, multiple containers with same

services

implementing, with HAProxy 81
implementing, with Nginx 86, 87

T

tags 16

Time to live (TTL) 108

tools/services
Heroku 94, 95
OpenShift 94, 95
twelve factors
about 111,112
admin processes 113
backing services 112
build 112
codebase 112
concurrency 112
config 112
dependencies 112
dev/prod parity 113
disposability 112
logs 113
port binding 112
processes 112
release 112
run 112
URL 113

U

Ubuntu Trusty 14.04 LTS
Docker, installing 2
Docker, upgrading 3

\'

volume plugin
about 103
URL 103

w

Windows
Docker, installing 6
Docker, upgrading 7
installer, URL 6
WordPress app
configuring 31, 32
deploying, on Dokku 109, 110
domains, adding to Dokku 108, 109
multiple apps, starting 107
setting up, with Dokku 104-106
WordPress Docker image
URL 21
WordPress image
creating 29, 30
Dockerfile, creating 43
objective 32
WordPress image, objectives
Apache, preparing for caching 32, 33
upload limit, raising 34-36
WP Mail SMTP, installing 36-42
WP Super Cache, installing 36-42
WP Mail SMTP
installing 36-42
WP Super Cache
installing 36-42

[120]



Thank you for buying
~usLisuine 3 Build Your Own PaaS with Docker

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.



PUBLISHING

OpenStack Cloud
Computing Cookbook

Second Edition

OpenStack Cloud Computing
Cookbook

Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

1. Updated for OpenStack Grizzly.

2. Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics like block storage and software
defined networking.

3. Learn how to build your Private Cloud
utilizing DevOps and Continuous Integration
tools and techniques.

Cloud Development and
Deployment with CloudBees

Cloud Development and

Deployment with CloudBees
ISBN: 978-1-78328-163-3 Paperback: 114 pages

Develop and deploy your Java application onto the
Cloud using CloudBees

1. Create, deploy, and develop applications
using CloudBees.

2. Impress your colleagues and become a pro by
using different tools to integrate CloudBees
with SDK.

3. A step-by-step tutorial guide which will
help you explore and maintain real-world
applications with CloudBees.

Please check www.PacktPub.com for information on our titles



"PUBLISHING

Security

VMware vCloud

VMware vCloud Security
ISBN: 978-1-78217-096-9 Paperback: 106 pages

Make your datacenter secure and compliant at every
level with VMware vCloud Networking and Security

1. Take away an in-depth knowledge of
how to secure a private cloud running
on vCloud Director.

2. Enable the reader with the knowledge, skills,
and abilities to achieve competence at building
and running a secured private cloud.

3. Focuses on giving you broader view of the
security and compliance while still being
manageable and flexible to scale.

OpenNebula 3
Cloud Computing

PACKT

OpenNebula 3 Cloud Computing
ISBN: 978-1-84951-746-1 Paperback: 314 pages

Set up, manage, and maintain your Cloud and
learn solutions for datacenter virtualization with
this step-by-step practical guide

1. Take advantage of open source distributed
file-systems for storage scalability and
high-availability.

2. Build-up, manage and maintain your Cloud
without previous knowledge of virtualization
and cloud computing.

3. Install and configure every supported
hypervisor: KVM, Xen, VMware.

Please check www.PacktPub.com for information on our titles



	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Docker to Hello
	What is Docker?
	Docker on Ubuntu Trusty 14.04 LTS
	Upgrading Docker on Ubuntu Trusty 14.04 LTS
	User permissions

	Docker on Mac OS X
	Installation
	Upgrading Docker on Mac OS X

	Docker on Windows
	Installation
	Upgrading Docker on Windows

	Docker on Amazon EC2
	Installation
	Open ports
	Upgrading Docker on Amazon EC2
	User permissions
	Displaying Hello World

	Summary

	Chapter 2: Exploring Docker
	The Docker image
	The Docker container
	The Docker command-line interface
	The Docker Registry Hub
	Browsing repositories
	Exploring published images

	Summary

	Chapter 3: Creating Our First 
PaaS Image
	The WordPress image
	Moving from the defaults
	Our objective
	Preparing for caching
	Raising the upload limit
	Plugin installation

	Making our changes persist
	Hosting image sources on GitHub
	Publishing an image on the Docker 
Registry Hub
	Automated build

	Summary

	Chapter 4: Giving Containers Data 
and Parameters
	Data volumes
	Mounting a host directory as a data volume
	Mounting a data volume container
	Backup and restore data volumes

	Creating a data volume image
	Data volume image
	Exposing mount points
	The Dockerfile


	Host on GitHub
	Publishing on Docker Hub Registry
	Running a data volume container
	Passing parameters to containers
	Creating a parameterized image
	Summary

	Chapter 5: Connecting Containers
	Manually connecting containers
	Exploring the contents of a data volume container
	Connecting containers using Docker Compose
	Installing Docker Compose
	Basic Docker Compose commands
	Service
	Using the run command
	Using the scale command

	Setting up our PaaS with Docker Compose

	Connecting containers using Crane
	Installing Crane
	Usage
	Configuration

	Summary

	Chapter 6: Reverse Proxy Requests
	Explaining the problem
	Finding a solution
	Implementing the solution
	Implementation with HAProxy
	Installing HAProxy
	Configuring HAProxy
	Adding more domains to HAProxy

	Implementation with Nginx
	Installing Nginx
	Configuring Nginx
	Adding more domains to Nginx


	Automating the process of mapping domains
	Summary

	Chapter 7: Deployment on your PaaS
	The problem with our current setup
	The tools/services available
	Dokku – Docker-powered mini-Heroku
	Installation
	Creating a sample Dokku app
	How Dokku works
	The receive process

	Dokku plugins
	Dokku domains plugin
	Dokku-docker-options
	Volume plugin for Dokku
	Dokku-link
	MariaDB plugin for Dokku


	Setting up a WordPress app with Dokku
	Starting multiple apps
	Adding a domain to Dokku
	More notes on Dokku

	Summary

	Chapter 8: What's Next?
	What is a Twelve-Factor app?
	Flynn
	Deis
	Rocket
	Orchestration tools
	Summary

	Index



