

Table of Contents
Chapter 1: Introduction to Docker 1

The basic idea 1
Containerization vs Virtualization 2

Traditional virtualization 2
Containerization 2

Benefits of using Docker 3
Speed and size 3
Reproducible and portable builds 3
Immutable and agile infrastructure 4
Tools and APIs 5

Summary 5
Chapter 2: Installing Docker 6

Hardware requirements 6
Tools overview 9

Docker Engine and Docker Engine client 9
Docker machine 9
Kitematic 11
Docker Compose 11
a //aOracle VirtualBox 12
Git 13

Installing on Windows 14
Installing on Mac OS 21
Installing on Linux 26
Installing on the cloud – Amazon AWS 29
Summary 34

Chapter 3: Understanding Images and Containers 35
Images 36
Layers 38
Containers 43

Saving changes to a container 45
Docker Registry, REPOSITORY and index 49
Summary 52

Index 53

1
Introduction to Docker

At the beginning, Docker was created as an internal tool by a Platform as a Service
company, called dotCloud. Later on, in March 2013, it was released as open source. Apart
from the Docker Inc. team, which is the main sponsor, there are some other big names
contributing to the tool –Red Hat, IBM, Microsoft, Google and Cisco Systems, just to name
a few. Software development today needs to be agile and react quickly for changes. We use
methodologies like Scrum, estimate our work in story points and attend the daily stand-
ups. But what about preparing our software for shipment and the deployment? Let's see
how Docker fits into that scenario and can help us being agile. We will begin with a basic
idea behind this wonderful tool.

The basic idea
The basic idea behind Docker is to pack an application with all of its dependencies (let it be
binaries, libraries, configuration files, scripts, jars and so on) into a single, standardized unit
for software development and deployment. Docker containers wrap up a piece of software
in a complete filesystem that contains everything it needs to run: code, runtime, system
tools, and system libraries – anything you can install on a server. This guarantees that it will
always run in the same way, no matter what environment it will be deployed in. With
Docker, you can build some Node.js or Java project (but you are of course not limited to
those two) without having to install Node.js or Java on your host machine. Once you're
done with it, you can just destroy the Docker image and it's as though nothing ever
happened. It's not a programming language or a framework, rather think of it as about a
tool that helps solving the common problems like installing, distributing and managing the
software – it allows programmers and DevOps to build, ship and run their code anywhere.

You can think that maybe Docker is a virtualization engine – but it's far from it as we will
explain in a while.

https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Google

Introduction to Docker

[2]

Containerization vs Virtualization
To fully understand what Docker really is, first we need to understand the difference
between traditional virtualization and containerization. Let's compare those two
technologies now.

Traditional virtualization
A traditional virtual machine, which represents the hardware-level virtualization, is
basically a complete operating system running on top of the host operating system. There
can be a lot of use cases that would make an advantage from using virtualization – the
biggest asset is that you can run many virtual machines with totally different operating
systems on a single host. Virtual machines are fully isolated, hence very secure. But nothing
comes without a price – there are many drawbacks: they contain all the features that
operating system needs to have: device drivers, core system libraries and so on. They are
heavyweight, usually resource-hungry and not so easy to setup – virtual machines require
full installation. They require more computing resources to execute – to successfully run an
application on a virtual machine, the hypervisor needs to first import the virtual machine
and then power it up – and this takes time. Furthermore their performance gets
substantially degraded. As a result, only a few virtual machines can be provisioned and
made available to work on a single machine.

Containerization
Docker software runs in an isolated environment called a Docker container. A Docker
container is not a virtual machine in the popular sense. It represents operating system
virtualization. While each virtual machine image runs on an independent guest OS, the
Docker images run within the same operating system kernel. A container has its own
filesystem and environment variables. It's self-sufficient. Because of the containers run
within the same kernel, they utilize fewer system resources – the base container can be, and
usually is – very lightweight. Worth knowing is that Docker containers are isolated not only
from the underlying OS, but from each other as well. When it comes to the performance, all
the unneeded operating system core software is removed from the Docker image. There is
no overhead related to a classic virtualization hypervisor and a guest operating system. This
allows achieving almost bare metal, core performance. The boot time of a “dockerized”
application is usually very fast due to the low overhead of container. It is also possible to
speed up the roll-out of hundreds of application containers in seconds and to reduce the
time taken for provisioning your software.

Introduction to Docker

[3]

As you can see, Docker is quite different from the traditional virtualization engines. Be
aware that containers cannot substitute virtual machines for all use cases – a thoughtful
evaluation is still required to determine what is best for your application. Both solutions
have their advantages – on one hand we have the fully isolated, secure virtual machine with
average performance and on the other hand, we have the containers that are missing some
of the key features, but are equipped with high performance that can be provisioned
swiftly. Let's see what other benefits you will get when using Docker containerization.

Benefits of using Docker
When comparing the Docker containers with traditional virtual machines, we have
mentioned some of its advantages. Let's summarize them now in more detail and add some
more.

Speed and size
As we have said before, the first visible benefit of using Docker will be very satisfactory
performance and short provisioning time. You can create or destroy containers quickly and
easily. Containers share resources, like the operating system's kernel and needed libraries
efficiently with other Docker containers. Because of that, multiple versions of an application
running in containers will be very lightweight. The result is faster deployment, easier
migration, and nimble boot times.

Reproducible and portable builds
Using Docker containers enables you to deploy ready-to-run software, which is portable
and extremely easy to distribute (we will cover the process of creating an image in Chapter 6
– “Building images”). Your containerized application simply run within its container,
there's no need for installation. The lack of installation process has a huge advantage – this
eliminates problems such as software and library conflicts or even a driver compatibility
issues. Because of Docker's reproducible build environment, it's particularly well suited for
testing, especially in your Continuous Integration flow. You can quickly boot up identical
environments to run the tests. And because the container images are all identical each time –
you can distribute the workload and run tests in parallel without a problem. Developers can
run the same image on their machine that will be run in production later, which again has a
huge advantage in testing. The use of Docker containers speeds up continuous integration.
There are no more endless build-test-deploy cycles – Docker containers ensure that
applications run identically in development, test, and production environments.

Introduction to Docker

[4]

One of Docker's greatest features is the movability. Docker containers are portable – they
can be run from anywhere: your local machine, a nearby or distant server, and private or
public cloud. When speaking about the cloud, all major cloud computing providers, like
Amazon Web Services, Google's Compute Platform have perceived Docker's availability
and now support it. Docker containers can be run inside an Amazon EC2 instance, Google
Compute Engine instance provided that the host operating system supports Docker. A
container running on an Amazon EC2 instance can easily be transferred to some other
environment, achieving the same consistency and functionality. Docker works very well
with various other IaaS (Infrastructure-as-a-service) providers like Microsoft's Azure or
OpenStack. This additional level of abstraction from your infrastructure layer is an
indispensable feature. You can just develop your software without worrying about the
platform it will be run later on. It's truly “write once run everywhere” solution.

Immutable and agile infrastructure
The maintaining a truly idempotent configuration management code base can be tricky and
time consuming process. The code grows over time and becomes more and more
troublesome. That's why the idea of an immutable infrastructure becomes more and more
popular nowadays. Containerization comes to the rescue. By using containers during the
process of development and deployment of your applications, you can simplify the process.
Having a lightweight Docker server that needs almost no configuration management, you
manage your applications simply by deploying and redeploying containers to the server.
And again, because the containers are very lightweight, it takes only seconds of time.

As a starting point, you can download a pre-built Docker images from the Docker Hub,
which is like a repository of ready-to-use images. There are many choices of web servers,
runtime platforms, databases, messaging servers and so on. It's like a real gold mine of
software you can use for free to get a base foundation for your own project. We will cover
the Docker Hub and looking for images in the Chapter 5 – “Finding images”.

The effect of the immutability of Docker's images is the result of a way they are being
created. Docker makes use of a special file called a “Dockerfile”. This file contains all the
setup instructions how to create an image, like must-have components, libraries, exposed
shared directories, network configuration and so on. An image can be very basic, containing
nothing but the operating system foundations, or – which is a more common thing –
containing a whole pre-built technology stack which is ready to launch. You can create
images by hand, but it can be an automated process also. Docker creates images in a layered
fashion: every feature you include will be added as another layer in the base image. This is
another serious speed boost, comparing to the traditional virtualization techniques. We will
get into details of creating images later, in the Chapter 6 – “Building images.

Introduction to Docker

[5]

Tools and APIs
Of course, Docker is not just a Dockerfile processor and the runtime engine. It's a complete
package with wide selection of tools and APIs that are helpful during the developer's and
DevOp's daily work. First of all, there's a The Docker Toolbox – an installer to quickly and
easily install and setup a Docker environment on your own machine. The Kinematic is
desktop developer environment for using Docker on Windows and Mac OS X. Docker
distribution contains also a whole bunch of command line tools we will be using through
the whole book.

From a developer's perspective, there are tools especially useful in a programmer's daily
job, let it be IntelliJ IDEA Docker Integration Plugin for Java fans or Visual Studio 2015
Tools for Docker for those who prefer C#. Those let you download and build Docker
images, create and start containers, and carry out other related tasks straight from your
favorite IDE. We will cover them in more details in the next chapters.

Apart from that tools included in the Docker's distribution package, there are hundreds
third-party tools, like Kubernetes and Helios (for Docker orchestration), Prometheus (for
monitoring of statistics) or Swarm and Shipyard for managing clusters. As Docker captures
higher attention, more and more Docker-related tools pop-up almost every week. We will
try to briefly cover the most interesting ones in the last chapter, Chapter 9 – “More
resources”.

But there are not only the tools available for you. Additionally, Docker provides a set of
APIs that can be very handy. One of them is the Remote API for the management of the
images and containers. Using this API you will be able to distribute your images to the
runtime Docker engine. The container can be shifted to a different machine that runs
Docker, and executed there without compatibility concerns. This may be especially useful
when creating PaaS (platform-as-a-service) architectures. There's also the Stats API that will
expose live resource usage information (such as CPU, memory, network IO and block IO)
for your containers. This API endpoint can be used create tools that show how you
containers behave, for example, on a production system.

By now we understand the difference between the virtualization and containerization and
also – I hope – can see the advantages of using the latter. Let's begin our journey to the
world of containers and go straight to the action – by installing the software.

Summary

2
Installing Docker

In this chapter we will find out how to install Docker on Windows, Mac OS and Linux
operating systems. There will be also step-by-step instruction how to setup Docker in the
Cloud – and Amazon EC2 will be used as an example. Next, we will run sample “hello-
world” image to verify the setup and check if everything works fine after the installation
process.

Docker installation is quite straightforward, but there are some things you will need to
focus on to make it running. We will point them out to make the installation process
painless.

It's worth mentioning that Linux is the natural environment for Docker.
The Docker engine is built on top of the Linux kernel. To make it running
under Windows or Mac OS, the Linux kernel needs to be virtualized.

The Docker engine could be run on the Mac and MS Windows operating systems by using
the lightweight Linux distribution, made specifically to run Docker containers. It runs
completely from RAM, weights just several dozens of megabytes and boots in couple of
seconds. During the installation of the main Docker package – the Docker Toolbox, also the
virtualization engine VirtualBox will be installed by default. Therefore, there are some
special hardware requirements for your machine.

Hardware requirements
To use Docker, you will need some reasonably new machine, which supports hardware-
level virtualization – it will be VT-x for Intel-based PC and AMD-V for AMD processors.
Most of the Mac machines support it out of the box, but for PC you will need to make sure
it's turned on and perhaps enable it in the BIOS settings – it will be different for different

Installing Docker

[7]

BIOSes, just look for VT-x / AMD-V switch.

In Windows 8, you can check virtualization support in the task manager in the
“Performance” tab:

If you want to check if your PC supports the hardware level virtualization in Windows 7,
look for the “Microsoft Hardware-Assisted Virtualization Detection Tool”. It's free, tiny
utility to check if your system supports virtualization. Download and run it, to see the
report:

Installing Docker

[8]

If the report is different for you, saying that the hardware-assisted virtualization is not
enabled, you will need to check the BIOS settings on your machine – maybe the hardware-
assisted virtualization support is just switched off. In such case switch it on and re-run the
tool again.

If your PC doesn't support hardware-assisted virtualization and you decide to install
Docker anyway, it will result in an error during the start of the virtualized Linux
distribution.

Additionally, when installing on Windows PC, you need to make sure your Windows OS is
64-bit (x64). Docker will not run on the 32-bit system by default.

Knowing the hardware requirements, we need to know what Docker components are
available to install.

Installing Docker

[9]

Tools overview
The installation package for Windows and Mac OS is wrapped in an executable called the
Docker Toolbox. The package contains all the tools you need to begin working with Docker.
Of course there are tons of additional third party utilities compatible with Docker, some of
them very useful. We will present some of them briefly in the Chapter 9 – Appendix and
More Resources. But for now, let's focus on the default toolset. Before we start the
installation, let's look at the tools that the installer package contains to better understand
what changes will be made to your system.

Docker Engine and Docker Engine client
Docker is a client-server application. It consists of the daemon that does the important job:
builds and downloads images, starts and stops containers and so on. It exposes a REST API
that specifies interfaces for interacting with the daemon and is being used for remote
management. Docker Engine accepts Docker commands from the command line, such as
docker run to run the image, docker ps to list running containers, docker images to list
images, and so on.

The Docker client is a command line program that is being used to manage Docker hosts
running Linux containers. It communicates with the Docker server using the REST API
wrapper. You will interact with Docker by using the client to send commands to the server.

Docker Engine works only on Linux. If you want run Docker on Windows or Mac OS, or
want to provision multiple Docker hosts on a network or in the Cloud, you will the need the
Docker Machine.

Docker machine
Docker-machine is a fairly new command line tool created by Docker team to manage
Docker servers you can deploy containers to. It deprecated the old way of installing Docker
with “Boot2Docker” utility. The Docker Machine eliminates the need to create virtual
machines manually and install Docker before starting Docker containers on them. It handles
the provisioning and installation process for you behind the scenes. In other words, it's a
quick way to get a new virtual machine provisioned and ready to run Docker containers.
This is an indispensable tool when developing Platform as a Service (PaaS) architecture.
Docker Machine not only creates a new VM with the Docker engine installed in it, but sets
up the certificate files for authentication and then configures the Docker client to talk to it.
For the flexibility purposes, the Docker Machine introduces the concept of “drivers”. Using
drivers, Docker is able to communicate with various virtualization software and cloud

Installing Docker

[10]

providers. In fact, when you install Docker for Windows or Mac OS, the default VirtualBox
driver will be used. The following command will be executed behind the scenes:

 docker-machine create --driver=virtualbox default

Another available driver is amazonec2 for Amazon Web Services. It can be used to install
Docker on the Amazon's cloud – we will do it later in this chapter. There are a lot of drivers
ready to be used, and more are coming all the time. The list of existing official drivers with
their documentation is always available at the Docker Drivers website:
https://docs.docker.com/machine/drivers. The list contains the following drivers at the
moment:

Amazon Web Services
Microsoft Azure
Digital Ocean
Exoscale
Google Compute Engine
Generic
Microsoft Hyper-V
OpenStack
Rackspace
IBM Softlayer
Oracle VirtualBox
VMware vCloud Air
VMware Fusion
VMware vSphere

Apart from these, there is also a lot of 3rd-party driver plugins available freely on the
Internet sites like GitHub. You can find additional drivers for different cloud providers and
virtualization platforms, like OVH Cloud or Parallels for Mac OS for example – you are not
limited to Amazon's AWS or Oracle's VirtualBox. As you can see, the choice is very broad.

If you cannot find a specific driver for your Cloud provider, try looking
for it on the GitHub.

When installing the Docker Toolbox on Windows or Mac OS, Docker Machine will be
selected by default – it's mandatory and currently the only way to run Docker on these
operating systems. Installing the Docker Machine is not obligatory for Linux – there is no
need to virtualize the Linux kernel there. However, if you want to deal with the Cloud

Installing Docker

[11]

providers or just want to have common runtime environment portable between Mac OS,
Windows and Linux, you can install Docker Machine for Linux as well. We will describe the
process later in this chapter. . Machine will be also used behind the scenes when using the
graphical tool – Kitematic, which we will present in a while.

After the installation process, Docker Machine will be available as a command line tool:
docker-machine.

Kitematic
Kitematic is the software tool you can use to run containers through a plain, yet robust
graphical user interface. In 2015 Docker has acquired Kitematic team, expecting to attract
many more developers and hoping to open up the containerization solution to more
developers and a wider, more general public.

Kitematic is now included by default when installing Docker Toolbox on Mac OS and MS
Windows. You can use it to comfortably search and fetch images you need from the Docker
Hub. The tool can be also used to run your own app containers. Using the GUI you can edit
environment variables, map ports, configure volumes, study logs and have command line
access to the containers. Worth mentioning is that you can seamlessly switch between
Kitematic GUI and command line interface to run and manage application containers.
Kitematic is very convenient, however, if you want to have more control when dealing with
the containers or just want to use scripting – the command line will be the better solution. In
fact, Kitematic allows you to switch back and forth between the Docker CLI and the
graphical interface. Any changes you make on the command line interface will be directly
reflected in Kitematic. The tool is simple to use, as you will see at the end of this chapter,
when we are going to test our setup on Mac or Windows PC. For the rest of the book we
will be using the command line interface for working with Docker.

Docker Compose
Compose is a tool, executed from the command line as docker-compose. It replaces the old
“fig” utility. It's used for defining and running multi-container Docker applications.
Although it's very easy to imagine a multi-container application (like a web server in one
container and a database in the other) – it's not mandatory. So if you decide that your
application will fit in a single Docker container, there will be no use for docker-compose. In
real life, it's very likely that your application will span into multiple containers. With
docker-compose, you use a “compose file” to configure your application's services, so they
can be run together in an isolated environment. Then – using a single command – you
create and start all the services from your configuration. When it comes to multi-container

Installing Docker

[12]

applications, docker-compose is great for development and testing, as well as continuous
integration workflows.

We will use docker-compose to create multi-container applications in the Chapter 6:
Building images later in this book.

Oracle VirtualBox
Oracle VM VirtualBox is a free and open-source hypervisor for x86 computers from Oracle.
It will be installed by default when installing the Docker Toolbox. It supports the creation
and management of virtual machines running Windows, Linux, BSD, OS/2, Solaris and so
on. In our case – the docker-machine, using Virtual Box driver, will use VirtualBox to create
and boot a bitsy Linux distribution capable of running docker-engine. It's worth
mentioning, that you can also run the teensy-weensy virtualized Linux straight from the
VirtualBox itself. Every Docker machine you have created using the docker-machine or
Kitematic, will be visible and available to boot in the VirtualBox, when you run it directly,
as seen of the following screenshot:

Installing Docker

[13]

You can start, stop, reset, change settings and read logs in the same way as for other
virtualized operating system.

You can use VirtualBox in Windows or Mac for other purposes than
Docker.

Git
Git is a distributed version control system that is widely used for software development
and other version control tasks. It has emphasis on speed, data integrity, and support for
distributed, non-linear workflows. Docker Machine and Docker client uses Git internally for
fetching the needed dependencies from the network. For example, if you decide to run the
Docker image which is not present on your local machine, Docker will use Git to fetch this

Installing Docker

[14]

image from the Docker Hub. Therefore it's mandatory to have Git up and running on your
system. Git is included in the Docker Toolbox installation package.

Now we have an idea which components are included in the default installation package.
Let's download it and install the software. Docker up-to-date installation guides are always
available on the https://www.docker.com/ website. Head to the Get started section and the
pick the installation guide according to your operating system: Windows, Mac OS or Linux.

The Toolbox packages for Windows and Mac OS are available on the
https://www.docker.com/products/docker-toolbox website.

Installing on Windows
After downloading the Docker Toolbox package, run it. The first screen will ask you about
permission to provide anonymous usage statistics, to help Docker developers improve their
software. It's up to you if you allow it or not – depending on your privacy concerns. The
next screen presents the components available for installation:

Installing Docker

[15]

Docker Client and Docker Machine are mandatory – you will be able to do nothing without
them. For the first time setup it's better to leave all of the options checked. Kitematic tool is
in alpha version in the time of writing this book, but don't worry – it behaves just fine. The
last installation screen will ask if you would like to add Docker's binaries to path or create
the desktop shortcuts, as seen on the following screenshot:

Installing Docker

[16]

Having Docker command line tools on path will be very handy in the future, so it's better to
have this option marked. It's worth mentioning that you have a choice of installing the older
NDIS5 host network filter driver instead of the default one, – NDIS6. If you happen to use
an older version of Windows – older than Windows Vista – this may help with some
problems like slowdowns or network issues. If you choose the NDIS6 and notice problems
later, just execute the installer again and then pick the NDIS5 instead.

When experiencing slowdowns or network issues, try the NDIS5 driver
instead.

After the installation, run the Kitematic tool we described earlier. It will present the
progress window during starting the Docker Linux VM. After successful start, Kitematic

Installing Docker

[17]

will ask you for your Docker Hub credentials. You may now login into the Docker Hub
now, create the Docker Hub account, or skip this process at this time – it's not mandatory
for searching and running images. We will use create the account and will be using Docker
Hub heavily in the Chapter 5 – Finding Images:

No matter if you decide to do or skip the login process, you will be presented with the main
window of Kitematic. Let's discuss it briefly. On the left side there is a list of containers
available to run – empty if you run Kitematic for the first time. Let's find a simple image to
run. Just start typing hello-world in the search box, to list Docker Hub images containing
such phrase in the name. Experiment with different searches to see what's available in the
Hub. You can download and run databases, like MySQL or Mongo, web servers like nginx,
and many, many more. All in couple of mouse clicks! And best of all – no dependencies are
required to be installed on your machine. For example, you don't even need to have Java
installed on your machine to be able to run Jboss or Tomcat. This is the magic of
containerization – and this is just the beginning.

One of the images from the official repository is famous hello-world image. Click Create
next to it:

Installing Docker

[18]

Now the magic happens. Docker will fetch the selected image from the Hub and execute it.
From now on, you can use Kitematic to start, stop, restart and configure your container:

Installing Docker

[19]

As you can see in the Container Logs section, a lot has happened behind the scenes just to
print the Hello from Docker message. But of course, it's not the usual message – it comes
from a containerized software – and it makes a huge difference comparing to standard
“hello world” programs. First, it checks if the Docker daemon is running on your system
and connects to it if so. Next, it looks if the hello-world image is present on your local
systems. If not – and it will be your case when running for the first time – it fetches the
image from the Docker Hub. Docker runs the image and streams its output back to you to
see.

Let's do the same from the Docker CLI. Click the Docker CLI icon in the Kitematic, to
execute the Windows PowerShell command prompt. You should not worry about the
command line syntax at the moment – we will explain it in the next chapters. Also, we will
be using command line tools through the whole book, so you will easily get familiar with
the syntax.

At first, let's verify if the virtualized Linux machine is working properly, by executing the
command:

Installing Docker

[20]

 docker-machine ls

ls stands for list command and lists the virtual machines configured on your Windows.
The currently running machine will have a star in the “ACTIVE” column and status
Running in the STATUS column:

Next, execute the following command to run the image:

 docker run hello-world

This will give you the same exact output as in Kitematic:

As we have said before, the Docker CLI and Kitematic are seamlessly connected and
everything you do in the command line will be reflected in Kitematic. You can notice that

Installing Docker

[21]

the image you just have run shows up in the GUI of Kitematic. Worth noticing is when you
create a new Docker container and don't give it a custom name (by passing “-name” option
with the Docker CLI) Docker generates a name for you:

These auto-generated names may be entertaining, but they can also be very useful later,
when you will need to distinguish the container by name. It's easier to remember
furious_keller than container231 isn't it?

Docker will automatically generate a container's name if you forget to do
so.

Installing on Mac OS
Docker installation on Mac OS is very similar to the installation on Windows PC. Again, we
have complete Docker Toolbox package, containing all the tools to get you started. It
contains Docker Client, Machine, Compose, Kinematic and VirtualBox. Your Mac must be
running OS X 10.8 “Mountain Lion” or newer to run Docker software. Head straight to the

Installing Docker

[22]

Docker Toolbox website https://www.docker.com/products/docker-toolbox and download
Mac OS version. Docker Toolbox for Mac is wrapped into a pkg package, so you need to
run it, instead of just moving it into the Applications folder. Similar to Windows version, it
will as if you would like to give it a permission to report usage statistics to improve the
future releases. After the installation, the Quick Start page will give you a choice to quickly
execute the Terminal or the Kitematic tool:

You will be also able to find Docker tools and VirtualBox in the Applications folder and
Launchpad menu later:

Installing Docker

[23]

To verify the setup, execute Kitematic, skip Docker Hub login and type hello-world in the
search field:

Next, click Create button next to the hello-world image. Kitematic (docker-machine to be
precise) will download the image from the Docker Hub and present you the output:

Installing Docker

[24]

From now on, also Docker's command-line tools are available for your disposal. Opening
the Terminal from Kitematic will automatically set all needed environment variables and
connect you to the default machine. But if you would like to be able to work from your own
terminal session, you may get a message saying that Docker client cannot connect to the
Docker daemon. The reason is that client doesn't know what machine it should control. To
attach your client to the specific machine, type the following command in your Terminal
session:

 eval "$(docker-machine env default)"

The eval command sets environment variables to dictate that docker should run a
command against a particular machine, which is “default” machine in our example.

To see the list of Docker related environment variables, list the using env command:

 env | grep DOCKER

The output will contain Docker variables, like machine name, host and certificate path:

 DOCKER_TLS_VERIFY=1
 DOCKER_HOST=tcp://192.168.99.100:2376

Installing Docker

[25]

 DOCKER_CERT_PATH=/Users/jarek/.docker/machine/machines/default
 DOCKER_MACHINE_NAME=default

Always check environment variables when having Docker daemon
connection issues.

Another way of testing the setup is the docker info command. Execute the following from
the command line shell:

 docker info

The output will contain a lot of useful information about the server's kernel version,
memory available, the number of running containers, the name of the machine and so on.

Let's now type the following command to run the hello-world image straight in the
Terminal:

 docker run hello-world

If you can see the output from the image, you are all set and have a working Docker setup
on your Mac:

Installing Docker

[26]

Installing on Linux
As we have said before, Linux is natural habitat for Docker. Therefore there is no need to
virtualize the Linux kernel. You can run Docker without the need of VT-x or similar
technologies in your processor, since Docker only requires cgroups to be available on kernel
to get the majority of its features working. Cgroups (control groups) is a Linux kernel
feature that limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O,
network, etc.) of a collection of processes. Docker will simply use the kernel of your own
operating system. This also makes the installation package smaller – there is no need for
virtualization engine and another virtualized operating system. This is the reason that the
installation process is a little bit different than on Mac OS or Windows. First, there is no
Docker Machine included in the installation – it's simply not mandatory for Linux. Second,
there is no fancy GUI installer – you will need to most of the tasks from the command line,
but this should not be a problem for a Linux user. And last but not least, there is no
Kitematic tool available for Linux.

On the Docker website you can find installation steps for the specific Linux distribution
(this will be yum package manager for Red Hat or apt-get for Ubuntu, for example). If you
are not willing to use the package manager directly, you can use the installation script

Installing Docker

[27]

provided by the Docker team. In fact, the script will execute the package manager valid for
your Linux OS and then install the software using packages. To get the most recent Docker
release for Linux, type the following in the shell:

 curl -fsSL https://get.docker.com/ | sh

The process of downloading required package will begin and you will observe keys,
packages and their dependencies being downloaded. At the end of the output, the installer
will print out the version of the just installed Docker client and server:

Installing this way will make Docker service available for root to run. It's not always a good
idea to run software as a root, so you will probably want to make it runnable also for your
user. First, you will need to create the “docker” group:

 sudo groupadd docker

and then add your current user to the group (assuming that yourUsername is the login
name for your user:

 sudo usermod -aG docker yourUsername

If you are going to deal with the cloud setup using your Linux, you will want to install
Docker Machine as well. To do this, execute this script:

 $ curl -L
https://github.com/docker/machine/releases/download/v0.7.0/docker-machine-`
uname -s`-`uname -m` > /usr/local/bin/docker-machine
 chmod +x /usr/local/bin/docker-machine

Installing Docker

[28]

You can also go to the Linux releases page directly and pick your desired version here:

https://github.com/docker/machine/releases/

To test the installation, let's print out the Docker service status, by executing the script (this
is an example for the latest Ubuntu Linux, which I will be using for the rest of the book):

 sudo service docker status

If the service responds properly, it will show the running status and also some statistics,
like memory available for the service and some recent log lines:

The service seems to be working fine, so the next thing we are going to do will be running
the simple hello-world image. This is where the fun begins – if Docker will not be able to
find the image on your local machine, it will fetch if from the Docker Hub and the run it.
We will talk a lot more about finding images and the Docker Hub later, in the Chapter 5 –
Finding images. To execute the sample hello-world image, type the following command in
your shell after logging out and logging again:

 docker run hello-world

After executing the command, the correct result will be just a Hello from Docker message
along with some more interesting facts:

Installing Docker

[29]

This is the same output you will get when running the image using Kitematic for Windows
or Mac OS. Docker prints out steps that it needed to do to run the image. Again, a lot of has
happened in the background just to print the simple message, but running the sample
image is a great way of testing the setup.

Installing on the cloud – Amazon AWS
In the next chapters we will show how to create Docker instance remotely, using the Docker
Machine. This time we will just install Docker and run the sample image on the Amazon
EC2 Cloud manually. If you have a running Linux on the EC2 Cloud, Docker installation
procedure is almost identical as for any Linux system. Let's begin with creating Linux
instance first.

For using EC2 Cloud you will need to create an account. It's free for basic purposes, so go
ahead to http://aws.amazon.comand fill out the registration form. Also, the basic “t2.micro”
instance is free for you to use and enough for testing Docker installation. After creating the
account, login into the AWS Console and select EC2 from the list of available services:

Installing Docker

[30]

Next, launch the instance using the Launch Instance button:

The next page asks what operating system should be available on your new EC2 instance.
For our purposes, Amazon Linux will be fine. It's first on the list, select it:

Next, you need to pick the Instance Type, which determines what kind of CPU, memory,
storage, and network capacity your server will have. Stick with the default option, t2.micro
(it's free of charge) and click the gray Next: Configure Instance Details button.

Amazon EC2 wizard will then present the instance configuration page, with the SSH port

https://aws.amazon.com/ec2/instance-types/

Installing Docker

[31]

(22) open by default. Depending on your needs, you can add open more ports, like HTTP
(80) if you plan to run a web application accessible through a web browser:

Now comes the important part – to be able to remotely login into your instance, you will
need a key pair. It consists of a public and private key file that you must use to connect to
your EC2 instance over SSH. Select Create a new key pair from the drop-down list, give it a
name like MY_EC2 for example, and click Download Key Pair button:

Installing Docker

[32]

If you click the Launch Instances button, the start process begins and the status will be
shown:

You can also check the status of your AWS instance by picking the Instances from the
Management Console menu. It's a handy page, useful to manage all your instances. The
status page will list all your cloud machines, their status like running or stopped and also
their public IP you can use to login into the instance:

Our newly created instance seems to be running fine, so let's try to login to its shell. Head to
the directory you previously saved the keys generated by Amazon and execute the
commands:

 chmod 400 MY_EC2.pem.txt
 ssh -i MY_EC2.pem.txt ec2-user@52.58.22.247

where MY_EC2.pem.txt is the filename of the generated keys and 52.58.22.247 is the public
IP address of your remote instance – those two will be different for you of course. After
running the SSH login, you will be greeted by Amazon Linux:

Installing Docker

[33]

From now on, Docker installation process doesn't differ much from any Linux setup. At
first, it's good to upgrade the operating system software to ensure are bug fixes are in place.
To do this on Amazon Linux, execute the following:

 sudo yum update -y

Next, install Docker using the yum package manager and add your user to the docker
group:

 sudo yum install -y docker
 sudo usermod -a -G docker ec2-user

After adding your user to the docker Linux group, you will need to logout
and login again, to be able to run Docker as a normal, non-root user.

After installing Docker, let's check directly if it's running or not. We will do it by firing up
the hello-world image. Execute the following command:

 docker run hello-world

Docker will fetch the image from the Docker Hub and then run it:

Installing Docker

[34]

The famous Hello from Docker message simply says, that now you are successfully
running a Docker container in the AWS cloud!

Now we are after the installation process, and hopefully you were able to run the sample
hello-world image on the operating system of your choice. Let's dive a little bit deeper into
the world of containerization and learn more about containers and images in the next
chapter.

Summary

3
Understanding Images and

Containers
In previous chapter we learned out how to install Docker on Windows, Mac OS, Linux and
Amazon EC2 cloud. So far you should have Docker running on your machine and be able to
run the hello-world image in a container. In this chapter we will dive deeper into the world
of images and containers. Later, we will also cover the image distribution related terms, like
Docker repository, registry and index.

Please be advised that we will mainly use the shell (or command prompt in Windows) to
execute Docker commands. You can always execute docker help to get the description of
available commands. Executing docker help with a name of specific command, like docker
help pull for example, will display information about this given command with a brief
description of available options:

Understanding Images and Containers

[36]

Let's start by explaining in details what images, layers and containers are.

Images
You can think of an image as a read only template which is a base foundation to run a
container on. It's like a template, which contains everything your application needs to
operate. It can be Ubuntu Linux with a web server and your web application installed.
Every image starts from a base image, for example ubuntu, a base Linux image. You can
create images yourself – images are created using a series of commands (called
“instructions”), described in the Dockerfile. It is an ordered collection of root filesystem
changes (like running a command, adding a file or directory, creating environmental
variables) and the corresponding execution parameters for use within a container runtime
later on. Docker will read the Dockerfile when you start the process of building of an image,
executes the instructions one by one, and returns a final image. Each instruction creates a
new layer in the image. We will cover the process in the Chapter 6 – Building Images.

Docker images are highly portable across hosts and operating systems – an image can be
run in a Docker container on any host that runs Docker. It's important to know, that Docker
uses image to run your code, not the Dockerfile. The Dockerfile is used to create the image
when you run build command – we will also get back to it in the Chapter 6 – Building
Images. Also, if you publish your image to the Docker Hub, you publish a resulting image,
not a source Dockerfile. We will describe the process later in this book, in Chapter

Understanding Images and Containers

[37]

Publishing Images.

Local images you have on your machine can be listed by running docker images
command:

The images command will display a table with the following columns:

REPOSITORY – The name of the repository. We will explain it in detail at the end
of this chapter.
TAG – This is kind of a label attached to the image, similar to Git or other version
control systems tag. It represents a specific set point in the repositories' commit
history. You can have multiple tags when building the image. There's even a
special tag called “latest” which represents the latest version. The full form of a
tag is [REGISTRYHOST/][USERNAME/]NAME[:TAG], but the TAG column is
just the [:TAG] part of the full tag. We will cover tagging in details later in the
Chapter 6 – Building Images.
IMAGE ID – This is the identifier for the image (actually it's the first 12 characters
of the true identifier for an image). You may use it to refer to a specific image
when executing image commands, but you can also use the image's name.
CREATED – The date represents the time the repository was created. You can use it
to verify how fresh the build of image is.
SIZE – The size of the image.

To remove all images you have on your system, execute the following:

 docker rmi $(docker images -q)

Understanding Images and Containers

[38]

To remove all un-tagged docker images, use the list of images and a filter:

 docker rmi $(docker images -q -f dangling=true)

Alternatively from creating your image from the scratch, you can pick already prepared
image from a hundreds available on the Internet. Also, you can publish an image in your
private hub, so other people in your organization can pull it and reuse. We will cover the
process of looking for images in the Chapter 5 – Finding Images. The downloaded images
can be updated and extended freely, so downloading base image is great way to get a
serious speed boost when developing one by yourself. It's a very common practice to
download ready-to-run image, like a webserver or database for example, and build on top
of it. You can have for example a base Apache image you could use this as the base of all
your web application images. This is possible due to the internal nature of an image –
layers, which Docker images are composed from. We have said a while ago, that every
instruction in the Dockerfile creates a new layer. Let's explain now what they are.

Layers
Each image consists of a series of layers which are stacked one on another. By using the
union filesystem, Docker combines all these layers into a single image entity. Union file
system allows transparent overlaying files and directories of separate file systems, giving a
single, consistent filesystem as a result, as you can see on the diagram:

Contents and structure of directories which have the same path within these separate file
systems will be seen together in a single merged directory, within the new, virtual-like
filesystem. In other words, the filesystem structure of the top layer will merge with the
structure of the layer beneath. Files and directories which have the same path as in the
previous layer will cover those beneath. Removing the upper layer will again reveal and
expose the previous directory content. As we have mentioned earlier, layers are placed in
stack one on the top of another. To maintain the order of layers, Docker utilizes the concept
of layer IDs and pointers. Each layer contains the ID and a pointer to its parent layer. A

Understanding Images and Containers

[39]

layer without a pointer referencing the parent is the first layer in the stack, a base. You can
see the relation on the following diagram:

As you pull the image from Docker Hub, you actually can see the progress of each
dependent layer being downloaded. Here's an example for the latest Ubuntu Linux:

Understanding Images and Containers

[40]

Another gain of using layers is the persistence of history. Layers can provide a history of
how a specific image was built. Once all the layers are finished downloading, you can list
the layers in the specific image using the history command:

 docker history ubuntu

Each line in the history command's output corresponds to a commit to a filesystem. The
values in the SIZE column add up to the corresponding SIZE column for the image in
docker image.

You can also see the graphical representation of the image using the ImageLayers web
application available at h t t p s : / / i m a g e l a y e r s . i r o n . i o:

https://imagelayers.iron.io

Understanding Images and Containers

[41]

Layers have some interesting features. First – they are reusable. If two different images will
have a common part, let's say it will be a Linux shell for example, Docker – which tracks all
of the pulled layers – will reuse the shell layer in both of the images. It's a safe operation –
as you remember, layers are read-only. When downloading the second image, the layer will
be reused and only the difference will be pulled from them Docker Hub. This saves time,
bandwidth and disk space of course, but it has another great advantage. If you modify your
Docker image, for example, by bumping the version of your application, only the single
layer gets modified. Instead of distributing the whole image, you push just the update,
making the process simpler and faster. This is especially useful if you use Docker in your
continuous deployment flow: pushing a Git branch will trigger building an image and then
publishing the application for users. Due to layers reuse feature, the whole process is a lot
faster. Because of layers, Docker is lightweight in comparison to full virtual machines,
which doesn't share anything. It is thanks to layers that when you pull an image, you
eventually don't have to download all of its filesystem. If you already have another image
that has some of the layers of the image you pull, only the missing layers are actually
downloaded. There is a word of warning though, related to another feature of layers: apart
from being reusable, layers are also additive.

https://docs.docker.com/reference/commandline/pull/

Understanding Images and Containers

[42]

Layers are additive – in result image can get quite large.

For example, if you create a large file in the container, then make a commit (we will get to
that in a while), then delete the file, and do another commit, this file will be still present in
the layer history. Imagine this scenario: you pull the base Ubuntu image, install the Wildfly
application server. Then you change your mind, uninstall the Wildfly and install Tomcat
instead. All those removed files from the Wildfly installation will still be present in the
image – although they have been deleted. Image size will grow in no time. Understanding
of Docker's layered file-system can make a big difference in the size of your images.
Growing size can become a problem when you publish your images to a registry – it takes
more requests and is longer to transfer. Large images become an issue when thousands of
containers need to be deployed across a cluster, for example.

To “flatten” the image, you can export it to a TAR file, using the export command:

 docker export <CONTAINER ID> > /home/docker/myImage.tar

Exporting the image to TAR will not preserve its history.

Exported file can then be imported back, using the import command:

 cat /home/docker/myImage.tar | docker import - some-name:latest

If the free disk space is really an issue, you can pipe the output stream of export into the
input stream of import:

 docker export <CONTAINER ID> | docker import - exampleimagelocal:new

Alternatively, you can use the docker-squash utility, available at GitHub h t t p s : / / g i t h u
b . c o m / j w i l d e r / d o c k e r - s q u a s h, to make your images smaller. It will quash multiple
Docker layers into one in order to create an image with fewer and smaller layers. Squashed
images work the same as they were originally built, because this utility retains Dockerfile
commands like PORT or ENV. In addition, deleted files in later layers are actually removed
from the image when squashed.

If there's a need, you can also extract data files from the finished container with cp (from
“copy”) command:

 docker cp <CONTAINER ID>:/path/to/find/files /path/to/put/copy

https://github.com/jwilder/docker-squash
https://github.com/jwilder/docker-squash

Understanding Images and Containers

[43]

Layers and images are closely related to each other. Docker allows dealing with images and
their layers by a couple of commands and we have been using most of them already. Let's
summarize them now:

Image related command Description

images List images

build Build an image from a Dockerfile

history Show the history of an image

import Create new filesystem image from the contents of a TAR archive

load Load an image from a TAR archive

rmi Remove one or more images

save Save an image contents to a TAR archive

inspect Return low-level information on an image

Layers are a great feature in a container world. When used wisely, can be a great help when
creating images. But, they also have a limitation. At present the AUFS limit of 42
layers. It means that you should group similar commands where it is possible – it will
result with just one single layer.

As we have said before, Docker images are stored as series of read-only layers. This means
that, once the container image has been created, it does not change. But having all the file
system read-only would not have a lot of sense. What about modifying an image? Adding
your software to a base web server image? Well, when we start a container, Docker actually
takes the read-only image (with all its read-only layers) and adds a read-write layer on top
of the layers stack. Let's focus on the containers now.

Containers
A running instance of an image is called a container. Docker launches them using the Docker
images as read-only templates. To run a container, use the same command we were using in
the previous chapter when we have been testing our installation: docker run:

 docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

There are a lot of run command options that can be used. Some of them include the network
configuration for example (we will explain Docker's networking in the next chapter), the -
it (from “interactive”) option tells Docker to make the container interactive and to attach a

https://github.com/dotcloud/docker/issues/1171
https://github.com/dotcloud/docker/issues/1171

Understanding Images and Containers

[44]

terminal to its output and input. We will cover all of them in details in the Chapter 7 –
Running the Software. Now, let's just focus on the idea of the container to better understand
the whole picture. Let's try a simple command to start a new container using the latest
version of Ubuntu. As a result of interactive run, once this container starts, you will get a
bash prompt shell where you can execute Ubuntu's commands, like in a normal, ordinary
shell:

 docker run -it ubuntu:latest /bin/bash

So what happens under the hood when we run this command?

The image which is the “ubuntu:latest” in our case, will be pulled down from a
“ubuntu” repository”, unless it's already available on your local machine.

The Docker engine takes the image and adds a read-write layer on top of the layers stack,
then initializes image name, ID and resource limits (like CPU and memory). In this phase,
Docker will also sets up an IP address by finding and attaching an available IP address from
a pool. The last step of the execution will be the actual command – passed as the last
parameter: "/bin/bash" in our case – which starts a shell where you can log in. Docker
will capture and provide the container output – it will be displayed in the console. You can
now do things you would normally do when preparing an operating system to run your
applications. This can be installing packages (via apt-get, for example), pulling source
code with Git, downloading Node.js libraries using npm and so on. All of this will modify
the filesystem of the top, writable layer. If you then execute the commit command, a new
image containing all of your changes will be created and ready to run later.

Sometimes we can tell Docker, that we will not need a container after it is stopped. For this
purpose, there is -rm option available for the run command. For example running:

 docker run -i -t -rm ubuntu:latest /bin/bash

will pull and start the latest Ubuntu container and present us an interactive bash shell. As
soon as we finish our work and stop the container, it will be deleted from the filesystem
releasing some space on a drive.

To stop a container, use the docker stop command:

 docker stop

A container when stopped will retain all settings and filesystem changes (in the top, read-
write layer), but all processes will be stopped and you will lose anything in memory. This is
what differentiates a stopped container from a Docker image. Sometimes you need to stop
all of the running containers, so this command may come in handy:

Understanding Images and Containers

[45]

 docker stop $(docker ps -a -q)

To list all containers you have on your system – either running or stopped – execute the ps
command:

 docker ps -a

As a result, Docker client will list a table containing container IDs (a unique identifier you
can use to refer to the container in other commands), creation date, the command used to
start a container, status, exposed ports and a name (assigned by you or the funny name
Docker has picked for you):

As you can see, the output will contain detailed information about the container status and
uptime and a command used to start in the container.

To remove a container, you can just use the rm command. If want to remove couple of them
at once, you can use the list of containers (given by the ps command) and a filter:

 docker rm -v $(docker ps -a -q -f status=exited)

Saving changes to a container
Although an image is always read-only and immutable, we can actually make changes to a
running container – the top layer of a container stack is always the read-write (writable)
layer. This can be adding or modifying files, like installing a software package, configuring
the operation system and so on.

Understanding Images and Containers

[46]

If you modify a file in the running container, the file will be copied out of the underlying
read-only layer and into the top, read-write layer. Your changes will be performed only in
the top layer, and the union filesystem will hide the underlying file. The original file will
not be destroyed – it still exists in the underlying, read-only layer. If you delete the
container, and relaunch the same image again, Docker will start a fresh container without
any of the changes made in the previously running container.

In other words, your changes to the filesystem will not affect the base image. However, you
can create a new image from a running container (and all it changes) using the commit
command:

 docker commit <container-id> <image-name>

To save changes you have made to the container, you must commit them.

During runtime, if the process in a container makes changes to its filesystem, a “diff” is
made between the current container filesystem and the filesystem of the image from which
the container was created. If you run the docker commit command, the diff becomes a
new read-only image, from which you can create new containers. Otherwise, if you remove
the container, the diff will disappear. You can make updates to a container, but a series of
updates will engender a series of new container images, so system rollbacks are easy. Take a
look what happens after you do a commit:

Understanding Images and Containers

[47]

Let's see an example. First, we pull a base image called busybox. Busybox combines tiny
versions of many common UNIX utilities into a single small executable. It provides
replacements for most of the utilities you usually find in GNU like file utilities, shell tools
and so on.

 docker pull busybox

Now we make changes to a container of this image in this case we make a new folder:

 docker run busybox mkdir /home/test

At the moment, we can get a busybox container ID using the command:

 docker ps -a

Let's commit this changed container – this will create a new image called
“busybox_modfied”:

 docker commit <CONTAINER ID> busybox_modified

In the response of successful commit, Docker will just output the full ID of newly generated
image.

To avoid data corruption or inconsistency, Docker will pause a container you are
committing changes into. Although it's not recommended to do so, you have an option to
disable this behavior, setting --pause option to false.

If we list images we have now, both “busybox” and “busybox_modified” should be present
on the list. To see them, execute the images command:

 docker images -a

As you can see, the new “busybox_modified” is present on the list of images available
locally:

Understanding Images and Containers

[48]

To see the difference between both images we can use the following check for folders:

 docker run busybox [-d /home/test] && echo 'Directory found' || echo
'Directory not found'
 docker run busybox_modified [-d /home/test] && echo 'Directory found'
|| echo 'Directory not found'

Now we have two different images (“busybox” and “busybox_modified”) and we have a
container made from “busybox” which also contains the change (the new folder
/home/test). The 'commit' command takes a container's top-level read-write layer and
turns it into a read-only layer. In effect, the container (no matter if it's running or stopped)
becomes new, read-only, immutable image.

When the container is deleted the writable layer is also deleted.

Creating images by altering the top writable layer in the container is useful when
debugging and experimenting, but it's usually better to use Dockerfile to manage your
images in a documented and maintainable way. We will do it in the Chapter 6 – Building
Images.

A container is a stateful instantiation of an image.

Understanding Images and Containers

[49]

We have been using a couple of container – related commands in this sections, let's
summarize them in a table:

Container related command Description

attach Attach to a running container

commit Build an image from a Dockerfile

cp Show the history of an image

create Create new filesystem image from the contents of a TAR archive

diff Load an image from a TAR archive

exec Remove one or more images

inspect Save an image contents to a TAR archive

kill Return low-level information on an image

start / stop / restart /
pause / unpause

Manage the container's run status

logs Fetch the logs of a container

port List port mappings or a specific mapping for the container

rename Rename a container

run Run a command in a new container

stats Display a live stream of container(s) resource usage statistics

top Display the running processes of a container

update Update configuration of one or more containers

wait Block until a container stops, then print its exit code

We have now learned about the build (images) and run (containers) pieces of our
containerization world. We still are missing the last element – the distribution component.
The distribution component of Docker consists of Docker Registry, Index and Repository.
Let's focus on them now to have a complete picture.

Docker Registry, REPOSITORY and index
Docker utilizes a hierarchical system for storing images, shown at the diagram below:

Understanding Images and Containers

[50]

The first component in this system is the registry. Images which you build will be stored in
a remote registry for others to use. Docker registry is a service (an application, in fact) that
is storing your Docker images. Docker Hub is example of the publicly available registry –
it's free and serves a huge, constantly growing collection of existing images. There are of
course other registries available on the Internet like Artifactory
(https://www.jfrog.com/artifactory), Google Container Registry (h t t p s : / / c l o u d .
g o o g l e . c o m / c o n t a i n e r - r e g i s t r y) and Quay (https://quay.io).

Repository, on the other hand is a collection (namespace) of related images, usually
providing different versions of the same application or service – in other words is a
collection of different docker images with same name and different tags. If your app is
named “hello-world” and your username (or namespace) for the Registry is
“developingWithDocker” then your image will placed in the
“developingWithDocker/hello-world” repository. You can tag an image, and store
multiple versions of that image with different IDs in a single named repository, access
different tagged versions of an image with a special syntax like username/image_name:tag.
Docker repository isquite similar to a Git repository – like in Git, a Docker repository is
identified by a URI and can either be public or private. The URI looks like:

 {registryAddress}/{namespace}/{repositoryName}:{tag}

The Docker Hub is the default registry and Docker will pull images from the Docker Hub if
you do not specify a registry address.

The registry address can be omitted for repositories hosted with Docker
Hub.

We have mentioned tags earlier in this chapter – we will get back to them in details in

https://www.jfrog.com/artifactory
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry

Understanding Images and Containers

[51]

the Chapter 6 – Building Images. A registry typically hosts multiple Docker repositories.

The difference between Registry and repository can be confusing at the beginning, so let's
describe what will happen if you execute the following command:

 docker pull ubuntu:14.04

The command downloads the image tagged 14.04 within the ubuntu repository from the
Docker Hub registry. Ubuntu repository doesn't use username, so the namespace part is
omitted in this example.

Let's summarize repository related commands in a table:

Repository related command Description

login Log in to a Docker registry

logout Log out from a Docker registry

pull Pull an image or a repository from a registry

push Push an image or a repository to a registry

search Search the Docker Hub for images

Although the Docker Hub is public, you get one private repository for free with your
Docker Hub user account, but it's not usable for organizations you're a member of. If you
need more accounts you can upgrade your Docker Hub plan, which will not be free of
charge. There are a couple of payment plans based on the number of private repositories
you need. We will cover the Docker Hub in detail in the Chapter 5 – Finding Images and
Chapter 8 – Publishing Images.

Private registries, on the other hand, can be setup just for you or other users in your
organization, in your company's own network.

You can create the private registry behind your company's firewall.

To run your totally private registry, you can use the Docker Hub itself. It's an open source
application, and is also available as a Docker image. The simplest case is just running the
command:

 docker run -d -p 5000:5000 --name registry registry:2

https://hub.docker.com/account/billing-plans/

Understanding Images and Containers

[52]

As a result, you will start private registry on your own machine.

Last, but not least component you should be aware of is an Index. An Index manages search
and tagging but also user accounts and permissions. In fact, the registry delegates
authentication to the index. When executing remote commands like push or pull, the index
first will look at the name of the image and then check to see if it has a corresponding
repository. If so, the index verifies if you are allowed to access or modify the image. If you
are, the operation is approved and registry takes or sends the image.

Summary
Let's summarize what we have learned so far:

The Dockerfile is the source code of the Image. It contains ordered instructions
how to build an image.
An image is a specific state of a filesystem: a read-only, frozen immutable
snapshot of a live container.
An image is composed of layers representing changes in the filesystem at various
points in time; layers are a bit like the commit history of a git repository
Containers are runtime instances of an image. They can be running or stopped.
You can make changes to the filesystem on a container and commit them to make
them persisted. Commit always creates a new image.
Only changes on the filesystem can be committed – memory changes will be lost.
A registry holds a collection of named repositories, which themselves are a
collection of images tracked by their IDs. Registry is like a Git repository: you can
push and pull containers.

After reading this chapter you should have an understanding the nature of images with
their layers and containers. But Docker provides another way of extending and opening
containers to the external world: networking and persistent storage. We are going to cover
this subject in the next chapter.

	Cover
	Table of Contents
	Introduction to Docker
	The basic idea
	Containerization vs Virtualization
	Traditional virtualization
	Containerization

	Benefits of using Docker
	Speed and size
	Reproducible and portable builds
	Immutable and agile infrastructure
	Tools and APIs

	Summary

	Installing Docker
	Hardware requirements
	Tools overview
	Docker Engine and Docker Engine client
	Docker machine
	Kitematic
	Docker Compose
	a //aOracle VirtualBox
	Git

	Installing on Windows
	Installing on Mac OS
	Installing on Linux
	Installing on the cloud – Amazon AWS
	Summary

	Understanding Images and Containers
	Images
	Layers
	Containers
	Saving changes to a container

	Docker Registry, REPOSITORY and index
	Summary

