C) Content Update ¢ PRENTICE
Program se HALL

FREE...See Details Inside

NEGUS LIVE

Jocher Confainers

Build and Deploy with Kubernetes,

LINUX SERIES

Flannel, Cockpit, and Atomic

Christopher Negus

NEGUS LIVE LINUX SERIES

c: Content Update
Program

Docker Confainers

This book is part of Prentice Hall and InformIT’s exciting new Content Update Program,
which provides automatic content updates for major technology improvements!

- As significant updates are made to the Docker technology, sections of this book will be
updated or new sections will be added to match the updates to the technology.

- The updates will be delivered to you via a free Web Edition of this book, which can
be accessed with any Internet connection.

« This means your purchase is protected from immediately outdated information!

For more information on InformIT’s Content Update program, see the inside back
cover or go to informit.com/CUP.

If you have additional questions, please email our Customer Service department
at informit@custhelp.com.

Jocker
bonrainers

This page intentionally left blank

Jocker

Conlainers

Build and Deploy with Hubernetes,
Flannel, Cockpit, and Atomic

Christopher Negus
with William Henry

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or

programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@pear-
soned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international @pearsoned.com.
Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2015948006

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New
Jersey 07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-134-13656-1

ISBN-10: 0-134-13656-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing: December 2015

As always, I dedicate this book to my wife, Sheree.
—Christopher Negus

This page intentionally left blank

[
Gonfents

Preface oottt it ittt ittt it e XV
Acknowledgments. o i, XXi

Aboutthe Author........... xxiii

Part | Getting Going with Containers. 1
Chapter 1 Containerizing Applications with Docker. 3
Understanding Pros and Cons of Containerizing Applications 4

...An Application Running Directly on a Host Computer 4

...An Application Running Directly within a Virtual Machine 5

Understanding the Upside of Containers 5

Understanding Challenges of Containerizing Applications 7

Understanding What Makes Up Docker 8

The Docker Project 8

The Docker Hub Registry. 9

Docker Images and Containers 10

The docker Command.ttt 11

Approaching Containers i i i 13

SUMMANY . ot e e 14

Chapter 2 Setting Up a Container Run-Time Environment. 17
Configuring a Standard Linux System for Docker 18

Configuring Ubuntu for Docker. 18

Configuring Fedora for Docker 21

vii

viii

Docker Containers

Chapter 3

Part 1l

Chapter 4

Chapter 5

Configuring Red Hat Enterprise Linux for Docker 25
Configuring Other Operating Systems for Docker. 27
Configuring a Container-Style Linux System for Docker 29
Configuring an Atomic Host for Docker 29
Configuring CoreOS for Docker 32
SUMMANY . ot 34
Setting Up a Private Docker Registry 35
Getting and Starting a Private Docker Registry 36
Setting Up a Docker RegistryinFedora. 37
Setting Up a Docker Registry in Ubuntu 40
Configuring a Private Docker Registry. 43
Configuring the docker-registry Package 43
Configuring the registry Container. 46
Understanding the Docker Image Namespace 46
SUMMANY . o e e 48

Working with Individual Containers49

Running Containerlmages 51
Running Container Images Interactively 54
Starting an Interactive Bash Shell 54
Playing Some Character-Based Games 56
Running Administrative Commands Inside a Container 57
Running Containerized Services., 59
Running a Containerized Web Server 59
Limiting Resources When Running Services in Containers. 62
Running Privileged Containers. oot 63
SUMMaArNY . .o e 64
Finding, Pulling, Saving, and Loading Container
Images ...t i i i i i e i, 65
Searchingforlmages.......... i 66
Searching for Images with the docker Command.............. 66
Searching for Images on Docker Hub 69

Searching Other Repositories for Images. 70

Contents

Pulling Images from Registries. o, 73
Saving and Loading lmages. i 76
SUMMaANY . o e 77
Chapter 6 Tagginglmages.ttt 79
Assigning Namestolmages. 80
Assigning Tagstolmages i, 81
Assigning Repository Names tolmages. 83
Attachinga User Nametoanlimage 83
Attaching a Repository Nametoanlmage 85
SUMMaArNY . . o e e 86
Chapter 7 Investigating Containersiviiiiiinnenn. 87
Inspecting Images and Containers.ooiviiininn.. 88
Inspectinganimage. i i 88
Inspecting Base Images with docker inspect 89
Inspecting Application Images with docker inspect........... 90
Looking at the History ofanlmage............. 92
Inspecting Running Containersoouiitinenen... 92
Start a Containerto Inspect 93
Inspect an Entire Container Configuration 94
Inspect Individual Container Attributes. 99
Finding More Ways to Look into Containers. 103
Using docker top to See Container Processes 103
Using docker attach to Interact with a Service Inside
aContainer. 104
Using docker exec to Start a New Process in a
RunningContainer. 105
Using docker logs to See Container Process Output 106
Using docker diff to See How a Container Has Changed 106
Using docker cp to Copy Files from a Container............. 107
SUMMaANY . o e 107
Chapter 8 Starting, Stopping, and Restarting Containers 109
Stopping and Startinga Containerovovininon.. 109
Stopping and Starting a Detached Container 110

Starting and Stopping an Interactive Container 112

iX

X

Docker Containers

Chapter 9

Chapter 10

Chapter 11

Restartinga Containercooiiuiinininininenan.n. 113
Sending Signalstoa Container oo, 114
Pausing and Unpausing Containers.oouvn... 115
Waiting for a Container’s ExitCode 116
RenamingaContainer.t 117
CreatingaContainer.oitiinininnnennnenennn.. 117
SUMMaANY . o e 118
Configuring Container Storageoovvvvvnnnnnn 121
Managing Storage fora Container 122
Using Volumes fromthe Host 122
Data Volume Containert 123
Write-Protectinga Bind Mount. 124
Mounting Devices 125
Mounting Sockets. 125
Storage Strategies for the Docker Host. 127
Attaching External Storage to a Docker Host 128
SUMMANY . o e 130
Configuring Container Networking 133
Expose Ports to Other Containers.c.covuinn... 134
Map Ports OutsidetheHost. 136
Map a Port from Linked Containers 136
Connect Containers on Different Hosts 138
Alternatives to the docker0 Bridge. 139
Changing Network Mode fora Container................... 140
Examining Network Options 140
Changing the Docker Network Bridge. 142
SUMMANY . o e 143
CleaningUp Containersccoiiteennnnn. 145
Making Space for Images and Containers..................... 146
Removinglmages i 146
Removing Individual Images 147
Removing Multiple Images 148
Removing Containersc.oiuinininiinininenan... 150
Removing Individual Containers 150

Removing Multiple Containers 152

Chapter 12

Part Il
Chapter 13

Contents

Cleaning Up and Saving Containersc.ovouinon.. 153
Cleaning Up and Saving an Ubuntu Container 153
Cleaning Up and Saving a Fedora Container. 154

SUMMANY . o e 154

Building DockerImages 157

Doing a Simple docker build............. ..., 158

Setting a Command to Execute from a Dockerfile. 161
Usingthe CMD Instruction 161
Using the ENTRYPOINT Instruction 162
Using the RUN Instruction 163
Adding Files to an Image from a Dockerfile. 164

Exposing Ports from an Image within a Dockerfile 165

Assigning Environment Variables in a Dockerfile. 166

Assigning Labels in a Dockerfile 167

Using Other docker build Command Options 168

Tips for Building Containers, 169
CleanUpthelmage. 169
Keep Build DirectorySmall 169
Keep Containers Simple 170
Manage How CachinglsDone 170

SUMMANY . o e 171

Running Containers in Cloud Environments173

Using Super Privileged Containers. 175
Using Super Privileged Containers in Atomic Host 176
Understanding Super Privileged Containers 176
Opening Privilegestothe Host 177
Accessing the Host Process Table 177
Accessing Host Network Interfaces 178
Accessing Host Inter-Process Communications. 179
Accessing Host File Systems 179
Preparing to Use Super Privileged Containers.................. 180
Using the atomic Command 180
Installing an SPC Image with atomic 182
Getting Information about an SPC Image with atomic 182

Running an SPC Image with atomic. 183

Xi

Xii

Docker Containers

Chapter 14

Part IV

Chapter 15

Chapter 16

Stopping and Restarting an SPC with atomic 184
Updatingan SPClmage 184
Uninstallingan SPClmage 185
TryingSome SPCst e 185
Running the RHELTools SPC 186
Running the Logging (rsyslog)SPC 187
Running the System Monitor (sadc)SPC................... 189
SUMMANY . o e 191
Managing Containers in the Cloud with Cockpit....... 193
Understanding Cockpit.........o .. 194
Starting with Cockpit. i i 198
Adding Servers into Cockpit L 199
Working with Containers from Cockpit. 201
Adding Container Images to Cockpit 201
Running Images from Cockpit. 201
Working with Network Interfaces from Cockpit 204
Configuring Storage from Cockpit.ot 207
Doing Other Administrative Tasks in Cockpit.................. 208
Managing Administrator Accounts in Cockpit 208
Opena Terminalin Cockpit 209
SUMMANY . o e 210

Managing Multiple Containers.211

Orchestrating Containers with Kubernetes 213
Understanding Kubernetes 214
Starting with Kubernetes. o o oLl 216
Setting Up an All-in-One Kubernetes Configuration 218
Installing and Starting Up Kubernetes. 218
Starting Up a Pod in Kubernetes 220
Working with Kubernetes 223
SUMMaANY . . o e 224
Creating a Kubernetes Cluster. 225
Understanding Advanced Kubernetes Features................. 226
Setting Up a Kubernetes Cluster 226
Step T:Install Linux. 227

Step 2: Set Up Kubernetes Master. 227

Part V
Chapter 17

Chapter 18

Contents

Step 3: Set Up KubernetesNodes 230
Step 4: Set Up Networking with Flannel 231
Starting Up Pods in a Kubernetes Cluster 233
Deleting Replication Controllers, Services,and Pods 237
SUMMaANY . o e 238

Developing Containers........cccc00eeeee...239

Developing Docker Containers 241
Setting Up for Container Development....................... 241
Choosing a Container Development Environment for
Red Hat Systems.ot 242
Container Development Environments from Docker........... 246
Using Good Development Practices 247
Gathering or Excluding Files fora Build. 248
Taking Advantage of Layers. 249
Managing Software PackagesinaBuild 250
Learning More about Building Containers. 251
SUMMANY . o e 252
Exploring Sample Dockerfile Files 253
Examining Dockerfiles for Official Docker Images. 254
Viewing a CentOS Dockerfile. 254
Viewing a Busybox Dockerfile 257
Examining Dockerfiles from Open Source Projects 258
Viewing a WordPress Dockerfile 258
Viewing the MySQL Dockerfile 260
Examining Dockerfiles for Desktop and Personal Use............ 263
Viewing a Chrome Dockerfile 263
Viewing a Firefox Dockerfile. 267
SUMMANY . o e 270

xiii

This page intentionally left blank

I
Preface

Docker is a containerization technology at the center of a new wave for building,
packaging, and deploying applications. It has the potential to impact every aspect
of computing, from the application development process to how applications are
deployed and scaled up and out across massive data centers.

Despite its great popularity, Docker is still a fairly new project, with many peo-
ple still not really knowing exactly what Docker is. If you are one of those people,
this book can help you take that first step, while also opening your eyes to the huge
potential that containerization promises for you down the road. My goals for leading
you into the world of containerization with this book can be summed up in these
ways:

= Hands-on learning: I often say this in my books, but I believe that the
best way to learn how technology works is to get it and use it. To that end, |
let you choose from among several popular Linux systems, show you how to
install Docker on the one you choose, and provide working examples of using
Docker for everything from running a simple container to building and man-
aging your own container images. That learning then extends into tools and
techniques for orchestrating and managing containers.

= How Docker can benefit you: I explain the benefits of creating and run-
ning applications in containers, instead of installing software packages (in
formats such as RPM or Deb) and running uncontained applications directly
from your hard disk. Beyond running applications, I also describe how con-
tainerization can benefit software developers and system administrators.

Xv

Xvi

Docker Containers

= Essential qualities of Docker: I describe how Docker uses technolo-
gies such as Linux Containers (LXC) to keep containers separate from other
applications running on a host computer or selectively tap into the host sys-
tem. These qualities include how Docker uses name spaces, metadata, and
separate file systems to both manage and secure containerized applications.

To get started, you don’t need to know anything about Docker or containeriza-
tion; you can treat this book as your introduction to Docker. However, this book is
also intended to offer an entry into more advanced Docker-related topics, such as
orchestration and container development.

As you progress through the book, you see specific ways to run containers,
investigate them, stop and start them, save them, and generally manage them. As
you begin creating your own containers, | discuss techniques to help you make
container images that build and run efficiently. I even step you through build files
(which are called Dockerfiles) that others have created to make their own containers.

A knowledge of Linux Containers in general, or Docker containers specifically,
is not needed to start using this book. That said, however, there are other technolo-
gies you will use both within your Docker containers and outside those containers
to work with them. Understanding some of those technologies will make your expe-
rience with Docker that much more fruitful.

KNOWLEDGE TO HELP YOU WITH DOCKER

To get the most out of working with Docker containers, it helps to know something
about the operating environment in which Docker will be running. Docker is built
on Linux technology and is specifically integrated with advanced features, includ-
ing Linux Containers (LXC) for managing Linux name spaces and Cgroups for man-
aging container access to system resources (such as CPU and memory).

Even your most basic interactions with Docker containers rely on underlying
Linux technologies. You may have heard that you can run Docker on your Windows
or Mac systems. But adding Docker to those systems always relies on your adding
a Linux virtual machine. In other words, there are no Docker containers without
Linux. Likewise, each container itself is typically built from a base image created
from a specific Linux distribution.

So if you have no experience working with Linux systems, you might find it use-
ful to learn about some of the following aspects of Linux and related technologies:

Preface

= Command shell: There are graphical interfaces available for working with
Docker. However, most of the examples of Docker in this book are done from
a Linux command line shell. Knowing how to get around in a Linux shell
makes it much more efficient to work with Docker.

= Software packages: Docker is itself a mechanism for delivering software
packaged and delivered together as a bundled application. To build the con-
tainer images themselves, however, most Docker base images are set up to
allow you to install software packages from the specific Linux distribution on
which they were based.

So, for example, for an Ubuntu base image, you should understand how to
install Deb packages with tools such as apt-get. For Fedora, Red Hat Enter-
prise Linux, or CentOS Docker images, the yum, dnf, and rpm commands
are useful. When you use these base images to build your own Docker con-
tainers, those images are usually enabled to automatically grab the packages
you request from online software repositories. Understanding how to get and
install packages in your chosen Linux distribution is important for your suc-
cess with Docker.

= File ownership and permissions: Every file in a Linux system, as well as
within a container, is owned by a particular user and group and has certain
permissions set to allow access to those files. At times, you want to grant
access to files and directories (folders) from the host within the container.
Some of those might be special files, such as devices or sockets, that the
application needs to run. Processes also run as a particular user. Under-
standing how those permissions work can be critical to getting a container
working properly.

I mentioned only a few of the more obvious features you need to know about
to work effectively with Docker containers. You will run into many other Linux-
related features as you continue to explore how to make the best use of the Docker
containers you use and create yourself.

If you are not familiar with Linux, I strongly recommend you take a class or
get a book that gives you at least the basics of Linux to help you get going with
Docker containers. My humble suggestion would be to pick up the Linux Bible,
Ninth Edition, written by this author (http://www.wiley.com/WileyCDA/WileyTitle/
productCd-1118999878.html). It will not only help you specifically with the tech-
nology you need to build Docker containers, but will also help you to generally work
in a Linux environment as you develop Docker container images.

Xvii

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118999878.html

Xviii

Docker Containers

WHAT THiIs Book COVERS

This book is meant to be used from beginning to end by someone just starting up
with Docker containers. Later, it can serve as reference material to remind you of
different options and features associated with Docker containers. The book is orga-
nized into five parts.

Part I: Getting Going with Containers

In Part I, you learn what you need to know to start working with Docker containers.
Chapter 1, “Containerizing Applications with Docker,” describes what containers
are and how they differ from applications that are not contained. In Chapter 2,
“Setting Up a Container Run-Time Environment,” you learn how to install Docker
on different general-purpose Linux systems, such as Fedora and Ubuntu, as well
as how to install Docker on specialized container-oriented Linux systems, such as
CoreOS and Project Atomic. In Chapter 3, “Setting Up a Private Docker Registry,”
we complete a basic container setup by showing you how to configure a private
Docker registry to hold your own Docker images.

Part II: Working with Individual Containers

Most of the coverage in this part relates to using the docker command to work
directly with individual containers. In Chapter 4, “Running Container Images,” |
show you how to run your first container images. To help you find and get container
images, Chapter 5, “Finding, Pulling, Saving, and Loading Container Images,”
describes how to search for container images from the Docker registry and then pull
the image you want, save it to a file, and load it into another Docker system.

In Chapter 6, “Tagging Images,” you learn how to tag images, to better identify
what the image contains and to use that information to push images to registries.
In Chapter 7, “Investigating Containers,” I show you how to look inside a Docker
container or container image to see the details of how that container or image works.
In Chapter 8, “Starting, Stopping, and Restarting Containers,” you learn just that—
how to stop, start, and restart containers.

In Chapter 9, “Configuring Container Storage,” you learn how to configure stor-
age, primarily by mounting directories from the host inside your containers. To
learn how to configure networking for containers, Chapter 10, “Configuring Con-
tainer Networking,” describes how to configure both the default networking used
(or not used) by the Docker service in general, as well as ways someone running
containers can set network interfaces for individual containers.

Preface

Docker caches a lot of data, for possible reuse. In Chapter 11, “Cleaning Up
Containers,” I show you how to clean out cached data left behind when you created
or ran Docker images. In Chapter 12, “Building Docker Images,” you learn how to
build your own Docker containers, including how to build containers that build and
run efficiently.

Part Ill: Running Containers in Cloud Environments

In Chapter 13, “Using Super Privileged Containers,” I describe how to run what
are referred to as super privileged containers (SPCs). To illustrate how SPCs work,
I show you how you can get several images that can perform different administra-
tive tasks on an RHEL Atomic system. In Chapter 14, “Managing Containers in the
Cloud with Cockpit,” I describe how to manage containers across multiple hosts in
your cloud or local environment using the Cockpit web-based container manage-
ment tool.

Part IV: Managing Multiple Containers

In this part, I get into the area of orchestration. For Chapter 15, “Orchestrating
Containers with Kubernetes,” I describe how to use Kubernetes master and node
services all on one system to be able to try out Kubernetes. In Chapter 16, “Creating
a Kubernetes Cluster,” I go beyond the all-in-one Kubernetes system to describe
how to set up a Kubernetes cluster. With that cluster in place, you can deploy
applications in container pods to be managed on different node computers from the
master computer.

Part V: Developing Containers

In the short time that Docker has been around, techniques have already been
developed to make building containers more efficient. In Chapter 17, “Developing
Docker Containers,” 1 describe some tips and a few tricks for developing Docker
containers. Finally, in Chapter 18, “Exploring Sample Dockerfile Files,” 1 show
you various Dockerfile files I have come across to illustrate what different people
have done to overcome obstacles to building their own containers.

So if you are ready now, step right up and start reading Chapter 1. I hope you
enjoy the book!

Xix

This page intentionally left blank

-
Hchnowledgments

The help I have had producing this book has been extraordinary. In my day job,
I have the pleasure of working directly with people at Red Hat who take the fine
work being done on projects like Docker, Kubernetes, and Atomic and extend and
integrate those projects together into operating systems that are ready for the most
stringent enterprise environments. So, in general, | want to thank developers, tes-
ters, and other writers on the Red Hat Enterprise Linux Atomic, OpenShift, and
Linux container teams for helping me learn on a daily basis what it takes to make
Linux Containers ready for the enterprise.

As for having a direct impact on the book, there are a few people from Red Hat
I want to call out individually. First, William Henry wrote two chapters in this book
on storage and networking. I was fortunate that he was available to write those criti-
cal chapters. Beyond his work here, William has made significant contributions to
Docker-related projects. In fact, William wrote dozens of docker command man
pages that are delivered with the Docker software itself. Having William around to
participate in helping develop the content of the book was priceless as well.

Another important contributor to this book from Red Hat is Scott Collier. Scott’s
public contributions to the general knowledge about Docker have included blogs on
setting up Docker and Kubernetes, as well as sharing many sample Dockerfiles
through the Fedora Cloud initiative. For this book, Scott was generous with his

time, helping me sort through technology and examples illustrated throughout the
book.

Because I wrote this book outside of work hours (which is why it took me longer
than I had hoped), I often relied on interactions with my publisher (Pearson) dur-
ing evenings and weekends. So, thanks to editors Chris Zahn and Elaine Wiley for
reviewing my content, occasionally responding on Sunday nights, and compressing

XXi

XXii

Docker Containers

their schedules to help me meet mine. Also from Pearson, my dear friend Debra
Williams Cauley, who developed this project with me, has shown extraordinary
patience as | sought to balance a tight schedule with my desire to take the time to
write the exact book I wanted to write.

Finally, I'd like to thank my family. When someone writes a book he must
almost, by necessity, neglect his family for some amount of time. I'm so proud of
you all. Despite my drifting off to write, my son Seth managed to do a great imitation
of Zac Efron in High School Musical by having the lead in his school play while
also playing on his high school soccer team. My son Caleb found his niche, settling
in on his little organic farm in Maine. And my wife, Sheree, continues to amaze
younger generations with her fitness and Spartan runs. Your love and support are
what keeps me going.

-
About the Author

Christopher Negus is a bestselling author of Linux books, a certified Linux
instructor and examiner, Red Hat Certified Architect, and principal technical
writer for Red Hat. At the moment, projects Chris is working on include Red Hat
OpenStack Platform High Availability, Red Hat Enterprise Linux Atomic Enter-
prise, Kubernetes, and Linux Containers in Docker format.

As an author, Chris has written dozens of books about Linux and open source
software. His Linux Bible, Ninth Edition, released in 2015, is consistently among
the top-selling Linux books today. During the dotcom days, Chris’s Red Hat Linux
Bible sold more than 250,000 copies in eight editions and was twice voted best
Linux book of the year. Other books authored or coauthored by Chris include the
Linux Toolbox series, Linux Toys series, Fedora and Red Hat Enterprise
Linux Bible series, and Linux Troubleshooting Bible with Wiley Publishing.

With Prentice Hall, Chris helped produce the Negus Software Solution Series.
For that series, Chris wrote Live Linux CDs and coauthored The Official Damn
Small Linux Book. That series also includes books on web development, Google
Apps, and virtualization.

Chris joined Red Hat in 2008 as an RHCE instructor. For that role, he became
a Red Hat Certified Instructor (RHCI) and Red Hat Certified Examiner (RHCX). In
2014, Chris became a Red Hat Certified Architect (RHCA), with certifications in
Virtualization Administration, Deployment and Systems Management, Cluster and
Storage Management, and Server Hardening. In 2011, Chris shifted from his Linux
instructor role back to being a full-time writer for Red Hat, which he continues to
do today.

Xxiii

XXiv

Docker Containers

Early in his career, Chris worked at UNIX System Laboratories and AT&T Bell
Labs with the organizations that produced the UNIX operating system. During that
time, Chris wrote the first official UNIX System V Desktop system manual and
cowrote the Guide to the UNIX Desktop. For eight years, Chris worked closely
with developers of the UNIX system, from UNIX System V Release 2.0 through
Release 4.2.

Docker Containers

Parl |

Getting Going with

Containers

This page intentionally left blank

CHAPTER 1

Containerizing Applications
(with Docker

IN THIS CHAPTER:
= Understand Docker containers
= Learn about challenges in containerization
= Understand the components that make up Docker

= Start on a path to enterprise-quality containers

Docker is an elegant and beautiful way to package and run applications. Using your
g ytop g pp gy
favorite Linux system, you can have Docker installed and running as a service in
Yy y 2
just a few minutes. The ease with which you can then build, run, stop, start, investi-
gate, modify, and otherwise manipulate containers is, honestly, awesome.

Docker’s ease of use contributed to it becoming one of the most popular open
source projects today. But Docker as a centerpiece for containerization of the data
center has caused the most commotion. The potential is not less than the reinven-
tion of how individuals and companies, large and small, create, test, deploy, and
manage their most critical applications.

With containerization also comes the possibility of more efficiently deploying
applications into cloud environments. Like containers themselves, the operating
systems that run containers can be slimmed down. These new, container-ready host
operating systems no longer have to carry all the dependencies that an application
requires because the container is already holding most of what it needs to run.

The goal of this book is not only to introduce you to what Docker is and how
it works, but also to expose you to the many ways you can extend it for special
uses. While a single container can be straightforward to create and deploy, getting
multiple containers to work together and access resources from other containers,

4

Docker Containers

and from the hosts they run on, requires a higher level of complexity. This book
addresses several different ways of creating and deploying these complex sets of
containers.

This book is not meant to be just used in theory. Nearly every aspect of con-
tainer and container-related tools described in this book is backed up with real
examples of how those features work. You are meant to be able to try them out
yourself and then modify and extend them in ways that extend how you want to use

Docker.

To begin, however, you need to know why you should care about containers
at all.

UNDERSTANDING PROS AND CONS OF CONTAINERIZING
APPLICATIONS

Docker provides a way to create and run applications that have been configured
within a container. To truly understand what that means, it helps to start with what
a containerized application is not. A containerized application is NOT...

...An Application Running Directly on a Host Computer

The traditional way to run an application is to install and run that application
directly from a host computer’s file system. That application’s view of its environ-
ment would include the host’s process table, file system, IPC facility, network inter-
faces, ports, and devices.

To get the application working, you often need to install additional software
packages to go with your application. Normally, this is not a problem. But in some
cases, you might want to run different versions of the same package running on the
same system, which could cause conflicts.

The application could conflict with applications in other ways as well. If the
application is a service, it might bind to a particular network port by default. It
might also read common configuration files when the service starts up. This could
make it impossible, or at least tricky, to have multiple instances of that service run-
ning on the same host computer. It could also make it difficult to run other services
that want to bind to that same port.

Another downside of running an application directly on the host computer is
that it can be difficult to move that application around. If the host computer needed
to be shut down or if the application needed more capacity than is available on the

CHAPTER 1 Containerizing Applications with Docker

host system, it might not be easy to pick up all the dependencies from the host com-
puter and move them to another host.

...An Application Running Directly within a Virtual Machine

Creating a virtual machine (VM) for the specific purpose of running an application
can overcome some of the drawbacks of running applications directly on the host
operating system. Although a virtual machine is on the host, it runs as a separate
operating system, which includes its own kernel, file system, network interfaces,
and so on. This makes it easy to keep almost everything inside the operating system
separate from the host.

Because a VM is a separate entity, you don’t have the same issues of inflex-
ibility that come from running an application directly on hardware. You could run
an application 10 times on the host by starting up 10 different VMs. The service on
each VM could listen on the same port number, but not cause a conflict because

each VM could have a different IP address.

Likewise, if you need to shut down a host computer, you could either migrate
the VM to another host (if your virtualization environment supports it) or just shut it
down and start it again on the new host.

The downside of running each instance of an application in a VM is the
resources it consumes. Your application might require only a few megabytes of disk
space to run, but the entire VM could consume many gigabytes of space. Also, the
startup time and CPU consumption of the VM is almost sure to be higher than the
application itself would consume.

Containers offer an alternative to running applications directly on the host or
in a VM that can make the applications faster, more portable, and more scalable.

Understanding the Upside of Containers

For running applications, containers offer the promise of both flexibility and effi-
cient resource usage.

Flexibility comes from the container being able to carry all the files it needs
with it. Like the application running in a VM, it can have its own configuration files
and dependent libraries, as well as having its own network interfaces that are dis-
tinct from those configured on the host. So, again, as with the VM, a containerized
application should be able to move around more easily than its directly installed
counterparts and not have to contend for the same port numbers because each con-
tainer they run in has separate network interfaces.

5

b

Docker Containers

As for startup time and consumption of disk space and processing power, a con-

tainer is neither running a separate operating system nor should it hold the amount
of software needed to run a whole operating system. That’s because the container
can contain just what the application needs to run, along with any other tools you
might want to run with the container and a small amount of metadata describing the
container.

Docker containers don’t have a separate kernel, as a VM does. Commands run

from a Docker container appear in the process table on the host and, in most ways,
look much like any other process running on the system. The difference between an
application run in those two environments, however, has most to do with the differ-
ent view of the world those two applications have looking out:

File system: The container has its own file system and cannot see the host
system’s file system by default. One exception to this rule is that files (such
as /etc/hosts and /etc/resolv.conf) may be automatically bind mounted
inside the container. Another exception is that you can explicitly mount
directories from the host inside the container when you run a container
image.

Process table: Hundreds of processes may be running on a Linux host com-
puter. However, by default, processes inside a container cannot see the host’s
process table, but instead have their own process table. So the application’s
process you run when you start up the container is assigned PID 1 within

the container. From inside the container, a process cannot see any other pro-
cesses running on the host that were not launched inside the container.

Network interfaces: By default, the Docker daemon defines an IP address
via DHCP from a set of private IP addresses. Instead of using DHCP, Docker
supports other network modes, such as allowing containers to use another
container’s network interfaces, the host’s network interfaces directly, or no
network interfaces. If you choose, you can expose a port from inside the con-
tainer to the same or different port number on the host.

IPC facility: Processes running inside containers cannot interact directly
with the inter-process communications (IPC) facility running on the host sys-
tem. You can expose the IPC facility on the host to the container, but that is
not done by default. Each container has its own IPC facility.

Devices: Processes inside the container cannot directly see devices on the
host system. Again, a special privilege option can be set when the container
is run to grant that privilege.

CHAPTER 1 Containerizing Applications with Docker

As you can see, Docker containers have the capability to run in plain sight to
the host, but in a way that restricts what the container can see outside its boundar-
ies into the host (unless you explicitly open those views).

Understanding Challenges of Containerizing Applications

Among the challenges of containerizing applications is the fact that they are dif-
ferent from applications not in a container. In every Linux system facilities are in
place for starting and stopping services and viewing error messages. Linux also
provides ways of monitoring services and rotating log files.

For running virtual machines, whole virtualization platforms, such as Open-
Stack and Red Hat Enterprise Virtualization, are built to start, stop, and otherwise
work with VMs. Although efforts are underway to build tools for managing sets of
containers, most are still in their infancy. Frameworks for deploying and manag-

ing sets of containers are being put in place in projects such as Kubernetes and
OpenShift.

Docker containers are packaged as container images. Work has been done to
be able to store container images in registries and manage them with the docker
command. However, the tools for managing Docker images are not nearly as mature
as those used to manage Linux software packages (such as those for Linux RPM or
Deb based systems).

Tools are just now being developed to be able to verify where an image came
from, to determine whether it has been tampered with, and to see exactly which
software packages and their versions have been installed in the container. For now,
however, be aware that it is difficult in most cases to be completely assured that
random images you grab from the Docker Hub Registry are safe to use.

Another challenge to using containers comes from the fact that containers, by
their nature, cannot see other containers by default. So, what about the times that
you want your container to work closely with another container? For example, you
might have a web server that you want to access your database server.

Some of the solutions for getting containers to see each other are features in
Docker that let you link containers together and Kubernetes features that let you
identify services that are used and provided between containers in pods. More con-
tainer management tools are also becoming available to deal with these issues. Just
keep in mind that they are in early stages of development, and multiple, sometimes
conflicting, tools are being developed in almost every area of container management.

1

§

Docker Containers

UNDERSTANDING WHAT MAKES Ur DOCKER

Docker is a container format developed by the Docker Project. The docker com-
mand can run, stop, start, investigate, and otherwise manipulate containers. The
docker command also can run as a service daemon, handling requests to manage
Docker containers. This Docker service, by default, grabs the images you request
from the Docker Hub Registry. You don’t need to know much more than that to get
started, but some additional words are in order.

The Docker Project

The Docker Project (https://www.docker.com) provides a focal point for Docker
development. It refers to Docker as “an open platform for developers and sysadmins
of distributed applications.” Its goal is to simplify application development and
distribution.

Solomon Hykes is the founder and CTO of Docker. He compares what Docker
sets out to do in the software industry to what physical shipping containers have
done for the shipping industry. Whether you are shipping cars, barrels, boxes, or
pianos, by using a standard container to ship those diverse types of items, the tools
you use for transporting and working with them can become standardized as well.

So, at its core, the Docker Project provides a format for software containers and
creates a simple infrastructure that is set up specifically to work with software in
that format. As the project has progressed, it has begun extending out beyond its
initial focus on stabilizing the Docker format and providing the tools to manage
single containers.

Today, the Docker Project is expanding its scope to include provisioning and
orchestration tools, to help people deploy and manage groups of containers. It is
also working on ways to manage computing resources and help run Docker con-
tainers in ways that offer high availability. As those tools become available, they
will have to go head-to-head against more established container orchestration tools
being developed by companies such as Google and Red Hat (tools that include the
Kubernetes project covered in this book).

For now, however, the Docker Project’s greatest achievements are the Docker
container format, the tools for managing individual containers, and the capability
to pull and push Docker container images between Docker clients and registries.
The central registry, which is managed by the Docker Project, is referred to as the

Docker Hub Registry.

https://www.docker.com

CHAPTER 1 Containerizing Applications with Docker

The Docker Hub Registry

The Docker Hub Registry (nhttps://registry.hub.docker.com) offers a place
where individuals and organizations can store and develop their Docker container
images. When you install Docker on your Linux system, by default Docker looks to
the Docker Hub Registry when you make requests for Docker container images not
already on your system.

Figure 1.1 shows the Docker Hub Registry page.

Docker Hub - Mozilla Firsfox

)
Eile Edt View History Bookmarks Tools Help

Docker Hub. x\&

a docker.com v e|[Q searc + B & ¥B =

Join Docker Hub

Automate Build-Test Pipelines Collaborate As A Team Assemble Apps
Images with the latest updates, Role-based access control for easy Free Official Repos available as initial
continuously integrated and available. sharing. building blocks.

Explore Official Repositories

é redis UbUﬂtUQ .mongoDB n dc &) WoroPress

See all official repositories

FIGURE 1.1 The Docker Hub Registry holds thousands of Docker images.

By signing up for a Docker user account, you can have your own Docker reposi-
tory that you can push Docker container images to. After that, you can pull those
images from any system running Docker that has an Internet connection.

There are Linux distributions and application projects that have official reposi-
tories available from the Docker Hub Registry. Along with the Docker container
images themselves, the Docker Hub Registry also is a place where you can, in
many cases, find instructions for using these images and the Dockerfile files used
to build them. For container images that you don’t want to share publicly, there are
also ways to create your own Docker Registry that you can use to store images pri-
vately or purchase secure container storage directly from the Docker project.

I

https://registry.hub.docker.com

10

Docker Containers

You may notice that the words “image” and “container” come up when describ-
ing the form in which Docker stores and transports software. Understanding the
differences between images and containers is important when it comes to using

Docker.

Docker Images and Containers

The goal of containerization is to gather together all the components an applica-
tion needs to run in a single, contained unit. For Docker, that unit is referred to
as a Docker image. Inside the image is the application the container is intended to
execute and, typically, any libraries, configuration files, executables, or other com-
ponents that the application needs to execute.

An image is a static unit that sits in a repository, or the local file system where
Docker is installed, and waits to run. When you save a Docker image to a file sys-
tem, as opposed to storing it in a repository, it is stored as a tarball. That tarball
can be transported as you would any other file and then imported later to run as a
container on your local system running Docker.

Major Linux distributions, such as Red Hat Enterprise Linux, Ubuntu, Fedora,
and CentOS offer official base images that you can use to build your own Docker
images. You don’t have to be a programmer to take a base image, add existing
applications to it, and make it into your own images. You do this by creating a
Dockerfile file and running a docker build command on it.

The term Docker container refers to a running instance of a Docker image. Or,
more precisely, an instance of an image that has run, since it may be running,
paused, or stopped at the moment. The distinction between images and containers
is critical when you start to use Docker. The reason you need to understand that
distinction is that there are different commands for working with images versus
working with containers.

For example, when you want to see a list of images on your local system, you
type docker images. To see a list of containers that are running, you type docker
ps (or docker ps -a to see a list of containers no longer running, but still saved on
your system).

To run a container from an image, you use the docker run command. To stop
a running container, you use the docker stop command. After it has stopped, you
use the docker start command to start the stopped container again. To just pause
all the processes within a container, you use the docker pause command. Then
type docker unpause to start the paused container again. Keep in mind that docker
run runs a new container from the original image, while docker start restarts a

CHAPTER 1 Containerizing Applications with Docker

container from its state when it was stopped (for example, software you added or
files you changed will still be in place).

When it comes to working with containers, you may notice that all the exam-
ples just given have one thing in common. Every one of them is invoked using the
docker command.

The docker Command

The docker command is the primary command you use to work directly with Docker
containers and images. In fact, in some packaging of Docker software, it is one of
only a couple of executable commands included.

Once you have installed Docker software, as described in Chapter 2, “Setting
Up a Container Run-Time Environment,” you need only to start the Docker service
to be able to start using the docker command. One of the nice features built into
the docker command is Tab completion (if you are running Docker from the default
bash shell). So, once the Docker service is running, you can type docker as root
user (or sudo docker in Ubuntu or in Fedora) followed by pressing the Tab key
twice to see the available docker subcommands:

docker <Tab><Tab>

attach exec inspect port rmi tag
build export kill ps run top
commit help load pull save unpause
cp history 1login push search version
create images logout rename start wait
diff import logs restart stats

events info pause rm stop

Because most of the second section of this book is devoted to using docker with
these subcommands, I don’t spend a lot of time showing you how they all work.
Instead, I give you an overview of what you can do with them:

= Find information about Docker components: Show version informa-
tion about Docker features with docker version. View information about
the system running Docker with docker info. View commands and options
available with the docker command with docker help. Show the history of an
image with docker history. View information about an image or container
with docker inspect. List a container’s port mappings with docker port.

= Work with running containers: List running containers with docker ps.
Attach another command to a running container with docker attach. Run a
command within a running container with docker exec. Inspect a container’s

11

Docker Containers

metadata with docker inspect. Copy files from a container to the host system
with docker cp. Check the changes made to a container’s file system since it
was started with docker aiff.

= Work with images: List images on your system with docker images. Run
images with docker run. Pull images from a registry to the local system with
docker pull. Push images to a registry with docker push. Save an image as
a tarball with docker save. Load a local image from a tarball with docker
load. Export the file system from a container to a tarball on the local system
with docker export.

= Work with Docker Registries: Search registries for images with docker
search. Log in to the Docker Hub Registry (so you can push and pull images
with your account) with docker login. Log out of the Docker Hub Registry
with docker logout.

= Modify an existing image: Add a name to an image with docker tag.
Change the name of an image with docker rename.

= Change the state of a container: Stop a running container with docker
stop. Start a stopped container with docker start. Pause a container with
docker pause. Restart a paused image with docker unpause. Send a kill
signal or other signal to a container with docker kill. Stop and restart a con-
tainer with docker restart.

= Watch Docker activities: Watch events from the Docker server with
docker events. Watch a container’s process activities with docker top. View
log messages produced from a container with docker 1ogs. View CPU and
memory use statistics for a container with docker stats. Watch a container
until it stops and then print its exit code with docker wait.

= Create images and containers: Build an image from scratch with docker
puild. Create an image from a container with docker commit. Create a con-
tainer from an image without running it with docker create. Import a file
system to an image with docker import.

= Remove containers and images: Remove a stopped container with docker
rm. Remove an image with docker rmi.

Even though Docker was designed to help you get up and running containers
with minimal fuss, this book is here to guide you through your first experiences with
Docker and point out interesting features you may not find on your own. After that,
it leads you into some of the less charted waters of Docker, related to deploying and
managing multiple containers. In other words, it gives you a way to approach your
Docker adventure.

CHAPTER 1 Containerizing Applications with Docker

APPROACHING CONTAINERS

With the fast pace of development surrounding Docker specifically and containers
in general, the best any book can do for you these days is get you on a good path. In
this book, that means starting with a solid set of examples to illustrate how Docker
and a select set of supporting tools work today. After that, the approach is to lay out
what is on the horizon for new features and new tools.

Whether you are someone who wants to use and manage containers or someone
tasked to develop containers, this book starts you out with a few things that every-
one needs, including

= Setting up Docker: Docker is available on many full-blown Linux systems
and several special, container-oriented Linux systems. So instructions at the
beginning of this book help you choose one or more of these systems and
show you how to start up the Docker service.

= Setting up a Docker Registry: Docker is made to store container images
in registries and make them available to pull (download) to systems running
Docker. So you can learn how to create your own private Docker Registry and
use it to hold your container images.

If you are someone who wants to use and administer containers, I present you
with various procedures for working with:

= A regular individual container

= A set of containers (using Kubernetes and other tools to manage them)

Whether you are creating or just running containerized applications, it helps to
understand the ways in which the underlying operating system features are made
available to containers. Supporting features from the operating system you should
know about to support containers include

= Host privileges: The scope of what a container can manipulate on the host
is limited by design. Opening host privileges allows a container direct access
to features on the host system, such as the host’s process table, devices, par-
ticular CPUs, and IPC namespace. Containers designed to access and change
the host system (referred to as super privileged containers) are demonstrated
with a Fedora Atomic Host later in the book.

= Storage: Rather than store data inside the container itself, you can connect
storage space from the host inside a Docker container using bind mounts.

= Networking: There are special rules and options for managing host network
interfaces from within your containers.

13

14 Docker Containers

As a software developer, containers both limit you and set you free. You have
the ability to make sure all the files for your application are packaged with it in a
form that is ready to run. But new challenges arise that require you to rethink your
approach to development for such things as how to

= Efficiently handle container layers.

= Navigate software enhancements through stages of testing, development, and
production.

= Divide up services across multiple containers.
= Deploy, start, and stop containers in your run-time environments.

= Deal with supporting services that your applications need from the host
system.

Docker has many great features and works well today for building and running
individual containers. But the world around Docker is not standing still. Even now,
hundreds of people are working every day to extend what you can do with Docker.

An extraordinary number of tools are just on the horizon to support the develop-
ment and deployment of enterprise-ready containers. Likewise, people are continu-
ing to create clever containers, while offering those containers, and the Dockerfiles
used to build them, to anyone who wants to use them and extend them. To help you
take your next steps beyond this book, the last two chapters describe

= More containerization tools: So many tools are being developed to work
with Docker containers that it can be difficult to make sense of it all. This
chapter provides descriptions of up-and-coming tools you will soon be able to
use to work with Docker containers.

= Sample container images: To illustrate the creative ways in which people
are using Docker, I devote a whole chapter to showcasing cool containers
that people have made public for you to try out.

That next to last chapter in particular is meant to help you evaluate which exist-
ing and upcoming tools will be most useful to you as you seek to extend your own
path with containers. It sorts through what those tools can do for you today and how
they are being developed to serve you tomorrow.

SUMMARY

By decoupling an application (and all that application needs to run) from the host
system it runs on, Docker containers offer a simple, elegant way of deploying and

CHAPTER 1 Containerizing Applications with Docker

running applications. Docker containers can offer greater flexibility of use than you
can get with applications installed directly on a host computer. And, compared with
virtual machines, Docker containers can offer less demands on system resources,
such as CPU usage, memory consumption, and disk space usage.

This chapter described the different components that make up Docker. Those
components, which are managed by the Docker Project (https://www.docker . com)
include the Docker Hub Registry (which stores Docker Images), the Docker ser-
vice, the docker command, and the images and containers you work with.

This book puts you on a path that starts with learning all the ins and outs of
using Docker to work with individual containers. From there, it takes you through
special use cases, such as special privileged containers, and introduces you to
issues you need to know about storage and networking.

For programmers, you can learn some tips about best practices for developing
containers. Finally, the book leaves you with examples of containers to spark your
imagination for what you might build yourself and new developments surrounding
Docker that you can expect in the near future.

15

https://www.docker.com

This page intentionally left blank

CHAPTER 2

Setring Up a Confainer
Run-Time Environment

IN THIS CHAPTER:
= Set up Docker on standard Linux systems

= Set up Docker in a specialized container Linux system

Docker is built to run on Linux. Unlike a virtual machine, which consists of an
entire operating system, by its nature a container relies on a separate operating
system to provide the environment in which it runs. That said, you still have plenty
of choices for how you can create a working Docker environment. Choices include

» Standard Linux: Docker has been packaged and made available with many
major Linux distributions. To get the latest Docker features, you may need
to install the latest version of that Linux distribution, however. Remember
that Docker is closely tied to the operating system, so earlier versions of
Linux may not include all the features that Docker needs to run. In this book,
I show you how to set up Docker on popular Linux distributions such as
Ubuntu, Fedora, and Red Hat Enterprise Linux. I provide links to instruc-
tions for installing Docker on other Linux systems.

= Microsoft Windows, Mac OS X, or others as a VM: Docker cannot
run directly on a Windows or Mac system. However, if you have a version
of Microsoft Windows or Mac OS X that can run virtual machines, and you
have the hardware to support that as well, you can install Linux as a virtual
machine and run Docker from there. Keep in mind that you may not get
the best experience running Docker this way, if your computer is light on

18

Docker Containers

processing power and RAM. But if you have a recent Windows or Mac sys-
tem and adequate hardware, Docker should run just fine.

= Container-specific Linux: To run a container, you don’t need a full-blown
desktop or server Linux system. In fact, because the container is meant to
carry the software it needs to run with it, the underlying Linux system can be
very lightweight. Linux distributions such as Project Atomic and CoreOS are
particularly suited for providing container run-time environments. You might
want to use a standard Linux distribution when you develop containers, so
you have easy access to all the development tools you need. Later, you can
use Project Atomic or CoreOS to deploy those containers, either directly on
hardware or into cloud environments, such as Amazon EC2 or Google Cloud
Platform.

This chapter describes how to prepare the computer systems just described to
run Docker containers. Once you have one or more of those systems set up, you can
work along with the examples for running, managing, deploying, and orchestrating
containers throughout the rest of this book.

CONFIGURING A STANDARD LINUX SYSTEM FOR
DOCKER

If you are new to Linux, I suggest you install a standard Linux distribution with
a desktop interface (Server with Desktop, Desktop, or Workstation installation).
This provides you with a full set of development, debugging, and monitoring tools
as you create and run your containers. When you are ready to run your containers
more permanently, consider deploying them using Project Atomic or CoreOS Linux
systems.

Most of what you need to get started using Docker in Linux is the software
package containing the docker command. In Ubuntu, the package that includes the
docker command is called docker.io. The package was previously called docker-io
in Fedora, so as not to conflict with a package named docker that provides unre-
lated desktop docking features. However, the latest versions of Fedora now call the
package docker. In Red Hat Enterprise Linux, the Docker containers package is
also simply named docker.

Configuring Ubuntu for Docker

Ubuntu (http://www.ubuntu.com/) is a popular Linux distribution among Linux
enthusiasts. Besides offering a popular standard desktop system, Ubuntu is also

http://www.ubuntu.com/

CHAPTER 2 Setting Up a Container Run-Time Environment

available in lightweight desktops (such as Xubuntu and Lubuntu) and special spins
for education and multimedia, among others. Although Ubuntu releases a new ver-
sion about every six months, most of which are supported for nine months, some
releases are designated as Long Term Support (LTS) releases and are supported for
five years.

To use Docker in Ubuntu, start with the latest LTS version of Ubuntu available.
I use Ubuntu 14.04 desktop edition (the most recent LTS) to start with. To get the
Ubuntu 14.04 desktop live/installation medium and instructions, go to the following

URLs:

® Ubuntu download: Go to www.ubuntu. com/download/desktop and download
the ISO image that matches your computer. For most newer computers, the
64-bit PC version is the one to use. For older or low-end computers, choose
the 32-bit ISO download.

= Ubuntu installation: Refer to the “Install Ubuntu 14.04 LTS” instructions
(www .ubuntu.com/download/desktop/install —ubuntu—desktop) for informa-
tion on installing that version of Ubuntu.

Install Docker in Ubuntu (docker.io package)

Once you have Ubuntu installed and ready to go, log in to it as the owner of the sys-
tem and go through the following steps to get the docker.io service up and running;:

1. Update package list: You should update your Ubuntu package list before
proceeding to install Docker.
$ sudo apt-get update

Reading package lists... Done

2. Install docker.io package: In Ubuntu, Docker is provided by the docker.
io package. Installing that package also pulls in any dependent packages as
needed:

$ sudo apt-get install docker.io

3. Start the docker.io service: The Docker service should start automati-
cally. To make sure this is true, type the following:

$ sudo service docker.io status
docker.io start/running, process 1236

The output shows that the docker.io service is up and running. The next thing
you should do is investigate the contents of the docker.io package.

13

http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop

ol

Docker Containers

Look in the Ubuntu docker.io Package

To begin to get a feel for the components that make up Docker, take a look at the
contents of the docker.io package. To list the contents of the docker.io package, use
the following command:

$ sudo dpkg-query -L docker.io | less

/usr

/usr/share

/usr/share/man

/usr/share/man/manl
/usr/share/man/manl/docker.io.1.9z
/usr/share/docker.io
/usr/share/docker.io/contrib
/usr/share/docker.io/contrib/mkimage-alpine.sh

/usr/share/doc
/usr/share/doc/docker.io
/usr/share/doc/docker.io/README.Debian
/usr/share/zsh
/usr/share/zsh/vendor-completions
/usr/share/zsh/vendor-completions/ docker.io
/usr/bin

/usr/bin/docker

/usr/1lib

/usr/lib/docker.io
/usr/lib/docker.io/dockerinit

/etc

/etc/bash completion.d

/etc/bash completion.d/docker.io
/etc/init

/etc/init/docker.io.conf

/etc/init.d

/etc/init.d/docker.io

/etc/default

/etc/default/docker.io

/1lib

/lib/udev

/lib/udev/rules.d
/lib/udev/rules.d/80-docker.io.rules docker-io
/1lib/systemd

/1lib/systemd/system
/lib/systemd/system/docker.io.service
/usr/bin/docker.io

Documentation that comes in the docker.io package includes a single man page
describing the docker command (type man docker.io to view it) and README files
in the /usr/share/doc/docker.io directory. By the time you read this, the docker.
io package available to you should have many more man pages included.

CHAPTER 2 Setting Up a Container Run-Time Environment

The /usr/share/docker.io/contrib directory holds scripts, some of which you
can use to create minimal file systems and others you can use for other tasks, such
as creating basic Docker images. Subdirectories of this directory hold Dockerfile
files for building or importing and running Docker images yourself.

Tab completion is available with the docker command. Tab completion with the
docker command for the bash (/etc/bash_completion.d/docker . io) and zsh (/usr/
share/zsh/vendor-completions/ docker. io) shells are included in files that come
with this package.

The docker command (/usr/bin/docker) is the primary command that comes
with the docker.io package. The docker command is used to create, work with, and
otherwise manipulate Docker images and containers. The same docker command is
also run as a daemon to provide the Docker service.

Speaking of the Docker service, most of the remaining files in the docker.io
package relate to how the Docker service starts up. Startup files are included that
can start the Docker service whether your system uses Upstart (init) or systemd to
initialize the operating system.

A directory that is not shown as part of the docker.io package but is created
when you install it, is the /var/1ib/docker directory. Keep an eye on that directory.
When docker images and containers are created, they are stored in that directory
structure, so you want to make sure you don’t run out of disk space there.

At this point, Ubuntu is ready for you to start using Docker. You can go right to
Chapter 3, “Setting Up a Private Docker Registry,” if you want to get started using
Docker.

Configuring Fedora for Docker

Fedora (nttps://getfedora.org) is the free, bleeding-edge Linux distribution spon-
sored by Red Hat, Inc. New releases of Fedora come out about every six months and
are used as a proving ground for new software as it becomes available.

Many people who use Red Hat Enterprise Linux at work install Fedora on their
laptops or home desktop system. That’s because Fedora offers not only software
development tools and a range of server and system administration software, but
also a large selection of desktop tools and fun stuff (such as games) that you might
want for your personal computing.

I recommend you install the most recent version of Fedora if you want to try out
Docker with Fedora. I downloaded a Fedora workstation live ISO and installed it.
Docker doesn’t require a desktop system, so I could have just as easily installed a
base system and worked entirely from the command line.

H

https://getfedora.org

ot

Docker Containers

To get started with Docker in Fedora, you need to install Fedora and then install
the docker package. Once that’s installed, you can start the Docker service and
begin pulling Docker images, building your own images, and managing containers
that you start from those images.

To get the latest Fedora Workstation live/installation medium and instructions,
go to the following URLs:

= Fedora download: Go to https://getfedora.org/ and select Workstation.
Then choose the Download Now button and select the Download button to
choose the 64-bit Fedora Workstation installation medium. (Other media
are available if you have a 32-bit computer or if you want a different type of
install, such as server or cloud.)

= Fedora installation: See the Installation Guide for help installing Fedora (if
a later version of Fedora is available, use that):

http://docs.fedoraproject.org/en-US/Fedora/22/html/
Installation Guide/

Install Docker in Fedora (docker Package)

Once you have Fedora installed and ready to go, log in. Then either become the
root user or use sudo to run the commands as follows. Before you install Docker, as
root user make sure you update your Fedora software (yum update). Then install the
docker (or, with older versions of Fedora, docker.io) package with yum install and
start the Docker service as follows (as an alternative, you can use the anf command
in the latest Fedora distribution instead of yum to install software):

1. Update packages: Run the following command to install the latest versions
of your Fedora software.
yum update

2. Install docker package: In earlier versions of Fedora, Docker is available
from the docker.io package. By the time you read this text, the package will
probably simply be called docker. Install the package as follows, which also
pulls in any dependent packages as needed:

yum install docker

3. Start the Docker service: The Docker service is not set to start automati-
cally in Fedora. To enable the Docker service and start it immediately, type
the following:

systemctl enable docker.service

Created symlink from /etc/systemd/system/multi-user.target.wants/
docker.service to /usr/lib/systemd/system/docker.service.

systemctl start docker.service

https://getfedora.org/
http://docs.fedoraproject.org/en-US/Fedora/22/html/Installation_Guide/
http://docs.fedoraproject.org/en-US/Fedora/22/html/Installation_Guide/

CHAPTER 2 Setting Up a Container Run-Time Environment

4. Check status of Docker service: To make sure the Docker service is run-
ning, type the following:

systemctl status docker.service
docker.service - Docker Application Container Engine
Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled)
Active: active (running) since Sun 2015-05-17 10:05:32 EDT; 2min
ago

Docs: http://docs.docker.com
Main PID: 3405 (docker)

CGroup: /system.slice/docker.service
L3405 /usr/bin/docker -d --selinux-enabled

As you can see from the output, docker.service is enabled and active. The
actual service consists of the docker command (/usr/bin/docker), run as a daemon
process (-d), with SELinux enabled (--selinux-enabled). Next, take a look inside
the docker package.

Look in the Fedora docker Package

Once docker is installed, run the rpm -q1 command on the docker (or docker.io)
package to take a look at the contents of that package. This gives you a sense of
what you can do with Docker:

rpm -ql docker | less

/etc/docker

/etc/sysconfig/docker
/etc/sysconfig/docker-network
/etc/sysconfig/docker-storage
/etc/udev/rules.d/80-docker.rules
/usr/bin/docker
/usr/bin/docker-storage-setup
/usr/lib/systemd/system/docker.service
/usr/libexec/docker
/usr/libexec/docker/dockerinit
/usr/share/bash-completion/completions/docker

/usr/share/doc/docker/README . md
/usr/share/man/manl/docker-attach.l.gz
/usr/share/man/manl/docker-build.1l.gz
/usr/share/man/manl/docker-commit.l.gz

Many of the files are the same as you would find in the Ubuntu docker.io pack-
age. There are files for starting up the Docker service (systemd is used exclusively
in the latest Fedora releases) and the docker command itself (/usr/bin/docker).

H

o4

Docker Containers

Likewise, there is a file to allow you to do tab completion of text you type when

using the docker command in a bash shell. The tab completion file makes it pos-
sible for you to do tab completion for docker subcommands and options, names and
IDs of containers and images, and repository names and tags.

Here are descriptions of some of the other files in Fedora’s docker package that

are particular to Fedora:

letelsysconfig/docker: This file lets you add options to the docker com-
mand when it runs as a service daemon. By default, only the --selinux-
enabled option is added to enable SELinux support for Docker. One other

setting in that file (DOCKER_CERT_PATH) sets the directory path to key
files needed to start the Docker service to /etc/docker.

/etel/sysconfig/docker-network: Use this file to add networking options to
pass to the Docker service.

/etel/sysconfig/docker-storage: Use this file if you want to change how
data are stored by the Docker service. By default, a sparse file mounted in
loopback in the /var/1ib/docker directory is used. If you choose, you can
instead assign raw storage devices to hold metadata and data. Read the con-
tents of this file for suggestions on how to do that. Using raw storage devices
in this way can help improve performance and overcome the 100GB maxi-
mum storage limitation with loopback.

/etc/udev/rules.d/80-docker.rules: The 80-docker.rules file tells the udev
service to set up device mapper files used by the Docker service to access
host features needed by the containers. (The Ubuntu Docker software
package includes a similar udev file.)

/usr/share/doec: In the /usr/share/doc/docker directory, you can see
documentation files that come from the Docker Project. They include things
such as information about software changes and licensing, as well as general
README files about the project itself.

/usr/share/man documentation: Man pages for the docker command itself
are divided across multiple docker man pages stored in section 1 by subcom-
mand. For example, to read about using docker with the build option (docker
build), type the man docker-build command. The only man page in section
5 describes the format of the Dockerfile file you use to build Docker images.
(Type man Dockerfile to view that file.)

With the docker package in place, you can go on and start using the docker
command in Chapter 3.

CHAPTER 2 Setting Up a Container Run-Time Environment

Configuring Red Hat Enterprise Linux for Docker

Red Hat Enterprise Linux (RHEL) is the subscription-based Linux distribution
from Red Hat. Its goal is to offer a stable, tested Linux distribution available with
different levels of customer support from Red Hat. When security and stability are
critical, Red Hat Enterprise Linux is often used on systems throughout the applica-
tion development life cycle, as well as for production deployment.

Like Fedora, Red Hat Enterprise Linux is an RPM-based Linux distribution.
However, a few steps are different from Fedora when you install Red Hat Enterprise

Linux and add Docker.

Before you can download and install Red Hat Enterprise Linux, you need either
to have an active subscription or to sign up for an evaluation subscription. Go to the

following URLSs to learn about how to download and install RHEL:

= RHEL download: Go to https://access.redhat.com/downloads/ and
either select the button next to Red Hat Enterprise Linux that says Download
Latest (Server) or select Red Hat Enterprise Linux and choose the installa-
tion medium that suits you. If you are prompted to log in and you don’t have
a Red Hat subscription, select the Evaluations button to sign up for an evalu-
ation subscription. Keep in mind that your need the RHEL server version of
the software because other versions of RHEL don’t include Docker.

= RHEL installation: Go to the Red Hat Enterprise Linux documentation
page (https ://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/) and select the Installation Guide. The guide describes
how to boot the installation medium you just downloaded and install the
software in various ways.

Once you have installed RHEL, you need to register your system, install docker,
and start the Docker service, as described in the following sections.

Install Docker in Red Hat Enterprise Linux (docker Package)

Assuming you have Red Hat Enterprise Linux subscriptions and an account to the
Red Hat customer portal, here are the steps you can follow to subscribe that system
and add docker software to it.

1. Register and subscribe RHEL: Use subscription manager to enable your
Red Hat subscription and enable the repositories you need to get the docker
package, as well as related packages you need later. Run the following com-
mand, identifying your Red Hat user name and password (when prompted):

subscription-manager register --username=rhnuser --auto-attach
Password:

25

https://access.redhat.com/downloads/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/

b Docker Containers

The

subscription-manager repos --enable=rhel-7-server-extras-rpms
subscription-manager repos --enable=rhel-7-server-optional-rpms

Update packages: Once the RHEL 7 system is properly entitled, update all
installed packages to the latest versions and reboot as follows:

yum update
reboot

Install docker: After the system has come back up, install the docker pack-
age by typing the following:

yum install docker

Start and enable Docker service: With Docker installed, to start using
Docker all you have to do is start and enable the Docker service. To do that

in RHEL 7, type:

systemctl start docker.service
systemctl enable docker.service
systemctl status docker.service
docker.service - Docker Application Container Engine
Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled)
Active: active (running) since Sun 2015-05-17 16:52:33 EDT; 8s ago
Docs: http://docs.docker.com
Main PID: 32147 (docker)
CGroup: /system.slice/docker.service
L-32147 /usr/bin/docker -d --selinux-enabled \
--add-registry registry.access.redhat.com

From the output, you can see that the Docker service is enabled and active.
docker command that provides the service (/usr/bin/docker) is started with

options to run it as a daemon (-d), enable SELinux, and add a container registry to

those searched by docker (in this case, registry.access.rednat.com).

With the docker package now installed and the Docker service running, you

should familiarize yourself with the contents of the docker package in RHEL.

Look in the RHEL docker Package
To check out the contents of the docker package type the following command:

rpm -gl docker

/etc/docker

/etc/docker/certs.d
/etc/docker/certs.d/redhat.com
/etc/docker/certs.d/redhat.com/redhat-ca.crt
/etc/docker/certs.d/redhat.io
/etc/docker/certs.d/redhat.io/redhat-ca.crt

/usr/share/man/manl/docker-attach.1.gz

CHAPTER 2 Setting Up a Container Run-Time Environment

/usr/share/man/manl/docker-build.l.gz
/usr/share/man/manl/docker-commit.l.gz

/usr/share/man/man5/Dockerfile.5.gz
/usr/share/rhel

/usr/share/rhel/secrets
/usr/share/rhel/secrets/etc-pki-entitlement
/usr/share/rhel/secrets/rhel7.repo
/usr/share/rhel/secrets/rhsm

/usr/share/vim/vimfiles/doc
/usr/share/vim/vimfiles/doc/dockerfile.txt
/usr/share/vim/vimfiles/ftdetect
/usr/share/vim/vimfiles/ftdetect/dockerfile.vim

The components in the docker package are nearly identical to those in Fedora’s
docker package. So you can refer to the section on installing Fedora for docker for
descriptions of many of the components. Here are descriptions of components that
are specific to the RHEL docker package:

= Certificates: The RHEL docker package is configured to point to registries
other than the Docker Hub. In particular, Red Hat has its own registry for
official RHEL container images. Directories under /etc/docker/certs.d
contain certificates that the Docker service can use to validate that it is com-
municating with the Red Hat registry.

= Secrets: Any files placed in the /usr/share/rhel/secrets directory are
copied into containers run on the system. In particular, the docker package
for RHEL places files in the secrets directory that allow the container to use
Red Hat subscription management. These and other files related to subscrip-
tion management make it possible for the containers to use subscription
entitlements from the host to install and manage RPM packages within the
container without consuming additional subscriptions.

= vimfiles: Files in the /usr/share/vim/vimfiles/ directory provide syntax

highlighting when you use the vim command to edit a Dockerfile file. This
can help you create and edit Dockerfile files.

Configuring Other Operating Systems for Docker

As mentioned earlier, Docker is available with operating systems other than those
demonstrated here. For instructions on installing Docker on other operating sys-
tems and cloud environments, see the following Docker installation procedures:

e/

o8

Docker Containers

= Install Docker on Mac OS X: Using Mac OS X 10.6 or later, the pro-
cedure described at this location uses an ISO image containing the Boot-
21)Ockert001(https://github.com/boot2docker/boot2docker/re1eases)
to create a lightweight Linux virtual machine that runs in VirtualBox on

the Mac:

https://docs.docker.com/installation/mac/

= Install Docker on Microsoft Windows: For Windows 7.1 or 8 systems
(and possibly others), you can use the procedure described at this URL if
your computer supports hardware virtualization. Again, Docker only runs
natively in Linux, so this procedure uses the Boot2Docker tool to create a
Linux virtual machine in which you can try out Docker:

https://docs.docker.com/installation/windows/

= Install Docker on CentOS: Running Docker on CentOS gives you the
nearest experience to Docker on Red Hat Enterprise Linux without having
to pay for a subscription. Keep in mind that CentOS comes with no guaran-
tees and may lag behind RHEL in features and security patches. Go here to
install Docker on CentOS:

https://docs.docker.com/installation/centos/

= Install Docker on Debian: Go here for instructions on installing Docker
on Debian GNU/Linux systems:

https://docs.docker.com/installation/debian/

= Install Docker on SUSE: Both openSUSE and SUSE Linux Enterprise
procedures for installing Docker are described in this location:
https://docs.docker.com/installation/SUSE/

If the operating system you want to use is not listed here, see the Docker instal-
lation page (https://docs.docker.com/installation/) for instructions related to
installing Docker on other operating systems. If you want to put Docker together
yourself for your own operating system, see the Docker Binaries page (https://

docs.docker.com/installation/binaries/)

One type of Linux system that has not been described yet for using Docker is
the specialized Linux systems designed specifically for running containers. The
next section describes how to set up Project Atomic and CoreOS operating systems
to do the task they were created for: provide a run-time environment specifically for
containers.

https://github.com/boot2docker/boot2docker/releases
https://docs.docker.com/installation/mac/
https://docs.docker.com/installation/windows/
https://docs.docker.com/installation/centos/
https://docs.docker.com/installation/debian/
https://docs.docker.com/installation/SUSE/
https://docs.docker.com/installation/
https://docs.docker.com/installation/binaries/
https://docs.docker.com/installation/binaries/

CHAPTER 2 Setting Up a Container Run-Time Environment

CONFIGURING A CONTAINER-STYLE LINUX SYSTEM
FOR DOCKER

It makes no sense to containerize applications, making them small and efficient,
if you end up deploying those containers in slow, bloated operating systems. In
the evolving container model, as the executables, libraries, and other components
an application needs to run are in its container, host operating systems are being
slimmed down to little more than what is needed to run those containers.

Project Atomic and CoreOS are two projects aimed at producing operating sys-
tems tuned specifically for running containers. While the operating systems can
run directly on hardware, they can also run as virtual machines on public clouds
(such as Amazon EC2 or Google Compute Engine), private virtualization platforms
(provided by OpenStack, VMware, or Red Hat Enterprise Virtualization), or indi-
vidual computers (such as a Linux KVM host).

Likewise, there are different methods of installing and configuring Project
Atomic and CoreOS operating systems. Project Atomic offers an installer ISO that
is similar to installing a Fedora or RHEL system, where you click through steps
for configuring networks, partitioning disks, and adding users. CoreOS provides an
ISO that can simply copy its entire image to a selected partition and boot up within
minutes.

When deploying to cloud environments, tools such as cloud-config (CoreOS)
and cloud-init (Atomic and others) can be used to configure cloud images as you
need them.

Configuring an Atomic Host for Docker

The Atomic Project (www.projectatomic.io) is an RPM-based Linux distribution
builder, designed specifically for deploying and managing containers. There are
versions of Fedora, Red Hat Enterprise Linux, and CentOS that are available to run
as an Atomic host.

Atomic Host systems are offered in several different forms to make it easy for
you to use in different environments. You can download an Atomic qcow2 image
and use cloud-init to essentially inject configuration information (user accounts,
hostnames, configuration files, and so on) to configure it. Vagrant files for quickly
spinning up CentOS Atomic VMs are available for CentOS Atomic. The RHEL
Atomic and Fedora Atomic projects offer installation ISOs you can use to step
through a traditional installer to configure an Atomic system.

ed

http://www.projectatomic.io

10 Docker Containers

Here are the links to where you can find images to download for different
Atomic host versions:

® Fedora Atomic (https ://getfedora. org/cloud/download): From the
Download Fedora Cloud page, there is a tab for Atomic Images. Select the
Atomic ISO Image to download the image and install the Fedora Atomic sys-
tem using a normal Fedora installer (anaconda). For other formats of Fedora
Atomic, Atomic Images in qcow2 (for OpenStack) and raw formats are avail-
able for download. You also can launch Atomic images from Vagrant for
VirtualBox and KVM (libvirt) environments. Finally, Atomic images also are
available for Amazon EC2 cloud deployment.

® CentOS Atomic (http ://buildlogs.centos. org/centos/7/isos/x86_64/):
Images in gqcow2 format are available from this site. Likewise, vagrant boxes
are available that you can use to immediately spin up a CentOS Atomic VM
if your system has vagrant installed (https://www.vagrantup.com/). The
procedure used here is similar to what you use to deploy a RHEL or Fedora
Atomic gcow2 image.

= RHEL Atomic (https ://access.redhat. com/downloads): You need a
Red Hat subscription (regular or evaluation) to download an RHEL Atomic
image. From the Red Hat downloads page, select Red Hat Enterprise Linux.
Then, under Product Variant, select Red Hat Enterprise Linux Atomic host.
RHEL Atomic images are available in different formats (qcow2, ova, vhd,
and installation ISO) that are suitable for different platforms (cloud, Red Hat
Enterprise Virtualization, Microsoft Hyper-V, and VMware vSphere).

For more ways to get and install Project Atomic distributions, see the Proj-
ect Atomic Quick Start Guide (www.projectatomic.io/docs/quickstart). For this
example, | set up a Fedora Atomic Host, using the Fedora 22 installer. The same
basic procedure can be used to configure RHEL from an Atomic installation 1SO.

Configuring Fedora Atomic Host for Docker

Like CoreOS, Atomic Host systems are preconfigured to run Docker. To get started
setting up a Fedora Atomic Host in this procedure, download the Fedora Atomic
ISO installation image. You can burn that ISO to a CD or DVD and install it directly
to computer hardware or use it on almost any system that supports virtualization
(such as a Linux KVM system, using the virt-manager tool).

1. Download Fedora Atomic ISO Image: Download the latest Fedora
Atomic installer image. Look for the official Fedora 22 or later version. [
used the following:

http://buildlogs.centos.org/centos/7/isos/x86_64/
https://www.vagrantup.com/
https://access.redhat.com/downloads
http://www.projectatomic.io/docs/quickstart
https://getfedora.org/cloud/download

CHAPTER 2 Setting Up a Container Run-Time Environment

https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud_
Atomic/x86_ 64/iso/Fedora-Cloud Atomic-x86_ 64-22.iso

2. Start the Fedora Atomic ISO Image: Start up the installer either physi-
cally (from the image burned to a CD in your drive) or as a virtual machine
(using virt-manager, OpenStack, or some other tool for managing VMs). I rec-
ommend you have at least a 10GB disk partition to devote to Fedora Atomic,

just to try it out.

3. Make installation selections: Step through the installation screens, provid-
ing information on how you want to configure your system. Most of the fea-
tures are set from the Installation Summary screen, as shown in Figure 2.1.

On the Installation Summary screen, do the following:

LOCALIZATION
KEYBOARD
English (US)
TIME & DATE
Americas/New York timezone

SYSTEM

INSTALLATION DESTINATION
)] Automatic partitioning selected

fedora’

LANGUAGE SUPPORT
English (United States)

NETWORK & HOST NAME
Wired (ens3) connected

‘ Quit |‘ Begin Installation |

FIGURE 2.1 Identify disk partitions and networking settings from the Installa-

tion Summary screen.

= Keyboard: Choose your keyboard by language and location.

= Time & Date: Set date, time, and time zone. By selecting Network Time
(the default) you have your system synced with an NTP time server.

= Installation Destination: Select this item and either take automatic disk
partitioning or choose partitioning yourself.

= Language Support: Choose your language.

3

https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud_Atomic/x86_64/iso/Fedora-Cloud_Atomic-x86_64-22.iso
https://download.fedoraproject.org/pub/fedora/linux/releases/22/Cloud_Atomic/x86_64/iso/Fedora-Cloud_Atomic-x86_64-22.iso

3

Docker Containers

= Network & Host Name: Networking is turned on automatically
(attempting to use DHCP to get address information). Select this item if
you want to disable networking or set your host name. Select Done when
you are finished.

4. Select Begin Installation: No changes have been made to your disk parti-
tion yet. If all your settings are done, select Begin Installation.

5. Set root password and user: As the installer is working, select ROOT
PASSWORD and set the root password. Then select USER CREATION
and add a user account (set a password for the user). You can also decide
whether you want the user to have sudo privilege (select Make This User
Administrator). Select Done and return to the Configuration screen and wait
for installation to finish up.

6. Reboot: When installation is complete, select to reboot the system so you
can start using your Fedora Atomic Host.

Check Out Your Fedora Atomic Host

You don’t need to add any software to start using Docker. In fact, you can’t even
add software to an Atomic host using traditional rpm and yum software packaging
tools. To add software to the system you have to add regular containers (to run
applications) or super privileged containers (to add tools to access the host system
directly).

What you can do immediately after rebooting your Fedora Atomic Host is start
using Docker. The docker package should already be installed, with the Docker
service started and enabled.

Updates to the Fedora Atomic system are performed by doing atomic upgrades
using the atomic command. I recommend you run the following atomic command to
make sure you have the latest version of Docker and related software available on
your system:

atomic host upgrade

Once the software is upgraded, reboot for the latest atomic upgrade to take
effect. You can now start setting up a Docker registry, as described in Chapter 3, or
start using docker commands, as shown in Chapter 4, “Running Container Images.”

Configuring CoreOS for Docker

CoreOS offers several ways of getting a running CoreOS system going. In this exam-
ple, I use a CoreOS live media. This image can be burned to CD and booted up

CHAPTER 2 Setting Up a Container Run-Time Environment

directly on hardware or launched in a tool that can install a virtual machine (such
as the Virtual Machine Manager tool available in many Linux systems).

The following section describes how to use the CoreOS ISO live media to boot
to a live CoreOS system, install CoreOS to hard disk, and then boot the system from
hard disk so you can start using Docker.

Go through the following steps to get, boot, and install CoreOS from a CoreOS
live media ISO image:

1. Get CoreOS: To get CoreOS installation media, go to the following URL and
select Download Stable ISO:

https://coreos.com/docs/running-coreos/platforms/iso/

2. Prepare installation medium: Make the CoreOS live medium available to
use to install CoreOS to hard disk. You can burn it to a CD, point to it from a
VM installation application (such as Virtual Machine Manager in Linux), or
copy to a PXE server and boot it from a network interface card.

3. Boot install medium: If you are installing to a virtual machine on a local
system or cloud environment, identify the amount of disk space you want
the new CoreOS system to have available. When CoreOS boots up, the disk
should be available as a device such as /dev/sda or /dev/sdb.

4. Use live CoreOS: CoreOS boots up directly to a shell prompt as the user-
name core (which has sudo privilege). CoreOS comes with two user accounts
configured by default: root and core. The CoreOS system is running live (not
yet installed) at this point. Do the following to prepare for installation.

5. Create encrypted password: Create an encrypted password to use with the
core user account. For example, you can use the openss1 command to create
an md5crypt password (that tool comes with CoreOS). When prompted, type
the password you want to encrypt (twice):

openssl passwd -1

Password: **%kkkkk

Verifying - Password: ***#kx%%
$15f6e4jy09$1lbch8VI230U2cW5grkkss .

6. Create a cloud-config file: Create a cloud-config file to add user password
and other configuration information to CoreOS. See “Using Cloud-Config”
(https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/
cloud-config.md) for details about the contents of a cloud-config file. For this
example, create a file called cloud-config.yaml that contains the following
content (replace the passwd string with the one you generated in the previous

step):

33

https://coreos.com/docs/running-coreos/platforms/iso/
https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config.md
https://github.com/coreos/coreos-cloudinit/blob/master/Documentation/cloud-config.md

3

Docker Containers

#cloud-config
users:
- name: core
passwd: 1f6e4jyo9$1lbch8vVJ230U2cW5grkkss.
groups:
- sudo
- docker

7. Run the coreos-install seript: Run the following command to install the
CoreOS image to the disk device you identified earlier (here I use /dev/sda

as the disk drive):

$ sudo coreos-install -d /dev/sda -c cloud-config.yaml
Checking availability of "local-file"

Fetching user-data from datasource of type "local-file"
Downloading the signature for http://stable.release.core-os.net...

Downloading, writing and verifying coreos_production image.bin.bz2...

Success! CoreOS stable 647.0.0 is installed on /dev/sda

8. Reboot: After the image has completed installing reboot the system:

$ sudo reboot

9. Log in: After CoreOS reboots, log in using core as the user name along with
the password you encrypted and assigned to that user earlier.

At this point, you can set up a Docker registry in Chapter 3 or start using docker
commands, as shown in Chapter 4.

SUMMARY

Docker is available with a variety of different Linux systems. Besides using stan-
dard Linux systems, such as Ubuntu, Fedora, Red Hat Enterprise Linux, or Cen-
tOS, for running Docker, specialty Linux systems tuned specifically for container
deployments are also available. By running those systems as virtual machines, you
can start using Docker on Microsoft Windows or Mac OS X systems as well.

This chapter described how to configure Ubuntu, Fedora, and Red Hat Enter-
prise Linux systems to be ready to run Docker. It also described how to get and
configure specialty Linux distributions such as the Atomic Project and CoreOS so
you can use them to deploy Docker.

CHAPTER 3

Setring Up a Private Docker
Reqistry

IN THIS CHAPTER:
= Create a private Docker registry in Fedora or Ubuntu
= Use the docker-registry package
= Use the registry container image

= Understand the Docker image namespace

One of the foundations of Docker is the ability to request to use an existing con-
tainer image and then, if it is not already on your system, grab it from somewhere
and download it to your system. By default, “somewhere” is the Docker Hub Regis-
try (nttps://hub.docker.com). However, there are ways to configure other locations
from which you can pull docker images. These locations are referred to as regisiries.

By setting up your own private registry, you can keep your private images
to yourself. You can also save time by pushing and pulling your images locally,
instead of having them go out over the Internet.

Setting up a private registry is simple. It requires getting the service (by install-
ing a package or using the registry Docker container image), starting the service,
and making sure the proper port is open so the service is accessible. Using reg-
istries requires a bit more explanation than setting up one, especially when you
consider that features are added to Docker every day that are changing how Docker
uses and searches registries for images.

In particular, the way that Docker uses the image namespace is changing to be
more adaptable. If your location is disconnected from the Internet, with the Docker
hub inaccessible, features are being developed to allow you to use a different

35

https://hub.docker.com

36

Docker Containers

default registry. Likewise, new features let you add registries to your search order,
much the same way you can have an Internet browser look at different DNS servers.

This chapter describes how to set up a private Docker registry on several differ-
ent Linux systems. The first examples are simply to help you get a Docker registry
up and running quickly to begin testing or learning how to use registries. After that,
I describe some techniques for making a Docker registry more production ready.

Later in the chapter, I tell you how to adapt the way your local Docker service
uses Docker registries, including how to replace Docker.io as the default registry
and add other registries to the search path.

Having a local registry in place is not required to use Docker. However, as
you build, save, and reuse images throughout this book, you may find it
handy to have a way to store your images (especially private ones) without
pushing them out to the public Docker Hub Registry. That said, you can
skip this chapter for now if you want to learn more about using containers
before you jump into setting up a Docker registry.

GETTING AND STARTING A PRIVATE DOCKER REGISTRY

You can run a Docker registry on your Linux system in a number of different ways
to store your own Docker images. For Linux distributions that include a docker-
registry package (such as Fedora and Red Hat Enterprise Linux), you can install
that package and start up the service. For other distributions, you can run the offi-
cial registry container image from Docker.io to provide the service.

See the section later in the chapter that corresponds to the Linux system you are
using for instructions on installing and running a Docker registry on that system.
For Fedora, I illustrate how to use the docker-registry package, while for Ubuntu I
show how to use the registry container.

Here are a few general things you should know about setting up a Docker
registry:

= Install anywhere: Like most servers, the Docker registry does not need
to be installed on client systems (that is, where you run your docker com-
mands). You can install it on any Linux system that your clients can reach
over a network. That way, multiple Docker clients can access your Docker

registry.

CHAPTER 3 Setting Up a Private Docker Registry

= Open port: If your Docker registry is not on the client, you must be sure
that TCP port 5000 is not being blocked by the firewall where the Docker
registry is running.

= Provide space: If you push a lot of images to your registry, space can fill up
quickly. For the docker-registry package, stored images are contained in the
/var/lib/docker-registry directory. Make sure you configure enough space
in that directory to meet your needs, or you can configure a different direc-
tory, if you want.

Setting Up a Docker Registry in Fedora

Follow these instructions to install and start up a Docker registry on a Fedora sys-
tem. At the moment, this procedure creates a version 1 Docker registry from the
docker-registry RPM package. Although this procedure was tested on Fedora, the
same basic procedures should work for the following Linux distributions:

= Fedora 22 or later
= Red Hat Enterprise Linux 7.1 or later
= CentOS 7.1 or later

The docker-registry package is not included in the Atomic project Fedora,
RHEL, and CentOS distributions. So you must use the registry container,
described later for setting up a Docker registry in Ubuntu, to get that feature on an
Atomic Linux system.

E% During the following procedure, you are going to use image tags to identify

the registry where you intend an image to be stored. For a more in-depth
look at tags, refer to Chapter 6, “Tagging Images.” To get docker-registry
to work, you may need to edit the usr/lib/system/docker-registry.
service and remove - -debug.

1. Install docker-registry: When you install the docker-registry package in
Fedora, it pulls in more than a dozen dependent packages as well. To install
those packages, type the following:

yum install docker-registry

Transaction Summary

37

38

Docker Containers

Install 1 Package (+15 Dependent packages)
Total download size: 6.8 M

Installed size: 39 M

Is this ok [y/d/N]: y

List docker-registry contents: Use the rpm command to list the contents of
the docker-registry file in Fedora. There are nearly 200 files (mostly python
code in the package). This command shows you only documentation and con-
figuration files (I describe how to configure them later):

rpm -ql docker-registry | grep -E "(/etc) | (/usr/share) | (systemd)"
/etc/docker-registry.yml

/etc/sysconfig/docker-registry
/usr/lib/systemd/system/docker-registry.service
/usr/share/doc/docker-registry
/usr/share/doc/docker-registry/AUTHORS
/usr/share/doc/docker-registry/CHANGELOG.md
/usr/share/doc/docker-registry/LICENSE
/usr/share/doc/docker-registry/README.md

Open firewall: If your Fedora system is running a firewall that blocks
incoming connections, you may need to open TCP port 5000 to allow access
to the Docker registry service. Assuming you are using the firewall service
in Fedora, run these commands to open the port on the firewall (immediately
and permanently) and see that the port has been opened:

firewall-cmd --zone=public --add-port=5000/tcp

firewall-cmd --zone=public --add-port=5000/tcp --permanent
firewall-cmd --zone=public --list-ports

5000/tcp

Start the docker-registry service: If you want to do any special configu-
ration for your Docker registry, refer to the next sections before starting the
service. For a simple docker-registry installation, however, you can sim-
ply start the service and begin using it, as follows (as the status shows, the
docker-registry service is active and enabled):

systemctl start docker-registry
systemctl enable docker-registry
Created symlink from
/etc/systemd/system/multi-user.target.wants/docker-registry.
service
to /usr/lib/systemd/system/docker-registry.service.
systemctl status docker-registry
docker-registry.service - Registry server for Docker
Loaded: loaded (/usr/lib/systemd/system/docker-registry.
service;enabled)
Active: active (running) since Mon 2015-05-25 12:02:14 EDT; 42s ago

CHAPTER 3 Setting Up a Private Docker Registry 19

Main PID: 5728 (gunicorn)
CGroup: /system.slice/docker-registry.service
-5728 /usr/bin/python /usr/bin/gunicorn --access-logfile
- --max-requests 100 --graceful-timeout 3600-t 36...

Get an image: A common image used to test Docker is the hello-world
image available from the Docker Hub Registry. Run that image as follows
(which pulls that image to the local system and runs it):

docker run --name myhello hello-world

Unable to find image ‘hello-world:latest' locally

latest: Pulling from docker.io/hello-world

91c95931e552: Download complete

a8219747bel0: Download complete

Hello from Docker.

docker.io/hello-world:latest: The image you are pulling has been
verified.

Allow access to registry: The docker clients in Fedora and Red Hat Enter-
prise Linux require that you either obtain a certificate from the registry or
you identify the registry as insecure. For this example, you can identify the
registry as insecure by editing the /etc/sysconfig/docker file and creating
the following lines in that file:

ADD REGISTRY='--add-registry localhost:5000'
INSECURE_REGISTRY='--insecure-registry localhost:5000'

After that, restart the local Docker service:

systemctl restart docker

Tag the image: Use docker tag to give the image a name that you can use
to push it to the Docker registry on the local system:
docker tag hello-world localhost:5000/hello-me:latest

Push the image: To push the hello-world to the local Docker registry, type
the following:

docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (1 tags)

Pushing tag for rev [91c95931e552] on
{http://localhost:5000/vl/repositories/hello-me/tags/latest}

Pull the image: To make sure you can retrieve the image from the regis-
try, in the second Terminal, remove the image from your system, then try to
retrieve it from your local registry:

40

Docker Containers

docker rm myhello

docker rmi hello-world localhost:5000/hello-me:latest

docker pull localhost:5000/hello-me:latest

Pulling repository localhost:5000/hello-me

91c95931e552: Download complete

a8219747bel0: Download complete

docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/hello-me latest 91c¢95931e552 5 weeks ago 910 B

In the example just shown, the image was successfully pushed to and pulled
from the local repository. At this point, you have these choices:

= [f you want to learn more about how the Docker registry works and possibly
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

= If you are ready to start using Docker containers, skip ahead to Chapter 4,
“Running Container Images.”

The next section describes how to set up a Docker registry in Ubuntu.

Setting Up a Docker Registry in Ubuntu

Instead of installing a Docker registry from a software package, you can download
the registry container from the Docker Hub Registry and use that to provide the
Docker registry service. This is a quick and easy way to try out a Docker registry,
although the default registry doesn’t scale well for a production environment and is
more difficult to configure.

. NTE

Several versions of the registry are available. For this example, | use
registry:latest, which results in an image of a version 1 Docker registry.
By the time you try this, there may be a stable version 2 available. | recom-
mend you refer here for information on running the version 2 Docker regis-

try:https://docs.docker.com/registry/.

Although this procedure was tested on Ubuntu 14.04, the same basic procedure
should work on any Linux system running the Docker service.

To get started here, install Docker as described in Chapter 2, “Setting Up a
Container Run-Time Environment,” and start up the Docker service. I suggest you

https://docs.docker.com/registry/

CHAPTER 3 Setting Up a Private Docker Registry 4]

open two Terminal windows (shells) to do this procedure. Open one where you plan
to run the registry service, so you can watch it in progress as you start up and test it.
Open another Terminal, from which you can push and pull images.

1. Get the registry image: Run the docker pull command as follows to pull
the registry image from the Docker Hub Registry (see Chapter 5, “Finding,
Pulling, Saving, and Loading Container Images,” for a description of docker
pullf
$ sudo docker pull registry:latest
Pulling repository registry
204704ce3137: Download complete
e9e06b06el4c: Download complete

2. Run the registry image: To try out the Docker registry, run the image in
the foreground so you can watch messages produced as the container image
is running (see Chapter 4 for a description of docker run). This command
starts the latest registry image, exposes TCP port 5000 on the system so
clients outside the container can use it, and runs it as a foreground process
in the first terminal:

$ sudo docker run -p 5000:5000 registry:latest

[2015-05-25 21:33:35 +0000] [1] [INFO] Starting gunicorn 19.1.1
[2015-05-25 21:33:35 +0000] [1] [INFO] Listening at:
http://0.0.0.0:5000 (1)

[2015-05-25 21:33:35 +0000] [1] [INFO] Using worker: gevent

3. Get an image: To test that you can push and pull images, open a second
Terminal window. A common image used to test Docker is the hello-world
image available from the Docker Hub Registry. Run that image as follows
(which pulls that image to the local system and runs it):

$ sudo docker run --name myhello hello-world

Pulling repository hello-world

91c95931e552: Download complete

a8219747bel0: Download complete

Hello from Docker.

This message shows that your installation appears to be working
correctly.

4. Tag the image: Use docker tagto give the image a name that you can use
to push it to the Docker registry on the local system:
$ sudo docker tag hello-world localhost:5000/hello-me:latest

42

Docker Containers

5.

Push the image: To push the hello-world to the local Docker registry, type
the following:

$ sudo docker push localhost:5000/hello-me:latest
The push refers to a repository [localhost:5000/hello-me] (len: 1)

Pushing tag for rev [91c95931e552] on
{http://localhost:5000/vl/repositories/hello-me/tags/latest}

Check the Docker registry log messages: If the image was pushed to the
registry successfully, in the first Terminal you should see messages showing
PUT commands succeeding. For example:

172.17.42.1 - - [25/May/2015:22:12:37 +0000] "PUT
/vl/repositories/hello-me/images HTTP/1.1" 204 - "-" "docker/1.0.1
go/gol.2.1 git-commit/990021la kernel/3.13.0-24-generic os/linux
arch/amde4"

Pull the image: To make sure you can retrieve the image from the registry,
in the second Terminal remove the image from your system, and then try to
retrieve it from your local registry:

$ sudo docker rm myhello

$ sudo docker rmi hello-world localhost:5000/hello-me:latest

$ sudo docker pull localhost:5000/hello-me:latest

Pulling repository localhost:5000/hello-me

91c95931e552: Download complete

a8219747bel0: Download complete

docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/hello-me latest 91c95931e552 5 weeks ago 910 B

Run the docker registry again: Instead of running the registry image
in the foreground, holding the Terminal open, you can have it run more per-
manently in the background (-a). To do that, close the running registry con-
tainer and start a new image as follows:

$ sudo docker run -d -p 5000:5000 registry:latest

The Docker registry is running in the background now, ready to use. At this

point, you have these choices:

If you want to learn more about how the Docker registry works and possibly
modify its behavior, skip to the “Configuring a Private Docker Registry” sec-
tion later in this chapter.

If you are ready to start using Docker containers, skip ahead to Chapter 4.

The next section describes how to set up a Docker registry in other Linux

distributions.

http://localhost:5000/v1/repositories/hello-me/tags/latest

CHAPTER 3 Setting Up a Private Docker Registry

CONFIGURING A PRIVATE DOCKER REGISTRY

The default registries that come in the docker-registry package or the registry
container are fine if you just want to try out a Docker registry. If you want to use a
registry in a production environment, however, you need a deeper understanding of
how to configure your Docker registry to better suit your needs.

The following sections describe how to modify the Docker registry software for
both the docker-registry package and using the registry container.

Configuring the docker-registry Package

To better understand how the docker-registry package software works, start with
how the registry is set to run by default. When the docker-registry service starts up
in Fedora or Red Hat Enterprise Linux, it runs the gunicorn process. There is one
main gunicorn process and four additional gunicorn workers running, by default,
to provide the service.

From a full ps output the gunicorn processes; you can see the options set for
them:

ps -ef | grep gunicorn

00:00:00 /usr/bin/python /usr/bin/gunicorn --access-logfile -
--max-requests 100 --graceful-timeout 3600 -t 3600 -k gevent -b
0.0.0.0:5000 -w 4 docker registry.wsgi:application

Here’s what you can learn from this command line:

= —-access-logfile: Access to the docker-registry service is logged to any file
you set. In this case, however, the log file is set to a single hyphen (-), so
access messages are simply sent to standard output (where they are picked
up by the systend journal and can be viewed by the journalct1l command).

= —-max-requests 100: Sets the maximum number of requests that a
gunicorn daemon can accept to 100. After that, the worker is restarted.

® --graceful-timeout 3600: Gives the gunicorn worker 3600 seconds (6
minutes) to finish handling a request once it has been sent a restart signal.
If it has not completed what it is doing by that time, it is killed.

® -t 3600: If the gunicorn worker is silent for more than 3600 seconds
(6 minutes), it is killed and restarted.

= -k gevent: Sets the type of gunicorn worker to gevent (an asynchronous type
of worker based on Greenlets).

43

44 Docker Containers

= -b 0.0.0.0:5000: Sets the worker to bind on all IP addresses on the system
(0.0.0.0) on port 5000. This allows docker clients to connect to the Docker

registry through any external network interface on the system via TCP port
5000.

= -w 4: Sets the number of worker processes to 4 (above the original gunicorn
process).

= docker_registry.wsgi:application: Runs the process with the Docker reg-
istry wsgi application.

To change the behavior of the docker-registry service, you can edit the /etc/
sysconfig/docker-registry file. Here is how that file is set by default in Fedora:

The Docker registry configuration file
DOCKER_REGISTRY CONFIG=/etc/docker-registry.yml

The configuration to use from DOCKER_REGISTRY CONFIG file
SETTINGS FLAVOR=local

Address to bind the registry to
REGISTRY_ ADDRESS=0.0.0.0

Port to bind the registry to
REGISTRY_ PORT=5000

Number of workers to handle the connections
GUNICORN_WORKERS=4

In the docker-registry file, you can do such things as have the Docker registry
listen only on a particular IP address (by default, REGISTRY_ADDRESS=0.0.0.0
listens on all addresses). You can change the port of the service to something other
than TCP port 5000 or set the number of gunicorn workers to something other
than 4.

The /etc/docker-registry.yml file is set as the Docker registry config file.
SETTINGS_FLAVOR=local tells the config file to include common variables
and then set the directory /var/1ib/docker-registry for local storage use. In the
/etc/sysconfig/docker-registry file, the common variables you can set include
the following:

= LOGLEVEL: By default, the log level is set to info. This can also be set to

debug, notice, warning, warn, err, error, crit, alert, emerg, or panic.
= DEBUG: Set to either true or false to have debugging turned on or off.

= STANDALONE: If set to true (the default), the registry acts as a standalone
registry and doesn’t query the Docker index.

CHAPTER 3 Setting Up a Private Docker Registry

= INDEX_ENDPOINT: If the local registry is not set to run in standalone,
the default, the index endpoint is set to https://index.docker. io.

= STORAGE_REDIRECT: By default, this is disabled.

s DISABLE_TOKEN_AUTH: If the service is not in standalone, this vari-
able is enabled to allow token authentication.

= PRIVILEGED_KEY: By default, no privileged key is set.

= SEARCH_BACKEND: By default, there is no search backend.

= SQLALCHEMY_INDEX_DATABASE: By default, the SQLite search
backend database is set to: sqlite:////tmp/docker-registry.db.

If you want to use a setting flavor other than local, look in the /etc/docker-
registry.yml file. Different setting flavors can be used for Ceph Object Gateway
configuration, Google Cloud Storage configuration, OpenStack Swift Storage, and
others.

Other variables you can set that can be picked up by the gunicorn process,

include the following. Notice that some of these values show up on the gunicorn
command line:

= GUNICORN_GRACEFUL_TIMEOUT: Sets the timeout for gracefully
restarting workers (in seconds).

= GUNICORN_SILENT_TIMEOUT: Sets the timeout for restarting workers
that have gone silent (in seconds).

= GUNICORN_USER: Runs the gunicorn process as the user set here,
instead of running it with root user privileges.

= GUNICORN_GROUP: Runs the gunicorn process as the group set here,
instead of running it with root group privileges.

= GUNICORN_ACCESS_LOG_FILE: Sets the name of the log file to direct
messages to those that are related to clients trying to access the service. By
default, messages are sent to the systemd journal through standard output.

= GUNICORN_ERROR_LOG_FILE: Sets the name of the log file to direct
messages to those that are related to error conditions. By default, messages
are sent to the systemd journal through standard output.

= GUNICORN_OPTS: Identifies any extra options you want to pass to the

gunicorn process.

After you set or change /etc/sysconfig/docker-registry file variables, restart
the docker-registry service for these features to take effect.

45

https://index.docker.io

46

Docker Containers

Configuring the registry Container

Instead of trying to configure the registry container image by modifying the con-
tents of the running container, the creators of that container image suggest you
rebuild the registry container image yourself. In particular, you probably want to
add security measures to your registry and more flexible storage features.

So far, this book has not yet introduced you to the concepts you need to build
your own containers. However, after you have become familiar with the process, if
you decide you want to build a custom version 1 registry container, I recommend
you refer to the docker-registry GitHub page:

https://github.com/docker/docker-registry

From the docker-registry GitHub page, you can find information on how
to build a version 1 registry image and links to the Dockerfile used to build it
(https://github.com/docker/docker—registry/blob/master/Dockerfile)

By the time you read this, Docker registry version 2 may be ready to use. Refer
to the Docker registry 2.0 page (https://docs.docker.com/registry) for details on
how to deploy and configure this newer version of the Docker registry.

UNDERSTANDING THE DOCKER IMAGE NAMESPACE

Similar to the way that the Internet uses the Domain Name System (DNS) to have
a unique set of names refer to all the host computers in the world, Docker set out
to make a namespace to allow a unique way to name every container image in the
world. In that vision, a docker run someimage would result in the exact same
someimage being pulled to the local system and run, no matter where your location
or what type of Linux system you run it on.

For some potential Docker users, this presents problems. Some Docker instal-
lations are disconnected from the Internet. Security requirements of others allow
them to search and pull images only from registries that they own themselves.
These issues would prevent a pure Docker system from being installed in their
environments.

There has been pressure to change some aspects of how the Docker image
namespace works, so you can expect that story to evolve over time. As things stand
today, however, you should know that a system running Docker purely from the
upstream Docker Project code has the following attributes:

= Search: An unpatched Docker system today only searches the Docker Hub
Registry when you run a docker search command.

https://github.com/docker/docker-registry
https://github.com/docker/docker-registry/blob/master/Dockerfile
https://docs.docker.com/registry

CHAPTER 3 Setting Up a Private Docker Registry

= Blocking registries: Docker does not have a feature to block the Docker
Hub Registry. So pulling an image without identifying a specific registry
causes Docker to search for that image on the Docker Hub Registry (if it’s
not already on the local system).

= Changing the default registry: Docker doesn’t have a feature for changing
your default registry to anything other than the Docker Hub Registry.

= Push confirmation: Docker does not ask you to confirm a push request
before it begins pushing an image.

Changes to some of these features are being discussed in the Docker commu-
nity. Patches to change how some of these features work are included in Red Hat
Enterprise Linux, Fedora, Atomic project, and related Linux distributions. For
example, the current version of the docker package in RHEL Atomic (docker-1.8)
includes some of those features just mentioned.

For example, here are some settings from the /etc/sysconfig/docker file on an
RHEL Atomic system that represent features that have not yet been added to the
upstream Docker Project:

ADD REGISTRY='--add-registry registry.access.redhat.com'
BLOCK REGISTRY='- -block-registry'
INSECURE_REGISTRY='--insecure-registry'

The ADD_REGISTRY variable lets you add a registry to use for docker search
and docker pull commands. For users of Red Hat distributions, this puts Red Hat’s
own registry (registry.access.redhat .com) before the Docker Hub Registry, so the
user can know he is searching and pulling from that registry first. A user could also
replace that registry with his own registries or simply add his own registry in front
of Red Hat’s registry.

Using the ADD_REGISTRY variable to this file puts any registry you add at
the front of the list searched. However, if a requested image is not found in any of

the registries you add, the Docker Hub Registry still is searched next. To change
that behavior, you need to use the BLOCK_REGISTRY variable.

By setting the BLOCK_REGISTRY variable, you can block access to any regis-
try you choose. Of course, at the moment only the Docker Hub Registry is searched
by default. So, to block the Docker Hub Registry from search and pull requests, you
could use the following line:

BLOCK _REGISTRY='--block-registry docker.io'

With that set, any requests for images that could not be found in registries set

with ADD_REGISTRY variables would fail to be found, even if they existed at the

47

44

Docker Containers

Docker Hub Registry. In this way, only registries that you specifically included are
searched for images by the users of this particular docker installation.

The INSECURE_REGISTRY="--insecure-registry’ variable does not explicitly
allow or disallow a registry. This is a specific case where someone wants to use
the local Docker client to pull an image from a registry that provides HTTPS com-
munication, but the client doesn’t have a certificate from that registry to verify its
authenticity. Uncommenting the variable and adding the name of the insecure reg-
istry to that line allows the docker command to pull from that registry without full
authorization. For example:

INSECURE_REGISTRY='--insecure-registry myreg.example.com'

Again, this and other features just described are not part of the upstream
Docker Project. But if you need these features for your installation, you can change
how access to registries works by default in Docker using these features that are
currently in Fedora, RHEL, CentOS, and related Atomic project systems.

SUMMARY

Setting up a private Docker registry gives you the ability to push and pull images
without using the public Docker Hub Registry. This chapter described two different
ways of setting up a Docker registry for yourself.

For Linux distributions that have a docker-registry package available (such as
Fedora and Red Hat Enterprise Linux), you can install that package and start up
the docker-registry service using the systemctl command. As an alternative, any
system running the Docker service can pull and run the registry image, available
from the Docker Hub Registry, to offer a private Docker registry.

Besides describing how to set up your own Docker registry, the chapter included
a description of how the Docker image namespace works, with the Docker Hub
Registry as its centerpiece. Proposed modifications to that model have been imple-
mented in Fedora and other Red Hat sponsored operating systems and are being
discussed in the Docker community. These modifications give users the ability to
change which registries are set up to be used with search and pull requests from the
Docker service.

Docker Containers

Parf |}

Working with Individual

Containers

4

This page intentionally left blank

Running Confainer Images

IN THIs CHAPTER:
= Run interactive commands from containers
= Run administrative commands inside a container
= Run services from within a container

= Run privileged containers

Once you have the Docker service installed and running on your local Linux system,
running your first container is simple. To start, you don’t have to have any Docker
formatted images installed on your system. The docker run command goes out and
finds the image for you. For the example, as I'm about to show, you just need a
couple hundred megabytes of disk space and a bit of time to wait for the image to
download.

Every time you run a container image or commit a container to an image, it consumes disk space.

If after running a bunch of containers you begin to get failures from running out of disk space, use
the commands docker rm (to remove containers) and docker rmi (to remove images) to

free some space. See Chapter 11, “Cleaning Up Containers,” for more information.

51

5

Docker Containers

Assuming you have an Internet connection, you could run your first container
as follows:

docker run fedora cat /etc/os-release
Unable to find image 'fedora:latest' locally
00a0c78eeb6d: Pull complete

Status: Downloaded newer image...

NAME=Fedora
VERSION="22 (Twenty Two)"
ID=fedora

Several interesting things are going on with this docker run command. For
example:

= Identify image and command to run: The docker command line says to
find the container image named fedora, download it to the local system, and
then run the cat /etc/os-release command within that container (to check
the operating system release of the software in the container). Because no tag
is added to the end of the image name, :1atest is assumed.

= Find the image: First, Docker looks on the local system for the
fedora:latest image. Since it isn’t there, Docker searches the docker.io reg-
istry, where it finds and downloads the fedora image. If you were using Red
Hat Enterprise Linux, the docker command would check the Red Hat regis-
try before checking the docker.io registry (the Docker Hub Registry).

®* Run the command: In this example, the cat command displays the con-
tents of the /etc/os-release file on your screen. Keep in mind that the con-
tainer has its own file system, so the output tells us that the container was
built from a Fedora 22 system. If this container were run on an Ubuntu or
Red Hat Enterprise Linux system it would yield the same results.

At this point, you have the fedora image on your local system, so the next time
you start a docker run command for that image, you won’t need to download it
again. The command runs from the image you stored locally.

Before going on to try out other docker run commands, keep in mind these dis-
tinctions between images and containers:

= image: This is a permanently stored instance of a container. The docker
images command shows you the images on your system. The docker rmi
image command lets you delete an image. You can assign multiple aliases
(including names and tags) to the same image whenever it is useful. Use the
docker run command to run an image.

CHAPTER 4 Running Container Images

= container: A container is created by running an image. If a container runs
in the background (detached mode), it can keep running after the docker run
command exits. You can see running containers with the docker ps com-
mand. Once a container exits (unless you explicitly remove it), the state of
that container will be saved. You can see saved containers that are no longer
running with the docker ps -a command. You can start a container again
(which consists of the image plus any changes you made to that running
instance) using the docker start container command. You can stop a run-
ning container with docker stop container. Replace container with the
name or container ID of the container created when the image was run.

At this point, run a few commands to get a sense of the results of the container
image you just ran:

docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedora latest 834629358fe2 3 months ago 241.3 MB
docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
a068cd24ab4db fedora:latest cat /etc/os-release a minute ago
Exited (0) a minute ago stoic_carson

The docker images command shows that the fedora image stayed on your
system and is available to run again. Because the container ran and exited after
displaying the output of the cat command, the docker ps command shows that no
containers are currently running. However, docker ps -a shows that the container
is still available to be started again.

Because no name was assigned to the container, Docker randomly assigned a
name (stoic_carson, in this case). To run the container again (which includes the
image, any content you may have added to the container, and any options), you run
the docker start command with either the container ID or name:

docker start -i a068cd24ab4b

NAME=Fedora

VERSION="22 (Twenty Two)"
ID=fedora

VERSION_ID=22

Notice that the docker start command took the state that the container was
in when it exited (either by being stopped or, as in this case, having completed its

53

5

Docker Containers

task) and essentially reran the previous docker run command, including the cat
command option. I only added the -i option, which causes the output from the con-

tainer to be directed to the local shell (STDOUT).

Many options are available with the docker run command. Continuing with the
fedora image, the next sections of this chapter illustrate many of the options avail-
able with the docker run command.

RUNNING CONTAINER IMAGES INTERACTIVELY

When you run a container image, it executes the command you supply (or the one
that is built in) and then exits. If you want the command to continue to run in the
background (as you would for an ongoing service, such as a web server or print
server), you can detach it (-d option) to have it run in the background. If you want
it to run in the foreground, you run it interactively (-i option) and typically open a
terminal session as well (-t option).

Examples of running container images in detached mode are covered in the
“Running Containerized Services” section later in the chapter. The next section
shows examples of running container images interactively.

Starting an Interactive Bash Shell

A common example of an interactive container is one where you open a shell to
work directly inside the container. Running an interactive container image gives
you the opportunity to look around inside the container and change the contents.

The contents of basic container images, such as the fedora image illus-
trated here, have changed several times in the process of writing this book.
If the ps command isn’t in the latest version of the fedora image, type yum
install procps, from within the container, to install it.

In the following example, I run the /bin/bash command to open a shell in the
fedora image. | add the -i and -t options so I can interact with the shell inside the
container from my current terminal session:

docker run -it fedora /bin/bash
bash-4.3#

CHAPTER 4 Running Container Images

Now you have a bash prompt for a shell inside the container. How can you tell
that you are inside the container? If the ps command is included in the container
(as it is here), run it as follows to see what processes are running:

bash-4.3# ps -e

PID TTY TIME CMD
172 00:00:00 bash
7?2 00:00:00 ps

The output from ps -e (which lists all processes in the process table) tells you
a few things. Process ID 1, which is normally init or systemd on a running Linux
system, is the bash command. The only other process currently running in the con-
tainer is the ps command itself. This tells you that you cannot, by default, see the
process table from the host system (which could have hundreds of processes run-
ning). The container has its own process table.

If you are interested in what else is in the container, here are a few other com-
mands you can run:

bash-4.3# rpm -ga | more View list of installed packages
bash-4.3# rpm -ql curl See contents of an installed package
bash-4.3# man curl No way to show man pages

bash: man: command not found

bash-4.3# ip addr show No way to see network interfaces

bash: ip: command not found

So, depending on what the creator of the container image includes, you may
not be able to run all the commands you want to run inside the container. However,
keep in mind that a container is meant to be lean and include only those compo-
nents it needs to run. Otherwise, you might as well just use a whole virtual machine.

But don’t despair. Most base container images from major Linux distributions
include ways to add software to a running container. The fedora base image is no
exception. Assuming the host system has an Internet connection and that Docker
was configured (as it is by default) to provide a private IP address to each container,
you can use the yum or dnf (Fedora and RHEL) or apt-get (Ubuntu and Debian)
commands inside a container to add software.

Continuing from within the running fedora image, you can run yum commands
to add more software to the container. Typically, you should add software when you
first build your images. But to be able to try out the docker run commands in the
rest of this chapter, run this yum command to add the software we use later:

bash-4.3# yum install iproute net-tools bsd-games words \
vsftpd httpd httpd-manual -y

Resolving Dependencies

--> Running transaction check

55

56

Docker Containers

Complete!
bash-4.3# exit

Type exit to end the shell session and leave the container. At this point, [want
to save the container as an image so | can reuse it with other run commands in this
chapter. Here’s what I do:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

88£6c09523b5 fedora:latest "/bin/bash" 3 hours ago
Exited (0) 7 seconds ago trusting heisenberg

docker commit -a "Chris Negus" 88f6c09523b5 testrun
docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedora latest 834629358fe2 1 month ago 422.2 MB
testrun latest 226f7543fl2a 3 minutes ago 431.6 MB

The image named testrun is now available on the local system and ready to be
used in docker run examples that follow.

Playing Some Character-Based Games

I installed the bsd-games package in the testrun image created in the previous
section. The package contains character-based games used on early UNIX systems.
These games provide a fun way to try running some screen-oriented games from a
Docker container.

Because we want the container to run, then go away when the game is over,
I add the --rm option to the command line. This is a good habit to get into, so
you don’t have a lot of unwanted containers filling up disk space after you are done
with them.

Here’s how to play hangman in an interactive terminal from within a container:

docker run -it --rm testrun /bin/hangman

| |

| 0] Guessed: abcdeimnoprstu
VAR

| | Word #: 2

| / Current Average: 7.500
|

Overall Average: 9.000

CHAPTER 4 Running Container Images 07

Word: cambodian
Guess:

You got it!
Another word?

Here’s how to start snake, where you use arrow keys to try to grab dollar signs
and exit before the snake eats you:

docker run -it --rm testrun /usr/bin/snake

Here’s how to start adventure to explore the Colossal Cave:

docker run -it --rm testrun /usr/bin/adventure

Welcome to Adventure!! Would you like instructions?

n

You are standing at the end of a road before a small brick building.
Around you is a forest. A small stream flows out of the building and
down a gully.

building

You are inside a building, a well house for a large spring.

There is a shiny brass lamp nearby.

take lamp

OK

Xyzzy

It is now pitch dark. If you proceed you will likely fall into a pit.
light

Your lamp is now on.

quit

If you want to play adventure for a bit, type compass directions, up, down, or room
names to move around the caves. Pick up items that you find and bring them back to the
building to score points.

Running Administrative Commands Inside a Container

Adding the ip-route and net-tools packages to the testrun image makes commands
such as ip and route available to run inside the container. Here are examples of
running those commands inside that container and what it tells us about that con-
tainer’s network interfaces:

58

Docker Containers

docker run -it --rm testrun /usr/sbin/ip addr show ethO
165: eth0: <NO-CARRIER,BROADCAST,UP,LOWER UP> mtu 1500 gdisc noqueue
state DOWN group default

link/ether 02:42:ac:11:00:24 brd ff:ff:ff:ff:.£f£f:ff

inet 172.17.0.36/16 scope global ethO

docker run -it --rm testrun /usr/sbin/route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref TUse Iface
default 172.17.42.1 0.0.0.0 UG 0 0 0 etho
172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 etho

ip addr show docker0
5: docker0O: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc noqueue
state UP group default
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.1/16 scope global docker0
valid 1ft forever preferred 1lft forever

The first two docker commands shown in the preceding example tell us infor-
mation about networking within the container, while the ip command that follows
shows the dockerQ network interface on the host. Notice that the host’s dockerQ
interface has an IP address of 172.17.42.1/16. By default, the host hands out
addresses via DHCP to containers as they start up. The first ip command run from
testrun has an IP address of 172.17.0.36/16. Each time you run the ip command
in this way you see a new IP address because each image starts a new container.

Notice that the route command shows that the default gateway is 172.17.42.1.
From the ip command run on the host, you can see that 172.17.42.1 is the IP
address of the docker0 interface on the host. Routing through the host computer’s
dockerQ interface is how containers are able to access network resources outside
the local host.

You can add any packages you want in a container, using the yum or apt-get
commands, to extend what commands you can run inside that container. In Chap-
ter 7, “Investigating Containers,” I add more commands and run specific docker
options to further explore inside containers.

While it is nice to be able to run commands interactively from a container, the
real value of containers comes from containerizing more complex applications that
provide one or more services. Many of the more interesting options to docker run
are used when you containerize a persistent service, such as a web server or a file
server. The next section describes how to use docker run to run a service.

CHAPTER 4 Running Container Images

RUNNING CONTAINERIZED SERVICES

Running a service from within a container offers many advantages over just running
the service directly on the host computer. Some of these advantages include

= Configuration: By putting a service inside a container, you can precon-
figure all the executables, libraries, configuration files, and other elements
needed to provide the service, so you don’t have to worry about whether the
host system provides those components. Also, you should be able to easily
move the container to another host if you need to.

= Separation: Because each container has its own separate file system and
network interfaces, you can run as many of the same service containers as
you want. So, in theory, a host could run 100 separate web server containers,
and as long as each container exposed its service on a separate IP address
and/or port, those services wouldn’t conflict with each other.

Options to docker run for starting individual service containers do such things
as tell the command run by the container to run in the background (detached),
attach to storage volumes on the local host system, and open ports on the host to
make services available to the outside world.

To illustrate docker run options that are useful for running services, the next
sections show how to run a basic web server from within a container. This example
is done by running a fedora container on a Fedora Linux distribution.

While in theory, Docker containers are meant to run anywhere, you will find
that not every container runs the same on every system running Docker.
Also, know that the fedora container | ran when | tried this might be dif-
ferent when you try running it. To have the best chance of getting the same
results | do, you could use the same Linux distribution with the same release
of Docker (at least docker 1.7 in Fedora 22) and specifically the same con-
tainer (fedora:22).

Running a Containerized Web Server

The Apache web server is the world’s most popular web server. By default, it serves
web content from the /var/www/ directory and listens on the default TCP ports
80 (HTTP) and 443 (HTTPS). In this example, I want to have the Apache web

server serve content from the /var/www/html directory on the host. So, I create that

5

60

Docker Containers

directory on the host and set the proper SELinux context (needed for a Fedora or
RHEL system). After that, I add an index.htnl file to have some content to display:

mkdir -p /var/www/html

chcon -R -t httpd sys content t /var/www/
echo "Is the Web Server running: YES" > /var/www/html/index.html

Using the testrun image built earlier in this chapter, here is an example of a

docker run command for running the httpd service from that image (before you do
this, make sure no httpd service or other services on the host are listening on ports

80 or 443):

docker run -d -p 80:80 -p 443:443 --name=MyWebServer \
-v /var/www/:/var/www testrun \

/usr/sbin/httpd -DFOREGROUND

Let’s break down the options used in this example (see Table 4.1).

TABLE 4.1 Options Used with docker run Example

-d Detached: Tells the containerized com-
mand to run the container in the background.

-p 80:80 Publish port: Publishes a container port

“p 443:443 to a host port. The number to the left of the

colon is the host port; the one to the right is
the container port. Here we are exposing TCP
ports 80 (HTTP) and 443 (HTTPS) to the

same port number on the host.

- -name=MyWebServer

Container name: Assigning a name to the

container is a good idea if you want to keep

it around for a while. Later, you can stop and

start the container using that name instead of
having to use the container ID.

-v /var/www/:/var/www/

Bind mount volume : This option mounts
a directory from the host (left of the colon)

to a directory on the container (right of the
colon). In this case, | use -v to share the
default directory used by Apache to hold
shared web content (/var/www).

testrun

Image: In our example, the image name is
testrun, which we created from a base fedora
image with added httpd and other packages.

/usr/sbin/httpd -DFOREGROUND

Command : In this case, I ran the httpd
daemon with the -DFOREGROUND option.

CHAPTER 4 Running Container Images

Unlike the commands run earlier in this chapter, where we just ran a command and
exited, this web server example keeps running in the background (-d option) and begins to
draw on resources from the host computer. To test that the MyWebServer container is run-
ning, do the following:

docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
a8019984ae79 testrun:latest "/usr/sbin/httpd -DF 1 hour ago

Up 1 hour 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp MyWebServer

From the output, you can see that a container ID was assigned (a8019984ae79),
the image name is testrun:latest, and that the command run is httpd. The container
was run one hour ago, and it has been up for an hour. For all IPV4 network inter-
faces on the host (0.0.0.0), TCP ports 80 and 443 forward requests to their respec-

tive ports within the container.

The last bit of information shows the container name as MyWebServer. I can
use that name if | want to start, stop, or remove the container. I could also use that
name if | want to run another command in the running container, such as a bash
shell to look around inside it (type exit when you are done to return to the host).
For example:

docker exec -it MyWebServer /bin/bash
bash-4.3# exit

To check that the container can share the text that I added earlier on the host
to the /var/www/html/index.html file, I use the curl command from the host to get
that file’s contents:

curl http://localhost/index.html
Is the Web Server running: YES

Because TCP port 80 from the container is exposed to the same port on the loc-
alhost, that success message should be displayed.

You may remember that I installed the httpd-manual manual package earlier
(which has content stored in /usr/share/httpd/manual inside the container). You
could open a web browser to httpd://localhost/manual on the local host to see
that content. With that and the mounted /var/www/html directory, httpd service can
share a mix of data from inside and outside the container. The result appears as
shown in Figure 4.1.

be

Docker Containers

Apache HTTP Server Version 2.4 Documentation — Apache HTTP Server Version 2.4 = Mozilla Firefox x

LY Apache HTTP Server ... % ' 4+

(' dﬁhttp:;’.fl.oca\.host.n’manual.f v C" |V Google Q| ‘ﬁ' B ¥ g =

Modules | Directives | FAQ | Glossary | Sitemap
Apache HTTP Server Version 2.4

4] (s at
Apache > HTTP Server > Documentation

Apache HTTP Server Version 2.4 Documentation

Available Languages: da | de | en | es | fr | ja | ko

pt-br | tr | zh-cn

([Google Search |

Release Notes

New features with Apache 2.3/2.4

Users' Guide

Getting Started

New features with Apache 2.1/2.2

Binding to Addresses and Ports

MNew features with Apache 2.0
Uparading to 2.4 from 2.2
Apache License

Reference Manual

Configuration Files
Configuration Sections

Content Caching

Content MNegotiation

Dynamic Shared Objects (OSO)

How-To / Tutorials

Authentication and Authorization

Access Control

CGl: Dynamic Content
htaccess files

Server Side Includes (SSI
Per-user Web Directories

(public_html

FIGURE 4.1 Display the Apache manual (httpd-manual package) served from
inside the httpd container.

Limiting Resources When Running Services in Containers

Containers have no special access to memory or multiple CPUs by default when
they are run. You can set specific memory limits or request a certain number of
CPUs when you run a container using the --memory, --memory-swap, --cpu-shares,
and --cpuset-cpus options. Here is an example of how to limit memory and CPU
shares when doing a docker run.

docker run -d -p 80:80 -p 443:443 --name=LimitedWebServer \

-v /var/www/:/var/www --memory=10m --memory-swap=-1 \
--cpu-shares=256 testrun /usr/sbin/httpd -DFOREGROUND

Using - -memory=10m limits the amount of RAM the container can use to 10MB.
The --memory-swap=-1 indicates that an unlimited amount of swap can be used,
however (provided the operating system has swap space configured). Here are other
examples of how you can limit the amount of memory available to a container:

CHAPTER 4 Running Container Images

- -memory=10m Container can use 10MB of RAM.
If memory-swap not set, container can
use 2x memory of swap space (20m) too
--memory=10m --memory-swap=30m Container can use 10MB of RAM. Swap
plus memory is limited to 30MB

To limit CPU access for a container, you can use the --cpu-shares and
- -cpuset -cpus options. If --cpu-shares is not set, all containers have equal access
to CPU shares. You can set --cpu-shares based on a 1024 scale. The default
--cpu-shares=0 gives a container the full 1024 shares. The preceding example
(--cpu-shares=256) indicates that only 25% of the available 1024 shares should be
allocated to the container while other containers on the system could use 100% of
the available shares.

The --cpuset-cpus option limits which set of CPUs on the computer can
be allocated. The value of --cpuset-cpus can be a specific CPU set, a comma-
separated list of CPU sets or a range of CPU sets. For example:

--cpuset-cpus=0,1 Use CPU set 0 or 1
--cpuset-cpus=3 Use the fourth CPU set
--cpuset-cpus=1-3 Use CPU set 1, 2, or 3

RUNNING PRIVILEGED CONTAINERS

In most cases, when you use docker run to run a container, you want to limit the
access that container has to the host system the container is running on. Likewise,
you want to keep other containers on the local system from being able to get access
to the container you are running. There are, however, cases where you want to allow
a container to have greater access to the host system. These containers are called
privileged containers or super privileged containers.

The idea behind privileged containers is that there are times when a container
is specifically designed to act on the host system itself. Without opening privileges,
the container would not be able to access namespaces on the host (such as the pro-
cess table, IPC namespace, and D-bus interface).

Host namespaces that can be accessed from a privileged container, and rea-
sons for opening up those namespaces are described in Chapter 13, “Using Super
Privileged Containers.” Examples of super privileged containers are also included
in Chapter 13. For the moment, however, while we are on the subject of the docker
run command, Table 4.2 presents some options available to the docker run com-
mand for opening up host privileges to a container.

63

b4

Docker Containers

TABLE 4.2 Host Privileges Options

--ipc IPC: Opens access to inter-process communications facilities on
the host computer. By default, each container has a private IPC
facility.

--net=host Network interfaces: Opens direct access to host network inter-

faces to the container. By default, each container has its own net-
work interfaces.

--pid=host Process table: Grants access to the host process table from the
container. By default, each container maintains its own process
table.

-e HOST=/host Host file system: If set, the HOST environment variable tells the

container to mount the host’s root file system under a particular
directory in the container. The recommended location for that is

/host.

--privileged Security separation: This option turns off the security separa-
tion of the command run from the container. So, for example, a pro-
cess run as the root user would have the same privileges that any
process run as root would have on the system.

Again, see Chapter 13 for examples of these options in action.

SUMMARY

The docker run command is the way that you turn a stored Docker-formatted con-
tainer image into a running container instance. Many options are available to the
docker run command. For example, you can use the interactive (-1i) and terminal
(-t) options to run a container that you can interact with from the shell.

Although some containers are meant to be run interactively, more often a con-
tainer will be run in the background to provide continuous services to users. The
-d option to docker run lets you detach a container process so it runs in the back-
ground (typically as a service daemon process). You can expose TCP ports that
provide services from the container to the host, so users accessing the host can gain
access to a container’s services.

Now that you know how to run a container, the next chapter helps you under-
stand how to work with container images. Working with images includes knowing
how to pull, save, and load container images.

CHAPTER 5

Finding, Pulling, Saving, and
Loading Confainer Images

IN THIS CHAPTER:
= [ind images with docker search
= Pull images from registries

= Save and load images

You don’t really need to know much about Docker to start running Docker-formatted
containers. As I showed in the previous chapter, if you know an image name, a
simple docker run command downloads and runs the image of your choosing. Now
that you have done a few docker run commands, you are ready to dig deeper into
managing your images.

This chapter covers how to manage Docker-formatted images in many different
ways. Using docker search, you can find out what images are available from the
Docker Hub Registry (docker.io) and possibly other locations. Using docker pull,
you can choose specific images to download to your system. With docker save, you
can save an image from your local system to a tar file, and then add that tar file to
another system using the docker 1load command.

In searching for, saving, and loading images, you see the words “registry” and
“repository” used. A registry is a location where images associated with many repos-
itories may be found. Docker uses repository to describe a name that may represent
multiple images. For example, the name docker. io/ubuntu represents a repository
within the Docker.io registry. Within that repository, there may be multiple images
that represent containers for different releases of Ubuntu. Typically, an action like

65

66

Docker Containers

docker pull ubuntu results in a single image being pulled from a registry to your
Systenl(docker.io/ubuntu:latest).}{Oweven ﬂ'you Tun docker pull -a ubuntu
instead, you get all images associated with the docker.io/ubuntu repository.

SEARCHING FOR IMAGES

The Docker Project set up the Docker Hub Registry (https://registry.hub.
docker.com/) to be the central point of access to thousands of Docker-formatted
containers. From a system running the Docker service, you could search the Docker
Hub with the docker search command for any images made publicly available.
Using your own login to the Docker Hub, you can store and keep your own images
private, if you choose.

For organizations behind a firewall or whose security considerations require
that their own images be stored on their own premises, there are implementations of
Docker that allow you to configure your own registries or block users from access-
ing the Docker Hub. The Docker service implemented in Red Hat Enterprise Linux
is an example where you can choose the registries from which you search and pull
images.

The following section describes how to search the Docker Hub Registry from
the docker command line as well as through a web browser. After that, you can
learn how to configure your system to allow the docker command to search and pull
images from registries other than the Docker Hub.

Searching for Images with the docker Command

Most implementations of the Docker service are configured to search for images
from the Docker Hub. On Ubuntu, Fedora, and other Linux distributions, you
can use the docker search command to search for images from the Docker Hub.
Because some distributions are configured to search their own registries as well
(such as Red Hat Enterprise Linux), results from docker search commands can
differ on different implementations of the Docker service.

Here are some examples of using the docker search command to find images

from the Docker Hub:

docker search ubuntu

INDEX NAME DESCRIPTION STARS OFFICIAL
AUTOMATED
docker.io docker.io/ubuntu Ubuntu is a... 1988 [OK]

docker.io docker.io/ubuntu-upstart Upstart is an... 28 [OK]

https://registry.hub.docker.com/
https://registry.hub.docker.com/

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

docker search centos

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/centos The official... 1149 [OK]
docker.io docker.io/blalor/centos Bare-bones... 9 [OK]

docker search fedora

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/fedora Official Fed... 180 [OK]
docker.io docker.io/fedora/ssh 19 [OK]

The output of docker search is sorted by the number of stars associated with an
image. Users with accounts to the Docker Hub site can assign a star to images they
like. Besides a description of the image, which is truncated by default, the output
also shows whether the image is officially created by the project that bears its name
(Fedora, Ubuntu, CentOS, and so on) and whether the image is created with auto-
mated builds.

If you are creating your own container image, | recommend you start with an
official base image from a Linux distribution you trust. If it doesn’t have every soft-
ware package you want in it, you can always add more packages (apt-get or yum
commands). Base container images for Fedora, Ubuntu, and CentOS are preconfig-
ured to access those projects’ software repositories (for deb or rpm packages). For
Red Hat Enterprise Linux, rhel base container images draw on Red Hat software
repositories that are enabled on the host (assuming you are running the container
on an RHEL system that has a valid subscription).

Besides Linux base images, container images are available from the Docker
Hub that are preconfigured to run particular applications. Sometimes you need to
download and modify other software to get the applications to work as you want
them to.

docker search mysqgl

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/mysqgl MySQL is... 868 [OK]
docker.io docker.io/orchardup/mysqgl 40 [OK]

docker search wordpress

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/wordpress The Word... 395 [OK]
docker.io docker.io/ctlc/wordpress 5 [OK]

The mysql and wordpress repositories offer images from Docker Hub that are
officially available from those projects. They provide container images that are

67

68

Docker Containers

ready to run MySQL database and WordPress rich content management system
services, respectively.

Another type of container you can get from the Docker Hub is in between a
base operating system container and a configured application. There are container
images designed to provide a base environment for developing and/or running
applications of a certain type. Here are a few examples:

docker search rails

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/rails Rails is... 239 [OK]
docker.io docker.io/lucio/rails Latest Ruby 2 [OK]

docker search java

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/java Java is... 257 [OK]

docker.io docker.io/develar/java 9 [OK] ...

docker search golang

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/golang Go... 282 [OK]

docker.io docker.io/google/golang 93 [OK]

The rails image can be used to create a Dockerfile for a Ruby on Rails appli-
cation project. For running JavaScript applications, the node image provides an
official container image named node. The java image is an official container image
that can be used to provide both a run-time and a build environment for Java appli-
cations. The golang image offers an environment for running applications written in
Google’s Go Language.

If you want to refine your searches, you can add options to the docker search
command. For example:

docker search -s 10 fedora

INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/fedora Official Fed... 180 [OK]

docker.io docker.io/fedora/ssh 19 [OK]

docker search --no-trunc=true mysqgl

INDEX NAME DESCRIPTION

STARS OFFICIAL AUTOMATED
docker.io docker.io/mysgl MySQL is a widely used, open-source
relational database management system (RDBMS) ..
868 [OK]

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

docker search --automated=true centos
INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
docker.io docker.io/blalor/centos Bare-bones... 9 [OK]

In the examples just shown, the -s option is used to find only images that have
at least a specified number of stars (in this case, at least 10 stars). The --no-trunc
option tells docker search not to truncate the description field. The automated=true
option asks docker search to only display images that are automatically rebuilt
periodically.

The docker search command lines shown in this section are useful for finding
images and their descriptions for the system from which you are running docker.
However, you often need more information to make those images useful. The next
section describes how to find more information on images available through the

Docker Hub.

Searching for Images on Docker Hub

Just the name and a short description won't tell you everything you need to know
about most container images. Some images need to be run in a certain way to pro-
vide a running image with data or to turn on special privileges. For images stored on
the Docker Hub, you can search the Docker Hub from your web browser and often
find more information about an image.

Here are some ways you can search the Docker Hub Registry for images
(https://registry.hub.docker.com/) from your web browser:

= Search Registry Box: Type a search term into the Search Registry box.
You see a list of images that have that term in the image name or description.
You can sort the results in various ways, including relevance, date created,
last updated, number of stars, and so on. As when you search with the docker
search command, you can also choose to see only images that are Official
or created with Automated Builds. Select the image you want for more infor-
mation about it. Figure 5.1 shows an example for the Docker Hub Registry
search for Fedora.

= Official Repositories: Select from a handful of official repositories from the
Docker Hub Registry page. This is a good way to get images sanctioned by
specific Linux distributions (such as CentOS or Ubuntu) or open source proj-
ect (such as WordPress or mongoDB).

63

https://registry.hub.docker.com/

Docker Containers

70

€) @ https://registry.hub.docker.com/search?q=Fedora&searchfield=

qQ

v &||BY Google

#doc er What Is Docker? UseCases Trylt! Browse Install & Docs

Repositories (455) l Fedora

Users (1)

Show: Al j Sortby: | Relevance j Results: S

]

D
82170

Organizations (0)
8 days ago ,;”-}.

158

Official Fedora 21 base image and semi-official Fedora 20 and
rawhide images.

D

7 2609

tutum/fedora
Fedora image with SSH access. For the root password, either set the
ROOT_PASS environment varlable or check the logs ...

2months ago

7

FIGURE 5.1 Search the Docker Hub Registry for images by keyword.

Once you have found an image that interests you, select it to see more details
about the image. For example, information on how to use the official WordPress
image is available from the WordPress page on the Docker Hub Registry (https://
registry.hub.docker.com/_/wordpress/). Without that information, it would be
difficult to guess all that you could do with an image. Figure 5.2 shows the official
WordPress (wordpress) image page:

Continuing with the wordpress image example, the information you can find
about the image from its Docker Hub Registry page includes the following:

Supported versions of the image

= A basic docker run command line for running the image
= Environment variables to use with docker run to change image settings

= Links to the official GitHub page for this container image
(https ://github.com/docker- library/wordpress)

= Dockerfile files used to build the image

If you are looking for documentation on several images, you can go directly
to the Docker Library (https://github.com/docker-library/docs) and select the
name of the image to see its documentation.

Searching Other Repositories for Images

Some implementations of Docker search registries in addition to the Docker Hub
Registry also allow you to choose where you look for images with docker search.
For some of the developers of Docker, this has become a contentious issue.

https://registry.hub.docker.com/_/wordpress/
https://registry.hub.docker.com/_/wordpress/
https://github.com/docker-library/wordpress
https://github.com/docker-library/docs

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

* [@ https:/registry.hub.docker.com/_/wordpress/ v @]

wikipedia.org/wiki/WordPress

How to use this image

docker run --name some-wordpress --link some-mysgl:mysgl -d wordpress

The following environment variables are also honored for configuring your WordPress instance:

e -e WORDPRESS_DB_HOST=... (defaults tothe IP and port of the linked mysgl container)

e -e WORDPRESS_DB_USER=... (defaults to “root")

FIGURE 5.2 Get details for an image from the image’s Docker Hub Registry page.

The original intention of the Docker Project was that the Docker Hub Regis-
try namespace would be the same, no matter where you ran a Docker-formatted
container. So docker search rhel and docker pull rhel would provide the same
results if they were run on Fedora, Ubuntu, or any other system supporting Docker.
The first location searched would always be the Docker.io Hub Registry. The argu-
ment is that it should be like the Internet, where if you type www.google.com into a
web browser, you would always get the same site.

The counter argument is that large enterprise companies that want to use
Docker don’t want to be connected to public registries. They want to completely
control their own images and they don’t want to risk the possibility of ever having
unknown images pulled into their environment. Some on this side of the argument
have pointed to DNS server software, such as the bind package, that can be set up
to create private DNS server namespaces and never connect to the Internet or can
allow their own DNS hostnames to be searched for names before DNS servers from
the Internet at large or other DNS servers.

Tl

http://www.google.com

12

Docker Containers

As of this writing, the issue has not yet been completely resolved. Currently, in
Red Hat Enterprise Linux and RHEL Atomic Host systems, the docker command
is configured to point to a container repository on the Red Hat Customer portal for
images first, then search the Docker Hub Registry next. The RHEL version of the
docker service can also be configured to point to any Docker registry you choose.

For example, if you use the docker search command to search for images
named rhel7, docker searches both the container registry on the Red Hat Customer
portal (registry.access.redhat.com) and the Docker Hub Registry, in that order.
Here’s what that search looks like from a RHEL Atomic system:

docker search rhel7

NAME DESCRIPTION STARS OFFICIAL AUTOMATED
redhat.com registry.access.redhat.com/rhel This... 0
redhat .com registry.access.redhat.com/rhelé This... 0
redhat .com registry.access.redhat.com/rhel7 This... 0

By tailing the systemd journal (journalctl command) in a separate Terminal
window before you run your search, you can see that the docker command in RHEL
Atomic queries both the Red Hat Customer Portal (access.redhat.com) registry
and, after that, the docker.io registry. For example:

journalctl -f -u docker
time="2015-04-14T23:09:22-04:00" level="info"
msg="GET /v1.17/images/search?term=rhel7"
time="2015-04-14T23:09:22-04:00" level="info"
msg="+job search(rhel7)"
time="2015-04-14T23:09:22-04:00" level="info"
msg="+job resolve repository(rhel7)"
time="2015-04-14T23:09:22-04:00" level="info"
msg="-job resolve repository(rhel7) = OK (0)"
endpoint .newEndpoint: starting with
address=registry.access.redhat.com, secure=false
endpoint.newEndpoint: address after prefixing:
registry.access.redhat.com
endpoint .newEndpoint:
trimmedAddress=http://registry.access.redhat.com, version=
time="2015-04-14T23:09:23-04:00" level="info"
msg="+job resolve repository(docker.io/rhel7)"
time="2015-04-14T23:09:23-04:00" level="info"
msg="-job resolve repository(docker.io/rhel7) = OK (0)"
endpoint.newEndpoint: starting with
address=https://index.docker.io/v1/, secure=true
endpoint .newEndpoint: address after prefixing:
https://index.docker.io/v1l/
endpoint.newEndpoint: trimmedAddress=https://index.docker.io,
version=vl
endpoint.newEndpoint: terminating

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

I cut date/time stamps and hostnames from each journal message. You
can see that both addresses (registry.access.redhat.com and docker.io) are
searched for rhel7. As a result, the search returns rhel7 images from both registries.

In Red Hat Enterprise Linux, which registries are searched for images is deter-
mined from information in the /etc/sysconfig/docker file. When the docker ser-
vice starts up, it looks for ADD_REGISTRY and BLOCK_REGISTRY options in

this file. By default, they are set as follows:

ADD REGISTRY='--add-registry registry.access.redhat.com'
BLOCK REGISTRY='--block-registry'

The ADD_REGISTRY option sets registry.access.redhat.com as the loca-
tion to be searched first by docker search commands. The BLOCK_REGISTRY
line is commented out. So the only other registry that is enabled by default, docker.
i0, remains enabled and will return search results after any results found from the

Red Hat site.

Here are examples for changing options in the /etc/sysconfig/docker file that
would modify search results returned from the local Docker service in Red Hat
Enterprise Linux. In this first example, if you don’t want to search the Red Hat reg-
istry first, simply comment out the line and restart the Docker service:

ADD REGISTRY='--add-registry registry.access.redhat.com'

If you want to block search or download of images from the docker.io Registry
Hub, you could uncomment and modify the BLOCK_REGISTRY option as follows:

BLOCK_REGISTRY='--block-registry docker.io'

To configure the Docker service so a selected Docker registry is searched, you
can add an ADD_REGISTRY line. For example, this is what you add to be able to

search a Docker registry located at myregistry.example.com listening on port 5000:

ADD REGISTRY='--add-registry myregistry.example.com:5000'

PULLING IMAGES FROM REGISTRIES

To download an image from a Docker registry so it is available on a system running
the Docker service, you can use the docker pull command. Although a docker
pull is done automatically when you do a docker run command and the image is
not already present on the local system, some prefer to pull an image first before
using it. One reason is that an image can sometimes take a while to download and
you may not want to wait for that to occur at run time.

13

14 Docker Containers

You can refer to an image you want to pull simply by its short name (such as
ubuntu or fedora). But other elements can be added to an image’s short name. For
example, given an image named hangman, when you go to pull that image, you might
need to identify other information to get the specific image you want, such as

® Registry name: This could be the name and port number of the image loca-
ﬁon.Forexanqﬂe,myregistry.example.com:SOOO/hangmanidenﬁﬁesan
image named hangman and tries to pull it from port number 5000 on the
system named myregistry.example.com.

= User name: Adding a user name from the Docker Hub Registry identifies the
user that pushed the image to the registry. Essentially, the user name is like
a subdirectory of the Docker Hub. So, to pull an image named hangman
from a repository of a user named cricket, you could pull the name

cricket/hangman.

= Tag: Tags are a way of adding multiple names to the same image. When you
ask to pull an image name and don’t add a tag, the tag 1atest is implied.
So,ifyou pul]cricket/hangman,ﬂidowﬂﬂoads cricket/hangman:latest.
That image might appear on your local system as cricket/hangman:latest,
cricket/hangman:1.7, and possibly other names. If other versions of an
image name exist, you have to ask specifically for the one you want when
you pull the image (for example, cricket/hangman:1.5). This is important to
understand if, for example, you want to work with a specific container image
version of Fedora or Ubuntu. (See Chapter 6, “Tagging Images,” for more
information on using image tags.)

Here are some examples of command lines for pulling images:

docker pull cricket/hangman:1.7
Pulling repository cricket/hangman
be9albc2da8f: Download complete
1403322a81c5: Download complete
511136ea3c5a: Download complete
00a0c78eeb6d: Download complete
834629358fe2: Download complete

docker pull cricket/hangman
Pulling repository cricket/hangman
1403322a81c5: Download complete
511136ea3c5a: Download complete
00a0c78eeb6d: Download complete
834629358fe2: Download complete

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

docker images | grep hangman

cricket/hangman 1.7 beSalbc2das8t 2 weeks ago 427.3 MB
cricket/hangman latest 1403322a81c5 44 minutes ago 427.3 MB
cricket/hangman 1.9 1403322a81c5 44 minutes ago 427.3 MB

From the output, you see two images (be9albc2da8f and 1403322a81¢5). One
image is tagged 1.7, and the other is tagged both latest and 1.9. If you had just
pulled the latest image, you would not have gotten the 1.7 image (be9albc2da8f).

To pull an image from a registry other than the Docker Hub, you can identify
either the IP address or hostname as part of the image name. In this example, the
hangman image is stored on a system at address 192.168.0.118 that has a docker-
registry service running on TCP port 5000:

docker pull 192.168.0.118:5000/hangman
Pulling repository 192.168.0.118:5000/hangman
1403322a81c5: Download complete

511136ea3c5a: Download complete

00a0c78eeb6d: Download complete

834629358fe2: Download complete

Because with docker pull, the first part of the registry name is used to identify
where to find the image, you could have substituted the same system’s hostname
and pulled the image as well:

docker pull myregistry.example.com:5000/hangman
Pulling repository myregistry.example.com:5000/hangman

Status: Image is up to date for myregistry.example.com:5000/hangman

As noted earlier, pulling a short name implies that you want the image tagged as
latest from the Docker Hub. So, for example, running docker pull ubuntu results in
pulling a set of images that gets the latest image, with that image possibly contain-
ing multiple tags:

docker pull ubuntu

docker images | grep ubuntu

ubuntu 14.04.2 d0955f21bf24 4 weeks ago 188.3 MB
ubuntu latest do0955f21bf24 4 weeks ago 188.3 MB
ubuntu trusty do955f21bf24 4 weeks ago 188.3 MB
ubuntu trusty-20150320 d0955f21bf24 4 weeks ago 188.3 MB
ubuntu 14.04 d0955f21bf24 4 weeks ago 188.3 MB

If you want to test Ubuntu containers for all available releases, you can add
the -a option. Keep in mind, this could download multiple gigabytes of images. For
example:

15

16

Docker Containers

docker pull -a ubuntu
Pulling repository ubuntu

docker images | grep ubuntu
ubuntu 14.04.2 d0955f21bf24 4 weeks ago 188.3 MB

Using -a in this case results in 17 different Ubuntu container image versions
being pulled to the local system. With tags, about 32 different image names are
identified.

SAVING AND LOADING IMAGES

Pulling isn’t the only way to get images put onto a system so they can be used by
Docker. You can save an image from your local system to a tar file. Then you can
copy and somehow transport the image to another system, where it can be loaded.

The docker save command lets you save all images associated with a particular
repository. By simply giving a repository name to docker save, all versions of the
repository name, the tags, and parent layers are streamed in tar format to standard
output. As an alternative, you can save that output to a file.

After downloading all images from the CentOS repository on the Docker Hub,
here’s an example of saving all those images to a single tar file, and then using the
scp command to copy the tar file to another system:

docker save -o allcentos.tar centos
du -sh allcentos.tar
.6G allcentos.tar

H*+ P H H*

scp allcentos.tar host2:/tmp

At this point the allcentos.tar file has been copied to the /tmp directory on
host2. Now you can log in to the host2 system and load the allcentos.tar file as
follows:

docker load -i /tmp/allcentos.tar
docker images | grep centos

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
centos 7 0114405f9ff1 3 days ago 215.7 MB
centos centos7 0114405f9ff1 3 days ago 215.7 MB
centos latest 0114405f9ff1 3 days ago 215.7 MB
centos 7.1.1503 b58de3b24eb?7 2 weeks ago 212.1 MB
centos centos7.1.1503 b58de3b24eb?7 2 weeks ago 212.1 MB
centos 5.11 2e4a66ce2189 6 weeks ago 284.2 MB
centos centos5.11 2e4a66ce2189 6 weeks ago 284.2 MB
centos 6.6 Obc55ae673£7 6 weeks ago 202.6 MB

CHAPTER 5 Finding, Pulling, Saving, and Loading Container Images

From the output of docker images, you can see that all the images from the
centos repository are now on the new system. So, if you wanted to try to containerize
an application with different versions of centos, there are now multiple versions of
centos container images on your system.

If you want to save and load a single image, instead of using the short image
name, you can use a specific image ID or a full image name. The longer name might
include the full repository name, user name, and a tag associated with the specific
image. Here are some examples:

docker save -o myhangman 1.7.tar cricket/hangman:1.7
docker save -o myhangman 1.9.tar 1403322a8lc5

At this point, each tarball contains all the layers needed to make the image you
saved. After transporting either of the tar files to another system running the Docker
service, you can load it using the docker load command and look at the results as
follows:

docker load -i myhangman 1.7.tar

docker images | grep hangman

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
cricket/hangman 1.7 be9albc2da8f 22 hours ago 427.3 MB

Notice that only the specific image was saved and loaded into the other system
running Docker. That image is now ready to use.

SUMMARY

The Docker Hub Registry offers access to thousands of Docker-formatted images.
Using the docker search command, you can find images from the Docker Hub
Registry. Once you know the name of an image repository that holds an image you
want, you can use the docker pull command to pull one or more images from that
repository to your local system.

When you have an image on your local system that you want to copy to another
system, you can use the docker save command to save a single image or a reposi-
tory full of images to a tarball. You can then copy that tarball to another system
and load it so it is available to Docker using the docker 1cad command. The next
chapter goes into detail on how to work with image tagging.

1

This page intentionally left blank

Tﬂﬂ[li[lﬂ |IHEI[|ES

IN THIS CHAPTER:
= Name container images
= Assign tags to images
= Attach user names to images

= Attach repository names to images

After you have created an image using docker build or by committing a container
to an image with docker commit, you can add additional tags to the image using
docker tag. Using images named ubuntu and fedora from the Docker Hub to
illustrate, here are some reasons that you might want to add tags at the end of an
image name to further identify that image:

= Version number: A version number can help identify which version of a
product was used to build the image. For example, an ubuntu image might be
tagged 15.04 (to indicate the Ubuntu release) and also 15.04.2 (to identify
a specific point release). Likewise, the Fedora project tags its base fedora
images 20, 21, 22, and so forth, to match its releases.

= Version name: A name is sometimes assigned to a particular version of
an image. For example, Ubuntu version 15.04 is also named vivid (for the
release name Vivid Vervet). Fedora 20 also includes the tag name heisenbug
on the fedora:20 image.

13

80

Docker Containers

= Jatest: When someone runs an image without specifically identifying a tag,
the docker command looks for the image of that name with the :1atest tag.
For example, running docker run ubuntu pulls and runs the upuntu:1atest
image. So setting the 1atest tag on an image identifies that image as the one
to use when only the basic part of the image name is requested.

By attaching text to the beginning part of an image name, you can identify the
registry where the image can be found (when running a docker pull) or into which
the image will be put (when running a docker push). Here are a couple of types of
images you can apply to the front part of an image name:

= Registry name and port: One of the most important uses of image tagging
is to add a name of a registry. With a registry name (and optionally a port
number) added to the first part of an image name (separated by a slash), a
docker pull or docker push knows exactly where to put or get the image you
are looking for. When a user name is identified as the registry name, Docker
looks to the registry on the docker.io hub associated with the user account.

= User name: When a user account is created on the docker.io registry, that
account’s user name can be added to the front of an image name to identify
that the image should be part of that user’s registry on docker.io. For
example, if | pushed an image named docker.io/cricket/hangman, the
hangman image would be directed to the personal storage area for the user
named cricket at the docker. io registry (Docker Hub).

This chapter teaches you to use the docker tag command to add tags to existing
images, essentially enabling the images to be identified by different names.

ASSIGNING NAMES TO IMAGES

An image name is assigned to a Docker image when that image is first created.
There are several ways of creating an image. These include the following:

® Building an image: When you first build an image from a Dockerfile file,
you can assign a name to it. Here’s an example of building an image from a
Dockerfile file in the current directory and assigning it the name fedweb:
docker build -t fedweb .

= Committing a container: After you have run a container and changed it
in some way that you want to keep, you can commit those changes back to
a container image using docker commit. In this example, I ran the fedweb

CHAPTER 6 Tagging Images

image and called the container newfedweb. Then I committed newtedweb to a
new image called myfedweb:
docker run -d -p 80:80 --name=newfedweb fedweb
docker stop newfedweb
docker commit -m "Web server with extra data" \
-a "Chris Negus" newfedweb myfedweb

= Exporting and Importing an image: You can save an image as a tarball
to your file system using docker export. You can name an image when you
import it from a previously exported tarball to your system. For example, my
friend Joe exports his own container (joefedweb) to a tarball and sends it to
me. Then I import the container image.

docker export joefedweb > joefedweb.tar

cat joefedweb.tar | docker import - joefedweb

At this point, I have three new images on my system. Notice that without adding
a tag to the image name, each image is assigned “latest” as its tag. For example:

docker images *web

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
joefedweb latest 88abfe04cfcc 12 minutes ago 526.6 MB
my fedweb latest 8340292d5467 3 hours ago 706.5 MB
fedweb latest £583b458b447 4 hours ago 696.7 MB

Using these three images, the next sections illustrate how the docker tag com-
mand can add tags and additional repository information to an image name in ways
that make the images more usable.

ASSIGNING TAGS TO IMAGES

By adding tags to images you can be more specific about what an image contains.
The most common use of tags is to add version information to an image. As a new
version of an image becomes available, it can replace the “latest” instance of an
image and still retain tags (which act as aliases to the same image) to other defining
information on the image.

Say that you want to add tags to images you created earlier to identify version
names and numbers for those images. Here are examples of how you might do that:

docker tag fedweb fedweb:1.5
docker tag fedweb fedweb:monkey
docker images fedweb

81

82 Docker Containers

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedweb 1.5 £583b458b447 12 hours ago 696.7 MB
fedweb latest £583b458b447 12 hours ago 696.7 MB
fedweb monkey £583b458b447 12 hours ago 696.7 MB

You can tell that the three fedweb images are actually the same image by the
fact that the image IDs for all three are the same (f583b458b447). Next, say that
you want to use myfedweb as a later release of feaweb. You could tag myfedweb to
indicate that the image is also known by the name fedweb:1.7 and fedweb:giratfe,
along with being the latest version of fedweb. Because fedweb: 1atest already exists,
you need to force the name (-£).

docker tag myfedweb fedweb:1.7
docker tag myfedweb fedweb:giraffe
docker images *fedweb

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedweb 1.5 £583b458b447 13 hours ago 696.7 MB
fedweb latest £583b458b447 13 hours ago 696.7 MB
fedweb monkey £583b458b447 13 hours ago 696.7 MB
fedweb giraffe 8340292d5467 12 hours ago 706.5 MB
fedweb 1.7 8340292d5467 12 hours ago 706.5 MB

docker tag myfedweb fedweb:latest

FATA[0000] Error response from daemon: Conflict: Tag latest is already
set to image f£583b458b447..., if you want to replace it, please use -f
option

docker tag -f myfedweb fedweb:latest

docker images *fedweb

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedweb latest 8340292d5467 12 hours ago 706.5 MB
fedweb 1.5 £583b458b447 13 hours ago 696.7 MB
fedweb monkey £583b458b447 13 hours ago 696.7 MB
fedweb giraffe 8340292d5467 12 hours ago 706.5 MB
fedweb 1.7 8340292d5467 12 hours ago 706.5 MB

Notice that forcing (-£) the fedweb:1latest image name and tag on the myfedweb
image not only makes that image the default when someone requests fedweb but
also removes the 1atest designation from the original image (f583b458b447). As
an alternative, you can remove the tag for any image with multiple names without
removing the image itself. For example:

docker rmi fedora:latest
Untagged: fedora:latest

CHAPTER 6 Tagging Images

ASSIGNING REPOSITORY NAMES TO IMAGES

While the image name:tag portion of an image name identifies what the image is,
information attached to the front of that name can identify the repository that stores
the image. While no repository information is required when you name a container
image, the syntax for adding that information is as follows:

[repository]: [port#]/ [username] /image name:tag

The username can be replaced with the name of a user account name on the
Docker Hub (docker.io). Identifying a user name makes it easy to push an image to
the repository under your user account at the Docker Hub. You can skip the user
name and instead identify the location of a private repository (either by IP address
or hostname), along with an optional port number, if you want to push an image to
a registry located on a particular host and, optionally, a specific port on that host.

Attaching a User Name to an Image

If you have a user account at the Docker Hub, you can replace username with the
user account name that you choose. For example, if | had a user account at docker.
io named cricket, I could add that user name to an image that I want to push to
docker.io. I might do the following to indicate that an image named fedweb:1latest
is destined for that domain:

docker tag fedweb:latest cricket/fedweb:latest
docker images *fedweb

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
cricket/fedweb latest 8340292d5467 12 hours ago 706.5 MB
fedweb latest 8340292d5467 12 hours ago 706.5 MB

Notice that now two names are associated with the same Image ID. With the
user name attached to the image, you can push that image to the docker.io reposi-
tory. Assuming the user name cricket again, here’s how to authenticate to docker.io
as you push an image up to that account on the docker.io repository:

docker push cricket/fedweb

The push refers to a repository [cricket/fedweb] (len: 1)
Sending image list

Pushing repository cricket/fedweb (1 tags)

Pushing tag for rev [8340292d5467] on {https://cdn-registry-1.
docker.io/vl/repositories/cricket/fedweb/tags/1.5}

Because only the user name is added to the image and not a separate reposi-
tory name, the image is pushed to the repository associated with the cricket user

§3

84

Docker Containers

account on docker.io. If you were to log in as cricket at https://hub.docker.com/,
you could see the pushed image as shown in Figure 6.1.

.
%’ Q, Browse Repos Documentation Community Help cricket ~v
Your Recently Updated Repositories + Add Repository v
cricket v
10 minutes ago
Summary fedweb
Repositories
Starred
A
(o w70
Manage
Settings
Contributed Repositories Starred Repositories
Private Hepositories No contr 1s... yet! Browse repositories in the Registry
{used 0 of 1) Activity Feed
+ cricket created the repository cricket/fedweb 10 minutes ago

FIGURE 6.1 Log in to docker.io to see the images you have pushed.

If you want the image to be available from another tag name, you can tag the
image again and push it. In this example, I add the tag cricket/fedweb:monkey to
the existing image. Notice that when I push the name with the new tag to the docker
registry for cricket at docker.io it shows that the layers that make up the image have
already been pushed to docker.io:

docker push cricket/fedweb:monkey

The push refers to a repository [cricket/fedweb] (len: 1)
Sending image list

Pushing repository cricket/fedweb (1 tags)

511136ea3c5a: Image already pushed, skipping
00a0c78eeb6d: Image already pushed, skipping

Upon returning to cricket’s account, clicking on the Tag tab lets you see all the
images and aliases (tags) to each image available within the user account. In Figure
6.2 you can see that the cricket/fedweb image has two tags on it (1.5 and monkey).

CHAPTER 6 Tagging Images

.
%’ Q, Browse Repos Documentation Community Help cricket s
Updated 15 minutes ago
cricket / fedweb Pull this repository docker pull cricketifedweb
No description set
00 oo
Information Tags Properties
15 X © 2015-03-25 23:51:56
cricket
monkey X
Settings
1. Webhooks

FIGURE 6.2 See the tags assigned to each image from your docker.io account.

At this point, because I have not restricted the image, anyone who wanted to
use my cricket/fedweb image could do so using the docker pull cricket/fedweb
command, as shown in the Pull this repository box in Figure 6.2. Anyone can also
find that image by searching for cricket/fedweb on the docker.io hub.

docker search cricket/fedweb
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
cricket/fedweb 0

With the container entry displayed on docker.io, you can add a description
of the image. Select the edit icon on the Information tab and you can add a short
description and full description of the image. After you save that information, the
short description is displayed when someone searches for the image. For example:

docker search cricket/fedweb
NAME DESCRIPTION STARS OFFICIAL...
cricket/fedweb Test apache web server container 0

Attaching a Repository Name to an Image

By attaching a repository name to an image, you can use docker push on that image
to direct it to be pushed to a docker registry you identify. You can set up your own
private docker registry by installing the docker-registry package, starting up the
docker-registry service, and making that service available on a particular port on
an accessible system.

§5

86

Docker Containers

If you had the docker-registry service set up at a host named myregistry.
example.com, listening on the default port (TCP 5000), you could tag an image so
you could push it to that registry. For example, here’s how to tag the fedweb:1.5
image we were working with earlier so it could be pushed to myregistry.example.

com.

docker tag fedweb:1.5 myregistry.example.com:5000/fedweb:1.5

docker images myregistry.example.com:5000/fedweb

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
myreg.example.com:5000/fedweb 1.5 £583b458b447 1 day ago 696.7 MB

To actually push the image to the registry, you could type the following:

docker push myregistry.example.com:5000/fedweb:1.5

The push refers to a repository [myregistry.example.com:5000/fedweb]
(len: 1)

Sending image list

Pushing repository myregistry.example.com:5000/fedweb (1 tags)

511136ea3c5a: Image successfully pushed

£583b458b447: Image successfully pushed
Pushing tag for rev [£583b458b447] on {http://myregistry.example.
com:5000/vl/repositories/fedweb/tags/1.5}

In fact, you could apply multiple image names and tags to the same image so
that the same image (identified by the image ID) could be pushed to different reg-
istries. Returning to the previous example, at this point, anyone with access to your
docker-registry system can pull the image to their local system. For example:

docker pull myregistry.example.com:5000/fedweb:1.5
Pulling repository myregistry.example.com:5000/fedweb
£583b458b447: Download complete

511136ea3c5a: Download complete

Status: Downloaded newer image for myregistry.example.com:5000/fedweb:1.5

SUMMARY

By tagging a Docker formatted container image you can identify not only what an
image contains, but also where it should be stored and possibly which user account
repository is associated with it. It is typical to add tags that identify version number
and version names of the software in the image. Images can also be tagged with
hostnames and IP addresses, so the images can be pushed to and pulled from a
docker-registry service running on a host.

Investigafing Confainers

IN THIS CHAPTER:
= Inspect images and containers for configuration data
= View the history of an image
= Attach to a container process to follow what it’s doing
= Execute a new process in a running container
= Look at log messages from a container process

= Copy files from a running container

So far, you have run, pulled, pushed, saved, loaded, and searched for containers.
At this point, it may all look a bit like magic. If you are ready to dig deeper into
the processing going on with a particular container, many tools are available with
Docker, and with the Linux systems they run on, to look more closely at a running
container.

This chapter teaches you how to use docker inspect to look at an image before
you run it to see how that image is configured. The same docker inspect command
can be used on containers to see run-time information (such as the container’s pro-
cess 1D, network interfaces, and mounted volumes) along with other information
about the container.

After your images and containers have been inspected, you can use other com-
mands to look into them further. There are docker command options to attach to a
container’s process, execute a new process, view log files, copy files, and list pro-
cesses inside the container.

87

88

Docker Containers

INSPECTING IMAGES AND CONTAINERS

Each image carries information with it that includes default configuration settings,
information about who created it, and details about when and how it was created.
After you have run a container, additional information is included with that con-
tainer, such as container network settings, whether the container is still running,
and information on mounted volumes.

By running the docker inspect command on an image or a container, you can
see the low-level data associated with it. This can help you in using or debugging
problems with the image or container. For example, seeing a container’s IP address
can tell you where a client application (such as a web browser) can find the service
running in the container.

To view output in a way that is easy to read, docker inspect displays informa-
tion in JSON format. This makes it easier to see each individual key and value pair
and how it fits in the structure of information associated with the image or container.

To see how docker inspect works, the following sections illustrate how to look
at the low-level data associated with a fedora image running a simple web server
using the python command and SimpleHTTPServer module.

INSPECTING AN IMAGE

Chapter 5, “Finding, Pulling, Saving, and Loading Container Images,” describes
how you can find and get information about a Docker-formatted container image
before you pull it to your local system. These methods include

® Finding images with docker search: With this command, you can search
the Docker Hub and possibly other registries by keyword to find images
that meet your needs. From those results, you can see available images and
repositories, whether an image is official or created with automated builds,
and how many stars have been voted for an image.

= Browsing Docker Hub for images: Besides allowing you to search for images,
the Docker Hub site (hub.docker. com) lets you browse for and sort available
images. This registry also often shows information about how images are cre-
ated and how to use those images.

= Listing local images with docker: Once an image is on your system, the
docker images command lets you see basic information about that image. For
example, you can see the repository the image came from, the image name
and tag, the image ID, when it was created, and its virtual size.

CHAPTER 7 Investigating Containers

Once you have chosen an image and pulled it to your local system and before
running the image, you might want to inspect low-level information for it. You can
use the docker inspect command to find details about the image and how it was
created.

Inspecting Base Images with docker inspect

Inspecting an image can give you some insight into when it was created, the Docker
version used to build it, ports it exposes, and other information. Here are examples
of docker inspect commands. This command inspects the latest ubuntu container.
If the uwbuntu:1atest image has not already been pulled to your system, this action
pulls the image and also inspects it. Note that each time you pull an image, the out-
put from docker inspect and the image itself could change. I trimmed the output to
highlight selected information:

docker inspect ubuntu:latest | less
({
"Architecture": "amdé64",
"Author":. "",
"Comment": "",
"Config":

"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,

n Cmd" . [
"/bin/bash"

1,

"Env" [

"PATH=/usr/local/sbin:/usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin"
1,

"NetworkDisabled": false,

"Created": "2015-03-20T06:16:47.003636554Z2",

"DockerVersion": "1.4.1",

n Id" :
"d0955f21bf24f5bfffd32d2d0bb669d0564701c271bc3dfc64cfc5adfdec2do7",

"Os": "linux",

From the output, you can see that the architecture of the container is amd64
(64-bit PC compatible). The Comment and Author lines were not defined when this

83

30

Docker Containers

image was created. The Config section sets up the environment in which the con-
tainer runs.

The /bin/bash command is run by default, if no other command is identified at
run time. Because attaching standard input, output, and error are set to false, you
need to specify options on the command line when you run this container’s default
bash command (something like, docker run -it ubuntu). In the Env section, only
the PATH variable is set to define which directories are searched for commands
run. NetworkDisabled set to false indicates that the network interface should be
started within the container.

The last section shows basic information about how the container was created.
You can see the date the container image was created, the version of Docker used
to create it (1.4.1), the long form of the container’s ID, and the operating system
(Linux).

Information you can find about the fedora image is similar. Here are some of
the highlights when inspecting the latest fedora image:

docker inspect fedora:latest | less
{
"Architecture": "amdé4",
"Author": "Lokesh Mandvekar \u0O03clsmS@fedoraproject.org\u003e",
"Created": "2014-12-31T22:33:27.3952547972",
"DockerVersion": "1.4.1",
llIdIl:
"834629358fe214f210b0ed606fba2c17827d7a46dd74bd3309afc2al103ad0e89",
"OS": "linux",

}
]

Because the fedora image is a base image, like the upbuntu image, there is
little specialized configuration. For example, like the ubuntu base image the fedora
image doesn’t set a MacAddress for network cards, it simply sets a network inter-
face to start automatically (“NetworkDisabled”: false). No special requirements are
set for memory use or swap space required. These base images are meant to be
generic, so you can tune them yourself when you create your own containers and
images from them.

Inspecting Application Images with docker inspect

While base images are meant to be generic, images built to run specific applica-
tions tend to include more low-level configuration settings. An example of a Docker-
formatted container image that includes more customization is the wordpress image

CHAPTER 7 Investigating Containers 9]

(available from the Docker Hub). Here’s an example of what that image’s low-level

data looks like:

docker inspect wordpress:latest | less
"Config":
"Cmd": [

"apache2-foreground"
1,

"Entrypoint": [
"/entrypoint.sh"
1,

"Envi: o [

"PATH=/usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"PHP_INI DIR=/usr/local/etc/php",
"PHP EXTRA BUILD DEPS=apache2-dev",
"PHP_EXTRA_CONFIGURE_ARGS=—-with-apXSZ",
"GPG_KEYS=6E4F6AB321FDCO07F2C332E3AC2BFOBC433CFC8B3

= O0BD78B5F97500D450838F95DFE857D9A90D90ECL",
"PHP_VERSION=5.6.8",
"WORDPRESS VERSION=4.2.1",
"WORDPRESS UPSTREAM VERSION=4.2.1",
"WORDPRESS SHA1=c93a39be9911591b19a94743014be3585df0512£f"

1,
"ExposedPorts": {

"80/tcp": {}

b

"Volumes": {
" /var/www/html": {}

b

"WorkingDir": "/var/www/html"
"Created": "2015-04-30T05:58:47.9129339672",
"DockerVersion": "1.6.0",

The docker inspect command reveals that more container-specific information
was added into the wordpress image than in the base images illustrated earlier. In
the Config section, the entrypoint.sh script in the container’s root directory is set to
start when you run the container. The apache2-foreground script is defined as an
option to entrypoint.sh when it is run.

A set of environment variables are defined in the wordpress container. These
variables set such things as directories in the shell’s path, the directory containing

3

Docker Containers

PHP ini scripts, and version information. The ExposedPorts variable exposes TCP
port 80 (HTTP content) from the container to the host. The Volumes variable tells
Docker to mount /var/www/html from the host inside the container. Then it sets
WorkingDir to that directory, to be used as the working directory for the container.

As with the other images, the Created line tells when the image was created. The
DockerVersion variable tells which version of Docker the container is designed for.

Looking at the History of an Image

Images are created by building a base image. Each time a new command is run on
the image, a new container layer is created. If those layers are saved with the image,
you can see that information later using the docker command.

There are good reasons for saving an image in layers instead of compressing
those layers into a single image. If, for example, you are running several different
containers on the same computer, if they all have the same base image (identified
by an image ID), it can save on storage space. On top of the base image, you may
add a certain set of development libraries. Then you might add a standard set of
services. The more you can duplicate each layer, the more space you can save.

To see the history of an image, run docker history on that image. Here is an
example:

docker history ubuntu

IMAGE CREATED CREATED BY SIZE
do955f21bf24 6 weeks ago /bin/sh -c¢ #(nop) CMD [/bin/bash] 0 B
9fec74352904 6 weeks ago /bin/sh -c sed -i 's/"#\s*... 1.895 kB
ala958a24818 6 weeks ago /bin/sh -c echo '#!/bin/sh... 194.5 kB
f3c84ac3a053 6 weeks ago /bin/sh -c #(nop) ADD file:... 192.5 MB

511136ea3c5a 23 months ago

You can see that after the original image was created 23 months ago, six weeks
ago the image was changed four times. You can see that someone ran shell com-
mands to create the image. Any future container that uses any of the image’s layers
listed by name in the IMAGE column would not have to pull that particular layer,
but can simply use the one that is already on the system.

INSPECTING RUNNING CONTAINERS

Once you have run a container, you can query that container to find much of the
same information you found querying the original image. On top of the image

CHAPTER 7 Investigating Containers

information, you can also see a lot of data that was set from the docker run com-
mand and otherwise added to the configuration settings on the container at run
time.

The docker inspect information you uncover can help you troubleshoot prob-
lems with a running container or simply understand how the container is working.
You can run docker inspect on either a running container or one that is no longer
running, but has not been deleted. In other words, any container you can see with
docker ps Or docker ps -a commands.

Although there are times when you just want to dump out all low-level configu-
ration settings for a container, other times you might want to select particular pieces
of information. The docker inspect command also allows you to provide a value
name and display just that value, if you choose.

Start a Container to Inspect

To practice inspecting a container, start with one on which you can use a few
docker run options. For this example, I start up a fedora base image and run the
SimpleHTTPServer module. This launches a simple web server.

To create some data for the web server to share, I run an echo command to put
some words into an index.html file. Then I start up the web server. This is what the
two command lines look like:

echo "Web Server Test: Successful" > /var/www/html/index.html

docker run -d -p 8080:8080 --name="fed web" \
--restart="on-failure:5" -w /var/www/html \
-v /var/www/html:/var/www/html \

fedora python -m SimpleHTTPServer 8080
8f77610410f2af42b158859ab7c689caf43829ebefdabea7ac9bc5dce3890bet

The web server runs in the background as a daemon process (-d). The TCP port
8080 is exposed from the container to the host. The container is named fed_web.
By setting --restart="on-failure:5" if this container fails, docker tries up to five
failed attempts to restart the container. (By default, the container would not try to
restart on failure.)

The working directory for the web server is /var/www/html. To provide data to
that directory in the container, I bind mount the /var/www/html directory on the
host to that same directory in the container.

The name of the image used is fedora (which calls fedora:1atest by default).
After that, the python command runs with the SimpleHTTPServer module to serve
data on TCP port 8080. To check that the container is running, type the following
from the host system:

EH

%

Docker Containers

curl -L localhost:8080

Web Server Test: Successful

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

8f77610410f2 fedora:latest "python -m SimpleHTT 5 minutes ago
Up 5 minutes 0.0.0.0:8080->8080/tcp fed web

The curl command queries the local TCP port 8080 and returns the value I
echoed into the host’s index.html file (Web Server Test: Successful). The docker
ps command shows that the container is still running and that data requested from
port 8080 on the host is directed to that same port in the container.

With the container up and running and serving data, it’s time to start inspecting
that container.

Inspect an Entire Container Configuration

If you want, you can just output all the running container’s information to your
screen (STDOUT). As with images, to output low-level configuration information
from a container, use the docker inspect command. I suggest you either pipe the
output through the more command or direct it into a file to view the contents.

I break up the output from docker inspect and highlight some of the attribute/
value pairs in the following example:

docker inspect fed web

"Args": [

n _mll ,
"SimpleHTTPServer",
ll8080 n
1,
"Config": {
"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
ncmdn: [
"python",
"_m" ,
"SimpleHTTPServer",
ll8080 n

1,

The three arguments given to the python command when the container is run
are stored in the Args attribute.

The Config section starts out showing that standard error (AttachStDerr), stan-
dard input (AttachStdin), and standard output (AttachStdout) are not attached to

CHAPTER 7 Investigating Containers 98

the terminal session that started the container. Those settings would be set to true
instead of false if, for example, you were running a bash shell to interact directly
with the container from your console.

The Cmd attribute of the Config section holds the command (python) and all
the arguments passed to it (-m, SimpleHTTPServer, and 8080). The output continues:

"CpuShares": 0,
"CpusetCpus": "",

"Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
1,
"ExposedPorts": {
"8080/tcp": {}

b

"Hostname": "8£f£77610d10f2",

If there were a lot of containers on the system, you might want to assign CPU
shares to each container to ensure that the containers that were most important
got the highest percentage of CPU time (CpuShares get no CPU priority here). If
CPUsetCpus were defined here (it is not), the container could only run on selected
CPUs. Those two values could have been set on the docker run command line with
the -c and --cpuset-cpus="" options, respectively.

The Env section includes the PATH setting, which defines the directories to
look in when a command is run in the container. ExposedPorts shows that TCP
port 8080 is exposed on the same port number on the host. Because no hostname
was defined on the command line, the first 12 characters of the container ID are
used as the hostname. (To assign a hostname inside a container you could use the
-h hostname option to docker run.) The output continues:

"Image": "fedora",
"NetworkDisabled": false,
llUserll . nn ,

"WorkingDir": "/var/www/html"

b

The image attribute shows the name of the image used (fedora, in this case).
The default NetworkDisabled value of false enables networking from within the
container. The User is not set here, but if it were, the command run from the con-
tainer would run as the user identified. For example, by setting -u apache from
the docker run command line, the web server could have run as the user apache

96 Docker Containers

instead of as root. As noted earlier, the working directory (the directory from which
the command is run) is set to /var/www/html. In this case the web server serves out
content from there. The output continues:

"HostConfig":

"PortBindings": {
"8080/tcp": [

{

"HostIp": "",
"HostPort": "8080"

I

"Privileged": false,

"PublishAllPorts": false,

"ReadonlyRootfs": false,

"RestartPolicy": ({
"MaximumRetryCount": 5,
"Name": "on-failure"

The PortBindings attribute sets TCP port 8080 to be exposed on port 8080 for
all IP addresses (Hostlp) on the host. The Privileged attribute (false) indicates that
the container has no privileges to access other containers or the host itself, except
in limited ways that are otherwise specified (such as explicitly mounting a volume
from the host). With PublishAllPorts set to false, only ports from the container that
are explicitly indicated (TCP port 8080 in this case) will be accessible from the
same port on the host.

With ReadonlyRootfs set to false, the root file system can be written to. By
default, the RestartPolicy attribute is set to not restart the container if it fails. In
this example, however, the MaximumRetryCount is set to 5. So five retries must fail
after the container fails before Docker gives up trying to start it again. The output

continues:

"HostnamePath": "/var/lib/docker/containers/8£77610.../hostname",
"HostsPath": "/var/lib/docker/containers/8£f77610.../hosts",

"Id": "8£77610d410...",

"Image": "834629358f...",

"LogPath": "/var/lib/docker/containers/8£776.../8f776...-json.log",
"MountLabel": "system u:object r:svirt sandbox file t:s0:cl157,c580",
"Name": "/fed web",

Some standard Linux files destined to be used in the container are stored on the
host and bind mounted into the container. That and other information are stored in

CHAPTER 7 Investigating Containers

the /var/lib/docker/containers directory on the host, in a directory named after
the container’s ID. I truncated the container IDs in the preceding example.

The HostnamePath attribute sets the location of the hostname file, where the
container’s /etc/hostname file is stored. The hostname is set to the first 12 char-
acters of the container’s ID, if it is not explicitly set in docker run. HostsPath sets
the location of the /etc/hosts file, which attaches the container’s hostname to its
IP address, as well as setting the IP address for the localhost and for IPV6-specific
addresses.

The LogPath defines the location of the log file associated with this container.
Under the /var/1lib/docker/containers directory is a subdirectory for each con-
tainer. That subdirectory holds the log file for that container under the name that
begins with the container ID and ends with -json.log. To see log messages in that
IOg file, type docker logs fed_ web.

MountLabel sets the SELinux context that must be on a file on the host before
that file can be bind mounted into the container. If you typed 1s -1z on the /var/
lib/docker/container/container id/ directory, you would see that the hostname,
hosts, and resolv.conf files all have the same SELinux file context that is set in the
MountLabel attribute (svirt_sandbox_file_t).

The Name attribute contains the name of the container preceded by a slash
(/fed_web). The output continues:

"NetworkSettings": ({
"Bridge": "dockerQ",
"Gateway": "172.17.42.1",
"GlobalIPv6Addressg": "',
"GlobalIPvéPrefixLen": O,
"IPAddress": "172.17.0.9",
"IPPrefixLen": 16,
"IPv6Gateway": "',
"LinkLocalIPv6Address": "fe80::42:acff:fell:9",
"LinkLocalIPvéPrefixLen": 64,
"MacAddress": "02:42:ac:11:00:09",
"NetNg": "",
"PortMapping": null,
"Ports":
"8080/tcp": [
{
"HostIp": "0.0.0.0",
"HostPort": "8080"

37

18

Docker Containers

The Bridge defines the name of the network (dockerO by default) that provides
connectivity for Docker containers on the host. In this example, the host address on
that network is 172.17.42.1, as indicated by the Gateway attribute. After that, sev-
eral IPV6 attributes are not set (because IPv6 networking is not enabled in Docker

by default).
The MacAddress (02:42:ac:11:00:09) indicates the address of the virtual net-

work interface card inside the container. The Ports definition shows the assignment
of TCP port 8080 to all IP addresses on the host (Hostlp is 0.0.0.0) and the host
TCP port 8080. The output continues:

"ProcessLabel": "system u:system r:svirt lxc net t:s0:cl57,c580",
"ResolvConfPath": "/var/lib/docker/containers/8£77610d1.../
wresolv.conf",

"State": {

"Exroxr": "",

"ExitCode": 0,

"FinishedAt": "0001-01-01T00:00:00Z",

"OOMKilled": false,

"Paused": false,

"pid": 10750,

"Restarting": false,

"Running": true,

"StartedAt": "2015-05-04T22:23:09.127040392z"
1
"Volumes": {

"/var/www/html": "/var/www/html"

I
"VolumesMode": {
"/var/www/html": {}

}
"VolumesRW": {
"/var/www/html": true

The ProcesslLabel shows the SELinux security context for the process run
from the container. If you were to type ps -efz | grep c157,c580 on the host,
you would see that the python command was running with the security context
listed in the ProcessLabel attribute. Also notice that the ¢157,¢580 portion of the
ProcessLabel matches that part of the security context assigned to the bind mounted
files described earlier. This mechanism (if SELinux is in enforcing mode on the
system) prevents regular containers from accessing files and other resources from
other containers.

CHAPTER 7 Investigating Containers 99

The State attributes provide information about the current state of the container.
In this case, because the container is currently running, the Running attribute is
set to true.

The last set of information has to do with mounting volumes. The Volumes attri-
bute, shows which local directories are mounted inside the container. In this case,
it is just /var/www/html. After that, the Volume Modes attribute sets permission on
the directory and VolumesRW defines whether the directory is read-only.

Inspect Individual Container Attributes

You can selectively display information from a container, whether that container is
running, paused, or stopped. To do that, you pass options to docker inspect that
identify specific attributes that interest you with the --format option.

Not only can you pull out particular pieces of information about your container,
you can also pass that information to another command to act on that information.
For example, to check the IP address set for your container, you could type the
following:

docker inspect --format='{{.NetworkSettings.IPAddress}}' fed web
172.17.0.9

To check that the IP address is up and accessible, you could pipe that output to
the ping command as follows:

ping -c 2 $(docker inspect \
--format="'{{.NetworkSettings.IPAddress}}' fed web)

PING 172.17.0.9 (172.17.0.9) 56(84) bytes of data.

64 bytes from 172.17.0.9: icmp seg=1 ttl=64 time=0.127 ms

64 bytes from 172.17.0.9: icmp seg=2 ttl=64 time=0.104 ms

--- 172.17.0.9 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 999ms

rtt min/avg/max/mdev = 0.104/0.115/0.127/0.015 ms

As the output shows, I was able to query the IP address and then show two
packets sent and received from the container. As another example, I could pass that
IP address to the curl command to try to get content from the web service. Here,
I add port 8080 to the command line because that is the port the web service is
listening on:

curl -L $(docker inspect \
--format="'{{.NetworkSettings.IPAddress}}' fed web) :8080
Web Server Test: Successful

100

Docker Containers

The following sections show how you can find different types of informa-
tion about a container and, in some cases, use that information as input to other
commands.

Inspect a Container Running a Terminal Session

When you start a container to run a shell terminal session, you can inspect that con-
tainer from another shell to see that the container has standard input, output, and
error (STDIN, STDOUT, STDERR) attached to that shell. Then you can find further
ways of investigating that container’s shell session.

Open two shell sessions on your Docker host and you can follow along with this
procedure. From the first shell, type the following:

docker run -it --name=bashtest fedora /bin/bash

bash-4.3# 1s

bin dev home 1ibé64 media opt root sbin sys usr
boot etc 1lib lost+found mnt proc run Shad tmp var

With the container named bashtest open with a bash shell, open a second shell
on the same host and inspect settings associated with that shell attaching to the
container’s standard input, output, and error:

docker inspect --format='{{.Config.AttachsStdin}} \
{{.Config.AttachStdout}} \
{{.Config.AttachStderr}}' bashtest

true true true

If you want to watch and even interact with the bash shell that originally opened
the container, you can do that using the docker attach command. From the second
shell, type the following:

docker attach bashtest
bash-4.3# pwd

/
bash-4.3# ps
PID TTY TIME CMD
1°? 00:00:00 bash
8 ? 00:00:00 ps
bash-4.3#

At this point, you could type from either the first or second shell session. Any-
thing you type from one shell appears on the other shell. When you are done, type
exit to close the shell and stop the container. In this case, I typed pwd and ps in one
shell session and any input, output, or error data appears in both shells.

Figure 7.1 shows an example of the two shell sessions, with the first shell in the
foreground.

CHAPTER 7 Investigating Containers 101

a root@staypuft:~ -

File Edit View Search Terminal Help

[root@staypuft ~]# docker inspect —-format='{{.Config.AttachStdin}} {{.Config.AttachStdout}} {{.Config.Attachsg]

tderr}}' bashtest

true true true

[root@staypuft ~]# docker attach bashtest

bash—-4.3# pwd

/

bash-4.3# ps

PID TTY TIME CMD

12 00:00:00 bash
8 2 00:00:00 ps

[bash-4.3#

File Edit View Search Terminal Help

[root@staypuft ~]# docker run -it —--name=bashtest fedora /bin/bash

1s
dev home 1ib64 media opt root sbin sys usr
1lib lost+found mnt proc run srv tmp var

TIME CMD
00:00:00 bash
00:00:00 ps

FIGURE 7.1 Inspect a container for attachments to stdin, stdout, and stderr.

Inspect Memory and CPU Limits for a Container

As you begin to grow your use of containers, with multiple containers needing to
interact with each other, you may find those containers competing for resources.
Using options to docker run, you can limit the amount of memory or swap area
available to a container. You can also set CPU priorities and restrict CPU usage for
containers.

The following examples show how to individually list memory and CPU limita-
tions that are set on containers. Because, by default, these resources are not limited
when you run a container, | re-ran the fed_web container I ran earlier, adding the
following options:

® - _cpuset-cpus=0: Sets the first CPU on the system to execute commands
from the container

® - _cpu-shares=512: Sets the proportion of CPU cycles the container can get
® -_memory=1G: Limits the amount of memory the container can use to 1G

" __memory-swap=2G: Limits the amount of swap space a container can use

to 2G
Here’s how you could inspect for each of those pieces of information individually.

docker inspect --format='{{.Config.Cpuset}}' fed web

0

docker inspect --format='{{.Config.CpuShares}}' fed web
512

docker inspect --format='{{.Config.Memory}}' fed web
1.073741824e+09

docker inspect --format='{{.Config.MemorySwap}}' fed web
2.147483648e+09

102

Docker Containers

From the output, you can see that the container is set to use the computer’s
first CPU (0). The container’s CpuShares is set to 512, with the default value being
1024; this container would get a smaller share of CPU availability than the average.

As for memory usage, the container would be limited to 1G (1.073741824e+09)
of RAM. In terms of swap, the container could consume up to 2G (2.147483648e+09)

of swap space.

Inspect the SELinux Contexts for a Container

In a regular Linux system the root user owns everything and can access every-
thing. When SELinux is implemented on a Linux system (as it is on Fedora, RHEL,
and other highly secure systems), SELinux can restrict what a running process can
access. This is done by having a process run in a particular SELinux context and by
SELinux using that context to restrict what the process can access.

Two SELinux labels are defined in a container’s low-level data, on Fedora,
Red Hat Enterprise Linux, CentOS, and similar systems, that help restrict a con-
tainer from being able to access content on the host belonging to other containers.
Those labels are MountLabel and ProcessLabel. Here are a few of ways to list that
information:

docker inspect fed web | grep Label

"MountLabel": "system u:object r:svirt sandbox file t:s0:cl76,c430",
"ProcessLabel": "system u:system r:svirt lxc net t:s0:cl76,c430",

docker inspect --format='{{.MountLabel}}' fed web

system u:object r:svirt sandbox file t:s0:cl176,c430

docker inspect --format='{{.ProcessLabel}}' fed web

system u:system r:svirt lxc net t:s0:cl76,c430

The value of MountLabel represents the SELinux file context that is set on files
on the host that can be bind mounted inside this particular container. The Process-
Label is the SELinux context used on the process running from the container. In the
example of the fed_web container, the python command used to run the simple web
server uses the ProcessLabel.

With SELinux you can use a ps command with a -z option to see the SELinux
context for the process. Using 1s with -z lets you see the file context on a file that
the process running from the container can bind mount within the container. With
the container still running, you can get the process ID of the command running from
the container and then pass the PID to the ps command as follows:

docker inspect --format='{{.State.Pid}}' fed web

32503

ps -fZp 32503

LABEL UID PID PPID C STIME

CHAPTER 7 Investigating Containers

TTY TIME CMD
system u:system r:svirt lxc_net_t:s0:cl76,c430 root 32503 1433 0 11:20
? 00:00:07 python -m SimpleHTTPServer 8080

docker ps | grep fed web
022ac55f6206 fedora:latest "python -m SimpleHTT 1 minute ago 1 minute
0.0.0.0:8080->8080/tcp fed web
e¢d /var/lib/docker/containers/022ac55£6206%*
1ls -Z hostname hosts resolv.conf | grep sandbox
-rw-r--r--. root root
system u:object_r:svirt sandbox file t:s0:c176,c430 hostname
-rw-r--r--. root root
system u:object r:svirt sandbox file t:s0:cl76,c430 hosts
-rw-r--r--. root root
system u:object r:svirt sandbox file t:s0:cl76,c430 resolv.conf

Starting with the preceding docker inspect command, I queried for the process
ID of the process running from the container (PID 32503 in this case). Using ps to
see a full (-£) listing with SELinux context (-z) for the process ID (-p 32503), you
can see that the SELinux context matches the context contained in the Process-
Label for the running web server (python process).

Next, look at the container ID for this container (022ac55{6206 is the short
form) and change to the container’s directory under /var/1ib/docker/containers.
Using 1s to list the SELinux context (-z), you can see that the context on the host-
name, hosts, and resolv.conf files is set to the MountLabel value in the container.

One last thing to mention about SELinux contexts: Every file bind mounted from
the host to a container has svirt_sandbox_file as part of its file context. Every pro-
cess run from the container has svirt_Ixc_net_t as part of its context. What prevents
a process run from a container to access resources belonging to another container is
the last part of the SELinux context. In this example, the ¢176,¢430 portion of that
context is unique to this container and prevents it from accessing other resources
from the host or from other containers.

FINDING MORE WAYS TO LOOK INTO CONTAINERS

Your container is now up and running and you have thoroughly inspected its low-
level settings. Using the docker command with a few different subcommands, you
can find out more about your running containers.

Using docker top to See Container Processes

A container typically runs one process. However, using docker exec you can open
other processes within that container, most notably you can open a shell to look

103

104

Docker Containers

around at what is going on inside a container. With docker top, you can see all the
processes running in a container. Here is an example (your output will be somewhat

different):

docker top fed web

UID PID PPID C STIME TTY TIME CMD

root 12882 1433 O 23:17 pts/8 00:00:00 nsenter-exec --nspid
32503 --console

/dev/pts/8 -- /bin/bash

root 12883 12882 O 23:17 pts/8 00:00:00 /bin/bash

root 32503 1433 O 11:20 ? 00:00:07 python -m
SimpleHTTPServer 8080

From the output you can see that three processes are running inside the con-
tainer. When the container started, the python command was run. From a second
terminal, I opened a /bin/bash shell, which starts up nsenter-exec on the host to
open the required namespaces to the container. So docker top shows those three
processes on the host, along with their process ID (PID) numbers from the host.

When I run a ps -ef command inside the host, I don’t see nsenter-exec, but
only the python and /bin/bash processes (plus the ps -ef command I just ran).
Notice that the process IDs inside the container are different because the container
has its own process table:

ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 May05 ? 00:00:12 python -m SimpleHTTPServer 8080
root 15 0 0 06:38 ? 00:00:00 /bin/bash

root 20 15 0 06:38 7 00:00:00 ps -ef

Using docker attach to Interact with a Service Inside
a Container

You can attach to any running container to see the processing going on with it.
If the container simply opens a bash shell (as I showed earlier), you can interact
directly with that shell by attaching a shell to it from another process. The same
thing can be done to interact with a service running in a container.

Using the fed_web example created earlier, I can attach to that container as it is
running and watch as the web server responds to requests it receives:

docker attach fed web

172.17.42.1 - [06/May/2015 06:46:32
172.17.42.1 - - [06/May/2015 06:47:46
172.17.42.1 - - [06/May/2015 06:55:05
172.17.42.1 - - [06/May/2015 06:55:05

"GET / HTTP/1.1" 200 -

"GET / HTTP/1.1" 200 -

code 404, message File not found
"GET /badfile HTTP/1.1" 404 -

CHAPTER 7 Investigating Containers

In the example just shown, I run two curl localhost:so0s8o commands, which
the first two lines show are able to serve up data (the contents of the default index.
ntml file). On the third line, it shows I try to see the file called badfile, which isn’t
on the server. It results in a “file not found” and a code 404 result when looking for
/badfile.

Using docker exec to Start a New Process in a
Running Container

Instead of just attaching to a process running in a container, you can actually start
a new process to interact with a container. Chapter 4, “Running Container Images,”
shows an example of how to open a bash shell to work inside a running container
(for example, docker exec -it fed web /bin/bash). However, you can run any
command you want from within the container (include yum or apt-get to install
more commands to run).

In this example, I run docker exec to execute a yum command inside my fed_
web container to install the net-tools package. Then I run a few commands from that
package to check out the container’s view of its network interfaces:

docker exec -it fed web yum install net-tools -y

Resolving Dependencies

--> Running transaction check

---> Package net-tools.x86 64 0:2.0-0.31.20141124git.fc21 will be
installed

docker exec -it fed web route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.17.42.1 0.0.0.0 UG 0 0 0 etho
172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 etho

docker exec -it fed web netstat -tupln

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN 1/python

After the net-tools package is installed, I run the route and netstat commands
from that package. The output from the route command shows that the default
gateway from the container is 172.17.42.1 (the IP address of the docker0 network
interface on the host). The netstat command shows that the python process (which
provides the web service) is listening on all local network interfaces on port 8080
(0.0.0.0.:8080).

105

106

Docker Containers

Using docker logs to See Container Process Output

Instead of attaching to a container to watch the output from its processing live, as
long as the container is still either running or stopped (not removed) you can go
back and look at the output from the container’s processing. Running docker 1logs
on a container basically dumps all the output from a container’s processing to your

screen (STDOUT) and exits.

Using the fed_web example again, notice that the output is the same as you saw
with docker attach, but it doesn’t continue to watch for output, it simply exits:

docker logs fed web

172.17.42.1 - - [06/May/2015 06:46:32] "GET / HTTP/1.1" 200 -
172.17.42.1 - - [06/May/2015 06:47:46] "GET / HTTP/1.1" 200 -
172.17.42.1 - - [06/May/2015 06:55:05] code 404, message File not found

172.17.42.1 -
#

[06/May/2015 06:55:05] "GET /badfile HTTP/1.1" 404 -

Using docker diff to See How a Container Has Changed

Docker keeps track of any changes to the files and directories that occur in a con-
tainer after it is running. You can view the changes to the container as compared
to the original image you run using the docker diff command. After making some
changes to my fed_web container, this is the kind of information that docker diff
shows about those changes:

docker diff fed web
/var/www
/var/www/html

/root

/tmp
/root/anaconda-ks.cfg
/tmp/anaconda-ks.cfg

DO QP>

The output shows that the /var/www and /var/www/html directories were added
(actually, they are mounted from the host). I moved the anaconda-ks.cfg file from
/root to the /tmp directory. This caused the /root and /tmp directories to be
changed. It also shows that /root/anaconda-ks.cfg was deleted and /tmp/
anaconda-ks.cfg was added.

It is a good idea to use docker diff to check on the changes to a container
before you commit that container to a permanent image.

CHAPTER 7 Investigating Containers 107

Using docker cp to Copy Files from a Container

There may be times when you want to look at a file within a container without
interrupting what’s going on in the container. One way to do that is to simply copy
files from a container with docker cp. To copy the index.html file from a running
fed_web container, you could type the following:

docker cp fed web:/var/www/html/index.html /tmp
cat /tmp/index.html
Web Server Test: Successful

SUMMARY

Looking at low-level data associated with images and containers provides an excel-
lent way to see what is going on with them. Using docker inspect on base images,
you can see the basics on how that image is intended to run. Inspecting images
created to run a specific application can reveal specifics about that container, such
as environment variables, entry points, mounted volumes, and working directories.

Investigating low-level data for running containers with docker inspect can tell
you a lot about what is happening as containers are running. From each container,
you can see the process ID of the process running, network interfaces, mounted
volumes, and other information.

Once a container is running, there are many other ways to find out information
about that container as well. You can use docker top to see processes running
in a container. With docker attach, you can attach to a container’s running pro-
cess. The docker exec command lets you execute a new command within a running
container. The docker logs command lets you see log messages generated from
the process running from a container. With docker cp you can copy files from a
container.

This page intentionally left blank

CHAPTER 8

Skarting, Sropping, and
Restarting Confainers

IN THIS CHAPTER:
= Stop and start containers
= Restart a container
= Send signals to a container
= Pause and unpause a container
= Rename a container

= Create containers

You have gotten some containers running and looked inside them. Now you are
ready to start doing more with containers. While a container image is running, you
can stop it, pause it, kill it, or restart it. After a container has run (whether you
stopped it or it just completed), you can start that container instance again. You can
also rename a container and wait to see how it exits.

Using some of the containers run in earlier chapters, I show you how you can
use different docker command options to work with the containers you have cre-
ated. After that, I show a quick way to create a container that you can use at a later
time.

STOPPING AND STARTING A CONTAINER

When a container is running, it can be exposed to your host system in different
ways. Ports from the container can be exposed on the host. The commands run in

109

110

Docker Containers

the container can have standard input, output, and error exposed to a shell session
on the host. Once a container is stopped (by either completing its task or having a
docker stop command run on it), it tends to release those resources and stay on
your system in a state where it can be restarted later.

The docker start command is simple. When you are starting a container origi-
nally run as a detached service, you don’t need any additional options. You only
need options to docker start when you want to run the command from that con-
tainer interactively.

Instead of stopping and starting a container in two separate steps, you can use
docker restart to stop the service and then start it right back up again. These com-
mands are shown in the next sections.

Stopping and Starting a Detached Container

I have an image called testrun (see Chapter 4, “Running Container Images,” for a
description of how I created it) that consists of a fedora base image with the httpd
package installed. I run the following command to start the web server (httpd) in the
background with the detached option (-d), have it mount the host /var/www direc-
tory in the container, and expose TCP ports 80 and 443 to the host. (Make sure that
no other web server is running and using these ports on the host or the container

will fail.)

Here’s the docker run command to run the httpd server and then a few other
commands to check it:

docker run -p 80:80 -p 443:443 -d --name=WebServer \
-v /var/www/:/var/www/ testrun /usr/sbin/httpd -DFOREGROUND
docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
19a2b9483278 testrun:latest "/usr/sbin/httpd -DF 2 hours ago

Up 2 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp WebServer
netstat -tupln | grep -E "(:80) | (:443)"
tcp6 0 0 :::80 R LISTEN 27194 /docker-proxy
tcp6 0 0 :::443 HEEA LISTEN 27186 /docker-proxy

echo "The Web Server is Up" > /var/www/html/index.html
curl http://localhost/
The Web Server is Up

The docker ps command shows that the webserver container is running. Run-
ning netstat shows that the docker-proxy processes are listening on TCP ports 80
and 443. After I echo “The Web Server is Up” to the /var/www/html/index.html
file, running the curl command shows that the web server can serve that file from
the directory mounted from the host.

CHAPTER 8 Starting, Stopping, and Restarting Containers M

Now, if I want to stop the container, I can use the docker stop command on
either the container ID or container name. For example:

docker stop WebServer
WebServer
docker ps -a | head -n 2

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES

19a2b9483278 testrun:latest "/usr/sbin/httpd -DF 2 hours ago
Exited (0) 2 minutes ago 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp
WebServer
netstat -tupln | grep -E "(:80) | (:443)"
curl http://localhost/
curl: (7) Failed to connect to localhost port 80: Connection refused

After running docker stop, the container no longer appears in output from
docker ps, but it does appear with docker ps -a. From that output, you can see that
the container exited “2 minutes ago.” The /usr/sbin/httpd process is no longer
running, but the contents of the container should still exist on the local system.

Running netstat shows that docker-proxy is no longer listening on ports 80 or
443. The cur1l command shows that the web server is no longer serving the contents
of the index.htm1 file.

Starting a stopped container that runs detached (-d) is easy. The saved con-
tainer remembers the options it ran with originally (exposed port numbers, bind
mounted directories, and so on). Any files added or changed when the container ran
are still in the container. So all you have to do is run docker start on it. Here’s an
example of starting the exited WebServer container back up and then checking that
it is running properly:

docker start WebServer

WebServer
[root@fedora2l ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

19a2b9483278 testrun:latest "/usr/sbin/httpd -DF 23 hours ago

Up 17 seconds 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp WebServer
[root@fedora2l ~]# netstat -tupln | grep -E "(:80) | (:443)"
tcp6 0 0 :::80 R LISTEN 3976 /docker-proxy
tcp6 0 0 :::443 :::* LISTEN 3968 /docker-proxy
[root@fedora2l ~]# curl http://localhost/
The Web Server is Up

As you can see, the WebServer container is up and running again.

112

Docker Containers

Starting and Stopping an Interactive Container

You just saw what happens when you stop a container that has a service running in
the background. If a process running in a container is running interactively, with
standard input, standard output, and standard error coming to the local terminal
window, if you run docker stop from another window, the session closes rather
unceremoniously on the person who opened the session.

For example, open a bash shell from an ubuntu container, as follows:

docker run -it --name=bashbuntu ubuntu /bin/bash
root@10716cc23942:/

pwd

/

Next, open another shell on the system and run docker stop to stop it. The con-
tainer exits from the shell in which it was started (the exit command pops up on its
own in the other shell after the docker stop runs, without me typing it).

docker stop bashbuntu
bashbuntu
docker start -ai bashbuntu

After the docker stop is run, I start the container again. To have it work inter-
actively again, however, I add the following options:

= _a: The attach (-a) option attaches your terminal session to the standard out-
put and standard error coming from the bash shell running in the container.
This is what allows you to see the output from the container’s bash shell.

= -i: The interactive (-1) option connects your terminal session to the standard
input from the bash shell running inside the container. This option lets you
type commands into the shell from inside the container.

Figure 8.1 shows an example of the container being run, stopped, and started
again from two separate shell sessions.

CHAPTER 8 Starting, Stopping, and Restarting Containers 113

root@fedora21:/root - o x
File Edit View Search Terminal Help

[root@fedora2l ~]# docker run -it —-name=bashbuntu ubuntu /bin/bash
root@bba33022d6a6: /# pwd

/
root@bba33022d6a6:/# exit
[root@fedora2l ~]# D

= root@bba33022d6a6: /

[root@fedora2l ~]# docker stop bashbuntu

bashbuntu
[root@fedora2l ~]# docker start -ai bashbuntu
root@bba33022d6a6:/# |J

FIGURE 8.1 After stopping an interactive container, restart it with

docker start -ai.

RESTARTING A CONTAINER

Instead of stopping and starting a container as separate steps, you can do both at
once using the docker restart command. An advantage to running docker restart
is that you can try to stop the main process running in the container, and if it
doesn’t stop cleanly, you can tell docker restart to send it a kill signal if it doesn’t
stop after a set number of seconds.

Try running docker restart on the WebServer container to bring it down and
back up again. Sometimes this is a good thing to do if your container gets in a
weird state or isn’t responding. Restarting a container that starts a service typically
causes that service to reread its configuration files.

Here’s an example of restarting the WebServer container:

docker restart -t 30 WebServer

WebServer

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

19a2b9483278 testrun:latest "/usr/sbin/httpd -DF 24 hours ago
Up 3 seconds 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp WebServer

114

Docker Containers

In this case, the container stops immediately and then starts right back up
again. Just in case, | added the -t 30 option. If for some reason the container had
not stopped in 30 seconds, a kill signal would have been sent to kill the container’s
primary process, thereby killing the container.

Although docker stop and docker restart are two ways to send signals that
end the first process running in a container, there are other ways to explicitly send
signals to a container as well. The docker ki1l command lets you send any valid
signal you choose to a container.

SENDING SIGNALS TO A CONTAINER

The docker kill command sends a kill signal (SIGKILL) to the main process run-
ning in a container, immediately killing that process, as well as the container itself
(and any other processes running in it). Just as with the Linux ki1l command,
however, you can use the docker kill command to send any signal you choose to
a container.

In general, it is best to use the docker stop command to stop a container, since
it tries to terminate the container cleanly. However, if for some reason the container
is hanging and can’t be terminated cleanly, docker ki11 is sure to kill the container.

If T found that I was unable to stop the WebServer container, I could kill it with
the following command. But be warned that this could make the container unable to
start again. For example:

docker kill WebServer

WebServer

docker start WebServer

WebServer

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
docker log WebServer

httpd (pid 1) already running

Killing the container without shutting it down properly causes the httpd process
to stop without properly cleaning up (in this case, removing the PID file). If a con-
tainer becomes unable to start after you have killed it (or, perhaps, the system has
shut down improperly), there are a few things you might do:

= Remove it: In most cases, you should just remove an unusable container
(docker rm)and do a new docker run to start the container from scratch.

® Save and fix it: In the case where there is something of value inside the con-
tainer (maybe you manually added data or configuration information), you

CHAPTER 8 Starting, Stopping, and Restarting Containers

can commit the container to an image, export the image as a tarball, untar the
tarball, fix the problem (in this case, remove the run/httpd/nttpd.pid file),
pack it back into a tarball, and import it back into your system.

= Launch from a script: Instead of starting a service directly from a con-
tainer, launch it from a script. The script can do any cleanup needed to start
the service cleanly before launching the service. In this case, it would first
delete the /run/nttpd/nttpd.pid file (if it exists) before starting the httpd
daemon.

So, to make the point clear, don’t just kill a container if you don’t have to, since
it could make the container unusable if it does not clean up properly when it exits.
That said, you can use docker kill to send other signals to a container.

Valid signals are listed on the signal man page (type man 7 signal). A docker
stop sends a terminate (SIGTERM) signal to a container. With no options docker
ki1l sends a kill (SIGKILL) signal. So you don’t need to specify either of those sig-
nals to send them to a container. Here are examples of other signals you might want
to send specifically to a container:

docker kill -s SIGHUP WebServer
docker kill -s SIGINT bashbuntu

When some applications, such as the httpd service, receive a SIGHUP signal,
they reread their configuration files. This is a good way to change your web server
configuration without shutting down the service. The SIGINT signal sends a key-
board interrupt to the container process. If you were running a bash shell from a
container in another window when the SIGINT was sent to it, it would be as if you
had pressed Cirl+C. You would see AC on your screen, and the current line would
be interrupted.

The types of signals a process accepts can be different with different applica-
tions. Likewise, how it responds to each signal can be different as well. You should
check the individual executable you want to signal to see what signals it supports.

PAUSING AND UNPAUSING CONTAINERS

The docker pause command lets you suspend all processes running in a container.
To bring the container’s processes back to life, use docker unpause. These features
work using the cgroups freezer feature to suspend and unsuspend every process in
the selected container.

115

116

Docker Containers

Here is an example of pausing and unpausing the WebServer container used in
earlier examples:

docker pause WebServer
WebServer
docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES

ad6851772d60 testrun:latest "/usr/sbin/httpd -DF About an hour ago

Up About an hour (Paused) 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp
WebServer

curl localhost

docker unpause WebServer

WebServer

curl localhost

The Web Server is Up

Notice that you can see that the container is paused from the output of the
docker ps command. While the WebServer container is paused, it doesn’t respond
for requests for content on the server. After it is unpaused, it responds as it would
normally.

WAITING FOR A CONTAINER’S ExiT CODE

Using docker wait, you can identify a running container and then wait until that
container exits. When it exits, the docker wait itself exits and prints the original
container’s exit code. To use this feature, first start the docker wait command to
identify the running container for which you want to see the exit code:

docker wait WebServer

Next, open another shell and kill the WebServer container to cause it to return
a nonzero (unsuccessful) exit code:

docker kill WebServer
WebServer

Back at the docker wait command, the exit code should have appeared. In this
case, the exit code is 137:

docker wait WebServer
137

Exit code 137 indicates that the web server did not exit successfully, but
instead was killed.

CHAPTER 8 Starting, Stopping, and Restarting Containers

RENAMING A CONTAINER

If you don’t like the name of a container (whether it is running or stopped), you can
change it. Nothing complicated here: Just run docker rename, followed by the old
name of the container and the new name you want to assign. For example:

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
38178d6e6ff8 testrun:latest "/usr/sbin/httpd -DF 7 minutes ago

Up 7 minutes 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp WebServer
docker rename WebServer HttpdServer
docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
38178d6e6ff8 testrun:latest "/usr/sbin/httpd -DF 7 minutes ago

Up 9 minutes 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp HttpdServer

Comparing the two docker ps commands, you can see the container named
WebServer is now named HttpdServer.

CREATING A CONTAINER

The normal way to create a container (a running instance of an image) is with the
docker run command. With docker run, as long as you don’t add the --rm option,
after the container exits it is saved so you can run it again. Instead of running the
container right now, however, if you just want to create a container, you can use
docker create instead.

With docker create, you identify an image you want to use and the command
you want to run in it. When you launch docker create, instead of running the com-
mand inside the container image, it just saves the resulting container.

When it comes to options you can use with docker create, they are pretty
much the same ones you use with docker run. There are a couple of exceptions.
For example, you wouldn’t use --rm with docker create because the result of a
docker create is a container that is saved and ready to run, so removing it would
be counterproductive.

Likewise, you don’t need the --detach=true (or -d) option. When you start the
container later, it runs detached by default. If you want it to run interactively, you
need to add the -a option (to run with standard output and standard error directed
to the process) and/or the -i option (to run with standard input connected to the
process).

117

118

Docker Containers

Because the options you use with docker create are otherwise the same as the
docker run options described in Chapter 4, refer to that chapter for a more exhaus-
tive description of how the different options work. I have, however, provided a few
examples of docker create here so you can see that command in action.

Say that you want a container to run boggle later from the cricket/hangman
image used in examples earlier in the book, but you want to run it immediately. You
could run the following:

docker create --name=mybog -it cricket/hangman boggle
3dd0cdb06b377c020£93d160161d38e8b67cce49161707a6ecd6c59d4af31b7f
docker ps -a | head -n 2

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

3dd0cdb06b37 cricket/hangman:1.9 "boggle" 5 minutes ago
Exited (0) 4 minutes ago mybog

docker start -ai mybog
B e e il Type '?' for help
Y| Flo] x|

R e e i 2:51
lwlal1]w]

B e e
lolclT]P]

R e

| D E[P]oO]

B e e

fox

pit

duct

To create the container to run the Boggle game, I add a name (mybog), along
with the -it options (to identify the container as one that runs interactively from a
pseudo terminal session). At a later time, I run the container using the -a (attach)
and -1i (interactive) options.

SUMMARY

Once a container has been saved to your system (after an exited docker run or a
new docker create), there are many ways of working with that container. To stop
a running container, you can use docker stop. However, you can also use docker
pause to pause it or docker kill to kill it immediately. The docker xi11 command
can also send other signals to a container, such as a SIGINT (to send an interrupt)
or SIGHUP (which cause some applications to reread configuration files).

CHAPTER 8 Starting, Stopping, and Restarting Containers 113

Instead of stopping and then starting a container again, you can use docker
restart to stop a container and start it again in the same command. Other ways of
working with containers include docker rename (to rename a container) and docker
wait (to wait for a container to exit and display its exit code). If you want to create a
container, but not run it immediately, the docker create command lets you do that.

This page intentionally left blank

Configuring Container Storage

IN THIS CHAPTER:
= Add storage to a container
= Share storage among containers

= Manage host storage

Docker container images are meant to contain reusable applications. To make that
happen, it is typical to have a container store data by attaching to storage outside
the container. There are two categories of storage to consider when using Docker:

B Managing storage and volumes for a container: Adding storage space to a
host doesn’t automatically make more storage available to containers running
on that host. There are, however, ways to mount and use host storage volumes
within a container. Volumes mounted on one container can also be made
available to other containers.

= Managing the Docker storage on a host: Docker itself uses an area
from the host’s storage to manage Docker images and containers on that host,
along with metadata for those images and containers. What are the best prac-
tices that an administrator should consider when setting up Docker on a host
or on multiple hosts?

The first part of this chapter focuses on managing container storage. The sec-
ond part of the chapter covers the best way to manage a Docker host’s storage.

12]

12e

Docker Containers

MANAGING STORAGE FOR A CONTAINER

Docker image creators and consumers want to keep images small. Large images
are not desirable for downloading, even in local repositories. Fortunately, Docker
images need only contain the packages required for the desired Linux distribution
and application running inside the container.

So how does a container maintain data without committing the image changes
and therefore changing the image each time there are changes to the data? The
solution is to use bind mounts of external volumes. This way the container image
used in the application doesn’t change. All state changes are persisted in storage
external to the container.

Using Volumes from the Host

To bind mount a volume into a container at run time you use the -v option to the
docker run command. Arguments that you pass to the -v option include the direc-
tory you want to share from the host computer (for example, /tmp/volume), followed
by a colon and the mount point for that directory within the container (for example,
/data). Here is an example:

docker run -v /tmp/volume:/data -d myappcontainer

However, bind mounting a volume into a container can open you up to some
potentially dangerous scenarios. Consider the following example:

docker run -v /etc:/data -d badappcontainer # DO NOT DO THIS

A Docker container considers itself to have root privilege. Bind mounting /etc,
or other critical volumes, into a container is dangerous. Docker and container tech-
nology are supposed to provide isolation for containers. But this is a case where the
isolation is deliberately broken.

In Linux systems that support Security Enhanced Linux (SELinux), SELinux
provides extra protection and isolation when running containers. With SELinux
enforcement turned on, bind mounting a file or directory requires a special SELinux
label be set for it. In the following example, I make a new directory in /tmp and bind
mount it into a container. Inside the container, I try to edit a file in that directory.

setenforce 1

mkdir /tmp/vol

docker run -v /tmp/vol:/data -it fedora:latest bash
bash-4.2#

From the bash shell open inside the container, when I try to edit or touch the
file /aata/myfile, SELinux prevents me from writing to the volume.

CHAPTER 9 Configuring Container Storage 123

bash-4.2# touch /data/myfile
touch: cannot touch '/data/myfile': Permission denied
bash-4.2# exit

To give a container explicit permission to change the contents of a volume
being bind mounted, we must change the SELinux label using the :z suffix on the
volume. For example:

docker run -v /tmp/vol:/data:z -it fedora:latest bash
Inside the container I can make changes to that mounted directory:

bash-4.2# touch /data/myfile
bash-4.2# ls /data
myfile

It works! SELinux prevents any accidents by forcing us to be explicit about
changing the permissions. Inside the container we can see that the new file also has
the appropriate SELinux label.

bash-4.2# 1ls -alZ /data/

drwxrwxr-x. 1000 1000 unconfined u:object r:svirt sandbox file t:s0
drwxr-xr-x. root root system u:object_r:svirt_ sandbox file t:s0:c437,c645
-Yw-r--r--. root root system u:object r:svirt_ sandbox_ file t:s0 myfile

When I exit and look in /tmp/vol on the host, I see the new file and its data.

bash-4.2# exit
$ ls /tmp/vol/
myfile

Data Volume Container

One of the advantages of using Docker containers is the ability to see and use
volumes from one container in another container. What is commonly called a data
volume container allows you to share a volume from a source container with one or
more target containers. This has some advantages including sharing persistent stor-
age across several containers and providing a layer of abstraction around the bind
mount.

When you bind mount the volume into a container, give the container a name
and add the :z suffix to the mount point. This container is the data volume con-
tainer or the source container. Here’s an example with a container named datavol.

docker run -v /tmp/vol:/data:z --name=datavol -it fedora:latest bash

124

Docker Containers

In another shell, run a new container and use the --volumes-from= option to
identify the first container name. For example:

docker run --volumes-from=datavol -d fedora:latest touch /data/mydata

With a bash shell still open to the container called datavol you can see the new
file called mydata created. Examining the /tmp/vol directory on the host you see
the new file there too.

bash-4.2# 1ls /data
mydata

bash-4.2# exit

1ls /tmp/vol
mydata

Furthermore, the data volume container doesn’t even need to remain running. If
you exit the data volume container named datavo1, you can still change the volume.
In the target container create a third file called mynewdata.

docker run --volumes-from=datavol -d fedora:latest touch /data/mynewdata

You see on the host that that /tmp/vol/mynewdata has been created. If you start
and attach to the data volume container again, you can see the change there too in
/data/mynewfile.

docker start datavol
datavol

docker attach datavol
bash-4.2# 1ls /data
myfile mynewdata mydata

Write-Protecting a Bind Mount

I’'ve demonstrated how you can bind mount a volume safely and also shown how
to share that volume with another container using --volumes-from. But what if |
need a volume in a container, but I want to exclude that specific volume from being
shared with other containers that try to access my volumes with --volumes-£from.

For that purpose, Docker lets me use a :z suffix. Note the uppercase z instead
of the lowercase z. This suffix lets me mount a volume for use in a container but
protects it from being used in another container.

mkdir /tmp/vol2
docker run -v /tmp/vol:/data:z -v /tmp/vol2:/data2:Z --name=datavol \
-it fedora:latest bash

CHAPTER 9 Configuring Container Storage

bash-4.2# exit
docker run --volumes-from=datavol -d fedora:latest touch /data2/mydata
touch: cannot touch '/data2/mydata': Permission denied

In the example just shown, I can write to /data and /data2 directories inside
the datavol container (associated with /tmp/vol and /tmp/vol2 on the host, respec-
tively). From within the second container, however, I can write to the volume called
data1, but not the one called dgataz. That’s because the :z suffix was used.

Mounting Devices

Sometimes it’s useful to be able to mount devices. For example, if I have dozens
of Docker containers running, it is efficient to be able to attach into a container to
examine log files if something goes wrong.

So I can make a container’s logging visible on the host through the system log-
ging device (/dev/1og). Here is an example:

docker run -v /dev/log:/dev/log -i -t \
fedora:latest logger "SYSLOG-TEST This is a test"
journalctl -b | grep SYSLOG
May 05 18:08:41 myhost logger([3617]: SYSLOG-TEST This is a test

In the example just shown, the /dev/10g device from the host is mounted inside
the container. The container runs a 1ogger command to send a message to the sys-
temd journal (via the /dev/1og device). The container exits after sending the log
message. After that, running the journalctl command on the host displays the
message that 1logger sent.

Mounting Sockets

There are also use cases where bind mounting a socket is useful. Access to TCP
communication inside a container is one such use case.

A specific use case that uses the access to the Docker daemon’s socket is run-
ning a continuous integration (CI) Docker build agent inside a container. A Dock-
erfile file appearing in a mounted directory could be a trigger to build a Docker
image. The CI tool triggered by the Dockerfile’s appearance would run another
Docker container on the same host to build the Docker image.

But this Docker container is not running inside the CI Docker container. So
bind mounting the /var/run/docker.sock allows a Docker client inside the con-
tainer to execute docker build and docker run commands from inside the con-
tainer but on the host. This avoids having to run Docker-in-Docker.

125

126

Docker Containers

This next example demonstrates several Docker features and ideas:

= Bind mounting a socket
= Using a privileged container

= An interesting use case

Create a simple Dockerfile using any text editor. Here is an example of the
contents of a Dockerfile:

FROM fedora:latest
MAINTAINER Doc Hand <dhandethedocks.com>
RUN yum -y update; yum -y install systemd-1libs docker; yum clean all

To use that Dockerfile to build a container image, assuming the Dockerfile is in
the current directory, type the following:

docker build -t myrepo/docker

Now run the myrepo/docker image, remembering that the container needs to be
able to see the socket that the Docker daemon is listening on:

docker run -v /var/run/docker.sock:/var/run/docker.sock \
-it myrepo/docker bash

Now inside the container run a docker command. For example, if you try to list
the available images at this point, it fails:

docker images
2014/08/05 16:18:56 Get
http:///var/run/docker.sock/vl.12/containers/json:
dial unix /var/run/docker.sock: permission denied

The previous command fails because of SELinux permission issues. To access
sockets from within a container, you must turn on the privileged option. The :z or :z
suffix can’t help here. To set privileged mode to true, type the command as follows:

docker run --privileged=true \
-v /var/run/docker.sock:/var/run/docker.sock -it myrepo/docker bash

Now run a few more docker commands from within a container. These should
succeed:

bash-4.2# docker images
bash-4.2# docker ps

For more information on privileged containers and super privileged containers
see Chapter 13, “Using Super Privileged Containers.”

CHAPTER 9 Configuring Container Storage

STORAGE STRATEGIES FOR THE DOCKER HOST

A Docker image is not a single image. It is in fact a set of layered images. A new
image can be started from scratch and is often called a base image. (Run docker
history on an image name to see the layers that make up that image.)

An image can be created by layering on top of a parent. Layers are added by
installing new software, by adding new directories or files to the image, or by run-
ning commands that change the underlying layer.

There are two ways I can see layers when using Docker. When I run a docker
pull of images from a registry, I often see multiple image layers being pulled for
the single image I requested. When I run a docker build command, I see various
layers being added when I use the ADD, RUN, or EXPOSE Dockerfile commands.
Each of these layers has a unique name and can be mounted when needed for run-
ning a container. Even so-called temporary layers that are part of a docker build
are really kept as part of the final named image layer.

Figure 9.1 shows the multiple layers if | were to install JBoss on a Java image
that was itself based on a Fedora base image. When I run a container based on this
image, the topmost layer represents the writable layer inside the container. All the
other layers are immutable. In this example the container is running on an Atomic
Host.

Writable Image Layer

JBoss

Java

Fedora

FIGURE 9.1 Docker images are built in layers, with the top layer writable.

127

128

Docker Containers

Layers make Docker and Linux containers different from virtual machines
(VMs). In a VM the entire image is stored on the machine for each type of VM. If
common components like Fedora are inside different VM images, each image still
has to have the common component inside the image. With Docker there is only one
instance of a specific version of the Fedora layer (for example, Fedora 22), and it is
shared across the Java and JBoss images, just as the Java and Fedora image layers
are shared across the Java and JBoss images.

Docker uses a storage backend abstraction to implement the layered images.
This allows you to manage the various layers of a complete image and to share those
layers across related images. So if you already have the lower layers of an image
on your system and only need the top layer, a docker pu1l only downloads that top
layer.

Fedora, Red Hat Enterprise Linux, Fedora Atomic Host, and RHEL Atomic
Host use the device-mapper backend. This allows the Docker implementation to
use the device-mapper thin provisioning module to implement the layers.

Thin provisioning means that if I have a pool of storage I can overadvertise how
much space is in the pool, because I know that the initial image usage will likely be
smaller than the allocation request. Unused blocks are not allocated.

However as the image needs more storage, more capacity can be added from the
pool to that specific image. However, the pool is limited and as it is likely techni-
cally overallocated, an administrator should pay close attention and add more stor-
age to the pool as needed.

There are other storage backend implementations such as vfs, btrfs, and aufs.
However, they either are considered immature at the time of this writing (btrfs),
unsupported in the upstream kernel at the time of this writing (aufs), or just not
practical (vfs, as it doesn’t share disk space for use between layers). This could
change in the future.

Attaching External Storage to a Docker Host

On the host, Docker uses the /var/1ib/docker volume to hold all the Docker images
and containers. The host’s Docker repository is contained in this volume. In most
cases, an administrator will not be able to predict precisely how large the local
Docker repository will become on the host. As more and more images are added
and more and more containers are started, this volume can quickly run out of space.

If you are running the Docker host as a virtual machine (for example, a RHEL
Atomic Host), it is prudent to keep RHEL Atomic Host images as small as possible.
Base RHEL Atomic Host images are quite small.

CHAPTER 9 Configuring Container Storage

If you have a small RHEL Atomic Host image (for example, 8GB), this is hardly
enough space to work with many Docker images and containers. Docker will quickly
fill up the /var/1ib/docker directory, where all the Docker images and metadata
are stored. It is recommended to provide an external volume and bind mount that
volume to the /var/1ib/docker directory on the Docker host.

On Debian and Ubuntu you can change the /etc/default/docker file (add
DOCKER_OPTS="-g /path/to/dir""). But Fedora and RHEL, which use systemd,
don’t follow that approach. Furthermore with SELinux labels, it is important to use
the /var/lib/docker‘djrectory.

Expanding Storage with Logical Volume Manager

Starting with a Fedora host that has an Atomic virtual machine running on it, fol-
low these instructions to create an LVM volume on the host, attach it to the Atomic
VM, and mount it on the /var/1ib/docker directory within that VM. The following
instructions assume that Docker started cleanly on the Atomic VM. Any important
Docker images or containers in /var/1ib/docker can be copied to the new partition
and made available when the new partition is mounted.

To be safe, if there are important images, containers, or other metadata, you
should back them up in case something goes wrong in creating the new disk space.

1. Create LVM partition: On the Fedora host, for this example there is a storage
device of Linux LVM type (8e) represented by /dev/sdbi. I create an LVM
partition that consumes that entire 130G disk (which I can see using the
fdisk -1 command). The result of the following commands is an LVM parti-
ﬁorlnankxl/dev/docker_vg/mydocker:

fdisk -1 /dev/sdb
Device Boot Start End Sectors Size Id Type
/dev/sdbl 2048 273672191 273670144 130G 8e Linux
pvcreate /dev/sdbl
Physical volume "/dev/sdbl" successfully created
vgcreate docker vg /dev/sdbl
Volume group "docker vg" successfully created
lvcreate -1 100%FREE -n mydocker docker vg
Logical volume "mydocker" created.

2. Create a file system: On the Fedora host, add a file system on the new
partition:
mkfs.ext4 /dev/docker vg/mydocker

3. Add the partition to the Atomic VM: Open Virtual Machine Manager

(virt-manager command), select the Atomic virtual machine, and select to
shut it down. Select the Show Virtual Hardware Details button, select Add

129

130

Docker Containers

Hardware, select Storage, click Select Managed or Other Existing Storage,
and browse to select the new partition (/dev/docker vg/mydocker). Make
sure the Bus type is IDE and Device type is Disk Device; then select Finish.

4. Start the Atomic VM: Start up the Atomic VM and log in as root user.

5. Stop the Docker service: On the Atomic system, stop the Docker service
as follows:
systemctl stop docker

6. Copy Docker files: Mount the new partition temporarily and copy all the files
from /var/1ib/docker there. In this example, the partition is /dev/sdb.
For example:

mkdir /mnt/tmp

mount /dev/sdb /mnt/tmp

cp -r /var/lib/docker/* /mnt/tmp/
umount /mnt/tmp

7. Get UUID: On the Atomic system, determine the name of the new storage
device (in this example, it shows up as /dev/sdab). Then type the following to
get the UUID from the device:

blkid /dev/sdb
/dev/sdb: UUID="9d73e64c-9422-459c-9677-27c2e8cbbc30" TYPE="ext4"

8. Set partition to mount: Add that UUID to the /etc/fstab file so the partition
automatically mounts on the /var/1ib/docker directory. For example:
UUID=9d73e64c-9422-459c-9.. /var/lib/docker ext4 defaults 1 1

9. Mount the partition: To mount the new partition on /var/lib/docker, type
the following:

mount -a

10. Restart docker: To restart the Docker service, type the following:
systemctl start docker

The steps for adding storage are complete. You can start using Docker again.

SUMMARY

Being able to add outside storage is an important feature if you want to do more
than just run simple containers. Features for mounting storage volumes to contain-
ers allow you to keep your containers simple and portable, while making the data
accessible outside each container. Because images and containers themselves con-
sume space on the host system, being able to expand disk space on the host is also
a consideration.

CHAPTER 9 Configuring Container Storage

To add storage to a container when you run an image, you can use the -v option
to identify what directory on the host to mount and where to mount it in the con-
tainer. There are also docker run options that allow you to share or limit access to
volumes among multiple containers.

On the host system itself, Docker stores images, containers, and other metadata
in the /var/1ib/docker directory. If you are using containers in a host being run as
a virtual machine, you can attach storage from the host computer and mount it on
the /var/lib/docker directory in that virtual machine. In that way, you can grow
the Docker content you can store in the virtual machine.

131

This page intentionally left blank

CHAPTER 10

Confiouring Container
Nefworking

IN THIS CHAPTER:
= Expose ports on network interfaces
= Map container ports to host ports
= Bypass the Docker bridge for a container

= Change the bridge for the Docker service

Docker offers a convenient way to use Linux Containers (LXC). LXC provides
process isolation and resource limits for each container. Docker provides an extra
layer on this isolation to make containers portable (image format) and easier to use
(from an application programming interface or the command line). This isolation
extends to the way in which a container’s network interfaces can be isolated from
the host system as well.

Part of container isolation allows each container to think it is the root process
of its own machine. This is why some people consider Docker containers as light-
weight virtual machines. The fact that a Docker container does not have its own,
separate kernel makes it different from a virtual machine. But Docker containers do
have similar behavior to virtual machines.

One way Docker provides this extra illusion of a container being its own
machine is the fact that Docker provides the container process with its own I[P
address. Docker does this by setting up a virtual interface and bridging this to the
host machine’s network. The bridge on the host side is called dockero. Each con-
tainer managed by this dockero bridge is assigned its own IP address. However,
Docker still provides container isolation.

133

134

Docker Containers

For a container to provide a service based on IP to other containers or applica-
tions it must expose the port that the service uses. For example, a default Apache
web server container should expose ports 80 and 443, as illustrated in the following
Dockerfile example:

FROM fedora:22

MAINTAINER William Henry email ipbabble @ gmail dot com
Update the system

RUN yum -y update; yum clean all

Install httpd

RUN yum -y install httpd

EXPOSE 80 443

ENTRYPOINT /usr/sbin/httpd -DFOREGROUND

The preceding Dockerfile uses the EXPOSE keyword to define a port that will
be exposed from the container. Using the EXPOSE keyword does not immediately
expose the defined port to other containers or to applications on the host system.
For those entities to have access to this port, additional steps are needed to link or
port map the port outside the container:

= Exposing ports: Linking allows a container to access the exposed port of a
container on the same machine.

= Mapping ports: Mapping provides a mechanism to map an exposed port to
the host machine’s external ports.

With the Dockerfile just shown in the current directory, the following command
builds a container called myrepo/fedora-httpd from that file:

docker build -t=myrepo/fedora-httpd .
In the next section I describe how to make the exposed port available to another

container by linking the containers together. After that, I show how to map con-
tainer ports to host ports so they are exposed outside the host.

ExPOSE PORTS TO OTHER CONTAINERS

Using the myrepo/fedora-httpd image built in the previous section (which exposes
its running web server on ports 80 and 443), I link another container to it and use
the exposed port 80 from the second container. First I run the myrepo/fedora-httpd
container and give it the name link-test:

docker run -d --name=link-test myrepo/fedora-httpd

Notice that I run the container in detached mode with the -4 parameter (and not
interactively on a TTY with -it).

CHAPTER 10 Configuring Container Networking 138

Next I run a second container that I name 1inked and link it to 1ink-test. 'm
mapping the link to the name 1t (short for 1ink-test). This is the name I use from
inside the second container to access port 80 in the first container.

docker run -it --link=link-test:1lt --name=linked fedora:22 bash

I don’t have to name this second container, but it’s good practice to do so. From
within this second container, running the env (environment) command shows the
following:

bash-4.2# env

HOSTNAME=d71eb38e62d5

TERM=xterm

LT PORT 80 TCP=tcp://172.17.0.3:80

LT_PORT 80 TCP_PORT=80

LT PORT 80 TCP_ PROTO=tcp

LT PORT=tcp://172.17.0.3:80
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PWD=/

container uuid=d7leb38e-62d5-0al5-902c-6901a4ed5d26
LT NAME=/linked/lt

SHLVL=1

HOME=/root

LT _PORT 80 TCP ADDR=172.17.0.3

_=/usr/bin/env

Notice that there are several environment variables starting with LT. Those vari-
able names are derived from the 1t string I assigned to the link name in the docker
run command. Any port exposed from the first container is accessible from the new
container in the same way.

Now I can use the curl command to leverage the link between the two contain-
ers and display the html page available on port 80 of the container named 1t or
link-test. [only show the first few lines here:

bash-4.2# curl http://1lt
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/
xhtmlll/DTD/xhtml11l.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml" xml:lang="en">
<head>
<title>Test Page for the Apache HTTP Server on Fedora</titles>

Links are a powerful tool for linking containers together. In the next section |
build up a scenario.

136

Docker Containers

MAP PORTS OuUTSIDE THE HOST

To expose a port from a container so it is available from a port on the host, you use
the -p option of docker run. With that option, you can expose the container port
to the same port number on the host or to a different port number. If a container is
linked to another container, only the ports explicitly mapped to the host are avail-
able to clients of that host. In other words, while linking to a container makes ports
available to the other container, that action doesn’t automatically make the same
ports available to the host system.

The following sections illustrate how ports are mapped from containers to the
hosts they are running on. They also show how mapping ports affects how some
ports within containers are protected from outside access.

Map a Port from Linked Containers

Figure 10.1 illustrates two containers linked together on a host named H1. Host H1
has the default Docker bridge dockero. One port is exposed within the container
(port 8080 on container C1), and one port is mapped to a port on the host (port 80
on container C2). The following steps describe a way to create this configuration.

4 N\
o | e
et C1:8080
. .)
| I—
docker0
Map: C2:80:80 docker0
Link C1 to C2
Host H1 LINUX Host H2 LINUX
C = Container H = Host P = Process/Program

FIGURE 10.1 Linked containers can share exposed ports or map ports to host.

1. Run C1 container: This can simply be an application that is exposing its
HTTP-based Ul over port 8080. For example, it could be a Jenkins con-

tainer. In this case, I run a simple web server with a python module:

CHAPTER 10 Configuring Container Networking 137

docker run -d --name=Cl -w /var/www/html \
-v /var/www/html:/var/www/html fedora:22 \
/bin/python -m SimpleHTTPServer 8080

2. Run C2 container: Next | run container C2 with exposed port 80 mapped
to the host port 80. I also link C2 to the C1 container:
docker run --name=C2 -d --1link=Cl:Cl -p 80:80 myrepo/fedora-httpd

3. Check access to C1 port from C2: The dockero bridge allows C2 to link
to C1 and also maps C2’s port 80 to host HI’s port 80. If I use the docker
exec command to enter into C2 using a bash shell, I can run cur1 on port
8080 to see any content available in /var/www/html/ on the host from
within C2:

docker exec -i -t C2 bash
bash-4.2# curl http://C1:8080
The server is running.

4. Check access to H1 port from H2: Now on host H2, I start a normal
bash shell process P1 that consumes C2’s web page exposed on port 80 and
mapped to H1’s port 80. I can do this simply by running the curl command
with H1’s IP address. And just like the example in the previous section [
should see the html page returned. Figure 10.2 illustrates this action.

o | g p—
e C1:8080
— P1
| I— (browser)
docker0 H1:80
Map: C2:80:80 docker0
Link C1 to C2
L WV
Host H1 LINUX Host H2 LINUX
C = Container H = Host P = Process/Program

FIGURE 10.2 Access the container port mapped on H1 from a process on H2.

This demonstrates that C2’s exposed port is consumable due to the mapping
of port 80 to the same port on the host. The browser from H2 cannot access
CI’s information because I did not map that to the host’s port 8080 or any

138

Docker Containers

other port. P1 cannot access C1 through C2 as P1 is not a container and is
not on the same host.

Connect Containers on Different Hosts

It is possible to have applications from multiple containers that need to work
together but happen to be running on different hosts. Using just Docker, without
additional tools, you can map container ports to host ports, where you might have
just linked the containers together if they were on the same machine.

Building on the configuration described in the previous section, Figure 10.3
shows an example of how connections between applications running in containers
on different hosts might be set up using linked containers and ports mapped to their
respective hosts:

f)
Cc2 C4
C1 C3
80 4 A C3:3306
0D C1:8080 H1:80 3306
. /
| |
— P —1
=] H1:80
docker0
mon. docker0
Map: 2:60:60 Link C4 to C3
Link C1 to C2
. WV
Host H1 LINUX)— Host H2 LINUX
C = Container H = Host P = Process/Program

FIGURE 10.3 Accessing ports from containers on different hosts.

With C1 and C2 containers still running on host H1, on host H2 I start another
container called C3. This might be a MongoDB container that exposes port 3306.
Like C1 it is not mapped to a host port and is not linking to another container.

I can now start another container C4 that is linked to C3. This is a normal
fedora container running bash. If I run the env command inside C4, I can see the
C3 links in my environment, just like the example in the previous section. I can also
use the curl command to display the html page exposed on C2 through the mapped
port 80. I cannot connect to C1 because I cannot link to C1 from a different host.

CHAPTER 10 Configuring Container Networking

It is important to note from the scenario just described that

® | can link containers on the same host.

= [can connect containers on different hosts by mapping exposed container
ports to host ports.

This is useful, but it leaves out one important use case. If I have an applica-
tion that spans multiple hosts and 1 want to “contain” that application within a
namespace, I’'m missing something. For example, suppose I have multiple contain-
ers in multiple applications that all expose port 80. Many of these containers may
be deployed on the same host. I cannot map them all to port 80 on the same host. I
would have to map each container’s port 80 to some host port.

However, containers on other hosts that consume information from port 80 of
the containers on the first host don’t want to be burdened with understanding the
dynamic mapping that must occur for all these containers to provide their service.
The consumer just wants to consume from port 80. This is a common problem,
especially in service providers like Platform as a Service (PaaS) systems where
achieving density of application containers across hosts is important for efficiency
and cost.

Docker is primarily concerned with managing images and containers on a single
host. Currently there is no cross host management in Docker itself. In other words,
Docker provides no out-of-the-box solution for linking containers on multiple hosts.
Something else is required that allows applications to interact “naturally” within
the same namespace across multiple hosts.

Kubernetes, covered later in Chapter 15, “Orchestrating Containers with
Kubernetes,” and Chapter 16, “Creating a Kubernetes Cluster,” is the Docker-
based technology used to orchestrate the deployment of multicontainer applica-
tions across multiple hosts. Kubernetes provides the mechanism that manages the
dynamic mapping of hosts and ports between the containers.

ALTERNATIVES TO THE DOCKERO BRIDGE

Although Docker provides the dockero bridge to provide network access to contain-
ers on a system running Docker, you don’t have to use that bridge. In this section
we consider two use cases:

= A container uses an alternative to the dockero bridge.

® A host’s Docker daemon uses an alternative to dockero.

133

140

Docker Containers

Changing Network Mode for a Container

It is possible to change the network mode for a single container using the --net
parameter. With --net, you can use the default bridge (dockero), a different bridge,
or provide no network access at all. Here are examples of ways to use the --net
option:

= Default network bridge: Specifying - -net=bridge creates a new network
stack for the container on the Docker bridge called dockero. This is the
default behavior.

= No networking: Specifying - -net=none informs Docker to run the container
with no networking at all. The container is isolated from the network. This
could be useful for running some sort of interactive utility, such as a calcula-
tor or a game.

= Another container’s network: Specifying - -net=mycontainer informs
Docker to start the container and have that container reuse the network stack
of the container called mycontainer on the same host system.

= Bypass bridge: Specifying - -net=host means the container uses the host
network stack directly from inside the container, bypassing the bridge.

To understand how these --net options work, the next section shows a series
of examples that explore the different arguments you can give to the --net option.

Examining Network Options

To examine some --net options, | create an image from a Dockerfile by using the
fedora base image and installing the net-tools package. Here are the contents of the

Dockerfile:

FROM fedora:22

MAINTAINER William Henry email ipbabble @ gmail.com

Update the system

RUN yum -y update; yum clean all; yum -y install net-tools
ENTRYPOINT /bin/bash

With the Dockerfile in the current directory, here’s how to build the image:

docker build -t=nettools .

Before running a container I look at the host’s IP stack with the dockero bridge
and see the bridge and the host’s network interfaces. I am only showing the impor-
tant interfaces and have left off loopback and the network interface to virtual
machines running on the system.

CHAPTER 10 Configuring Container Networking

ifconfig
docker0: flags=4163<UP,BROADCAST,RUNNING, MULTICAST> mtu 1500
inet 172.17.42.1 netmask 255.255.0.0 broadcast 0.0.0.0

ineté fe80::382b:6bff:fefb:9d8 prefixlen 64 scopeid 0x20<link>
ether 5a:85:58:dl:ac:f3 txgqueuelen 0 (Ethernet)

RX packets 19427 bytes 1057038 (1.0 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 21384 bytes 266330243 (253.9 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 162.xxx.yyy.zzz netmask 255.255.255.0 broadcast 162.xxX.yyy.255
inet6 fe80::aaaa:55ff:ccc:1 prefixlen 64 scopeid 0x20<links>
ether 04:01:55:56:00:01 txqueuelen 1000 (Ethernet)

RX packets 51651 bytes 512011975 (488.2 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 41427 bytes 3509038 (3.3 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Now I run the new nettools image without the --net option, so the container
is assigned an IP address from the default pool of IP addresses (172.17.0.0/16). In

this case, it is assigned an IP address of 172.17.0.8:

docker run -ti nettools

The ifconfig command here shows the normal IP stack using the bridge from

the container’s own contained network interfaces:

ifconfig
eth0: flags=67<UP,BROADCAST, RUNNING> mtu 1500

inet 172.17.0.8 netmask 255.255.0.0 broadcast 0.0.0.0
inet6 feB80::42:acff:fell:8 prefixlen 64 scopeid 0x20<link>
ether 02:42:ac:11:00:08 txqueuelen 0 (Ethernet)

RX packets 6 bytes 508 (508.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 6 bytes 508 (508.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6é ::1 prefixlen 128 scopeid 0x1l0<host>

loop txqueuelen 0 (Local Loopback)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Notice that the etho interface is using an address on the dockero bridge. This is

the default behavior: - -net=bridge.

141

142

Docker Containers

Now I run the same container with the - -net=nhost option:

docker run -it --net=host nettools

Inside the container, I run ifconfig, which shows the host’s network interfaces,
instead of the separate network interfaces normally assigned, by default, in the
container:

ifconfig
docker0: flags=4163<UP,BROADCAST,RUNNING, MULTICAST> mtu 1500
inet 172.17.42.1 netmask 255.255.0.0 broadcast 0.0.0.0

inet6 feB80::382b:6bff:fefb:9d8 prefixlen 64 scopeid 0x20<links>
ether 5a:85:58:dl:ac:f3 txqueuelen 0 (Ethernet)

RX packets 19435 bytes 1057574 (1.0 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 21384 bytes 266330243 (253.9 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth0: flags=4163<UP,BROADCAST,RUNNING, MULTICAST> mtu 1500

inet 162.243.151.77 netmask 255.255.255.0 broadcast 162.243.151.255
inet6 fe80::601:55ff:fe56:1 prefixlen 64 scopeid 0x20<links>
ether 04:01:55:56:00:01 txqueuelen 1000 (Ethernet)

RX packets 51829 bytes 512026047 (488.3 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 41539 bytes 3524564 (3.3 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Notice all the host’s interfaces are present (as before I am only showing the
bridge dockero and the etho interfaces). So setting - -net=host removes the bridg-
ing layer normally present and can be useful for increasing performance. However,
when [use this on all my containers on the host I need to be careful of clashing
exposed ports.

This is also a good demonstration of how Docker is really nothing more than an
abstraction layer on top of a host’s kernel. It mainly just provides a layer on top of
the container technology built into Linux.

CHANGING THE DOCKER NETWORK BRIDGE

If the default dockero bridge doesn’t fit the organization’s network topology, there is
a mechanism to change the bridge that the Docker daemon uses. The Docker dae-
mon can be started and attached to a preexisting bridge. The following command
attaches the Docker daemon to a bridge named mybridge on the host:

/usr/bin/docker -d --selinux-enabled -b=mybridge

CHAPTER 10 Configuring Container Networking

It is also possible to switch off networking for all containers on a host. For
example:

/usr/bin/docker -d --selinux-enabled -b=none

You don’t typically run the Docker daemon manually. On systems that start
Docker using the systemd service (Fedora, RHEL, CentOS, and others), change
the options passed to the Docker daemon in the /etc/sysconfig/docker file. By
default, those systems only have --selinux-enabled set by default. To add the
mybridge example shown earlier, edit the OPTIONS line in /etc/sysconfig/docker
so it appears as follows:

OPTIONS='--selinux-enabled -b=mybridge'

The next time you restart the Docker service, it picks up the new option. For
example:

systemctl restart docker
ps -ef | grep /usr/bin/docker

root 18540 1 0 13:06 ? 00:00:00 /usr/bin/docker -d
--selinux-enabled -b=mybridge --insecure-registry localhost:5000
docker run -ti nettools ifconfig ethO
[root@0f8e98ce321d /]1# ifconfig ethO
eth0: flags=67<UP,BROADCAST, RUNNING> mtu 1500
inet 192.168.122.3 netmask 255.255.255.0 Dbroadcast 0.0.0.0

In this case, you can see that the nettools container picks up an IP address in
the 192.168.122.0/24 range instead of the default 172.17.0.0/16 range.

SUMMARY

Networking for applications running in Docker containers is different from net-
working applications that run directly on the host. Because containers have net-
work interfaces that, by default, are different from those on the host, extra effort is
needed to expose network ports to other containers or to the outside world (via host
ports).

When you build a Docker container, you can identify ports as being exposed. A
container that links to another container with an exposed port can communicate to
the exposed port. To make a port accessible outside the container (or other contain-
ers it is linked to), you can map a container port to a port on the host.

The default network bridge on the host that is used to provide connectivity for
Docker containers on the system is named dockero. For an individual container,

143

144

Docker Containers

you can identify a different network bridge to use (or none at all). Likewise, you can
identify a different bridge to use by default when you start up the Docker service.

While networking is one feature of Docker containers that can be separate from
network interfaces on the host, containers also include other features to restrict
access to host privileges. Chapter 11, “Cleaning Up Containers,” describes how
to remove old Docker containers and images from your system, as well as how to
check that Docker is not running out of disk space.

Cleaning Up Confainers

IN THIS CHAPTER:
m Check and allocate disk space
= Remove images
= Remove containers

= Clean up containers before saving

Every time you pull down a new image or run a container, you consume space on
your system. If you are not paying attention, you could gobble up all your disk space
and make Docker (and possibly your entire system) temporarily unusable. That
said, Docker offers ways of minimizing the amount of space you consume and tools
for erasing unneeded containers when you are ready to clean house.

Of course, saving computer resources is at the heart of containerization. So
while Docker makes it easy for you to create and extend containers, it also makes it
easy to remove unneeded images and containers.

This chapter takes you through docker commands for removing images and
containers you no longer need. It also tells you where Docker stores its data so you
can be sure that enough space is allocated there to meet your needs. After that,
you can read about ways of cleaning up containers so you can save them more effi-
ciently as images or run containers in a way that has them clean up when they exit
(--rm option to docker run).

145

146

Docker Containers

MAKING SPACE FOR IMAGES AND CONTAINERS

Docker saves its data in the /var/lib/docker directory structure. If Docker com-
mands begin to fail because you have run out of disk space, you need to make sure
there is enough disk space in that directory to handle your needs. You can use the
standard af command to do that:

df -h /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rah-root 3.0G 2.3G 791M 26% /var

The example just shown is for an RHEL Atomic host. As you can see, there is
only 3.0G of space available in total for the /var directory that could potentially be
used in /var/lib/docker. Because /dev/mapper/rah-root is a logical volume, you
could add more space to that logical volume if you need to. Chapter 9, “Configuring
Container Storage,” describes how to add more disk space to a system using logical
volume management (LVM).

The focus of this chapter, however, is on cleaning up your existing disk space.
The way to do that is to list the images and containers on your system and remove
the ones you don’t need.

REMOVING IMAGES

Images that have been pulled or saved to your system remain there until you remove
them. There’s no automatic clean-up for images you stop using. So, particularly if
you have limited disk space, you occasionally need to remove ones you no longer
want.

To remove an image, you can use the docker rmi command with the name of the
local image (or images) you want to remove. There really isn’t anything tricky about
removing containers. There are just a few things to consider:

= Trying to remove an image that is in use (whether the container is running
or paused) will fail. You can override that and force a removal with the -£
option. In general, however, it’s best to stop any container running from that
image before removing the image.

= Be explicit about the image you want to remove. If you don’t indicate a
tag with the image name you want to delete, it assumes you mean the
:latest tag.

® [f there are multiple names (aliases or just extra tags) on a container image,
docker rmi only removes the tag and not the image itself. If there are no

CHAPTER 11 Cleaning Up Containers

other names when you ask to remove it, the image is physically removed from
your system.

= The surest way to remove a physical image is to identify it by image ID when
you run the docker rmi command. When you do that, you see all the tags
related to that image being removed before the image itself is deleted.

= You can remove multiple images at once by adding several image names to a
single docker rmi command line or by feeding image names or image IDs to
that command from another command.

The next section describes how to delete individual images from your system.

Removing Individual Images

The following examples illustrate how to remove images from your local system,
including how to deal with some of the issues described in the previous section. For
these examples, I pulled all Ubuntu images from the Docker Hub to the local sys-
tem (docker pull -a ubuntu). The result is more than 30 separate images, most of
which are represented by multiple names. I display them using the docker images
command:

docker images | grep ubuntu

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
docker.io/ubuntu 14.10 dl191563ad36b 7 days ago 194.4 MB
docker.io/ubuntu utopic d191563ad36b 7 days ago 194.4 MB
docker.io/ubuntu utopic-20150427 d191563ad36b 7 days ago 194.4 MB
docker.io/ubuntu latest 07f£8e8c5e660 7 days ago 188.3 MB
docker.io/ubuntu trusty 07f8e8c5e660 7 days ago 188.3 MB
docker.io/ubuntu trusty-20150427 07f8e8c5e660 7 days ago 188.3 MB
docker.io/ubuntu 14.04 07f8e8c5e660 7 days ago 188.3 MB
docker.io/ubuntu 14.04.2 07f8e8c5e660 7 days ago 188.3 MB
docker.io/ubuntu trusty-20150320 b7cf£8£0d9e82 2 weeks ago 188.3 MB

The docker rmi command can have two different effects on images. If I remove
an image name and there are more names associated with the image, the name is
removed (untagged), but the image is still there. If I remove an image by name and
it is the last name representing the image or by image 1D, the image is deleted from
the system. Here is what happens when [try to remove these ubuntu images in dif-
ferent ways:

docker rmi ubuntu

Untagged: ubuntu:latest

docker rmi ubuntu

Error response from daemon: No such image: ubuntu:latest
docker rmi ubuntu:utopic

147

148

Docker Containers

Untagged: ubuntu:utopic

docker rmi docker.io/ubuntu:utopic-20150427
Untagged: docker.io/ubuntu:utopic-20150427
docker rmi 07f£8e8c5e660

Untagged: docker.io/ubuntu:14.04

Untagged: docker.io/ubuntu:14.04.2
Untagged: docker.io/ubuntu:trusty
Untagged: docker.io/ubuntu:trusty-20150427
Deleted: 07f8e8c5e66084bef8f84887785. ..
Deleted: 37bead4eelc8l6e3a3fa025f3612...
Deleted: aB82efea989f94bld9fac76e26e3...
Deleted: e9e06b06el4c2f7d8df0251e3bb. ..

Multiple aliases are associated with the image name ubuntu. By not adding a
tag, in the first example, docker rmi assumes you mean ubuntu:latest and removes
only that tag. Notice that running the same command again doesn’t touch any of
the other ubuntu images (it still assumes you mean ubuntu:latest). In the next
example, you can add any tag to the base image name to remove that specific image
name (ubuntu:utopic). Although not needed, you can add the registry name as well
to untag that name from the image (docker.io/ubuntu:utopic-20150427).

With all those examples so far, because the name does not represent the last
existing name for the image on the local system, the image is only untagged and not
physically removed. The easiest way to physically remove the image is to remove it
by image ID (as I did with docker rmi 07£8escses60). However, here is an example
where removing the last name associated with an image also removes the image
itself:

docker rmi docker.io/ubuntu:14.10
Untagged: docker.io/ubuntu:14.10

Deleted: dl91563ad36befdc3322d27...
Deleted: 8d07608668f6d6265fc0d4b. ..
Deleted: 14975cc0f2bcfc529f862ef. ..
Deleted: 9802b3b654ece46£8e09379...

Keep in mind that images often consist of multiple layers (each of which is seen
as an image itself to Docker). So even though you only asked to delete one image,
multiple layers are shown as being deleted.

Removing Multiple Images

If you just want to clear out all the images on your local system, you can do that by
listing all the existing image IDs and feeding that list to the docker rmi command.
The easiest way to get a list of image IDs to feed to the command is with the docker
images -q command:

docker images -g

b7c£8£0d9e82
1403322a81ch
1403322a81ch
9a8ad4567c27
9a8ad4s567c27
la97a9cc4dlb
la97a9cc4dlb
10acc3ldefsd
l0acc31ldefsd
£5£0b338bbd6
£5£f0b338bbdé

To feed that list of image IDs to a docker rmi command, you could type the

following:

docker rmi $(docker images -Qq)

CHAPTER 11 Cleaning Up Containers

Untagged: docker.io/ubuntu:trusty-20150320

Deleted: b7cf8f0d9e82c9d96bd7afd22. ..
Deleted: 2c014f14d3d95811df672ddae. ..
Deleted: a62a42e77c9c3626118dc4110. ..
Deleted: 706766fel01906ala6628173cC. ..
Untagged: docker.io/cricket/hangman:1.9

Untagged: docker.io/cricket/hangman:latest

Deleted: 1403322a81c5362762f84a26b...
Deleted: 834629358fe214f210b0ed606. ..
Deleted: 00a0c78eebe6d8l442efcdld7c. ..
Deleted: 511136ea3c5a64f264b78b543. ..

Error response from daemon: No such image: 1403322a81c5
Untagged: registry.access.redhat.com/rhel7/rhel-tools:7.1-9
Untagged: registry.access.redhat.com/rhel7/rhel-tools:latest

You can watch as each name is untagged and each image is removed. Remov-
ing images in this way can result in the same image name being requested to be
removed multiple times. In the example just shown, notice that there is a message
about an image starting with 1403322a... stating that there is no such image. If you
look up a bit higher, you can see that it was already removed, so that is not really

an error.

Instead of feeding images one at a time from a list to the docker rmi command,
that command also allows you to put multiple image names or image IDs on the
same command line. So another way to delete multiple images would be something

like this:

docker rmi 1403322a81c5 0114405f9ff1 53b6894a9c8a

Untagged: cricket/hangman:1.9
Untagged: cricket/hangman:latest

Deleted: 1403322a81c5362762f84a26b2c818fcc0c9f. ..

143

150

Docker Containers

Untagged: centos:7

Untagged: centos:centos?7

Untagged: centos:latest

Deleted: 0114405f9ff12fb7b012d0f7eb2f958c6abs86. ..
Deleted: 3d3c8202a57465ab6a24852559d21ca72a4af. ..
Deleted: b6718650e87e3706c52682c87ecfd7a7elfcl. ..
Untagged: redis:latest

Deleted: 53b6894a9c8af40f9f12b722518b570cfb791. ..
Deleted: ef119c54808b9a791d89076b9d795d4cdl157d. ..
Deleted: £94bd3b706e967987a9a433c1b3a909b7db6o0. . .

REMOVING CONTAINERS

Each time a container is run, a new layer is added to it, essentially creating a new
container. Unless you explicitly have that new container removed (using the --rm
option of docker run), it remains on your system, ready to be restarted or saved as
an image.

Removing a container is only a bit trickier than removing an image. The main
thing to remember is that, by default, you can’t remove a running container. So you
either need to stop it first or remove it with the force option (-£).

As with images, you can remove containers either individually or by passing
a list of containers to the docker rm command. Before you remove containers, you
can check how much space each container is consuming using the -s option to the
docker ps command. When you do that, you may notice that the containers are
actually small. This is because the size of the container is only the size in addition
to what is in the image that the container started from.

Removing Individual Containers

To remove an individual container all you need to do is use the name or image ID of
the container on a docker rm command line. The following examples show ways to
remove containers that are in different states.

Removing a Running or Paused Container

In the following examples, of the running containers on this system, one is paused
and the other is running. Use the docker ps command to see what is running;:

docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

705cla4e30e0 rhel7/rhel-tools:latest "/usr/bin/bash" 9 seconds ago
Up 51 seconds (Paused) rhel-tools

CHAPTER 11 Cleaning Up Containers

eaddcc59bc86 cricket/hangman:latest "go-fish" 4 hours ago
Up 4 hours grave_pare

Notice that when you try to remove these containers, the command fails the
same way, whether the container is running or paused:

docker rm eaddcc59bc86

Error response from daemon: Conflict, You cannot remove a running
container. Stop the container before attempting removal or use -f
FATA[0000] Error: failed to remove one or more containers

docker rm rhel-tools

Error response from daemon: Conflict, You cannot remove a running
container. Stop the container before attempting removal or use -f
FATA[0000] Error: failed to remove one or more containers

Also notice that in one case, I use the name of the container and in the other
I use the container ID. A container that is paused cannot be removed, even with
the force option. So, I unpause it, stop it, and then remove it. For the other one, I
remove it with the force option while it is still running:

docker unpause myrhel-tools
myrhel-tools

docker stop myrhel-tools
myrhel-tools

docker rm myrhel-tools
myrhel-tools

docker rm -f eaddcc59bc86
eaddcc59bc86

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
#

As you can see, both containers are no longer running. Both containers have
also been removed.

Removing a Container That Has Stopped

After a container has stopped (assuming you didn’t run it with the - -rm option), the
new container remains on the system. You can start it again (using docker start),
save it as an image, or remove it when you no longer need it. To see the containers
that were run on your system but have exited, type the following:

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

d70cfe9cc624 ubuntu:latest "/bin/bash" 16 seconds ago
Exited (0) 9 seconds ago reverent poitras

5f785798faae fedora:latest "python -m SimpleHTT 2 minutes ago

151

152

Docker Containers

Exited (137) 4 seconds ago MyWebServer
4b043£61e00 hangman:latest "go-fish" 6 hours ago
Exited (0) 6 hours ago agitated mcclintock

When you remove a container, use the docker rm command with either the con-
tainer ID or its name. Here are some examples:

docker rm reverent poitras
reverent poitras

docker rm 5£785798faae
5f785798faae

Removing Multiple Containers

Just as you did with images, you can remove multiple containers by directing a list
of container names to the docker rm command. You can use the docker ps -a -g
command to get a list of all containers still on your system but no longer running.
For example:

docker ps -a -q
16a6a35759cb
55a35f0736ac
04b043£f61e00
8£94e788d173
9f43d1f6e699
176feb8ee722
Ocdlee87a368
cflel242b5a3

Now, to delete those containers, just pass the standard output of that command
to the standard input of the docker rm command as follows:

docker rm $(docker ps -a -Q)
16a6a35759cb
55a35f0736ac
04b043£f61e00
8£94e788d173
9f43d1f6e699
176feb8ee722
Ocdlee87a368
cflel242b5a3

Although the output looks the same (a listing of container names), the command
line just shown results in all the local containers that are no longer running being
removed from your system.

CHAPTER 11 Cleaning Up Containers

CLEANING UP AND SAVING CONTAINERS

If you add some software and save some data to a container, you may decide that
you want to keep that container in a more permanent way and store it as an image.
In Chapter 5, “Finding, Pulling, Saving, and Loading Container Images,” I describe
how to save and commit containers to images. Here I talk about what you can do to
clean up and reduce the containers before you save them as images.

I create two containers for this example: One from a fedora base image and one
from an ubuntu base image. The two Linux systems have different tools for manag-
ing software packages. So you need to go about cleaning up those containers in
different ways.

Although the tools for saving a container as an image are readily available,
this is not necessarily the most efficient way to create the images you want.
A better approach is to use docker build to build the container image you
want from a base image, including any clean-up commands in it that you
see fit. The docker build command is described in Chapter 12, “Building
Docker Images.”

Cleaning Up and Saving an Ubuntu Container

I execute a docker run on an ubuntu base image, open a shell, and install several
server packages with apt-get install. After stopping the container I attach to it
again and run the following commands to clean it up and reduce its size:

docker start -ai 369£25938d44

root@369f25938d44:/# apt-get remove unneeded packages
root@369f25938d44:/# apt-get clean

root@369£25938d44:/# rm unneeded files

root@369f25938d44:/# exit

docker export 369f£25938d44 > myubuntu.tar

docker rm 369£25938d44

cat myubuntu.tar | docker import - mynewubuntu:latest
699c4def6adcclae75417bdf5¢c9d2e1769745845£d905¢cb989522becl66cafalc
docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
mynewubuntu latest 699c4defé6a4c About a minute ago 257.4 MB

The apt-get remove and rm commands are just to remind you to remove any
packages and files you no longer feel you need. After exiting the shell running in

153

154

Docker Containers

the container, | export the container to a tarball file named wyubuntu.tar. I can
then remove the old container since I no longer need it.

Next, I pipe the contents of the tarball to the docker import command, which
saves it as an image to the local system under the name mynewubuntu:1atest. After
that, the image appears in the list displayed from docker images and it is ready
to use.

Cleaning Up and Saving a Fedora Container

Starting with a fedora base image this time, | execute a docker run to open a shell
and install several server packages with yun install. After stopping the container I
attach to it again and run the following commands to clean it up and reduce its size:

docker start -ai 6d64eb633e02

bash-4.3# yum remove unneeded packages

bash-4.3# rm unneeded files

bash-4.3# yum clean all

Cleaning repos: fedora updates

Cleaning up everything

bash-4.3# exit

docker export 6d64eb633e02 > myfedora.tar

docker rm 6d64eb633e02

cat myfedora.tar | docker import - mynewfedora:latest
7a0b47e65b1f028bec94420a234c45bebd8f02c0a8d7c222ac999a5913b16d3b
docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
mynewfedora latest 7a0b47e65blf About a minute ago 245.7 MB

As with the upuntu container example earlier, I remove unneeded packages and
files, clean metadata left around after installing packages, and exit the shell. With
the container stopped, but still on the system, I export the container to a tarball and
remove the old container. To bring the tarball back into the system as an image, |
direct the contents of the myfedora.tar file to standard output (using the cat com-
mand) and pipe it to a docker import command, giving the new image the name

mynewfedora:latest.

SUMMARY

Docker keeps images and containers around after they have been pulled or run. If
you are not careful, this can consume a lot of your system’s storage space in ways
that you may not be aware of. As a rule, keep an eye on the amount of disk space
available in the /var/log/docker directory, since that is where Docker stores its
images and containers.

CHAPTER 11 Cleaning Up Containers

Every once in a while, check the images and containers stored on your system
and clean out any that you don’t need. Run docker images to see what images are
stored on your system and docker rmi to remove them. For containers, run docker
ps and docker ps -a to see the containers on your system and docker rm to remove
them.

To save the contents of a container more permanently, you can use docker
export and docker import on a container to save it out to a tarball and then bring
it back into the system as an image. Before you do that, however, it’s a good idea to
clean it up by removing unneeded cached data, packages, and files.

155

This page intentionally left blank

Building Docker Images

IN THIS CHAPTER:
= Build a simple Docker container image
m Use Dockerfile Instructions

® Learn tips to build images more efficiently

Although you can create Docker images by adding software to a running
container and committing it to an image (docker commit), the preferred way to
create Docker images is with the docker build command. The file you create to
hold the instructions for building a Docker image is literally named pockerfile.

There are several reasons why building Docker images from a pockerfile is
preferred to manual changes and commits:

= Reproducible: If you add software to a running container and commit it to
an image, there’s no record of exactly what you did to create that image. With
a Dockerfile, you can see exactly what was added to a base image and sim-
ply build the image again from that file to reproduce it.

= Correctable: If you make a mistake building the image, you can just fix
the Dockerfile and run docker build again. In fact, because docker build
creates a new container layer at each step, a later build starts after the most
recent successful step. This can save a lot of time in the build process if only
one or two steps need to be corrected near the end of the build.

= Portable: While Docker images can be relatively small, the size of even
a large pockerfile is trivial. If you give a Dockerfile to someone who has
access to the base image you are building from (which could be in a public

187

158

Docker Containers

registry) and any other files needed in the build, they could rebuild your con-
tainer image and reuse it on their own system, without having to transport the
whole image.

= Verifiable: Given a known base image and a pockerfile, someone can ver-
ify what is pulled into the container they build. If someone just hands you a
finished container, you would have to open it up and look around to see what
is inside it.

= Updatable: If a bockerfile does a yum (or dnf) or apt-get command to
install software packages, unless you ask for specific versions of those pack-
ages, the build grabs the latest versions of the packages you request. So a
simple rebuild results in a Docker image that contains the latest software
available from the software repositories you have configured.

This chapter takes you through the process of building your own images from
pockerfile files. Along the way, I describe tips for using Docker effectively to build
images that can be stored and run efficiently.

Once you understand the process and components for building Docker images,
see Chapter 18, “Exploring Sample Dockerfile Files,” for some complex and inter-
esting Dockerfile examples to get ideas for all kinds of Docker images you can

build.

DOING A SIMPLE DOCKER BUILD

Assuming the Docker service is up and running on your system, to build your own
Docker image all you need is a bockerfile file, access to the base image you want
to start with, and any other files you want to add to that image. On the docker build
command line all you need is an indication of where the pockerfile file is to build
from, which is often indicated with a dot (.) for the current directory.

There are other options you can set with docker build as well that I describe
later. For now, here are steps for creating your first simple Docker image:

1. Make a directory for the Dockerfile: Create a directory to hold your
pockerfile file. For example:

mkdir ~/Imagedir
cd ~/Imagedir

2. Create a Dockerfile file: Using any text editor, create a bockerfile file
with the following contents (replacing your name on the MAINTAINER line):

Character-based games container image
FROM fedora:latest

CHAPTER 12 Building Docker Images

MAINTAINER John W. Jones

RUN dnf install -y bsd-games words
Start the application
ENTRYPOINT ["/usr/bin/hangman"]

Build the image: Type the following command (with the pockerfile in the

current directory) to build an image. The -t option is used to name the image

myhangman:

docker build -t myhangman

Sending build context to Docker daemon 2.048 kB

Sending build context to Docker daemon

Step 0 : FROM fedora:latest
---> ded7cd95e059
Step 1 : MAINTAINER John W. Jones
---> Running in 7b56400206£f3
---> 58f0c53fcl28
Removing intermediate container 7b56
Step 2 : RUN dnf install -y bsd-game
---> Running in 706da0a49bdf

Installed:
bsd-games.x86_ 64 2.17-46.fc22
Complete!
---> c889372d5edl
Removing intermediate container 706d
Step 3 : ENTRYPOINT /usr/bin/hangman
---> Running in 9a9bcb54cee4
---> 934e99e33296
Removing intermediate container 9a9b
Successfully built 934e99e33296

400206£f3
s words

words.noarch 3.0-23.fc21

al0a49bdf

cb54cee4

Run the image: Use the docker run command to run the image. This
launches the hangman game in your current shell. The -it option runs the

container interactively:

docker run -it myhangman

o —

Word: directdiscourse
Guess:

You got it!
Another word? n

Guessed: acdeiorstu
Word #: 3
Current Average: 4.667
Overall Average: 6.500

159

160

Docker Containers

5. Check the image: Use the following commands to see that the new image

and the previously run container are on your system:

docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
myhangman latest 934e99e33296 9 minutes ago 319.9 MB
docker.io/fedora latest ded7cd95e059 5 weeks ago 186.5 MB
docker ps -a
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

6a507del24ff myhangman:latest "/usr/bin/hangman" 9 minutes ago
Exited (0) 6 minutes ago jolly darwin

If all goes well, you should be able to play a game of hangman from the con-

tainer. Here are a few things to help you think about what happens during a build:

® Docker daemon does the build: The docker build command doesn’t

actually build the container. That command passes information needed to do
the build to the Docker daemon.

Restrict build directory: Put your bockerfile file in a directory that only
contains files needed for the build. That’s because any files in the current
directory or its subdirectories are sent to the Docker daemon and are avail-
able to be used in the container by ADD commands. So, for example, if you
were to put your Dockerfile in the /var directory, every file and directory
under /var would be sent to the Docker daemon for possible inclusion in the
container. This would significantly slow the build process and consume too
much disk space unnecessarily.

Intermediate containers: Each instruction adds a new layer to the exist-
ing image and commits an intermediate container image. With this approach,
each time you run docker build on the same pockerfile the build can start
from the most recent successful instruction and continue from there.

Build options: Use at least the -t option when building an image, to assign
a name to that image. If you plan to push the image to a registry, you can
include a user name (such as cricket /myhangman) or a hostname (such as
registry.example.com:SOOO/myhangmmﬂ.(hherbuikiopﬁonsaﬂidescﬁbed
later in this chapter.

Base image (FROM): If your system is connected to the Internet, the
fedora:latest base image (on the FROM line) is pulled from the Docker
Hub Registry. If it has already been pulled, the image is used from the local
system. FROM must be the first instruction in the pockerfile, aside from
comments. The :1atest tag is actually not required, because :1atest is
assumed if no tag is entered. However, if you want a specific version of a
base image, be sure to add that tag (for example, fedora:22).

CHAPTER 12 Building Docker Images

= MAINTAINER: This identifies the author of the image. This information
is stored inside the image. It is typically to add your full name and email
address.

= RUN: Commands put on RUN lines are run during the build process (not
when the container itself runs later). The fedora base image is enabled to
install packages from the Fedora repository (using yum or anf install com-
mands). In this case, I installed the bsd-games and words packages on a
RUN line. I can use the RUN instruction with any command I want from a
Dockerfile to change the image at build time.

= ENTRYPOINT: This line identifies the command to be executed when you
use docker run to start the container—in this case, /usr/bin/hangman. The
ENTRYPOINT essentially identifies the intention of the container image.
You can override the ENTRYPOINT command when you run the container
using the --entrypoint="n option. However, an easier way to be able to allow

someone running an image to override the default command is to use CMD
instead of ENTRYPOINT (as described later).

The example shown here illustrates the basic process for building a simple
container. However, there are more instructions you can add to your Dockerfile
to customize your container. Many of these instructions are illustrated in the next
sections of this chapter.

SETTING A COMMAND TO EXECUTE FROM A
DOCKERFILE
The CMD and ENTRYPOINT instructions identify what command is started when

you run the container image. Commands set by the RUN instruction, however, are
only used when you build the image, while CMD and ENTRYPOINT are used at the
time you execute docker run. Those three instructions have different meanings, as
illustrated in the following Dockerfile examples.

Using the CMD Instruction

With CMD, you can identify the default command to run from the image, along with
options you want to pass to it. If there is no ENTRYPOINT in the pockerfile, the
value of CMD is the command run by default when you start the container image.
If there is an ENTRYPOINT in the pockerfile, the ENTRYPOINT value is run as
the command instead, with the value of CMD used as options to the ENTRYPOINT

command.

162

Docker Containers

You can only have one CMD line in a pockerfile. Here’s an example of a
pockerfile that includes a CMD instruction to run the cat command to list a couple

of files:

FROM fedora:latest
MAINTAINER John Jones
CMD ["cat","/etc/hosts","/etc/os-release"]

In this example if you build an image called mycmd, docker run mycmd results
in hosts and os-release files being output to the shell. The CMD arguments in
this case are the command (cat) followed by two file names (/etc/hosts and /etc/
os-release). The arguments are in JSON format (square brackets and double-
quotes in a comma-separated list). The CMD line could have simply been cvp cat
/etc/hosts /etc/os—release,WhhﬂlwouhiCausetheCOHHnandtObeIUnlﬁfaSheH
(sh -c) instead of being executed directly.

The CMD instruction can be overridden when you run the image. So, notice the
different results from running mycmd in two different ways:

docker build -t mycmd .
docker run mycmd Runs cat to list hosts, os-release files
docker run -it mycmd bash Runs bash, ignoring cat command

Any time you add an argument to the end of a docker run command, the CMD
instruction inside the container is ignored. So the second example opens a bash
shell instead of running the cat command. If you want to assign a command that is
not overridden by options at the end of a docker run command, use the ENTRY-

POINT instruction.

Using the ENTRYPOINT Instruction

The ENTRYPOINT instruction lets you define the command executed when you
run the container image. It does this in a way that is not overridden by arguments
you put at the end of a docker run line. If your pockerfile includes an ENTRY-
POINT instruction and there is also a CMD instruction, any arguments on the CMD
instruction line are passed to the command defined in the ENTRYPOINT line.
Here is an example of a bockerfile that uses an ENTRYPOINT instruction:

FROM fedora:latest

MAINTAINER John Jones

CMD ["/etc/hosts","/etc/os-release"]
ENTRYPOINT ["cat"]

Because the ENTRYPOINT used in this pockerfile is set to run the cat com-
mand, that command is used by default with the container. However, if there is also

CHAPTER 12 Building Docker Images

a CMD line in the file, arguments on that line are passed to the ENTRYPOINT
instruction. If you were to build that pockerfile into an image named myent, here
are a couple of examples of running the resulting image:

docker build -t myent .
docker run myent Runs cat on hosts, os-release files
docker run -it myent /etc/issue Runs cat on issue, ignore others

Notice that the command (cat) on the ENTRYPOINT line uses /etc/hosts and
/etc/os-release files as arguments as long as no other argument is given on the
docker run command line. However, if there is an argument when you run the
image (/etc/issue here), anything on a CMD instruction is ignored.

An advantage of having the ENTRYPOINT only identify the command is that
you might want to override the default way of running a command. Consider this
example:

FROM fedora:latest
MAINTAINER John Jones
ENTRYPOINT ["cat","/etc/hosts","/etc/os-release"]

When you build and run the image you get these results:

docker build -t myentl .
docker run myentl Runs cat on hosts, os-release
docker run -it myentl /issue Runs cat all three files

Because the hosts and os-release files are on the ENTRYPOINT line, adding
arguments to the end of the docker run line does not override them. Adding /etc/
issue to the docker run line causes that file to be displayed to the shell after the
other two files appear.

One last thing about ENTRYPOINT to keep in mind. Even though argu-
ments at the end of the docker run command line don’t override the command set
by ENTRYPOINT, you can override the ENTRYPOINT command with the
--entrypoint="" option. For example, this command line would run a bash shell
instead of the default cat command set by the ENTRYPOINT inside the selected
image:

docker run -it --entrypoint="/bin/bash" myentl

Using the RUN Instruction

As noted earlier, the RUN instruction is only interpreted and used at the time you
use the docker build command to create an image. The point of RUN instructions
is usually to run commands that modify the image in some way. For example, you

163

164

Docker Containers

might install software packages or create a configuration file that becomes part of
the image.

In this example, I create a file at build time and display it later with docker run:

FROM fedora:latest

MAINTAINER John Jones

RUN echo "This container was built on $(date)." > /tmp/built.txt
ENTRYPOINT ["cat","/tmp/built.txt"]

When I run docker build, that command reads in the current date and time
and outputs it in a sentence to the /tmp/build.txt file. Because the echo command
was run at build time, the exact same date is shown every time I do a docker run
command:

docker build -t myrun

docker run myrun See the build time of the image
This container was built on Sun Jul 5 13:47:51 EDT 2015.
docker run myrun Notice the build time is the same

This container was built on Sun Jul 5 13:47:51 EDT 2015.

Adding Files to an Image from a Dockerfile

You can use the ADD instruction to add selected files into the container at build
time. When you use ADD to add files and directories to your image, docker build
uses the directory containing the pockerfile on your host system as both the root
directory (/) and the current directory. In this example, I make a file in the same
directory as the pockerfile and add it to the new image called myada as follows:

mkdir ~/Myadd

cd ~/Myadd

echo "This is the test.txt file." > test.txt
vi Dockerfile

cat Dockerfile

FROM fedora:latest

MAINTAINER John Jones

ADD /test.txt /tmp/test.txt

ENTRYPOINT ["cat","/tmp/test.txt"]

docker build -t myadd .

docker run myadd See the contents of the test.txt file
This is the test.txt file.

H H H H H

On the ADD line, the /test.txt file identifies the file as being in the direc-
tory with the pockerfile on the host system and /tmp/test.txt shows where it
goes inside the container. Instead of /test.txt, I could have identified the host
file as simply text.txt, since docker build sees the files in the directory where

CHAPTER 12 Building Docker Images

Dockerfile is located as being the current directory. Again, remember to put all
files and directories of content you want to build into the container in the same
directory or a subdirectory in which the pockerfile file is located.

If you rerun a docker build often if an instruction is successful, the cached
result of that instruction is reused by the new docker build. An exception
to this is with an ADD or COPY instruction, which will do a fresh add or
copy of the file if the underlying file has changed. See the “Manage How
Caching is Done” section in this chapter for a more complete description
of this issue.

EXPOSING PORTS FROM AN IMAGE WITHIN
A DOCKERFILE

Adding an EXPOSE instruction within a pockerfile lets you indicate that a par-
ticular port should be exposed from the image you build. When a port is exposed on
a running container image, it allows two things to happen:

= Linked containers: Once you run the image, if you link the running con-
tainer to another container, the exposed port will be available to the other
container as though it were available on the same local system.

= Run-time exposure: Any port identified with an EXPOSE instruction when
the image is built can be easily exposed from the same port number on the
local host. By using the -p option to docker run on the image, you could
assign any exposed port to the same or a specific different port on the local
host. If you use the -p option of docker run, all exposed ports from within the
container are assigned to random ports on the host system. You could then
run the docker port command on the resulting container to see how the ports
are mapped.

Here’s an example of a web server bockerfile for a container image with port
80 exposed from that image:

FROM fedora:latest
MAINTAINER John Jones
RUN yum install -y httpd
EXPOSE 80

165

166

Docker Containers

Start the service
CMD ["-D", "FOREGROUND"]
ENTRYPOINT ["/usr/sbin/httpd"]

When you go to run that image, here is how to expose port 80 from the container
to port 8080 on the local system on the docker run command line.

docker run -p 8000:80 -d myweb
curl localhost:8000 | head

The -p 8000:80 indicates that port 8000 on the host points to port 8o inside the
container. The curl command line should show the first few lines of the Apache

HTTP Server Test page.

If you don’t designate the protocol with the port number, the TCP protocol is
assumed by default. To identify a different protocol, such as the UDP protocol, you
could follow the port number with a slash (/) and protocol name. For example, you

could use 53/udp to expose UDP port 53.

ASSIGNING ENVIRONMENT VARIABLES IN A DOCKERFILE

Using the ENV instruction, you can set an environment variable to any key that
you choose. These variables are available to subsequent instructions as processing
continues through a pockerfile. You can assign multiple variables on a single line
or have multiple ENV lines.

Environment variables in a pockerfile can be useful for things like chang-
ing the location of data directories, adding passwords, or setting user names.
The official WordPress image (https://hub.docker.com/ /wordpress/) sets mul-
tiple environment variables. You can change environment variables in a Dockerfile
(ENV variable key) or change them at run time on the docker run command line
(—e variable=key)

For example, the following environment variables could be built into a bocker-
file file to create a WordPress image:

ENV WORDPRESS DB HOST=host0l.example.com
ENV WORDPRESS DB_USER=root
ENV WORDPRESS DB PASSWORD=MYrut3pZwrd

When you go to run the WordPress image, you could change those variables on
the docker run command line using the -e option. The WordPress repository on the
Docker Hub Registry gives the following example of how to change these variables:

docker run --name some-wordpress -e WORDPRESS DB HOST=10.1.2.3:3306 \
-e WORDPRESS DB_USER=... -e WORDPRESS DB PASSWORD=... -d wordpress

https://hub.docker.com/_/wordpress/

CHAPTER 12 Building Docker Images

ASSIGNING LABELS IN A DOCKERFILE

Using the LABEL instruction in a Dockerfile, you can assign values to selected
keys. You can use any key name that you want, as there are no restrictions on how
you set these labels. That said, the Docker Project makes some recommendations
for using LABEL instructions.

Here is a simple example of using a LABEL instruction:

LABEL description="Simple web server container"

If you were to build this LABEL to an image named myweb, you could see how
that label is set using docker inspect as follows:

docker inspect myweb | less

"Hostname": "26bc48f09da7",
"Image": "6396bafSba25el6...",
"Labels": {
"description": "Simple web server container"

b

Here are some tips for using LABEL instructions in a bockerfile:

= Many labels on one line: If you need to set multiple labels for an image,
setting them on one LABEL line prevents a separate container layer from
being created for each label. Here are two different ways of setting multiple

labels on a single LABEL line:

LABEL description="My game image" department="Sales" user="joe"
LABEL description="My game image" \

department="Sales" \

user="joe"

= Use unique labels: If you set a label more than once in a bockerfile,
the last value overwritten is the one used. When the Docker Project uses
labels, it prepends each label with com.docker. *, io.docker. *, or
org.dockerproject.*. It is good practice for you to also use reverse DNS
notation for a domain you control when creating labels to make sure you
avoid label conflicts—for example, net . linuxtoys.mylabel.

= Characters in labels: There are some restrictions on the characters you can
use in a label. Although not enforced, you should use only letters (alpha),
numbers (numeric), dots, and dashes in a key name. Make sure each key
starts and ends with a letter or number. Don’t use consecutive dots or dashes.

167

168

Docker Containers

= Filter by label: After your image has been built, you can use the --filter
option to list only those images or containers that include a label you set.
For example:

docker ps -a --filter "label=description=My game container"
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
c35fe57d078¢c cricket/hangman:latest "hangman" 4 minutes ago
Exited (0) 4 minutes ago
docker images --filter "label=description=My game container"
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

cricket/hangman latest 1403322a81c5 10 minutes ago 427.3 MB

Now that you have seen many of the instructions you can use within a
Dockerfile, the next section describes some of the additional options that you can
use with the docker build command to build that bockerfile into an image.

USING OTHER pockeEr BUILD COMMAND OPTIONS

Although docker build is all you need to build a ockerfile into a Docker image,
you can add other options to docker build to modify the build process. Here are
some docker build command lines that illustrate different options:

docker build --force-rm=true .

docker build --no-cache=true .

docker build -f ~/Myweb/DockerfileOl ~
docker build --pull=true .

The --force-rm=true option tells Docker to force all intermediate images to be
removed, even if the build failed at some point. However, removing intermediate
containers doesn’t remove the cached data. So to truly have the build start from
scratch, use the --no-cache=true option. By setting the option --no-cache=true,
the docker build does not use any cached data in the build. Each step is run from
scratch.

By default, when you identify the build directory, which is often a dot (.) to
indicate the current directory, the file named pockerfile in that directory is used
as the file to build from. By adding a -£ option, you tell docker build to use a dif-
ferent file to build the image. Keep in mind that the build file you identify must be
in the build directory or a subdirectory of that directory. In the example just shown,
the build directory is the user’s home directory (~), while the build file is named
Dockerfileol and is located in a subdirectory of the build directory (-£ ~/Myweb/
DockerfileOl)

CHAPTER 12 Building Docker Images

If the base image requested (on the FROM line) has previously been pulled by
Docker to the local system, a docker build won’t look for a newer version of that
image by default. By adding --pull=true to docker build, Docker checks to see
whether a later version of the image is available from any enabled repository.

TIPS FOR BUILDING CONTAINERS

If you are ready to start building containers, here are a few tips that can help make
your build process better and more convenient.

Clean Up the Image

To keep the image as small as possible, clean out any software package or data you
don’t need from the image. If you use yum or apt -get to install packages, you should
clean out any cached data that results (for example, RuN yum clean -y al1). Like-
wise, you can remove packages in the image that you don’t need (for example, run

yum remove -y vim—minimal}

Keep Build Directory Small

As mentioned earlier, every file from the build directory is copied to the Docker
daemon and stored (in /var/lib/docker, by default) before the build process
begins. Before starting the build, removing files from that directory and any subdi-
rectories speeds up the build and saves disk space.

In some cases, it might be inconvenient to remove files from the build directory
structure so you can exclude them from a build. As an alternative, you can exclude
files from the build directory structure by adding a .dockerignore file to the build
directory and putting files in it that you want the build to ignore. Here are examples
of the kinds of entries you could put in a .dockerignore file:

passwd
passwd*

* /passwd*
*/*passwd*
passw?
!passwd-local
mystuff/

Here is how each of those examples would cause files and directories to be
prevented from being copied from the build directory to the Docker daemon during

a build:

169

170

Docker Containers

® passwd: Only the literal passwd file in the build directory is ignored.

® passwd*: Any file in the build directory is skipped if it begins with passwa.
For example, passwd-stuff, passwd.5.gz, and passwd.html would all be
ignored. However, passwd in any subdirectory would not be ignored.

® x/passwd*: Any file in an immediate subdirectory of the build directory that
begins with passwd is ignored.

® passw?: Any file in the build directory that begins with passw and has one
more letter in its name is ignored. For example, passwd, passwa, passwb, and
SO on.

® 1passwd-local: If any rule causing a file named passwd-1ocal to be ignored
comes before this entry, the string shown here causes the file passwd-1o0ca1
to not be ignored. If a rule that causes passwd-1ocal to be ignored comes
after this rule, the file passwd-1ocal is ignored.

= mystuff/: If there is a directory named mystuff in the build directory, ignore
it and any files or subdirectories under that point in the build directory.

Keep Containers Simple

Creating containers that do only one thing (run a file server, start a web browser, or
provide a simple database) makes it easier to manage and scale up your use of con-
tainers later. In general, each container should run only one process. If a container
requires services from another container, you can link containers together or use
an orchestration service (such as Kubernetes) to associate the services a container
needs with the containers that provide those services.

Manage How Caching Is Done

Each time you rebuild an image from a pockerfile, Docker checks to see whether
the current instruction has been successfully run and therefore has the results of
the instruction available in cache. If the results are successful and cached, Docker,
by default, uses the cached data from the instruction and reuses it with the new
build. This can be a huge time savings if, for example, the instruction does some-
thing such as download and install 100 packages.

There are times when using cache is the right thing to do. Other times however,
you might want to use the --no-cache=true option. Take the case where you know
that new versions of packages you installed during a docker build are available.
If you build the image again, with the instruction exactly the same, Docker won’t
know to run the instruction again to pick up the new packages. An alternative to

CHAPTER 12 Building Docker Images

turning off the use of a previous cache is to change the instruction in some way.
That also causes the instruction to run again without using cache.

If you use an ADD or COPY instruction to add files when you do a build, any
changes to those files are noticed if you run a docker build again on the same
pockerfile. That is because Docker runs a checksum on each file pulled in with an
ADD or COPY instruction, and if the contents of the file itself or metadata associ-
ated with the file (permissions, date/time stamps, and so on) have changed, the new
file is copied to the image.

The tips just mentioned should give you a good start on building your first
containers. For more advanced suggestions on building containers, see Chapter 17,
“Developing Docker Containers.”

SUMMARY

The docker build command is the preferred way to create a Docker container
image. There are many advantages to using docker build for building an image,
as opposed to modifying a running container and committing it to a new image. By
building a new image with docker build, you can more easily verify its contents,
reproduce the image, and pull in the latest software and configuration information.

The file used to build Docker container images is referred to as a Dockerfile.
You create a Dockerfile by identifying the base image to build from, running com-
mands during the build process to modify the container, setting the command to
execute when the container image is run, and saving it to a new image you name.
You can also add other instructions to a pockerfile file to do such things as set
environment variables, pull in files from the build directory, and identify the user
account that should run the commands you include in the pockerfile.

This chapter brings Part II of this book to a close. To this point, I have shown
you how to work with individual images and containers. You have seen how to run,
inspect, list, start, stop, attach to, and otherwise work with individual containers
and images. The next part of the book helps you move your containers into cloud
environments by running them in special container-oriented operating systems
such as Project Atomic.

171

This page intentionally left blank

Docker Containers

Part |l

Running Containers in

Cloud Environments

173

This page intentionally left blank

CHAPTER 13

Using Super Privileged
Gonfainers

IN THIS CHAPTER:
= Understand super privileged containers
= Manage containers with the atomic command

= Use super privileged containers

Operating systems built to run containers are meant to be lean. By offering only a
minimal feature set, container-oriented operating systems such as Atomic Host and
CoreOS offer faster boot-up times, as well as smaller storage requirements and less
CPU consumption than traditional operating systems. This makes them excellent
operating systems to deploy to cloud environments.

The potential downside to these small, efficient systems is that they don’t have
all the tools built in that you expect in a full-featured operating system. So, you
need to learn new ways to manage these systems.

This chapter focuses on how to add software tools to work on Atomic Host sys-
tems, using what are referred to as super privileged containers (SPCs). With SPCs,
you can not only get the tools you need to manage Atomic Host systems, you can
also run them in such a way that those tools can break out of their containers to act
on the host itself.

Although the SPCs described in this chapter can be used on regular Fedora,
CentOS, Red Hat Enterprise Linux (RHEL), or Atomic Host systems, SPCs are
most useful on Atomic Hosts. The reason is because it’s easier to add software to
regular RHEL or Fedora systems by simply using the yum (or dnf) and rpm com-
mands. Because of the nature of RHEL Atomic Host (it uses Atomic upgrades to
add software), it doesn’t allow yum or rpm to add packages to the system. So all the

175

176

Docker Containers

special tools you might need to act on an Atomic Host system must be added by
adding containers that include those tools. The SPCs described in this chapter were
created specifically to make tools available on Atomic Host systems that would not
be there otherwise.

Although SPCs can be launched by adding special options to docker run
commands, this chapter focuses on how containers can include preset
docker run options that you can take advantage of on Atomic Host systems
using the atomic command.

USING SUPER PRIVILEGED CONTAINERS IN
ATOMIC HOST

Software is added to Project Atomic systems using atomic-style upgrades, and not
by installing packages with traditional tools such as the rpm and yum commands.
Although Atomic Host systems are built from RPM packages, you cannot add or
remove RPM packages from an Atomic Host after an Atomic Host has been built.

So when you need more software on an Atomic Host system, the best way to add
it is to put the software in a container and run that container on the host. Because,
by default, containers are not given permission to act on the host itself, these types
of containers need to be given extra privileges.

On Atomic systems, SPCs are granted special permission to see into the host
system and change that system as needed. Whereas a regular container can only
see processes running inside the container, an SPC can see and potentially act on
all processes running on the host. Likewise, commands run from an SPC have direct
access to devices on the host system and can see the host’s network interfaces.

UNDERSTANDING SUPER PRIVILEGED CONTAINERS

Running an application from within a container typically lets you keep the pro-
cessing of that application separate from other containers on the host system and
from the host system itself. This is done by maintaining restricted privileges and
separate namespaces for the container. SPCs are designed to break through those
restrictions.

CHAPTER 13 Using Super Privileged Containers

You can use command line options with the docker run command to tell the
selected container image to use the host’s namespaces instead of the container’s
namespaces. The atomic command is designed to read these options that you
include within the container’s metadata and pass them to a docker run command.
So a prerequisite to understanding how SPCs work is seeing the options to docker
run that provide those features.

The next sections describe the privileges and namespaces on the host that can
be opened for an SPC with options on the docker run command line.

Opening Privileges to the Host

A running container typically has no direct access to devices on the host. Likewise,
containers (by default) are run in systems that provide SELinux (Security Enhanced
Linux) security (such as Fedora and RHEL) are constrained in their ability to
access other files and processes on the host by the fact that they run in restricted
SELinux security contexts.

With the --privileged option used with docker run, a container has almost all
the same access to the host system as a process run from outside the container. To
be able to use those privileges, however, you have to open different namespaces on
the host so they can actually be seen inside the container.

Accessing the Host Process Table

By default, a running container sees only its own process table. So, process ID 1 for
a container represents the process launched by the container and not the systema
or init process that you see on a normal, running Linux system. The only other
processes on the containers process table are those started within the container.

Running a container without telling docker run to use the host process table
limits that container’s view of what is running on the host. For example, if you use
docker run to start a bash shell and then run a ps command inside that container to
see what processes are running, you might see something like the following:

ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 2 16:06 ? 00:00:00 /bin/bash
root 7 1 0 16:06 ? 00:00:00 ps -ef

Notice that process ID 1 is the bash shell and the ps command is PID 7. If T had
provided the --pid=host option when I ran this container, to set the container to use
the host’s process table instead of the container’s process table, a ps from inside the
container would look more like the following:

177

178

Docker Containers

ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 Apr24 ? 00:00:09 /usr/lib/systemd/systemd. ..
root 2 0 O Apr24 ? 00:00:00 [kthreadd]

root 3 2 0 Apr24 ? 00:00:14 [ksoftirqgd/0]

root 5 2 0 Apr24 ? 00:00:00 [kworker/0:0H]

root 18941 18864 0 17:02 7 00:00:00 ps -ef

The list output from the ps command shows every process running on the host.

Accessing Host Network Interfaces

By default, the Docker daemon automatically provides an IP address to each con-
tainer on the host’s dockerO network via DHCP. Inside the container, that address
is assigned to the ethO interface. On Fedora and RHEL systems, the address range
used by default for the dockerQ interface is 172.17.0.0/16.

By running a container with the --net=host option, the container does not use
a separate network interface within the container. Instead, processes run inside the
container can interact directly with the network interfaces on the host system.

For example, with a container named myrhel-tools running the rhel-tools
SPC image, | run the docker exec command to look inside the container. From
there, I can use the ip command to see the physical network interface card on the
host (ens3) and the dockerQ network interface from within that container:

docker exec -it myrhel-tools /bin/bash
ip addr show

2: ens3: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc...
link/ether 52:54:00:22:e7:55 brd ff:ff:ff:ff:£ff:£ff
inet 192.168.122.224/24 brd 192.168.122.255 sgcope global...
valid 1ft 2658sec preferred 1ft 2658sec
ineté6 fe80::5054:ff:fe22:e755/64 scope link
valid_1lft forever preferred 1ft forever
3: docker0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500... state UP
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:£ff:ff
inet 172.17.42.1/16 scope global docker0
valid 1ft forever preferred 1lft forever
ineté6 fe80::5484:7aff:fefe:9799/64 scope link
valid_1ft forever preferred 1lft forever

Still inside the myrhel-tools container, I start the tcpdump -i command to lis-
ten on the dockerO interface. Then, from another container on the host (not neces-
sarily an SPC), I try to install an RPM package. Because the SPC has access to the

CHAPTER 13 Using Super Privileged Containers 179

host’s docker0 interface in this example, it can see packets from the other container
being sent to request software from the fedoraproject.org site:

tcpdump -i docker0

Utcpdump: verbose output suppressed, use -v or -vv for full...

listening on docker0, link-type EN1OMB (Ethernet), ...

17:59:30.332411 ARP, Request who-has atomic711l.example.com
tell 172.17.0.10, length 28

17:59:30.332455 ARP, Reply atomic71l.example.com is-at 56:84:7a:fe:97:99

(oui Unknown), length 28

17:59:30.332465 IP 172.17.0.10.52036 > 192.168.122.1.domain:
17163+ A? mirrors.fedoraproject.org. (43)

17:59:30.332747 IP 172.17.0.10.52036 > 192.168.122.1.domain:
12722+ AAAA? mirrors.fedoraproject.org. (43)

17:59:30.472971 IP 192.168.122.1.domain > 172.17.0.10.52036:
17163 9/0/0 CNAME wildcard.fedoraproject.org., A 152.19.134.142,
A 66.135.62.187, A 67.219.144.68, A 209.132.181.15, ...

Accessing Host Inter-Process Communications

A private inter-process communication (IPC) namespace is created for a container
when it starts up, by default. By setting the --ipc=host option to docker run, the
container uses the host’s IPC environment (semaphores, message queues, and
shared memory). If instead of host you set --ipc= to the name of another container,
you can access the IPC environment of that container.

To work with the TPC environment on the host from within an SPC (with
--ipc=host enabled), you can use the ipcs (to get IPC information), ipcmk (to cre-
ate IPC resources), or ipcrm commands (to remove a shared memory 1D, message
queue, or semaphore set).

Accessing Host File Systems

Opening mount table access to the host is a bit different from opening other privi-
leges from a container. One of the primary features of a container is that it maintains
its own file system so the commands you run within that container have everything
they need to start the containerized applications.

In the case of an SPC, however, you often want commands to run that are inside
the container (and not available on the host). You then want those commands to act
on files within the host’s file system. For example, you might want commands run
from the container to check the host’s configuration files, log files, or devices.

To deal with the issue of an SPC wanting to look at both the file system within
the container and the one on the host system at the same time, SPCs can mount the

180

Docker Containers

host file system on the /host directory inside the container. This is done using the
-e HOST=/host option.

In anticipation of containers becoming more popular, some basic Linux admin-
istrative commands have been modified to be container aware. So, for example, if
you run an sosreport command inside an SPC, that command uses /nhost as the
root of the file system it queries (to gather configuration data only from the host’s
file system) and not the root file system (/) within the container itself.

Again, keep in mind that the -e #HOST=/host option and other privileged options
just described break down boundaries between containers and the host. You should
not use these options carelessly in a production environment, since it gives a con-
tainer the capability to gain access to other containers running on the host, as well
as to the host itself.

As I mentioned, you can use these options directly with the docker run com-
mand. To use privileged features more effectively, however, consider installing an
Atomic Host system and using the atomic command to install and run SPCs, as
described in the upcoming sections.

PREPARING TO USE SUPER PRIVILEGED CONTAINERS

To try the SPCs in this chapter, I use a RHEL Atomic system. You can follow the
instructions in Chapter 2, “Setting Up a Container Run-Time Environment,” for
getting and running a RHEL Atomic Host system. If you don’t have a RHEL sub-
scription, you can get an evaluation copy of RHEL Atomic Host or run the proce-
dures on a Fedora Atomic Host.

The SPCs described in this chapter are made particularly to run on Atomic
Host systems. Although you can start and use SPCs by adding options to docker
run commands, an easier way to run SPCs is with the atomic command.

USING THE atoMzc COMMAND

The docker command is an excellent tool for manually working with an individual
container. To automate how a container runs and connects into a host system, other
tools are being developed to work with Docker-formatted containers. One such tool
is the atomic command, which comes with Atomic Hosts for Fedora, RHEL, and

CentOS.

CHAPTER 13 Using Super Privileged Containers

The atomic command was created to install and run containerized applications

on Atomic Host systems. To use atomic, you run that command with one of the fol-

lowing arguments:

install: Pulls the selected container image to the local system. When you
run this command, you can also specify a different image and container name
to be assigned to the saved image. This option essentially does the same
thing as a docker pull command.

info: Gets information about a selected container image to help identify what
it contains, where it is from, and how it is run. If the container is not on the
local system, atomic tries to pull the image from any enabled repository.

run: Runs the selected container using the command line identified on the
LABEL RUN line inside the container image. If you add your own com-
mand to the atomic run command line, settings on the LABEL RUN line are
ignored.

uninstall: Uninstalls the container image from the local system. It does the
uninstall based on the contents of the LABEL UNINSTALL line within the

container.

update: Pulls the latest version of the selected image from a repository to
replace the current version.

The atomic command is especially useful for running SPCs. That’s because

atomic can read Docker metadata identified inside the container itself to open up

the namespaces needed to run a container with privileges to act on the host system.

After starting up a RHEL Atomic Host system and logging in, here are some

examples of atomic commands you can run to work with SPCs in particular. For
these examples, I use the rhel-tools container, which I describe in detail later in

this

chapter.

The rhel-tools container image is about 1G in size, so make sure you have
enough space available on your Atomic Host to store that container image,
plus any other container software you have on your system.

181

182

Docker Containers

Installing an SPC Image with atomic

To pull the rhel-tools SPC to your RHEL Atomic system, you can use the atomic
install command as follows (from a RHEL or Fedora system):

atomic install rhel7/rhel-tools

Trying to pull repository registry.access.redhat.com/rhel7/rhel-tools
9a8ad4567c27: Pulling image (latest) from registry.access.redhat.com/
rhel7/rhel-9a8ad4567c27: Pulling image (latest) from registry.access.
redhat.com/rhel7/rhel-9a8ad4567c27: Download complete

Status: Downloaded newer image for registry.access.redhat.com/rhel7/
rhel-tools:latest

To check that the image is now available to your local system, type the following:

docker images | grep rhel-tools

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

registry.access.redhat.com/rhel7/rhel-tools 7.1-9 9a8ad4567c27
9 weeks ago 994.8 MB

registry.access.redhat.com/rhel7/rhel-tools latest 9a8ad4567c27
9 weeks ago 994.8 MB

The image (9a8ad4567¢27) is tagged with both the “latest” tag and a tag indi-
cating the RHEL release in which the container image was built.

Getting Information about an SPC Image with atomic

To see information about this or any container built to use with the atomic com-
mand, run the atomic info command. This information is displayed only for SPCs
and other images that have been prepared for use with the atomic command. This
example shows information for the rhel-tools container:

atomic info rhel7/rhel-tools
RUN : docker run -it --name NAME --privileged --ipc=host
--net=host --pid=host -e HOST=/host -e NAME=NAME
-e IMAGE=IMAGE -v /run:/run -v /var/log:/var/log
-v /etc/localtime:/etc/localtime -v /:/host IMAGE

Name : rhel7/rhel-tools

Build Host : rcm-img0l.build.eng.bos.redhat.com
Version : 7.1

Architecture : x86_64

Release : 15

Vendor : Red Hat, Inc.

BZComponent : rhel-tools-docker

Authoritative Registry: registry.access.redhat.com

CHAPTER 13 Using Super Privileged Containers

You can see from the output from atomic info that you can treat container
images in ways that are similar to how you treat RPM or Deb software packages.
This information lets you see who produced the image, the build host, version infor-
mation, and architecture and release information. The RUN line shows the actual
docker command that runs if you launch the container image without adding any
other options to atomic run. I describe those options later.

Running an SPC Image with atomic

The atomic run command starts up the selected container and lets it continue run-
ning in the background. It does that by reading the LABEL RUN value inside the
container and executing the complete docker command line included in that value.

If the image includes no LABEL RUN value, atomic run falls back to a default

behavior I describe later.

Typically, you pass two arguments to the atomic run command: the name you
choose for the running container (--name=) and the name of the image (in this case,
rhel7/rhel-tools). Here’s an example using atomic run to start the rhel-tools

SPC:

atomic run --name myrhel-tools rhel7/rhel-tools

docker run -it --name myrhel-tools --privileged --ipc=host --net=host
--pid=host -e HOST=/host -e NAME=myrhel-tools -e IMAGE=rhel7/rhel-tools
-v /run:/run -v /var/log:/var/log -v /etc/localtime:/etc/localtime -v
/:/host rhel7/rhel-tools

#

You can see the docker command line launched by atomic. Notice that the
container name and image name you passed to atomic are included in the docker
command. The default action is to open a bash shell inside the container.

With the bash shell open inside the container, any commands you type at this
point are run from within the container. But because the container has many host
features open at this time, it might be hard to tell that you are inside the container.

Try typing the following from inside the container:

1s /

bin dev home 1lib media opt root sbin sys usr

boot etc host 1ib64 mnt proc run srv tmp var

1s /host

bin dev home 1ib64 mnt ostree root sbin sys tmp var
boot etc 1lib media opt proc run srv sysroot usr

exit

183

184

Docker Containers

The /host directory should have shown up inside the SPC. Listing the contents
of the /nost directory (1s /host) you should see the root of the host file system,
which should include the /ostree directory (in the case of a RHEL Atomic Host
system). You can continue running any commands you want within the container.
When you are done, type exit to exit the container and return to a shell on the host
system.

Instead of just opening a shell, you can run the SPC with any command you
choose. For example, the man command is not included on a RHEL Atomic Host,
so you cannot read man pages about the docker command from the host. However,
both the man command and the docker man pages are in the rhel-tools container.
So, to see the Docker man page, you could type the following:

atomic run rhel7/rhel-tools man docker
DOCKER (1) APRIL 2014 DOCKER (1)
NAME

docker - Docker image and container command line interface
SYNOPSIS

docker [OPTIONS] COMMAND [arg...]

DESCRIPTION

docker has two distinct functions. It is used for starting the
Docker daemon and to...

Stopping and Restarting an SPC with atomic

When you are done using a container that has a shell open to it, you can simply type
exit to leave. For a container running in the background that you started with the
atomic run command, you can stop the container with the docker stop command.
For example:

docker stop myrhel-tools

The docker command just shown stops the running container but doesn’t auto-
matically remove it (unless the image’s RUN LEVEL value includes the --rm
options for docker). If you want to use that same container image, you can restart it
using the docker start command:

docker start -i myrhel-tools

The container (not the original image) is started again and ready to use.

Updating an SPC Image

After a while, new versions of an SPC image may become available. To update the
rhel-tools image with the atomic command, type the following:

CHAPTER 13 Using Super Privileged Containers 188

atomic update rhel7/rhel-tools

Trying to pull repository registry.access.redhat.com/rhel7/rhel-tools ...
9a8ad4567c27: Download complete

Status: Image is up to date for registry.access.redhat.com/rhel7/
wrhel-tools:latest

Uninstalling an SPC Image

If you are done using the SPC image, you can remove it using the atomic uninstall
command. For example, to remove the rhel-tools image from your system, you
type the following:

atomic uninstall rhel7/rhel-tools

Running atomic uninstall can do more than just remove the image from the
local system. In some cases, atomic uninstall runs a script to change or remove
files on the host system, presumably to get things back the way they were before the
SPC was installed. You can see if there is an uninstall action defined using atomic

info on the SPC.

Now you have seen descriptions of privileged options you can run with the
docker command, as well as how those options are used with the atomic command.
Next, I describe several SPCs available for RHEL Atomic to use to administer and
otherwise work with a RHEL Atomic or Fedora Atomic Host.

TRYING SOME SPCs

In the Red Hat container registry (registry.access.redhat.com), you can find sev-
eral SPCs designed specifically to add functionality to RHEL Atomic Host systems.
If you plan to deploy containers into large enterprise environments, these SPCs can
help you drop a range of troubleshooting and monitoring tools into your deployed
containers.

Expect more SPCs to be available in the near future to allow you to add func-
tionality to host computers running Docker-formatted containers. For the moment,
if you have a RHEL Atomic or RHEL 7 host (which are, by default, configured to
pull from the Red Hat container registry), you can try out the SPCs described in this
section. These containers are also available on Fedora Atomic Hosts, without need-
ing to point to an additional registry.

The SPCs described here include

= RHEL tools container (rhel-tools): Includes many tools for troubleshoot-
ing and debugging issues on your host systems

186 Docker Containers

= System logging container (rsyslog): Includes the rsysiogd daemon and
configuration files for gathering and redirecting log messages to selected files
or log hosts

= System monitor container (sadc): Includes the system activity data col-
lector (sadc), which monitors and gathers system activity data. It also
includes other software from the sysstat package, including commands for
displaying the gathered data, such as the sar command

Running the RHEL Tools SPC

The rhel-tools container is the Swiss army knife of SPCs. It contains nearly 400
commands that are not on a RHEL Atomic Host system. The aim is to include as
many useful tools as possible inside the container for troubleshooting and otherwise
checking on the host system. If tools are missing, you can add more software pack-
ages to the container with the yum command.

To get the right options to run rhel-tools as an SPC with Docker, you should
run it with the atomic command, as illustrated previously throughout the “Using
the atomic Command” section. No particular configuration is needed to use the
container.

Here are examples of commands and features that the rhel-tools container
adds to your ability to work with a RHEL Atomic system:

= Documentation: To save on space, all documentation was removed from
RHEL Atomic Host. The rhel-tools container makes documentation avail-
able to the host by including documentation stripped from the /usr/share/
doc directory, man pages, and info text. In particular, you can find man
pages related to containers for components such as docker and Kubernetes
(kubect1 command).

= Networking diagnostic tools: Common tools for diagnosing network-
ing problems were added to the rhel-tools container, including tcpdump,
tcpslice, netsniff-ng, and nfsiostat.

= Application debugging tools: The rhel-tools container adds commands
for debugging applications, such as the strace, stap (Systemtap run-time
tool), and 1trace commands.

= Block device troubleshooting tools: Tools in the rhel-tools container
for examining, monitoring, and fixing problems with block devices include
blkiomon, blkparse, blktrace, blkrawverify, and verify blkparse.

CHAPTER 13 Using Super Privileged Containers

Hundreds of other commands are in the rhel-tools container as well. Some of
the commands in the rhel-tools container have been modified to know that they
are being run within a container. For example, when the sosreport command is run
from within a container, it knows to use /host as the root of the file system instead
of /, so it gathers data from the host system and not the container’s file system.

Running the Logging (rsyslog) SPC

By adding the rsysiog container to an Atomic Host system, you can provide a cen-
tral location for gathering log messages from the host system or from the containers
on that system. To install the rsysiog container, type the following:

atomic install rhel7/rsyslog

Trying to pull repository registry.access.redhat.com/rhel7/rsyslog
b5168acccb4c: Download complete

Status: Downloaded newer image for registry.access.redhat.com/rhel7/
wrsyslog:latest

docker run --rm --privileged -v /:/host -e HOST=/host -e IMAGE=rhel7/
wrsyslog -e NAME=rsyslog rhel7/rsyslog /bin/install.sh

Creating directory at /host//etc/pki/rsyslog

Installing file at /host//etc/rsyslog.conf

Installing file at /host//etc/sysconfig/rsyslog

In the case of the rsyslog container image, the atomic install command
does more than just download the image. It also runs a script (/bin/install.sh)
that sets up files the container needs to run. In particular, it shares configuration
files between the container and the host system (such as /etc/rsyslog.conf and
/etc/sysconfig/rsyslog) so you can work with the files from the host, but run the
rsyslogd daemon from within the container.

With the container downloaded and installed, you can run the container image
as follows:

atomic run rhel7/rsyslog

docker run -d --privileged --name rsyslog --net=host -v /etc/pki/
rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf -v
/etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log -v /var/lib/rsyslog:
/var/lib/rsyslog -v /run/log:/run/log -v /etc/machine-id:/etc/machine-id
-v /etc/localtime:/etc/localtime -e IMAGE=rhel7/rsyslog -e NAME=rsyslog
--restart=always rhel7/rsyslog /bin/rsyslog.sh
36739324eleldd918aa2c93765a9de9201c43d816d71e2e5cl6c80c5e38eadcs

If you look at the docker command line that runs for this container, you can
see the last option run a /bin/rsyslog.sh script, which starts the rsyslogd dae-
mon with the proper options. The rsyslogd service runs in the background as a
daemon process (-d), and several files and directories from the host are bind mounted

187

188

Docker Containers

inside the COHHﬂner(/etc/rsyslog.conf,/etc/rsyslog.d/,/var/log/,/var/lib/
rsyslog/,and(ﬁhersy

Privileges are opened to the container from the host with the --privileged
option, and the container can see the host’s network interfaces (--net=host). The
restart=always option ensures that the container is restarted when the system
reboots.

To review information about this SPC, you can use the atomic info command
as follows:

atomic info rhel7/rsyslog
RUN : docker run -d --privileged --name NAME --net=host
-v /etc/pki/rsyslog:/etc/pki/rsyslog
-v /etc/rsyslog.conf:/etc/rsyslog.conf
-v /etc/rsyslog.d:/etc/rsyslog.d -v /var/log:/var/log
-v /var/lib/rsyslog:/var/lib/rsyslog
-v /run/log:/run/log -v /etc/machine-id:/etc/machine-id
-v /etc/localtime:/etc/localtime -e IMAGE=IMAGE
-e NAME=NAME --restart=always IMAGE /bin/rsyslog.sh

Name : rsyslog-docker

Build Host : rcm-img04.build.eng.bos.redhat.com

Version 7.1

Architecture : x86_64

INSTALL : docker run --rm --privileged -v /:/host -e HOST=/host

-e IMAGE=IMAGE -e NAME=NAME IMAGE /bin/install.sh
Release 0 3
Vendor : Red Hat, Inc.

Notice that a different docker command line is used when you install the image
and run the image (RUN line). Other information displayed by atomic info shows
the RPM-like information about the container, such as the system where the con-
tainer was built (Build_Host), the RHEL version (7.1), and the architecture it is
built for (x86_64).

To check whether the rsysiogd service is working, run the 1ogger command
from the host system and send a message you can check for with the journalctl
command:

logger "Testing that rsyslog is boffo"
journalctl | grep boffo
Apr 27 22:43:32 nodel root: Testing that rsyslog is boffo

To see and possibly change how log messages are directed, you can edit the
/etc/rsyslog.cont file on the host system. Keep an eye on the disk space being
consumed in the /var/1og directory on the host.

CHAPTER 13 Using Super Privileged Containers 189

Running the System Monitor (sadc) SPC

The sysstat software package, which includes the sar and iostat commands, along
with the sadc tool for monitoring system performance, has been around since the
old UNIX days. That package contains the standard set of tools for doing ongoing
monitoring of system performance of various components (network interfaces, block
devices, CPU usage, and so on). Adding the sadc container to your RHEL Atomic
Host lets you gather and display performance data for your host system.

From a RHEL Atomic Host system, using the atomic install command you
can pull the sadc container from the RHEL registry and install it on the local sys-
tem as follows:

atomic install rhel7/sadc

Trying to pull repository registry.access.redhat.com/rhel7/sadc
la97a9cc4dlb: Download complete

Status: Downloaded newer image for registry.access.redhat.com/rhel?”
w /sadc:latest

docker run --rm --privileged --name sadc -v /:/host -e HOST=/host
w_c IMAGE=rhel7/sadc -e NAME=name rhel7/sadc /usr/local/bin/
wcsysstat-install.sh

Installing file at /host//etc/cron.d/sysstat

Installing file at /host//etc/sysconfig/sysstat

Installing file at /host//etc/sysconfig/sysstat.ioconf

Installing file at /host//usr/local/bin/sysstat.sh

Besides pulling the sadc container, you can see that several configuration files
and scripts are installed on the host system to support the container when it runs.
With the atomic info command, you can see the full docker run command lines

used when the container image is installed (INSTALL) and run (RUN):

atomic info rhel7/sadc
RUN : docker run -d --privileged --name NAME
-v /etc/sysconfig/sysstat:/etc/sysconfig/sysstat
-v /etc/sysconfig/sysstat.ioconf:/etc/sysconfig/sysstat.ioconf
-v /var/log/sa:/var/log/sa -v /:/host -e HOST=/host
-e IMAGE=IMAGE -e NAME=NAME --net=host --restart=always
IMAGE /usr/local/bin/sysstat.sh

Name : sadc-docker

License : GPLv3

Build Host : rcm-img05.build.eng.bos.redhat.com

Version : 7.1

Architecture : x86_64

INSTALL : docker run --rm --privileged --name NAME -v /:/host

-e HOST=/host -e IMAGE=IMAGE -e NAME=name IMAGE
/usr/local/bin/sysstat-install.sh

190

Docker Containers

Release : 3
Vendor : Red Hat, Inc.
UNINSTALL : docker run --rm --privileged -v /:/host -e HOST=/host

-v /var/log:/var/log -e IMAGE=IMAGE -e NAME=NAME
IMAGE /usr/local/bin/sysstat-uninstall.sh ;
docker rm -f sadc

If you are ready to use the sadc container, start it with the atomic run command
as follows:

atomic run rhel7/sadc

docker run -d --privileged --name sadc -v /etc/sysconfig/sysstat:/etc/
sysconfig/sysstat -v /etc/sysconfig/sysstat.ioconf:/etc/sysconfig/
sysstat.ioconf -v /var/log/sa:/var/log/sa -v /:/host -e HOST=/host

-e IMAGE=rhel7/sadc -e NAME=sadc --net=host --restart=always rhel7/
sadc /usr/local/bin/sysstat.sh
c02b44ce7e4494571a7dal3113a47873£d80d8d38201cbdbleéc898c7df5caca

Once the sadc container is running, it is ready to start collecting system data.
Data collection is started from the crond service on the host, from the /etc/cron.d/
sysstat file. Take a look at the contents of that file:

Run system activity accounting tool every 10 minutes

Customized for sadc container

*/10 * * * * root docker exec -d sadc /usr/libé64/sa/sal 1 1
0 * *x * *x root /usr/lib64/sa/sal 600 6 &

Generate a daily summary of process accounting at 23:53

Customized for sadc container

53 23 * * * root docker exec -d sadc /usr/lib64/sa/sa2 -A

Based on the contents of this file, you see that system activity data are gathered
every 10 minutes and a daily report is generated at 11:53PM every night. If you are
familiar with the sysstat software package, you will notice that this file has been
modified to run the sadc tool with a docker exec command.

To change how data are gathered, you can modify that /etc/cron.d/sysstat
file. Refer to the sadc and crontab (section 5) man pages for information on the
format of that file. Because you are on a RHEL Atomic system with no man pages,
however, you can use the rhel-tools container to read the man page:

docker run --rm rhel7/rhel-tools man 5 crontab

To view the system activity data, you can use the sar command from within the
container. For example:

CHAPTER 13 Using Super Privileged Containers 191

docker exec -it sadc sar

Linux 3.10.0-229.1.2.el7.x86 64 (nodel) 04/28/15 x86 64 (1 CPU)
08:57:15 LINUX RESTART

09:00:01 CPU S%user $nice %$system %iowait %steal $idle
09:10:02 all 1.53 0.00 1.07 0.62 0.01 96.78
09:20:02 all 0.78 0.00 0.87 0.67 0.01 97.68
09:30:01 all 0.81 0.00 0.93 0.72 0.01 97.53
09:40:01 all 1.29 0.00 1.43 1.34 0.01 95.93
Average: all 1.10 0.00 1.08 0.84 0.01 96.98

As development of the Atomic project continues, expect to see more SPCs such
as rhel-tools, rsyslog, and sadc become available to monitor, troubleshoot, and
manage Atomic Host systems.

SUMMARY

Because of the way container run-time operating systems, such as RHEL Atomic,
are designed, they don’t contain every tool you might want for managing and repair-
ing those systems. For the Atomic project, this issue is dealt with by using super
privileged containers (SPCs).

SPCs let you easily add and remove software from a lean, container-oriented
operating system. You can create SPCs by adding options to the docker run com-
mand. However, several SPCs have been created for RHEL Atomic Hosts that can
be managed by a special atomic command.

The atomic command sets options to docker run that define exactly which priv-
ileges and namespaces open on the host. It also does such things as copy files to
the host and mount directories from the host to the container when the container is
installed.

Three examples of SPCs are illustrated in this chapter. The rhel-tools con-
tainer lets you add many troubleshooting and maintenance commands to an Atomic
Host. The rsyslog container adds a logging facility to a host. The sadc container
adds the sysstat package to collect system activity data from the host system.

The tools you can run from SPCs in your cloud-deployed Atomic Host systems
make it possible to fix and monitor the container-based operating systems you have
running in the cloud. The next chapter helps you understand different tools you
can use to build your own SPCs, as well use other tools for deploying containers in
cloud environments.

This page intentionally left blank

CHAPTER 14

Managing Confainers in the
Clova with Cochpit

IN THIS CHAPTER:
= Understand how Cockpit manages container-oriented operating systems
= Install and start Cockpit
= Add servers for Cockpit to manage
= Work with containers in Cockpit
= Configure networking and storage in Cockpit

= Use Cockpit tools to add user privileges and open Terminal windows

Once you have become comfortable starting up an Atomic, Fedora, RHEL, or other
operating system to run your containers on, you might find yourself with multiple
systems running in a cloud environment or on a virtualization host. Managing those
systems individually can become a burden. Instead of using tools such as ssh to do
remote login to each system, you can use a tool such as Cockpit to manage multiple
systems from one interface.

Cockpit provides a web-based user interface for managing Fedora, RHEL,
Atomic, and similar Linux systems. Because it includes tools for monitoring indi-
vidual containers, as well as groups of containers orchestrated with Kubernetes,
Cockpit is particularly good at managing systems deployed specifically for contain-
erized applications. However, Cockpit also includes some nice features for doing
general system management.

If working directly from a Linux command line has been a challenge for you so
far in this book, I have good news for you. Cockpit is designed to discover and work
with complex technologies, such as Docker containers and Kubernetes clusters,
with an easy-to-use, point-and-click interface.

193

134

Docker Containers

In this chapter, I demonstrate how to run Cockpit from a Fedora system.
Through a single Cockpit interface, you can then add as many of your container-
oriented systems as you want (running Atomic, RHEL, or Fedora) to monitor, start,
stop, and otherwise work with containers on those systems.

Cockpitis still in its early stages of development. The fact that it is not yet at
version 1.0 is an indication that there is still more work to be done to make

it stable. | show it here so that you can get a sense of the type of simple
front-ends being developed to manage your individual or clustered contain-
ers. As the underlying container features continue to solidify, you can expect
Cockpit and similar tools to make it easier to use them.

UNDERSTANDING COCKPIT

Cockpit runs as a service that listens for requests on TCP port 9090. To use the
service, you simply open a web browser to port 9090 on the system where Cockpit
is running and log in as an administrative user (usually just the root user at first).

When you first log in as root, you can assign Server Administrator privileges
to other users with accounts on the system running Cockpit. Or you can just start
working with Cockpit as the root user.

Once you are logged in to Cockpit, you are ready to start monitoring the local
system for a variety of features. You can also add other systems to monitor. To do
that, you simply provide the hostname (or IP address), administrative user name
(such as root), and the password for that user.

If you have pushed Atomic, Fedora, Red Hat Enterprise Linux, or similar sys-
tems out to a cloud or to a host running virtual machines (such as a Linux KVM
environment), you can watch over all those systems and the containers running
on them from a single Cockpit dashboard. From Cockpit, you can select the system
you want to view and then see the following types of information from a column on

the left:

= System: Monitor the resource consumption on the selected system from this
tab. General information identifies the type of hardware, BIOS, hostname,
and other basic information. You can watch progressive use of CPU, memory,
network traffic, and disk 1/0 resources. Figure 14.1 shows an example of the
System tab for a Red Hat Enterprise Linux system installed directly on Dell

CHAPTER 14 Managing Containers in the Cloud with Cockpit

hardware; Figure 14.2 is an example of Fedora installed in a KVM virtual
machine.

/ © Cockpit x \+

€ @ https//ffed

] [Q search e & &

©® FEDORA SERVER

B 1921681221

System

Hardware Dell Inc. Precision WorkStation 430
Services
Asset Tag 5K2D8F1
Containers
BIOS Dell Inc. A0 (08/20/2007)

|
Lo Operating System
DEtering Host Name | rhel7.example.com
Storage

® Domain | join Domain

> Tools

SystemTime | 2015-07-17 14:08

Power Options | Restart | +

cPu 56%
400%
300%
200%
100% I Ii I ‘I

0% a5 14:06 1407 14:08 409

Memaory 13.8GB
2.2 1 Y A
00| I A R
. | | |
068 s 406 1407 14:08 209

FIGURE 14.1 Cockpit displaying information on a RHEL 7 host on Dell
hardware.

| © Cockpit

€) @ https://fed:909C v @ |Q search A 3 &=

@ FEDORA SERVER

B fedorazz.examplec.. ~

System
Hardware Red Hat KVM
Services
o Asset Tag
ontainers
EIOS Seabios 0.5.1(01/01/2011)
ournal
! Operating System Fedora 22 (Twenty Two)
Networking HostName | fedora22.example.com
Storage
4 Domain | jain Domain
> Tools System Time | 2015-07-17 14:11
Power Options | Restart | ~

FIGURE 14.2 Cockpit displaying a Fedora virtual machine on a KVM host.

135

136

Docker Containers

= Services: From the Services tab, you can see all the systemd assets on the
selected host. For the selected system, you can see which of the enabled
and disabled system services are currently running. You can also select to
see Targets (sets of services), Sockets (service communications end points),
Timers (unit files for setting of events at specific times), and Paths (unit files
associated with actions to take when files/directories are accessed) config-
ured on the system.

= Containers: Manage your containers for the selected system from the Con-
tainers tab. You can see each container running or stopped on the system.
Consumed and available storage space is shown on a slider bar. All container
images on the system are displayed in the Images box, which also includes
a button to pull new images to the system (Get New Image button). This tab
also provides a live view of memory and CPU usage from your containers.
Figure 14.3 shows an example of the Containers tab.

Cockpit - Mozilla Firefox

File Edit View History Bookmarks Tools Help
Cockpit x| &
@localhost/docker/containers v || Q search + B A B =

€ @ httpsy/staypuft:9090,

RED HAT ENTERPRISE LINUX SERVER

[E rheiz.example.com

System
Combined CPU usage 0% Combined memory usage 405M8

Services
6.406 GB /68.9 GB

Containers. > B8 5P u
Journal
Networing -
—
Tags Created Size
> Tools

@S Al dbforwebilatest 1232015 590.... >
docker.io/centos7 41222015 205... >
docker.io/centosice...
dockero/centosiat...

Name Image Command CPU Memory

backstabbing almeida webwithdbilatest Just/sbinvhttpd.-. o I 135M8

dockeriomordpress... 4/30/2015 4. | >
dockeromordpress...
dockerJomordpress...
dockeromordpress...
dockeromordpress...
dockeromordpress...
dockeromordpress...
dockeromordpress...

clever_hoover registry.access.redhat... bash Stopped
cocky_tesla webwithdblatest Jusr/sbin/httpd -... N | 135M8

fed httpde fedorafatest python -m Simpl... Stopped

mvim||v =<

high_poitras. webwithdb:latest Jusrisbin/httpd -... N | 13.5MB,

fedora:20 1273172014 356 >

FIGURE 14.3 View and manage containers from Cockpit’s Containers tab.

= Journal: As a systemd service, Docker error messages are directed to the
systemd journal. You can view Docker journal messages from the Journal
tab. Messages can be selected by date or level of severity (Errors, Warnings,
Notices, or All). Select any message for a detailed view of that message.

= Networking: View activity of the network interfaces associated with the
selected host. Figure 14.4 shows the network interfaces for a physical com-
puter that has multiple network interfaces. The dockerQ interface provides
network access to the containers on the system. There are two physical
network cards (enp11s0 and enp12s2), one of which is active and providing

CHAPTER 14 Managing Containers in the Cloud with Cockpit

access to external networks. Because the system is running virtual machines,
the virbrO network interface is defined as the virtual machine network by
default. Network send and receive traffic is displayed at the top of the tab,
while networking journal entries are at the bottom.

5] Cockpit - Mozilla Firefox _ox
File Edit View History Bookmarks Tools Help

/ cockpit x\ &
v &|[Q search + H A %8B =

€ @ https://staypuft:9090/#/@

RED HAT ENTERPRISE LINUX SERVER

[E rheiz.example.com

System =
Sending 850Kbps Recelving 195 Kbps
Services

Containers

Journal
Networking >
Storage 4 N

> Tools

Interfaces AddBond || Add Bridge || AddVLAN

Name 1P Address sending Receiving
dockero 1721742116 0bps 12Kbps
enp1s0 10.13.49.11/23, 2620:52:0:430:21 2:20fffed5:3939/64 74.4Kops 45 Kops

enpi2s2 Inactive

virbro 192168122124 105 Kbps 139 Kbps

July 18,

NetworkManager: <info> (veth3883fcd): Activation: successful, device activated. 08:58
NetworkManager: <info> (veth3883fcd): device state change: secondaries -> activated (reason ‘none’) (90 100 0] 08:58
NetworkManager: <info> (veth3883fcd): device state change: Ip-config -> secondaries (reason 'none’) (70 90 0] 08:58
NetworkManager: <info> (veth3883fcd): Activation: Stage 3 of 5 (IP Configure Start) complete, 08:58
NetworkManager: <info> (veth3883fcd): device state change: config -> Ip-config (reason 'none’) (50 70 0] 08:58
NetworkManager: <info> (veth3883fcd): Activation: Stage 3 of 5 (IP Configure Start) started. 08:58

NetworkManager: <info> (veth3883fcd): Activation: Stage 2 of 5 (Device Configure) complete. 08:58 5l

FIGURE 14.4 View and change network interfaces on the Cockpit
Networking tab.

= Storage: Monitor the available disk space and disk usage on the selected
host from the Cockpit Storage tab. If you need more storage, you can create
RAID devices or volume groups from this tab as well. Each available disk
is displayed, allowing you to mount, unmount, format, delete, or change file
system options for each disk partition. Journal messages from storage-related
services (such as udiskd and smartd) are displayed at the bottom of the tab.

= Tools: Tools for managing the system are listed under the Tools tab. For
RHEL systems, the Subscriptions tab lets you see how the system is sub-
scribed to Red Hat. Select Administrator Accounts to choose an existing user
account on the system and optionally add Server Administrator or Container
Administrator roles to that user account. Select Terminal to open a shell on
the selected system as the user with which you are logged in to Cockpit.

As you can see, Cockpit provides a good set of features for managing operating
systems being used to run containers. Cockpit is under active development at the
moment. The current set of features, described in this chapter, help you track and

197

198

Docker Containers

work with individual containers on Atomic, RHEL, Fedora, and CentOS systems. I
describe some of the new Cockpit features just being developed for managing sets
of containers orchestrated with Kubernetes in Chapter 16, “Creating a Kubernetes
Cluster.”

STARTING WITH COCKPIT

The cockpit package is currently available on Fedora and Red Hat Enterprise
Linux systems. This section describes how to install and run Cockpit on Fedora, but

the same procedure works on Red Hat Enterprise Linux (provided that you have a
RHEL system that has a proper subscription).

1.

Install Fedora: Install the latest version of Fedora available (for this exam-
ple, I use Fedora 22).

Install cockpit package: As root user (or using sudo), install the cockpit
package (along with some dependent packages) as follows:

yum install cockpit -y

. Start the cockpit socket: Type the following commands to enable and start

Cockpit:
systemctl start cockpit.socket
systemctl enable cockpit.socket

Open Cockpit in a browser: Open a browser window from any system that
has access to the system running Cockpit and go to port 9090 on that system.
For example, if Cockpit were running on the local host, you could type the
following into your location box:

https://localhost:9090

For this example, I use a host that is accessible via the hostname fedora22
(fedora22.example.com: 9090). Figure 14.5 shows an example of the Cockpit
login screen from that host.

E% If the system on which you are running Cockpit has an active firewall that is

blocking access to ports on the system, you need to open TCP port 9090.
To do this temporarily on a host whose firewall is based on iptables, you
could run the following command to open TCP port 9090. If the port is
accessible after running this command, check your system’s documentation
on how to open that port on the firewall permanently:

iptables -A INPUT -p tcp -m tcp --dport 9090 -j ACCEPT

https://localhost:9090

CHAPTER 14 Managing Containers in the Cloud with Cockpit 199

fedora22.example.com - Mozilla Firefox
File Edit View History Bookmarks Tools Help

fedora22.example.com x \ g

fedora22.example.com:2091

fedora

. SERVER

Log inwith your server user account.
y

FIGURE 14.5 Access the login screen from port 9090 on the Cockpit system.

5. Log in to Cockpit: Log in to Cockpit using the root login on the Cockpit
system or another user with Server Administrator privilege to Cockpit. If the
system running Cockpit is also running Docker, you can immediately begin
working with containers on that system. If not, the next thing you want to do
is select the button to start Docker and add one or more Docker systems that
you want to work with into Cockpit.

ADDING SERVERS INTO COCKPIT

With the Cockpit web UI displayed from your browser, you can begin adding
Docker containers to Cockpit. Follow these steps to add container server systems
to Cockpit:

1. Open the Dashboard: Select the Dashboard tab at the top. You should see
scrolling information on system resource usage and a list of servers at the
bottom of the screen (there may just be the local system at the moment).

2. Add the server: Select the Add Server button (+) on the Servers tab and fill
in the hostname or IP address of the server. If the new server uses the same

200

Docker Containers

credentials (username and password), leave the Log in with My Current Cre-
dentials box checked. Otherwise, uncheck it. Then click Next.

3. Add credentials: From the Add Host pop-up (if it appears), enter the user

name and password needed to access the new server. This should be a privi-
leged user (such as root). Then click Next.

4. Add host: If the server can be found and accessed with the credentials, the

host’s address and fingerprint are displayed. If that looks correct, select the
Add Host button. Figure 14.6 shows an example of the Cockpit Dashboard
after two additional servers have been added to the fedora22 host, one by IP
address (192.168.122.1) and one by hostname (rhel7.example.com).

) Cockpit - Mozilla Firefox -0 x
File Edit View History Bookmarks Tools Help

| Cockpit x \ 4

& hitps://fedora22.example.com}9090/#/dashboardlist ve\ Q, search + H # B =

® FEDORA SERVER

El Machines & Dashboard

CPU Memory Network Disk 110

Servers v

fedora22 example.com
192.168.122.1

rhel7.example.com

FIGURE 14.6 Add servers you want to monitor on the Cockpit Dashboard.

By selecting any of the servers listed on the Dashboard, you can begin manag-

ing those servers through Cockpit, along with managing any containers running on
those systems.

CHAPTER 14 Managing Containers in the Cloud with Cockpit

WORKING WITH CONTAINERS FROM COCKPIT

From the Containers tab in Cockpit, you can begin working with containers on the
selected system. Any images or running containers already on the system appear
on the Containers area. If you want to start adding your own images and running
containers, you can do those tasks directly from Cockpit.

Adding Container Images to Cockpit

From the Containers tab, select the Get New Image button. Type in a search term
to search any registries enabled from that system (at least the Docker Hub Registry
and possibly others). Figure 14.7 shows an example of a search for an image named
cricket/hangman.

3] Cockpit - Mozilla Firefox - O x
File Edit View History Bookmarks Tools Help

|/ Cockpit x | e

* https://fedora22.example.com:9090/#/@rhel7.example.comjdocker/containers v & | | Q Search | 4+ H & &8 =

@ FEDORA SERVER

B rhe7exampiecom

System

Services

Containers >

Journal

Image Search

Q cricket/hangman
Networking

Storage

cricket/hangman Fedora image with hangman and other bsd-games

> Tools

FIGURE 14.7 Search for images to download from the Cockpit Containers tab.

Select the image you want from the search results and click Download to begin
downloading the image to the selected server. The image you download appears in
the list of Images on the Containers tab.

Running Images from Cockpit

Once you have downloaded an image to a server being managed by Cockpit, you
can run that image from Cockpit as well. Find the image you want under the Images
heading on the Containers tab and select the play button associated with that image.
A Run Image pop-up appears, ready to run that image, as shown in Figure 14.8.

201

Docker Containers

Run Image

Image docker.io/cricket/hangman:latest

Container Name | myhangman |

Command | hangman |

Memory limit [unlimited
CPU priority [default
With terminal
Links CLink to another container

Ports [Clgxpaose container ports

FIGURE 14.8 Run a Docker image from Cockpit.

The example in Figure 14.8 is a simple one. In this case, | want to run the
hangman command from within the hangman container. By naming the container
myhangman, | can recognize it and start it again later if [want to.

Notice that I have the option of setting memory limits or CPU priority for the
container. The With Terminal box is checked, which is good because I want to run
the hangman game interactively from a Terminal window. There is also the option
to link the container to another container or expose ports from the container to the
host.

If running the image is successful (essentially doing a docker run), the new,
running container should appear on the Containers tab under the Containers head-
ing. By selecting that container’s name, you can see information about the container,
manage the container, and work with the container from a Terminal window (assum-
ing you ran the container that way). Figure 14.9 shows an example of the myhangman
container | created, running hangman in a Terminal window within Cockpit.

Besides, in this case, being able to play a game of hangman from the displayed
Terminal window, you can also work with the container in the following ways:

= Stop, Start, and Restart: Buttons on the page for the container let you
stop the container (docker stop), start it (docker start), and restart it

(docker restart).

CHAPTER 14 Managing Containers in the Cloud with Cockpit 203

= Commit: To save the container in its current state back as an image, you
can select to stop it (Stop button) and then select the Commit button. You are
prompted to provide a Repository name, Tag, Author, and Command to run
from the image. The saved container image then appears in your Images list.

= Delete: Once a container is stopped, you can select the Delete button to
delete it completely from the system. You can select Delete while the con-
tainer is still running, but you are prompted to force a delete of the container.

= Change Resource Limits: As the container is running, you can change
memory limits and CPU priority. Select the Change Resource Limits button
and move the sliders representing Memory and CPU accordingly.

] Cockpit - Mozilla Firefox — B3
File Edit View History Bookmarks Tools Help
| Cockpit % \ 4

€)on

v || Q Search + H & =]

22.example.com

& FEDORA SERVER

[E rhei7example.com

System
Services Containers » myhangman

Containers >

Journal Contalner: myhangman Start || Stop || Restart Commit
Networking
Storage Id: 774e04baf6b77a4d92fe260f60380bb0ca4649247c005a7F1 19cc3a0a131d0c
ated: 1437241540

e 1403322a81¢5362762f84a26D2¢818fcc0coff7b05be 1 561420¢5510375¢09d1 latest
hangman 3
State: Upsince 2015-07-18T17:51:47.042077034Z

3y | 33MB

e: 0% 1024 shares

> Tools

Change resource limits

1
1.000

0.000

FIGURE 14.9 Interact with a running container from Cockpit.

If you are running a container image as a service, a Terminal interface is prob-
ably not required. By unchecking the With Terminal box, you can run a container
image without opening a Terminal window to interact with the container. For exam-
ple, Figure 14.10 shows a running web server container without a Terminal open to
display standard output from the application.

c04

Docker Containers

Cockpit - Mozilla Firefox

File Edit View History Bookmarks Tools Help
/| Cockpit %X\ g

(-. https:/ffedora22.example.com}3090/#/@localhost/docker/containers V-)\ Q, search 4+ B # B =

® FEDORA SERVER

E fedora22.example.c... v

System

Services Containers » newhttpd

Containers
Journal Container: newhttpd Start || Stop || Restart Commit
Networking

Storage Id: 4cdda%e410e3407d0786dbfe3900cae56dde70d21c3dd36a9315726f032ae815

» Tools Created: 1437275174
Image: webwithdb:latest

Command: fusr/sbinvhttpd -D FOREGROUND
State: Upsince 2015-07-19T03:06:16.6091400882 3
Forts: 0.0.0.0:80 -> 80/tcp

| 12.6 MB

0% 1024 shares

Memaory usa

CPU usa,
Change resource limits

[Sun Jul 19 ©3:06:17.887952 2815] [env:warn] [pid 1] AHP1586: PassEnv variable DB_SERVICE !
AHBB558: httpd: Could not reliably determine the server's fully qualified domain name, usii

al I | [>]

FIGURE 14.10 Containers running services may not need a Terminal interface.

Even though there isn’t a Terminal open with this web service, you can see any
output from the application displayed in a log window at the bottom of the screen.
You can still see and change resource limits. You can also see the name of the
image that generated the container and the fact that TCP port 80 from inside the
container is mapped to port 80 on all network interfaces on the host.

WORKING WITH NETWORK INTERFACES FROM COCKPIT

From the Networking tab in Cockpit, you can view and work with all the network
interfaces on the selected system. You can watch spikes in your network traffic as
data packets are sent and received across those network interfaces. Figure 14.11
shows the network interfaces for a physical computer running a Red Hat Enterprise
Linux system.

In Figure 14.11, the RHEL system is running the Docker service as well as run-
ning as a KVM host system (allowing the computer to run virtual machines). These
facts are reflected in the dockerO and virbrO network interfaces. The machine also
has two physical network interface cards (NICs). The enpl1sO NIC is currently

CHAPTER 14 Managing Containers in the Cloud with Cockpit

active and provides connectivity to the outside world. The enp12s2 NIC is inactive
at the moment.

3] Cockpit - Mozilla Firefox o (5] 3
File Edit View History Bookmarks Tools Help
Cockpit x| &
€) hitps:/ffedora22.example.com:9090/#/@local host/docker/containers v || Q Search 4 H & A =
@ FEDORA SERVER 1

[rhei7example.com

system W
sending 422.6 Kbps Receiving 217.8 Kbps

Services
Containers

Journal

Networking >

o | | | | |
> Tools

Interfaces AddBond || Add Bridge || Add VLAN
Name 1P Address sending Receiving

dockerd 17217421116 0bps 0bps

enplis0 10.13.49.11/23, 2620:52:0:d30:212:0ff fed5:3030/64 254.2Kbps 19.0 Kbps

enpl2s2 Inactive

virbr0 192.168.122.1/24 168.3 Kbps 198.8 Kbps

Networking Journal

July 18,2015
dhelient: bound to 10.13.49.11 — renewal in 39838 seconds. 18:44

NetworkMana... <info> (enp11s0): DHCPv4 state changed bound -> bound 18:44

FIGURE 14.11 View and change network interfaces from Cockpit.

Select docker0 to see more details about that interface. From the Networking
screen that appears for docker(, you can see that the IP address for the host system
on the dockerO network is 172.17.42.1/16. As containers are started up, they are
assigned addresses on the 172.17.0.0 network. From this screen, you can turn the
dockerO bridge off or delete it (something you probably don’t want to do).

One thing you might want to do to the docker0 interface is change the IP address
on this interface if it conflicts with other IP addresses in use. You can make that
change by selecting the Configure button for the IPv4 address associated with the
docker0 interface on the host.

By selecting the active, physical NIC (enpl1s0), I can see the type of NIC
associated with the interface (Broadcom) and its MAC address. The Status shows
the [P address associated with the interface and how it was set (in this case, via
DHCP). The Carrier line shows that it is a 100Mbps NIC and that it connects to the
network automatically upon boot. As with the docker0O interface, you can change
the IP address for the enp11s0 interface if you want (although in this case, the NIC
is receiving its IP address from a DHCP server).

209

o06

Docker Containers

The network interface on the virbrO bridge is the last network interface to note
in this example. By default, on RHEL systems configured to do KVM virtualization,
the libvirtd service assigns IP addresses to virtual machines on the host. The KVM
host itself is assigned the IP address of 192.168.122.1 and is able to give out up to
253 other addresses on the 192.168.122.0/24 network to virtual machines running
on the host.

The Networking tab provides a way to get a detailed view of the setup and
activities of all the network interfaces on the selected system. In real time, you can
watch the total network activity of the selected system, or just view the network traf-
fic of a selected network interface. You can also do some level of configuration of
your network interfaces in Cockpit, such as

E% Think carefully before using any of the following features to make changes

to your network interfaces. A mistake could make your system inaccessible
from the network.

= Add Bond: Selecting the Add Bond button allows you to bond together
multiple network interfaces under the same IP address. You can choose the
bonding mode, such as Round Robin (where network traffic to the address is
divided across all the bonded NICs), Active Backup (where NICs are ready
to take over if the primary NIC fails), and other bonding modes.

= Add Bridge: Choosing the Add Bridge button lets you add a bridge to an
existing network interface so that the new bridge can use the existing net-
work interface directly, without having to route to that interface.

= Add VLAN: Selecting the Add VLAN button lets you add a virtual LAN to
your system.

Even though some of the networking features are not directly related to Docker
containers, being able to watch over all the network interfaces on a system can offer
a great way to see where potential bottlenecks are. At a glance, it can also show
you the IP addresses assigned to the selected system’s network interface, which
can help you determine whether there will be conflicts with other IP addresses and
ranges in use on your network.

CHAPTER 14 Managing Containers in the Cloud with Cockpit

CONFIGURING STORAGE FROM COCKPIT

Being able to see the storage configuration on the operating systems running your
containers can help you to head off problems that can occur from running out of
disk space. The Storage tab in Cockpit lets you not only see the file systems created
on your selected server system, but also change those file systems or add new ones.

Figure 14.12 shows an example of the file systems and other storage informa-
tion for a simple virtual machine server.

o Cockpit - Mozilla Firefox =
File Edit View History Bookmarks Tools Help

Cockpit x | &

& example.com:9090/#/@loc ices| v 3| |Q search + H & B | =

FEDORA

[lanet express , Da Cluster
System
Reading 0Brs writing 08fs Create RAID Device
Services
Containers Create Volume Group
Journal
Networking Volume Groups
1 fedora-server 19.5GB
> Tools
Filesystems
Drives
Name Mount Point Size
VirtiO Disk
Idevifedora-server/root [| 3.6/17.5GB 20 GB Hard Disk
ROB/s W:0B/s
rdevivdal fboot [] 119874762 MB

QEMU DVD-ROM (QM00001)
Optical Drive
ROB/S W:0B/s

udisksd: Acquired the name org.freedesktop.UDIsks2 on the system message bus 08:11

udisksd: Error probing device: Error sending ATA command IDENTIFY PACKET DEVICE to /dev/sr: ATA
command falled: error=0x20 count=0x01 status=0x50 (g-io-error-quark, 0) 08:11

udisksd: udisks daemon version 2,1.4 starting 08:11

smartd: Monitoring 0 ATA and 0 SCS| devices 08:00

FIGURE 14.12 Display and change file systems on the selected server in Cockpit.

In Figure 14.12, under Drives you can see that there is a 20GB VirtlO Disk pro-
viding storage for the system. Most of that drive (19.5GB) is assigned to the fedora-
server LVM volume group. Under the Filesystems heading, the root file system is
configured to use 17.5GB of space from the logical volume /dev/fedora-server/
root. The /boot file system is on a separate partition (/dev/vda1), consuming the
remaining 500MB of disk space not in the fedora-server volume group.

If you attach an additional hard disk to the system you are viewing (either phys-
ically or by attaching network storage, such as iSCSI), that drive appears under the
Drives heading. You can select that disk and then choose to format it, create file
systems on it, and mount it.

207

o08

Docker Containers

Using buttons on the Storage tab, you can use existing disk space to create
special types of storage. Select the Create RAID Device button to join together two
or more disk partitions to form any of several different types of RAID device. Select
the Create Volume Group button to create LVM physical volumes, volume groups,
and logical volumes out of existing disk partitions.

DoOING OTHER ADMINISTRATIVE TASKS IN COCKPIT

Several other tasks can be done in Cockpit from selections under the Tools head-
ing. If you want to grant Server Administrator privilege to a user with a login to the
selected system, you can do that from the Administrator Accounts selection. Under
Tools, you can also open a Terminal window to the selected system or (in the case
of Red Hat Enterprise Linux) view subscription information about the system or
register the system with Red Hat.

Managing Administrator Accounts in Cockpit

Any user with an account on the system running Cockpit can be given Server
Administrator privilege to change settings on Cockpit server systems. Without that
privilege, a user with an account can log in to Cockpit and view settings but can’t
change them.

To add Server Administrator privilege for a selected user, do the following:

1. Select Administrator Accounts: From Cockpit, select Tools from the left
column and then select Administrator Accounts. A set of boxes representing
users on the system appears, along with a Create New Account button.

2. Select User: Select the box identifying the user you want to give Server
Administrator privilege to. If the user does not exist yet, you can select
Create New Account to create a new user account for the system.

3. Change Roles: Select the Change Roles button. From the pop-up window
that appears, select the Server Administrator box and click Change to assign
the new privilege to that user.

Once the privilege has been assigned, the user can log in to Cockpit and begin
working with available Server systems from the Cockpit interface. If the user does
not have a password yet, you can set the password for any existing user from the
Accounts screen for that user.

CHAPTER 14 Managing Containers in the Cloud with Cockpit

Open a Terminal in Cockpit

Not everything that you might want to do to manage containers and other system
resources is available through Cockpit. You may find that you want to build a con-
tainer from a Dockerfile or use options with the docker command that are not avail-
able through the Cockpit user interface. In those cases, Cockpit makes it easy for
you to open a Terminal window to a selected server.

To open a Terminal window to any of the servers you have added to your Cock-
pit interface, start by selecting the server you want to access. To do that, select
the Machines list from the upper-left corner of the Cockpit window and choose the
system you want. Next select Tools and Terminal.

Using the credentials assigned to that server, Cockpit opens a Terminal win-
dow on the Cockpit screen and logs you in to that system. Figure 14.13 shows an
example of a Terminal window open to a Fedora Atomic system after running a few
commands:

Cockpit x |\ &

€ fedora22.example.com:9090/#/@192.168.122.28

m v C Search B U 3 A4 & =

FEDORA

IEI fedora-atomic

System
Terminal Reset

Services
Containers
Journal
Networking

Storage
+ Tools

Administrator Accounts

Terminal >

FIGURE 14.13 Run commands directly on a server from a Cockpit Terminal.

In the example shown in Figure 14.13, I displayed the os-release file to see
what release the system is running. To check the name of the system, I ran the
hostname command. After that, I wanted to change some settings for the Docker
daemon, so I edited the /etc/sysconfig/docker file to modify how the Docker ser-
vice on my system uses registries.

209

ell

Docker Containers

SUMMARY

As you create more and more systems for running containers, you might find those
systems spanning multiple physical computers and cloud environments. Managing
each of those systems can become tedious without a centralized way of managing
them. Cockpit provides a new way of managing multiple container-oriented operat-
ing systems from a single web browser user interface.

Although still in early development phases, you can now use Cockpit to manage
containers and images, as well as the underlying storage and networking interfaces
associated with them. At the moment, Cockpit lets you manage systems based on
Fedora, Red Hat Enterprise Linux, and Project Atomic Hosts.

This chapter stepped you through many of the uses of Cockpit for managing
container-oriented operating systems and the containers that run on them. More
advanced uses of Cockpit for orchestrating containers with Kubernetes are still in
development. To learn more about those features, see Chapter 15, “Orchestrating
Containers with Kubernetes,” and Chaper 16, “Creating a Kubernetes Cluster,”
which describe how to create an all-in-one-Kubernetes system and a cluster,
respectively.

So far, this book has focused on creating and using individual Docker contain-
ers. The next part of this book leads you into the practice of managing multiple
related containers using Kubernetes and other orchestration.

Docker Containers

Part [V

Managing Multiple

Containers

ell

This page intentionally left blank

CHAPTER 15

Orchestrafing Confainers with
Hubernetes

IN THIS CHAPTER:
= Understand Kubernetes
= Set up Kubernetes master and node on one system

= Start and manage pods in Kubernetes

Big Internet companies such as Google, Twitter, and eBay have been deploying
applications in containers for years. While the Docker container format provides
an elegant solution for building applications as microservices, it does not include
everything required to deploy and manage many containers that need to work
together and scale up as demand rises.

As each of these companies started creating its own tools for developing,
deploying, managing, and scaling containerized applications, they realized that
the job was too big for even the largest companies to take on alone. With some
people building their own proprietary container management tools and different
open source projects starting up to solve problems in different ways, the fledgling
container movement was under a serious threat of becoming fragmented.

Enter Google and the Kubernetes project. Google released Kubernetes as an
open source project with an aim at standardizing how containerized applications
are managed. Kubernetes would act as an overlay on top of a company’s data center,
and open source projects could work on solving other aspects of container manage-
ment (such as creating streamlined operating systems or graphical administration
tools).

cll

cl4

Docker Containers

In July 2015, Kubernetes reached the 1.0 milestone, indicating that the project
was ready to be used in production. With Kubernetes 1.0, Google also formed the
Cloud Native Computing Foundation (CNCF). Created as a collaborative project in
association with the Linux Foundation (http://collabprojects.linuxfoundation.org),
CNCF has gotten off to a strong start. Companies joining the CNCF include Red
Hat, eBay, AT&T, Cisco, IBM, Intel, Twitter, Mesosphere, VMware, and others.

The goal of this chapter is to take you through the features of Kubernetes and
describe how it can enhance the entire experience of deploying Docker formatted
containers in the data center. Becoming involved with the Kubernetes project gives
you the opportunity to use the same tools that the largest, most successful compa-
nies deploying containers use today.

UNDERSTANDING KUBERNETES

Creating a single container to run for your own personal use doesn’t require many
resources or much planning. You can just start up the Docker service and run a
few docker commands to get going. Creating containers that you need to rely on to
provide your most critical applications in a secure, reliable, upgradable, and scal-
able way, brings a new set of challenges. For example, how do you do the following;:

= Deploy an application that includes multiple services (such as a web server,
database server, and authentication server) that you want to keep in separate
containers but still interact with each other.

= Keep track of the services a container provides so another container knows
where to find the services it needs (such as a web server that wants to know
where the database is that provides the data it needs).

= Configure your system to bring up additional containers if a container
crashes or if demand exceeds the capacity of existing containers.

= Centrally manage containers that run across a set of host systems.

= Move containers to other host systems so you can bring down a host for
maintenance.

Kubernetes (https://github.com/GoogleCloudPlatform/kubernetes) in many
ways presents a new way of thinking about creating and managing applications
from development to production. Here are some ways in which Kubernetes could
not only change the way in which you manage containers, but also change the whole
way you look at data centers:

http://collabprojects.linuxfoundation.org
https://github.com/GoogleCloudPlatform/kubernetes

CHAPTER 15 Orchestrating Containers with Kubernetes

= Operating in Devops model: Kubernetes seeks to be part of a larger
Devops movement, where closer communications between application
developers and IT staff can make continuous deployment possible, without
causing major disruptions in the data center. In the Devops model, software
developers take greater responsibility for putting together all the software
an application needs, rather than relying on system administrators to install
compatible components on the host system.

= Creating common sets of services: Today, applications often ask for a
service from another application by pointing to an IP address and port num-
ber. With Kubernetes, you can define containerized applications that provide
services that are available for other containers to use. Kubernetes handles
the details of making the connections between the container providing the
service and the one asking for it. Groups of services can be defined by sets of
labels.

= Making host computers more generic: Instead of configuring operat-
ing systems differently for the applications it runs, host computers would be
more generic. So each organization within a company wouldn’t have its own
set of computers to deploy and maintain. Instead, an organization’s services
would run on the same pool of physical machines that everyone else in the
company is using but be kept separate from the services of other organiza-
tions by using a different set of labels.

= Stabilizing the data center: Kubernetes aims to create consistent appli-
cation programming interfaces (APIs) that result in stable environments for
running containerized applications. Developers should be able to create
applications that work on any cloud provider that supports those APIs. This
reliable framework means that developers can identify the version of Kuber-
netes along with the services they need and not have to worry about the par-
ticular configuration of the data center.

Granted, much of the development that needs to be done to make these inten-
tions real is still in its early stages. | want to lay out the goals here, however, so
you can see the aims of Kubernetes and how those aims are intended to fit into the
future of container-driven data centers. That said, I also want to show you what you
can do with Kubernetes today.

The next sections describe features in Kubernetes that you can be using
right now.

HE)

Al

Docker Containers

STARTING WITH KUBERNETES

While Docker manages entities referred to as images and containers, Kuber-
netes wraps those entities in what it refers to as pods. A pod can hold one or more
containers and is the unit that Kubernetes manages. There are several advantages
that Kubernetes brings to managing containers as pods over managing containers
directly with Docker:

= Multiple nodes: Instead of just deploying a container on a single computer,
Kubernetes can deploy a set of pods across multiple nodes. Essentially, a
node (previously referred to as a minion) provides the environment where a
container runs.

= Replication: Kubernetes can act as a replication controller for a pod. This
means that you can set how many of a specific pod should be running at all
times. Kubernetes starts more if more are needed to meet the replication
number you defined.

= Services: The word “service” is used in many different computing contexts.
In regards to Kubernetes, it means that you can assign a service name (ID)
to a particular IP address and port, and then assign a pod to provide that
service. Kubernetes keeps track of the location of that service internally, so
Kubernetes knows how to direct any requests from another pod for that ser-
vice to the correct address and port.

If you choose to set up Kubernetes yourself, as described in the next two chap-
ters, you should understand the following concepts before you get started:

= Kubernetes master: A Kubernetes master acts as a controller from which
you deploy and manage pods, replication controllers, services, nodes, and
other components of a Kubernetes environment. To create a Kubernetes
master, you need to set up and run systemd services that include eted,
kube-api-server, kube-controller-manager, and kube-scheduler. Commands
for starting these services are described later in this chapter.

= Kubernetes nodes: A Kubernetes node (previously called a minion) pro-
vides the environment where containers actually run. To run as a Kubernetes
node, a computer must be set up to run systemd services that include docker,
kube-proxy, and kubelet services. These services, described later in this
chapter, are required to run on each node in the Kubernetes cluster.

B kubectl command: Most Kubernetes administration is done on the master
using the kubect1 command. With kubect1, you can create, get, describe, or

CHAPTER 15 Orchestrating Containers with Kubernetes

delete any of the resources that Kubernetes manages (pods, replication con-
trollers, services, and so on).

= Resource files (YAML or JSON): When you create a pod, replication
controller, service, or other resource in Kubernetes, the kubect1 command
expects the information needed to create that resource to be in one of two
types of structures: YAML or JSON formats. Examples of resource files in
these formats are provided later in this chapter.

The best way to see how Kubernetes works is to configure one or more systems
to run Kubernetes. For demonstration purposes, I create two different Kubernetes
configurations (one in this chapter and one in the next):

= Kubernetes all-in-one: A simple all-in-one Kubernetes system has both
master and node features running on the same host. This configuration
lets you try out Kubernetes to see how it works but is not appropriate in
production.

= Kubernetes cluster: A Kubernetes cluster has a master and should have
at least two nodes, each running on separate systems. This is a configura-
tion you could build on for production use by adding nodes as you need to
increase capacity.

There are several different ways to get Kubernetes software to try out. Most
importantly, you want to start with a Linux system that is following the ongoing
development of Kubernetes. You can then deploy Kubernetes in any of these ways:

= (Creating virtual machines on which to install Kubernetes

Installing Kubernetes directly to hardware

Using a virtual machine deployment tool, such as Vagrant (which could run a
Linux virtual machine on Linux, MacOS, or Windows)

Trying Kubernetes from a cloud provider

Refer to the “Creating a Kubernetes Cluster” page (https:/github.com/
GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/getting-started-
guides/README.md) for different ways of deploying and using a
Kubernetes cluster.

https://github.com/GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/getting-startedguides/README.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/getting-startedguides/README.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/getting-startedguides/README.md

cld

Docker Containers

For both examples of setting up Kubernetes in this book, I use Fedora 22 as
the operating system. | installed Fedora 22 on virtual machines, but you can install
it on bare metal if you prefer. In this chapter, I describe how to set up an all-in-
one Kubernetes configuration, where all master and node features are on the same
system.

SETTING UP AN ALL-IN-ONE KUBERNETES
CONFIGURATION

To try out a Kubernetes configuration where Kubernetes master and node features
are all available on a single system, I'm going to have you install Fedora 22. You
can do this in a virtual machine or on bare metal. Here’s what you do:

1. Get Fedora: Download and install a copy of the latest version of Fedora.
The Fedora distribution is available from https://getfedora.org/. Media for
either a workstation or server installation should work fine. I used a Fedora
22 workstation medium and installed from that medium.

2. Install Fedora: Install a single Fedora system. Kubernetes does not require
that you have a desktop interface installed. It is fine to work from the com-
mand line. However, I did a basic server plus desktop install so I have the
convenience of working from the desktop.

3. Update Fedora: To make sure you have the latest software, run the follow-
ing command as root user:

yum update

4. Reboot: Once the updates are complete, reboot the Fedora system.
systemctl reboot

After the Fedora system comes back up, you are ready to start installing
Kubernetes.

Installing and Starting Up Kubernetes

The kubernetes packages and related software are available from the basic Fedora
repository without requiring any special configuration. However, to get the latest
version of Kubernetes available, I recommend that you enable the update-testing
repository. Here’s how to enable that repository to install kubernetes and then begin
configuring it.

https://getfedora.org/

CHAPTER 15 Orchestrating Containers with Kubernetes ‘ 219

While using the update-testing repository gets the latest available Kuber-
netes software, this software may also be unstable. If you find that to be the
case, uninstall kubernetes and reinstall without the --enablerepo=updates-
testing option.

1. Enable repo and install Kubernetes: On the Fedora system, install
Kubernetes from the update-testing repository:

yum install -y --enablerepo=updates-testing kubernetes etcd

When [tested this, the resulting packages installed included kubernetes,
kubernetes-master, kubernetes-node, kubernetes-client, etcd, and several
other packages. The version of the kubernetes packages was 1.1.0.

2. Turn off firewalld: You need to have iptables installed for Kubernetes to
work (yum install iptables if it is not there). However, since Kubernetes
relies heavily on firewall rules for communicating between its components,
I recommend that you turn off any competing firewall managers. Run these
commands to make sure firewall features are inactive and disabled (if the
iptables service is enabled on your system, disable that as well):

systemctl stop firewalld
systemctl disable firewalld

3. Configuring master and node services: Normally, you configure Kuber-
netes on the master and nodes in a way that tells them how to communicate
together. Those configuration files are /etc/etcd/etcd.cont and files in the
/etc/kubernetes directory. However, because most master and node services
are set up by default to look for each other on the local host, that information
doesn’t need to be added to this all-in-one system.

There is one change I suggest you make, however, to simplify launching a
single pOd. That is to edit the /etc/kubernetes/apiserver file and remove
“ServiceAccount,” from the KUBE_ADMISSION_CONTROL line. This
allows you to bypass the ServiceAccount feature for a simple pod deploy-
ment. The next two lines show the original line (commented out) and the cur-
rent line with ServiceAccount missing:

#KUBE_ADMISSION_ CONTROL="--admission-control=NamespaceLifecycle,
NamespaceExists, LimitRanger, SecurityContextDeny, ServiceAccount,
ResourceQuota"

KUBE_ADMISSION_ CONTROL="--admission-control=NamespaceLifecycle,

NamespaceExists, LimitRanger, SecurityContextDeny, ResourceQuota"

22l Docker Containers

4.

Starting master services: To start up the services needed on a Kubernetes
master and check that they are running, run the following commands:

MSERVICES="etcd kube-apiserver kube-controller-manager
wkube-scheduler"

systemctl restart $MSERVICES

systemctl enable $MSERVICES

systemctl is-active $MSERVICES

active active active active

systemctl is-enabled $MSERVICES

enabled enabled enabled enabled

Starting node services: To start up the services needed on a Kubernetes
node and check that they are running, run the following commands:

NSERVICES="kube-proxy kubelet docker"

systemctl restart $NSERVICES

systemctl enable $NSERVICES

systemctl is-active $NSERVICES

active active active

systemctl is-enabled $NSERVICES

enabled enabled enabled

Check Kubernetes: Run these commands to make sure your all-in-one
Kubernetes system is ready to act as a node and begin running pods.
kubectl describe node 127.0.0.1

Name : 127.0.0.1
Labels: kubernetes.io/hostname=127.0.0.1
CreationTimestamp: Sun, 23 Aug 2015 12:05:23 -0400

kubectl get node
NAME LABELS STATUS AGE
127.0.0.1 kubernetes.io/hostname=127.0.0.1 Ready 9m

With the master and node services running locally, you can now try out your

Kubernetes configuration by starting up a pod.

Starting Up a Pod in Kubernetes

To illustrate how to make a pod in Kubernetes, I create a simple yaml file. The

attributes of that file are as follows:

The yaml file is a pod type, as indicated by the kind label.

When you create the pod (kubectl create command), it starts up one
instance of a web server and one instance of a database server. Because | am
only running one instance of the pod, a Kubernetes ReplicationController is
not needed to start up multiple instances of the pod.

CHAPTER 15 Orchestrating Containers with Kubernetes tel

= Since only one node is defined (the local system), the containers start and
run on the local system.

= There is no Kubernetes service defined for either the web server or data-
base server. So, to make the services running from the pod accessible, the
web server exposes TCP port 80 on the local host, while the database server
exposes port 3306 on the local host.

m [f either container is killed, Kubernetes starts another instance of that con-
tainer to take its place.

Follow these steps to define the pod and create it on your Kubernetes all-in-one
system:

1. Define pod yaml file: The yaml file I create to define the pod is named
web-db. json. If you copy this file to use this pod definition, be sure to main-
tain the indents. Also, as long as you have a connection to the Internet, you
don’t have to do anything special to get the containers it includes. The two
container images are pulled from the Docker Hub when you create the pod.
Here are the contents of the file:

apiversion: vl

kind: Pod
metadata:
name: web-db-pod
labels:
app: web-db-pod
spec:
containers:
- name: mywebdock
image: "cricket/webdock"
ports:

- containerPort: 80
hostPort: 80
- name: mydbdock
image: "cricket/dbdock"
ports:
- containerPort: 3306
hostPort: 3306

The apiVersion must match the version of Kubernetes you are using (v1 in
this case). The “kind” of Kubernetes file is a Pod. The pod itself is named
web-db-pod.

Two container images are used here: the mywebdock (from the image named
cricket/webdoc) and another named mydbdock (from the image named
cricket/dbdock). The mywebdock container exposes its service from TCP port
80 to the same port on the host system. The nydbdock container exposes

TCP port 3306, also to the same port on the host system.

gee Docker Containers

2. Create pod: With the content just described stored in a file named web-db.
json in the current directory on your all-in-one Kubernetes system, start up
the pod by typing the following:

kubectl create -f web-db.json
pod "web-db-pod" created

3. Check that the pod is running: Using the kubect1 command, you can
check the status of the pod. In this case, there are two containers in the pod
and both are running:

kubectl get pod
NAME READY STATUS RESTARTS AGE
web-db-pod 2/2 Running 0 4m

4. Check that the containers are running: Use the docker ps command to
verify that the containers are running:
docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
eb79b0b640b8 cricket/dbdock "/usr/bin/mysgld saf 2 minutes ago
Up 2 minutes k8s_mydbdock.8c4ff0af web-db-pod default...
675532380c4d cricket/webdock "/usr/sbin/httpd -D 2 minutes ago
Up 2 minutes k8s_mywebdock.65b9f0d7_web-db-pod _default...
b6£d829685d4 gcr.io/goog... "/pause" 2 minutes ago

Up 2 minutes 0.0.0.0:80->80/tcp, 0.0.0.0:3306->3306/tcp
k8s POD.e80f0b79 web-db-pod default...

From the docker ps output, you can see that the dbdock container image
started up the mysqld saf command and that it has been running for 2
minutes. Likewise, the webdock image is running the httpd command.
Kubernetes started up its own container, which, as you can see, maps TPC
ports 80 and 3306 to those same ports on the local system.

5. Check that the application is working: With the two ports exposed on
the local system, you can use the curl command to query the web server
container on port 80. The default web page for the web server (index.html)
contains a “Web server check is successful” message. A script on the web
server called action in the cgi-bin directory returns “Docker is cool” and
“DB is working” messages if the web server is able to communicate with the
database. Here are examples of those commands:

curl localhost:80
Web server check is successful
curl http://localhost:80/cgi-bin/action

<html>
<head>
<title>My Application</titles

CHAPTER 15 Orchestrating Containers with Kubernetes 223

</head>

<body>

<h2>Docker is cool</h2>
<h2>DB is working</h2>
</body>

</html>

To make the output look nicer, you can type the URLs into the location box
on your web browser.

Working with Kubernetes

With one pod (consisting of two containers) running on your all-in-one Kubernetes
master and node, you can get a feel for how Kubernetes works and how you can
expand beyond this simple example.

One thing to keep in mind is that creating a Kubernetes pod means that you
want the containers in that pod to persist. So, if a container from the pod is killed, a
new one starts up to replace it. Here is an example:

docker ps | grep dbdock

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
eb79b0b640b8 cricket/dbdock "/usr/bin/mysqld saf 20 minutes ago
Up 20 minutes k8s_mydbdock.8c4ff0af web-db-pod default...
docker kill eb79b0b640b8
34eal2dl47de
docker ps | grep dbdock
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

al268d5d4603 cricket/dbdock "/usr/bin/mysgld saf 2 seconds ago
Up Less than a second k8s_mydbdock.8c4ffO0af web-db-pod default ...

Within a few seconds of killing the container, a new container is launched auto-
matically by Kubernetes to replace the dbdock container that was killed. Notice that
the container has a new container ID.

If something was wrong with the container and it did not come back up again,
you could delete the pod and try to fix the container (or the image launching the
container) before creating the pod again. For example:

kubectl delete pod web-db-pod

pod "web-db-pod" deleted

kubectl get pod

NAME READY STATUS RESTARTS AGE
docker ps

ced

Docker Containers

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
kubectl create -f web-db.json Fix pod and create again
pod "web-db-pod" created

Notice that after the pod is deleted, the pod no longer appears when you type
kubectl get pod. Also, all containers associated with the pod are killed. After you
make any corrections to the pod or its containers, run kubectl create again to rec-
reate the pod.

Deleting the pod is a good idea if one of the containers in that pod refuses to
start up. When I first created my web server container, there was a problem with it
that allowed it to start originally when the pod was created but fail if Kubernetes
tried to restart the container after it was killed. If that is the case, the container
continues to try to restart every 10 seconds. The result is a massive amount of error
message sent to your log facility and a list of many failed containers when you type

docker ps -a.

SUMMARY

This chapter illustrated a simple example of Kubernetes master and node features
running on the same system. After starting up both Kubernetes master and node
services locally, you deployed a pod on the local system that included two con-
tainers. With those two containers running, you could see how the two containers
access each other through ports exposed on the host system.

The primary command for managing Kubernetes features is the xubect1 com-
mand. In this chapter, you saw how to use kubect1 to create pods, check that a pod
is running, and delete pods when you are done. You also saw how when a container
in a pod is killed, Kubernetes tries to restart the container to replace it while the
pod is still active.

This chapter provided an introduction to a few basic features of Kubernetes.
However, to realize the full potential of Kubernetes, you need to scale out beyond
your local system and take advantage of other features I haven’t touched on yet.

Kubernetes was meant to allow you to include hundreds of nodes in a Kuber-
netes cluster. The Kubernetes master was intended to be able to start and manage
many pods of containers across those nodes and keep a defined number of replicas
of those containers running at all times.

In the next chapter, I expand the coverage of Kubernetes in this book to
describe features for deploying pods on multiple nodes, creating multiple replicas
of containers across those nodes, and using Kubernetes services to simplify how
containers find the connections they need to other containers.

Creafing a Hubernefes Cluster

IN THIS CHAPTER:
® Understand how to use a Kubernetes cluster
® Build a Kubernetes cluster with a master and two nodes
= Deploy replication controllers, services, and pods on your cluster

= Delete replication controllers, services, and pods when you are done

To understand the scope of what Kubernetes can do to deploy, manage, and scale
containers, you need to go beyond an all-in-one Kubernetes system (described in
Chapter 15, “Orchestrating Containers with Kubernetes”) and set up a Kubernetes
cluster. A Kubernetes cluster that you can use as the foundation for a larger infra-
structure to manage containers should consist of at least three systems to start with:

= One master: The Kubernetes master deploys and manages pods of contain-
ers, as well as the services, replication controllers, and other resources that
need to be managed in Kubernetes.

= Two or more nodes: Nodes are where the pods are deployed. By setting up
at least two Kubernetes nodes, the master system can load balance the work-
load across those nodes. If one node needs to go down, one of the other nodes
can be assigned to run the pods.

This chapter is devoted to setting up a three-system Kubernetes cluster. Along
the way, I describe in detail the services and features of each of those systems.
Then I show you different ways of using this cluster.

oed

ceb

Docker Containers

UNDERSTANDING ADVANCED KUBERNETES FEATURES

Now that you have deployed a pod on an all-in-one Kubernetes master and node
system, it’s time to start expanding into the more advanced features of Kubernetes.
With a Kubernetes cluster with multiple nodes where containers can run, the fea-
tures of Kubernetes become more useful.

With multiple nodes available for running containers, you can use features of
Kubernetes that weren’t really that useful when you had only one system for both
the master and node. For example:

= Scale up: As demand rises, you can use replication controllers to add more
replicas of each pod. As the nodes reach their capacity, you can add more
nodes and continue to scale up.

= Extend services across nodes: Kubernetes can keep track of where ser-
vices are being provided across all the nodes. When a container requests a
service, Kubernetes can direct that request to the pod providing that service
that is most available on any node.

= Distribute storage: Using distributed storage, containers can run on any node on
which that distributed storage is available.

Because many of the methods of using distributed storage with Kubernetes are
still in the works, this chapter focuses on features for scaling your use of containers
and extending how containers are deployed across multiple nodes.

The next section helps you set up a Kubernetes cluster.

SETTING UP A KUBERNETES CLUSTER

To set up this Kubernetes three-system cluster, I use three virtual machines with
Fedora 22 installed. Either a workstation or server installation works fine. Once
Fedora is installed, you can install the packages and start up the services needed
on each system as described in the following procedure. The following versions of
Kubernetes, Docker, and etcd were used in this procedure:

= kubernetes-master-1.1.0
= kubernetes-node-1.1.0
= kubernetes-client-1.1.0
etcd-2.0.13
docker-1.7.1

CHAPTER 16 Creating a Kubernetes Cluster

Step 1: Install Linux

Follow these steps to install Linux:

1. Imstall Linux: On each of the three virtual machines (or you can use bare
metal systems if you prefer), install Fedora 22. This procedure should
generally work on other Linux distributions as well, but may need some
modifications.

2. Set up NTP: It is important that time be in sync between the three systems.
So, on all three systems, you can enable the network time protocol when you
select the time zone during Fedora installation. That starts up the chronyd
service and syncs with public time servers at pool.ntp.org. No further work
is required unless you want to use your own time servers or use ntpd instead
of chronyd for your time service.

3. Set up DNS: Make sure that all three systems can reach each other by name
and IP address. You can either add each system to a DNS server (which is
preferable) or just add the names and IP addresses of the systems to each
system’s /etc/hosts file. If you were to add each system to /etc/hosts, here
is what the entries in that file might look like:

192.168.122.11 master
192.168.122.87 nodel
192.168.122.170 node2

4. Turn off firewall: Because Kubernetes makes extensive use of iptables
port forwarding rules to help pods communicate, you should turn off any
competing firewall services that may be running on all three of your systems.
In Fedora, the default firewall service is firewalld. Because that service is
enabled by default, you need to disable it and stop the service by typing the
following:

systemctl stop firewalld
sytemctl disable firewalld

Step 2: Set Up Kubernetes Master

Log in to the Kubernetes master system (root user or a user with sudo privileges)
to install the packages and set up the systemd services needed by the Kubernetes
master. In this process you enable and start the following services:

= Kubernetes master data store (etcd) service: The etcd systemd service
stores the configuration data for your Kubernetes cluster. By default, etca
data are stored in the /var/1ib/etcd directory. The etcd service includes

oo/

2 Docker Containers

watch support, which allows any changes in Kubernetes components to be
noticed quickly and responded to.

= Kubernetes scheduler (kube-scheduler) service: When a pod has not
yet been scheduled for deployment, the kube-scheduler service binds any
unscheduled pods to available nodes.

= Kubernetes API server (kube-apiserver) service: Nodes don’t com-
municate directly with the etcd database but instead make requests to the
Kubernetes API server service. The kube-apiserver validates and processes
REST operations before updating those objects in the eted object store.

= Kubernetes controller manager (kube-controller-manager) service:
Features not included in other services in the Kubernetes cluster are man-
aged by the Kubernetes Controller Manager service. These features include
managing node discovery and monitoring, as well as creating and updating
endpoint controllers.

The following steps describe how to install the Fedora software packages
needed on the Kubernetes master, configure the needed services, and then start up
those services.

1. Install Kubernetes master packages: To install the kubernetes-master
and eted packages on the Kubernetes master, type the following:

yum install -y kubernetes-master etcd

2. Configure the eted service: To configure the eted service, edit the /etc/
etcd/etcd. conf file so that it appears as follows (all other lines can be com-
mented out):

ETCD_NAME:default

ETCD_DATA DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN CLIENT URLS="http: //0.0.0.0:2379"
ETCD LISTEN PEER URLS="http://localhost:2380"
ETCD ADVERTISE CLIENT URLS="http://0.0.0.0:2379"

3. Configure the kube-apiserver service: To configure the kube-apiserver
service, edit the /etc/kubernetes/apiserver file. Changes to this file
include
= KUBE_API_ADDRESS: Change this line to listen on all addresses

(0.0.0.0) instead of just on localhost.
s KUBE_ETCD_SERVERS: Set this value to the location of the master
server (by name or [P address) followed by the port number 2379.

CHAPTER 16 Creating a Kubernetes Cluster 229

= KUBE_SERVICE_ADDRESSES: Set the range of addresses to be used
internally by Kubernetes. In this case, I use 10.254.0.0/16 to allow Kuber-
netes to use addresses in the 10.254 network.

s KUBE_ADMISSION CONTROL: Edit this line to remove the Service-
Account value and the following comma. Removing this value makes it so
you don’t have to configure Kubernetes users before launching a pod.

Replace the IP address shown for KUBE_ETCD_SERVERS for the
hostname or IP address for your Kubernetes master server. Otherwise, you
can use the following lines in your /etc/kubernetes/apiserver file (notice
that the last line wraps):

KUBE _API_ ADDRESS="--address=0.0.0.0"

KUBE ETCD SERVERS="--etcd servers=http://192.168.122.11:2379"

KUBE SERVICE ADDRESSES="--portal net=10.254.0.0/16"

KUBE_ADMISSION CONTROL="--admission-control=NamespaceLifecycle, Names
paceExists,LimitRanger, SecurityContextDeny, ResourceQuota"

4. Configure other Kubernetes services: Edit /etc/kubernetes/config
to change settings that relate to different Kubernetes services. Only the
KUBE_MASTER line needs to change to point to the hostname or IP address
of the Kubernetes master (followed by port 8080). You can leave the other
settings as they are. The resulting uncommented lines should appear as

follows:
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=0"
KUBE_ALLOW_PRIV="--allow-privileged=false"
KUBE MASTER="--master=http://master:8080"

5. Start master services: On the Kubernetes master, start and enable the
etcd, kube-apiserver, kube-controller-manager, and kube-scheduler services.
Here’s one way to do that:

MSERVICES="etcd kube-controller-manager kube-scheduler kube-
apiserver"

systemctl restart $MSERVICES

systemctl enable $MSERVICES

systemctl is-enables $MSERVICES

enabled enabled enabled enabled

systemctl is-active $MSERVICES

active active active active

The Kubernetes master is now ready. Next you want to configure your two (or
more) nodes.

230 Docker Containers

Step 3: Set Up Kubernetes Nodes

With the services configured and running on the Kubernetes master, you can now
configure the Kubernetes nodes. Log in to each of the Kubernetes nodes (root user
or one with sudo privileges) to install and configure the software needed to run each
Kubernetes node. In this process you enable and start the following services:

= Kubelet (kubelet) service: The kubelet service manages different aspects
of pods on each node and communicates with the API server on the master.

= Kube Proxy (kube-proxy) service: The kube-proxy service manages the
load balancing and network proxy features needed by Kubernetes. It does
this by controlling service endpoints. Environment variables stored inside
the container are used to identify these endpoints. For example, *_
SERVICE_HOST and *_SERVICE_PORT variables, with the asterisk
replaced by some service name, can identify the IP address and port number
that the container can use to find a service.

= Docker (docker) service: Although not part of Kubernetes itself, the
docker service must be running on each of the nodes as well, so that it can
ultimately manage the containers directed to each node.

On each node, follow these steps to add the software needed on the node, con-
figure that software, and start up the required services:

1. Install Kubernetes node packages: To install the kubernetes-node and
docker packages on the Kubernetes nodes, type the following on each node:

yum install -y kubernetes-node docker

2. Configure the Kubernetes proxy service: No configuration is required
for the kube-proxy service. However, if you did want to configure that ser-
vice, you could edit the /etc/kubernetes/proxy file.

3. Configure the Kubelet service: To configure the kubelet service, edit the

/etc/kubernetes/kubelet file. Changes to this file include

= KUBELET_ADDRESS: Change this line to listen on all addresses
(0.0.0.0) instead of just on localhost.

= KUBELET_API_SERVER: On this line, identify the location of the
API server on the master.

= KUBELET_ARGS: Edit this line to add the argument “--register-
node=true” to cause the system to register itself as a node with the master.

Replace the IP address shown for KUBE_API_SERVER for the hostname

or IP address for your Kubernetes master server. Otherwise, you can use the

following lines in your /etc/kubernetes/kubelet file:

CHAPTER 16 Creating a Kubernetes Cluster

KUBELET_ADDRESS="--address=0.0.0.0"
KUBELET API SERVER="--api-servers=http://192.168.122.11:8080"
KUBELET ARGS="--register-node=true"

4. Configure other Kubernetes services: Edit /etc/kubernetes/config
to change settings that relate to different Kubernetes services. Only the
KUBE_MASTER line needs to change to point to the hostname or IP address
of the Kubernetes master (followed by port 8080). You can leave the other
settings as they are. The resulting uncommented lines should appear as

follows:
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=0"
KUBE_ALLOW_PRIV="--allow-privileged=false"
KUBE_MASTER="--master=http://master:8080"

5. Start node services: On each Kubernetes node, start and enable the kube-
proxy, kubelet, and docker services. Here’s one way to do that:

NSERVICES="kube-proxy kubelet docker"
systemctl restart $NSERVICES

systemctl enable $NSERVICES

systemctl is-enables $NSERVICES
enabled enabled enabled enabled

systemctl is-active $NSERVICES

active active active active

The Kubernetes cluster should now be operational. Next you can set up net-
working with Flannel.

Step 4: Set Up Networking with Flannel

Flannel is a feature you can add to your Kubernetes cluster to set the IP address
ranges used internally within Kubernetes. For this example, I set the address range
10.20.0.0/16. This range allows the Kubernetes cluster to have a few hundred nodes
each running a few hundred containers without running out of IP addresses.

The steps in this section install flannel package on the master and both nodes,
upload the Flannel network configuration to etcd, configure the f1anneld service,
and then start and enable the £1anne1d service.

1. Install the flannel package: On the master and both nodes, install the
flannel package as follows:

yum install flannel

2. Configure flannel: On the master, open a file for editing and call it some-
thing like kube-flannel.config. To allow Flannel to use the 10.20.0.0/16
address range, the contents of that file should be the following:

23e Docker Containers

"Network": "10.20.0.0/16",
"SubnetLen": 24,
"Backend": {
"Type": "vxlan",
"VNI": 1
1
}

3. Add Flannel configuration to eted: On the master, to load the xube-
flannel.config file to the eted service, type the following:

etcdctl set coreos.com/network/config < kube-flannel.config

4. Set options to the flanneld service: On the master and both nodes, edit
the /etc/sysconfig/flanneld file to identify the location of the eted service,
so the flanneld service can get its configuration information to start up. In
that file, change the FLANNEL_ETCD line to identify the hostname or IP
address of the eted service and the port to connect to (2379). For example:

FLANNEL_ETCD="http://master:2379"
FLANNEL_ETCD_KEY="/coreos.com/network"

5. Start and enable flanneld: On the master and both nodes, start the flan-
neld service, enable it, and check that it is working as follows:

systemctl restart flanneld

systemctl enable flanneld

systemctl is-active flanneld
systemctl is-enabled flanneld

6. Check flannel interfaces: If everything works properly configuring flannel,
you should be able to log in to the master and both nodes and see a flannel.1
interface. On the nodes, you should also see a docker0 interface in the same
address range assigned earlier to flannel. Here’s an example of what the new
network interfaces look like on node2:

ip a | less
3: flannel.l1@NONE: <BROADCAST,MULTICAST,UP,LOWER UP>
mtu 1450 gdisc noqueue state UNKNOWN group default
link/ether 02:78:75:5d:71:e3 brd ff:ff:ff:ff:£f£:ff
inet 10.20.8.0/16 scope global flannel.l
valid_ 1ft forever preferred lft forever
inet6 fe80::78:75ff:fe5d:71e3/64 scope link
valid 1ft forever preferred 1ft forever
4: docker0@NONE: <BROADCAST,MULTICAST,UP,LOWER UP>
mtu 1500 gdisc noqueue state UNKNOWN group default
link/ether 9e:3a:23:25:68:47 brd ff:ff:ff:.ff:£ff:ff
inet 10.20.8.1/24 scope global docker0

CHAPTER 16 Creating a Kubernetes Cluster

You can see that the address range assigned earlier is used for both the flan-
nel.1 and dockerO interfaces. If you don't see the new address range being used by
docker0, you may have to restart the docker service or reboot. With everything in
place now, it is time to start using your Kubernetes cluster to manage containers.

STARTING UP PoDS IN A KUBERNETES CLUSTER

In Chapter 15, I started up two containers in a single pod. While it’s possible to do
that, in an enterprise environment, where you expect demand for your applications
to rise and fall, you want to have more flexibility in how you deploy your containers.

In this chapter, I deploy the same two containers. Instead of putting them in a
single pod, however, I have them in separate pods, defined in what are referred to
as replication controllers.

With replication controllers, I can not only define which pod I want to start
up, but I can also say how many of those pods I want to stay up all the time. When
I create the replication controller, Kubernetes tries to load balance those pods so
they can be deployed across the available nodes. If a container dies or is killed,
Kubernetes notices and starts another one to take its place.

The following procedure describes how to create one replication controller for a
database service and one for a web service. Those replication controllers define that
a set number of instances of each pod they contain be running at all times. For each
of those pods, I also define a service that allows other pods to access that service
based on a label. It is up to Kubernetes to keep track of the actual IP addresses and
port numbers that fulfill each service.

1. Create a database controller Kubernetes service: On the master, to
create a Kubernetes service representing a database container, I create a file
called database-service.yaml with the following contents:
apiVersion: vl
kind: Service
metadata:

name: database-service

spec:

ports:

- port: 3306
targetPort: 3306
protocol: TCP

selector:
app: db

233

234 Docker Containers

2. Create a web server Kubernetes service: On the master, to identify the
web server pod as a Kubernetes service, I create a web-service.yan file,
which includes the following content:
apiversion: vl
kind: Service
metadata:

labels:

name: web
name: webserver-service
namespace: default

spec:

ports:
- port: 80
publicIPs:
- 192.168.122.170
selector:

name: web

3. Create a database server replication controller: On the master, to set
the number of database server pods to launch, I create a datapbase-rc.yaml
file. This replication controller definition sets two replicas of the pod to be
running at all times. The pod starts the container image cricket/dbdock,
which it can pull from the Docker Hub, if it is not already available on the
node when Kubernetes sets it to run. Here’s what the file contains:
apiVersion: vl
kind: ReplicationController
metadata:

labels:
name: database-controller

name: database-controller
namespace: default

spec:
replicas: 2
selector:
selectorname: db
template:
metadata:
labels:
name: db
selectorname: db
spec:
containers:
- image: cricket/dbdock
name: db
ports:

- containerPort: 3306

4.

o

CHAPTER 16 Creating a Kubernetes Cluster 235

Create a web server replications controller: On the master, to set the
number of web server pods to run, I create the file named web-rc.yam1. This
replication controller definition sets two replicas of a pod named web to be
created. That pod launches container images named cricket/webdock, which
can be pulled from the Docker Hub if it’s not already available on the node.
One thing to note here is that the web pod “uses” definition indicates that it
needs to access the db service. Here’s what the file contains:
apiversion: vl
kind: ReplicationController
metadata:
labels:
name: web-controller
name: web-controller
namespace: default
spec:
replicas: 2
selector:
selectorname: web
template:
metadata:
labels:
name: web
selectorname: web
uses: db
spec:
containers:
- image: cricket/webdock
name: mywebserver
ports:
- containerPort: 80

Check that the nodes are ready: On the master, before creating the ser-
vices and replication controllers, check that the nodes are available to start
running the pods you define. To do that, run the following:

kubectl get node

NAME LABELS STATUS AGE
nodel kubernetes.io/hostname=nodel Ready 1d
node2 kubernetes.io/hostname=node2 Ready 1d

Create the service and replication controllers: With the service and
replication controller files you just created in the current directory, type the
following commands to load those definitions into the Kubernetes database.
Note that services should be loaded before replication controllers that need
to use those services.

236 Docker Containers

kubectl create -f database-service.yaml
kubectl create -f web-service.yaml

kubectl create -f database-rc.yaml

kubectl create -f web-rc.yaml

7. Review the services, pods, and replication controllers: If all goes well,
on the master you should be able run some xubect1 commands to see the
results of the services and replication controllers you just created. After that,
run the docker ps command on one or both nodes to see the actual running

containers:
kubectl get service
NAME CLUSTER_1IP EXTERNAL_ TIP PORT (S) SELECTOR AGE
database-service 10.254.244.240 <none> 3306/TCP app=db 1m
kubernetes 10.254.0.1 <none> 443/TCP <none> 15d
webserver-service 10.254.153.159 <none> 80/TCP name=web 1m
kubectl get rc
CONTROLLER CONTAINER (S) IMAGE(S) SELECTOR

REPLICAS AGE
database-controller db cricket/dbdock selectorname=db

2 53s
web-controller mywebserver cricket/webdock selectorname=web

2 48s
kubectl get endpoints
NAME ENDPOINTS AGE
database-service <none> 1m
kubernetes 192.168.122.11:6443 15d

webserver-service 10.20.40.3:80,10.20.8.3:80 1m
kubectl get pod

NAME READY STATUS RESTARTS AGE
database-controller-3nmmd 1/1 Running 0 1m
database-controller-8lcvy 1/1 Running 0 1m
web-controller-04£fi2 1/1 Running 0 1m
web-controller-5dpjb 1/1 Running 0 im
kubectl get endpoints

NAME ENDPOINTS AGE
database-service <none> 2m

kubernetes 192.168.122.11:6443 15d

webserver-service 10.20.40.3:80,10.20.8.3:80 2m
docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

e344dceel354a cricket/webdock "/usr/sbin/httpd -D 5 minutes ago
Up 5 minutes k8s_mywebserver.be5fd5c_web-controller. ..

cf23d47f75a8 cricket/dbdock "/usr/bin/mysgld saf 6 minutes ago
Up 5 minutes k8s_db.78b0£f953 database-controller...

0515e52602f4 gcr.io/google containers/pause:0.8.0
"/pause" 6 minutes ago

CHAPTER 16 Creating a Kubernetes Cluster

Up 5 minutes k8s_POD.3ef3f8d9 web-controller...
2740efl50c6a gcr.io/google containers/pause:0.8.0
" /pause" 6 minutes ago
Up 6 minutes k8s_POD.9665f93d_database-controller. ..

8. Review containers: Try to get some data from the containers to see that
they are working. The first curl command displays the contents of the index.
html file on the web server. The second curl command runs the action script
on the web server, which, if successful, displays a “Docker is cool” message
obtained from the database server. You can use the IP address from the Clus-
ter IP field output from the kubectl service command for the service named
webserver-service.

curl -L 10.20.40.3:80

Web server check is successful
curl http://localhost:80/cgi-bin/action
<html>

<head>

<title>My Application</titles
</head>

<body>

<h2>Docker is cool</h2>

<h2>DB is working</h2>

</body>

</html>

If any of the containers stop working, Kubernetes tries to launch new container
pods to take their places.

DELETING REPLICATION CONTROLLERS, SERVICES,
AND PoODs

When you are done running the replication controllers, services, and pods you set
up in the previous section, you can remove them using the kubect1 command. The
order in which you use the kxupect1l command to delete your configuration matters
to some extent. In general you want to run kubectl delete commands in this order:

= Delete replication controllers

m Delete services

You don’t need to stop the containers (docker stop) or delete the pods (kubect1
delete pod podname). In fact, if you did, the replication controller would just start
them back up again. Once you delete the replication controllers, however, the pods
and containers automatically are stopped and the pods deleted. Another reason

o3l

Docker Containers

for deleting replication controllers first is that if you delete the services first, if the
pods rely on being able to use those services, they will stop working anyway.

Here are the commands for deleting the replication controllers and services
created in the previous examples:

kubectl delete rc database-controller

kubectl delete rc web-controller

kubectl delete service database-service
kubectl delete service web-service

To check that everything is deleted, you can run kubect1 get commands. These
commands should show no pods, replication controllers, or services defined for the
Kubernetes cluster:

kubectl get pod
kubectl get rc
kubectl get service

Your Kubernetes cluster should be back to where it was, ready to deploy more

pods.

SUMMARY

A Kubernetes cluster provides the means of deploying containers in what are
referred to as pods across a set of nodes. By configuring a Kubernetes cluster (in
this chapter, with one master and at least two nodes), you can see that how you use
your containers can easily extend into enterprise-level computing.

Descriptions in this chapter showed you how to install software on Kubernetes
master and node systems, configure systemd services that implement Kubernetes,
and run pods on the nodes, using definitions of replication controllers and services.
From the examples, you can see how containers are distributed across the available
nodes.

Once you are done running your Kubernetes pods, the chapter showed you how
to use kubectl delete commands to delete the replication controllers and services
you added. By deleting those items, the pods and containers they started are auto-
matically stopped.

Docker Containers

Part v

Developing Containers

o3

This page intentionally left blank

CHAPTER 17

Developing Docher
Gontainers

IN THIS CHAPTER:
= Create container development environments
= Set up OpenShift Origin to develop containers

= Use good container development practices

Application development in containers can be looked at as part of a larger transi-
tion to a Devops software development model. Containers give developers a greater
level of control of the elements an application needs to run without having to think
as much about the underlying data center infrastructure. Likewise, developers can
be more assured that their applications will run as they pass from development to
testing and finally into production.

This chapter describes things you need to know as someone who wants to
develop containerized applications. First, it lays out some development tools avail-
able for you to put in place before starting to develop applications for containers.
This includes the OpenShift Origin project, which offers a web-based user interface
for container development. Next, the chapter goes through recommendations for
efficient container development as well as techniques for making the resulting con-
tainers easier to manage and maintain.

SETTING UP FOR CONTAINER DEVELOPMENT

Before you begin developing your own Docker containers, you should consider the
tools and work environment you want to get in place. You can use prebuilt environ-
ments to begin developing your Docker containers. You also should think about

c4l

cde

Docker Containers

how your development is set up. Some of these issues are covered in the following
sections.

Choosing a Container Development Environment for
Red Hat Systems

To get started developing Docker containers, you don’t have to do more than make
a directory on the system you have running Docker and create a Dockerfile in it.
However, there are ways you can set up your development environment so that a
full set of development tools is at your fingertips.

Several different Docker development environments are available to help jump-
start your experience developing Docker containers. In some cases, you can get a
full, bootable virtual machine to create your Docker environment. In others, you
can simply download a container that you can run to provide the set of tools you
need.

Running the Red Hat Container Development Kit

To encourage developers to build and certify their applications to run on Red Hat
Enterprise Linux platforms, Red Hat Inc. offers the Container Development Kit
(CDK). The CDK is available in different forms to Red Hat customers, partners, and
those with a Red Hat Network account. You can apply to become part of the Red
Hat Developers program (which gives you access to the CDK as well as other tools)
here:

http://developers.redhat.com

After you log in using the Red Hat Developer program login (or any valid Red
Hat account), visit the following download page to choose to install a Vagrant box in
one of several different formats:

https://access.redhat.com/downloads/content/293/ver=1/rhel---7/1.0.0/
x86_64/product-downloads

The Vagrant box you download can be used to install RHEL Server or RHEL
Atomic virtual machines preconfigured to run Docker, Kubernetes, and other soft-
ware useful for developing containers. A big advantage to using Vagrant in this way
is that you can install those virtual machines on your personal Mac or Windows
system and still have full access to the RHEL container development environment.

Here is a list of those environments, along with links to articles that describe
how to use Vagrant to install the CDK virtual machines on your laptop or desktop
system:

http://developers.redhat.com
https://access.redhat.com/downloads/content/293/ver=1/rhel---7/1.0.0/x86_64/product-downloads
https://access.redhat.com/downloads/content/293/ver=1/rhel---7/1.0.0/x86_64/product-downloads

CHAPTER 17 Developing Docker Containers

= CDK on Mac OSX (https://access.redhat.com/articles/1487693)
= CDK on Windows (https://access.redhat.com/articles/1487723)
= CDK on Fedora (https://access.redhat.com/articles/1487733)

Once you have set up the virtual machines to run the Red Hat CDK, you can
log in to those virtual machines and start using them to develop and test containers.
Most of the container development and deployment tools in the CDK are text-based
utilities.

Running OpenShift

OpenShift provides a platform for developing open source applications using a
set of graphical tools to shepherd applications through development, testing, and
production. Red Hat OpenShift version 3 incorporates tools specifically geared
toward providing simplified methods for creating and managing Linux containers
in Docker format.

For easy ways to try out OpenShift, you can refer to the upstream project named
OpenShift Origin (http://www.openshift.org/). The OpenShift Origin site offers sev-
eral different ways to get the OpenShift 3 Platform to begin trying it out:

= OpenShift in a Container (https://github.com/openshift/
origin#getting-started): You can begin using OpenShift as quickly as you
can pull and run the OpenShift container. This container can run as a privi-
leged container on your system, which allows you to employ that container
to run OpenShift from the command line or from your browser. With either
interface, you can build containers, pull in existing containers, and deploy
and manage containers in pods using Kubernetes.

By visiting the OpenShift Origin Getting Started page, you can also find
links to resources that help you create containers using Source-to-Image
(STT) images for specific languages. There are STI images for Ruby, Python,
Node]S, PHP, and Perl that you can use.

The procedure for trying out OpenShift in a container from OpenShift Origin
is described later.

= OpenShift from Ansible (https://github.com/openshift/openshift-
ansible): Using an Ansible installer, you can set up a Kubernetes cluster of
containers on a local virtual machine, Fedora, or Mac OSX.

= OpenShift from Cloud Providers: Setup instructions are available for
running OpenShift in Amazon Web Services (https://github.com/openshift/
openshift-ansible/blob/master/README_AWS.md) or Google Cloud Engine
(https://github.com/openshift/openshift-ansible/blob/master/README_
GCE.md).

o4l

http://www.openshift.org/
https://access.redhat.com/articles/1487693
https://access.redhat.com/articles/1487723
https://access.redhat.com/articles/1487733
https://github.com/openshift/origin#getting-started
https://github.com/openshift/origin#getting-started
https://github.com/openshift/openshiftansible
https://github.com/openshift/openshiftansible
https://github.com/openshift/openshift-ansible/blob/master/README_AWS.md
https://github.com/openshift/openshift-ansible/blob/master/README_AWS.md
https://github.com/openshift/openshift-ansible/blob/master/README_GCE.md
https://github.com/openshift/openshift-ansible/blob/master/README_GCE.md

ci4

Docker Containers

OpenShift is available to run natively on Red Hat Enterprise Linux (RHEL),
RHEL Atomic Enterprise, and RHEL Atomic host systems. So after you have tried
OpenShift Origin, you can configure an enterprise-ready version of OpenShift on

one of those Red Hat products.

The following procedure helps you get OpenShift Origin running on a system in
a container. For details on installing and running OpenShift Origin, see the Open-
Shift Application Platform Getting Started guide on the project’s website (https://

github.com/openshift/origin#getting-started).

1.

Install Linux: Start with a fresh Linux installation. I installed a Fedora 22
Workstation on bare metal (although a virtual machine would be fine). No
special repo setup is needed for Fedora. However, if you were to run this pro-
cedure on RHEL, you would need to also subscribe the system and enable
extras and optional repositories as follows:

subscription-manager register --auto

subscription-manager repos --disable=""

subscription-manager repos \
--enable="rhel-7-server-rpms" \
--enable="rhel-7-server-extras-rpms" \
--enable="rhel-7-server-optional-rpms" \
--enable="rhel-server-7-ose-beta-rpms"

Install container software: Install the software needed to run the system
as a Kubernetes master and node as follows:

yum install docker kubernetes etcd

. Configure Kubernetes: Configure a Kubernetes cluster as described in

Chapter 16.

. Disable SELinux: If you are getting AVC denial messages, you need to

either correct the issue or disable SELinux. To put SELinux in permissive
mode, open the /etc/sysconfig/selinux file and change the seLinux= line
as follows:

SELINUX=permissive

. Trust Docker Registry service: Edit the /etc/sysconfig/docker file to

allow the Docker service to trust the docker registry service that will
be started later. To do that, uncomment and modify the INSECURE_
REGISTRY line so it appears as follows:

INSECURE_REGISTRY='--insecure-registry 172.30.0.0/16'

Start the Docker service: Make sure that the docker service is enabled
and started:

systemctl enable docker
systemctl restart docker

https://github.com/openshift/origin#getting-started
https://github.com/openshift/origin#getting-started

CHAPTER 17 Developing Docker Containers 245

7. Start OpenShift origin: With Docker running, you can pull and run the
openshift/origin container by typing the following. This causes the container
to run in the background as a daemon:

docker run -d --name "origin" \

--privileged --net=host \

-v /:/rootfs:ro -v /var/run:/var/run:rw \

-v /sys:/sys:ro -v /var/lib/docker:/var/lib/docker:rw \

-v \
/var/lib/openshift/openshift.local.volumes:/var/lib/openshift/
openshift.local.volumes \

openshift/origin start

8. Use the OpenShift Origin container: With the origin container running
in the background, you can run docker exec to open a bash shell inside the
running container and begin using OpenShift Origin. To do that, type the
following:

docker exec -it origin bash
[openshift]#

9. Run some OpenShift commands: From within the origin container, you
can run some commands to start a registry, log in (no credential system is
enabled, so type any username and password to create an account), and start
a new project:

oadm registry \
--credentials=./openshift.local.config/master/openshift-registry.

kubeconfig

oc login

Username: joe

Password: joe

oc new-project joeproject

Now using project "joeproject" on server "https://10.13.49.45:8443".

oc new-app -f \

https://raw.githubusercontent.com/openshift/origin/master/examples/

sample-app/application-template-stibuild.json

Service "frontend" created at

172.30.8.90 with port mappings 5432->8080.
Build "ruby-sample-build" created and started -

you can run 'oc status' to check the progress.
Service "database" created at

172.30.40.239 with port mappings 5434->3306.
Run 'oc status' to view your app.

Once the container images are done building, they are deployed and you can
test them to make sure they are working.

c4b

Docker Containers

10. Check the OpenShift web UI: To check status and watch the progress of
the docker images being built, you can use the web interface to OpenShift.
Open a web browser on your local system to the following URL, log in (use
the username and password just created), accept the insecure connection
(self-signed certificate), and begin working with OpenShift:
https://localhost:8443

11. Check out the project: The project you added from the command line (in
this case, joeproject) should appear when you log in to the OpenShift Origin
web Ul as shown in Figure 17.1. From the Overview tab for this project, you
see the service frontend for the Apache web server and the database service
being created. Select the Browse tab and choose Pods to see the progress of
the pods being built.

v &) [Qseran " ¥ 4=

Projects Filter by labels

The Joe Project v Label key Add Add to Project

®*

Overview

i
A

Project The Joe Project

Details

SERVICE 5434 - 3306 (TCP) ReplicationController

database Name
database-2

Browse

DEPLOYMENT: DATABASE, #2 14 minutes ago from config change

Namespace

Settings POD TEMPLATE)
ODTEM joeproject
CONTAINER: RUBY-HELLOWORLD-DATABASE

Created

I 3 hift/) |-55-centos7:latest
© Image: openshift/mysql-55-centos7:latest P

& B3 Ports: 3306 (TCP)
Replicas
PODS (1) 1

Running
172.17.0.11
Selector

deployment

database-;

FIGURE 17.1 Manage container projects through the OpenShift web Ul.

Once the pods are built and the containers are deployed, you can try to access
the web server to make sure it is working. If you have any problems building your
project, refer to the OpenShift Origin Troubleshooting guide (https://github.com/
openshift/origin/blob/master/docs/debugging-openshift.md).

Container Development Environments from Docker

The Docker Project itself is offering container development tools that may inter-
est you. Some of these tools give you the option of building and managing Docker

https://localhost:8443
https://github.com/openshift/origin/blob/master/docs/debugging-openshift.md
https://github.com/openshift/origin/blob/master/docs/debugging-openshift.md

CHAPTER 17 Developing Docker Containers

containers using a graphical frontend instead of using command-line tools. These
tools include the following:

= Docker Kitematic (www.docker.com/docker-kitematic): Kitematic
provides a graphical frontend to docker. Using Kitematic, you can build and
run containers without having to rely on the Linux command line.

= Docker Toolbox (www.docker.com/toolbox): Docker Toolbox provides
an installer that lets you set up Docker on desktop or laptop systems. The
Docker toolbox is available for Mac or Windows. Using VirtualBox to create
the Linux environment on your personal computer, the Docker toolbox pulls
in other docker tools (such as Docker Client, Docker Machine, and Docker
Compose) to help you begin using Docker on your own system.

= Docker Machine (www.docker.com/docker-machine): Docker
Machine provides a way to provision Docker on to your own computer, a
cloud provider, or to your data center. Using Docker machine, you can provi-
sion host systems and deploy Docker Engines on those systems. At the end,
Docker clients are configured to use the Docker Engines.

For building larger container development environments, you can consider
some of these tools from Docker:

= Docker Compose (www.docker.com/docker-compose): Docker Com-
pose is provided by the Docker Project to help developers form containers
together into larger applications.

= Docker Swarm (https://docs.docker.com/swarm): Docker Swam pro-
vides tools for scaling Docker to run multiple containers and multiple hosts.

These tools from the Docker Project can help you get an environment set up
to work with Docker, but also extend your use of Docker beyond single-container
applications. Many of the Docker tools just described also make it easier for you
if you are more used to working with web-based interfaces than you are with com-
mand line interfaces.

UsING GooD DEVELOPMENT PRACTICES

Although building a Docker image is straightforward, there are techniques you can
use to make your container development more efficient. Some of those techniques
are described here.

c47

http://www.docker.com/docker-kitematic
http://www.docker.com/toolbox
http://www.docker.com/docker-machine
http://www.docker.com/docker-compose
https://docs.docker.com/swarm

c4l

Docker Containers

Gathering or Excluding Files for a Build

I already talked about how it’s usually best to create a new directory to contain your
Dockerfile file, along with other files you need for the build. Because all files from
that point down in the directory structure are directed to the Docker daemon during
the build process and copied to the file system maintained by Docker, it’s best to
keep the number of files below that point in the file system to a minimum.

There are times when you might want to keep additional files in the directory
structure where you keep your Dockerfile that you don’t want included when you
build containers with that file—or at least, files you don’t want to include in every
build. For example, you might want to use the same Dockerfile file to build con-
tainer images that include different sets of configuration files. Or you might want to
create a more streamlined version of an image that doesn’t include documentation.

Using a .dockerignore file in the Dockerfile directory, you can exclude files
you don’t want to include in a build. In that file, you use text and special char-
acters to tell what to exclude. The Dockerfile Reference page describes this file
(https://docs.docker.com/reference/builder/#dockerignore—file) Here is an
example of the contents of a build directory where you might want to exclude files
from a docker build:

1ls ~/mybuild
. Dockerfile .dockerignore testbuildl/ testbuild2/ README

EaCh,ﬁHKEYOU,dO a docker build, you can changethe .dockerignore file to
ignore different files or directories. Here are examples of entries you could include
in that file to exclude different files and directories:

testbuildl
testbuild?
testbuild[12]

*

!README

You wouldn’t want to use all those lines in the same .dockerignore file, but
you might want to use them individually. The line testbuildi would cause the
README file and all files under the testbuild2 directory to be included in
the build. The line testbuild? would cause both testbuildi and testbuildz
directories to be excluded, leaving only the reapme file to be included in the
build. If there were many testbuild? directories, testbuild[12] would specifi-
cally only exclude testbuild1 and testbuildz directories, but it wouldn’t exclude
testbuild3, testbuild4, and so on.

https://docs.docker.com/reference/builder/#dockerignore-file

CHAPTER 17 Developing Docker Containers

If you were to simply put an asterisk (*) in the file, no files from your build
directory would be included in the build. If, however, you wanted to include some
files back in after excluding them with an asterisk, the exclamation point (1) is a
way to do that. In this example, 1README causes the rReaDME file to be included.

Keep in mind that including or excluding files in the build does not cause them
to be included in the image you are building. You do that with ADD and COPY
instructions in the Dockerfile. Excluding files simply keeps you from wasting time
waiting for unneeded files to be copied to the Docker daemon and unnecessarily
consuming storage space in the Docker directory structure.

Taking Advantage of Layers

Docker images are created from base images with additional file systems overlaid
on to them in layers. The type of file systems used to do this are called union file
systems. Understanding how these layers work helps you manage the way in which
you use these layers when you run docker build.

Using layers efficiently can help you at every level of your interactions with
Docker. If every container image in your data center uses the same base image, you
need only one copy of that base image on each node where the container will run.
Only additional layers need to be downloaded when you pull an image that does a
specific job.

By making layers build on each other logically, you can further add efficiency.
For example, you might add layers that include the libraries and other components
needed for your run-time environment (such as JBoss or Ruby). Then that resulting
container could be used by many applications that need that same environment.
So, for example, each service you added on top of the run-time environment would
result in a new container that could be pulled efficiently, since it needs to add only
the application layer to the run-time environment.

When it comes to actually building the containers, keep in mind that each time
an instruction is run during the build process, it creates a new layer. There are ways
in which you can use instructions in a Dockerfile that result in more or fewer layers
being created.

Putting multiple commands on the same line in a RUN instruction results in
only one layer being created from the multiple commands in that RUN instruction.
Here are some of the implications of doing that:

® Including a RUN instruction that has several commands can help set a good
boundary between the intermediate layers in an image. For example, a RUN
line that included yum -y update && yum clean all would update all pack-
ages in the container and then clean out cached data left behind by yun. If

L)

250

Docker Containers

the next instruction were to fail in the build, after you correct the problem,
the next docker build could start up with an updated, cleaned up container
from the RUN instruction I just described.

= On the down side, a RUN instruction that includes too many commands can
be inefficient in some cases as well. If one of several commands fails from
a RUN instruction, you have to go back and re-run the entire instruction. If

they had been on separate RUN lines, you could just start from the one that
failed.

Once a container image is created, you can consider trying to squash layers
together. Tools are being developed to help you do that. This can result in fewer
layers to manage but can itself result in some inefficiencies. For example, if mul-
tiple layers are in a container, they can potentially be pulled to your system more
efficiently since they can all be downloaded simultaneously. Also, as mentioned
earlier, if some of the layers are already on your system when you do the pull, they
don’t have to be pulled again. But if the layers are not separate, any change requires
the entire image to be pulled again.

Managing Software Packages in a Build

Grabbing software to put in a container image from any old place is not a good idea.
Software that you just take from random sites on the Internet may include, at worst,
malicious software and, at least, few guarantees that it will work well with other
software in your container.

Here are a few things to think about when you are choosing the software pack-
ages to put inside your containers:

= Choose a trusted Linux: Many well-established Linux distributions offer
a base image that includes the minimal components you need to create a
container based on their distribution. Often, those base images are also con-
figured to let you immediately install more software within that container. If
you are used to using Fedora, Ubuntu, CentOS, Red Hat Enterprise Linux,
or other popular Linux distributions, starting with that distribution’s official
base image gives you a trustworthy place to start.

= Remove unnecessary packages: If you don’t need a certain text editor,
troubleshooting tools, or other software that is in a base image, you can sim-
ply remove the package it contains from the base image and save the new
image. Every package you remove saves you time in upgrading and managing
the image. It also makes the image smaller, and therefore more efficient to
store and move around.

CHAPTER 17 Developing Docker Containers

= Don’t install packages not needed at run time: Avoid including pack-
ages with software used to investigate or troubleshoot the container, as that
software can be added in other ways as needed (for example, by adding a
tools container to the system or installing a package temporarily to a running
container and then removing it). In general, you don’t want impermanent
components to be in the containers you build.

= Exclude parts of packages: Some package management systems offer you
a way to prevent certain software in a package, that you might want other-
wise, from being installed. The yum filter command lets you filter out par-
ticular types of software when you install software packages in Fedora, Red
Hat Enterprise Linux, or CentOS. For example, if you were to run the fol-
lowing yun £s command, any yum install commands run during the docker
build will have documentation files excluded from any packages being
installed:

RUN yum fs filter documentation

Learning More about Building Containers

As people learn more about the best ways to develop and work with containers,
more information will become available. I suggest keeping an eye on some of the
following locations for information to help you develop containers:

= Review best practices for writing Dockerfiles (https://docs.docker.
com/articles/dockerfile_best-practices): The Docker Project has come
up with a list of what it calls best practices. Included in these best practices
are specific suggestions related to how to best use each instruction available

in Dockerfiles.

= Refer to Dockerfile Reference (htips://docs.docker.com/reference/
builder): The Dockerfile Reference provides an extensive reference to the
instructions and ways of using those instructions inside Dockerfiles. This is
the place to go if you are not sure exactly how to use a particular instruction.

= Docker Official Images Project (https://github.com/docker-library/
official-images): Find guidelines for creating and maintaining official
Docker images from this Docker Official Images page. It talks about not only
how to make efficient and reusable images but also how to create secure
images.

]

https://docs.docker.com/articles/dockerfile_best-practices
https://docs.docker.com/articles/dockerfile_best-practices
https://docs.docker.com/reference/builder
https://docs.docker.com/reference/builder
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images

e5e

Docker Containers

SUMMARY

As someone who wants to develop containerized applications in Docker format, you
want to get a good set of development tools in place that will scale up with you from
creating small, individual containers to large enterprise-scale applications. Open
source projects such as OpenShift provide the means for creating and managing
scalable containers in pods, using Kubernetes on the backend.

Once you are comfortable with the set of development tools you have, the sec-
ond part of this chapter takes you through recommendations for making the most
of your container development. This includes best practice recommendations from
the Docker Project and other ideas for making your Docker container development
efficient and secure.

CHAPTER 18

Exploring Sample Docherfile
Files

IN THIS CHAPTER:
= View Dockertfiles for Linux distributions
= Look at Dockerfiles from open source projects

= Examine Dockerfiles for personal applications

The fact that many people publish their Dockerfile files (on GitHub and other loca-
tions) offers you the opportunity to see how people create the Docker images they
use for work or play. To illustrate different types of Dockerfiles, I chose some Dock-
erfiles to feature here and divided them up into different categories:

® Linux distributions: Many Linux distributions publish the Dockerfile they
use to produce the official Docker images of their distributions. Viewing
those Dockerfiles, and sometimes the tarballs they include, lets you see how
those images were created.

= Open source projects: Some open source application projects create
container images that provide an easy way to launch their applications. The
Dockerfiles that create those images often include things such as environ-
ment variables and recommend run commands to help you configure those
applications at the time you run them.

= Personal applications: Many people just create containers to provide con-
venient ways to run the applications they want on their desktops or personal
servers. Sometimes these containers are specific to a particular Linux distri-
bution since they need to tap into particular sound, video, or other desktop
features to work efficiently on the local system.

e5]

o54

Docker Containers

In this chapter, I show you some of the Dockerfiles that organizations and indi-
viduals have published so you can see the techniques they used to build Docker
images. Although these techniques are not necessarily best practices for creating
Dockerfiles (check out best practice guides at Docker.com for that), they can offer
some insights into how others work through issues that you may encounter as you
create your own containerized applications.

A WARNING

The sample Dockerfiles described in this chapter are here to demonstrate
the techniques people are using to containerize their Linux distributions or
applications. As you should with any software you run, | recommend that
you investigate the security of the components that go into these Docker-
files before using them to build and run your own container images.

EXAMINING DOCKERFILES FOR OFFICIAL
DOCKER IMAGES

Before containers, to run a Linux application you would typically set up a Linux
system and then install and configure the application to run on that system. With
containers, the same concept usually holds true. To run an application in a con-
tainer, you typically choose a container based on a particular Linux distribution
and then add software from that distribution (and possibly your own software) to
prepare a new container image to run that software.

The Dockerfiles described in this section show you how Linux distributions
such as CentOS and Busybox create their own base containers. Many of these con-
tainers begin with the scratch container (available from the Docker Hub) and then
add what the distribution considers to be the basic software that most applications
need to run from within the container.

Viewing a CentOS Dockerfile

CentOS is a popular Linux distribution for people who want to run a Linux system
tailored for enterprise use but don’t need support or update guarantees. CentOS is
built from Red Hat Enterprise Linux source code and provides a way to test the
same software available through subscriptions to Red Hat Enterprise Linux.

CHAPTER 18 Exploring Sample Dockerfile Files 255

Originally, the official CentOS container image didn’t include the init system

that comes with the CentOS distribution (which is systemd by default) to start and
manage applications within the container. Recently, they added a special ver-
sion of systemd software to the CentOS base image (via the systemd-container and
systemd-container-libs packages). Now you can install services inside a CentOS
container that are configured to be used with systemd (such as the httpd web ser-
vice), and then start and otherwise manage them with systemct1 commands.

The next section describes the Dockerfile used to build the CentOS base image.

After that, I describe how you can use that base image to install and start the httpd
web server as a systemd service using the CentOS base image.

Using the CentOS Base Image Dockerfile

An official CentOS project Docker image is available from the Docker Hub
(https://hub.docker.com/_/centos/). From that page, select the Dockerfile for the
version that interests you (for example, centos7) to see the contents of that Dock-
erfile. Next, go to the directory containing that Dockerfile (select the docker direc-
tory) to find the tarball that the Dockerfile includes.

The following is a recent Dockerfile used to build the official CentOS image for

CentOS 7:

FROM scratch
MAINTAINER The CentOS Project <cloud-ops@centos.org> - ami_creator
ADD centos-7-20150616_ 1752-docker.tar.xz /

H H H H H H

Volumes for systemd

VOLUME ["/run", "/tmp"]

Environment for systemd

ENV container=docker

For systemd usage this changes to /usr/sbin/init
Keeping it as /bin/bash for compatibility with previous

CMD ["/bin/bash"]

Here are a few things to note about the contents of this Dockerfile:

u TTKBscratchirnage(https://hub.docker.com/_/scratch/)iS[NJHedifonlthe

Docker Hub (on the FROM line) to provide the underlying image on which
the CentOS base image is built. On the Docker Hub, the scratch image is
described as being useful for building base images for Linux distributions or
creating “super minimal images.” Other major Linux distributions start with
the scratch image as well.

The MAINTAINER line lists the CentOS project as the maintainer of this
image. If you have questions about the image, an email address is provided

https://hub.docker.com/_/centos/
https://hub.docker.com/_/scratch/

236

Docker Containers

for you to contact the maintainers of this Dockerfile and the images it
creates.

® The ADD line causes a tarball, consisting of the entire contents of the
CentOS container, to be expanded and placed into the root (/) of the contain-

er’s file system. As mentioned earlier, that tarball is in the same directory at
GitHub as the Dockerfile.

® The CMD line at the end of the Dockerfile causes the running container to
simply open a bash shell, by default.

To see how the tar file is built, from the sig-cloud-instance-build GitHub page
(https://github.com/CentOS/sig—cloud—instance—build/tree/master/docker%
select one of the Kickstart files. These Kickstart files can be used with the standard
CentOS installer to install minimal CentOS systems. Each installed system can
then be copied into a tarball used to build the container for the associated CentOS
version.

If you were to examine those Kickstart files, you would see that only a minimal
set of packages is installed. One package added that is not part of the standard
CentOS distribution is the systemd-container package. That package contains the
components needed to start and stop systemd services without including those com-
ponents that are only appropriate on the host system (such as targets that change
the states of the host system as a whole).

Some packages that would be installed automatically are removed or excluded,
such as firmware packages, the GRUB2 bootloader, CentOS logos, and firewall
software (firewalld package). To keep the base image small, the Kickstart files also
block documentation within any packages from being installed and remove large
files that are known to not be needed. The resulting tarball files from each Kickstart
(there are different Kickstart files for different releases of CentOS) provide a lean
foundation for you to use to run applications in a CentOS container.

As someone using the CentOS base container, you would create your own
Dockerfile and add the CentOS base container to your FROM line. The rest of your
Dockerfile could add packages (yum install whatever) and your own software and
configuration files. The next section describes how to add the httpd package to the
CentOS base system container and then start that web server as a systemd service.

Adding a systemd Service to a CentOS Dockerfile

To run a systemd-enabled application to a Dockerfile built on a CentOS image, you
simply install the package containing the service and use the systemctl command
within the new Dockerfile to launch that service when the container is run. Here’s
an example of a Dockerfile to do that:

https://github.com/CentOS/sig-cloud-instance-build/tree/master/docker

CHAPTER 18 Exploring Sample Dockerfile Files

FROM centos:7

RUN yum -y install httpd; yum clean all; \

systemctl enable httpd.service

EXPOSE 80

RUN echo "Web Server Works!" > /var/www/html/index.html
CMD ["/usr/sbin/init"]

To build that Dockerfile into an image for running the httpd server, you could
type the following:

docker build -t systemd-httpd .

With the systemd-httpd image created, you can run that image with the follow-
ing command:

docker run --privileged -d -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
-p 80:80 systemd-httpd

The command just shown runs the httpd systemd service. Since the Docker-
file was set up to enable the httpd systemd service, the /sys/fs/cgroup directory
needed to be mounted in the container from the host system. The -p 80:80 option
exposes TCP port 80 from the container to the same port on the host, and the -a
option leaves the container running in the background. To check that the service is
working, type the following:

curl http://localhost
Web Server Works!

You could use the same Dockerfile as a model for starting any service that has
a systemd unit file included in its package.

Viewing a Busybox Dockerfile

Busybox is a tiny operating system often used to run simple executables in embed-
ded systems. You can find the busybox image at the Docker Hub (https://
hub.docker. com/_busybox/). The busybox Dockerfile pulls in a tiny tarball (only
about 2.7M) that includes just enough utilities to run a statically compiled binary.

Like the CentOS base image Dockerfile, the Dockerfile used to build busybox
itself starts with the scratch image and adds a tarball. Here is an example of a busy-

box Dockerfile available from the Docker Hub:

FROM scratch

MAINTAINER Jerome Petazzoni <jerome@docker.com>
ADD rootfs.tar /

CMD ["/bin/sh"]

257

https://hub.docker.com/_busybox/
https://hub.docker.com/_busybox/

o5d

Docker Containers

To create a Docker image to run your own statically compiled binary, you can
create your own Dockerfile that includes the busybox base image and add your
binary. Here is an example from the busybox Docker Hub page:

FROM busybox
COPY ./my-static-binary /my-static-binary
CMD ["/my-static-binary"]

You would have to compile your own binary, since the busybox image doesn’t
contain the tools needed to do that. Once you have compiled the binary, you could
place the binary in the same directory with the Dockerfile (replacing my-static-
binary with the name of your binary). When you run docker build, the new image
includes the binary and sets it up to run by default when the container is run.

EXAMINING DOCKERFILES FROM OPEN SOURCE
PROJECTS

A growing number of open source projects have created container images to run
their software and made those images available from the Docker Hub. The Docker-
files for those projects that I illustrate here are different from base operating sys-
tem container images. These Dockerfiles are meant to create images that you run
directly, instead of using them to build other images.

Seeing how Dockerfiles are created for WordPress and MySQL can give you
ideas about how to create images that run your own applications. These two cases
represent daemons that run in the background, providing services where they are
run. When using these images, you are offered ways of changing environment vari-
ables to direct how these images behave when they are run.

Viewing a WordPress Dockerfile

WordPress is a popular content management system and blogging tool available
as an open source project. An official WordPress image is available on the Docker
Hub (https://hub.docker.com/ /wordpress/). A Dockerfile and related software
are also available for you to view or use to build your own WordPress container
image.

Select one of the Dockerfile links from the WordPress Docker Hub page. The

following is an example of one of those Dockerfiles:

FROM php:5.6-apache
RUN a2enmod rewrite
install the PHP extensions we need

https://hub.docker.com/_/wordpress/

CHAPTER 18 Exploring Sample Dockerfile Files

RUN apt-get update && apt-get install -y \
libpngl2-dev libjpeg-dev && rm -rf /var/lib/apt/lists/* \
&& docker-php-ext-configure gd --with-png-dir=/usr \
--with-jpeg-dir=/usr && docker-php-ext-install gd

RUN docker-php-ext-install mysqgli

VOLUME /var/www/html

ENV WORDPRESS VERSION 4.3

ENV WORDPRESS_ SHAl 1e9046b584d4eaebac9elf7292ca7003bfc8ffd7

upstream tarballs include ./wordpress/

so this gives us /usr/src/wordpress

RUN curl -o wordpress.tar.gz -SL \
https://wordpress.org/wordpress-${WORDPRESS VERSION}.tar.gz \
&& echo "$WORDPRESS SHAl *wordpress.tar.gz" | shalsum -c - \
&& tar -xzf wordpress.tar.gz -C /usr/src/ \
&& rm wordpress.tar.gz \
&& chown -R www-data:www-data /usr/src/wordpress

COPY docker-entrypoint.sh /entrypoint.sh

grr, ENTRYPOINT resets CMD now

ENTRYPOINT ["/entrypoint.sh"]

CMD ["apache2-foreground"]

Here is some information about this Dockerfile that you might find interesting:

= Because WordPress software is based on PHP, the base image identified on

the FROM line is the php image (5.6-apache version) based on Ubuntu.
® The first RUN instruction loads the Apache rewrite module.

® The next RUN instruction runs several commands. First it updates all the
Ubuntu packages inside the container and installs a few more packages.
After that, it adds the gd PHP extension and sets the location of a couple of
directories used by PHP.

® The docker-php-ext-install command on the next RUN instruction installs
the mysqli extension of PHP.

® The /var/www/html directory is mounted from the host, using the VOLUME
instruction, to store the data used by WordPress.

®m Two ENYV instructions set the version number of the WordPress release and
the SHA1SUM used later to check that the WordPress tarball is valid when it

is downloaded in the next step.

= Several things happen on the next RUN line to get and prepare WordPress
software. The curl command gets the wordpress-4.3.tar.gz tarball (using the
version number set earlier), checks it using the SHATSUM (also set ear-
lier), and untars it to the /usr/src directory. It then removes the tarball and
changes the ownership of the /usr/src directory to the www-data user and

group.

259

260

Docker Containers

® The COPY line copies the docker-entrypoint.sh script from the build direc-
tory to the /entrypoint.sh file in the container.

= Finally the ENTRYPOINT instruction sets /entrypoint.sh as the command

to start when the container is run later, and CMD sets apache2-foreground as
the option passed to the entrypoint.sh script.

To use the resulting image, you could link the wordpress container you start
up with an existing mysql container you already have running on the system. You
could do that as follows:

docker run --name new-wordpress --link new-mysqgl:mysqgl -d wordpress

Inside the wordpress container itself, there is a set of environment variables
that you can change to modify the behavior of the wordpress container. Using the -e
option you can set those options on the docker run command line. Here are a few
examples:

= -¢ WORDPRESS_DB_HOST=: Sets the IP address and port of the
MySQL server. By default, wordpress finds the MySQL service from a linked
container.

= -e WORDPRESS_DB_USER-=: Changes the user name used to access the
MySQL database. By default, the user is root.

= -e WORDPRESS_DB_PASSWORD-=: Changes the password set for
the root user of the MySQL database. By default, the MYSQL_ROOT_
PASSWORD environment variable is used from the linked MySQL container.

= -e WORDPRESS_DB_NAME=: Changes the name of the MySQL data-

base used from the default name wordpress.

Setting environment variables is a technique used by many container images so
that you can modify the location of components, change user names and passwords,
and generally adapt the container to work in your environment.

Viewing the MySQL Dockerfile

MySQL is the most popular open source database for web applications. You can get
the Dockerfile used to build the official MySQL image (mysq1) from the Docker Hub
(https://hub.docker.com/_/mysql/). Here is an example of the Dockerfile of the
latest version of the mysql image:

FROM debian:wheezy

RUN groupadd -r mysgl && useradd -r -g mysgl mysql
RUN mkdir /docker-entrypoint-initdb.d

https://hub.docker.com/_/mysql/

CHAPTER 18 Exploring Sample Dockerfile Files 261

RUN apt-get update && apt-get install -y perl --no-install-recommends && rm
w_rf /var/lib/apt/lists/*

RUN apt-key adv --keyserver ha.pool.sks-keyservers.net --recv-keys
A4A9406876FCBD3C456770C88C718D3B5072E1F5

ENV MYSQL MAJOR 5.6
ENV MYSQL VERSION 5.6.26

RUN echo "deb http://repo.mysql.com/apt/debian/ wheezy mysqgl-${MYSQL MAJOR}"
= > /etc/apt/sources.list.d/mysqgl.list

RUN { \

echo mysgl-community-server mysqgl-community-server/data-dir select ''; \

echo mysgl-community-server mysgl-community-server/root-pass password ''; \
echo mysgl-community-server mysql-community-server/re-root-pass password ''; \

echo mysqgl-community-server mysqgl-community-server/remove-test-db select
false; \

} | debconf-set-selections \

&& apt-get update && apt-get install -y mysqgl-server="${MYSQL VERSION}"* &&
w rm -rf /var/lib/apt/lists/* \

&& rm -rf /var/lib/mysql && mkdir -p /var/lib/mysql

RUN sed -Ei 's/”" (bind-address|log)/#&/' /etc/mysqgl/my.cnf \

&& echo 'skip-host-cache\nskip-name-resolve' | awk '{ print } $1 ==

w' [mysgld]" && ¢ == 0 { ¢ = 1; system("cat") }' /etc/mysql/my.cnf > /tmp/
= my.cnf \

&& mv /tmp/my.cnf /etc/mysql/my.cnf

VOLUME /var/lib/mysqgl

COPY docker-entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

EXPOSE 3306

CMD ["mysgld"]

The Dockerfile for the mysql container images follows many of the same tech-
niques used in the Dockerfile for the wordpress image. Here is a description of some

of the highlights of this file:

= The FROM line sets the debian image (wheezy version) as the base image.

= The first RUN instruction creates the mysql user and group inside
the container, while the next RUN instruction creates the directory
/docker-entrypoint-initdb.d.

= After updating the software in the container (apt-get update), the next RUN

line installs the perl package and cleans out the /var/1ib/apt/1ists/*
directories.

cbe

Docker Containers

® The apt-key command on the next RUN line sets the keys used to check the

validity of the MySQL software.

= Environment variables are set (ENV instruction) to identify the MySQL major

release (MYSQL_MAJOR 5.6) and version (MYSQL_VERSION 5.6.26).

® The location of the mysq]l software is set on the next line (incorporating the

MySQL major release number set earlier in the name of the software).

® The next RUN command does some MySQL database cleanup.

= More cleanup is done on the next RUN line to change a few configuration

values and to tell MySQL to not do reverse hostname lookup.

® The VOLUME instruction sets the location of the mysql database to the

/var/lib/mysql directory on the host (which this instruction mounts inside
the container at the same location).

® The COPY instruction copies the docker-entrypoint.sh script from the

build directory to /entrypoint.sh in the root of the container.

= The MySQL service listens on port 3306 by default, which is exposed outside

the container from the EXPOSE line.

= Finally, the CMD instruction sets the command to run by default as the

mysqgld command (which is the MySQL daemon).

As with the wordpress image, when you run the mysql image you can change

the value of various environment variables to adapt how MySQL is used in your own
setup. For example, you can set some of the following:

-e MYSQL_ROOT_PASSWORD-=: Sets the root password used to access
the MySQL database.

-e MYSQL_DATABASE-=: Sets the name of a MySQL database to be
created when the image first starts.

-e MYSQL_USER=: Sets the name of a user granted super-user privilege to
the database you create with the MYSQL_DATABASE variable.

-e MYSQL_PASSWORD-=: Identifies the password to use with the user
account identified with MYSQL_USER.

MYSQL_ALLOW_EMPTY_PASSWORD: This optional variable if used
(MYSQL_ALLOW_EMPTY_PASSWORD=yes) causes the container to be
started with a blank MySQL password.

When you go to run a container image built from the MySQL Dockerfile

described here, you can add options to the docker run command line to modify the
container’s behavior. Besides setting environment variables just described, you can

CHAPTER 18 Exploring Sample Dockerfile Files 263

also identify a different host directory to use to provide the MySQL database. For
example:

docker run --name new-mysqgl \
-v /my/custom:/etc/mysql/conf.d \
-v /my/own/datadir:/var/lib/mysql \
-e MYSQL ROOT PASSWORD=my-secret-pw \
-d mysqgl:latest

The docker run command line just shown runs the mysql image as the container
name new-mysql. The first volume mount option (-v) illustrates how you could use
your own MySQL configuration files from the host (/my/custom directory) and mount
them over the configuration files in the container (/etc/mysql/cont .d directory).

Likewise, you can have data files from your host (/my/own/datadir directory)
mounted over the MySQL data directory (/var/1ib/mysql) inside the container. The
-e option here sets the MySQL root password to my-secret-pw. The last options on
the command line run the mysql:latest image and run that image in the back-
ground as a daemon process (-3d).

EXAMINING DOCKERFILES FOR DESKTOP AND
PERSONAL USE

Many people begin learning how to use Docker by containerizing desktop applica-
tions. There are many advantages to making desktop applications into containers.

If you want to use different versions of an application on the same computer,
putting them in containers lets you avoid potential library conflicts on the host sys-
tem. Likewise, if you decide later that you don’t want that application on your sys-
tem, you can easily just stop the container and remove the image without otherwise
disrupting your system.

In this section, I show two different ways that people have created images for
adding a containerized web browser to their system. The first example shows a
Chromium browser image that integrates directly with the host system’s X Window
System display. In the second example, the image illustrates how vnc can be used
to open a virtual desktop to hold Firefox or any other X Window System application
you want to use.

Viewing a Chrome Dockerfile

The Google Chrome web browser is a popular addition to a Linux desktop, espe-
cially those offering only Firefox. Jessie Frazelle (https://blog.jessfraz.com), an

https://blog.jessfraz.com

cb4

Docker Containers

employee at Docker, created a Chrome container image that you can pull from the

Docker Hub or build yourself using the Dockerfile displayed here.

This Chrome image works by mounting the X11 socket from your desktop
system directly into the container. By doing this, it avoids the overhead (both in
size and performance) you get using X11 forwarding over ssh. You can also mount
the audio device (/dev/snd in Debian and Ubuntu) so you can play audio directly
through the browser as well.

Here’s the Dockerfile used to create the container (check here for updates:
https://github.com/jfrazelle/dockerfiles/blob/master/chrome/stable/
Dockerfiley

FROM debian:sid
MAINTAINER Jessica Frazelle <jess@docker.com>

ADD https://dl.google.com/linux/direct/google-talkplugin current amdé4.
= deb /src/google-talkplugin current amdé4.deb

ADD https://dl.google.com/linux/direct/google-chrome-stable current
= amdé64 .deb /src/google-chrome-stable current amdé4.deb

Install Chromium

RUN mkdir -p /usr/share/icons/hicolor && \
apt-get update && apt-get install -y \
ca-certificates \
gconf-service \
hicolor-icon-theme \
libappindicatorl \
libasound2 \
libcanberra-gtk-module \
libcurl3 \
libexif-dev \
libgconf-2-4 \
libgll-mesa-dri \
libgll-mesa-glx \
libnspr4 \
libnss3 \
libpangol.0-0 \
libv41l-0 \
libxssl \
libxtst6 \
wget \
xdg-utils \
--no-install-recommends && \
dpkg -i '/src/google-chrome-stable current amdé4.deb' && \
dpkg -i '/src/google-talkplugin current amdée4.deb' \
&& rm -rf /var/lib/apt/lists/*

CHAPTER 18 Exploring Sample Dockerfile Files

COPY local.conf /etc/fonts/local.conf

Autorun chrome
ENTRYPOINT ["/usr/bin/google-chrome"]
CMD ["--user-data-dir=/data"]

Here are some things you can take away from the chrome Dockerfile:

= The base image identified on the FROM line is the debian image (sid

version).

= Two ADD instructions copy Debian packages from the Google download
websites. The google-talkplugin_current_amd64.deb and google-chrome-
stable_current_amd64.deb packages are added by copying them to the
/src directory inside the container. These two packages get you the Google
Talk plugin and the latest stable Chrome browser.

= After making a directory for icons and updating all the software in the con-
tainer, the next RUN instruction installs a bunch of packages needed to
provide such things as sound and video drivers inside the container. It also
installs the two packages just downloaded from Google.

= The COPY instruction copies the 1ocal.conf file from the build directory to
the /etc/fonts/local.conf file inside the container.

® The last two instructions set the command to run. The ENTRYPOINT
instruction runs the google-chrome command to start the browser and the
CMD instruction identifies the /data directory as the location for the browser
to get user data.

If you want to build this image, you can get the local.cont file defined in
the Dockerfile from the same place the Dockerfile itself is available on GitHub
(https://github.com/jfrazel1e/dockerfiles/tree/master/chrome/stable)

Keep in mind that this Dockerfile is tailored to run on a Debian-style system.
You may need to modify the locations of devices on the host and deal with some
permissions issues to get it to work on a different Linux system. (Adding —privi-
leged overcomes permission issues in Fedora). To avoid this issue altogether, you
could use VNC or X11 forwarding (as shown in the coming example of a Firefox
container), but that approach has much more overhead.

Here is the docker run command that Jess Frazelle suggests for running the
Chrome container image:

docker run -it \
--net host \
--cpuset-cpus 0 \
--memory 512mb \

263

https://github.com/jfrazelle/dockerfiles/tree/master/chrome/stable

266

Docker Containers

-v /tmp/.X1l-unix:/tmp/.X11l-unix

-e DISPLAY=unix$DISPLAY

-v $HOME/Downloads:/root/Downloads

-v $HOME/.config/google-chrome/:/data
--device /dev/snd \

--name chrome \

jess/chrome

\
\
\
\

In this example, there are a few interesting ideas related to running the Chrome
browser in a container. The --cpuset-cpus and --memory options provide an easy
way to limit CPU usage and memory usage, so you can limit the harm that Chrome
can do to your desktop performance.

The directory containing the X sockets (/tmp/.x11-unix) is mounted inside the
container to provide access to the display. Your local display is identified to the
DISPLAY environment variable. For convenience, the /root/pownloads directory
is mounted in the container so anything you download is stored on the host by

default.

Your Chrome settings and data are stored in the .config/google-chrome direc-
tory in your home directory, so that information persists. To be able to play audio
from Chrome, the /dev/snd device is mounted inside the container. Figure 18.1
shows an example of the Chrome browser running from a container on the local
desktop.

~ = C |[1 chrome://chrome-signin/?source=0 w =

Google
Set up Chrome

Sign in to get your bookmarks, history, passwords, and other settings on all your
devices. Learn more

‘ Email ‘

Password

FIGURE 18.1 Run Chrome from a container by mounting host resources inside

the container.

CHAPTER 18 Exploring Sample Dockerfile Files

Viewing a Firefox Dockerfile

Firefox is the other popular web browser on Linux systems. Firefox is maintained
by the Mozilla project and has roots that go back to the first web browsers in
existence. The Firefox Dockerfile 1 describe is part of the fedora-cloud initiative
(https://github.com/fedora—cloud/Fedora—Dockerfiles% which has created a
bunch of Fedora-based container images to provide individual applications or tech-
nology other containers can build on (such as Java or python).

What is interesting about the Firefox Dockerfile described here is that it installs
remote desktop software (vnc) along with Firefox into a container image. As noted
earlier, there is more overhead than you get by just mounting desktop sockets and
devices inside your container. But this approach provides a more generic solution
that can work for many different desktop applications.

The Firefox Dockerfile (https://github.com/fedora—cloud/Fedora—Docker—
files/tree/master/firefox) requires an xstartup script be added to the build
directory if you want to build the image yourself. That script is in the same direc-
tory as the Dockerfile on GitHub. Here’s an example of what the Firefox Dockerfile
looks like:

FROM fedora
MAINTAINER http://fedoraproject.org/wiki/Cloud

Install the appropriate software
RUN yum -y update && yum clean all
RUN yum -y install firefox \
xorg-x1ll-twm tigervnc-server \
xterm xorg-xll-font \
xulrunner-26.0-2.fc20.x86_64 \
dejavu-sans-fonts \
dejavu-serif-fonts \

xdotool && yum clean all

Add the xstartup file into the image and set the default password.
RUN mkdir /root/.vnc

ADD ./xstartup /root/.vnc/

RUN chmod -v +x /root/.vnc/xstartup

RUN echo 123456 | vncpasswd -f > /root/.vnc/passwd

RUN chmod -v 600 /root/.vnc/passwd

RUN sed -i '/\/etc\/X11\/xinit\/xinitrc-common/a [-x /usr/bin/firefox]
&& /usr/bin/firefox &' /etc/X1ll/xinit/xinitrc

EXPOSE 5901

CMD ["vncserver", "-fg"]
ENTRYPOINT ["vncserver", "-fg"]

267

https://github.com/fedora-cloud/Fedora-Dockerfiles
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/firefox
https://github.com/fedora-cloud/Fedora-Dockerfiles/tree/master/firefox
http://fedoraproject.org/wiki/Cloud

268

Docker Containers

Here is what this Firefox Dockerfile does:

= The FROM indicates that the container starts with the fedora base image.

® The first RUN instruction updates all the Fedora software in the container
(yum -y update) and cleans out any cached files left behind. The next
RUN instruction installs the packages needed in the container, including
the browser itself (firefox), a tiny window manager (xorg-x11-twn), the
remote desktop VNC server (tigervnc-server), software to boot up Firefox
(xulrunner), and some font packages.

= To hold the xstartup script, the next RUN instruction creates the /root/.vnc
directory. After that the xstartup script is copied from the build directory to
that /root/.vnc directory in the container with an ADD instruction. To make
the script executable, the RUN command that follows runs the chmod com-
mand on that script.

= The password for VNC is set with the next RUN instruction. Later, when you
try to connect to the container using a VNC client, you need to provide the
password 123456. The password file (/root/.vnc/passwd) is assigned
read/write permission by the root user, with no permission assigned to any-
one else (chmod -v 600).

® The sed command on the following RUN line adds the /usr/bin/firefox
command to the /etc/x11/xinit/xinitrc file.

= TCP port 5901 is exposed from the container with the EXPOSE 5901
instruction, which provides access to the VNC service inside the container to
the outside world.

= The last instruction (CMD) is used to start the vneserver process.

Before moving on, it’s useful to take a look at the xstartup script, which is run
when the VNC server starts up from the container. Here are the last few lines of
that file:

if [-f /etc/X1ll/xinit/xinitrc 1; then
exec sh /etc/X1l/xinit/xinitrc
fi
[-r SHOME/.Xresources] && xrdb S$HOME/.Xresources
xsetroot -solid grey
xterm -geometry 80x24+10+10 -1ls -title "SVNCDESKTOP Desktop" &
twm &

If the xinitrc file exists (which it does), that file is executed. That’s where
Docker added the firefox command earlier so it runs from there. If there are X
settings in the $HOME/.xresources file, those are included when the X resource

CHAPTER 18 Exploring Sample Dockerfile Files

database utility (xrdb) is run. After that, the xsetroot command sets the VNC back-
ground color to grey, and an xterm (Terminal window) is opened with a certain size
and title with a twm window manager running inside it. If you wanted to change the
look or behavior of your VNC session, you could add commands here or provide
your own .Xresources file.

If you are ready to try out your Firefox web browser in a VNC container, get the
Dockerfile and the xstartup script from GitHub and, with those two files in the
current directory, run the following docker build command:

docker build -rm -t myfirefox .
Successfully built c5c9e7e770db

Then to run the VNC server and Firefox from the container, type the following:

docker run -d -p 5901:5901 myfirefox

The vneserver daemon should now be running in the background.

To try it out run a VNC client from your local system. For example, you can
select Remote Desktop Viewer from your desktop, choose Connect, choose VNC,
type localhost:1 into the Host box, and click Connect. When prompted for the
password, type 123456. The simple VNC desktop and twm window manager should
appear with Firefox running.

To start a VNC client from the command line instead, you could type the follow-
ing from the local system:

yum install tigervnc -y
vncviewer localhost:1

Again, type the password 123456 when prompted and the VNC desktop, with
Firefox running it in, should appear on your local desktop. Figure 18.2 shows an
example of the VNC/Firefox container running on a Fedora system.

Because you are running Firefox in a VNC window and not as a containerized
application, all your settings and any files you save are inside the container. If you
want to use settings from your desktop, save files there, or connect to the sound
system, you can mount volumes, sockets, or devices as needed, as was done in the
Chrome example.

Using the Dockerfile described here, you could modify it to launch any desktop
application available with your distribution.

263

e/l

Docker Containers

fe9a59262e24:1 () - TigerVNC x

GitHub - Mozilla Firefox

/o *
4 | @ GitHub, Inc. (US) | https://github.com/fedora-clol c'| |C99€arch | w8 + A 8 =
GitHub This repository Explore Features Enterprise Pricing

fedora-cloud / Fedora-Dockerfiles @ watch 45 | 4 st

Fedora Doclkerfiles

P 392 commits I 4 branches > 0 releases i 40 contributors
1]

Branch: master » | Fedora-Dockerfiles [+ =

Merge pull request #131 from fedora-cloudjtools-fix ==

g scollier authored 4 days ago latest commit b5f959f8f4

8 Django update django image 6 days ago

| ansible replace maintainer name/email with url 5 months age

B apache do not use apachectl to start in foreground 3 months age =

: O

FIGURE 18.2 Launch a desktop application, like Firefox, in a VNC container.

SUMMARY

Seeing how others create images from Dockerfiles can help you figure out how you
want to create your own Docker images. In this chapter, I showcased several differ-
ent Dockerfiles being used today to create base images as well as images for run-
ning particular applications.

For base images, 1 showed a simple Dockerfile for creating a CentOS base
image. Most of the work for creating that base image is done from a Kickstart file
(to initially install the packages needed) and the tar command (for gathering up the
files to be included in the container). A much smaller example of a Docker base
image is the busybox image. As with the CentOS image, the busybox Dockerfile
mostly just pulls in a tarball (although just a tiny one of about 2.4MB).

Open source application projects such as WordPress and MySQL offer their
own official Docker images on the Docker Hub. From the Dockerfile and other files
they use to create their images, you can see interesting uses of environment vari-
ables to be able to modify how the containers are used at run time.

CHAPTER 18 Exploring Sample Dockerfile Files

The last couple of Dockerfiles described in this chapter show different ways of
launching a web browser on your local desktop from a container. The example of
using a Chrome browser from a container connects directly to desktop features by
mounting sockets, directories, and sound devices. The example of a Firefox browser
in a container relies on a VNC server to launch a slimmed-down remote desktop in

which to manage Firefox.

el

This page intentionally left blank

Index

Symbols

--net options, 140-142

A

ADD instructions, Dockerfile, 164-165
ADD_REGISTRY variable, 47

administrative commands, running
inside containers, 57-58
administrator accounts, managing,
Cockpit, 208-209
all-in-one Kubernetes, 217
configuring, 218-224

Amazon Web Services, opening
OpenShift, 243

Ansible, opening OpenShift, 243
application images, inspecting, 90-92
applications, containerizing

benefits, 4-7

challenging, 7

detriments, 4-5

goal, 10

arguments, atomic command, 181

atomic command, 180-185
arguments, 181
Atomic Host
configuring, 29-30
Fedora, 30-32
SPCs (super privileged containers),
176-180
host file system access, 179-180
host network interface access,
178-179
host process table access,
177-178
IPC access, 179
opening privileges to, 177
atomic run command, 183-184

attributes, containers, inspecting,

99-100

B

base images, 127

inspecting, 89-90
bash shell, starting interactive, 54-56
bind mounts, write-protecting, 124-125

e/l

Index

blocking registries attribute, 47
bridges
changing, 142-143
dockerO, alternatives to, 139-142
building containers, 169
cache management, 170-171
choosing environment for Red Hat,
242-243
cleaning up images, 169
excluding files, 248-249
gathering files, 248-249
keeping directory small, 169-170
layers, 249-250
managing software packages,
250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247
simplicity, 170
building images, 80, 157-158, 168-169
docker build command, 158-161
Dockerfile, 161-165

Busybox Dockerfiles, viewing, 257-258

C

caching, managing, 170-171
CDK (Container Development Kit),
242-243
CentOS Dockerfiles
adding systemd service, 256-257
base, 255-256
configuring, 28
Atomic, 30
viewing, 254-257
certificates, RHEL docker package, 27

changes, containers, inspecting, 106
character-based games, 56-57
Chrome Dockerfiles, viewing, 263-266
CI (continuous integration) Docker, 125
cleaning up
containers, 153
Fedora, 154
Ubuntu, 153-154.
images, 169
cloud management, containers,
193-194, 198-204

adding servers into Cockpit,

199-200

Cloud Native Computing Foundation
(CNCF), 214

clusters, Kubernetes, 217, 225
configuring, 226-233
starting up pods in, 233-237

CMD instructions, Dockerfile, 161-162

CNCF (Cloud Native Computing
Foundation), 214
Cockpit, 194-195, 210
adding container images, 201
adding servers into, 199-200
configuring storage, 207-208
Containers tab, 196
Journal tab, 196
managing administrator accounts,
208-209
managing containers in cloud,
193-194, 198-204
Networking tab, 196
network interfaces, 204-206
opening terminal in, 209
running images from, 201-204

Services tab, 196
Storage tab, 197
System tab, 194
Tools tab, 197
versions, 194
code, exit, waiting for, 116
commands
atomic, 180-185
arguments, 181
atomic run, 183-184
curl, 110-111, 222
docker, 8, 11-12, 15, 20-21
docker attach, 11, 100, 104-105
docker build, 12, 79, 127, 153,
158-161, 168-171, 251
docker commit, 79
docker cp, 107
docker create, 12, 117-119
docker diff, 106
docker events, 12
docker exec, 11, 105-107
docker help, 11
docker history, 11, 127
docker images, 12, 53, 147,
154-155
docker import, 12, 154-155
docker info, 11
docker inspect, 11, 87-103, 107
docker kill, 12, 114-115, 118
docker load, 12, 65, 77
docker login, 12
docker logs, 12, 106-107
docker pause, 10, 115-118
docker port, 11
docker ps, 53, 110, 116-117,
150, 155
docker ps -a, 53

Index 275

docker pull, 12, 65, 73-77, 127

docker pull -a ubuntu, 66

docker pull rhel, 71

docker pull ubuntu, 66

docker push, 12

docker rename, 12, 117

docker restart, 12, 113-114, 119

docker rm, 12, 51, 150-152

docker rmi, 12, 51, 146-149, 155

docker run, 10, 51-56, 59,
63-65, 73,117-118, 122, 131,
136, 150, 159

docker save, 12, 65, 76-77

docker search, 65-69, 72-73, 77, 88

docker search rhel, 71

docker start, 10-12, 53,
109-112, 151

docker start container, 53

docker stop, 10-12, 109-112, 118

docker stop container, 53

docker tag, 12, 79-80

docker top, 12, 103-104, 107

docker unpause, 10-12, 115

docker version, 11

docker wait, 116, 119

ifconfig, 141

journaletl, 72, 125

kill, 114

kubectl, 216, 222, 237

kubectl create, 220

kubectl delete, 237

kubectl get, 238

logger, 125

mysqld_saf, 222

ps, 54, 102

python, 88, 94, 102

rpm -ql, 23

276 Index

running administrative inside
containers, 5>7-58

systemetl, 38

yum filter, 251

committing containers, 80

configuration
Atomic Host, 29-30
Fedora, 30-32
CentOS, 28
containers, inspecting, 94-99
container-specific Linux, 29-34
CoreOS, 32-34
Debian, 28
Docker registries
Fedora, 37-40
Ubuntu, 40-42
Kubernetes
all-in-one, 218-224
clusters, 226-233
Linux, 18
Fedora, 21-24
Red Hat Enterprise Linux,
25-27
Ubuntu, 18-21
Mac OS X, 28
Microsoft Windows, 28
private registries, 35-37, 43
docker-registry package, 43-45
registry container, 46
storage, Cockpit, 207-208
SUSE, 28
Container Development Kit (CDK),
242-243
images, 10, 52, 216. See also containers
and pods
adding files to, 164-165
adding to Cockpit, 201

assigning
names to, 80-81
repository names to, 83-86
attaching user name to, 83-85
base, 127
building, 80, 157-158, 168-169
docker build command,
158-161
Dockerfile, 161-165
cleaning up, 169
container
adding to Cockpit, 201
administrative commands,
57-58
disk space consumption, 51
running containerized
services, 59
running containerized web
server, 59-61
running interactively, 54-57
correctable, 157
creating, 12
disk space consumption, 51
Docker image namespace, 46-48
exporting, 81
exposing ports from within
Dockerfile, 165-166
golang, 68
importing, 81
inspecting, 88-89
application, 90-92
base, 89-90
history, 92
layers, 127
listing, 12
loading, 77
making space for, 146
modifying, 12

names, adding tags to, 79-80
portable, 157
pulling from registries, 73-76
rails, 68
registry name and port, 80
removing, 12, 146-147
indwidual, 147-148
multiple, 148-149
reproducible, 157
running
containerized service, 59
containerized web server, 59-61
Jfrom Cockpit, 201-204
saving, 76-77
searching for, 66, 70-73
Docker Hub, 69-70
docker search command, 66-69
SPCs (super privileged containers)
installing with atomic
command, 182
obtaining information with
atomic command, 182-183
running, 183-184
starting and stopping, 184
uninstalling, 185
updating, 184
tagging, 81-82
tools for managing, 7
updatable, 158
user names, 80
verifiable, 158
version names, 79
version numbers, 79
wordpress, 90-91

containerization, 3
benefits, 4-7
challenges, 7

Index 277

detriments, 4-5
goal, 10

containerized images, running, 59

containerized web servers, running,
59-61
containers, 10, 13-14, 53, 59, 109,
121, 216
adding servers into Cockpit,
199-200
building, 169
cache management, 170-171
cleaning up images, 169
keeping directory small,
169-170
simplicity, 170
changing network mode, 140
changing state, 12
cleaning up, 153
Fedora, 154
Ubuntu, 153-154
committing, 80
connecting on different hosts,
138-139
copying files from, 107
creating, 12, 117-118
data volume, 123-124
developing
choosing environment for Red
Hat, 242-243
excluding files, 248-249
gathering files, 248-249
layers, 249-250
managing software packages,
250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247

Index

exposing ports to, 134-135
file systems, 6
inspecting, 88, 103, 107
attributes, 99-100
changes, 106
configuration, 94-99
CPU limits, 101-102
memory, 101-102
processes, 103-104
process output, 106
running, 92-103
SELinux contexts, 102-103
terminal sessions, 100
kernels, 6
limiting resources when running
services, 62-63
linked, 165
mapping ports from, 136-137
LXC (Linux Containers), 133
making space for, 146
managing in cloud, 193-194,
198-204
mapping ports outside hosts,
136-139
mounting devices, 125
mounting sockets, 125-126
pausing and unpausing, 115-116
pods, 216-218
deleting, 237-238
deploying across multiple
nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217
services, 216

starting, 220-223
starting up in cluster, 233-237
working with, 223-224
privileged, 63
running, 63-64
processes, 6
registry, configuring, 46
removing, 12, 150
individual, 150-152
multiple, 152
renaming, 117
restarting, 113-114
running, 11
running administrative commands
in, 57-58
sadc, 189-191
sample images, 14
saving, 153
Fedora, 154
Ubuntu, 153-154
sending signals to, 114-115
service interaction, 104-105
SPCs, 175-177, 185-186, 191
Atomic Host, 176-180
preparing to use, 180-185
running logging (rsyslog),
187-188
running rhel-tools, 186-187
running system monitor (sadc),
189-191
starting, 93-94, 109
detached, 110-111
interactive, 112
new processes in, 105
stopping, 109
detached, 110-111

interactive, 112

storage
hosts, 121
managing, 121-126
strategies for hosts, 127-130
super privileged, 63
volumes
hosts, 122-123
managing, 121
waiting for exit code, 116
write-protecting bind mounts,
124-125
container-specific Linux, 18
configuring, 29-34
Containers tab (Cockpit), 196
continuous integration (CI) Docker, 125
copying files from containers, 107
CoreOS, configuring, 32-34
correctable images, 157
CPU limits, containers, inspecting,
101-102
Creating a Kubernetes Cluster
page, 217
curl command, 110-111, 222

D

data volume containers, 123-124
Debian, configuring, 28
DEBUG variable (docker-registry
file), 44
deleting
containers, 150
indwidual, 150-152
multiple, 152

Index 279

images, 146-147
indiwidual, 147-148
multiple, 148-149
Kubernetes pods, 237-238
detached containers, starting and
stopping, 110-111
developing containers
choosing environment for Red Hat,
242-243
excluding files, 248-249
gathering files, 248-249
layers, 249-250
managing software packages,
250-251
resources, 251
running OpenShift, 243-246
setting up, 241-247
devices, 6
mounting, 125
Devops model, Kubernetes, 215
directories, small, 169-170
DISABLE_TOKEN_AUTH variable
(docker-registry file), 45
disk space consumption, container
images, 51
DNS (Domain Name System), 46
Docker, 3-4, 13
dockerQ bridge
alternatives to, 139-142
docker attach command, 11, 100
interacting with container services,
104-105
docker build command, 12, 79, 127,
153, 158-161, 168-171, 251

o8l

Index

docker command, 8, 11-12, 15, 20-21
subcommands, 11-12
Tab completion, 11

docker commit command, 12, 79
Docker Compose, 247

docker ¢p command, copying files from
containers, 107

docker create command, 12, 117-119

docker diff command, inspecting
container changes, 106

docker events command, 12

docker exec command, 11, 107
starting new processes in
containers, 105

Dockerfile Reference, 251

Dockerfiles, 171, 254, 270-271
ADD instructions, 164-165
assigning environment
variables, 166
assigning labels, 167-168
best practice documentation, 251
building images, 157-158
docker build command,
158-161
setting command to execute,
161-165
categories, 253
CMD instructions, 161-162
ENTRYPOINT instructions,
161-163
ENYV instructions, 166
EXPOSING instructions, 165-166
LABEL instructions, 167-168
RUN instructions, 163-164

viewing
Busybox, 257-258
CentOS, 254-257
Chrome, 263-266
Firefox, 267-269
MySQL, 260-263
WordPress, 258-260

docker help command, 11
docker history command, 11, 127
Docker Hub
image searches, 69-70
searching images, 88
Docker Hub Registry, 7-12, 15
configuring in Fedora, 37-40
configuring in Ubuntu, 40-42
configuring private registry,
35-37,43
docker-registry package, 43-45
registry container, 46
image searches, 66
docker search command, 66-69
Docker image namespace, 46-48

docker images command, 12, 53, 147,
154-155
docker import command, 12, 154-155
docker info command, 11
docker inspect command, 11-12,
87,107
inspecting containers, 88, 103
runming, 92-103
inspecting images, 88-89
application, 90-92
base, 89-90
history, 92

docker kill command, 12, 114-115, 118
Docker Kitematic, 247

docker load command, 12, 65, 77
docker login command, 12

docker logout command, 12

docker logs command, 12, 107
inspecting container process

output, 106
Docker Machine, 247
Docker Official Images Project, 251
docker pause command, 10, 115-118
docker port command, 11

Docker Project, 8, 15
code attributes, 46-47

docker ps -a command, 53

docker ps command, 53, 110, 116-117,
150, 155

docker pull -a ubuntu command, 66

docker pull command, 12, 65,
73-77,127

docker pull thel command, 71

docker pull Ubuntu command, 66

docker push command, 12

Docker Registry, 13

docker-registry package, configuring,
43-45

docker rename command, 12, 117

docker restart command, 12,
113-114, 119

docker rm command, 12, 51, 150-152

docker rmi command, 12, 51,
146-149, 155

Index 281

docker run command, 10-12, 51-56,
59, 63-65, 73, 117-118, 122, 131,
136, 150, 159

docker save command, 12, 65, 76-77

docker search command, 65-69, 72-73,
77, 88

docker search rhel command, 71

docker start command, 10-12, 53,
109, 151
detached containers, 110-111
interactive containers, 112

docker start container command, 53

docker stop command, 10-12, 109, 118
detached containers, 110-111
interactive containers, 112

docker stop container command, 53
Docker Swarm, 247

docker tag command, 12, 79-80
Docker Toolbox, 247

docker top command, 107

inspecting containers processes,

103-104
docker top subcommand, 12
docker unpause command, 10-12, 115
docker version command, 11
docker wait command, 116, 119
Domain Name System (DNS), 46

downloading, 22
Red Hat Enterprise Linux, 25
Ubuntu, 19

che

Index

E

ENTRYPOINT instructions, Dockerfile,
161-163

ENYV instructions, Dockerfile, 166

environment variables, assigning in

Dockerfile, 166
exit code, containers, waiting for, 116
exporting images, 81
EXPOSE instructions, Dockerfile,
165-166
EXPOSE keyword, 134

exposing ports, 134
from image within Dockerfile,
165-166

external storage, attaching to hosts,
128-129

F

Fedora
Atomic Host
configuring, 21-24
Atomic, 30
Atomic Host, 30-32
containers, cleaning up and
saving, 154
downloading, 22
installing, 22
setting up Docker registry, 37-40
files
adding images to, 164-165
copying from containers, 107
file systems, containers, 6
Firefox Dockerfiles, viewing, 267-269

Flannel, setting up networking for
Kubernetes, 231-233

Frazelle, Jessie, 263

G

GitHub, 253
golang image, 68

Google Chrome Dockerfiles, viewing,
263-266

gunicorn processes, 43-45

H

history, images, inspecting, 92

host process table, accessing, 177-178

hosts

attaching external storage, 128-129
containers
connecting on different,
138-139
Atomic Host SPCs (super
privileged containers),
176-180
file systems, accessing, 179-180
mapping ports outside, 136-139
network interfaces, accessing,
178-179
privileges, 13
containers, 63
storage strategies, 127-130
volumes, 122-123

Hykes, Solomon, 8

ifconfig command, 141

images, 10, 52, 216. See also containers
and pods
adding files to, 164-165
adding to Cockpit, 201
assigning
names to, 80-81
repository names to, 83-86
attaching user name to, 83-85
base, 127
building, 80, 157-158, 168-169
docker build command,
158-161
Dockerfile, 161-165
cleaning up, 169
container
adding to Cockpit, 201
administrative commands,
57-58
disk space consumption, 51
running containerized
services, 59
running containerized web
server, 59-61
running interactively, 54-57
correctable, 157
creating, 12
disk space consumption, 51
Docker image namespace, 46-48
exporting, 81
exposing ports from within
Dockerfile, 165-166
golang, 68
importing, 81

Index 283

inspecting, 88-89
application, 90-92
base, 89-90
history, 92
layers, 127
listing, 12
loading, 77
making space for, 146
modifying, 12
names, adding tags to, 79-80
portable, 157
pulling from registries, 73-76
rails, 68
registry name and port, 80
removing, 12, 146-147
indwidual, 147-148
multiple, 148-149
reproducible, 157
running
containerized service, 59
containerized web server, 59-61
Jfrom Cockpit, 201-204
saving, 76-77
searching for, 66, 70-73
Docker Hub, 69-70
docker search command, 66-69
SPCs (super privileged containers)
installing with atomic
command, 182
obtaining information with
atomic command, 182-183
running, 183-184
starting and stopping, 184
uninstalling, 185
updating, 184
tagging, 81-82

284 Index

tools for managing, 7
updatable, 158
user names, 80
verifiable, 158

version names, 79

Red Hat Enterprise Linux, 25
Ubuntu, 19

interacting with services inside
containers, 104-105

interactive containers, starting and
version numbers, 79

wordpress, 90-91
importing images, 81
INDEX_ENDPOINT variable

(docker-registry file), 45
individual J- K

containers, removing, 150-152

stopping, 112
interfaces, network, Cockpit, 204-206

IPC (inter-process communications), 6
accessing, 179

journalctl command, 72, 125
Journal tab (Cockpit), 196

images, removing, 147-148
info argument (atomic command), 181
inspecting
containers, 88, 103, 107
attributes, 99-100
changes, 106
configuration, 94-99

kernels, containers, 6

kill command, 114

Kitematic, 247

kubectl command, 216, 222, 237

CPU limits, 101-102
memory, 101-102
processes, 103-104
process output, 106
running, 92-103
SELinux contexts, 102-103
starting, 93-94
terminal sessions, 100
images, 88-89
application, 90-92
base, 89-90
history, 92

install argument (atomic command), 181

installation

Fedora, 22
Kubernetes, 218-219
Linux, 227

kubectl create command, 220
kubectl delete command, 237
kubectl get command, 238

Kubernetes, 8, 213-216, 224
advanced features, 226
all-in-one, 217

configuring, 218-224
clusters, 217, 225
configuring, 226-233
starting up pods in, 233-237
creating sets of services, 215
data center stabilization, 215
Devops model, 215
generic host computers, 215
installing, 218-219
master, setting up, 227-229
networking, setting up, 231-233

nodes, 226
setting up, 230-231
pods, 216-218
deleting, 237-238
deploying across multiple
nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217
services, 216
starting, 220-223
starting up in cluster, 233-237
working with, 223-224
replication controllers, deleting,
237-238
services, deleting, 237-238
starting, 220

L

LABEL instructions, Dockerfile,
167-168

labels, assigning in Dockerfile, 167-168
layers
developing containers, 249-250
images, 127
linked containers, 165
mapping ports from, 136-137
Linux, 17
choosing version, 250
configuring, 18
Fedora, 21-24
RHEL, 25-27
Ubuntu, 18-21
container-specific, 18
configuring, 29-34

Index 285

installing, 227
major distributions, 10

LinuxDockeriles, 253

listing images, 12

loading images, 77

logger command, 125

logging, rsyslog container, 187-188

LOGLEVEL variable (docker-registry
file), 44

LVM (logical volume manager),
expanding storage with, 129-130

LXC (Linux Containers), 133

M

Mac OS X, 17
configuring, 28
managing container storage, 122-126
strategies for hosts, 127-130
mapping ports, 134
outside hosts, 136-139
master, Kubernetes, setting up, 227-229
memory, containers, inspecting,
101-102
Microsoft Windows, 17
configuring, 28
mounting
devices, 125
sockets, 125-126
multiple
containers, removing, 152
images, removing, 148-149
MySQL Dockerfiles, viewing, 260-263

mysqld_saf command, 222

o86

Index

N

names
assigning
repository to images, 83-86
user names to, 83-85
images, adding tags to, 79-80
namespace, Docker image, 46-48
naming images, 80-81
networking, 13
setting up with Flannel for
Kubernetes, 231-233
Networking tab (Cockpit), 196
network interfaces, 6
Cockpit, 204-206
network mode, containers,
changing, 140
nodes, Kubernetes, 226
setting up, 230-231

o

Official Repositories (Docker Hub), 69

OpenShift, 241-242
running, 243-246

open source Dockerfiles, viewing
MySQL, 260-263
WordPress, 258-260
open source projects, Dockerfiles, 253
operating systems
CentOS, configuring, 28
CoreOS, configuring, 32-34
Debian, configuring, 28
Fedora, configuring, 21-24

Linux, 17
configuring, 18-21
container-specific, 18, 29-34
Mac OS X, 17
configuring, 28
Microsoft Windows, 17
configuring, 28
RHEL (Red Hat Enterprise
Linux), 175
Atomic, 30, 128
configuring, 25-27
container development
environments, 242-243
SUSE, configuring, 28
configuring, 25-27
downloading, 25
installing, 25
0S X, 17
configuring, 28
output, container processes,
inspecting, 106

P

pausing containers, 115-116

pods, Kubernetes, 216-218
deleting, 237-238
deploying across multiple

nodes, 216
master, 216
nodes, 216
replication controller, 216
resource files, 217

services, 216
starting, 220-223

starting up in cluster, 233-237
working with, 223-224
portable images, 157
ports
exposing, 134
Jfrom image within Dockerfile,
165-166
to other containers, 134-135
mapping, 134-135
outside host, 136-139
private registry, configuring, 35-37, 43
docker-registry package, 43-45
registry container, 46
privileged containers, 63
running, 63-64
PRIVILEGED_KEY variable
(docker-registry file), 45
privileges, SPCs, opening to host, 177
processes, 6
containers
inspecting, 103-104
inspecting output, 106
starting new, 105
gunicorn, 43-45
process tables, 6
ps command, 54, 102
pulling images from registries, 73-76
push confirmation attribute, 47
python command, 88, 94, 102

Index 287

Q-R

rails image, 68
Red Hat Enterprise Linux. See RHEL
(Red Hat Enterprise Linux)
registries, 65
ADD_Registry variable, 47
configuring
Fedora, 37-40
Ubuntu, 40-42
Docker Hub Registry, 7-13, 15
configuring in Fedora, 37-40
configuring in Ubuntu, 40-42
configuring private registry,
35-37, 43-46
image searches, 66-69
docker-registry package, 43-45
private, configuring, 35-37, 43-46
pulling images from, 73-76
registry container, configuring, 46
registry container, configuring, 46
removing
containers, 150
individual, 150-152
multiple, 152
images, 146-147
individual, 147-148
multiple, 148-149
Kubernetes replication controllers,
237-238

renaming containers, 117
replication controllers, Kubernetes,
deleting, 237-238
repositories, 65
images, assigning names to, 83-86

o8l

Index

reproducible images, 157

resources, limiting when running

services in containers, 62-63
restarting containers, 113-114
RHEL (Red Hat Enterprise Linux), 175
Atomic
configuring, 30
Host, 128
configuring, 25-27
downloading, 25
installing, 25
rhel-tools container, SPCs, 186-187
rpm -ql command, 23
rsyslog container, 187-188
run argument (atomic command), 181

RUN instructions, Dockerfile, 163-164

running
administrative commands in
containers, 57-58
container images interactively,
54-56
administrative commands,
57-58
character-based games, 56-57
containerized services, 59
containerized web servers, 59-61
containers, 11
inspecting, 92-103
privilege, 63-64

S

sadc container, 189-191
saving
containers, 153
Fedora, 154
Ubuntu, 153-154
images, 76-77
search attribute, 46
SEARCH_BACKEND variable
(docker-registry file), 45

searching for images, 66, 70-73
Docker Hub, 69-70

docker search command, 66-69
Search Registry Box (Docker Hub), 69
secrets, RHEL docker package, 27

Security Enhanced Linux (SELinux),
122-123
SELinux contexts, containers,
inspecting, 102-103
SELinux (Security Enhanced Linux),
122-123
servers, adding into Cockpit, 199-200
services
containers, interacting with,
104-105
Kubernetes, deleting, 237-238

Services tab (Cockpit), 196

shells, bash, starting interactively,
54-56

SIGHUP signal, 115

SIGINT signal, 115

SIGKILL signal, 114-115

signals, sending to containers, 114-115

SIGTERM signal, 115
sockets, mounting, 125-126

SPCs (super privileged containers),
175-177, 185-186, 191
Atomic Host, 176
host file system access, 179-180
host network interface access,
178-179
host process table access,
177-178
IPC access, 179
opening privileges, 177
preparing to use, 180
atomic command, 180-185
running logging (rsyslog), 187-188
running rhel-tools, 186-187
running system monitor (sadc),
189-191
SQLALCHEMY_INDEX_DATABASE
variable (docker-registry file), 45
STANDALONE variable
(docker-registry file), 44
starting
Kubernetes, 220
containers, 93-94, 109
detached, 110-111
interacte, 112
SPCs (super privileged
containers), 184
stopping
SPCs (super privileged
containers), 184
containers, 109
detached, 110-111
interactie, 112
processes, 105

Index 289

storage, 13, 130-131
attaching external to hosts, 128-129
configuring, Cockpit, 207-208
containers, 121
managing, 122-126
strategies for hosts, 127-130
LVM (logical volume manager),
129-130
STORAGE_REDIRECT variable
(docker-registry file), 45
Storage tab (Cockpit), 197

super privileged containers (SPCs). See
SPCs (super privileged containers)

SUSE, configuring, 28
systemctl command, 38

systemd service, adding to CentOS
Dockerfile, 256-257

System tab (Cockpit), 194

T

Tab completion, 11

tagging images, 81-82

terminal sessions, containers,
inspecting, 100

terminals, opening, Cockpit, 209

Tools tab (Cockpit), 197

U

Ubuntu
configuring for Docker, 18-21
containers, cleaning up and saving,
153-154
docker.io package, 20-21
downloading, 19

edl

Index

installing, 19
setting up Docker registry, 40-42

uninstall argument (atomic
command), 181

uninstalling SPC images, 185
union file systems, 249
unpausing containers, 115-116
updatable images, 158

update argument (atomic
command), 181

updating SPC images, 184

user names, attaching to images, 83-85

v

variables
ADD_REGISTRY, 47
assigning in Dockerfile, 166
verifiable images, 158
version names, images, 79
version numbers, images, 79
viewing
Busybox Dockerfiles, 257-258
CentOS Dockerfiles, 254-257

Chrome Dockerfiles, 263-266
Firefox Dockerfiles, 267-269
MySQL Dockerfiles, 260-263
WordPress Dockerfiles, 258-260

vimfiles, 27
VMs (virtual machines), 5

volumes
data volume containers, 123-124

hosts, 122-123

W-Z
waiting for exit code, containers, 116
web servers, containerized, running,
59-61
Windows, 17
configuring, 28

WordPress Dockerfiles, viewing,
258-260

wordpress image, 90-91
write-protecting bind mounts, 124-125

yum filter command, 251

This page intentionally left blank

livelessons®

video instruction from technology experts

Hands-On Lessons to Help You
Explore Docker containers,

Registries and Run-Time Environments
informit.com/negus

In 2.5+ hours, learn to create containerized applications with
Docker that are light-weight and portable.

Learn How To

+ Begin using Docker on
Ubuntu, Red Hat Enterprise
Linux, or Fedora systems
(with options of Windows
or Mac OS X)

« Pull and push Docker
container images from and
to Docker registries. The next
few lessons get you started
running and investigating
how containers work

¢ Build your own Docker » | 00:00 00:00 | stunlfl] | 33

images ISBN: 9780134096131

The video then touches on orchestration tools such as Kubernetes and GearD for
deploying containers and provides tips for developing your own Docker containers.

WATCH SAMPLE VIDEO AND SAVE 50%* with discount code DOCKERVID50
through December 31, 2016 at informit.com/negus.

*50% off is taken from the video list price. Code DOCKERVID50 is only good on
featured complete video product and cannot be combined with any other offer.

informiT <

NEGUS LIVE LINUX SERIES

Content Update
Program

Jocker Confainers

Instructions to access your free copy of Docker Containers Web Edition
as part of the Content Update Program:

Q

If you purchased your book from informit.com, your free Web Edition can be found
under the Digital Purchases tab on your account page.

If you have purchased your book at a retailer other than InformIT and/or have not
registered your copy, follow these steps:

1. Go to informit.com/register.

2. Signin or create a new account.

3. Enter ISBN: 9780134136561.

4. Answer the questions as proof of purchase.
5

. Click on the Digital Purchases tab on your Account page to access your free
Web Edition.

More About the Content Update Program...

InformIT will be updating the Docker Containers Web Edition periodically, as the Docker
technology evolves.

Registered users will receive an email alerting them of the changes each time the
Docker Containers Web Edition has been updated. The email alerts will be sent to the
email address used for your informit.com account.

When a new edition of this book is published, no further updates will be added to this
book’s Web Edition. However, you will continue to have access to your current Web
Edition with its existing updates.

The Web Edition can be used on tablets that use modern mobile browsers. Simply log into
your informit.com account and access the Web Edition from the Digital Purchases tab.

For more information about the Content Update Program, visit informit.com/CUP or
email our Customer Service department at informit@custhelp.com.

	Contents
	Preface
	Acknowledgments
	About the Author
	Part I: Getting Going with Containers
	Chapter 1 Containerizing Applications with Docker
	Understanding Pros and Cons of Containerizing Applications
	Understanding What Makes Up Docker
	Approaching Containers
	Summary

	Chapter 2 Setting Up a Container Run-Time Environment
	Configuring a Standard Linux System for Docker
	Configuring a Container-Style Linux System for Docker
	Summary

	Chapter 3 Setting Up a Private Docker Registry
	Getting and Starting a Private Docker Registry
	Configuring a Private Docker Registry
	Understanding the Docker Image Namespace
	Summary

	Part II: Working with Individual Containers
	Chapter 4 Running Container Images
	Running Container Images Interactively
	Running Containerized Services
	Running Privileged Containers
	Summary

	Chapter 5 Finding, Pulling, Saving, and Loading Container Images
	Searching for Images
	Pulling Images from Registries
	Saving and Loading Images
	Summary

	Chapter 6 Tagging Images
	Assigning Names to Images
	Assigning Tags to Images
	Assigning Repository Names to Images
	Summary

	Chapter 7 Investigating Containers
	Inspecting Images and Containers
	Inspecting an Image
	Inspecting Running Containers
	Finding More Ways to Look into Containers
	Summary

	Chapter 8 Starting, Stopping, and Restarting Containers
	Stopping and Starting a Container
	Restarting a Container
	Sending Signals to a Container
	Pausing and Unpausing Containers
	Waiting for a Container’s Exit Code
	Renaming a Container
	Creating a Container
	Summary

	Chapter 9 Configuring Container Storage
	Managing Storage for a Container
	Storage Strategies for the Docker Host
	Summary

	Chapter 10 Configuring Container Networking
	Expose Ports to Other Containers
	Map Ports Outside the Host
	Alternatives to the docker0 Bridge
	Changing the Docker Network Bridge
	Summary

	Chapter 11 Cleaning Up Containers
	Making Space for Images and Containers
	Removing Images
	Removing Containers
	Cleaning Up and Saving Containers
	Summary

	Chapter 12 Building Docker Images
	Doing a Simple docker build
	Setting a Command to Execute from a Dockerfile
	Exposing Ports from an Image within a Dockerfile
	Assigning Environment Variables in a Dockerfile
	Assigning Labels in a Dockerfile
	Using Other docker build Command Options
	Tips for Building Containers
	Summary

	Part III: Running Containers in Cloud Environments
	Chapter 13 Using Super Privileged Containers
	Using Super Privileged Containers in Atomic Host
	Understanding Super Privileged Containers
	Preparing to Use Super Privileged Containers
	Using the atomic Command
	Trying Some SPCs
	Summary

	Chapter 14 Managing Containers in the Cloud with Cockpit
	Understanding Cockpit
	Starting with Cockpit
	Adding Servers into Cockpit
	Working with Containers from Cockpit
	Working with Network Interfaces from Cockpit
	Configuring Storage from Cockpit
	Doing Other Administrative Tasks in Cockpit
	Summary

	Part IV: Managing Multiple Containers
	Chapter 15 Orchestrating Containers with Kubernetes
	Understanding Kubernetes
	Starting with Kubernetes
	Setting Up an All-in-One Kubernetes Configuration
	Summary

	Chapter 16 Creating a Kubernetes Cluster
	Understanding Advanced Kubernetes Features
	Setting Up a Kubernetes Cluster
	Starting Up Pods in a Kubernetes Cluster
	Deleting Replication Controllers, Services, and Pods
	Summary

	Part V: Developing Containers
	Chapter 17 Developing Docker Containers
	Setting Up for Container Development
	Using Good Development Practices
	Summary

	Chapter 18 Exploring Sample Dockerfile Files
	Examining Dockerfiles for Official Docker Images
	Examining Dockerfiles from Open Source Projects
	Examining Dockerfiles for Desktop and Personal Use
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

