

Early praise for Deploying with JRuby 9K

Joe has pulled together a great collection of deployment knowledge from his years
of experience building and supporting JRuby applications. He’s an expert on this
subject and Deploying with JRuby 9k is the definitive text for getting JRuby appli-
cations up and running.

➤ Charles Oliver Nutter
JRuby co-lead

Deploying with JRuby 9k answers the most frequently asked questions about real-
world use of JRuby. Whether you’re coming to JRuby from Ruby or Java, Joe fills
in all the gaps you’ll need to deploy JRuby with confidence.

➤ Tom Enebo
JRuby co-lead

I’ve been working with JRuby for years and I still learned several immediately
actionable steps to improve the performance and maintenance of real-world
JRuby apps.

➤ Matt Margolis
director, application development at Getty Images

Deploying with JRuby 9k is full of practical and actionable advice about how to
get the most benefit out of the JVM when running your Ruby app on JRuby.

➤ Chris Seaton
Oracle Labs and JRuby contributor

Deploying with JRuby 9k is the essential guide for anyone building Ruby applica-
tions on the JVM. It’s loaded with tips, tricks, and best practices that newcomers
and experts can learn from.

➤ Terence Lee
Ruby task force member at Heroku

As a developer of MRI, I get super jealous reading about the JVM ecosystem and
tooling. With this book, Joe has finally made that ecosystem approachable for
JRuby applications.

➤ Zachary Scott
Ruby-core member and maintainer of Sinatra

Deploying with JRuby 9k
Deliver Scalable Web Apps Using the JVM

Joe Kutner

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-169-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Preface xi

1. Getting Started with JRuby 1
What Makes JRuby So Great? 2
Preparing Your Environment 4
Introducing Warbler 7
Creating a JRuby Microservice 10
Wrapping Up 15

2. Creating a Deployment Environment 17
Installing Docker 17
Getting Started with Docker 20
Creating a Docker Image 22
Deploying to the Cloud 24
Wrapping Up 27

3. Deploying a Rails Application 29
What Is Traditional Deployment? 29
Porting to JRuby 30
Configuring Rails for Production 34
Creating the Deployment Environment 36
Deploying to the Public Cloud 40
Deploying to Private Infrastructure 41
Wrapping Up 48

4. Consuming Backing Services with JRuby 49
What Are Backing Services? 49
Storing Sessions in Memcached 50
Running Background Jobs with Sidekiq 56

Message Passing with RabbitMQ 62
Wrapping Up 71

5. Deploying JRuby in the Enterprise 73
What Is an Application Server? 74
Getting Started with TorqueBox 75
Scheduling a Recurring Job 77
Using the Cache 78
Deploying to the Public Cloud 81
Deploying to Private Infrastructure 81
Using a Commercially Supported Server 83
Wrapping Up 86

6. Managing a JRuby Application 87
Creating a Memory Leak 87
Inspecting the Runtime with VisualVM 88
Inspecting the Runtime with JMX 93
Invoking MBeans Programmatically 96
Creating a Management Bean 98
Using the JRuby Profiler 100
Analyzing a Heap Dump 103
Wrapping Up 107

7. Tuning a JRuby Application 109
Setting the Heap Size 109
Setting Metaspace Size 111
Configuring Heap Generations 112
Choosing a Garbage Collector 114
Benchmarking the Garbage Collector 116
Using invokedynamic 120
Wrapping Up 121

8. Monitoring JRuby in Production 123
Installing the New Relic Gem 123
Creating a New Relic Alert 126
Handling Errors with Rollbar 127
Customizing Rollbar Reporting 131
Wrapping Up 132

9. Using a Continuous Integration Server 133
Installing Jenkins 133
Installing Jenkins Plugins 134

Contents • vi

Creating a Git Depot 135
Creating a Jenkins Job 136
Enabling Continuous Delivery 139
Wrapping Up 140

Index 143

Contents • vii

Acknowledgments
Writing a book is a lot like writing code. You need to know the rules, recognize
patterns, and occasionally know when to break the rules. Both writing and
coding are crafts. And like with any craft, you improve by getting advice from
more experienced professionals and being critiqued by your peers. I’m so
fortunate to have had this kind of help.

I’m inexpressibly thankful to those who reviewed this book prior to its publi-
cation. I was humbled by the attention to detail and wise feedback they pro-
vided in making it a finished product. Thank you, Jeff Holland, Margaret Le,
Matt Margolis, Jay McGaffigan, Chris Seaton, and Tim Uckun. I consider you
all to be my friends!

I’d also like to thank the staff at the Pragmatic Bookshelf: Susannah Pfalzer,
Dave Thomas, Andy Hunt, and probably a whole bunch of other people I don’t
know about.

Above all, thank you, Brian P. Hogan, my editor. This is our fourth endeavor
together, and as usual I’ve become a better writer because of it. I look forward
to working on future projects together.

I must also thank the creators of the technologies I’ve written about. This
book would not have been possible without your hard work. Thank you,
Charles Nutter, Thomas Enebo, Karol Buček, Christian Meier, Chris Seaton,
and the rest of the JRuby team. You’re the most amazing group in all of the
open source world. I owe you all my deepest gratitude and a free beverage.

Finally, I’d like to thank my wife and son. I could not have completed this
project without your love and support.

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Preface
Your website has just crashed, and you’re losing money. The application is
built on Rails, runs on MRI, and is served up with Unicorn and Apache.
Having this kind of infrastructure means you’re managing more processes
than you can count on two hands.

The background jobs are run with Resque,1 the scheduled jobs are run with
cron, and the long-running jobs use Ruby daemons,2 which are monitored by
monit because they tend to crash.3 It’s going to take some time to figure out
which component is the culprit because you have no centralized management
interface. Standing up a new server will take almost as long because the
infrastructure is so complex. But the website has to get back online if you’re
going to stay in business.

The problem I’ve just described is all too common. It has happened to everyone
from small startups to large companies that use Rails to serve millions of
requests. Their infrastructure is complex, and the myriad components are
difficult to manage because they’re heterogeneous and decentralized in nature.
Even worse, Rubyists have become comfortable with this way of doing things,
and some may think it’s the only way of doing things. But that’s not the case.

The recent growth and increased adoption of the Java Virtual Machine (JVM)
as a platform for Ruby applications has opened many new doors. Deployment
strategies that weren’t possible with MRI Ruby are now an option because of
the JVM’s built-in management tools and support for native operating system
threads. Ruby programmers can leverage these features by deploying their
applications on JRuby.

It’s common for Ruby programmers to think that JRuby deployment will look
identical to deployment with MRI Ruby (that is, running lots of JVM processes

1. https://github.com/resque/resque
2. http://daemons.rubyforge.org/
3. http://mmonit.com/monit/

report erratum • discuss

https://github.com/resque/resque
http://daemons.rubyforge.org/
http://mmonit.com/monit/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

behind a load balancer and putting all asynchronous background jobs in a
separate process). On the other hand, Java programmers tend to deploy
JRuby applications the same way they deploy Java applications. This often
requires lots of XML and custom build configurations, which negate many of
the benefits of a more dynamic language such as Ruby. But there are much
better options than both Ruby and Java programmers are used to.

In this book, you’ll explore the most popular and well-supported methods for
deploying JRuby. You have a surprising amount of flexibility in the processes
and platforms to choose from, which allows Ruby and Java programmers to
tailor their deployments to suit many different environments.

The No-Java-Code Promise
You won’t have to write any Java code as you work your way through this
book. That’s not what this book is about. It’s about deploying Ruby applica-
tions on the JVM. The technologies and tools you’ll learn about in this book
hide the XML and Java code from you. As the JRuby core developers like to
say, “[They] write Java so you don’t have to.”4

You may want to include some Java code in your application. Or you may
want to make calls to some Java libraries. That’s entirely your choice. If you
want to write your programs exclusively in Ruby and deploy them on the Java
Virtual Machine—as so many of us do—then go ahead.

There are many reasons to deploy Ruby applications on the JVM, and using
Java libraries and APIs is just one of them. In this book, you’ll learn how to
get the most out of the JVM without writing any Java code.

What’s in This Book?
Over the course of this book, you’re going to work on an application like the
one described at the beginning of the preface. You’ll port it to JRuby, add
some new features, and simplify its infrastructure, which will improve its
ability to scale.

The application’s name is Twitalytics, and it’s a rich Twitter client. (As you
probably know, Twitter is a social networking website that’s used to post
short status updates, called tweets.) Twitalytics tracks an organization’s
tweets, annotates them, and performs analytic computations against data
captured in those tweets to discover trends and make predictions. But it can’t
handle its current load.

4. http://vimeo.com/27494052

Preface • xii

report erratum • discuss

http://vimeo.com/27494052
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Twitalytics has several background jobs that are used to stream tweets into
the application, perform analytics, and clean up the database as it grows. In
addition, it receives a large volume of HTTP requests for traditional web traffic.
But doing this on MRI means running everything in separate processes, which
consumes more resources than its infrastructure can handle.

You’ll begin working on the app in Chapter 1, Getting Started with JRuby, on
page 1. You’ll learn what makes JRuby a better deployment platform and
why it’s a good fit for this application. Then you’ll extract a microservice from
the Twitalytics monolith, port it to JRuby, and package it into an archive file
with the Warbler gem. But before you can deploy it, you’ll need to create an
environment where it can run.

In Chapter 2, Creating a Deployment Environment, on page 17, you’ll set up
a containerization layer based on Docker and provision it with some essential
components. You’ll also learn how to automate this process to make it more
reliable and reusable. You’ll create a new server for each deployment strategy
used in this book, and being able to reuse your configuration will save you
time and prevent errors. In fact, this environment will apply not only to
Twitalytics but to any JRuby deployment, so you’re likely to reuse it on the job.

Once you’ve completed the production server setup, you’ll be ready to deploy.
You’ll learn how JRuby deployment differs from the more common practice
of traditional Ruby application deployment and how containerization technolo-
gies like Docker can simplify the process. In additional to using Docker, you’ll
deploy to the cloud on the Heroku platform as a service.

The Warbler gem gives you a quick way to get started with JRuby. But it’s
just a stepping-stone on your path to better performance. As the book pro-
gresses, you’ll improve your deployment strategy by running Twitalytics on
some other JRuby web servers.

The next chapter, Chapter 3, Deploying a Rails Application, on page 29, is
dedicated to the Puma web server. Puma allows you to deploy applications
much as you would with MRI-based Rails applications. But you’ll find that
JRuby reduces the complexity of this kind of deployment environment while
increasing its reliability and portability. You’ll deploy the Puma-based Rails
app using both Docker and Heroku. The resulting architecture will be
friendly and familiar to Rubyists.

But you still won’t be making the most of what the JVM has to offer. To do
that, you’ll need a new kind of platform.

report erratum • discuss

What’s in This Book? • xiii

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

In Chapter 5, Deploying JRuby in the Enterprise, on page 73, you’ll learn about
a Ruby application server. You’ll use TorqueBox, a server based on the popular
JBoss application server, to run Twitalytics. This kind of deployment is unique
when compared to traditional Ruby deployments because it provides a com-
plete environment to run any kind of program, not just a web application.
You’ll learn how this eliminates the need for external processes. In the end,
you’ll have the most advanced deployment environment available to any Ruby
application.

An overview of each strategy covered in this book is listed here:

TorqueBoxPumaWarbler

JBoss ASPure-RubyJettyInternals

MixedTraditionalWAR fileDeployment type

YesYesYesDocker deployment

YesYesYesHeroku deployment

YesNoNoBackground jobs

Deciding on the right platform for each application is a function of these
attributes. But getting an application up and running on one of these platforms
is only a part of the job. You also need to keep it running. Fortunately, one
of the many advantages of JRuby is the built-in JVM tooling.

Chapter 6, Managing a JRuby Application, on page 87 presents some tools
for monitoring, managing, and configuring a deployed JRuby application.
These tools are independent of any deployment strategy and can be used to
monitor the memory consumption, performance, and uptime of any Java
process. The information you gain from these tools can be used to improve
the performance of JRuby, which you’ll learn in Chapter 7, Tuning a JRuby
Application, on page 109. You’ll learn about different kinds of memory and the
various knobs you can turn to optimize how the JVM allocates that memory.
You’ll even learn how to change garbage collectors and benchmark them.

In Chapter 8, Monitoring JRuby in Production, on page 123, you’ll learn how to
capture the same kind of metrics from a production runtime. You’ll use some
third-party apps to instrument your code, capture performance data, and log
errors. Finally, Chapter 9, Using a Continuous Integration Server, on page 133
will introduce a tool for producing reliable and consistent deployments.

Twitalytics is a Rails application, and you’ll use this to your advantage as you
deploy it. But all of the server technologies you’ll use work equally well with

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

any Rack-compliant framework (such as Sinatra5). In fact, the steps you’ll
use to package and deploy Twitalytics would be identical for these other
frameworks. Warbler, Puma, and TorqueBox provide a few hooks that make
deploying a Rails application more concise in some cases (such as automati-
cally packaging bundled gems). But the workflow is the same.

When you encounter Rails-specific features in this book, be aware that this
is only for demonstration purposes and not because the frameworks being
used work exclusively with Rails. Rails works with these servers because it’s
Rack based.

What’s Not in This Book?
This book won’t teach you how to write code in the Ruby language. You’ll
write a bit of Ruby code in the course of this book, but you won’t learn about
specific features of the Ruby language. In particular, this book doesn’t cover
continuations, ObjectSpace, fibers, and other topics that have subtle differences
when applied to JRuby. This book is specifically about deploying JRuby
applications and how JRuby affects your production environments.

Other topics not addressed include zero-downtime deployments, database
migrations, the asset pipeline, and content delivery networks (CDN). These
are important aspects of Ruby web application development, but they’re not
notably different between MRI and JRuby. You can learn about these topics
in books on the Ruby language and Rails. The same concepts will apply to
JRuby.

Who Is This Book For?
This book is for programmers, system administrators, and DevOps6 profes-
sionals who want to use JRuby to power their applications but aren’t familiar
with how this new platform will change their infrastructure.

You’re not required to have any experience with JRuby. This book is written
from the perspective of someone who is familiar with MRI-based Ruby
deployments but wants a modern deployment strategy for their applications.
Some of the concepts we’ll discuss may be more familiar to programmers with
Java backgrounds, but it’s not required that you have any experience with
Java or its associated technologies.

5. http://www.sinatrarb.com/
6. http://en.wikipedia.org/wiki/DevOps

report erratum • discuss

What’s Not in This Book? • xv

http://www.sinatrarb.com/
http://en.wikipedia.org/wiki/DevOps
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Conventions
The examples in this book can be run on Linux, Mac, Windows, and many
other operating systems. But some small changes to the command-line
statements may be required for certain platforms.

We’ll use notation from bash, which is the default shell on Mac OS X and many
Linux distributions. The $ prompt will be used for all command-line examples.
Windows command prompts typically use something like C:\> instead, so when
you see a command like this

$ bundle install

you’ll know not to type the dollar sign and to read it like this:

C:\> bundle install

Most commands will be compatible between Windows and bash systems (such
as cd and mkdir). In the cases where they’re not compatible, the appropriate
commands for both systems will be spelled out. One case in particular is the
rm command, which will look like this:

$ rm temp.txt
$ rm -rf tmp/

On Windows this should be translated to these two commands, respectively:

C:\> del temp.txt
C:\> rd /s /q tmp/

Another Unix notation that’s used in this book is the ~ (tilde) to represent a
user’s home directory. When you see a command like this

$ cd ~/code/twitalytics

you can translate it to Windows 10 as this command:

C:\> cd C:\Users\yourname\code\twitalytics

On earlier versions of Windows, the user’s home directory can be found in
the Documents and Settings directory. You can also use the %USERPROFILE% environ-
ment variable. Its value is the location of the current user’s profile directory.

Other than these minor notation changes, the examples in this book are
compatible with Windows by virtue of the Java Virtual Machine.

Getting the Source Code
You’re ready to set up the Twitalytics application. Start by downloading the
source code from http://pragprog.com/titles/jkdepj2/source_code. Unpack the downloaded

Preface • xvi

report erratum • discuss

http://pragprog.com/titles/jkdepj2/source_code
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

file and put it in your home directory. This will create a code directory and
inside that will be a twitalytics directory, which contains the baseline code for
the application (in other words, the MRI-based code).

But you’re not quite ready to run this code with JRuby. It needs to be ported
first. You’ll learn how to do that in the coming chapters.

Online Resources
Several online resources can help if you’re having trouble setting up your
environment or running any of the examples in this book.

For Java-related problems, the Java Community has forums7 and numerous
Java-related articles.

For JRuby-related problems, the official JRuby website8 has links to several
community outlets. The most useful of these are the mailing list9 and the
#jruby IRC channel on FreeNode.10

For TorqueBox-related problems, there are a mailing list,11 extensive docu-
mentation,12 and the #torquebox IRC channel on FreeNode.

7. https://community.oracle.com/community/java
8. http://jruby.org/community
9. https://github.com/jruby/jruby/wiki/MailingLists
10. http://freenode.net/
11. http://torquebox.org/community/mailing_lists/
12. http://torquebox.org/documentation/

report erratum • discuss

Online Resources • xvii

https://community.oracle.com/community/java
http://jruby.org/community
https://github.com/jruby/jruby/wiki/MailingLists
http://freenode.net/
http://torquebox.org/community/mailing_lists/
http://torquebox.org/documentation/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 1

Getting Started with JRuby
JRuby is a high-performance platform that can scale to meet demand without
the headaches of an MRI-based deployment. Those headaches are often the
result of running a dozen or more processes on a single server that all need
to be monitored, balanced, and occasionally restarted. JRuby avoids these
problems by simplifying the architecture required to run an application. In
this chapter, you’re going to port a microservice to JRuby so that you can
take advantage of this simplicity and scalability. But in order to run the
microservice in production, you’ll need a way to deploy it. For this, you’ll use
Warbler.1

Warbler is a gem used to package source code into an archive file you can
deploy without the need for complicated configuration management scripts.
This makes the process more flexible, portable, and faster.

In Preface, on page xi, you were introduced to Twitalytics, a Ruby on Rails
app that needs help. Its infrastructure is too complex, and it can’t handle the
volume of requests the site is receiving. You don’t have time to port the dae-
mons and background jobs to a new framework, but you need to get one high-
traffic HTTP service deployed on JRuby. If you can do that, you’ll be able to
handle lots of concurrent requests without hogging the system’s memory.
Later in the book, you’ll consume this service from the main Rails app that
makes up the bulk of Twitalytics.

Your time constraints make Warbler a great solution. It won’t maximize your
use of the JVM, but it will allow you to take advantage of the most important
parts. You’ll be able to service all of your site’s web requests from a single
process without changing much code. The drawback is that you’ll have to

1. https://github.com/jruby/warbler

report erratum • discuss

https://github.com/jruby/warbler
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

make changes to your deployment process, so there’s much to learn. Let’s
begin by discussing why you might want to use JRuby in the first place.

What Makes JRuby So Great?
A production JRuby environment has fewer moving parts than traditional
Ruby environments. This is possible because of the JVM’s support for native
operating system threads. Instead of managing dozens of processes, JRuby
can use multiple threads of execution to do work in parallel. MRI has threads,
but only one thread can execute Ruby code at a time. Recent versions of MRI,
Rails, and other frameworks have improved the platform’s ability to do some
work in parallel. But true concurrency on MRI isn’t possible, and the quest
for better throughput has led to some complicated solutions.

Deployment with MRI usually requires a type of architecture that handles
HTTP requests by placing either Apache2 or a similar web server in front of a
pool of application instances running in separate processes. An example of
this is illustrated in the following figure.

HTTP
Request

MRI MRI

Apache/Nginx

AppApp

2. http://httpd.apache.org/

Chapter 1. Getting Started with JRuby • 2

report erratum • discuss

http://httpd.apache.org/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

There are many problems with this kind of architecture, and those problems
have been realized by Twitter, GitHub, and countless others. They include
the following:

Stuck processes Sometimes the processes will get into a stuck state and
need to be killed by an external tool like god or Monit.

Slow restarts There’s a lot of overhead in starting a new process. Several
instances may end up fighting each other for resources if they’re restarted
at the same time.

Memory growth Each of the processes keeps its own copy of an application,
along with Rails and any supporting gems, in memory. Each new instance
means you’ll also need more memory for the server.

Several frameworks, such as Passenger and Unicorn, have improved on this
model. But they all suffer from the same underlying constraint. A single MRI
process has a scalability ceiling because Ruby code cannot execute in parallel.
Other operations, such as I/O, can be done in parallel, and frameworks such
as EventMachine and Celluloid leverage this to create event-based environ-
ments. But these frameworks also have an upper limit, and that’s why some
of their biggest implementers, including Logstash3 and Venntro,4 still choose
to run them on JRuby.

JRuby enables a similar model to the one used by MRI but with only one JVM
process. Inside this JVM process is a single application instance capable of
handling all of a website’s traffic. This works by allowing the platform to create
many threads that run against the same application instance in parallel. You
can create far more JVM threads than MRI processes because they’re much
lighter in weight. This model is illustrated in the figure on page 4.

Apache is included in the architecture diagram, but its role for a single
instance is greatly reduced. It may be used to serve up static content and
load balance a distributed cluster, but it won’t need to distribute requests
across multiple processes on a single machine.

In the coming chapters, you’ll build an architecture like the one just described
with each of the technologies you use. You’ll start by using Warbler to package
a simple Rack application, which will get you up and running quickly. But
first, you’ll need to install JRuby and a few other pieces of software.

3. https://www.elastic.co/products/logstash
4. http://dev.venntro.com/2013/07/euruko-2013-summary/

report erratum • discuss

What Makes JRuby So Great? • 3

https://www.elastic.co/products/logstash
http://dev.venntro.com/2013/07/euruko-2013-summary/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

HTTP
Request

JVM

Apache/Nginx

App
ThreadThreadThreadThread

Preparing Your Environment
Four software packages are required to run the examples in the book. They’re
listed here along with the version needed:

• Java Development Kit (JDK) 8 (aka 1.8)
• JRuby 9.0.5.0
• Git 2.5
• Bundler 1.11

Java is supported in one form or another on a wide range of operating systems
including Linux, Mac, Windows, and more. But the installation process will
be different for each platform.

Installing Java
On Debian-based Linux platforms such as Ubuntu, the JVM can be installed
with APT, like this:

$ sudo apt-get install openjdk-8-jdk

Chapter 1. Getting Started with JRuby • 4

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

On Fedora, Oracle Linux, and Red Hat, the JVM is installed with the yum
command, like this:

$ su -c "yum install java-1.8.0-openjdk"

For Mac OS X and Windows systems, you can download the latest version of
Java 8 directly from Oracle’s website.5

For Windows systems, you’ll need to set the JAVA_HOME variable. (The exact
path may vary.)

C:\> set JAVA_HOME="C:\Program Files\Java\jdk1.8.0_72"

In all cases, you can check that the JVM was installed correctly by running
this command:

$ java -version
java version "1.8.0_72"
Java(TM) SE Runtime Environment (build 1.8.0_72-b15)
Java HotSpot(TM) 64-Bit Server VM (build 25.72-b15, mixed mode)

Now that the JVM is ready, you can put JRuby on your machine.

Installing JRuby and Bundler
The preferred method for installing JRuby on Unix and Linux systems requires
the Ruby Version Manager (RVM). It’s preferred not only because it makes
JRuby easy to install but also because it treats JRuby just like any other
Ruby platform. This allows you to use the ruby and gem commands without
putting the j character in front of them or prefixing every other command with
jruby -S. RVM is compatible only with bash systems, which don’t include Win-
dows. Installing JRuby on Windows will be described in a moment. If you’re
using a bash system, run this command to download the GPG key for RVM:

$ gpg --keyserver hkp://keys.gnupg.net \
--recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3

Then run this command to install RVM:

$ \curl -sSL https://get.rvm.io | bash -s stable

The leading backslash in the command disables any aliases you may have
set in your shell and runs the curl binary directly.

You’ll also need to reload your shell. The most dependable way to do this is
by closing your terminal and opening a new one. In the new terminal, use
RVM to install JRuby with this command:

5. http://www.oracle.com/technetwork/java/javase/downloads/index.html

report erratum • discuss

Preparing Your Environment • 5

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ rvm install jruby-9.0.5.0
Searching for binary rubies, this might take some time.
Unknown ruby string (do not know how to handle): jruby-9.0.5.0.
Found remote file /Users/jkutner/.rvm/archives/jruby-bin-9.0.5.0.tar.gz
Checking requirements for osx.
Requirements installation successful.
jruby-9.0.5.0 - #configure
Unknown ruby string (do not know how to handle): jruby-9.0.5.0.
jruby-9.0.5.0 - #download
jruby-9.0.5.0 - #validate archive
jruby-9.0.5.0 - #extract
jruby-9.0.5.0 - #validate binary
jruby-9.0.5.0 - #setup
jruby-9.0.5.0 - #gemset created /Users/jkutner/.rvm/gems/jruby-9.0.5.0...
jruby-9.0.5.0 - #importing gemset /Users/jkutner/.rvm/gemsets/jruby/gl...
jruby-9.0.5.0 - #generating global wrappers........
jruby-9.0.5.0 - #gemset created /Users/jkutner/.rvm/gems/jruby-9.0.5.0
jruby-9.0.5.0 - #importing gemsetfile /Users/jkutner/.rvm/gemsets/defa...
jruby-9.0.5.0 - #generating default wrappers........
Making gemset jruby-9.0.5.0 pristine.....................................
Making gemset jruby-9.0.5.0@global pristine..............................

Set JRuby as the default Ruby on your platform by running this command:

$ rvm --default use jruby-9.0.5.0
Using /Users/jkutner/.rvm/gems/jruby-9.0.5.0

On Windows, you can install JRuby by downloading and running the Windows
installer from the official JRuby website.6

If you’re using any other kind of system or if you prefer not to use RVM, then
JRuby can be installed manually with these three steps:

1. Download the JRuby binaries from the official website.7

2. Unpack the downloaded file, which will create a jruby-<version> directory.

3. Add jruby-<version>/bin to the PATH.

You can check that JRuby was installed correctly with this command:

$ ruby -v
jruby 9.0.5.0 (2.2.3) 2016-01-26 7bee00d Java HotSpot(TM) 64-Bit
Server VM 25.72-b15 on 1.8.0_72-b15 [darwin-x86_64]

Without RVM, you’ll have to modify the commands used in this book. RVM
lets you invoke JRuby without the jruby or jgem commands, so you’ll need to
change all ruby commands in this book to jruby commands. You’ll also need to

6. http://jruby.org/files/downloads/9.0.5.0/index.html
7. http://jruby.org/files/downloads/9.0.5.0/index.html

Chapter 1. Getting Started with JRuby • 6

report erratum • discuss

http://jruby.org/files/downloads/9.0.5.0/index.html
http://jruby.org/files/downloads/9.0.5.0/index.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

prefix other commands (such as bundle, gem, and rails) with the jruby -S prefix,
like this:

$ jruby -S bundle install

Of course, before you can run bundle install, you’ll need to install Bundler. If
you’re using RVM, run this command:

$ gem install bundler -v 1.11.2

If you’re not using RVM, run this command:

$ jgem install bundler -v 1.11.2

You will never be asked to run any of the examples in this book with MRI
Ruby. Remember, when you see the ruby, gem, rake, or similar commands,
you’re expected to run them with JRuby.

Let’s move on to the next package.

Installing Git
Git is a source control management tool that allows you to track versions of
your code. You’ll use Git to switch between different versions of Twitalytics
as you deploy it to new platforms. Follow the instructions for downloading
and installing Git from the official website.8

It’s OK to use some other form of version control if you’d prefer, but the
examples in this book will be specific to Git. Most of the examples will even
work without version control software, but that’s not recommended. The
source code for each branch you’ll create is available from http://pragprog.com/
titles/jkdepj2/source_code, so instead of switching branches, you can change to the
directory that corresponds to the chapter you’re reading. If you don’t use Git,
some of the Heroku examples later in the book won’t work.

Now that your software dependencies are installed, let’s move on and run
some actual code.

Introducing Warbler
Warbler is a gem that creates a web application archive (WAR) file from a
Rails- or Rack-based application.

A WAR file is a zip file that follows a few conventions. Warbler takes care of
packaging an application according to these conventions, so all you need to
do is run the Warbler commands.

8. http://git-scm.com/download

report erratum • discuss

Introducing Warbler • 7

http://pragprog.com/titles/jkdepj2/source_code
http://pragprog.com/titles/jkdepj2/source_code
http://git-scm.com/download
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Joe asks:

What’s in a WAR File?
A WAR file is a special case of Java archive (JAR) file; both are really just zip files.
But a WAR file is structured according to a standard that’s recognized by all Java
web servers. You can take a closer look at this by extracting the WAR file you created
in this chapter with any unzipping tool. Inside it, you’ll find these essential components
(among many other things):

twitalytics.war
|-- index.html
|-- META-INF/

`-- MANIFEST.MF
`-- WEB-INF/

|-- lib/
`-- web.xml

The top-level directory contains all client-accessible content, which is equivalent to
the public directory in a Rails application. This is where you’ll find all of the HTML
files, images, and other static content. The WEB-INF directory contains all the dynamic
content for your web application. This includes your Ruby scripts and the Java
libraries needed to run a JRuby application. The META-INF directory contains basic
metadata about the WAR file, such as who created it and when it was created.

Inside the WEB-INF directory is the web.xml file, which is the most important part of the
archive. It contains a description of how the components in the web application are
put together at runtime. It’s similar to the config/application.rb, config/environment.rb, and
config/routes.rb files of a Rails application all combined into a single descriptor. Fortu-
nately, Warbler handles the creation of this file for you based on the settings in the
config/warbler.rb file.

You can digitally sign a WAR file, which creates a checksum for each file contained
in the archive. This is used by a web server to ensure that no one has tampered with
it or that it has not been corrupted in some way. If the checksums don’t match, then
the server won’t load the files.

The WAR file that Warbler creates will be completely self-contained and ready
to be deployed to a Java web server. Warbler bundles JRuby, your web
framework, a web server, and all of the dependencies needed to adapt a Ruby
web application to the JVM.

To demonstrate Warbler, you’ll create the simplest web application you can.
Create a directory called myapp, and in that directory create a config.ru file. Then
put the following code into it:

Chapter 1. Getting Started with JRuby • 8

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Warbler/myapp/config.ru

run lambda { |env|
[200, {'Content-Type' => 'text/html'}, 'Hello, World']

}

Install the Warbler gem to your JRuby gem path by running this command:

$ gem install warbler -v 2.0.1
Fetching: rubyzip-1.2.0.gem (100%)
Successfully installed rubyzip-1.2.0
Fetching: jruby-rack-1.1.20.gem (100%)
Successfully installed jruby-rack-1.1.20
Fetching: jruby-jars-9.0.5.0.gem (100%)
Successfully installed jruby-jars-9.0.5.0
Fetching: warbler-2.0.1.gem (100%)
Successfully installed warbler-2.0.1
4 gems installed

Warbler has two JRuby-specific dependencies. The jruby-jars gem includes the
core JRuby code and standard library files. This allows other gems to depend
on JRuby without freezing to a specific version. The other dependency, the
jruby-rack gem, is responsible for adapting the Java web server specification to
the Rack specification.

Next, use the warble command to create the archive file. Run it with the war
option from the same directory as the config.ru file you created earlier.

$ warble war

This creates a myapp.war file. In Chapter 2, Creating a Deployment Environment,
on page 17, you’ll learn about all the different ways you can deploy this WAR
file. For now, you just need to be able to run it so you can see how Warbler
works. To do this, you’ll create an executable WAR file by running the same
command with the executable option.

$ warble executable war

This creates a WAR file capable of running without the need for a freestanding
Java web server like Tomcat. You can run the WAR file with this command:

$ java -jar myapp.war

When the server is started, you’ll be able to access the application at
http://localhost:8080.

That’s all you need to know to get started with Warbler. Now let’s make some
adjustments to the Twitalytics application. It wasn’t built to run on JRuby,
so it has some code that’s specific to MRI. You’re going to fix these parts so
they work on the new platform.

report erratum • discuss

Introducing Warbler • 9

http://media.pragprog.com/titles/jkdepj2/code/Warbler/myapp/config.ru
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Creating a JRuby Microservice
In the previous section, you packaged a simple Rack application that was
compatible with JRuby, but a real application will require more than just
Rack. In this section, you’ll package a small Sinatra-based microservice into
a WAR file. Warbler is great for small services like this because it produces
a portable lightweight artifact you can deploy quickly without any baggage.

Unfortunately, this service is an integral part of Twitalytics and it’s under
more load than MRI can handle. Porting it to JRuby to will increase its
throughput by allowing the application to process each request asynchronous-
ly. In this way, the request threads won’t block while waiting for external
services or doing data processing. To begin, move into the stock-service
sample code.

$ cd ~/code/stock-service

This directory contains the code for a small pure-Ruby HTTP service. The
service accepts a POST request with some text. It searches the text for the
names of publicly traded companies and then annotates the text with current
stock price quotes for those companies. Open the config.ru file and you’ll see
the handler:

stock-service/config.ru

post '/stockify' do
text = request.body.read.to_s
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)
new_text = Stocks.sub_quotes(text, quotes)

end

The first line in the handler for the /stockify route captures the body of the
request. The second line passes the text to the parse_for_stocks function, which
returns a list of symbols matching any company names mentioned in the
text. The third line uses the get_quotes function to retrieve current prices for
the stocks from a Yahoo! API. The last line combines it all by adding the
markup to the text.

Before making any changes, initialize a Git repository and create a branch
by running these commands:

$ git init
$ git add -A
$ git commit -m "initial commit"
$ git checkout -b warbler
Switched to a new branch 'warbler'

Chapter 1. Getting Started with JRuby • 10

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/stock-service/config.ru
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now you can safely configure Warbler while preserving your master branch.

The first step in porting this service to JRuby is adding Warbler to the appli-
cation’s dependencies. Open the Gemfile and put this code at the end of it:

Warbler/stock-service/Gemfile

group :development do
gem 'warbler', '2.0.1'

end

The Warbler dependency is in a development group because it’s only needed to
build a WAR file. You don’t need it in production.

Now run Bundler to install the service’s dependencies.

$ bundle install --binstubs

You’re ready to package the app into an executable WAR file with Warbler.
Since you don’t want to type the executable directive every time you package
the app, you’ll begin by adding a Warbler configuration file. Create a config/war-
ble.rb file by running this command:

$ bin/warble config

The new file contains a wealth of instructions and examples for the different
configuration options, which are helpful to read because you never know
what you’ll want to change. Don’t worry about preserving its contents. You
can always re-create it by running warble config again. Given that safety net,
replace the entire contents of the config/warble.rb file with this code:

Warbler/stock-service/config/warble.rb

Warbler::Config.new do |config|
config.features = %w(executable)
config.jar_name = "stock-service"

end

Now when you run the warble command, it will detect this configuration and
generate an executable WAR file even when you omit the executable directive
from the command line. Give it a try:

$ bin/warble war

This generates a stock-service.war file, which you can execute by running this
command:

$ java -jar stock-service.war

With the Java process running, test out the service by opening another termi-
nal window and executing this command:

report erratum • discuss

Creating a JRuby Microservice • 11

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config/warble.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ curl -d "Hello Apple, a computer company" http://localhost:8080/stockify
"Hello <div class="stock" data-symbol="AAPL"
data-day-high="102.14">Apple</div>, a computer company"

The server responds with an marked-up version of the original text containing
current stock price information. Because it depends on an external API, the
service does a lot of waiting. This causes the threads that are handling
incoming HTTP requests to be blocked. It looks like the following figure.

Client Server Database

Block wait

Now imagine a request thread being freed up to handle other requests instead
of blocking for a single request to finish. It looks like the following figure.
That’s called asynchronous request processing, and it can dramatically
improve throughput in an I/O-constrained application (such as an app that
relies heavily on a database or external service).

Client Server Database

Async wait

Chapter 1. Getting Started with JRuby • 12

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The JVM supports asynchronous I/O in several forms. For this microservice,
you’ll use an asynchronous context, which is a standard feature of Java, with
a background thread to free up your request thread. First, enable the asyn-
chronous capabilities of the web server by adding this line to the config block
in your config/warble.rb file:

Warbler/stock-service/config/warble.rb

config.webxml.servlet_filter_async = true

Then, add these two lines of code to the beginning of the POST handler:

Warbler/stock-service/config.ru

response.headers["Transfer-Encoding"] = "chunked"
async = env['java.servlet_request'].start_async

The first line sets a standard HTTP header that will ensure the client’s request
is kept open while the app does its asynchronous processing. The second line
creates a new asynchronous context. Now wrap the original four lines of the
POST handler in a Thread like this:

Warbler/stock-service/config.ru

text = request.body.read.to_s
Thread.new do
begin

puts "Thread(async): #{Thread.current.object_id}"
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)
new_text = Stocks.sub_quotes(text, quotes)
async.response.output_stream.println(new_text)

ensure
async.complete

end
end

The new Thread will allow the processing to happen in the background so the
POST handler can return. And instead of the handler simply returning some
string, it will write the output to the asynchronous context. You’ll also add a
puts statement that logs the ID of the request thread. Add this line to the end
of the POST handler (outside the Thread body).

Warbler/stock-service/config.ru

puts "Thread(main) : #{Thread.current.object_id}"

Now repackage the WAR file and run it again:

$ bin/warble
$ java -jar stock-service.war

report erratum • discuss

Creating a JRuby Microservice • 13

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config/warble.rb
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

And invoke the service with the same curl command as before:

$ curl -d "Text about Apple, a computer company" http://localhost:8080/stockify

The output’s the same, but in the logs you’ll see the different thread identifiers:

Thread(main) : 2332
Thread(async): 2330

Keep in mind that puts is not atomic, so you might get a bit of interweaving
in the output.

This is great, but there’s still a problem with the code. The number of threads
this service can create is unbounded, which could overrun your system. To
make things worse, creating a new thread is an expensive operation. You can
fix both of these issues by using a thread pool executor. This is a great
example of a kind of concurrency issue you must consider when using JRuby.

You can add a thread pool to the application with only a few lines. First, add
a dependency on the concurrent-ruby gem to the Gemfile by adding this code to it:

Warbler/stock-service-thread-pool/Gemfile

gem 'concurrent-ruby', require: 'concurrent'

And run Bundler to install it:

$ bundle install --binstubs

Now modify the config.ru file to use the new gem by creating a thread pool.
Immediately after the end of the App class, add this line of code:

Warbler/stock-service-thread-pool/config.ru

App.set :thread_pool,
Concurrent::ThreadPoolExecutor.new(max_threads: 100)

This uses the ThreadPoolExecutor class to create a cached thread pool and adds
it as a setting on the App class. A cached thread pool will grow organically and
reuse threads as needed. It also prevents thread starvation by setting an
upper bound on the number of threads with the max_thread option.

You can use the thread pool by replacing the Thread.new invocation in the POST
handler with a call to settings.thread_pool.post, as shown here:

Warbler/stock-service-thread-pool/config.ru

settings.thread_pool.post do
begin

puts "Thread(async): #{Thread.current.object_id}"
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)

Chapter 1. Getting Started with JRuby • 14

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/config.ru
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

new_text = Stocks.sub_quotes(text, quotes)
async.response.output_stream.println(new_text)

ensure
async.complete

end
end

Now run Bundler again, repackage with Warbler, run the app, and make the
curl request a few more times. In the logs, you’ll see that the same thread is
being used for the asynchronous part of the service each time it’s invoked.

Thread(main) : 2332
Thread(async): 2330
Thread(main) : 2334
Thread(async): 2330
Thread(main) : 2336
Thread(async): 2330

In practice, you could make this service even more reactive by using an
asynchronous HTTP client to invoke the Yahoo! service. And if the parse_for_stocks
is going to be expensive or invoke an external service, you could put it in its
own thread. Steps like these further eliminate bottlenecks in the system,
increasing the potential throughput. But they’re possible only with a truly
concurrent platform such as JRuby. You’ll learn to implement some of these
ideas later in the book.

Before moving on, commit your changes to the warbler branch with the git add
and git commit commands:

$ git add Gemfile Gemfile.lock config config.ru
$ git commit -m "Updated for JRuby"

Your microservice is now ready to be deployed to production with Warbler.

Wrapping Up
You packaged a microservice into an archive file. That’s a huge step for this
application because it means you can deploy it to any environment that has
a JVM available. There are many possibilities, including containers that run
in the cloud, containers that run on embedded devices, and containers that
run on a dedicated server.

You also learned how the JVM can simplify a Ruby architecture no matter
what JRuby web framework you use. This will be important as you work your
way through the book and as you continue to develop new applications on
your own.

report erratum • discuss

Wrapping Up • 15

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Joe asks:

What Is Truffle?
If you follow the JRuby project on Twitter or read the JRuby mailing list, you may
have heard about a project called Truffle.

Truffle is a research project sponsored by Oracle Labs.a It’s an implementation of the
Ruby programming language on the JVM using the Graal dynamic compiler and the
Truffle AST interpreter framework.b

In early 2014, Truffle was open sourced and integrated into the larger JRuby project.
The Truffle developers and JRuby developers have been working alongside each other,
sharing code, and even sharing a mailing list for a while now. They’re not so much
competitors as they are contemporaries.

Truffle has the potential to achieve peak performance well beyond what’s possible
with standard JRuby, but it’s not production ready. Major components such as
OpenSSL and networking are yet to be completed. It also requires an experimental
JVM (Graal) and doesn’t work with a standard JVM.

You can learn more about Truffle from the project’s official website,c which is hosted
by its lead developer.

a. http://labs.oracle.com/
b. http://openjdk.java.net/projects/graal/
c. http://chrisseaton.com/rubytruffle/

Having a JRuby application packaged into a WAR file is a good first step, but
you still need to deploy it and consume it. In the coming chapters, you’ll learn
how to get this WAR file into production and how to use JRuby to invoke the
services it exposes. But first, you need to create a production environment
in which it can run.

Chapter 1. Getting Started with JRuby • 16

report erratum • discuss

http://labs.oracle.com/
http://openjdk.java.net/projects/graal/
http://chrisseaton.com/rubytruffle/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 2

Creating a Deployment Environment
A production JRuby environment is simpler than you might expect. There
aren’t any C extensions to compile, which means you won’t need to install
any native libraries. And you’ll run your entire app in a single process, which
eliminates the need for tools that do coordination and load balancing. In fact,
many JRuby deployments have only one external dependency: the JVM itself.
For that reason, the steps in this chapter form the basis for every kind of
JRuby app.

In Chapter 1, Getting Started with JRuby, on page 1, you created a small
JRuby microservice. Now you’ll provision a new environment for this service
and package it with the essential software it needs to run in production. But
just because you’re deploying a JRuby application doesn’t mean you have to
turn your world upside down. The tools you’ll use, such as Docker and Heroku,
may be familiar. And you can use them to build environments for any kind
of app. At the end of this chapter, you’ll have a deployment environment that’s
ready to scale up to meet demand and take advantage of everything JRuby
has to offer.

Installing Docker
Deployment is the process of taking code or binaries from one environment
and moving them to a another environment where you execute them. In the
case of a web app case, you’ll move code from your development machine to
a production server. You’ve already configured a development environment,
but you still need to create a production environment you can use as the
target of your deployments. For this, you’ll use Docker,1 which reduces the
process of provisioning a production environment to just a few steps.

1. http://docker.com/

report erratum • discuss

http://docker.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Docker is a Linux-based containerization platform. It runs processes in iso-
lated environments without the need for a complete visualization layer for
each process. You can use Docker to run multiple isolated processes on the
same host without excessive overhead. You’ll use Docker primarily as a
development tool, allowing you to run a simulated production environment
on a local machine. There is one catch, though. If your local machine isn’t
running Linux, you’ll need a virtual machine to run Docker. Fortunately,
Docker distributes a lightweight headless virtual machine, called Docker
Machine, that provides many advantages over traditional virtualization.

Docker Machine runs on VirtualBox,2 an open source virtualization platform.
If you’re not running Linux, you’ll need to install both of these. If you are
running Linux, you’ll need to install only Docker.

Installing Docker on Mac OS X or Windows
You can install both Docker and Docker Machine on Mac and Windows using
the Docker Toolbox native installer. Open a browser and navigate to the
Docker Toolbox website.3 Select the Installer for Mac and download it. Once
the package is downloaded, open it to run the wizard. Follow the steps in the
wizard to complete the installation as described on the Docker website.4

Now open a terminal. If you’re on Windows, you’ll need to double-click the
Docker CLI shortcut on your Desktop to open a Docker terminal instead of a
standard terminal. If the system displays a User Account Control prompt to
allow VirtualBox to make changes to your computer, choose Yes. From the
terminal, run these commands:

$ docker-machine -v
docker-machine version 0.4.0 (9d0dc7a)

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL
default * virtualbox Running tcp://192.168.99.100:2376

This shows that a single Docker Machine, named default, is running.

On Mac only, you must set a few environment variables so the Docker client
can communicate with the Docker Machine. Run this command:

$ eval "$(docker-machine env default)"

2. https://www.virtualbox.org
3. https://www.docker.com/toolbox
4. http://docs.docker.com/mac/step_one/

Chapter 2. Creating a Deployment Environment • 18

report erratum • discuss

https://www.virtualbox.org
https://www.docker.com/toolbox
http://docs.docker.com/mac/step_one/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

On Windows, those environment variables are set for you when you run the
Desktop app. On Mac, if you don’t want to run that command every time you
open a new terminal, then run this command to add the environment variables
to your profile:

$ docker-machine env default >> ~/.profile

Now you’re ready to use the Docker client. You can move on to Getting Started
with Docker, on page 20.

Installing Docker on Linux
Docker runs natively on Ubuntu, but it requires a 64-bit architecture and a
3.10 kernel version or later. You can check your architecture by running this
command:

$ uname -p
x86_64

And you can check your kernel version with this command:

$ uname -r
3.13.0-57-generic

If the output of either uname command doesn’t match the requirements, then
you’ll need to run Docker on a virtualization layer by installing Docker
Machine.5 Otherwise, you can install Docker natively. To begin the native
installation, update your package manager by running this command:

$ sudo apt-get update

Then install the generic Linux kernel image. This kernel has the advanced
multi-layered unification filesystem (AUFS) built in, which is required to run
Docker.

$ sudo apt-get install linux-image-generic-lts-trusty

Now reboot your machine:

$ sudo reboot

After your computer has restarted, you can install Docker with this command:

$ curl -sSL https://get.docker.com/ | sh

Now you’re ready to use the Docker CLI.

5. http://docs.docker.com/machine/install-machine/

report erratum • discuss

Installing Docker • 19

http://docs.docker.com/machine/install-machine/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Getting Started with Docker
Verify that Docker is installed by running this command:

$ docker --version
Docker version 1.10.0, build 590d5108

Now check that Docker can communicate with Docker Machine by running
this command:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED ...

This is an empty list, but you’d see a list of running Docker processes (known
as containers) if there were any. A container represents some isolated process
or processes that are running within the Docker context. They’re isolated
from the rest of the processes on your machine and even from the other
Docker containers. This has many of the same benefits as traditional visual-
ization but with a very different underlying implementation.

In traditional visualization, a host operating system runs a hypervisor that
manages one or more complete guest operating systems. These guest operating
systems are isolated from each other, but they also add a great deal of over-
head. This model is shown in the following figure.

Hypervisor

Host OS

Guest OS Guest OS Guest OS

App AppApp

With Docker, each container runs natively on the host operating system via
the Docker Engine. They’re isolated from each other, but they still rely on the
host operating system to schedule processes, allocate memory, and do other
things that are common across containers. This model is shown in the figure
on page 21.

Chapter 2. Creating a Deployment Environment • 20

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Docker Engine

Host OS

Container ContainerContainer

Each Docker container is based on an image that defines the environment
the container’s processes will run in. Images are packages of software that
are loaded into a container before it runs. You might have images that include
a Java runtime or an image that includes your application’s dependencies.
You use these images as a base for creating an image that includes your
entire application, as shown here.

Docker
Container

Docker
Container

Docker
Container

Docker
Image

You can list the Docker images available on your machine by running this
command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED ...

The command doesn’t list any images because you haven’t created any since
installing Docker a moment ago. Go ahead and download your first image.
You’ll begin with the heroku/jvm image, which mirrors the cloud environment

report erratum • discuss

Getting Started with Docker • 21

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

running on the Heroku platform as a service.6 You’ll deploy to Heroku later
in the chapter, so this allows you to replicate that environment locally first.
Run the following command to pull the image (it’s several hundred megabytes,
so this may take some time):

$ docker pull heroku/jvm
Using default tag: latest
latest: Pulling from heroku/jvm
ecf3ac44a558: Pull complete
5c0c6781ba3b: Pull complete
75a40d761c97: Pull complete
c5b21110f7b8: Pull complete
Digest: sha256:a2483cf8906b2d14b7ff6fded15601ee3f00172cbfc21ab1e7d80c45a4ee0cfb

Run the images command again:

$ docker images
REPOSITORY TAG IMAGE ID CREATED ...
heroku/jvm latest 35ecdbd5516b 6 days ago

You now have a local representation of the Heroku stack. This stack includes
a JVM, so it’s perfect for running an executable WAR file. You can inspect
the JVM version by running the following command:

$ docker run -t heroku/jvm java -version
openjdk version "1.8.0_51-cedar14"
OpenJDK Runtime Environment (build 1.8.0_51-cedar14-b16)
OpenJDK 64-Bit Server VM (build 25.51-b03, mixed mode)

Notice that the version of the Java runtime is different from your local Java
installation. The docker run command runs another command inside the context
of a Docker container. The -t option defines the image to load, which in this
case is the heroku/jvm image you downloaded a moment ago. The last part, java
-version, is the command that Docker will run. When Docker ran the java com-
mand, it didn’t use the Java runtime on your host system. It used the Java
runtime contained in the heroku/jvm image.

To use this Java runtime with a Warbler WAR file, you must add the WAR
artifact to the container. For this, you’ll create your own Docker image.

Creating a Docker Image
A Docker image is defined by a Dockerfile, which is a text document containing
instructions Docker follows as it provisions a new container. To create a
Docker image for your WAR file, you must create a Dockerfile in the project.

6. https://heroku.com

Chapter 2. Creating a Deployment Environment • 22

report erratum • discuss

https://heroku.com
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

To begin, move into the root directory of the stock-service application you
implemented in Chapter 1, Getting Started with JRuby, on page 1.

$ cd ~/code/stock-service

Then create a Dockerfile in that directory and put the following code in it:

Warbler/stock-service-docker/Dockerfile

FROM heroku/jvm

ADD ./stock-service.war /app/user/

This defines an image that inherits from the heroku/jvm image. It then tells
Docker to add the WAR file from the local machine to the /app/user directory
in the image. This directory is what Heroku considers the root of any Docker-
based application.

Now build the image by running the build command:

$ docker build -t stock-service .
Sending build context to Docker daemon 24.86 MB
Step 0 : FROM heroku/jvm
---> 35ecdbd5516b
Step 1 : ADD ./stock-service.war /app/user/
---> Using cache
---> 103d45860c83
Successfully built 103d45860c83

This creates a new image named stock-service, which is ready to run your
application. Execute the images command again to see it in the list:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
heroku/jvm latest 35ecdbd5516b 6 days ago
stock-service latest 103d45860c83 26 minutes ago

Now run the application in a Docker container:

$ docker run --publish 8080:8080 -t stock-service java -jar stock-service.war
2015-08-15 20:01:58.590:INFO::main: Logging initialized @186ms
2015-08-15 20:01:58.597:INFO:oejr.Runner:main: Runner
2015-08-15 20:01:58.709:INFO:oejs.Server:main: jetty-9.2.9.v20150224
2015-08-15 20:02:03.891:WARN:oeja.AnnotationConfiguration:main: ServletCont...
2015-08-15 20:02:04.204:INFO:/:main: INFO: jruby 9.0.5.0 (2.2.3) 2016-01-26...
2015-08-15 20:02:04.206:INFO:/:main: INFO: using a shared (threadsafe!) run...
2015-08-15 20:02:09.534:INFO:oejsh.ContextHandler:main: Started o.e.j.w.Web...
2015-08-15 20:02:09.543:WARN:oejsh.RequestLogHandler:main: !RequestLog
2015-08-15 20:02:09.557:INFO:oejs.ServerConnector:main: Started ServerConne...
2015-08-15 20:02:09.557:INFO:oejs.Server:main: Started @11155ms

report erratum • discuss

Creating a Docker Image • 23

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-docker/Dockerfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

This command tells Docker to run a container with the java -jar stock-service.war
command, based on the stock-service image, and with port 8080 published to
the host system (so you can access it outside the container). To view the
application, you’ll need to know the hostname of the container. On Linux this
is localhost, but on Mac and Windows it’s the address of the Docker Machine.
Open another terminal and run this command to see it:

$ docker-machine ip default
192.168.99.100

Now you can use curl to make a request to the service just as you did when it
was running locally if you’re on Linux, or with the following command on Mac
and Windows:

$ curl -d "Hi Apple" http://$(docker-machine ip default):8080/stockify
Hi <div class='stock' data-symbol='AAPL' data-day-high='116.14'>Apple Inc.</div>

Your microservice is ready for production! Deploying your Docker image could
involve a docker push command, which uploads the image to a Docker host and
runs it. However, managing your own Docker infrastructure in production
defeats much of the purpose of Docker, which abstracts away the underlying
platform. For that reason, you’ll deploy the stock-service Docker image to a
mature and well-curated platform, Heroku.

But even without deploying to production, the work you’ve done to set up
Docker is still invaluable. It gives you the ability to run a production environ-
ment locally. And in the coming chapters you’ll enhance this environment to
include a database and other services. Having a complete production environ-
ment you can run with a single command is great for debugging, on-boarding
new employees, and scaling. Even better, because the Docker environment
you created is based on the Heroku stack, you can deploy the WAR to Heroku
with a great deal of confidence.

Deploying to the Cloud
Heroku is a cloud-based platform as a service that helps you deploy, run,
and manage applications written in many languages, including Ruby, Java,
and JRuby. You can deploy to Heroku by pushing source code to a Git
repository, by uploading precompiled binaries, or by pushing an app config-
ured for Docker. You’ll start by deploying the stand-alone WAR file you created
with Warbler directly to Heroku. This is the lightest and fastest way to get
your app running in the cloud. Then you’ll deploy the Docker image you cre-
ated a moment ago. Deploying a Docker image is a heavier and slower process
but offers advantages of its own.

Chapter 2. Creating a Deployment Environment • 24

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

First, create a free Heroku account by visiting the Heroku website7 and filling
out a few bits of information. You won’t even need a credit card for now.

Once you’ve created a Heroku account, download and install the Heroku
toolbelt.8 This is a command-line interface (CLI) used to create, manage, and
deploy your Heroku apps. You can do most of these things from the web-
based dashboard,9 but you’ll need to use the CLI to deploy your app.

With the toolbelt installed, open a terminal and log in with the credentials
you created earlier:

$ heroku login
Enter your Heroku credentials.
Email: jruby@example.com
Password:

Authenticating is required to allow both the heroku and git commands to work
with the deployment examples in this book.

Note that if you’re behind a firewall that requires the use of a proxy to connect
with external HTTP/HTTPS services, you should set the HTTP_PROXY or
HTTPS_PROXY environment variable in your local development environment
before running the heroku command.

Once you’re logged in, install the heroku-deploy toolbelt plugin by running
this command:

$ heroku plugins:install https://github.com/heroku/heroku-deploy

This plugin helps you deploy WAR and JAR files from the Heroku CLI. But
first you’ll need an app to deploy to.

Make sure you’re still in the root directory of the stock-service app, and run
the following command to provision a new Heroku app and associate it with
your local app:

$ heroku create
Creating app... done, stack is cedar-14
https://obscure-fjord-4138.herokuapp.com/ | https://git.heroku.com/...

Heroku will randomly assign your app a unique name based on a clever mash-
up of terms. The example used here is obscure-fjord-4138, yours will be different.

Now you need to create one new file that tells Heroku how to run your app.
Create a Procfile in the root directory of the project and put this code in it:

7. http://signup.heroku.com
8. http://toolbelt.heroku.com
9. http://dashboard.heroku.com

report erratum • discuss

Deploying to the Cloud • 25

http://signup.heroku.com
http://toolbelt.heroku.com
http://dashboard.heroku.com
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Warbler/stock-service-docker/Procfile

web: java -Xmx384m -Xss512k -jar stock-service.war

This tells Heroku that your application has a single process, called web, and
gives it the command to run for that process. The command uses two options,
Xmx and Xss, to optimize memory usage characteristics of the process for the
Heroku platform. You’ll learn what these mean and how to customize them
in Chapter 7, Tuning a JRuby Application, on page 109. Otherwise, it’s the same
command you ran locally.

Now deploy your app by running this command from the same directory as
the Procfile:

$ heroku deploy:jar --jar stock-service.war
Uploading stock-service.war....
-----> Packaging application...
...
-----> Done

The deploy process will take a minute to package your application and upload
the WAR file to Heroku. When it’s done, you can ensure the process is running
with this command:

$ heroku ps:scale web=1
Scaling dynos... done, now running web at 1:Free.

And you can open the app in a browser like this:

$ heroku open

You’ll see the landing page where you can test out the /stockify service. Notice
that the URL begins with the name of the app and is followed by herokuapp.com.
This is the standard convention for new Heroku apps, but you can always
configure DNS for custom domains.

Return to the terminal, and exercise the /stockify service with curl but replace
obscure-fjord-4138 with the name of your app:

$ curl -d "Hi Apple" http://obscure-fjord-4138.herokuapp.com/stockify
Hi <div class='stock' data-symbol='AAPL' data-day-high='116.14'>Apple Inc.</div>

Deploying only the executable WAR file to Heroku is the quickest way to get
your app running in the cloud. But you can also deploy the entire Docker
image you created earlier. You may prefer this approach if you’re using
Docker to set up some extra dependencies.

Like the toolbelt plugin for WAR files, there’s also a toolbelt plugin for Docker.
Install the heroku-container-tools toolbelt plugin by running this command:

Chapter 2. Creating a Deployment Environment • 26

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-docker/Procfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ heroku plugins:install heroku-container-tools

Heroku also needs an app.json file, which is a descriptor containing a little
metadata about your app. You can store many different things in this file,
such as environment variables, a website URL, and more. But only one element
is required for Docker:

Warbler/stock-service-docker/app.json

{
"name": "stock-service"

}

Now you’re ready to initialize the Heroku Docker config. Run this command:

$ heroku container:init --dockerfile Dockerfile

This reads the Dockerfile and Procfile and generates a docker-compose.yml, which
describes the complete environment.

Finally, deploy to the same Heroku app you created earlier by running this
command:

$ heroku container:release
Remote addons: (0)
Local addons: (0)
Missing addons: (0)
Creating local slug...
Building web...
...

The release process will take some time to package your application and
upload the image to Heroku. When it’s done, you can run the open command
again to view the app in a browser. Or you can use curl as before.

Your microservice is running in the cloud and can easily be scaled up to
handle growing demand. When that time comes, you can convert your free
Heroku account to a paid account and rapidly increase the number of
instances using the heroku ps:scale command. Or you can scale vertically
(increase RAM and CPU) with the heroku ps:resize command.

Wrapping Up
You’ve created an environment you can use to run your microservice or any
other JRuby application in production. You’ve also set up Docker, which
allows you to add new components to your infrastructure without running a
bunch of commands or managing a complicated configuration management
codebase. The tools you’ve used are state of the art for the industry, and it’s

report erratum • discuss

Wrapping Up • 27

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-docker/app.json
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

likely that you’ll use them to set up new environments each time you embark
with a new customer or employer.

When you need to scale this environment horizontally, you won’t have to do
much work. You’ll start with the base image and launch Docker containers
from it. Or you can simply scale up your Heroku app.

In the coming chapters, you’ll build on this base Docker image. You’ll add
more components and deploy more complicated web applications. In the next
chapter, you’ll convert a full-blown Rails application to JRuby.

Chapter 2. Creating a Deployment Environment • 28

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 3

Deploying a Rails Application
The JRuby microservice you built in Chapter 1, Getting Started with JRuby,
on page 1 used lightweight technologies ideal for high-powered workhorse
services. But now you’ll build a JRuby application on Rails, which is better
equipped to deal with the demands of a traditional customer-facing web app.

Ruby on Rails revolutionized the way programmers build web applications.
It set a precedent that all other web frameworks are now compared to. The
beauty of JRuby is that you get to use this robust and mature full-stack tool
without giving up the power and maturity of the JVM.

In this chapter, you’ll port an existing MRI-based Rails application to JRuby.
You’ll use Puma as the server because it works wonderfully on both JRuby
and MRI. But with JRuby, you can take full advantage of the server’s paral-
lelism. With the app running on JRuby, you can deploy it to a curated cloud
platform and a customized private server.

Puma works with JRuby almost exactly as it does with MRI, so you won’t
have to veer off the traditional Ruby path as you did with Warbler. Deploying
a JRuby on Rails application with Puma looks very much like traditional Ruby
deployment.

What Is Traditional Deployment?
Traditional Ruby deployment with MRI uses a type of runtime architecture
that handles HTTP requests by placing a proxy in front of a pool of application
instances. In What Makes JRuby So Great?, on page 2, we discussed some
of the deficiencies of this architecture and showed how JRuby can improve
it. But the way you ran your app and deployed your code wasn’t traditional.

With traditional deployment, new versions of an application are released using
tools like Capistrano and Git to pull the code from a repository and push it

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

to a production server. Once the code has been pushed, each application
process is restarted. With JRuby, you can reduce the number of processes
to one, which can make it faster to get back online after a deployment. But
the architecture you built in Chapter 2, Creating a Deployment Environment,
on page 17 with Warbler greatly impacted the way you deployed code to the
server. Instead of pulling code from a repository, you packaged everything
into an archive file. There are advantages to that kind of deployment, but it
diverges from what traditional Rubyists expect.

You won’t use Warbler in this chapter, and you won’t deploy a prepackaged
image or binary. Instead, you’ll use Puma, which bridges the gaps between
JRuby and MRI. But switching Twitalytics to Puma is only one of the steps
required to get it running on JRuby.

Porting to JRuby
Before deploying any existing MRI-based Rails application on JRuby, you
must make a few essential changes to its dependencies. To ensure that you
keep track of your changes, initialize a Git repository and create a branch
with the following commands:

$ cd ~/code/twitalytics
$ git init
$ git add -A
$ git commit -m "initial commit"
$ git checkout -b jruby
Switched to a new branch 'jruby'

In the past, preparing an app for JRuby required a number of library and
code changes because many gems and commands such as Kerenel#exec couldn’t
be used reliably. But today, JRuby 9k uses native operations for most I/O
and process APIs. This makes it the only POSIX-friendly JVM language, with
full support for spawning processes, inheriting open streams, performing
nonblocking operations on all types of I/O, and generally fitting well into a
POSIX environment. And for that reason, the work required to port an appli-
cation to JRuby has been greatly reduced.

Many gems that use native code on MRI, like Nokogiri1 and Typhoeus,2 even
offer JRuby compatibility today. There are still, however, a few gems you’ll
need to change. You can find an up-to-date list of incompatible gems and

1. http://www.nokogiri.org/
2. https://github.com/typhoeus/typhoeus

Chapter 3. Deploying a Rails Application • 30

report erratum • discuss

http://www.nokogiri.org/
https://github.com/typhoeus/typhoeus
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

their alternative implementations on the JRuby wiki,3 but we’ll address the
most common ones as we port Twitalytics over to its new runtime.

Open the Twitalytics Gemfile and see if you can find any incompatible gems
from the list on the JRuby wiki. The first ones you’ll notice are these:

twitalytics/Gemfile

gem 'sqlite3', group: :development
gem 'pg', group: :production

The pg gem is a database adapter for PostgreSQL and the sqlite3 gem is for the
SQLite database, which you’ll use in development. Both of these adapters
make extensive use of native code and thus don’t work on JRuby. There have
been initiatives4,5 to make then compatible with JRuby, but the majority of
JRuby users swap them out for ActiveRecord JDBC adapters. Replace the
two gem dependencies with the following:

Rails/twitalytics-jruby/Gemfile

gem 'activerecord-jdbcsqlite3-adapter', group: :development
gem 'activerecord-jdbcpostgresql-adapter', group: :production

This will load the ActiveRecord JDBC adapters for PostgreSQL and SQLite in
development and production, respectively. JDBC is the standard Java
Database Connectivity API. It’s a mature and robust protocol for interfacing
with many kinds of databases in a platform-independent way. There are
adapters for MySQL, Oracle, SQL Server, and many other vendors. This also
makes your app more portable because installing the JDBC adapter won’t
require the physical database to be present to compile.

Look down the list of gems and you’ll see another one that needs replacing:

twitalytics/Gemfile

gem 'therubyracer'

This gem provides an embedded JavaScript interpreter for Ruby using the
V8 engine, which can’t run on the JVM. Fortunately, there’s an alternative
gem called therubyrhino, which embeds a JVM-friendly engine. It’s even main-
tained by the same person.6 To use it, replace the entry with this code:

Rails/twitalytics-jruby/Gemfile

gem 'therubyrhino'

3. https://github.com/jruby/jruby/wiki/C-Extension-Alternatives
4. https://github.com/ged/ruby-pg/pull/1
5. https://github.com/headius/jruby-pg
6. https://github.com/cowboyd

report erratum • discuss

Porting to JRuby • 31

http://media.pragprog.com/titles/jkdepj2/code/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Gemfile
https://github.com/jruby/jruby/wiki/C-Extension-Alternatives
https://github.com/ged/ruby-pg/pull/1
https://github.com/headius/jruby-pg
https://github.com/cowboyd
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Keep looking down the list of gems. The next incompatibility you’ll find is this:

twitalytics/Gemfile

gem 'unicorn'

Unicorn is a popular HTTP server for Rack applications designed to take
advantage of features in Unix/Unix-like kernels. As a result, it doesn’t work
on Windows and its use of native code makes it a bad fit for JRuby. Fortunate-
ly, the Puma server is an excellent alternative. It’s built for parallelism and
portability, which means you’ll be able to handle many requests concurrently
on any platform. Replace the Unicorn gem with this:

Rails/twitalytics-jruby/Gemfile

gem 'puma'

The last gem you’ll add is only for Windows. Rails requires a source for time
zone information, which it can’t collect natively on Windows. To make this
easier, add the tzinfo-data gem. Put this statement at the end of the Gemfile.

Rails/twitalytics-jruby/Gemfile

gem 'tzinfo-data', platforms: [:mingw, :mswin, :jruby]

You’re ready to install your new dependencies. Run the following command
from the root directory of the project:

$ bundle install --binstubs
...
Bundle complete! 12 Gemfile dependencies, 53 gems now installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

The --binstubs option instructed Bundler to create scripts such as rake and puma
in the bin/ directory of the project. Using these scripts has the same effect as
running bundle exec but without creating an extra process from which to launch
the main process. This saves several seconds on the execution time of each
command.

Unfortunately, Bundler and Rails disagree on what some of the bin files should
look like. To install the correct scripts for Rails, run this command and enter
Y when prompted to overwrite the bin/rake and bin/rails files:

$ bin/rake rails:update:bin

You’re almost ready to run the app. There’s just one more little caveat, which
you can thank the lawyers for.

Chapter 3. Deploying a Rails Application • 32

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Gemfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Installing the Java Cryptography Extension
Rails uses a type of encryption referred to as unlimited-strength cryptography.
But in order to comply with U.S. cryptography export laws, Oracle disables
this kind of strong cryptography when it distributes software products. Thus,
the Java Virtual Machine installed on your computer most likely has a maxi-
mum key size of 128 bits. If you live in a country to which Oracle can export
strong encryption, you must download and install the Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy Files.7 In most cases,
this means that you need to download the JAR file and put it in your
$JAVA_HOME/jre/lib/security directory.

If for some reason you cannot download the JCE extension, you may need to
implement a simple workaround.8,9

Running the App
Let’s make sure your application is in order by running this command:

$ bin/rake routes
Prefix Verb URI Pattern Controller#Action
posts GET /posts(.:format) posts#index

POST /posts(.:format) posts#create
new_post GET /posts/new(.:format) posts#new

edit_post GET /posts/:id/edit(.:format) posts#edit
post GET /posts/:id(.:format) posts#show

PATCH /posts/:id(.:format) posts#update
PUT /posts/:id(.:format) posts#update
DELETE /posts/:id(.:format) posts#destroy

The list shows the available routes the application can handle. You’ll use
some of these in a moment, but first you need a database. Run the following
command to initialize SQLite:

$ bin/rake db:create db:migrate
== 20150914211918 CreatePosts: migrating ======================================
-- create_table(:posts)

-> 0.0048s
-> 0 rows

== 20150914211918 CreatePosts: migrated (0.0061s) =============================

The app is ready to run. Execute this command to start the server:

7. http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
8. https://gist.github.com/jkutner/5abc59c7cafaf2132865
9. https://github.com/jruby/jruby/wiki/UnlimitedStrengthCrypto

report erratum • discuss

Porting to JRuby • 33

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://gist.github.com/jkutner/5abc59c7cafaf2132865
https://github.com/jruby/jruby/wiki/UnlimitedStrengthCrypto
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ bin/rails server
=> Booting Puma
=> Rails 4.2.4 application starting in development on http://localhost:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
The signal USR1 is in use by the JVM and will not work correctly on this platform
Puma starting in single mode...
* Version 3.0.1 (jruby 2.2.3), codename: Plethora of Penguin Pinatas
* Min threads: 0, max threads: 16
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop

The Puma server is up and running. Open a browser to http://localhost:3000 and
take a look at the app. You’ll see your requests logged in the terminal session
of the server process.

Before moving on, commit all of your changes to the jruby branch by running
these commands:

$ git add .
$ git commit -m "Ported to JRuby"

The work you’ve done is essential in porting any Rails application and most
MRI applications to JRuby. You’ve learned about a few important gems and
some common problems. If you were creating a Rails app from scratch, the
rails new command would have done many of these steps for you. But other
frameworks don’t provide so much magic.

Now it’s time to leave the realm of development and get this app ready for the
real world. In the next section, you’ll prepare Twitalytics for deployment.

Configuring Rails for Production
When you ran the bin/rails server command, Puma started up with a nice set of
defaults for development mode. But in production, you’ll want a more
explicit configuration suited for your production deployment platform. In this
section, you’ll create that platform and get Twitalytics ready for it.

To configure Puma, create a config/puma.rb file, open it in an editor, and put the
following code in it:

Rails/twitalytics-jruby/config/puma.rb

port ENV['PORT'] || 3000
environment ENV['RACK_ENV'] || 'development'
threads (ENV["MIN_PUMA_THREADS"] || 0), (ENV["MAX_PUMA_THREADS"] || 16)
preload_app!

Chapter 3. Deploying a Rails Application • 34

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/config/puma.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

This sets the port, environment, and thread pool size based on environment
variables. The defaults are intended for development. How you set these
environment variables will depend on the platform you’re deploying to. We’ll
address that later in the section.

Because Puma is a multithreaded server and JRuby has real threads, you’ll
want to configure your database connection pool size appropriately. To do
this, create a config/initializers/database_connection.rb file, and put this code in it:

Rails/twitalytics-jruby/config/initializers/database_connection.rb

Rails.application.config.after_initialize do
ActiveRecord::Base.connection_pool.disconnect!

ActiveSupport.on_load(:active_record) do
config = ActiveRecord::Base.configurations[Rails.env] ||

Rails.application.config.database_configuration[Rails.env]
config['pool'] = ENV['MAX_PUMA_THREADS'] || 16
ActiveRecord::Base.establish_connection(config)

end
end

This sets the maximum size of the connection pool to the same value as the
maximum size of the thread pool. This is a good place to start, but as you
profile the application under real load, you may eventually tweak this setting.
We’ll discuss how to analyze this in a later chapter.

With the configuration in place, you can start the server with a simple puma
command. But first, set some environment variables to ensure the app detects
them. On Windows, run these commands:

C:\> set PORT=5000
C:\> set MIN_PUMA_THREADS=1
C:\> set MAX_PUMA_THREADS=2

On Mac and Linux run these commands:

$ export PORT=5000
$ export MIN_PUMA_THREADS=1
$ export MAX_PUMA_THREADS=2

In the same terminal session, start the server by running this command:

$ bin/puma -C config/puma.rb
The signal USR1 is in use by the JVM and will not work correctly on this platform
Puma starting in single mode...
* Version 3.0.1 (jruby 2.2.3), codename: Plethora of Penguin Pinatas
* Min threads: 1, max threads: 2
* Environment: development
* Listening on tcp://0.0.0.0:5000
Use Ctrl-C to stop

report erratum • discuss

Configuring Rails for Production • 35

http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/config/initializers/database_connection.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Open a browser to http://localhost:5000 and confirm the app is running correctly.
Then shut the server down by pressing Ctrl-C .

The Puma configuration is done, but now you need to configure the environ-
ment it runs in. Open the Gemfile and add this line below the source entry at
the top of the file:

Rails/twitalytics-jruby/Gemfile

ruby '2.2.3', :engine => 'jruby', :engine_version => '9.0.5.0'

This ensures any environment you deploy to will be running the correct version
of the Ruby runtime.

Creating the Deployment Environment
Now it’s time to build a Docker image for this app. The image will be similar
to the one you created in Chapter 2, Creating a Deployment Environment, on
page 17, but it will need a few additional dependencies because JRuby won’t
be packaged with the app as it was with Warbler. To start, create a Dockerfile
in the root directory of the repo and add the following code to it.

Rails/twitalytics-jruby/Dockerfile

FROM heroku/jvm

This instructs Docker to use the same JVM base image you used with Warbler.
Now you can provision the Docker container with a JRuby installation by
adding this code:

Rails/twitalytics-jruby/Dockerfile

RUN mkdir -p /usr/lib/jruby
ENV JRUBY_HOME /usr/lib/jruby
RUN curl -s -L \
https://s3.amazonaws.com/jruby.org/downloads/9.0.5.0/jruby-bin-9.0.5.0.tar.gz \
--retry 3 | tar xz -C /usr/lib/jruby --strip-components=1

ENV PATH /usr/lib/jruby/bin:$PATH

The first line creates a directory for the JRuby installation, and the second
line sets the environment variable for JRUBY_HOME to that location. Then it
downloads the JRuby runtime from the official JRuby S3 bucket and installs
it. Finally, it puts the JRuby command on the PATH.

Now you’ll need to install Twitalytics’s dependencies, which require a Bundler
installation. Add this code to the end of the Dockerfile:

Rails/twitalytics-jruby/Dockerfile

RUN jruby -S gem install bundler -v 1.11.2 --no-ri --no-rdoc

Chapter 3. Deploying a Rails Application • 36

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Dockerfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Dockerfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Dockerfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Then add these lines, which will copy the app’s code into the image and run
Bundler:

Rails/twitalytics-jruby/Dockerfile

COPY . /app/user/
RUN bundle install

One disadvantage to using Docker in this way is that every time you rebuild
the image it will reinstall your dependencies from scratch (downloading them
from RubyGems.org) because Docker doesn’t have a persistent storage area
like you might have locally in ~/.gem. That means every time you change your
Gemfile, you’ll need to rebuild the image. You’ll improve this later in the book.

The final piece of Docker configuration sets a few environment variables. Add
these lines to the Dockerfile.

Rails/twitalytics-jruby/Dockerfile

ENV RACK_ENV development
ENV MAX_PUMA_THREADS 8

The first line sets the Rack environment to production, and the next line sets
the maximum thread pool size to a value that’s appropriate for the Docker
container.

Now you must build the image. If you’re using a Mac, make sure Docker
Machine is running by executing this command:

$ docker-machine start default

If you’re on Windows, double-click the Docker CLI icon on the Desktop to
start a new session.

On all platforms, run this command from the root directory of the project to
build the image:

$ docker build -t twitalytics .
Sending build context to Docker daemon 1.138 MB
Step 0 : FROM heroku/jvm
...
Removing intermediate container f38bac85c2b6
Successfully built d3b5ce3755e4

Before you can run the app, you’ll need a database. In production, Twitalytics
uses PostgreSQL and you want the Docker environment to simulate a real
production environment. Thus, you’ll also run the PostgreSQL server in a
Docker container. Normally, this would require a great deal of configuration
in order to get the two containers to talk to each other, but the Heroku

report erratum • discuss

Creating the Deployment Environment • 37

http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Dockerfile
http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/Dockerfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Docker CLI you used in Chapter 2, Creating a Deployment Environment, on
page 17 simplifies the setup to just a few steps.

Create an app.json file in the root directory of the project. As before, this file
will contain metadata about your app. In the case of Twitalytics, it will define
the add-ons, which include a database. Put this code in the app.json file:

{
"addons": ["heroku-postgresql"]

}

Next, create a Procfile in the same directory, and put the following code in it:

web: bin/puma -C config/puma.rb

This file tells other platforms and tools how to run the app. You’ll notice that
it contains the same command you used to run the app earlier.

Now run the Heroku Docker CLI to generate the Docker configuration:

$ heroku container:init --dockerfile Dockerfile

This generates a Docker Compose configuration file, a docker-compose.yaml file,
which defines multiple Docker containers you can run in conjunction.
Docker Compose is one of the tools in the Docker Toolbox you installed. The
heroku container:init command reads your app.json file and Procfile so it knows
everything needed to create each of the container environments and wire
them together.

Open the docker-compose.yaml, but don’t edit it. Here’s what you’ll see:

Rails/twitalytics-jruby/docker-compose.yml

web:
build: .
command: 'bash -c ''bin/puma -C config/puma.rb'''
working_dir: /app/user
environment:

PORT: 8080
DATABASE_URL: 'postgres://postgres:@herokuPostgresql:5432/postgres'

ports:
- '8080:8080'

links:
- herokuPostgresql

shell:
build: .
command: bash
working_dir: /app/user
environment:

PORT: 8080
DATABASE_URL: 'postgres://postgres:@herokuPostgresql:5432/postgres'

Chapter 3. Deploying a Rails Application • 38

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Rails/twitalytics-jruby/docker-compose.yml
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

ports:
- '8080:8080'

links:
- herokuPostgresql

volumes:
- '.:/app/user'

herokuPostgresql:
image: postgres

It defines three container types: web, shell, and herokuPostgresql. The first two use
the image defined by your Dockerfile, while the third uses the standard Postgres
image. The web container corresponds to the web process defined in your
Procfile, and the shell allows you to run an interactive command line within a
Docker container based on your image.

Before you run the app, you’ll need to prepare the production database inside
the Docker container. For this, you can use the shell container. Run the follow-
ing command to start the shell:

$ docker-compose run shell
root@9c9f633ea047:~/user#

The new prompt, which will look something like the one shown here, indicates
that you’re running inside the container. Execute some commands like ls to
demonstrate that you’re in the root directory of Twitalytics:

root@9c9f633ea047:~/user# ls
Dockerfile Gemfile Gemfile.lock Procfile README.rdoc Rakefile app app.json
bin config config.ru db docker-compose.yml lib log public test vendor

Now run the following Rake task to migrate the database:

root@9c9f633ea047:~/user# bin/rake db:migrate
== 20150914211918 CreatePosts: migrating ======================================
-- create_table(:posts)

-> 0.0048s
-> 0 rows

== 20150914211918 CreatePosts: migrated (0.0061s) =============================

The database is ready. Exit the shell by entering exit. Then from your local
command line, run this to start the app:

$ docker-compose run web
The signal USR1 is in use by the JVM and will not work correctly on this platform
Puma starting in single mode...
* Version 2.13.4 (jruby 2.2.2), codename: A Midsummer Code's Dream
* Min threads: 0, max threads: 8
* Environment: development
* Listening on tcp://0.0.0.0:8080
Use Ctrl-C to stop

report erratum • discuss

Creating the Deployment Environment • 39

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Determine the IP address of the Docker instance (recall that you can run
docker-machine ip default), and use it to browse to your server running at
http://docker-ip:8080.

Before moving on, commit all of your changes to the Git repository by running
these commands:

$ git add .
$ git commit -m "Ported to JRuby"

Now you can push these changes to the cloud. You could deploy the app to
Heroku with the heroku container:release command you used in Chapter 2, Creating
a Deployment Environment, on page 17, but there are some drawbacks to this
technique when deploying an app like Twitalytics. Deploying an app that isn’t
packaged into a WAR file could result in unwanted changes or dirty artifacts
being accidentally included in the Docker image. And if corruption isn’t bad
enough, uploading a Docker image can take a long time because it includes
the entire app environment. To avoid this, you can push only the app’s source
code to Heroku and let the magic happen in the cloud—saving you time and
bandwidth. Let’s deploy your Git repository.

Deploying to the Public Cloud
The first step in deploying to a new production environment is making sure
it exists! Create a new Heroku app for Twitalytics using the CLI:

$ heroku create
Creating calm-ocean-4238... done, stack is cedar-14
https://calm-ocean-4238.herokuapp.com/ | https://git.heroku.com/...
Git remote heroku added

The new app on the Heroku servers includes its own Git repository. This Git
repository is very similar to a GitHub repo you might push to, but it lacks
the fancy user interface. This repo isn’t for collaborating—it’s for deployment.
You can view the location of the repo by running the following command:

$ git remote -v
heroku https://git.heroku.com/calm-ocean-4238.git (fetch)
heroku https://git.heroku.com/calm-ocean-4238.git (push)

Now you can deploy your local code repository to Heroku by running this
command:

$ git push heroku jruby:master
Counting objects: 218, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (136/136), done.
Writing objects: 100% (218/218), 36.63 KiB | 0 bytes/s, done.

Chapter 3. Deploying a Rails Application • 40

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Total 218 (delta 72), reused 208 (delta 67)
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Ruby app detected
...
remote: Verifying deploy.... done.
To https://git.heroku.com/calm-ocean-4238.git
* [new branch] master -> master

When Heroku receives the code, it executes a Git hook that triggers the build
process. First, it detects that your application is a Ruby app because it has
a Gemfile. Then it detects that you’re using JRuby because of the ruby entry
you added to the Gemfile. Finally, it runs bundle install and rake assets:precompile
before deploying your code into a new dyno, which is a Heroku container
equivalent to a Docker container.

When the deployment is complete, you can run the migrations on Heroku by
executing this command:

$ heroku run rake db:migrate

And you can view your app by running this command:

$ heroku open

A browser will open to the URL of your app and you’ll see Twitalytics running
in the cloud.

You can also scale the app, view logs, and change configuration settings just
as you did with the Warbler application you deployed with Docker in Chapter
2, Creating a Deployment Environment, on page 17.

Deploying to Heroku is easy and powerful. But not every organization will
want to deploy to the public cloud. In the next section, you’ll learn how to
deploy this app to a private server.

Deploying to Private Infrastructure
Deploying to private infrastructure or even public infrastructure as a service
(IaaS), such as Amazon Elastic Compute Cloud (EC2), doesn’t require aban-
doning the technologies you’ve just learned about. In fact, your existing
Docker container is well suited for deployment on a custom-built server.

Docker is only a part of the solution, though. Docker provides the container-
ization layer that isolates your processes and makes it possible to scale easily.

report erratum • discuss

Deploying to Private Infrastructure • 41

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

But you still need to orchestrate and manage the many containers you’ll run.
For that, you’ll use Rancher.10

Rancher is open source software that makes it possible to deploy and
orchestrate private Docker containers. It provides all of the necessary infras-
tructure services, including networking, load balancing, and storage, to ensure
an application runs well on any kind of infrastructure. In other words, you
can use Rancher to build your own platform as a service for use in a private
organization. Rancher is one of many products on the market that can do
this, but it’s unique in that it preserves the native Docker experience. It
includes support for the Docker CLI, Docker API, Docker Swarm, Docker
Machine, and Docker Compose. Other products tend to wrap Docker’s func-
tionality and present an alternate developer experience.

You’ll deploy the Docker image you created in Creating the Deployment Envi-
ronment, on page 36 to a Rancher server. Because every infrastructure envi-
ronment is different, you’ll simulate a private server using Vagrant, a tool for
managing virtual machines. Vagrant will allow you to run Rancher in a local
virtual server, but the same method will apply on any infrastructure.

Installing Vagrant and VirtualBox
Rancher includes native support for a number of different configuration
management tools, such as Puppet and Ansible, which you may want to use
when you install it on your own infrastructure. But it also comes with a pre-
configured Vagrant environment, which is what you’ll use to run it. You’ll
start by installing VirtualBox, which is Vagrant’s only dependency.

VirtualBox is a virtualization platform that lets you run a guest operating
system inside your primary operating system. To install it, go to virtual-
box.org,11 and download and run the installer. The VirtualBox user interface
will open at the end of the installation, but you can close it. You’re going to
drive VirtualBox with Vagrant.

To install Vagrant, download the binary installer for your operating system
from the official website12 and run it. The installer adds a vagrant command
to your path, so you can check that both Vagrant and its connection to Virtu-
alBox are working by running the following:

$ vagrant --version
Vagrant 1.8.1

10. http://rancher.com/
11. https://www.virtualbox.org/wiki/Downloads
12. https://releases.hashicorp.com/vagrant/1.8.1/

Chapter 3. Deploying a Rails Application • 42

report erratum • discuss

http://rancher.com/
https://www.virtualbox.org/wiki/Downloads
https://releases.hashicorp.com/vagrant/1.8.1/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now you can use Vagrant to run Rancher.

Installing the Rancher Service
You’ll be working with the Rancher source code, so you’ll need to start by
cloning the Rancher project from GitHub. Run these commands now:

$ git clone https://github.com/rancher/rancher
$ cd rancher

Then open the project’s Vagrantfile in your preferred editor and add this line of
code to the config.vm.define block (just before the other 'forwarded_port' directive).

server.vm.network 'forwarded_port', guest: 3000, host: 3000

The Vagrantfile instructs the Vagrant runtime on how to prepare the box. Your
change to the file adds a mapping from port 3000 on the Vagrant box to port
3000 on the host machine so you can access your web app when it runs
inside the virtual machine.

Now start the Vagrant box and provision it by running this command:

$ vagrant up
Bringing machine 'rancher-server' up with 'virtualbox' provider...
==> rancher-server: Importing base box 'rancherio/rancheros'...
==> rancher-server: Matching MAC address for NAT networking...
==> rancher-server: Checking if box 'rancherio/rancheros' is up to date...
...

The first time you run the command will take a while because the server
needs to download the various image layers it needs. But those images will
be cached, which will make subsequent runs much faster.

Once the provisioning process is complete, the Rancher management server
will be up and running. Test it by browsing to http://172.19.8.100:8080 and you’ll
see the Rancher dashboard as shown in the following figure.

report erratum • discuss

Deploying to Private Infrastructure • 43

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now you can use this dashboard to configure your app.

Adding a Host
The Rancher deployment model consists of one or more hosts running one
or more Docker containers each. These may include containers for web apps,
background workers, databases, caching services, and whatever else your
application architecture is composed of. In this example, you’ll run a single
host with a single container.

The type of host you use will differ depending on your infrastructure. You
can create a host on AWS, DigitalOcean, and many other providers. You’ll
use the custom server setup to run a container on the same server as the
Rancher management service (that is, the Vagrant box).

From the Rancher UI in your browser, select the Add Host button. You’ll be
prompted to configure the base URL all hosts should use to connect to the
Rancher API. Accept the default value, which should be the same as the
address you opened in the browser. Then click Save. From the server choices
that follow, select Custom, as shown in the figure.

Chapter 3. Deploying a Rails Application • 44

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

At the bottom of the page is a long docker command. Copy this command to
your clipboard. You’ll run it in the Vagrant box in a just a moment.

To run commands on the Rancher server, you’ll need to log in to the Vagrant
box by running this command:

$ vagrant ssh

This command is synonymous with running an ssh command to log in to a
remote DigitalOcean or AWS instead of Vagrant. But once you’re in, the steps
that follow are essentially the same. When the command completes, you’ll
see an interactive prompt like this:

[rancher@rancher-server ~]$

At this prompt, enter or paste the command you copied from the browser.
But remove the sudo portion and add the option -e CATTLE_AGENT_IP=172.19.8.100
immediately after the docker run portion. The IP address in the option should
match the IP address of the Vagrant box, which is the same as what you used
in the browser. The complete command will look like this:

[rancher@rancher-server ~]$ docker run -e CATTLE_AGENT_IP=172.19.8.100 \
-d --privileged -v /var/run/docker.sock:/var/run/docker.sock \
rancher/agent:v0.8.2 http://172.19.8.1:8080/v1/scripts/...

When this completes, the host will be running. Return to the dashboard and
view the Hosts page. You’ll see your rancher-server as shown here.

Exit the Vagrant box by running exit, and return to your local prompt. Now
you must add a container to the host. This is the actual deployment step.

report erratum • discuss

Deploying to Private Infrastructure • 45

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Deploying a Container
Deploying a Docker container requires publishing your Docker image to a
registry service. There are many of registries to choose from—including pri-
vately hosted ones—but we’ll use Docker Hub, which is run by Docker, Inc.

Create a Docker Hub account by browsing to https://hub.docker.com/ and complet-
ing the sign-up form. Once your account has been created, use your creden-
tials to log in from the Docker CLI client by running this command:

$ docker login

Now, open a terminal and move to the Twitalytics directory:

$ cd ~/code/twitalytics

Open the project’s Dockerfile in an editor and add this line of code to the end
of the file:

ENTRYPOINT ["bin/puma", "-C", "config/puma.rb"]

The ENTRYPOINT is the command that Docker will use to launch your app when
you start a container from the image. You’ll notice that the command you’ve
entered is identical to the one you put in the Procfile when deploying to Heroku.
Now build a new image by running this command (but replace username with
your Docker Hub username):

$ docker build -t username/twitalytics .

The username/twitalytics image contains a JVM, JRuby, and your app. Deploy
this image to Docker Hub by running the following command:

$ docker push username/twitalytics

It will take some time to upload, but when it’s complete, you can view the
image on your dashboard at https://hub.docker.com/. With the image published,
you can now consume it from your Rancher host.

Move back to the rancher directory and run vagrant ssh again to start a shell
session in the rancher-server box. From the prompt, run the following com-
mand to pull the image you just deployed:

[rancher@rancher-server ~]$ docker pull username/twitalytics

Before you can run this image, you’ll need a database. You could run another
container with your database instance and share it among the web containers.
That would be fine on a non-virtualized environment, but it would probably
put too much strain on this virtual machine running on your desktop. Instead,

Chapter 3. Deploying a Rails Application • 46

report erratum • discuss

https://hub.docker.com/
https://hub.docker.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

you can use the Heroku database provided by your Heroku app. To get the
connection parameters run this command:

$ heroku config:get DATABASE_URL
postgres://user:password@host:port/db

Now you can launch a container from your Twitalytics image and use the
database URL from the previous step as one of the environment variables.
You could do this in the Rancher UI, but we’ll do it from the Vagrant prompt.
Run this command:

[rancher@rancher-server ~]$ docker run \
-e DATABASE_URL=postgres://user:password@host:port/db \
-e PORT=3000 --publish=3000:3000 \
-dit username/twitalytics

The container will start in the background and Twitalytics will bind to port
3000, which will be published to the Docker host so that you can access it.
Now return to the Rancher UI and browse the list of containers on the server.
You will see one container in a running state, like this:

Open a browser to http://172.19.8.100:3000 and you’ll see Twitalytics running on
your Rancher host.

Your Rancher deployment is ready for production. But any non-trivial produc-
tion app will require the ability to scale up in order to provide redundancy
and handle increases in traffic. Because the Rancher console and host are
running on your own private infrastructure, scaling up might require the
procurement of more servers—either virtual or physical. Fortunately, the
Rancher and Docker architecture you’ve created is well suited for scaling.

report erratum • discuss

Deploying to Private Infrastructure • 47

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

You can add hosts from different types of platforms—even combining AWS,
DigitalOcean, and your own private servers. As long as the Rancher API can
reach the server, you can fold it into your system.

Wrapping Up
Not only have you ported Twitalytics to JRuby and provisioned a fully func-
tioning local deployment environment, but you’ve also deployed it to the cloud.
You have the ability to scale Twitalytics up without an in-house operations
team that must purchase new hardware. This deployment setup also makes
it easy to debug production problems in a controlled local setting by using a
Docker container.

If the cloud isn’t for you and your organization, that’s OK too. Docker allows
you to deploy the same application image to Heroku, AWS, DigitalOcean, or
your own private servers. You even learned how to use Rancher to orchestrate
a heterogeneous suite of servers.

The skills you learn in this chapter are highly desired in our industry. Many
apps need porting to JRuby, and they all need to be deployed. You now have
the ability to service some of the most powerful Ruby apps in the world.

In the next chapter, you’ll build on this skill set by adding more capabilities
to Twitalytics. You’ll enhance your Docker setup by adding caching, back-
ground jobs, and more.

Chapter 3. Deploying a Rails Application • 48

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 4

Consuming Backing Services with JRuby
Twitalytics requires some new features that trigger each time a post is created.
It must retain a per-user count of new posts, annotate each new post with
the stock price markup you implemented in Chapter 1, Getting Started with
JRuby, on page 1, and stream this information back to its clients.

Each feature adds a challenging concern to Twitalytics. One is stateful, one
consumes a microservice over the network, and one must send the same data
across multiple connections. None of these features are well suited to the
synchronous request-response cycle of a traditional web application, which
is why you’ll need to implement these features with the help of some backing
services.

In this chapter, you’ll learn how to connect Twitalytics to Memcached for
session storage, Redis for running background jobs, and RabbitMQ for mes-
sage passing. These services will come in handy not only for Twitalytics but
also for every app you work on in the future.

While the concept of a backing service may seem new, you’ve actually been
using one this entire book. Let’s take a look at what this term means.

What Are Backing Services?
A backing service is a resource an app consumes over the network as part of
its normal operation. Your database is an example of a backing service, and
so is the Yahoo! stock service you consumed in Chapter 1, Getting Started
with JRuby, on page 1. Backing services do many different kinds of jobs,
including storing data, sending email, and indexing text documents.

Until recently, most developers treated backing services as tightly coupled
extremities of an application. The same system administrators who managed
the app would also manage the backing services and even run them on the

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

same physical machine as the app itself. But in the era of DevOps, the cloud,
and containerization, more organizations are treating backing services as
third-party resources—even when they’re managed in-house. A third-party
service is decoupled from an application, runs in an isolated environment,
and exposes its functionality via URLs that can be attached, detached, or
replaced at any moment.

Treating backing services as third-party resources also makes consuming
them from JRuby nearly identical to consuming them from any other Ruby
deployment. In most cases, you use the same server technologies and even
the same popular client libraries.

Let’s begin with a service that you’ll probably use for every request to your
web app.

Storing Sessions in Memcached
Twitalytics needs to track how many posts users create between the time they
log in and the time they log out. This count is stateful and must be carried
across transactions, survive any restarts of the application process, and be
accessible from multiple processes when the app is scaled out. For these
reasons, the count must be stored in a user’s session.

Each time a user starts an interaction with a web page, a session is created.
The session stores state that’s carried over from one request to another for
the same user. It usually includes things like username, breadcrumbs to
track where they’ve been in the app, and even security tokens.

The default session storage mechanism in Rails is cookie based, which means
the session state is stored on the client machine. This is an ideal place to put
sensitive information, and it has a limited storage capacity. A better system
will store session state server-side.

When storing session state on the server, you have the option to keep it in
memory or in an external backing service. Keeping the session in memory is
convenient, but it has some serious drawbacks. If the server process is
restarted, all users will lose their current state. They may even need to log
into the app again. If they were about to make a credit card transaction, they
would be most unhappy.

But storing session state in memory is also a problem for scalability. In-
memory session data cannot easily be distributed among multiple processes.
If you need to stand up additional instances of your server to handle high
volumes of traffic or ensure redundancy, you’ll be in for trouble.

Chapter 4. Consuming Backing Services with JRuby • 50

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The best way to store session state, even for the simplest of apps, is in a
backing service. One example is Memcached, which you’ll use for Twitalytics.
Memcached is a free, open source, high-performance, distributed-memory,
object-caching system. It’s useful as a key-value store to cache results of
database calls, API calls, page rendering, and session state.

Installing Memcached
The easiest way to run Memcached locally is with Docker. Download the
official Memcached image from DockerHub by running this command:

$ docker pull memcached
Using default tag: latest
latest: Pulling from library/memcached
dbacfa057b30: Pull complete
...
Digest: sha256:b335e191aac685a7ee7b9e3b4bfceef184f315412733f1ea099463fc5dcdb25e
Status: Downloaded newer image for memcached:latest

Now launch a new Docker container from the image and publish port 11211
by running this command:

$ docker run -p 11211:11211 --name memcached-server -d memcached

The server was started in a container that’s running in the background. You
can check its status with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND
3d6a392002f6 memcached "/entrypoint.sh memca" ...

And you can use telnet to test that Memcached itself is working. If you’re not
running Linux, you’ll need to capture your Docker Machine IP address first.
Run these commands:

$ docker-machine ip default
192.168.99.100

$ telnet 192.168.99.100 11211
Trying 192.168.99.100...
Connected to 192.168.99.100.
Escape character is '^]'.

Memcached is ready to store your session state. Enter quit at the prompt to
end the Telnet session. Now connect Twitalytics to the Memcached server.

Using Memcached with Rails
Before you make any changes to Twitalytics, branch your code base by running
these commands:

report erratum • discuss

Storing Sessions in Memcached • 51

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ cd ~/code/twitalytics
$ git checkout -b services
Switched to a new branch 'services'

Connecting to Memcached from any kind of Ruby code requires a client library
that knows how to speak the Memcached protocol. The de facto standard in
the Ruby ecosystem is Dalli,1 which is one of the many modern Ruby gems
that works equally well with MRI and JRuby. To install Dalli, add these lines
to the Twitalytics Gemfile:

Services/twitalytics/Gemfile

gem 'dalli'
gem 'connection_pool'

The first gem is Dalli itself. The second gem, connection_pool, is what Dalli uses
to pool Memcached connections, which ensures the Rails.cache singleton doesn’t
become a source of thread contention. This is important when using JRuby
because it’s a multithreaded runtime.

Save the Gemfile and run these commands to download and install the gems.

$ bundle install --binstubs
$ bin/rake rails:update:bin

Next, configure Rails to use Dalli as the default caching mechanism. Open
the config/environments/development.rb file and add this line of code inside the
Rails.application.configure block (but use the IP address of your Docker Machine
in place of the IP address shown here):

Services/twitalytics/config/environments/development.rb

config.cache_store = :dalli_store, "192.168.99.100"

This sets Rails to use the Dalli client for all caching purposes in the app. But
you also need to configure the session storage mechanism to use the cache
instead of cookies. Open the config/initializers/session_store.rb file, and replace its
contents with this code:

Services/twitalytics/config/initializers/session_store.rb

Rails.application.config.
session_store :cache_store, key: '_twitalytics_session'

Now you can add the feature that tracks how many posts a user has created
in a given session. Open the app/controllers/posts_controller.rb file, and add these
lines of code to the create() method:

1. https://github.com/petergoldstein/dalli

Chapter 4. Consuming Backing Services with JRuby • 52

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/environments/development.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/session_store.rb
https://github.com/petergoldstein/dalli
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Services/twitalytics/app/controllers/posts_controller.rb

count = session[:count] || 0
session[:count] = count + 1

This increments a counter each time the Post#create action is executed.

To show the current count, open the app/views/posts/index.html.erb file, and add
this code above the main table:

Services/twitalytics/app/views/posts/index.html.erb

<p>
Created: <%= session[:count] || 0 %>

</p>

Now start the Puma server, and browse to http://localhost:3000/posts. You’ll see
the count set at zero. Create a few posts, and you’ll see the count increase.
To confirm that the values are being stored in Memcached, check it with
Telnet. Start a Telnet session and run the stats items command like this:

$ telnet 192.168.99.100 11211
Trying 192.168.99.100...
Connected to 192.168.99.100.
Escape character is '^]'.
stats items
STAT items:5:number 1
STAT items:5:age 5
STAT items:5:evicted 0
STAT items:5:evicted_nonzero 0
STAT items:5:evicted_time 0
STAT items:5:outofmemory 0
STAT items:5:tailrepairs 0
STAT items:5:reclaimed 0
STAT items:5:expired_unfetched 0
STAT items:5:evicted_unfetched 0
STAT items:5:crawler_reclaimed 0
STAT items:5:crawler_items_checked 0
STAT items:5:lrutail_reflocked 0

This displays an overview of the items in the cache. The number after the
keyword items is the slab ID of the record. You can dump the record by running
this command in the Telnet session:

stats cachedump 5 100
ITEM _session_id:fff8686f323aa547c936649e5a2f2131 [88 b; 1454260137 s]

It shows the item is keyed by a _session_id. The data isn’t readable here, but
it’s enough to confirm that Rails is writing its session data to Memcached.

report erratum • discuss

Storing Sessions in Memcached • 53

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/controllers/posts_controller.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/views/posts/index.html.erb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Your backing service is almost ready for production. The only problem is the
hardcoded IP address of your Docker Machine in the configuration file and
the lack of configuration for authentication credentials, which you’ll need to
secure your cache in production.

The IP address of the Memcached server and its credentials will be environ-
ment specific. That is, they will change depending on if the app is running
locally, in test, or in production. For that reason, it’s necessary to extract this
information from environment variables rather than hard-coding it.

Open the config/environments/production.rb file, and add this code to the Rails.applica-
tion.configure block:

Services/twitalytics/config/environments/production.rb

if ENV["MEMCACHEDCLOUD_SERVERS"]
config.cache_store = :dalli_store,

ENV["MEMCACHEDCLOUD_SERVERS"].split(','),
{ :username => ENV["MEMCACHEDCLOUD_USERNAME"],
:password => ENV["MEMCACHEDCLOUD_PASSWORD"],
:pool_size => ENV["MAX_PUMA_THREADS"] || 1 }

end

The MEMCACHEDCLOUD_SERVERS environment variable can contain multiple IP
addresses because in production you’ll want some kind of failover for this
service. The other environment variables provide the username and password.
MemcachedCloud is a cloud-based Memcached as a service provider that
you’ll use in a moment, which is why we’ve chosen the MEMCACHEDCLOUD_ prefix
for these variables. The last parameter is the connection pool size, which is
set to the same value as Puma’s maximum thread count.

Shut down the Twitalytics server by pressing Ctrl-C . Then commit all of your
changes to Git by running these commands:

$ git add .
$ git commit -m "memcached"

Now you can deploy.

Deploying with Memcached
The code you used in development is ready to run on Heroku. You just need
to add a Memcached service to your app by running the following command:

$ heroku addons:create memcachedcloud:30

This creates a free MemcachedCloud backing service attached your Heroku
app. It also sets the MEMCACHEDCLOUD_SERVERS environment variable and the

Chapter 4. Consuming Backing Services with JRuby • 54

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/environments/production.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

other environment variables you need to connect to it with the configuration
in your config/environments/production.rb file.

Now deploy the app by running this command:

$ git push heroku services:master

When the build is finished, open the Posts page with this command:

$ heroku open posts

Make a few requests to ensure that the session is exercised. Then verify that
the session data is getting to Memcached by viewing the MemcachedCloud
dashboard. Run this command to open it:

$ heroku addons:open memcachedcloud

From the dashboard, drill down into the Advanced Metrics view, and you’ll
see something like the following figure:

If you’re not running on Heroku, you can use the Docker container you ran
locally with the Rancher setup you created in Chapter 3, Deploying a Rails
Application, on page 29. Log in to your Rancher virtual server by running
vagrant ssh. Then pull the Docker image and run a new container just as you
did locally. When you start your application containers, add the appropriate
environment variable to the command options like this:

[rancher@rancher-server ~]$ docker run \
-e MEMCACHEDCLOUD_SERVERS=192.168.99.100:11211 \
-e DATABASE_URL=postgres://user:password@host:port/db \
-e PORT=3000 --publish=3000:3000 \
-dit username/twitalytics

report erratum • discuss

Storing Sessions in Memcached • 55

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

In this case, you’re reusing the MEMCACHEDCLOUD_SERVERS variable name, but
you can use any name you’d like.

Memcached is an essential service—similar in importance to a relational
database. Almost every web application will need to store session data, and
doing so with a backing service ensures better failover and scalability. The
next service you’ll deploy is nearly as essential.

Running Background Jobs with Sidekiq
Twitalytics needs to annotate the text in each post with the stock information
from the stock-service you created in Chapter 1, Getting Started with JRuby,
on page 1. Invoking the service could take a long time, which makes this
interaction a good candidate for a background job.

You’ve already learned how to use the JVM’s concurrency features to perform
asynchronous request processing. The power of a true multithreaded platform
makes it possible to increase throughput by running operations in parallel,
but there are still many cases when you may want to move some computation
into a separate process. This is true for any compute-intensive job that might
steal CPU time from the request threads. It’s also useful for communicating
with processes running behind a firewall or on platforms other than the JVM.

Sidekiq is a popular background-processing library for Ruby and JRuby. It
uses Redis2 to communicate between the process that creates a background
job and the processes that execute the background job. Redis, in this case,
is a backing service. It’s a distributed in-memory data structure store, similar
to Memcached, but Sidekiq uses it as a message broker.

Installing Sidekiq and Redis
You can run Redis locally with Docker much as you did with Memcached.
Download the DockerHub Redis image by running this command:

$ docker pull redis
Using default tag: latest
latest: Pulling from library/redis
...
678a090a2546: Pull complete
Digest: sha256:de86bd14ab69c9b707fe5f3213f6e3c6f543df28bc05ae6cef7b61f2b12be343
Status: Downloaded newer image for redis:latest

Then launch a container from the image, and publish port 6379 by running
this command:

2. http://redis.io/

Chapter 4. Consuming Backing Services with JRuby • 56

report erratum • discuss

http://redis.io/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ docker run -p 6379:6379 --name redis-server -d redis

A Redis server starts in the background. You can test it by running a Redis
command-line client in a separate container. You’ll need to know the Docker
Machine IP address, so execute these commands:

$ docker-machine ip default
192.168.99.100

$ docker run -it --rm redis sh -c 'redis-cli -h 192.168.99.100 -p 6379'
192.168.99.100:6379>

From the prompt, you can ensure the server is healthy with the ping command:

192.168.99.100:6379> ping
PONG

The PONG response means everything is working. Enter QUIT at the prompt to
close the session.

Redis is only a part of the architecture you need to run background jobs. You
also need to install Sidekiq, which is a Ruby gem. Add this line to your Gemfile:

Services/twitalytics/Gemfile

gem 'sidekiq'

Save the file and run these commands to download and install the new
dependency:

$ bundle install --binstubs
$ bin/rake rails:update:bin

Sidekiq needs to know how to find the Redis server that backs it up. It starts
by looking for the REDIS_URL environment variable and defaults to localhost if it’s
not set. But you point it to your Docker container as the default. Create a
config/initializers/sidekiq.rb file with the following code, but replace the IP address
with your Docker Machine’s IP address:

Services/twitalytics/config/initializers/sidekiq.rb

Sidekiq.configure_server do |config|
config.redis = { url: ENV['REDIS_URL'] || 'redis://192.168.99.100:6379' }

end

Sidekiq.configure_client do |config|
config.redis = { url: ENV['REDIS_URL'] || 'redis://192.168.99.100:6379' }

end

This configures both the client (the process publishing messages) and the
server (the background worker receiving them) to use the REDIS_URL environment
variable when it’s set and Docker Machine otherwise.

report erratum • discuss

Running Background Jobs with Sidekiq • 57

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/sidekiq.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now you’re ready to run a background job with Sidekiq and Redis.

Creating a Rails Background Job
Sidekiq jobs are encapsulated in Worker classes that have a perform() method.
By convention, Sidekiq workers are housed in the app/workers directory. Create
this directory and add a file to it called posts_worker.rb by running this:

$ mkdir -p app/workers
$ touch app/workers/posts_worker.rb

Now open the posts_worker.rb file and put the following code in it:

Services/twitalytics/app/workers/posts_worker.rb

class PostsWorker
include Sidekiq::Worker

def perform(post_id)
post = Post.find(post_id)
url = ENV["STOCK_SERVICE_URL"] || "localhost:8080"
host = url.split(":")[0]
port = url.split(":")[1]
Net::HTTP.start(host, port) do |http|
http.request_post("/stockify", post.body) do |resp|

post.update({ html: resp.body })
end

end
end

end

The PostsWorker class includes the Sidekiq::Worker module and implements the
perform() method. In the body of the perform() method it makes an HTTP request
to the stock-service. The host and port for the service are determined from
an environment variable but default to localhost:8080 if they’re not set. Then it
stores the HTML response from the stock-service in the database for the given
Post object.

The PostsWorker does the heavy lifting, but you also need some code to trigger
the background job. Sidekiq does this with the perform_async() method, which
queues up the job on Redis for the worker process to retrieve. You’ll execute
this in the PostsController. Open the app/controllers/posts_controller.rb file, and put the
following code in the body of the if statement conditional on the @post.save call
in the create() method:

Services/twitalytics/app/controllers/posts_controller.rb

PostsWorker.perform_async(@post.id)

Chapter 4. Consuming Backing Services with JRuby • 58

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/workers/posts_worker.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/controllers/posts_controller.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The call to perform_async() takes one argument, the Post ID, which is ultimately
passed to the perform() method on the worker process.

Now test it out. Start the Puma server as normal, and open a second terminal
session for the stock-service. Move into its directory, re-create the executable
WAR file if necessary, and run it like this:

$ cd ~/code/stock-service
$ java -jar stock-service.war

Then open a third terminal session and start a Sidekiq worker by running
this command:

$ bin/sidekiq

To exercise the job, point your browser to http://localhost:3000/posts and create a
new Post instance. When you click the Save button, the job will trigger. You’ll
see the database interactions logged in the Sidekiq terminal. When that
happens, return to the http://localhost:3000/posts page, and click the Show link
for the post you just created. You’ll see the HTML in pre-formatted text.

Let’s review what happened at a high level because there are lots of moving
parts in this example. As shown in the following figure, the web server creates
a job by calling perform_async() on the worker class, which creates a record in
Redis. The Sidekiq process detects a new record, retrieves it, and passes it
to an instance of the PostsWorker class, which does the background work of
making the HTTP request to the stock-service.

SidekiqPuma

Redis
PostsWorker PostsWorker

performperform_async

Shut down the Twitalytics server, the stock-service, and the Sidekiq process
by pressing Ctrl-C in their respective terminals. Then commit all of your
changes to Git by running these commands:

$ git add .
$ git commit -m "redis"

You’re ready to put this system into production.

report erratum • discuss

Running Background Jobs with Sidekiq • 59

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Deploying Sidekiq and Redis
Just as with Memcached, you can create a free Heroku Redis service in the
cloud and attach it to your app. To do so, run this command:

$ heroku addons:create heroku-redis

This provisions a Redis add-on and sets the REDIS_URL environment variable
on your app.

You need to set an environment variable defining the location of your produc-
tion stock-service. From the Twitalytics app directory, run this command but
replace the Heroku app name with the name of the Heroku stock-service app
you created in Chapter 1, Getting Started with JRuby, on page 1:

$ heroku config:set STOCK_SERVICE_URL="obscure-fjord-4138.herokuapp.com"

This overrides the default localhost value used by the worker. Before moving
on, make sure the stock-service Heroku app is still working by running this
command:

$ curl -d "Hi Apple" http://obscure-fjord-4138.herokuapp.com/stockify
Hi <div class='stock' data-symbol='AAPL' data-day-high='86.73'>Apple Inc.</div>

Now define a new Procfile entry for your Sidekiq worker. Open the existing
Procfile and replace its contents with this:

Services/twitalytics/Procfile

web: puma -C config/puma.rb
sidekiq: sidekiq -c 5

The web entry is the same as before, but the sidekiq entry is new. It uses the
same command you ran locally but limits the number of threads in the
worker to five. This prevents you from overrunning the maximum number of
allowed connections on the Heroku Redis instance (don’t forget that your web
process is making connections as well). Add the file to Git and redeploy by
running these commands:

$ git add Procfile
$ git commit -m "worker"
$ git push heroku services:master

When the build is finished, run heroku open posts to open the app. Then create
a few new Post records. You won’t see the background job execute, however,
because the sidekiq process has not been scaled up yet. Run this command to
start one instance of it:

$ heroku ps:scale sidekiq=1

Chapter 4. Consuming Backing Services with JRuby • 60

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/Procfile
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Then run the following command to tail the logs:

$ heroku logs -t

You’ll see the background worker start up and request the HTML as you did
locally. When you’ve finished, kill the logs by pressing Ctrl-C and open the
Redis dashboard in a web browser by running this command:

$ heroku addons:open heroku-redis

You’ll see a page like this:

The Redis dashboard displays the memory usage, number of keys, number
of connections, and other data about your instance.

If you’re not using Heroku for production, you can use the Docker container
you ran locally with Rancher. Log in to your Rancher virtual server by running
vagrant ssh. Then pull the Docker Redis image and run a new container just as
you did in your local environment. When you start your application containers,
add the appropriate environment variable to the command options like this:

[rancher@rancher-server ~]$ docker run \
-e MEMCACHEDCLOUD_SERVERS=192.168.99.100:11211 \
-e REDIS_URL=redis://192.168.99.100:6379 \
-e STOCK_SERVICE_URL=https://192.168.99.100:8080 \
-e DATABASE_URL=postgres://user:password@host:port/db \
-e PORT=3000 --publish=3000:3000 \
-dit username/twitalytics

report erratum • discuss

Running Background Jobs with Sidekiq • 61

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

To start a Sidekiq worker container, run this command:

[rancher@rancher-server ~]$ docker run \
-e MEMCACHEDCLOUD_SERVERS=192.168.99.100:11211 \
-e REDIS_URL=redis://192.168.99.100:6379 \
-e STOCK_SERVICE_URL=https://192.168.99.100:8080 \
-e DATABASE_URL=postgres://user:password@host:port/db \
-e PORT=3000 --publish=3000:3000 \
--entrypoint="bin/sidekiq"
-dit username/twitalytics

The entrypoint option tells Docker to start the Sidekiq process instead of the
Puma server.

Sidekiq and Redis are easy to use and are probably the most common Ruby
libraries for running background jobs. But they do have their drawbacks.
Redis doesn’t have a robust transaction mechanism. It’s essentially a key-
value store being repurposed as a work queue. A more advanced message
queue should provide support for durability, routing, topics, remote procedure
calls, and more. Let’s move on and add these capabilities to Twitalytics.

Message Passing with RabbitMQ
The Twitalytics home page needs to shows the stockified HTML for new posts
as they’re created (in near real time). To implement this streaming behavior,
you’ll need a more powerful message broker than Redis. Twitalytics must be
able to route messages to multiple specific clients, which will make it possible
to stream updates to every browser with an open connection to the home page.

The messaging system you’ll use is RabbitMQ, an open source message broker
that implements the Advanced Message Queuing Protocol (AMQP). It’s an
ideal solution for building chat services, games, news apps that broadcast
information, workflow engines, or any app with complex distributed compu-
tation requirements.

An important difference from Sidekiq is RabbitMQ’s ability to send messages
through a router, which allows it to send a single message to all browsers
with an open connection to the Twitalytics home page. But this model, which
is defined by AMQP, is a bit more difficult to understand than the Sidekiq
and Redis architecture. Instead of sending messages directly to a queue, a
RabbitMQ client sends messages to an exchange, which routes the messages
to one or more queues.

There are different ways of binding exchanges to queues, and it’s important
that you understand the differences between them to choose the right pattern
for streaming in Twitalytics. The various patterns are described here:

Chapter 4. Consuming Backing Services with JRuby • 62

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Direct A direct exchange delivers messages to queues based on a message
routing key. Messages are routed to the queues whose binding key
exactly matches the routing key of the message.

Topic A topic exchange does a wildcard match between the routing key and
the routing pattern specified in the binding.

Fanout A fanout exchange routes messages to all of the queues that are
bound to it.

Header Header exchanges use the message header attributes for routing.
The attributes don’t have to be strings. They could be integers or a
hashes, for example, which makes the routing capability more powerful.

These patterns are illustrated in the following figure.

Broker

Exchange

Queues

Direct Topic Fanout

Q Q Q Q QQ

Binding
Key

Routing
Pattern

Producer

Consumer

Header

Q

Header
Attributes

For Twitalytics’s streaming feature, the fanout pattern is ideal because it can
route a message to multiple queues, which can in turn stream the message
to multiple browsers.

RabbitMQ has many Ruby clients, but not all of them take advantage of the
JVM’s powerful concurrency libraries. Fortunately, the ruby-amqp organization
on GitHub3 maintains a gem called March Hare4 that wraps the RabbitMQ

3. https://github.com/ruby-amqp
4. http://rubymarchhare.info/

report erratum • discuss

Message Passing with RabbitMQ • 63

https://github.com/ruby-amqp
http://rubymarchhare.info/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Java client.5 This allows it to piggyback off the power and maturity of the
underlying library.

Installing RabbitMQ and March Hare
It should come as no surprise that you can run RabbitMQ locally with
Docker, just as you did with Memcached and Redis. But the RabbitMQ image
has a bit more to it because its data isn’t stored in memory. RabbitMQ sup-
ports persistent messages, which are written to disk to ensure they survive
restarts. Download the Docker Hub RabbitMQ image by running this:

$ docker pull rabbitmq
Using default tag: latest
latest: Pulling from library/rabbitmq
...

Then start a container from the image and publish port 5672 by running the
following command:

$ docker run -d -p 5672:5672 --hostname rmq1 --name rabbitmq-server rabbitmq

This makes port 5672 accessible, but it also provides an explicit hostname
option. RabbitMQ uses the hostname as a unique key when storing data, which
means you don’t want to use the random value assigned to it by Docker.

Run this command to check the status of the server:

$ docker logs rabbitmq-server
...
=INFO REPORT==== 4-Feb-2016::15:43:10 ===
node : rabbit@rmq1
home dir : /var/lib/rabbitmq
config file(s) : /etc/rabbitmq/rabbitmq.config
cookie hash : 10c+lZTnE9sNU/p1S3987w==
log : tty
sasl log : tty
database dir : /var/lib/rabbitmq/mnesia/rabbit@rmq1
..

In the info report you’ll see the database dir, which uses the hostname value as
part of the path.

Now install March Hare by adding this line to your Gemfile:

Services/twitalytics/Gemfile

gem 'march_hare'

5. http://www.rabbitmq.com/api-guide.html

Chapter 4. Consuming Backing Services with JRuby • 64

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/Gemfile
http://www.rabbitmq.com/api-guide.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Then run Bundler to download and install it, and run Rake to regenerate
your Rails binstubs:

$ bundle install --binstubs
$ bin/rake rails:update:bin

To create a connection to RabbitMQ, use a Rails initializer. Create a file named
config/initializers/rabbitmq_connection.rb and put the following code in it:

Services/twitalytics/config/initializers/rabbitmq_connection.rb

Rails.application.config.after_initialize do
$bunny = MarchHare.connect(

:heartbeat => 5,
:uri => ENV["RABBITMQ_URL"] ||

ENV["CLOUDAMQP_URL"] ||
"amqp://192.168.99.100:5672")

end

at_exit do
$bunny.close

end

This creates a new global connection to RabbitMQ, called $bunny, using either
the RABBITMQ_URL or CLOUDAMQP_URL environment variable. But it falls back to
the hardcoded value of your Docker Machine IP address if neither of those is
present. It also adds an at_exit procedure to close the connection when Rails
shuts down.

Now you’re ready to publish and consume some messages.

Using March Hare with Rails
Each time a post is created, Twitalytics needs to publish a message to notify
clients that their view should be updated. Because Twitalytics already has a
Sidekiq background job that runs every time a post is created, you already
have an excellent trigger for this mechanism. You can publish the RabbitMQ
message from the Sidekiq worker.

Open the Sidekiq worker you created earlier in the file app/workers/posts_worker.rb
and add this code to the end of the perform() method:

Services/twitalytics/app/workers/posts_worker.rb

channel = $bunny.create_channel
exchange = channel.fanout("twitalytics.posts")
exchange.publish(post.html)

This creates a new channel from the $bunny connection. A channel is a virtual
connection within a physical connection. You can have more than one channel

report erratum • discuss

Message Passing with RabbitMQ • 65

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/rabbitmq_connection.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/workers/posts_worker.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

per connection. Then it gets a handle to a fanout exchange called twitalytics.posts
and publishes a message to it containing the HTML.

That completes the publisher. Now you need to create the subscriber. Open
the config/initializers/rabbitmq_connection.rb file again, and add this code to the end
of the after_initialize() block:

Services/twitalytics/config/initializers/rabbitmq_connection.rb

channel = $bunny.create_channel
exchange = channel.fanout("twitalytics.posts")
queue = channel.queue("").bind(exchange)

This is very similar to the code in the worker. It creates a channel and gets
a handle to the twitalytics.posts fanout exchange but then binds a queue to the
exchange. This will cause all messages sent to the twitalytics.posts exchange to
be routed to the given queue.

Next, you need to subscribe to the queue. You do this with subscribe(), which
runs in the background and executes a block of code each time it receives a
message. In this case, the block of code will write to a list of HTTP response
streams (which you’ll create in a moment). Put the following code immediately
after the code that creates the queue:

Services/twitalytics/config/initializers/rabbitmq_connection.rb

$streams = Concurrent::Array.new
consumer = queue.subscribe do |metadata, payload|
$streams.reject! do |stream|
begin

stream.write("data: #{payload}\n\n")
false

rescue IOError => e
stream.close
true

end
end

end

The $streams variable is a global list of HTTP response streams. By iterating
over this list, you prevent the app from having one subscriber per HTTP
request, which could quickly overrun the system. In the body of the subscribe()
method’s block, you’ll write a string to the response streams and trap any
IOErrors, which would result from the connection being closed by the client. If
there is an error, you’ll remove the stream from the list.

The response streams will run indefinitely in the background, which means
they need to be closed when the process exits. Otherwise, the server will hang.

Chapter 4. Consuming Backing Services with JRuby • 66

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/rabbitmq_connection.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/rabbitmq_connection.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

At the end of the config/initializers/rabbitmq_connection.rb file, after the at_exit() block,
add this code to close the streams:

Services/twitalytics/config/initializers/rabbitmq_connection.rb

Signal.trap("INT") do
$streams.each(&:close)
raise Interrupt.new

end

This traps the SIGINT signal, closes each stream, and raises an Interrupt error
to shut down the server naturally.

The last piece of server-side code will go in a new controller. Run this com-
mand to generate it:

$ bin/rails generate controller stream index \
--assets=false --helper=false

This creates an app/controllers/stream_controller.rb file with an index() method. Open
the file and replace its contents with the following code:

Services/twitalytics/app/controllers/stream_controller.rb

class StreamController < ApplicationController
include ActionController::Live

def index
response.headers["Content-Type"] = "text/event-stream"
$streams << response.stream
response.stream.write("\n")

end
end

At the beginning of the class, you included the ActionController::Live module,
which enables live streaming in Rails. In the body of the index() method, you
set a response header indicating to the client that the service is an event
stream. You added the response stream to the global list of streams, and
you’re writing a newline character to the stream (this is effectively a no-op,
because the service will error out if you don’t write anything).

Because the service is persistent (that is, it will remain open while you do
other things), you’ll need to enable concurrent requests in Rails’s development
mode. Add these lines of code to the config/environments/development.rb file:

Services/twitalytics/config/environments/development.rb

config.preload_frameworks = true
config.allow_concurrency = true

report erratum • discuss

Message Passing with RabbitMQ • 67

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/initializers/rabbitmq_connection.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/app/controllers/stream_controller.rb
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/config/environments/development.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now you can write the client code that consumes the streaming service. Open
the public/index.html file and add this code to the end of the <body> element:

Services/twitalytics/public/index.html

<div id="posts"></div>

This is the container where you’ll display the posts as they’re streamed from
the server.

To connect to the stream, add the following code to the <head> element:

Services/twitalytics/public/index.html

<script>
$(document).ready(function() {

var source = new EventSource('/stream/index');
source.onmessage = function(event) {

$("#posts").append("<p>" + event.data + "</p>");
};

});
</script>

This creates a new EventSource with the route for the StreamController#index method
and listens to the stream for events. When it receives one, it adds the data
from the event as a new paragraph in the posts element.

It’s finally time to test the entire system. You’ll need four terminal sessions
open. In the first terminal, start the stock-service like this:

$ cd ~/code/stock-service
$ java -jar stock-service.war

In the second terminal, start the Sidekiq work like this:

$ cd ~/code/twitalytics
$ bin/sidekiq

In the third terminal, start the Puma server like this:

$ cd ~/code/twitalytics
$ bin/puma -C config/puma.rb

In the fourth terminal, use curl to make a request to the streaming service by
running this command:

$ curl http://localhost:3000/stream/index

At first there won’t be any response. The stream waits until a Post is created.

Open a browser to http://localhost:3000 and leave it on that page. Then point
another browser window to http://localhost:3000/posts and create a new Post record
with the text “Hello Apple computers.” Click the Save button and return to

Chapter 4. Consuming Backing Services with JRuby • 68

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/public/index.html
http://media.pragprog.com/titles/jkdepj2/code/Services/twitalytics/public/index.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

the other browser window. You’ll see that the new stockified text has been
appended to the page.

Then return to the terminal session by running the curl command. You’ll see
this output:

data: Hello
Apple Inc. computers

The event was sent to both streams. The curl command simply printed the
event text to the console, while the browser’s JavaScript updated the view.

Let’s review at a high level what happened. The flow is illustrated here:

HTTP Stream

HTTP Stream

Sidekiq
PostsWorker

perform RabbitMQ

Subscriber

Subscriber

HTTP Stream

HTTP Stream

The Sidekiq worker published a message to RabbitMQ. The Puma server,
which has one subscriber (aka consumer) listing to the queue, received the
message from RabbitMQ. It then published an event to the event stream,
which was received by the client in the browser. But it was also sent to the
curl process.

Before moving on, commit your changes to Git by running these commands:

$ git add .
$ git commit -m "rabbitmq"

Now let’s get this system running in production.

Deploying with RabbitMQ
CloudAMPQ is a commercial RabbitMQ hosting service you’ll use to run
Twitalytics in the cloud. Create a free instance of CloudAMPQ and attach it
to your Heroku app by running the following command:

$ heroku addons:create cloudamqp:lemur

This sets the CLOUDAMQP_URL environment variable on your Heroku app. You’ve
already prepared your RabbitMQ connection in rabbitmq_initializer.rb to detect
this, so you don’t need to make any changes to the code.

report erratum • discuss

Message Passing with RabbitMQ • 69

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Deploy your code to Heroku as before by running git push like this:

$ git push heroku services:master

When the build is finished, run heroku open to view the app. Leave the home
page open as you did in development, and browse to the /posts routes in a new
window. Create a few new Post records and then return to the home page to
see it update.

Now run the following command to view the CloudAMQP dashboard:

$ heroku addons:open cloudamqp

Click the link to the RabbitMQ management interface and then click the link
to Exchanges. You’ll see something like this:

The amq-prefixed exchanges are special internal exchanges. But at the bottom
you’ll see your twitalytics.posts exchange. From this dashboard you can view
connections, queues, and more.

If you’re not using Heroku for production, you can use the RabbitMQ Docker
container you ran locally with Rancher. Log in to your Rancher virtual server
by running vagrant ssh. Then pull the Docker image and run a new container
just as you did in your development environment. When you start your

Chapter 4. Consuming Backing Services with JRuby • 70

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

application containers, add the appropriate environment variable to the
command options like this:

[rancher@rancher-server ~]$ docker run \
-e MEMCACHEDCLOUD_SERVERS=192.168.99.100:11211 \
-e REDIS_URL=redis://192.168.99.100:6379 \
-e STOCK_SERVICE_URL=https://192.168.99.100:8080 \
-e RABBITMQ_URL=amqp://192.168.99.100:5672 \
-e DATABASE_URL=postgres://user:password@host:port/db \
-e PORT=3000 --publish=3000:3000 \
-dit username/twitalytics

Use the RABBITMQ_URL variable and the entrypoint option to start a new Sidekiq
work too. Then test your app again in the browser.

When you’ve finished, shut down all of the Docker-based backing services in
your development environment by running these commands:

$ docker kill memcached-server
memcached-server

$ docker kill redis-server
redis-server

$ docker kill rabbitmq-server
rabbitmq-server

You can always restart a container by passing the container’s name to the
docker restart command.

Wrapping Up
You’ve learned how to implement three of the most important backing services
a JRuby app will need. You can cache data with Memcached, run out-of-
process background jobs with Sidekiq, and send messages across a distributed
system with RabbitMQ. But these are not the only resources you’re able to
consume now.

JRuby is well suited for use with many popular backing services such as Solr
for full-text search and Neo4J for graph storage. Both of these services are
JVM based, which means you’ll be able to leverage the maturity and robust-
ness of their native Java client libraries from Ruby code.

In the next chapter, you’ll take advantage of more Java components by
replacing Puma with a powerful JVM-based server. But you still won’t need
to write any Java code.

report erratum • discuss

Wrapping Up • 71

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 5

Deploying JRuby in the Enterprise
Enterprise can be a dirty word to some developers. But in the context of the
app we’re working on, it means we simply have different constraints from
those of a traditional web app being developed by a small company or startup.
Often, this entails requirements for integrating with existing systems,
scheduling batch jobs, publishing to message queues, and caching data from
external services.

Traditional deployment with Puma has been a great solution for Twitalytics
thus far. It simplified the infrastructure and deployment of your app. But as
your website continues to grow, new requirements like messaging, caching,
and background jobs will demand more than Puma can offer. You could tack
on other systems to do this work, but for many environments the best solution
is an all-in-one platform like TorqueBox.

TorqueBox is the most powerful deployment environment available to any
Ruby application. It’s capable of boosting performance without changing a
single line of code.1 But it also has features that can improve the way an
application is composed. In this chapter, you’ll port Twitalytics onto TorqueBox
and start taking advantage of this power.

Because of its built-in support for many advanced features, TorqueBox is
often distinguished as enterprise-grade software. But it does this without
many of the drawbacks programmers often associate with “enterprisey” things.
Twitalytics is not enterprise software, but it has a need for many of these
TorqueBox features. In fact, any application that’s successful will eventually
need these capabilities. Having them integrated into the platform results in
a more cohesive, reliable, and manageable environment. This kind of platform
is called an application server.

1. http://torquebox.org/news/2014/12/05/torquebox-4-0-0-alpha1-released/

report erratum • discuss

http://torquebox.org/news/2014/12/05/torquebox-4-0-0-alpha1-released/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

What Is an Application Server?
An application server is a different kind of platform from what most Rubyists
are familiar with. Traditionally, a Ruby application is responsible for gathering
together the libraries and tools it needs to run. This kind of architecture is
illustrated in the following figure:

Puma

Twitalytics
Web

Sidekiq

Memcached

RabbitMQ

Redis

Twitalytics
Jobs

Ruby applications deal with many concerns like messaging and caching that
are really outside the scope of their business requirements. When an MRI-
based Ruby app needs to run a process asynchronously in the background,
it must pull in Resque or SideKiq and integrate with it. Even worse, the
developers need to manage and monitor the auxiliary processes!

The cumbersome chore of assembling infrastructure this way doesn’t conform
to traditional Ruby principles. Ruby is designed to be productive and fun.
That’s why frameworks like Rails are designed to get low-level details out of
the way—so you can focus on writing business logic. Why then should you
need to set up, integrate, and monitor a framework that runs background
processes? You need a platform with an attitude. Such a platform—illustrated
in the figure on page 75—is called an application server.

TorqueBox is a Ruby application server, and it’s the only one of its kind. Let’s
port Twitalytics onto this platform as the next step in rescuing it.

Chapter 5. Deploying JRuby in the Enterprise • 74

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

TorqueBox

Caching

Messaging

Scheduling

Web

Twitalytics

Getting Started with TorqueBox
Before making any changes to Twitalytics, create and check out a torquebox
branch based on the jruby branch you created in Chapter 3, Deploying a Rails
Application, on page 29.

$ cd ~/code/twitalytics
$ git checkout -b torquebox jruby

Now you can add TorqueBox, which is distributed as both a gem and a
binary file. You’ll use the gem, which you can install by replacing the Puma
gem in your Gemfile with the TorqueBox gem. Add this line now and remove
the puma entry:

gem "torquebox", "4.0.0.beta2"

Then run Bundler to install TorqueBox and update the configuration:

$ bundle install --binstubs
...
Installing torquebox-core 4.0.0.beta2
Installing torquebox-caching 4.0.0.beta2
Installing torquebox-messaging 4.0.0.beta2
Installing torquebox-scheduling 4.0.0.beta2
Installing torquebox-web 4.0.0.beta2
Installing torquebox 4.0.0.beta2
...

report erratum • discuss

Getting Started with TorqueBox • 75

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

You’ll notice that the TorqueBox dependency pulls in a number of different
gems. Each of these gems handles a different type of capability. If you need
only certain features, you can pull their respective gems in individually. It
also adds a torquebox executable to your path. You can run it without any
arguments to get a list of available tasks:

$ bin/torquebox
Usage: torquebox [command] [options]

Commands:
jar: Create an executable jar from an application
war: Create a deployable war from an application
run: Run TorqueBox web server

...

The jar and war commands work much like Warbler, which you learned about
in Chapter 1, Getting Started with JRuby, on page 1. But these are specific
to TorqueBox and its capabilities. The run command launches a TorqueBox
web server, which is how you’ll run the app in development.

You don’t need to make any changes to the code to run most web applications
on TorqueBox, and Twitalytics is no exception. Start the TorqueBox server
with the run task:

$ bin/torquebox run
14:31:47.265 INFO XNIO version 3.3.0.Final
14:31:47.383 INFO XNIO NIO Implementation Version 3.3.0.Final
14:31:47.428 INFO Registered web context /
14:31:47.429 INFO Starting TorqueBox::Web::Server 'default'
14:31:47.512 INFO Listening for HTTP requests on localhost:8080

Now open a browser to http://localhost:8080 and you’ll see the app running.

You’ve successfully integrated the TorqueBox web server with your app. If
this were the only feature of TorqueBox you needed, you could reduce your
Gemfile dependencies to torquebox-web. This gem is built on a lightweight, plug-
gable, polyglot server code-named WunderBoss. All features of TorqueBox
are implemented in WunderBoss and then exposed via a Ruby API in the
TorqueBox project. This lets other projects, in other languages, reuse the
same functionality by creating small language-specific API wrappers. The web
portion of WunderBoss uses JBoss Undertow, which is the same web server
used in WildFly (the successor to JBoss Application Server).

Let’s use the WunderBoss server to execute a job that runs periodically in
the background.

Chapter 5. Deploying JRuby in the Enterprise • 76

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Scheduling a Recurring Job
Jobs are components that execute on a schedule instead of in response to
user action. In the case of Twitalytics, the schedule is recurring, but other
jobs could be a one-time event. With TorqueBox, jobs like this run asyn-
chronously in the background, but they still execute within the same JVM
process as the rest of the application.

Twitalytics has a recurring job that removes old status updates from the
database. It’s located in the lib/jobs/delete_old_statuses.rb file, and it looks like this:

twitalytics/lib/jobs/delete_old_statuses.rb

class DeleteOldStatuses
def run
ids = Status.where("created_at < ?", 30.days.ago)

if ids.size > 0
Status.destroy(ids)
puts "#{ids.size} statuses have been deleted!"

else
puts "No statuses have been deleted."

end
end

end

DeleteOldStatuses.new.run

When Twitalytics was running on MRI, this background job was scheduled
by adding a crontab entry and having the cron daemon run the script with the
rails runner command. But that increased the complexity of the infrastructure
(since cron became another dependency) and made it less portable because
Windows has no cron.

To port this job to TorqueBox, first move it to a new location under the app/jobs
directory. Then use the git mv command so the repository stays in sync with
your changes.

$ mkdir app/jobs
$ git mv lib/jobs/delete_old_statuses.rb app/jobs/

TorqueBox will pick up any jobs located in the app/jobs directory and run them
with the full context of the application. That means it will have access to your
ActiveRecord models without relying on rails runner or anything like that.

Remove the following statement, which instantiates the DeleteOldStatuses class:

twitalytics/lib/jobs/delete_old_statuses.rb

DeleteOldStatuses.new.run

report erratum • discuss

Scheduling a Recurring Job • 77

http://media.pragprog.com/titles/jkdepj2/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://media.pragprog.com/titles/jkdepj2/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Instead, you’ll instantiate the class in an initializer. Create the file config/initial-
izers/torquebox.rb and put the following code in it:

TorqueBox/twitalytics/config/initializers/torquebox.rb

@job = DeleteOldStatuses.new
TorqueBox::Scheduling::Scheduler.schedule(:job1, every: 1000) do
@job.run

end

This initializer will run when Rails starts up. It creates a new DeleteOldStatuses
object and schedules it to run in the background every 1000 milliseconds.

Now start the TorqueBox server again with the torquebox run command. After
the application has booted, you’ll see some output in the console, like this:

21:17:05,112 INFO [stdout] ... No statuses have been deleted.
21:17:10,080 INFO [stdout] ... No statuses have been deleted.

Your job is running on a schedule without any external infrastructure or
supplemental processes.

Let’s use some of the other TorqueBox subsystems to create Status records.

Using the Cache
TorqueBox provides a built-in caching mechanism using the Infinispan data
grid. Infinispan can work in a distributed cluster to replicate storage, but its
distributed features are available only when deployed to a WildFly or EAP
cluster. In non-clustered mode Infinispan’s cache still offers features such
as eviction, expiration, persistence, and transactions that aren’t available in
typical caching implementations.

You can easily demonstrate the TorqueBox cache in an IRB session. Run jirb
in a terminal and execute the following commands in the new session:

jruby-9.0.5.0 :001 > require 'torquebox-caching'
=> true
...
jruby-9.0.5.0 :002 > c = TorqueBox::Caching.cache("foo")
=> #<TorqueBox::Caching::Cache:0x7ee3d262 @cache={}, @options={}>

A cache is created, started, and referenced using the TorqueBox::Caching.cache
method. It accepts a number of optional configuration arguments, but the
only required one is a name, which uniquely identifies every cache. Now put
some values in the cache and test that they are stored by running these
commands:

jruby-9.0.5.0 :002 > c.put(:a, 42)

Chapter 5. Deploying JRuby in the Enterprise • 78

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/TorqueBox/twitalytics/config/initializers/torquebox.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

=> nil
jruby-9.0.5.0 :003 > c.get(:a)
=> 42
jruby-9.0.5.0 :004 > c.put(:a, 42, :ttl => 1)
=> nil
jruby-9.0.5.0 :005 > c.get(:a)
=> nil

This demonstrates how you can set, retrieve, and expire values. Now try some
more advanced features. Create a new cache using the :max_entries options,
and try to put more entries in it than are allowed:

jruby-9.0.5.0 :002 > e = TorqueBox::Caching.cache "baz", :max_entries => 3
=> nil
jruby-9.0.5.0 :003 > e.get(:a)
=> 42
jruby-9.0.5.0 :004 > e.put_all(:x => 42, :y => 18, :z => 1, :a => 2)
=> nil
jruby-9.0.5.0 :005 > e.cache
=> {:a=>2, :y=>18, :z=>1}

The cache purged the oldest values as new values were added. This prevents
the cache from consuming all of your memory. Now try replacing some more
values in the baz cache:

jruby-9.0.5.0 :006 > e.put(:y, 99)
=> 18
jruby-9.0.5.0 :006 > e.compare_and_set(:y, 99, 100)
=> true
jruby-9.0.5.0 :006 > e.get(:y)
=> 100
jruby-9.0.5.0 :006 > exit

All of the cache manipulation methods take the same options. You can use
:ttl or :idle, which expires a value after inactivity, with each of these as well.

A great use case for this feature is template fragment caching, which allows
you to cache widgets or partials in your application so they don’t need to be
rendered on every request. Twitalytics has a few ERB templates that could
use this mechanism because they don’t change very often and are the same
for all users.

First, you must configure the TorqueBox cache as the default Rails cache.
Open the file config/application.rb and add the following code to the Application class:

TorqueBox/twitalytics/config/application.rb

config.cache_store = :torque_box_store

report erratum • discuss

Using the Cache • 79

http://media.pragprog.com/titles/jkdepj2/code/TorqueBox/twitalytics/config/application.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Then open the file app/views/posts/index.html.erb and modify the @posts loop by
adding a cache(post) call like this:

TorqueBox/twitalytics/app/views/posts/index.html.erb

<% @posts.each do |post| %>
<% cache(post) do %>
<tr>

<td><%= post.body %></td>
<td><%= link_to 'Show', post %></td>
<td><%= link_to 'Edit', edit_post_path(post) %></td>
<td><%= link_to 'Destroy', post,

method: :delete,
data: { confirm: 'Are you sure?' } %></td>

</tr>
<% end %>

<% end %>

Behind the scenes, a method called cache_key is invoked on the post model.
This returns a string like "post/23-20130109142513", which represents the
model name, ID, and updated_at timestamp. Thus, it will automatically generate
a new fragment when the product is updated because the key changes. But
if the key has not changed, it will use the cached value.

Test it out by starting up a server with torquebox run and browsing to http://local-
host:8080/posts. The app starts up, and you’ll see this in the logs:

18:16:36.224 INFO Creating cache: __torquebox_store__
18:16:36.348 INFO ISPN000128: Infinispan version: Infinispan ...
18:16:36.708 INFO ISPN000031: MBeans were successfully registered ...

When you refresh the page, you won’t see anything in the logs, but you might
notice that it loads a bit faster.

It’s also possible to use the TorqueBox cache for low-level caching, such as
caching values returned from an external service or database. In this way,
you’d manually create an instance of the cache by calling TorqueBox::Caching.cache
just as you did in the IRB session. If you pass the name of an existing cache,
a reference to it will be returned and any configuration you pass to the method
will be ignored. Thus, two cache instances with the same name will be backed
by the same Infinispan cache. Hence, you can ensure thread safety when
retrieving the cache in two different requests.

Before moving on, commit your changes to Git by running these commands:

$ git add .
$ git commit -m "torquebox"

Chapter 5. Deploying JRuby in the Enterprise • 80

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/TorqueBox/twitalytics/app/views/posts/index.html.erb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

That completes your use of the TorqueBox features. Let’s deploy this app to
production.

Deploying to the Public Cloud
Because TorqueBox can be packaged into an executable JAR file, it can be
deployed much like a Warbler WAR file. You can even continue using the
same Heroku repository.

Make sure your Heroku app is still attached to your Git repo by running this
command and confirming that there is a heroku remote listed:

$ git remote -v

If heroku is not a remote, run heroku git:remote to reattach the app you used in
Chapter 3, Deploying a Rails Application, on page 29.

Next, you’ll need to adjust the Procfile to run the TorqueBox JAR file. Open the
file and put this code in it:

web: java -jar twitalytics.jar -p $PORT

Commit the file to Git with these commands:

$ git add Procfile
$ git commit -m "torquebox procfile"

Now deploy the app to Heroku by running these commands:

$ torquebox jar
$ heroku deploy:jar --jar twitalytics.jar

No other configuration is necessary. Heroku will run the app from the exe-
cutable JAR file just as it did with your microservice in Chapter 1, Getting
Started with JRuby, on page 1. You can scale it, manage, and monitor it just
as you did before. Run heroku open to view the app in the browser.

Of course, public cloud deployment is not for everyone. Let’s look at how to
deploy this TorqueBox app to your Rancher infrastructure.

Deploying to Private Infrastructure
As mentioned earlier, TorqueBox supports three different ways of running an
app. You’ve been using torquebox run in development, but now you’ll switch to
one of the other methods for production.

The first option is the torquebox war command, which generates a WAR file that’s
ready to be deployed into a JBoss WildFly container. If you’re already running
a JBoss server in your enterprise, then the TorqueBox WAR file will fit right

report erratum • discuss

Deploying to the Public Cloud • 81

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

into your existing deployment strategy. But if you’re not running JBoss, the
executable JAR file is a better solution.

The torquebox jar command generates a completely self-contained executable
JAR file from your application. Because you can run this JAR file with a
simple java command, it’s extremely portable. To begin, run the command:

$ torquebox jar

You can find the resulting JAR file in the root directory of the project, with
the name twitalytics.jar. You can run it with a simple Java command to start
your app, or you can add command-line options that allow it to do quite a
bit more. To see a full list of features, run the JAR file with the -h option:

$ java -jar twitalytics.jar -h

Among the options, you’ll see -S, which you can use to run one-off scripts and
commands in the context of your application. For example, you can run Rake
tasks or Ruby scripts. To try it out, run this command:

$ java -jar twitalytics.jar -S rake -T

Because the app is packaged as a JAR file, it will simplify your Docker config-
uration. You won’t need to install JRuby or run Bundler. Open the Dockerfile
and edit its contents to look like this:

FROM heroku/jvm

ADD ./twitalytics.jar /app/user/

ENTRYPOINT ["java", "-jar", "twitalytics.jar", "-p", "$PORT"]

You’re still using the heroku/jvm image as a base, but now you’re copying the
JAR file into the image and you’re defining the java command to run the app.
It’s similar to how your Warbler microservice was deployed in Chapter 2,
Creating a Deployment Environment, on page 17.

Now build the image and publish it to Docker Hub by running these com-
mands (but replace “username” with your Docker Hub username):

$ docker build -t username/twitalytics-tb .
$ docker push username/twitalytics-tb

When the push is complete, log in to your Rancher server:

$ cd ~/rancher
$ vagrant ssh
[rancher@rancher-server ~]$

Chapter 5. Deploying JRuby in the Enterprise • 82

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Then pull the image:

[rancher@rancher-server ~]$ docker pull username/twitalytics-tb

Now use a one-off container to run the database migrations. As in Chapter
3, Deploying a Rails Application, on page 29, run this command with your
Heroku database URL set for DATABASE_URL to reduce the load on the virtual
machine:

[rancher@rancher-server ~]$ docker run \
-e DATABASE_URL=postgres://user:password@host:port/db \
--entrypoint="java -jar twitalytics.jar -S rake db:migrate" \
-dit username/twitalytics

And finally, start a web server container from the image by running this
command with your Heroku database URL substituted for DATABASE_URL again:

[rancher@rancher-server ~]$ docker run -e PORT=3000 \
-e DATABASE_URL=postgres://user:password@host:port/db \
--publish=3000:3000 -dit username/twitalytics

You can manage this container just as you did with the Puma container in
Chapter 3, Deploying a Rails Application, on page 29. But Puma and TorqueBox
are not the only Ruby web servers you can use with JRuby.

Using a Commercially Supported Server
While TorqueBox offers many features that are commonly needed in an
enterprise environment, one enterprise feature it doesn’t have is commercial
support. Even though TorqueBox originated as a Red Hat2 project, the com-
pany never fully productized it, which means there’s no commercial support
as there is for JBoss.3

Many organizations prefer to use technologies backed by a commercial entity
to gain premium features or premium support contracts. One JRuby server
offering this feature is Phusion Passenger Enterprise, which is a commercial
version of the free and open source Phusion Passenger server.4

Passenger Enterprise includes features such as rolling restarts, error-resistant
deploys, mass deployment, live IRB sessions, and advanced resource control
(that is, limiting how a process consumes memory).

But the most important feature to JRuby is Passenger’s support for threading.
In fact, using JRuby without this feature doesn’t make a lot of sense, which

2. https://www.redhat.com/
3. https://www.jboss.org/
4. https://www.phusionpassenger.com/

report erratum • discuss

Using a Commercially Supported Server • 83

https://www.redhat.com/
https://www.jboss.org/
https://www.phusionpassenger.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

means Passenger Enterprise is the only form of Passenger well-suited for
JRuby.

There’s one more caveat: Passenger doesn’t support Windows.

If you’re running on Mac or Linux, the best way to get started is by running
the free version of Passenger. This will ensure parity between your development
environment and your production environment without having to pay for an
extra license.

To begin, create a new Git branch starting from your original jruby branch by
running this command:

$ git checkout -b passenger jruby

Then open the project’s Gemfile and replace the puma gem with the passenger
gem as shown here:

gem "passenger", :group => :development

Run Bundler to install the dependency, and run Rake to regenerate your Rails
binstubs:

$ bundle install --binstubs
$ bin/rake rails:update:bin

Now launch the Passenger server by running the following command:

$ bin/passenger start --max-pool-size 1

This starts Passenger with a single application process, which is desirable
for JRuby. Without the --max-pool-size option, Passenger would default to running
six processes, each with its own JVM overhead. Separate processes are
required on MRI to handle requests in parallel but not on JRuby.

Open a browser and point it to http://localhost:3000. You’ll see the app working
just as it did with the other servers. But it’s not production ready yet because
it’s not running in threaded mode.

To run Passenger in threaded mode, you must purchase an enterprise license
and install the enterprise version of the server. You can purchase a license
from the Phusion website.5 Then configure your license by setting an environ-
ment variable with this command (but replace xxxx with your key):

$ export PASSENGER_ENTERPRISE_LICENSE_DATA="xxxx"

Then open your Gemfile and add the following code:

5. https://www.phusionpassenger.com/download

Chapter 5. Deploying JRuby in the Enterprise • 84

report erratum • discuss

https://www.phusionpassenger.com/download
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

group :production do
source "https://download:#{ENV['PASSENGER_ENTERPRISE_LICENSE_DATA']}" +

"@www.phusionpassenger.com/enterprise_gems"
gem "passenger-enterprise-server"

end

This defines a new private source from which Bundler can download gems. It
also adds the Passenger Enterprise Server gem as a production dependency.

Now run Bundler in production mode to install the dependency, and run
Rake to re-create your Rails binstubs:

$ bundle install --binstubs --with=production
$ bin/rake rails:update:bin

When the update is finished, start Passenger with this command:

$ bin/passenger start --max-pool-size 1 --concurrency-model thread \
--thread-count 16

Passenger is running in threaded mode with sixteen threads, which is equiv-
alent to how you ran Puma in Chapter 3, Deploying a Rails Application, on
page 29. Put the same command in your Procfile:

web: passenger start --port $PORT --max-pool-size 1 --concurrency-model thread \
--thread-count 16

Before moving on, commit all of these changes to Git by running the following
commands:

$ git add Gemfile Gemfile.lock Procfile
$ git commit -m "passenger"

Passenger is ready for production.

Deploying Passenger Enterprise
To deploy Passenger to Heroku, set your license key by running this command:

$ heroku config:set PASSENGER_ENTERPRISE_LICENSE_DATA="xxxx"

Then push your code by running this command:

$ git push heroku master

When the deployment is complete, open your app by running heroku open to
confirm that it worked.

report erratum • discuss

Using a Commercially Supported Server • 85

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

To deploy using Docker, add these lines to your Dockerfile:

ENV PASSENGER_ENTERPRISE_LICENSE_DATA "xxxx"

ENTRYPOINT ["bin/passenger", "start",
"--port", "$PORT",
"--max-pool-size", "1",
"--concurrency-model", "thread",
"--thread-count", "16"]

Then deploy with docker push.

Unfortunately, Passenger Enterprise does not offer all of the same features
as TorqueBox. However, you can use the individual non-web TorqueBox
subsystem in combination with Passenger Enterprise, which may provide the
ideal solution for a risk-averse enterprise.

Wrapping Up
You made a number of changes to Twitalytics in this chapter. In addition to
porting your existing components to TorqueBox, you also created some new
components using the advanced features provided by your new application
server. The result is a robust product that runs asynchronous jobs in the
same process as the main web app.

You also learned how to deploy TorqueBox to both the public cloud and private
infrastructure. You now have all the skills needed to run a complex JRuby
on Rails application in production. But what happens when something goes
wrong in production?

In the next chapter, you’ll learn how to monitor and tune a JRuby production
app to make sure you get the best uptime possible.

Chapter 5. Deploying JRuby in the Enterprise • 86

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 6

Managing a JRuby Application
Deploying an application is only the first step in creating a successful produc-
tion environment. Keeping it running is the real challenge.

To support any JRuby deployment, you need to understand the underlying
JVM platform, how it works, and what it’s doing to make your app run. In
this chapter, you’ll use the most common management and monitoring tools
to inspect and profile a running JRuby process. They’ll help you make deci-
sions that improve both the performance and uptime of your deployment.

You’ll use Java’s two built-in management consoles, which provide graphical
representations of resource usage over time. You’ll use this same interface to
control a running application by invoking management operations. Then you’ll
learn to use some more advanced command-line tools that provide an extreme
level of detail about the platform’s execution. All of these tools make it easier
to tune the application for peak performance.

All of this discussion around performance and resources is moot if you never
have a problem in the first place. For that reason, you’ll start by adding a bug.

Creating a Memory Leak
If you don’t have any bugs, you don’t need any management or profiling tools.
To make this chapter feel more like real life, you’ll need to introduce a problem
into Twitalytics so you can simulate the actual process of detecting, tracing,
and resolving a real-life memory leak.

Open Twitalytics’s app/controllers/post_controller.rb file and add this code to the
index() method:

@@leaky ||= []
@@leaky << (1..1000).map{ rand(1 << 256) }

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

This creates a class variable, which is held in memory until the process is
stopped. Then it adds one thousand random Bignum instances to the array.
The Bignum class isn’t used very often, so it will be easy to identify with the
tools you’ll learn about. Now when you want to simulate a problem, you only
need to make a request to the PostController.

In this chapter, you’ll use this leak to illustrate the capabilities of each tool
you learn about. Let’s begin with the most commonly used graphical JVM tool.

Inspecting the Runtime with VisualVM
VisualVM is a graphical user interface (GUI) for monitoring a JVM, profiling
a running application, and analyzing heap dumps. It comes packaged with
the JDK, so there’s no need to install it. As long as the java command is on
your PATH, you’re ready to go. Run this command to start VisualVM:

$ jvisualvm

This opens the GUI, where you’ll see a list of applications in the left sidebar.
There are groups for local and remote JVM applications. At a minimum, you’ll
see the VisualVM process listed under Local. If you have some other Java
processes running, you’ll also see those.

Open a new terminal window and move into the Twitalytics directory. Now
start your JRuby server with Puma so VisualVM can connect to it:

$ bin/puma -C config/puma.rb

Chapter 6. Managing a JRuby Application • 88

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

All the steps in this chapter will work for either the Puma or TorqueBox
server. But the examples will use the Puma commands exclusively.

Allow the process to boot, and then point a browser at the app to ensure it’s
working. If all looks well, return to the VisualVM interface and you’ll see a
new Local Application listed in the sidebar. Double-click it and a new tab will
open on the right. You’ll see something like the preceding figure on page 88.

The Overview interface shows some high-level details about the process,
including the command that’s running, the system properties, and the location
of the JVM that’s running it.

Now click the Monitor tab. This view provides graphs for CPU activity, mem-
ory usage, number of classes, and number of threads for the JVM process.
Because the process just recently started, there probably won’t be much to
see yet. Let the process run for a while, and refresh your browser a few times
to force the server to process some requests; eventually you’ll see something
that looks like this:

In this view, the term Heap refers to memory. We’ll discuss this in more detail
in Chapter 7, Tuning a JRuby Application, on page 109.

The Monitor view also has two buttons: Perform GC and Heap Dump. The
Perform GC button will force the JVM to run its garbage collector. Go ahead
and click it now. Next, you’ll see the blue line that represents heap memory
plunge as the system reclaims memory from unused objects. Heap memory

report erratum • discuss

Inspecting the Runtime with VisualVM • 89

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

is a type of system memory that holds objects created by your app. We’ll dis-
cuss this in detail in Chapter 7, Tuning a JRuby Application, on page 109.

The other button, Heap Dump, generates a snapshot of heap memory at a
singular moment. Click it now, and you’ll see a new tab appear like the one
in the following figure:

This snapshot contains data on every object your application has in memory.
From this view, you can analyze classes and instances. You can also compare
one dump to another to expose what has changed over time. This will become
incredibly useful as we begin to tune the performance of this application and
try to detect memory leaks.

Now click the Threads tab. This view illustrates all of the threads in the JVM
and their current state. It looks something like the figure on page 91.

The Thread Dump button on this view will generate a thread dump. Click it
now. Just like the heap dump, this creates a snapshot that you can analyze
and compare to other snapshots to discover trends. In practice, you’ll take
many thread and heap dumps over an extended period of time and compare
them all. This is a common task when diagnosing problems in a JVM-based
application.

The final two tabs in the GUI are Sampler and Profiler, which do two different
kinds of profiling. They allow you to watch changes to the CPU and memory
usage at a fine-grained level in near real time.

Chapter 6. Managing a JRuby Application • 90

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Sampling Profiler
Click the Sampler tab and explore the options for CPU and Memory. You’ll
see how the different threads, methods, and objects affect these resources.

Sampling is the most basic mode of profiling and carries the least amount of
overhead. It’s an important mode because a common pitfall of profiling is
altering the performance characteristics of an app by introducing code that
measures it. Sampling reduces this risk by limiting the impact of the profiler.

To test the sampler, you’ll need to exercise the synthetic memory leak you
created earlier. Keep Twitalytics running, and hit the /posts route in an infinite
loop by running this command:

$ ruby -r "net/http" \
-e "while true; Net::HTTP.get(URI('http://localhost:3000/posts')); end"

After a few moments, you’ll see RubyBignum and java.lang.BigInteger (which is the
underlying implementation of RubyBignum in JRuby) rise toward the top of the
list. You’ll also see int[] and byte[], which hold internal representations of those
big numbers. It will look like the figure on page 92.

Unfortunately, sampling is prone to many possible errors. The sampler takes
measurements when a timer periodically fires. The profiler then looks at each
thread to see what method is executing and tallies up only what it sees. If a
thread is alternating evenly between executing two methods and the timer

report erratum • discuss

Inspecting the Runtime with VisualVM • 91

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

fires only during the execution of one method, then you’ll never see the second
method in the output. The sampler is also easily confused by inlined methods
(methods that have been compiled into other methods by the JVM’s just-in-
time compiler to improve performance).

You can mitigate potential sampling errors by running the profiler for a longer
period of time. Or you can try a more invasive approach to profiling.

Instrumenting Profiler
Click the Profiler tab and explore the interface, which is similar to the Sampler
tab. You’ll see how the different resources are affected in near real time. But
this time, keep an eye on the terminal session in which the JRuby process is
running. You’ll see something like this:

Profiler Agent: JNI OnLoad Initializing...
Profiler Agent: JNI OnLoad Initialized successfully
Profiler Agent: Waiting for connection on port 5140 (Protocol version: 15)
Profiler Agent: Established connection with the tool
Profiler Agent: Local accelerated session
...
Profiler Agent: Redefining 100 classes at idx 0, out of total 500
Profiler Agent: Redefining 100 classes at idx 100, out of total 500
Profiler Agent: Redefining 100 classes at idx 200, out of total 500
Profiler Agent: Redefining 100 classes at idx 300, out of total 500
Profiler Agent: Redefining 100 classes at idx 400, out of total 500

This output comes from the Java profiling agent, which runs alongside your
application and instruments its code as it’s running. In this way, it can capture
exact measurements.

Chapter 6. Managing a JRuby Application • 92

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Is the instrumented profiler better than the sampling profiler? It’s difficult to
say. Instrumentation is more likely to contaminate the results, but sampling
is more likely to miss something. There’s no way to be sure in any given situ-
ation which one is more accurate. The best practice then is to collect as much
information as possible, knowing that some of it may be flawed, and make
the best decision you can from that data. Later in the chapter you’ll learn
about a profiling technique that’s provided specifically by JRuby itself and
may provide more Ruby-centric information.

The sampler and profiler are two extremely powerful tools that are unique to
VisualVM. But many of the other operations are made possible by the Java
Management Extensions (JMX) protocol, which can be consumed by a number
of other tools. If you access these extensions directly, you can gain even more
insight into the running process.

Inspecting the Runtime with JMX
Java Management Extensions is a set of tools that support the management
and monitoring of system objects, devices, networking, and applications. All
of these tools are exposed through a service interface that’s controlled by
scripts and even other applications. But the JDK comes packaged with a
general-purpose console that provides a graphical interface for quickly
inspecting a runtime through these extensions. This console is similar to
VisualVM but provides a more fine-grained interface.

Before starting the JMX console, boot your application again. When doing so,
provide the --manage option, which turns on JRuby’s own management exten-
sions. Using Puma, the command is this:

$ ruby --manage -S bin/puma

When running from a WAR created by Warbler, there’s no option to pass
because you’re invoking Java directly. Instead, you need to add two options
to the java command, which are the same options the --manage flag adds behind
the scenes.

$ java -Dcom.sun.management.jmxremote -Djruby.management.enabled=true \
-jar twitalytics.war

With TorqueBox, this option isn’t necessary because the JMX services are
exposed by default.

No matter which framework you choose to run Twitalytics with, open the
management console by running the following command:

$ jconsole

report erratum • discuss

Inspecting the Runtime with JMX • 93

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

This command is provided by the JDK you installed in Preface, on page xi.
When the JConsole starts up, it will give you the choice of connecting to a
local JVM or a remote JVM. In the list of local JVMs, you’ll see the process
you started earlier, as shown in the following figure:

Select this process and JConsole will connect to the JVM. Select Insecure
Connection when prompted (it’s a local process, so this isn’t much of a
security concern). After it connects, you’ll see an overview interface like the
one pictured in the following figure:

Chapter 6. Managing a JRuby Application • 94

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The Overview screen provides near-real-time graphical views of heap usage,
CPU usage, active threads, and the number of classes loaded in the runtime,
much like the one in VisualVM. This console provides a vast amount of
information—so much so that entire books are written about it. But it’s not
necessary to be an expert from the start.

Take a look at the Memory tab, which is shown in the following figure.

While the Overview screen showed only heap usage, the Memory screen pro-
vides insight into the different categories of JVM memory including Metaspace,
Code Cache, and more. You’ll learn more about these in Chapter 7, Tuning a
JRuby Application, on page 109. The view also has a Perform GC button just
like the one in VisualVM.

Now click the MBeans tab. An MBean, or Managed Bean, is an object that
represents a resource in the JVM that can be managed. Each MBean will
have attributes that tell you about the resource and the operations you can
invoke on it.

The directory-like structure in the left panel of the screen shows the registered
MBeans in the system. Each of these represents a different component of the
JVM and the JRuby runtime. Browse to the org.jruby/Runtime/<guid> bean, which
represents the JRuby runtime. Even though the MBean’s name gives this
information away, you can make certain of this by selecting the Config/Attributes
node under it. Here you’ll see the various properties of the JRuby instance
such as the working directory, debug flag, and version string.

report erratum • discuss

Inspecting the Runtime with JMX • 95

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Next, select the Runtime/Operations node. You’ll see buttons representing the
management operations available for this MBean. One of these, the executeRuby()
operation, allows you to execute arbitrary Ruby code in the context of the
JRuby instance. Select the operation, and fill in the form with the string puts
“hello!”, as shown in the following figure:

Then click the executeRuby() button, which fittingly executes the given Ruby
code. You’ll see a dialog appear with nothing in it because the operation has
no return value. But look in the terminal session that’s running your JRuby
server and you’ll see this:

hello!

JMX provides an excellent mechanism for managing your application, but
clicking buttons in a GUI may not be your preferred tool. Fortunately, there
are other options.

Invoking MBeans Programmatically
JConsole is just one way to use the JMX services that are exposed by the
JVM. You can also build your own clients to consume JMX services. This is
a handy way to write tools you can use to manage your applications.

To create a JMX client, you’ll need some libraries that can speak to the JMX
interfaces. Fortunately, the jmx4r gem provides a Ruby wrapper for this Java-
based protocol.

Chapter 6. Managing a JRuby Application • 96

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Install the jmx4r gem with the following command:

$ gem install jmx4r

Before using this gem, you’ll need to make sure a JRuby server is running.

$ ruby --manage -S bin/puma

Now you can connect to the JMX services in the JRuby process from the shell.
Begin by starting an IRB session and requiring the jmx4r gem:

$ irb
jruby-9.0.1.0 :001 > require 'rubygems'
=> true
jruby-9.0.1.0 :002 > require 'jmx4r'
=> true

Next, create a connection to the JRuby server process with the following
command:

jruby-9.0.1.0 :004 > JMX::MBean.establish_connection \
:command => "org.jruby.Main -S bin/puma"

=> #<JMX::MBeanServerConnectionProxy:0x7e64cfe0 @connection=#<#<Class:0x5...

The :command argument matches the connection string you saw in the initial
JConsole dialog. But the gem also supports connecting to remote JVM pro-
cesses with the :host, :port, :username, and :password arguments.

Now that you’ve created a connection, you can get a handle to one of the
MBeans. Use the Memory manager:

jruby-9.0.1.0 :005 > memory = JMX::MBean.find_by_name "java.lang:type=Memory"
=> #<JMX::MBean:0x1916a3de>

Now invoke an operation on the MBean using the gc() method, which performs
the same action as when you click the Perform GC button in JConsole. Execute
this statement:

jruby-9.0.1.0 :007 > memory.gc
=> nil

If you have JConsole open, you’ll see another dip in the graph of heap mem-
ory usage. Running the garbage collector is a nice example, but it’s not
something you’ll usually need in the JVM. It’s possible you might want to
execute some arbitrary Ruby code, as you did with JConsole. But a more
useful example would invoke your own custom MBean. Let’s create one and
invoke it from a Rake task.

report erratum • discuss

Invoking MBeans Programmatically • 97

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Creating a Management Bean
An MBean’s purpose is to help manage your application. Many Ruby applica-
tions provide this same kind of interface with RESTful services, but those
tend to get in the way of the real application. MBeans provide a better interface
because they’re separated from the rest of the application, which means they
have their own security, port, and graphical interface. As a result, there’s less
of a chance that an ordinary user will accidentally (or intentionally) gain
access to the management services.

Let’s create an MBean that you can use to manage the logging level of your
Rails application. You’ll start by adding the jmx4r gem to your Gemfile and
running Bundler.

Management/twitalytics/Gemfile

gem 'jmx4r'

Next, create a lib/logging_bean.rb file and add the following code to it:

Management/twitalytics/lib/logging_bean.rb

class LoggingBean < JMX::DynamicMBean
operation "Set the Rails log level"
parameter :int, "level", "the new log level"
returns :string
def set_log_level(level)
Rails.logger.level = level
"Set log level to #{Rails.logger.level}"

end
end

This class inherits from the JMX::DynamicMBean class, which hides all of the Java
code that goes into creating an MBean. Then it defines a set_log_level(level)
operation and declares its argument type and return value type. Unlike Ruby,
Java is a strongly typed language, so it expects these things. In the body of
the set_log_level(level) operation, you’re setting Rails.logger.level to the value that
was passed in as an argument.

Now register this MBean with the platform’s MBean server, which is part of
the JVM runtime, by creating an mbeans.rb initializer file in the config/initializers
directory and putting the following code in it:

Management/twitalytics/config/initializers/mbeans.rb

java_import "javax.management.ObjectName"
java_import "java.lang.management.ManagementFactory"

This imports two Java classes that will give you access to the MBean server.

Chapter 6. Managing a JRuby Application • 98

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Management/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Management/twitalytics/lib/logging_bean.rb
http://media.pragprog.com/titles/jkdepj2/code/Management/twitalytics/config/initializers/mbeans.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Next, you’ll need some code that instantiates your bean and registers it with
the server. Put these lines after the java_import statements in the same file:

Management/twitalytics/config/initializers/mbeans.rb

require "logging_bean"
mbean = LoggingBean.new
object_name = ObjectName.new("twitalytics:name=LoggingBean")

mbean_server = ManagementFactory.platform_mbean_server
mbean_server.register_mbean mbean, object_name

Run the JRuby server again and look for your MBean in the JConsole (reboot
the server if it’s already running).

$ ruby --manage -S bin/puma

Run jconsole and navigate to the MBeans screen. You’ll see a twitalytics MBean
with the operation you defined. When you enter a value in the text field of
the set_log_level(level) method and click the button, you’ll see the result pictured
in the following figure:

Now you can write a Rake task that invokes this MBean service. Create a
lib/tasks/mbean.rake file, and add the following code to it:

Management/twitalytics/lib/tasks/mbean.rake

namespace :log do
task :debug do
JMX::MBean.establish_connection :command => "org.jruby.Main -S bin/puma"
logging = JMX::MBean.find_by_name "twitalytics:name=LoggingBean"
puts logging.set_log_level(0)

end
end

report erratum • discuss

Creating a Management Bean • 99

http://media.pragprog.com/titles/jkdepj2/code/Management/twitalytics/config/initializers/mbeans.rb
http://media.pragprog.com/titles/jkdepj2/code/Management/twitalytics/lib/tasks/mbean.rake
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The steps in this task are similar to the steps you executed in your IRB session
earlier in the chapter. But instead of getting a handle to the Memory MBean,
you’re retrieving your own custom MBean.

Try it out. If the server is still running, you can execute this command:

$ bin/rake log:debug
Set log level to 0

That should feel a little more natural to a Rubyist than using the GUI. But
the graphical choice is always there, and it can be useful when someone
other than you is managing your application (such as an operations team).

Let’s move on and use some tools that will give you even more insight into a
running application.

Using the JRuby Profiler
In addition to the profiling tools you saw in VisualVM, JRuby has its own
built-in profiler. You can enable this feature by adding the --profile option when
starting a JRuby process. To test it out, run the following command:

$ ruby --profile -S bin/puma

Make a few page requests, and then kill the process by pressing Ctrl-C . This
will dump some statistics to the console that look like this:

Total time: 19.08

total self children calls method
--
17.97 0.05 17.91 50 Kernel.load
16.84 0.00 16.84 1 Puma::CLI#run
16.84 0.00 16.84 1 Puma::Single#run
12.88 12.88 0.00 1 Thread#join
5.62 0.03 5.59 6215 Kernel.require
4.27 0.01 4.26 10565 Class#new
4.02 0.03 3.99 74 Kernel.eval
3.95 0.00 3.95 1 Puma::Runner#load_and_bind
3.92 0.00 3.92 80 BasicObject#instance_eval
3.92 0.00 3.92 1 Puma::Configuration#app
3.92 0.00 3.92 1 Puma::Configuration#load...
3.92 0.00 3.92 1 Puma::Rack::Builder.pars...
3.92 0.00 3.92 1 Puma::Rack::Builder.new_...
3.92 0.00 3.92 1 Puma::Rack::Builder#init...
3.85 0.03 3.83 6694 Array#each

...

Chapter 6. Managing a JRuby Application • 100

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

You can tell from this dump that the main program loop is controlled by the
Puma::CLI#start() method. You can also see that the most expensive operation
in the app right now is the Class#new() method. This kind of information can
be useful when things get stuck.

But using the profiler with a complete application can leave you swimming
in data. In some cases, this may be what you want—especially if you’re using
a tool or script to analyze the results. But it’s usually better to isolate the
code you’re trying to profile. For example, you can profile just the standard_dev(val-
ues) method from the Twitalytics AnalyticsUtil module because it processes a big
array like this:

$ ruby -r ./lib/analytics_util.rb --profile \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info

main profile results:
Total time: 0.62

total self children calls method
--
0.54 0.05 0.50 27 Kernel.load
0.35 0.02 0.33 63 Kernel.require
0.08 0.02 0.07 111 Array#each
0.07 0.00 0.07 2 IO.open
0.07 0.03 0.04 2 IO#each_line
0.06 0.00 0.06 1 Gem::Specification.load_d...
0.06 0.00 0.06 1 Gem::Specification.each_s...
0.06 0.00 0.06 1 Gem::Specification.each_g...
0.05 0.00 0.05 948 Class#new
...

That still generates a lot of information, but it’s a little more tractable. Let’s
break things down even more.

The built-in profiler also includes a graph mode, which separates the execution
times of callers and callees. You can demonstrate this by running the previous
example with the --profile.graph option:

$ ruby -r ./lib/analytics_util.rb --profile.graph \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info

Total time: 0.61

report erratum • discuss

Using the JRuby Profiler • 101

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

%total %self total self children calls name
--
100% 0% 0.61 0.00 0.61 0 (top)

0.54 0.05 0.49 19/27 Kernel.load
0.03 0.00 0.03 1/1 AnalyticsUtil....
0.01 0.00 0.01 1/1 JRuby.runtime
0.01 0.00 0.01 1/948 Class#new
0.00 0.00 0.00 2/2 Kernel.require
0.00 0.00 0.00 1/2 Java::OrgJruby...
0.00 0.00 0.00 1/63 Kernel.require
0.00 0.00 0.00 1/1 Kernel.trap
0.00 0.00 0.00 1/1 Java::OrgJruby...
0.00 0.00 0.00 1/1 IO#puts
0.00 0.00 0.00 4/11 JavaProxy.inhe...
0.00 0.00 0.00 18/335 Array#eql?
0.00 0.00 0.00 186/311 Class#inherited

...

Graph mode gives a better picture of why certain methods are taking up time
and which callers are contributing the most to that time. But it displays a
list of every method that gets called, which means you’re still pretty inundated
with information. Let’s keep breaking things down.

The JRuby profiler also includes an API you can use to instrument code and
narrow the part of your application that gets profiled. Try this in the Analytic-
sUtil class. Open the lib/analytics_util.rb file and modify the standard_dev() method
so it looks like this:

def self.standard_dev(vals)
profile_data = JRuby::Profiler.profile do
if vals.empty?

0
else

avg = (vals.inject(0) {|sum, s| sum + s}) / vals.size
diffs = vals.map {|s| (s-avg)**2}
Math.sqrt((diffs.inject(0) {|sum, s| sum + s}) / vals.size)

end
end
profile_printer = JRuby::Profiler::GraphProfilePrinter.new(profile_data)
profile_printer.printProfile(STDOUT)

end

This wraps the body of the standard_dev() method in a block that gets passed
to the JRuby::Profiler.profile() method. This returns some profiler data, which is
passed to the JRuby::Profiler::GraphProfilePrinter class so it can be printed in
graph mode.

Chapter 6. Managing a JRuby Application • 102

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Now run the example with the --profile.api option, which will turn on the API
mode. You’ll also need to require the jruby/profiler package, which contains the
classes you added to the AnalyticsUtil. The complete command will look like this:

$ ruby -r ./lib/analytics_util.rb -r jruby/profiler --profile.api \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info
Total time: 0.04

%total %self total self children calls name
--
100% 0% 0.04 0.00 0.04 1 (top)

0.03 0.00 0.03 2/2 Enumerable...
0.01 0.01 0.00 1/1 Array#map
0.00 0.00 0.00 1/1 Math.sqrt
0.00 0.00 0.00 2/2 Fixnum#/
0.00 0.00 0.00 2/4 Array#length
0.00 0.00 0.00 1/1 Array#empty?

--
0.03 0.00 0.03 2/2 (top)

77% 0% 0.03 0.00 0.03 2 Enumerable...
0.03 0.03 0.00 2/2 Array#each

--
0.03 0.03 0.00 2/2 Enumerable...

76% 76% 0.03 0.03 0.00 2 Array#each
--

0.01 0.01 0.00 1/1 (top)
22% 18% 0.01 0.01 0.00 1 Array#map

0.00 0.00 0.00 10000/10000 Fixnum#**
--

0.00 0.00 0.00 10000/10000 Array#map
3% 3% 0.00 0.00 0.00 10000 Fixnum#**

Now you’ve isolated the profiling to just the relevant code, and you’re getting
a more concise picture of the performance metrics for the standard deviation
method.

Profiling is one way of detecting problems. But not all problems are CPU
bound. When you have a memory leak, you’ll need a different kind of tool.

Analyzing a Heap Dump
Using VisualVM, you learned how to take heap dumps and make simple
comparisons between them. That was the tip of the iceberg when it comes to
JVM tooling. More advanced heap dumps can be captured with the jmap tool,
and you can do an incredibly deep analysis with a tool called Eclipse Memory
Analyzer (MAT).1

1. http://www.eclipse.org/mat/

report erratum • discuss

Analyzing a Heap Dump • 103

http://www.eclipse.org/mat/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The jmap tool comes with the JDK. If you have the java command on your PATH,
then you most likely have the jmap command too. jmap is preferable in environ-
ments where VisualVM cannot be used either because of networking con-
straints or because you’re trying to capture metrics for a process not started
with the JMX services exposed.

Before giving jmap a try, start a JRuby server:

$ bin/puma -C config/puma.rb

Now open a second terminal session and find the process ID for the JRuby
server by running the jps command (another tool installed with the JDK):

$ jps -l
48816 org/jruby/Main
48971 sun.tools.jps.Jps

This shows the process ID and main class of all Java processes running on
your machine. At a minimum, you’ll see one JRuby process, identified as
org/jruby/Main, and one process for jps itself, identified as sun.tools.jps.Jps. Note the
process ID (the number to the right of the class name) for the JRuby process,
and use it with the jmap command like this:

$ jmap 48816
Attaching to process ID 48816, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.66-b17

This output means that jmap was able to connect to the process. Now capture
a heap dump by running this command:

$ jmap -histo 48816

This prints a histogram of the heap to the console. It includes the number of
objects, memory size in bytes, and fully qualified class names for each Java
class. VM internal class names are printed with a “*” prefix. You can also use
the -histo:live option to limit the output to only objects that are currently in use.

A histogram is useful for quick analysis, but it’s not any better than what
you saw in VisualVM. To make a deeper analysis of a heap dump, you’ll need
to generate a file in the Heap Profiling (HPROF) binary format by running the
following command:

$ jmap -dump:format=b,file=heap.hprof 48816

This creates a file, heap.hprof, in the same directory where you ran the command.
Now you can open this file in a tool that can read and analyze it. One such

Chapter 6. Managing a JRuby Application • 104

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

tool is jhat, which launches a web server you can use to browse the objects.
But again, it’s not any better than VisualVM. A better tool is Eclipse MAT.

Set up Eclipse MAT now by downloading the installer for your platform from
the official website.2 Once the app is installed, run it. From the File menu,
select the Open a Heap Dump... option. Browse to the heap.hprof file you created
and select it. It will take a moment to process the file, and when it’s done
you’ll see a pie chart representing all the classes found in the heap.

Eclipse MAT does a great deal more than display the classes and objects. It
can analyze the results and even pinpoint the source of a memory leak. From
the menu, select the button with an arrow. From the next set of choices select
Leak Suspects. This will open a new tab with a list of possible candidates for
the source of a memory leak, as shown in the following figure:

2. http://www.eclipse.org/mat/downloads.php

report erratum • discuss

Analyzing a Heap Dump • 105

http://www.eclipse.org/mat/downloads.php
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Click the Details link, and then right-click one of the objects listed and select
Immediate Dominators. This opens a new tab containing a list of objects that
are holding references to the class you selected. For example, if you selected
RubyHashEntry, you’d likely see that the objects holding a reference to this are
of type org.jruby.RubyHash, as shown in the following figure:

In this way, Eclipse MAT can help you not only identify leaking objects but
also identify what objects are holding the references that are preventing the
leaking object from being cleaned up. Diagnosing a memory leak is never
easy, but with Eclipse MAT you can make intelligent decisions as you inves-
tigate the problem.

Try exercising your synthetic memory leak again. Give the code some time to
run and then take a heap dump. See if you can locate the leak using Eclipse
MAT. When finished, remove the leaking code in app/controllers/post_controller.rb.

The jmap tool is just one of the many tools provided with the JDK. Other tools,
such as jstack, can attach to a running process and create a thread dump.
jstack can even identify a deadlock. These other tools are not notably better
than VisualVM, but they’re essential when you need to remotely attach to a
running process in a headless production environment.

VisualVM, JMX, JRuby profiler, and Eclipse MAT are all tools you can use to
solve and prevent problems. But you can always defer to command-line tools
when you need to write scripts or Rake tasks. As with your deployment, using

Chapter 6. Managing a JRuby Application • 106

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

JRuby doesn’t mean you have to dramatically change the way you do things.
But if you’re willing to embrace some new features, you’ll gain a lot of power.

Wrapping Up
Keeping an application running is difficult. But the tools and techniques you
used in this chapter will help diagnose and resolve problems when your
application starts misbehaving. In this chapter, you learned about Java
Management Extensions, which helped you inspect and control your runtime.
You may choose not to use this tool, but it still helped you gain a better
understanding of the JVM’s innards.

You also used some profiling tools to get a snapshot of Twitalytics’s perfor-
mance characteristics. Every application has its slow spots, but with a basic
understanding of these tools, you’ll be able to track down those pain points
without much trouble.

Deploying Twitalytics on JRuby simplified its infrastructure, which allows
these tools to give you a better picture of the health of the system. You no
longer have to monitor dozens of processes that have their own memory
footprints and CPU utilization. Instead, you can use the robust tools and
services provided by the JVM to capture the entire picture of your application’s
performance.

In the next chapter, you’ll learn how to use the information you’ve collected
with these tools to tune your app, the JRuby runtime, and the JVM for peak
performance.

report erratum • discuss

Wrapping Up • 107

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 7

Tuning a JRuby Application
Tuning for peak performance is a bit like conducting a science experiment.
You develop a hypothesis, test your hypothesis, and then change variables
to test their effect on the system. The trick is knowing what variables to change
and when to change them.

In the coming pages, you’ll learn about some variables you can configure and
knobs you can turn in the JVM to improve performance. You’ll learn what
heap memory is and how you can adjust it. You’ll also learn about other types
of memory like metaspace and direct memory. In every case, you’ll learn how
to detect early warning signs of problems and make corrections before they
cause trouble.

After memory, you’ll learn about garbage collection (GC), which relates to
memory but also to CPU performance. Then you’ll execute benchmarks against
the GC in Twitalytics. Through this process, you’ll learn about the different
options you can set in JRuby when starting a process. These options control
every aspect of the runtime, from the JVM up to the Ruby code itself.

Let’s begin with an option that is essential to how your code performs on
the JVM.

Setting the Heap Size
All of the JVM and JRuby options you’ll learn about in this chapter can be
used with each of the frameworks discussed in this book. Some need to be
defined in a different way depending on the platform, but those cases will be
specifically called out. Despite the differences in how they’re defined, the
underlying effects of these options will remain the same across frameworks.

When a JVM starts up, it reserves a chunk of system memory called the heap.
Each time a new object is created in a JRuby program, the platform allocates

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

a piece of heap memory for it, which is reserved until the GC decides to reclaim
the object. At that time, the associated piece of memory is returned to the
heap. This process is called dynamic memory allocation, and MRI uses a
similar strategy. But the JVM gives you more control over how memory is
managed.

When you start a JVM, you can configure several parameters that determine
how heap memory grows. You can set its initial size, maximum size, and what
algorithm the runtime uses for GC. The values you choose for these options
greatly affect the performance of an application.

The most commonly used JVM options control the heap size. They are
described here:

-J-Xms This sets the initial size of the heap. The JVM will reserve this amount
of memory at startup. The flag should be followed by a positive integer
value and then by either k, m, or g (for KB, MB, and GB, respectively).
Here’s an example: -J-Xms64m.

-J-Xmx This sets the maximum size of the heap. It should be followed by a
positive integer value and then by either k, m, or g (for KB, MB, or GB,
respectively). Here’s an example: -J-Xmx512m.

The default maximum heap size for JRuby is 500 megabytes, or 500m, but
most web servers typically run with at least a 1-gigabyte cap. If the maximum
is set too low, it can cause the JVM to lock up or even crash. You can
demonstrate this by starting up Twitalytics with a ridiculously low maximum
of 16 megabytes. Using Puma, the command would look like this:

$ ruby -J-Xmx16m -S bin/puma
...
! Unable to load application: LoadError: load error: sass/tree/css_import_node

-- java.lang.OutOfMemoryError: GC overhead limit exceeded
LoadError: load error: sass/tree/css_import_node

-- java.lang.OutOfMemoryError: GC overhead limit exceeded

With reasonable memory settings, you might run into this error if Twitalytics
started leaking memory. But with a stable application, it’s not something you
should ordinarily see.

The memory options used with TorqueBox or Warbler are similar to the
command shown previously, but you pass them to the java command without
the -J prefix. A reasonable configuration might look like this:

$ java -Xmx1024m -Xms256m -jar twitalytics.jar

Chapter 7. Tuning a JRuby Application • 110

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

You can always confirm that a JVM process is using the correct memory
settings by inspecting it with JConsole or VisualVM. But you can also get the
value of an individual flag with the jinfo command. Get the process ID for your
JRuby server using jps as you did in Chapter 6, Managing a JRuby Application,
on page 87. Then use that ID like this:

$ jps -l
46063 org/jruby/Main
46126 sun.tools.jps.Jps

$ jinfo -flag MaxHeapSize 46063
-XX:MaxHeapSize=67108864

The MaxHeapSize flag corresponds to the Xmx setting. You can see here that it’s
set to 64 megabytes.

The best setting for heap size depends on your application. You’ll want it high
enough that the GC doesn’t have to run too often. But you’ll want it low
enough that the GC won’t have to spend too much time collecting objects and
freeing up memory when it does run. You’ll also want to avoid setting the
heap size higher than the available physical memory. Modern operating sys-
tems handle excessive memory allocation by swapping, but this behavior is
particularly detrimental to Java applications.

A good rule of thumb is to size the heap so it is 30% consumed after a full
GC run. You can determine this value by running your application until it
reaches a steady state and running a full GC from JConsole or VisualVM as
you did in Chapter 6, Managing a JRuby Application, on page 87.

The JVM’s cap on memory consumption may seem like a frustrating anti-
feature, but it protects against the process reserving every last bit of system
memory at runtime. Having a JVM crash is much more pleasant than having
an entire system crash or start using swap memory, which degrades perfor-
mance. Once you know the amount of memory an application needs, the cap
becomes a safety net instead of a roadblock.

Determining the best maximum and minimum sizes for the heap is an iterative
process. After running Twitalytics in a staging environment, you’ll learn where
its memory consumption tops out, and you can set the boundaries accordingly.
The JVM provides some excellent tools to help with this by displaying memory
consumption over time.

Setting Metaspace Size
In addition to heap space, the JVM allocates multiple chunks of memory for
things that need to be stored off heap. This includes I/O buffers, thread

report erratum • discuss

Setting Metaspace Size • 111

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

stacks, compiled code, and metaspace. The total memory footprint of a JVM
process is the sum of the memory footprint for each of these components.

Metaspace contains metadata about the application the JVM is running. It
contains class definitions, method definitions, and other things like that. The
more classes you load into your app, the larger metaspace will be. Most JVM
processes require only 40 to 50 megabytes for metaspace, but JRuby must
load the entire Ruby standard library into memory at runtime, which moves
its grand total a bit higher. A typical JRuby on Rails application will use 80
to 100 megabytes of metaspace memory from the outset. The more classes
you create, and the more gems you include, the higher this will go.

Other than the different types of objects that go into metaspace, it’s similar
to heap. Its initial and maximum sizes can be configured, and it’s even eligible
for GC in some cases. Here are the relevant options:

-J-XX:MetaspaceSize This sets the initial size of metaspace. The default value
for a 64-bit JVM is 20.75 megabytes.

-J-XX:MaxMetaspaceSize This sets the maximum size of metaspace. It’s unlimited
by default.

As an example, you might start a JRuby server with these options:

$ ruby -J-XX:MaxMetaspaceSize=100m -S bin/puma

If metaspace is overallocated, your application will crash with a java.lang.Out-
OfMemoryError: Metaspace error, so it’s important not to set this too low.

Metaspace is an extremely common source of off-heap memory leaks. If you
find your overall memory footprint is growing well beyond the maximum heap
size, the first place to look is metaspace.

Configuring Heap Generations
Within the JVM heap are segments called generations. Each generation rep-
resents a set of objects that have be kept in memory for about the same
amount of time, which makes it easier for the garbage collector to find them.
The first generation is called the young generation or sometimes the new
generation. This is where memory is initially allocated for most objects. When
objects survive GC (that is, they’re still in use) they’re moved to the old gener-
ation, which is also called the tenured generation.

The most important of these is the young generation. It determines the size
of both generations because it’s reserved first, and the remaining heap space

Chapter 7. Tuning a JRuby Application • 112

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

is used for the old generation. The young generation will grow in tandem with
the overall heap, but it also fluctuates as a percentage of the total heap.

Determining the appropriate size for the overall heap is still the most important
part of memory tuning. But it’s followed by sizing the young generation. It’s
important to point out, however, that you may not need to change the defaults.
The JVM will start with a balanced configuration, and you should make
changes only if you experience problems, such as long pauses for GC, which
you’ll learn about in the next section.

Before configuring the size of the young generation, you must understand
the performance implications associated with it. If the young generation is
too large, the GC will run less often and fewer objects will be promoted to the
old generation. On the other hand, a smaller old generation will result in more
full runs of the GC, which may be desirable depending on the algorithm.
Different GC algorithms balance this in different ways, but they all use the
same set of flags for configuring the size of these generations.

The following options can be set in the same way as the -J-Xmx and -J-Xms
options:

-J-XX:NewRatio This sets the ratio of the young generation to the old generation.
As the overall heap grows, this ratio will be maintained. For example: -J-
XX:NewRatio=1

-J-XX:NewSize This sets the initial size of the young generation. For example:
-J-XX:NewSize=256m

-J-XX:MaxNewSize This sets the maximum size of the young generation. For
example: -J-XX:MaxNewSize=1g

-J-Xmn Shorthand for setting initial and maximum sizes of the young gener-
ation to the same value. For example: -J-Xmn256m

The best way to configure the size of the young generation is by defining it as
a ratio of overall heap. This ensures better scalability because no matter how
much the overall heap size changes, the young generation will remain at a
reasonable level. The formula used to calculate the size of the young generation
from the NewRatio is

Young Gen Size = Heap Size / (1 + NewRatio)

The default value for the NewRatio option is 2, which means the default young
generation size for a JRuby process with an initial heap size of 500 megabytes
is about 166 megabytes. If NewRatio is set to 1, then the default size will be
250 megabytes. Test this by starting a JRuby server with the following options:

report erratum • discuss

Configuring Heap Generations • 113

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

$ ruby -J-XX:NewRatio=1 -S bin/puma

Once the process is running, capture its PID with jps and then run jinfo to
inspect it, as shown here:

$ jps -l
73063 org/jruby/Main
73126 sun.tools.jps.Jps

$ jinfo -flag NewSize 73063
-XX:NewSize=262144000

$ jinfo -flag InitialHeapSize 73063
-XX:InitialHeapSize=524288000

In this example, the NewSize is roughly half the size of the initial heap. The
actual size of the memory allocations always ends up being bigger than you
specify. This is because the operating system allocates blocks of it at a time.

Figuring out the best value for the young generation ratio is difficult. But you
will almost always want it to be a ratio and not an predefined value. You’ll
probably need to conduct benchmark tests against your application with
different settings to find the best value. But even if you never change the
ratio, an understanding of the heap generations and how they work is
important because it informs your decisions when choosing a GC algorithm.

Choosing a Garbage Collector
You might wonder why the JVM has all these different types of memory. Why
not just put all objects in one place?

The JVM segments memory to make garbage collection faster, which improves
overall performance. When it comes down to it, this is the same reason you
might choose a Hash instead of an Array. Having different sections of memory
allows the GC to find things faster and run less often. Optimizing the GC in
this way is important because when the GC runs, your application pauses.
Garbage collection must happen quickly and as infrequently as possible.

In general, a garbage collector is form of automatic memory management. It
finds objects that are no longer in use and releases the memory associated
with those objects. To do this, the GC must periodically search the heap for
orphaned objects. The collection process consumes resources and can hurt
the performance of an application. But a good GC does this very quickly and
even knows how to coalesce the chunks of memory it frees up to avoid frag-
mentation.

Chapter 7. Tuning a JRuby Application • 114

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The JVM doesn’t have just one GC, though. It offers four GC algorithms to
choose from. But only one can run at a time, and the algorithm must be
chosen when the process is started. It’s an important decision because the
GC affects the performance of your application more than any other component
in the JVM. If you’re having performance problems that cannot be solved by
increasing the heap size, then the next place to look is the GC.

The four GC algorithms are described next.

Serial Collector
The serial garbage collector is the simplest of the four GC algorithms. It’s also
the least powerful. It was the default GC in older 32-bit JVMs because it was
well suited to client machines and development environments. But it isn’t
used very often with Java 8.

The serial collector uses a single thread to process the heap. It pauses all
application threads while doing this, even if it isn’t doing a full GC (that is,
it’s processing only the young generation). You can enable it by adding the -J-
XX:+UseSerialGC flag to your JRuby command.

Throughput Collector
The throughput collector, also known as the parallel collector, is the default
GC algorithm for most JVMs. As its name implies, it uses multiple threads
to process the heap. But it also requires a complete pause as it does this.

One intangible benefit of the throughput collector is that it’s the oldest of the
collection algorithms. The JVM core engineers have had more time to optimize,
debug, and otherwise improve it. It’s the most mature and dependable of the
algorithms available.

You usually don’t need to enable the throughput collector because it’s the
default. But if for some reason you need to, you can turn it on by adding the
-J-XX:+UseParallelGC -J-XX:+UseParallelOldGC flags to your JRuby command. There are
two flags because these options configure the algorithms to use for the young
and old generations, respectively.

CMS Collector
The Concurrent Mark Sweep (CMS) collector is designed to eliminate some
of the pauses associated with the serial and throughput collectors. The CMS
algorithm still pauses all application threads when processing the young
generation but doesn’t require a pause for a full GC. Like the throughput
collector, it uses multiple threads to process the heap.

report erratum • discuss

Choosing a Garbage Collector • 115

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

The drawback of the CMS collector is that it increases CPU usage. As you
can imagine, if the collector doesn’t require a pause, then it’s running at the
same time as your application, which means the collector is competing for
resources with your application threads. In addition, the background threads
don’t perform any heap compaction, which can lead to memory fragmentation.

If the heap becomes too fragmented to allocate new objects, or if the CMS
collector doesn’t get enough CPU time to complete its tasks, then the algorithm
reverts to the behavior of the serial collector. It stops all application threads
until it catches up and then returns to concurrent background processing.

You can enable the CMS collector by adding the -J-XX:+UseConcMarkSweepGC -J-
XX:+UseParNewGC flags to your JRuby command.

G1 Collector
The Garbage First (G1) collector is designed to process large heaps with
minimal pauses. A heap is considered to be large if it’s greater than 4 giga-
bytes. The algorithm works by dividing the heap into a number of regions
(around 2,048 by default). The collector uses concurrent background threads
to watch these regions and then collects only those regions with the most
garbage. A full pause is still required when collecting a region in the young
generation, but a region in the old generation can usually be collected without
any pause.

Like CMS, the drawback with G1 is increased CPU usage. The risk of fragmen-
tation, however, is lower because the algorithm can partially compact the
heap by moving objects from one region to another. For this reason, the G1
collector will most likely be the default collector in JDK 9.

You can enable the G1 collector by adding the -J-XX:+UseG1GC flag to your
JRuby command.

Understanding how these garbage collectors work is just the first part of
choosing one. The real test comes when you benchmark them against your
application.

Benchmarking the Garbage Collector
Choosing a garbage collector comes down three characteristics: throughput,
latency, and memory footprint. Because you don’t have infinite resources,
you’ll have to choose one of them.

It’s best to start by using the default collector. If you don’t experience any
performance problems, then stick with it. If you begin to encounter problems,

Chapter 7. Tuning a JRuby Application • 116

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

adjust the heap first. Use the 30% rule to find the optimal heap size. But
remember, a heap that’s too small or too big can hurt performance.

If you’ve optimized your heap size and still have performance problems, only
then should you consider changing the garbage collector. Depending on your
overall heap size, try either the CMS or G1 collector. For large heaps, try G1.
For smaller heaps (less than 4 gigabytes), you may prefer the CMS collector.

In any case, make sure you benchmark the application and compare results.
For a real app, you’ll want to execute real behaviors. But for Twitalytics, you
can use a synthetic benchmark to test different types of resource-bound
operations.

To replicate these tests, you’ll need to download the Faban HTTP Bench (fhb)
command-line tool from the official website.1 It’s Java based and works on
all platforms. Once you’ve downloaded the TAR file, unpack it and put the bin
directory on your PATH environment variable. You’re ready to run some tests.

You’ll begin by measuring throughput—the rate at which a server can process
requests. From the Twitalytics root directory, run the following command to
create a benchmark controller:

$ bin/rails generate controller bench index \
--assets=false --helper=false

Then open the app/controllers/bench_controller.rb file and edit the index() method so
it looks like this:

Benchmark/twitalytics/app/controllers/bench_controller.rb

def index
history = session[:history] || []
history.shift if history.size > params[:save].to_i
history << (1..100).map { rand(1 << 256) + rand(1 << 256) }
session[:history] = history

render :text => "done"
end

This code creates an Array of random values and puts it in the user’s session
(up to a limit defined by the save parameter). This will ensure that some load
is put on the GC.

However, the default Rails session store is cookie based, which means the
values your code creates won’t be stored in memory. You’ll need to change
this session store in config/initializers/session_store.rb. Open the file and add this:

1. http://faban.org/download.html

report erratum • discuss

Benchmarking the Garbage Collector • 117

http://media.pragprog.com/titles/jkdepj2/code/Benchmark/twitalytics/app/controllers/bench_controller.rb
http://faban.org/download.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Benchmark/twitalytics/config/initializers/session_store.rb

Rails.application.config.
session_store :cache_store, key: '_twitalytics_session'

This configures Rails to use an in-memory session store. Note that in practice
this isn’t a great way of doing things, but it’s necessary to perform this
benchmark.

For the first test, run the app with the default GC, the throughput collector,
and a 2-gigabyte heap size:

$ ruby -J-Xmx2g -S bin/puma

When the server is ready to receive requests, run fhb with the following options
for output directory, -D, and number of clients, -c:

$ fhb -D tmp/fhb -c 1 http://localhost:3000/bench/index?save=25

The test will take about 10 minutes to run. When it completes, leave the
JRuby server running and capture its process ID with jps and then run jstat,
another JDK tool, to collect GC data:

$ jps -l
73063 org/jruby/Main
73126 sun.tools.jps.Jps

$ jstat -gcutil 73063
S0 S1 E O M CCS YGC YGCT FGC FGCT GCT

62.50 0.00 78.16 80.87 98.32 98.19 1058 4.386 2 0.399 4.785

The GCT column displays how much time the process spent pausing to collect
garbage. The other columns display details for young generation passes, old
generation passes, and some other things.

The fhb tool creates a summary of its results in the tmp/fhb/1/summary.xml file.
Each time you run the tool, a new directory will be created under tmp/fhb. The
summary.xml file contains information on response time, number of operations,
and much more.

Now you can repeat this process with different garbage collectors and different
numbers of clients. Kill the Puma server and run the app again with this
command:

$ ruby -J-XX:+UseG1GC -J-Xmx2g -S bin/puma

Then follow the same process of running fhb, capturing the PID and GC met-
rics, and saving the summary.xml file. Repeat both tests again with twenty fhb
clients instead of one.

Chapter 7. Tuning a JRuby Application • 118

report erratum • discuss

http://media.pragprog.com/titles/jkdepj2/code/Benchmark/twitalytics/config/initializers/session_store.rb
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Let’s examine the results for these four different tests on a server with two
CPUs (an Amazon c3.large instance).

G1 TPSThroughput TPSClients

18.119.01

88.9109.420

During the first pass, with only one client (that is, one session), the
throughput collector performed slightly more transactions per second (TPS)
than the G1 collector. But as the number of clients increased (that is, the
CPU became more saturated), the performance for the G1 dropped and the
difference in TPS with twenty clients was much greater. Now let’s look at how
much time each collector spent pausing for GC.

G1 GC Pause (seconds)Par GC Pause (seconds)Clients

2.4644.7851

11.72712.38220

The G1 collector spent less time pausing to collect garbage. But it was also
working concurrently and competing with the server for CPU time, which
reduced the number of requests the server could process. It may come as no
surprise then that the throughput collector excels at achieving higher
throughput.

However, the latency associated with each run tells a different story. The
Perc90 and Perc99 are much closer together, and the throughput collector
falls behind for the max response time:

Max Response Time (seconds)Perc99 (seconds)Perc90 (seconds)GC (w/ 20 clients)

1.1910.3450.275Throughput

0.8950.3550.275G1

This is due to the throughput collector pausing for a full GC pass. Even though
it occurs infrequently, it can affect a small percentage of requests.

As the heap size grows and the throughput collector is required to pause for
more full GC passes, the Perc99 of the G1 may become better relative to the
throughput collector if sufficient CPU is available. This is a difficult scenario
to reproduce in a synthetic benchmark, but it’s something you’ll want to
watch for in the real world.

It’s important not to draw too many conclusions from the results shown here.
The lesson in this experiment is not the results themselves but the knowledge
of how to run this test against a real app. You’ve learned that the throughput

report erratum • discuss

Benchmarking the Garbage Collector • 119

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

collector is the best default and the G1 collector is the most predictable. You’ve
also learned how to test your app and gather data about its performance. You
can use this to collect information that will inform your decisions.

Joe asks:

What Is Perc99?
One measurement of web application performance is response time—the time between
a client’s request and the app’s response. Faster response times are better.

It’s common to track response time as an average, but averages tell only part of the
story. Imagine an app with two endpoints: one with a response time of 10 ms and
the other with a response time of 1,000 ms. If the fast method is called 90% of the
time, the average response time for the app will be a respectable 109 ms. But this
average disguises the fact that one part of the app is fast while another is very slow.

Measuring just the slowest response times can skew the results, too. If this app had
a third method with a 30,000 ms response time that was called less than 1% of the
time, the maximum response time would be 30,000 ms. This is also not representative
of how most users experience the app.

The “Goldilocks” solution is measuring the 99th percentile of response times or the
Perc99. Perc99 is the time for which 99% of requests are faster.a By definition, Perc99
accounts for the majority of an app’s performance, without being susceptible to
extreme outliers. Using the example app, the Perc99 would be 1,000 ms, which is a
measure of the upper end of the response time most users would experience.

a. http://research.google.com/pubs/pub40801.html

Using invokedynamic
If you’ve been hanging around the JRuby community at all in the last couple
of years, you’ve probably heard about invokedynamic. It’s a new bytecode
instruction that was added in Java 7 but didn’t get the kinks worked out of
it until Java 8. The invokedynamic instruction promised great performance
improvements for JRuby, but it turned out to improve only a few specific
cases. Synthetic micro-benchmarks show significant gains, but larger tests
and macro-benchmarks haven’t lived up to expectations. In the future, the
JRuby core team will learn how to use this JVM feature to its full potential
and probably turn it on selectively for you. But for now, JRuby keeps this
feature off by default.

You may find it worthwhile to test your application with invokedynamic turned
on. It’s possible you’ll see some performance gains depending on the kind of

Chapter 7. Tuning a JRuby Application • 120

report erratum • discuss

http://research.google.com/pubs/pub40801.html
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

logic you have in your app. You can enable invokedynamic by running your
server with the -Xcompile.invokedynamic=true option, as shown here:

$ ruby -J-Xcompile.invokedynamic=true -S bin/puma

In order to determine if the option improved performance, you’ll need to run
some more benchmarks against your app and watch performance metrics.
In this case, it’s probably best to do that organically in production. And that
brings us to the next chapter.

Wrapping Up
It’s often said that magic is indistinguishable from advanced technology. And
anyone who has seen the work produced by a professional performance
engineer can attest that the results often seem mystical. But they’re not.
Performance tuning is the process of applying deep knowledge, experience,
and intuition.

Experience and intuition can be achieved only through years of practice. But
you’ve already learned the essential knowledge you need to tune a JRuby
application. You’ve learned how to test your app in a controlled environment,
and you’ve learned about many of the knobs you can turn as you’re testing.

Running these tests takes time, though. Don’t expect to start tuning your
app before it gets real traffic, and don’t expect tuning to be a one-time activity.
You’ll iterate on tuning just as you do with anything else in software.

The best way to inform your decisions as you tune is to collect as much data
as possible. That includes not only the controlled setting of a benchmark but
also an instrumented production runtime. In the next chapter you’ll learn
how to capture real performance data.

report erratum • discuss

Wrapping Up • 121

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 8

Monitoring JRuby in Production
You’ve already learned how to get performance data from your app, the JRuby
runtime, and the JVM. But profiling tools like VisualVM and JConsole are
not well suited for use on a regular basis. They don’t capture historical data
well, and some of their features even degrade the performance of your app.
Besides, when a problem has occurred it’s usually too late to collect informa-
tion with a profiler. A better solution for production monitoring is a back-
ground agent that reports to an external service.

In this chapter, you’ll attach some monitoring services to your production
server to track its performance, uptime, and fault tolerance. You’ll learn how
to create alerts for performance thresholds, capture detailed information when
an error occurs, and keep a historical record of performance. A historical
record can help you establish a performance baseline you can use to determine
if the behavior you see is normal or an outlier. All of this will help you identify
the root cause of errors, fix them faster, and even prevent them.

Let’s begin with a service that’s widely used in the Ruby on Rails community
and works well with JRuby.

Installing the New Relic Gem
New Relic1 is a popular application performance monitoring (APM) service
that captures near real-time data about your web application’s performance.
You can use this data to monitor, troubleshoot, and tune a production web
server.

New Relic’s advantage over the other tools you’ve learned about is its ability
to work with complete production systems, which may include more than
one application. The JVM tools you used in Chapter 6, Managing a JRuby

1. http://newrelic.com/

report erratum • discuss

http://newrelic.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Application, on page 87 work specifically with a single process, but a produc-
tion app is usually composed of multiple processes for handling web requests,
running background jobs, and more. With New Relic, you’ll passively monitor
your entire system. You’ll hope that nothing goes wrong, but when an error
does occur, you’ll have all the data you need to debug it.

If you’ve ever used New Relic with a Ruby application, then you’ll be pleased
to learn that it works exactly the same way with JRuby as it does with MRI.
You’ll add an agent to a host server, which reports information back to the
New Relic servers. Then you can sign in to the New Relic dashboard to view
an analysis of all the data that was collected.

To use New Relic with Twitalytics, add the New Relic agent as a dependency.
The agent is really just a gem, so open the app’s Gemfile and add this line to
the bottom of it:

gem "newrelic_rpm"

Now run bundle to download and install the gem locally. After it’s installed,
add the changes to Git by running these commands:

$ git add Gemfile Gemfile.lock
$ git commit -m "New Relic"

The agent will run in every process your application uses and report back to
the New Relic servers. But it needs a place to put these reports. The next step
is creating a New Relic app to collect the data on the receiving end. The
quickest and easiest way to do this is by attaching the New Relic add-on to
your Heroku app. Run this command:

$ heroku addons:create newrelic

You can even connect to this instance from your Docker containers. But if
you’d prefer not to use Heroku, browse to the New Relic website and create
an account.2 Then follow the instructions for creating a new APM app and
configuring your New Relic API key.

Whether you’re using Heroku or not, you’ll need to set an environment variable
with the name of your New Relic app. The name doesn’t have to be the same
as your Heroku app name, but that’s what we’ll use here. To configure the
name on Heroku, run the following command:

$ heroku config:set NEW_RELIC_APP_NAME="obscure-fjord-4138"

2. http://newrelic.com/

Chapter 8. Monitoring JRuby in Production • 124

report erratum • discuss

http://newrelic.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

If you’re using Docker with your private infrastructure, you can add this line
to your Dockerfile:

ENV NEW_RELIC_APP_NAME obscure-fjord-4138

Now redeploy your app by running either git push heroku master or docker push.

After Twitalytics restarts, make a few requests and wait about five minutes
to give the app time to report back to the New Relic servers. When finished,
run this command to open the instance attached to your Heroku app:

$ heroku addons:open newrelic

If you’re not using Heroku, browse to the New Relic APM dashboard.3 In either
case, you’ll see something like this:

The large graph is an overview of response times. The smaller graph on the
bottom right is an overview of throughput. The Application Performance Index
(Apdex) score in the upper right is a measurement of user satisfaction. The
Apdex method converts many measurements into one number on a uniform
scale.4 A high Apdex score is good—it will decrease as response time
increases.

Scroll down to see the rest of the overview page. You’ll find graphs for error
rates and common transactions. When you start to experience problems with
an app, you can use the dashboard to drill into specific transactions or limit
the time frame you’re inspecting.

How will you know when you’re having a problem? That’s where alerting helps.

3. https://docs.newrelic.com/docs/apm/applications-menu/monitoring/viewing-your-applications-list
4. https://docs.newrelic.com/docs/apm/new-relic-apm/apdex/apdex-measuring-user-satisfaction

report erratum • discuss

Installing the New Relic Gem • 125

https://docs.newrelic.com/docs/apm/applications-menu/monitoring/viewing-your-applications-list
https://docs.newrelic.com/docs/apm/new-relic-apm/apdex/apdex-measuring-user-satisfaction
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Joe asks:

What’s Apdex?
Apdex is an industry standard for measuring user satisfaction with the response time
of an application or service. The response time of the app is based on a set threshold,
which is defined by the application’s owner. All responses handled within this
threshold or in less time are considered as satisfying the user.

For example, if the threshold (T) is 1.2 seconds and a response completes in 0.5
seconds, then the user is satisfied. All responses greater than 1.2 seconds dissatisfy
the user. These measurements are then tracked in three categories:

Satisfied The response time is less than or equal to T.

Tolerating The response time is greater than T and less than or equal to 4T. In this
example, 4 x 1.2 = 4.8 seconds as the maximum tolerable response time.

Frustrated The response time is greater than 4T.

The overall Apdex score is a ratio of the number of satisfied and tolerating requests
to the total requests made. Each satisfied request counts as one request, while each
tolerating request counts as half a satisfied request.

Creating a New Relic Alert
From the New Relic dashboard, select the Alerts options from the menu. Then
click the Edit Alert Policies button, and you’ll see a default policy for your
app, as shown here:

This policy is designed to alert you if the application shuts down for any rea-
son. But it needs to have a few options set before it can work. The first thing
you’ll configure is a Ping URL. This is the URL New Relic uses to determine
if your application is running or not.

Click the policy, and then click the Edit button. In the Applications menu on
the right side, select your app. A dialog will open with an empty field for the

Chapter 8. Monitoring JRuby in Production • 126

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Ping URL. Put the URL for your app in the field and click Save Your Changes.
Now the alert can trigger, but it needs somewhere to send the message.

Click the Alert Channels tab in the policy form and then select Create Chan-
nels. In the dialog that appears, select Email and then Create Channel. Enter
your email address in the text box, and click Save My Changes.

Now New Relic is ready to alert you. Test it out by shutting down your app.
On Heroku, you can run this command:

$ heroku ps:scale web=0

After a few moments, you’ll receive an email that looks like this:

New Relic can send alerts when an application crashes or performance
degrades or for just about any parameters you’re interested in. That’s an
important feature because early detection is the key to solving problems.

Degraded performance is a bit of a nebulous and subjective problem, though.
Some problems are more explicit and bubble up as exceptions. New Relic can
help with uncaught exceptions, but it’s often better to have a dedicated error-
tracking service.

Handling Errors with Rollbar
Rollbar is a service for tracking and reproducing exceptions and errors. It can
collect, de-duplicate, and alert on error conditions. It also provides a dash-
board and analysis tools you can use to investigate specific incidents.

Having an error tracker helps you monitor the unexpected. When you’re
monitoring performance, you know to look at heap and CPU usage. But
unexpected errors often come from the places you never thought to look at.
Rollbar watches for exceptions globally within the runtime, which means it

report erratum • discuss

Handling Errors with Rollbar • 127

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

can catch any error—even those that originate outside your code. Let’s add
Rollbar to Twitalytics.

If you’re using Heroku, attach the Rollbar add-on to your app by running this
command:

$ heroku addons:create rollbar

If you’re not using Heroku, browse to the Rollbar website and create an
account.5 Then follow the instructions for trying Rollbar for free.

In either case, the next step is adding the Rollbar gem to Twitalytics. Much
like New Relic, Rollbar uses a client gem that communicates information
about the app back to the Rollbar servers. Add this line to your Gemfile:

gem "rollbar"

Then run Bundler to install the gem, and run Rake to regenerate your Rails
binstubs:

$ bundle install --binstubs
$ rake rails:update:bin

Rollbar provides a helpful Rails generator that creates the necessary configu-
ration. Use this command to run it:

$ bin/rails generate rollbar

A config/initializers/rollbar.rb file is generated in your app. The initializer contains
everything needed to connect your app to Rollbar except for the API key, which
it retrieves from an environment variable. To test Rollbar locally, you’ll need
to set the variable in your development environment.

To get the value of your API key on Heroku, run this command:

$ heroku config:get ROLLBAR_ACCESS_TOKEN

If you’re not using the Heroku Rollbar instance, you can get your Rollbar API
key from the Rollbar website.6 In either case, set the key as the value for the
ROLLBAR_ACCESS_TOKEN environment variable locally by running this command
on Mac and Linux, with the value of the key replacing xxxx:

$ export ROLLBAR_ACCESS_TOKEN="xxxx"

Or run this command on Windows with the value of the key replacing xxxx:

C:\> set ROLLBAR_ACCESS_TOKEN="xxxx"

5. https://rollbar.com/signup
6. https://rollbar.com/

Chapter 8. Monitoring JRuby in Production • 128

report erratum • discuss

https://rollbar.com/signup
https://rollbar.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

From the same terminal session, test Rollbar by running this command:

$ bin/rake rollbar:test
...
RollbarTestingException (Testing rollbar with "rake rollbar:test"....
...

The test must generate an exception—because that’s what Rollbar cap-
tures—so it may look like the test failed. But as long as you see the line con-
taining RollbarTestingException and “If you can see this, it works,” then the test
was successful.

You’re ready to deploy. Add your changes to Git by running these commands:

$ git add config/initializers/rollbar.rb
$ git commit -m "rollbar"

Then deploy by running either git push heroku master or docker push depending on
your choice of platform.

When your deployment is complete, run this command to open the dashboard
for the Heroku Rollbar instance:

$ heroku addons:open rollbar

If you’re not using Heroku, browse to your app’s dashboard on the Rollbar
website.

Either way, you’ll see something like this:

The dashboard contains two items, which represent the errors generated by
the test you ran from the terminal a moment ago.

To create an error occurrence from the real running app, simply browse to a
URL that doesn’t exist. For example, run this command on Heroku:

$ heroku open nope

Or browse to the /nope route on your private infrastructure. For both, you’ll
see an error page with the text “The page you were looking for doesn’t exist.”

report erratum • discuss

Handling Errors with Rollbar • 129

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Return to the Rollbar dashboard and refresh the page. You’ll see a new error
of type ActionController::RoutingError. Click it to drill into the details and you’ll see
something like this figure:

Rollbar tracks how many times an error occurred, how often it occurred, and
how many users it affected.

Refresh the browser page containing the 404 error a few times, and then
return to the Rollbar page. You’ll see an increase in the graph and the count
of occurrences. Click the Occurrences tab, and you’ll see a list of each error
instance. Click one of them to see the detail view.

Now scroll down past the details about the user agent, session ID, timestamp,
and other information until you find the Replay This Occurrence button. It
will look like this:

Chapter 8. Monitoring JRuby in Production • 130

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

If you’re using Heroku or a publicly accessible Docker instance, click the
button. It will make a new request to your server, mimicking the original
request associated with the error.

For most applications, this is all you need to get detailed information about
unexpected errors in your app. But in some cases you’ll want to customize
how Rollbar reports errors.

Customizing Rollbar Reporting
By default, the Rollbar client will report any uncaught exception. But you
can also report exceptions and other types of events manually.

For example, you may want to trap an exception, report it, and then proceed
with some default logic. In Twitalytics, this is necessary when a nonexistent
post is requested. Open the app/controllers/posts_controller.rb file, and find the set_post
method. Modify it to look like this:

def set_post
@post = Post.find(params[:id])

rescue ActiveRecord::RecordNotFound => e
Rollbar.error(e, "Requested an unknown Post")
Rollbar.log("Defaulting to first Post")
@post = Post.first

end

The rescue clause calls Rollbar.error if an ActiveRecord::RecordNotFound is raised. This
will happen if no record is found in the database for the ID. It then sets @post
to the first post in the database as a default. In this way, you can capture
some details about the error but avoid showing an error to the user.

Commit this change to Git by running

$ git add app/controllers/posts_controller.rb
$ git commit -m "rollbar error"

Then deploy with either git push herokumaster or docker push. When the deployment
completes, open a browser to a URL for a post that doesn’t exist. You can run
this command for Heroku:

$ heroku open posts/9999

Instead of an error, you’ll see the details for the first post in the database (the
post with ID 1). When you return to your Rollbar dashboard, you’ll see a
Warning item for the ActiveRecord::RecordNotFound error as well as a log entry for
the default message.

report erratum • discuss

Customizing Rollbar Reporting • 131

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Rollbar also has the ability to track deployments, which help determine the
version of the app that was running when an error occurred. It can integrate
with tools such as GitHub, Slack, HipChat, JIRA, Pivotal Tracker, Trello,
Campfire, and more. As it collects more and more errors over time, you’ll be
able to discover trends in how people are using your app and what specific
problems they’re encountering.

Wrapping Up
The moral of this chapter is don’t wait until it’s too late. Performance and error
monitoring are the kind of services you realize you need only after you’re up
the proverbial creek without them.

Because these services are so critical, it’s also a good idea to use them in
staging and test environments. You can use them to collaborate with a qual-
ity assurance team or ensure the monitoring system is working before you
go to production. The minute you receive your first requests from real cus-
tomers is the minute you need real application performance monitoring.

In the next chapter, we’ll move away from our production runtime and take
a look at the bigger picture of how you deliver code to your customers. You’ll
implement a modern deployment technique alluded to in some of the earlier
chapters.

Chapter 8. Monitoring JRuby in Production • 132

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 9

Using a Continuous Integration Server
Continuous integration (CI) is the process of applying quality control valida-
tions to a code base every time it changes. In the case of Twitalytics and most
Ruby applications, this means running unit tests after each commit. But it
is not enough to rely on developers to run these tests because their local
environments may differ from your production environment. Developers do
lots of stuff on their computers that can affect a test run, such as installing
software and setting environment variables. To ensure the reliability of your
tests, you must run them the same way every time. This principle also applies
to deployment.

When you deploy from your development machine to production, you run the
risk of the local configuration affecting the artifacts you publish. But a CI
server provides a static environment resembling the production server. The
result is a more consistent and reliable process for publishing releases of
your software.

In this chapter, you’ll introduce continuous integration into your process by
using the Jenkins CI server1 to run your tests and deploy Twitalytics to a
production server. This will result in not only continuous integration but also
continuous deployment. Let’s begin by getting to know Jenkins.

Installing Jenkins
Jenkins is an open source application for continuously building and testing
software. An excellent publicly available example of a running Jenkins instance
is the TorqueBox CI service.2 This instance runs on the cloud-based CloudBees
service, but you can also run a self-hosted Jenkins instance.

1. http://jenkins-ci.org/
2. https://projectodd.ci.cloudbees.com/

report erratum • discuss

http://jenkins-ci.org/
https://projectodd.ci.cloudbees.com/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

You’ll use Jenkins to test your application and deploy it each time changes
are pushed to your repository. But rather than setting up a cloud-based or
virtual CI server, you’ll run Jenkins on your local machine. There are several
binary distributions of Jenkins for specific platforms including an executable
WAR file distribution, which is similar to the executable WAR file you created
for the Twitalytics stock-service in Chapter 1, Getting Started with JRuby, on
page 1. This will ensure that the steps in the chapter are the same on all
platforms.

Download the WAR file from the official Jenkins website.3 Put the downloaded
file into your home directory and run it with the following command (but
make sure you don’t already have Warbler or TorqueBox running because
they use the same ports):

$ java -jar jenkins.war

Jenkins is running. Browse to http://localhost:8080, and you’ll see the Jenkins
dashboard, as pictured here:

Jenkins isn’t able to run tests for a JRuby app out of the box, though. You’ll
need to add a few extensions.

Installing Jenkins Plugins
The base Jenkins server is missing Git and RVM dependencies, which are
needed to run JRuby tests. You can install these features as easy-to-use
Jenkins plugins.

From the Jenkins dashboard, click the Manage Jenkins link in the left navi-
gation pane of the page. Then click the Manage Plugins link on the next page.
On the plug-ins page, select the Available tab. This will bring up a list of plug-
ins you can install to the Jenkins server.

3. http://mirrors.jenkins-ci.org/war/latest/jenkins.war

Chapter 9. Using a Continuous Integration Server • 134

report erratum • discuss

http://mirrors.jenkins-ci.org/war/latest/jenkins.war
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

In the filter box near the top of the page, enter the value “Git plugin.” In the
filtered list, check the box next to the plugin with that name, as shown here:

Then click the Install Without Restart button at the bottom of the page. It
will take a few moments to download the plugin and install it.

If you’re not running Jenkins on a Windows machine, return to the Manage
Plugins page. Filter for the value RVM and select the corresponding plugin.
Then click the Install Without Restart button at the bottom of the page. When
the installation completes, return to the Jenkins dashboard at http://localhost:8080.

Your CI server is ready do some work. But before you can add a job that runs
your tests, you’ll need to tell Jenkins how to access your code. To do this,
you’ll create a depot for your Git repository.

Creating a Git Depot
A Git depot is a bare clone of a Git repository, which means it’s a repository
that doesn’t have a staging area where edits can be made and committed.
Instead, it can only be pushed to and pulled from. A depot is usually used to
share changes between distributed copies of the repository. The best example
of this is a GitHub project.

Create a depot for the Twitalytics repository so that Jenkins can check out
the code and run the tests against it. You could do this by pushing the code
to GitHub or a similar service, but you’ll use a local depot in this example.

report erratum • discuss

Creating a Git Depot • 135

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Run the following command with the --bare option to create a copy of your
Twitalytics repository in the ~/depot/twitalytics.git directory:

$ git clone --bare ~/code/twitalytics ~/depot/twitalytics.git

Next, add the clone as the remote origin in your Twitalytics repository:

$ cd ~/code/twitalytics
$ git remote add origin ~/depot/twitalytics.git/

Now you can push to the depot like this:

$ git push depot
Everything up-to-date

Everything is already up to date because you haven’t made any changes since
you cloned the repository.

Your Git depot is ready. Now you’ll set up Jenkins to use it.

Creating a Jenkins Job
Jenkins uses the concept of a job to represent any kind of user-defined task.
A job can run your tests, migrate a database, push a WAR file out to a server,
or run static analysis tools like Brakeman4 to provide reports on code correct-
ness. A job can even do things unrelated to your application, such as install
software packages on the host. The possibilities are endless.

Let’s create a job that runs the tests for Twitalytics. This will automate your
build process and make it more consistent. Browse to the Jenkins dashboard
at http://localhost:8080 and follow the Create New Jobs link on the front page. On
the next page, enter “twitalytics” for the name of the job, select Freestyle
Project, and then click the OK button, as shown in the following figure.

4. http://brakemanscanner.org/

Chapter 9. Using a Continuous Integration Server • 136

report erratum • discuss

http://brakemanscanner.org/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

This opens a page containing a form you can use to configure the job. Scroll
down to the Source Code Management section and fill in the Git Repository
URL field with the location of your Twitalytics depot, as pictured here (note
that you’ll need to replace the ~ with the full path to your depot):

Then fill in the branch specifier with jruby because that’s the version of Twit-
alytics you’re going to build and deploy. Each time this job runs, it will check
out a fresh copy of your jruby branch to ensure it’s testing and deploying the
latest code.

If you’re not using Windows, scroll down to the Build Environment section.
Check the box next to the option Run the Build in an RVM-Managed Environ-
ment and enter “jruby-9.0.5.0” in the text box that follows it.

Next, scroll down to the Build section. Select the Add Build Step drop-down
and choose Execute Shell or Execute Windows Batch Command, depending
on your platform. This reveals a Command text box you’ll need to fill in with
the steps for running your tests, like this:

bundle install --jobs=3 --retry=3 --without production --binstubs
RAILS_ENV=test bin/rake test

These commands will install your dependencies, create a fresh test database,
and finally run your tests.

Scroll to the bottom of the page and click Save. Your job is ready to run.

For the first run, you’ll execute the job manually. You’ll automate it later.
Browse to the Jenkins dashboard, and click the twitalytics link for your job.
Then click the Build Now link on the page that follows. Shortly after clicking
it, you’ll see the job show up in the build queue on the bottom left of the page.

report erratum • discuss

Creating a Jenkins Job • 137

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

When the job finishes, the gray dot next to its entry in the queue will turn
blue, as shown in the primary pane here:

The blue dot means the job was successful.

Now drill down to take a closer look at what happened. Click the entry for
the most recent build in the queue on the twitalytics job page. Then follow
the Console Output link, which will take you to a page with the full output
of the job. Scroll down to the bottom and you’ll see some text like this:

+ RAILS_ENV=test
+ bin/rake test
Run options: --seed 2214

Running:

.......

Finished in 3.399273s, 2.0593 runs/s, 3.8243 assertions/s.

7 runs, 13 assertions, 0 failures, 0 errors, 0 skips
Finished: SUCCESS

Your CI job is working! Let’s set it up to run automatically so you won’t need
to click the Build Now link every time you want it to run. On the Configuration
page for the job, scroll down to the Build Triggers section, and select the Poll
SCM box. In the text field, enter the cron string * * * * *, as shown in the figure
on page 139.

This will schedule the server to poll the Git depot for changes every minute.
If it finds that new changes have been checked in since the last build, it will
run the job again. Click the Save button to make sure your change is
remembered.

Now that Jenkins is watching the repo for updates, you can use it to automat-
ically deploy your app.

Chapter 9. Using a Continuous Integration Server • 138

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Enabling Continuous Delivery
Continuous integration is a great step toward improving your build and
deployment processes. But it also opens the door to continuous delivery,
which is the cornerstone of a DevOps deployment strategy.

Continuous delivery is the process of releasing an application to production
anytime a change is made to its code. In many cases, the entire process is
automated, and there’s no human intervention between committing the change
and releasing it to production. In that case, the process is called continuous
deployment. It may seem like a scary proposition, but its success has been
proven by companies like Etsy, Netflix, and others.5 6

You can enable continuous delivery for Twitalytics right from Jenkins. Open
the configuration for the job you created earlier. In the Build section, where
you wrote the commands for the rake task, add the commands to push the
code to Heroku. The complete script should look like this:

bundle install --jobs=3 --retry=3 --without production --binstubs
RAILS_ENV=test bin/rake test

heroku git:remote obscure-fjord-4138
git checkout jruby
git push -f heroku master

As before, replace “obscure-fjord-4138” with the name of your Heroku app.
These commands will add the Heroku app as a Git remote, check out the Git
jruby branch (because Jenkins normally works from a detached commit even
though the code is the same), and push the repo to Heroku just as you would
from your development command line.

5. http://techblog.netflix.com/2013/08/deploying-netflix-api.html
6. https://www.thoughtworks.com/insights/blog/case-continuous-delivery

report erratum • discuss

Enabling Continuous Delivery • 139

http://techblog.netflix.com/2013/08/deploying-netflix-api.html
https://www.thoughtworks.com/insights/blog/case-continuous-delivery
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Click Save to ensure your changes are made permanent. Then return to the
dashboard and click Build Now to force the job to run. Browse to the build
output page for the job, and watch as the Git output for the Heroku deploy-
ment is logged. Once the job is complete, you can check that the deployment
was successful by running heroku open from your app’s repo.

If you’re deploying to private infrastructure or some platform other than
Heroku, you can always replace the git push with a docker push. No matter how
you deploy your app, you’ll be able to do it from Jenkins.

The benefit of continuous delivery is agility. The more often you deploy, the
easier it is to release features and fix bugs. That, in turn, lowers the cost of
accidentally introducing bugs into production because they can easily be
rolled back or fixed by another deployment.

Wrapping Up
You’ve turned your development environment into a CI server. But setting up
Jenkins on a dedicated CI server or cloud-based server will use the same
process and configuration. Once you’ve moved CI into its own environment,
you can begin to change the way you manage your infrastructure.

If all deployments are run from CI, you no longer need to give developers
access to the staging or production servers. You can lock them down to ensure
deployments come from a single source. This will improve the consistency
and reliability of your application.

Building and deploying from a CI server is an essential part of an effective
deployment process. It ensures the reliability of your code by testing it in an
isolated and consistent environment before sending it out to the world.

But adopting continuous integration is more than just using new tools. It
also changes the end-to-end process you use to deliver software to your cus-
tomers. It’s the first step on the path to continuous deployment, which can
greatly improve a development team’s ability to respond to bugs and failures.
This can solve many but not all of your deployment problems.

The most difficult part of deployment is that every environment is different.
Technologies, processes, and team expertise all play a role in determining
how an application is delivered to customers. This makes it hard to create
reusable deployment tools. Thus, the individuals responsible for a deployment
have to be intimately familiar with the technologies they’re working with.

This book has provided a survey of the frameworks and tools you can use to
support a JRuby deployment. But as you go forth and build more advanced

Chapter 9. Using a Continuous Integration Server • 140

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

and complex applications, you’ll need to dig deeper into the particular tech-
nologies you’ve chosen for your product. Nothing is more helpful to this task
than the support of the community.

The communities that surround the JRuby technologies are some of the most
helpful and supportive in the industry. The JRuby core team actively
addresses issues on the mailing list and on IRC. The TorqueBox and Warbler
teams are equally helpful, and the rest of the ecosystem is just the good-old
Ruby community. The technologies covered in this book are mature, and the
number of users adopting them has grown to a level where you can easily
find answers to your questions on Stackoverflow.com and mailing lists. Many
developers have already worked through the problems you’ll encounter, and
they’ll often share their wisdom with you.

Likewise, it’s important that you share what you learn with the community.
As you grow in your ability to run and manage a JRuby application, be sure
to help others, because they may return the favor one day.

report erratum • discuss

Wrapping Up • 141

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Index

SYMBOLS
$ (dollar sign) prompt, xvi

* * * * * cron string, 138

“*” prefix, 104

\ (backslash), disabling alias-
es, 5

~ (tilde) notation, xvi

A
ActionController::Live, 67

ActiveRecord JDBC adapters,
31

ActiveRecord::RecordNotFound, 131

Advanced Message Queuing
Protocol (AMQP), 62, 69

Advanced Metrics, Mem-
cached, 55

advanced multi-layered unifi-
cation filesystem (AUFS), 19

alerts
New Relic, 126
Rollbar, 127

aliases, disabling, 5

amq exchanges, 70

AMQP (Advanced Message
Queuing Protocol), 62, 69

AnalyticsUtil, 100–103

Apache
JRuby architecture dia-

gram, 3
MRI Ruby example, 2

Apdex (Application Perfor-
mance Index), 125–126

api mode, built-in profiler,
103

APM (application performance
monitoring), see New Relic

app.json file, 27, 38

app/jobs, 77

app/workers, 58

Application Performance In-
dex (Apdex), 125–126

application performance
monitoring (APM), see New
Relic

application servers, 73–74,
see also TorqueBox

apps
metadata, 27, 38
name assignment by

Heroku, 25
opening in browser, 26–

27
running Rails, 33, 36
running in Docker, 23,

39
running in TorqueBox, 76

architecture, checking Linux,
19

asynchronous capabilities,
enabling, 13

asynchronous request pro-
cessing, 12

at_exit, 65

AUFS (advanced multi-lay-
ered unification filesystem),
19

authentication
git and heroku commands,

25
Memcached, 54

B
backing services, 49–71

databases as, 49
defined, 49
message passing with

RabbitMQ, 62–71
running jobs with Sidek-

iq, 56–62
shutting down, 71
storing sessions in Mem-

cached, 50–56
treating as third-party

resources, 50

backslash (\), disabling alias-
es, 5

--bare, 136

bash notation, xvi

baz cache, 79

benchmarking, garbage collec-
tion, 116–120

Bignum, 88

bin files, 32

binding, exchanges, 62

binding key, 63

--binstubs option, 32

Brakeman, 136

branching, code base, 51

build, 23, 37, 46

Bundler
installing, 7
installing Passenger, 84
installing Rollbar, 128
installing TorqueBox, 75

installing dependencies,
11

installing dependencies
for Rails app, 32, 36

$bunny, 65

byte[], 91

C
cache(post), 80

cache_key, 80

cached thread pool, 14

caching
dumping records, 53
storing sessions in Mem-

cached, 50–56
template fragment, 79
TorqueBox, 78–81

Celluloid, 3

channels
New Relic alerts, 127
RabbitMQ, 65

checksums, WAR files, 8

classes, inspecting with
JConsole, 95

clone, 43

cloning
Rancher, 43
repositories with Git de-

pots, 135

cloud
deploying to with Heroku,

24–27
deploying to with Torque-

Box, 81
MemcachedCloud, 54
RabbitMQ hosting, 69

CloudAMPQ, 69

CLOUDAMQP_URL, 65, 69

CMS (Concurrent Mark
Sweep) garbage collector,
115, 117

code
for this book, xvi
branching, 51
conventions, xvi
deploying source code

only, 40
executing arbitrary, 96
source code vs. version-

controlled, 7

Code Cache, 95

:command, 97

command line
conventions for this book,

xvi

Heroku toolbelt, 25
without RVM, 6

commercially supported
servers, 83–86

committing changes in Git,
15

community
Java, xvii
JRuby, xvii, 140
Ruby, 140
TorqueBox, xvii, 140
Warbler, 140

Concurrent Mark Sweep
(CMS) garbage collector,
115, 117

concurrent-ruby gem, 14

configuration files
Docker Compose, 38
WAR files, 11

connection pool
database, 35
Memcached, 54

connection_pool gem, 52

console
garbage collection, 95, 97
inspecting with JMX, 93–

96

containerization, see contain-
ers; Docker; VirtualBox

containers
defined, 20
defining multiple with

Docker Compose, 38
deploying in Rancher,

46–48
Docker virtualization, 20–

24
dynos, 41
hostnames, 24
migrating databases, 83
restarting, 71
running Memcached, 51
running app in, 23
running databases in,

37, 39
types, 39

continuous delivery, 139–140

continuous deployment, 139–
140

continuous integration
servers, 133–140

cookies, 50

create(), 52

credentials, see authentica-
tion

cron, 77, 138

crontab, 77

Ctrl -C , shutting down server,
36

curl
installing Docker, 19
viewing app, 24, 27

D
daemons, xi

Dalli, 52

database connection pool, 35

database dir, 64

DATABASE_URL, 83

databases
adapter gems, 31
as backing service, 49
connection pool, 35
deploying Rails app pri-

vately, 46
migrating, 33, 39, 41, 83
running in Docker con-

tainer, 37, 39
scheduling recurring

jobs, 77

db:migrate, 33, 39, 41

deadlocks, 106

DeleteOldStatuses, 77

dependencies
Docker, 37
installing, 11
Jenkins, 134
Rails app, 30, 32, 36
Warbler, 11

deploy, 26

deploying, see also Docker;
Heroku

continuous deployment,
139–140

continuous integration
servers, 133–140

defined, 17
deployment environment,

17–28, 36–40
enterprise, 73–86
with Memcached, 54–56
Passenger, 85
RabbitMQ, 69–71
Rails app, 29–48
Rails app privately, 41–48
Rails app to Heroku, 37–

41
Sidekiq and Redis, 60–62
to cloud with Heroku, 24–

27

Index • 144

to cloud with TorqueBox,
81

with TorqueBox, 81–83
with TorqueBox privately,

81
tracking deployments

with Rollbar, 132
traditional deployment,

29

depots, Git
creating, 135
using in continuous inte-

gration, 136–138

development environment
Rollbar, 128
Warbler dependencies, 11

direct exchanges, 62

disabling aliases, 5

Docker
about, 18
deploying Passenger, 86
deploying RabbitMQ, 70
deploying Rails app pri-

vately, 41–48
deploying Sidekiq and

Redis, 61
deploying TorqueBox, 81
deploying with, 24
disadvantages, 37
installing, 17–19
installing Redis, 56
IP address, 40, 51
Memcached service,

adding, 55
Memcached, running, 51
New Relic, 124
opening terminal, 18
production environment,

17–28
restarting containers, 71
Rollbar, 129
running app in, 23, 39
shutting down backing

services, 71
using, 20–22
verifying communication,

20

Docker Compose configura-
tion file, 38

Docker Hub, 46, 82

Docker images
building, 46
creating, 22, 37
deploying Rails, 36–40
deploying Rails app pri-

vately, 42, 46–48

deploying with Heroku,
24–27

deploying with Rancher,
46–48

listing, 21
understanding, 21

Docker Machine
about, 18
container hostname, 24
installing, 18
IP address, 40, 51
running, 37
verifying communication,

20

Docker Toolbox, 18

docker-compose.yaml, 38

docker-compose.yml, 27

Dockerfile
creating, 22
deploying TorqueBox, 82
environment variables,

37
initializing, 27
Rails deployment, 36–40

dollar sign ($) prompt, xvi

dumping
heap dumps, 89, 103–

107
Memcached records, 53
thread dumps, 90, 106

dynamic memory allocation,
109

DynamicMBean, 98

dynos, 41

E
EAP, 78

Eclipse MAT, 103, 105–107

encryption, Rails, 33

enterprise, 73–86
caching with TorqueBox,

78–81
commercially supported

servers, 83–86
Passenger Enterprise,

83–86
scheduling recurring jobs

in TorqueBox, 77

ENTRYPOINT, 46

entrypoint, 62, 71

environment, see also produc-
tion environment

deployment, 17–28, 36–
40

development, 11, 128

docker-compose.yml, 27
production, 17–28
setting in Puma, 35

environment variables
backing services, 60
CloudAMPQ, 65, 69
Docker, 18, 37
finding home directory,

xvi
Heroku, 25
Memcached, 54–56
New Relic, 124
Passenger, 84
Puma, 35
RabbitMQ, 65, 69, 71
Rails, 36
Redis, 60
Rollbar, 128
Sidekiq, 58, 61
TorqueBox, 83

ERB templates, 79

errors
alerts, creating, 126
handling with Rollbar,

127–132
Metaspace, 112
monitoring with New Rel-

ic, 123–127
need for tools, 132
RabbitMQ streams, 66
replaying, 130
sampling, 91

EventMachine, 3

EventSource, 68

exceptions, see errors

exchanges, 62, 65, 70

exec, 32

executable, 9, 11

executeRuby(), 96

exit
shell, 39
Vagrant, 45

exiting
background jobs, 57
backing services, 71
RabbitMQ, 65–66
Redis, 57
shell, 39
shutting down server, 36
streams, 66
Vagrant, 45

F
Faban HTTP Bench, 117

fanout exchanges, 62, 65

firewalls, 25

Index • 145

fragments, caching template,
79

FreeNode, xvii

FROM, 36

G
G1 (Garbage First) collector,

116–117, 119–120

garbage collection, see al-
so heap memory

algorithms, 114–116
benchmarking, 116–120
choosing, 114–120
CMS collector, 115, 117
configuration, 110
configuring heap genera-

tions, 112–114
Garbage First (G1) collec-

tor, 116–117, 119–120
heap size, 111
JConsole, 95, 97
Metaspace, 112
performance, 110, 114–

120
serial collector, 115
throughput collector,

115, 118–120
VisualVM, 89

Garbage First (G1) collector,
116–117, 119–120

gc(), 97

gem command, prefixing, 5–6

gems
porting Rails apps to

JRuby, 30
TorqueBox, 76

generations, configuring
heap, 112–114

get_quotes, 10

Git
about, 7
authentication, 25
committing changes, 15
continuous integration

with Jenkins, 134–138
deploying source code to

Heroku, 40
depots, creating, 135
depots, using in continu-

ous integration, 136–
138

installing, 7
syncing repositories, 77

git mv, 77

Graal, 16

graph mode, built-in profiler,
101

guest operating systems, 20

H
-h option, JAR files, 82

header exchanges, 62

heap dumps
analyzing with Eclipse

MAT, 105–107
analyzing with jmap, 103–

105
VisualVM, 89

heap memory, see al-
so garbage collection

about, 89
configuring heap genera-

tions, 112–114
heap dumps, 89, 103–

107
histograms, 104
inspecting with JConsole,

95, 97
performance, 116
setting heap size, 109–

111

Heap Profiling (HPROF) bina-
ry format, 104

heap.hprof, 104

Heroku
about, 21, 24
authentication, 25
creating account, 25
deploying Passenger, 85
deploying RabbitMQ, 69–

70
deploying Rails, 37–41
deploying Sidekiq and

Redis, 60–61
deploying TorqueBox, 81
deploying source code

only, 40
deploying to cloud, 24–27
Docker image, 21
Git requirement, 7
Memcached service,

adding, 54–56
New Relic, 124
Rollbar, 128
running PostgreSQL in

Docker container, 37,
39

scaling, 27
security, 25

using database in deploy-
ing Rails app privately,
46

using database in deploy-
ing TorqueBox private-
ly, 83

Heroku toolbelt, 25

heroku-container-tools plug-
in, 26

heroku-deploy plugin, 25

herokuPostgresql container type,
39

-histo, 104

histograms, 104

home directory
finding, xvi
tilde (~) notation, xvi

:host, 97

hostname, RabbitMQ, 64

hostnames
containers, 24
RabbitMQ, 64

hosts, Rancher, 44

HPROF binary format, 104

HTTP response streams, 66

HTTP_PROXY variable, 25

HTTPS_PROXY variable, 25

hypervisor, 20

I
:idle, 79

IDs
Memcached, 53
Post, 59
process ID, finding, 104
request thread, 13
sessions, 53
slab, 53

images, see Docker images

images command, 21, 23

index()
benchmarking garbage

collectors, 117
streams, 67

Infinispan, 78

init, 27

inlined methods and sam-
pling, 91

inspecting
Heroku image, 22
with JMX, 93–100, 111
memory settings, 95, 111
with VisualVM, 88–93,

111

Index • 146

installing
Bundler, 7
concurrent-ruby gem, 14
Dalli, 52
dependencies for Rails

app, 32, 36
dependencies with

Bundler, 11
Docker, 17–19
Eclipse MAT, 105
Git, 7
heroku-container-tools

plugin, 26
heroku-deploy plugin, 25
Java, 4
Java Cryptography Exten-

sion (JCE), 33
Jenkins, 133–135
jmx4r, 97
JRuby, 5
March Hare, 64
Memcached, 51
New Relic, 123–125
Passenger, 84
RabbitMQ, 64
Rancher, 43
Redis, 56
Rollbar, 128
Sidekiq, 56
TorqueBox, 75
Vagrant, 42
VirtualBox, 42
Warbler, 9

instrumenting profiler, 92

int[], 91

internal exchanges, 70

Interrupt error, 67

invokedynamic, 120

IP address
Docker, 40, 51
Memcached server, 54
Vagrant, 45

ip default, 24, 40, 51

items, Rollbar, 129

items keyword, Memcached,
53

J
jar, 76, 81

JAR files
deploying with Heroku,

25
listing features, 82
TorqueBox, 76, 81
WAR files as, 8

Java, see also JMX (Java
Management Extensions);
JVM (Java Virtual Machine)

installing, 4
Java Cryptography Exten-

sion (JCE), 33
resources, xvii
runtime version for

Docker, 22
using JVM without writ-

ing, xii

Java archive (JAR) files,
see JAR files

Java Cryptography Extension
(JCE), 33

Java Development Kit (JDK),
installing, 4

Java Management Exten-
sions, see JMX (Java Man-
agement Extensions)

Java Virtual Machine (JVM),
see JVM (Java Virtual Ma-
chine)

JAVA_HOME variable, 5

JBoss Undertow, 76, 81

JCE (Java Cryptography Ex-
tension), 33

JConsole
garbage collection, 95, 97
inspecting with JMX, 93–

96

jconsole command, 93

JDBC adapters, 31

JDK (Java Development Kit),
installing, 4

Jenkins, 133–140

jgem command, convention
without RVM, 6

jhat, 104

jmap, 103–105

JMX (Java Management Ex-
tensions)

creating JMX client, 96
inspecting with, 93–100,

111
MBeans logging example,

98–100

jmx4r gem, 96–98

JMX::DynamicMBean, 98

jobs
creating Jenkins, 136–

138
creating background

jobs, 58–59
porting to TorqueBox, 77

running background jobs
with Sidekiq, 56–62

scheduling recurring jobs
in TorqueBox, 77

jps, 104, 111

JRuby
about, 1
advantages, 2–3
architecture diagram, 3
built-in profiler, 100–103
compared to MRI Ruby,

xi
dependencies and deploy-

ing Rails, 30
installing, 5
management extensions,

enabling, 93
Rails app, porting, 30–34
resources, xvii, 30, 140
setting as default, 6
setup, 4–7

jruby -S prefix, 5–6

jruby branch and Jenkins, 137

jruby command, convention
without RVM, 6

jruby-jack gem, 9

jruby-jars gem, 9

JRUBY_HOME, 36

jstack, 106

jstat, 118

JVM (Java Virtual Machine)
advantages, xi
architecture diagram, 3
garbage collection, 110,

114–120
inspecting with JMX, 93–

100
inspecting with Visu-

alVM, 88–93
installing, 4
setting heap size, 109–

111
using without writing Ja-

va, xii

-J-Xmn, 113

-J-Xms, 110

-J-Xmx, 110

-J-XX:+UseConcMarkSweepGC, 116

-J-XX:+UseG1GC, 116

-J-XX:+UseParNewGC, 116

-J-XX:+UseParallelGC, 115

-J-XX:+UseParallelOldGC, 115

-J-XX:MaxMetaspaceSize, 112

-J-XX:MaxNewSize, 113

Index • 147

-J-XX:MetaspaceSize, 112

-J-XX:NewRatio, 113

-J-XX:NewSize, 113

-J-XX:+UseSerialGC, 115

K
kernel version, checking, 19

kill, 71

L
leaks, see memory leaks

license
enterprise, 84
Passenger, 85

Linux
checking architecture, 19
Docker, 18
setup, 4

listing
Docker images, 21
features in JAR files, 82

live option, histograms, 104

localhost, 24, 60

logging
caching with TorqueBox,

80
managing with MBeans,

98–100
Sidekiq deployment, 61

logs, 61

Logstash, 3

M
--manage, 93

Managed Beans, see MBeans

management, 87–107
analyzing heat dumps,

103–107
built-in profiler, 100–103
JMX, 93–100
profiling and sampling,

91–93
VisualVM, 88–93

March Hare, 63–69

--max-pool-size, 84

:max_entries, 79

max_thread, 14

MaxHeapSize, 111

maximum thread pool, 37

MBeans, 95–100

Memcached, 50–56

MemcachedCloud, 54

MEMCACHEDCLOUD_SERVERS, 54–
56

memory, see also heap mem-
ory; memory leaks

dynamic memory alloca-
tion, 109

fragmentation and CMS
collector, 116

Heroku, 26
inspecting, 90–93, 95,

111
Metaspace, 95, 111
MRI Ruby limits, 3
storing sessions in, 50,

117
swap, 111

memory leaks
creating, 87
inspecting with Visu-

alVM, 90–93
investigating with Eclipse

MAT, 105–107
maximum heap size, 110
Metaspace, 112
profiling and sampling,

91–93

Memory manager, 97

message passing with Rabbit-
MQ, 62–71

META-INF directory, 8
metadata

deploying with Heroku,
27, 38

WAR files, 8

Metaspace, 95, 111

migrating, databases, 33, 39,
41, 83

monit, xi

MRI Ruby
disadvantages, 2–3
gems and JRuby, 30
scaling, 3
traditional deployment,

29

N
names

caching with TorqueBox,
78, 80

Heroku deployment, 25

Neo4J, 71

new, 34

new generation, see young
generation

New Relic, 123–127

NewRatio, 113

Nokogiri, 30

O
old generation, 112–114

open, 26–27

operating systems, guest, 20

Oracle
Rails encryption, 33
Truffle, 16

origin, 136

P
parallel garbage collector,

see throughput garbage
collector

parse_for_stocks, 10, 15

Passenger, 3, 83–86

passenger gem, 84

:password, 97

Perc90, 119

Perc99, 119–120

perform(), 58, 65

perform_async(), 58

performance, 109–121
benchmarking garbage

collection, 116–120
garbage collection, 110,

114–120
heap generations, config-

uring, 112–114
heap memory, 116
heap size, setting, 109–

111
invokedynamic, 120
measurements, 120
Metaspace size, setting,

111
monitoring in production,

123–132
need for tools, 132
New Relic, 123–127
Perc99, 119–120
Rollbar, 127–132
sampling and profiling,

91
swap memory, 111
Truffle, 16
tuning as process, 121

persistent messaging, Rabbit-
MQ, 64

pg gem, 31

Phusion, 83–84

Phusion Passenger Enter-
prise, 83–86

ping, 57

Ping URL, 126

Index • 148

Poll SCM, 138

PONG, 57

port
configuring Puma, 35
JXM connections, 97

:port JXM connection, 97

POSIX, 30

POST
asynchronous context, 13
background jobs with

Sidekiq, 59–60
thread pool example, 14

Post ID, 59

Post#create, 53

PostgreSQL
gem, 31
running in Docker con-

tainer, 37, 39

@posts, 80

posts_worker.rb, 58

PostsController, 58

PostsWorker, 58–59

process ID, finding, 104

Procfile
creating, 25
deploying Rails app, 38
deploying Sidekiq, 60
deploying TorqueBox, 81
initializing, 27

production environment
advantages, 24
Docker, 17–28
monitoring performance,

123–132
Rails, 34–36
setting, 37

--profile, 100–103

--profile.api, 103

--profile.graph, 101

profiler
built-in, 100–103
instrumenting VisualVM,

92
isolating in , 102
performance and Visu-

alVM, 91
VisualVM, 91–93

profiler package, 103

ps, 51

ps:resize, 27

ps:scale, 26–27

--publish, 23

publishers, RabbitMQ, 65–69

pull, 21, 46

Puma
about, 29
advantages, 32
configuring for produc-

tion, 34
running background jobs

with Sidekiq diagram,
59

shutting down, 36
starting, 33, 35

puma command, 35

push
about, 24
adding Memcached ser-

vice, 55
deploying Rails app pri-

vately, 46
local code repository, 40

puts, request thread ID, 13

Q
queues

binding exchanges to, 62
subscribing to, 66

QUIT, 57

R
RabbitMQ, 62–71

RABBITMQ_URL, 65, 71

Rack
setting production envi-

ronment, 37
Warbler, 9

Rails
bin files, 32
configuring for produc-

tion, 34–36
creating background job,

58–59
deploying, 29–48
deploying privately, 41–

48
deploying source code

only to Heroku, 40
deploying to Heroku, 37–

41
deployment environment,

36–40
encryption, 33
as example for this book,

xv
managing logging with

MBeans, 98–100
March Hare, 65–69
message passing with

RabbitMQ, 62–71

porting app to JRuby,
30–34

Rollbar generator, 128
running app, 33, 36
running background jobs

with Sidekiq, 58–62
session storage with

Memcached, 51–54
session storage with

cookies, 50
session store, default,

117

rails, 32

rails new, 34

rails runner, 77

rake, 32

rake routes, 33

Rancher
about, 41
deploying RabbitMQ, 70
deploying Rails app pri-

vately, 41–48
deploying Sidekiq and

Redis, 61
deploying TorqueBox, 81
hosts, adding, 44
installing, 43
Memcached service,

adding, 55
provisioning, 43
scaling, 47

Red Hat, 83

Redis, 56–62

REDIS_URL, 60

registering, MBeans, 98

registry services, 46

release, 27, 40

reloading, shell, 5

remote -v, 40, 81

remote repositories
confirming, 81
deploying source code, 40

replaying errors in Rollbar,
130

repositories
cloning with Git depots,

135
confirming remote, 81
deploying source code, 40
syncing, 77

rescue, 131

resources
for this book, xvii
Java, xvii
JRuby, xvii, 30, 140

Index • 149

Ruby, 140
TorqueBox, xvii, 140
Warbler, 140

response streams, HTTP, 66

response time and Apdex,
125–126

Resque, xi

restart, 71

restarting
containers, 71
MRI Ruby limits and

slow, 3

rm command, xvi

Rollbar, 127–132

ROLLBAR_ACCESS_TOKEN, 128

routers, RabbitMQ, 62

routes
deploying Rails app, 33
message passing with

RabbitMQ, 62–71

routing key, 63

ruby command, prefixing, 5–6

Ruby Version Manager,
see Ruby Version Manager
(RVM)

ruby-amqp organization, 63

RubyBignum, 91

RubyInteger, 91

run
Docker, 22
TorqueBox, 76, 78

runtime, inspecting with
JMX, 93–100

RVM (Ruby Version Manager)
installing JRuby, 5
Jenkins dependencies,

134

S
-S, JAR files, 82

sampling, VisualVM, 91–93

scale, Sidekiq, 60

scaling
configuring heap genera-

tions, 113
Heroku, 27
MRI Ruby limits, 3
Rancher, 47
Sidekiq, 60
storing sessions in memo-

ry, 50

scheduling
polling Git depot, 138
recurring jobs in Torque-

Box, 77

SCM repository, polling, 138

scripts
JAR files, 82
Rails, 32

security
Heroku, 25
Rails encryption, 33

serial garbage collector, 115

servers, see also Memcached;
Puma: Redis; TorqueBox

application, 73–74
commercially supported,

83–86
continuous integration,

133–140
deploying to private, 41–

48
JRuby architecture dia-

gram, 3
MRI Ruby example, 2
shutting down, 36
starting with puma, 35
WunderBoss, 76

_session_id, 53

sessions
storing in Memcached,

50–56
storing in-memory, 117

set_log_level(level), 98

shell, reloading, 5

shell container type, 39

Sidekiq, 56–62, 65, 69

sidekiq in Procfile, 60

SIGINT signal, 67

slab ID, 53

Solr, 71

source, 85

source code, deploying to
Heroku, 40

SQLite
gem, 31
initializing, 33

sqlite3 gem, 31

ssh, 45

standard_dev(), 102

start
Docker Machine, 37
Passenger, 84

state, storing sessions in
Memcached, 50–56

stats items, 53

stock-service code, see al-
so Twitalytics

creating microservice,
10–15

deploying with Heroku,
24–27

deployment environment,
17–28

porting with Warbler, 10–
15

running annotations in
background, 56–62

storing, sessions in Mem-
cached, 50–56, see al-
so caching

StreamController#index, 68

streaming with RabbitMQ,
62–71

$streams, 66

stuck processes, MRI Ruby
limits, 3

subscribe(), 66

subscribers, RabbitMQ, 66,
69

swap memory, 111

T
-t option in Docker, 22

telnet, 51, 53

template fragment caching,
79

templates, 79

tenured generation, see old
generation

testing
Jenkins, 134
message passing with

RabbitMQ, 68
Rollbar installation, 129

therubyracer, 31

therubyrhino, 31

thread contention, 52

thread dumps, 90, 106

thread pool
cached thread pools, 14
executor, 14
Memcached connection

pool, 54
setting size, 35, 37

thread pool executor, 14

threading
asynchronous request

processing, 12

Index • 150

cached thread pools, 14
caching with TorqueBox,

80
inspecting with JConsole,

95
inspecting with Visu-

alVM, 90
JRuby advantages, 3
Memcached, 52
MRI Ruby disadvantages,

2
Passenger Enterprise,

83–86
porting microservice with

Warbler, 12–15
Sidekiq, 60
thread dumps, 90, 106
thread pool executor, 14

ThreadPoolExecutor class, 14

throughput, benchmarking
garbage collectors, 117

throughput garbage collector,
115, 118–120

tilde (~) notation, xvi

time zones, 32

timestamps, cache, 80

topic exchanges, 62

TorqueBox, 73–86
about, 73–74
caching with, 78–81
deploying, 81–83
deploying privately, 81
diagram, 74
gems for, 76
heap memory options,

110
installing, 75
Jenkins, 133
JMX, 93
porting jobs to, 77
resources, xvii, 140
running app in, 76
scheduling recurring

jobs, 77
setup, 75
starting, 78

torquebox command, 76

torquebox run, 78

torquebox-web gem, 76

TorqueBox::Caching.cache, 78

Truffle AST interpreter, 16

:ttl, 79

Twitalytics
about, xii, 1
analyzing heat dumps,

103–107

backing services, 49–71
caching with TorqueBox,

78–81
choosing garbage collec-

tor, 114–120
cloning repository with

Git depots, 135
commercially supported

servers, 83–86
configuring heap genera-

tions, 112–114
continuous delivery, 139
continuous integration

server, 133–140
creating stock-service

microservice, 10–15
deploying Rails app, 29–

48
deploying stock-service

code, 24–27
deployment environment,

17–28
enterprise version, 73–86
error handling with Roll-

bar, 127–132
inspecting, 88–100, 111
installing dependencies

in Rails app, 36
memory leak, creating,

87
monitoring in production,

123–132
performance tuning, 109–

121
porting Rails app to JRu-

by, 30–34
porting stock-service mi-

croservice with War-
bler, 10–15

profiling and sampling,
91–93, 100–103

running background jobs
with Sidekiq, 56–62

scheduling recurring
jobs, 77

setting Metaspace size,
111

setting heap size, 109–
111

source code, xvi
storing sessions in Mem-

cached, 50–56

Twitter, see Twitalytics

Typhoeus, 30

tzinfo-data gem, 32

U
uname, 19

Unicorn, 3, 32

updated_at, 80

URLs
deploying with Heroku,

26
New Relic alerts, 126
Rancher hosts, 44

:username, 97

%USERPROFILE% variable, xvi

V
Vagrant, 42, 45

vagrant command, 42

vagrant ssh, 45

Vagrantfile, 43

Venntro, 3

--version, 20

version control, see Git

versions
Docker, 20
tracking deployments

with Rollbar, 132

VirtualBox, 18, 42

virtualization, traditional, 18,
20, see also Docker

VisualVM, 88–93, 111

W
war, 76, 81

WAR files
creating, 9
defined, 7
deploying to Heroku, 24–

26
Docker image, creating,

22
Jenkins, 134
JMX, 93
packaging into, 11
running, 9
signing, 8
structure, 8
TorqueBox, 76, 81

warble command, 9

Warbler
about, 1, 7
configuring, 11
heap memory options,

110
installing, 9
porting microservice with,

10–15

Index • 151

resources, 140
setup, 7–9

web application archive (WAR)
files, see WAR files

web container type, 39

WEB-INF directory, 8
web.xml file, 8

wildcards, topic exchanges,
63

WildFly, 76, 78, 81

Windows
command conventions for

this book, xvi
lack of Passenger sup-

port, 84
time zone information, 32

Worker, 58–59

workers
creating background

jobs, 58–59
deploying Sidekiq, 60
publishing with, 65

WunderBoss, 76

X
-Xcompile.invokedynamic=true, 120

Xmx, 26

Xss, 26

Y
Yahoo! stock service

as backing service, 49
for stock service, 10

young generation, 112–114

Z
zip files, WAR files as, 7–8

Index • 152

Level Up Your Ruby
Time to stop just “using a little Ruby.” See what you’re missing in basic Ruby and advanced
metaprogramming techniques.

Programming Ruby 1.9 & 2.0 (4th edition)
Ruby is the fastest growing and most exciting dynamic
language out there. If you need to get working pro-
grams delivered fast, you should add Ruby to your
toolbox.

This book is the only complete reference for both Ruby
1.9 and Ruby 2.0, the very latest version of Ruby.

Dave Thomas, with Chad Fowler and Andy Hunt
(888 pages) ISBN: 9781937785499. $50
https://pragprog.com/book/ruby4

Metaprogramming Ruby 2
Write powerful Ruby code that is easy to maintain and
change. With metaprogramming, you can produce ele-
gant, clean, and beautiful programs. Once the domain
of expert Rubyists, metaprogramming is now accessible
to programmers of all levels. This thoroughly revised
and updated second edition of the bestselling
Metaprogramming Ruby explains metaprogramming in
a down-to-earth style and arms you with a practical
toolbox that will help you write your best Ruby code
ever.

Paolo Perrotta
(278 pages) ISBN: 9781941222126. $38
https://pragprog.com/book/ppmetr2

https://pragprog.com/book/ruby4
https://pragprog.com/book/ppmetr2

Rails and More...
Explore the Ruby on Rails ecosystem for easier web development.

Rails, Angular, Postgres, and Bootstrap
As a Rails developer, you care about user experience
and performance, but you also want simple and
maintainable code. Achieve all that by embracing the
full stack of web development, from styling with Boot-
strap, building an interactive user interface with Angu-
larJS, to storing data quickly and reliably in Post-
greSQL. Take a holistic view of full-stack development
to create usable, high-performing applications, and
learn to use these technologies effectively in a Ruby
on Rails environment.

David Bryant Copeland
(306 pages) ISBN: 9781680501261. $35
https://pragprog.com/book/dcbang

Agile Web Development with Rails 5
Rails 5 and Ruby 2.2 bring many improvements, in-
cluding new APIs and substantial performance enhance-
ments, and the fifth edition of this award-winning
classic is now updated! If you’re new to Rails, you’ll
get step-by-step guidance. If you’re an experienced
developer, this book will give you the comprehensive,
insider information you need for the latest version of
Ruby on Rails.

Sam Ruby
(450 pages) ISBN: 9781680501711. $46
https://pragprog.com/book/rails5

https://pragprog.com/book/dcbang
https://pragprog.com/book/rails5

Ruby and the Command Line
Ruby is perfect for text processing and command-line scripts. See how to do it well.

Build Awesome Command-Line Applications in Ruby 2
Speak directly to your system. With its simple com-
mands, flags, and parameters, a well-formed command-
line application is the quickest way to automate a
backup, a build, or a deployment and simplify your
life. With this book, you’ll learn specific ways to write
command-line applications that are easy to use, deploy,
and maintain, using a set of clear best practices and
the Ruby programming language. This book is designed
to make any programmer or system administrator more
productive in their job. This is updated for Ruby 2.

David Copeland
(222 pages) ISBN: 9781937785758. $30
https://pragprog.com/book/dccar2

Text Processing with Ruby
Whatever you want to do with text, Ruby is up to the
job. No matter what the source – web pages, databases,
the contents of files – learn how to acquire the text and
get it into your program. Explore techniques to process
that text and then output the transformed or extracted
text. Cut even the most complex text-based tasks down
to size and learn how to master regular expressions,
scrape information from Web pages, develop reusable
utilities to process text in pipelines, and more.

Rob Miller
(272 pages) ISBN: 9781680500707. $36
https://pragprog.com/book/rmtpruby

https://pragprog.com/book/dccar2
https://pragprog.com/book/rmtpruby

Explore Testing and Cucumber
Explore the uncharted waters of exploratory testing and beef up your automated testing
with more Cucumber.

Explore It!
Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

Cucumber Recipes
You can test just about anything with Cucumber. We
certainly have, and in Cucumber Recipes we’ll show
you how to apply our hard-won field experience to your
own projects. Once you’ve mastered the basics, this
book will show you how to get the most out of Cucum-
ber—from specific situations to advanced test-writing
advice. With over forty practical recipes, you’ll test
desktop, web, mobile, and server applications across
a variety of platforms. This book gives you tools that
you can use today to automate any system that you
encounter, and do it well.

Ian Dees, Matt Wynne, Aslak Hellesoy
(274 pages) ISBN: 9781937785017. $33
https://pragprog.com/book/dhwcr

https://pragprog.com/book/ehxta
https://pragprog.com/book/dhwcr

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

https://pragprog.com/book/mcmath
https://pragprog.com/book/jkthp

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2

Put the “Fun” in Functional
Elixir 1.2 puts the “fun” back into functional programming, on top of the robust, battle-
tested, industrial-strength environment of Erlang. Add in the unparalleled beauty and ease
of the Phoenix web framework, and enjoy the web again!

Programming Elixir 1.2
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(352 pages) ISBN: 9781680501667. $38
https://pragprog.com/book/elixir12

Programming Phoenix
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights, this definitive guide will
be your constant companion in your journey from
Phoenix novice to expert, as you build the next gener-
ation of web applications.

Chris McCord, Bruce Tate, and José Valim
(298 pages) ISBN: 9781680501452. $34
https://pragprog.com/book/phoenix

https://pragprog.com/book/elixir12
https://pragprog.com/book/phoenix

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/jkdepj2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/jkdepj2

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/jkdepj2
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/jkdepj2
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	The No-Java-Code Promise
	What's in This Book?
	What's Not in This Book?
	Who Is This Book For?
	Conventions
	Getting the Source Code
	Online Resources

	1. Getting Started with JRuby
	What Makes JRuby So Great?
	Preparing Your Environment
	Introducing Warbler
	Creating a JRuby Microservice
	Wrapping Up

	2. Creating a Deployment Environment
	Installing Docker
	Getting Started with Docker
	Creating a Docker Image
	Deploying to the Cloud
	Wrapping Up

	3. Deploying a Rails Application
	What Is Traditional Deployment?
	Porting to JRuby
	Configuring Rails for Production
	Creating the Deployment Environment
	Deploying to the Public Cloud
	Deploying to Private Infrastructure
	Wrapping Up

	4. Consuming Backing Services with JRuby
	What Are Backing Services?
	Storing Sessions in Memcached
	Running Background Jobs with Sidekiq
	Message Passing with RabbitMQ
	Wrapping Up

	5. Deploying JRuby in the Enterprise
	What Is an Application Server?
	Getting Started with TorqueBox
	Scheduling a Recurring Job
	Using the Cache
	Deploying to the Public Cloud
	Deploying to Private Infrastructure
	Using a Commercially Supported Server
	Wrapping Up

	6. Managing a JRuby Application
	Creating a Memory Leak
	Inspecting the Runtime with VisualVM
	Inspecting the Runtime with JMX
	Invoking MBeans Programmatically
	Creating a Management Bean
	Using the JRuby Profiler
	Analyzing a Heap Dump
	Wrapping Up

	7. Tuning a JRuby Application
	Setting the Heap Size
	Setting Metaspace Size
	Configuring Heap Generations
	Choosing a Garbage Collector
	Benchmarking the Garbage Collector
	Using invokedynamic
	Wrapping Up

	8. Monitoring JRuby in Production
	Installing the New Relic Gem
	Creating a New Relic Alert
	Handling Errors with Rollbar
	Customizing Rollbar Reporting
	Wrapping Up

	9. Using a Continuous Integration Server
	Installing Jenkins
	Installing Jenkins Plugins
	Creating a Git Depot
	Creating a Jenkins Job
	Enabling Continuous Delivery
	Wrapping Up

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

