

Docker Bootcamp

Less is more with Docker

Russ McKendrick

Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

BIRMINGHAM - MUMBAI

Docker Bootcamp

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1250417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78728-698-6

www.packtpub.com

www.packtpub.com

Credits

Authors
Russ McKendrick

Pethuru Raj

Jeeva S. Chelladhurai

Vinod Singh

Reviewer
Jeeva S. Chelladhurai

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Mamata Walkar

Technical Editors
Naveenkumar Jain

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Kirk D'Penha

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Russ McKendrick is an experienced solution architect who has been working in
IT and related industries for the better part of 24 years. During his career, he has had
varied responsibilities in many different sectors, ranging from looking after an entire
IT infrastructure to providing first-line, second-line, and senior support in both
client-facing and internal teams for small and large organizations.

Russ works almost exclusively with Linux, using open source systems and tools
across both dedicated hardware and virtual machines hosted in public and private
clouds at Node4 Limited, where he heads up the Open Source Solutions team.

In his spare time, he has written three books (including this one) on Docker.
Monitoring Docker and Extending Docker which are both available now from Packt,
as well contributing to Monitoring and Management With Docker and Containers
which was published by The New Stack. He also buys way too many vinyl records.

LinkedIn: https://in.linkedin.com/in/russmckendrick

GitHub: https://github.com/russmckendrick

Personal Blog: https://media-glass.es/

Dockerhub: https://hub.docker.com/u/russmckendrick/

Packt: https://www.packtpub.com/books/info/authors/russ-mckendrick

https://in.linkedin.com/in/russmckendrick
https://github.com/russmckendrick
https://media-glass.es/
https://hub.docker.com/u/russmckendrick/
https://www.packtpub.com/books/info/authors/russ-mckendrick

Pethuru Raj, PhD has been working as a cloud architect in the IBM Global Hybrid
Cloud Center of Excellence (CoE), IBM India Bangalore for the last four years.
Previously he worked as TOGAF-certified enterprise architecture (EA) consultant
in Wipro Consulting Services (WCS) Division, Bangalore for 10 years. He also had
a fruitful stint (2 years) as a lead architect in the corporate research (CR) division of
Robert Bosch, India. He has gained more than 16 years of IT industry experience. He
finished the CSIR-sponsored PhD degree in Anna University, Chennai and continued
the UGC-sponsored postdoctoral research in the department of Computer Science
and Automation, Indian Institute of Science, Bangalore. Thereafter, he was granted
a couple of international research fellowships (JSPS and JST) to work as a research
scientist for 3.5 years in two leading Japanese universities. Totally he gained 8 years
of research experience. He has authored 7 books thus far and he focuses on some of
the emerging technologies such as:

•	 Software-defined Clouds (SDC)
•	 Big, Fast, Streaming and IoT Data Analytics
•	 Docker-enabled containerization
•	 Microservices architecture (MSA)
•	 Cognitive Clouds
•	 Smarter Cities Technologies and Tools
•	 IoT Edge/Fog Analytics

He has published more than 30 research papers in peer-reviewed journals such as
IEEE, ACM, Springer-Verlag, Inderscience, etc.

Home Page: www.peterindia.net

LinkedIn Profile: https://www.linkedin.com/in/peterindia

Personal Email: peterindia@gmail.com

www.peterindia.net
https://www.linkedin.com/in/peterindia
peterindia@gmail.com

Jeeva S. Chelladhurai has been working as a DevOps specialist at the IBM GTS
Labs for the last 9 years. He has more than 20 years of IT industry experience. He
has technically managed and mentored diverse teams across the globe in envisaging
and building pioneering telecommunication products. He specializes in DevOps,
Automation and cloud solution delivery, with a focus on data center optimization,
software-defined environments (SDEs), and distributed application development,
deployment, and delivery using the newest Docker technology. Jeeva is also a strong
proponent of the agile methodologies, DevOps, and IT automation. He holds a
master's degree in computer science from Manonmaniam Sundaranar University and
a graduation certificate in project management from Boston University, USA. Besides
his official responsibilities, he writes book chapters and authors research papers.
He has been instrumental in crafting reusable technical assets for IBM solution
architects and consultants. He speaks in technical forums on DevOps technologies
and tools. His Linked in profile can be found at https://www.linkedin.com/in/
JeevaChelladhurai

Vinod Singh is a seasoned technical professional who has worked for two decades
with software industry. Currently he is a senior cloud architect with IBM’s cloud
flagship offering Bluemix supporting customers across the world. Vinod’s experience
with networking and data communication spans software design, development and
testing. The Cloud, Cognitive, and Linux are his passions and he feels Cognitive
computing is once again going to change the world. Vinod’s experience with the
latest design thinking techniques, agile & lean methods, and extreme programing
was very fruitful and has been a tremendous help in making cloud deals across
the world.

Vinod is a regular speaker at IBM’s internal conferences, IEEE conferences, and
technology meetups. Vinod’s latest day job revolves around IBM BlueMix, Cloud
Foundry, Softlayer, OpenStack, Amazon AWS.

Vinod wants to acknowledge his wife for regularly reminding him to
complete the chapters of the book. His wife’s extra ordinary support
at home enables Vinod to run that extra mile in professional life.

https://www.linkedin.com/in/JeevaChelladhurai
https://www.linkedin.com/in/JeevaChelladhurai

About the Reviewer

Jeeva S. Chelladhurai has been working as a DevOps specialist at the IBM GTS
Labs for the last 9 years. He has more than 20 years of IT industry experience. He
has technically managed and mentored diverse teams across the globe in envisaging
and building pioneering telecommunication products. He specializes in DevOps,
Automation and cloud solution delivery, with a focus on data center optimization,
software-defined environments (SDEs), and distributed application development,
deployment, and delivery using the newest Docker technology. Jeeva is also a strong
proponent of the agile methodologies, DevOps, and IT automation. He holds a
master's degree in computer science from Manonmaniam Sundaranar University and
a graduation certificate in project management from Boston University, USA. Besides
his official responsibilities, he writes book chapters and authors research papers.
He has been instrumental in crafting reusable technical assets for IBM solution
architects and consultants. He speaks in technical forums on DevOps technologies
and tools. His Linked in profile can be found at https://www.linkedin.com/in/
JeevaChelladhurai.

https://www.linkedin.com/in/JeevaChelladhurai
https://www.linkedin.com/in/JeevaChelladhurai

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1787286983.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless
in improving our products!

https://www.amazon.com/dp/1787286983

[i]

Table of Contents
Preface	 v
Chapter 1: Installing Docker Locally	 1

Docker for Mac and Windows	 2
Docker for Mac	 3

Downloading Docker for Mac	 4
Installing Docker for Mac	 4

Docker for Windows	 8
Downloading Docker for Windows	 9
Installing Docker for Windows	 9

Upgrading Docker for Mac and Windows	 14
Docker on Ubuntu 16.04	 14
Testing your installation	 16
Summary	 18

Chapter 2: Launching Applications Using Docker	 19
Docker terminology	 19

Docker images	 20
Docker Registry	 21
Docker Hub	 22

Controlling Docker containers	 23
Running a WordPress container	 28
Docker Compose	 33

Why Compose?	 33
Compose files	 34

Docker Build	 40
A quick overview of the Dockerfile's syntax	 43

The comment line	 43
The parser directives	 44

Table of Contents

[ii]

The Dockerfile build instructions	 44
The FROM instruction	 44
The MAINTAINER instruction	 45
The RUN instruction	 46
The COPY instruction	 47
The ADD instruction	 48
The EXPOSE instruction	 49
The ENTRYPOINT instruction	 50
The CMD instruction	 52

Customizing existing Images	 57
Sharing your images	 61
Summary	 65

Chapter 3: Docker in the Cloud	 67
Docker Machine	 67
The Digital Ocean driver	 68
The Amazon Web Services driver	 75
The Microsoft Azure driver	 81
References	 86
Summary	 87

Chapter 4: Docker Swarm	 89
Creating a Swarm manually	 89
Launching a service	 95
Launching a stack	 98
Docker for Amazon Web Services	 100
Docker for Azure	 109
Summary	 114

Chapter 5: Docker Plugins	 115
REX-Ray volume plugin	 115
WeaveNetwork Plugin	 124
Summary	 133

Chapter 6: Troubleshooting and Monitoring	 135
Troubleshooting containers	 135

The exec command	 136
The ps command	 138
The top command	 138
The stats command	 139
The Docker events command	 140
The logs command	 141
The attach command	 141

Table of Contents

[iii]

Debugging a Dockerfile	 142
Monitoring containers	 144
Summary	 157

Chapter 7: Putting It All Together	 159
Workflows	 159
Describing containers	 160
Describing Docker	 161

Distinguishing Docker containers	 162
Virtual Machines versus containers	 165
The Docker use cases	 166

Integrating containers into workflows	 166
Docker for High-Performance Computing (HPC) and
Technical Computing (TC) applications 	 167

Containers for telecom applications	 168
Summary	 169

Index	 171

[v]

Preface
It's not very often a technology comes along, which is adopted so widely across
an entire industry. Since its first public release in March 2013, Docker has not only
gained the support of both end users, like you and I, but also industry leaders such
as Amazon, Microsoft, and Google.

Docker is currently using the following sentence on their website to describe why
you would want to use it:

Docker provides an integrated technology suite that enables development and
IT operations teams to build, ship, and run distributed applications anywhere.

As simple as Docker's description sounds, it's been the ultimate goal for most
development and IT operations teams for several years to have a tool, which can
ensure that an application can consistently work across all stages of an application
lifecycle, from development all the way through to production.

You will learn how to install Docker on your Operating System of choice. You will
see that once Docker is installed, no matter which operating system you are using,
you will get the same results when running containers.

We will then extend our Docker installation to public clouds and you will learn that
no matter where you deploy your Docker hosts, the experience remains consistent
and simple.

By the final chapter, you should have an idea on how Docker can be integrated into
your day-to-day workflow and what your next steps with containers are going to be.

Preface

[vi]

What this book covers
Chapter 1, Installing Docker Locally, works through installing the core Docker Engine
as well as supporting tools on macOS, Windows 10, and Linux desktops so that you
are ready for the forthcoming chapters.

Chapter 2, Launching Applications Using Docker, uses the Docker installation we
installed in the previous chapter and launches containers. By the end of the chapter,
we will launch a WordPress installation both manually and by using Docker
Compose to define your multi-container application. We will also look at how
you can publish your own images to Docker Hub.

Chapter 3, Docker in the Cloud, explains how to move away from your local installation
of Docker and into public clouds. Here, we will look at launching Docker hosts in
various public clouds and also deploy our applications onto them.

Chapter 4, Docker Swarm, continues to use public clouds; but rather than working
with single isolated Docker hosts, we will deploy and configure a Docker
Swarm cluster.

Chapter 5, Docker Plugins, speaks of the phrases used when describing Docker,
which is Batteries included but removable. In this chapter, we will look at third-party
plugins, which extend coreDocker functionality by adding persistent storage and
multi-host networking.

Chapter 6, Troubleshooting and Monitoring, questions that, now that we have containers
running locally, remotely, and within a cluster, what can go wrong? In this chapter,
we will look at some of the problems you can come across. Also, we will learn how
we can deploy tools to get metrics such as CPU, memory, and HDD utilization from
your containers using both, first and third-party tools.

Chapter 7, Putting It All Together, emphasizes that you should now have a good
understanding of what Docker is, how it works, and some possible use cases. In this
chapter, we will explore how you can share container experience with colleagues as
well what steps to take next.

What you need for this book
You will have to install and configure Docker17.03 (CE) on the following platforms:

•	 Windows 10 Professional
•	 macOS Sierra
•	 Ubuntu 16.04 LTS desktop

Preface

[vii]

Also, you should have access to a public cloud platform such as Digital Ocean,
Amazon Web Service, or Microsoft Azure.

Who this book is for
This book targets developers, IT professionals, and DevOps engineers who like to
gain intensive, hands-on knowledge, and skills with Docker without spending hours
and hours in learning. If you have been struggling to find the time to gain proficiency
and confidence with Docker containers and everyday Docker tasks, you have come
to the right place!

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

docker container run -d \
 --name mysql \
 -e MYSQL_ROOT_PASSWORD=wordpress \
 -e MYSQL_DATABASE=wordpress \
 mysql

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Install the packages we need to run wp-cli
RUN apt-get update &&\
apt-get install -y sudo less mysql-client &&\

Any command-line input or output is written as follows:

curl -L "https://github.com/docker/compose/releases/download/1.10.0/
docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

chmod +x /tmp/docker-compose

sudo cp /tmp/docker-compose /usr/local/bin/docker-compose

Preface

[viii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/Docker-Bootcamp. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Docker-Bootcamp
https://github.com/PacktPublishing/Docker-Bootcamp
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Installing Docker Locally
In this, the first chapter, we are going to look at installing and configuring Docker on
the following platforms:

•	 macOS Sierra
•	 Windows 10 Professional
•	 Ubuntu 16.04 LTS Desktop

Once installed, we will then look at how you can interact with your local
Docker installation.

Before we start our installation, I would like to take a moment to quickly talk about
the version of Docker which we will be installing.

At the time of writing, Docker 17.03 has just been released and like most updates,
introduces new features as well as changes to existing features. This book has been
written with this version of Docker so some of the commands listed may not work or
have the same effect when using older versions.

If you already have Docker installed, I would recommend that you check that you
are running Docker 17.03 by running the following command:

docker version

If your version of Docker is older that 17.03 then please refer to the upgrade
instructions in each of the following sections before proceeding with the rest
of the chapters.

Installing Docker Locally

[2]

Docker for Mac and Windows
As we have already touched upon in the preface, the version of the Docker Engine
we are going to be covering in this book is very much a Linux-based tool, so how
does it work on macOS and Windows?

It is easy to assume that because macOS is an operating system built on-top of a
UNIX like kernel called XNU that Docker will just run as it would do on a Linux
machine, unfortunately, a lot of the features which allow Docker to run are not
present in the Kernel used by macOS.

While there is the recently launched Windows Subsystem for Linux which is
currently in beta, Docker for Windows does not currently take advantage of this,
meaning that there is even less of a Linux-like kernel for Docker to use.

The Windows Subsystem for Linux exposes an Ubuntu shell
which allows you to run native Linux command-line tools on your
Windows installation; for more information, please see https://
msdn.microsoft.com/en-gb/commandline/wsl/about.

So how does Docker for Mac and Windows work? The latest versions of macOS and
Windows 10 Professional ship with hypervisors which are built into the operating
systems kernel, macOS has Hypervisor framework while Windows 10 uses
Hyper-V.

Hypervisor framework allows developers to build applications
without the need to install third-party kernel extensions, meaning
they can leverage full hardware virtualization but remain purely in
user space meaning that virtual machines remain sandboxed as if
they were running as a native application. The following URL gives a
technical overview: https://developer.apple.com/reference/
hypervisor

For Docker for Mac Docker have built their own open source framework which
works with the Hypervisor framework called HyperKit: you can find out more about
HyperKit at https://github.com/docker/HyperKit/.

Hyper-V has been the native hypervisor for Windows-based operating systems since
Windows Server 2008; it has also been part of the desktop version of Windows since
Windows 8 (Professional and Enterprise editions), it allows users and developers
to launch Windows and Linux virtual machines with hardware virtualization in a
sandboxed environment. For more information on Hyper-V, please see https://
www.microsoft.com/en-us/cloud-platform/server-virtualization.

https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://msdn.microsoft.com/en-gb/commandline/wsl/about
https://developer.apple.com/reference/hypervisor
https://developer.apple.com/reference/hypervisor
https://github.com/docker/HyperKit/
https://www.microsoft.com/en-us/cloud-platform/server-virtualization
https://www.microsoft.com/en-us/cloud-platform/server-virtualization

Chapter 1

[3]

Docker for Mac and Windows uses these native virtualisation technologies to launch
a virtual machine running their MobyLinux distribution, MobyLinux is a light-
weight distribution based on Alpine Linux who's only function is to run Docker.

The ISO for Alpine Linux currently weighs in at 26 MB, and a
fully functioning minimal installation requires a footprint of
~130MB, while the distribution is extremely small it is as useable
and secure as more common Linux distributions. You can find
out more at https://alpinelinux.org/.

Docker for Mac and Windows takes care of launching, configuring, and maintaining
the virtual machine as well as functions such as networking and mounting
filesystems from your local machine to a MobyLinux virtual machine.

Docker for Mac
Docker for Mac has the following system requirements; if your machine does not
meet them then Docker for Mac will fail to install:

•	 Your Mac must be a 2010 or later model, with support for Intel's hardware
support for memory management unit (MMU) virtualization.

•	 You must be running OS X El Capitan 10.11 or newer. I recommend that you
are running the latest macOS.

•	 You must have at least 4GB of RAM.
•	 Versions of VirtualBox 4.3.30 or lower must NOT be installed as this causes

problems with Docker for Mac.

To check that your machine can support Docker for Mac you can run the
following command:

sysctl kern.hv_support

This should return a 1 when you run the command; this means the virtualization is
enabled in your kernel as it is available on your CPU.

https://alpinelinux.org/

Installing Docker Locally

[4]

Downloading Docker for Mac
Docker for Mac is available from the following URL:

https://store.docker.com/editions/community/docker-ce-desktop-mac

I would recommend sticking with the Stable channel for now as this is the
version we will be installing on remote machines in later chapters. Clicking on Get
Docker for Mac (stable) will kick off a download of a disk image (DMG) file, once
downloaded double-click on the f﻿﻿ile to mount it.

Installing Docker for Mac
Like most macOS apps, all you have to do is the following:

1.	 Drag the Docker application from the mounted disc image to your
applications folder; opening the mounted image in the macOS finder by
double clicking on it makes this task easy, as you can see from the following
screenshot:

https://store.docker.com/editions/community/docker-ce-desktop-mac

Chapter 1

[5]

2.	 Once the application has been copied, you can close the finder window and
open your Applications, find Docker, and open it:

3.	 When you open Docker for the first time you will be walked through the
initial installation:

Installing Docker Locally

[6]

4.	 Clicking Next will tell you that Docker will ask for your password, it needs
this to complete the installation.

5.	 After clicking OK and entering your password when prompted a whale
icon will appear in the menu bar, and while Docker starts you should see
something which looks like the following popup:

Chapter 1

[7]

6.	 Clicking Got it! will close the pop-up. You can tell that Docker has started as
the small boxes on the whales back in the icon will stop animating; also left-
clicking over the icon will bring up a menu which shows the status of your
Docker installation:

7.	 Selecting About Docker from the menu will open the following window:

8.	 Running the following command in a terminal shows additional information
about your Docker installation:

docker version

Installing Docker Locally

[8]

You should see something like the following output:

As you can see, it gives details on the Docker client which is installed on your macOS
host and the MobyLinux virtual machine the client is connecting to.

Docker for Windows
Docker for Windows has the following system requirements; if your machine does
not meet them then Docker for Windows will inform you before exiting:

•	 You must be running a 64bit Windows 10 Pro, Enterprise and Education
(1511 November update, build 10586 or later) installation or later (there are
plans to support other versions in the future)

•	 Hyper-V must be enabled, though the installer will enable it for you
if needed

•	 You must have at least 4GB of RAM

Chapter 1

[9]

Downloading Docker for Windows
Docker for Windows is available from the following URL:

https://store.docker.com/editions/community/docker-ce-desktop-windows

Like Docker for Mac, I would recommend sticking with the Stable channel. Clicking
on Get Docker for Windows (stable) will download an installer; once the installer
has finished downloading, you will be given the option to Run it.

Installing Docker for Windows
When the Docker for Windows installer first opens, you will be greeted by the
Docker License Agreement:

Clicking I accept the terms of the License Agreement will enable the Install button,
clicking Install with immediately start the installation.

https://store.docker.com/editions/community/docker-ce-desktop-windows

Installing Docker Locally

[10]

After a minute or two, you should receive confirmation that the installation has
been completed.

Making sure that Launch Docker is ticked (it should be by default), click on Finish
to open Docker. If you do not have Hyper-V enabled, then you will receive the
following prompt:

Chapter 1

[11]

Clicking Ok will reboot your computer so ensure that you have saved any open
documents you may have. Once rebooted, Docker should launch automatically, and
like Docker for Mac, you will notice that there is an icon of a whale in your menu bar:

Once Docker has started, selecting About Docker from the menu will open the
following window:

Finally, open Windows PowerShell and entering the following command:

docker version

Installing Docker Locally

[12]

This will return similar information on Docker for Mac, showing both the client
information and details on the MobyLinux virtual machine:

There is one more thing with Docker for Windows: you can run native Windows
containers. You can enable this feature by selecting the Switch to Windows
containers … option from the menu; if it is your first time enabling this feature
then you will get the following dialog popup:

Chapter 1

[13]

Clicking Ok will reboot your machine. Once rebooted, selecting the menu
option again will switch you over from using Linux to Windows; this is
reflected when you run the following:

docker version

As you can see, the server OS/Arch has changed from linux/amd64 to windows/
amd64. We will not be looking at Windows containers in this book; you can change
back to Linux containers by using the menu option:

If you have any problems running the commands in later
chapters on Docker for Windows, check that you are using Linux
containers by running docker version or using the menu.

Installing Docker Locally

[14]

Upgrading Docker for Mac and Windows
Both Docker for Mac and Windows allow you to easily update your installed
version of Docker. If you have an old version of Docker for Mac or Windows
installed, you should have been prompted that there is a later version of Docker
available when you first open Docker. I you haven't had a prompt then selecting
Check for Updates… from the menu will kick off the upgrade process, which is
similar to the installation process we have already covered for each of the versions.

If there are no updates, then you will receive a notification confirming you are on the
latest version.

Docker on Ubuntu 16.04
If you have been looking at the Docker website, you will notice that there is not
a Docker for Linux Desktop download, that is because there is no need for one.
Docker is a Linux tool and will run natively on most Linux desktops and servers.

While Docker is available in the main Ubuntu repositories, I would recommend
installing Docker using the official repository. You can do this by running the
following command:

curl -sSL https://get.docker.com/ | sh

This will configure and install the latest version of Docker Engine. Once installed,
you will receive a command to run to give your user permission to run Docker, run
the command and then log out.

When you log back in, you will be able to run the following command:

docker version

Chapter 1

[15]

You should see something like the following:

One thing I haven't mentioned so far is that when we installed
Docker for Mac and Windows two additional components were
installed. These were Docker Machine and Docker Compose, we
will be covering these in Chapter 2, Launching Applications Using
Docker and Chapter 3, Docker in the Cloud.

To install Docker Machine run the following commands:

curl -L "https://github.com/docker/machine/releases/download/v0.9.0/
docker-machine-$(uname -s)-$(uname -m)" -o /tmp/docker-machine

chmod +x /tmp/docker-machine

sudo cp /tmp/docker-machine /usr/local/bin/docker-machine

Installing Docker Locally

[16]

To install Docker Compose, run the following commands:

curl -L "https://github.com/docker/compose/releases/download/1.10.0/
docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

chmod +x /tmp/docker-compose

sudo cp /tmp/docker-compose /usr/local/bin/docker-compose

Once installed you should be able to run the following two commands:

docker-compose version

docker-machine version

Testing your installation
Now that we have Docker installed, we are going to quickly test our installation by
downloading, running and connecting to a NGINX container.

NGINX is a free, open source, high-performance HTTP server and
reverse proxy. NGINX is known for its high performance, stability,
rich feature set, simple configuration, and low resource consumption.

A note on Docker commands
Docker 1.13 introduced a slightly altered set of command line
instructions for interacting with containers and images. As this syntax
will eventually become the new standard we will be using it throughout
this book. For more information on the CLI restructure, please see the
Docker 1.13 announcement blog post at https://blog.docker.
com/2017/01/whats-new-in-docker-1-13/

To download and launch the container all you need to do run the following
commands from your terminal prompt;

docker image pull nginx

docker container run -d --name nginx-test -p 8080:80 nginx

The first command pulls the NGINX container image from the Docker Hub, and the
second command launches our NGINX container, naming it nginx-test mapping
port 8080 on your machine to port 80 on the container.

https://blog.docker.com/2017/01/whats-new-in-docker-1-13/
https://blog.docker.com/2017/01/whats-new-in-docker-1-13/

Chapter 1

[17]

You can check that the container is running using the following command:

docker container ps

Opening your browser and going to http://localhost:8080/ should show you the
default Welcome to NGINX page.

As you can see from the following screens, the process is the same when using
Docker for Mac:

Docker for Windows:

Or Docker on Ubuntu 16.04:

Installing Docker Locally

[18]

As you can see from the screens above, the result of us running the same command
on each of the three platforms is exactly the same.

Once you have tested launching a container you can tidy up afterwards by
running the following commands to stop and remove the container and then
delete the image:

docker container stop nginx-test

docker container rm nginx-test

docker image rm nginx

Summary
In this chapter, we have worked through installing Docker for Mac, Docker for
Windows and Docker on Ubuntu 16.04. Hopefully, you will have followed along
with one or more of the installations on your local machine. We have also launched
our first container and connected to it using our web browser.

In the next chapter, we will go into a lot more detail on the commands we
used to launch our test container as well as using Docker Compose to launch
multi-container applications.

[19]

Launching Applications Using
Docker

In this chapter, we are going to be looking at launching more than just a simple web
server using our local Docker installation. We will look at the following topics:

•	 Using Docker on the command-line to launch applications
•	 How to use the Docker build command
•	 Using Docker Compose to make multi-container applications easier to launch

We will then look at using all the techniques above to launch a WordPress and
Drupal application stack.

Docker terminology
Before we start learning how to launch containers, we should quickly discuss some
of the more common terminology we are going to be using in this chapter.

Please note, the Docker commands in this chapter have been written
for use with Docker 1.13 and later. Trying to run commands such
as docker image pull nginx in older versions will fail with an
error. Please refer to Chapter 1, Installing Docker Locally for details on
how to install the latest version of Docker.

Launching Applications Using Docker

[20]

Docker images
A Docker image is a collection of all the files that make up an executable software
application. This collection includes the application plus all the libraries, binaries,
and other dependencies such as deployment descriptors and so on. just needed just
to run the application everywhere without any hitch or hurdle. These files in the
Docker image are read-only and hence the content of the image cannot be altered.
If you choose to alter the content of your image, the only option Docker allows is to
add another layer with the new changes. In other words, a Docker image is made up
of layers which you can review using docker image history subcommand.

The Docker image architecture effectively leverages this layering concept to
seamlessly add additional capabilities to the existing images to meet the varying
business requirements and increase the reuse of images. In other words, capabilities
can be added to existing images by adding additional layers on top of that image and
deriving a new image. The Docker images have a parent/child relationship and the
bottom-most image is called the base image. The base image is the special image that
doesn't have any parent:

In the previous diagram, Ubuntu is a base image and it does not have any
parent image.

The Ubuntu Docker image is a minimalist bundle of software
libraries and binaries that are critical to run an application. It
does not include Linux Kernel, Diver Drivers, and various other
services a full-fledged Ubuntu operating system would provide.

Chapter 2

[21]

As you can see in the above diagram, everything starts with a base image and here in
this example, it is Ubuntu. Further on, the wget capability is added to the image as a
layer and the wget image is referencing Ubuntu image as its parent. And in the next
layer, an instance of Tomcat application server is added and it refers the wget image
as its parent. Each addition that is made to the original base image is stored in a
separate layer (a kind of hierarchy gets generated here to retain the original identity).

Precisely speaking, any Docker image has to originate from a base image and an
image gets continuously enriched in its functionality by getting fresh modules and
this is accomplished by adding an additional module as a new layer on the existing
Docker image one by one as vividly illustrated in the above diagram.

The Docker platform provides a simple way of building new images or extending
existing images. You can also download the Docker images that the other people
have already created and deposited in Docker image repositories (private or public).

Docker Registry
A Docker Registry is a place where Docker images can be stored in order to be
publicly or privately found, accessed, and used by worldwide software developers
for quickly crafting fresh and composite applications without any risks. Because, all
the stored images will have gone through multiple validations, verifications, and
refinements, the quality of those images are really high.

Launching Applications Using Docker

[22]

Using the dockerimage push subcommand, you can dispatch your Docker image
to the registry so that it is registered and deposited. Using the dockerimage pull
subcommand, you can download a Docker image from the registry.

A Docker Registry could be hosted by a third party as a public or private registry,
such as one of the following registries:

•	 Docker Hub (https://hub.docker.com/)
•	 Quay (https://quay.io/)
•	 Google Container Registry (https://cloud.google.com/container-

registry/)
•	 AWS Container Registry (https://aws.amazon.com/ecr/)

Every institution, innovator and individual can have their own Docker Registry to
stock up their images for internal and/or external access and usage.

Docker Hub
In the previous chapter, when you ran the dockerimage pull subcommand, the
nginx image got downloaded mysteriously. In this section, let's unravel the mystery
around the docker image pull subcommand and how the Docker Hub immensely
contributed toward this unintended success.

The good folks in the Docker community have built a repository of images and
they have made it publicly available at a default location, index.docker.io. This
default location is called the Docker Hub. The docker image pull subcommand is
programmed to look for the images at this location. Thus, when you pull a nginx
image, it is effortlessly downloaded from the default registry. This mechanism helps
in speeding up the spinning of the Docker containers.

The Docker Hub is the official repository that contains all the painstakingly curated
images that are created and deposited by the worldwide Docker development
community. This so-called cure is enacted for ensuring that all the images stored in
the Docker Hub are secure and safe through a host of quarantine tasks. There are
additional mechanisms such as creating the image digest and having content trust
that gives you the ability to verify both the integrity and the publisher of all the data
received from a registry over any channel.

There are proven verification and validation methods for cleaning up any
knowingly or unknowingly introduced malware, adware, viruses, and so on,
from these Docker images.

https://hub.docker.com/
https://quay.io/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://aws.amazon.com/ecr/

Chapter 2

[23]

The digital signature is a prominent mechanism of the utmost integrity
of the Docker images. Nonetheless, if the official image has been either
corrupted, or tampered with, then the Docker engine will issue a
warning and then continue to run the image.

In addition to the official repository, the Docker Hub Registry also provides a
platform for thethird-party developers and providers for sharing their images for
general consumption. The third-party images are prefixed by the user ID of their
developers or depositors.

For example, russmckendrick/clusteris a third-party image, wherein
russmckendrick is the user ID and cluster is the image repository name.
You can download any third-party image by using the docker image pull
subcommand, as shown here:

docker image pull russmckendrick/cluster

Apart from the preceding repository, the Docker ecosystem also provides a
mechanism for leveraging the images from any third-party repository hub other
than the Docker Hub Registry, and it also provides the images hosted by the local
repository hubs. As mentioned earlier, the Docker engine has been programmed to
look for images at index.docker.io by default, whereas in the case of the third-
party or the local repository hub, we must manually specify the path from where the
image should be pulled.

A manual repository path is similar to a URL without a protocol specifier, such as
https://, http://and ftp://.

Following is an example of pulling an image from a third-party repository hub:

docker image pull registry.domain.com/myapp

Controlling Docker containers
The Docker engine enables you to start, stop, and restart a container with a set of
docker subcommands. Let's begin with the docker container stop subcommand,
which stops a running container. When a user issues this command, the Docker
engine sends SIGTERM (-15) to the main process, which is running inside the
container. The SIGTERM signal requests the process to terminate itself gracefully.

Launching Applications Using Docker

[24]

Most of the processes would handle this signal and facilitate a graceful exit.
However, if this process fails to do so, then the Docker engine will wait for a grace
period. Even after the grace period, if the process has not been terminated, then
the Docker engine will forcefully terminate the process. The forceful termination
is achieved by sending SIGKILL (-9).

The SIGKILL signal cannot be caught or ignored and hence, it will result in an
abrupt termination of the process without a proper cleanup.

Now, let's launch our container and experiment with the docker container stop
subcommand, as shown here:

dockercontainer run -i -t ubuntu:16.04 /bin/bash

Having launched the container, let's run the docker container stop subcommand
on this container by using the container ID that was taken from the prompt. Of
course, we have to use a second screen/terminal to run this command, and the
command will always echo back to the container ID, as shown here:

docker container stop 3de97cc32051

Chapter 2

[25]

Now, if you switch to the screen/terminal where you were running the container,
you will notice that the container is being terminated. If you observe a little more
keenly, then you will also notice the text exit next to the container prompt.
This happened due to the SIGTERM handling mechanism of the bash shell,
as shown here:

If we take it one step further and run the docker container ps subcommand,
then we will not find this container anywhere in the list. The fact is
that the docker container ps subcommand, by default, always lists the container
that is in the running state. Since our container is in the stopped state, it was
comfortably left out of the list. Now, you might ask, how do we see the container
that is in the stopped state? Well, the docker container ps subcommand takes
an additional argument -a, which will list all the containers in that Docker host
irrespective of its status.

This can be done by running the following command:

docker container ps -a

Next, let's look at the docker container start subcommand, which is used for
starting one or more stopped containers. A container could be moved to the stopped
state either by the docker container stop subcommand or by terminating the
main process in the container either normally or abnormally. On a running container,
this subcommand has no effect.

Let's start the previously stopped container by using the docker container start
subcommand, as follows:

docker start 3de97cc32051

Launching Applications Using Docker

[26]

By default, the docker container start subcommand will not attach to the
container. You can attach it to the container either by using the -a option in
the docker container start subcommand or by explicitly using the docker
container attach subcommand, as shown here:

docker container attach 3de97cc32051

Now, let's run the docker containerps command and verify the container's
running status, as shown here:

docker container ps

The restart command is a combination of the stop and the start functionality. In
other words, the restart command will stop a running container by following the
precise steps followed by the docker conatiner stop subcommand and then it will
initiate the start process. This functionality will be executed by default through the
docker conatiner restart subcommand.

The next important set of container controlling subcommands are the following:

•	 docker container pause

•	 docker container unpause

The docker container pause subcommands will essentially freeze the execution of
all the processes within that container. Conversely, the docker container unpause
subcommand will unfreeze the execution of all the processes within that container
and resume the execution from the point where it was frozen.

Chapter 2

[27]

Having seen the technical explanation of pause/unpause, let's see a detailed
example for illustrating how this feature works. We have used two screen/terminal
scenarios. On one terminal, we have launched our container and used an infinite
while loop for displaying the date and time, sleeping for 5 seconds, and then
continuing the loop. We will run the following commands:

docker container run -i -t ubuntu:16.04 /bin/bash

Once you are within the container, run the following:

while true; do date; sleep 5; done

Our little script has very faithfully printed the date and time every 5 seconds apart
from when it was paused:

As you can see from the terminal output above, we encountered a delay of around
30 seconds, because this is when we initiated the docker container pause
subcommand on our container on the second terminal screen, as shown here:

docker container pause 9724f4e0e444

Launching Applications Using Docker

[28]

When we paused our container, we looked at the process status by using the
docker containerps subcommand on our container, which was on the same
screen, and it clearly indicated that the container had been paused, as shown in
this command result:

docker container ps

We continued onto issuing the docker conatiner unpause subcommand, which
unfroze our container, continued its execution, and then started printing the date
and time, as we saw in the preceding command, shown here:

docker container unpause 9724f4e0e444

We explained the pause and the unpause commands at the beginning of this section.

Lastly, the container and the script running within it had been stopped by using the
docker container stop subcommand, as shown here:

docker container stop 9724f4e0e444

You can see everything we ran in our second terminal below:

Let's look at doing something a little more complex now.

Running a WordPress container
Almost everyone at some point will have installed, used, or read about WordPress,
so for our next example, we will be using the official WordPress container from the
Docker Hub. You can find details on the container at
https://hub.docker.com/_/wordpress/.

https://hub.docker.com/_/wordpress/

Chapter 2

[29]

WordPress is web software that you can use to create a beautiful
website, blog, or app. We like to say that WordPress is both free
and priceless at the same time. For more information, check out
https://wordpress.org/.

To launch WordPress, you will need to download and run two containers, the first
of which is the database container, for this I recommend using the official MySQL
container which you can find at https://hub.docker.com/_/mysql/.

To download the latest MySQL container image run the following command on your
Mac, Windows or Linux machine:

docker image pull mysql

Now that you have the pulled a copy of the image you can launch MySQL by
running the following command:

docker container run -d \

 --name mysql \

 -e MYSQL_ROOT_PASSWORD=wordpress \

 -e MYSQL_DATABASE=wordpress \

 mysql

The command above launches (docker container run) the MySQL in a detached
state (using -d), meaning that it is running in the background, we are calling the
container mysql (--namewordpress) and we are using two different environment
variables (using -e) to set the MySQL root password to wordpress (-e MYSQL_
ROOT_PASSWORD=wordpress) and to create a database called wordpress (-e MYSQL_
DATABASE=wordpress).

Once launched, you should receive the container ID. You can check the container is
running as expected by using the following command:

docker container ps

Now, at this point, although the container is running that doesn't really mean that
MySQL is ready. If you were to launch your WordPress container now, you might
find that it runs for a short while and then stops.

Don't worry, this is expected. As there is no MySQL data within the container
it takes a little while to get itself into a state where it is available to accept
incoming connections.

https://wordpress.org/

Launching Applications Using Docker

[30]

To check the status of your MySQL container you can run the following command:

docker container logs mysql

Once you see the message mysqld: ready for connections, you are good to
launch your WordPress container; you may find yourself having to check the
logs a few times.

Next up, we to down the WordPress container image; to do this, run the following
command:

docker image pull wordpress

Once downloaded run the following command to launch the WordPress container:

docker container run -d \

 --name wordpress \

--link mysql:mysql\

 -p 8080:80 \

 -e WORDPRESS_DB_PASSWORD=wordpress \

 wordpress

Again, we are launching the container in the background (using -d), calling
the container the wordpress (with --name wordpress). This is where things
differ slightly between the MySQL and WordPress containers, we need to let the
WordPress container know where our MySQL container is accessible, to do this
are using the link flag (in our case by running --link mysql:mysql) this will
create an alias within the WordPress container pointing it at the IP address of
the MySQL container.

Chapter 2

[31]

Next up we are opening port 8080 on our machine and mapping it to port 80 on the
container (using -p 8080:80) and then letting WordPress know what the password
is (with -e WORDPRESS_DB_PASSWORD=wordpress).

Check the running containers using the following command:

docker container ps

Should show you that you now have two running containers, MySQL
and WordPress:

Unlike the MySQL container, there isn't much the WordPress container needs to do
before it is accessible, you can check the logs by running the following command:

docker container logs wordpress

Launching Applications Using Docker

[32]

If you open your browser and go to http://localhost:8080/ you should see your
WordPress installation sitting at an installation prompt like the following:

If you like, you can work through the installation and get WordPress up and running
by clicking on Continue and following the onscreen prompts; however, the next set
of commands we will be running will destroy our two containers.

To remove everything we have just launched ahead of the next exercise, run the
following commands:

docker container stop wordpressmysql

docker container rmwordpressmysql

docker image rm wordpress mysql

So far we have used the Docker client to easily launch, stop, start, pause, unpause
and remove containers as well as downloading and removing container images
from the Docker Hub, while this is great to quickly launch a few containers it can get
complicated to manage once you have more than a few containers running at once,
this is where the next tool we are going to look at comes in.

Chapter 2

[33]

Docker Compose
If you were following along with the Linux installation in Chapter 1, Installing Docker
Locally then you should have already installed Docker Compose manually, for those
of you that skipped that part then you will glad to know that Docker Compose is
installed and maintained as part of Docker for Mac and Windows.

I am sure that you will agree that so far Docker has proved to be quite intuitive,
Docker Compose is no different. It started off life as third-party software called Fig
and was written by Orchard Labs (the project's original website is still available at
http://fig.sh/).

The original project's goal was the following:

"Provide fast, isolated development environments using Docker"

Since Orchard Labs became part of Docker, they haven't strayed too far from the
original projects goal:

"Compose is a tool for defining and running multi-container Docker applications.
With Compose, you use a Compose file to configure your application's services.
Then, using a single command, you create and start all the services from your
configuration."

Before we start looking at Compose files and start containers up, let's think of why a
tool such as Compose is useful.

Why Compose?
Launching individual containers is as simple as running the following command:

docker container run -i -t ubuntu:16.04 /bin/bash

This will launch and then attach to an Ubuntu container. As we have already
touched upon, there is a little more to it than just launching simple containers
though. Docker is not here to replace virtual machines, it is here to run a
single application.

http://fig.sh/

Launching Applications Using Docker

[34]

This means that you shouldn't really run an entire LAMP stack in single container,
instead, you should look at running Apache and PHP in one container, which is
then linked with a second container running MySQL.

You could take this further, running NGINX container, a PHP-FPM container,
and a MySQL container. This is where it gets complicated. All of sudden, your
simple single command for launching a container is now several lines, all of which
must executed in the correct order with the correct flags to expose ports, link them
together and configure the services using environment variables.

This is exactly the problem Docker Compose tries to fix. Rather than several long
commands, you can define your containers using a YAML file. This means that you
will be able to launch your application with a single command and leave the logic of
the order in which the containers will be launched to Compose.

YAML Ain't Markup Language (YAML) is a human-friendly data
serialization standard for all programming languages.

It also means that you can ship your application's Compose file with your code base
or directly to another developer/administrator and they will be able to launch your
application exactly how you intended it be executed.

Compose files
Let's start by getting a launching WordPress again. First of all, if you haven't already
clone the GitHub repository which accompanies this book. You can find it at the
following URL: https://github.com/russmckendrick/bootcamp

For more information on how to clone the repository please see the introduction.
Once you have repo cloned run the following commands from the top level of
the repo:

cd chapter2/compose-wordpress

The compose-wordpress folder contains the following docker-compose.yml file:

version: "3"

services:
mysql:

https://github.com/russmckendrick/bootcamp

Chapter 2

[35]

 image: mysql
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: wordpress
 MYSQL_DATABASE: wordpress
wordpress:
depends_on:
 - mysql
 image: wordpress
 ports:
 - "8080:80"
 restart: always
 environment:
 WORDPRESS_DB_PASSWORD: wordpress

volumes:
db_data:

As you can see, the docker-compose.yml file is easy to follow; our initial
docker-compose.yml file is split into three sections:

•	 Version: This tells Docker Compose which file format we are using;
the current version is 3

•	 Services: These are where our containers are defined, you can define several
containers here

•	 Volumes: Any volumes for persistent storage are defined here, we will go
into this in more detail in later chapters

For the most part, the syntax is pretty similar to that we used to launch our
WordPress containers using the Docker command-line client. There are, however
a few changes:

•	 volumes: In the mysql container we are taking a volume called db_data and
mounting it to /var/lib/mysql within the container

•	 restart: This is set to always, meaning that if our containers stop
responding any reason, like the wordpress container will do until the mysql
container is accepting connections, then it will be restarted automatically
meaning we don't have to manually intervene

•	 depends_on: Here we are telling the wordpress container not to start until
the mysql container is running

Launching Applications Using Docker

[36]

You may notice that we are not linking our containers, this is because Docker
Compose automatically creates a network to launch the services in, each container
within the network created by Docker Compose automatically has its host file
updated to include aliases for each of the containers within the service, meaning that
our WordPress container will be able to connect to our MySQL container using the
default host of mysql.

To launch our WordPress installation, all we need to do is run the
following commands:

docker-compose pull

docker-compose up -d

Using the -d flag at the end of the command launches the containers in detached
mode, this means that they will run in the background.

If we didn't use the -d flag, then our containers would have launched in the
foreground and we would not have been able to carry on using the same terminal
session without stopping the running containers.

You will see something like the following output:

Chapter 2

[37]

While the containers are up and running, which you can see by running the follow:

docker-compose ps

docker container ps

It will take a short while for the MySQL container to be ready to accept connections,
you may find running:

docker-compose logs

Show you connection errors like the ones below:

Don't worry, you should soon see something like the following:

Launching Applications Using Docker

[38]

Again, opening http://localhost:8080/ in your browser should show you the
installation screen:

The process above works on Docker for Mac and on Linux; however for Docker for
Windows you should add.exe to your Docker Compose commands:

cd .\chapter02\wordpress-compose

docker-compose.exe pull

docker-compose.exe up -d

docker container ps

Chapter 2

[39]

This will give you something like the following output:

Again, opening your browser and going to http://localhost:8080/ should show
you the installation screen:

Before we move into the next section, let's stop and remove our WordPress
containers by running the following commands:

docker-compose stop

docker-compose rm

Launching Applications Using Docker

[40]

Or if you are following using Docker for Windows:

docker-compose.exestop

docker-compose.exe rm

So far, we have been using images from the Docker Hub, next we will are going to
take a look at customizing images.

Docker Build
Docker images are the fundamental building blocks of containers. These images
could be very basic operating environments such, as alpine or Ubuntu. Or, the
images could craft advanced application stacks for the enterprise and cloud IT
environments. An automated approach of crafting Docker images is using a
Dockerfile.

A Dockerfile is a text-based build script that contains special instructions in a
sequence for building the right and the relevant images from the base images. The
sequential instructions inside the Dockerfile can include the base image selection,
installing the required application, adding the configuration and the data files, and
automatically running the services as well as exposing those services to the external
world. Thus, a Dockerfile-based automated build system has remarkably simplified
the image-building process. It also offers a great deal of flexibility in the way in
which the build instructions are organized and in the way in which they visualize
the complete build process.

The Docker engine tightly integrates this build process with the help of the docker
build subcommand. In the client-server paradigm of Docker, the Docker server (or
daemon) is responsible for the complete build process and the Docker command
line interface is responsible for transferring the build context, including transferring
Dockerfile to the daemon.

To have a sneak peek into the Dockerfile integrated build system in this section,
we introduce you to a basic Dockerfile. Then, we explain the steps for converting
that Dockerfile into an image, and then launching a container from that image.

Our Dockerfile is made up of two instructions, as shown here (there is also a copy
in the GitHub repo in the chapter02/build_basic folder):

FROM alpine:latest
CMD echo Hello World!!

Chapter 2

[41]

In the following, we cover/discuss the two instructions mentioned earlier:

•	 The first instruction is for choosing the base image selection. In this example,
we select the apline:latest image.

•	 The second instruction is for carrying out the command CMD, that instructs
the container to echo Hello World!!.

Now, let's proceed towards generating a Docker image by using the preceding
Dockerfile by calling dockerimagebuild along with the path of the Dockerfile.
In our example, we will invoke the dockerimagebuild subcommand from the
directory where we have stored the Dockerfile, and the path will be specified by
the following command:

dockerimagebuild

After issuing the preceding command, the build process will begin by sending build
context to the daemon and then display the text shown here:

Sending build context to Docker daemon 2.048 kB

Step 1/2 : FROM alpine:latest

The build process will continue and after completing itself, it will display
the following:

Successfully built 0080692cf8db

In the preceding example, the image was built with IMAGE ID0a2abe57c325.
Let's use this image to launch a container by using the docker container run
subcommand as follows:

docker container run 0080692cf8db

Cool, isn't it? With very little effort, we have been able to craft an image with alpine
as the base image, and we have been able to extend that image to produce Hello
World!!.

This is a simple application, but the enterprise-scale images can also be realized by
using the same methodology.

Launching Applications Using Docker

[42]

Now, let's look at the image details by using the dockerimage ls subcommand.
Here, you may be surprised to see that the IMAGE (REPOSITORY) and TAG name have
been listed as <none>. This is because we did not specify any image or any TAG name
when we built this image. You could specify an IMAGE name and optionally a TAG
name by using the docker image tag subcommand, as shown here:

docker image tag 0080692cf8dbbasicbuild

The alternative approach is to build the image with an image name during
the build time by using the -t option for the docker image build subcommand,
as shown here:

docker image build -t basicbuild

Since there is no change in the instructions in Dockerfile, the Docker engine will
efficiently reuse the old image that has ID0a2abe57c325 and update the image name
to basicbuild. By default, the build system would apply latest as the TAG name.
This behavior can be modified by specifying the TAG name after the IMAGE name by
having a : separator placed in between them. That is, <image name>:<tag name>
is the correct syntax for modifying behaviors, wherein <image name> is the name of
the image and <tag name> is the name of the tag.

Once again, let's look at the image details by using the docker image ls
subcommand, and you will notice that the image (Repository) name is basicimage
and the tag name is latest. Building images with an image name is always
recommended as the best practice.

Having experienced the magic of Dockerfile, in the subsequent sections, we will
introduce you to the syntax or the format of Dockerfile and explain a dozen
Dockerfile instructions.

By default docker image build subcommand uses the
Dockerfile located at the build context. However –f option
docker image build subcommand let's to specify an alternate
Dockerfile in a different path or name.

Chapter 2

[43]

A quick overview of the Dockerfile's
syntax
In this section, we explain the syntax or the format of Dockerfile. A Dockerfile
is made up of instructions, comments, parser directives and empty lines, as
shown here:

Comment

INSTRUCTION arguments

The instruction line of Dockerfile is made up of two components, where the
instruction line begins with the instruction itself, which is followed by the arguments
for the instruction. The instruction could be written in any case, in other words,
it is case-insensitive. However, the standard practice or the convention is to use
uppercase to differentiate it from the arguments. Let's take a relook at the content of
Dockerfile in our previous example:

FROM apline:latest
CMD echo Hello World!!

Here, FROM is an instruction which has taken apline:latest as an argument, and
CMD is an instruction which has taken echo Hello World!! as an argument.

The comment line
The comment line in Dockerfile must begin with the # symbol. The # symbol
after an instruction is considered as an argument. If the # symbol is preceded by
a whitespace, then the docker image build system would consider that as an
unknown instruction and skip the line. Now, let's understand the preceding cases
with the help of an example to get a better understanding of the comment line:

•	 A valid Dockerfile comment line always begins with a # symbol as the first
character of the line:
This is my first Dockerfile comment

•	 The # symbol can be a part of an argument:
CMD echo ### Welcome to Docker ###

•	 If the # symbol is preceded by a whitespace, then it is considered as an
unknown instruction by the build system:

this is an invalid comment line

Launching Applications Using Docker

[44]

A sample Dockerfile can be found at /chapter02/build_basic/ in the repo:

Example of a really bsaicDockerfile

FROM alpine:latest
CMD echo Hello World!!

The docker image build system ignores any empty line in the Dockerfile and
hence, the author of Dockerfile is encouraged to add comments and empty lines
to substantially improve the readability of Dockerfile.

The parser directives
As the name implies, the parser directives instruct the Dockerfile parser to handle
the content of the Dockerfile as specified in the directives. The parser directives are
optional and they must be at the very top of a Dockerfile. Currently escape is the
only supported directive.

We use escape character to escape characters in a line or to extend a single line
to multiple lines. On a UNIX like platform, \ is the escape character whereas on
windows \ is a directory path separator and ' is the escape character. By default,
Dockerfile parser considers \ as the escape character and you could override this
on windows using the escape parser directive as shown below:

escape='

The Dockerfile build instructions
So far, we have looked at the integrated build system, the Dockerfile syntax and
a sample lifecycle, wherein how a sample Dockerfile is leveraged for generating
an image and how a container gets spun off from that image was discussed. In this
section, we will introduce the Dockerfile instructions, their syntax, and a few
befitting examples.

The FROM instruction
The FROM instruction is the most important one and it is the first valid instruction of a
Dockerfile. It sets the base image for the build process. The subsequent instructions
will use this base image and build on top of it. The Docker build system lets you
flexibly use the images built by anyone. You can also extend them by adding more
precise and practical features to them. By default, the Docker build system looks in
the Docker host for the images.

Chapter 2

[45]

However, if the image is not found in the Docker host, then the Docker build system
will pull the image from the publicly available Docker Hub Registry. The Docker
build system will return an error if it cannot find the specified image in the Docker
host and the Docker Hub Registry.

The FROM instruction has the following syntax:

FROM <image>[:<tag>|@<digest>]

In the preceding code statement, note the following:

•	 <image>: This is the name of the image which will be used as the base image.
•	 <tag> or<digest>: Both tag and digest are optional attributes and you could

qualify a particular Docker image version using either a tag or a digest. Tag
latest is assumed by default if both tag and digest are not present.

Here is an example of the FROM instruction with the image name centos:

FROM centos

In the above example, the Docker build system would implicitly default to tag
latest because neither a tag nor a digest is explicitly added to the image name.

You should be strongly discouraged from using multiple FROM instructions in a
single Dockerfile, as damaging conflicts could arise.

The MAINTAINER instruction
All the MAINTAINER instruction does is enables the authors' details to set the in an
image. Docker does not place any restrictions on placing the MAINTAINER instruction
in a Dockerfile. However, it is strongly recommended that you should place it after
the FROM instruction.

The following is the syntax of the MAINTAINER instruction, where <author's
detail> can be in any text. However, it is strongly recommended that you should
use the image, author's name and the e-mail address as shown in this code syntax:

MAINTAINER <author's detail>

There is an example of the MAINTAINER instruction with the author name, and the
e-mail address at /chapter02/build_01_maintainer/ in the repo:

Example Dockerfile showing MAINTAINER

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

Launching Applications Using Docker

[46]

The RUN instruction
The RUN instruction is the real workhorse during the build time, and it can run any
command. The general recommendation is to execute the multiple commands by
using one RUN instruction. This reduces the layers in the resulting Docker image
because the Docker system inherently creates a layer for each time an instruction is
called in Dockerfile.

The RUN instruction has two types of syntax:

•	 The first is the shell type, as shown here:
RUN <command>

Here, the <command> is the shell command that has to be executed during the
build time. If this type of syntax is to be used, then the command is always
executed by using /bin/sh -c.

•	 The second syntax type is either exec or the JSON array, as shown here:

RUN ["<exec>", "<arg-1>", ..., "<arg-n>"]

Wherein, the code terms mean the following:

°° <exec>: This is the executable to run during the build time.
°° <arg-1>, ..., <arg-n>: These are the variables (zero or more)

number of the arguments for the executable.

Unlike the first type of syntax, this type does not invoke /bin/sh -c. Hence, the
types of shell processing, such as the variable substitution ($USER) and the wild card
substitution (*, ?), do not happen in this type. If shell processing is critical for you,
then you are encouraged to use the shell type. However, if you still prefer the exec
(JSON array type) type, then use your preferred shell as the executable and supply
the command as an argument.

For example, RUN ["bash", "-c", "rm", "-rf", "/tmp/abc"].

Let's add a few RUN instructions to our Dockerfile to install NGINX using apk and
then set some permissions:

Example Dockerfile showing RUN

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

Chapter 2

[47]

As you can see, we are installing NGINX and Supervisor. The && has been added so
that we can string several commands together on a single line, as each line within the
Dockerfile creates a layer within the image stringing commands together like this
streamlines your image file.

The COPY instruction
The COPY instruction enables you to copy the files from your Docker host to
the filesystem of the image you are building. The following is the syntax of the
COPY instruction:

COPY <src> ... <dst>

The preceding code terms bear the explanations shown here:

•	 <src>: This is the source directory, the file in the build context, or the
directory from where the docker build subcommand was invoked.

•	 ...: This indicates that multiple source files can either be specified directly
or be specified by wildcards.

•	 <dst>: This is the destination path for the new image into which the source
file or directory will get copied. If multiple files have been specified, then the
destination path must be a directory and it must end with a slash /.

Using an absolute path for the destination directory or a file has been
recommended. In the absence of an absolute path, the COPY instruction will
assume that the destination path will start from root /. The COPY instruction is
powerful enough for creating a new directory and for overwriting the filesystem
in the newly created image.

An example of the copy command can be found in the repo (https://github.com/
russmckendrick/bootcamp) at /chapter02/build_03_copy/:

Example Dockerfile showing COPY

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

COPY start.sh /script/
COPY files/default.conf /etc/nginx/conf.d/
COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/supervisord.conf /etc/supervisord.conf

https://github.com/russmckendrick/bootcamp
https://github.com/russmckendrick/bootcamp

Launching Applications Using Docker

[48]

This copies the start.sh file to the folder in the Docker image at/script/and the
configuration file from the files folder to in place on the image.

The ADD instruction
The ADD instruction is like the COPY instruction. However, in addition to the
functionality supported by the COPY instruction, the ADD instruction can handle
the TAR files and the remote URLs. We can annotate the ADD instruction as COPY
on steroids.

The following is the syntax of the ADD instruction:

ADD <src> ... <dst>

The arguments of the ADD instruction are very similar to those of the COPY
instruction, as shown here:

•	 <src>: This is either the source directory or the file that is in the build
context or in the directory from where the docker build subcommand
will be invoked. However, the noteworthy difference is that the source
can either be a tar file stored in the build context or be a remote URL.

•	 ...: This indicates that the multiple source files can either be specified
directly or be specified by using wildcards.

•	 <dst>: This is the destination path for the new image into which the source
file or directory will be copied.

Here is an example for demonstrating the procedure for copying multiple source
files to the various destination directories in the target image filesystem. In this
example, we have taken a TAR file (webroot.tar) in the source build context with
the http daemon configuration file and the files for the web pages are stored in the
appropriate directory structure, as shown here:

Chapter 2

[49]

The next line in the Dockerfile content has an ADD instruction for copying the TAR
file (webroot.tar) to the target image and extracting the TAR file from the root
directory (/) of the target image, as shown here in the example you can find in the
repo at /chapter02/build_04_add/:

Example Dockerfile showing ADD

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

COPY start.sh /script/
COPY files/default.conf /etc/nginx/conf.d/
COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/supervisord.conf /etc/supervisord.conf

ADD webroot.tar /
RUN chown -R nginx:nginx /var/www/html

Thus, the TAR option of the ADD instruction can be used for copying multiples files
to the target image, also note we have added a second RUN instruction to set the
permissions on the folder we have just created using ADD.

The EXPOSE instruction
The EXPOSE instruction opens up a container network port for communicating
between the container and the rest of the network.

The syntax of the EXPOSE instruction is as follows:

EXPOSE <port>[/<proto>] [<port>[/<proto>]...]

Here, the code terms mean the following:

•	 <port>: This is the network port that has to be exposed to the outside world.
•	 <proto>: This is an optional field provided for a specific transport protocol,

such as TCP and UDP. If no transport protocol has been specified, then TCP
is assumed to be the transport protocol.

Launching Applications Using Docker

[50]

The EXPOSE instruction allows you to specify multiple ports in a single line.

The following is an example of the EXPOSE instruction inside a Dockerfile
exposing port 80:

Example Dockerfile showing EXPOSE

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

COPY start.sh /script/
COPY files/default.conf /etc/nginx/conf.d/
COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/supervisord.conf /etc/supervisord.conf

ADD webroot.tar /

RUN chown -R nginx:nginx /var/www/html

EXPOSE 80/tcp

The ENTRYPOINT instruction
The ENTRYPOINT instruction will help in crafting an image for running an application
(entry point) during the complete lifecycle of the container, which would have been
spun out of the image. When the entry point application is terminated, the container
would also be terminated along with the application and vice versa.

Thus, the ENTRYPOINT instruction would make the container function like an
executable. Functionally, ENTRYPOINT is akin to the CMD instruction which we
will look at next, but the major difference between the two is that the entry point
application is launched by using the ENTRYPOINT instruction, which cannot be
overridden by using the docker run subcommand arguments.

However, these docker container run subcommand arguments will be
passed as additional arguments to the entry point application. Having said this,
Docker provides a mechanism for overriding the entry point application through
the --entrypoint option in the docker container run subcommand. The
--entrypoint option can accept only word as its argument and hence, it has
limited functionality.

Chapter 2

[51]

Syntactically, the ENTRYPOINT instruction is very similar to the RUN, and the CMD
instructions, and it has two types of syntax, as shown here:

•	 The first type of syntax is the shell type, as shown here:
ENTRYPOINT <command>

Here, <command> is the shell command, which is executed during the launch
of the container. If this type of syntax is used, then the command is always
executed by using /bin/sh -c.

•	 The second type of syntax is exec or the JSON array, as shown here:

ENTRYPOINT ["<exec>", "<arg-1>", ..., "<arg-n>"]

Wherein, the code terms mean the following:

°° <exec>: This is the executable, which has to be run during the
container launch time.

°° <arg-1>, ..., <arg-n>: These are the variable (zero or more)
number of arguments for the executable.

Syntactically, you can have more than one ENTRYPOINT instruction in a Dockerfile.
However, the build system will ignore all the ENTRYPOINT instructions except the last
one. In other words, in the case of multiple ENTRYPOINT instructions, only the last
ENTRYPOINT instruction be effective.

As you may recall from when we covered the RUN instruction we installed a service
called supervisord, we will be using this for the entry point in our image meaning
that our Dockerfile now looks like the following:

Example Dockerfile showing ENTRYPOINT

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

COPY start.sh /script/
COPY files/default.conf /etc/nginx/conf.d/
COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/supervisord.conf /etc/supervisord.conf

Launching Applications Using Docker

[52]

ADD webroot.tar /

RUN chown -R nginx:nginx /var/www/html

EXPOSE 80/tcp

ENTRYPOINT ["supervisord"]

Now we could leave it here and the image would be functional, however there is one
instruction we should pass to our image.

The CMD instruction
The CMD instruction can run any command (or application), which is similar to the RUN
instruction. However, the major difference between those two is the time of execution.
The command supplied through the RUN instruction is executed during the build
time, whereas the command specified through the CMD instruction is executed when
the container is launched from the newly created image. Thus, the CMD instruction
provides a default execution for this container. However, it can be overridden by the
docker run subcommand arguments. When the application terminates, the container
will also terminate along with the application and vice versa.

On the face of it the CMD instruction is very similar to the RUN instruction in that
it can run any command passed to it, however there is a major difference between
the two instructions.

The command passed to the RUN instruction is executed at build time and commands
passed using the CMD instruction are executed at run time meaning you can define
the default execution for the container. This means if no command is passed during
the docker container run command then the CMD will executed.

The CMD instruction has three types of syntax, as shown here:

•	 The first syntax type is the shell type, as shown here:
CMD <command>

Wherein, the <command> is the shell command, which has to be executed
during the launch of the container. If this type of syntax is used, then the
command is always executed by using /bin/sh -c.

Chapter 2

[53]

•	 The second type of syntax is exec or the JSON array, as shown here:
CMD ["<exec>", "<arg-1>", ..., "<arg-n>"]

Wherein, the code terms mean the following:

°° <exec>: This is the executable, which is to be run during the
container launch time

°° <arg-1>, ..., <arg-n>: These are the variable (zero or more)
number of the arguments for the executable

•	 The third type of syntax is also exec or the JSON array, which is similar to the
previous type. However, this type is used for setting the default parameters
to the ENTRYPOINT instruction, as shown here:

CMD ["<arg-1>", ..., "<arg-n>"]

Wherein, the code terms mean the following:

°° <arg-1>, ..., <arg-n>: These are the variables (zero or more)
number of the arguments for the ENTRYPOINT instruction, which will
be explained in the next section.

Syntactically, you can add more than one CMD instruction in Dockerfile. However
the build system would ignore all the CMD instructions except for the last one. In
other words, in the case of multiple CMD instructions, only the last CMD instruction
would be effective.

As mentioned in the previous section, our Dockerfile could have been run with just
the ENTRYPOINT instruction defined, however that would give a non-breaking error
when supervisiord starts up so let's pass a flag which defines where our supervisor
configuration file is using the CMD instruction:

Example Dockerfile showing CMD

FROM alpine:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

RUN apk add --update supervisor nginx&&rm -rf /var/cache/apk/*

COPY start.sh /script/
COPY files/default.conf /etc/nginx/conf.d/

Launching Applications Using Docker

[54]

COPY files/nginx.conf /etc/nginx/nginx.conf
COPY files/supervisord.conf /etc/supervisord.conf

ADD webroot.tar /

RUN chown -R nginx:nginx /var/www/html

EXPOSE 80/tcp

ENTRYPOINT ["supervisord"]
CMD ["-c","/etc/supervisord.conf"]

We are now in a position where we can build our image, you can find our completed
Dockerfile in the /chapter02/build_07_cmd/ folder in the repo, to build the
image simple run the following command:

docker image build -t cluster

This will kick of the build, as you can see from the following terminal:

Chapter 2

[55]

There are 12 steps in the build, it will take a minute or two, but once compete you
should see something like the following terminal output:

Once you have your image built, you can check and then run it by using the
following commands:

docker image ls

docker container run -d -p 8080:80 cluster

Launching Applications Using Docker

[56]

Now the container is running, opening your browser and going
http://localhost:8080/ should show you something like the following page:

There you have it, we have created an image:

•	 Using the Alpine Linux base (FROM)
•	 Installed NGINX and supervisord using apk (RUN)
•	 Copied the configuration from our Docker host to the image (COPY)
•	 Uploaded and extracting our web root (ADD)
•	 Set the correct ownership of our web root (RUN)
•	 Ensured that port 80 on the container is open (EXPOSE)
•	 Made sure that supervisord is the default process (ENTRYPOINT)
•	 Passed the configuration file flag to supervisord (CMD)

Before moving onto the next section you can stop and remove the container
by running the following command making sure you replace the container ID
with that of yours:

docker container ps

docker container stop de9a26a1d149

docker container rm de9a26a1d149

Chapter 2

[57]

Then remove the image we created by running:

docker image rm cluster

Next, we are going to go back to our WordPress image and customize it.

Customizing existing images
While the official images should provide you with a fully functioning usable image
you may sometimes need to install additional software, in this case we are going to
look at installing WordPress CLI using the official WordPress image.

WordPress CLI is a set of command line tools which allow you to
manage your WordPress configuration and installation; for more
information, see http://wp-cli.org/.

You can find a copy of the Dockerfile below in the /chapter02/wordpress-
custom/ folder in the repo, as you can see we are just running RUN and
COPYinstructions:

Adds wp-cli to the offical WordPress image
FROM wordpress:latest
MAINTAINER Russ McKendrick<russ@mckendrick.io>

Install the packages we need to run wp-cli
RUN apt-get update &&\
apt-get install -y sudo less mysql-client &&\
curl -o /bin/wp-cli.pharhttps://raw.githubusercontent.com/wp-cli/
builds/gh-pages/phar/wp-cli.phar

Copy the wrapper for wp-cli and set the correct execute permissions
COPY wp /bin/wp
RUN chmod 755 /bin/wp-cli.phar /bin/wp

Clean up the installation files
RUN apt-get clean &&rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/

You can build the image using the following command:

docker image build -t wordpress-custom .

http://wp-cli.org/

Launching Applications Using Docker

[58]

Once it has finished building use the following command to check the image:

docker image ls

However, as we discovered earlier in this chapter it is easier to launch WordPress
using Docker Compose, before we do lets remove the image we just built by running:

docker image rm wordpress-custom

Docker Compose can also trigger builds. Our updated docker-compose.yml file can
be found in the /chapter02/wordpress-custom/ folder and below:

version: "3"

services:
mysql:
 image: mysql
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: wordpress
 MYSQL_DATABASE: wordpress
wordpress:
depends_on:
 - mysql
 build: ./
 ports:
 - "8080:80"
 restart: always
 environment:
 WORDPRESS_DB_PASSWORD: wordpress

volumes:
db_data:

As you can see, it is almost exactly the same as our original docker-compose.
yml apart from now we have a line that says build: ./" rather than image:
wordpress".

To launch our WordPress installation, we simply need to run the
following command:

docker-compose up -d

Chapter 2

[59]

This will pull and build the container images, once complete you should see
something like the following in your terminal:

Going to http://localhost:8080/ should show you the installation screen,
however, we are going to typing a few commands to configure WordPress using
the WordPress CLI.

First, let's check the version of WordPress we are working with by running:

docker-compose exec wordpress wp core version

This will connect to the WordPress service and run the wp core version command,
then return the output:

Next, we are going to install WordPress using the wp core install command,
change the title, admin_user, admin_password and admin_email values as
you like:

docker-compose exec wordpress wp core install --url=http://
localhost:8080/ --title=Testing --admin_user=admin --admin_
password=adminpasswIt ord --admin_email=russ@mckendrick.io

Launching Applications Using Docker

[60]

Once the command has finished running you should receive a message saying
Success: WordPress installed successfully:

Going to http://localhost:8080/ should show you a WordPress site rather than
an installation prompt:

Once you have finished with your WordPress installation you can stop and remove it
by running:

docker-compose stop

docker-compose rm

Now we know how to build an image we are going to look at a few different ways to
share them.

Chapter 2

[61]

Sharing your images
The Docker Hub is a central place used for keeping the Docker images either in a
public or private repository.

The Docker Hub provides features, such as a repository for Docker images, user
authentications, automated image builds, integration with GitHub or Bitbucket, and
managing organizations and groups. The Docker Registry component of the Docker
Hub manages the repository.

To work with the Docker Hub, you must register an account using the link at
https://hub.docker.com/.You can update the Docker Hub ID, Email Address
and Password as shown in the following screenshot:

https://hub.docker.com/

Launching Applications Using Docker

[62]

After completing the Sign Up process, you need to complete the verification received
in an e-mail. After the e-mail verification is completed, you will see something
similar to the following screenshot, when you login to the Docker Hub:

As you can see, I already have a few automated builds configured, we will get to
these later on, for now we are going to look at pushing an image from our local
Docker host.

First, we need to login to the Docker Hub using the Docker client on the command
line, to do this simply use the following command:

docker login

You should be prompted for your Docker Hub username and password:

Chapter 2

[63]

Now we are ready to start committing and pushing images to the Docker Hub.

We'll again create an image using the Dockerfile we created earlier in the chapter.
So, let's create the Docker image using the Dockerfile in /chapter02/build_07_
cmdand push the resulting image to the Docker Hub.

Now we build the image locally using the following command making sure to use
your own Docker Hub username in place of mine:

docker image build -t russmckendrick/exampleimage .

Once built, you can check the image is there by using:

docker image ls

As we are already logged in all we need to do to push the newly create image is run
the following command:

docker image push russmckendrick/exampleimage

Launching Applications Using Docker

[64]

Finally, we can verify the availability of the image on the Docker Hub:

This is where I should probably issue a warning: as you have just experienced it
is very easy to publish images to the Docker Hub using the docker image push
command; however, it is very easy to accidentally push content you maybe wouldn't
want to be publicly available. For example, with a simple COPY or ADD instruction
in your Dockerfile it is easy to bake sensitive information such as password
credentials, certificates keys and non-publicly available code to a publicly accessible
Docker Image repository.

It is this reason why I prefer to share a Dockerfile or docker-compose.yml files
with my colleagues using private Git repositories and a good set of instructions . A
also, it allows then to check what it is they are going to be running as they are able
to review theDockerfile and docker-compose.yml files; in fact, they can make
changes and share them with me.

Chapter 2

[65]

Summary
We have covered a lot in this chapter. We have used the Docker command line client
to launch and interact with containers. We also used Docker Compose to define
multiple container based application, namely WordPress and created and published
our own Docker images on the Docker Hub. Finally, we customized the official
WordPress Docker image adding additional functionality.

I am sure you will agree that so far using Docker has felt quite intuitive; in our next
chapter we will move off our local Docker host and interact with Docker installations
on remote hosts.

[67]

Docker in the Cloud
The third tool, alongside Docker and Docker Compose, which we installed during
Chapter 1, Installing Docker Locally was Docker Machine; this is a command line tool
which allows you to manage both local and remote Docker hosts.

In this chapter, we are going to look at the basic usage of three of the public cloud
drivers by using Docker Machine to provision Docker hosts in them. We will be
launching our Docker hosts in the following:

•	 Digital Ocean https://www.digitalocean.com/
•	 Amazon Web Services - https://aws.amazon.com/
•	 Microsoft Azure - https://azure.microsoft.com/

All using a single command.

Docker Machine
Docker Machine can connect to the following services, provision a Docker host,
and configure your local Docker client to be able to communicate with the newly
launched remote instance the following:

As well as the three public cloud providers already mentioned, Docker Machine
also supports:

•	 Google Compute Engine - https://cloud.google.com/compute/
•	 Rackspace - http://www.rackspace.co.uk/cloud/
•	 IBM Softlayer http://www.softlayer.com
•	 Exoscale - https://www.exoscale.ch/
•	 VMware vCloud Air - http://vcloud.vmware.com/

https://www.digitalocean.com/
https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/compute/
http://www.rackspace.co.uk/cloud/
http://www.softlayer.com
https://www.exoscale.ch/
 http://vcloud.vmware.com/

Docker in the Cloud

[68]

It also supports the following self-hosted platforms:

•	 OpenStack - https://www.openstack.org/
•	 Microsoft Hyper-V - http://www.microsoft.com/virtualization/
•	 VMware vSphere - http://www.vmware.com/uk/products/vsphere/

Also, it allows you to launch Docker hosts locally using VirtualBox - https://www.
virtualbox.org/. This is great if your local workstation doesn't meet the minimum
specifications for Docker for Mac or Windows.

The Digital Ocean driver
Let us start creating some instances in the cloud. First, let us launch a machine in
Digital Ocean.

There are two prerequisites for launching an instance with Docker Machine in Digital
Ocean, the first is a Digital Ocean account and the second is an API token.

To sign up for a Digital Ocean account, please visit https://www.digitalocean.
com/ and click Sign Up. Once you have or are logged in to your account, you can
generate an API token by clicking on the API link in the top menu.

To grab your token, click on Generate New Token and follow the onscreen
instructions.

You only get one chance to make a record of your token; please
make sure you store it somewhere safe as it will allow anyone who
has it to launch instances into your account.

Once you have the token, you can launch your instance using Docker Machine.
To do this, run the following command, making sure to replace the example API
token with your own:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
14760f5bdee403cebb36117c22c83e5ee51188515f493a6c0d281c094c552536 \

 dotest

https://www.openstack.org/
http://www.microsoft.com/virtualization/
http://www.vmware.com/uk/products/vsphere/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.digitalocean.com/
https://www.digitalocean.com/

Chapter 3

[69]

Please note, the tokens used in these examples have been revoked.

This will launch an instance called dotest in your Digital Ocean account.

If you check your Digital Ocean control panel, you should now see the instance
which was created by Docker Machine listed:

We can also confirm our Digital Ocean Docker host is running by using the
following command:

docker-machine ls

This will return all the machines we have running, confirming their state, IP address,
Docker version, and name. There is also a column which lets you know which
of the Docker Machine managed Docker hosts your local client is configured to
communicate with:

By default, your local Docker client is configured to communicate with our local
Docker installation; as we launched our local Docker installation using Docker for
Mac or Windows, or you have Docker installed on Linux Docker Machine will not
list it.

Let's change it so it interacts with the Digital Ocean instance.

Docker in the Cloud

[70]

To do this, you have to change some local environment variables; luckily, Docker
Machine provides an easy way to find out what these are and change them.

To find out what they all you must do is simply run the following command:

docker-machine env dotest

This will tell you exactly what you need to run to change from the default machine
to dotest; the best thing is that the command itself formats the results in such a
way which they can execute, so if we run the command again, but this time in a way
where the output will be executed:

eval $(docker-machine env dotest)

Or if you have launched your instance using PowerShell on Windows then use:

docker-machine env dotest | Invoke-Expression

And now if you get a listing from Docker Machine, you will notice that the dotest
environment is now the active one:

Now we have our Digital Ocean instance active, you can run the docker container
run command on your local machine, and they will have been executed on the
Digital Ocean instance; let's test this by running the hello-world container.

Run the following command:

docker container run hello-world

You should see the image download and then the output of running the hello-
world container if you then run the following command:

docker container ls –a

Chapter 3

[71]

You should see that the hello-world container exited a few seconds ago.

You can SSH into the Digital Ocean instance using the following command:

docker-machine ssh dotest

Once logged in, run the docker container ls –a command to demonstrate
that the docker container run you ran locally was executed on the Digital
Ocean instance.

The beauty of this setup is that you shouldn't have to SSH to your instances often.

One thing you may have noticed is that all we told Docker Machine
is that we want to use Digital Ocean and our API token; at no
point did we tell it which region to launch the instance in, what
specification we wanted, or even which SSH key to use.

Docker Machine has some sensible defaults which are as follows:

•	 digitalocean-image = ubuntu-16-04-x64
•	 digitalocean-region = nyc3
•	 digitalocean-size = 512mb

As I am based in the UK, let's look at changing the region and specification of the
host launched by Docker Machine.

First, we should remove the dotest instance by running the following command:

docker-machine rm dotest

This will terminate the 512 MB instance running in NYC3.

It is important to terminate instances you are not using as they will
will cost you for each hour they are active; remember, one of the key
advantages of using Docker Machine is that you can quickly spin up
instances both quickly and with as little interaction as possible.

Docker in the Cloud

[72]

Now we have removed the old instance, let's add some additional flags to our
docker-machine command to launch the new instance in the desired region and
specification, we will be calling our new instance douktest. The updated docker-
machine create command now looks like this (again, remember to replace the
example API token with your own):

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
14760f5bdee403cebb36117c22c83e5ee51188515f493a6c0d281c094c552536\

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 douktest

You should see similar output from the command as before; once the instance has
been deployed, you can make it active by running the following command:

eval $(docker-machine env douktest)

When you enter the control panel, you will notice that the instance has launched in
the specified region and at the desired specification:

For full details on each of the regions and what machine types are available in each
one you can query the Digital Ocean API by running the following command (again,
remember to replace the API token):

curl -X GET -H "Content-Type: application/json" -H "Authorization:
Bearer 14760f5bdee403cebb36117c22c83e5ee51188515f493a6c0d281c094c552536"
"https://api.digitalocean.com/v2/regions" | python -mjson.tool

Chapter 3

[73]

This will output information about each region.

One last thing; we still haven't found out about the SSH key. Each time you run
Docker Machine a new SSH key for the instance you are launching is created and
uploaded to the provider; each key is stored in the .docker folder in your users
home directory. For example, the key for douktest can be found by running:

cd ~/.docker/machine/machines/douktest/

Here you will also find the certificates used to authenticate the Docker agent with the
Docker installation on the instance and the configuration:

So that covers launching a host in Digital Ocean; how about launching something
more exciting than the Hello World container?

No problem, let's use Docker Compose to launch a variation of the WordPress
stack we used in Chapter 2, Launching Applications Using Docker. Start by going
to the /bootcamp/chapter03/wordpress folder and then run the following
command:

docker-machine ls

To check you have your Docker client configured to use your Digital Ocean Docker
host. Once you are sure your client is using the remote host, simply run:

docker-compose up -d

This will download the images we need, then launch two containers. This time you
will be able to access the WordPress installation on port 80 on your Digital Ocean
host. To find the IP of your host, you can run the following command:

docker-machine ip douktest

Or on a Mac or Linux machine to open your browser and go to your installation
page run the following command:

open http://$(docker-machine ip douktest)/

Docker in the Cloud

[74]

The terminal session below shows the output you can expect to see from the
previous commands:

You will then be able to complete your WordPress installation:

I wouldn't recommend leaving your WordPress installation at the
installation screen for long as it is possible that someone could
complete the installation on your behalf and get up to no good.

Once you have finished your Digital Ocean, host run the following command to
terminate it:

docker-machine rm douktest

Now that we have learned how to launch a Docker host in Digital Ocean let's move
on to Amazon Web Services.

Chapter 3

[75]

The Amazon Web Services driver
If you don't already have an Amazon Web Services (AWS) account, you should sign
up for one at http://aws.amazon.com/; if you are new to AWS, then you will be
eligible for their free tier http://aws.amazon.com/free/.

I would recommend reading through Amazon's getting started guide if you are
unfamiliar with AWS before working through this section of the chapter; you
can find the guide at http://docs.aws.amazon.com/gettingstarted/latest/
awsgsg-intro/gsg-aws-intro.html.

The AWS driver is like the Digital Ocean driver in that it has some sensible
defaults, Rather than going into too much detail about how to customize the EC2
instance launched by Docker Machine, we will stick with the defaults. For AWS
driver, these are as follows:

•	 amazonec2-region = us-east-1 (North Virginia)
•	 amazonec2-ami = ami-fd6e3bea (Ubuntu 16.04)
•	 amazonec2-instance-type = t2.micro
•	 amazonec2-root-size = 16GB
•	 amazonec2-security-group = docker-machine

Please note, if amazonec2-security-group does not exist, it will be created for
you by Docker Machine; if it does exist, then Docker Machine will use the
pre-existing rules instead.

Before we launch our instance, we will also need to know our AWS Access and AWS
Secret keys and the VPC ID we will be launching our instance into; to get these,
please log in to the AWS console which can be found at https://console.aws.
amazon.com/.

Most of you will be logging with your AWS root account. As your AWS root account
shouldn't have any Access and Secret keys associated with it we should add a
separate user for Docker Machine by going to Services | IAM | Users and then
selecting your user and going to the Security Credentials tab.

http://aws.amazon.com/
http://aws.amazon.com/free/
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html
https://console.aws.amazon.com/
https://console.aws.amazon.com/

Docker in the Cloud

[76]

There you should see a button which says Add user, click this and you will be
taken to a screen where you can set your user details. Enter the User name docker-
machine and then for the Access type tick the Programmatic access check box:

When you have entered the details, click on Next: Permissions to be taken to the
next step. On the permissions page, click on Attach existing policies directly and
then in the Policy type search box, enter SystemAdministrator and hit return to
filter the policies:

Chapter 3

[77]

Tick the check box next to SystemAdministrator and then click on Next: Review:

On the review page, click on Create user and after a few seconds, you should receive
confirmation your user has been successfully created.

Make sure you click on Download .csv as you will not be shown the Secret access
key again. Now you have your Access key ID and Secret access key.

Before you find your VPC ID, you should make sure you are in the correct region by
ensuring that it says, N. Virginia in the top-right of your AWS console; if it doesn't,
select it from the drop-down list.

Docker in the Cloud

[78]

Amazon describes Amazon VPC (Amazon Virtual Private Cloud) as
letting you provision a logically isolated section of the AWS Cloud
where you can launch resources in a virtual network which you define.
You have complete control over your virtual networking environment,
including the selection of your own IP address range, the creation of
subnets, and configuration of route tables and network gateways.

Once you have ensured you are in the correct region, go to Services then VPC and
click on Your VPCs; you don't need to worry about creating and configuring a VPC
as Amazon provides you with a default VPC in each region. Select the VPC and you
should see the something like the following:

Make a note of the VPC ID; you should now have enough
information to launch your instance using Docker Machine.
To do this, run the following command:

docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key AKIAIP26OOEA3D4SLW5A \

 --amazonec2-secret-key Bd0GRrFKaK16MoGu+JWP0hbfOggkHl/zADyMFznT \

 --amazonec2-vpc-id vpc-35c91750 \

 awstest

Chapter 3

[79]

If all goes well, you should see something like the following output:

You should also be able to see an EC2 instance launched in the AWS Console by
clicking on Services | EC2 | Instances:

You may have noticed Docker Machine created the security group and assigned an
SSH key to the instance without any need for us to get involved, keeping within the
principle that you don't need to be an expert in configuring the environments you
are launching your Docker instance into.

Docker in the Cloud

[80]

Before we terminate the instance, let's switch our local Docker client over to
use the AWS instance and launch the Hello World container by running the
following commands:

eval $(docker-machine env awstest)

docker-machine ls

docker container run hello-world

docker container ls -a

As you can see, once you have launched an instance using Docker Machine and
switch your local Docker client to it, there is no difference in usage between running
Docker locally or on a cloud provider.

Before we start to rack up cost we should terminate our test AWS instance by
running the following command:

docker-machine rm awstest

And then confirm in the AWS console that the instance has terminated correctly:

If you don't do this, the EC2 instance will quite happily sit there costing, you $0.013
per hour until it is terminated.

Please note, this is not Docker for AWS, we will be covering this
service in Chapter 4, Docker Swarm.

Chapter 3

[81]

The Microsoft Azure driver
As you may have noticed from the terminal and browser screenshots, so far, we have
been using Docker for Mac; let's look at the Microsoft Azure driver using Docker for
Windows.

First of all, you will need a Microsoft Azure account; if you don't already have one,
you can sign up at https://azure.microsoft.com/. Once you have your account,
the only piece of information you need to get started is your subscription ID; you can
find this in the billing section of the portal.

Once you have your subscription ID, you can authenticate Docker Machine
with Azure, to do this enter the following command, making sure to replace the
subscription ID with your own:

docker-machine.exe create --driver azure --azure-subscription-id xxxxxxx-
85a6-4ab4-b5c4-c18b54e01498 azuretest

You will receive an activation code to authorise Docker Machine; go to https://
aka.ms/devicelogin/ and enter the code you have been given:

https://azure.microsoft.com/
https://aka.ms/devicelogin/
https://aka.ms/devicelogin/

Docker in the Cloud

[82]

Clicking Continue will take you a page which then shows you the permissions
which Docker Machine is going to grant:

Once you click Accept, you should see Docker Machine start bootstrapping the
environment. The process will take several minutes; once it completes, you should
see something like the following output:

Chapter 3

[83]

As you can see, Docker Machine has done the following:

•	 Created a resource group
•	 Configured a network security group
•	 Configured a network subnet
•	 Created a virtual network
•	 Assigned a public IP address
•	 Created a network interface
•	 Created a storage account
•	 Launched a virtual machine

If you go to the resource group within the Azure Portal you should see your virtual
machine is launched and ready:

Like the Mac and Linux versions of Docker Machine we need to configure our local
Docker client to communicate with the remote host, to do this we need to run the
following command:

docker-machine.exe env --shell powershell azuretest | Invoke-Expression

This is the equivalent of running the following on Mac or Linux:

eval $(docker-machine env azuretest)

Docker in the Cloud

[84]

You can check that Azure is now active by running:

docker-machine.exe ls

Now that we have our client talking to our Azure remote host, we can launch the
Hello World container by running:

docker container run hello-world

docker container ls -a

As with the Mac and Linux version of Docker Machine, you can SSH into your Azure
host by running:

docker-machine.exe ssh azuretest

As you can see from the output below, we can see the Hello World container:

From here you can interact with the Azure host as you would do any other Docker
host. Once you are ready to terminate your Azure host, all you need to do is run the
following command:

docker-machine.exe rm azuretest

Chapter 3

[85]

It will take a short while to remove the host and all the resources associated with it,
once complete, you should see something like:

Checking the Activity log in the docker-machine Resource group using the Azure
portal should show you the resources being removed:

As highlighted by the PowerShell output, it is best to check that everything has
been properly terminated, the easiest way to do this is to remove the resource
group itself, to do this click on the three dots (...) on the right-hand side of the
docker-machine resource.

After you have followed the on-screen prompts, which include typing the name of
the resource you are choosing to remove, you should receive confirmation that the
resource group has been removed.

Docker in the Cloud

[86]

While we have used Windows to look at Azure, the process, other than switching the
local client to use the remote host, is the same on Mac and Linux.

Please note, this is not Docker for Azure, we will be covering
this service in Chapter 4, Docker Swarm.

References
The examples we have used in this chapter have been launching Ubuntu instances.
Docker Machine also supports:

•	 Debian (8.0+) - https://www.debian.org/
•	 Red Hat Enterprise Linux (7.0+) - https://www.redhat.com/
•	 CentOS (7+) - https://www.centos.org/
•	 Fedora (21+) - https://getfedora.org/
•	 RancherOS (0.3) - http://rancher.com/rancher-os/

The other thing to mention about Docker Machine is that by default it operates
an opt-in for crash reporting, considering the number of different configuration /
environment combinations Docker Machine can be used with it is important that
Docker gets notified of any problems to help them make a better product.

If for any reason, you want to opt out, then running the following command will
disable crash reporting:

mkdir -p ~/.docker/machine && touch ~/.docker/machine/no-error-report

For more information on Docker Machine you can see the official documentation:

•	 Docker Machine - https://docs.docker.com/machine/
•	 Docker Machine Drivers - https://docs.docker.com/machine/drivers/
•	 Docker Machine Command Reference - https://docs.docker.com/

machine/reference/

https://www.debian.org/
https://www.redhat.com/
https://www.centos.org/
https://getfedora.org/
http://rancher.com/rancher-os/
https://docs.docker.com/machine/
https://docs.docker.com/machine/drivers/
https://docs.docker.com/machine/reference/
https://docs.docker.com/machine/reference/

Chapter 3

[87]

Summary
As you can see from examples we have worked through; Docker Machine is a
powerful tool as it allows users of all skill levels to be able to launch an instance in a
cloud provider without having to roll their sleeves up and get stuck in configuring
server instances.

In our next chapter, we are going to look at launching multiple Docker hosts in the
same cloud providers and then configuring a Docker Swarm cluster.

[89]

Docker Swarm
So far we have learned how to launch individual Docker hosts locally using Docker
for Mac, Docker for Windows, and Docker Machine for remote hosts, as well as using
Docker locally on Linux. Individual Docker hosts are great for local development, or
launching a few test instances however as you start moving towards production you
need fewer single points of failure.

In this chapter, we are going to get a little more adventurous and create a cluster
of Docker hosts. Docker ships a tool called Swarm, when deployed it acts as a
scheduler between your Docker client and the Docker host, deciding where to
launch containers based on scheduling rules.

We are going to look at the following topics:

•	 Manually launching a Docker Swarm cluster
•	 Launching Docker for Amazon Web Services
•	 Launching Docker for Azure

And also how to launch containers within our cluster.

Creating a Swarm manually
At the start of Chapter 3, Docker in the Cloud we looked at using a Docker Machine
to launch a Docker host in Digital Ocean. We are going to start with Digital Ocean
again, but this time we are going to launch three hosts and then create a Docker
Swarm cluster on them.

Docker Swarm

[90]

To start off with we need to launch the hosts and to do this, run the following
commands, remembering to replace the Digital Ocean API access token with
your own:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73 \

 swarm01

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73 \

 swarm02

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73 \

 swarm03

Once launched, running docker-machine ls should show you a list of your images.
Also, this should be reflected in your Digital Ocean control panel:

Chapter 4

[91]

Now we have our Docker hosts and we need to assign a role to each of the nodes
within the cluster. Docker Swarm has two node roles:

•	 Manager: A manager is a node which dispatches tasks to the workers, all
your interaction with the Swarm cluster will be targeted against a manager
node. You can have more than one Manger node, however in this example
we will be using just one.

•	 Worker: Worker nodes accept the tasks dispatched by the Manager node(s),
these are where all your services are launched. We will go in to services in
more detail once we have our cluster configured.

In our cluster, swarm01 will be the manager node with swarm02 and swarm03 being
our two worker nodes. We are going to use the docker-machine ssh command
to execute commands directly on our three nodes, starting with configuring our
manager node.

Please note, the commands in the walk through will only work
with Mac and Linux, commands to run on Windows will be
covered at the end of this section.

Before we initialize the manager node, we need to capture the IP address of swarm01
as a command-line variable:

managerIP=$(docker-machine ip swarm01)

Now that we have the IP address, run the following command to check if it is correct:

echo $managerIP

And then to configure the manager node, run the following command:

docker-machine ssh swarm01 docker swarm init --advertise-addr $managerIP

Docker Swarm

[92]

You will then receive confirmation that swarm01 is now a manager along with
instructions on what to run to add a worker to the cluster:

You don't have to a make a note of the instructions as we will be running the
command in a slightly different way.

To add our two workers, we need to capture the join token in a similar way we
captured the IP address of our manager node using the $managerIP variable; to do
this, run:

joinToken=$(docker-machine ssh swarm01 docker swarm join-token -q worker)

Again, you echo the variable out to check that it is valid:

echo $joinToken

Now it's time to add our two worker nodes into the cluster by running:

docker-machine ssh swarm02 docker swarm join --token $joinToken
$managerIP:2377

docker-machine ssh swarm03 docker swarm join --token $joinToken
$managerIP:2377

You should see something like the following terminal output:

Chapter 4

[93]

Connect your local Docker client to the manager node using the following:

eval $(docker-machine env swarm01)

And then running a docker-machine ls again shows. As you can see from the
list of hosts, swarm01 is now active but there is nothing in the SWARM column;
why is that?

Confusingly, there are two different types of Docker Swarm cluster, there is the
Legacy Docker Swarm which was managed by Docker Machine, and then there
is the new Docker Swarm mode which is managed by the Docker Engine itself.

We have a launched a Docker Swarm Mode cluster. This is now the preferred way of
launching Swarm, the legacy Docker Swarm is slowly being retired.

To get a list of the nodes within our Swarm cluster, we need to run the
following command:

docker node ls

For information on each node you can run the following command (the --pretty
flag renders the JSON output from the Docker API):

docker node inspect swarm01 --pretty

You are given a wealth of information about the host, including the fact that it is a
manager and it has been launched in Digital Ocean. Running the same command;
but for a worker node shows similar information:

docker node inspect swarm02 --pretty

However, as the node is not a manager that section is missing.

Before we look at launching services into our cluster, we should look at how to
launch our cluster using Docker Machine on Windows. We will be using PowerShell
for this rather than the more traditional Windows CMD prompt, however, even
using PowerShell there are a few differences in the commands used due differences
between PowerShell and bash.

Docker Swarm

[94]

First, we need to launch the three hosts:

docker-machine.exe create --driver digitalocean --digitalocean-access-
token 57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73
swarm01

docker-machine.exe create --driver digitalocean --digitalocean-access-
token 57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73
swarm02

docker-machine.exe create --driver digitalocean --digitalocean-access-
token 57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73
swarm03

Once the three hosts are up and running:

You can create the manager node by running:

$managerIP = $(docker-machine.exe ip swarm01)

echo $managerIP

docker-machine.exe ssh swarm01 docker swarm init --advertise-addr
$managerIP

Once you have your manager you can add the two worker nodes:

$joinIP = "$(docker-machine.exe ip swarm01):2377"

echo $joinIP

$joinToken = $(docker-machine.exe ssh swarm01 docker swarm join-token -q
worker)

Chapter 4

[95]

echo $joinToken

docker-machine.exe ssh swarm02 docker swarm join --token $joinToken
$joinIP

docker-machine.exe ssh swarm03 docker swarm join --token $joinToken
$joinIP

And then configure your local Docker client to use your manager node and check the
cluster status:

docker-machine.exe env swarm01 | Invoke-Expression

docker-machine.exe ls

docker node ls

At this stage, no matter which operating system you are using, you should have a
three node Docker Swarm cluster in Digital Ocean, we can now look at a launching
service into our cluster.

Launching a service
Rather than launching containers using the docker container run command you
need to create a service A service defines a task which the manager then passes to
one of the workers and then a container is launched.

Let's launch a simple service called cluster which uses the image we looked at in
Chapter 2, Launching Applications Using Docker:

docker service create --name cluster -p:80:80/tcp russmckendrick/cluster

That's it, we should now have a single container running on one of our three nodes.
To check that the service is running and get a little more information about the
service, run the following commands:

docker service ls

docker service inspect cluster --pretty

Docker Swarm

[96]

Now that we have confirmed that our service is running, you will be able to open
your browser and enter the IP address of one of your three nodes (which you can
get by running docker-machine ls).One of the features of Docker Swarm is it's
routing mesh.

A routing mesh? When we exposed the port using the -p:80:80/tcp flag, we did
a little more than map port 80 on the host to port 80 on the container, we actually
created a Swarm load balancer on port 80 across all of the hosts within the cluster.
The Swarm load balancer then directs requests to containers within our cluster.

Running the commands below, should show you which tasks are running on which
nodes, remember tasks are containers which have been launched by the service:

docker node ps swarm01

docker node ps swarm02

docker node ps swarm03

Like me, you probably have your single task running on swarm01:

Chapter 4

[97]

We can make things more interesting by scaling our service to add more tasks, to do
this simply run the following commands to scale and check our service:

docker service scale cluster=6

docker service ls

docker service inspect cluster --pretty

As you should see, we now have 6 tasks running within our cluster service:

Checking the nodes should show that the tasks are evenly distributed between our
three nodes:

docker node ps swarm01

docker node ps swarm02

docker node ps swarm03

Docker Swarm

[98]

Hitting refresh in your browser should also update the hostname under the
Docker image change, another way of seeing this on Mac and Linux is to run
the following command:

curl -s http://$(docker-machine ip swarm01)/ | grep class=

As you can see from the following terminal output, our requests are being load
balanced between the running tasks:

Before we terminate our Docker Swarm cluster let's look at another way we can
launch services, before we do we need to remove the currently running service,
to do this simply run:

docker service rm cluster

Now that the service has been removed, we can launch a stack.

Launching a stack
This is where it may get confusing. If a service is the same as running container then
a stack is running a collection of services like you would launch multiple containers
using Docker Compose. In fact, you can launch a stack using a Docker Compose file,
with a few additions.

Let's look at launching our Cluster application again. You can find the Docker
Compose file we are going to be using in the repo in the /bootcamp/chapter04/
cluster/ folder, before we go through the contents of the docker-compose.yml file,
let's launch the stack. To do this run the following command:

docker stack deploy --compose-file=docker-compose.yml cluster

You should get confirmation that the network for the stack has been created along
with the service. You can list the services launched by the stack by running:

docker stack ls

Chapter 4

[99]

And then check on the tasks within the service by running:

docker stack ps cluster

You may be surprised to see that service has launched its tasks on swarm02 and
swarm03 only. For an explanation as to why, let's open the docker-compose.yml file:

version: "3"
services:
 cluster:
 image: russmckendrick/cluster
 ports:
 - "80:80"
 deploy:
 replicas: 6
 restart_policy:
 condition: on-failure
placement:
 constraints:
 - node.role == worker

As you can see, the docker-compose.yml file looks like what we covered in
Chapter 2, Launching Applications Using Docker, until we get to the deploy section.

You may have already spotted the reason why we only have tasks running on our
two worker nodes, as you can see in the placement section, we have told Docker to
only launch our tasks on nodes with the role of worker.

Next up we have a defined a restart_policy this tells the Docker what to do
should any of the tasks stop responding, in our case we are telling the Docker to
restart them on-failure. Finally, we are telling the Docker to launch six replicas
within our service.

Docker Swarm

[100]

Let's test that restart policy by terminating one of our two worker nodes. There
is a graceful way of doing this by draining the node, however, it more fun to just
terminate the node, to do this run the following command:

docker-machine rm swarm03

Running docker stack ps cluster immediately after removing the host shows that
the Docker hasn't caught up yet.

Running docker stack ps a few seconds later will show that we still have six tasks
running, but as you can see from the terminal output they are now all running on
swarm02 and the tasks the new ones have replaced are showing as shutdown.

Our application should still be available by entering the IP address of swarm01 or
swarm02 into your browser. Once you have finished with the remain two hosts you
can them by running:

docker-machine rm swarm01 swarm02

So far, we have manually created our Docker Swarm cluster in Digital Ocean, I
am sure you agree that so far, the process has been straightforward, especially
considering how powerful the clustering technology is, you are already probably
starting to think how you can start to deploy services and stacks.

In the next few sections we are going to look at Docker for Amazon Web Services
and Docker for Azure, and how Docker can take advantage of the range of
supporting features provided by the two public cloud services.

Docker for Amazon Web Services
Docker for AWS is a Swarm cluster which has been tuned by Docker to run in
Amazon Web Services.

AWS CloudFormation is a templating engine which allows
you to define your AWS infrastructure and resources in a
controllable and predictable fashion.

The AWS CloudFormation template can be found at:

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Chapter 4

[101]

As you can see there is quite a lot to it, the image below is a visualization of the
template above – while you may not be able to see all the content in the image
you should get an idea of the complexity of the CloudFormation template
supplied by Docker.

As you can see, the template does all the heavy lifting for you meaning you don't
really have to do much apart from one thing, create an SSH key. To do this login
to the AWS console at https://console.aws.amazon.com/, select EC2from the
Services menu at the top of the screen, once the EC2 dashboard opens click on Key
Pairs in the left-hand side menu.

https://console.aws.amazon.com/

Docker Swarm

[102]

Here you will have the option to Create Key Pair or Import Key Pair. Once you have
your SSH key created or imported you can get to launching your Docker for Amazon
Web Services cluster, to this, select CloudFormation from the Services menu.

Clicking Create New Stack will take you a page which lets you define your stack, as
Docker have already done this for us all you need to do is enter the URL of the stack
definition file:

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

In the space below where is says Specify an Amazon S3 template URL, making sure
that the radio icon above where you entered the URL is selected click on Next:

The next page you are taken to is where you define how you would like your stack to
look, for this quick demonstration I used the following to roughly match the sizes of
the manual Swarm cluster we launched in Digital Ocean:

•	 Stack name: Bootcamp
•	 Number of Swarm managers? 1
•	 Number of Swarm worker nodes? 3
•	 Which SSH key to use?<your own SSH key>
•	 Enable daily resource cleanup? No

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Chapter 4

[103]

•	 Use Cloudwatch for container logging?Yes
•	 Swarm manager instance type?t2.micro
•	 Manager ephemeral storage volume size? 20
•	 Manager ephemeral storage volume type standard
•	 Agent worker instance type? t2.micro
•	 Worker ephemeral storage volume size? 20
•	 Worker ephemeral storage volume type: standard

Once you have filled in all the details, click on the Next button at the bottom of the
page. The next screen you are taken to contains additional options such as tagging,
we don't need to enter anything here so just click on the Next button,

The final page is where we review everything before we comit to launching our
stack. If you need to change any of the values you can do so by clicking on Previous,
once you are happy with how the details you need to tick the box which says, I
acknowledge that AWS CloudFormation might create IAM resources and then
click the Create button.

This will immediately start deploying the resources for your Docker for Amazon
Web Service cluster, you can check the status of the deployment by having the
Events tab open.

Clicking the refresh button should show you something like the following screen:

Docker Swarm

[104]

Launching the stack will take several minutes, once it has completed you should
see that the Status says CREATE_COMPLETE. Once you see this, click on the
Outputs tab:

Here you should see four messages, the first contains the Elastic Load Balancer URL,
the second is a message about the availability of your instances and finally you
should see a message about Managers, this contains a link – click it.

This takes you to the Instances page of the EC2 dashboard, you will also notice that
our single manager node has been filtered, selecting it shows information such as the
public URL and IP address of the instance:

Chapter 4

[105]

To interact with our cluster, we are going to SSH into the manager node, you need to
use the docker username. I used the following command:

ssh docker@54.194.20.19

If you downloaded a key pair then you would use something like;

ssh docker@54.194.20.19 -I ~/path/to/keypair.pem

Once you are logged in you should see something like:

Running docker node ls shows that we have three worker nodes and the one
manager node we are logged into:

Now let's launch our cluster application, as we are logged into a very basic operating
system, in fact as you can from the output of running:

cat /etc/*release

We are logged into an Alpine Linux server:

Docker Swarm

[106]

Git is not installed by default so let's install it by switching to the root user and install
the Git package using APK:

sudo su –

apk update

apk add git

Now that Git is installed we can clone the Bootcamp repo:

git clone https://github.com/russmckendrick/bootcamp.git

Once Git is installed we can then launch our stack using the following command:

docker stack deploy --compose-file=/root/bootcamp/chapter04/cluster/
docker-compose.yml cluster

docker stack ls

docker stack ps cluster

You should see something like the following output:

Now that our stack is launched you can access it using the Elastic Load Balancer
URL from the Outputs tab of the CloudFormation stack, in my case the URL was
(please note that my URL no longer works):

http://bootcamp-elb-1145454691.eu-west-1.elb.amazonaws.com/

As you can see from the screen below the page displays as expected with the host
name of the container the content is being served from:

http://bootcamp-elb-1145454691.eu-west-1.elb.amazonaws.com/

Chapter 4

[107]

As before, running curl against the Elastic Load Balancer URL shows that hostname
of the container is changing (remember to replace the URL with your own):

curl -s http://bootcamp-elb-1145454691.eu-west-1.elb.amazonaws.com/ |
grep class=

Before we teardown our Cluster there is one more to take a quick look at, if you
when we launched our Docker for Amazon Web Service stack we said yes to Use
Cloudwatch for container logging.

This option streams your container logs to Amazons own central logging service,
to view return to the AWS console and select Cloudwatch from the Services menu,
once the Cloudwatch dashboard has loaded, click Logs in the left-hand side menu
and then click on the Bootcamp-lg link, here you should list of the containers which
were launched by your docker stack create command:

Docker Swarm

[108]

Clicking on one of the log streams will show you everything which that container
has logged, which in our case should just be a lot of information from the
supervisord process:

To tear down our Docker for Amazon Web Services cluster return to the
CloudFormation dashboard, select your stack then select Delete Stack from the
Actions menu. This will pop-up a prompt, click the Yes, Delete button and deletion
of your stack with start immediately.

Removing all the resource will take several minutes, it is important to ensure that
all the resources are removed as Amazon operate a pay-as-go model meaning if a
resource such as an EC2 instance is running you will be being charged for it so I
would recommend you keep the window open and ensure that the deletion
is successful.

Speaking of charges, you may have noticed that when we launched our stack
there was a link to estimated costs, this takes all the resource defined in the
CloudFormation template and runs it through Amazon's Simple Cost Calculator
application, our four instance Docker for Amazon Web Services would cost us an
estimated $66.98 per month to run.

As you can see, we launched a quite complex configuration without much effort
at all, Docker have also applied this same methodology to Microsoft Azure,
let's look at that now.

Chapter 4

[109]

Docker for Azure
Docker for Azure needs a little more work up-front before we can deploy. Luckily,
Docker have made this as simple as possible by providing the Azure command line
interface as a container.

We need to create a service profile and resource group for our deployment to use,
to do this simply run the following command:

docker run -ti docker4x/create-sp-azure bootcamp-sp bootcamp-resource
westus

This will download the Azure CLI. The three variables we are passing the
command are as follows:

•	 The name of the service profile
•	 The name of the resource group
•	 Which region we would like to launch our cluster in

After a few seconds, you should receive a URL and an authentication code:

Open https://aka.ms/devicelogin/ in your browser and enter the code you were
given, which in my case was DQQXPYV7G:

https://aka.ms/devicelogin/

Docker Swarm

[110]

As you can see from the screen above, the application is identifying itself as
Microsoft Azure Cross-platform Command Line Interface so we know that the
request is right; clicking on Continue will ask you to login. Once logged in you will
receive confirmation that your request has been authorised and the application has
logged in.

After a second or two you should see your command line spring into life, the first
thing it will do is ask you which subscription it should use:

Select the right subscription, and then leave the command to finish, it will take
around five minutes to complete. At the of the process you should receive your
access credentials, make a note of these as you will need them to launch your stack:

Now that we have completed the preparation it is time to launch the Docker for
Azure template, you can view the template at the following URL:

https://download.docker.com/azure/stable/Docker.tmpl

And to launch it simply go to the following URL in your browser:

https://portal.azure.com/#create/Microsoft.Template/uri/
https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2FDocker.tmpl

https://download.docker.com/azure/stable/Docker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2FDocker.tmpl
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fdownload.docker.com%2Fazure%2Fstable%2FDocker.tmpl

Chapter 4

[111]

You should already be logged in from authorizing the command line interface, if not
login and you will be take a to a page which asks for several pieces of information on
how you would like your stack to look:

•	 Subscription <Select your subscription>
•	 Use existing <Select your resource group generated in the previous step >
•	 Location <This will be greyed out>
•	 Ad Service Principal App ID <Enter your AD ServicePrincipal App ID

generated in the previous step >
•	 Ad Service Principal App Secret: <Enter your AD ServicePrincipal App

Secret generated in the previous step >
•	 Enable System Prune: no
•	 Manager Count: 1
•	 Manager VM Size: Standard_D2_v2
•	 Ssh Public Key: <Enter your public key, see below>
•	 Swarm Name: dockerswarm
•	 Worker Count: 3
•	 Worker VM Size: Standard_D2_v2

To quickly copy your public SSH key to your clipboard on a Mac or Linux run the
following command (changing the path to your own key if needed):

cat ~/.ssh/id_rsa.pub | pbcopy

Make sure you tick the box next to I agree to the terms and conditions stated
above, once you are happy with the contents of the form click on Purchase. This
will kick off your deployment, the process will take several minutes, once complete
your dashboard will have a new resource added to it, depending on your existing
resources you may have to scroll to see it or the page may need to be refreshed.

Docker Swarm

[112]

Clicking on See more in your resource tile will give you a list of all the resources
created by Docker for Azure:

You should be able to see two public IP addresses assigned, one for a
externalLoadBalancer-public-ip and one for a externalSSHLoadBalancer-public-ip
make a note of both as we are going to need them, to find out the IP address click on
the resource to find more information.

Now that we know the two IP addresses we can SSH into our manager node, SSH is
listening on port 50000, so to SSH to the node run the following command making
sure you use the externalSSHLoadBalancer-public-ip address:

ssh docker@52.160.107.69 -p50000

Once logged in, run docker node ls and you should see your three worker nodes,
if you don't they may still be starting so give it a few minutes more:

Chapter 4

[113]

As with Docker for Amazon Web Services, you are SSH'ed into an Alpine Linux host.

Meaning that to install Git we need to change to the root user and using APK to
install it:

sudo su -

apk update

apk add git

Once Git is installed we can check out the Bootcamp repository using;

git clone https://github.com/russmckendrick/bootcamp.git

And then launch our application stack using the following command:

docker stack deploy --compose-file=/root/bootcamp/chapter04/cluster/
docker-compose.yml cluster

And make sure everything is running by executing:

docker stack ls

docker stack ps cluster

Putting the externalLoadBalancer-public-ipaddress into your browser should show
you your cluster application. Again, using the CURL command should show us that
traffic is being distributed across our containers (remember to use your own Load
Balancer IP address):

curl -s http://52.160.105.160/ | grep class=

There you have it, we have successfully deployed Docker for Azure and our cluster
application. The last thing to do is to delete the resources so that we do get any
unexpected bills, to do this select Resource groups from the left-hand menu and
then click on the three dots next to the bootcamp-resource entry and select Delete.

It will take about 10 minutes to remove all the resources and the group, but it is
worth keeping the Azure portal open until the deletion process has completed as
you do not want to incur any additional cost.

Depending on how long the resources were live this entire demo would have cost
less than $0.10.

Docker Swarm

[114]

Summary
I suspect that by the end of this chapter things were getting very predictable and
there were no real surprises, this is by design. As you have experienced, Docker
have provided a very powerful clustering solution which once deployed acts in
a consistent and predictable way no matter what underlying platform you have
launched your cluster on.

There is one important thing which we yet to touch on yet, persistent storage for our
containers. This is important, especially in a cluster, as it allows our containers to
not only move between hosts but also introduces ways in which we can do rolling
updates of our applications.

In the next chapter, we are going to look at both Docker network & volume plugins.

[115]

Docker Plugins
During DockerCon Europe 2014, there was a round table discussion which took
place on the state of the Docker ecosystem, the following problem and possible
solution was identified:

The problem which Docker currently faces is that by moving to become a platform
it is being seen to threaten its own ecosystem. The proposed solution is that Docker
ships its own additions to Docker as late-bound, composable, optional extensions
and enables other vendors to do likewise. Docker calls this "batteries included but
removable".

During DockerCon 2015 in Seattle, Docker announced the availability of plugins in
the experimental branch, the announcement came in the form of a blog post which
can be found at https://blog.docker.com/2015/06/extending-docker-with-
plugins/.

As you can see from the post, Docker provided a solution where third parties
can swap out core functionality. Now a user could run the docker volume and
docker network commands along with a driver option to have Docker call external
components which add functionality outside of the core Docker Engine while
maintaining a high level of compatibility.

In this chapter, we are going to look at two different Docker plugins, the first is a
volume plugin called REX-Ray and the second is a network plugin called Weave.

REX-Ray volume plugin
So far, we have been usingthe local storage which is available on our hosts, as
mentioned in Chapter 4, Docker Swarm that isn't very useful when you potentially
have move the storage between multiple hosts either because you are hosting a
cluster or because of problems with the host machine itself.

https://blog.docker.com/2015/06/extending-docker-with-plugins/
https://blog.docker.com/2015/06/extending-docker-with-plugins/

Docker Plugins

[116]

In this example, we are going to be launching a Docker instance in Amazon Web
Services, install a volume plugin called REX-Ray, written by EMC, and then launch
our WordPress example but this time we will attach AmazonElastic Block Storage
volumes to our containers. Once configured, we will move our containers to a second
host machine to demonstrate that the data has persisted.

REX-Ray supports several storage types on both public clouds and EMC's own
range, as follows:

•	 Amazon Elastic Block Store - https://aws.amazon.com/ebs/
•	 Digital Ocean Block Storage - https://www.digitalocean.com/products/

storage/

•	 OpenStack Cinder - https://wiki.openstack.org/wiki/Cinder/
•	 Google Compute Engine - https://cloud.google.com/compute/

docs/disks/

•	 EMC Isilon, ScaleIO, VMAX, and XtremIO - https://www.emc.com/

The driver is in active development and more types of supported storage are
frequently being added, also work is on-going to move the driver over to Dockers
new plugin system.

Before we look at installing REX-Ray we need a Docker host in Amazon Web
Services, to launch one, use the following command. You can refer to the Amazon
Web Services Driver section of Chapter 2, Launching Applications Using Docker.
for details on how to generate your access and secret key and find your VPC ID.
Remember to replace the access-key, secret-key and vpc-id with your own:

docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key AKIAJ3GYNKVTEWNMFDHQ \

 --amazonec2-secret-key l2WikM2NIz2GA+1Q2PGKVUCfTNBPBT1Nzgf+jDJC \

 --amazonec2-vpc-id vpc-35c91750 \

 awstest

https://www.digitalocean.com/products/storage/
https://www.digitalocean.com/products/storage/
https://wiki.openstack.org/wiki/Cinder/
https://www.emc.com/

Chapter 5

[117]

Now that you have your instance launched, you can see it in the AWS Console:

We need to install the REX-Ray plugin. As REX-Ray supports Docker's new plugin
format this means we need to run the docker plugin command. To start with, we
need to configure our local Docker client to connect to our AWS host by running:

eval $(docker-machine env awstest)

Now that we are connected to install the plugin, we simply need to run the following
command, the EBS_ACCESSKEY and EBS_SECRETKEY variables are the same we used
for Docker Machine, replace them with your own:

docker plugin install rexray/ebs \

EBS_ACCESSKEY=AKIAJ3GYNKVTEWNMFDHQ \

EBS_SECRETKEY=l2WikM2NIz2GA+1Q2PGKVUCfTNBPBT1Nzgf+jDJC

Before the plugin is installed, you will be asked to confirm that you are OK to grant
permissions for the plugin to access various parts of your Docker installation, answer
yes (y) to this when prompted and the plugin will be downloaded and installed.

Now that the plugin is installed, we need to create two volumes, one which will
hold our WordPress data and the second one will back store our MySQL databases.
To create the volumes run the following:

docker volume create --driver rexray/ebs --name dbdata

docker volume create --driver rexray/ebs --name wpdata

Docker Plugins

[118]

You can see the preceding commands being run in the following terminal:

You should also be able to see your two volumes by clicking on Volumes in the
left-hand side menu of the EC2 section of the AWS Console:

Chapter 5

[119]

Now we have our two volumes, we need to launch WordPress, to do this we will use
the Docker Compose file which can be found in the repo at /bootcamp/chapter05/
wordpress-rexray/.

As you can see from the docker-compose.yml file, we are building a WordPress
image with wp-cli installed:

version: "3"

services:
mysql:
 image: mysql
 volumes:
 - dbdata:/var/lib/mysql
 restart: always
 environment:
 MYSQL_ROOT_PASSWORD: wordpress
 MYSQL_DATABASE: wordpress
wordpress:
depends_on:
 - mysql
 build: ./
 volumes:
 - wpdata:/var/www/html
 ports:
 - "80:80"
 restart: always
 environment:
 WORDPRESS_DB_PASSWORD: wordpress

volumes:
dbdata:
 external:
 name: dbdata
wpdata:
 external:
 name: wpdata

As you can also see from the end of the file, we are telling Docker Compose to
use the two external volumes we have already created with the docker volume
create command.

Docker Plugins

[120]

To build our WordPress image and launch the containers run the
following command:

docker-compose up -d

You can check your containers up by running:

docker-compose ps

Now that the two containers we make our WordPress application are up and
running you can quickly install WordPress by running the following command
(update the variables as needed):

$awshost = "$(docker-machine ip awstest)"

docker-compose exec wordpress wp core install --url=http://$(awshost)/
--title=Testing --admin_user=admin --admin_password=adminpassword
--admin_email=russ@mckendrick.io

Once installed, you should see a message which says Success: WordPress
installed successfully. This means that you can open your installation in a
browser by running:

open http://$(docker-machine ip awstest)

This should present you with the now familiar WordPress site:

Chapter 5

[121]

Now let's make a change to our WordPress installation so we can be sure that when
we move our application between hosts everything works as expected. We are
going to be replacing the image of the plant with fireworks. To do this we need to
customize our theme, to get to the theme edit page run the following:

open "http://$(docker-machine ip awstest)/wp-admin/customize.
php?return=%2Fwp-admin%2Fthemes.php"

You will be prompted to login using the admin username and password which if
you followed the installation will be admin / adminpassword or if you entered your
own then use them.

Once you have the page open click on Header Media in the left-hand menu. Scroll
down to where it says Add new image in the left-hand menu and follow the on-
screen prompts to upload, crop and set the new header image, you can find an image
called fireworks.jpg in the repo or use your own image. Once you have finished
click on Save & Publish.

Going back to your sites home page should then show your new header image:

Before we remove our Docker host we need to make a note of it's IP address, to do
this run the following command:

echo $(docker-machine ip awstest)

Docker Plugins

[122]

And write down the IP address as we are going to need it, in my case the IP address
was 54.173.130.142.

Now let's remove our host using the following command:

docker-machine rm awstest

Once the host has been removed our two volumes are shown as available within the
AWS console:

That is our WordPress and database data, to access it on a new Docker host we need
to first launch one. To do this run the following command again remembering to
replace the credentials and vpc id with your own:

docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key AKIAJ3GYNKVTEWNMFDHQ \

 --amazonec2-secret-key l2WikM2NIz2GA+1Q2PGKVUCfTNBPBT1Nzgf+jDJC \

 --amazonec2-vpc-id vpc-35c91750 \

 awstest2

Once the new Docker host is up and running the following command to switch our
local client over and install REX-Ray:

eval $(docker-machine env awstest2)

docker plugin install rexray/ebs \

 EBS_ACCESSKEY=AKIAJ3GYNKVTEWNMFDHQ \

 EBS_SECRETKEY=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

Chapter 5

[123]

Once REX-Ray is installed, we need to make it aware of our two existing volumes, to
do this simply run the following command:

docker volume create --driver rexray/ebs --name dbdata

docker volume create --driver rexray/ebs --name wpdata

Do not worry, it will not overwrite our existing volumes, it will just make Docker
aware that they are there as REX-Ray uses the name you assign to volume rather
than a unique ID if it comes across a volume with the name you have told it to use
it will assume that is the volume you meant to use, so be careful when naming your
volumes as they will be attached to the running container.

You may notice that the commands execute a lot quicker this time, this is because the
volumes are already there and do not need re-creating.Running:

docker volume ls

should show our two volumes are there as before.

Now we need to launch WordPress, to do that just run:

docker-compose up -d

If you were to try and access your WordPress site now, you would see a very broken
looking site with content, but no styling or images.

This is because the database is still referencing the IP address of the Docker host we
terminated, to the database. Run the following the command making sure to replace
the IP address in the command to that of your previous Docker host (remember mine
was 54.173.130.142):

docker-compose exec wordpress wp search-replace 54.173.130.142 $(docker-
machine ip awstest2)

You should see a list of every table within the database along with confirmation
of how many instances of the IP address it has replaced with that of the new
Docker host.

Going to your new WordPress installation by running:

open http://$(docker-machine ip awstest2)

Should show your cover image is intact and the WordPress installation is exactly
how you left it, apart from the change in IP address.

Docker Plugins

[124]

When you have finished test you can remove your installation by running the
following commands:

docker-compose stop

docker-compose rm

docker volume rmdbdata

docker volume rmwpdata

docker-machine rm awstest2

You may notice that when you run the docker volume rm commands
you are not prompted to confirm your actions, so be careful.

Checking your AWS console should confirm that your Docker host has been
terminated and your two volumes have been removed.

WeaveNetwork Plugin
Weave are one of the original Docker plugins, in-fact they were involved in the
round table discussions around Dockers plugin functionality, and Weave was
included in the original plugin announcement mentioned at the start of this chapter.

Weave describe their network plugin as:

Quickly, easily, and securely network and cluster containers across any
environment (on premises, in the cloud, or hybrid) with zero code or configuration.

Anyone who worked with software defined networks will know that this is quite a
bold claim, especially a Weave is creating a mesh network.For a full explanation of
what that means, I would recommend reading through Weaves own overview which
can be found at https://www.weave.works/docs/net/latest/how-it-works/.

Rather than going into any more detail. let's roll our sleeves up and perform an
installation. To start with, let's bring up two independent Docker hosts DigitalOcean
using Docker Machine.

To make it interesting, we will launch one host in New York Cityand the other
in London. As these are going to be acting as individual hosts there is no need to
configure Docker Swarm – which is what you would typically need to for multi-host
networking with Docker.

https://www.weave.works/docs/net/latest/how-it-works/

Chapter 5

[125]

To launch the Docker host in New York City run:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73 \

 --digitalocean-region nyc1\

 weave-nyc

And then for the Docker host in London run:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
57e4aeaff8d7d1a8a8e46132969c2149117081536d50741191c79d8bc083ae73 \

 --digitalocean-region lon1 \

 weave-lon

Now that we have our two Digital Ocean hosts we need to get Weave up and
running.At the time of writing, Weave has not completed the transition to Dockers
native plugin architecture and it is due very soon, so we will be using a control script
to configure Weave.

First, we need to download the control scripton our NYC Docker host:

docker-machine ssh weave-nyc 'curl -L git.io/weave -o /usr/local/bin/
weave; chmoda+x /usr/local/bin/weave'

Once downloaded we can launch Weave using the following command:

docker-machine ssh weave-nyc weave launch --password 3UnFh4jhahFC

This will download and launch several containers on the Docker host, once
downloaded the Weave will be configured and the password set meaning that
if you want to add a host to network you will need to provide a valid password.

If you do not define a password then anyone will be able to connect to your Weave
network, which is fine if you know that your host machines are running on an
isolated closed network, however as we are sending traffic over the public internet
we have set a password.

You can check the containers by running:

docker $(docker-machine config weave-nyc) container ps

Docker Plugins

[126]

Now that we have the three containers we need launched, it is time to install Weave
on our London Docker host and then connect it to our NYC Docker host. To do the
installation run the following commands:

docker-machine ssh weave-lon 'curl -L git.io/weave -o /usr/local/bin/
weave; chmoda+x /usr/local/bin/weave'

docker-machine ssh weave-lon weave launch --password 3UnFh4jhahFC

Once the three containers have launched, simply run the following command to
connect to our NYC Docker host:

docker-machine ssh weave-lon weave connect "$(docker-machine ip weave-
nyc)"

Once our second host has been configured you can check the status of the Weave
mesh network by running:

docker-machine ssh weave-nyc weave status

As you can see from the preceding terminal above, we have five services running,
and other than providing a password, we didn't have to configure any of them.

As I am running a Mac OS machine, I am also going to install Weave locally,
the same instructions will also work on a Linux machine.

Chapter 5

[127]

The following commands will install the Weave control script which will be used
to launch the containers within your Docker for Mac installation and connect to our
Weave mesh network:

sudo curl -L git.io/weave -o /usr/local/bin/weave; sudochmoda+x /usr/
local/bin/weave

weave launch --password 3UnFh4jhahFC

weave connect "$(docker-machine ip weave-nyc)"

Once installed and connected, running weave status locally should show you that
there are now 3 peers with 6 established connections:

So now we have three Docker hosts:

•	 One in NYC hosted by Digital Ocean
•	 One in London hosted by Digital Ocean
•	 Our local Docker host running on Docker for Mac (or Linux)

Docker Plugins

[128]

All with a network called weave using the weavemesh driver. You can confirm this
by running:

docker network ls

docker $(docker-machine config weave-nyc) network ls

docker $(docker-machine config weave-lon) network ls

You should see something similar to the following terminal output:

Now we are ready to start launching containers into our Weave network and
demonstrate that they can communicate with each other.

Netcat is a service which allows you to be read and write to a
network using TCP or UDP.

Let's start by launching a container in NYC running Netcat(nc). Each time a request
is sent to port 4242 nc will answer with Hello from NYC!!!:

docker $(docker-machine config weave-nyc) container run -itd \

 --name=nyc \

 --net=weave \

 --hostname="nyc.weave.local" \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine nc -p 4242-ll -e echo 'Hello from NYC!!!'

Chapter 5

[129]

As you can see from the Docker command, we are passing quite a few different
options, we are telling the container which network to use, as well configuring the
DNS resolver within the container and setting a hostname of nyc.weave.local.

Now that we have our NYC container up and running, the first thing to do is to
check if we can ping from our London Docker host, to do this run the following:

docker $(docker-machine config weave-lon) container run -it --rm \

 --name=ping \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine sh -c 'ping -c3 nyc.weave.local'

This will send three pings to nyc.weave.local, all of which should be answered:

Now that have confirmed that we can Ping the NYC container, we need to connect to
port 4242 and check if we get the response we expect:

docker $(docker-machine config weave-lon) container run -it --rm \

 --name=conect \

 --net=weave \

Docker Plugins

[130]

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine sh -c 'echo "Where are you?" | ncnyc.weave.local 4242'

You should receive the message Hello from NYC!!!:

Now let's launch a container on our local Docker host using the following command:

docker container run -itd \

 --name=mac \

 --net=weave \

 --hostname="mac.weave.local" \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine nc -p 4242 -ll -e echo 'Hello from Docker for Mac!!!'

As before, we will do a simple ping test to our local container:

docker $(docker-machine config weave-nyc) container run -it --rm \

 --name=ping \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine sh -c 'ping -c3 mac.weave.local'

Chapter 5

[131]

As expected, we receive a response:

It's a little slow to start with, but it eventually gets better. Now that we know we can
ping our local container lets connect to port 4242 and check the response. First, from
our NYC Docker host:

docker $(docker-machine config weave-nyc) container run -it --rm \

 --name=conect \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine sh -c 'echo "Where are you?" | ncmac.weave.local 4242'

Then from our London Docker host:

docker $(docker-machine config weave-lon) container run -it --rm \

 --name=conect \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 alpine sh -c 'echo "Where are you?" | ncmac.weave.local 4242'

Docker Plugins

[132]

As you can see from the following terminal output we got the answer we expected
to receive:

To tidy up your local Docker host run the following commands:

docker container stop mac

docker container rm mac

weave stop

sudorm -f /usr/local/bin/weave

And then to terminate our two Digital Ocean hosts run:

docker-machine stop weave-lon weave-nyc

docker-machine rm weave-lon weave-nyc

While these tests haven't been as visually interesting as the walkthrough of the
REX-Ray Volume plugin, as you have seen, Weave is an incredibly powerful
software-defined network, which is very easy to configure.

Speaking fromexperience, this is a difficult combination to pull off, as most SDN
solutions are incredibly complex to install, configure, and maintain.

We have only touched on what is possible with Weave. For a full feature list, along
with instructions on some most of the advanced use cases, refer to http://docs.
weave.works/weave/latest_release/features.html.

http://docs.weave.works/weave/latest_release/features.html
http://docs.weave.works/weave/latest_release/features.html

Chapter 5

[133]

Summary
Hopefully you are now starting to see use cases for different types of plugins.For
example, a developer is fine working with local volumes, however for production
traffic you would want to have some sort of either shared or block storage which is
accessible to containers across multiple Docker hosts.

With plugins, this is possible without any real changes to your user's workflow as
you know exactly how Docker handles volumes created with the docker volume
create command.

As already mentioned, Docker are in the process of transitioning legacy plugins
to a new architecture, a list of legacy plugins can be found at the following URL
https://docs.docker.com/engine/extend/legacy_plugins/ and new plugins
which use the new architecture a can be found at https://store.docker.com/
search?q=&type=plugin.

In the next chapter, we are going to look at how to monitor your containers,
and what to do if anything goes wrong.

https://docs.docker.com/engine/extend/legacy_plugins/
https://store.docker.com/search?q=&type=plugin
https://store.docker.com/search?q=&type=plugin

[135]

Troubleshooting and
Monitoring

In this chapter, we are going to look at commands which will come in useful when
troubleshooting your containers, all the commands we will look at are part of
the core Docker Engine, we will also look at a way by which you can debug
your Dockerfiles.

Once we have finished with the Troubleshooting commands, we will look at how we
can monitor our containers using cAdvisor with a Prometheus backend fronted by a
Grafana dashboard – don't worry, it is not as complicated as it sounds.

As we are going to be exposing services, some using default
credentials I would recommend that you use your local Docker
installation for this chapter.

Troubleshooting containers
Computer programs (software) sometimes fail to behave as expected. This is due
to faulty code or due to the environmental changes between the development,
testing, and deployment systems. Docker container technology eliminates the
environmental issues between development, testing, and deployment as much as
possible by containerizing all the application dependencies. Nonetheless, there could
still be anomalies due to faulty code or variations in the kernel behavior, which
needs debugging. Debugging is one of the most complex processes in the software
engineering world and it becomes much more complex in the container paradigm
because of the isolation techniques. In this section, we are going to learn a few tips
and tricks to debug a containerized application using the tools native to Docker, as
well as the tools provided by external sources.

Troubleshooting and Monitoring

[136]

Initially, many people in the Docker community individually developed their own
debugging tools, but later Docker started supporting native tools, such as exec, top,
logs, events, and many more. In this section, we will dive deep into the following
Docker tools:

•	 exec

•	 ps

•	 top

•	 stats

•	 events

•	 logs

•	 attach

We shall also consider debugging a Dockerfile.

The exec command
The docker container exec command provided the much-needed help to users,
who are deploying their own web servers or other applications running in the
background.

Now, it is not necessary to log in to run the SSH daemon in the container.

First, launch a container:

docker container run -d --name trainingapp training/webapp:latest

Chapter 6

[137]

Second, run the docker container ps command to get the container ID. Now you
have the container ID you can run the docker container exec command to log in
to the container using either the container ID or as we have named it trainingapp
you can use that:

docker container exec -it 32005e837724 bash

Please note, not every container will have bash installed, some such
Alpine Linux don't have bash out of the box but instead uses sh, which
bash was based on.

It is important to note that the docker container exec command can only access
the running containers, so if the container stops functioning then you need to restart
the stopped container to proceed. The docker container exec command spawns
a new process in the target containers namespace using the Docker API and CLI.

A containers name space is what separates the containers from each other, for
example you can have several containers all running the same process, but because
the processes have been launched within each of the containers namespace they are
isolated from one another. A good example of this is are MySQL processes, on a
traditional server trying to run more than one MySQL server process will mean that
you need to start the process on different ports, use different lock, PID and log files
as well as different init scripts.

As Docker is isolating each MySQL server process all you need to worry about is that
if you are exposing the MySQL port on the host machine is that you don't assign it
on the same port as another container.

So, if you run the ps -aef command inside the target container, it looks like this:

Here, python app.y is the application that is already running in the target container,
and the docker container exec command has added the bash process inside the
container. If you run kill -9 59 (replacing the 59 with the PID of your own bash
process), you will be automatically logged out of the container.

Troubleshooting and Monitoring

[138]

It is recommended that you use the docker container exec command only for
monitoring and diagnostic purposes, and I personally believe in the concept of
one process per container, which is one of the best practices widely accentuated.

The ps command
The ps command, which is available inside the container, is used to see the status of
the process. This is like the standard ps command in the Linux environment and is
not a dockercontainerps command that we run on the Docker host machine.

This command runs inside the Docker container:

Use ps --help <simple|list|output|threads|misc|all> or ps --help
<s|l|o|t|m|a> for additional help text.

The top command
You can run the top command from the Docker host machine using the
following command:

docker container top CONTAINER [ps OPTIONS]

This gives a list of the running processes of a container without logging into the
container, as follows:

Chapter 6

[139]

The within the container the top command provides information about the CPU,
memory, and swap usage just like any normal Linux host:

In case you get the error as error - TERM environment variable not set while
running the top command inside the container, perform the following steps to
resolve it.

Run echo$TERM and if you get the result dumb, then, run the following command:

export TERM=dumb

This will resolve your error and you can run the top command.

The stats command
The docker container stats command provides you with the capability to
view the memory, CPU, and the network usage of a container from a Docker host
machine, as illustrated here. Running the following command:

docker container stats 32005e837724

Gives you the following:

You can run the stats command to also view the usage for multiple containers:

docker container stats 32005e837724 5e33f02f5fd2 7c9cf27ff46a

Troubleshooting and Monitoring

[140]

Since Docker 1.5, you have been able to access to container statistics read only
parameters. This will streamline the CPU, memory, network IO, and block IO
of your containers.

This helps you choose the resource limits and in profiling. The Docker stats utility
provides you with these resource usage details only for running containers.

You can get detailed information using the endpoint APIs at the following URL
https://docs.docker.com/engine/api/v1.26/.

The Docker events command
Docker containers will report the following real-time events: create, destroy, die,
export, kill, omm, pause, restart, start, stop, and unpause. Let's pause and
unpause our container:

If you specify an image it will also report the untag and delete events.

Using multiple filters will be handled as an AND operation, for example:

docker events --filter container=32005e837724 --filter event=pause
--filter event=unpause --since 12h

Preceding will display all pause and unpause events for the container
a245253db38b for the last 12 hours:

Currently, the supported filters are container, event, and image.

https://docs.docker.com/engine/api/v1.26/

Chapter 6

[141]

The logs command
This command fetches the log of a container without logging into the container.
It batch-retrieves logs present at the time of execution. These logs are the output
of STDOUT and STDERR. The general usage is shown in:

docker container logs [OPTIONS] CONTAINERID

The --follow option will continue to provide the output till the Docker logs
command is terminated printing any new log entries to the screen in real time,-t
will provide the timestamp, and --tail=<number of lines> will show the
number of lines of the log messages of your container:

docker container logs 32005e837724

docker container logs -t 32005e837724

We also used the docker container logs command in previous chapters to view
the logs of our database containers.

The attach command
This command attaches the running container and it is very helpful when you want
to see what is written in stdout in real time, let's launch new test container which
outputs something to stdout:

docker container run -d --name=newtest alpine /bin/sh -c "while true; do
sleep 2; df -h; done"

Troubleshooting and Monitoring

[142]

Now we can attach to the container using the following command to see the output;

docker container attach newtest

By default, this command attaches stdin and proxies signals to the remote process.
Options are available to control both behaviors. To detach from the process, use the
default Ctrl + Q sequence.

Debugging a Dockerfile
Every instruction we set in the Dockerfile is going to be built as a separate,
temporary image for the other instruction to build itself on top of the
previous instruction.

There is a Dockerfile in the repo at /bootcamp/chapter06/debug:

FROM alpine
RUN ls -lha /home
RUN ls -lha /vars
CMD echo Hello world

Building the image using the following command:

docker image build

Gives you the following output:

Chapter 6

[143]

So, there is an error in our Docker file. You may notice there is a line in the output
which says --->5f828f86eaa4this is actually an image file which was built
following the successful execution of the RUN ls -lha /home line.

This means that we can launch a container using this image:

docker container run -it --name=debug 5f828f86eaa4 /bin/sh

Notice that as we are using Alpine Linux as our base we are using
/bin/sh rather than /bin/bash

We can then debug our application, which in this case is simple:

Debugging is a process of analyzing what's going on and it's different for every
situation, but usually the way we start debugging is by trying to manually make
the instruction that fail work manually and understand the error. When I get the
instruction to work, I usually exit the container, update my Dockerfile and repeat
the process until I have something working.

Troubleshooting and Monitoring

[144]

Notice that when the line which is causing the error is corrected (by supplying the
correct line RUN ls -lha /var) and we try the build again that Docker doesn't
create a new image for the one step which was successful:

Once it has built the temporary image is removed and we are left with our
final image:

That was quite a simple example, but it should give you an idea of how to debug a
more complex Dockerfile.

Monitoring containers
In the last section, we looked at how you can use the API built into Docker to gain
an insight to what resources your containers are running by running the docker
container stats and docker container top commands. Now, we are to see
how we can take it to the next level by using cAdvisor from Google.

Chapter 6

[145]

Google describes cAdvisor as follows:

cAdvisor (Container Advisor) provides container users an understanding of the
resource usage and performance characteristics of their running containers. It is a
running daemon that collects, aggregates, processes, and exports information about
running containers. Specifically, for each container, it keeps resource isolation
parameters, historical resource usage, histograms of complete historical resource
usage, and network statistics. This data is exported by a container and is machine-
wide.

The project started off life as an internal tool at Google for gaining an insight into
containers that had been launched using their own container stack.

Google's own container stack was called "Let Me Contain That For You"
or lmctfy for short. The work on lmctfy has been installed as a Google
port functionality over to libcontainer that is part of the Open Container
Initiative. Further details on lmctfy can be found at https://github.
com/google/lmctfy/

cAdvisor is written in Go (https://golang.org); you can either compile your own
binary or you can use the pre-compiled binary that are supplied via a container,
which is available from Google's own Docker Hub account. You can find this at
http://hub.docker.com/u/google/.

Once installed, cAdvisor will sit in the background and capture metrics that are like
that of the dockercontainer stats command. We will go through these stats and
understand what they mean later in this chapter.

cAdvisor takes these metrics along with those for the host machine and exposes them
via a simple and easy-to-use built-in web interface.

There are several ways to install cAdvisor; the easiest way to get started is to
download and run the container image that contains a copy of a precompiled
cAdvisor binary:

docker network create monitoring

docker container run -d \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

https://github.com/google/lmctfy/
https://github.com/google/lmctfy/
https://golang.org
http://hub.docker.com/u/google/

Troubleshooting and Monitoring

[146]

 --publish=8080:8080 \

 --name=cadvisor \

 google/cadvisor:latest

You should now have a cAdvisor container up and running on your host machine.

Before we start looking at stats, let's look at cAdvisor in more detail by discussing
why we have passed all the options to the container.

The cAdvisor binary is designed to run on the host machine alongside the Docker
binary, so by launching cAdvisor in a container, we are isolating the binary in its
own environment. To give cAdvisor access to the resources it requires on the host
machine, we have to mount several partitions and also give the container privileged
access to let the cAdvisor binary think it is being executed on the host machine.

So now, we have cAdvisor running; what do we need to do to configure the service
in order to start collecting metrics?

The short answer is, nothing at all. When you started the cAdvisor process, it
instantly started polling your host machine to find out what containers are running
and gathered information on both the running containers and your host machine.

cAdvisor should be running on the 8080 port; if you open http://
localhost:8080/, you should be greeted with the cAdvisor logo and an
overview of your host machine:

http://localhost:8080/
http://localhost:8080/

Chapter 6

[147]

This initial page streams live stats about the host machine, though each section is
repeated when you start to drill down and view the containers. To start with, let's
look at each section using the host information.

The overview section gives you a bird's-eye view of your system; it uses gauges
so you can quickly get an idea of which resources are reaching their limits. In the
following screenshot, there is very little in the way of CPU utilization and the file
system usage is relatively low; however, we are using 66% of the available RAM:

Next up is the graph which shows the CPU utilization over the last minute:

Troubleshooting and Monitoring

[148]

Here is what each term means:

•	 Total Usage: This shows an aggregate usage across all cores
•	 Usage per Core: This graph breaks down the usage per core
•	 Usage Breakdown: This shows aggregate usage across all cores, but breaks it

down to what is being used by the kernel and what is being used by the user-
owned processes

The Memory section is split into two parts. The graph tells you the total amount of
memory used by all the processes for the host or container; this is the total of the
hot and cold memory. The Hot memory is the current working set; pages that have
been touched by the kernel recently. The Cold memory is the page that hasn't been
touched for a while and could be reclaimed if needed.

The Usage Breakdown gives a visual representation of the total memory in the host
machine, or allowance in the container, alongside the total and hot usage.

The network section shows the incoming and outgoing traffic over the last minute.
You can change the interface using the drop-down box on the top-left.

There is also a graph that shows any networking errors. Typically, this graph should
be flat. If it isn't, then you will be seeing performance issues with your host machine
or container.

The final section, filesystem, gives a breakdown of the filesystem usage. In the
following screenshot, /dev/vda1 is the boot partition, overlay is the main filesystem
running your running containers.

Now we can look at our containers. At the top of the page, there is a link of your
running containers, it says Docker Containers; you can either click on the link or
go directly to http://localhost:8080/docker/.

Once the page loads, you should see a list of all your running containers, and also
a detailed overview of your Docker process, and finally a list of the images you
have downloaded.

Subcontainers shows a list of your containers; each entry is a clickable link that will
take you to a page that will give you the following details:

•	 Isolation:
°° CPU: This shows you the CPU allowances of the container;

if you have not set any resource limits, you will see the host's
CPU information

Chapter 6

[149]

°° Memory: This shows you the memory allowances of the container;
if you have not set any resource limits, your container will show an
unlimited allowance

•	 Usage:
°° Overview: This shows gauges so you can quickly see how close to

any resource limits you are
°° Processes: This shows the processes for just your selected container
°° CPU: This shows the CPU utilization graphs isolated to just

your container
°° Memory: This shows the memory utilization of your container

The Driver status section gives the basic stats on your main Docker process,
along with the information on the host machine's kernel, host name, and also
the underlying operating system.

It also gives information on the total number of containers and images. You may
notice that the total number of images is a much larger figure than you expected
to see; this is because it is counting each file system as an individual image.

Finally, you get a list of the Docker images which are available on the host
machine. It lists the Repository, Tag, Size, and when the image was created, along
with the images' unique ID. This lets you know where the image originated from
(Repository), which version of the image you have downloaded (Tag) and how big
the image is (Size).

This is all great, what's the catch?

So, you are maybe thinking to yourself that all this information available in your
browser is really useful; being able to see real-time performance metrics in an easily
readable format is a real plus.

The biggest drawback of using the web interface for cAdvisor, as you may have
noticed, is that it only shows you one minute's worth of metrics; you can quite
literally see the information disappearing in real time.

As a pane of glass gives a real-time view into your containers, cAdvisor is a brilliant
tool; if you want to review any metrics that are older than one minute, you are out
of luck.

Troubleshooting and Monitoring

[150]

That is, unless you configure somewhere to store all your data; this is where
Prometheus comes in.So what's Prometheus? Its developers describe it as follows:

Prometheus is an open-source system's monitoring and alerting toolkit built
at SoundCloud. Since its inception in 2012, it has become the standard for
instrumenting new services at SoundCloud and is seeing growing external
usage and contributions.

OK, but what does that have to do with cAdvisor? Well, Prometheus has quite a
powerful database backend that stores the data it imports as a time series of events.

One of the things cAdvisor does, by default, is expose all the metrics it is capturing
on a single page at /metrics; you can see this at http://localhost:8080/
metricson our cAdvisor installation. The metrics are updated each time the
page is loaded, you should see something like:

As you can see in the preceding screenshot, this is just a single long page of raw
text. The way Prometheus works is that you configure it to scrape the /metrics
URL at a user-defined interval, let's say every five seconds; the text is in a format
that Prometheus understands and it is ingested into the Prometheus's time
series database.

What this means is that, using Prometheus's powerful built-in query language,
you can start to drill down into your data. Let's look at getting Prometheus up
and running.

Chapter 6

[151]

First of all, there is a work configuration file in the repo at /bootcamp/chapter06/
prometheus/you will need to make sure you are in this folder as we are going to
mounting the configuration file from within there:

docker container run -d \

 --volume=$PWD/prometheus.yml:/etc/prometheus/prometheus.yml \

 --publish=9090:9090 \

 --network=monitoring \

 --name=prometheus \

 prom/prometheus:latest

The configuration file we have launched Prometheus with looks like the following:

global:
scrape_interval: 15s # By default, scrape targets every 15 seconds.
external_labels:
 monitor: 'Docker Bootcamp'
scrape_configs:
 - job_name: 'cadvisor'
scrape_interval: 5s
static_configs:
 - targets: ['cadvisor:8080']

Troubleshooting and Monitoring

[152]

As we have launched our Prometheus container within the monitoring network
our installation will be able scrape the metrics from http://cadvisor:8080/,
also note that we haven't added /metrics to the URL as this added automatically
by Prometheus.

Opening http://localhost:9090/targets in your browser should show you
something like the following:

Also, the status menu has links to the following information pages:

•	 Runtime information&Build information: This displays how long
Prometheus has been up and polling data, if you have configured an end
point and details of the version of Prometheus that you have been running

•	 Command-Line Flags: This shows all the runtime variables and their values
•	 Configuration: This is a copy of the configuration file we injected into the

container when it was launched
•	 Rules: This is a copy of any rules we injected; these will be used for alerting

As we only have a few containers up and running at the moment, let's launch one
that runs Redis so we can start to look at the query language built into Prometheus.

We will use the official Redis image for this and as we are only going to use this as
an example we won't need to pass it any user variables:

docker container run -d --name my-redis-server redis

We now have a container called my-redis-server running. cAdvisor should already
be exposing metrics about the container to Prometheus; let's go ahead and see.

In the Prometheus web interface, go to the Graph link in the menu at the top of the
page. Here, you will be presented with a text box into which you can enter your
query. To start with, let's look at the CPU usage of the Redis container.

Chapter 6

[153]

In the box, enter the following:

container_cpu_usage_seconds_total{job="cadvisor",name="my-redis-
server"}

Then, after clicking on Execute, you should have two results returned, listed in the
Console tab of the page. If you remember, cAdvisor records the CPU usage of each
of the CPU cores that the container has access to, which is why we have two values
returned, one for cpu00 and one for cpu01. Clicking on the Graph link will show you
results over a period of time:

As you can see in the preceding screenshot, we now have access to the usage graphs
for the last 5 minutes, which is about how long ago I launched the Redis instance
before generating the graph.

Troubleshooting and Monitoring

[154]

Graphing, as you may have noticed, isn't Prometheus's strong point. Luckily Grafana
has been able to use Prometheus as a data source for a while, let's now launch a
Grafana container:

docker container run -d \

 --publish=3000:3000 \

 --network=monitoring \

 --name=grafana \

grafana/grafana:latest

Once the container has launched, go to http://localhost:3000/ in your
browser and you will be prompted to login, the default username and password
is admin / admin.

Now you are logged in you should see something like the following page:

Chapter 6

[155]

As you may have guessed, we need to click Add data sourceand the add then enter
the following information:

•	 Name: prometheus
•	 Type: <Select Prometheus from the drop down list>
•	 Url: http://prometheus:9090
•	 Access: <Select proxy from the drop down list>

Leave everything else as is and then click on Add, after a second or two your data
source should have successfully been added and the connection test passed.

Now that we have our data source added we can add a dashboard. There are plenty
of dashboards available, we are going to use the one published by Brian Christner
which can be found at https://grafana.net/dashboards/179/.

To import the dashboard,click on the Grafana logo in the top left, in the menu
which opens go to Dashboards and then select Import. In the pop-up dialog
which opens enter the URL for the dashboard, which is https://grafana.net/
dashboards/179/, into the Grafana.net Dashboard box and then click on the
Load button.

That will load the dashboard configuration, on the next page you given two
options, the Name is already filled in so just select prometheus from the
dropdown Prometheus list and click the Import button.

https://grafana.net/dashboards/179/
https://grafana.net/dashboards/179/
https://grafana.net/dashboards/179/

Troubleshooting and Monitoring

[156]

Once imported you should be greeted by a dashboard which looks similar (I have
tweaked it for the screenshot) to the following:

You may notice from the screen above that we now have over an hour's worth of
data from cAdvisor stored in Prometheus.

It's worth pointing that the current experimental build of Docker has a built-in
Prometheus endpoint much in the same way that cAdvisor has. Once this hits the
stable release I expect to see this be a great out of the box solution for monitoring
your Docker hosts.

Chapter 6

[157]

However, this is just one way you monitor your containers as there are numerous
other tools both of which are self-hosted or run as a software as a service in the
cloud such as:

•	 Sysdig - http://www.sysdig.org/
•	 Sysdig Cloud - https://sysdig.com/
•	 Datadog - http://docs.datadoghq.com/integrations/docker/
•	 New Relic - https://newrelic.com/partner/docker
•	 Coscale - http://www.coscale.com/docker-monitoring
•	 Elastic Metric Beat - https://www.elastic.co/products/beats/

metricbeat

Summary
Hopefully now you should have an idea of where to start when it comes to looking
into problems with containers, be it building them, checking logs, attaching to a
container to further into issues or gathering performance metrics.

In the next chapter, which is also our last, we will look at some of the different
scenarios and use cases for both Docker and techniques we have covered in this
and previous five chapters.

http://www.sysdig.org/
https://sysdig.com/
http://docs.datadoghq.com/integrations/docker/
https://newrelic.com/partner/docker
http://www.coscale.com/docker-monitoring
https://www.elastic.co/products/beats/metricbeat
https://www.elastic.co/products/beats/metricbeat

[159]

Putting It All Together
In this, our final chapter, we will look at how we put everything we have learned in
the previous chapters together along with how it could fit with your development
and deployment workflows.

Also, we will talk about how to best describe Docker to others, typically you will find
that people will assume that Docker containers are just like virtual machines. We will
also look at what the benefits are along with some use cases.

Workflows
The first five chapters of this book work through a typical workflow for working
with Docker containers through development all the way through to production:

•	 Local development & packaging (Chapter 1, Installing Docker Locally and
Chapter 2, Launching Applications Using Docker)

•	 Staging and remote testing (Chapter 3, Docker in the Cloud)
•	 Production (Chapter 4, Docker Swarm and Chapter 5, Docker Plugins)
•	 On-going support (Chapter 6, Troubleshooting and Monitoring)

In our first few chapters we learned how to install and interact with Docker locally,
typically when developing an application or software stack a developer or system
administrator will test locally first.

Once the application / stack has been fully developed you can share it using the
Docker Hub as both a public or private image, or if your image contains things you
do now want to distribute via a third party you can host your own Docker Registry.

Putting It All Together

[160]

Once you have your packaged image, you may need other people to test it. As your
image is available in a registry your colleagues or friends can pull your image and
run it as you intended locally on their own machine without the worry of having to
install and configure either your application or software stack.

If you need people to test remotely then you can spin up a Docker host on a public
cloud provider and quickly deploy your application or software stack there.

Once everyone is happy you can deploy your application / software stack a servicein
a multi-host cluster running Docker Swarm, this means that your service will be
running in both a highly available and easy maintain environment. Deploying as a
service will also allow you to easily roll out updates for your application or software
stack using Swarms in-built service update features.

If you need share or persist storage between your containers or hosts then you can
install one of the many volume plugins, likewise if you need to something more
advanced than the multi-host networking provided by Swarm, no problem,
replace it with a network plugin, remember "batteries included, but replaceable".

Finally, if you need to debug your images or running container you can use the
commands and tools discussed in Chapter 6, Troubleshooting and Monitoring.

Describing containers
Compartmentalization that comprises both virtualization and containerization is the
new normal for IT agility. Virtualization has been the enigmatic foundation for the
enormous success of cloud computing. Now with the containerization idea becoming
ubiquitous and usable, there is a renewed focus on using containers for faster
application building, deployment, and delivery. Containers are distinctively fitted
with a few game-changing capabilities and hence there is a rush in embracing and
evolving the containerization technologies and tools.

Essentially a container is lightweight, virtualized, portable, and the software-defined
environment in which software can run in isolation of other software running on
the same physical host. The software that runs inside a container is typically a
single-purpose application. Containers bring forth the much-coveted modularity,
portability, and simplicity for IT environments. Developers love containers because
they speed up the software engineering whereas operation team loves because they
can just focus on runtime tasks such as logging, monitoring, lifecycle management
and resource utilization rather than deployment and dependency management.

Chapter 7

[161]

Describing Docker
Linux containers are hugely complicated and not user-friendly. Having realized
the fact that several complexities are coming in the way of massively producing
and fluently using containers, an open-source project got initiated with the goal of
deriving a sophisticated and modular platform comprising an enabling engine for
simplifying and streamlining various containers' lifecycle phases. That is, the Docker
platform is built to automate the crafting, packaging, shipping, deployment and
delivery of any software application embedded inside a lightweight, extensible, and
self-sufficient container.

Docker is being positioned as the most flexible and futuristic containerization
technology in realizing highly competent and enterprise-class distributed
applications. This is to make deft and decisive impacts as the brewing trend in
the IT industry is that instead of large monolithic applications distributed on a
single physical or virtual server, companies are building smaller, self-defined and
sustainable, easily manageable and discrete ones. In short, services are becoming
microservices these days to give the fillip to the containerization movement.

The Docker platform enables artistically assembling applications from disparate
and distributed components and eliminates any kind of deficiencies and deviations
that could come when shipping code. Docker through a host of scripts and tools
simplifies the isolation of software applications and makes them self-sustainable by
running them in transient containers. Docker brings the required separation for each
of the applications from one another as well as from the underlying host. We have
been hugely accustomed to virtual machines that are formed through an additional
layer of indirection in order to bring the necessary isolation.

This additional layer and overhead consumes a lot of precious resources and
hence it is an unwanted cause for the slowdown of the system. On the other hand,
Docker containers share all the resources (compute, storage and networking) to the
optimal level and hence can run much faster. Docker images, being derived in a
standard form, can be widely shared and stocked easily for producing bigger and
better application containers. In short, the Docker platform lays a stimulating and
scintillating foundation for optimal consumption, management, and maneuverability
of various IT infrastructures

Putting It All Together

[162]

The Docker platform is an open-source containerization solution that smartly and
swiftly automates the bundling of any software applications and services into
containers and accelerates the deployment of containerized applications in any
IT environments (local or remote systems, virtualized or bare metal machines,
generalized or embedded devices, etc.). The container lifecycle management tasks
are fully taken care of by the Docker platform. The whole process starts with the
formation of a standardized and optimized image for the identified software and
its dependencies. Now the Docker platform takes the readied image to form the
containerized software. There are image repositories made available publicly as well
as in private locations. Developers and operations teams can leverage them to speed
up software deployment in an automated manner.

The Docker ecosystem is rapidly growing with a number of third-party product
and tool developers in order to make Docker an enterprise-scale containerization
platform. It helps to skip the setup and maintenance of development environments
and language-specific tooling. Instead, it focuses on creating and adding new
features, fixing issues and shipping software. Build once and run everywhere is the
endemic mantra of the Docker-enabled containerization. Concisely speaking, the
Docker platform brings in the following competencies.

•	 Agility: Developers have freedom to define environments and the ability
to create applications. IT Operation team can deploy applications faster
allowing the business to outpace competition.

•	 Controllability: Developers own all the code from infrastructure
to application.

•	 Manageability: IT operation team members have the manageability to
standardize, secure, and scale the operating environment while reducing
overall costs to the organization.

Distinguishing Docker containers
Precisely speaking, Docker containers wrap a piece of software in a complete
filesystem that contains everything needed to run: source code, runtime, system
tools, and system libraries (anything that can be installed on a server). This
guarantees that the software will always run the same, regardless of its
operating environment:

Chapter 7

[163]

Containers running on a single machine share the same operating system kernel.
They start instantly and use less RAM. Container images are constructed from
layered filesystems and share common files, making disk usage and image
downloads much more efficient.

•	 Docker containers are based on open standards. This standardization enables
containers to run on all major Linux distributions and other operating
systems such as Windows and macOS.

There are several benefits being associated with Docker containers as enlisted below.

•	 Efficiency: Containers running on a single machine all leverage a common
kernel so they are lightweight, start instantly and make more efficient use
of RAM.

°° Resource sharing among workloads allows greater efficiency
compared to the use of dedicated and single-purpose equipment.
This sharing enhances the utilization rate of resources

°° Resource partitioning ensures that resources are appropriately
segmented to meet up the system requirements of each workload.
Another objective for this partitioning is to prevent any kind of
untoward interactions among workloads.

°° Resource as a Service (RaaS): Various resources can be individually
and collectively chosen, provisioned and given to applications
directly or to users to run applications.

•	 Native Performance: Containers guarantee higher performance due to its
lightweight nature and less wastage

•	 Portability: Applications, dependencies, and configurations are all bundled
together in a complete filesystem, ensuring applications work seamlessly
in any environment (virtual machines, bare metal servers, local or remote,
generalized or specialized machines, etc.). The main advantage of this
portability is it is possible to change the runtime dependencies (even
programming language) between deployments. Couple this with
Volume plugins and your containers are truly portable.

Putting It All Together

[164]

•	 Real-time Scalability: Any number of fresh containers can be provisioned
in a few seconds in order to meet up the user and data loads. On the reverse
side, additionally provisioned containers can be knocked down when
the demand goes down. This ensures higher throughput and capacity on
demand. Tools like:

°° Docker Swarm
°° Kubernetes (https://kubernetes.io/)
°° Apache Mesos(http://mesos.apache.org/)
°° DC/OS (https://dcos.io/)

To name but a few of the clustering solutions which further simplify
elastic scaling

•	 High Availability: By running with multiple containers, redundancy can be
built into the application. If one container fails, then the surviving peers –
which are providing the same capability – continue to provide service. With
orchestration, failed containers can be automatically recreated (rescheduled)
either on the same or a different host, restoring full capacity and redundancy.

•	 Maneuverability: Applications running in Docker containers can be easily
modified, updated or extended without impacting other containers in
the host.

•	 Flexibility: Developers are free to use whichever programming languages
and development tools they prefer.

•	 Clusterability: Containers can be clustered for specific purposes on demand
and there are integrated management platforms for cluster-enablement
and management.

•	 Composability: Software services hosted in containers can be discovered,
matched for, and linked to form business-critical, process-aware and
composite services.

•	 Security: Containers isolate applications from one another and the
underlying infrastructure by providing an additional layer of protection
for the application

•	 Predictability: With immutable images, the image always exhibits the
same behavior everywhere because the code is contained in the image.
That means a lot in terms of deployment and in the management of the
application lifecycle.

https://kubernetes.io/
http://mesos.apache.org/
https://dcos.io/

Chapter 7

[165]

•	 Repeatability: With Docker, one can build an image, test that image and then
use that same image in production.

•	 Replicability: With containers, it is easy to instantiate identical copies of full
application stack and configuration. These can then be used by new hires,
partners, support teams, and others to safely experiment in isolation.

Virtual Machines versus containers
Containers quite drastically vary from the highly visible and viable virtual machines
(VMs). Virtual machines represent hardware virtualization whereas containers
facilitate operating system-level virtualization. Some literature points out that
virtual machines are system or OS containers whereas containers typically stand
for application containers.

On the functional side, containers are like VMs, but there are dissimilar in many
other ways. Like virtual machines, containers too share the various system resources
such as processing, memory, storage, etc. The key difference is that all containers in a
host machine share the same OS kernel of the host operating system.

Though there is heavy sharing, containers intrinsically maintain a high isolation
by keeping applications, runtimes, and other associated services separated from
each other using the recently incorporated kernel features such as namespaces
and cgroups.

On the resource provisioning front, application containers can be realized in a
few seconds, whereas virtual machines often take a few minutes. Containers
also allow direct access to device drivers through the kernel and this makes
I/O operations faster.

Workload migration to nearby or faraway cloud environments can be accelerated
with the containerization capability. The tools and APIs provided by the Docker
container technology are very powerful and more developer-friendly than those
available with VMs.These APIs allow the management of containers to be integrated
into a variety of automated systems for accelerated software engineering.

Putting It All Together

[166]

The Docker use cases
Containerization is emerging as the way forward for the software industry as
it brings forth a newer and richer way of building and bundling any kind of
software, shipping and running them everywhere. That is the fast-evolving aspect
of containerization promises and provides software portability, which has been a
constant nuisance for IT developers and administrators for long decades now. The
Docker idea is flourishing here because of a number of enabling factors and facets.
This section is specially prepared for telling the key use cases of the Docker idea.

Integrating containers into workflows
Workflows are a widely accepted and used abstraction for unambiguously
representing the right details of any complicated and large-scale business and
scientific applications and executing them on distributed compute systems such
as clusters, clouds, and grids. However, workflow management systems have
been largely evasive on conveying the relevant information of the underlying
environment on which the tasks inscribed in the workflow are to run. That is,
the workflow tasks can run perfectly on the environment for which they were
designed. The real challenge is to run the tasks across multiple IT environments
without tweaking and twisting the source codes of the ordained tasks. Increasingly
the IT environments are heterogeneous with the leverage of disparate operating
systems (OSes), middleware, programming languages and frameworks,
databases, etc. Typically workflow systems focus on data interchange between
tasks and environment-specific. The same workflow, which is working fine in
one environment, starts to crumble when it is being migrated and deployed on
different IT environments. All kinds of known and unknown dependencies and
incompatibilities spring up to denigrate the workflows delaying the whole job of
IT setup, application installation and configuration, deployment, and delivery.
Containers are the best bet for resolving this imbroglio once for all.

Chao Zheng and Douglas Thain (Integrating Containers into Workflows: A Case Study
Using Makeflow, Work Queue, and Docker)has done a good job of analyzing several
methods in order to experimentally prove the unique contributions of containers
in empowering workflow / process management systems. They have explored the
performance of a large bioinformatics workload on a Docker-enabled cluster and
observed the best configuration to be locally managed containers that are shared
between multiple tasks.

Chapter 7

[167]

Docker for High-Performance Computing
(HPC) and Technical Computing (TC)
applications
(Douglas M. Jacobsen and Richard Shane Canon) – Currently containers are being
overwhelmingly used for the web, enterprise, mobile and cloud applications.
However, there are questions being asked and doubts being raised on whether
containers can be a viable runtime for hosting technical and scientific computing
applications. Especially there are many high-performance computing applications
yearning for perfect a deployment and execution environment. The authors of this
research paper have realized that Docker containers can be a perfect answer for
HPC workloads.

In many cases, users desire to have the ability to easily execute their scientific
applications and workflows in the same environment used for development or
adopted by their community. Some researchers have tried out the cloud option but
the challenges there are many. The users need to solve how they handle workload
management, file systems, and basic provisioning. Containers promise to offer
the flexibility of cloud-type systems coupled with the performance of bare-metal
systems. Furthermore, containers have the potential to be more easily integrated
into traditional HPC environments which mean that users can obtain the benefits
of flexibility without the added burden of managing other layers of the system
(i.e. batch systems, file systems, etc.).

Minh Thanh Chung and the team have analyzed the performance of virtual machines
and containers for high-performance applications and benchmarked the results that
clearly show containers are the next-generation runtime for HPC applications. In
short, Docker offers many attractive benefits in an HPC environment. To test these,
IBM Platform LSF and Docker have been integrated outside the core of Platform LSF
and the integration leverages the rich Platform LSF plugin framework.

We all know that the aspect of compartmentalization is for resource partitioning
and provisioning. That is, physical machines are subdivided into multiple logical
machines (virtual machines and containers). Now on the reverse side, such kinds
of logical systems carved out of multiple physical machines can be linked together
to buildavirtual supercomputer to solve certain complicated problems. Hsi-En Yu
and Weicheng Huang have described how they built a virtual HPC cluster in the
research paper "Building a Virtual HPC Cluster with Auto Scaling by the Docker". They
have integrated the auto-scaling feature of service discovery with the lightweight
virtualization paradigm (Docker) and embarked on the realization of a virtual cluster
on top of physical cluster hardware.

Putting It All Together

[168]

Containers for telecom applications
Csaba Rotter and the team has explored and published a survey article on the title
"Using Linux Containers in Telecom Applications". Telecom applications exhibit
strong performance and high availability requirements, therefore running them in
containers requires additional investigations. A telecom application is a single or
multiple node application responsible for a well-defined task. Telecom applications
use standardized interfaces to connect to other network elements and implements
standardized functions. On top of the standardized functions, a telecom application
can have vendor-specific functionality. There is a set of quality of service (QoS)
and quality of experience (QoE) attributes such as high availability, capacity,
performance / throughput, etc. The paper has clearly laid out the reasons for the
unique contributions of containers in having next-generation telecom applications.

Efficient Prototyping of Fault Tolerant Map-Reduce Applications with Docker-Hadoop
(Javier Rey and the team) – Distributed computing is the way forward for compute and
data-intensive workloads. There are two major trends. Data becomes big and there
are realizations that big data leads to big insights through the leverage of pioneering
algorithms, script and parallel languages such as Scala, integrated platforms,
new-generation databases, and dynamic IT infrastructures. MapReduce is a
parallel programming paradigm currently used to perform computations on
massive amounts of data. Docker-Hadoop1, a virtualization testbed conceived to
allow the rapid deployment of a Hadoop cluster. With Docker-Hadoop, it is possible
to control the nodes characteristics and run scalability and performance tests that
otherwise would require a large computing environment. Docker-Hadoop facilitates
simulation and reproduction of different failure scenarios for the validation of
an application.

Interactive Social Media Applications - AlinCalinciuc and the team has come out with
a research publication titled as OpenStack and Docker: building a high-performance
IaaS platform for interactive social media applications. It is a well-known truth that
interactive social media applications face the challenge of efficiently provisioning
new resources in order to meet the demands of the growing number of application
users. The authors have given the necessary description on how Docker can run as a
hypervisor, and how the authors could manage to enable for the fast provisioning of
computing resources inside of an OpenStack IaaS using the nova-docker plug-in that
they had developed.

Chapter 7

[169]

Summary
At this point of time, Docker is nothing short of an epidemic and every enterprising
business across the globe is literally obsessed with the containerization mania for
their extreme automation, transformation, and disruption.

With the blossoming of hybrid IT, the role of Docker-enabled containerization is
steadily growing to smartly empower IT-enabled businesses. In this chapter, we
have discussed the prime capabilities and contributions of the Docker paradigm.

It is not often that you can summarize an entire book with a single meme, but I think
that at the very least your journey into the world of containers will resolve this all too
common problem:

Picture taken by Dave Roth

The days of developing code on version of a language with a configuration which
is only local to a single developer which looks nothing like your production
platform should now be over as you can easily develop, package and ship
consistent containers which can run anywhere.

[171]

Index
A
ADD instruction 48, 49
advanced use cases, Weaves

reference 132
Alpine Linux

reference 3
Amazon Elastic Block Store

reference 116
Amazon Web Services

reference 67
Amazon Web Services (AWS) account

reference 75
Amazon Web Services driver 75-80
Apache Mesos

reference 164
attach command 141
AWS CloudFormation template

reference 100
AWS console

reference 101
AWS Container Registry

reference 22

B
base image 20
benefits, Docker

clusterability 164
composability 164
efficiency 163
flexibility 164
high availability 164
maneuverability 164
Native Performance 163
portability 163

predictability 164
real-time scalability 164
repeatability 165
replicability 165
security 164

C
cAdvisor 145
CentOS (7+)

reference 86
CMD instruction 52-57
competencies, Docker platform

agility 162
controllability 162
manageability 162

Compose 33
Compose files 34-39
containers

about 160
for telecom applications 168
monitoring 144-156
troubleshooting 135, 136
versus virtual machines 165

COPY instruction 47
Coscale

reference 157

D
Datadog

reference 157
DC/OS

reference 164
Debian (8.0+)

reference 86

[172]

debugging 135
Digital Ocean

reference 67
Digital Ocean account

reference 68
Digital Ocean Block Storage

reference 116
Digital Ocean driver 68-74
digital signature 22
distributed computing 168
Docker

about 161
installation, testing 16, 17
use cases 166

Docker Build 40-42
Docker commands 16
Docker Compose

about 33
need for 33

docker-compose.yml file
services 35
version 35
volumes 35

docker container exec command 136, 137
Docker containers

benefits 163, 164
controlling 23-28
distinguishing 162

Docker ecosystem 162
Dockerfile

debugging 142-144
syntax 43

Dockerfile build instructions
about 44
ADD instruction 48, 49
CMD instruction 52-57
COPY instruction 47
ENTRYPOINT instruction 50-52
EXPOSE instruction 49, 50
FROM instruction 44
MAINTAINER instruction 45
RUN instruction 46, 47

Docker for Amazon Web Services 100-108
Docker for Azure 109-113
Docker for Azure template

reference 110

Docker for High-Performance Computing
(HPC) and Technical Computing (TC)
applications 167

Docker for Mac
about 2
downloading 4
installing 4-7
reference 4
system requisites 3
upgrading 14

Docker for Windows
about 2
downloading 9
installing 9-13
reference 9
system requisites 8
upgrading 14

Docker Hub
about 22, 23
reference 22

Docker image 20, 21
Docker Machine

about 67
reference 86

Docker Machine Command Reference
reference 86

Docker Machine Drivers
reference 86

Docker on Ubuntu 16.04 14, 15
Docker platform

competencies 162
Docker Registry

about 21
registries 22

Docker Swarm
node roles 91

Docker tools
attach command 141
events command 140
exec command 136, 137
logs command 141
ps command 138
stats command 139, 140
top command 138, 139

dotest 69

[173]

E
Elastic Metric Beat

reference 157
EMC Isilon

reference 116
ENTRYPOINT instruction 50-52
events command 140
Exoscale

reference 67
EXPOSE instruction 49, 50

F
Fedora (21+)

reference 86
Fig

about 33
reference 33

FROM instruction 44

G
Go

reference 145
Google Compute Engine

reference 67, 116
Google Container Registry

reference 22

H
HyperKit

about 2
reference 2

Hyper-V
about 2
reference 2

Hypervisor framework
about 2
reference 2

I
IBM Softlayer

reference 67

images
customizing 57-60
sharing 61-64

K
Kubernetes

reference 164

L
lmctfy

reference 145
logs command 141

M
MAINTAINER instruction 45
memory management unit (MMU) 3
Microsoft Azure

reference 67
Microsoft Azure account

reference 81
Microsoft Azure driver 81-85
Microsoft Hyper-V

reference 68
MySQL container

reference 29

N
New Relic

reference 157
node roles, Docker Swarm

manager 91
worker 91

O
OpenStack

reference 68
OpenStack Cinder

reference 116

[174]

P
Prometheus 150
ps command 138

Q
quality of experience (QoE) 168
quality of service (QoS) 168
Quay

reference 22

R
Rackspace

reference 67
RancherOS (0.3)

reference 86
Red Hat Enterprise Linux (7.0+)

reference 86
Resource as a Service (RaaS) 163
REX-Ray volume plugin

about 115-123
storage types 116

RUN instruction 46, 47

S
service

launching 95-98
SIGKILL signal 24
SIGTERM signal 23
stack

launching 98-100
stats command 139, 140
Swarm

creating, manually 89-94
syntax, Dockerfile

comment line 43, 44
parser directives 44

Sysdig
reference 157

Sysdig Cloud
reference 157

T
top command 138, 139

U
Ubuntu Docker image 20
use cases, Docker

containers, integrating into workflows 166
Docker for High-Performance Computing

(HPC) and Technical Computing (TC)
applications 167

V
VirtualBox

reference 68
virtual machines

versus containers 165
VMware vCloud Air

reference 67
VMware vSphere

reference 68

W
WeaveNetwork Plugin 124-132
Weaves

reference 124
Windows Subsystem, for Linux

reference 2
WordPress

about 28
reference 28

WordPress CLI
about 57
reference 57

WordPress container
reference 28
running 28-32

workflow 159, 160

X
XNU 2

Y
YAML Ain't Markup Language (YAML) 34

	Cover

	Copyright
	Credits
	About the Authors

	About the Reviewer

	www.PacktPub.com

	Customer Feedback

	Table of Contents

	Preface
	Chapter 1: Installing Docker Locally

	Docker for Mac and Windows
	Docker for Mac
	Downloading Docker for Mac
	Installing Docker for Mac

	Docker for Windows
	Downloading Docker for Windows
	Installing Docker for Windows

	Upgrading Docker for Mac and Windows

	Docker on Ubuntu 16.04
	Testing your installation
	Summary

	Chapter 2: Launching Applications using Docker

	Docker terminology
	Docker images
	Docker Registry
	Docker Hub

	Controlling Docker containers
	Running a WordPress container
	Docker Compose
	Why Compose?
	Compose files

	Docker Build
	A quick overview of the Dockerfile's syntax
	The comment line
	The parser directives

	The Dockerfile build instructions
	The FROM instruction
	The MAINTAINER instruction
	The RUN instruction
	The COPY instruction
	The ADD instruction
	The EXPOSE instruction
	The ENTRYPOINT instruction
	The CMD instruction

	Customizing existing Images
	Sharing your images
	Summary

	Chapter 3: Docker in the Cloud

	Docker Machine
	The Digital Ocean driver
	The Amazon Web Services driver
	The Microsoft Azure driver
	References
	Summary

	Chapter 4: Docker Swarm

	Creating a Swarm manually
	Launching a service
	Launching a stack
	Docker for Amazon Web Services
	Docker for Azure
	Summary

	Chapter 5: Docker Plugins

	REX-Ray volume plugin
	WeaveNetwork Plugin
	Summary

	Chapter 6: Trouble Shooting and Monitoring

	Trouble shooting containers
	The exec command
	The ps command
	The top command
	The stats command
	The Docker events command
	The logs command
	The attach command

	Debug a Dockerfile
	Monitoring containers
	Summary

	Chapter 7: Putting it all together

	Workflows
	Describing containers
	Describing Docker
	Distinguishing Docker containers

	Virtual Machines versus containers
	The Docker use cases
	Integrating containers into workflows
	Docker for High-Performance Computing (HPC) and Technical Computing (TC) applications
	Containers for telecom applications

	Summary

	Index

