O'REILLY"

Docker
COOKDOOK

7 P
)
7
Z
_

SOLUTIONS AND EXAMPLES FOR
BUILDING DISTRIBUTED APPLICATIONS

Sébastien Goasguen

O'REILLY"

Docker Cookbook

Whether you're deploying applications on premise or in the cloud, this
cookbook provides developers, operators, and IT professionals with more
than 130 proven recipes for working with Docker.

With these practical solutions, experienced developers will be able to
package and deploy distributed applications within a couple of chapters,
even if you have no previous knowledge of Docker. If you're an IT
professional, you'll be able to solve everyday problems, as well as create,
run, share, and deploy Docker images. And if you're an operator, you'll
quickly be able to adopt the tools that will change the way you work.

The recipes in this book will help you:

m Manage containers, mount data volumes, and link containers
m Create and share container images

m Network containers across single or multiple hosts

[|

Tackle advanced topics such as Docker configuration and
development

m Deploy multi-container applications on a distributed cluster
with Kubernetes

m Use a new generation of operating systems optimized for Docker

m Learn tools for application deployment, continuous integration,
service discovery, and orchestration

m Access a Docker host on Amazon AWS, Google GCE, and
Microsoft Azure

m Monitor containers and explore different application use cases

Sébastien Goasguen is Senior Open Source Solutions Architect at Citrix, where he
works primarily on the Apache CloudStack project, helping develop the CloudStack
ecosystem. Sébastien is the current Vice President-elect of the Apache CloudStack
project and a member of the Apache libcloud project management committee.

“This cookbook does a
great job covering the
Docker ecosystem and is
a terrific help for anyone

interested in containers.”

—Darren Shepherd
Co-Founder, Rancher Labs

“These recipes were
crucial to help us go to
production extremely
quickly with our

platform.”

—Mathieu Buffenoir
CTO, Bity

SYSTEM ADMINISTRATION

US $44.99 CAN $51.99
ISBN: 978-1-491-91971-2

NN i

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Docker Cookbook

Starting with Docker is one thing, but really grasping the concept of it is another. It
requires a sound understanding. This cookbook helped us tremendously in implementing
Docker in the application landscapes we run for our customers.

—Arjan Eriks, Cloud Computing Services
Director, Schuberg Philis

This is a whirlwind tour of the ever-expanding collection of tools and platforms that work
with Docker, with specific and practical examples. As the core functionality of Docker
becomes even more of an industry standard through the efforts of the Open Container
Initiative, expect to see the this ecosystem continue to expand rapidly. Sébastien’s book
can give any practitioner the solid grounding they need to keep up with this

pace of change.

—Chip Childers, Vice President of
Technology, Cloud Foundry Foundation

Sébastien does a terrific job of encapsulating Docker best practices and introductory
material for the novice user across networking, image management, configuration, and
very fast moving orchestration and scheduling ecosystem including Kubernetes and
Mesos/Marathon.

—Patrick Reilly, CEO, Kismatic

Docker Cookbook

Sébastien Goasguen

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@2a{=|HNE

Docker Cookbook
by Sébastien Goasguen

Copyright © 2016 Sébastien Goasguen. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: WordCo Indexing Services
Production Editor: Nicole Shelby Interior Designer: David Futato
Copyeditor: Sharon Wilkey Cover Designer: Ellie Volckhausen
Proofreader: Kim Cofer lllustrator: Rebecca Demarest

November 2015: First Edition

Revision History for the First Edition
2015-11-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491919712 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Docker Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-91971-2
[LST]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491919712

Table of Contents

Preface. ... Xi
1. Getting Started withDocker.........covveriiiiiiiiii ittt iieeenens 1
1.0 Introduction 1
1.1 Installing Docker on Ubuntu 14.04 2
1.2 Installing Docker on CentOS 6.5 3
1.3 Installing Docker on CentOS 7 4
1.4 Setting Up a Local Docker Host by Using Vagrant 4
1.5 Installing Docker on a Raspberry Pi 6
1.6 Installing Docker on OS X Using Docker Toolbox 7
1.7 Using Boot2Docker to Get a Docker Host on OS X 9
1.8 Running Boot2Docker on Windows 8.1 Desktop 13
1.9 Starting a Docker Host in the Cloud by Using Docker Machine 15
1.10 Using Docker Experimental Binaries 19
1.11 Running Hello World in Docker 20
1.12 Running a Docker Container in Detached Mode 22
1.13 Creating, Starting, Stopping, and Removing Containers 23
1.14 Building a Docker Image with a Dockerfile 24
1.15 Using Supervisor to Run WordPress in a Single Container 25
1.16 Running a WordPress Blog Using Two Linked Containers 28
1.17 Backing Up a Database Running in a Container 30
1.18 Sharing Data in Your Docker Host with Containers 32
1.19 Sharing Data Between Containers 33
1.20 Copying Data to and from Containers 35
2. Image Creationand Sharing............ooviiiiiiiiiiiiiiiiiinriiiienneennnss 37
2.0 Introduction 37

2.1 Keeping Changes Made to a Container by Committing to an Image 38

2.2 Saving Images and Containers as Tar Files for Sharing 39

2.3 Writing Your First Dockerfile 40
2.4 Packaging a Flask Application Inside a Container 43
2.5 Optimizing Your Dockerfile by Following Best Practices 45
2.6 Versioning an Image with Tags 47
2.7 Migrating from Vagrant to Docker with the Docker Provider 49
2.8 Using Packer to Create a Docker Image 51
2.9 Publishing Your Image to Docker Hub 55
2.10 Using ONBUILD Images 58
2.11 Running a Private Registry 59
2.12 Setting Up an Automated Build on Docker Hub for Continuous
Integration/Deployment 62
2.13 Setting Up a Local Automated Build by Using a Git Hook and a Private
Registry 66
2.14 Using Conduit for Continuous Deployment 67
3. Docker Networking.ovveeenieinieeiiieieeeiieeiieeeeeeneeenneennenens 69
3.0 Introduction 69
3.1 Finding the IP Address of a Container 70
3.2 Exposing a Container Port on the Host 71
3.3 Linking Containers in Docker 73
3.4 Understanding Docker Container Networking 76
3.5 Choosing a Container Networking Namespace 79
3.6 Configuring the Docker Daemon IP Tables and IP Forwarding Settings 81
3.7 Using pipework to Understand Container Networking 83
3.8 Setting Up a Custom Bridge for Docker 88
3.9 Using OVS with Docker 90
3.10 Building a GRE Tunnel Between Docker Hosts 91
3.11 Running Containers on a Weave Network 94
3.12 Running a Weave Network on AWS 96
3.13 Deploying flannel Overlay Between Docker Hosts 98
3.14 Networking Containers on Multiple Hosts with Docker Network 100

3.15 Diving Deeper into the Docker Network Namespaces Configuration 104

4. Docker Configuration and Development............ccovviiiiiiiiiiininnnnenn. 107
4.0 Introduction 107
4.1 Managing and Configuring the Docker Daemon 108
4.2 Compiling Your Own Docker Binary from Source 109
4.3 Running the Docker Test Suite for Docker Development 111
4.4 Replacing Your Current Docker Binary with a New One 112
4.5 Using nsenter 113
4.6 Introducing runc 115

vi | Tableof Contents

4.7 Accessing the Docker Daemon Remotely

4.8 Exploring the Docker Remote API to Automate Docker Tasks
4.9 Securing the Docker Daemon for Remote Access

4.10 Using docker-py to Access the Docker Daemon Remotely
4.11 Using docker-py Securely

4.12 Changing the Storage Driver

. Kubernetes..... ..o

5.0 Introduction

5.1 Understanding Kubernetes Architecture

5.2 Networking Pods for Container Connectivity

5.3 Creating a Multinode Kubernetes Cluster with Vagrant

5.4 Starting Containers on a Kubernetes Cluster with Pods

5.5 Taking Advantage of Labels for Querying Kubernetes Objects

5.6 Using a Replication Controller to Manage the Number of Replicas of a
Pod

5.7 Running Multiple Containers in a Pod

5.8 Using Cluster IP Services for Dynamic Linking of Containers

5.9 Creating a Single-Node Kubernetes Cluster Using Docker Compose

5.10 Compiling Kubernetes to Create Your Own Release

5.11 Starting Kubernetes Components with the hyperkube Binary

5.12 Exploring the Kubernetes API

5.13 Running the Kubernetes Dashboard

5.14 Upgrading from an Old API Version

5.15 Configuring Authentication to a Kubernetes Cluster

5.16 Configuring the Kubernetes Client to Access Remote Clusters

. Optimized Operating System Distributions for Docker...........................

6.0 Introduction

6.1 Discovering the CoreOS Linux Distribution with Vagrant

6.2 Starting a Container on CoreOS via cloud-init

6.3 Starting a CoreOS Cluster via Vagrant to Run Containers on Multiple
Hosts

6.4 Using fleet to Start Containers on a CoreOS Cluster

6.5 Deploying a flannel Overlay Between CoreOS Instances

6.6 Using Project Atomic to Run Docker Containers

6.7 Starting an Atomic Instance on AWS to Use Docker

6.8 Running Docker on Ubuntu Core Snappy in a Snap

6.9 Starting an Ubuntu Core Snappy Instance on AWS EC2

6.10 Running Docker Containers on RancherOS

118
119
121
123
125
126

129
129
131
134
135
139
140

142
144
146
151
154
157
158
162
163
165
167

169
169
170
173

175
178
180
182
184
185
188
191

Table of Contents

vii

7. The Docker Ecosystem:ToOlS.oovvnvvririiiriiiiiiiiiiiiiiiiiieennnss 193

7.0 Introduction 193
7.1 Using Docker Compose to Create a WordPress Site 194
7.2 Using Docker Compose to Test Apache Mesos and Marathon on Docker 197
7.3 Starting Containers on a Cluster with Docker Swarm 199
7.4 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers 202
7.5 Managing Containers Locally Using the Kitematic Ul 204
7.6 Managing Containers Through Docker Ul 206
7.7 Using the Wharfee Interactive Shell 208
7.8 Orchestrating Containers with Ansible Docker Module 210
7.9 Using Rancher to Manage Containers on a Cluster of Docker Hosts 213
7.10 Running Containers on a Cluster Using Lattice 217
7.11 Running Containers via Apache Mesos and Marathon 219
7.12 Using the Mesos Docker Containerizer on a Mesos Cluster 224
7.13 Discovering Docker Services with Registrator 226
8. DockerintheCloud............oeveiiiiiiiiiiii 231
8.0 Introduction 231
8.1 Accessing Public Clouds to Run Docker 232
8.2 Starting a Docker Host on AWS EC2 235
8.3 Starting a Docker Host on Google GCE 239
8.4 Starting a Docker Host on Microsoft Azure 241
8.5 Starting a Docker Host on AWS Using Docker Machine 243
8.6 Starting a Docker Host on Azure with Docker Machine 245
8.7 Running a Cloud Provider CLI in a Docker Container 247
8.8 Using Google Container Registry to Store Your Docker Images 250
8.9 Using Docker in GCE Google-Container Instances 252
8.10 Using Kubernetes in the Cloud via GCE 254
8.11 Setting Up to Use the EC2 Container Service 259
8.12 Creating an ECS Cluster 261
8.13 Starting Docker Containers on an ECS Cluster 265
8.14 Starting an Application in the Cloud Using Docker Support in AWS
Beanstalk 269
9. Monitoring CONtaINerS.cvvvvinriir ittt riiiienneennestnerennsennes 273
9.0 Introduction 273
9.1 Getting Detailed Information About a Container with docker inspect 274
9.2 Obtaining Usage Statistics of a Running Container 276
9.3 Listening to Docker Events on Your Docker Hosts 277
9.4 Getting the Logs of a Container with docker logs 279
9.5 Using a Different Logging Driver than the Docker Daemon 280
9.6 Using Logspout to Collect Container Logs 282

vii | Table of Contents

10. Application Use Cases

9.7 Managing Logspout Routes to Store Container Logs

9.8 Using Elasticsearch and Kibana to Store and Visualize Container Logs
9.9 Using Collectd to Visualize Container Metrics

9.10 Using cAdvisor to Monitor Resource Usage in Containers

9.11 Monitoring Container Metrics with InfluxDB, Grafana, and cAdvisor
9.12 Gaining Visibility into Your Containers’ Layout with Weave Scope

10.0 Introduction

10.1 CI/CD: Setting Up a Development Environment

10.2 CI/CD: Building a Continuous Delivery Pipeline with Jenkins and
Apache Mesos

10.3 ELB: Creating a Dynamic Load-Balancer with Confd and Registrator

10.4 DATA: Building an S3-Compatible Object Store with Cassandra on
Kubernetes

10.5 DATA: Building a MySQL Galera Cluster on a Docker Network

10.6 DATA: Dynamically Configuring a Load-Balancer for a MySQL Galera
Cluster

10.7 DATA: Creating a Spark Cluster

...

285
287
288
294
296
297

299
299
300

304
308

315
319

321
323

Table of Contents

ix

Preface

Why | Wrote This Book

I have been working on clouds at the Iaa$ layer for over 10 years. With Amazon AWS,
Google GCE, and Microsoft Azure now providing large-scale cloud services for sev-
eral years, it is fair to say that getting access to a server has never been this easy and
this quick. The real value to me has been the availability of an API to access these
services. We can now program to create an infrastructure and program to deploy an
application. These programmable layers help us reach a higher level of automation,
which for a business translates in faster time to market, more innovation, and better
user service.

However, application packaging, configuration, and composition of services in a dis-
tributed environment has not progressed much despite a lot of work in configuration
management and orchestration. Deploying and running a distributed application at
scale and in a fault-tolerant manner is still hard.

I was not crazy about Docker until I tried it and understood what it brings to the
table. Docker primarily brings a new user experience to Linux containers. It is not
about full virtualization versus containers; it is about the ease of packaging and run-
ning an application. Once you start using Docker and enjoy this new experience, the
side effect is that you will also start thinking automatically about composition and
clustering.

Containers help us think more in terms of functional isolation, which in turn forces
us to decompose our applications before stitching them back together for a dis-
tributed world.

How This Book Is Organized

This cookbook contains 10 chapters. Each chapter is composed of recipes written in
the standard O’Reilly recipe format (Problem, Solution, Discussion). You can read

Xi

this book from front to back or pick up a specific chapter/recipe. Each recipe is inde-
pendent of the others, but when concepts from another recipe are needed, appropri-
ate references are provided.

Chapter 1 goes through several Docker installation scenarios, including using
Docker Machine. It then presents the basic Docker commands to manage con-
tainers, mount data volumes, link containers, and so on. At the end of this chap-
ter, you will have a working Docker host and you will have started multiple con-
tainers as well as understood the life cycle of containers.

Chapter 2 introduces the Dockerfile and Docker Hub and shows how to build/tag/
commit an image. The chapter also shows how to run your own Docker registry
and set up automated builds. At the end of this chapter, you will know how to
create Docker images and share them privately or publicly and have a basic foun-
dation to build continuous delivery pipelines.

Chapter 3 explains the networking mechanisms in Docker. You will learn how to
get containers’ IP addresses and how to expose a container service on a specific
host port. You will also learn about linking containers, and how to use nondefault
networking configurations. This chapter contains a few recipes that provide a
deeper understanding of networking containers. Concepts such as network
namespaces, using an OVS bridge, and GRE tunnels are presented to lay a strong
foundation for container networking. Finally, you will also learn about more
advanced networking setups and tools, such as Weave, Flannel, and the currently
experimental Docker Network feature.

Chapter 4 goes through configuration of the Docker daemon, especially security
settings and remote access to the Docker API. It also covers a few basic problems,
like compiling Docker from source, running its test suite, and using a new
Docker binary. A few recipes provide better insight on Linux namespaces and
their use in containers.

Chapter 5 introduces the new container management platform from Google.
Kubernetes provides a way to deploy multicontainer applications on a distributed
cluster. In addition, it provides an automated way to expose services and create
replicas of containers. The chapter shows how to deploy Kubernetes on your own
infrastructure, starting with a local Vagrant cluster and subsequently on a set of
machines started in the cloud. I then present the key aspects of Kubernetes: pods,
services, and replication controllers.

Chapter 6 covers four new Linux distributions that are optimized to run contain-
ers: CoreOS, Project Atomic, Ubuntu Core, and RancherOS. These new distribu-
tions provide just enough operating system to run and orchestrate Docker con-
tainers. Recipes cover installation and access to machines that use these distribu-
tions. This chapter also introduces tools that are used with these distributions to
ease container orchestration (e.g., etcd, fleet, systemd).

Xii

Preface

https://coreos.com
http://www.projectatomic.io
http://www.ubuntu.com/cloud/tools/snappy
http://rancher.com/rancher-os/

One of Docker’s strengths is its booming ecosystem. Chapter 7 introduces several
tools that have been created over the last 18 months and that leverage Docker to
ease application deployment, continuous integration, service discovery, and
orchestration. As an example, you will find recipes about Docker Compose,
Docker Swarm, Mesos, Rancher, and Weavescope.

The Docker daemon can be installed on a developer local machine. However,
with cloud computing providing easy access to on-demand servers, it is fair to
say that a lot of container-based applications will be deployed in the cloud. Chap-
ter 8 presents recipes to show how to access a Docker host on Amazon AWS,
Google GCE, and Microsoft Azure. The chapter also introduces two new cloud
services that use Docker: the AWS Elastic Container Service (ECS) and the Goo-
gle Container Engine.

Chapter 9 addresses concerns about application monitoring when using contain-
ers. Monitoring and visibility of the infrastructure and the application have been
a huge focus in the DevOps community. As Docker becomes more pervasive as a
development and operational mechanism, lessons learned need to be applied to
container-based applications.

Chapter 10 presents end-to-end application deployment scenarios on both single
hosts and clusters. While some basic application deployments are presented in
earlier chapters, the recipes presented here are closer to a production deployment
setup. This is a more in-depth chapter that puts you on the path toward design-
ing more-complex microservices.

Technology You Need to Understand

This intermediate-level book requires a minimum understanding of a few develop-
ment and system administration concepts. Before diving into the book, you might
want to review the following:

Bash (Unix shell)

This is the default Unix shell on Linux and OS X. Familiarity with the Unix shell,
such as editing files, setting file permissions, moving files around the filesystems,
user privileges, and some basic shell programming will be beneficial. If you don’t
know the Linux shell in general, consult books such as Cameron Newham’s
Learning the Bash Shell or Carl Albing, JP Vossen, and Cameron Newham’s Bash
Cookbook, both from O’Reilly.

Package management

The tools in this book often have multiple dependencies that need to be met by
installing some packages. Knowledge of the package management on your
machine is therefore required. It could be apt on Ubuntu/Debian systems, yum

Preface | xiii

http://aws.amazon.com
https://cloud.google.com/compute/
http://azure.microsoft.com/en-us/
http://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
http://shop.oreilly.com/product/9780596009656.do
http://shop.oreilly.com/product/9780596526788.do
http://shop.oreilly.com/product/9780596526788.do

Git

on CentOS/RHEL systems, port or brew on OS X. Whatever it is, make sure that
you know how to install, upgrade, and remove packages.

Git has established itself as the standard for distributed version control. If you are
already familiar with CVS and SVN, but have not yet used Git, you should. Ver-
sion Control with Git by Jon Loeliger and Matthew McCullough (O’Reilly) is a
good start. Together with Git, the GitHub website is a great resource to get
started with a hosted repository of your own. To learn GitHub, try http://train-
ing.github.com and the associated interactive tutorial.

Python

In addition to programming with C/C++ or Java, I always encourage students to
pick up a scripting language of their choice. Perl used to rule the world, while
these days, Ruby and Go seem to be prevalent. I use Python. Most examples in
this book use Python, but there are a few examples with Ruby, and one even uses
Clojure. O’Reilly offers an extensive collection of books on Python, including
Introducing Python by Bill Lubanovic, Programming Python by Mark Lutz, and
Python Cookbook by David Beazley and Brian K. Jones.

Vagrant

Go

Vagrant has become one of the great tools for DevOps engineers to build and
manage their virtual environments. It is best suited for testing and quickly provi-
sioning virtual machines locally, but also has several plug-ins to connect to public
cloud providers. This book uses Vagrant to quickly deploy a virtual machine
instance that acts as a docker host. You might want to read Vagrant: Up and Run-
ning from the author of Vagrant itself, Mitchell Hashimoto.

Docker is written in Go. Over the last couple of years, Go has established itself as
the new programming language of choice in many start-ups. This cookbook is
not about Go programming, but it shows how to compile a few Go projects.
Some minimal understanding of how to set up a Go workspace will be handy. If
you want to know more, the “Introduction to Go Programming” video training
course is a good start.

Online Content

Code examples, Vagrantfiles, and other scripts used in this book are available at Git-
Hub. You can clone this repository, go to the relevant chapter and recipe, and use the
code as is. For example, to start an Ubuntu 14.04 virtual machine using Vagrant and
install Docker:

Xiv

| Preface

http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920022862.do
http://github.com
http://training.github.com
http://training.github.com
http://try.github.io
http://bit.ly/introducing_python
http://bit.ly/prog-python-4e
http://bit.ly/Python-ckbk
http://shop.oreilly.com/product/0636920026358.do
http://shop.oreilly.com/product/0636920026358.do
http://bit.ly/go-intro
http://bit.ly/go-intro
https://github.com/how2dock/docbook
https://github.com/how2dock/docbook

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch@1/ubuntul4.04/
$ vagrant up

The examples in this repo are not made to represent optimized
setups. They give you the basic minimum required to run the
examples in the recipes.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Preface | xv

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ »Je ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/docker-ckbk.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/docker-ckbk
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Writing this book turned out to be an eight-month project. During that time, I read
countless blogs and documentation about Docker, and tested everything, and then
retested and tested again. Of course, I would like to thank my wife and kids, who gave
me time on weekends and at night to write this book. I would also like to thank Brian
Anderson, who kept on pushing me, encouraging me, and thanks to regular check-
ups, kept me on time and on target. The book would not be complete without addi-
tions from Fintan Ryan, Eugene Yakubovich, Joe Beda, and Pini Riznik. Those four
guys helped me generate valuable content that will help many readers. Many thanks
also go to Patrick Debois and John Willis for their early review of the books, which
provided encouragement and valuable feedback to make the book even better. The
thorough reviews from Ksenia Burlachenko and Carlos Sanchez helped me fix a good
number of issues that will help all readers; many thanks to the two of them. Special
thanks to Funs Kessen, who has been a great sounding board on networking and
application design and who never turned down my many stupid questions. Finally,
many thanks to the early-release readers, especially Olivier Boudry, who were willing
to read the book with incomplete content, typos, bad grammar, and a few mistakes;
without their corrections and comments, the book would not be what it is now.

Preface | xvii

CHAPTER1
Getting Started with Docker

1.0 Introduction

Getting started with Docker is straightforward. The core of Docker is made of the
Docker engine, a single-host software daemon that allows you to create and manage
containers. Before diving into using Docker, you need to install the Docker engine on
a host, either your desktop, laptop, or a server.

The first recipes in this chapter go through the installation steps to get Docker run-
ning in your server. The official Docker documentation covers almost all cases of
operating systems. Here we cover Ubuntu 14.04 (Recipe 1.1), CentOS 6.5 (Recipe 1.2)
and CentOS 7 (Recipe 1.3). If you want to use Vagrant, Recipe 1.4 is for you.

We also show how to install Docker on Raspberry Pi (Recipe 1.5) to present an instal-
lation for ARM processors. For Windows and OS X hosts you can use the Docker
toolbox, which packages several Docker utilities in addition to the Docker engine (see
Recipe 1.6). The Docker toolbox uses a virtual machine running via VirtualBox to act
as a Docker host. This machine is called boot2docker. While using boot2docker is
now deprecated in favor of the Docker toolbox, we still present a Docker installation
using boot2docker in Recipe 1.7.

To round up the installation recipes, we introduce docker-machine, a Docker utility
that lets you starts a machine in the public cloud of your choice and automatically
configures it to be used with your local Docker client. Recipe 1.9 shows you how to
do it with the Digital Ocean cloud.

Once you have installed Docker on your favorite target, you are ready to explore the
basic commands necessary to create and manage containers. Recipe 1.11 shows you
the first steps to run a container, while Recipe 1.13 walks you through the standard
life cycle of a container, creating, starting, stopping, killing, and removing containers.

With those first concepts covered, we dive straight into introducing the Dockerfile
(Recipe 1.14). A Dockerfile is a manifest that describes how to build a container
image. This is a core concept in Docker and while Chapter 2 will expand much fur-
ther on the topic, we cover it here in its most simple form. This allows us to introduce
a much more complex example right away, running WordPress.

First we do it in a single container by building a Docker image from scratch and run-
ning multiple processes in the container (Recipe 1.15). Docker makes you change
your application designer mindset from packaging everything together to creating
multiple independent services that can then be interconnected. However, it does not
mean that you cannot run multiple services in a single container. Using supervisord
you can, and Recipe 1.15 shows you how. But the strength of Docker comes with the
ease of composing services to run your application. Therefore in Recipe 1.16 we show
you how to split the single container example into two containers using container
linking. This is your first example of a distributed application, even though it runs on
a single host.

The last concept that we introduce in this chapter is data management. Making data
accessible in a container is a critical component. You might use it to load configura-
tion variables or datasets, or to share data between containers. We use the WordPress
example again and show you how to back up your database (Recipe 1.17), how to
mount data in your host into your containers (Recipe 1.18), and also how to create
so-called data-containers (Recipe 1.19).

In summary, in this chapter you will go from installing the Docker engine on a host
to running a two-container WordPress site in a flash.

1.1 Installing Docker on Ubuntu 14.04

Problem

You want to use Docker on Ubuntu 14.04.

Solution

On Ubuntu 14.04, installing Docker is achieved in three lines of bash commands at
most. The recommended installation by the Docker project uses a bash script that is
available on the Internet. Be careful, because a preexisting docker package is included
in the Ubuntu repositories that is not related to Docker. Perform the recommended
installation:

$ sudo apt-get update
$ sudo apt-get install -y wget
$ sudo wget -qO- https://get.docker.com/ | sh

You can test that the installation worked fine by checking the version of Docker:

2 | Chapter 1: Getting Started with Docker

http://www.docker.com

$ sudo docker --version
Docker version 1.7.1, build 786b29d

You can stop, start, and restart the service. For example, to restart it:

$ sudo service docker restart

If you want to use docker from a nonroot user, add the user
account to the docker group:

$ sudo gpasswd -a <user> docker

Exit the current shell and log in again or start a new shell for the
change to take effect.

Discussion

You can look at the installation script available at https://get.docker.com to perform the
installation step by step and customize it to your liking. On Ubuntu 14.04 (trusty
release), at a minimum you would do the following:

$ sudo apt-get update

$ sudo apt-get install -y linux-image-extra-$(uname -r) linux-image-extra-virtual

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80

--recv-keys 58118E89F3A912897C070ADBF76221572C52609D
$ sudo su
echo deb https://apt.dockerproject.org/repo ubuntu-trusty main > \

Jetc/apt/sources.list.d/docker.list
apt-get -y install docker-engine

See Also

o For installation of Docker on other operating systems, see the official installation
documentation.

1.2 Installing Docker on Cent0S 6.5

Problem

You want to use Docker on CentOS 6.5.

Solution

On CentOS 6.5, getting Docker is achieved by installing the docker -io package from
the Extra Packages for Enterprise Linux (EPEL) repository:

$ sudo yum -y update
$ sudo yum -y install epel-release

1.2 Installing Docker on Cent0S 6.5 | 3

https://get.docker.com
https://docs.docker.com/docker/installation/

$ sudo yum -y install docker-io
$ sudo service docker start
$ sudo chkconfig docker on

On CentOS 6.5, it installs version 1.6.2:

docker --version
Docker version 1.6.2, build 7c8fca2/1.6.2

Discussion

CentOS 6.x is no longer supported by Docker. Instead, CentOS 7 should be used if
you want the latest version of Docker (see Recipe 1.3).

1.3 Installing Docker on Cent0QS 7

Problem

You want to use Docker on CentOS 7.

Solution

Install the Docker package by using the yum package manager. CentOS uses systemd,
so to manage the docker service, you can use the systemctl command:

$ sudo yum update
$ sudo yum -y install docker
$ sudo systemctl start docker

You can also use the official Docker installation script, which will use packages from
the Docker repository:

$ sudo yum update
$ sudo curl -sSL https://get.docker.com/ | sh

1.4 Setting Up a Local Docker Host by Using Vagrant

Problem

The operating system of your local machine is different from the operating system
you want to use Docker on. For example, you are running OS X and want to try
Docker on Ubuntu.

Solution

Use Vagrant to start a virtual machine (VM) locally and bootstrap the VM by using a
shell provisioner in the Vagrantfile.

4 | Chapter 1: Getting Started with Docker

http://vagrantup.com

With a working VirtualBox and Vagrant installation, create a text file called Vagrant-
file that contains the following:

VAGRANTFILE_API_VERSION = "2"

$bootstrap=<<SCRIPT

apt-get update

apt-get -y install wget

wget -qO0- https://get.docker.com/ | sh
gpasswd -a vagrant docker

service docker restart

SCRIPT

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]|
config.vm.box = "ubuntu/trusty64"

config.vm.network "private_network", ip: "192.168.33.10"

config.vm.provider "virtualbox" do |vb]|
vb.customize ["modifyvm", :id, "--memory", "1024"]
end

config.vm.provision :shell, inline: $bootstrap

end

You can then bring up the virtual machine. Vagrant will download the ubuntu/
trusty64 box from the Vagrant cloud (now part of Atlas), start an instance of it using
VirtualBox, and run the bootstrap script in the instance. The instance will have 1GB
of RAM and two network interfaces: a Network Address Translation (NAT) interface
that will be used for outbound traffic to the public Internet and a host-only interface
192.168.33.10. You will then be able to ssh to the instance and use Docker:

$ vagrant up

$ vagrant ssh

vagrant@vagrant-ubuntu-trusty-64:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

In this Vagrant setup, the vagrant user was added to the Docker
group. Hence Docker commands can be issued even if you are not
root. You can get these scripts from the how2dock repository in the
ch01 directory.

Discussion

If you have never used Vagrant, you will need to install it. The download page on the
Vagrant website lists all major package families. For example, on Debian-based sys-
tems, grab the .deb package and install it like so:

1.4 Setting Up a Local Docker Host by Using Vagrant | 5

http://virtualbox.org
http://vagrantup.com
http://vagrantcloud.com
https://atlas.hashicorp.com
https://github.com/how2dock/docbook.git
https://www.vagrantup.com/downloads
https://www.vagrantup.com/downloads

$ wget https://dl.bintray.com/mitchellh/vagrant/vagrant_1.7.4_x86_64.deb
$ sudo dpkg -1 vagrant_1.7.4_x86_64.deb

$ sudo vagrant --version

Vagrant 1.7.4

1.5 Installing Docker on a Raspberry Pi

Problem

You use Raspberry Pi a lot at your company or you are a hobbyist who enjoys hacking
with Raspberry Pi. In either case, you would like to know how to install Docker on
your device.

Solution

Use the preconfigured Secure Digital (SD) card image from Hypriot. You need to fol-
low these steps:

1. Download the SD card image.

2. Transfer it to your SD card.

3. Install the SD card on your Raspberry Pi and boot it.
4. Log in to your Raspberry Pi and use Docker.

Discussion
For example, on an OS X host, you can follow the instructions from Hypriot.
Download and unzip the SD image:

$ curl -sOL http://downloads.hypriot.com/hypriot-rpi-20150416-201537.img.zip

$ unzip hypriot-rpi-20150416-201537.1img.zip
Now insert your SD card in your host card reader; list the available disks to find out
which one the SD card is. Unmount this disk and transfer the image onto it by using
dd. Assuming the disk is disk1:

$ diskutil list

$ diskutil unmountdisk /dev/diski1

$ sudo dd if=hypriot-rpi-20150416-201537.img of=/dev/rdiskl bs=1m

$ diskutil unmountdisk /dev/diski1
Once the image has been transferred, you can eject the disk cleanly, remove the SD
card from the card reader, and put it in your Raspberry Pi. You will need to find the
IP address of your Raspberry Pi, and then you can ssh to it and use hypriot as the
password like so:

6 | Chapter 1: Getting Started with Docker

https://www.raspberrypi.org
http://blog.hypriot.com
http://blog.hypriot.com/downloads
http://bit.ly/hypriot-docker

$ ssh root@<IP_OF_RPI>

HypriotOS: root@black-pearl in ~

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
HypriotOS: root@black-pearl in ~

$ uname -a

Linux black-pearl 3.18.11-hypriotos-v7+ #2 SMP PREEMPT Sun Apr 12 16:34:20 UTC \
2015 armv7l GNU/Linux
HypriotOS: root@black-pearl in ~

You will have a functioning Docker on ARM.

Because containers use the same kernel as the Docker host, you will need to pull
images that have been prepared for an ARM-based architecture. Go to the Docker
Hub and look for ARM-based images; the ones from Hyperiot are a good start.

See Also

o Windows instructions

¢ Linux instructions

1.6 Installing Docker on 0S X Using Docker Toolbox

Problem
The Docker daemon is not supported on OS X, but you want to use Docker on OS X.

Solution

Use Docker Toolbox, an installer that contains the Docker Client, Docker Machine,
Docker Compose, Docker Kitematic, and VirtualBox. Docker Toolbox allows you to
start a tiny virtual machine in VirtualBox that runs the Docker daemon. The Docker
client installed on your OS X machine is configured to connect to this Docker dae-
mon. Docker Machine (see Recipe 1.9), Docker Compose (see Recipe 7.1), and Kite-
matic (see Recipe 7.5) are also installed.

Download the installer from the download page. Once the download is complete (see
Figure 1-1), open the installer and go through the steps in the wizard. Once the
installation is complete, the finder will open and you will see a link to the Docker
quickstart terminal. Click it to open a terminal and automatically start a virtual
machine in VirtualBox. The Docker client will be automatically configured to com-
municate with this Docker daemon.

1.6 Installing Docker on 0S X Using Docker Toolbox | 7

http://bit.ly/hypriot-windows
http://bit.ly/hypriot-linux
https://https://www.docker.com/toolbox
https://https://www.docker.com/toolbox

@ Introduction
Destination Select
Installation Type

Installation

Summary

@ Install Docker Toolbox

Welcome to the Docker Toolbox Installer

Docker Toolbox for Mac OS X

This installer guides you through an installation of Docker Toolbox for

Mac OS X v1.8.1.
The Docker Toolbox installer includes the following:

Docker Client docker binary

Docker Machine docker-machine binary
Docker Compose docker-compose binary
Kitematic - Desktop GUI for Docker

Docker Quickstart Terminal app

To continue, click Continue.

By default, these are installed in your /usr/local/bin directory.

Continue

Figure 1-1. The Docker Toolbox on OS X

The Toolbox terminal shows you that the Docker client is configured to use the
default machine. Try a few docker commands as shown here:

.
#H # # ==
B HE OB OBE BB ===
/" e _/ ===
~ {~~ v~~~ o~ ~ / === o~~~
___ o _/
Vo _/
o\ /

docker is configured to use the default machine with IP 192.168.99.100
For help getting started, check out the docs at https://docs.docker.com

bash-4.3$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

bash-4.3$ docker images
REPOSITORY TAG
bash-4.3$% docker

docker docker-

PORTS

IMAGE ID CREATED VIRTUAL SIZE

compose docker-machine

NAMES

You see that the docker-machine and docker-compose binaries are also available to
you.

8

Chapter 1: Getting Started with Docker

Discussion

The Docker Toolbox was introduced in Docker 1.8 and should be the default installa-
tion method on OS X and Windows hosts. Prior to the Docker Toolbox, you could
use Boot2Docker (see Recipe 1.7 and Recipe 1.8). Recipes for Boot2Docker are also in
this book, but Docker Toolbox should be used. In fact, Boot2Docker is still used in
Toolbox, as it is the image of the virtual machine started by the Toolbox. You can see
this by using the docker-machine ssh command to log in to the VM as shown here:

bash-4.3$ docker-machine ssh default

#it .
#H ## ## ==
#Ht ## #H HH HH ===
~—e {~~ v~~~ ~——— o~~~ / === o~~~
o _J
Vo _J
N\
T T A T O I R I O
LN NN NN

LI T OO o/ O e < /|

RN A VY A VY A VY NN VPO I VY A VN I VO VO O
Boot2Docker version 1.8.1, build master : 7f12e95 - Thu Aug 13 03:24:56 UTC 2015

Docker version 1.8.1, build di12ea79

1.7 Using Boot2Docker to Get a Docker Host on 0S X

Problem

The Docker daemon is not supported on OS X, but you want to use the Docker client
seamlessly on your OS X host.

Solution

Use the Boot2Docker lightweight Linux distribution. Boot2Docker is based on Tiny
Core Linux and configured specifically to act as a Docker host. After installation, a
boot2docker command will be available to you. You will use it to interact with a vir-
tual machine started through VirtualBox that will act as a Docker host. The Docker
client—which runs on OS X, unlike the daemon—will be set up on your local OS X
machine.

Let’s start by downloading and installing Boot2Docker. Go to the site where you will
find several download links. From the release page, grab the latest release. Once the
download is finished, launch the installer shown in Figure 1-2.

1.7 Using Boot2Docker to Get a Docker Hoston 0SX | 9

http://boot2docker.io
http://boot2docker.io
https://github.com/boot2docker/osx-installer/releases

8 00 ‘w Install Boot2Docker for Mac 0S X [

Welcome to the Boot2Docker for Mac 0S X Installer

N S Boot2Docker for Mac OS X

® Destination Select This installer will guide you through the steps to install Boot2Docker for
Mac OS X v1.3.2.

@ Installation Type
The docker and boot2decker binaries will be installed to /usr/
local/bin, and can then be run from your Terminal.

® Summary For further information, please see the Docker OS X installation
documentation.

@ Installation

To continue, click Continue.

Go Back | Continue |

Figure 1-2. Boot2Docker installer wizard

Once the installation is finished (Figure 1-3), you are ready to use Boot2Docker.

In a terminal window, type boot2docker at the prompt, and you should see the usage
options. You can also check the version number that you installed:

$ boot2docker

Usage: boot2docker [<options>] {help|init|up|ssh|save|down|poweroff|reset|
restart|config|status|info|ip|shellinit|delete]
download|upgrade|version} [<args>]

$ boot2docker version

Boot2Docker-cli version: v1.3.2

Git commit: e4la9ae

10 | Chapter 1: Getting Started with Docker

w Install Boot2Docker for Mac OS X a8

The i llation was completed successfully.

@liroducron Quick-Start: Run Boot2Docker (located in Applications), which
& Destination Select will open a terminal window. Then, start a test container with:
docker run hello-world

© Installation Type

@ Installation To save and share container images, automate workflows, and

® Summary more sign-up for a free Docker Hub account.

You can upgrade your existing Boot2Docker VM without data
loss by running:
boot2docker upgrade

* The decker and boot 2docker binaries are in /usr/local/
bin which you can access from your terminal.

For further information, please see the Docker OS X installation
documentation.

Go Back | Close |

Figure 1-3. Boot2Docker installer completion

With Boot2Docker installed, the first step is to initialize it. If you have not downloa-

ded the Boot2Docker ISO, this step will do so and create the virtual machine in Vir-
tualBox:

$ boot2docker init

Latest release for boot2docker/boot2docker is v1.3.2
Downloading boot2docker ISO image...

Success:

downloaded https://github.com/boot2docker/boot2docker/releases/download/\
v1.3.2/boot2docker.iso

to /Users/sebgoa/.boot2docker/boot2docker.iso

As you can see, the ISO will be located in your home directory under .boot2docker/

boot2docker.iso. When you open the VirtualBox UI, you will see the boot2docker VM
in a powered-off state (see Figure 1-4).

1.7 Using Boot2Docker to Get a Docker Hoston 0SX | 11

Oracle VM VirtualBox Manager

i:} {E'} 'é> [e 220 @ Snapshots

New Settings Start Discard

E’Q boot2docker-vm E General = Preview
@ Powered OFf Name: boot2docker-vm

Operating System: Linux 2.6 / 3.x (64

bit)
E System
boot2docker-vm

Base Memory: 2048 MB

Processors: 4

Boot Order: CD/DVD, CD/DVD, Hard

Disk

Acceleration: VT-x/AMD-V, Nested
Paging, PAE/NX

Display

Video Memory: & MB
Remote Desktop Server: Disabled
Video Capture: Disabled

Storage

Controller: SATA
SATA Port 0: [CD/DVD] boot2docker.iso (23.00 MB)
SATA Port 1: boot2docker-vm.vmdk (Normal, 19.53 GB)

{2 Audio
Disabled
=P Network

Adapter 1: Paravirtualized Network (NAT)
Adapter 2: Paravirtualized Network (Host-only Adapter, 'vboxnet0")

&’ USB

Disabled

[l Shared folders
Shared Folders: 1
@ Description

None

Figure 1-4. boot2docker VirtualBox VM

You do not need to have the VirtualBox UT open; the snapshots are
here only for illustration. Boot2Docker uses the VBoxManage
commands to manage the boot2docker VM in the background.

You are now ready to start Boot2Docker. This will run the VM and return some
instructions to set environment variables for properly connecting to the Docker dae-
mon running in the VM:

12 | Chapter 1: Getting Started with Docker

$ boot2docker start

Waiting for VM and Docker daemon to start...
......................... 000000000000000000000

Started.

Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
export DOCKER_CERT_PATH=/Users/sebgoa/.boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1
export DOCKER_HOST=tcp://192.168.59.103:2376

Although you can set the environment variables by hand, Boot2Docker provides a
handy command: shellinit. Use it to configure the Transport Layer Security (TLS)

connection to the Docker daemon, and you will have access to the Docker host from
your local OS X machine:

$ S(boot2docker shellinit)

Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem

Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Discussion

When a new version of Boot2Docker is available, you can upgrade easily by down-
loading the new Boot2Docker installer and downloading a new ISO image with the
download command.

Make sure that you stop the current boot2docker VM with
$ boot2docker stop before running the installer script:
\\ $ boot2docker stop

$ boot2docker upgrade
$ boot2docker start

1.8 Running Boot2Docker on Windows 8.1 Desktop

Problem
You have a Windows 8.1 desktop and would like to use Boot2Docker to test Docker.

Solution

Use the Boot2Docker windows installer, shown in Figure 1-5.

1.8 Running Boot2Docker on Windows 8.1 Desktop | 13

http://bit.ly/gh-boot2docker

After downloading the latest version of the Windows installer (an .exe binary), run it
through the command prompt or through your file explorer (see Figure 1-5). It will
automatically install VirtualBox, MSysGit, and the Boot2Docker ISO. MSysGit is nec-
essary to get the ssk-keygen binary on your Windows machine. Going through the
installer wizard, you will need to accept a couple of VirtualBox licenses from Oracle.
The installer can create shortcuts on your desktop for VirtualBox and to start
Boot2Docker.

= Command Prompt

sUsersssebgoasDownloads *docker—install.exe

sUsersssebgoasDownloads >

Setup - Boot2Docker for Windows = =

Welcome to the Boot2Docker for
Windows Setup Wizard

This will install Boot2Docdker for Windows version 1.5.0 on your
computer,

It iz recommended that you dose all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Boot2Docker for Windows installation documentation

< >

Figure 1-5. Boot2Docker Windows 8.1 installer

Once the installation is finished, double-click the shortcut for Boot2Docker. This will
launch the VM in VirtualBox, and you will get a command prompt inside it (see
Figure 1-6). You can now use Docker on your Windows desktop.

14 | Chapter 1: Getting Started with Docker

& Boot2Docker Start = &

[192.168.59.1683
onnecting...

#i
HE oHR un
#

ocker@hoot2docker:™5% docker ps
IMAGE GCOMMAND CREATED
PORTS NAMES

ocker@hoot2docker:™%

Figure 1-6. Boot2Docker Windows 8.1 command

Discussion

Docker Machine (see Recipe 1.9) also comes with a Hyper-V driver. If you set up
Hyper-V on your desktop, you could start a Boot2Docker instance with Docker
Machine instead.

See Also

o Boot2Docker for Windows official Docker documentation

1.9 Starting a Docker Host in the Cloud by Using Docker
Machine

Problem

You do not want to install the Docker daemon locally using Vagrant (Recipe 1.4) or
Boot2Docker (Recipe 1.7). Instead, you would like to use a Docker host in the cloud
(e.g., AWS, DigitalOcean, Azure, or Google Compute Engine) and connect to it seam-
lessly using the local Docker client.

Solution

Use Docker Machine to start a cloud instance in your public cloud of choice. Docker
Machine is client-side tool that you run on your local host and that allows you to start
a server in a remote public cloud and use it as a Docker host as if it were local.
Machine will automatically install Docker and set up TLS for secure communication.

1.9 Starting a Docker Host in the Cloud by Using Docker Machine | 15

https://docs.docker.com/installation/windows/

You will then be able to use the cloud instance as your Docker host and use it from a
local Docker client. See Chapter 8 for more recipes dedicated to using Docker in the
cloud.

Docker Machine beta was announced on February 26, 2015. Official
documentation is now available on the Docker website. The source
code is available on GitHub.

Let’s get started. Machine currently supports VirtualBox, DigitalOcean, Amazon Web
Services, Azure, Google Compute Engine (GCE), and a few other providers. Several
drivers are under development or review, so we should definitely expect much more
soon. This recipe uses DigitalOcean, so if you want to follow along step by step, you
will need an account on DigitalOcean.

Once you have an account, do not create a droplet through the DigitalOcean UL
Instead, generate an API access token for using Docker Machine. This token will
need to be both a read and a write token so that Machine can upload a public SSH key
(Figure 1-7). Set an environment variable DIGITALOCEAN_ACCESS_TOKEN in your local
computer shell that defines the token you created.

Machine will upload an SSH key to your cloud account. Make sure
that your access tokens or API keys give you the privileges neces-
sary to create a key.

Personal Access Tokens
Tokens you have generated to access the DigitalOcean API

Docker machine write read, write EDIT DELETE

o Personal access tokens function like a combined name and password for AP| authentication.

Figure 1-7. DigitalOcean access token for Machine

You are almost set. You just need to download the docker-machine binary. Go to the
documentation site and choose the correct binary for your local computer architec-
ture. For example, on OS X:

$ curl -sOL https://github.com/docker/machine/releases/download/v0.3.0/ \
docker-machine_darwin-amd64

16 | Chapter 1: Getting Started with Docker

http://blog.docker.com/2015/02/announcing-docker-machine-beta/
https://docs.docker.com/machine/
https://github.com/docker/machine
https://www.digitalocean.com
https://aws.amazon.com
https://aws.amazon.com
https://azure.microsoft.com
http://cloud.google.com
https://github.com/docker/machine/pulls
https://cloud.digitalocean.com/registrations/new
https://docs.docker.com/machine/

$ mv docker-machine_darwin-amd64 docker-machine
$ chmod +x docker-machine

$./docker-machine --version

docker-machine version 0.3.0

With the environment variable DIGITALOCEAN_ACCESS_TOKEN set, you can create your
remote Docker host:

$./docker-machine create -d digitalocean foobar

Creating SSH key...

Creating Digital Ocean droplet...

To see how to connect Docker to this machine, run: docker-machine env foobar

If you go back to your DigitalOcean dashboard, you will see that an SSH key has been
created, as well as a new droplet (see Figures 1-8 and 1-9).

docker-host-1d20d5e6b0ab42b0ac5c1d65c. ..

Figure 1-8. DigitalOcean SSH keys generated by Machine

Image Name IP Address Status Memory Disk Region

@ docker-host-96a1281b6b... 104.236.95.54 Active 512MB 20GB nyc3

Figure 1-9. DigitalOcean droplet created by Machine

To configure your local Docker client to use this remote Docker host, you execute the
command that was listed in the output of creating the machine:

$./docker-machine env foobar

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://104.131.92.15:2376"

export DOCKER_CERT_PATH="/Users/sebastiengoasguen/.docker/machine/machines/foobar
export DOCKER_MACHINE_NAME="foobar"

Run this command to configure your shell:

eval "$(docker-machine env foobar)"

$ eval "$(./docker-machine env foobar)"

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

1.9 Starting a Docker Host in the Cloud by Using Docker Machine | 17

Enjoy Docker running remotely on a DigitalOcean droplet created with Docker
Machine.

Discussion

If not specified at the command line, Machine will look for DIGI
TALOCEAN_IMAGE, DIGITALOCEAN_REGION, and DIGITALOCEAN_SIZE
environment variables. By default, they are set to docker, nyc3, and
512mb, respectively.

The docker-machine binary lets you create multiple machines, on multiple providers.
You also have the basic management capabilities: start, stop, rm, and so forth:

$./docker-machine

COMMANDS :
active Get or set the active machine
create Create a machine
config Print the connection config for machine
inspect Inspect information about a machine
ip Get the IP address of a machine
kill Kill a machine
1s List machines
restart Restart a machine
rm Remove a machine
env Display the commands to set up the environment for the Docker client
ssh Log into or run a command on a machine with SSH
start Start a machine
stop Stop a machine
upgrade Upgrade a machine to the latest version of Docker
url Get the URL of a machine
help, h Shows a list of commands or help for one command

For instance, you can list the machine you created previously, obtain its IP address,
and even connect to it via SSH:

$./docker-machine 1s

NAME ACTIVE DRIVER STATE URL SWARM
foobar * digitalocean Running tcp://104.131.92.15:2376

$./docker-machine ip foobar

104.131.92.15

$./docker-machine ssh foobar

Welcome to Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-57-generic x86_64)

Last login: Mon Mar 16 09:02:13 2015 from ...
root@foobar:~#

Before you are finished with this recipe, do not forget to delete the machine you cre-
ated:

18 | Chapter 1: Getting Started with Docker

$./docker-machine rm foobar

See Also

o Official documentation

1.10 Using Docker Experimental Binaries

Problem

You want to use an experimental feature or a patch that was contributed to the

Docker upstream code.

Solution

Use the Docker experimental binaries. You can download the binaries or use the

experimental channel that is updated nightly.
Get the nightly builds of Docker in the form of Linux distribution packages:

$ wget -q0- https://experimental.docker.com/ | sh
$ docker version | grep Version

Version: 1.8.0-dev

Version: 1.8.0-dev

Or you can grab the nightly built binaries directly; for example on 64-bit systems:

$ wget https://experimental.docker.com/builds/Linux/x86_64/docker-latest
$ chmod +x docker-latest

$./docker-latest version | grep Version

Version: 1.8.0-dev

Version: 1.8.0-dev

If you want to use this binary by default, follow Recipe 4.4.

See Also

o Docker experimental channel announced recently

o Running experimental docker binaries

1.10 Using Docker Experimental Binaries

19

https://docs.docker.com/machine/
https://blog.docker.com/2015/06/experimental-binary/
http://bit.ly/install-binary

1.11 Running Hello World in Docker

Problem

You have access to a Docker host and want to run your first container. You want to
learn the various life cycles of a container. As an example, you want to run a container
and echo Hello World init.

Solution

Typing docker at the prompt returns the usage of the docker command:

$ docker

Usage: docker [OPTIONS] COMMAND [arg...]

A self-sufficient runtime for linux containers.

Commands:
attach
build
commit

rm
rmi

run
save
search
start
stop
tag

top
unpause
version
wait

Attach to a running container
Build an image from a Dockerfile
Create a new image from a container's changes

Remove one or
Remove one or
Run a command
Save an image
Search for an

more containers

more images

in a new container

to a tar archive

image on the Docker Hub

Start a stopped container

Stop a running container

Tag an image into a repository

Lookup the running processes of a container
Unpause a paused container

Show the Docker version information

Block until a

contailner stops, then print its exit code

You have already seen the docker ps command, which lists all running containers.
You'll explore many more commands in other recipes of this book. To get started, you
want to run a container. Let’s get straight to it and use docker run:

$ docker run busybox echo hello world
Unable to find image 'busybox' locally
busybox:latest: The image you are pulling has been verified

511136ea3c5a:
df7546f9f060:
e433a6c5b276:
e72ac664f4f0:

Status: Downloaded

hello world

Pull complete

Pull complete
Pull complete
Pull complete
newer image for busybox:latest

20 | Chapter 1: Getting Started with Docker

Containers are based on images. An image needs to be passed to the docker run
command. In the preceding example, you specify an image called busybox. Docker
does not have this image locally and pulls it from a public registry. A registry is a cata-
log of Docker images that the Docker client can communicate with and download
images from. Once the image is pulled, Docker starts a container and executes the
echo hello world command. Congratulations—you ran your first container.

Discussion

If you list the running containers, you will see that none are running. That’s because
as soon as the container did its job (echoing hello world) it stopped. However, it is
not totally gone, and you can see it with the docker ps -a command:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker ps -a

CONTAINER ID IMAGE COMMAND e PORTS NAMES
8f7089b187e8 busybox:latest "echo hello world" ... thirsty_morse

You see that the container has an ID (8f7089b187¢8) and an image (busybox:latest) as
well as a name, and you see the command that it ran. You can permanently remove
this container with docker rm 8f7089b187e8. The image that you used was downloa-
ded locally, and docker images returns it:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest e72ac664f4f0 9 weeks ago 2.433 MB

If no running or stopped containers are using this image, you can remove it with
docker rmi busybox.

Running echo is fun but getting a terminal session within a container is even better.
Try to run a container that executes /bin/bash. You will need to use the -t and -1
options to get a proper interactive session and while we are at it, let’s use an Ubuntu
image:

$ docker run -t -1 ubuntu:14.04 /bin/bash

Unable to find image 'ubuntu:14.04' locally

ubuntu:14.04: The image you are pulling has been verified
01bf15318638: Pull complete

30541f8f3062: Pull complete

elcdf371fbde: Pull complete

9bd07e480c5b: Pull complete

511136ea3c5a: Already exists

Status: Downloaded newer image for ubuntu:14.04
root@6f1050d21b41: /#

You see that Docker pulled the Ubuntu:14.04 image composed of several layers, and
you got a session as root within a container. The prompt gives you the ID of the con-

1.11 Running Hello World in Docker | 21

tainer. As soon as you exit this terminal, the container will stop running just like our
first hello world example.

If you skipped the first few recipes on installing Docker, you should
try the web emulator. It will give you a 10-minute tour of Docker,
and you will get your first practice with it.

1.12 Running a Docker Container in Detached Mode

Problem

You know how to run a container interactively but would like to run a service in the
background.

Solution
Use the -d option of docker run.

To try this, you will run a simple HTTP server with Python in a python:2.7 Docker
image pulled from Docker Hub (see also Recipe 2.9):

$ docker run -d -p 1234:1234 python:2.7 python -m SimpleHTTPServer 1234

$ docker ps
CONTAINER ID IMAGE COMMAND e NAMES
0fae2d2e8674 python:2.7 "python -m SimpleHTT ... suspicilous_pike

If you open your browser at the IP of your Docker host on port 1234, you will see the
listing of the root directory inside your container. Docker automatically creates a cor-
rect port mapping between the container and host port 1234, thanks to the -p
1234:1234 option. In Recipe 3.2, you will learn more about this networking behavior.

Discussion

The -d option makes the container run in the background. You can connect to the
container by using the exec command and running a bash shell:

$ docker exec -ti 9d7cebd75dcf /bin/bash
root@9d7cebd75dcf: /# ps -ef | grep python
root 1 0 0 15:42 ? 00:00:00 python -m SimpleHTTPServer 1234

Lots of other options are available for docker run. Experiment by specifying a name
for the container, changing the working directory of the container, setting an envi-
ronment variable, and so on.

22 | Chapter 1: Getting Started with Docker

https://www.docker.com/tryit/
https://registry.hub.docker.com/_/python/
https://docs.docker.com/reference/run/

See Also

o Docker run reference

1.13 Creating, Starting, Stopping, and Removing
Containers

Problem

You know how to start containers and to run them in detached mode. You would like
to learn the basic commands to manage the entire life cycle of a container.

Solution

Use the create, start, stop, kill, and rm commands of the Docker CLI. Find the
appropriate usage of each command with the -h or --h option or by typing the com-
mand with no arguments (e.g., docker create).

Discussion

In Recipe 1.12, you started a container automatically with docker run. You can also
stage a container with the docker create command. Using the same example of run-
ning a simple HTTP server, the only difference will be that you will not specify the -d
option. Once staged, the container will need to be started with docker start:

$ docker create -P --expose=1234 python:2.7 python -m SimpleHTTPServer 1234
a842945e2414132011ae704b0c4a4184acc4016d199dfd4e7181c9b89092de13

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED ... NAMES
aB842945e2414 python:2.7 "python -m SimpleHTT 8 seconds ago ... fervent_hodgkin
$ docker start a842945e2414

a842945e2414

$ docker ps

CONTAINER ID IMAGE COMMAND e NAMES
aB842945e2414 python:2.7 "python -m SimpleHTT ... fervent_hodgkin

To stop a running container, you have a choice between docker kill (which will
send a SIGKILL signal to the container) or docker stop (which will send a SIGTERM
and after a grace period will send a SIGKILL). The end result will be that the container
is stopped and is not listed in the list of running containers returned by docker ps.
However, the container has not yet disappeared (i.e., the filesystem of the container is
still there); you could restart it with docker restart or remove it forever with
docker rm:

1.13 Creating, Starting, Stopping, and Removing Containers | 23

https://docs.docker.com/reference/run/

$ docker restart a842945e2414

a842945e2414

$ docker ps

CONTAINER ID IMAGE COMMAND . NAMES

a842945e2414 python:2.7 "python -m SimpleHTT ... fervent_hodgkin

$ docker kill aB842945e2414

a842945e2414

$ docker rm a842945e2414

a842945e2414

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

If you have a lot of stopped containers that you would like to
remove, use a subshell to do it in one command. The -q option of
docker ps will return only the containers’ IDs:

$ docker rm $(docker ps -a -q)

1.14 Building a Docker Image with a Dockerfile

Problem

You understand how to download images from a publicly available Docker registry
but you would like to build your own Docker images.

Solution

Use a Dockerfile. A Dockerfile is a text file that describes the steps that Docker needs
to take to prepare an image—including installing packages, creating directories, and
defining environment variables, among other things. In Chapter 2, we will expand
much further about Dockerfiles and image creation. This recipe covers the basic con-
cept of building an image.

As a toy example, let’s say you want to create an image based on the busybox image
but that you want to define an environment variable. The busybox image is a Docker
image that contains the busybox binary, which combines most Unix utilities in a sin-
gle binary. Create the following text file named Dockerfile in an empty working direc-
tory:

FROM busybox

ENV foo=bar

Then to build a new image called busybox2, you use the docker build command like
so:
$ docker build -t busybox2 .

Sending build context to Docker daemon 2.048 kB
Step 0 : FROM busybox

24 | Chapter 1: Getting Started with Docker

http://www.busybox.net/about.html

latest: Pulling from library/busybox
cf2616975b4a: Pull complete
6ce2e90b0Obc7: Pull complete
8c2e06607696: Pull complete
Digest: sha256:df9e13f36d2d5b30c16bfbf2a6110c45ebeddbfalead42d357651bc6c736d5322
Status: Downloaded newer image for busybox:latest
---> 8c2e06607696
Step 1 : ENV foo bar
---> Running in f46c59e9bdd6
---> 582bacbe7aaa

Once the build completes, you can see the new images returned by docker images
and you can launch a container based on it to check that the container has the envi-
ronment variable foo set to bar:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox2 latest 582bacbe7aaa 6 seconds ago 2.433 MB
busybox latest 8c2e06607696 3 months ago 2.433 MB
$ docker run busybox2 env | grep foo
foo=bar

See Also

o Dockerfile reference

o Chapter 2, which covers image creation and sharing

1.15 Using Supervisor to Run WordPress in a Single
Container

Problem

You know how to link containers together (see Recipe 1.16), and would like to run all
services needed for your application in a single container. Specifically for running
WordPress, you would like to run MySQL and HTTPD at the same time in a con-
tainer. Because Docker executes foreground processes, you need to figure out a way
to run multiple “foreground” processes simultaneously.

Solution

Use Supervisor to monitor and run both MySQL and HTTPD. Supervisor is not an
init system, but is meant to control multiple processes and is run like any other pro-
gram.

1.15 Using Supervisor to Run WordPress in a Single Container | 25

https://docs.docker.com/reference/builder/
http://supervisord.org/index.html

This recipe is an example of using Supervisor to run multiple pro-
cesses in a container. It can be used as the basis to run any number
of services via a single Docker image (e.g., SSH, Nginx). The Word-
Press setup detailed in this recipe is a minimum viable setup, not
meant for production use.

The example files can be found on GitHub. They include a Vagrantfile to start a vir-
tual machine that runs Docker, a Dockerfile that defines the image being created, a
Supervisor configuration file (supervisord.conf), and a WordPress configuration file

(wp-config.php).

If you do not want to use Vagrant, you can take the Dockerfile,
supervisord, and WordPress configuration files and set things up
on your own Docker host.

To run WordPress, you will need to install MySQL, Apache 2 (i.e., httpd), and PHP,
and grab the latest WordPress release. You will need to create a database for Word-
Press. In the configuration file used in this recipe, the WordPress database user is
root, its password is root, and the database is wordpress. Change these settings to
your liking in the wp-config.php file and edit the Dockerfile accordingly.

A Dockerfile, a manifest that describes how a Docker image is built, is described in
detail in the following chapters. If this is your first use of a Dockerfile, you can use it
as is and come back to it later (see Recipe 2.3 for an introduction to Dockerfiles):

FROM ubuntu:14.04

RUN apt-get update && apt-get -y install \
apache2 \
php5 \
php5-mysql \
supervisor \

wget

RUN echo 'mysqgl-server mysqgl-server/root_password password root' | \
debconf-set-selections && \
echo 'mysql-server mysql-server/root_password_again password root' | \

debconf-set-selections
RUN apt-get install -qqy mysql-server

RUN wget http://wordpress.org/latest.tar.gz && \
tar xzvf latest.tar.gz && \
cp -R ./wordpress/* [var/www/html && \
rm /var/www/html/index.html

26 | Chapter 1: Getting Started with Docker

http://bit.ly/doc-supervisor

RUN (/usr/bin/mysqld_safe &); sleep 5; mysgladmin -u root -proot create wordpress

COPY wp-config.php /var/www/html/wp-config.php
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf

EXPOSE 80

CMD ["/usr/bin/supervisord"]
Supervisor is configured via the supervisord.conf file like so:

[supervisord]
nodaemon=true

[program:mysqld]
command=/usr/bin/mysqld_safe
autostart=true
autorestart=true

user=root

[program:httpd]

command=/bin/bash -c "rm -rf /run/httpd/* && /usr/sbin/apachectl -D FOREGROUND"
Two programs are defined to be run and monitored: mysqld and httpd. Each pro-
gram can use various options like autorestart and autostart. The most important
directive is command, which defines how to run each program. With this configura-
tion, a Docker container needs to run only a single foreground process: supervisord.
Hence the line in the Dockerfile, CMD ["/usr/bin/supervisord"].

On your Docker host, build the image and start a background container off of it. If
you are using the Vagrant virtual machine started via the example files, do this:

$ cd /vagrant

$ docker build -t wordpress .

$ docker run -d -p 80:80 wordpress
Port forwarding will be set up between your host and the Docker container for port
80. You will just need to open your browser to http://<IP_OF_DOCKER_HOST> and
configure WordPress.

Discussion

Although using Supervisor to run multiple application services in a single container
works perfectly, it is better to use multiple containers. It promotes the isolation of
concerns using containers and helps create a microservices-based design for your
application (see Building Microservices). Ultimately, this will help with scale and resil-
iency.

1.15 Using Supervisor to Run WordPress in a Single Container | 27

http://<IP_OF_DOCKER_HOST>
http://bit.ly/building-microservices

See Also

o Supervisor documentation

o Docker Supervisor article

1.16 Running a WordPress Blog Using Two Linked
Containers

Problem

You want to run a WordPress site with containers, but you do not want to run the
MySQL database in the same container as WordPress. You want to keep the concept
of separation of concerns in mind and decouple the various components of an appli-
cation as much as possible.

Solution

You start two containers: one running WordPress using the official image from the
Docker Hub, and one running the MySQL database. The two containers are linked
using the - - 1ink option of the Docker CLI.

Start by pulling the latest images for WordPress and MySQL:

$ docker pull wordpress:latest
$ docker pull mysql:latest
$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
mysql latest 9def920de0a2 4 days ago 282.9 MB
wordpress latest 93acfaf85c71 8 days ago 472.8 MB

Start a MySQL container, give it a name via the --name CLI option, and set the
MYSQL_ROOT_PASSWORD via an environment variable:

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker -d mysql
By not specifying the tag for the mysql image, Docker automatically

chose the latest tag, which is the one you downloaded specifically.
The container was daemonized with the -d option.

You can now run a WordPress container based on the wordpress:latest image. It will
be linked to the MySQL container using the --1ink option, which means that Docker
will automatically set up the networking so that the ports exposed by the MySQL con-
tainer are reachable inside the WordPress container:

28 | Chapter 1: Getting Started with Docker

http://supervisord.org/index.html
https://docs.docker.com/articles/using_supervisord/
http://wordpress.com
http://hub.docker.com
https://hub.docker.com/_/wordpress/
https://.hub.docker.com/_/mysql/

$ docker run --name wordpress --link mysqlwp:mysql -p 80:80 -d wordpress

Both containers should be running in the background, with port 80 of the WordPress

container mapped to port 80 of the host:

$ docker ps

CONTAINER ID IMAGE
e1593e7a20df wordpress:latest
d4be18e33153 mysql:latest

STATUS
Up About a minute
Up 5 minutes

COMMAND
"/entrypoint.sh apac
"/entrypoint.sh mysq

PORTS
0.0.0.0:80->80/tcp
3306/tcp

CREATED
About a minute ago
5 minutes ago

NAMES
wordpress
mysqlwp

Open a browser at http://<ip_of_host> and it should show the WordPress installation
screen with the language selection window, as shown in Figure 1-10. If you go
through the WordPress setup, you will then have a fully functional WordPress site
running with two linked containers.

docker
About WordPress

WordPress.org
Documentation
Support Forums
Feedback
Media
Pages

Comments

Appearance
Plugins
Users

Tools

Settings

© Collapse menu

Dashboard

Welcome to WordPress!

We've assembled some links to get you started:

Get Started

or, change your theme completely

At a Glance

A 1 Post

P 1 Comment

M 1 Page

WordPress 4.1 running Twenty Fifteen theme.
Search Engines Discouraged

Activity
Recently Published

Today, 10:31 am Hello world!

Comments

Next Steps

I‘ Write your first blog post

4+ Add an About page

B View your site

Quick Draft

Title

‘What's on your mind?

WordPress News

WordPress 4.1 “Dinah”

Howdy, docker [l

Screen Options Help

Dismiss

More Actions
Manage widgets or menus
B3 Turncomments on or off

= Learn more about getting started

December 18, 2014

Figure 1-10. Working WordPress site within containers

Discussion

The two images for WordPress and MySQL are official images maintained by the
WordPress and MySQL communities. Each page on the Docker Hub provides addi-
tional documentation for configuration of containers started with those images.

1.16 Running a WordPress Blog Using Two Linked Containers | 29

http://<ip_of_host>

Do not forget to read the WordPress image documentation and the
MySQL image documentation.

Of interest is that you can create a database and a user with appropriate privileges to
manipulate that database by using a few environment variables: MYSQL_DATABASE,
MYSQL_USER, and MYSQL_PASSWORD. In the preceding example, WordPress is run as the
root MySQL user and this is far from best practice. It would be better to create a word
press database and a user for it, like so:

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker \
-e MYSQL_DATABASE=wordpress \
-e MYSQL_USER=wordpress \
-e MYSQL_PASSWORD=wordpresspwd \
-d mysql

If you need to remove all existing containers, you can use a short-
cut making use of a subshell command:

$ docker stop $(docker ps -q)
$ docker rm -v $(docker ps -aq)

The -v option of docker rm removes the volume defined by the
MySQL image.

Once the database container is running, you run the WordPress container and specify
the database tables you defined:

$ docker run --name wordpress --link mysqlwp:mysql -p 80:80 \
-e WORDPRESS_DB_NAME=wordpress \
-e WORDPRESS_DB_USER=wordpress \
-e WORDPRESS_DB_PASSWORD=wordpresspwd \
-d wordpress

1.17 Backing Up a Database Running in a Container

Problem

You are using a MySQL image to provide a database service. You need to back up this
database for data persistency.

Solution

Several backup strategies are possible alone or in combination. The two main con-
cepts with containers are that you can execute a command inside a container running
in the background and that you can also mount a host volume (i.e., a single accessible

30 | Chapter 1: Getting Started with Docker

https://hub.docker.com/_/wordpress/
https://hub.docker.com/_/mysql/

storage area in your host filesystem) into the container. In this recipe, you will see
how to do the following:

« Mount a volume from the Docker host into the MySQL container

o Use the docker exec command to call mysqldump

Starting from the Recipe 1.16, where you set up a WordPress site by using two linked
containers, you are going to modify the way you start the MySQL container. Once the
containers are started and you have a fully functional WordPress site, you can stop
the containers, which stops your application. At that point, the containers have not
been removed entirely yet and the data in the database is still accessible. However, as
soon as you remove the containers (docker rm $(docker ps -aq)), all data will be
lost.

A way to keep the data, even when containers are removed with the docker rm -v
command, is to mount a volume from your Docker host inside a container. If you
were to delete the MySQL container with only the docker rm command, the volume
defined by the image would still persist even if you delete the container. If you look at
the Dockerfile used to build the MySQL image, you sill see a reference to
VOLUME /var/lib/mysql. This means that when you start a container based on this
image, you can bind mount a host directory to this mount point inside the container.
Lets do it:

$ docker run --name mysqlwp -e MYSQL_ROOT_PASSWORD=wordpressdocker \
-e MYSQL_DATABASE=wordpress \
-e MYSQL_USER=wordpress \
-e MYSQL_PASSWORD=wordpresspwd \
-v /home/docker/mysql:/var/lib/mysql \
-d mysql
Note the -v /home/docker/mysql:/var/lib/mysql line that performs this mount.
After doing the WordPress configuration, the /home/docker/mysql directory on the
host is populated:
$ s mysql/
auto.cnf 1ibdatal 1ib_logfile® 1ib_logfilel mysql performance_schema wordpress
To get a dump of the entire MySQL database, use the docker exec command to run
mysqldump inside the container:

$ docker exec mysqlwp mysqldump --all-databases \
- -password=wordpressdocker > wordpress.backup
You can then use the traditional techniques for backup and recovery of the database.
For instance, in the cloud, you might want to use an Elastic Block Store (e.g., AWS
EBS) mounted on an instance and then mounted inside a container. You can also
keep your MySQL dumps inside an Elastic Storage (e.g., AWS S3).

1.17 Backing Up a Database Running in a Container | 31

http://bit.ly/mysql-dockerfile

Discussion

Although this recipe uses MySQL, the same techniques are valid for Postgres and
other databases. If you use the Postgres image from Docker Hub, you can also see in
the Dockerfile that a volume is created (VOLUME /var/lib/postgresql/data).

1.18 Sharing Data in Your Docker Host with Containers

Problem

You have data on your host that you would like to make available in a container.

Solution
Use the -v option of docker runto mount a host volume into a container.

For example, to share the working directory of your host within a /cookbook directory
in a container, do this:

$ 1s

data

$ docker run -ti -v "SPWD":/cookbook ubuntu:14.04 /bin/bash
root@11769701f6f7:/# 1s /cookbook

data

In this example, you mount the working directory in the host into the /cookbook

directory in the container. If you create files or directories within the container, the
changes will be written directly to the host working directory, as shown here:

$ docker run -ti -v "SPWD":/cookbook ubuntu:14.04 /bin/bash

root@44d71a605b5b: /# touch /cookbook/foobar

root@44d71a605b5b: /# exit

exit

$ s -1 foobar

-rw-r--r-- 1 root root 0 Mar 11 11:42 foobar
By default, Docker mounts the volume in read-write mode. If you want to mount it in
read-only mode, you can specify it after the name of the volume, using a colon. For
example, to mount the previous working directory to /cookbook as read-only, you
would use -v "$PWD": /cookbook:ro. You can inspect your mount mapping with the
docker inspect command. See Recipe 9.1 for more information about inspect.

$ docker inspect -f {{.Mounts}} 44d71a605b5b
[{ /Users/sebastiengoasguen/Desktop /cookbook true}]

See Also

« Managing data in containers

32 | Chapter 1: Getting Started with Docker

https://registry.hub.docker.com/_/postgres/
http://bit.ly/postgres-dockerfile
https://docs.docker.com/userguide/dockervolumes/

o Understanding volumes
o Data container

o Docker volumes

1.19 Sharing Data Between Containers

Problem

You know how to mount a host volume into a running container, but you would like
to share a volume defined in a container with other containers. This would have the
benefit of letting Docker manage the volumes and support the principle of single
responsibility.

Solution

Use data containers. In Recipe 1.18, you saw how to mount a host volume into a con-
tainer. You used the -v option of docker run, specifying a host volume and a path
within a container to mount that volume to. If the host path is omitted, you create a
data container. The volume specified is created inside the container as a read-write
filesystem not layered on top of the read-only layers used to create the container
image. Docker manages that filesystem, but you can read and write to it from the
host. Let’s illustrate this (with a truncated ID of the volumes for brevity):

$ docker run -ti -v /cookbook ubuntu:14.04 /bin/bash
root@b5835d2b951e: /# touch /cookbook/foobar
root@5835d2b951e: /# 1s cookbook/

foobar

root@5835d2b951e: /# exit

exit

bash-4.3$ docker inspect -f {{.Mounts}} b5835d2b951e
[{dbba7caf8d07b862b61b39... /var/lib/docker/volumes/dbba7caf8d07b862b61b39... \
/_data /cookbook local true}]

$ sudo ls /var/lib/docker/volumes/dbba7caf8d07b862b61b39. ..
foobar

The directory created by the Docker engine to store the data in the
volume defined resides on the Docker host. If you are using
Docker Machine to set up a remote Docker host, you will need to
connect to this remote Docker host to see the data path of the
Docker volumes.

When the container is started, Docker creates the /cookbook directory. From within
the container, you can read and write to this directory. Once you exit the container,
you can use inspect (see Recipe 9.1) to know where the volume has been created on

1.19 Sharing Data Between Containers | 33

http://container-solutions.com/2014/12/understanding-volumes-docker/
http://container42.com/2014/11/18/data-only-container-madness/
http://container42.com/2014/11/03/docker-indepth-volumes/

the host. Docker created it under /var/lib/docker/volumes/. From the host you can
read and write to it. Changes will persist and be available if you restart the container:

$ sudo touch /var/lib/docker/volumes/dbba7caf8d07b862b61b39.../foobar2
$ docker start b5835d2b951e

$ docker exec -ti b5835d2b951e /bin/bash

root@5835d2b951e: /# 1s /cookbook

foobar foobar2

To share this data volume with other containers, use the - -volumes-from option. Lets
start fresh and create a data container, and then start another container that will
mount the volume from this source data container:

$ docker run -v /data --name data ubuntu:14.04

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

$ docker inspect -f {{.Mounts}} data

[{4eel1d9e3d453e843819c6ff... /var/lib/docker/volumes/4eeld9e3d453e843819c6ff... \
/_data /data local true]

The data container is not running. Still, the volume mapping exists
and the volume has persisted in /var/lib/docker/vfs/dir. You can
remove the container and the volume only with docker rm -v
data. If you do not use the rm -v option to delete containers and
their volumes, you will end up with lots of orphaned volumes.

Even though the data container is not running, you can mount the volume from it
with the - -volumes-from option:

$ docker run -ti --volumes-from data ubuntu:14.04 /bin/bash
root@94a006377c1: /# touch /data/foobar
root@94a006377cl: /# exit

exit

$ sudo ls /var/lib/docker/volumes/4eel1d9e3d453e843819c6ff. ..
foobar

See Also

o Understanding volumes

o Data container

o Docker volumes

o Official Docker documentation

The aha moment of Docker volumes

34 | Chapter 1: Getting Started with Docker

http://container-solutions.com/2014/12/understanding-volumes-docker/
http://container42.com/2014/11/18/data-only-container-madness/
http://container42.com/2014/11/03/docker-indepth-volumes/
https://docs.docker.com/userguide/dockervolumes/
http://bit.ly/docker-aha

1.20 Copying Data to and from Containers

Problem

You have a running container started without any volume configuration, but you
would like to copy files in and out of the container.

Solution

Use the docker cp command to copy files from a running container to the Docker
host. The docker cp command allows you to copy files to and from the host to a con-
tainer. The usage is as follows and is straightforward:

$ docker cp
docker: "cp" requires 2 arguments.
See 'docker cp --help'.

Usage: docker cp [OPTIONS] CONTAINER:PATH LOCALPATH] -
docker cp [OPTIONS] LOCALPATH|- CONTAINER:PATH

Copy files/folders between a container and your host.

Let’s illustrate this by first starting a container that will just sleep. You can enter the
container and create a file manually:

$ docker run -d --name testcopy ubuntu:14.04 sleep 360

$ docker exec -ti testcopy /bin/bash

root@81793e9eb3e: /# cd /root

root@81793e9eb3e:~# echo 'I am in the container' > file.txt
root@81793e9eb3e:~# exit

Now to get the file that you just created in the container back in the host, docker cp
does the work:

$ docker cp testcopy:/root/file.txt .
$ cat file.txt
I am in the container

To copy from the host to the container, use docker cp again but the other way
around:

$ echo 'I am in the host' > host.txt
$ docker cp host.txt testcopy:/root/host.txt

A nice use case is to copy from one container to another container, which is a matter
of combining the two methods by temporarily saving the files on the host. For exam-
ple, if you want to transfer /root/file.txt from two running containers with the names
cl and ¢2, use the following:

1.20 Copying Data to and from Containers | 35

$ docker cp cl:/root/file.txt .
$ docker file.txt c2:/root/file.txt

Discussion

Prior to Docker 1.8, docker cp did not support copying files from the host to a con-
tainer. However, you could do it with a combination of docker exec and some shell
redirection:

$ echo 'I am in the host' > host.txt

$ docker exec -1 testcopy sh -c 'cat > /root/host.txt' < host.txt

$ docker exec -1 testcopy sh -c 'cat /root/host.txt'

I am in the host
This is not needed anymore but is a good showcase of the power of the docker exec
command.

See Also

o The original idea for this recipe from Grigoriy Chudnov

36 | Chapter 1: Getting Started with Docker

http://bit.ly/chudnov

CHAPTER 2
Image Creation and Sharing

2.0 Introduction

Quickly after discovering the basic principles of using Docker, you will want to create
your own container images. Maybe you will want to package an existing application
or you will want to build a new one from scratch leveraging Docker. This chapter is
about creating container images and sharing them with others.

The first concept around creating images is that you can start a container using a base
image and interactively make changes to it. Docker lets you keep those changes by
committing them into a new image (see Recipe 2.1). Under the covers, Docker keeps
track of the difference between your base image and your new image by creating a
new image layer using the union filesystem being used. Sharing this new image is as
easy as exporting it to a tar file and giving this tar file to others (see Recipe 2.2).

But making changes to a container manually and committing them to a new images
is not highly reproducible and not automated. A better solution is to create a Docker-
file that will let Docker build the image automatically (see Recipe 2.3). You can go
through creating a Dockerfile for a simple Python-based Flask application in Recipe
2.4, and in Recipe 2.5 you will learn the best practices to optimize this Dockerfile.

If you have used Vagrant and Packer before you will want to go through Recipe 2.7
and Recipe 2.8; this will help you embrace Docker and build Docker images by re-
using your existing configuration management recipes.

Sharing images using the export and import feature works fine, but to share your
images with others and integrate Docker into a continuous integration pipeline you
can leverage the Docker Hub. The Docker Hub (see Recipe 2.9) is nothing else than
an application store. Images on Docker Hub can be shared publicly, and they can also

37

be built automatically through integration with code hosting services like GitHub and
Bitbucket (see Recipe 2.12).

Finally, if you do not want to use the Docker Hub, you can deploy your own Docker
images registry (Recipe 2.11) and set up your own automated build (Recipe 2.13).

At the end of this chapter you will be able to write Dockerfiles for your various appli-
cation services and share them through a hosted service like the Docker Hub or
through your own Docker registry. This will put you on a quick path toward develop-
ing continuous integration and deployment pipelines.

2.1 Keeping Changes Made to a Container by Committing
to an Image

Problem

After making some changes inside a container, you decide that you would like to keep
those changes. You do not want to lose those changes after you exit or stop the con-
tainer, and you would like to reuse this type of container as a basis for others.

Solution

Commit the changes that you made by using the docker commit command and
define a new image.

Let’s start a container with an interactive bash shell and update the packages in it:

$ docker run -t -1 ubuntu:14.04 /bin/bash

root@69079aaaaabl: /# apt-get update
When you exit the container, it stops running, but it is still available to you until you
remove it entirely with docker rm. So before you do this, you can commit the
changes made to the container and create a new image, ubuntu:update. The name of
the image is ubuntu, and you add the tag update (see Recipe 2.6) to mark the differ-
ence from the ubuntu:latest image:

$ docker commit 69079aaaaabl ubuntu:update
13132d42da3cc40e8d8b4601a7e2f4dbf198e9d72e37e19ee1986c280ffcb97c

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu update 13132d42da3c 5 days ago 213 MB

You can now safely remove the stopped container and you will be able to start new
ones based on the ubuntu:update image.

38 | Chapter2:Image Creation and Sharing

Discussion

You can inspect the changes that have been made inside this container with the

docker diff command:
$ docker diff 69079aaaaabil
C /root
A /root/.bash_history
C /tmp
C /var
C /var/cache
C /var/cache/apt
D /var/cache/apt/pkgcache.bin
D /var/cache/apt/srcpkgcache.bin
C /var/lib
C /var/lib/apt
C /var/lib/apt/lists

A means that the file or directory listed was added, C means that there was a change
made, and D means that it was deleted.

See Also

o docker commit reference

o docker diff reference

2.2 Saving Images and Containers as Tar Files for Sharing

Problem

You have created images or have containers that you would like to keep and share
with your collaborators.

Solution

Use the Docker CLI save and load commands to create a tarball from a previously
created image, or use the Docker CLI import and export commands for containers.

Let’s start with a stop container and export it to a new tarball:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED - NAMES
77d9619a7a71 ubuntu:14.04 "/bin/bash" 10 seconds ago ... high_shockley
$ docker export 77d9619a7a71 > update.tar

$ s

update.tar

2.2 Saving Images and Containers as Tar Files for Sharing | 39

https://docs.docker.com/reference/commandline/cli/#commit
https://docs.docker.com/reference/commandline/cli/#diff

You could commit this container as a new image (see Recipe 2.1) locally, but you
could also use the Docker import command:

$ docker import - update < update.tar
157bcbb5fdfcee7c10ef67ebdba737a491214708a5f266a3c74aa6b0cfde078

$ docker images

REPOSITORY TAG IMAGE ID e VIRTUAL SIZE
update latest 157bcbb5fdfc ... 188.1 MB

If you wanted to share this image with one of your collaborators, you could upload
the tar file on a web server and let your collaborator download it and use the import
command on his Docker host.

If you would rather deal with images that you have already committed, you can use
the load and save commands:

$ docker save -o updatel.tar update

$1ls -1

total 385168

-rw-rw-r-- 1 vagrant vagrant 197206528 Jan 13 14:13 updatel.tar
-rw-rw-r-- 1 vagrant vagrant 197200896 Jan 13 14:05 update.tar

$ docker rmi update

Untagged: update:latest

Deleted: 157bcbb5fdfcefe7c10ef67ebdba737a491214708a5f266a3c74aa6b0cfde078
$ docker load < updatel.tar

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

update latest 157bcbb5fdfc 5 minutes ago 188.1 MB

ubuntu 14.04 8eaa4dffo6b53 12 days ago 192.7 MB
Discussion

The two methods are similar; the difference is that saving an image will keep its his-
tory, and exporting a container will squash its history.

2.3 Writing Your First Dockerfile

Problem

Running a container in interactive mode, making changes to it, and then committing
these changes to create a new image works well (see Recipe 2.1). However, you want
to automate building your image and share your build steps with others.

Solution

To automate building a Docker image, you decribe the building steps in a Docker
manifesto called the Dockerfile. This text file uses a set of instructions to describe
which base image the new container is based on, what steps need to be taken to install

40 | Chapter2:Image Creation and Sharing

various dependencies and applications, what files need to be present in the image,
how they are made available to a container, what ports should be exposed, and what
command should run when a container starts, as well as a few other things.

To illustrate this, let’s write our first Dockerfile. The resulting image will allow you to
create a container that executes the /bin/echo command. Create a text file called
Dockerfile in your working directory and write the following content in it:

FROM ubuntu:14.04

ENTRYPOINT ["/bin/echo"]

The FROM instruction tells you which image to base the new image off of. Here you
choose the ubuntu:14.04 image from the Official Ubuntu repository in Docker Hub.
The ENTRYPOINT instruction tells you which command to run when a container based
on this image is started. To build the image, issue a docker build . at the prompt
like so:

$ docker build .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> 9bd07e480c5b
Step 1 : ENTRYPOINT /bin/echo
---> Running in da3fa01c973a
---> e778362ca7cf
Removing intermediate container da3fa01c973a
Successfully built e778362ca7cf
$ docker images

REPOSITORY TAG IMAGE ID . VIRTUAL SIZE
<none> <none> e778362ca7cf ... 192.7 MB
ubuntu 14.04 9bd07e480c5b . 192.7 MB

You are now ready to run this container, specifying the image ID of the freshly built
image and passing an argument to it (i.e., HL Docker !):

$ docker run e778362ca7cf Hi Docker !

Hi Docker !
Amazing—you ran echo in a container! A container was started using the image that
you built from this two-line Dockerfile. The container ran and executed the com-
mand defined by the ENTRYPOINT instruction. Once this command was finished, the
container job was done and it exited. If you run it again without passing an argument,
nothing is echoed:

$ docker run e778362ca7cf

You could also use the CMD instruction in a Dockerfile. This has the advantage that
you can overwrite the CMD behavior when you launch a container, by passing a new

2.3 Writing Your First Dockerfile | 41

https://registry.hub.docker.com/_/ubuntu/

CMD as an argument to docker run. Let’s build a new image by using the CMD instruc-
tion, like so:

FROM ubuntu:14.04

CMD ["/bin/echo" , "Hi Docker !"]
Let’s build it and run it:
$ docker build .

$ docker run eff764828551
Hi Docker !

In the preceding build command, you specified the root directory.
The Dockerfile that you just created was automatically used for the
build. If you want to do a build of an image based on a Dockerfile
that is in a different location, you use the -f option of docker
build and specify the path.

It looks the same, but if you pass a new executable as an argument to the docker run
command, this command will be executed instead of the /bin/echo defined in the
Dockerfile:

$ docker run eff764828551 /bin/date
Thu Dec 11 02:49:06 UTC 2014

Discussion

A Dockerfile is a text file that represents the way a Docker image is built and what
happens when a container is started with this image. Starting with three simple
instructions, you can build a fully functioning container: FROM, ENTRYPOINT, CMD. Of
course, this is quite limited in this recipe. Read the Dockerfile reference to learn
about all the other instructions, or go to Recipe 2.4 for a more detailed example.

The CentOS project maintains a large set of Dockerfile examples.
Check out this repository and run a few of their examples to get
more familiar with Dockerfile files.

Remember that CMD can be overwritten by an argument to docker run, while ENTRY
POINT can be overwritten only by using the --entrypoint option of docker run.
Also, you saw that after a command is finished, the container exits. A process that
you want to run in a container needs to run in the foreground; otherwise, the con-
tainer will stop.

42 | Chapter2: Image Creation and Sharing

https://docs.docker.com/reference/builder/
https://github.com/CentOS/CentOS-Dockerfiles

Once your first build is done, a new image is created with, in this case, the ID
e778362ca7ctf. Note that no repository or tag is defined because you did not specify
any. You can rebuild the image with the repository cookbook as the name and the tag
hello, using the -t option of docker build. Aslong as you are doing this locally, the
choice of repository and tag is up to you, but once you start publishing this image
into a registry, you will need to follow a naming convention.

$ docker build -t cookbook:hello .
$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
cookbook hello e778362ca7cf 4 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 10 days ago 192.7 MB

The docker build command has a couple of options to deal with
intermediate containers:

$ docker build -h

Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

--force-rm=false Always remove intermediate containers...
--no-cache=false Do not use cache when building the ...

-q, --quiet=false Suppress the verbose output generated...
--rm=true Remove intermediate containers after ...
-t, --tag="" Repository name (and optionally a tag)...

See Also

o Dockerfile reference
o Best practices for writing a Dockerfile

o The CentOS project’s large set of Dockerfiles

2.4 Packaging a Flask Application Inside a Container

Problem

You have a web application built with the Python framework Flask, running in
Ubuntu 14.04. You want to run this application in a container.

Solution

As an example, you are going to use the simple Hello World application defined by
the following Python script:

2.4 Packaging a Flask Application Inside a Container | 43

https://docs.docker.com/reference/builder/
https://docs.docker.com/articles/dockerfile_best-practices/
https://github.com/CentOS/CentOS-Dockerfiles
http://flask.pocoo.org
http://flask.pocoo.org

#!/usr/bin/env python

from flask import Flask
app = Flask(__name__)

('/hi")
def hello_world():
return 'Hello World!'

if __name__ == '__main__
app.run(host='0.0.0.0"', port=5000)

To get this application running inside a Docker container, you need to write a Dock-
erfile that installs the prerequisites for running the application by using the RUN key
and exposes the port that the application runs on by using the EXPOSE key. You also
need to move the application inside the container filesystem by using the ADD key.

This Dockerfile will be as follows:

FROM ubuntu:14.04

RUN apt-get update

RUN apt-get install -y python

RUN apt-get install -y python-pip
RUN apt-get clean all

RUN pip install flask
ADD hello.py /tmp/hello.py
EXPOSE 5000

CMD ["python","/tmp/hello.py"]

This Dockerfile is not optimized intentionally; when you understand the basic princi-
ples, see Recipe 2.5 to build images following best practices to write Dockerfiles. The
RUN command allows you to execute specific shell commands during the container
image build time. Here you update the repository cache, install Python as well as Pip,
and install the Flask micro-framework.

To copy the application inside the container image, you use the ADD command. It
copies the file hello.py in the /tmp/ directory.

The application uses port 5000, and you expose this port on the Docker host.

Finally, the CMD command specifies that the container will run python /tmp/
hello.py at runtime.

What is left to do is to build the image:
$ docker build -t flask .

44 | Chapter2:Image Creation and Sharing

This creates a flask Docker image:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest d381310506ed 4 days ago 354.6 MB
cookbook echo e778362ca7cf 4 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 10 days ago 192.7 MB

To run the application, you use the -d option of docker run, which daemonizes the
container, and you also use the -P option of docker run to let Docker choose a port
on the Docker host that will be mapped to the exposed port specified in the Docker-
file (e.g., 5000):

$ docker run -d -P flask
5ac72ed12a72f0e2bec0001b3e78f11660905d20f40e670d42aee292263cb890

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS
5ac72ed12a72 flask:latest "python /tmp/hello.p ... 0.0.0.0:49153->5000/tcp

The container returns, it is daemonized, and you are not logged in to an interactive
shell. PORTS shows a mapping between port 5000 of the container and port 49153 of
the Docker host. A simple curl to http://localhost:49153/hi returns Hello World, or
you can open your browser to the same URL.

If you are using Boot2Docker, you will have to use the IP address of
the bridge network, instead of localhost. If you do want to use
\ localhost, add port forwarding rules in VirtualBox.

Discussion

Since your Dockerfile specified a command to run via CMD, you do not need to specify
a command after the name of the image to use. However, you can override this com-
mand and start the container in interactive mode by starting a bash shell like so:

$ docker run -t -1 -P flask /bin/bash
root@fc1514ced93e: /# 1s -1 /tmp

total 4

-rw-r--r-- 1 root root 194 Dec 8 13:41 hello.py
root@fc1514ced93e: /#

2.5 Optimizing Your Dockerfile by Following Best Practices

Problem

You want to follow best practices to write your Dockerfiles and optimize your Docker
images.

2.5 Optimizing Your Dockerfile by Following Best Practices | 45

http://localhost:49153/hi

Solution

The Docker documentation has published best practices to write Dockerfiles. This
recipe highlights a few of them to put you on your way to building good images:

1.

Run a single process per container. Although you can run multiple processes per
container (e.g., Recipe 1.15), building images that will run only one process or at
least one functional service per container will help you build decoupled applica-
tions that can scale. Take advantage of container linking (see Recipe 3.3) or other
container-networking techniques (see Chapter 3) to have the containers commu-
nicate with each other.

. Do not assume that your containers will live on; they are ephemeral and will be

stopped and restarted. You should treat them as immutable entities, which means
that you should not modify them but instead restart them from your base image.
Therefore, manage runtime configuration and data outside the containers and
hence the image. Use Docker volumes (see Recipe 1.18 and Recipe 1.19) for this.

Use a .dockerignore file. When building images, Docker will copy the content of
the working directory where the Dockerfile exists (i.e., the build context) inside
the image. Using .dockerignore, you can exclude files and directories from being
copied during the build process. If you do not use a .dockerignore file, make sure
to build your image in a directory that has only the minimum required. Check
the syntax for the .dockerignore file.

Use official images from Docker Hub instead of writing your own from scratch.
These images are maintained and blessed by the projects authoring the software.
You can also use ONBUILD images (see Recipe 2.10) to simplify even further your
images.

. Finally, minimize the number of layers of your images and take advantage of the

image cache. Docker uses union filesystems to store images. This means that
each image is made of a base image plus a collection of diffs that adds the
required changes. Each diff represents an additional layer of an image. This has a
direct impact on how your write your Dockerfile and use the various directives.
The following section illustrates this point further.

Discussion

In Recipe 2.4, you saw your first Dockerfile, which starts with the following direc-
tives:

FROM ubuntu:14.04

RUN apt-get update
RUN apt-get install -y python
RUN apt-get install -y python-pip

46

| Chapter2: Image Creation and Sharing

https://docs.docker.com/articles/dockerfile_best-practices/
https://docs.docker.com/reference/builder/#dockerignore-file
https://registry.hub.docker.com/search?q=library

RUN apt-get clean
RUN pip install flask

ADD hello.py /tmp/hello.py

It contains several faux-pas that illustrate a couple of best practices to follow instead.

The fact that it uses the ubuntu:14.04 official image is good. However, you then pro-
ceeded to install a few packages using multiple RUN commands. This is bad practice,
as it will add unnecessary layers to the image. You also used the ADD command to
copy a simple file. Instead in this example, you should use the COPY command (ADD
allows more-complex file copy scenarios).

Therefore, the Dockerfile should instead be written like so:

FROM ubuntu:14.04

RUN apt-get update && apt-get install -y \
python
python-pip

RUN pip install flask

COPY hello.py /tmp/hello.py

It could even be made better with the use of a Python official image:

FROM python:2.7.10
RUN pip install flask

COPY hello.py /tmp/hello.py

This is not meant to be exhaustive, but gives you a taste of how to optimize your
Dockerfile. For more detailed information, see the recommended best practices.

2.6 Versioning an Image with Tags

Problem

You are creating multiple images and multiple versions of the same image. You would
like to keep track of each image and its versions easily, instead of using an image ID.

Solution

Tag the image with the docker tag command. This allows you to rename an existing
image, or create a new tag for the same name.

2.6 Versioning an Image withTags | 47

https://docs.docker.com/articles/dockerfile_best-practices/

When you committed an image (see Recipe 2.1) you already used tags. The naming
convention for images is that everything after a colon is a tag.

A tag is optional. If you do not specify a tag, Docker will implicitly
try to use a tag called latest. If such a tag for the image being ref-
erenced does not exist in the repository, Docker will fail to down-
load the image.

For example, let’s rename the ubuntu:14.04 image to foobar. You will not specify a tag,
just change the name; hence Docker will use the latest tag automatically:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

$ docker tag ubuntu foobar
2014/12/17 09:57:48 Error response from daemon: No such id: ubuntu

$ docker tag ubuntu:14.04 foobar

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
foobar latest 9bd07e480c5b 12 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

The first thing that you see in the preceding example is that when you try to tag the
ubuntu image, Docker throws an error. That is because the ubuntu image has only a
14.04 tag and no latest tag. In your second attempt you specify the existing tag by
using a colon, and the tagging is successful. Docker creates a new foobar image and
automatically adds the latest tag. If you specify a tag by using a colon after the new
name for the image, you get this:

$ docker tag ubuntu:14.04 foobar:cookbook

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
foobar cookbook 9bd07e480c5b 12 days ago 192.7 MB
foobar latest 9bd07e480c5b 12 days ago 192.7 MB
ubuntu 14.04 9bd07e480c5b 12 days ago 192.7 MB

All the images you used so far are local to your Docker host. But when you want to
share these images through registries, you need to name them appropriately. Specifi-
cally, you need to follow the USERNAME/NAME convention when preparing an
image for Docker Hub. When using a private registry, you need to specify the registry
host, an optional username and the name of the image (i.e., REGISTRYHOST/USER-
NAME/NAME). And, of course, you can still use a tag (i.e., : TAG).

48 | Chapter2:Image Creation and Sharing

https://hub.docker.com

Discussion

Properly tagging an image is an important part of sharing it on Docker Hub (see
Recipe 2.9) or using a private registry (see Recipe 2.11). The docker tag help infor-
mation is pretty succint but shows the proper naming convention, which references
the proper namespace, be it local, on Docker Hub, or on a private registry:

$ docker tag -h
Usage: docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/INAME[:TAG]
Tag an image into a repository

-f, --force=false Force

2.7 Migrating from Vagrant to Docker with the Docker
Provider

Problem

You have been using Vagrant for your testing and development work and would like
to reuse some of your Vagrantfiles to work with Docker.

Solution

Use the Vagrant Docker provider. You can keep writing Vagrant files to bring up new
containers and develop your Dockerfiles.

Here is an example Vagrantfile that uses the Docker provider:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.provider "docker" do |d|
d.build_dir = "."
end

config.vm.network "forwarded port", guest: 5000, host: 5000

end

The build_dir option looks for a Dockerfile in the same directory as the Vagrantfile.
Vagrant then issues a docker build in turn, and starts the container:

2.7 Migrating from Vagrant to Docker with the Docker Provider | 49

http://vagrantup.com
https://docs.vagrantup.com/v2/docker/index.html

$ vagrant up --provider=docker

Bringing machine 'default' up with 'docker' provider...

==> default: Building the container from a Dockerfile...
default: Sending build context to Docker daemon 8.704 kB
default: Step O : FROM ubuntu:14.04

==> default: Creating the container...
default: Name: provider_default_1421147689
default: Image: 324f2babf057
default: Volume: /vagrant/provider:/vagrant
default: Port: 5000:5000
default:
default: Container created: efell1afb8b9d3ff
==> default: Starting container...
==> default: Provisioners will not be run since container doesn't support SSH.

Once the vagrant up is over, the container will be running and an image will have
been created. You can use the regular Docker commands to interact with the con-
tainer or use the new vagrant docker-logs and vagrant docker-run commands.

Standard commands like vagrant status and vagrant destroy will also work with
your containers.

It is likely that you will not install SSH in your container. There-
fore, the Vagrant provisioners will not be able to run. Any software
] installation within your container will need to happen through the
Dockerfile.

Discussion

I created a simple environment to help you test this recipe. Similarly to other recipes,
you can clone the Git repository that accompanies this book and head over to the
recipe examples. An Ubuntu 14.04 virtual machine will be started, and Docker will be
installed as well as Vagrant. In the /vagrant/provider directory, you will find yet
another Vagrantfile (shown previously), and a Dockerfile. This Dockerfile builds a
simple Flask application in the container:

$ git clone

$ cd ch02/vagrantprovider/

$ vagrant up

$ vagrant ssh

$ cd /vagrant/provider

$ vagrant up --provider=docker

The possible configurations of the Vagrantfile are almost a one-to-one match with
directives in a Dockerfile. You can define what software to install in a container, what
environment variables to pass, which ports to expose, which containers to link to, and
which volumes to mount. The interesting thing is that Vagrant will attempt to trans-
late the regular Vagrant configuration into Docker run options. For instance, for-

50 | Chapter2:Image Creation and Sharing

warding ports from a Docker container to the host can be done with the regular
Vagrant command:

config.vm.network "forwarded_port", guest: 5000, host: 5000

Opverall, it is my opinion that the Docker support in Vagrant should be seen as a tran-
sitioning step for developers who might have invested a lot of work with Vagrant and
would like to slowly adopt Docker.

Vagrant also features a Docker provisioner. It can be used when
you are starting virtual machines, provisioning them with configu-
ration management solutions (e.g., Puppet or Chef) but would also
like to start containers within those virtual machines.

See Also

« Vagrant Docker provider configuration

o Vagrant Docker provider documentation

2.8 Using Packer to Create a Docker Image

Problem

You have developed several configuration management recipes using Chef, Puppet,
Ansible, or SaltStack. You would like to reuse those recipes to build Docker images.

Solution

Use Packer from HashiCorp. Packer is a tool to create identical machine images for
multiple platforms from a single template definition. For example, from a template it
can automatically create images for Amazon EC2 (an Amazon Machine Image, or
AMI), VMware, VirtualBox, and DigitalOcean. One of those target platforms is
Docker.

This means that if you define a Packer template, you can automatically generate a
Docker image. You can also post-process it to tag the image and push it to Docker
Hub (see Recipe 2.9).

The following template shows three main steps. First it specifies a builder; here you
use Docker and specify to use the base image ubuntu:14.04. Second, it defines the
provisioning step. Here we use a simple shell provisioning. Finally, it lists post-
processing steps. Here we tag only the resulting image:

2.8 Using Packer to Create a Docker Image | 51

https://docs.vagrantup.com/v2/provisioning/docker.html
https://docs.vagrantup.com/v2/docker/configuration.html
https://docs.vagrantup.com/v2/docker/index.html
http://www.getchef.com
http://www.getchef.com
http://www.ansible.com/home
http://www.saltstack.com
https://www.packer.io

{
"builders": [
{
"type": "docker",
"image": "ubuntu:14.04",
"commit": "true"
}
1,
"provisioners": [
{
"type": "shell",
"script": "bootstrap.sh"
}
1,
"post-processors": [
{
"type": "docker-tag",
"repository”": "how2dock/packer",
"tag": "latest"
}
1
}

You can validate the template and launch a build of the image with two commands:

$ packer validate template.json
$ packer build template.json

Set up several builders in your template and output different
images for your application (e.g., Docker and AMI).

To help you test Packer, I created a Vagrantfile that starts an Ubuntu 14.04 virtual
machine, installs Docker on it, and downloads Packer. Test it like this:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch02/packer

$ vagrant up

$ vagrant ssh

$ cd /vagrant

$ /home/vagrant/packer validate template.json
Template validated successfully.

$ /home/vagrant/packer build template.json

==> docker: Creating a temporary directory for sharing data...
==> docker: Pulling Docker image: ubuntu:14.04

==> Builds finished. The artifacts of successful builds are:
--> docker: Imported Docker image: 3ebae8e2f2a8af8f2c5f366c603091c5e9c8e234bff8
--> docker: Imported Docker image: how2dock/packer:latest

52 | Chapter2:Image Creation and Sharing

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
how2dock/packer latest 3ebae8e2f2a8 20 seconds ago 210.8 MB
ubuntu 14.04 8eaadffo6b53 11 days ago 192.7 MB

In this example, you can now run Nginx (which has been installed via the boostrap.sh
script):

$ docker run -d -p 80:80 how2dock/packer /usr/sbin/nginx -g "daemon off;"

But because a Dockerfile was not used to create this image, no CMD or ENTRYPOINT was
defined. Nginx will not be started when the container is launched; hence a container
started from the image generated without specifying how to run Nginx will exit right
away.

Discussion

Packer is a great tool that can help you migrate some of your work from previous
DevOps workflows into a Docker-based workflow. However, Docker containers run
applications in the foreground and encourage running single-application processes
per container. Hence, creating a Docker image with Packer that would have, for
example, MySQL, Nginx, and WordPress in the same image would be contrary to the
Docker philosophy and might prove difficult to run without some additional manual
post-processing with something like Supervisor (see Recipe 1.15).

The preceding solution features a basic shell provisioning. If you have existing con-
figuration management recipes, you can also use them to create a Docker image.
Packer features shell, Ansible, Chef, Puppet, and Salt provisioners. As an example, the
template-ansible.json file in the repository used previously makes use of the Ansible
local provisioner. The Packer template gets modified like so:

{
"builders": [
{
"type": "docker",
"image": "ansible/ubuntul4.04-ansible:stable",
"commit": "true"
}
1,
"provisioners": [
{
"type": "ansible-local",
"playbook_file": "local.yml"
}

1,
"post-processors": [
{
"type": "docker-tag",
"repository": "how2dock/packer",
"tag": "ansible"

2.8 Using Packer to Create a Docker Image | 53

https://www.packer.io/docs/provisioners/shell.html

]
}

It uses a special Docker image, pulled from Docker Hub, that has Ansible installed in
it. Packer will use the local Ansible CLI to run the Ansible playbook local.yml. The
playbook defined in the template file installs Nginx locally:

- hosts: localhost
connection: local
tasks:
- name: install nginx
apt: pkg=nginx state=installed update_cache=true

The result of building with Packer will be a working Docker image how2dock/
packer:ansible

$ /home/vagrant/packer build template-ansible.json

==> docker: Creating a temporary directory for sharing data...
==> docker: Pulling Docker image: ansible/ubuntul4.04-ansible:stable
docker: Pulling repository ansible/ubuntul4.04-ansible

==> docker: Provisioning with Ansible...
docker: Creating Ansible staging directory...
docker: Creating directory: /tmp/packer-provisioner-ansible-local
docker: Uploading main Playbook file...

docker:
docker: PLAY [localhost] FhhkhI A A hdd A ddhhhdddddhdddddrdhddddrdid

docker:
docker: GATHERING FACTS KA I AT AA I I I A A A A I I hd A A ddhddddrdhhddddrdhd

docker: ok: [localhost]

docker:

docker: TASK: [install nginx] B o R
docker: changed: [localhost]

docker:
docker: PLAY RECAP hhkkhkhkhhhhrhhhdddrhhhdddddhdddddhhhdddrhhhddsd

docker: localhost : ok=2 changed=1 unreachable=0 failed=0
docker:
==> docker: Committing the container

docker (docker-tag): Repository: how2dock/packer:ansible
Build 'docker' finished.

A new image is now available, how2dock/packer:ansible, that was built using an Ansi-
ble playbook. You can start a container based on this image and launch the applica-
tion as you did before. This interesting workflow allows you to keep the benefit of
your configuration management recipes/playbooks while starting to use containers
instead of virtual machines.

54 | Chapter2:Image Creation and Sharing

2.9 Publishing Your Image to Docker Hub

Problem

You write a Dockerfile and build an image for a useful container. You want to share
this image with everyone.

Solution

Share this image on the Docker Hub. Docker Hub is to Docker what GitHub is to
source code. It allows anyone to host its image online and share it publicly or keep it
private. To share an image on Docker Hub, you need to do the following:

o Create an account on Docker Hub.
o Login to the hub on your Docker host.

o Push your image.

Lets get started. Registering requires only a valid email address. Head over to the
signup page and create an account. After verifying the email address that you used to
create the account, your registration will be complete. This free account will allow
you to publish public images as well as have one private repository. If you want to
have more than one private repository, you will need to pay a subscription.

Now that you have an account created, you can head back to your Docker host, select
one of your images, and use the Docker CLI to publish this image on your public
repository. This will be a three-step process:

1. Log in with docker login. This will ask for your Docker Hub credentials.
2. Tagan existing image with your username from Docker Hub.

3. Push the newly tagged image.

The login step will store your Docker Hub credentials in a ~/.dockercfg file:

$ docker login

Username: how2dock

Password:

Email: how2dock@gmail.com

Login Succeeded

$ cat ~/.dockercfg

{"https://index.docker.io/v1/":{"auth":".......... ",
"email":"how2dock@gmail.com"}}

If you check the list of images that you currently have, you see that your Flask image
from Recipe 2.4 is using a local repository and has a tag called latest:

2.9 Publishing Your Image to Docker Hub | 55

http://hub.docker.com
https://github.com
https://hub.docker.com/

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest 88d6464d1f42 5 days ago 354.6 MB

To push this image to your Docker Hub account, you need to tag this image with
your own Docker Hub repository with the docker tag command (see Recipe 2.6):

$ docker tag flask how2dock/flask
sebimac:flask sebgoa$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask latest 88d6464d1f42 5 days ago 354.6 MB
how2dock/flask latest 88d6464d1f42 5 days ago 354.6 MB

You now have your Flask image with the repository of how2dock/flask, which follows
the proper naming convention for repositories. You are ready to push the image.
Docker will attempt to push the various layers that make the image; if the layer is pre-
existing on the Docker Hub, it will skip it. Once the push is finished, the how2dock/
flask image will be visible in your Docker Hub page, and anyone will be able to
docker pull how2dock/flask (see Figure 2-1):

$ docker push how2dock/flask

The push refers to a repository [how2dock/flask] (len: 1)
Sending image list

Pushing repository how2dock/flask (1 tags)

511136ea3c5a: Image already pushed, skipping
01bf15a18638: Image already pushed, skipping

dc4a9a43bb7f: Image successfully pushed

e394b9fbe3fa: Image successfully pushed

3f7abcdc10d4: Image successfully pushed

88d6464d1f42: Image successfully pushed

Pushing tag for rev [88d6464d1f42] on
{https://cdn-registry-1.docker.io/v1l/repositories/how2dock/flask/tags/latest}

56 | Chapter2:Image Creation and Sharing

.
au
d‘““ Search. Q, Browse Repos Documentation Community Help how2dock \v

o
Your Repositories

how2dock ~
Show: All %+ Sortby: Last Updated H
Summary
Filter by name...
Repositories
Starred how2dock/flask a few seconds ago <7 {—J,‘—j‘
0 0
Manage
Settings

Private Repositories

(used 0 of 1)

Buy more!

Figure 2-1. Docker Hub Flask image

Discussion

The docker tag command allows you to change the repository and tag of an image.
In this example, you did not specify a tag, so Docker assigned it the latest tag. You
could choose to specify tags and push these to Docker Hub, maintaining several ver-
sions of an image in the same repository.

This recipe introduced two new docker CLI commands: docker tag and docker
push. One more is worth noting, in terms of image management: docker search. It
allows you to search for images in Docker Hub. For example, if you are looking for an
image that would give you postgres:

$ docker search postgres

NAME DESCRIPTION STARS OFFICIAL AUTOMATED
postgres The PostgreSQL v 402 [OK]
paintedfox/postgresql A docker image - 50 [OK]
helmi03/docker-postgis PostGIS 2.1 in ... 20 [OK]
atlassianfan/jira Atlassian Jira - 17 [OK]
orchardup/postgresql https://github ... 16 [OK]
abevoelker/ruby Ruby 2.1.2, Post ... 13 [OK]
slafs/sentry my approach for ... 12 [OK]

The command returns over 600 images. The first one is the official Postgres image
maintained by the Postgres team. The other ones are images created by users of
Docker Hub. Some of the images are built and pushed automatically, and you will
learn about automated builds in Recipe 2.12.

2.9 Publishing Your Image to Docker Hub | 57

See Also

o Docker Hub reference

2.10 Using ONBUILD Images

Problem

You have seen Dockerfiles in software repositories that have a single line like FROM
golang:1.3-onbuild and you are wondering how this image can work.

Solution

The magic happens thanks to the ONBUILD directive that you can use in a Dockerfile.
This directive defines a trigger that gets executed at a later time. The trigger is a regu-
lar Dockerfile directive like RUN or ADD. An image containing ONBUILD directives is
called a parent image. When a parent image is used as a base image (i.e., using the
FROM directive), the image being built—also called the child—triggers the directives
defined by ONBUILD in the parent.

In other words, the parent image tells the child image what to do at build time.

You can still add directives in the Dockerfile of the child, but the ONBUILD directives
of the parent will be executed first.

This is handy for building minimalistic Dockerfiles and providing consistency across
all your images.

Check the following references for examples of parent images that use the ONBUILD

image:

» Node.js

» Golang

o Python

« Ruby
For Node.js applications, for instance, you can use a parent image defined by this
Dockerfile:

FROM node:0.12.6

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

ONBUILD COPY package.json /usr/src/app/

58 | Chapter2:Image Creation and Sharing

http://bit.ly/dockerhub-ref
http://bit.ly/node-dockerfile
http://bit.ly/golang-dockerfile
http://bit.ly/python-dockerfile
http://bit.ly/ruby-dockerfile

ONBUILD RUN npm install
ONBUILD COPY . /usr/src/app

CMD ["npm", "start"]
Your child image would be defined like this (at a minimum):
FROM node:0.12.6-onbuild

When building your child image, Docker would automatically copy the package.json
file from your local context to /ust/src/app, it would execute npm install and copy
the entire context to usr/src/app.

See Also

o Understanding the ONBUILD directive
o ONBUILD reference

2.11 Running a Private Registry

Problem

Using the public Docker Hub is easy. However, you might have data governance con-
cerns with your images being hosted outside your own infrastructure. Therefore, you
would like to run your own Docker registry, hosting it on your own infrastructure.

Solution

Use the Docker registry image and start a container from it. You will have your pri-
vate registry.

Pull the official registry image and run it as a detached container. You should then be
able to curl http://localhost:5000/v2 for a quick test that the registry is running:

$ docker pull registry:2

$ docker run -d -p 5000:5000 registry:2

$ curl -1 http://localhost:5000/v2/

HTTP/1.1 200 OK

Content-Length: 2

Content-Type: application/json; charset=utf-8
Docker-Distribution-Api-Version: registry/2.0
Date: Wed, 19 Aug 2015 23:07:47 GMT

The preceding reponse shows that you are running the Docker registry with API ver-
sion v2. You can now prepare a local image that you have created previously (e.g., a
flask image, Recipe 2.4) and tag it with the proper naming convention for use with a
private registry. In our case, the registry is running at http://localhost:5000, so we will

2.11 Running a Private Registry | 59

http://www.eikonomega.com/dockerfile-understand-onbuild/
http://docs.docker.com/reference/builder/#onbuild
https://hub.docker.com/_/registry/
http://localhost:5000/v2
http://localhost:5000

prefix our tag with localhost:5000 and then push this image to the private registry.
You can also use the IP address of your Docker host:

$ docker tag busybox localhost:5000/busy

$ docker push localhost:5000/busy

The push refers to a repository [localhost:5000/busy] (len: 1)
8c2e06607696: Image successfully pushed

6ce2e90b0bc7: Image successfully pushed

cf2616975b4a: Image already exists

latest: digest: sha256:3b5b980...a4d59f24f9c7253fce29 size: 5049

If you try to access this private registry from another machine, you will get an error
message telling you that your Docker client does not allow you to use an insecure reg-
istry. For testing purposes only, edit your Docker configuration file to use the
insecure-registry option. For instance, on Ubuntu 14.04, edit /etc/default/docker
and add this line:

DOCKER_OPTS="--1insecure-registry <IP_OF_REGISTRY>:5000"

Then restart Docker on your machine (sudo service docker restart) and try to
access the remote private registry again. (Remember that this is done on a different
machine than where you are running the registry.)

Discussion

This short example uses the default setup of the registry. It assumes no authentica-
tion, an insecure registry, local storage, and a SQLAlchemy search backend. All of
these can be set via environmental variables or by editing a configuration file. This is
well documented.

The registry that is running via the registry Docker image is a Golang application that
exposes an HTTP REST API, and that you can access with your own registry client or
even curl.

For example, to list all images stored in the private registry, you can use the /v2/_cata-
log URI:

$ curl http://localhost:5000/v2/_catalog

{"repositories":["busy"]}
If you push another busybox image to the private registry but tagged differently, you
will see it being added to the catalog:

$ docker tag busybox localhost:5000/busyl
$ docker push localhost:5000/busyl

$ curl http://localhost:5000/v2/_catalog

{"repositories":["busy","busy1"]}

60 | Chapter2:Image Creation and Sharing

https://github.com/docker/distribution
https://docs.docker.com/registry/spec/api/

Each image in the registry is described by a manifest. You can get this manifest via the
API as well at the /v2/<name>/manifests/<reference> URI, where <name> is the name
of the image and <reference> is a tag of the image:

$ curl http://localhost:5000/v2/busyl/manifests/latest

{
"schemaVersion": 1,
"name": "busy1",
"tag": "latest",
"architecture": "amd64",
"fsLayers": [
{
"blobSum": "sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d..."
3,
{
"blobSum": "sha256:1db09adb5ddd7f1a07b6d585a7db747a51c7bd17418d47e..."
1,
{
"blobSum": "sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d..."
}
1,

Each blob seen in the preceding code corresponds to a layer of the image. You can
upload, retrieve, and delete blobs through the registry API. Details are available in the
API specification documentation page.

To list all tags for a specific image, use the v2/<name>/tags/list URI like so:

$ curl http://localhost:5000/v2/busyl/tags/list
"name":"busy1","tags":["latest"]}

$ docker tag busybox localhost:5000/busyl:foobar

$ docker push localhost:5000/busyl:foobar

$ curl http://localhost:5000/v2/busyl/tags/list
"name":"busy1","tags":["foobar","latest"]}

These examples using curl are meant to give you a sense of the registry API. Com-
plete API documentation is available on the Docker website.

See Also

o The Docker registry page on Docker Hub
o The more extensive documentation on GitHub

o Deployment instructions

2.11 Running a Private Registry | 61

https://docs.docker.com/registry/spec/api/#deleting-an-image
https://docs.docker.com/reference/api/registry_api/#set-a-tag-for-a-specified-image-id
https://hub.docker.com/
https://github.com/docker/distribution
https://docs.docker.com/registry/deploying/

2.12 Setting Up an Automated Build on Docker Hub for
Continuous Integration/Deployment

Problem

You have access to Docker Hub (see Recipe 2.9) and already pushed an image to it.
However, this is a manual process. You want to automate the build of this image every
time you commit a change to it.

Solution

Instead of setting up a standard repository, create an Automated Build repository and
point to your application on GitHub or Bitbucket.

On your Docker Hub page, click the Add Repository button and select Automated
Build (Figure 2-2). You will then have the choice between GitHub and Bitbucket

(Figure 2-3).

P
v Search...

how2dock v

Summary
Repositories

Starred

Manage
Settings

Private Repositories

Browse Repos Doct 1 [ity Help how2dock v
Your Recently Updated Repositories + Add Repository
Repository
Yesterday Automated Build
flask
o0 w70
Contributed Repositories Starred Repositories
No contributions... yet! Browse repositories in the Registry
Activity Feed
+ how2dock pushed to the repository how2dock/flask Yesterday
+ how2dock created the repository how2dock/flask Yesterday

Figure 2-2. Create an automated build repository

62 | Chapter2:Image Creation and Sharing

https://hub.docker.com
https://github.com
https://bitbucket.org

Search, [} Browse Repos Documentation Community Help how2dock v

Select the source you want to use for your Automated Build

GitHub Bitbucket

Select Select

Figure 2-3. Choosing between GitHub and Bitbucket

Docker Hub allows you to set up an automated build as a public or
private repository pointing to a public or private code repository. If
you are setting up a private automated build, Docker Hub will need

\ read and write access to your GitHub account.

After selecting the type of online version control system you want to use, you can
select the project you want to build from (Figure 2-4). This should be a project on
GitHub or Bitbucket that contains the Dockerfile you want to build. Next, you can
give a name to the Docker Hub repository you are creating, select the branch, and

specify the location of the Dockerfile. This is handy, as it allows you to maintain sev-

eral Dockerfiles inside a single GitHub/Bitbucket repository. Docker Hub creates a

GitHub hook in your GitHub repository.

2.12 Setting Up an Automated Build on Docker Hub for Continuous Integration/Deployment |

63

-
P
d‘"“ Search... Q, Browse Repos Documentation Community Help runseb »

README.md

If you have a README.md file in your repository, we will use that as the repository full description. We will look for the README.md in the
same directory where your Dockerfile lives.

Warning: if you change the full description after a build, it will be rewritten the next time the Automated Build, has been built. To make
changes, change the README.md in the source repo. For more information please read the Automated Build documentation.

Namespace (optional) and Repository Name
runseb ~ f flask v

New unique Repo name; 3 - 30 characters. Only lowercase letters, digits and _ - . characters are allowed

Tags
Type Name Dockerfile Location Docker Tag Name
Branch v master fexamples/flask latest
(=) Public

o' Anyone can pull, and is listed and searchable on the docker index.
O Private

& Only you can pull, and is not listed on the docker index.

Active:

& When active we will build when new pushes occur

Create Repository

Figure 2-4. Entering details of the build

The name of the Docker Hub repository you are creating does not
have to be the same as the GitHub/Bitbucket repository you select.

Once you have set up the build, you have access to the build details. The status
changes from pending to building to pushing and finally to finished. When the build is
finished, you can pull the new image:

$ docker pull runseb/flask

The Dockerfile tab automatically populates with the content of your Dockerfile in
your GitHub repository. The Information tab automatically populates with the con-
tent of the README.md file if it exists.

64 | Chapter2:Image Creation and Sharing

As soon as you push a new commit to the GitHub repo used for the build, a new
build is triggered. When the build finishes, the new image will be available.

You can edit the build settings to trigger builds from different
branches and specify a different tag. For instance, you can decide to
build from your master branch and associate the latest tag to it,
and use a release branch to build a different tag (i.e., 1.0 tag from a
1.0 release branch).

Discussion

In addition to builds being automatically triggered when you push to your GitHub or
Bitbucket repository, you can trigger builds by sending an HTTP POST request to a
specific URL generated on the Build Trigger page (see Figure 2-5). To prevent abusing
the system, builds may be ignored.

Trigger Status
Status: ON
Trigger d475002¢-85dc-11e4-81c4-0242ac110007 £ Regenerate Token
Token:
Trigger URL: https://registry.hub.docker.com/u/runseb/flask/trigger/d475002¢c-85dc-11e4-81c4-
0242ac110007/
Example

% curl —-data "build=true” -X POST https://registry.hub.docker.com/u/Tunseb/f Losk/ LT igger /04 75E2c-85do-11e4-5104-8
Z24z2acllena’;

Last 10 Trigger Logs

Date/Time IP Address Status Status description Build Request

Dec. 17, 2014, 11:12 178.188.177.131 triggered Build Triggered bvdnxrvywvgrywywnl2g33qg
a.m.

Dec. 17, 2014, 11:08 178.199.177.131 ignored Ignored, build n/a

a.m. throttle.

Figure 2-5. Turning on the build trigger

Finally, whether you build automatically or use a trigger on your own, you can also
use webhooks. Webhook URLs are useful for integrating with other tools, like Jen-
kins. Various tools can trigger image builds and chain several steps of a continuous

2.12 Setting Up an Automated Build on Docker Hub for Continuous Integration/Deployment | 65

https://jenkins-ci.org
https://jenkins-ci.org

delivery pipeline. In the Build Details page of your automated build, you will be able
to access the Web Hooks page. In it you can add URLs that will receive an HTTP
POST when a successful build happens. The body of this POST request will contain a
callback URL. In response, you will need to send another HTTP POST with a JSON
payload containing the state key and the value of either success, failure, or error.
On receiving a successfull state, the automated build can call another webhook,
henceforth allowing you to chain several actions together.

See Also

o The automated build reference documentation

2.13 Setting Up a Local Automated Build by Using a Git
Hook and a Private Registry

Problem

Automated builds using Docker Hub and GitHub or Bitbucket are great (see Recipe
2.12), but you might be using a private registry (i.e., local hub) and may want to trig-
ger Docker builds when you commit to your local Git projects.

Solution

Create a post-commit Git hook that triggers a build and pushes the new image to
your private registry.

In the root tree of your Git project, create a bash script, ./git/hooks/post-commit, that
contains something as simple as this:

#!/bin/bash

tag="git log -1 HEAD --format="%h""
docker build -t flask:$tag /home/sebgoa/docbook/examples/flask

Make it executable with chmod +x .git/hooks/post-commit.

Now every time you make a commit to this Git project, this post-commit bash script
will run. It will create a tag using the short version of the SHA of the latest commit
and then trigger the build based on the Dockerfile referenced. It will then create a
new image with the name flask and the computer tag:

$ git commit -m "fixing hook"

9c38962

Sending build context to Docker daemon 3.584 kB

Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04

66 | Chapter2:Image Creation and Sharing

https://docs.docker.com/docker-hub/builds/

---> 9bd07e480c5b
Step 1 : RUN apt-get update

---> Using cache

---> e659c9e9bazl
<snip>
Removing intermediate container 05c13744c7bf
Step 8 : CMD python /tmp/hello.py

---> Running in 124cd2ada52d

---> 9a50c7b2bee9
Removing intermediate container 124cd2ada52d
Successfully built 9a50c7b2bee9

[master 9c38962] fixing hook

1 file changed, 1 insertion(+), 1 deletion(-)
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
flask 9c38962 9a50c7b2beed 5 days ago 354.6 MB

Although this works nicely and is achieved with two lines of bash, if the build were to
take a long time, it would not be practical to build the image as a post-commit task. It

would be better to use the post-commit hook to trigger a remote build and then reg-
ister this image in a private repo.

Discussion

For example, you could use a Git hook to trigger an image build on one of your Jen-
kins servers and then let Jenkins push the new image to your private repository.

2.14 Using Conduit for Continuous Deployment

Problem

You know how to set up an automated build (see Recipe 2.12) on Docker Hub but
would like to set up a hook so that when the build completes, the new image is
deployed automatically on a Docker host.

Solution

Docker Hub features webhooks that are called when a successful push to a Docker
Hub repository has been made.

The webhook is an HTTP POST request that will be sent to a defined endpoint. Pro-
cessing this HTTP request and parsing the payload allows the endpoint to pull the
image and potentially start a new container. Webhooks in Docker Hub can also be
chained to trigger multiple events.

Chaining webhooks can be used to build continuous integration and continuous
deployment pipelines. A development team will make changes to the source code of
their applications (e.g., on GitHub); if the source code contains a Dockerfile and an

2.14 Using Conduit for Continuous Deployment | 67

https://docs.docker.com/docker-hub/builds/#webhooks

automated build is set up, every commit will result in a new image. To validate the
image, a team usually runs integration tests. While a lot of web services allow you to
do that (including Travis CI, CircleCI, and Codeship), you can do it on your own by
using Jenkins or another testing framework. Once an image is validated, it can be
used in production and deployed automatically by calling a second webhook.

To test this capability, you will use a single hook in Docker Hub that will reach an
application that can process the payload and deploy the image. This application is
available on the Docker Hub itself and is called Conduit.

Conduit is an experimental system and should not be used in pro-
duction.

\

See Also

« Official Docker documentation of Docker Hub webhooks
o Conduit Docker Hub page
o Conduit GitHub page

68 | Chapter2:Image Creation and Sharing

https://travis-ci.org
https://circleci.com
https://codeship.com
https://docs.docker.com/docker-hub/builds/#webhooks
https://registry.hub.docker.com/u/ehazlett/conduit/
https://github.com/ehazlett/conduit

CHAPTER 3
Docker Networking

3.0 Introduction

As you build your distributed application, services that compose it will need to be
able to communicate with each other. These services, running in containers, might be
on a single host or on multiple hosts and even across data centers. Therefore con-
tainer networking is a critical enabler of any Docker-based distributed application.

The techniques used for networking containers are very similar to the techniques
used to network virtual machines. Containers on a host can be attached to a software
switch, and iptables are used to control network traffic between containers and
expose processes running in the container on ports of the host.

At installation time, the Docker engine sets up multiple default networking behaviors
on your hosts, which gives you a fully working setup from the start. In Recipe 3.1 we
start by introducing some Docker commands that let you find the IP addresses of
your containers, then we show you how to expose a container port on a host port in
Recipe 3.2. In Recipe 3.3 we take a deeper a look at container linking, a mechanism to
help with service discovery of multiple containers.

Networking is such an important topic for distributed applications that we felt it nec-
essary to dive deeper into the nuts and bolts of it. Recipe 3.4 explains the default
Docker bridge setup while Recipe 3.6 shows you how to change the defaults by modi-
tying the Docker engine options. Recipe 3.8 and Recipe 3.9 go even deeper and show
you how to create your own network switch and use it for networking your contain-
ers. While not necessary, understanding how container networking works and being
able to modify it will help you with operating your applications in production.

While container networking is very similar to virtual machine networking, there
exists a major difference. With containers you can choose the networking stack being

69

used (Recipe 3.5). For example, you can share the networking stack of your host with
a container, so this allows you to give a container the same IP address than your host.
It also allows you to share the same network stack between containers. A lot is possi-
ble with container networking, and to explore all the possibilities Recipe 3.7 introdu-
ces a nice utility: pipework. Spending a little bit of time with pipework and trying to
understand what it does will greatly enhance your understanding of containers and
networking.

So far all the recipes presented have been for a single host; however, in a real dis-
tributed application, dozens, hundreds, or even thousands of hosts might be involved.
In Recipe 3.10 we give a basic example of creating a tunnel between two hosts to pro-
vide a common IP subnet for containers running on two different hosts. This recipe
is only shown for training purposes and should not be considered a production solu-
tion. Instead, Recipe 3.11, Recipe 3.12, and Recipe 3.13 are recipes that introduce
Weave Net and Flannel. They have been contributed by Fintan Ryan and Eugene
Yakubovich and introduce production-ready solutions for multihost container net-
working.

The chapter ends with a peek at Docker network (Recipe 3.14) and a deep dive into
the VXLAN configuration being used (Recipe 3.15). Docker network is currently
under development but should soon be part of the standard Docker release. Solutions
like Weave Net, Flannel, and Calico should be usable in Docker network through the
plug-in mechanism being developed.

To summarize what you will learn in this chapter, the first few recipes will cover some
basic concepts that use the default Docker networking configuration. These should be
enough for developers. System administrators looking at supporting Docker-based
applications in production should consider diving deeper into the network configura-
tion of the Docker engine and getting a good understanding of the defaults being set
as well as how the networking namespaces are being used. Finally, for production use
across multiple hosts, you should check the recipes about Weave and Flannel as well
as start learning Docker network.

3.1 Finding the IP Address of a Container

Problem

You have started a container and would like to find its IP address.

Solution

There are many ways to find the IP address of a container started with the default
Docker networking. This recipe presents a few of them.

70 | Chapter3: Docker Networking

The first method is to use the docker inspect command (see Recipe 9.1 for details)
and the Go template format:

$ docker run -d --name nginx nginx
$ docker inspect --format '{{ .NetworkSettings.IPAddress }}' nginx
172.17.0.2

You can also use the docker exec command and check the IP address by using a
command that executes within the container:

$ docker exec -ti nginx ip add | grep global
inet 172.17.0.2/16 scope global etho

You could also check the /etc/hosts file in the container, assuming the image does set it
properly:

$ docker run -d --name foobar -h foobar busybox sleep 300
$ docker exec -ti foobar cat /etc/hosts | grep foobar
172.17.0.4 foobar

Finally, you can enter a shell in the container and issue standard Linux commands at
the prompt:

$ docker exec -ti nginx bash
root@a3c1f7edb0Oa: /# cat /etc/hosts

See Also

o To understand how Docker networking works and go beyond finding a container
IP address, see Recipe 3.4

o 10 examples of how to get a Docker container IP address

3.2 Exposing a Container Port on the Host

Problem

You want to access a service running in a container over the network.

Solution

Docker can dynamically map a network port in a container to a port on the host by
using the -P option of docker run. You can also manually specify a mapping by using
the -p option.

Let’s say that you have built an image that runs a Python Flask application using the
Dockerfile shown here:

3.2 Exposing a Container Porton the Host | 71

http://networkstatic.net/10-examples-of-how-to-get-docker-container-ip-address/

FROM python:2.7.10

RUN pip install flask
COPY hello.py /tmp/hello.py

CMD ["python","/tmp/hello.py"]

This is similar to what you saw in Recipe 2.4. Let’s build this image and run a con-
tainer without any port mapping flags:

$ docker build -t flask
$ docker run -d --name foobar flask

You can find the IP address and reach the Flask application on port 5000 from within
the host like so:

$ docker inspect -f '{{.NetworkSettings.IPAddress}}' foobar
172.17.0.2

$ curl http://172.17.0.2:5000/

Hello World!

However, you cannot reach this application from outside the host. To make this work,
you are going to run the container again but this time using port mapping:

$ docker kill foobar

$ docker rm foobar

$ docker run -d -p 5000 --name foobar flask

$ docker ps

CONTAINER ID IMAGE COMMAND ... PORTS NAMES
2cc258827b34 flask "python /tmp/hello.p ... 0.0.0.0:32768->5000/tcp foobar

You see that the PORTS column of docker ps now returns a mapping between port
32768 and port 5000 of the container. The host listens on interface 0.0.0.0, TCP port
32768 and forwards the requests to port 5000 of the container. Try to curl the
Docker host on port 32768, and you will see that you reach the Flask application.

While docker ps returns the port-mapping information and you
can use docker 1inspect, Docker also has the useful command
docker port to list only the port mappings of a container. Try this:

$ docker port foobar 5000
0.0.0.0:32768

You might have noticed that your Dockerfile does not contain an EXPOSE statement as
it did in Recipe 2.4. If you add this statement, you can use the -P flag to expose the
port and you do not have to specify the application port. Docker will automatically
set the proper mapping. Add the EXPOSE 5000 statement to the Dockerfile, build a
new image, and run the container like so:

$ docker run -d -P flask

72 | Chapter3: Docker Networking

You will see that the mapping was done automatically.

Discussion

You can expose multiple container ports and choose TCP or UDP protocols; for
example, if you wanted to expose port 5000 over TCP and port 53 over UDP (assum-
ing your application uses port 53 as well), you would do this:

$ docker run -d -p 5000/tcp -p 53/udp flask

This port mapping is made possible via two mechanisms.

First, by default Docker can manipulate the IP table of the host. If you check your IP
tables rules when running the preceding Flask application, you will find a new rule in
the Docker chain:

$ sudo iptables -L

Chain DOCKER (1 references)
target prot opt source destination
ACCEPT tcp -- anywhere 172.17.0.2 tcp dpt:5000

Second, Docker starts a small proxy on your host that listens on the host interface
using the port that was chosen dynamically. If you list the processes, you will find
this:
$ ps -ef | grep docker
root 29969 1 ... Jusr/bin/docker -d
root 30851 29969 ... docker-proxy -proto tcp -host-ip 0.0.0.0 \
-host-port 32769 \

-container-ip 172.17.0.5 \
-container-port 5000

You could change this default behavior by not allowing Docker to change your ipta
bles but you will have to handle networking on your own (see Recipe 3.6).

3.3 Linking Containers in Docker

Problem

When building a distributed application that is made of several services, you need a
way to discover where those services are so that various components of the system
can reach the other ones. You could manually extract IP addresses of each service
(running in a container), but in order to scale, you need a self-discovery system.

3.3 Linking Containers in Docker | 73

Solution

A first-order solution in Docker is to link containers. This is achieved by using the
--1ink option of the docker run command.

Container linking works well on a single host, but large-scale sys-
tems need other discovery mechanisms. Solutions like Recipe 7.13
coupled with a key-value store and DNS might be chosen. Docker

\ network (see Recipe 3.14) has a built-in mechanism that exposes
container services without defining links.

To illustrate linking, let’s build a three-tier system made of a database, a web applica-
tion, and a load-balancer. You will start the database, link it to the web application
container, and then start the load-balancer with a link to the web application. To ease
linking, you will name each container. Because this is a toy example, where the appli-
cation does not need to do anything, you will use the image runseb/hostname, a Flask
application that returns the hostname of the container.

Let’s start those three containers:

$ docker run -d --name database -e MYSQL_ROOT_PASSWORD=root mysql
$ docker run -d --link database:db --name web runseb/hostname
$ docker run -d --link web:application --name 1lb nginx

$ docker ps

CONTAINER ID IMAGE COMMAND ... PORTS NAMES
507edee2bbcf nginx "nginx -g 'daemon of ... 80/tcp, 443/tcp b
62c321acb102 runseb/hostname "python /tmp/hello ... 5000/tcp web
cf17b64e7017 mysql "/entrypoint.sh mysq ... 3306/tcp database

The result of linking is that the application container now contains environment vari-
ables that point to the database. Similarly, the load-balancer contains environment
variables that point to the application container:

$ docker exec -ti web env | grep DB
DB_PORT=tcp://172.17.0.13:3306
DB_PORT_3306_TCP=tcp://172.17.0.13:3306
DB_PORT_3306_TCP_ADDR=172.17.0.13
DB_PORT_3306_TCP_PORT=3306
DB_PORT_3306_TCP_PROTO=tcp
DB_NAME=/web/db
DB_ENV_MYSQL_ROOT_PASSWORD=root
DB_ENV_MYSQL_MAJOR=5.6
DB_ENV_MYSQL_VERSION=5.6.25

$ docker exec -ti 1lb env | grep APPLICATION
APPLICATION_PORT=tcp://172.17.0.14:5000
APPLICATION_PORT_8080_TCP=tcp://172.17.0.14:5000
APPLICATION_PORT_8080_TCP_ADDR=172.17.0.14
APPLICATION_PORT_8080_TCP_PORT=5000

74 | Chapter3: Docker Networking

APPLICATION_PORT_8080_TCP_PROTO=tcp
APPLICATION_NAME=/1b/application

You can use these environment variables to dynamically configure your application
and load-balancer.

The /etc/hosts file is also automatically updated to contain information for name reso-
lution:

$ docker exec -ti web cat /etc/hosts
172.17.0.14 62c321acb102
172.17.0.13 db cf17b64e7017 database

$ docker exec -ti lb cat /etc/hosts
172.17.0.15 507edee2bbcf
172.17.0.14 application 62c321acb102 web

If you restart a container, the /etc/hosts file of containers that were

linked to it will be updated, but the environment variables will be

unchanged. Therefore, using the content of /etc/hosts is the recom-
\ mended way of extracting the IP address of a linked container.

Discussion

When you started the containers, you saw that we named all of them. The container
name was used to define the link. It took this form:

--link <container_name>:<alias>

The alias specified was found in the /etc/host entry and was used as a prefix in the
environment variables defined.

When you have containers running, you can use the inspect method to know what
links are present. It will return a mapping between the linked container name and its
alias in the container:

$ docker inspect -f "{{.HostConfig.Links}}" application

[/database: /application/db]

$ docker inspect -f "{{.HostConfig.Links}}" b

[/application:/1b/app]
Although container linking is useful for development on a single machine, in large-
scale deployments it will show its limitations, including when containers get restarted
often. A system based on either DNS or a dynamic container registration system will
scale and be updated automatically.

3.3 Linking Containers in Docker | 75

See Also

o Official documentation on linking containers

3.4 Understanding Docker Container Networking

Problem

You would like to understand the basics of networking Docker containers.

Solution

To use Docker and get network connectivity working between your containers, you
don’t have to use the solution presented here. It is presented in detail to provide
enough information so that you can customize the networking behavior to your lik-
ing.

In the default installation of Docker, Linux bridge docker®0 is created on the Docker
host. This bridge gets a private address and a subnet associated to it. The subnet
assigned to the docker® bridge is chosen as the first nonconflicting subnet among the
following list: 172.[17-31].42.1/16, 10.[0-255].42.1/16, 192.168.[42-44].1/24.
Hence, most of the time your docker® bridge will get the address 172.17.42.1. All
containers that will attach to this bridge will get an address in the 172.17.42.0/24 net-
work. Containers’ networking interfaces get attached to this bridge and will use the
docker0 interface as a networking gateway. When a container is created, Docker cre-
ates a pair of “peer” network interfaces that are placed in two separate networking
namespaces: one interface in the networking namespace of the container (i.e., etho)
and one interface in the networking namespace of the host, attached to the docker®
bridge.

To illustrate this setup, let’s look at a Docker host and start a container. You can use an
existing Docker host or use the Vagrant box prepared for this book:

$ git clone https://github.com/how2dock/docbook

$ cd cho3/simple

$ vagrant up

$ vagrant ssh
Figure 3-1 shows the network configuration of this Vagrant box. It contains a single
NAT interface to get to the outside network. Inside the host is Linux bridge docker®,
and two containers are depicted.

76 | Chapter3: Docker Networking

https://docs.docker.com/userguide/dockerlinks/

Docker Daemon:
DOCKER_OPTS={--bip, --fixed-cidr,
--bridge, --mtu, --ip-forward, --icc

r
: Container: eth0: : : Container: eth0: :

v 17217422 0 17217423

ML Roie

docker0:
172.17.42.1

N
IP Forward and NAT MASQUERADING \‘
eth0:10.0.2.15

Figure 3-1. Network diagram of single Docker host

After connecting to the host, if you list the network links, you will see the loopback
device, an etho interface, and the docker0 bridge, as depicted in the diagram. Docker
starts when the machine is booted and automatically creates a bridge and assigns a
subnet to it:

$ ip -d link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0

2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast ...
link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0

3: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue ...
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0
bridge

Now let’s start a container and check its network interface:

$ docker run -ti --rm ubuntu:14.04 bash

root@4e3ffb9bc381: /# ip addr show etho

6: eth@: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP group default
link/ether 02:42:ac:11:2a:03 brd ff:ff:ff:ff:ff:ff
inet 172.17.42.3/24 scope global etho

Indeed the container has an IP (i.e., 172.17.42.3) in the 172.17.42.1/16 network. On
the host itself, a virtual interface (i.e., veth450b81a in the following code) is created
and attached to the bridge. You can see this by listing the links on the Docker host
with the ip tool (or ifconfig) and the brctl tool if you installed the bridge-utils
package. The ip command represents a collection of utilities for controlling TCP/IP
traffic in Linux. You can find the project documentation at the Linux Foundation
website.

$ ip -d link show

3.4 Understanding Docker Container Networking | 77

http://bit.ly/iproute2
http://bit.ly/iproute2

3: docker®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP ...
link/ether aa:85:€0:61:69:2d brd ff:ff:ff:ff:ff:ff promiscuity 0
bridge

7: veth450b81a: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master docker®
link/ether aa:85:€0:61:69:2d brd ff:ff:ff:ff:ff:ff promiscuity 1

veth
$ brctl show
bridge name bridge id STP enabled interfaces
dockero0 8000.aa85e061692d no veth450b81a

From the container, you can ping the network gateway 172.17.42.1 (i.e., docker®),
other containers on the same host, and the outside world.

Start another container on a separate terminal and try to ping each
container. Verify that the second container interface is also attached
to the bridge. Since there are no IP table rules dropping traffic,
both containers can communicate with each other on any port.

Discussion

Outbound networking traffic is forwarded to the other interfaces of your Docker host
via IP forwarding and will go through NAT translation using an IP table masquerad-
ing rule. On your Docker host you can check that IP forwarding has been enabled:

$ cat /proc/sys/net/ipv4/ip_forward
1

Try turning off IP forwarding, and you will see that your container
will lose outbound network connectivity:

echo 0 > /proc/sys/net/ipv4/ip_forward

You can also check the NAT rule that does the IP masquerading for outbound traffic:

$ sudo iptables -t nat -L

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.42.0/24 anywhere

In Recipe 3.7, you will see how to create this configuration from scratch.

See Also

 Docker official networking documentation

78 | Chapter3: Docker Networking

https://docs.docker.com/articles/networking/

3.5 Choosing a Container Networking Namespace

Problem

When starting a container, you want to be able to choose a specific network name-
space. For certain applications that you run in containers, you may be required to use
a different network setup than default bridge networking or you may not need any
networking at all.

Solution

In Recipe 3.4, you started a container using the defaults of the docker run command.
This attached the container to a Linux bridge and created the appropriate network
interfaces. It takes advantage of IP forwarding and IP tables managed by the Docker
engine to provide outbound network connectivity and NAT.

However, you can start a container with a different type of networking. You can
choose between the host networking namespace, no networking namespace at all, or
the networking namespace of another container by using the - -net option of docker
run.

Let’s start a container on a Docker host without any networking namespace by using
--net=none:

$ docker run -it --rm --net=none ubuntu:14.04 bash
root@3a22f5076f9a: /# ip -d link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
1link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
root@3a22f5076f9a: /# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

When listing the networking links, you see only a link local address. There are no
other network interfaces and no networking routes. You will have to bring up the net-
work manually if you need it (see Recipe 3.7).

Now let’s start a container with the networking namespace of the host by using
--net=host:

$ docker run -it --rm --net=host ubuntu:14.04 bash

root@foobar-server:/# ip -d link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN mode DEFAULT
1link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0

2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state ...
link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0

3: docker®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state ...
link/ether c6:4b:6b:b7:4b:98 brd ff:ff:ff:ff:ff:ff promiscuity 0
bridge

3.5 Choosing a Container Networking Namespace | 79

When listing the networking links within this container, you see exactly the same
interfaces as in the host, including the docker@ bridge. This means that while the con-
tainer processes are isolated in their own namespace and resources are limited
through cgroups, the network namespace of the container is the same as the one of
the host. You see in the preceding example that the hostname of the container is the
Docker host hostname (you cannot use the -h option to set a hostname when using
the host networking stack). Note, however, that you will not be able to reconfigure
the host network from such a container. For example, you cannot bring down inter-
faces:

root@foobar-server:/# ifconfig eth® down
SIOCSIFFLAGS: Operation not permitted

Although host networking can be handy, it needs to be handled with lots of care.

Starting a container with - -net=host can be dangerous, especially
if you start a privileged container with --privileged=true. Host
networking will allow you to change your host network configura-

\ tion from within the container. If you were to run an application as
root in a privileged container started with --net=host, a vulnera-
bility of your application would let an intruder control your
Docker host networking entirely. However, it can also be useful for
processes that need a lot of network I/0.

The final option is to use the network stack of another already running container.
Let’s start a container with the hostname cookbook:

$ docker run -it --rm -h cookbook ubuntu:14.04 bash
root@cookbook: /# ifconfig
etho Link encap:Ethernet HWaddr 02:42:ac:11:00:02

inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0

You see at the prompt that the hostname has been set to cookbook and that the IP is
172.17.02. It is attached to the docker® bridge. Now let’s start another container and
use the same network namespace. First you list the running containers to get the
name of the container just started. The convention is to use
--net=container :CONTAINER_NAME_OR_ID:

$ docker ps
CONTAINER ID IMAGE COMMAND ... NAMES
cc7f72826c36 ubuntu:14.04 "bash" ... cocky_galileo

$ docker run -ti --rm --net=container:cocky_galileo ubuntu:14.04 bash
root@cookbook: /# ifconfig
etho Link encap:Ethernet HWaddr 02:42:ac:11:00:02

inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0

80 | Chapter3: Docker Networking

As you see, the new container has the same hostname as the first container started
and of course has the same IP. The processes in each container will be isolated and
exist in their own process namespace, but they share the same networking namespace
and can communicate on the loopback device.

Discussion

Which networking namespace to use is up to the application you are running and
what you want the network to look like. Docker networking is extremely flexible and
will allow you to build any topology and secure network scenarios between your con-
tainer processes.

See Also

o How Docker networks containers

3.6 Configuring the Docker Daemon IP Tables and IP
Forwarding Settings

Problem

You may not like that by default the Docker daemon turned on IP forwarding as well
as modified your IP tables. You would like more control on how traffic flows on your
host, between your containers and with the outside world.

Solution

The default Docker behavior will most likely be fine for most readers. However, this
behavior is customizable when you start the Docker daemon with the --ip-
forward=false, --iptables=false options. This recipe shows you to make those
customizations.

To try this, stop the Docker daemon on the host that you are using. On Ubuntu/
Debian-based systems, edit /etc/default/docker and set these options to false (on
CentOS/RHEL systems edit /etc/sysconfig/docker):

$ sudo service docker stop

$ sudo su

echo DOCKER_OPTS=\"--iptables=false --ip-forward=false\" >> /etc/default/docker
service docker restart

3.6 Configuring the Docker Daemon IP Tables and IP Forwarding Settings | 81

https://docs.docker.com/articles/networking/#container-networking

You may have to remove the postrouting rule manually first as well
as set the IP forwarding rule to zero, before restarting the Docker
| daemon. To do this, try the following on your Docker host:

\ # iptables -t nat -D POSTROUTING 1
echo 0 > /proc/sys/net/ipv4/ip_forward
service docker restart

With this configuration, traffic on the Docker bridge docker® will not be forwarded
to the other networking interfaces and the postrouting masquerading rule will not be
present. This means that all outbound connectivity from your containers to the out-
side world will be dropped.

Verify this behavior by starting a container and trying to reach the outside world. For
example:

$ docker run -it --rm ubuntu:14.04 bash

WARNING: IPv4 forwarding is disabled.

root@bal12d578e6c8: /# ping -c 2 -W 5 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

--- 8.8.8.8 ping statistics ---
2 packets transmitted, O received, 100% packet loss, time 1009ms

To re-enable communication to the outside manually, enable IP forwarding and set
the postrouting rule on the Docker host like so:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 172.17.0.0/16 -j MASQUERADE

Go back to the terminal of your container and try pinging 8.8.8.8 again. Traffic
should now be routed outside your host.

With --iptables=false set for the Docker daemon, you will not
be able to restrict traffic between containers (i.e., use - -icc=false)
since Docker will not be able to manage the IP table rules. This

\ means that all containers started on the same bridge will be able to
communicate on all ports. See the following Discussion for more
on this topic.

Discussion

By default the Docker daemon is allowed to manage the IP table rules on the Docker
host. This means that it can add rules that restrict traftic between containers and pro-
vide network isolation between them.

If you disallow Docker to manipulate the IP table rules, it will not be able to add rules
that restrict traffic between containers.

82 | Chapter3: Docker Networking

If you do allow Docker to manipulate the IP table rules, you can set the --icc=false
option for the Docker daemon. This will add a default drop rule for all packets on the
bridge, and containers will not be able to reach each other.

You can try this by editing the Docker config file (i.e., /etc/default/docker on Ubuntu/
Debian and /etc/sysconfig/docker on CentOS/RHEL) and adding the --icc=false
option. Restart Docker and start two containers on your host, and you will see that
you cannot ping one container from another.

Since this drastically restricts traffic between containers, how can you have them
communicating? This is solved with container linking, which creates specific IP table
rules (see Recipe 3.3).

Allow ping from the Docker host to all the containers:

$ sudo iptables -A DOCKER -p icmp --icmp-type echo-request -j ACCEPT
$ sudo iptables -A DOCKER -p icmp --icmp-type echo-reply -j ACCEPT

3.7 Using pipework to Understand Container Networking

Problem

Docker built-in networking capabilities work great, but you would like a hands-on
approach that enables you to use traditional networking tools to create network inter-
faces for your containers.

Solution

This is an advanced recipe aimed at providing more in-depth knowledge of how
Docker networking happens. You do not need this recipe and the tooling presented
here to use Docker. However, to better understand Docker networking, you might
want to use pipework. Pipework, created by Jerome Petazzoni from Docker back in
2013, manipulates cgroups and network namespaces to build networking scenarios
for your containers. At first it supported pure LXC containers and now it also sup-
ports Docker containers. If you start a container with the --net=none option, pipe-
work is handy for adding networking to that container. This is a really nice exercise if
you want to gain more detailed knowledge about Docker networking, although it’s
not needed for day-to-day use and production deployment.

3.7 Using pipework to Understand Container Networking | 83

https://github.com/jpetazzo/pipework

Using pipework is not needed to use Docker and manage the con-
nectivity of your containers. This recipe is included for those who
want to gain advanced knowledge in creating network stacks in the
container network namespaces by hand. pipework allows you to do
this, and having a look at the bash script gives you even more
knowledge, as you will learn all the detailed step-by-step com-
mands that are needed to build the network of a container.

While almost everything you can do with pipework is built in within Docker, it is a
great tool to reverse-engineer Docker networking and get a deeper understanding of
how the containers communicate with each other and the outside world. This recipe
shows you a few examples so you can deconstruct Docker networking capabilities
and become a little more comfortable dealing with different networking namespaces.

pipework is a single bash script that you can download for free. For convenience, I
created a Vagrant box that contains pipework. You can get it by cloning the repository
and starting the Vagrant VM:

$ git clone https://github.com/how2dock/docbook
$ cd cho3/simple

$ vagrant up

$ vagrant ssh

vagrant@foobar-server:~$ cd /vagrant
vagrant@foobar-server:/vagrant$ 1s

pipework Vagrantfile

Let’s start a container without any network by using - -net=none as shown in Recipe
3.5:

$ docker run -it --rm --net none --name cookbook ubuntu:14.04 bash

root@556d04d8637e: /# ip -d link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode ...
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0

In another terminal on the Docker host, let’s use pipework to create a bridge bro,
assign an IP address to the container, and set the correct routing from the container
to the bridge:

$ cd /vagrant
$ sudo ./pipework br® cookbook 192.168.1.10/24@192.168.1.254
Warning: arping not found; interface may not be immediately reachable

In the container, verify that the interface eth1 is up and that the routing is in place:

root@556d04d8637e: /# ip -d link show ethi

7: ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP ...
link/ether a6:95:12:b9:8f:55 brd ff:ff:ff:ff:ff:ff promiscuity 0
veth

root@556d04d8637e: /# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

84 | Chapter3: Docker Networking

https://raw.githubusercontent.com/jpetazzo/pipework/master/pipework

default 192.168.1.254 0.0.0.0 UG 0 0 0 eth1
192.168.1.0 * 255.255.255.0 U 0 0 0 eth1

Now if you list the network links on the host, you will see a bridge bro in addition to
the default docker® bridge, and if you list the bridges (using brctl from the bridge-
utils package), you will see the virtual Ethernet interface attached to br@ by pipework:

$ ip -d link show

3: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state \
DOWN mode DEFAULT group default
link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0
bridge
8: brO: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state \
DOWN mode DEFAULT group default
link/ether 22:43:24:f5:91:7e brd ff:ff:ff:ff:ff:ff promiscuity 0
bridge
10: veth1pl31668: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc \
pfifo_fast master br® state DOWN mode DEFAULT group default glen 1000
link/ether 22:43:24:f5:91:7e brd ff:ff:ff:ff:ff:ff promiscuity 1

veth
$ brctl show
bridge name bridge id STP enabled interfaces
bro 8000.224324f5917e no veth1pl31668
dockero® 8000.000000000000 no

At this stage, you can reach the container from the host or reach any other containers
from the container cookbook. However, if you try to reach outside the Docker host,
you will notice that it will not work. There is no NAT masquerading rule in place that
is added automatically by Docker when you use the defaults. Add the rule manually
on the Docker host and try to ping 8.8.8.8 (for example) from the container interac-
tive terminal:

iptables -t nat -A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE
On the container, verify that you can reach outside your Docker host:

root@556d04d8637e: /# ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=61 time=22.6 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=61 time=23.8 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=61 time=23.9 ms
pipework can do a lot more, so make sure to check the README file and to pick
inside the bash script to gain an even greater understanding of the networking name-
space.

Discussion

Although pipework is extremely powerful and allowed you to build a proper net-
working stack for a container started with - -net=none, it also hid some of the details

3.7 Using pipework to Understand Container Networking | 85

https://github.com/jpetazzo/pipework

of manipulating the container network namespace. If you read the code of pipework,
you will see what it does. A good explanation is also available in the Docker docu-
mentation and is a good exercise, both in networking and containers. I highly recom-
mend reading it.

This discussion is not about pipework specifically; it aims to show
you all the steps necessary to build a networking stack for a con-
tainer. It is extremely useful to obtain a better understanding of
container networking and reverse-engineer how Docker works.

Let’s look back at this single pipework command:
$ sudo ./pipework br® cookbook 192.168.1.10/24@192.168.1.254

This command did several almost magical things at once:

o It created a bridge bro on the host.
o Itassigned IP address 192.168.1.254.

o It created a network interface inside the container and assigned it IP address
192.168.1.10.

o Finally it added a route inside the container, setting up the bridge as the default
gateway.

Let’s do it step by step but without pipework this time. To get started, let’s add a
bridge bro and give it the IP 192.168.1.254. If you have worked on virtual machine
virtualization before, this should be familiar. If not, follow along: you create the
bridge with the brctl utility, use ip to add the IP address to the bridge, and finish by
bringing the bridge up.

If you have followed along, you might want to delete the existing bro bridge:

$ sudo ip link set br@ down
$ sudo brctl delbr bro

You are now ready to do it all over again, but by hand this time:

$ sudo brctl addbr bro
$ sudo ip addr add 192.168.1.254/24 dev bro
$ sudo ip link set dev br@ up

The tricky part compared to full network virtualization comes from the fact that you
are dealing with containers and that the networking stack is in fact a different
network namespace on the host. To assign network interfaces to the container, you
need to assign an interface to the network namespace that the container will use. The
interfaces that you can assign to a specific network namespace are virtual Ethernet

86 | Chapter3: Docker Networking

https://docs.docker.com/articles/networking/#container-networking
https://docs.docker.com/articles/networking/#container-networking

interface pairs. These pairs act as a pipe, with one end of the pipe in the container
namespace and the other end on the bridge that you just created on the host.

Therefore, let’s create a veth pair foo, bar and attach foo to the bridge bro:

$ sudo ip link add foo type veth peer name bar
$ sudo brctl addif br@ foo
$ sudo ip link set foo up

The result can be seen with ip -d link show; a new bridge br@ and foo interface of
type veth attached to it:

$ ip -d link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN mode DEFAULT \
group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 promiscuity 0
2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state \
UNKNOWN mode DEFAULT group default qlen 1000

link/ether 08:00:27:98:a7:ad brd ff:ff:ff:ff:ff:ff promiscuity 0
3: docker®: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc noqueue state \
DOWN mode DEFAULT group default

link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff promiscuity 0

bridge
6: brO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP mode \
DEFAULT group default

link/ether ee:7d:7e:f7:6f:18 brd ff:ff:ff:ff:ff:ff promiscuity 0

bridge
8: foo: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bro \
state UP mode DEFAULT group default glen 1000

link/ether ee:7d:7e:f7:6f:18 brd ff:ff:ff:ff:ff:ff promiscuity 1

veth
$ brctl show
bridge name bridge id STP enabled interfaces
bro 8000.ee7d7ef76f18 no foo
dockero® 8000.000000000000 not

Do not call each end of your veth pair the traditional eth® or eth1
as it could conflict with existing physical interfaces on the host.

To complicate things a bit, when you started your container with - -net=none, it did
create a network namespace but there was nothing in it except the loopback device.
Now that you want to configure it (e.g., adding an interface, setting up a route), you
need to find the network namespace ID. Docker keeps its network namespaces
in /var/run/docker/netns, which is a nondefault location. To be able to use the ip tool
properly, you are going to do a little nonconventional hack and symlink /var/run/
docker/netns to /var/run/netns, which is the default location where the ip tool looks

3.7 Using pipework to Understand Container Networking | 87

for network namespaces. Doing so, you can list the existing network namespaces.
Next, you see that the namespace ID of your container is the container ID:

$ cd /var/run

$ sudo ln -s /var/run/docker/netns netns
$ sudo ip netns

C785553b22a1

$ NID=$(sudo ip netns)

Now, let’s put the bar veth in the container namespace by using ip link set netns
and use 1p netns exec to give it a name and a MAC address inside this namespace:

$ sudo ip link set bar netns SNID

$ sudo ip netns exec SNID ip link set dev bar name ethi

$ sudo ip netns exec SNID ip link set ethl address 12:34:56:78:9a:bc
$ sudo ip netns exec SNID ip link set ethl up

The final thing to do is to assign an IP address to ethl of the container and define a
default route so that the container can reach the Docker host and beyond:

$ sudo ip netns exec SNID ip addr add 192.168.1.1/24 dev ethl
$ sudo ip netns exec SNID ip route add default via 192.168.1.254

That’s it. At this stage, your container should have the exact same networking stack as
the one built with pipework earlier with a single command.

Remember that if you want to reach outside your container, you
need to add the IP NAT masquerading rule:

$ sudo iptables -t nat -A POSTROUTING -s 192.168.0.0/24
-j MASQUERADE

See Also

o pipework’s extensive README covers multiple scenarios
o How Docker networks containers
e ip netns man page

o Introduction to Linux nework namespace

3.8 Setting Up a Custom Bridge for Docker

Problem

You would like to set up your own bridge for Docker to use instead of using the
default.

88 | (Chapter3: Docker Networking

https://github.com/jpetazzo/pipework
https://docs.docker.com/articles/networking/#container-networking
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

Solution
Create a bridge and change the start-up options of the Docker daemon to use it.

In the Recipe 3.7 solution section, you saw how to create a full networking stack for a
container started with the --net=none option. That section showed how to create a
bridge. Let’s reuse what we discussed there.

First let’s turn off the Docker daemon, delete the docker® bridge created by default,
and create a new bridge called cookbook:

$ sudo service docker stop

sudo ip link set docker® down

sudo brctl delbr docker®

sudo brctl addbr cookbook

sudo ip link set cookbook up

sudo ip addr add 10.0.0.1/24 dev cookbook

RV RV Ve SRV IRV

Now that the bridge is up, you can edit the Docker daemon configuration file and
restart the daemon (e.g., on Ubuntu):

$ sudo su
echo 'DOCKER_OPTS="-b=cookbook"' >> /etc/default/docker
service docker restart

You can start a container and list the IP address assigned to it and check network
connectivity:

root@c557cdb072ba: /# ip addr show etho
10: eth®: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state UP group default
link/ether 02:42:0a:00:00:02 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.2/24 scope global etho
Automatically as expected, Docker also creates the NAT rule for this bridge:

$ sudo iptables -t nat -L

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination
MASQUERADE all -- 10.0.0.0/24 anywhere
Discussion

Although you can do this manually, there is nothing different between the bridge
cookbook that you just created and the default docker® bridge.

If you wanted to change the IP range that Docker uses for the containers started with
the default networking (i.e., bridge), you could use the - -bip option. You could also
restrict this IP range with the - -fixed-cidr option as well as set the MTU size with
--mtu.

3.8 Setting Up a Custom Bridge for Docker | 89

To bring down the bridge, execute the following two commands:

$ sudo ip link set cookbook down
$ sudo brctl delbr cookbook

3.9 Using OVS with Docker

Problem

You know how to use your own bridge to network your Docker containers (see
Recipe 3.8), but you would like to use the Open vSwitch (OVS) virtual switch instead
of the standard Linux bridge. Maybe you want to build your own GRE, or VXLAN-
based overlay, or you want to build a software-defined network solution with a net-
work controller. OVS provides programmatic extensions and control using the Open-
Flow protocol and the OVSDB management protocol.

Solution

As of Docker 1.7, Open vSwitch is not yet supported natively. You

can use it, but you will need to use a tool like pipework (see Recipe

] 3.7) or a utility called ovs-docker, a manual process to build the

\ network stack of the containers. It should be supported in a future
version of Docker Network (see Recipe 3.14).

Use Open vSwitch (OVS) as your bridge and specify its name in the Docker daemon
configuration file.

On your Docker host, start by installing the packages for OVS; for example, on
Ubuntu 14.04:

$ sudo apt-get -y install openvswitch-switch

If you want a more recent version of Open vSwitch, you can build
it from source relatively easily.

Now create a bridge and bring it up:

$ sudo ovs-vsctl add-br ovs-cookbook

$ sudo ip link set ovs-cookbook up
You are now ready to use pipework (see Recipe 3.7) to build the network stack of
containers attached to this Open vSwitch bridge. You will need to start containers
without a network stack (i.e., - -net=none)—for example:

90 | Chapter3: Docker Networking

https://www.opennetworking.org/openflow
https://tools.ietf.org/html/rfc7047
https://github.com/openvswitch/ovs/blob/master/utilities/ovs-docker
http://openvswitch.org
https://github.com/openvswitch/ovs

$ docker run -it --rm --name foobar --net=none ubuntu:14.04 bash
root@8fda6e33eb8s8: /#

In a different shell on your Docker host, use pipework to create a network interface
(you will need to install pipework) in your foobar container:

$ sudo su

./pipework ovs-cookbook foobar 10.0.0.10/24@10.0.0.1
ovs-vsctl list-ports ovs-cookbook

veth1pl31350

Your bridge will also have been assigned the IP address 10.0.0.1 by pipework:

$ ifconfig
ovs-cookbook Link encap:Ethernet HWaddr 36:b1:d3:e5:fc:44
inet addr:10.0.0.1 Bcast:0.0.0.0 Mask:255.255.255.0

Your container will now have a network interface:

root@8fda6e33eb88: /# ifconfig
ethl Link encap:Ethernet HWaddr 52:fe:9f:78:b7:fc
inet addr:10.0.0.10 Bcast:0.0.0.0 Mask:255.255.255.04

You could also create the interface by hand by using ip netns, as you did in the dis-
cussion section of Recipe 3.7.

See Also

o The Open vSwitch website

3.10 Building a GRE Tunnel Between Docker Hosts

Problem

You need to have network connectivity between containers on multiple hosts using
their own IP addresses.

Solution

Several recipes (see Recipe 3.11 and Recipe 3.13) show solutions that can be used in
production deployment. This recipe presents a step-by-step example of how to set up
multihost networking, to help you build a solid foundation for understanding Docker
networking.

To build a toy setup that provides network connectivity between containers on multi-
ple hosts, build a Generic Routing Encapsulation (GRE) tunnel to encapsulate IPv4
traffic and provide a route between containers using their private addresses. To show-

3.10 Building a GRE Tunnel Between Docker Hosts | 91

http://openvswitch.org

case this technique, you are going to bring up two Docker hosts and set up the net-
work configuration that you can see in Figure 3-2.

Host 1 has IP address 192.168.33.11. We will give the docker® bridge IP address
172.17.0.1 and create a GRE tunnel endpoint with IP address 172.17.0.2. Docker
will give containers addresses in the 172.17.0.0/17 network.

Host 2 has IP address 192.168.33.12. We will give the docker® bridge IP address
172.17.128.1 and create a GRE tunnel endpoint with IP address 171.17.128.2.
Docker will give containers addresses in the 172.17.128.0/17 network.

Splitting a /16 network in two /17 networks and assigning each subnet to the two
different hosts ensures that containers will not get conflicting IP addresses.

Docker Daemon: Docker Daemon:
--bip=172.17.0.1/17 --bip=172.17.0.1/17
--fixed-cidr=172.17.0.0/17 --fixed-cidr=172.17.0.0/17
: Container: eth0: : : Container: eth0: :

v 1721702 v 172.17.128.2

foo: 172.17.127.254 bar: 172.17.255.254
eth1:192.168.33.11 | eth0:10.0.2.15 eth0:10.0.2.15| eth1:192.168.33.12
A 4 y y
GRE tunnel

Figure 3-2. Network diagram of a two-hosts GRE tunnel overlay

You can start this configuration with a Vagrantfile. Each host has the latest stable ver-
sion of Docker and two network interfaces: one NAT interface that gives outbound
connectivity and one interface on a private network.

The first thing to do to avoid any issues is to stop the Docker engine and remove that
docker® bridge that was started during the Docker provisioning step. You will need to
do this on all your hosts:

$ sudo su

service docker stop

i1p link set docker® down
1p link del docker®

Now you can create a GRE tunnel between the two hosts. You do not need Open
vSwitch for this; you can just use the ip tool. If you used the Vagrantfile mentioned
earlier, on your first host with IP 192.168.33.11 do the following:

92 | Chapter3: Docker Networking

http://bit.ly/gresimple-vagrant

ip tunnel add foo mode gre local 192.168.33.11 remote 192.168.33.12
i1p link set foo up

ip addr add 172.17.127.254 dev foo

1p route add 172.17.128.0/17 dev foo

If you did not use the Vagrantfile mentioned, replace the IP addresses for the local
and remote endpoints in the preceding ip tunnel command with the IP addresses of
your two Docker hosts. In the previous four commands, you created a GRE tunnel
named foo. You brought the interface up and assigned an IP address to it. Then you
set up a route that sends all 172.17.128.0/17 traffic in the tunnel.

On your second host, repeat the previous step to create the other end of the tunnel.
You call this other end bar and set up a route that sends all 172.17.0.0/17 traffic
over this tunnel:

1p tunnel add bar mode gre local 192.168.33.12 remote 192.168.33.11

ip link set bar up

ip addr add 172.17.255.254 dev bar

ip route add 172.17.0.0/17 dev bar
Once the tunnel is up, verify that you can ping back and forth using the tunnel. Now
let’s bring up Docker on both hosts. First you need to configure each Docker daemon
so that it uses the appropriate subnets for its containers and uses the correct IP
address for the docker0 bridge. To do this, you edit the Docker daemon configura-
tion file and use the - -bip and - - fixed-cidr options.

On host 1 that would be as follows:

echo DOCKER_OPTS=\"--bip=172.17.0.1/17 --fixed-cidr=172.17.0.0/17\" \
>> [etc/default/docker

And on host 2:

echo DOCKER_OPTS=\"--bip=172.17.128.1/17 --fixed-cidr=172.17.128.0/17\" \

>> [etc/default/docker
If you have chosen a different partitioning schema or have more than two hosts,
repeat this with your values.

Since Docker will turn on IP forwarding, all traffic on docker® will
get forwarded to foo and bar, so there is no need to attach the tun-
nel endpoints to any bridges.

All that is left now is to restart Docker. Then you can start one container on each host
and you will see that they have direct network connectivity using the private IP
address given to them by Docker.

3.10 Building a GRE Tunnel Between Docker Hosts | 93

Discussion

There are multiple ways to build a networking overlay for your Docker host. Docker
Network (see Recipe 3.14), which should be released in Docker 1.8, allows you to
build VXLAN overlays using Docker built-in features. Other third-party solutions
exist, such as Weave (see Recipe 3.11) or Flannel (see Recipe 3.13). As the Docker
plug-in framework matures, this type of functionality will change significantly. For
instance, Weave and Flannel will be available as Docker plug-ins, instead of a separate
network setup.

See Also

o The blog post from Vincent Viallet on Wiredcraft that inspired this recipe

3.11 Running Containers on a Weave Network
Contributed by Fintan Ryan

Problem

You wish to create a network for your containers that scales from a single host to
thousands of hosts across multiple data centers, with automatic IP address allocation
and integrated service discovery via DNS.

Solution
Use Weave Net from Weaveworks.

To help you experiment with Weave Net, I have created a Vagrantfile that starts two
hosts running Ubuntu 14.04, and installs Docker, Weave Net, and two example con-
tainers. You can test it as follows:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch03/weavesimple
$ vagrant up

Here are our Vagrant hosts in this example:

e 172.17.8.101 weave-gs-01

e 172.17.8.102 weave-gs-02
Next you will launch Weave Net on both hosts. Notice that you provide the IP address
of the first host when launching Weave Net on the second host:

$ vagrant ssh weave-gs-01
$ weave launch

94 | Chapter3: Docker Networking

http://wiredcraft.com/blog/multi-host-docker-network/
http://github.com/weaveworks/weave
http://weave.works

$ vagrant ssh weave-gs-02
$ weave launch 172.17.8.101

At this point, you have have created a network that will automatically allocate IP
addresses to any container launched with Weave Net, and integrated service discovery
with DNS.

Containers that you launch that are aware of Weave Net will be automatically alloca-

ted unique IP addresses, and, where an -h option is provided to Docker, registered
with DNS.

Next you will launch containers on each host. To allow you to easily launch contain-
ers on your network, you set your DOCKER_HOST environment variable using weave
env:

vagrant ssh weave-gs-01

eval $(weave env)

docker run -d -h lb.weave.local fintanr/myip-scratch

docker run -d -h lb.weave.local fintanr/myip-scratch

docker run -d -h hello.weave.local fintanr/weave-gs-simple-hw

RV R VoV, BE Vo RV

vagrant ssh weave-gs-02

eval $(weave env)

docker run -d -h lb.weave.local fintanr/myip-scratch

$ docker run -d -h hello-host2.weave.local fintanr/weave-gs-simple-hw

W N N

You have done two things here. First, you have launched a container with a simple
Hello World application on your hosts. Second, you have used DNS to create a load-
balanced service across the containers named /b.

Lets launch a container on your Weave network and make some requests to the vari-
ous containers you have launched:

$ vagrant ssh weave-gs-01
$ eval $(weave env)
$ C=$(docker run -d -ti fintanr/weave-gs-ubuntu-curl)
$ docker attach $C
root@adé6b7cObic6e: /#
root@adé6b7cObic6e: /# curl b
Welcome to Weave, you probably want /myip
root@adé6b7cObic6e: /# curl 1b/myip
10.128.0.2
root@adé6b7cObic6e: /# curl 1b/myip
10.160.0.1
root@adéb7cObic6e: /# curl hello
{
"message" : "Hello World",
"date" : "2015-07-09 15:59:50"
}

You also provide a script for the preceding commands, launching your container to
make requests:

3.11 Running Containers on a Weave Network | 95

$./launch-simple-demo.sh

Discussion

Weave Net allows you to quickly and easily launch containers on a scalable network
with automatic IP address allocation and service discovery.

In this example, you launched a Weave router container on your first host, weave-
gs-01. On your second host, weave-gs-02, you launched another Weave router con-
tainer with the IP address of your first host. This command tells Weave on weave-
gs-02 to peer with the Weave router on weave-gs-01.

Any containers you launch after this using Weave are visible within the Weave net-
work to all other containers, no matter what host they are on. The containers will be
automatically allocated an IP address that is unique on the network, and automati-
cally registered with the Weave DNS service if Docker is called with an -h option.

To examine the containers launched, you can also use Weave Scope (see Recipe 9.12).
On each host, run:

$ scope launch

See Also

o Weave Getting Started Guides

3.12 Running a Weave Network on AWS

Contributed by Fintan Ryan

Problem
You would like to use Weave Net and WeaveDNS on instances deployed in AWS.

Solution
As prerequisites, you will need the following:
o Anaccount on AWS

o A set of access and secret API keys

o Ansible installed, with the boto package

To help you experiment with Weave on AWS, I have created an Ansible playbook that
starts two hosts running Ubuntu 14.04 on EC2, installs Docker, and installs Weave. I

96 | Chapter3: Docker Networking

http://weave.works/guides

have provided a second playbook specifically for launching a simple demo application
using HAProxy as a load-balancer in front of containers across your two hosts:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch03/weaveaws
$ ansible-playbook setup-weave-ubunu-aws.yml

You can change your AWS region and AMI in the file ansi-
ble_aws_variables.ym.

To launch your containers, call the following:

$ ansible-playbook launch-weave-haproxy-aws-demo.yml

I have provided a script to quickly connect to your HAProxy container and cycle
through a number of requests. Each container will return its hostname as part of its
JSON output:

$./access-aws-hosts.sh

Connecting to HAProxy with Weave on AWS demo

{
"message" : "Hello Weave - HAProxy Example",
"hostname" : wsl.weave.local",
"date" : "2015-03-13 11:23:12"

}

{
"message" : "Hello Weave - HAProxy Example",
"hostname" : ws4.weave.local",
"date" : "2015-03-13 11:23:12"

}

{
"message" : "Hello Weave - HAProxy Example",
"hostname" : ws5.weave.local",
"date" : "2015-03-13 11:23:12"

}

Discussion

Using Weave Net, you have placed HAProxy as a load-balancing solution in front of a
number of containers running a simple application distributed across a number of

hosts.

3.12 Running a Weave Networkon AWS | 97

See Also

o Weave Getting Started Guides

3.13 Deploying flannel Overlay Between Docker Hosts

Contributed by Eugene Yakubovich

Problem

You want containers on different hosts to communicate with each other without port
mapping.

Solution

Use flannel to create an overlay network for containers. Each container will be
assigned an IP that can be reachable from other hosts. Start by bringing up two vir-
tual machines from a Vagrantfile:

$ git clone https://github.com/how2dock/docbook.git

$ cd che3/flannel

$ vagrant up
This defines two virtual machines installed with Docker: etcd and flannel. The
“master” will run a key-value store (etcd) that flannel uses for coordination.

Next, vagrant ssh master and start etcd in the background:

$ cd /opt/coreos/etcd-v2.0.13-1inux-amd64
$ nohup ./etcd --listen-client-urls=http://0.0.0.0:2379 \
--advertise-client-urls=http://192.168.33.10:2379 &
Before starting the flannel daemon, write the overlay network configuration into
etcd. Be sure to pick a subnet range that does not conflict with other IP addresses:

$./etcdctl set /coreos.com/network/config '{ "Network": "10.100.0.0/16" }'

Now start the flannel daemon. Notice that the - -iface option specifies the IP of the
private network given in the Vagrantfile. flannel will forward encapsulated packets
over this interface:

$ cd /opt/coreos/flannel-0.5.1
$ sudo ./flanneld --iface=192.168.33.10 --ip-masq &
$ sudo ./mk-docker-opts.sh -c -d /etc/default/docker

flannel will acquire a lease for a /24 subnet to be assigned to the docker® bridge.
The acquired subnet will be written out to the /run/flannel/subnet.env file. The

98 | Chapter3: Docker Networking

http://weave.works/guides

mk-docker-opts.sh utility converts this file into a set of command-line options for
the Docker daemon.

Finally, start the Docker daemon. Verify that everything is running as expected by
checking the IP of the docker® bridge. It should be within the 10.100.0.0/16 range:

$ sudo service docker start
$ ifconfig docker0
docker® Link encap:Ethernet HWaddr 56:84:7a:fe:97:99
inet addr:10.100.63.1 Bcast:0.0.0.0 Mask:255.255.255.0

Over on the “worker” node, repeat the procedure of bringing up flannel. Since etcd
is running on the “master,” do not launch it on this node. Instead, point flannel to
use the instance running on “master”:

$ cd /opt/coreos/flannel-0.5.1
$ sudo ./flanneld --etcd-endpoints=http://192.168.33.10:2379 \
--iface=192.168.33.11 --ip-masq &

$ sudo ./mk-docker-opts.sh -c -d /etc/default/docker

$ sudo service docker start
With both nodes bootstrapped into the flannel network, bring up a simple busybox
container on each of the nodes. The containers will have an IP pingable from the
remote container.

Discussion

All flannel members use etcd for coordination. Upon start-up, the flannel daemon
reads the overlay network configuration from etcd as well as all other subnets in use
by other nodes. It then picks a used subnet (/24 by default) and attempts to claim it
by creating a key for it in etcd. If the creation succeeds, the node has acquired a 24-
hour lease on the subnet. The associated value contains the host’s IP.

Next, flannel uses the TUN device to create a flannel® interface. IP fragments
routed to flannel® from the docker® bridge will be delivered to the flannel dae-
mon. It encapsulates each IP fragment in a UDP packet and uses the subnet informa-
tion from etcd to forward it to the correct host. The receiving end unwraps the IP
fragment from its encapsulation and sends it to docker® via the TUN device.

flannel continues to watch etcd for changes in the memberships to keep its knowl-
edge current. Additionally, the daemon will renew its lease an hour before its expira-
tion.

3.13 Deploying flannel Overlay Between Docker Hosts | 99

3.14 Networking Containers on Multiple Hosts with
Docker Network

Problem

Although you could build tunnels between your Docker hosts manually (see Recipe
3.10), you want to take advantage of the new Docker Network feature and use a
VXLAN overlay.

Solution

Docker Network is a new feature, currently available on the Docker
experimental channel. This recipe is a preview that will give you a
] taste of what you will be able to find in future Docker releases.

As of this writing, Docker Network relies on Consul for key-value
stores, uses Serf for discovery of the nodes, and builds a VXLAN
overlay by using the standard Linux bridge. Since Docker Network
is under heavy development, these requirements and methods may
change in the near future.

As is common in this book, I prepared a Vagrantfile that will start three virtual
machines. One will act as a Consul server, and the other two will act as Docker hosts.
The experimental version of Docker is installed on the two Docker hosts, while the
latest stable version of Docker is installed on the machine running the Consul server.

The setup is as follows:

o consul-server, the Consul server node based on Ubuntu 14.04, has IP
192.168.33.10.
o net-1, the first Docker host based on Ubuntu 14.10, has IP 192.168.33.11.

o net-2, the second Docker host based on Ubuntu 14.10, has IP 192.168.33.12.

Figure 3-3 illustrates this setup.

100 | Chapter3: Docker Networking

Docker Daemon: Docker Daemon:
--bip=172.17.0.1/17 --bip=172.17.0.1/17
--fixed-cidr=172.17.0.0/17 --fixed-cidr=172.17.0.0/17

: Container: eth0: : : Container: eth0: :

1 17217.02 1 172171282

T CToT T H
! Network namespace: overlay:multihost !

eth1:192.168.33.10 eth1:192.168.33.11¢eth0210.0.2.15 eth0: 10.0.2.15* eth1:192.168.33.12
y A
Private Network

Figure 3-3. Network diagram of a two-hosts Docker network VXLAN overlay with an
additional Consul node

Clone the repository, change to the docbook/ch03/networks directory, and let Vagrant
do the work:

$ git clone https://github.com/how2dock/docbook/
$ cd docbook/ch03/network

$ vagrant up

$ vagrant status

Current machine states:

consul-server running (virtualbox)
net-1 running (virtualbox)
net-2 running (virtualbox)

You are now ready to ssh to the Docker hosts and start containers. You will see that
you are running the Docker experimental version -dev. The version number that you
see may be different, depending on where you are in the release cycle:

$ vagrant ssh net-1

vagrant@net-1:~$ docker version

Client version: 1.9.0-dev
...<snip>...

Check that Docker Network is functional by listing the default networks:

vagrant@net-1:~$ docker network 1s

NETWORK ID NAME TYPE
4275f8b3a821 none null
80eba28ed4a7 host host
64322973b4aa bridge bridge

No service has been published so far, so docker service ls will return an empty list:

3.14 Networking Containers on Multiple Hosts with Docker Network | 101

$ docker service 1s
SERVICE ID NAME NETWORK CONTAINER

Start a container and check the content of /etc/hosts:

$ docker run -it --rm ubuntu:14.04 bash
root@df479e660658: /# cat /etc/hosts
172.21.0.3 df479e660658

127.0.0.1 localhost

B! localhost ip6-localhost ip6-loopback
fe00::

0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.21.0.3 distracted_bohr
172.21.0.3 distracted_bohr.multihost

In a separate terminal on net-1, list the networks again. You will see that the multi
host overlay now appears. The overlay network multihost is your default network.
This was set up by the Docker daemon during the Vagrant provisioning. Check /etc/
default/docker to see the options that were set:

vagrant@net-1:~$ docker network 1s

NETWORK ID NAME TYPE
4275f8b3a821 none null
80eba28ed4a7 host host
64322973b4aa bridge bridge
b5cofo5f1f8f multihost overlay

Now in a separate terminal, ssh to net-2, and check the network and services. The
networks will be the same, and the default network will also be multihost of type
overlay. But the service will show the container started on net-1:

$ vagrant ssh net-2

vagrant@net-2:~$ docker service s

SERVICE ID NAME NETWORK CONTAINER
beof2bfd81ac distracted_bohr multihost df479e660658

Start a container on net-2 and check /etc/hosts:

vagrant@net-2:~$ docker run -ti --rm ubuntu:14.04 bash
root@2ac726b4ce60: /# cat [etc/hosts

172.21.0.4 2ac726b4ce60

127.0.0.1 localhost

ool localhost ip6-localhost ip6-loopback

fe00O::

0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.21.0.3 distracted_bohr
172.21.0.3 distracted_bohr.multihost
172.21.0.4 modest_curie
172.21.0.4 modest_curie.multihost

102

| Chapter 3: Docker Networking

You will see not only the container that you just started on net-2, but also the con-
tainer that you started earlier on net-1. And, of course, you will be able to ping each
container.

Discussion

The solution uses the default network overlay that was configured at start-up time by
specifying it in the /etc/default/docker configuration file. You can, however, use a non-
default overlay network. This means that you can create as many overlays as you
want, and the container started in each overlay will be isolated.

In the previous test, you started containers with regular options -ti --rm. These
containers were placed automatically in the default network, which was set to be the
multihost network of type overlay.

But you could create your own overlay network and start containers in it. Lets try
this. First, create a new overlay network with the docker network create command.

On one of your Docker hosts, net-1 or net-2, run the following:

$ docker network create -d overlay foobar
8805e22ad6e29cd7abb95597¢91420fdcac54f33fcdd6fbcabdd4ec9710dd6asd
$ docker network 1s

NETWORK ID NAME TYPE
a77el16a1e394 host host
684a4bb4ca71 bridge bridge
8805e22ad6e?2 foobar overlay
b5cofo5f1f8f multihost overlay
67d5a33a2e54 none null

Automatically, the second host will also see this network. To start a container on this
new network, use the - -publish-service option of docker run:

$ docker run -it --rm --publish-service=bar.foobar.overlay ubuntu:14.04 bash
You could directly start a container with a new overlay by using the

--publish-service option, and it will create the network automat-
ically.

Check the docker services now:

$ docker service 1s
SERVICE ID NAME NETWORK CONTAINER
biffdbfblacé bar foobar 663533822135

Repeat the getting started steps by starting another container in this new overlay on
the other host, check the /etc/hosts file, and try to ping each container.

3.14 Networking Containers on Multiple Hosts with Docker Network | 103

3.15 Diving Deeper into the Docker Network Namespaces
Configuration

Problem

You would like to better understand what Docker Network (see Recipe 3.14) does,
especially where the VXLAN interfaces exist.

Solution

The new Docker overlay networking in Docker Network is made possible via
VXLAN tunnels and the use of network namespaces. In Recipe 3.7, you already saw
how to explore and manipulate network namespaces. The same can be done for
Docker Network.

This is an advanced recipe included so you can gain a deep under-

standing of how the network namespaces of a Docker host are used

“ to build a VXLAN network overlay. This recipe is not needed to

\ use default single-host Docker networking or multihost Docker
Network or other multihost networking solutions like the ones pre-
sented in Recipe 3.11 and Recipe 3.13.

Check the design documentation for all the details. But to explore these concepts a
bit, nothing beats an example.

Discussion

With a running container in one overlay, check the network namespace:

$ docker inspect -f '{{ .NetworkSettings.SandboxKey}}' 6635a3822135
/var/run/docker/netns/6635a3822135

This is not a default location for network namespaces, which might confuse things a

bit. So let’s become root, head over to this directory that contains the network name-
spaces of the containers, and check the interfaces:

$ sudo su

root@net-2:/home/vagrant# cd /var/run/docker/
root@net-2:/var/run/docker# ls netns
663523822135

8805e22ad6e?2

To be able to check the interfaces in those network namespaces by using the ip com-
mand, create a symlink for netns that points to /var/run/docker/netns:

root@net-2:/var/run# ln -s /var/run/docker/netns netns
root@net-2:/var/run# ip netns show

104 | Chapter3: Docker Networking

https://github.com/docker/libnetwork/blob/master/docs/design.md

663523822135
8805e22ad6e2

The two namespace IDs returned are the ones of the running container on that host
and the overlay network the container is in:

root@net-2:/var/run/docker# ip netns exec 6635a3822135 ip addr show eth®
15: eth®: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
link/ether 02:42:b3:91:22:c3 brd ff:ff:ff:ff:ff:ff
inet 172.21.0.5/16 scope global eth®
valid_1ft forever preferred_lft forever
inet6 fe80::42:b3ff:fe91:22c3/64 scope link
valid_lft forever preferred_lft forever

You get back the network interface of your running container, with the same MAC
address, and the same IP. If you check the links of the overlay namespace, you see
your VXLAN interface and the VLAN ID being used:

root@net-2:/var/run/docker# ip netns exec 8805e22ad6e2 ip -d link show
...<snip>...
14: vxlanl: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master br0@ state \
UNKNOWN mode DEFAULT group default

link/ether 7a:af:20:ee:e3:81 brd ff:ff:ff:ff:ff:ff promiscuity 1

vxlan id 256 srcport 32768 61000 dstport 8472 proxy 12miss 13miss ageing 300

bridge_slave
16: veth2: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast master br@ state \
UP mode DEFAULT group default glen 1000

link/ether 46:bl:e2:5c:48:a8 brd ff:ff:ff:ff:ff:ff promiscuity 1

veth

bridge_slave

If you sniff packets on these interfaces, you will see the traffic between your
containers.

3.15 Diving Deeper into the Docker Network Namespaces Configuration | 105

CHAPTER 4
Docker Configuration and Development

4.0 Introduction

If you have read all the chapters so far, you have learned all the basics of using
Docker. You can install the Docker engine, start and manage containers, create and
share images, and you have a good understanding of container networking including
networking across multiple hosts. This chapter will now look at more advanced
Docker topics, first for developers and then for configuration.

Recipe 4.1 looks at how to configure the Docker engine, then Recipe 4.2 shows how
to compile Docker from source. Recipe 4.3 presents how to run all the tests to verify
your build and Recipe 4.4 shows how to use this newly built binary instead of the
official released Docker engine.

Developers might also want to look at the nsenter utility in Recipe 4.5. While not
needed for using Docker, it is of use to better understand how Docker leverages Linux
namespaces to create containers. Recipe 4.6 is a sneak peek at the underlying library
used to managed containers. Originally called libcontainer, runc has been donated to
the Open Container Initiative to be the seed source code to help drive a standard for
container runtime and image format.

To dive deeper into configuration and how to access the Docker engine, Recipe 4.7
presents how to access Docker remotely and Recipe 4.8 introduces the application
programming interface (API) exposed by Docker. The Docker client uses this API to
manage containers. Accessing this API remotely and securely is described in Recipe
4.9, it shows how to set up TLS-based access to the Docker engine. To finish the con-
figuration topics, Recipe 4.12 shows how to change the underlying storage driver that
provides a union filesystem to support Docker images.

107

If you are a user of Docker, you will benefit from looking at Recipe 4.10 and Recipe
4.11. These two recipes present docker-py, a Python module to communicate with
the Docker API. This is not the only client library available for Docker, but it pro-
vides an easy entrypoint to learn the API.

4.1 Managing and Configuring the Docker Daemon

Problem

You would like to start, stop, and restart the Docker daemon. Additionally, you would
like to configure it in specific ways, potentially changing things such as the path to the
Docker binary or using a different network bridge.

Solution

Use the docker init script to manage the Docker daemon. On most Ubuntu/Debian-
based systems, it will be located in the /etc/init.d/docker file. Like most other init serv-
ices, it can be managed via the service command. The Docker daemon runs as root:

service docker status

docker start/running, process 2851
service docker stop

docker stop/waiting

service docker start

docker start/running, process 3119

The configuration file is located in /etc/default/docker. On Ubuntu systems, all config-
uration variables are commented out. The /etc/default/docker file looks like this:

Docker Upstart and SysVinit configuration file

Customize location of Docker binary (especially for development testing).
#DOCKER="/usr/local/bin/docker"

Use DOCKER_OPTS to modify the daemon startup options.
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

If you need Docker to use an HTTP proxy, it can also be specified here.
#export http_proxy="http://127.0.0.1:3128/"

This 1s also a handy place to tweak where Docker's temporary files go.
#export TMPDIR="/mnt/bigdrive/docker-tmp"

For example, if you wanted to configure the daemon to listen on a TCP socket to
enable remote API access, you would edit this file as explained in Recipe 4.7.

108 | Chapter4: Docker Configuration and Development

Discussion

On systemd-based systems like Ubuntu 15.05 or CentOS 7, you need to modify the
systemd unit file for Docker. It can be located in the /etc/systemd/system/
docker.service.d directory or it can be the /etc/systemd/system/docker.service file. For
more details on Docker daemon configuration using systemd, see this article from
the Docker documentation.

Finally, although you can start Docker as a Linux daemon, you can also start it inter-
actively by using the docker -d command or, starting with Docker 1.8, the docker
daemon command. You would then pass the options directly to the command. Check
the help to see what options can be set:

$ docker daemon --help
Usage: docker daemon [OPTIONS]

Enable daemon mode

--api-cors-header= Set CORS headers in the remote API

-b, --bridge= Attach containers to a network bridge
--bip= Specify network bridge IP

-D, --debug=false Enable debug mode

- -default-gateway= Container default gateway IPv4 address

4.2 Compiling Your Own Docker Binary from Source

Problem

You would like to develop the Docker software and build your own Docker binary.

Solution

Use Git to clone the Docker repository from GitHub and use a Makefile to create
your own binary.

Docker is built within a Docker container. In a Docker host, you can clone the
Docker repository and use the Makefile rules to build a new binary. This binary is
obtained by running a privileged Docker container. The Makefile contains several
targets, including a binary target:

$ cat Makefile
default: binary

all: build
$(DOCKER_RUN_DOCKER) hack/make.sh

4.2 Compiling Your Own Docker Binary from Source | 109

https://docs.docker.com/articles/systemd/
https://github.com/docker/docker

binary: build
$(DOCKER_RUN_DOCKER) hack/make.sh binary

Therefore, it is as easy as sudo make binary:

The hack directory in the root of the Docker repository has been
moved to the project directory. Therefore, the make.sh script is in
fact at project/make.sh. It uses scripts for each bundle that are
stored in the project/make/ directory.

$ sudo make binary

docker run --rm -it --privileged \
-e BUILDFLAGS -e DOCKER_CLIENTONLY -e DOCKER_EXECDRIVER '\
-e DOCKER_GRAPHDRIVER -e TESTDIRS -e TESTFLAGS \
-e TIMEOUT \
-v "/tmp/docker/bundles:/go/src/github.com/docker/docker/\
bundles" \
"docker:master" hack/make.sh binary

---> Making bundle: binary (in bundles/1.9.0.-dev/binary)
Created binary: \
/go/src/github.com/docker/docker/bundles/1.9.0-dev/binary/docker-1.9.0-dev

You see that the binary target of the Makefile will launch a privileged Docker con-
tainer from the docker:master image, with a set of environment variables, a volume
mount, and a call to the hack/make.sh binary command.

With the current state of Docker development, the new binary will be located in the
bundles/1.9.0-dev/binary/ directory. The version number might differ, depending on
the state of Docker releases.

Discussion

To ease this process, you can clone the repository that accompanies this cookbook. A
Vagrantfile is provided that starts an Ubuntu 14.04 virtual machine, installs the latest
stable Docker release, and clones the Docker repository:

$ git clone https://github.com/how2dock/docbook
$ cd docbook/ch04/compile/
$ vagrant up

Once the machine is up, ssh to it and go to the /tmp/docker directory, which should
have been created during the Vagrant provisioning process. Then run make. The first

time you run the Makefile, the stable Docker version installed on the machine will
pull the base image being used by the Docker build process ubuntu:14.04, and then

110 | Chapter4: Docker Configuration and Development

build the docker:master image defined in /tmp/docker/Dockerfile. This can take a bit
of time the first time you do it:

$ vagrant ssh

$ cd /tmp/docker

$ sudo make binary

docker build -t "docker:master" .

Sending build context to Docker daemon 55.95 MB
Sending build context to Docker daemon

Step 0 : FROM ubuntu:14.04

Once this completes, you will have a new Docker binary:

$ cd bundles/1.9.0-dev/binary/docker
$ s
docker docker-1.9.0-dev docker-1.9.0-dev.md5 docker-1.9.0-dev.sha256

See Also

o How to contribute to Docker on GitHub

4.3 Running the Docker Test Suite for Docker
Development

Problem

You have made some changes to the Docker source and have successfully built a new
binary. You also need to make sure that you pass all the tests.

Solution

Use the Makefile test target to run the four sets of tests present in the Docker source.
Alternatively, pick only the set of tests that matters to you:

$ cat Makefile

test: build
S(DOCKER_RUN_DOCKER) hack/make.sh binary cross \
test-unit test-integration \
test-integration-cli test-docker-py
test-unit: build
S(DOCKER_RUN_DOCKER) hack/make.sh test-unit

test-integration: build
$(DOCKER_RUN_DOCKER) hack/make.sh test-integration

test-integration-cli: build

4.3 Running the Docker Test Suite for Docker Development | 111

https://github.com/docker/docker/blob/master/CONTRIBUTING.md

$(DOCKER_RUN_DOCKER) hack/make.sh binary test-integration-cli

test-docker-py: build
S(DOCKER_RUN_DOCKER) hack/make.sh binary test-docker-py

You can see in the Makefile that you can choose which set of tests you want to run. If
you run all of them with make test, it will also build the binary:

$ sudo make test

---> Making bundle: test-docker-py (in bundles/1.9.0-dev/test-docker-py)
+++ exec docker --daemon --debug --storage-driver vfs \
-exec-driver native \
--pidfile \
/go/src/github.com/docker/docker/bundles/1.9.0-dev/ \
test-docker-py/docker.pid

Ran 56 tests in 75.366s

0K

Depending on test coverage, if all the tests pass, you have some confidence that your
new binary works.

See Also

o Official Docker development environment documentation

4.4 Replacing Your Current Docker Binary with a New One

Problem

You have built a new Docker binary and run the unit and integration tests described
in Recipe 4.2 and Recipe 4.3. Now you would like to use this new binary on your
host.

Solution

Start from within the virtual machine setup in Recipe 4.2.

Stop the current Docker daemon. On Ubuntu 14.04, edit the /etc/default/docker file to
uncomment the DOCKER variable that defines where to find the binary and set it to
DOCKER="/usr/local/bin/docker". Copy the new binary to /usr/local/bin/docker,
and finally, restart the Docker daemon:

112 | Chapter4: Docker Configuration and Development

https://docs.docker.com/project/software-required/

$ pwd

/tmp/docker

$ sudo service docker stop

docker stop/waiting

$ sudo vi /etc/default/docker

$ sudo cp bundles/1.8.0-dev/binary/docker-8.0-dev /usr/local/bin/docker
$ sudo cp bundles/1.8.0-dev/binary/docker-1.8.0-dev /usr/bin/docker

$ sudo service docker restart

stop: Unknown instance:

$ docker version

Client:

Version: 1.8.0-dev

API version: 1.21

Go version: gol.4.2

Git commit: 3e596da

Built: Tue Aug 11 16:51:56 UTC 2015
0S/Arch: 1inux/amd64

Server:

Version: 1.8.0-dev

API version: 1.21

Go version: gol.4.2

Git commit: 3e596da

Built: Tue Aug 11 16:51:56 UTC 2015
0S/Arch: 1inux/amd64

You are now using the latest Docker version from the master development branch
(i.e., master branch at Git commit 3e596da at the time of this writing).

Discussion

The Docker bootstrap script used in the Vagrant virtual machine provisioning installs
the latest stable version of Docker with the following:

sudo curl -sSL https://get.docker.com/ubuntu/ | sudo sh

This puts the Docker binary in /usr/bin/docker. This may conflict with your new
binary installation. Either remove it or replace it with the new one if you see any con-
flicts when running docker version.

4.5 Using nsenter

Problem

You would like to enter a container for debugging purposes, you are using a Docker
version older than 1.3.1, or you do not want to use the docker exec command.

4.5Usingnsenter | 113

Solution

Use nsenter. Starting with Docker 1.3, docker exec allows you to easily enter a run-
ning container, so there is no need to do things like running an SSH server and
exposing port 22 or using the now deprecated attach command.

nsenter was created to solve the problem of entering the namespace (hence, nsenter)
of a container prior to the availability of docker exec. Nonetheless, it is a useful tool
that merits a short recipe in this book.

Let’s start a container that sleeps for the duration of this recipe, and for completeness,
let’s enter the running container with docker exec:

$ docker pull ubuntu:14.04

$ docker run -d --name sleep ubuntu:14.04 sleep 300
$ docker exec -ti sleep bash

root@db9675525fab: /#

nsenter gives the same result. Conveniently, it comes as an image in Docker Hub.
Pull the image, run the container, and use nsenter.

$ docker pull jpetazzo/nsenter
$ sudo docker run docker run --rm -v /usr/local/bin:/target jpetazzo/nsenter

At this time, it is useful to have a look at the Dockerfile for nsenter and check the CMD
option. You will see that it runs a script called installer. This small bash script does
nothing but detect whether a mount point exists at /target. If it does, it copies a script
called docker-enter and a binary called nsenter to that mount point. In the docker run
command, since you specified a volume (i.e., -v /usr/local/bin:/target), running
the container will have the effect of copying nsenter on your local machine. Quite a
nice trick with a powerful effect:

$ which docker-enter nsenter
Jusr/local/bin/docker-enter
Jusr/local/bin/nsenter

To copy the files in /ust/local/bin, I run the container with sudo. If
you do not want to use this mount-point convenience, you can
copy the files locally with a command like this:

$ docker run --rm jpetazzo/nsenter cat /nsenter \
> /tmp/nsenter && chmod +x /tmp/nsenter

You are now ready to enter the container. You can pass a command, if you do not
want to get an interactive shell in the container:

$ docker-enter sleep
root@db9675525fab: /#

$ docker-enter sleep hostname
db9675525fab

114 | Chapter4: Docker Configuration and Development

https://github.com/jpetazzo/nsenter
https://github.com/jpetazzo/nsenter/blob/master/Dockerfile

docker-enter is nothing more than a wrapper around nsenter. You could use nsen
ter directly after finding the process ID of the container with docker 1inspect,
like so:

$ docker inspect --format {{.State.Pid}} sleep

9302

$ sudo nsenter --target 9302 --mount --uts --ipc --net --pid
root@db9675525fab: /#

Discussion
Starting with Docker 1.3, you do not need to use nsenter; use docker exec instead:

$ docker exec -h
Usage: docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Run a command in a running container

-d, --detach=false Detached mode: run command in the background
--help=false Print usage
-1, --interactive=false Keep STDIN open even if not attached
-t, --tty=false Allocate a pseudo-TTY
See Also

o GitHub page from Jerome Petazzoni nsenter repository

4.6 Introducing runc

Problem

You want to become familiar with the upcoming standard around the container for-
mat and runtime runc.

Solution

The Open Container Project (OCP) was established in June 2015, and the specifica-
tions coming from that project are still not done. However, Docker Inc. donated its
libcontainer codebase as an early implementation of a standard runtime for contain-
ers. This runtime is called runc.

The OCP was just launched, so the specifications are not out yet.
Expect many changes until the specifications and reference imple-
“ mentations are considered stable and official.

4.6 Introducingrunc | 115

https://github.com/jpetazzo/nsenter
https://github.com/docker/libcontainer

This recipe will give you a quick feel for runc, including instructions to compile the
Go codebase. As always, I prepared a Vagrant box that gives you a Docker host, a Go
1.4.2 installation, and a clone of the runc code. To get started with this box, use the
following:

$ git clone https://github.com/how2dock/docbook.git

$ cd dockbook/ch04/runc

$ vagrant up

$ vagrant ssh
Once you are on a terminal inside this VM, you need to grab all the dependencies of
runc by using the go get command. Once this completes, you can build runc and
install. Verify that you have a running runc in your path:

Expect a change in the build process sometime soon. Most likely
the build will use Docker itself.

\

cd go/src

go get github.com/opencontainers/runc
cd github.com/opencontainers/runc/
make

sudo make install

runc -v

runc version 0.2

RV Ve SV, SRV Vel

To run a container with runc, you need a root filesystem describing your container
image. The easiest way to get one is to use Docker itself and the docker export com-
mand. So let’s pull a Docker image, start a container, and export it to a tarball:

$cd ~

$ mkdir foobar

$ cd foobar

$ docker run --name foobar -d ubuntu:14.04 sleep 30
$ docker export -o foobar.tar foobar

$ sudo -xf foobar.tar

$ rm foobar.tar

To run this container, you need to generate a configuration file. This is most easily
done with the runc spec command. To get a container started quickly, you will need
to get only one change, which is the location of the root filesystem. In that JSON file,
edit the path to it; you see an excerpt here:

$ runc spec > config.json
$ vi config.json

"root": {
"path”: ll./ll’

116 | Chapter4: Docker Configuration and Development

"readonly": true

You are now ready to start your container with runc as root, and you will get a shell
inside your container:

$ sudo runc

#
This is the low-level plumbing of Docker and what should evolve to become the
Open Container standard runtime. You can now explore the configuration file and

see how you can define a start-up command for your container, as well as a network
namespace and various volume mounts.

Discussion

The Open Container Project is good news. In late 2014, CoreOS had started develop-
ing an open standard for container images, including a new trust mechanism, appc.
CoreOS also developed a container runtime implementation for running appc-based
containers. As part of the OCP, appc developers will help develop the new runc speci-
fication. This will avoid fragmentation in the container image format and runtime
implementation.

If you look at an application container image (i.e., ACI) manifest, you will see high
similarities with the configuration file obtained from runc spec in the preceding sol-
ution section. You might see some of the rkt implementation features being ported
back into runc.

If you care about standards, watch the specifications coming out of
the Open Container Project.

See Also

o The blog post on cloudgear.net that inspired this recipe
« The Open Container Project
 The App container spec

o The rkt runtime

4.6 Introducingrunc | 117

https://github.com/appc/spec
https://github.com/coreos/rkt/blob/master/Documentation/app-container.md#ACI
https://www.cloudgear.net/blog/2015/getting-started-with-runc/
https://www.opencontainers.org
https://github.com/appc/spec
https://github.com/coreos/rkt

4.7 Accessing the Docker Daemon Remotely

Problem

The default Docker daemon listens on a local Unix socket, /var/run/docker.sock,
which is accessible only locally. However, you would like to access your Docker host
remotely, calling the Docker API from a different machine.

Solution

Switch the listening protocol that the Docker daemon is using by editing the configu-
ration file in /etc/default/docker and issue a remote API call.

In /etc/default/docker, add a line that sets DOCKER_HOST to use tcp on port 2375. Then
restart the Docker daemon with sudo service docker restart:

$ cat /etc/default/docker

Use DOCKER_OPTS to modify the daemon startup options.
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"
DOCKER_OPTS="-H tcp://127.0.0.1:2375"

You will then be able to use the Docker client by specifying a host accessed using
TCP:

$ docker -H tcp://127.0.0.1:2375 images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 14.04 04c5d3b7b065 6 days ago 192.7 MB

This method is unencrypted and unauthenticated. You should not
use this on a publicly routable host. This would expose your
Docker daemon to anyone. You will need to properly secure your
Docker daemon if you want to do this in production. (See Recipe
4.9.)

Discussion

With the Docker daemon listening over TCP you can now use curl to make API calls
and explore the response. This is a good way to learn the Docker remote API:

$ curl -s http://127.0.0.1:2375/images/json | python -m json.tool

[
{
"Created": 1418673175,
"Id": "04c5d3b7b0656168630d3ba35d8889bdaafcaeb32bfbc47e7c5d35d2",
"ParentId": "d735006ad9c1b1563e021d7a4fecfd384e2a1c42e78d8261b83d6271",
"RepoTags": [
"ubuntu:14.04"

118 | Chapter4: Docker Configuration and Development

1,
"Size": 0,
"VirtualSize": 192676726

1

We pipe the output of the curl command through python -m json.tool to make
the JSON object that is returned readable. And the -s option removes the informa-
tion of the data transfer.

4.8 Exploring the Docker Remote API to Automate Docker
Tasks

Problem

After being able to access the Docker daemon remotely (see Recipe 4.7), you want to
explore the Docker remote API in order to write programs. This will allow you to
automate Docker tasks.

Solution

The Docker remote API is fully documented. It is currently on version 1.21. It is a
REST API, in the sense that it manipulates resources (e.g., images and containers)
through HTTP calls using various HTTP methods (e.g., GET, POST, DELETE). The
attach and pull APIs are not purely REST, as noted in the documentation.

You already saw how to make the Docker daemon listen on a TCP socket (Recipe 4.7)
and use curl to make API calls. Tables 4-1 and 4-2 show a summary of the remote
API calls that are available.

Table 4-1. A sample of the API for container actions

Action on containers HTTP method URI

List containers GET /containers/json

(reate container POST /containers/create
Inspect a container GET /containers/(id)/json
Start a container POST /containers/(id)/start
Stop a container POST /containers/(id)/stop
Restart a container POST /containers/(id)/restart

4.8 Exploring the Docker Remote API to Automate Docker Tasks | 119

https://docs.docker.com/reference/api/docker_remote_api_v1.20/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/

Action on containers HTTP method

Kill a container POST
Pause a container POST
Remove a container DELETE

URI
/containers/(id)/kill

/containers/(id)/pause

/containers/(id)

Table 4-2. A sample of the API for image actions

Action on images HTTP method URI

List images GET /images/json

(reate an image POST /images/create

Tag an image into a repository POST /images/(name)/tag
Remove an image DELETE /images/(name)
Search images GET /images/search

For example, let's download the Ubuntu 14.04 image from the public registry (a.k.a.
Docker Hub), create a container from that image, and start it. Remove it and then
remove the image. Note that in this toy example, running the container will cause it
to exit immediately because you are not passing any commands:

$ curl -X POST -d "fromImage=ubuntu" -d "tag=14.04"
http://127.0.0.1:2375/images/create
$ curl -X POST -H 'Content-Type: application/json'
-d '{"Image":"ubuntu:14.04"}"'
http://127.0.0.1:2375/containers/create
{"1d":"6b6bd46f483a5704d4bced62ff58a0ac5758fb0875ec881fa68f0e...",\
"Warnings":null}
$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
6b6bd46f483a ubuntu:14.04 "/bin/bash" 16 seconds ago

$ curl -X POST http://127.0.0.1:
$ docker ps -a
CONTAINER ID
6b6bd46f483a

2375/containers/6b6bd46f483a/start

IMAGE
ubuntu:14.04

COMMAND
" /bin/bash"

CREATED
About a minute ago

Now let’s clean things up:

$ curl -X DELETE http://127.0.0.1:2375/containers/6b6bd46f483a

$ curl -X DELETE http://127.0.0.1:2375/images/04c5d3b7b065
[{"Untagged":"ubuntu:14.04"}
,{"Deleted":"04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2"}

120

Chapter 4: Docker Configuration and Development

,{"Deleted":"d735006ad9c1b1563e021d7a4fecfd75ed36d4384e2a1c42e78d8261b83d6271"}
,{"Deleted":"70c8faab2a44b9f6a70ec3a018ec14ec95717ebed2016430e57fec1abc90ag879"}
,{"Deleted":"c7b7c64195686444123ef370322b5270b098c77dc2d62208e8a9ce28a11a63f9"}
,{"Deleted":"511136ea3c5364f264b78b54336143ec563103b4d4702f3ba7d4d2698e22¢c158"}
$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

After enabling remote API access, you can set the DOCKER_HOST
variable to its HTTP endpoint. This relieves you from passing it to
the docker command as an -H option. For example, instead of
docker -H http://127.0.0.1:2375 ps, you can use export
DOCKER_HOST=tcp://127.0.0.1:2375 and you will be able to sim-
ply use docker ps.

Discussion

Although you can use curl or write your own client, existing Docker clients like
docker-py (see Recipe 4.10) can ease calling the API.

The list of APIs presented in Table 4-1 and Table 4-2 is not exhaustive, and you
should check the complete API documentation for all API calls, query parameters,
and response examples.

4.9 Securing the Docker Daemon for Remote Access

Problem

You need to access your Docker daemon remotely and securely.

Solution

Set up TLS-based access to your Docker daemon. This will use public-key cryptogra-
phy to encrypt and authenticate communication between a Docker client and the
Docker daemon that you have set up with TLS.

The basic steps to test this security feature are described on the Docker website. How-
ever, it shows how to create your own certificate authority (CA) and sign server and
client certificates using the CA. In a properly set up infrastructure, you need to con-
tact the CA that you use routinely and ask for server certificates.

To conveniently test this TLS setup, I created an image containing a script that creates
the CA and the server and client certificates and keys. You can use this image to cre-
ate a container and generate all the needed files.

4.9 Securing the Docker Daemon for Remote Access | 121

https://docs.docker.com/reference/api/docker_remote_api_v1.16/
http://tools.ietf.org/html/rfc5246
https://docs.docker.com/articles/https/#daemon-modes
https://registry.hub.docker.com/u/runseb/dockertls/

You start with an Ubuntu 14.04 machine, running the latest Docker version (see
Recipe 1.1). Download the image and start a container. You will need to mount a vol-
ume from your host and bind mount it to the /tmp/ca inside the Docker container.
You will also need to pass the hostname as an argument to running the container (in
the following example, <hostname>). Once you are done running the container, all
CA, server, and client keys and certificates will be available in your working directory:

$ docker pull runseb/dockertls

$ docker run -ti -v $(pwd):/tmp/ca runseb/dockertls <hostname>

$ s

cakey.pem ca.pem ca.srl clientcert.pem client.csr clientkey.pem
extfile.cnf makeca.sh servercert.pem server.csr serverkey.pem

Stop the running Docker daemon. Create an /etc/docker directory and a ~/.docker
directory. Copy the CA, server key, and server certificates to /etc/docker. Copy the
CA, client key, and certificate to ~/.docker:

$ sudo service docker stop

sudo mkdir /etc/docker

mkdir ~/.docker

sudo cp {ca,servercert,serverkey}.pem /etc/docker
cp ca.pem ~/.docker/

cp clientkey.pem ~/.docker/key.pem

cp clientcert.pem ~/.docker/cert.pem

RV RV SV, SRV RV "2

Edit the /etc/default/docker (you need to be root) configuration file to specify
DOCKER_OPTS (replace test with your own hostname):

DOCKER_OPTS="-H tcp://<test>:2376 --tlsverify \
--tlscacert=/etc/docker/ca.pem \
--tlscert=/etc/docker/servercert.pem \
--tlskey=/etc/docker/serverkey.pem"

Then restart the Docker service with sudo service docker restart and try to con-
nect to the Docker daemon:

$ docker -H tcp://test:2376 --tlsverify images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
runseb/dockertls latest 5ed60e0f6a7c 17 minutes ago 214.7 MB
Discussion

The runseb/dockertls convenience image is automatically built from
the https://github.com/how2dock/docbook/ch04/tls Docker-
file. Check it out.

By setting up a few environment variables (DOCKER_HOST and DOCKER_TLS_VERIFY),
you can easily configure the TLS connection from the CLI:

122 | Chapter4: Docker Configuration and Development

$ export DOCKER_HOST=tcp://test:2376

$ export DOCKER_TLS_VERIFY=1

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
runseb/dockertls latest S5ed60e0f6a7c 19 minutes ago 214.7 MB

You can still use curl as discussed in Recipe 4.7, but you need to specify the client key
and certificate:

$ curl --insecure --cert ~/.docker/cert.pem --key ~/.docker/key.pem \
-s https://test:2376/images/json | python -m json.tool
[

"Created": 1419280147,
"Id": "5ed60edf6a7ce3df3614d20dcadf2e4d43f4054da64d52709¢c1559ac”,
"ParentId": "138f848eb669500df577ca5b7354cef5e65b3c728b0c241221c611b1",
"RepoTags": [

"runseb/dockertls:latest"

1,
"Size": 0,
"VirtualSize": 214723529

]

Note that you used the --insecure curl option, because you created your own cer-
tificate authority. By default, curl will check the certificates against the CAs con-
tained in the default CA bundle installed on your server. If you were to get server and
client keys and certificates from a trusted CA listed in the default CA bundle, you
would not have to make an --insecure connection. However, this does not mean
that the connection is not properly using TLS.

4.10 Using docker-py to Access the Docker Daemon
Remotely

Problem

Although the Docker client is powerful, you would like to access the Docker daemon
through a Python client. Specifically, you would like to write a Python program that
calls the Docker remote APL

Solution

Import the docker-py Python module from Pip. In a Python script or interactive shell,
create a connection to a remote Docker daemon and start making API calls.

4.10 Using docker-py to Access the Docker Daemon Remotely | 123

Although this recipe is about docker-py, it serves as an example that
you can use your own client to communicate with the Docker dae-
mon and you are not restricted to the default Docker client. Docker
clients exist in several programming languages (e.g., Java, Groovy,
Perl, PHP, Scala, Erlang, etc.), and you can write your own by
studying the API reference.

docker-py is a Python client for Docker. It can be installed from source or simply
fetched from the Python Package Index by using the pip command. First install
python-pip, and then get the docker-py package. On Ubuntu 14.04:

$ sudo apt-get install python-pip
$ sudo pip install docker-py

The documentation tells you how to create a connection to the Docker daemon. Cre-
ate an instance of the Client() class by passing it a base_url argument that specifies
how the Docker daemon is listening. If it is listening locally on a Unix socket:

$ python

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on 1linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from docker import Client

>>> c=Client(base_url="unix://var/run/docker.sock")

>>> c.contatiners()

(]

If it is listening over TCP, as you set it up in Recipe 4.7:

$ python

Python 2.7.6 (default, Mar 22 2014, 22:59:56)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from docker import Client

>>> c=Client(base_url="tcp://127.0.0.1:2375")

>>> c.contailners()

(]

You can explore the methods available via docker-py by using help(c) at the Python
prompt in the interactive sessions.

Discussion

The docker-py module has a few basics documented. Of note is the integration with
Boot2Docker (Recipe 1.7), which has a helper function to set up the connection.
Since the latest Boot2Docker uses TLS for added security in accessing the Docker
daemon, the setup is slightly different than what we presented. In addition, there is
currently a bug that is worth mentioning for those who will be interested in testing

docker-py.

124 | Chapter4: Docker Configuration and Development

https://docs.docker.com/reference/api/remote_api_client_libraries/
https://docs.docker.com/reference/api/docker_remote_api_v1.16/
https://github.com/docker/docker-py
https://pypi.python.org/pypi
http://docker-py.readthedocs.org/en/latest/
http://docker-py.readthedocs.org/en/latest/
http://docker-py.readthedocs.org/en/latest/boot2docker/

Start Boot2Docker:

$ boot2docker start
Waiting for VM and Docker daemon to start...

Started.

Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/ca.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/cert.pem
Writing /Users/sebgoa/.boot2docker/certs/boot2docker-vm/key.pem

To connect the Docker client to the Docker daemon, please set:
export DOCKER_HOST=tcp://192.168.59.103:2376
export DOCKER_CERT_PATH=/Users/sebgoa/.boot2docker/certs/boot2docker-vm
export DOCKER_TLS_VERIFY=1

This returns a set of environment variables that need to be set. Boot2Docker provides
a nice convenience utility, $(boot2docker shellinit), to set everything up. How-
ever, for docker-py to work, you need to edit your /etc/hosts file and set a different
DOCKER_HOST. In /etc/hosts add a line with the IP of boot2docker and its local DNS
name (i.e., boot2docker) and then export DOCKER_HOST=tcp://boot2docker:2376.
Then in a Python interactive shell:

>>> from docker.client import Client

>>> from docker.utils import kwargs_from_env
>>> client = Client(**kwargs_from_env())

>>> client.containers()

(]
4.11 Using docker-py Securely

Problem

You want to use the docker-py Python client to access a remote Docker daemon set up
with TLS secure access.

Solution

After setting up a Docker host as explained in Recipe 4.9, verify that you can connect
to the Docker daemon with TLS. For example, assuming a host with the hostname
dockerpytls and client certificate, key, and CA located in the default location at
~/.docker/, try this:

$ docker -H tcp://dockerpytls:2376 --tlsverify ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

4.11 Using docker-py Securely | 125

Make sure you have installed docker_py:

sudo apt-get -y install python-pip
sudo pip install docker-py

Once this is successful, open a Python interactive shell and create a docker-py client
instance by using the following configuration:

tls_config = docker.tls.TLSConfig(
client_cert=('/home/vagrant/.docker./cert.pem', \
' /home/vagrant/.docker /key.pem'), \
ca_cert="'/home/vagrant/.docker/ca.pem')
client = docker.Client(base_url="https://host:2376', tls=tls_config)

This is equivalent to calling the Docker daemon on the command line as follows:

$ docker -H tcp://host:2376 --tlsverify --tlscert /path/to/client-cert.pem \
--tlskey /path/to/client-key.pem \
--tlscacert /path/to/ca.pem ...

See Also

o Documentation of docker=py

o Docker article on HTTPS support

4.12 Changing the Storage Driver

Problem

You would like to use a different storage driver than the default used on your system
during Docker installation.

Solution

This recipe illustrates how to change the storage backend used by Docker. You will
start from a Ubuntu 14.04 installation with a 3.13 kernel and a Docker 1.7 setup with
Another Union File System (AUFS), and you will switch to the overlay filesystem. As
before, you can grab a Vagranttfile from the repository that comes with this book. Let’s
do it:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch04/overlay

$ vagrant up

$ vagrant ssh

$ uname -r

3.13.0-39-generic

126 | Chapter4: Docker Configuration and Development

http://docker-py.readthedocs.org/en/latest/tls/
https://docs.docker.com/articles/https/

$ docker info | grep Storage
Storage Driver: aufs

$ docker version | grep Server
Server version: 1.7.0

The overlay filesystem is available in the Linux kernel starting with 3.18. Therefore to
switch storage backends, you first need to upgrade the kernel of your machine to 3.8
and restart:

$ cd /tmp

$ wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.18-vivid/\
1inux-headers-3.18.0-031800-generic_3.18.0-031800.201412071935_amd64.deb

$ wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.18-vivid/\
1inux-headers-3.18.0-031800_3.18.0-031800.201412071935_all.deb

$ wget http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.18-vivid/\
1inux-image-3.18.0-031800-generic_3.18.0-031800.201412071935_amd64.deb

$ sudo dpkg -i linux-headers-3.18.0-*.deb linux-image-3.18.0-*.deb

$ sudo update-grub

$ sudo shutdown -r now

Once the machine has restarted, connect to it again. You can now edit the Docker
configuration file and specify Overlay as a storage driver by using the -s option in
starting the Docker daemon:

uname -r
.18.0-031800-generic

sudo su

service docker stop

echo DOCKER_OPTS=\"-s overlay\" >> /etc/default/docker
service docker start

H H H N W

You now switch the storage backend for Docker:

$ docker info | grep Storage
Storage Driver: overlay

AUFS has been the default storage backend for 3.13-3.16 kernels,
especially on Ubuntu systems. Overlay is now in the upstream ker-
“ nel starting with 3.18, and AUFS is not available. Consider switch-
\ ing to Overlay.

Discussion

Docker can use multiple storage backends to store images and container filesystems.
The storage abstraction in Docker tries to minimize the space used by images and
container filesystems by keeping them in layers and tracking only the modifications
from layer to layer. It relies on union-based filesystems to accomplish this.

You can choose between the following storage backends:

4.12 Changing the Storage Driver | 127

http://bit.ly/linux-318

o vis

o devicemapper
o btrfs

o aufs

o overlay

Analyzing the differences in stability and performance of each of these solutions as
Docker storage backends is beyond the scope of this recipe.

See Also

o Upgrade to 3.18 Linux kernel on Ubuntu 14.04
o Docker deep dive into storage drivers

 Docker-supported filesystems

128 | Chapter4: Docker Configuration and Development

http://bit.ly/linux-318
http://bit.ly/petazzoni
http://www.projectatomic.io/docs/filesystems/

CHAPTER 5
Kubernetes

5.0 Introduction
Contributed by Joe Beda

As applications grow beyond what can be safely handled on a single host, a need has
arisen for what has come to be called an orchestration system. An orchestration sys-
tems helps users view a set of hosts (also referred to as nodes) as a unified program-
mable reliable cluster. That cluster can be viewed and used as a giant computer.

Kubernetes (often abbreviated as k8s) is an open source system started by Google to
fill this need. Kubernetes is based on ideas validated through internal Google systems
over the last 10 years (Borg and Omega). These systems are used to run and manage
all of the myriad Google services, including Google Search, Google Mail, and more.
Many of the engineers who built and operated Borg clusters at scale are helping to
design and build Kubernetes.

Traditionally, Borg has been one of the key things that ex-Google engineers miss from
their time at the company. But now Kubernetes fills this need for engineers who don’t
happen to work for Google. Kubernetes features some enhanced capabilities and new
concepts.

Enhanced capabilities

A Kubernetes cluster coordinates Docker across multiple nodes and provides a uni-
fied programming model with enhanced capabilities:

Reliable container restart
Kubernetes can monitor the health of a container and restart it when it fails.

129

http://kubernetes.io
http://bit.ly/google-borg
http://bit.ly/g-omega

Self-healing
If a node fails, the Kubernetes management system can automatically reschedule
work onto healthy nodes. Dynamic service membership ensures that those new
containers can be found and used.

High-cluster utilization
By scheduling a diverse set of workloads on a common set of machines, users can
drive dramatically higher utilization compared to static manual placement. The
larger the cluster and the more diverse the workloads, the better the utilization.

Organization and grouping
With large clusters, keeping track of all the containers that are running can be
difficult. Kubernetes provides a flexible labeling system that allows both users
and other systems to think in sets of containers. In addition, Kubernetes supports
the idea of namespaces so different users or teams can have isolated views into
the cluster.

Horizontal scaling and replication
Kubernetes is built to enable easy horizontal scaling. Scaling and load balancing
are intrinsic concepts.

Microservice friendly
Kubernetes clusters are a perfect companion for teams adopting a microservices
architecture. Applications can be broken into smaller parts that are easier to
develop, scale, and reason about. Kubernetes provides ways for a service to find
(commonly called discovery) and communicate with other services.

Streamlined operations
Kubernetes allows for specialized ops teams. Management of the Kubernetes sys-
tem and the nodes that it runs on can be driven by a dedicated team or out-
sourced to a cloud service. Operational teams for specific apps (or the develop-
ment team itself) can then focus on running that application without managing
the details of individual nodes.

New concepts

While Docker is great for dealing with containers running on a single node, Kuber-
netes addresses the additional challenges around cross-node communication and
scale. To help, Kubernetes introduces a set of new concepts:

Cluster scheduling
The process of placing a container on a specific node to optimize the reliability
and utilization of the cluster.

130 | Chapter5: Kubernetes

Pods
A group of containers that must be placed on a single node and work together as
a team. Allowing a set of containers to work closely together on a single node is a
powerful way to make applications even more manageable.

Labels
Data attached to pods in order to organize a group for monitoring and manage-
ment.

Replication controllers
Agents that work to make sure that a horizontal scaling group or pod is reliably
maintained.

Network services
A way to communicate between not just pods, but groups of pods by using
dynamically configured naming and network proxies.

With that, let’s jump into understanding and using Kubernetes!

5.1 Understanding Kubernetes Architecture

Problem

You need a container management system that provides scale and fault-tolerance, and
you would like to understand the architecture of Kubernetes (see Figure 5-1).

Solution
The main architecture of a Kubernetes cluster includes the following:

Kubernetes master services
These centralized services (that can run in Docker containers) provide an API,
collect and surface the current state of the cluster, and assign pods to nodes. Most
users will always interact directly with the master API. This provides a unified
view of the entire cluster.

Master storage
Currently all persistent Kubernetes state is stored in etcd. New storage engines
likely will be built out over time.

Kubelet
This agent runs on every node and is responsible for driving Docker, reporting
status to the master, and setting up node-level resources (like remote disk stor-

age).

5.1 Understanding Kubernetes Architecture | 131

Kubernetes proxy
This proxy runs on every node (and can run elsewhere) and provides local con-
tainers a single network endpoint to reach an array of pods.

User Workstation

Kubernetes API

o]

Kubernetes Master Node

Cinsovs R i [

Scheduler Pod
Controller Mgr I

L)

Master Storage
(eted)

Figure 5-1. Kubernetes architecture

Discussion

A user interacts with a Kubernetes master through tools (such as kubectl) that call the
Kubernetes API. API documentation (automatically generated from source) is avail-
able on the Kubernetes site. The master is responsible for storing a description of
what users want to run (referred to as a spec in the API). It then works to turn that
specification into reality. It reports the current state of the cluster as status.

Running on every worker node in the cluster are the kubelet and the proxy. The
kubelet is responsible for driving Docker and setting up other node-specific states,
like storage volumes. The proxy is responsible for providing a stable local endpoint
for talking to services (frequently implemented by a set of containers running in the
cluster).

Kubernetes works to manage pods. Pods are a grouping of compute resources that
provide context for a set of containers. Users can use pods to force a set of containers
that work as a team to be scheduled on a single physical node. While simple applica-
tions can be built as a single container, pods help to enable advanced scenarios:

132 | Chapter5: Kubernetes

http://kubernetes.io/third_party/swagger-ui/

o Multiple Docker containers can exist in a pod. This allows for some advanced sce-
narios explored in Recipe 5.7. Each container starts with its filesystem and pro-
cess as normal.

o Pods define a shared network interface. Unlike regular containers, containers in a
pod all share the same network interface. This allows for efficient and easy access
across containers using localhost. It also means that different containers in the
same pod cannot use the same network port.

o Storage volumes are defined as part of the pod. These volumes can be mapped
into multiple containers as needed. Specialized types of volumes also exist, based
on the needs of users and the capabilities of the cluster.

Here is the general flow for how work is run with Kubernetes:

1. Via the kubectl tool and the Kubernetes API, the user creates a specification for a
replication controller with a pod template and a count for the number of desired
replicas.

2. Kubernetes uses the template in the replication controller to create a number of
pods.

3. The Kubernetes Scheduler (part of the master) looks at the current state of the
cluster (which nodes are available and what resources are available on those
nodes) and binds a pod to a specific node.

4. The kubelet on that node watches for a change in the set of pods assigned to the
node it is running on. It then starts up or kills pods as necessary. This includes
configuring any storage volumes as necessary, downloading the Docker image to
that specific node, and calling the Docker API to start/stop individual containers.

Fault-tolerance is implemented at multiple levels. Individual containers within a pod
can be health checked and monitored by the local kubelet. If pods stop or fail, they
can be restarted automatically. If the entire node fails, the master will notice this and,
after a time-out to make sure the node does come back, delete all of the pods on that
node. At that point, replication controllers (if used) will create replacements for pods
that were on that node. Multiple levels of monitoring and restarting help to keep
applications running even when the cluster is experiencing problems (software or
hardware).

Pods Get Scheduled Only Once

After a pod is scheduled on a node, it will never be moved. If that node is lost or
removed from the cluster, the pod will not be restarted. This is surprising behavior
given that a goal of Kubernetes is to reliably keep work running. This is required, as
networks are imperfect. In the event that the master cannot talk to a node, any pod on

5.1 Understanding Kubernetes Architecture | 133

that node is in an indeterminate state as far as the master is concerned—it may or
may not be running. If that same pod were restarted on another machine, two pods
with the exact same name/identity could be running at the same time. This can cause
all sorts of problems. For instance, distributed logs might be written from multiple
places, all keyed to the same pod ID. Or the pod ID may be used as part of a master
election system, and clients may be confused as to which pod is really the master.

Instead, to reliably run a workload, it is necessary to use a replication controller. This
takes a pod template and tries to ensure that a specific number of pods is always run-
ning to accomplish that task. In the case of the master not being able to talk to a node,
a replication controller is in charge of spinning up a new pod to replace the lost pods.
If communication is reestablished, it is up to the replication controller to delete one of
the redundant pods.

5.2 Networking Pods for Container Connectivity
Contributed by Joe Beda

Problem

You want to control how network traffic is directed to your containers as they are
scheduled across a Kubernetes cluster.

Solution

Use a networking subsystem that gives each container its own IP address so that each
can be addressed directly.

Shipping with Kubernetes are a set of scripts that make it easy to launch in various
clouds. Many of these cluster deployment systems set up the network appropriately
for you automatically. However, if you are digging into the details, an easy system to
start with is Flannel from CoreOS (see Recipe 6.1).

Other options include the following:
o Build in internal network routing for the cloud you are running on. Support is
built in for GCE and Amazon EC2.
o Project Calico for larger bare-metal deployments.
o Weave for a solution that supports encryption across wide areas (see Recipe

3.11).

The solution is to use Kubernetes services. These can be used to communicate
between containers within a cluster or to direct external traffic to a set of pods.

134 | Chapter5: Kubernetes

https://github.com/coreos/flannel
http://www.projectcalico.org/
http://weave.works/

Discussion

Kubernetes assumes a network model in which each pod gets an IP. Each pod can
then connect to other pods, regardless of which physical node they happen to be run-
ning on.

However, just because pods can connect directly doesn’t mean that is the best or easi-
est way to communicate between pods. In the event that a pod fails or is replaced on a
new node, the calling code would have to know to reconnect to a new address. This
dynamic reconnection is hard to integrate with many existing servers and frame-
works. Kubernetes services are the answer to this problem (see Recipe 5.8).

See Also

o Administration guide for Networking in Kubernetes

5.3 Creating a Multinode Kubernetes Cluster with Vagrant

Problem

You want to get started with Kubernetes and would like to create a small cluster on
your local machine using Vagrant.

Solution

You will need to install Vagrant and VirtualBox if you have not done so already. Then
set two environment variables: KUBERNETES_PROVIDER to specify that you will use
Vagrant, and NUM_MINIONS to set the number of nodes in your cluster (in addition to
the master node). Then you will use the installation script provided by the Kuber-
netes community. It will read the environment variables, detect your operating sys-
tem, download the latest stable release of Kubernetes, and untar it in a kubernetes
directory. The following commands show you these steps on the command line:

export KUBERNETES_PROVIDER=vagrant
export NUM_MINIONS=2
curl -sS https://get.k8s.io | bash

If you do not specify the NUM_MINIONS environment variables, only
one node will be started in addition to the master node.

5.3 Creating a Multinode Kubernetes Cluster with Vagrant | 135

http://kubernetes.io/v1.0/docs/admin/networking.html
https://vagrantup.com
http://virtualbox.org
https://get.k8s.io

Each virtual machine started with Vagrant will use 1GB of RAM, so
make sure you have enough memory.

\

Downloading the Vagrant box being used (about 316MB), and provisioning the vir-
tual machines using SaltStack will take a bit of time. Once it is done, the nodes will
have gone through a validation step, and you should see a similar output on stdout:

Kubernetes cluster is running. The master is running at:
https://10.245.1.2
The user name and password to use is located in ~/.kubernetes_vagrant_auth.

. calling validate-cluster
Found 2 nodes.
NAME LABELS STATUS
1 10.245.1.3 kubernetes.io/hostname=10.245.1.3 Ready
2 10.245.1.4 kubernetes.io/hostname=10.245.1.4 Ready
Validate output:

NAME STATUS MESSAGE ERROR
etcd-0 Healthy {"health": "true"} nil
controller-manager Healthy ok nil
scheduler Healthy ok nil

Cluster validation succeeded
Done, listing cluster services:

Kubernetes master is running at https://10.245.1.2

KubeDNS is running at https://10.245.1.2/apil/v1/proxy/namespaces/kube-system/ \
services/kube-dns

KubeUI is running at https://10.245.1.2/api/v1/proxy/namespaces/kube-system/ \
services/kube-ui

The vagrant status command lists your running VMs:

$ vagrant status
Current machine states:

master running (virtualbox)
minion-1 running (virtualbox)
minion-2 running (virtualbox)

At this point, you have a working Kubernetes cluster running locally within virtual
machines.

136 | Chapter5: Kubernetes

http://saltstack.com

Discussion

The Vagrant box used to create this cluster is based on Fedora 21 and uses systemd. If
you connect to these VMs, you can list the systemd units that are running and make
up the Kubernetes system. The networking between the containers uses Open
vSwitch to set up a tunnel mesh.

On the master node, you find two services running—the Addon object manager
along with the kubelet. The kubelet then runs the rest of the Kubernetes server pro-
cesses under Docker. This includes an instance of etcd, the API server, the Controller
manager, and the Scheduler:

workstation$ vagrant ssh master

Last login: Tue Aug 4 23:53:35 2015 from 10.0.2.2

[vagrant@kubernetes-master ~]$ sudo systemctl list-units | grep kube
kube-addons.service loaded active running Kubernetes Addon Object Manager
kubelet.service loaded active running Kubernetes Kubelet Server
[vagrant@kubernetes-master ~]$ sudo docker ps | grep -e 'k8s_kube\|k8s_etcd' | \
awk '{print $1 " " $2}'

23963ff9ed00 gcr.io/google_containers/etcd:2.0.12

be59784f7885 gcr.io/google_containers/kube-apiserver:f8f32e739d4797f77dc3f85c. ..
ab3bead447298 gcr.io/google_containers/kube-scheduler:2c6e421dc8d78201f68d4cfa. ..
f41749ff028d gcr.io/google_containers/kube-controller-manager:4d46d90bbg861fdd. ..

On the minions, you find two more Kubernetes-related services: the Kube-Proxy
server and the Kubelet server. Docker is, of course, also running:

workstation$ vagrant ssh minion-1
Last login: Tue Aug 4 23:52:47 2015 from 10.0.2.2
[vagrant@kubernetes-minion-1 ~]$ sudo systemctl list-units kube*

UNIT LOAD ACTIVE SUB DESCRIPTION
kube-proxy.service loaded active running Kubernetes Kube-Proxy Server
kubelet.service loaded active running Kubernetes Kubelet Server

To interact with the cluster, you can use the kubectl.sh script on your localhost. This
script allows you to manage all Kubernetes resources that make up container-
scheduling tasks. Here is a snippet of the kubectl help:

workstation$./cluster/kubectl.sh
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.
Usage:
kubectl [flags]

kubectl [command]

Available Commands:

get Display one or many resources
describe Show details of a specific resource or group of resources
create Create a resource by filename or stdin

5.3 Creating a Multinode Kubernetes Cluster with Vagrant | 137

replace Replace a resource by filename or stdin.

patch Update field(s) of a resource by stdin.

delete Delete a resource by filename, stdin, resource and name,
or by resources and label selector.

namespace SUPERCEDED: Set and view the current Kubernetes namespace

logs Print the logs for a container in a pod.

rolling-update

Perform a rolling update of the given ReplicationController.

scale Set a new size for a Replication Controller.

exec Execute a command in a container.

port-forward Forward one or more local ports to a pod.

proxy Run a proxy to the Kubernetes API server

run Run a particular image on the cluster.

stop Gracefully shut down a resource by name or filename.

expose Take a replicated application and expose it as Kubernetes
Service

label Update the labels on a resource

config config modifies kubeconfig files

cluster-info
api-versions
version

help

Display cluster info

Print available API versions.

Print the client and server version information.
Help about any command

To test that you can indeed communicate with the Kubernetes API server running on
the master node, list the nodes in the cluster:

workstation$./cluster/kubectl.sh get nodes

NAME LABELS STATUS
10.245.1.3 kubernetes.io/hostname=10.245.1.3 Ready
10.245.1.4 kubernetes.io/hostname=10.245.1.4 Ready

To destroy all the virtual machines, run the ./cluster/kube-down.sh
script.

You are now ready to head over to Recipe 5.4 and create your first containers using
Kubernetes.

See Also

o Documentation on Vagrant provisioning

o Bash script that automates the creation of a Kubernetes cluster using the latest
stable release

138 | Chapter5: Kubernetes

http://kubernetes.io/v1.0/docs/getting-started-guides/vagrant.html
https://get.k8s.io

5.4 Starting Containers on a Kubernetes Cluster with Pods

Problem

You know how to start containers by using the Docker command-line interface. Now
you would like to use Kubernetes to schedule your containers in a cluster.

Solution

You have a Kubernetes cluster available to you, either through Recipe 5.3 or Recipe
5.9 or a public cloud provider like Google Container Engine. In addition, you have
downloaded the Kubernetes client kubectl and it is set up to use your cluster end-
point with the appropriate authentication (see Recipe 5.15).

As explained in Recipe 5.1, containers are scheduled as a group by defining pods.
Therefore, to start your first container, you need to write a pod definition in JSON or
YAML and use the kubectl client to submit it to the Kubernetes API server.

Let’s start with a fun example and run the 2048 game. A Docker image is available on
the Docker Hub, and I will leave it to you to check out the Dockerfile. Save the YAML
file shown here as 2048.yaml:

apivVersion: vi1
kind: Pod
metadata:
name: "2048"
spec:
containers:
- image: cpk1224/docker-2048
name: "2048"
ports:
- containerPort: 80
hostPort: 80

You can now submit it to your cluster:

$ kubectl create -f 2048.yaml

pods /2048
Once the image is downloaded, the container will start running. You should be able
to use your browser and open the 2048 game on the IP of the host that is running it.
You will need to open any firewall rules that may prevent you from doing so.

Discussion

The YAML file specifies the API version (i.e., v1) and the kind of object it defines
(i.e., pod). Then some metadata needs to be set to specify a name for this pod. In this
example, a single container is started, but there could be several. All would be defined

5.4 Starting Containers on a Kubernetes Cluster with Pods | 139

https://registry.hub.docker.com/u/cpk1224/docker-2048/

in the spec section under the contatiner field. The image used and a name for the
container are required parameters. In this example, you also define port 80 to be
exposed and mapped on port 80 of the host (using the containerPort and hostPort
keys).

You can then list the pods that you have running with kubectl get pods. You will
see that the pod will enter running state, that there is one container in that pod, what
the image is, and its status:

$ kubectl get pods

POD IP CONTAINER(S) IMAGE(S) HOST ...
podname 10.132.1.9 k8s-node/1.2.3.4 ...
2048 cpk1224/docker-2048 ...

To learn the API specification, you can query the pod and return its
definition in YAML or JSON:

$./kubectl get pods -o yaml 2048
apiVersion: vi1
kind: Pod
metadata:
name: "2048"
...<snip>

The pod is exposed on port 80 on the host’s IP because of the host
Port item in the original YAML pod definition file. This is great for
debugging but not recommended for production services, as each
host port can be forwarded to only a single container. To expose
pods in a more scalable way, use services as described in Recipe 5.2.

Once you are done experimenting, you can delete the pod easily:

$ kubectl delete pods podname

5.5 Taking Advantage of Labels for Querying Kubernetes
Objects

Problem

In a large Kubernetes cluster, you may run thousands of pods as well as other cluster
objects. You would like to easily query and manipulate sets of objects in multi-
dimensional ways by using a tagging system.

140 | Chapter5: Kubernetes

Solution

Tag your objects (e.g., pods) by using labels. Labels are key/value pairs that can be
attached to any Kubernetes object. These labels are defined primarily in the metadata
section of an object definition.

Taking the example from Recipe 5.4, you can add a label foo=bar by modifying the
pod yaml metadata description like so:

apiVersion: vi1
kind: Pod
metadata:
name: "2048"
labels:
foo: bar
version: "47"
spec:
containers:
- image: cpk1224/docker-2048
name: "2048"
ports:
- containerPort: 80
hostPort: 80

Now delete any existing pod named 2048 and start up a new pod with this definition.

The end result is that you can now list pods that have that specific label by using the
- -selector option of the kubectl CLI:

$ kubectl get pods --selector="foo=bar"
Additionally, you can add labels at runtime by using the kubectl label function:

$ kubectl label pods 2048 env=production

POD IP CONTAINER(S) IMAGE(S) HOST ...

2048 10.244.0.6 k8s-node/1.2.3.4 ...
2048 cpk1224/docker-2048

Labels follow a specific syntax.

\

In short, labels are a straightforward tagging system that allows users to add metadata
to any resource in their cluster. It helps build cross-functional relationships to man-
age sets of resources in various stages of an application life cycle.

Now delete your pod by identifying it via a label selector:

$ kubectl.sh delete pod --selector="foo=bar"
pods /2048

5.5 Taking Advantage of Labels for Querying Kubernetes Objects | 141

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/labels.md

See Also

o Introduction, motivation, and syntax of labels

5.6 Using a Replication Controller to Manage the Number
of Replicas of a Pod

Problem

You need to make sure that several replicas of your pod exist at any time in
the cluster.

Solution

Kubernetes is a declarative system: users express what they want the system to do and
not how to do it. Using replication controllers, you can specify the number of replicas
that you want for a pod. This helps with high load and availability by serving part of
an application through a service proxy (see Recipe 5.8).

Replication controllers are one of the three key objects in a Kubernetes cluster (with
pods and services). You can list all running replication controllers with kubectl:

$ kubectl get replicationcontrollers

$ kubectl get rc

To create a replication controller, you write a JSON or YAML file following the repli-
cation controller API specification. It can contain metadata, the number of replicas
that you want, a selector to target specific pods, and a template for a pod. Currently,
the template is embedded within the replication controller definition, but this may
change in future version of Kubernetes.

For example, if you want to create a replication controller for the 2048 game that you
ran in a single pod in Recipe 5.4, you can write the following rc2048.yaml file:

apiVersion: vi1
kind: ReplicationController
metadata:
labels:
name: rcgame
name: rcgame
spec:
replicas: 1
selector:
name: game
template:
metadata:

142 | Chapter5: Kubernetes

http://kubernetes.io/v1.0/docs/user-guide/labels.html

labels:

name: game
spec:

containers:

- image: cpk1224/docker-2048
name: test
ports:
- containerPort: 80

The controller itself will have the rcgame label, and will target pods with the label
game. Once started, the controller will ensure that one pod is running at all times. You
launch it with kubectl create:

$ kubectl create -f rc2048.yml

replicationcontrollers/rcgame

$ kubectl get rc

CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
rcgame test cpk1224/docker-2048 name=game 1

Try killing the pod that was created. You will see that a new one automatically starts
again.

You do not need to have an existing pod running before starting a
replication controller. It will automatically start a pod that matches
the label specified in the definition if it does not exist yet. You can
also set the number of replicas to zero.

The magic happens when you want to increase the number of replicas. You can use
the kubectl resize command, and the number of pods will automatically be adjus-

ted:

$ kubectl resize --replicas=4 rc rcgame
resized

Discussion

Recipe 5.1 mentioned that every node in a Kubernetes cluster runs a kubelet. This
process watches over the pods that are scheduled on a node and makes sure they keep
running. But what happens if the node dies? Kubernetes needs to have a way to
reschedule that pod on another node automatically as well as keep a number of repli-
cas up for availability. This is what replication controllers help you achieve.

Although replication controllers are extremely helpful for guaranteed availability and
elasticity, they are also a great way to perform application deployment scenarios such
as canary deployment. In fact, Kubernetes has a built-in rolling update mechanism
based on replication controllers that is worth investigating:

5.6 Using a Replication Controller to Manage the Number of Replicas ofaPod | 143

$./kubectl rollingupdate -h
Perform a rolling update of the given ReplicationController.

Replaces the specified controller with new controller, updating one pod at a time
to use the new PodTemplate. The new-controller.json must specify the same
namespace as the existing controller and overwrite at least one (common) label

in its replicaSelector.

...<snip>

See Also

o Documentation on replication controllers

5.7 Running Multiple Containers in a Pod

Problem

You know how to run a single container in a pod, but would like to run multiple ones
that will be co-located. You might already have some containers in production that
use the Docker linking mechanism on a single host and would like to use Kubernetes
to do the same.

Solution

A pod definition is not restricted to a single container. You can define as many con-
tainers as you want, as well as volumes. Recipe 5.4 created a simple pod definition
that started a single container. The following example starts WordPress by using the
official images from Docker Hub for WordPress and MySQL. Both run as separate
containers and use environment variables to configure the installation. The Word-
Press container defines the database host through the environment variable WORD
PRESS_DB_HOST and sets it to 127.0.0.1. This allows WordPress to reach the MySQL
database also started within the pod. This works, because pods get a single IP address
in the current Kubernetes networking model (see Recipe 5.2). Create the following
wordpress.yaml file:

apiVersion: vi1
kind: Pod
metadata:
labels:
name: wp
name: wp
spec:
containers:
- name: wordpress
env:
- name: WORDPRESS_DB_NAME

144 | Chapter5: Kubernetes

http://kubernetes.io/v1.0/docs/user-guide/replication-controller.html

value: wordpress

- name: WORDPRESS_DB_USER
value: wordpress

- name: WORDPRESS_DB_PASSWORD
value: wordpresspwd

- name: WORDPRESS_DB_HOST
value: 127.0.0.1

image: wordpress

ports:

- containerPort: 80
hostPort: 80

- name: mysql

env:

- name: MYSQL_ROOT_PASSWORD
value: wordpressdocker

- name: MYSQL_DATABASE
value: wordpress

- name: MYSQL_USER
value: wordpress

- name: MYSQL_PASSWORD
value: wordpresspwd

image: mysql

ports:

- containerPort: 3306

Create the pod:
$ kubectl create -f wordpress.yaml

Once the containers start, you will have a working WordPress installation.

You can view the logs of the containers in your pod with the
kubectl client:

$ kubectl logs wp wordpress

Here, wp is the name of the pod you started and wordpress the
name of the container you want to see the logs from.

Discussion

Although starting multiple containers through a pod is straightforward, accessing the
application running within a pod requires using Kubernetes services. Each pod gets
its own IP address in a private network. To access an application from outside the
Kubernetes cluster through a public IP address, you need to create a service that will
bind the application to a public IP address or make use of an external load-balancer
service.

In Google Container Engine, using an external load-balancer in a service definition is
done directly in the YAML file describing the service. For instance, to expose the

5.7 Running Multiple ContainersinaPod | 145

http://kubernetes.io/v1.0/docs/user-guide/services.html

WordPress application that is running through the pod defined in this recipe, you
need to create the service file sgoogle.yml like so:

apiVersion: vi1
kind: Service
metadata:
labels:
name: wordpress
name: wordpress
spec:
createExternallLoadBalancer: true
ports:
- port: 80
selector:
name: wp

The service has metadata associated with it, but the important part is the selector filed
in the spec section. In the preceding example, the selector wp will allow the service to
create a proxy that will bind the IP address given by the load-balancer to the pod that
matches the wp label. Once you obtain the IP address of the load-balancer, you can
access it from the public Internet. The Kubernetes service will proxy the request to
the node where the pod is running. If the pod has been started with a replication con-
troller, the service will also load-balance the requests among all the running pods.

On a cloud provider whose load-balancing system is not yet supported by Kuber-
netes, you can bind the pod to a public IP address manually with a service definition
like this (where 1.2.3.4 needs to be replaced with the public IP):

apiVersion: vi1
kind: Service
metadata:
labels:
name: wordpress
name: wordpress

spec:
publicIPs: ["1.2.3.4"]
ports:
- port: 80
selector:
name: wp

5.8 Using Cluster IP Services for Dynamic Linking of
Containers

Problem

You want to link containers across multiple hosts in your cluster instead of running
multiple containers per pod. This is the more cloud-native way of designing an appli-

146 | Chapter5: Kubernetes

cation, where layers that can scale and can operate separately from each other run as
separate replication controllers.

Solution

In Recipe 5.7, you started WordPress by running the MySQL and WordPress contain-
ers in a single pod. The two containers started on the same host. You took advantage
of the fact that a pod has a single IP address to set the WordPress MySQL host to
localhost. However, you could imagine running a replicated MySQL service and/or
a replicated WordPress frontend. This would mean that the containers would run on
different hosts in the cluster.

Kubernetes services are smart proxies that keep track of changes in pod cluster allo-
cation and update their port mapping dynamically when pods get rescheduled.

A better way of running our canonical WordPress example would be to run MySQL
as a single pod or replication controller (glancing over the issues with database repli-
cation and data persistence) and then exposing this MySQL service through a Kuber-
netes service definition.

The replication controller would look something like this:

apiVersion: vi1
kind: ReplicationController
metadata:
name: wp-mysql
spec:
replicas: 1
selector:
tier: wp-mysql
template:
metadata:
labels:
tier: wp-mysql
spec:
containers:
- name: mysql
image: mysql
ports:
- containerPort: 3306
env:
- name: MYSQL_ROOT_PASSWORD
value: wordpressdocker
- name: MYSQL_DATABASE
value: wordpress
- name: MYSQL_USER
value: wordpress
- name: MYSQL_PASSWORD
value: wordpresspwd

5.8 Using Cluster IP Services for Dynamic Linking of Containers | 147

A MySQL service can then be defined as a different type of Kubernetes object. It can
be managed through the API. A service definition for MySQL would be as follows:

kind: Service
apiVersion: vi1
metadata:
name: mysql
spec:
selector:
tier: wp-mysql
ports:
- port: 3306

Note the selector field in the spec section. This selector will match all pods that
contain the tier: wp-mysql label. The service will create a new “cluster IP” that will
be accessible to any other pod in the cluster. Any connections to this cluster IP will be
proxied and load-balanced to one of the underlying endpoints.

You can inspect the endpoints that are backing this service:

$ kubectl describe services/mysql

Name: mysql

Namespace: default

Labels: <none>

Selector: tier=wp-mysql

Type: ClusterIP

IP: 10.0.175.152

Port: <unnamed> 3306/TCP
Endpoints: 10.244.1.4:3306
Session Affinity: None

No events.

Furthermore, if you are running the (highly recommended) DNS add-on, the cluster
IP will be given a logical name that can be used by any clients. You use this in your
WordPress pod configuration so that it can find the database no matter where it is.
You can see this with the WORDPRESS_DB_HOST environment variable:

apiVersion: vi1
kind: Pod
metadata:
labels:
tier: fe
name: wp
spec:
containers:
- env:
- name: WORDPRESS_DB_NAME
value: wordpress
- name: WORDPRESS_DB_USER
value: wordpress
- name: WORDPRESS_DB_PASSWORD
value: wordpresspwd

148 | Chapter5: Kubernetes

- name: WORDPRESS_DB_HOST
value: mysql

image: wordpress

name: wordpress

ports:

- containerPort: 80
hostPort: 80
protocol: TCP

WordPress is exposed to the public Internet the same way as in Recipe 5.7, through
another service of type LoadBalancer:

apiVersion: vi1
kind: Service
metadata:
name: wordpress
spec:
type: LoadBalancer
ports:
- port: 80
selector:
tier: fe

Discussion

Along with pods and replication controllers, services are key entities of Kubernetes.
Services bring a locality abstraction on top of pods, which is key to self-discovery and
a dynamic behavior in a large-scale cluster when failures happens. With services, a set
of pods can be given a stable name that can be reliably accessed no matter where
those pods are scheduled.

Creating a Kubernetes service will allocate a new cluster IP address for the service
that is independent of any specific pod or node. This creates a stable way to talk to the
service no matter where the implementation is running. When a calling pod then
establishes a connection to that service, it will be handled by the local Kubernetes
proxy that is running on its node. This proxy then forwards the connection to a pod
identified by the service definition (usually by a label selector). If multiple pods are
backing a service, the proxy will load-balance across those pods. See Figure 5-2.

5.8 Using Cluster IP Services for Dynamic Linking of Containers | 149

Recv Node

(alling Node

Pod Location
A 4

| Kubernetes Master |

Figure 5-2. Using a Kubernetes cluster

The calling code can find the IP for a service in two ways: environment variables and
DNS. The environment variables created for services are similar to Docker link vari-
ables. For example, suppose you have a service called redis that exposes port 6379:

REDIS_MASTER_SERVICE_H0ST=10.0.0.11

REDIS_MASTER_SERVICE_PORT=6379

REDIS_MASTER_PORT=tcp://10.0.0.11:6379

REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379

REDIS_MASTER_PORT_6379_TCP_PROTO=tcp

REDIS_MASTER_PORT_6379_TCP_PORT=6379

REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11
Much preferred, however, is to use DNS to find your services. When DNS support is
configured on a Kubernetes cluster, each service will also be given a resolvable name.
In this example, assuming the default namespace of default and a DNS domain root
of cluster.local, the service will be exposed as redis.default.cluster.local.
However, when working within a single namespace, users can simply use the name of
the service: redis.

See Also

o WordPress example in the Kubernetes documentation

o Documentation on Kubernetes Services

150 | Chapter5: Kubernetes

http://bit.ly/mysql-kub
http://kubernetes.io/v1.0/docs/user-guide/services.html

5.9 Creating a Single-Node Kubernetes Cluster Using
Docker Compose

Problem

You know how to create a Kubernetes cluster by running the various cluster compo-
nents (e.g., API server, scheduler, kubelet) as systemd units. But why not take advan-
tage of Docker itself to run these components? It would simplify deployment of the
cluster. To test this deployment scenario, you want to run a one-node Kubernetes
cluster locally using only Docker containers.

Solution

The Kubernetes documentation has a good resource about this scenario. This recipe
goes one step further and takes advantage of Docker Compose (see Recipe 7.1). To get
started, you will need a Docker host and Docker Compose installed. You can clone
the repository that comes with this book and use the Vagrantfile provided:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch05/docker
$ tree

}— vagrantfile
— k8s.yml

L— kubectl
The Vagrantfile contains a small bootstrap script that will install Docker in the virtual
machine as well as Docker Compose. The k8s.yml is the docker-compose definition
to start all the components of Kubernetes as containers. Bring up the machine and
run docker -compose; all the required images will be downloaded and the containers
will start:

$ vagrant up
$ vagrant ssh
$ cd /vagrant
$ docker-compose -f k8s.yml up -d

$ docker ps

CONTAINER ID IMAGE COMMAND

64e0073615c5 gcr.io/google_containers/... "/hyperkube controll
9603f3b5b186 gcr.io/google_containers/... "/hyperkube schedule
3ce44e77989f gcr.io/google_containers/... "/hyperkube apiserve
1bObcbb56d59 kubernetes/pause:go " /pause"
0b0c3e2735a9 kubernetes/etcd:2.0.5.1 "/usr/local/bin/etcd
459c45ef9389 gcr.io/google_containers/... "/hyperkube proxy --
005c5aclde@e gcr.io/google_containers/... "/hyperkube kubelet

5.9 Creating a Single-Node Kubernetes Cluster Using Docker Compose | 151

http://kubernetes.io/v1.0/docs/getting-started-guides/docker.html

That is it. You now have a one-node Kubernetes cluster with all components running
as containers; get nodes returns your localhost, and you can create pods, replication
controllers, and services:

$./kubectl get nodes
NAME LABELS STATUS
127.0.0.1 <none> Ready

To test that you can create a new pod, you are going to run a single Nginx container:

$./kubectl run-container nginx --image=nginx --port=80
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
nginx nginx nginx run-container=nginx 1

The run-container command automatically creates a replication
controller for this container. List it with . /kubectl get rc.

To access this nginx frontend from outside the cluster, you need to expose it as a ser-
vice. However, when creating the service, you pass the host-only network IP of the
virtual machine to the kubectl command. Otherwise, the service will be created, and
all future pods will be able to access it, but we will not be able to reach it from outside
the cluster:

$./kubectl expose rc nginx --port=80 --public-ip=192.168.33.10
NAME LABELS SELECTOR IP PORT
nginx <none> run-container=nginx 10.0.0.98 80

Once the nginx image is downloaded, the pod will enter running state and you will be
able to access the Nginx welcome page at http://192.168.33.160:

$./kubectl get pods

POD IP CONTAINER(S) IMAGE(S)
nginx-127 controller-manager gcr.io/google_containers/...
apiserver gcr.io/google_containers/...
scheduler gcr.io/google_containers/...
nginx-461yi 172.17.0.6 nginx nginx
Discussion
The k8s.yml Compose file shows how this was done:
etcd:
image: kubernetes/etcd:2.0.5.1
net: "host"

command: /usr/local/bin/etcd --addr=127.0.0.1:4001 --bind-addr=0.0.0.0:4001 \
--data-dir=/var/etcd/data

master:
image: gcr.io/google_containers/hyperkube:v0.14.1

152 | Chapter5: Kubernetes

net: "host"
volumes:
- /var/run/docker.sock: /var/run/docker.sock
command: /hyperkube kubelet --api_servers=http://localhost:8080 --v=2 \
--address=0.0.0.0 \
--enable_server --hostname_override=127.0.0.1 \
--config=/etc/kubernetes/manifests

proxy:
image: gcr.io/google_containers/hyperkube:v0.14.1
net: "host"

privileged: true
command: /hyperkube proxy --master=http://127.0.0.1:8080 --v=2

Three containers are started by Compose: one container running etcd, one container
running the Kubernetes proxy service, and one container running the Kubernetes
kubelet. Both the service proxy and the kubelet are running from the same image and
using the same binary that is called through the command option. This binary is
hyperkube, a very nice utility binary that you can use to start all the components of a
Kubernetes cluster.

The clever part is that the master container calls hyperkube by specifying a configura-
tion file in /etc/kubernetes/manifests located within the container image. You can
check what is in this manifest by running a new ephemeral container:

$ docker run --rm -it gcr.io/google_containers/hyperkube:v0.14.1 cat /etc/ \
kubernetes/manifests/master. json

{

"apiVersion": "vibeta3",
"kind": "Pod",

"metadata": {"name":"nginx"},
"spec":{

"hostNetwork": true,
"contatiners":[

{
"name": "controller-manager",
"{mage": "gcr.ilo/google_containers/hyperkube:v0.14.1",
"command": [
" /hyperkube",
"controller-manager",
"--master=127.0.0.1:8080",
"--machines=127.0.0.1",
"--sync_nodes=true",
"o Ly=p"
1
1,
{
"name": "apiserver",

"{mage": "gcr.ilo/google_containers/hyperkube:v0.14.1",
"command": [

" /hyperkube",

"apiserver",

5.9 Creating a Single-Node Kubernetes Cluster Using Docker Compose | 153

"--portal_net=10.0.0.1/24",
"--address=127.0.0.1",
"--etcd_servers=http://127.0.0.1:4001",
"--cluster_name=kubernetes",

" y=ph

"name": "scheduler",
"{mage": "gcr.ilo/google_containers/hyperkube:v0.14.1",
"command": [

" /hyperkube",

"scheduler",

"--master=127.0.0.1:8080",

" y=ph

This manifest is given to the kubelet, which starts the containers defined. In this case,
it starts the API server, the scheduler, and the controller manager of Kubernetes.
These three components form a Kubernetes pod themselves and will be watched over
by the kubelet. Indeed, if you list the running pods, you get this:

$./kubectl get pods

POD IP CONTAINER(S) IMAGE(S)
nginx-127 controller-manager gcr.io/google_containers/hyperkube:v0.14.1
apiserver gcr.io/google_containers/hyperkube:v0.14.1
scheduler gcr.io/google_containers/hyperkube:v0.14.1
See Also

 Running Kubernetes locally via Docker

5.10 Compiling Kubernetes to Create Your Own Release

Problem

You want to build the Kubernetes binaries from source instead of downloading the
released binaries.

Solution

Kubernetes is written in Go, the build system that uses Docker and builds everything
in containers. You can build Kubernetes without using containers and using your
local Go environment, but using containers greatly simplifies the setup. Therefore, to

154 | Chapter5: Kubernetes

http://kubernetes.io/v1.0/docs/getting-started-guides/docker.html

build the Kubernetes binaries, you need to install the Go language packages, Docker,
and Git to get the source code from GitHub. For instance, on an Ubuntu 14.04
system:

$ sudo apt-get update

$ sudo apt-get -y install golang

$ sudo apt-get -y install git

$ sudo curl -sSL https://get.docker.com/ | sudo sh

Verity that you have Go and Docker installed:

$ go version

go version gol.2.1 linux/amd64
$ docker version

Client version: 1.6.1

Client API version: 1.18

Go version (client): gol.4.2
Git commit (client): 97cdO73
0S/Arch (client): linux/amd64
Server version: 1.6.1

Server API version: 1.18

Go version (server): gol.4.2
Git commit (server): 97cd073
0S/Arch (server): linux/amd64

Clone the Kubernetes Git repo to get the Go source code:

$ git clone https://github.com/GoogleCloudPlatform/kubernetes.git
$ cd kubernetes

You are now ready to build the binaries. A build script, run.sh, is provided in the /
build directory; just use it. It will ask whether you want to download the Docker
image for Golang, then start the build. Here is a snippet of a build run:

$./build/run.sh hack/build-go.sh

+++ [0513 11:51:46] Verifying Prerequisites....

You don't have a local copy of the golang docker image. This image is 450MB.
Download it now? [y/n] Y

...<snip>

+++ [0513 11:58:08] Placing binaries

+++ [0513 11:58:14] Running build command....

+++ [0513 11:58:16] Output directory is local. No need to copy results out.

The binaries will be in the _output directory. If you built on a Linux 64-bit host, they
will be in _output/dockerized/bin/linux/amd64:

~/kubernetes/_output/dockerized/bin/1linux/amd64# tree

— e2e

}— genbashcomp
}— gendocs

}— genman

}— ginkgo

}— hyperkube

5.10 Compiling Kubernetes to Create Your Own Release | 155

}— integration

}— kube-apiserver

}— kube-controller-manager
— kubectl

}— kubelet

}— kube-proxy

}— kubernetes

}— kube-scheduler

L— web-server

Discussion

Similarly, you can also build the complete set of release artifacts. They will be deliv-
ered as tarballs with kubernetes.tar.gz containing all binaries, examples, add-ons, and
deployment scripts. Creating the release will take more time than simply building the
binaries; all end-to-end tests will run. To build a full release, do the following and
check that the /_output/release-tars/ directory contains all the tarballs:

$./build/release.sh

$ tree _output/release-tars/
_output/release-tars/

}— kubernetes-client-darwin-386.tar.gz
}— kubernetes-client-darwin-amd64.tar.gz
}— kubernetes-client-linux-386.tar.gz
}— kubernetes-client-1linux-amd64.tar

}— kubernetes-client-linux-arm.tar.gz
}— kubernetes-client-windows-amd64.tar.gz
}— kubernetes-salt.tar.gz

}— kubernetes-server-linux-amdé4.tar.gz
}— kubernetes.tar.gz

L— kubernetes-test.tar.gz

In addition to the tarballs, the release process will create three Docker images for the
three main components of a Kubernetes cluster: the API server, the controller, and
the scheduler:

docker images

REPOSITORY
gcr.io/google_containers/kube-controller-manager
gcr.io/google_contatiners/kube-scheduler
gcr.io/google_containers/kube-apiserver

156 | Chapter5: Kubernetes

The release contains a Dockerfile that builds an image containing
the hyperkube binary. This binary can be used to start all the com-
ponents of a Kubernetes cluster. This is what was used in Recipe 5.9
to run Kubernetes in a single node using Docker containers. You
can use this Dockerfile to build your own Hyperkube image and
edit the configuration file master.json to your liking:

$ tree kubernetes/cluster/images/hyperkube/

kubernetes/cluster/images/hyperkube/

}— Dockerfile

}— Makefile

f— master.json

L— master-multi.json

See Also

o Building Kubernetes README

o Development environment using godep

5.11 Starting Kubernetes Components with the
hyperkube Binary

Problem

A Kubernetes cluster is made of a master node and several worker nodes. Each runs
several Kubernetes binaries. To ease deployment, you would like to use a single
binary, passing the type of component you want to start as an option to this binary.

Solution
Use hyperkube.

As suggested in a tip at the end of Recipe 5.10, a release contains all Kubernetes com-
ponent binaries: the API server, the controller manager, the scheduler, the service
proxy, and the kubelet. The last two run on each worker node, while the first three
make up the Kubernetes master together with etcd. hyperkube is a single binary that
allows you to start all these components.

Assuming you created your own release as shown in Recipe 5.10, you will find hyper-
kube in the _output/ directory:

tree ~/kubernetes/_output/release-tars/kubernetes/server/kubernetes/server/bin
/root/kubernetes/_output/release-tars/kubernetes/server/kubernetes/server/bin
}— hyperkube

}— kube-apiserver

}— kube-apiserver.docker_tag

5.11 Starting Kubernetes Components with the hyperkube Binary | 157

http://bit.ly/build-kub
http://bit.ly/kub-godep

}— kube-apiserver.tar

}— kube-controller-manager

}— kube-controller-manager.docker_tag
}— kube-controller-manager.tar
— kubectl

}— kubelet

}— kube-proxy

}— kubernetes

}— kube-scheduler

}— kube-scheduler.docker_tag
L— kube-scheduler.tar

To use hyperkube, you need to specify which component you want to start (i.e., api
server, controller-manager, scheduler, kubelet, or proxy). Once you specify a
component, you can pass all the options that you choose. For example, to start the
API server, check the hyperkube usage:

$./hyperkube apiserver -h
The main API entrypoint and interface to the storage system. The API server is
also the focal point for all authorization decisions.

Usage:
apiserver [flags]

Available Flags:
--address=127.0.0.1: DEPRECATED: see --insecure-bind-address instead
--admission-control="AlwaysAdmit": Ordered list of plug-ins to do ...
--admission-control-config-file="": File with admission control ...
--allow-privileged=false: If true, allow privileged containers.
<snip>

5.12 Exploring the Kubernetes API

Problem

Kubernetes exposes a REST API, which you need to learn to be able to manage your
Kubernetes cluster and run applications in it.

Solution

Kubernetes exposes a versioned API. With the release of the vl API, users should
expect no breaking changes when targeting that version. Several versions of the API
can be served by the API server concurrently, but most users should target the vl
APL

Start a local Kubernetes cluster using Docker, as shown in Recipe 5.9. This is the easi-
est way to try it out. Once all components are running, you can reach the API served
by the API server. If you are on the machine running the API server, you can reach it
at http://localhost:8080 without any authentication. Using curl gives you your

158 | Chapter5: Kubernetes

first Kubernetes raw API experience. Try listing all the API versions available by call-
ing the http://localhost:8080/api route like so:

$ curl http://localhost:8080/api
{

"versions": [
"vi",
]
}

As you can see here, the server exposes only the vl API If you see something like
vlbeta3, you are running an old version of Kubernetes. If you see something like
v2betal, you are running a bleeding-edge version. To verify which version of Kuber-
netes you are running, curl the http://localhost:8080/version. Note that the API
version and binary version don't necessarily line up:

$ curl http://localhost:8080/version

{
"major": "1",
"minor": "0",
"gitVersion": "v1.0.1",
"gitCommit": "6a5c06e3dleb27a6310a09270e4a5fblafa93e74",
"giltTreeState": "clean"
}

This shows you that in this example I am running the official 1.0.1 build of Kuber-
netes. This is quite basic and does not give a complete view of the API. Thankfully,
Kubernetes uses Swagger for API documentation. This means that we have a /swag-
gerapi/ endpoint that gives all the available API endpoints, like so:

$ curl http://localhost:8080/swaggerapi/
{
"swaggerVersion": "1.2",
"apis": [
{
"path": "/api/v1",
"description": "API at /api/v1l version v1"
1,
{
"path": "/api",
"description": "get available API versions"
1,
{
"path": "/version",
"description": "git code version from which this is built"
}
1,
"apiVersion":
"info": {
"title": "",
"description":

5.12 Exploring the Kubernetes APl | 159

http://swagger.io

}
}
You can then retrieve the full JSON specification of each API by using a curl com-
mand of this type:

$ curl http://localhost:8080/swaggerapi/api/vil

This might be useful if you want to write your own Kubernetes client. However,
Swagger also exposes a web UI that makes exploring the API straightforward. Assum-
ing you can reach the API server from a web browser, you can open the UI at a
http://<KUBE_MASTER_IP>:8080/swagger-ui/, and should be presented with the
Swagger Ul as shown in Figure 5-3.

{1 Swagger http://kubernetes.io/third_party/swagger-ui/../../swagger-spe(

api : get available API versions

api/v1: API at /api/v1 version v1 Show/Hide List Operations | Expand Operations
m /api/v1/namespaces/{namespace}/bindings create a Binding
fapifv1/bindings create a Binding
fapifvi/namesp /r pace}/componer use list objects of kind ComponentStatus
fapifvi/namespaces/{r pace}/componer f{name} read the specified ComponentStatus
fapi/v1/componentstatuses list objects of kind ComponentStatus
/api/v1/namespaces/{namespace}/endpoints list or watch objects of kind Endpoints
m /api/v1/namespaces/{namespace}/endpoints create a Endpoints
fapifv/watch/r paces/{ r endpoints watch individual changes to a list of Endpoints
/apifvi/namesp {r pace}/endpoints/{name} delete a Endpoints

Figure 5-3. Swagger UI to explore Kubernetes API

Discussion

Exploring the API with Swagger and curl is useful to get a better understanding of
Kubernetes, including the schema used for pods, replication controllers, and services.
However, it is more practical to use the kubectl client that comes with every release.
The usage is well documented and allows you to perform most API functions:

$./kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.
Usage:

kubectl [flags]
kubectl [command]

160 | Chapter5: Kubernetes

get
describe
create
replace
patch
delete
namespace
logs

rolling-update

scale

exec
port-forward
proxy

run

stop

expose

label

config
cluster-info
api-versions
version

help

Available Commands:

Display one or many resources

Show details of a specific resource or group of resources
Create a resource by filename or stdin

Replace a resource by filename or stdin.

Update field(s) of a resource by stdin.

Delete a resource by filename, stdin, resource and name,
SUPERCEDED: Set and view the current Kubernetes namespace
Print the logs for a container in a pod.

Perform a rolling update of the given ReplicationController.

Set a new size for a Replication Controller.

Execute a command in a container.

Forward one or more local ports to a pod.

Run a proxy to the Kubernetes API server

Run a particular image on the cluster.

Gracefully shut down a resource by name or filename.
Take a replicated application and expose it as Kubernetes
Service

Update the labels on a resource

config modifies kubeconfig files

Display cluster info

Print available API versions.

Print the client and server version information.
Help about any command

<snip>

As you explore the Kubernetes API, you might enjoy a few interest-
ing routes as well, like /ping/ and /validate:

$ curl http://localhost:8080/ping/
{

"paths": [
"/api" s
"/api/vl",
"/healthz",
"/healthz/ping",
"/logs/",
"/metrics",
"/resetMetrics",
" /swagger-ui/",
" /swaggerapi/",
"fui/",

"/version"

See Also

o General API documentation

5.12 Exploring the Kubernetes APl | 161

http://kubernetes.io/v1.0/docs/api.html

o Reaching the Kubernetes API

o Detailed API conventions

5.13 Running the Kubernetes Dashboard

Problem

You would like to gain visibility into your Kubernetes cluster in order to gain insight
into the various entities that are running (including pods, services, and replication
controllers).

Solution

Starting with version 0.16 of Kubernetes, a web user interface is bundled with the API
server. Therefore, if you bind your API server to an address that you can access from
a browser, you can access the web Ul straight away at the /static/app.

For example, in an insecure way, you can open the Ul at http://<KUBE_MASTER_IP>:
8080/static/app. Figure 5-4 shows a screenshot.

At this time, the functionality is limited to a set of views, and you cannot manage
pods, services, or replication controllers. This should change quickly.

Discussion

The Kubernetes dashboard is under heavy development by folks from Kismatic,
except frequent changes to the views and added functionality to manage Kubernetes
components through the web UL

The source contains detailed documentation on bringing up a development environ-
ment. It is possible to write your own visualizer, referred to as a component.

162 | Chapter5: Kubernetes

http://kubernetes.io/v1.0/docs/admin/accessing-the-api.html
http://kubernetes.io/v1.0/docs/devel/api-conventions.html
https://kismatic.io
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/www
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/www/master/components/README.md

Kubernetes

DASHBOARD

Kubernetes

Group by: type hd
Type: pod
. Pods
k8s-master-127.0.0.1 v nginx-05th9 + nginx-ir7gs v nginx-itbsg « nginx-olxqr « nginx-unhni

Type: replicationController

. ReplicationControllers

nginx

Type: service

. Services

kubernetes + kubernetes-ro =

Figure 5-4. Kubernetes dashboard

5.14 Upgrading from an Old API Version

Problem

With the release of the v1 API, you may have configuration files that use an older beta
version of the API. You need a tool to simplify the API version migration of all your
configuration files.

Solution

This recipe is provided as a helper for developers. It may be depre-
cated and should not be considered for production work. This tool
7 was used during the development of the API v1 version and may
work only with older versions of the source code.

5.14 Upgrading from an Old AP Version | 163

Use the kube-version-change Golang program. It is available in the source under
the /ecmd/ directory.

Assuming you followed Recipe 5.10, you are all set to build the binary for this pro-
gram. If you have not built Kubernetes from source yet, do so now (see Recipe 5.10).

In the root of the Kubernetes source checked out from GitHub, do the following:
$ hack/build-go.sh cmd/kube-version-change

This uses your local Golang installation to build the kube-version-change program
and place it into the /_output/local/bin/ directory. On a 64-bit Linux machine, it will
be located precisely in _output/dockerized/bin/linux/amd64/kube-version-change.

Discussion

With the version change tool compiled, you are ready to migrate your configuration
file to a new API version. Assuming you have a MySQL pod definition file
(mysql.yaml), use the vibeta2 API specification like so:

apiVersion: vilbeta2
desiredState:
manifest:
containers:
- name: mysql

image: mysql

env:

- name: MYSQL_ROOT_PASSWORD
value: password

ports:

- containerPort: 3306
name: mysql
protocol: TCP

id: mysql
kind: Pod
labels:

name: mysql

Change the version to v1:
$./kube-version-change -1 mysql.yaml -o mysql3.yaml
This results in a mysql3.yaml pod definition that uses the vibeta3 API specification:

apiVersion: vilbeta3

kind: Pod

metadata:
creationTimestamp: null
labels:

name: mysql

name: mysql

spec:

164 | Chapter5: Kubernetes

containers:
- capabilities: {}
env:
- name: MYSQL_ROOT_PASSWORD
value: password
image: mysql
imagePullPolicy: IfNotPresent
name: mysql
ports:
- containerPort: 3306
name: mysql
protocol: TCP
resources: {}
securityContext:
capabilities: {}
privileged: false
terminationMessagePath: /dev/termination-log
dnsPolicy: ClusterFirst
restartPolicy: Always
serviceAccount: "'
volumes: null
status: {}

You can also migrate from vibeta3 to previous API versions. This
might be handy to explore the specification. Try this:

$./kube-version-change -i mysql3.yaml -o mysql2.yaml -v vilbeta2

5.15 Configuring Authentication to a Kubernetes Cluster

Problem

You want to set up a Kubernetes cluster with forms of authentication and authoriza-
tion. This will allow users of the cluster to manage their resources via a Kubernetes
client (e.g., kubectl) in a secure manner.

Solution

Start the API server with one of the following options: --token_auth_file,
--basic_auth_file, or --client_ca_file. You also need to make sure that you are
not binding the API server to an insecure and public IP address.

By default, Kubernetes will serve the API over HTTPS on port 6443 using a self-
signed certificate. You can specify your own certificate with the - -tls-cert-file and
--tls-private-key-file options.

5.15 Configuring Authentication to a Kubernetes Cluster | 165

For testing and learning purposes, you might decide to start the

API server with the option --insecure-bind-address=0.0.0.0,

o which will bind the so-called localhost port to all your network

\ interfaces, including the public IP address of your Kubernetes mas-
ter node. This is handy, as you can reach your cluster at http://
<KUBE_MASTER_IP>:8080 unauthenticated, but it will be totally
insecure.

By default, Kubernetes will expose read-only access on port 7080
on all interfaces. If your firewall opens 7080 to the world, you will
“ offer an unauthenticated view to your cluster. However, this should
\ change prior to Kubernetes v1.0.

Discussion

The format used for the basic authentication and the token-based authentication are
straightforward CSV files. The documentation also points to the code. Keeping an eye
on these authentication plug-ins will prove useful as authentication mechanisms get
deprecated and changes occur. Currently features like expiration of tokens and pass-
word reset are not implemented.

For example, create the following file for basic authentication in /tmp/auth. It follows
the convention password,username,useruid:

foobar,admin,1000
Start your API server by using hyperkube (see Recipe 5.11) and the following options:

$ hyperkube apiserver --portal_net=10.0.0.1/24
--etcd_servers=http://127.0.0.1:4001
--cluster_name=kubernetes
--basic_auth_file=/tmp/auth
--v=2

The default options will be used. HTTPS will be served on port 6443, read-only
access will be available on port 7080, and the localhost port will bind only to local-

host. If you do not open your firewall for port 7080, your Kubernetes cluster will be
available only over HTTPS with basic authentication.

Basic authentication will be deprecated in favor of token- and
client-based authentication mechanisms. This is available currently
as a convenience. The read-only access will also be removed in a
future release.

166 | Chapter5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authentication.md
http://bit.ly/kub-auth

See Also

o Secure access to the API server
o Accessing a cluster
o Authentication plug-ins

o Authorization roadmap

5.16 Configuring the Kubernetes Client to Access Remote
Clusters

Problem

You are exposing the API server securely by using an authentication mechanism and
you would like your users to access the cluster remotely by using one of the clients
(e.g., kubectl).

Solution

Use kubectl configuration to create multiple contexts for accessing your clusters. In
each context, specify the cluster API endpoint and the user credentials.

Indeed, kubectl by default communicates with an API server on localhost. But you
can define multiple endpoints (useful if using multiple clusters in different regions,
for instance) and multiple user profiles (e.g., production, development, service) that
may have different authorization policies. The first time you install kubectl, your
configuration will be empty. Run kubectl config view to verify it as shown here:

$./kubectl config view
apiVersion: vi1
clusters: []
contexts: []
current-context:
kind: Config
preferences: {}
users: []

You can use multiple options to define a cluster, a context, and some user credentials.
The following is an example of setting up a cluster named k, defined by an HTTPS
endpoint with a self-signed certificate; a context kcon is created that uses cluster k and
user superfoobar. The superadmin user has a set of credentials that were set up in
Recipe 5.15. At the end of the example, you set the current context: use-context.
This has the intended results that you can use kubectl and that it will properly form

5.16 Configuring the Kubernetes Client to Access Remote Clusters | 167

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/accessing_the_api.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/accessing-the-cluster.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authentication.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/authorization.md

the HTTP request and access the remote Kubernetes cluster securely and authentica-
ted:

$./kubectl config set-cluster k --server=https://<KUBE_MASTER_PUBLIC_IP>:6443 \
--insecure-skip-tls-verify=true

./kubectl config set-context kcon --user=superadmin

./kubectl config set-context kcon —-cluster=k

./kubectl config set-credentials superadmin --username=admin --password=foobar

./kubectl config use-context kcon

RVa Vo Vs B Ve

Discussion

Although the kubectl client is powerful, remember that you could write your own
client because the requests are standard HTTP requests. For example, you can use
curl to make an authenticated request:

$ curl -k -u toto:foobar https://<KUBE_MASTER_PUBLIC_IP>:6443/apti
{

"versions": [
1

]
}

See Also

o Kubernetes client libraries

168 | Chapter5: Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/client-libraries.md

CHAPTER 6

Optimized Operating System
Distributions for Docker

6.0 Introduction

In the first chapter we covered several installation scenarios. They showed how to
install Docker on traditional operating systems. In this chapter we present a new gen-
eration of operating systems (OSes) that are optimized for Docker. These new OSes
consider two new trends. First, they consider that everything running in a server will
be a container. Second, they try to implement an atomic upgrade mechanism to sim-
plify operation and maintenance of servers in the data center. This means that these
new operating systems do not feature a traditional package manager like yum or apt,
but instead they assume that you will get your application running in the machine by
pulling a Docker image and running a container. These OSes provide just the mini-
mum required to run containers.

The first operation system presented is CoreOS (see Recipe 6.1). CoreOS is available
on several public cloud providers. It can be installed on bare-metal and can be tested
locally via Vagrant or by building your own ISO. In Recipe 6.2 we show how to con-
figure a CoreOS instance, in Recipe 6.3 we present how to create a cluster of CoreOS
machines, and in Recipe 6.4 we see how we can use the native system-based scheduler
to launch containers on a CoreOS cluster. We then have a look a Flannel, a network
overlay technique that comes bundled in CoreOS. Flannel, as we mentioned in the
networking chapter, provides you with a networking solution so that your containers
can communicate on a private IP space across multiple hosts.

We then cover three other Docker-optimized OSes. RedHat Atomic is introduced in
Recipe 6.6, and Recipe 6.7 shows you how to start an Atomic instance on AWS.
Ubuntu Snappy is presented in Recipe 6.8, while Recipe 6.9 shows how to start an

169

Ubuntu instance on AWS. Showing examples on AWS gives you the option of trying
these new OSes on your local machine or in the cloud. Finally, we present RancherOS
in Recipe 6.10, which has the unique characteristics of also running system services as
containers.

In summary, this chapter gives you some alternatives to running Docker in tradi-
tional operating systems and presents a few solutions where everything that runs on
the machine is a container. You should also note that there are other choices, like
VMware Photon, and that different approaches which leverage traditional virtualiza-
tion technologies also exist, like the Clear Linux project and and hyper.sh.

CoreOS is a new Linux distribution available on several public cloud providers. It is
part of a new movement that aims to build operating systems that provide just the
minimum required to run applications within containers. Philosophically, it tries to
simplify operation of the infrastructure, through a scalable, easily manageable OS that
provides a clear separation of concerns between operations and applications.

6.1 Discovering the CoreQS Linux Distribution
with Vagrant

Problem

You want to use the CoreOS Linux distribution to run your Docker containers, but
first you want to try CoreOS on your local machine.

Solution

Use Vagrant to start a virtual machine in VirtualBox that will use CoreOS. Official
documentation that describes the entire process is available. This recipe is a summary
of this documenation.

To run your first CoreOS virtual machine via Vagrant, you start by cloning a Git
repository and then use vagrant up. You will be able to ssh to the started instance
and use Docker:

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant/
$ tree

}— CONTRIBUTING.md
}— MAINTAINERS

}— README.md

}— vagrantfile

}— config.rb.sample
L— user-data.sample

0 directories, 6 files

170 | Chapter 6: Optimized Operating System Distributions for Docker

https://vmware.github.io/photon/
https://clearlinux.org
https://hyper.sh
http://vagrantup.com
https://coreos.com/docs/running-coreos/platforms/vagrant/
https://github.com/coreos/coreos-vagrant.git

$ vagrant up

$ vagrant ssh

Last login: Mon Jan 12 10:39:30 2015 from 10.0.2.2
CoreOS alpha (557.0.0)
core@core-01 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

CoreOS uses systemd as a Linux init system and aims to be a minimal distribution
with rolling upgrades that can be easily rolled back. Core packages should be installed
in the distribution directly, and applications should be fully contained in containers.
As such, there is no package manager in CoreOS. All services running in a CoreOS
instance are running as systemd unit files, and you can interact with them using com-
mands like systemctl or journalctl:

$ systemctl list-units | grep docker |awk {'print $1'}
sys-devices-virtual-net-docker0@.device
sys-subsystem-net-devices-docker®.device
var-1lib-docker-btrfs.mount

docker.service

docker.socket

early-docker.target

$ journalctl -u docker.service

-- Logs begin at Mon 2015-01-12 10:39:15 UTC, ... --
Jan 12 10:39:34 core-01 systemd[1]: Starting Docker ...
Jan 12 10:39:34 core-01 systemd[1]: Started Docker ...

Jan 12 10:39:34 core-01 dockerd[876]: . msg="+job serveapi(fd://)"

Jan 12 10:39:34 core-01 dockerd[876]: ... msg="+job init_networkdriver()"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="Listening for HTTP on fd ()"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="-job init_networkdriver() = OK (0)"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="Loading contailners: start."

Jan 12 10:39:34 core-01 dockerd[876]: . msg="Loading containers: done."

Jan 12 10:39:34 core-01 dockerd[876]: . msg="docker daemon: 1.4.1 ..."

Jan 12 10:39:34 core-01 dockerd[876]: . msg="+job acceptconnections()"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="-job acceptconnections() = OK (0)"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="GET /v1.16/containers/json"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="+job containers()"

Jan 12 10:39:34 core-01 dockerd[876]: . msg="-job containers() = OK (0)"
Discussion

Although you can start a single instance of CoreOS via Vagrant by cloning the Git
repository and using vagrant up, you will notice two files, config.rb.sample and user-
data.sample. These files allow you to configure a cluster of CoreOS instances (see
Recipe 6.3) and set up services at boot time. They are read by Vagrant in the Vagrant-
file

CLOUD_CONFIG_PATH = File.join(File.dirname(__FILE__), "user-data")
CONFIG = File.join(File.dirname(__FILE__), "config.rb")

6.1 Discovering the Core0S Linux Distribution with Vagrant | 171

http://www.freedesktop.org/wiki/Software/systemd/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd

For example, to allow you to connect remotely to the Docker service running in the
CoreOS instance started, copy config.rb.sample to config.rb and copy user-data.sample
to user-data. Then edit config.rb to uncomment the $expose_docker_tcp=2375 line:

$ cp config.rb.sample config.rb
$ cp user-data.sample user-data
$ tree

}— CONTRIBUTING.md
}— MAINTAINERS

}— README.md

}— vagrantfile

}— config.rb

}— config.rb.sample
}— user-data

L— user-data.sample

0O directories, 8 files
$ vi config.rb #uncomment $expose_docker_tcp=2375
$ vagrant up

If you still have the CoreOS instance running from the instructions
in the solution section of this recipe, provision the instance again
with the vagrant reload --provision command or destroy it

\ with vagrant destroy and bring it back up again with
vagrant up.

Vagrant, which configures a NAT and a host-only interface for the CoreOS instance,
will forward port 2375 on the NAT interface, which will allow you to access Docker
on your localhost:

$ docker -H tcp://127.0.0.1:2375 ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

See Also

o CoreOS documentation

Discussion of Docker containers versus the CoreOS-specific
Rocket is beyond the scope of this cookbook. Rocket is an imple-
mentation of the App Container specification proposed by CoreOS.
Recipe 4.6 discusses the effort of the Open Container Initiative,
which brings these two container formats together.

172 | Chapter 6: Optimized Operating System Distributions for Docker

https://coreos.com/docs/
https://coreos.com/blog/rocket/
https://github.com/appc/spec/blob/master/SPEC.md

6.2 Starting a Container on Core0S via cloud-init

Problem

Knowing how to start a CoreOS instance via Vagrant, you would like to use cloud-
init to start a container at boot time.

Solution

You know how to start a CoreOS instance via Vagrant (see Recipe 6.1). You now need
to add a systemd unit within the user-data file. CoreOS will automatically launch this
unit during the boot process.

Create a new user-data file that contains only the following:

#cloud-config

coreos:
units:
- name: es.service
command: start
content: |
[Uunit]
After=docker.service
Requires=docker.service
Description=starts Elastic Search container

[Service]

TimeoutStartSec=0

ExecStartPre=/usr/bin/docker pull dockerfile/elasticsearch

ExecStart=/usr/bin/docker run -d -p 9200:9200 -p 9300:9300 \
dockerfile/elasticsearch

If you still have a CoreOS instance running from Recipe 6.1, destroy it with vagrant
destroy and bring up a new one with vagrant up.

The docker.service unit starts automatically in CoreOS, so there
is no need to specify it in the user-data file.

The virtual machine will boot quickly and start the es.service defined in the cloud
config file. Docker will start by pulling the dockerfile/elasticsearch image. This could
take some time, so be patient and monitor the download via docker images. Once
the image is downloaded, the container will get started (see the ExecStart command
in the user-data file):

6.2 Starting a Container on Core0S via cloud-init | 173

https://cloudinit.readthedocs.org/en/latest/
https://cloudinit.readthedocs.org/en/latest/

$ docker ps
CONTAINER ID IMAGE COMMAND
faoff4f2234c dockerfile/elasticsearch:latest "/elasticsearch/bin/

Find the IP address of the virtual machine on the host-only interface (i.e., eth1) and
open your browser or curl at that address on port 9200:

$ curl -s http://172.17.8.101:9200 | python -m json.tool
{
"cluster_name": "elasticsearch",
"name": "Wyatt Wingfoot",
"status": 200,
"tagline": "You Know, for Search",
"version": {
"build_hash": "89d3241d670db65f994242c8e8383b169779e2d4",
"build_snapshot": false,
"build_timestamp": "2014-10-26T15:49:29Z",
"lucene_version": "4.10.2",
"number": "1.4.1"

}

Congratulations—you are running one Elasticsearch container on a CoreOS instance,
specifying it as a systemd unit file via cloud-init.

Discussion

The user-data file present in the coreos-vagrant repository is used by CoreOS to
configure the instance using the CoreOS version of cloud-init. cloud-init is used
by most public cloud providers and supported by most infrastructure as a service
software solution to contextualize the virtual machine instances started in the cloud
at boot time. The interesting part in this recipe is that a container is defined as a sys
temd unit file and started on boot. CoreOS has some official documentation about
this.

CoreOS has its own implementation of cloud-init. Some cloud-
init operations may not be supported, and others are valid for
\ only CoreOS (e.g., fleet, etcd, flannel).

174 | Chapter 6: Optimized Operating System Distributions for Docker

http://www.elasticsearch.com
https://cloudinit.readthedocs.org/en/latest/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
http://bit.ly/cloud-init

6.3 Starting a Core0S Cluster via Vagrant to Run
Containers on Multiple Hosts

Problem

You want to become familiar with some of the CoreOS features and add-ons (e.g.,
etcd, fleet) to manage a cluster of Docker hosts.

Solution

If you have not done so already, clone the CoreOS Vagrant project from GitHub and
set the configuration files:

$ git clone https://github.com/coreos/coreos-vagrant.git
$ cd coreos-vagrant/

$ cp config.rb.sample config.rb

$ cp user-data.sample user-data

You will use the same Vagrantfile as in Recipe 6.1 but specify the number of instances

you want in your cluster in the config.rb file. This cluster will be made of a set of Cor-
eOS instances started by Vagrant in VirtualBox or potentially VMware Fusion.

In Recipe 6.2, you saw how to modify the user data to run a container at boot time. In
Recipe 6.1, you modified the config.rb file to expose port 2375 and access the Docker
daemon remotely. To bootstrap a CoreOS cluster with Vagrant, you need to edit the
config.rb file to specify the number of instances in the cluster. For example,
$num_1instances=4 will start four CoreOS instances.

In addition, at the top of the config.rb file you will see some Ruby code that edits the
user-data file to set a discovery key in this YAML file. This uses a discovery service
run by the CoreOS team to help you run etcd on your cluster instances. etcd is a
highly available key-value store for shared configuration and discovery that can be
used in conjunction with CoreOS. It is similar to other service-discovery solutions
like Apache ZooKeeper or Consul. You could run etcd on a different machine, but in
this recipe you will take advantage of the Vagrantfile definition to run it in a multima-
chine configuration on the cluster nodes that you will start. etcd will allow the
Docker hosts to discover themselves and help scheduling of the containers.

Discussion on etcd is outside the scope of this cookbook. CoreOS
provides a convenient etcd-based discovery service to help with
bootstrapping your CoreOS cluster. This is used in this Vagrant
setup but is not recommended in production.

6.3 Starting a Core0S Cluster via Vagrant to Run Containers on Multiple Hosts | 175

https://github.com/coreos/etcd
http://zookeeper.apache.org
https://consul.io
https://coreos.com/docs/cluster-management/setup/cluster-discovery

In the config.rb file, uncomment the beginning of the script and set your number of
instances so that it looks like this:

if File.exists?('user-data') && ARGV[0].eql?('up"')
require 'open-uri'
require 'yaml'

token = open('https://discovery.etcd.io/new').read

data = YAML.load(IO.readlines('user-data')[1..-1].joln)
data['coreos']['etcd']['discovery'] = token

yaml = YAML.dump(data)
File.open('user-data', 'w') { |file| file.write("#cloud-config\n\n#{yaml}") }
end

S$num_instances=4

If you have followed Recipe 6.1 and Recipe 6.2, destroy any existing
CoreOS instances before booting your cluster with vagrant

destroy.
\

With your number of instances set to four, make sure you have copied the original
user-data.sample to a user-data file and then simply vagrant up and wait for the pro-
visioning to finish. You can then ssh to one of the nodes and use a new tool, fleet, to
list the machines that have joined the cluster:

$ cp user-data.sample user-data
$ vagrant up

$ vagrant status

Current machine states:

core-01 running (virtualbox)
core-02 running (virtualbox)
core-03 running (virtualbox)
core-04 running (virtualbox)

$ vagrant ssh core-01

Core0S (stable)

core@core-01 ~ $ fleetctl list-machines
MACHINE IP METADATA

Olefec94... 172.17.8.102 -

3602cd04... 172.17.8.104 -

cd3de202... 172.17.8.103 -

e4c0e706... 172.17.8.101 -

176 | Chapter 6: Optimized Operating System Distributions for Docker

Discussion

The etcd discovery service provided by CoreOS is used to boostrap the cluster (i.e.,
defining a leader). In the user-data file, you can now see a line that defines the discov
ery key and contains a token (your token will be different than the one listed here):

discovery: https://discovery.etcd.10/61297b379e5024f33b57bd7e7225d7d7

If you curl this URL (curl -s https://discovery.etcd.io/
61297b379e5024f33b57bd7e7225d7d7 | python -m json.tool), you will see the IPs
of the nodes in your cluster. Anyone who obtains access to your token could obtain a
list of your cluster nodes and try to add one of his nodes in your cluster, so handle
with care:

{

"action":
"node": {
"createdIndex": 279743993,
"dir": true,
"key": "/_etcd/registry/61297b379e5024f33b57bd7e7225d7d7",
"modifiedIndex": 279743993,
"nodes": [

{

get",

"createdIndex": 279744808,

"expiration": "2015-01-19T17:50:15.797821504Z",

"key": "/_etcd/registry/61297b379e5024f33b57bd7.../e4co...",
"modifiedIndex": 279744808,

"ttl": 599113,

"value": "http://172.17.8.101:7001"

}J
{
"createdIndex": 279745601,
"expiration": "2015-01-19T17:59:49.1961844817",
"key": "/_etcd/registry/61297b379e5024f33b57bd7.../01lef...",
"modifiedIndex": 279745601,
"ttl": 599687,
"value": "http://172.17.8.102:7001"
}J
{
"createdIndex": 279746380,
"expiration": "2015-01-19T17:51:41.963086657Z",
"key": "/_etcd/registry/61297b379e5024f33b57bd7.../cd3d...",
"modifiedIndex": 279746380,
"ttl": 599199,
"value": "http://172.17.8.103:7001"
}J
{

"createdIndex": 279747319,

"expiration": "2015-01-19T17:52:33.315082679Z",

"key": "/_etcd/registry/61297b379e5024f33b57bd7.../3602...",
"modifiedIndex": 279747319,

6.3 Starting a Core0S Cluster via Vagrant to Run Containers on Multiple Hosts | 177

"ttl": 599251,
"value": "http://172.17.8.104:7001"

}

Your nodes have now formed an etcd cluster that can be used as a fully working
highly available key-value store. Using the etcdctl command, you can set and get
keys:

core@core-01 ~ $ etcdctl set foobar "Docker"

Docker

core@core-01 ~ $ etcdctl get foobar
Docker

core@core-01 ~ $ etcdctl 1s

/foobar

/coreos.com

To launch containers on the cluster, you can define systemd units as you did in
Recipe 6.2 and start them with the fleetctl CLI (see Recipe 6.4).

See Also

o CoreOS clustering with Vagrant
+ Introduction to etcd

o Getting started with fleet

6.4 Using fleet to Start Containers on a Core0S Cluster

Problem

You have a working CoreOS cluster and would like to start containers on it.

Solution

With a CoreOS cluster in hand (see Recipe 6.3), use the fleetctl CLI to start your
containers. You write systemd units describing those running containers and use
fleetctl start to schedule them on the cluster.

For example, consider how you started a container via cloud-init in Recipe 6.2. You
can extract the following systemd unit to start an Elasticsearch container on a cluster
(let’s call it es.service):

[Unit]
After=docker.service

178 | Chapter 6: Optimized Operating System Distributions for Docker

https://coreos.com/blog/coreos-clustering-with-vagrant/
https://coreos.com/docs/distributed-configuration/getting-started-with-etcd/
https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

Requires=docker.service
Description=starts Elastic Search container

[Service]
TimeoutStartSec=0
ExecStartPre-=/usr/bin/docker kill es
ExecStartPre-=/usr/bin/docker rm es
ExecStartPre=/usr/bin/docker pull dockerfile/elasticsearch
ExecStart=/usr/bin/docker run --name es -p 9200:9200 \
-p 9300:9300 \
dockerfile/elasticsearch
ExecStop=/usr/bin/docker stop es

Start this container with fleetctl:

$ vagrant ssh core-01

$ fleetctl start es.service

$ fleetctl list-units

UNIT MACHINE ACTIVE SuB

es.service 0lefec94.../172.17.8.102 activating start-pre
$ fleetctl list-units

UNIT MACHINE ACTIVE SUB

es.service 0lefec94.../172.17.8.102 active running

fleet will schedule the unit on one of the nodes in your cluster. systemd will run the
es.service unit, which will start by downloading the image. Once the image is
downloaded, it will run the container defined in the ExecStart step of the unit file.

Discussion

The fleet CLI fleetctl comes with some nice commands to check the journal of
the unit, destroy it, and ssh to the nodes that have been tasked with running the unit.
These commands can come in handy during debugging steps:

$ fleetctl list-units

UNIT MACHINE ACTIVE SUB

es.service 0lefec94.../172.17.8.102 active running

$ fleetctl ssh es.service

Last login: Mon Jan 12 22:03:29 2015 from 172.17.8.101

Core0S (stable)

core@core-02 ~ $ docker ps

CONTAINER ID IMAGE COMMAND .
6fc661ba2153 dockerfile/elasticsearch:latest "/elasticsearch/bin/ ...
core@core-02 ~ $ exit

$ fleetctl journal es.service

-- Logs begin at Mon 2015-01-12 17:50:47 UTC, end at Mon 2015-01-12 22:13:20 UTC
Jan 12 22:06:13 core-02 ...[node [Wendigo] initializing ...

Jan 12 22:06:13 core-02 ...[plugins [Wendigo] loaded [], sites []

Jan 12 22:06:17 core-02 ...[node [Wendigo] initialized

Jan 12 22:06:17 core-02 ...[node [Wendigo] starting ...

Jan 12 22:06:17 core-02 ...[transport [Wendigo] bound_address ..

Jan 12 22:06:17 core-02 ... discovery [Wendigo] elasticsearch/_NcgQa...

[Sy S Y S|

6.4 Using fleet to Start Containers on a Core0S Cluster | 179

Jan 12 22:06:21 core-02 ...[cluster.service] [Wendigo] new_master [Wendigo]...

Jan 12 22:06:21 core-02 ...[http] [Wendigo] bound_address ...

Jan 12 22:06:21 core-02 ...[node] [Wendigo] started

Jan 12 22:06:21 core-02 ...[gateway] [Wendigo] recovered [0] ...
See Also

 Launching containers with fleet

6.5 Deploying a flannel Overlay Between Core0S Instances
Contributed by Eugene Yakubovich

Problem

You have a CoreOS cluster and would like Docker containers to communicate using
overlay networking instead of port forwarding.

Solution

Set up flannel on all of the CoreOS instances. Include the following snippet in your
cloud-config as part of CoreOS provisioning:

#cloud-config

coreos:
units:
- name: flanneld.service
drop-ins:
- name: 50-network-config.conf
content: |
[Service]
ExecStartPre=/usr/bin/etcdctl set \
/coreos.com/network/config \
'{ "Network": "10.1.0.0/16" }'
command: start

Make sure to pick an IP address range that is unused by your orga-
nization. flannel uses etcd for coordination. Be sure that you also
follow the recipe to set up an etcd cluster.

Make sure your security policy allows traffic on UDP port 8285. Start three CoreOS
instances and wait for flannel to initialize. You can use the ifconfig utility to check
that the flannel® interface is up:

180 | Chapter 6: Optimized Operating System Distributions for Docker

https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/

$ ifconfig

flannelO: flags=81<UP,POINTOPOINT,RUNNING> mtu 1472
inet 10.1.77.0 netmask 255.255.0.0 destination 10.1.77.0
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen ...
RX packets © bytes 0 (0.0 B)
RX errors @ dropped @ overruns 0 frame 0
TX packets © bytes 0 (0.0 B)
TX errors @ dropped 0 overruns O carrier 0@ collisions 0

Next, run a container to print out its IP address and listen on TCP port 8000:

$ docker run -it --rm busybox /bin/sh -c \
"{fconfig eth® && nc -1 -p 8000"

etho Link encap:Ethernet HWaddr 02:42:0A:01:4D:03
inet addr:10.1.77.3 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST MTU:1472 Metric:1
RX packets:3 errors:0 dropped:® overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:234 (234.0 B) TX bytes:90 (90.0 B)

Take note of the IP address reported by ifconfig. Other containers that are part of
the flannel network can use this IP to reach this container. On a different host, run a
container to send a string to the listener:

$ docker run -it --rm busybox /bin/sh -c \
"echo Hello, container | nc 10.1.77.3 8000"

The first container will print out “Hello, container” and exit.

When you add more items to the units section of cloud-config, be
sure that any services that start Docker containers are listed after
flanneld.service. Since units are processed in order, this will
ensure that flannel is ready prior to containers starting.

Discussion

flannels configuration is stored in etcd (/coreos.com/network/config) and needs to
be set prior to flanneld starting. The easiest way to ensure this is by using the Exe
cStartPre directive in the flanneld.service via a systemd drop-in. As illustrated
previously, it can be written out to disk via cloud-config.

For real-world cases, an automatic method is needed to distribute the IP information
of the server container. When creating a unit file for your service, you can utilize etcd
to register the IP of the server for clients to query:

[Service]

ExecStartPre=/usr/bin/docker create --name=netcat-server busybox \
Jusr/bin/nc -1 -p 8000

6.5 Deploying a flannel Overlay Between Core0S Instances | 181

ExecStart=/usr/bin/docker start -a netcat-server
ExecStartPost=/bin/bash -c 'etcdctl set /services/netcat-server \
$(docker inspect --format="{{.NetworkSettings.IPAddress}}" netcat-server)

ExecStop=/usr/bin/docker stop netcat-server
ExecStopPost=/usr/bin/docker rm netcat-server

An alternative to the ExecStartPost entry is to create a separate
sidekick unit. You can also use the SkyDNS project to expose a
DNS interface for the clients.

With the default configuration, flannel uses a TUN device to send packets to user
space for UDP encapsulation. It is a robust solution, as the TUN device has been part
of the Linux kernel for many years. However, the cost of moving every packet in and
out of the flannel daemon can have significant impact on performance. Modern
Linux kernels have support for a new type of encapsulation called VXLAN. VXLAN
also wraps packets in network-friendly UDP but with the advantage of performing
this task in the kernel. CoreOS always ships the latest kernel, making it a great candi-
date for taking advantage of VXLAN. Enabling VXLAN is as easy as selecting a differ-
ent backend in the flannel config:

ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config \
"{ "Network": "10.1.0.0/16", "Backend": { "Type": "vxlan" } }'

When running in nonsecure environments, it is best to use TLS for
flannel-to-etcd communication. TLS client certificates can be
used to restrict access to etcd. See etcd and flannel documenta-
tion for details.

6.6 Using Project Atomic to Run Docker Containers

Problem

You are looking for an operating system alternative to CoreOS, Ubuntu, Snappy, and
RancherOS.

Solution

Use Project Atomic. Atomic is sponsored by Red Hat and inspired by the RHEL and
CentOS distribution. It is based on CentOS 7, and like CoreOS, Ubuntu, Snappy, and
RancherOS, it is aimed at providing a Docker-optimized Linux distribution, where
applications are deployed as containers. Atomic upgrades are done through a system

182 | Chapter 6: Optimized Operating System Distributions for Docker

http://bit.ly/fleetunit
https://github.com/skynetservices/skydns
http://www.projectatomic.io

called rpm-ostree. Once an upgrade is available, a reboot installs the new upgrade,
which can also be rolled back.

You can try Atomic by using the CentOS builds. You have the choice of downloading
an ISO, a gcow2 image for use in a kernel-based virtual machine (KVM), or a Vagrant
box. (The Vagrant box for VirtualBox may not be the latest Atomic build and will
require an upgrade.)

As usual in this book, to make things easy, I prepared a Vagrantfile for you:

$bootstrap=<<SCRIPT
gpasswd -a vagrant root
SCRIPT

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
Every Vagrant virtual environment requires a box to build off of.
config.vm.box = "atomic"
config.vm.box_url = "http://buildlogs.centos.org/rolling/7/isos/x86_64/\
Cent0S-7-x86_64-AtomicHost-Vagrant-VirtualBox.box"

config.vm.provider "virtualbox" do |vb, override|
vb.customize ["modifyvm", :id, "--memory", "2048"]
end

config.vm.network :forwarded port, host: 9090, guest: 9090
config.vm.provision :shell, inline: Sbootstrap

end

With Vagrant installed, you can just vagrant up and you will be able to ssh into an
atomic host. Clone the repository that comes with this book and you will have the
preceding Vagrantfile:

$ git clone https://github.com/how2dock/docbook

$ cd dockbook/ch06/atomic

$ vagrant up

$ vagrant ssh
Once on the Atomic machine, you will have Docker already installed. You can
explore the host with the atomic command and perform an upgrade with sudo
atomic host upgrade.

See Also

o The project Atomic documentation

6.6 Using Project Atomic to Run Docker Containers | 183

http://www.projectatomic.io/docs/os-updates/
http://buildlogs.centos.org/rolling/7/isos/x86_64/
http://vagrantup.com
http://www.projectatomic.io/docs/

6.7 Starting an Atomic Instance on AWS to Use Docker

Problem

You do not want to use Vagrant to try Atomic (see Recipe 6.6) and do not want to use
an ISO image either.

Solution

Start an Atomic instance on Amazon EC2. Atomic AMIs are available on AWS EC2.
You can open your AWS management console and go through the instance launch
wizard. Search for a community AMI named atomic; several AMIs are available, most
based on the Fedora 22 release. After having created an SSH key pair, you can launch
the instance, and once it is running, you can connect to it. As an example, here you
connect to an Atomic instance with IP address 52.18.234.151. You will have access to
Docker right away:

$ ssh -1 ~/.ssh/<SSH_PRIVATE_KEY> fedora@52.18.234.151

[fedora@ip-172-31-46-186 ~]$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
[fedora@ip-172-31-46-186 ~]$ sudo docker version | version

Client version: 1.5.0-dev

Server version: 1.5.0-dev

Such an instance comes with the atomic command, which you can use to upgrade the
host. Check the instance status and launch an upgrade. It will download the new
Atomic version. You will then need to reboot to get on the new version:

[fedora@ip-172-31-46-186 ~]$ atomic host status

TIMESTAMP (UTC) VERSION ID OSNAME REFSPEC
* 2015-05-12 18:53:06 22.66 cd414cba85 fedora-atomic fedora-atomic:...
[fedora@ip-172-31-46-186 ~]$ atomic host upgrade
Updating from: fedora-atomic:fedora-atomic/f22/x86_64/docker-host
[fedora@ip-172-31-46-186 ~]$ sudo systemctl reboot

After reboot, you will see that your host has automatically upgraded to a new version
of Docker, which ships in the latest version of Atomic:

[fedora@ip-172-31-46-186 ~]$ sudo docker version
Client version: 1.7.1.fc22

Server version: 1.7.1.fc22

Discussion

To start an instance, you can use the AWS command-line tools or use the script pro-
vided in this recipe. The script has the advantage of being based on Apache Libcloud

184 | Chapter 6: Optimized Operating System Distributions for Docker

and can be easily adapted to other cloud providers that may provide an Atomic tem-
plate:

#!/usr/bin/env python

import os
from libcloud.compute.types import Provider
from libcloud.compute.providers import get_driver

ACCESS_ID = os.getenv('AWSAccessKeyId')
SECRET_KEY = os.getenv('AWSSecretKey')

IMAGE_ID = 'ami-dd3fb0aa’
SIZE_ID = 'm3.medium’

cls = get_driver(Provider.EC2_EU_WEST)
driver = cls(ACCESS_ID, SECRET_KEY)

sizes = driver.list_sizes()

images = driver.list_images()

size = [s for s in sizes if s.id == SIZE_ID][0]
image = [1 for 1 in images if 1.1d == IMAGE_ID][0]

Reads cloud config file
userdata = "\n".join(open('./cloud.cfg').readlines())

Replace the name of the ssh key pair with yours

You will need to open SSH port 22 on your default security group

This also assumes a keypair named 'atomic'

name = "atomic"

node = driver.create_node(name=name, image=image,size=size,ex_keyname='atomic', \

ex_userdata=userdata)

snap, ip = driver.wait_until_running(nodes=[node])[0]

print ip[0]
As mentioned as comments in the script, you will need to have a security group with
port 22 open, an SSH key pair called atomic, and a cloud.cfg file that contains your
user data.

6.8 Running Docker on Ubuntu Core Snappy in a Snap

Problem

You would like to take the new Ubuntu Core Snappy for a test drive. You do not want
to mess with connecting to a public cloud, do not want to install an ISO by hand, and
want to avoid reading as much documentation as possible. You want Snappy in a
snap.

6.8 Running Docker on Ubuntu Core SnappyinaSnap | 185

Solution

I provide a Vagrantfile for starting an Ubuntu Core Snappy virtual machine on your
local host. Clone the repository accompanying this book if you have not done so
already. Then head to the ch06/snappy directory and vagrant up. Finally, ssh to the
VM and use Docker:

$ git clone https://github.com/how2dock/docbook.git

$ cd docbook/ch06/snappy

$ vagrant up

$ vagrant ssh

$ snappy info

release: ubuntu-core/devel

frameworks: docker

apps:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

This process downloads a public Vagrant box from Atlas komljen/
ubuntu-snappy. If you do not trust this box, do not use it.

\

Ubuntu Snappy is in alpha release and should be considered a tech-
nical preview.

Discussion

On December 9, 2014, Canonical announced Snappy, a new Linux distribution based
on Ubuntu Core, with transactional updates. It is a significant departure from the
package and application management model used thus far in mainstream Ubuntu
server and desktop.

Ubuntu Core is a minimal root filesystem that provides enough operating system
capabilities to install packages. With Snappy, you get transactional updates and roll-
back on Ubuntu Core. This is achieved through an image-based workflow inherited
from the Ubuntu phone application management system. This means (among other
things) that apt-get does not work on snappy.

This makes Docker the perfect application framework on Snappy. Docker is installed
as a framework that can be updated and rolled back as atomic transactions.

Follow this walk-through:

186 | Chapter 6: Optimized Operating System Distributions for Docker

https://vagrantcloud.com/komljen/boxes/ubuntu-snappy
https://vagrantcloud.com/komljen/boxes/ubuntu-snappy
http://bit.ly/snappy-core
https://wiki.ubuntu.com/Core

$ apt-get update
Ubuntu Core does not use apt-get, see 'snappy --help'!
$ snappy --help

Commands:

{info,versions,search,update-versions,update,
rollback,install,uninstall,tags,build,chroot,
framework, fake-version,nap}

info

versions

search

update-versions

update

rollback undo last system-image update.

install

uninstall

tags

build

chroot

framework

$ snappy versions
Part Tag Installed Available Fingerprint Active
ubuntu-core edge 140 142 184ad1e863e947 *

To get Docker running, you need to install a so-called snappy framework. Search for
the Docker framework and install it like so:

$ snappy search docker

Part Version Description

docker 1.3.2.007 The docker app deployment mechanism
$ sudo snappy install docker

docker 4 MB [===============] oK

Part Tag Installed Available Fingerprint Active
docker edge 1.3.2.007 - b1f2f85e77adab *

$ snappy versions

Part Tag Installed Available Fingerprint Active
ubuntu-core edge 140 142 184ad1e863e947 *
docker edge 1.3.2.007 - b1f2f85e77adab *

You can now use Docker on Ubuntu Snappy:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Enjoy running Docker on Ubuntu Snappy.

See Also

o Snappy announcement

o Command-line walk-through

6.8 Running Docker on Ubuntu Core SnappyinaSnap | 187

http://bit.ly/snappy-core
http://blog.dustinkirkland.com/2014/12/its-a-snap.html

6.9 Starting an Ubuntu Core Snappy Instance on AWS EC2

Problem

You have a taste of Ubuntu Snappy with Vagrant (see Recipe 6.8), but you would like
to start a Snappy instance in a public cloud, especially AWS EC2.

Solution

This is an advanced recipe that assumes some knowledge of Ama-
zon AWS. Although all steps are provided, you might want to read
“ Programming Amazon Web Services by James Murty before trying
\ this recipe out.

As prerequisites, you will need the following:

e An account on AWS

o A set of access and secret API keys

o A default AWS security group with in-bound SSH allowed

o An SSH key pair called snappy

o A host with Apache Libcloud installed (sudo pip install apache-libcloud)

To make this as easy as possible, I am providing a Python script that uses Apache Lib-
cloud to start an instance on Amazon EC2. Libcloud is an API wrapper that abstracts
the differences in API in various cloud providers. The same script can be slightly
modified to start Snappy instances on most cloud providers. Assuming you have all
the prerequisites, you should be able to do the following:

$ git clone https://github.com/how2dock/docbook
$ cd ch06/snappy-cloud

$./ec2snappy.py
54.154.68.31

Once the instance is running, you can ssh to it and check the Snappy version:

$ ssh -1 ~/.ssh/id_rsa_snappy ubuntu@54.154.68.31

$ snappy versions

Part Tag Installed Available Fingerprint Active
ubuntu-core edge 141 142 7f068cb4afa876c *

All that is left is to install the Docker Snappy framework and you can start running
containers:

$ snappy search docker
Part Version Description

188 | Chapter 6: Optimized Operating System Distributions for Docker

http://bit.ly/prog-aws
http://aws.amazon.com
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://libcloud.apache.org

docker 1.3.2.
$ sudo snappy
docker 4
Part Tag
docker edge
$ docker pull
ubuntu:14.04:
511136ea3c5a:
3b363fd9d7da:
607c5d1cca71:
f62feddcO5dc:
8eaas4ffo6b53:

007 The docker app deployment mechanism
install docker

MB [===============] 0K
Installed Available Fingerprint Active
1.3.2.007 - b1f2f85e77adab *

ubuntu:14.04
The image you are pulling has been verified
Pull complete
Pull complete
Pull complete
Pull complete
Pull complete

Status: Downloaded newer image for ubuntu:14.04
$ docker images

REPOSITORY
ubuntu

TAG IMAGE ID CREATED
14.04 8eaadffo6b53 9 days ago

VIRTUAL SIZE
192.7 MB

The script used is a simple Python script that uses Libcloud. It assumes you have set
your AWS keys as environment variables in AWSAccessKeyId and AWSSecretKey. It
starts an instance in the eu_west_1 availability zone with the m3.medium instance
type. The user data is made of the content of the cloud.cfg file, which allows SSH
access. Finally, the script sets the SSH key pair to snappy (you will need to have cre-
ated this key ahead of running the script, and stored the private key in ~/.ssh/

id_rsa_snappy):

#!/usr/bin/env python

import os
from Llibcloud.
from libcloud.

compute.types import Provider
compute.providers import get_driver

ACCESS_ID = os.getenv('AWSAccessKeyId')
SECRET_KEY = os.getenv('AWSSecretKey')

IMAGE_ID = 'ami-20f34b57'

SIZE_ID = 'm3.

medium'

cls = get_driver(Provider.EC2_EU_WEST)
driver = cls(ACCESS_ID, SECRET_KEY)

sizes = driver.list_sizes()
images = driver.list_1images()

size = [s for

s in sizes if s.id == SIZE_ID][0]

image = [1 for 1 in images if 1.id == IMAGE_ID][0]

#Reads cloud config file
userdata = "\n".join(open('./cloud.cfg").readlines())

#Replace the name of the ssh key pair with yours
#You will need to open SSH port 22 on your default security group

6.9 Starting an Ubuntu Core Snappy Instance on AWSEC2 |

189

name = "snappy"

node = driver.create_node(name=name, image=image,size=size, \
ex_keyname="snappy',ex_userdata=userdata)

print node.extra['network_interfaces']

If you want to use a different availability zone than EU_WEST, you
will need to check the announcement for the correct AMI ID in
your preferred zone.

Discussion

Snappy is available in Beta on Amazon AWS, Google GCE, and Microsoft Azure, as
shown in Figure 6-1.

Microsoft Azure ©) Google
Try the snappy Ubuntu Core beta Try the snappy Ubuntu Core beta
on the Microsoft Azure cloud » on the Google Compute Engine
cloud >
<]

amazon ubuntu
Try the snappy Ubuntu Core beta Linux users can also try the snappy
on the Amazon Elastic Compute Ubuntu Core locally with KVM »
Cloud»

Figure 6-1. Snappy Beta on public clouds

Follow the documentation to start an instance in these clouds by using the
command-line tools for each provider, or modify the Libcloud-based script provided.

For instance on Google GCE, once you have created an account and installed the
Cloud SDK, you can start a Snappy instance with the GCE Cloud SDK:

$ gcloud compute instances create snappy-test \
--image-project ubuntu-snappy \
--image ubuntu-core-devel-v20141215 \
--metadata-from-file user-data=cloud.cfg
Created [https://www.googleapis.com/compute/vl/projects/runseb/zones/\
europe-westl-c/instances/snappy-test2].
NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
snappy-test2 europe-westl-c nl-standard-1 10.240.250.42 130.211.103.14 RUNNING

190 | Chapter 6: Optimized Operating System Distributions for Docker

http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
https://cloud.google.com/compute/
https://cloud.google.com/sdk/

$ ssh -1 ~/.ssh/id_rsa_snappy ubuntu@130.211.103.14

$ snappy info
release: ubuntu-core/devel
frameworks:

apps:

Happy Cloud snapping!

See Also

o Detailed command-line instructions with EC2 tools

o Announcement of Snappy available on AWS

6.10 Running Docker Containers on Rancher0$S

Problem

You are looking for an operating system alternative to CoreOS, Ubuntu Snappy, and
Project Atomic.

Solution

Try the newly announced RancherOS from Rancher Labs. RancherOS is a minimalist
Linux distribution that fits in about 20MB. Everything in RancherOS is a Linux con-
tainer; it removes the need for a systemd init system by running a so-called system-
docker daemon as PID 1 and running Linux services directly within containers. The
system-docker then launches the Docker daemon used to run application containers.

RancherOS was announced recently and should be considered a
work in progress.

\

In order to test it, Rancher has made a convenient Vagrant project available. The fol-
lowing four lines of bash will get you up and running:

$ git clone https://github.com/rancherio/os-vagrant

$ cd os-vagrant

$ vagrant up
$ vagrant ssh

You can then use the latest Docker on the machine:

6.10 Running Docker Containers on Rancher0S | 191

http://www.ubuntu.com/cloud/tools/snappy
http://bit.ly/snappy-aws
http://rancher.com/rancher-os/
http://rancher.com
http://rancher.com/announcing-rancher-os/
https://github.com/rancherio/os-vagrant

[rancher@rancher ~]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
[rancher@rancher ~]$ docker version

Client version: 1.7.0

Server version: 1.7.0

As root, you will be able to see the system-docker and the system services running
within containers:

[rancher@rancher ~]$ sudo system-docker ps

CONTAINER ID IMAGE COMMAND ... NAMES
bde437da2059 rancher/os-console:v0.3.3 "/usr/sbin/entry.sh console
2113b2e191ea rancher/os-ntp:v0.3.3 "Jusr/sbin/entry.sh ntp
a7795940ec89 rancher/os-docker:v0.3.3 "/usr/sbin/entry.sh docker
b0266396€938 rancher/os-acpid:v0.3.3 "Jusr/sbin/entry.sh acpid
aa8el8e59e67 rancher/os-udev:v0.3.3 "/usr/sbin/entry.sh udev
f7145dfd21c9 rancher/os-syslog:v0.3.3 "Jusr/sbin/entry.sh syslog
Discussion

RancherOS is also available as an AMI on Amazon EC2.

See Also

o The RancherOS GitHub page

192 | Chapter 6: Optimized Operating System Distributions for Docker

https://github.com/rancherio/os
https://github.com/rancherio/os

CHAPTER7
The Docker Ecosystem: Tools

7.0 Introduction

Docker in itself is extremely powerful and you now have covered all the topics to get
you to a new way of writing distributed applications. However, Docker is even more
powerful because of its large and vibrant ecosystem. This chapter presents a large set
of tools in the Docker ecosystem.

To get started in this ecosystem we cover some tools that also come from Docker, Inc.
If you have installed the Docker toolbox described in the first chapter you will have
those tools already installed. Otherwise, each recipe shows you how to install them
separately. First we show you how to use docker-compose in Recipe 7.1. Compose is
way to describe a multicontainer application in a single YAML file. We look at our
first example in this book, WordPress, and describe a compose file that allows you to
run a WordPress site with two containers. We extend our look at Compose with a
more complex example that shows you how to deploy a single-node Mesos cluster in
Recipe 7.2. After Compose, we introduce Swarm in Recipe 7.3. A cluster manager for
Docker, Swarm allows you to expose several Docker hosts behind a single Docker
API endpoint. From the client side everything looks identical to a single-host setup,
but Swarm can manage multiple hosts and schedule the containers on them. In
Recipe 7.4, we illustrate how you can easily create your own Docker swarm cluster
using docker-machine, which we introduced in the first chapter. This has the nice
twist that you can use docker-machine to create multiple Docker hosts in a public
cloud and configure them automatically as a Swarm cluster. To wrap up the list of
Docker, Inc. tools, we give a brief introduction to Kitematic, the Docker desktop user
interface, in Recipe 7.5.

Aside from Docker Inc., a large number of projects make up the Docker ecosystem,
and the rest of the chapter presents a few of them. First, a basic web interface to

193

http://mesos.apache.org

Docker is presented in Recipe 7.6, then an interactive shell based on docker-py is
shown in Recipe 7.7. System administrators who are familiar with configuration
management will find Recipe 7.8 interesting; it shows how you can use Ansible to
manage the deployment of your containers using an Ansible playbook.

An area of great interest is container orchestrators. Docker Swarm, which we cover in
this chapter, is an example of container orchestrator, but there exist many. Recipe 7.9
introduces Rancher, an orchestrator that has very interesting capabilities like multi-
data-center networking, load-balancing and an integration with Docker Compose.
CloudFoundry Lattice is introduced in Recipe 7.10. It is a great way to start learning
how Cloudfoundry treats microservices applications and is Docker compatible. We
also dive deeper into Mesos, with a single-node Mesos sandbox example in Recipe
7.11 and a cluster setup shown in Recipe 7.12.

To wrap up this chapter we present a self-discovery mechanism based on registra
tor in Recipe 7.13. With a large number of ephemeral containers running on a clus-
ter, you want to have a system that detects these containers and registers them in a
data store. This data store can then be queried to locate services and make sure your
application keeps on running. Some of the orchestrators presented earlier in the
chapter offer a discovery mechanism, but if you have to build your own, using regtis
trator is a good solution.

7.1 Using Docker Compose to Create a WordPress Site

Problem

You have created a WordPress site using Recipe 1.16, but you would like to describe
the multicontainer setup in a clear manifest and bring up the containers in a single
command.

Solution

Use Docker Compose, a command-line utility to define and run multicontainer
applications with Docker. With Compose, you define the services that need to run in
a YAML file. Then bring up the services by using the docker-compose command.

The first thing to do is to install Compose. You can install it via the Python index or
via a single curl command.

If you are starting on your own Docker host, install Compose manually via the
Python package index using pip:

$ sudo apt-get install python-pip
$ sudo pip install -U docker-compose

Or via curl:

194 | Chapter7: The Docker Ecosystem: Tools

https://docs.docker.com/compose/
https://docs.docker.com/compose/

$ curl -L https://github.com/docker/compose/releases/download/1.4.0/\
docker-compose- ‘uname -s'-‘uname -m’ > /fusr/local/bin/docker-compose

If you are using my examples, you are just a vagrant up away from using Compose:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch07/compose/

$ vagrant up

$ vagrant ssh

$ docker-compose --version

docker-compose 1.4.0

The next step is to define the two containers that compose your WordPress installa-
tion in a YAML file. Each service will run via a container. You give them a name. In
this case, you will call the WordPress service wordpress and the MySQL service db.
Each service will then be defined by an image. The various arguments given at the
command line in Recipe 1.16 need to be set in this YAML config file: the exposed
ports, the environment variables, and the mounted volumes.

Create the following docker-compose.yml text file (if you are using my Vagrant
machine, the file is already in /vagrant/docker-compose.yml):

wordpress:
image: wordpress
links:
- mysql
ports:
- "80:80"
environment:
- WORDPRESS_DB_NAME=wordpress
- WORDPRESS_DB_USER=wordpress
- WORDPRESS_DB_PASSWORD=wordpresspwd
mysql:
image: mysql
volumes:
- /home/docker/mysql:/var/lib/mysql
environment:
- MYSQL_ROOT_PASSWORD=wordpressdocker
- MYSQL_DATABASE=wordpress
- MYSQL_USER=wordpress
- MYSQL_PASSWORD=wordpresspwd

To bring up the two containers, type docker-compose up -d at the command line, in
the directory where you have your docker-compose.yml file. The two linked containers
will start, and you will be able to access the WordPress site by opening your browser
at http://<ip_of_host>:

$ docker-compose up -d
Creating vagrant_mysql_1...
Creating vagrant_wordpress_1...
$ docker-compose ps
Name Command State Ports

7.1 Using Docker Compose to Create a WordPress Site | 195

vagrant_mysql_1 /entrypoint.sh mysqld

vagrant_wordpress_1 /entrypoint.sh apache2-for ...

Discussion

3306/tcp
0.0.0.0:80->80/tcp

Docker Compose was originally developed by Orchard and was
called Fig. After acquisition of Orchard by Docker Inc., Fig was
renamed Docker Compose. You can expect a tight integration of
Compose with the Docker CLI even though the current Compose
is a separate binary. The source can be found on GitHub.

Compose has the following commands to manage a container environment:

Fast, isolated development environments using Docker.

Commands:
build Build or rebuild services
help Get help on a command
kill Kill containers
logs View output from containers
port Print the public port for a port binding
ps List contailners
pull Pulls service images
rm Remove stopped containers
run Run a one-off command
scale Set number of containers for a service
start Start services
stop Stop services
restart Restart services
up Create and start containers

The usage of each command is obtained by specifying --help after the command—
for example, docker-compose kill --help. Most commands take SERVICE as a
parameter. A service in Compose is the name given to the running container in the
docker-compose.yml file. For example, you could stop the WordPress service and start
it again:

$ docker-compose stop wordpress
Stopping vagrant_wordpress_1...
$ docker-compose ps
Name Command

State

Ports

vagrant_mysql_1 /entrypoint.sh mysqld

vagrant_wordpress_1 /entrypoint.sh apache2-for ...

$ docker-compose start wordpress
Starting vagrant_wordpress_1...
$ docker-compose ps

Name Command

State

Ports

196

| Chapter7: The Docker Ecosystem: Tools

http://www.fig.sh
https://github.com/docker/compose

vagrant_mysql_1 /entrypoint.sh mysqld Up 3306/tcp
vagrant_wordpress_1 /entrypoint.sh apache2-for ... Up 0.0.0.0:80->80/tcp

7.2 Using Docker Compose to Test Apache Mesos and
Marathon on Docker

Problem

You are interested in Apache Mesos, the data center resource-allocation system used
by companies like Twitter. Mesos allows multilevel scheduling to share resources
between different types of workloads while maximizing utilization of your servers.
Before going into production with Mesos, you would like to experiment with it on a
single server.

Solution

With Docker Compose (seen in Recipe 7.1), deploying Mesos on a single Docker host
with one command is straightforward.

You need to start four containers: one for ZooKeeper, one for the Mesos master, one
for the Mesos slave, and one for the Mesos framework Marathon. Starting these four
containers can be simplified by describing their start-up options in a YAML file that
is read by Compose. Here is a sample YAML manifest to deploy Mesos using Com-
pose:

zookeeper:
image: garland/zookeeper
ports:
- "2181:2181"
- "2888:2888"
- "3888:3888"
mesosmaster:
image: garland/mesosphere-docker-mesos-master
ports:
- "5050:5050"
links:
- zookeeper:zk
environment:
- MESOS_ZK=zk://zk:2181/mesos
- MESOS_LOG_DIR=/var/log/mesos
- MESOS_QUORUM=1
- MESOS_REGISTRY=in_memory
- MESOS_WORK_DIR=/var/lib/mesos
marathon:
image: garland/mesosphere-docker-marathon
links:
- zookeeper:zk

7.2 Using Docker Compose to Test Apache Mesos and Marathon on Docker | 197

http://mesos.apache.org
http://zookeeper.apache.org
https://github.com/mesosphere/marathon

- mesosmaster:master
command: --master zk://zk:2181/mesos --zk zk://zk:2181/marathon
ports:
- "8080:8080"
mesosslave:
image: garland/mesosphere-docker-mesos-master:latest
ports:
- "5051:5051"
links:
- zookeeper:zk
- mesosmaster:master
entrypoint: mesos-slave
environment:
- MESOS_HOSTNAME=192.168.33.10
- MESOS_MASTER=zk://zk:2181/mesos
- MESOS_LOG_DIR=/var/log/mesos
- MESOS_LOGGING_LEVEL=INFO

To access the Marathon sandbox, we started the Mesos slave with
the environment variable MESOS_HOSTNAME=192.168.33.10.
o Replace this IP with the IP of your Docker host.

\

Copy this file into docker-compose.yml and launch Compose:

$./docker-compose up -d
Recreating vagrant_zookeeper_1...
Recreating vagrant_mesosmaster_1...
Recreating vagrant_marathon_1...
Recreating vagrant_mesosslave_1...

Once the images have been downloaded and the containers started, you will be able
to access the Mesos Ul at http://<IP_OF_HOST>:5050. The Marathon UI will be
available on port 8080 of the same host.

Discussion

If you have cloned the online repository that comes with this book, you are only a
vagrant up away from running Mesos with Docker:

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch07/compose

$ vagrant up

$ vagrant ssh

$ cd /vagrant

$ docker-compose -f mesos.yml up -d

You can then manage the containers with the docker -compose command.

198 | Chapter7: The Docker Ecosystem: Tools

http://<IP_OF_HOST>:5050

See Also

« Deploying Mesos in seven commands

o Mesos frameworks

7.3 Starting Containers on a Cluster with Docker Swarm

Problem

You know how to use Docker with a single host. You would like to start containers on
a cluster of hosts while keeping the user experience of the Docker CLI you are accus-
tomed to on a single machine.

Solution

Use Docker Swarm. Docker Swarm, the native clustering tool for Docker, allows a
user to access a pool of Docker hosts as if it were a single host. Docker Swarm was
announced at DockerCon Europe in December 2014. The first beta release of Swarm
was announced on February 26, 2015. As of this writing, Docker Swarm is still in
Beta.

To ease testing of Docker Swarm, I provide a Vagrant setup and bootstrap scripts that
set up a four-node Swarm cluster. The cluster is composed of one head node and
three compute nodes, all running Ubuntu 14.04. To get the cluster up, clone the Git
repository accompanying this book (if you have not done so already), and head to the
ch07 directory and the swarm subdirectory. Use Vagrant to boot the cluster:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch07/swarm/
$ vagrant up

You should see four virtual machines being started by Vagrant. The machines will be
bootstrapped via bash scripts defined in the Vagrantfile:

$bootstrap=<<SCRIPT

apt-get update

curl -sSL https://get.docker.com/ | sudo sh

gpasswd -a vagrant docker

echo "DOCKER_OPTS=\"-H tcp://0.0.0.0:2375\"" >> /etc/default/docker
service docker restart

SCRIPT

$swarm=<<SCRIPT

apt-get update

curl -sSL https://get.docker.com/ | sudo sh
gpasswd -a vagrant docker

7.3 Starting Containers on a Cluster with Docker Swarm | 199

http://bit.ly/mesos-7
http://mesos.apache.org/documentation/latest/mesos-frameworks/
https://github.com/docker/swarm
http://blog.docker.com/tag/docker-swarm/
http://blog.docker.com/2015/02/scaling-docker-with-swarm/

docker pull swarm
SCRIPT

Once the nodes are up and Vagrant has returned, ssh to the head node and start a
Swarm container by using the swarm image that was pulled during the bootstrap
process:

$ vagrant ssh swarm-head

$ docker run -v /vagrant:/tmp/vagrant -p 1234:1234 -d swarm manage \
file://tmp/vagrant/swarm-cluster.cfg -H=0.0.0.0:1234

72acd5bc00de0b411f025ef6f297353a1869a3cc8c36d687e1f28a2d8f422a06

The Swarm server setup uses a file-based discovery mechanism.
The swarm-cluster.cfg file contains the hardcoded lists of the Swarm
nodes started by Vagrant. Additional discovery services are avail-
able for Swarm. You can use a service hosted by Docker Inc., Con-
sul, Etcd, or ZooKeeper. You can also write your own discovery
interface.

With the Swarm server running and the worker nodes discovered, you will be able to
use the local Docker client to get information about the cluster and start containers.
You will need to use the -H option of the Docker CLI to target the Swarm server run-
ning in a container instead of the local Docker daemon:

$ docker -H 0.0.0.0:1234 info
Containers: 0
Nodes: 3
swarm-2: 192.168.33.12:2375
L Containers: 0
L Reserved CPUs: 0 / 1
L Reserved Memory: © B / 490 MiB
swarm-3: 192.168.33.13:2375
L Containers: @
L Reserved CPUs: 0 / 1
L Reserved Memory: © B / 490 MiB
swarm-1: 192.168.33.11:2375
L Containers: @
L Reserved CPUs: 0 / 1
L Reserved Memory: © B / 490 MiB

Using the local Docker client and specifying the Swarm server as a Docker daemon
endpoint, you can start containers on the entire cluster. For example, let’s start Nginx:

$ docker -H 0.0.0.0:1234 run -d -p 80:80 nginx
8399¢544b61953fd5610b01be787cb3802e2e54f220673b94d78160d0ee35b33

$ docker -H 0.0.0.0:1234 run -d -p 80:80 nginx
1b2c4634fc6d9f2c3fd63dd48a25801466590ddff7405f889ada885746db3cbd

$ docker -H 0.0.0.0:1234 ps

CONTAINER ID IMAGE ... PORTS NAMES

200 | Chapter7: The Docker Ecosystem: Tools

http://docs.docker.com/swarm/discovery/
https://consul.io
https://consul.io
https://github.com/coreos/etcd
http://zookeeper.apache.org

1b2c4634fc6d nginx:1.7 ... 443/tcp, 192.168.33.11:80->80/tcp swarm-1...
8399c544b619 nginx:1.7 ... 443/tcp, 192.168.33.12:80->80/tcp swarm-2...

You just started two Nginx containers. Swarm scheduled them on two of the nodes in
the cluster. You can open your browser at http://192.168.33.11 and http://
192.168.33.12 and you will see the default Nginx page.

The docker run command can take some time to return. Swarm
needs to schedule the container on a node in the cluster, and that
node needs to pull the Nginx image.

Discussion

In this setup, the Docker Swarm server is running within a local container on the
Swarm head node. You can see it with docker ps and you can check the logs with
docker logs. In the logs, you see the requests made to start the Nginx containers. It
is interesting to see that you are using the Docker client on the Swarm head node to
communicate with the local Docker daemon and the Swarm server running in a local
container:

$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS
72acd5bcOdde swarm:latest swarm manage ... 2375/tcp, 0.0.0.0:1234->1234/tcp

$ docker logs 72acd5bc00de
. msg="Listening for HTTP" addr="0.0.0.0:1234" proto=tcp
. msg="HTTP request received" method=GET uri="/v1.17/info"
. msg="HTTP request received" method=GET uri="/v1.17/containers/json"
. msg="HTTP request received" method=POST uri="/v1.17/containers/create"
. msg="HTTP request received" method=POST uri="/v1.17/containers/.../start"
. msg="HTTP request received" method=GET uri="/v1.17/containers/json"
. msg="HTTP request received" method=POST uri="/v1.17/containers/create"
. msg="HTTP request received" method=POST uri="/v1.17/containers/.../start"
. msg="HTTP request received" method=GET uri="/v1.17/containers/json"

In these logs, you clearly see the API calls being made to the Swarm server to launch
the Nginx containers in the cluster.

See Also

o Introduction to Swarm

o Swarm installation documentation

7.3 Starting Containers on a Cluster with Docker Swarm | 201

http://192.168.33.11
http://192.168.33.12
http://192.168.33.12
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/install-manual/

7.4 Using Docker Machine to Create a Swarm Cluster
Across Cloud Providers

Problem

You understand how to create a Swarm cluster manually (see Recipe 7.3), but you
would like to create one with nodes in multiple public cloud providers and keep the
user experience of the local Docker CLI.

Solution

Use Docker Machine (see Recipe 1.9) to start Docker hosts in several cloud providers
and bootstrap them automatically to create a Swarm cluster.

The first thing to do is to obtain a swarm discovery token. This will be used during the
bootstrapping process when starting the nodes of the cluster. As explained in Recipe
7.3, Swarm features multiple discovery processes. In this recipe, you use the service
hosted by Docker, Inc. A discovery token is obtained by running a container based on
the swarm image and running the create command. Assuming you do not have
access to a Docker host already, you use docker-machine to create one solely for this
purpose:

$./docker-machine create -d virtualbox local
INFO[0000] Creating SSH key...

INFO[0042] To point your Docker client at it, run this in your shell: \
$(docker-machine env local)

$ eval "$(docker-machine env local)"

$ docker run swarm create

31e61710169a7d3568502b0e9fb09d66

With the token in hand, you can use docker -machine and multiple public cloud driv-
ers to start worker nodes. You can start a Swarm head node on VirtualBox, a worker
on DigitalOcean (see Figure 1-7), and another one on Azure (see Recipe 8.6).

Do not start a Swarm head in a public cloud and a worker on your
localhost with VirtualBox. Chances are the head will not be able to
route network traffic to your local worker node. It is possible to do,
but you would have to open ports on your local router.

$ docker-machine create -d virtualbox --swarm --swarm-master \
--swarm-discovery token://31e61710169a7d3568502b0e9fb09d66 head
INFO[0000] Creating SSH key...

INFO[0069] To point your Docker client at it, run this in your shell: \
$(docker-machine env head)

202 | Chapter7: The Docker Ecosystem: Tools

$ docker-machine create -d digitalocean --swarm --swarm-discovery \
token://31e61710169a7d3568502b0e9fb09d66 worker-00

$ docker-machine create -d azure --swarm --swarm-discovery \
token://31e61710169a7d3568502b0e9fb09d66 swarm-worker-01

Your Swarm cluster is now ready. Your Swarm head node is running locally in a Vir-
tualBox VM, one worker node is running in DigitalOcean, and another one in Azure.
You can set the local docker-machine binary to use the head node running in Virtual-
Box and start using the Swarm subcommands:

$ eval "$(docker-machine env --swarm head)"
$ docker info
Containers: 4
Nodes: 3
head: 192.168.99.103:2376
L Containers: 2
L Reserved CPUs: 0 / 4
L Reserved Memory: 0 B / 999.9 MiB
worker-00: 45.55.160.223:2376
L Containers: 1
L Reserved CPUs: 0 / 1
L Reserved Memory: 0 B / 490 MiB
swarm-worker-01: swarm-worker-01.cloudapp.net:2376
L Containers: 1
L Reserved CPUs: 0 / 1
L Reserved Memory: 0 B / 1.639 GiB

Discussion

If you start a container, Swarm will schedule it in round-robin fashion on the cluster.
For example, you can start three Nginx containers in a for loop:

$ for 1 in “seq 1 37 ;do docker run -d -p 80:80 nginx;done

This leads to three Nginx containers on the three nodes in your cluster. Remember
that you will need to open port 80 on the instances running in the cloud to access the
container (e.g., see Recipe 8.6):

$ docker ps
. IMAGE ... PORTS NAMES
. nginx:1.7 ... 443/tcp, 104.210.33.180:80->80/tcp swarm-worker-01/
loving_torvalds
. nginx:1.7 ... 443/tcp, 45.55.160.223:80->80/tcp worker-00/drunk_swartz
. nginx:1.7 ... 443/tcp, 192.168.99.103:80->80/tcp head/condescending_galileo

7.4 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers | 203

Do not forget to remove the machine you started in the cloud.

See Also

o Using Docker Machine with Docker Swarm

7.5 Managing Containers Locally Using the Kitematic Ul

Problem

Instead of using the command line to manage your containers locally, you would like
to use a graphical interface.

Solution

Use Kitematic. It is available for OS X 10.9+ and Windows 7+. As of Docker 1.8, Kite-
matic is now bundled in the Docker Toolbox (see Recipe 1.6).

After installing Kitematic by downloading it from the website or after installing
Docker Toolbox, you can start it. It will automatically create a local Docker host using
Docker Machine and VirtualBox. After the host has booted, you will be presented
with the Kitematic dashboard (see Figure 7-1).

204 | Chapter7: The Docker Ecosystem: Tools

https://docs.docker.com/swarm/install-w-machine/
https://kitematic.com
https://kitematic.com

. TN
eoe @

) LOGIN

Containers
hungry_bartik Recommended
busybox2
. ;

mad_raman @ ::;gm\::crld nginx

registry o
A light-weight nginx container

naug htyfpare that demonstrates the features of

busybox2 Kitematic

testcopy [vE:] 000

ubuntu:14.04
official
jenkins
Official Jenkins Docker image
s o
official
rethinkdb
RethinkDB is an open-source,
document database that makes it
easy to build and scale realtime...
v o
official
elasticsearch
Elasticsearch is a powerful open
‘source search and analytics
engine that makes data easy to...

£ N
&2 DOCKER CU 905
o) 286 000 | CREATE

= ghost

All Recommended My Repos

official
ghost

Ghost is a free and open source
blogging platform written in

JavaScript

82 coo CREATE
official

redis

Redis is an open source key-
wvalue store that functions as a
data structure sarver,

7 985 coo | CREATE
kiternatic
minecraft

The Minecraft multiplayer server
allows two or more players to
play Minecraft together

18 coo | CREATE
official
postgres

The PostgreSQL object-relational
database system provides
reliability and data integrity.

ooo | CREATE

a8

Figure 7-1. Kitematic dashboard

Kitematic presents you with default container images, and also lets you search the
Docker Hub. In the left gutter in Figure 7-1 you can also see containers that are on

your Docker host. You can start, stop, and manage their settings all through the UI.

Let’s say you want to start Nginx. You can search for an nginx_ image in the search
box at the top of the dashboard and then simply click the Create icon. Docker auto-
matically downloads the image and starts the container. You can then enter the Set-
tings window (see Figure 7-2) and check the settings. You could stop the container,
change the settings, and restart the container.

7.5 Managing Containers Locally Using the Kitematic Ul |

205

eo0e (7)) Loain hello-world-nginx

Containers @ @ @
Home Settings

) STOP RESTART EXEC
9 hello-world-nginx

hello-worid-nginciatest

. General Ports Volumes Advanced
hungry_bartik
busybox2
mad_raman Container Name
registry

hello-world-nginx

naughty_pare
busybox2
testoopy

ubuntu:14.04

Environment Variables

SAVE

Delete Container

DELETE CONTAINER

; — prn
% DOCKER cU (=) 07
o

Figure 7-2. Kitematic Settings Configuration window
Kitematic is useful for local work and simple container tasks. It will certainly be inte-

grated with Docker Compose and Swarm, which will make it a powerful graphical
interface for managing production deployments.

See Also

« Kitematic official website

7.6 Managing Containers Through Docker Ul

Problem

You have access to a Docker host and know how to manage images and containers,
but you would like to use a simple web interface.

206 | Chapter7: The Docker Ecosystem: Tools

https://kitematic.com

Solution

Use the Docker UL Although you can create your own image from source, the
Docker UI is also available on Docker Hub, which makes running it in a container
straightforward.

On your Docker host, start the Docker UI container:

$ docker run -d -p 9000:9000
--privileged
-v /var/run/docker.sock:/var/run/docker.sock
dockerui/dockeruti

You can then open your browser at http://<IP_OF_DOCKER_HOST>:9000 and you
will have access to the UL Figure 7-3 shows an example.

DockerUl
Dashboard Containers Images Settings
Running Status
Containers
o test-nginx TR g .

« prickly_ardinghelli

M Running [l Stopped Ghost

Containers created
3

2

1

December 15,2014 February 8, 2015 February 18,2015

Figure 7-3. Docker UI dashboard

The Docker UI is not part of the official Docker release and is a
community-maintained project.

\

7.6 Managing Containers Through Docker Ul | 207

https://github.com/crosbymichael/dockerui
https://github.com/crosbymichael/dockerui/wiki/Ways-to-run-dockerui
https://registry.hub.docker.com/u/dockerui/dockerui/
http://<IP_OF_DOCKER_HOST>:9000
https://github.com/crosbymichael/dockerui

Discussion

Once you have access to the UL, you can start a container. Go to the Images tab, select
an image, and click the Create button. You will be able to specify all the container
start-up options through the UL Do not miss the HostConfig options, where you can
set port mappings. Figure 7-4 shows you a preview of this screen.

Create And Start Container From Image

Container options

cmd: MemorySwap:

[*/binfecho”, “Hello world"]

Input commands as araw string or JSON array
Entrypoint:
.fentrypoint.sh
Cpuset:
Name:
1,2
Input as comma-separated list of numbers
WorkingDir:
fapp
Domainname: MacAddress:
12:34:56:78:9a:bc
NetworkDisabled:)
Tty: ()
OpenStdin: ()

StdinOnce: [

Volumes: REXGRTITTS
SecurityOpts: [EEEe/T

Figure 7-4. Starting a container through the Docker Ul

See Also

o Docker Ul wiki that contains additional documentation

7.7 Using the Wharfee Interactive Shell

Problem

You know how to use the Docker CLI but would like to use a more powerful interac-
tive shell with autocompletion and history.

208 | Chapter7:The Docker Ecosystem: Tools

https://github.com/crosbymichael/dockerui/wiki

Solution

Use Wharfee, a Python-based interactive CLI. Wharfee is based on docker-py (see
Recipe 4.10) and uses a few Python modules to create the interactive shell.

On a Docker host, install Python and the package index command line installed pip.
Then install Wharfee. For example, on an Ubuntu system:

$ sudo apt-get install python python-pip

$ sudo pip install wharfee
You are now ready to use this new powerful command-line interface. You launch
Wharfee and you enter the interactive shell. The commands that you use are the exact
same Docker commands, except that you do not need to use the docker prefix. As
you type, you will get autocompletion suggestions and some syntax highlighting.

$ wharfee

Version: 0.6.5

Home: http://wharfee.com
wharfee> images

There are no images to list.
wharfee> ps

There are no containers to list.

To start a container, you need to pull an image explicitly:

wharfee> pull nginx:latest
Pulling from library/nginx latest

wharfee> run -d -p 80:80 nginx:latest
bf96488c76d617b6d3d2f8aeadff928eff7fe05e61219eb23f865f60631d9f83
wharfee> ps

Status Created Image ... Command Ports

Up 2 seconds now nginx:latest ... nginx -g 'daemon off;' 443/tcp, 80/tcp

Wharfee is a nice CLI that comes in handy with its autocompletion feature and high-
lighting.

See Also

o Wharfee source code

o Wharfee official website

7.7 Using the Wharfee Interactive Shell | 209

http://wharfee.com
https://github.com/j-bennet/wharfee
http://wharfee.com

7.8 Orchestrating Containers with Ansible Docker Module

Problem

You have developed some expertise with Ansible to configure your servers and
orchestrate application deployment. You would like to take advantage of this exper-
tise and use Ansible to manage Docker containers.

Solution

Use the Ansible Docker module. This module is part of the Ansible core, so after
installing Ansible, no additional packages need to be installed.

Ansible will run from your local machine, connect over SSH to your Docker hosts,
and use the docker -py API client to issue calls to the Docker daemon.

For example, to start an Nginx container in detached mode with a port mapping, you
would write an Ansible playbook like this:

- hosts: nginx
tasks:
- name: Run nginx container
docker: image=nginx:latest detach=true ports=80:80

Discussion about how to use Ansible is beyond the scope of this
recipe. See the Ansible documentation.

Discussion

To get you up and running with the Ansible Docker module, you can use the
Vagrantfile accompanying this recipe. This will start a virtual machine acting as a
Docker host with the docker-py client installed. Two playbooks, an inventory file,
and some Ansible configurations are also available to make it turnkey.

The first task is to install Ansible on your local machine:
$ sudo pip install ansible
Then to test the Nginx playbook, follow these instructions:

$ git clone https://github.com/how2dock/docbook.git
$ cd ch07/ansible
$ tree

}— README.md
}— vagrantfile

210 | Chapter7: The Docker Ecosystem: Tools

http://www.ansible.com/home
http://docs.ansible.com/docker_module.html
http://docs.ansible.com/playbooks.html
http://docs.ansible.com

}— ansible.cfg
}— dock.yml
}— inventory

}— solo

| | vagrantfile
| L— dock.yml
L— wordpress.yml

$ vagrant up

The Nginx playbook shown in the solution section is in the dock.yml file. To start this
container using Ansible, run the playbook. Once it finishes, open your browser at
http://192.168.33.10 and you will see the welcome screen of Nginx. You can also con-
nect to the VM with vagrant ssh and check the running container with the usual
docker ps command.

$ ansible-playbook -u vagrant dock.yml

PLAY [nglnx] kkhhkkkhhkhkhhhhhkhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhhkhkhhhhhkhkhhkhhkhkhhkhkhkhkks

GATHERING FACTS khkkhkkkhkhkhhhhhhkhhhhhhkhhhhhkhkhhhhhkhkhhhhhkhkhhhhkhkhhhhhkhkhhhhkhkhkhhkkkkkx

ok: [192.168.33.10]

TASK: [Run nginx Container] kkkkkhkhkkkhkhhkhkkhhkhkhkhkhhkhkkhhkhkhkkhhkhkhkkkhhhkkkkhkhkhkkkkk

changed: [192.168.33.10]

PLAY RECAP hhkkhkhkhhhhhkhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhhhkhhhhhkhkhhhhhkhhhhhkhkhhhhkhkhkhkkkk

192.168.33.10 . ok=2 changed=1 unreachable=0 failed=0

You can kill this Nginx container with docker ki1l within the virtual machine or run
a playbook that sets the state of the container to killed:
- hosts: nginx
tasks:
- name: Kill nginx container
docker: image=nginx:latest detach=true ports=80:80 state=killed

If you want to try a more complex example, check the WordPress playbook word-
press.yml. You have deployed WordPress several times already (see Recipe 1.15 or
Recipe 1.16). Run the playbook and open your browser at http://192.168.33.10 and
enjoy WordPress once again. (You will need to have killed any container using port 80
on the host; otherwise, you will get a port conflict error).

$ ansible-playbook -u vagrant wordpress.yml

pLAY [wordpress] kkkkhkhkkkhhkhkhkhhhkhkkhhkhkhkkhhkhkhkhhhkhkkhhkhkhkkkhkhkhkkkhhkhkkkkhkhkhkkkkk

GATHERING FACTS kkkhkhkkkhkhkhkkkhhkhkkhhhkhkhkhhkhkhkkhhkhkhkhhkhkhkkhkhkhkhkkhkhkhkhkkkkhkhkkkkkkkx

ok: [192.168.33.10]

TASK: [Docker pull mysql] khkkhhhkhhhhhhhhhhhhhdhhhhhhdhhhhhhhhhhhdhhhhhhhhkhhhkhhxsx

changed: [192.168.33.10]

TASK: [Docker pull wordpress] kkkhkhkkkkhkhkhkhkkhhkhkhkkhhkhkhkkkhhkhkhkkhkhhkkkhkhkhkkkhkhkhkx*

7.8 Orchestrating Containers with Ansible Docker Module | 211

http://192.168.33.10
http://192.168.33.10

changed: [192.168.33.10]

TASK: [Run mysql container] hhkkhkhkhhhhhkhkhhhhhhhhhhhhkhhhhhkhkhhhhhkhhhhhkhkhkhhkhkhkhkxkk

ok: [192.168.33.10]

TASK: [Run WOdeFeSS Container] kkkkhkhkkkkhhkhkkhhhkhkkhhkhkhkkhhhkkhhkhkhkkkkhkhkkkkkkxx

changed: [192.168.33.10]

PLAY RECAP khkhkhkhhhhhkhkhhhhhhkhhhhhhkhhhhhkhkhhhhhkhhhhhkhkhhhhhkhhhhhkhkhhhhhkhkhhhhkhkhkhkxkk

192.168.33.10 : ok=5 changed=3 unreachable=0 failed=0

Because Ansible playbooks are written in YAML, you will notice some similarities
with the WordPress compose example in Recipe 7.1:

- hosts: wordpress
tasks:

- name: Docker pull mysql
command: docker pull mysql:latest

- name: Docker pull wordpress
command: docker pull wordpress:latest

- name: Run mysql container
docker:
name=mysql
image=mysql
detach=true
env="MYSQL_ROOT_PASSWORD=wordpressdocker ,MYSQL_DATABASE=wordpress, \
MYSQL_USER=wordpress,MYSQL_PASSWORD=wordpresspwd"

- name: Run wordpress container
docker:
image=wordpress
env="WORDPRESS_DB_NAME=wordpress,WORDPRESS_DB_USER=wordpress, \
WORDPRESS_DB_PASSWORD=wordpresspwd"
ports="80:80"
detach=true
links="mysql:mysql"

You have run the playbooks directly from the local machine, but
Vagrant has an Ansible provisioner. This means that you can run

the playbook when the VM is started. Go to ch07/ansible/solo and
vagrant up. The Nginx container will automatically start.

See Also

o Ansible: Up and Running, which has a section on the Docker module

212 | Chapter7: The Docker Ecosystem: Tools

http://bit.ly/ansible-up-and-running

7.9 Using Rancher to Manage Containers on a Cluster of
Docker Hosts

Problem

You want to manage containers in production through a system that supports multi-
host networking, an overlay network that allows containers to reach each other
without complex port-forwarding rules, group management, and a powerful dash-

board.

Solution

Consider Rancher from Rancher Labs, the makers of Rancher OS (see Recipe 6.10). It
is straightforward to set up with a management server running as a container and a
worker agent running as a container as well.

To easily test Rancher and see whether it suits your needs, clone the project reposi-
tory on GitHub and start a virtual machine locally through Vagrant, as shown here:

$ git clone https://github.com/rancherio/rancher.git
$ cd rancher
$ vagrant up

The virtual machine started is based on CoreOS (see Recipe 6.1), but you could use
any other OS that runs Docker. The Vagrantfile contains two provisioning steps that
install the management server and the worker agent from Docker images. You can
use these commands almost identically to start Rancher on your own machines.

Once in the Rancher dashboard, if you navigate to the Add Host
button, you will be presented with the exact Docker command to
run on another host to join this Rancher deployment.

$ docker run -d -p 8080:8080 rancher/server:latest
$ docker run -e CATTLE_AGENT_IP=172.17.8.100 --privileged -e WAIT=true \
-v /var/run/docker.sock:/var/run/docker.sock \
rancher/agent:latest http://localhost:8080

Once the Vagrant machine is up and the Rancher images have been downloaded, two
containers will start and you will be able to access the Rancher dashboard at http://
localhost:8080.

7.9 Using Rancher to Manage Containers on a Cluster of Docker Hosts | 213

http://rancher.com/rancher-io/
http://rancher.com
https://github.com/rancherio/rancher

If you already have a server running on port 8080 in your local
machine, Vagrant will pick a different port to serve the Rancher Ul
on. You can always access it by using the host-only network at
http://172.17.8.100:8080.

The dashboard will show only one host and no running containers. By clicking Add
Container, you will be redirected to a page where you can set the container run
parameters (see Figure 7-5). You can expand the Advanced Options area to set param-
eters such as environment variables, volumes, networking, and capabilities of the
containers (e.g., memory, privileged mode). By default, the networking will be a so-
called managed network, which will use a network overlay. You can still use the
default Docker networking.

Considering the changes that will happen with Docker networking,
this recipe does not expand on the Rancher overlay itself. See
Chapter 3 for more information.

Rancher will build a network overlay, even though in this case you are using a single
host, and start the container within the IP range of the overlay. If you map the
exposed port of the container to a port on the host, you will be able to access it
through your browser. For example, if you start Nginx and map it to port 80 of the
host, you will enjoy the welcome screen of Nginx. The container creation screen looks
like Figure 7-6.

214 | Chapter7: The Docker Ecosystem: Tools

Access Control is not configured Settings

Add Container

i
Containers
nginx
nginx
~ docker: nginx
n [Publish all ports ta random host port
L rivate (in Container)
80 BEAN:] AL ACES)]

ADVANCED OPTIONS ~

Create Cancel

Figure 7-5. Starting a container via the Rancher UI

At this stage, you have a working Rancher test bed. You can explore the dashboard.
The Containers tab lists all your running containers. You can open a shell into a con-
tainer, and start/stop it. The Volumes tab lists the volumes currently being used; vol-
ume manipulation through the dashboard is limited at this time. Finally, you can
define an existing private registry, or define load-balancers.

7.9 Using Rancher to Manage Containers on a Cluster of Docker Hosts | 215

Access Control is not configured Settings

Hosts E
rancher
172.17.8.100
@@2.67GHz B097GB & 16.6GiB

O Network Agent O nginx
104214534 10.42.2.165

Figure 7-6. Rancher dashboard with running container

Discussion

So far, you've done everything by using the dashboard. Rancher also exposes a REST
API to manage all its resources. To use the API, you need to generate a set of API
access and secret keys. This is done by clicking the user icon at the top right of the
dashboard and selecting the API & Keys option. The API is not documented on the
GitHub page, but the dashboard offers a nice API explorer.

You can manage a running container through the dashboard. By clicking the con-
tainer, you will see an option to View in API. This redirects you to the API explorer.
This explorer features the JSON object describing the container as well as a set of
actions that can be performed (green boxes in the UI). Selecting one of the actions
opens a new window that will show you the API request that you can make. This is a
perfect way to learn the API and possibly write your own client. Figure 7-7 is a snap-
shot of a request to stop a container.

216 | Chapter7:The Docker Ecosystem: Tools

API Request

cURL command line:

curl -u "${CATTLE_ACCESS_KEY}:${CATTLE_SECRET_KEY}" \

-X POST ™

-H "Accept: application/json’ \

-H "Content-Type: application/json’

-d "{"remove":true, "timeout"”:0, "deallocateFromHost":true}' \
‘http://172.17.8.100: 8088/v1/containers/1il/7action=stop’

HTTP Request:

HTTP/1.1 POST /vl/containers/lil/7action=stop
Host: 172.17.8.100:8080

Accept: application/json

Content-Type: application/json
Content-Length: 53

i
remove: true,
timeout: @,
deallocateFromHost: true,

}

Figure 7-7. Rancher API request example

7.10 Running Containers on a Cluster Using Lattice

Problem

You are looking for a container orchestration system to schedule containers on a clus-
ter of machines. Additionally, you may have experience with Cloud Foundry and are
interested in its approach to containers.

Solution

Use Lattice. Lattice, a cluster scheduler for container-based applications, includes an
HTTP load-balancing feature, log aggregation, health management, and dynamic
scaling of the applications. This lightweight container scheduler gives developers the
experience of working with native cloud applications and gives them a taste of the
Cloud Foundry PaaS.

To get started quickly, you can follow the Getting Started guide from the Lattice web-
site. It uses a Vagrant box to deploy a Lattice cell on your local machine. After instal-
ling the Lattice client ltc, you can communicate with your Lattice setup and deploy
Docker images.

Let’s clone the Lattice project, check out the latest release, and boot the Vagrant box:

7.10 Running Containers on a Cluster Using Lattice | 217

http://lattice.cf
https://www.cloudfoundry.org
http://lattice.cf/docs/getting-started/
http://lattice.cf/docs/getting-started/

$ git clone https://github.com/cloudfoundry-incubator/lattice.git
$ cd lattice

$ git checkout v0.3.0

$ vagrant up

==> default: Lattice is now installed and running.
==> default: You may target it using: ltc target 192.168.11.11.xip.10
==> default:

Download the 1tc CLI and make the file executable. For example, to get the CLI in
your PATH, you could do the following:

$ sudo wget https://lattice.s3.amazonaws.com/releases/latest/darwin-amd64/ltc \

-0 /usr/local/bin/1ltc

$ sudo chmod +x /usr/local/bin/ltc
You are now ready to configure the CLI to point to your local Lattice deployment
done via Vagrant. Follow the last message of the Vagrant deployment and use ltc:

$ ltc target 192.168.11.11.xip.1o

Blob store is targeted.

Api Location Set
All that is left now is to start a container with the ltc create command, specifying
the Docker image from the Docker Hub that you want to run. As a quick test, let’s run
nginx in Lattice:

$ ltc create nginx-app nginx -r

nginx-app is now running.
App is reachable at:
http://nginx-app.192.168.11.11.xip.10

Once the application is created, you can reach it at the URL returned by ltc. The
URL uses xip.io, a wildcard DNS service that makes reaching services on your local
network by DNS names easy. In this example, if you open your browser at http://
nginx-app.192.168.11.11.xip.io, you will see the Nginx welcome screen.

You can easily scale the number of instances of an application with ltc scale, termi-
nate an application with ltc rm, and many other operational tasks. See 1tc help for
more information.

Discussion

The Lattice cell started via Vagrant does not run the Docker engine. However, you
specified a Docker image and Lattice accepted it. In fact, the Lattice runtime extracts
the filesystem of the Docker image and executes the application in its own container
runtime.

218 | Chapter7: The Docker Ecosystem: Tools

http://xip.io
http://nginx-app.192.168.11.11.xip.io
http://nginx-app.192.168.11.11.xip.io

This had a side effect in the example: you needed to specify to run the application as
root for Nginx to be deployed successfully. This was achieved with the -r option of
ltc create.

Although this basic setup was done with Vagrant, Lattice can be deployed in various
cloud providers by using Terraform.

See Also

o Using buildpacks with Lattice

7.11 Running Containers via Apache Mesos and Marathon

Problem

You are looking for a cluster scheduler to launch containers on a Docker host in your
data center. You might also already be running Apache Mesos to schedule long-
running jobs, cron jobs, or even Hadoop or parallel computing workloads, and would
like to use it to run containers.

Solution

Use Apache Mesos and the Docker containerizer. Mesos is a cluster resource allocator
that leverages multiple scheduling frameworks to maximize utilization of your data-
center resources. Mesos is used by large companies like eBay, Twitter, Netflix, Airbnb,
and more.

The Mesos architecture is based on one or several master nodes, worker nodes (or
Mesos slaves), one or more scheduling frameworks that are deployed in Mesos, and a
service-discovery system that uses ZooKeeper. In Recipe 7.2, you already saw how to
use Docker Compose to start a testing Mesos infrastructure on a single node.

Marathon is one of the Mesos frameworks that can allow you to run tasks on a Mesos
cluster. Mesos supports Docker (i.e., Docker containerizer). This means that you can
launch Marathon tasks that are made of Docker containers.

Amazon ECS service (see Recipe 8.11) can also use Mesos to sched-
ule containers on AWS. Docker Swarm (see Recipe 7.3) is also
scheduled to add support for Mesos-based scheduling.

This recipe uses Mesos Playa, a Mesos sandbox, to show you how to run Docker con-
tainers with Mesos.

7.11 Running Containers via Apache Mesos and Marathon | 219

https://github.com/cloudfoundry-incubator/lattice/tree/master/terraform
http://www.chipchilders.com/blog/2015/8/12/buildpacks-in-lattice.html
http://mesos.apache.org
http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/mesos-architecture/
http://zookpeeper.apache.org
http://mesos.apache.org/documentation/latest/mesos-frameworks/
https://github.com/mesosphere/playa-mesos

To get started, clone the playa-mesos repository from GitHub, start the virtual
machine via Vagrant, and ssh to it:

$ git clone https://github.com/mesosphere/playa-mesos.git
$ vagrant up
$ vagrant ssh

Once the machine is up, you can access the Mesos web interface at http://
10.141.141.10:5050 and the Marathon web interface at http://10.141.141.10:8080.

Discussion on how to use Mesos and Marathon are beyond the
scope of this book. Refer to the two websites for more information.

Marathon exposes a REST API that you can use to start tasks. Tasks are defined in a
JSON file and can be submitted to the API endpoint via curl. Here is an example task
described in JSON:

{
"id": "http",
"emd": "python -m SimpleHTTPServer $PORTO",
"mem": 50,
"cpus": 0.1,

"instances": 1,
"constraints": [
["hostname", "UNIQUE"]
Hgorts": [0]
}

The id is the name of the task (also called Application in Marathon). The cmd is what
the application will run (here, a simple HTTP server via Python). What is important
to note is the use of ports, which is set to a list containing 0. This means that Mara-
thon will dynamically allocate a port that this application will use. This dynamic port
is passed to the cmd argument as $PORTO.

Save this JSON description in a file called fest.json and submit this application via
curl:
$ curl -is -H "Content-Type: application/json"

-d @test.json 10.141.141.10:8080/v2/apps
HTTP/1.1 201 Created

Once the application starts, you will see it in the UI (Figure 7-8) and be able to access
the URL that points to the HTTP server that was just started. Note the port that was
dynamically allocated.

220 | Chapter7: The Docker Ecosystem: Tools

http://10.141.141.10:5050
http://10.141.141.10:5050
http://10.141.141.10:8080
http://mesos.apache.org
http://https://mesosphere.github.io/marathon/

3/27/2015, 1:06:00 PM 3/27/2015, 1:14:49 PM

Figure 7-8. Marathon UI for HTTP server

Let’s now move on to starting an application that is made of a Docker container. By
default, the VM started by Playa Mesos will contain Docker, but the Mesos slave is
not configured to use it. Therefore, you need to do a few configurations and restart
mesos-slave. In the virtual machine, do the following:

vagrant@mesos:~$ sudo su

root@mesos: /home/vagrant# cd /etc/mesos-slave
root@mesos:/etc/mesos-slave# echo 'docker,mesos' > containerizers
root@mesos:/etc/mesos-salve# echo '5mins' > executor_registration_timeout
root@mesos:/etc/mesos-slave# service mesos-slave restart

mesos-slave stop/waiting

mesos-slave start/running, process 2581

Create the following JSON file (e.g., docker.json) that describes running an Nginx
container with a dynamic port allocation on the host:

{
"container": {
"type": "DOCKER",
"docker": {
"image": "nginx",
"network": "BRIDGE",
"portMappings": [
{ "containerPort": 80, "hostPort": 0 }
1
}
1
"id": "nginx",
"instances": 1,
"cpus": 0.5,
"mem": 512

}

Create this application via the Marathon API by using curl and check the list of run-
ning applications:

7.11 Running Containers via Apache Mesos and Marathon | 221

$ curl -si -H 'Content-Type: application/json'
-d @docker.json 10.141.141.10:8080/v2/apps

$ curl -sX GET -H "Content-Type: application/json" 10.141.141.10:8080/v2/tasks
| python -m json.tool

{
"tasks": [
{
"appId": "/nginx",
"host": "10.141.141.10",
"id": "nginx.404b7376-d47b-11e4-8cd2-56847afe9799",
"ports": [
31236
1,
"servicePorts": [
10001
1,
"stagedAt": "2015-03-27T12:17:35.285Z",
"startedAt": null,
"version": "2015-03-27T12:17:29.312Z2"
1,
{
"appId": "/http",
"host": "10.141.141.10",
"id": "http.a55c2bd5-d479-11e4-8cd2-56847afe9799",
"ports": [
31235
1,
"servicePorts": [
10000
1,
"stagedAt": "2015-03-27T12:06:05.873Z",
"startedAt": "2015-03-27T12:14:49.986Z",
"version": "2015-03-27T12:06:00.485Z"
}
1
}

You see the http application that you started earlier. And you also see the new nginx
application, which uses Docker. The application will take a little bit of time to deploy,
just enough time to docker pull nginx. To take into account the time it may take to
download an image from a registry, you define the executor_registration_timeout
before restarting the mesos-slave. Marathon also allocates a port dynamically to bind
port 80 of the Nginx container to the host, and in this case it chooses 31236. If you
open your browser at http://10.141.141.10:31236, you will see the familiar web page of
Nginx.

222 | Chapter7: The Docker Ecosystem: Tools

http://10.141.141.10:31236

Discussion

The Docker application definition specified in JSON format can contain volume
mounts, can specify arguments that will overwrite the CMD arguments defined in a
Dockerfile, can specify docker run parameters, and can also run in privileged mode.
The Docker containerizer documentation has detailed information. But as a quick
reference, you could also define an application with all those extra functionalities, like
so:

{
"id": "privileged-job",
"container": {
"docker": {
"image": "mesosphere/inky"
"privileged": true,
"parameters": [
{ "key": "hostname", "value": "a.corp.org" },
{ "key": "volumes-from", "value": "another-container" },
{ "key": "lxc-conf", "value": "..." }
1
1,
"type": "DOCKER",
"volumes": []
1,
"args": ["hello"],
"cpus": 0.2,
"mem": 32.0,
"instances": 1
}

Finally, running Mesos on a single host defeats the purpose of this recipe, and you
will want to create a Mesos cluster with the Docker containerizer enabled on all
Mesos slaves.

See Also

o Mesosphere documentation for the Docker containerizer
o Marathon example JSON files

« Original post this recipe is based on

7.11 Running Containers via Apache Mesos and Marathon | 223

https://mesosphere.github.io/marathon/docs/native-docker.html
https://mesosphere.github.io/marathon/docs/native-docker.html
https://github.com/mesosphere/marathon/tree/master/examples
http://frankhinek.com/deploy-docker-containers-on-mesos-0-20/

7.12 Using the Mesos Docker Containerizer on a Mesos
Cluster

Problem

In Recipe 7.11, you saw how to test the Mesos Docker containerizer to run containers
on a Mesos sandbox. You would like to do the same but on a Mesos cluster.

Solution

Build a Mesos cluster using containers and the images prepared by Mesosphere on
the Docker Hub. Configure the Mesos slave to use the Docker containerizer.

To facilitate testing this recipe, use the online material accompanying this book. This
recipe uses a Vagrantfile that sets up a local three-node Mesos cluster and uses Ansi-
ble to start the container that runs the Mesos software components (i.e., ZooKeeper,
Mesos master, Marathon framework, and Mesos slave).

Clone the repository if you have not done so already, head to ch07/mesos, and use
Vagrant to bring up the three-node cluster:

If you have enough memory on your local machine, you can add
more nodes to this setup or change the memory allocated to each
node (see the Vagrantfile).

$ git clone https://github.com/how2dock/docbook.git
$ cd dockbook/ch07/mesos

$ vagrant up

$ vagrant status

Current machine states:

mesos-head running (virtualbox)
mesos-1 running (virtualbox)
mesos-2 running (virtualbox)

If you have followed along recipe by recipe, you will have read Recipe 7.8. If not, read
that recipe first to configure Ansible on your machine. You will use an Ansible play-
book to start a few containers on the VM. The playbook is mesos.yml. To start all con-
tainers, run the playbook:

$ ansible-playbook -u vagrant mesos.yml

Once the play is done, the Mesos head node will have three containers running (i.e.,
ZooKeeper, Mesos master, and the Marathon framework). The two slaves will have
one container running (i.e., the Mesos slave). All images come from Docker Hub.

224 | Chapter7: The Docker Ecosystem: Tools

https://mesosphere.com
http://ansible.com

Open your browser at http://192.168.33.10:5050 to access the Mesos Ul, and then
open your browser at http://192.168.33.10:8080 to access the Marathon UL

To start an Nginx container in that Mesos cluster, create a Mesos application in the
Marathon framework using the API:

$ curl -si -H 'Content-Type: application/json' \
-d @docker.json 192.168.33.10:8080/v2/apps
Once the image has been downloaded, you can access the Nginx welcome screen in a
similar fashion as described in Recipe 7.11.

The docker.json application definition specifies 128 MB of RAM. If
your slaves do not have enough memory, the application could be
stuck in deploying stage. Make sure that your slaves have enough
RAM or reduce the memory constraints of your application.

Discussion

The inventory used by Ansible is harcoded in the inventory file. If you change the IP
address of the nodes or add more nodes, make sure to update the inventory as well.

The current play executes docker run commands remotely over SSH. If you want to
use the Ansible Docker module, comment the command tasks and uncomment the
docker tasks.

You will notice that the Mesos slave runs as a container. When starting the container,
you pass the environment variable MESOS_CONTAINERIZERS=docker,mesos, which
configures the slave to use Docker. The slave will start other containers on the host
itself. This is achieved by mounting /var/run/docker.sock, /usr/bin/docker, and /sys
from the host to the container. Although it works in the testing scenario, the Mesos
containerizer is not made to do this. You should consider running the slave on the
hosts themselves until Mesos development recommends running the slave in contain-
ers for production.

See Also

« Apache Mesos configuration

7.12 Using the Mesos Docker Containerizer on a Mesos Cluster | 225

http://mesos.apache.org/documentation/latest/configuration/

7.13 Discovering Docker Services with Registrator

Problem

You are building a distributed application with services based on containers started
on multiple hosts. You need to automatically discover these services to configure your
application. This is needed when services migrate from one host to another or when
they are started automatically.

Solution

Use registrator. It runs as a container on the hosts in your system. By mounting the
Docker socket /var/run/docker.sock, it listens to containers that come and go, and reg-
isters or unregisters them on a data store backend. Several backend data stores are
available (e.g., etcd, Consul, and SkyDNS 2), and registrator can possibly support
more. These service registries are not specific to Docker even though etcd comes
bundled in the CoreOS distribution (see Recipe 6.3).

To use registrator, you first need to set up one backend for service registries. Since
these are available as static binaries, you can download them and run them in the
foreground for testing. For example, to use etcd:

$ curl -L https://github.com/coreos/etcd/releases/download/v0.4.6/\
etcd-v0.4.6-1inux-amd64.tar.gz

-0 etcd-v0.4.6-1linux-amd64.tar.gz
$ tar xzvf etcd-v0.4.6-1inux-amd64.tar.gz
$ cd etcd-v0.4.6-1inux-amd64
$ sudo ./etcd
2015/03/26 14:02:21 no data-dir provided, using default data-dir ./default.etcd
2015/03/26 14:02:21 etcd: listening for peers on http://localhost:2380
2015/03/26 14:02:21 etcd: listening for peers on http://localhost:76001
2015/03/26 14:02:21 etcd: listening for client requests on http://localhost:2379
2015/03/26 14:02:21 etcd: listening for client requests on http://localhost:4001

Leave etcd running. In another terminal session, create a directory in the etcd key-
value store (e.g., cookbook in the following code). This directory will hold the services
when they are discovered:

$ cd etcd-v0.4.6-1inux-amd64
$./etcdctl mkdir cookbook

$./etcdctl 1s

/cookbook

Then download the registrator image from Docker Hub and run it:

$ docker pull gliderlabs/registrator
$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
-h 192.168.33.10

226 | Chapter7: The Docker Ecosystem: Tools

https://github.com/gliderlabs/registrator
https://github.com/coreos/etcd
https://www.consul.io

\

\

gliderlabs/registrator
-ip 192.168.33.10
etcd://192.168.33.10:4001/cookbook

You define the registry service backend as an argument to the gli-
derlabs/registrator image. Do not forget the name of the directory
that you created with etcdctl. It completes the URI of your back-

end endpoint.

Replace 192.168.33.10 with the IP address of your own setup. In
this example, I ran everything on the same host. But you will most
likely want to run an etcd cluster separate from your cluster of
Docker hosts where you will run registrator.

You can now start any container, expose ports to the host, and you will see the regis-
tration in your etcd key-value store:

$ docker run -d -p 80:80 nginx
$./etcdctl 1s /cookbook
/cookbook/nginx-80

$./etcdctl 1s /cookbook/nginx-80
/cookbook/nginx-80/192.168.33.10:pensive_franklin:80

$./etcdctl get /cookbook/nginx-80/192.168.33.10:pensive_franklin:80
192.168.33.10:80

If you look at the logs of the registrator container, you will see that it is listening to
Docker events and registering the ports exposed to the host:

$ docker logs <CONTAINER_ID>
2015/03/26 ...
2015/03/26 ...

2015/03/26 ...
2015/03/26 ...
2015/03/26 ...
2015/03/26 ...

registrator:
registrator:

registrator:
registrator:
registrator:
registrator:

Forcing host IP to 192.168.33.10

Using etcd registry backend at \
etcd://192.168.33.10:4001/cookbook

ignored: 6f8043d9973f no published ports

Listening for Docker events...

ignored 8c033ca03a82 port 443 not published on host

added: 8c033ca03a82 192.168.33.10:pensive_franklin:80

In these logs, 6f8043d9973f is the container ID of the registrator container, and
8c033ca®3a82 is the container ID of the Nginx container that you started.

Discussion

The naming convention for the keys stored in etcd is based on the Service object
created by registrator and passed to the registry backend. From the GitHub repo, the
Service structure is defined like this:

type Service struct {
ID string

/] <hostname>:<container-name>:<internal-port>

7.13 Discovering Docker Services with Registrator | 227

https://github.com/gliderlabs/registrator

//[:udp if udp]

Name string // <basename(container-image)>
//[-<internal-port> if >1 published ports]
Port 1int /] <host-port>
1P string // <host-ip> || <resolve(hostname)> if 0.0.0.0
Tags []string // empty, or includes 'udp' if udp
Attrs map[string]string // any remaining service metadata from environment

}
The key for the service is defined by the following:

<registry-uri-path>/<service-name>/<service-id>
In this example, it is then (see the ID definition in the Service object):
cookbook/nginx-80/192.168.33.10:pensive_franklin:80

and set to <ip>:<port> or in this example 192.168.33.10:80 (see the Port and IP
definitions in the Service object).

If you do not want to use etcd but rather use consul, you can switch the registry
backend. You can easily try this on a single host, by using the progrium/consul image
from Docker Hub. Pull the image and run the consul agent in one terminal session
(the Consul container is not detached in this example):
$ docker pull progrium/consul
$ docker run -p 8400:8400 -p 8500:8500 -p 8600:53/udp
-h cookbook progrium/consul -server
-bootstrap -ui-dir /ui
In another session, start registrator but change the registry URI to consul://
192.168.33.10:8500/foobar:
$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock

-h 192.168.33.10 gliderlabs/registrator
-ip 192.168.33.10 consul://192.168.33.10:8500/foobar

You can now start an Nginx container:

$ docker run -d -p 80:80 nginx

And now, if you check the Consul UT at http://192.168.33.10:8500/ut, you will
see that a foobar directory has been created with several keys in them: the keys for the
Consul container itself and the key for your Nginx container. See Figure 7-9.

228 | (Chapter7: The Docker Ecosystem: Tools

http://consul.io

G} SERVICES NODES KEY/VALUE ACL fos

FOOBAR/NGINX-80/ +

l 192.168.33.10:naughty_banach:80 |

foobar/nginx-
80/192.168.33.10:naughty_banach:80

192.168.33.10:80

)

UPDATE CANCEL DELETE KEY

Figure 7-9. Consul UI

With Docker service registration under control, you can start thinking about dynami-
cally reconfiguring other services (see Recipe 10.3).

See Also

« GitHub repository of registrator
o Original blog post from Jeff Lindsay

7.13 Discovering Docker Services with Registrator | 229

https://github.com/gliderlabs/registrator
http://progrium.com/blog/2014/09/10/automatic-docker-service-announcement-with-registrator/

CHAPTER 8
Docker in the Cloud

8.0 Introduction

With the advent of public and private clouds, enterprises have moved an increasing
number of workloads to the clouds. A significant portion of IT infrastructure is now
provisioned on public clouds like Amazon Web Services (AWS), Google Compute
Engine (GCE), and Microsoft Azure (Azure). In addition, companies have deployed
private clouds to provide a self-service infrastructure for I'T needs.

Although Docker, like any software, runs on bare-metal servers, running a Docker
host in a public or private cloud (i.e., on virtual machines) and orchestrating contain-
ers started on those hosts is going to be a critical part of new IT infrastructure needs.
Figure 8-1 depicts a simple setup where you are accessing a remote Docker host in
the cloud using your local Docker client.

Docker
Instance
Localhost
w/Cloud CLI Public Cloud

Figure 8-1. Docker in the cloud

This chapter covers the top three public clouds (i.e., AWS, GCE, and Azure) and
some of the Docker services they offer. If you have never used a public cloud, now is
the time and Recipe 8.1 will cover some basics to get you started. Then you will see
how to use the CLI of these clouds to start instances and install Docker in Recipe 8.2,

231

http://aws.amazon.com
https://cloud.google.com
https://cloud.google.com
http://azure.microsoft.com/en-us/

Recipe 8.3, and Recipe 8.4. To avoid installing the CLI we show you a trick in Recipe
8.7, where all the cloud clients can actually run in a container.

While Docker Machine (see Recipe 1.9) will ultimately remove the need to use these
provider CLIs, learning how to start instances with them will help you use the other
Docker-related cloud services. That being said, in Recipe 8.5 we show you how to
start a Docker host in AWS EC2 using docker-machine and we do the same with
Azure in Recipe 8.6.

We then present some Docker-related services on GCE and EC2. First on GCE, we
look at the Google container registry, a hosted Docker registry that you can use with
your Google account. It works like the Docker Hub but has the advantage of leverag-
ing Google’s authorization system to give access to your images to team members and
the public if you want to. Google container virtual machines (VM) are then intro-
duced in Recipe 8.9; they represent a nice short introduction to some of the concepts
of Kubernetes while dealing with a single host. The hosted Kubernetes service, Goo-
gle Container Engine (i.e., GKE), is presented in Recipe 8.10. GKE is the fastest way
to experiment with Kubernetes if you already have a Google cloud account.

To finish this chapter, we look at two services on AWS that allow you to run your
containers. First we look at the Amazon Container Service (i.e., ECS) in Recipe 8.11.
We show you how to create an ECS cluster in Recipe 8.12 and how to run containers
by defining tasks in Recipe 8.13. We wrap up with a walkthrough of using AWS Bean-
stalk to deploy your containers in Recipe 8.14.

In this chapter we show you how to use public clouds to create Docker hosts, and we
also introduce some container-based services that have reached general availability
recently: the AWS container service and the Google container engine. Both services
mark a new trend in public cloud providers who need to embrace Docker as a new
way to package, deploy and manage distributed applications. We can expect more
services like these to come out and extend the capabilities of Docker and containers
in general.

AWS, GCE, and Azure are the recognized top-three public cloud
providers in the world. However, Docker can be installed on any
public cloud where you can run a Linux distribution supported by
Docker (e.g., Ubuntu, CentOS, CoreOS).

8.1 Accessing Public Clouds to Run Docker

Problem

You need access to a public cloud to run Docker in cloud instances. You have never
used a public cloud and need to quick walk-through to get you started.

232 | Chapter8: Dockerin the Cloud

https://aws.amazon.com/ecs/

Solution

If you do not already have access, create an account on your public cloud provider of
choice:

« For GCE, you can start with a free trial. You need a Google account. You can then
log in to the console.

o For Azure, you can start with a free trial.

« For AWS, you can have access to a free tier. Once you create an account, you can
log in to the console.

Log into the web console of the provider that you want to use and go through the
launch instance wizard. Make sure you can start an instance that you can connect to
via ssh. Figure 8-2 shows the AWS console, Figure 8-3 shows the GCE console, and
Figure 8-4 shows the Azure console.

Wl AWS v Services v v relandv Support v
EC2 Dashboard Resources ¢ Account Attributes S
Events 4
Tags ‘You are using the following Amazon EG2 resources in the EU West (Ireland) region: Supported Platforms
Reports Running Instances Elastic IPs VPG
Limits Volumes Snapshots Default VPG
. Key Pairs Load Balancers
= INSTANGES Placement Groups Security Groups
Instances Additional Information
Spot Requests @ Easily deploy Ruby, PHP, Java, .NET, Python, Node.js & Docker applications with Elastic
Reserved Instances Beanstalk. Getting Started Guide
Hide Documentation
=) IMAGES All EC2 Resources
Adis Create Instance Forums
Bundle Tasks Pricing
To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon EC2 instance.
=) ELASTIC BLOCK STORE Gontact Ui
Volumes Launch Instance
Snapshots AWS Marketplace
Figure 8-2. AWS console
~ _—
Google 4
[= =
Projects
APIls & auth Compute Engine
Monitaring VM instances
Source Code
Compute Engine’s Linux VMs are consistently performant,
Compute scalable, highly secure, and reliable. You can choose from
App Engine micro-VMs to large instances. Create your first instance or try

Compute Engine the guickstart to build a sample app.

VM instances
(CEICALGELGE or | Take the quickstart
Instance groups

Instance templates

Disks

Figure 8-3. GCE console

8.1 Accessing Public Clouds to Run Docker | 233

https://cloud.google.com/
https://cloud.google.com/console
http://azure.microsoft.com/en-us/pricing/free-trial/
http://aws.amazon.com/free/
https://aws.amazon.com/console

Microsoft Azure | v

virtual machines

INSTANCES IMAGES DISKS

[B] rnun o No virtual machines have been created. To get started, click Create a virtual
machine.

CREATE A VIRTUAL MACHINE (3)

, QUICK CREATE

cloudapp.net

M VIRTUAL MACHINE FROM GALLERY
&l = wace =@

Windows Server 2012 F ¢ " AL (1 core, 1.75 GB me: &
E MOBILE SERVICE

gy UseR NAvE
[@ \ cLoup service

NEW PASSWORD

REGION/AFFINITY GROUP

CREATE A VIRTUAL MACHINE v/

Figure 8-4. Azure console

Discussion
If you are not familiar with one of these clouds and have not com-
pleted this setup, you will not be able to follow the recipes in this
“ chapter. However, a complete step-by-step walk-through of using
\ these clouds is beyond the scope of this cookbook.

These instructions are not Docker-specific. Once you create an
account on one of these clouds, you will have access to any of the
cloud services provided.

On AWS, the recipes in this chapter will use the Elastic Compute Cloud (EC2) ser-
vice. To start instances, you need to become familiar with four basic principles:

o AWS API keys to use with the AWS command-line interface (CLI)

o SSH key pairs to connect to your instances via ssh

o Security groups to control traffic to and from EC2 instances

234 | Chapter8: Docker in the Cloud

http://aws.amazon.com/documentation/ec2/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

o Instance user data to configure your instances at start-up time

On GCE, you will use the Google Compute Engine service. The AWS principles also
apply to GCE:

o GCE authentication. The rest of the chapter uses the gcloud CLI, which uses
OAuth2 for authentication. Other types of authentication and authorization
mechanisms are available for GCE.

 Using an SSH key to connect to an instance.
« Instance firewall.

o Instance metadata.

See Also

o Programming Amazon Web Services
o AWS Getting Started guide
o Automating Microsoft Azure Infrastructure Services

o GCE Getting Started guide

8.2 Starting a Docker Host on AWS EC2

Problem

You want to start a VM instance on the AWS EC2 cloud and use it as a Docker host.

Solution

Although you can start an instance and install Docker in it via the EC2 web console,
you will use the AWS command-line interface (CLI). First, as mentioned in Recipe
8.1, you should obtain a set of API keys. In the web console, select your account name
at the top right of the page and go to the Security Credentials page, shown in
Figure 8-5. You will be able to create a new access key. The secret key corresponding
to this new access key will be given to you only once, so make sure that you store it
securely.

8.2 Starting a Docker Hoston AWSEC2 | 235

http://bit.ly/aws-instance
https://cloud.google.com/compute/docs/
https://cloud.google.com/compute/docs/authentication
https://cloud.google.com/compute/docs/instances#sshkeys
https://cloud.google.com/compute/docs/networking#addingafirewall
https://cloud.google.com/compute/docs/metadata#updatinginstancemetadata
http://bit.ly/prog-aws
http://aws.amazon.com/documentation/gettingstarted/
http://bit.ly/automating_azure_infrastructure
https://cloud.google.com/compute/docs/signup

Nl AWS v Services v ~ Globalv Support ~

Dashboard . .
« Your Security Credentials
Details Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access Management (IAM) users, use the 1AM Console .
Groups To learn more about the types of AWS credentials and how they're used, see AWS Security Credentials in AWS General Reference.
Users. ar Password
Roles + Multi-Factor Authentication (MFA)
Identity Providers.

- Access Keys (Access Key ID and Secret Access Key)

Password Policy

Gredential Report You use access keys to sign programmatic requests to AWS services. To learn how to sign requests Using your access keys, see the signing documentation. For
redential Repor your protection, store your access keys securely and do not share them. In addition, AWS recommends that you rotate your access keys every 90 days.

Note: You can have a maximum of two access keys (active or inactive) at a time.

Encryption Keys Greated Deleted Access Key ID Status Actions
Feb 5th 2015 wm Active Make Inactive | Delete
Sep 15th 2014 Active Make Inactive | Delete
Apr 5th 2014 Sep 15th 2014 Deleted

A Important Change - Managing Your AWS Secret Access Keys
As described in a previous announcement, you cannot retrieve the existing secret access keys for your AWS root account, though you can still
create a new root access key at any time. As a best practice, we recommend creating an |AM user that has access keys rather than relying on root
access keys.

Figure 8-5. AWS Security Credentials page

You can then install the AWS CLI and configure it to use your newly generated keys.
Select an AWS region where you want to start your instances by default.

The AWS CLI, aws, is a Python package that can be installed via the Python Package
Index (pip). For example, on Ubuntu:

To

$ sudo apt-get -y install python-pip

$ sudo pip install awscli

$ aws configure

AWS Access Key ID [****¥*x%xkk*x***n-mg]: AKIAIEFDGHQRTW3MNQ

AWS Secret Access Key [**¥*¥¥***x*x*x**JjEg]: b4pWYhMU0osg976arg9869Qd+Yglqo22wC
Default region name [eu-east-1]: eu-west-1

Default output format [table]:

$ aws --version

aws-cli/1.7.4 Python/2.7.6 Linux/3.13.0-32-generic

access your instance via ssh, you need to have an SSH key pair set up in EC2. Cre-

ate a key pair via the CLI, copy the returned private key into a file in your ~/.ssh
folder, and make that file readable and writable only by you. Verify that the key has
been created, either via the CLI or by checking the web console:

$ aws ec2 create-key-pair --key-name cookbook
$ vi ~/.ssh/1d_rsa_cookbook

$ chmod 600 ~/.ssh/id_rsa_cookbook

$ aws ec2 describe-key-pairs

| DescribeKeyPairs |
B e R +
| KeyPairs |
B e T B +|
| KeyFingerprint | KeyName ||

236

| Chapter 8: Docker in the Cloud

http://bit.ly/aws-zone

B R TR B LR +|
|| 69:aa:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db:c0:a1:72:38:36 | cookbook ||
B R TR B LR +|

You are ready to start an instance on EC2. The standard Linux images from AWS
now contain a Docker repository. Hence when starting an EC2 instance from an
Amazon Linux AMI, you will be one step away from running Docker (sudo yum
install docker):

Use a paravirtualized (PV) Amazon Linux AMI, so that you can use
a tl.micro instance type. In addition, the default security group
allows you to connect via ssh, so you do not need to create any
additional rules in the security group if you only need to ssh to it.

$ aws ec2 run-instances --image-id ami-7b3dbo6c
--count 1
--instance-type tl.micro
--key-name cookbook
$ aws ec2 describe-instances
$ ssh -1 ~/.ssh/id_rsa_cookbook ec2-user@54.194.31.39
The authenticity of host '54.194.31.39 (54.194.31.39)' can't be established.
RSA key fingerprint is 9b:10:32:10:ac:46:62:b4:7a:a5:94:7d:4b:2a:9f:61.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.194.31.39' (RSA) to the list of known hosts.

1)
| C / Amazon Linux AMI

N
https://aws.amazon.com/amazon-1linux-ami/2014.09-release-notes/
[ec2-user@ip-172-31-8-174 ~]$

Install the Docker package, start the Docker daemon, and verify that the Docker CLI
is working:

[ec2-user@ip-172-31-8-174 ~]$ sudo yum update

[ec2-user@ip-172-31-8-174 ~]$ sudo yum install docker

[ec2-user@ip-172-31-8-174 ~]$ sudo service docker start
[ec2-user@ip-172-31-8-174 ~]$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Do not forget to terminate the instance or you might get charged for it:

$ aws ec2 terminate-instances --instance-ids <instance id>

Discussion

You spent some time in this recipe creating API access keys and installing the CLI.
Hopefully, you see the ease of creating Docker hosts in AWS. The standard AMIs are
now ready to go to install Docker in two commands.

8.2 Starting a Docker Hoston AWSEC2 | 237

The Amazon Linux AMI also contains cloud-init, which has become the standard
for configuring cloud instances at boot time. This allows you to pass user data at
instance creation. cloud-init parses the content of the user data and executes the
commands. Using the AWS CLI, you can pass some user data to automatically install
Docker. The small downside is that it needs to be base64-encoded.

Create a small bash script with the two commands from earlier:

#!/bin/bash
yum -y install docker
service docker start

Encode this script and pass it to the instance creation command:

$ udata="$(cat docker.sh | base64)"
$ aws ec2 run-instances --image-id ami-7b3dbooc \
--count 1\
--instance-type til.micro \
--key-name cookbook \
--user-data Sudata
$ ssh -1 ~/.ssh/id_rsa_cookbook ec2-user@<public IP of the created instance>
$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

With the Docker daemon running, if you wanted to access it
remotely, you would need to set up TLS access (see Recipe 4.9), and
open port 2376 in your security group.

Using this CLI is not Docker-specific. This CLI gives you access to
the complete set of AWS APIs. However, using it to start instances
and install Docker in them significantly streamlines the provision-
ing of Docker hosts.

See Also

o Installing the AWS CLI
o Configuring the AWS CLI
 Launching an instance via the AWS CLI

238 | Chapter8: Docker in the Cloud

https://cloudinit.readthedocs.org/en/latest/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-ec2-launch.html

8.3 Starting a Docker Host on Google GCE

Problem

You want to start a VM instance on the Google GCE cloud and use it as a Docker
host.

Solution

Install the gcloud CLI (you will need to answer a few questions), and then log in to
the Google cloud. If the CLI can open a browser, you will be redirected to a web page
and asked to sign in and accept the terms of use. If your terminal cannot launch a
browser, you will be given a URL to open in a browser. This will give you an access
token to enter at the command prompt:

$ curl https://sdk.cloud.google.com | bash

$ gcloud auth login

Your browser has been opened to visit:
https://accounts.google.com/o/oauth2/auth?redirect_uri=...

$ gcloud compute zones list

NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-eastl-c asia-eastl UP

asia-eastl-a asia-eastl UP

asia-eastl-b asia-eastl UP

europe-westl-b europe-westl UP

europe-westl-c europe-westl UP

us-centrall-f wus-centrall UP

us-centrall-b us-centrall UP

us-centrall-a us-centrall UP

If you have not set up a project, set one up in the web console. Projects allow you to
manage team members and assign specific permission to each member. It is roughly
equivalent to the Amazon Identity and Access Management (IAM) service.

To start instances, it is handy to set some defaults for the region and zone that you
would prefer to use (even though deploying a robust system in the cloud will involve
instances in multiple regions and zones). To do this, use the gcloud config set
command; for example:

$ gcloud config set compute/region europe-westl
$ gcloud config set compute/zone europe-westl-c
$ gcloud config list --all

To start an instance, you need an image name and an instance type. Then the gcloud
tool does the rest:

$ gcloud compute instances create cookbook \
--machine-type ni-standard-1 \
--image ubuntu-14-04 \

8.3 Starting a Docker Host on Google GCE | 239

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/compute/docs/zones
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create
https://cloud.google.com/compute/docs/machine-types

--metadata startup-script=\
"sudo wget -qO- https://get.docker.com/ | sh"

$ gcloud compute ssh cookbook
sebastiengoasguen@cookbook:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

$ gcloud compute instances delete cookbook

In this example, you created an Ubuntu 14.04 instance, of machine type ni-
standard-1 and passed metadata specifying that it was to be used as a start-up script.
The bash command specified installed the docker.io package from the standard
Ubuntu repository. This led to a running instance with Docker running. The GCE
metadata is relatively equivalent to the AWS EC2 user data and is processed by
cloud-init in the instance.

Discussion

If you list the images available in a zone, you will see that some are interesting for
Docker-specific tasks:

$ gcloud compute images list

NAME PROJECT ALIAS ... STATUS
ééﬁtos-?-v20150710 centos-cloud centos-7 READY
éé;eos-alpha-774-0-0-v20150814 coreos-cloud READY
ééﬁtainer-vm-v20150806 google-containers container-vm READY
;B;ntu-1404-trusty-v20150805 ubuntu-os-cloud ubuntu-14-04 READY
Q{Bdows-server-zelz-r2-dc-v20150813 windows-cloud windows-2012-r2 READY

Indeed, GCE provides CoreOS images, as well as container VMs. CoreOS is discussed
in Chapter 6. Container VMs are Debian 7-based instances that contain the Docker
daemon and the Kubernetes kubelet. Kubernetes is discussed in Chapter 5, and
Recipe 8.9 provides more detail about the container VM.

If you want to start a CoreOS instance, you can use the image alias. You do not need
to specify any metadata to install Docker:

$ gcloud compute instances create cookbook --machine-type nil-standard-1 \
--image coreos
$ gcloud compute ssh cookbook

Core0S (stable)
sebastiengoasguen@cookbook ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

240 | Chapter8: Dockerin the Cloud

http://coreos.com
https://cloud.google.com/compute/docs/containers/container_vms
http://kubernetes.io

Using the gcloud CLI is not Docker-specific. This CLI gives you
access to the complete set of GCE APIs. However, using it to start
instances and install Docker in them significantly streamlines the
provisioning of Docker hosts.

8.4 Starting a Docker Host on Microsoft Azure

Problem

You want to start a VM instance on the Microsoft Azure cloud and use it as a Docker
host.

Solution

First you need an account on Azure (see Figure 8-1). If you do not want to use the
Azure portal, you need to install the Azure CLI. On a fresh Ubuntu 14.04 machine,
you would do this:

sudo apt-get update

sudo apt-get -y install nodejs-legacy
sudo apt-get -y install npm

sudo npm install -g azure-cli

azure -v

0.8.14

W

Then you need to set up your account for authentication from the CLI. Several meth-
ods are available. One is to download your account settings from the portal and
import them on the machine you are using the CLI from:

$ azure account download

$ azure account import ~/Downloads/Free\
Trial-2-5-2015-credentials.publishsettings
$ azure account list

You are now ready to use the Azure CLI to start VM instances. Pick a location and an
image:

$ azure vm image list | grep Ubuntu
$ azure vm location list

info: Executing command vm location list
+ Getting locations

data: Name

data: -----eeie-e-e---

data: West Europe

data: North Europe

data: East US 2

data: Central US

data: South Central US

data: West US

8.4 Starting a Docker Host on Microsoft Azure | 241

https://manage.windowsazure.com
http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/

data: East US

data: Southeast Asia

data: East Asia

data: Japan West

info: vm location list command OK

To create an instance with ssh access using password authentication, use the azure
vm create command:

$ azure vm create cookbook --ssh=22 \
--password #@S#H%#Q@S \
--userName cookbook \
--location "West Europe" \
b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS \
-amd64-server-20150123-en-us-30GB

$ azure vm list

data: Name Status Location DNS Name IP Address

data: ----ioes i e e e
data: cookbook ReadyRole West Europe cookbook.cloudapp.net 100.91.96.137
info: vm list command OK

You can then ssh to the instance and set up Docker as you did in Recipe 1.1.

Discussion

The Azure CLI is still under active development. The source can be found on GitHub,
and a Docker Machine driver is available.

The Azure CLI also allows you to create a Docker host automatically by using the
azure vm docker create command:

$ azure vm docker create goasguen -1 "West Europe" \
b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu \
-14_04_1-LTS-amd64-server-20150123-en-us \
-30GB cookbook @#$%@#S$%S

info: Executing command vm docker create

warn: --vm-size has not been specified. Defaulting to "Small".

info: Found docker certificates.

info: vm docker create command OK

$ azure vm list

info: Executing command vm list

+ Getting virtual machines

data: Name Status Location DNS Name IP Address
data: cmeme e e il oo
data: goasguen ReadyRole MWest Europe goasguen.cloudapp.net 100.112.4.136

The host started will automatically have the Docker daemon running, and you can
connect to it by using the Docker client and a TLS connection:

242 | (Chapter8: Dockerin the Cloud

https://msopentech.com/blog/2014/10/08/latest-updates-to-azure-cli/
https://github.com/Azure/azure-xplat-cli
https://github.com/docker/machine#microsoft-azure

$ docker --tls -H tcp://goasguen.cloudapp.net:4243 ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker --tls -H tcp://goasguen.cloudapp.net:4243 images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

Using this CLI is not Docker-specific. This CLI gives you access to
the complete set of Azure APIs. However, using it to start instances
and install Docker in them significantly streamlines the provision-
ing of Docker hosts.

See Also

o The Azure command-line interface
o Starting a CoreOS instance on Azure

 Using Docker Machine with Azure

8.5 Starting a Docker Host on AWS Using Docker Machine

Problem

You understand how to use the AWS CLI to start an instance in the cloud and know
how to install Docker (see Recipe 8.2). But you would like to use a streamlined pro-
cess integrated with the Docker user experience.

Solution
Use Docker Machine and its AWS EC2 driver.

Download the release candidate binaries for Docker Machine. Set some environment
variables so that Docker Machine knows your AWS API keys and your default VPC
in which to start the Docker host. Then use Docker Machine to start the instance.
Docker automatically sets up a TLS connection, and you can use this remote Docker
host started in AWS. On a 64-bit Linux machine, do the following:

$ sudo su

curl -L https://github.com/docker/machine/releases/\
download/v0.4.0/docker-machine_linux-amd64 > \

Jusr/local/bin/docker-machine

chmod +x docker-machine

exit

$ export AWS_ACCESS_KEY_ID=<your AWS access key>

$ export AWS_SECRET_ACCESS_KEY_ID=<your AWS secret key>

$ export AWS_VPC_ID=<the VPC ID you want to start the instance in>

$ docker-machine create -d amazonec2 cookbook

INFO[0000] Launching instance...

8.5 Starting a Docker Host on AWS Using Docker Machine | 243

http://azure.microsoft.com/en-us/documentation/articles/xplat-cli/
https://coreos.com/docs/running-coreos/cloud-providers/azure/#via-the-cross-platform-cli
https://github.com/chanezon/azure-linux/blob/master/docker/machine.md
https://github.com/docker/machine

INFO[0023] Waiting for SSH ...

INFO[0129] "cookbook" has been created and is now the active machine
INFO[0129] To connect: docker $(docker-machine config cookbook) ps

Once the machine has been created, you can use your local Docker client to commu-
nicate with it. Do not forget to kill the machine after you are finished:

$ eval "$(docker-machine env cookbook)" ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL

cookbook * amazonec2 Running tcp://<IP_Docker_Machine_AWS>:2376

$ docker-machine kill cookbook
You can manage your machines directly from the Docker Machine CLI:

$ docker-machine -h

COMMANDS :
active Get or set the active machine
create Create a machine
config Print the connection config for machine
inspect Inspect information about a machine
ip Get the IP address of a machine
kill Kill a machine
1s List machines
restart Restart a machine
rm Remove a machine

env Display the commands to set up the environment for
the Docker client
ssh Log into or run a command on a machine with SSH

start Start a machine

stop Stop a machine

upgrade Upgrade a machine to the latest version of Docker
url Get the URL of a machine

help, h Shows a list of commands or help for one command

Discussion

Docker Machine contains drivers for several cloud providers. We
already showcased the Digital Ocean driver (see Recipe 1.9), and
you can see how to use it for Azure in Recipe 8.6.

The AWS driver takes several command-line options to set your keys, VPC, key pair,
image, and instance type. You can set them up as environment variables as you did
previously or directly on the machine command line:

244 | Chapter8: Docker in the Cloud

https://github.com/docker/machine/tree/master/drivers

$ docker-machine create -h

OPTIONS:

--amazonec2-access-key AWS Access Key [SAWS_ACCESS_KEY_ID]
--amazonec2-ami AWS machine image [SAWS_AMI]
--amazonec2-instance-type 't2.micro' AWS instance type [$AWS_INSTANCE_TYPE]
--amazonec2-region 'us-east-1' AWS region [$AWS_DEFAULT_REGION]
--amazonec2-root-size '16' AWS root disk size (in GB) ...
--amazonec2-secret-key AWS Secret Key [$AWS_SECRET_ACCESS_KEY]
--amazonec2-security-group AWS VPC security group ...
--amazonec2-session-token AWS Session Token [SAWS_SESSION_TOKEN]
--amazonec2-subnet-1id AWS VPC subnet id [$AWS_SUBNET_ID]
--amazonec2-vpc-id AWS VPC id [$SAWS_VPC_ID]
--amazonec2-zone 'a’ AWS zone for instance ... [$SAWS_ZONE]

Finally, machine will create an SSH key pair and a security group for you. The security
group will open traffic on port 2376 to allow communications over TLS from a
Docker client. Figure 8-6 shows the rules of the security group in the AWS console.

. Create Security Group Actions v o % @
Q (2] 1to2of2
Name ~ Group ID 4 Group Name ~ VPCID ~ Description
sg-cB6d4Bad default vpc-3299285b default VPC security group
[] sg-cea70eaa docker-machine vpc-3e99285b Docker+Machine
Security Group: sg-cea70eaa [N = =]

Description Inbound Outbound Tags

Edit

Type (i) Protocol (i Port Range (i) Source (i
Custom TCP Rule TCP 2376 0.0.0.0/0
SSH TCP 22 0.0.0.0/0

Figure 8-6. Security group for machine

8.6 Starting a Docker Host on Azure with Docker Machine

Problem

You know how to start a Docker host on Azure by using the Azure CLI, but you
would like to unify the way you start Docker hosts in multiple public clouds by using
Docker Machine.

8.6 Starting a Docker Host on Azure with Docker Machine | 245

Solution

Use the Docker Machine Azure driver. In Figure 1-7, you saw how to use Docker
Machine to start a Docker host on DigitalOcean. The same thing can be done on
Microsoft Azure. You will need a valid subscription to Azure.

You need to download the docker-machine binary. Go to the documentation site and
choose the correct binary for your local computer architecture. For example,
on OS X:

$ wget https://github.com/docker/machine/releases/download/v0.4.0/ \
docker-machine_darwin-amd64

$ mv docker-machine_darwin-amdé64 docker-machine

$ chmod +x docker-machine

$./docker-machine --version

docker-machine version 0.3.0

With a valid Azure subscription, create an X.509 certificate and upload it through the
Azure portal. You can create the certificate with the following commands:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 \

-keyout mycert.pem -out mycert.pem
$ openssl pkcs12 -export -out mycert.pfx -in mycert.pem -name "My Certificate"
$ openssl x509 -inform pem -in mycert.pem -outform der -out mycert.cer

Upload mycert.cer and define the following environment variables:

$ export AZURE_SUBSCRIPTION_ID=<UID of your subscription>
$ export AZURE_SUBSCRIPTION_CERT=mycert.pem

You can then use docker-machine and set your local Docker client to use this remote
Docker daemon:

$./docker-machine create -d azure goasguen-foobar

INFO[0002] Creating Azure machine...

INFO[0061] Waiting for SSH...

INFO[0360] "goasguen-foobar" has been created and is now the active machine.
INFO[0360] To point your Docker client at it, run this in your shell: \
$(docker-machine env goasguen-foobar)

$./docker-machine 1s

NAME ACTIVE DRIVER STATE URL SWARM
toto1111 * azure Running tcp://goasguen-foobar.cloudapp.net:2376
$ $(docker-machine env goasguen-foobar)

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

In this example, goasguen-foobar is the name that I gave to my
Docker machine. This needs to be a globally unique name. Chances
are that names like foobar and fest have already been taken.

246 | Chapter8: Docker in the Cloud

http://azure.microsoft.com/en-us/pricing/free-trial/
https://docs.docker.com/machine/
https://manage.windowsazure.com

Discussion

With your local Docker client set up to use the remote Docker daemon running in
this Azure virtual machine, you can pull images from your favorite registries and
start containers.

For example, let’s start an Nginx container:

$ docker pull nginx

$ docker run -d -p 80:80 nginx
To expose port 80 of this remote host in Azure, you need to add an endpoint to the
VM that was created. Head over to the Azure portal, select the VM (here, goasguen-
foobar), and add an endpoint for the HTTP request, as in Figure 8-7. Once the end-
point is created, you can access Nginx at http://<unique_name>.cloudapp.net.

Microsoft Azure |« CREDIT STATUS

goasguen-foobar
&3 DAsSHBOARD MONITOR ENDPOINTS CONFIGURE

NAME 4 PROTOCOL PUBLIC PORT PRIVATE PORT

goasguen-foobar

docker e 2376 2376

HTTP TCP 80 80

ssh TP 22 22

Figure 8-7. Azure endpoint for a virtual machine

See Also

o Docker Machine Azure driver documentation

8.7 Running a Cloud Provider CLI in a Docker Container

Problem

You want to take advantage of containers and run your cloud provider CLI of choice
within a container. This gives you more portability options and avoids having to
install the CLI from scratch. You just need to download a container image from the
Docker Hub.

8.7 Running a Cloud Provider CLI in a Docker Container | 247

http://docs.docker.com/machine/#microsoft-azure

Solution

For the Google GCE CLI, there is a public image maintained by Google. Download
the image via docker pull and run your GCE commands through interactive
ephemeral containers.

For example, using boot2docker on an OS X machine:

$ boot2docker up

$ $(boot2docker shellinit)

$ docker pull google/cloud-sdk

$ docker images | grep google

google/cloud-sdk latest a7e7bcdfdc16 10 days ago 1.263 GB

You can then log in and issue commands as described in Recipe 8.3. The only differ-
ence is that the CLI is running within containers. The login command is issued
through a named container. That named container is used as a data volume container
(i.e., --volumes-from cloud-config) in subsequent CLI calls. This allows you to use
the authorization token that is stored in it:

$ docker run -t -1 --name gcloud-config google/cloud-sdk gcloud auth login
Go to the following link in your browser:

$ docker run --rm \
-t
--volumes-from gcloud-config google/cloud-sdk \
gcloud compute zones list
NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-eastl-c asia-eastl UP
asia-eastl-a asia-eastl UP
asia-eastl-b asia-eastl UP
europe-westl-b europe-westl UP
europe-westl-c europe-westl UP
us-centrall-f wus-centrall UP
us-centrall-b wus-centrall UP
us-centrall-a us-centrall UP

Using an alias makes things even better:

$ alias magic='docker run --rm \
-t
--volumes-from gcloud-config \
google/cloud-sdk gcloud'
$ magic compute zones list
NAME REGION STATUS NEXT_MAINTENANCE TURNDOWN_DATE
asia-eastl-c asia-eastl UP
asia-eastl-a asia-eastl UP
asia-eastl-b asia-eastl UP
europe-westl-b europe-westl UP
europe-westl-c europe-westl UP
us-centrall-f wus-centrall UP

248

| Chapter 8: Docker in the Cloud

https://registry.hub.docker.com/u/google/cloud-sdk/

us-centrall-b us-centrall UP
us-centrall-a us-centrall UP

Discussion

A similar process can be used for AWS. If you search for an awscli image on Docker
Hub, you will see several options. The Dockerfile provided shows you how the image
was constructed and the CLI installed within the image. If you take the nathanlec-
laire/awscli image, you notice that no volumes are mounted to keep the credentials
from container to container. Hence you need to pass the AWS access keys as environ-
ment variables when you launch a container:

$ docker pull nathanleclaire/awscli
$ docker run --rm \
-t o\
-e AWS_ACCESS_KEY_ID="AKIAIUCASDLGFIGDFGS" \
-e AWS_SECRET_ACCESS_KEY="HwQdNnAIqrwy9797arghgQERfrgot" \
nathanleclaire/awscli \
--region eu-west-1 \
--output=table \
ec2 describe-key-pairs

| DescribeKeyPairs |
B T e e +
| KeyPairs [
R B +|
|| KeyFingerprint | KeyName ||
R B +|
|| 69:2a:64:4b:72:50:ee:15:9a:da:71:4e:44:cd:db:c0:a1:72:38:36 | cookbook ||
R B +|

Also notice that aws was set up as an entry point in this image. Therefore, there you
don’t need to specify it and should only pass arguments to it.

You can build your own AWS CLI image that allows you to handle
API keys more easily.

See Also

o Official documentation on the containerized Google SDK

8.7 Running a Cloud Provider CLI in a Docker Container | 249

https://registry.hub.docker.com/u/nathanleclaire/awscli/dockerfile/
https://registry.hub.docker.com/u/google/cloud-sdk/

8.8 Using Google Container Registry to Store Your Docker
Images

Problem

You have used a Docker private registry hosted on your own infrastructure (see
Recipe 2.11) but you would like to take advantage of a hosted service. Specifically, you
would like to take advantage of the newly announced Google container registry.

Other hosted private registry solutions exist, including Docker Hub
Enterprise and Quay.io. This recipe does not represent an endorse-
ment of one versus another.

Solution

If you have not done so yet, go through Recipe 8.1 to sign up on Google Cloud Plat-
form. Then download the Google Cloud CLI and create a project (see Recipe 8.3).
Make sure that you update your gcloud CLI on your Docker host to load the preview
components. You will have access to gcloud docker, which is a wrapper around the
docker client:

$ gcloud components update
$ gcloud docker help
Usage: docker [OPTIONS] COMMAND [arg...]

A self-sufficient runtime for 1linux containers.

This example creates a cookbook project on Google Cloud with the project ID sylvan-
plane-862. Your project name and project ID will differ.

As an example, on the Docker host that we are using, we have a busybox image that
we uploaded to the Google Container Registry (GCR). You need to tag the image you
want to push to the GCR so that it follows the namespace naming convention of the
GCR (i.e., gcr.io/project_id/image_name). You can then upload the image with
gcloud docker push:

$ docker images | grep busybox

busybox latest a9%eb17255234 8 months ago 2.433 MB

$ docker tag busybox gcr.io/sylvan_plane_862/busybox

$ gcloud docker push gcr.io/sylvan_plane_862/busybox

The push refers to a repository [gcr.io/sylvan_plane_862/busybox] (len: 1)
Sending image list

Pushing repository gcr.io/sylvan_plane_862/busybox (1 tags)

511136ea3c5a: Image successfully pushed

250 | Chapter8: Docker in the Cloud

https://cloud.google.com/tools/container-registry/
https://www.docker.com/enterprise/hub/
https://quay.io
https://cloud.google.com/storage/docs/projects

42eed7f1bf2a: Image successfully pushed
120e218dd395: Image successfully pushed
a9eb17255234: Image successfully pushed
Pushing tag for rev [a9eb17255234] on \
{https://gcr.1o/v1l/repositories/sylvan_plane_862/busybox/tags/latest}

The naming convention of the GCR namespace is such that if you
have dashes in your project ID, you need to replace them with
underscores.

If you navigate to your storage browser in your Google Developers console, you will
see that a new bucket has been created and that all the layers making your image have
been uploaded (see Figure 8-8).

Google +Sebastien
(s
Projects Buckets / artifacts.sylvan-plane-862.appspot.com / containers / images
Upload files New folder C
cookbook -
APIs & auth
NAME SIZE TYPE LASTUPLOADED SHARED PUBLICLY
Monitoring
Source Code 120e218dd395ec314e 3911b3 1642e05722649f34b16/ - Folder -
Compute
42eed7f1bf2ac3f1610c5e616d2ab1ee9c7290234240388d6297bc0f32c34229/ = Folder —

Networking
Storage 511136ea3c5a64126407805433614aec563103b4d470213ba7d4d 26986220156/ - Folder -

Cloud Storage

a9eb172552348a9a49180694790b33a10971546456d041b6eB2e4d7716ddb721/ - Folder =
Storage browser
Project dashboard

Cloud Datastore

Cloud SQL
Big Data

Figure 8-8. Google container registry image

Discussion

Automatically, Google compute instances that you started in the same project that
you used to push the images to, will have the correct privileges to pull that image. If
you want other people to be able to pull that image, you need to add them as mem-
bers to that project. You can set your project by default with gcloud config set
project <project_id> so you do not have to specify it on subsequent gcloud com-
mands.

Let’s start an instance in GCE, ssh to it, and pull the busybox image from GCR:

$ gcloud compute instances create cookbook-gce --image container-vm \
--zone europe-westl-c \
--machine-type f1-micro

$ gcloud compute ssh cookbook-gce

Updated [https://www.googleapis.com/compute/vl/projects/sylvan-plane-862].

8.8 Using Google Container Registry to Store Your Docker Images | 251

$ sudo gcloud docker pull gcr.io/sylvan_plane_862/busybox

Pulling repository gcr.io/sylvan_plane_862/busybox

a9eb17255234: Download complete

511136ea3c5a: Download complete

42eed7f1bf2a: Download complete

120e218dd395: Download complete

Status: Downloaded newer image for gcr.io/sylvan_plane_862/busybox:latest
sebastiengoasguen@cookbook:~$ sudo docker images | grep busybox
gcr.io/sylvan_plane_862/busybox latest a9eb17255234

To be able to push from a GCE instance, you need to start it with
the correct scope: --scopes https://www.googleapis.com/auth/
devstorage.read_write.

\

8.9 Using Docker in GCE Google-Container Instances

Problem

You know how to start instances in Google GCE and configure Docker to be set up at
boot time, but you would like to use an image that is already configured with Docker.

Solution

As mentioned in Recipe 8.3, GCE offers container-optimized images.

Make sure that you set your project to the project ID with gcloud
config set project <project_id>

$ gcloud compute images list

NAME PROJECT ALIAS DEPRECATED STATUS
container-vm-v20141208 google-containers container-vm READY
container-vm-v20150112 google-containers container-vm READY
container-vm-v20150129 google-containers container-vm READY

These images, which are based on Debian 7, contain the Docker daemon and the
Kubernetes kubelet service.

252 | Chapter8: Docker in the Cloud

https://cloud.google.com/compute/docs/containers/container_vms
http://kubernetes.io

Kubernetes is discussed in more detail in Chapter 5.

The kubelet service running in instances based on these images allows the user to
pass a manifest (known as a pod) that describes the set of containers that need to run

in the instance. The kubelet will start the containers and monitor them. A pod mani-
fest is a YAML file like so:

version: vi
kind: Pod
metadata:
name: nginx
spec:
containers:

- name: nginx
image: nginx
ports:

- name: nginx
hostPort: 80
containerPort: 80

Your image in the pod manifest can reference an image in the Goo-
gle Container Registry (see Recipe 8.8)—for instance, gcr.io/
<your_project_name>/busybox.

This simple manifest describes a single container based on the nginx image and an
exposed port. You can pass this manifest to the gcloud instance creation command.
Save the preceding YAML file in nginx.yml to start the instance:

$ gcloud compute instances create cookbook-gce \
--image container-vm \
--metadata-from-file google-container-manifest=nginx.yml \
--zone europe-westl-c \
--machine-type f1l-micro

In your Google GCE console, you can browse to the started instance (see Figure 8-9).
You can allow HTTP traffic as well as see the container manifest you passed. If the
API version has been updated, you will see a v1 instead of a v2. Once the containers
defined in the pod manifest have started, open your browser at the IP of the instance
on port 80 and you will see the Nginx welcome page.

8.9 Using Docker in GCE Google-Container Instances | 253

https://github.com/kubernetes/kubernetes/blob/master/docs/user-guide/pods.md

Network

default

" Allow HTTP traffic Allow HTTPS traffic

Availability policies

Automatic restart Enabled (recommended) v
On host maintenance Migrate VM instance (recommended) -
Custom metadata Edit

google-container-manif version: vibeta2
est containers:
- name: nginx
image: nginx
ports:
- name: nginx
hostPort: 80
containerPort: 80

Figure 8-9. Pod manifest in GCE container VM

Discussion

If you connect to the instance directly via ssh, you can list the containers that are
running. You will see a google/cadvisor container used for monitoring and two kuber-
netes/pause:go containers. The last two act as network proxy to the cadvisor monitor-
ing container and to the pod exposed ports.

$ gcloud compute ssh cookbook-gce

sebastiengoasguen@cookbook-gce:~$ sudo docker ps

CONTAINER ID IMAGE COMMAND
1f83bb1197¢9 nginx:latest "nginx -g 'daemon of
ble6fed3ee20 google/cadvisor:0.8.0 "/usr/bin/cadvisor"
79e879c48e9%e kubernetes/pause:go " /pause"
Ocla51ab2f94 kubernetes/pause:go " /pause"

Chapter 9 covers cadvisor.

8.10 Using Kubernetes in the Cloud via GCE

Problem

You want to use a group of Docker hosts and manage containers on them. You like
the Kubernetes container orchestration engine but would like to use it as a hosted
cloud service.

254 | Chapter8: Docker in the Cloud

https://github.com/google/cadvisor
https://kubernetes.io

Solution

Use the Google Container Engine service. This new service allows you to create a
Kubernetes cluster on-demand using the Google API. A cluster will be composed of a
master node and a set of compute nodes that act as container VMs, similar to what
was described in Recipe 8.9.

Google Container Engine is in Beta. Kubernetes is under heavy
development. Expect frequent changes to the API and use it in pro-
“ duction at your own risk. For details on Kubernetes, see Chapter 5.

\

Update your gcloud SDK to use the container engine preview. If you have not yet
installed the Google SDK, see Recipe 8.3.

$ gcloud components update

Starting a Kubernetes cluster using the Google Container Engine service requires a
single command:

$ gcloud container clusters create cook --num-nodes 1 --machine-type gl-small
Creating cluster cook...done.

Created [https://container.googleapis.com/vl/projects/sylvan-plane-862/zones/ \
us-centrall-f/clusters/cook].

kubeconfig entry generated for cook.

NAME ZONE MASTER_VERSION MASTER_IP MACHINE_TYPE STATUS

cook us-centralil-f 1.0.3 104.197.33.61 gl-small RUNNING

Your cluster IP addresses, project name, and zone will differ from what is shown here.
What you do see is that a Kubernetes configuration file, kubeconfig, was generated for

you. It is located at ~/.kube/config and contains the endpoint of your container cluster
as well as the credentials to use it.

You could also create a cluster through the Google Cloud web console (see
Figure 8-10).

8.10 Using Kubernetes in the Cloud viaGCE | 255

https://cloud.google.com/container-engine/

GOO‘_{]C’ +Sebastien
C

App Engine
Compute Engine
VM instances

Instance groups

Instance templates Container Engine <ALPHA

Disks Container clusters.

Snapshots

Images Containers package an application so it can be easily
Networks deployed to run in its own isolated environment. Containers

Network load balancing are managed in clusters that automate VM creation and

HTTP load balancing

Metadata Create a container cluster

Zones

maintenance. Learn more

Operations
Quotas
Container Engine

Click to Deploy

Figure 8-10. Container Engine Wizard

Once your cluster is up, you can submit containers to it—meaning that you can inter-
act with the underlying Kubernetes master node to launch a group of containers on
the set of nodes in your cluster. Groups of containers are defined as pods. This is the
same concept introduced in Recipe 8.9. The gcloud CLI gives you a convenient way
to define simple pods and submit them to the cluster. Next you are going to launch a
container using the tutum/wordpress image, which contains a MySQL database. When
you installed the gcloud CLI, it also installed the Kubernetes client kubectl. You can
verify that kubectl is in your path. It will use the configuration that was autogener-
ated when you created the cluster. This will allow you to launch containers from your
local machine on the remote container cluster securely:

$ kubectl run wordpress --image=tutum/wordpress --port=80
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
wordpress-0d581 1/1 Running © im

Once the container is scheduled on one of the cluster nodes, you need to create a

Kubernetes service to expose the application running in the container to the outside
world. This is done again with kubectl:

$ kubectl expose rc wordpress --create-external-load-balancer=true
NAME LABELS SELECTOR IP(S) PORT(S)
wordpress run=wordpress run=wordpress 80/TCP

256 | Chapter8: Dockerin the Cloud

The expose command creates a Kubernetes service (one of the three Kubernetes
primitives with pods and replication controllers) and it also obtains a public IP
address from a load-balancer. The result is that when you list the services in your
container cluster, you can see the wordpress service with an internal IP and a public IP
where you can access the WordPress UI from your laptop:

$ kubectl get services

NAME LABELS SELECTOR IP(S) PORT(S)

wordpress run=wordpressil run=wordpress 10.95.252.182 80/TCP
104.154.82.185

You will then be able to enjoy WordPress.

Discussion

The kubectl CLI can be used to manage all resources in a Kubernetes cluster (i.e.,
pods, services, replication controllers, nodes). As shown in the following snippet of
the kubectl usage, you can create, delete, describe, and list all of these resources:

$ kubectl -h
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/GoogleCloudPlatform/kubernetes.
Usage:
kubectl [flags]

kubectl [command]

Available Commands:

get Display one or many resources

describe Show details of a specific resource or group of resources
create Create a resource by filename or stdin

replace Replace a resource by filename or stdin.

patch Update field(s) of a resource by stdin.

delete Delete a resource by filename, stdin, resource and name, or ..

Although you can launch simple pods consisting of a single container, you can also
specify a more advanced pod defined in a JSON or YAML file by using the - f option:

$ kubectl create -f /path/to/pod/pod.json

In Recipe 8.9, you saw an example of a pod in YAML. Here let’s write your pod in a
JSON file, using the newly released Kubernetes v1 API version. This pod will start
Nginx:
{

"kind": "Pod",

"apiVersion": "vi1",

"metadata": {

"name": "nginx",

8.10 Using Kubernetes in the Cloud viaGCE | 257

"labels": {
llappll: "nginx"

}
1,
"spec": {
"containers": [
{
"name": "nginx",
"image": "nginx",
"ports": [
{
"containerPort": 80,
"protocol": "TCP"
}
1
}
1

Start the pod and check its status. Once it is running and you have a firewall with port
80 open for the cluster nodes, you will be able to see the Nginx welcome page. Addi-
tional examples are available on the Kubernetes GitHub page.

$ kubectl create -f nginx.json

pods/nginx

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx 1/1 Running © 20s
wordpress 1/1 Running 0 17m

To clean things up, remove your pods, exit the master node, and delete your cluster:

$ kubectl delete pods nginx
$ kubectl delete pods wordpress
$ gcloud container clusters delete cook

See Also

Cluster operations
Pod operations
Service operations

Replication controller operations

258

| Chapter 8: Docker in the Cloud

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples
https://cloud.google.com/container-engine/docs/clusters/operations
https://cloud.google.com/container-engine/docs/pods/operations
https://cloud.google.com/container-engine/docs/services/operations
https://cloud.google.com/container-engine/docs/services/operations

8.11 Setting Up to Use the EC2 Container Service

Problem

You want to try the new Amazon AWS EC2 container service (ECS).

Solution

ECS is a generally available service of Amazon Web Services. Getting set up to test
ECS involves several steps. This recipe summarizes the main steps, but you should
refer to the official documentation for all details:

1. Sign up for AWS if you have not done so.

2. Log in to the AWS console. Review Recipe 8.1 and Recipe 8.2 if needed. You will
launch ECS instances within a security group associated with a VPC. Create a
VPC and a security group, or ensure that you have default ones present.

3. Go to the IAM console and create a role for ECS. If you are not familiar with
IAM, this step is a bit advanced and can be followed step by step on the AWS
documentation for ECS.

4. For the role that you just created, create an inline policy. If successful, when you
select the Show Policy link, you should see Figure 8-11. See the discussion section
of this recipe for an automated way of creating this policy using Boto.

8.1 Setting Up to Use the EC2 Container Service | 259

http://bit.ly/ecs-setup
http://aws.amazon.com
http://bit.ly/ecs-setup
http://bit.ly/ecs-setup
http://bit.ly/ecs-setup
http://docs.pythonboto.org/en/latest/

Show Policy

{
"Version": "2@012-10-17",
"Statement”: [

"Effect”: "Allow",

"Action”: [
“ecs:CreateCluster”,
“ecs:RegisterContainerInstance”,
“ecs:DeregisterContainerInstance”,
"ecs:DiscoverPollEndpoint”,
"ecs:Ssubmit*",
“ecs:Poll”

1

s
"Resource”: [
e

Figure 8-11. ECS policy in IAM role console

5. Install the latest AWS CLI. The ECS API is available in version 1.7.0 or greater.
You can verify that the aws ecs commands are now available:

$ sudo pip install awscli

$ aws --version

aws-cli/1.7.8 Python/2.7.9 Darwin/12.6.0
$ aws ecs help

ECS() ECS()
NAME

ecs -
DESCRIPTION

Amazon EC2 Container Service (Amazon ECS) is a highly scalable,
fast, container management service that makes it easy to run,
stop, and manage Docker containers on a cluster of Amazon

EC2 instances. Amazon ECS lets you launch and stop
container-enabled applications with simple API calls, allows
you to get the state of your cluster from a centralized service,
and gives you access to many familiar Amazon EC2 features like
security groups, Amazon EBS volumes, and IAM roles.

260 | Chapter8: Dockerin the Cloud

http://aws.amazon.com/cli/

6. Create an AWS CLI configuration file that contains the API keys of the IAM user
you created. Note the region being set is us-east-1, which is the Northern Vir-
ginia region where ECS is currently available:

$ cat ~/.aws/config

[default]

output = table

region = us-east-1

aws_access_key_1id = <your AWS access key>
aws_secret_access_key = <your AWS secret key>

Once you have completed all these steps, you are ready to use ECS. You need to create
a cluster (see Recipe 8.12), define tasks corresponding to containers, and run those
tasks to start the containers on the cluster (see Recipe 8.13).

Discussion

Creating the IAM profile and the ECS policy for the instances that will be started to
form the cluster can be overwhelming if you have not used AWS before. To facilitate
this step, you can use the online code accompanying this book, which uses the Python
Boto client to create the policy.

Install Boto, copy /.aws/config to /.aws/credentials, clone the repository, and execute
the script:

$ git clone https://github.com/how2dock/docbook.git
$ sudo pip install boto

$ cp ~/.aws/config ~/.aws/credentials

$ cd cho8/ecs

$./ecs-policy.py

This script creates an ecs role, an ecspolicy policy, and a cookbook instance profile.
You can edit the script to change these names. After completion, you should see the
role and the policy in the IAM console.

See Also

e Video of an ECS demo

o ECS documentation

8.12 Creating an ECS Cluster

Problem

You are set up to use ECS (see Recipe 8.11). Now you want to create a cluster and
some instances in it to run containers.

8.12 Creating an ECS Cluster | 261

http://docs.pythonboto.org/en/latest/
https://console.aws.amacon.con/iam/home#roles
https://aws.amazon.com/blogs/compute/amazon-ecs-video-demo/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html

Solution

Use the AWS CLI that you installed in Recipe 8.11 and explore the new ECS APIL In

this recipe, you will learn to use the following:

By default, you have one cluster in ECS, but until you have launched an instance in

aws ecs list-clusters

aws ecs create-cluster

aws ecs describe-clusters

aws ecs list-container-instances

aws ecs delete-cluster

that cluster, it is not active. Try to describe the default cluster:

To activate this cluster, launch an instance using Boto. The AMI used is specific to
ECS and contains the ECS agent. You need to have created an SSH key pair to ssh
into the instance, and you need an instance profile associated with a role that has the

$ aws ecs describe-clusters

| DescribeClusters

mm e mm e e e e e e e e e m—mm—aa
|| failures

R R
| arn

R R
|| arn:aws:ecs:us-east-1:587534442583:cluster/default
R R

Currently you are limited to two ECS clusters.

ECS policy (see Recipe 8.11):

$ python

>>> import boto

>>> ¢ = boto.connect_ec2()

>>> c.run_instances('ami-34ddbe5c', \
key_name='ecs', \
instance_type='t2.micro', \
instance_profile_name='cookbook")

262

| Chapter 8: Docker in the Cloud

https://github.com/aws/amazon-ecs-agent

With one instance started, wait for it to run and register in the cluster. Then if you
describe the cluster again, you will see that the default cluster has switched to active
state. You can also list container instances:

$ aws ecs describe-clusters

| DescribeClusters |
B e T TR +
|| clusters ||
R R B R o +]
|| clusterArn | clusterName | status ||
R R B R o +]
|| arn:aws:ecs:us-east-1:587432148683:cluster/default | default | ACTIVE ||
R R B R o +]

$ aws ecs list-container-instances

Starting additional instances increases the size of the cluster:

$ aws ecs list-container-instances

|| arn:aws:ecs:us-east-1:587342368683:container-instance/75738343-... ||
| arn:aws:ecs:us-east-1:587423448683:container-instance/b457e535-... |
| arn:aws:ecs:us-east-1:584242468683:container-instance/e5c0Obe59-... |
| arn:aws:ecs:us-east-1:587421468683:container-instance/e62d3d79-... |

Since these container instances are regular EC2 instances, you will see them in your
EC2 console. If you have set up an SSH key properly and opened port 22 on the secu-
rity group used, you can also ssh to them:

$ ssh -1 ~/.ssh/id_rsa_ecs ec2-user@52.1.224.245

| ¢ __\ Amazon ECS-Optimized Amazon Linux AMI
N/

Image created: Thu Dec 18 01:39:14 UTC 2014
PREVIEW AMI

9 package(s) needed for security, out of 10 available

8.12 Creating an ECS Cluster | 263

Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-33-78 ~]$ docker ps
CONTAINER ID IMAGE

4bc4d480a362 amazon/amazon-ecs-agent:latest
[ec2-user@ip-172-31-33-78 ~]$ docker version
Client version: 1.6.2

Client API version: 1.18

Go version (client): go1.3.3

Git commit (client): 7c8fca2/1.6.2

0S/Arch (client): linux/amd64

Server version: 1.6.2

Server API version: 1.18

Go version (server): gol.3.3

Git commit (server): 7c8fca2/1.6.2

0S/Arch (server): linux/amd64

You see that the container instance is running Docker and that the ECS agent is a
container. The Docker version that you see will most likely be different, as Docker
releases a new version approximately every two months.

Discussion
Although you can use the default cluster, you can also create your own:

$ aws ecs create-cluster --cluster-name cookbook

| CreateCluster |
R P +
| cluster ||
B LR e PP B T Fommmmmaen +|
Il clusterArn | clusterName | status ||
B LR e PP B T Fommmmmaen +|
|| arn:aws:ecs:us-east-1:...:cluster/cookbook | cookbook | ACTIVE ||
B LR e PP B T Fommmmmaen +|
$ aws ecs list-clusters

| ListClusters

B e +

| clusterArns |

R e R +|

|| arn:aws:ecs:us-east-1:587264368683:cluster/cookbook ||
|| arn:aws:ecs:us-east-1:587264368683:cluster/default |

To launch instances in that freshly created cluster instead of the default one, you need
to pass some user data during the instance creation step. Via Boto, this can be
achieved with the following script:

#!/usr/bin/env python

import boto
import baseé64

264 | Chapter8: Dockerin the Cloud

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

userdata=
#!/bin/bash
echo ECS_CLUSTER=cookbook >> /etc/ecs/ecs.config

c = boto.connect_ec2()
c.run_1instances('ami-34ddbe5c’', \
key_name='ecs', \
instance_type='t2.micro', \
instance_profile_name='cookbook', \
user_data=base64.b64encode(userdata))

Once you are done with the cluster, you can delete it entirely with the aws ecs
delete-cluster --cluster cookbook command.

See Also

o The ECS agent on GitHub

8.13 Starting Docker Containers on an ECS Cluster

Problem

You know how to create an ECS cluster on AWS (see Recipe 8.12), and now you are
ready to start containers on the instances forming the cluster.

Solution

Define your containers or group of containers in a definition file in JSON format.
This will be called a task. You will register this task and then run it; it is a two-step
process. Once the task is running in the cluster, you can list, stop, and start it.

For example, to run Nginx in a container based on the nginx image from Docker
Hub, you create the following task definition in JSON format:

[

{
"environment": [],
"name": "nginx",
"image": "nginx",
"cpu": 10,
"portMappings": [
{

"containerPort": 80,
"hostPort": 80
}

]’

8.13 Starting Docker Containers on an ECS Cluster | 265

https://github.com/aws/amazon-ecs-agent

"memory": 10,
"essential": true

}
]

You can notice the similarities between this task definition, a Kubernetes Pod (Recipe
5.4) and a compose file (Recipe 7.1). To register this task, use the ECS register-
task-definition call. Specify a family that groups the tasks and helps you keep revi-
sion history, which can be handy for rollback purposes:
$ aws ecs register-task-definition --family nginx \
--cli-input-json file://SPWD/nginx.json

$ aws ecs list-task-definitions

| ListTaskDefinitions

R T e +
|| taskDefinitionArns |
B e LR T R +|
|| arn:aws:ecs:us-east-1:584523528683:task-definition/nginx:1 ||
B e LR T R +|

To start the container in this task definition, you use the run-task command and
specify the number of containers you want running. To stop the container, you stop
the task specifying it via its task UUID obtained from list-tasks, as shown here:

$ aws ecs run-task --task-definition nginx:1 --count 1
$ aws ecs stop-task --task 6223f2d3-3689-4b3b-a110-ea128350adb2

ECS schedules the task on one of the container instances in your cluster. The image is
pulled from Docker Hub, and the container started using the options specified in the
task definition. At this preview stage of ECS, finding the instance where the task is
running and finding the associated IP address isn’t straightforward. If you have multi-
ple instances running, you will have to do a bit of guesswork. There does not seem to
be a proxy service as in Kubernetes either.

Discussion

The Nginx example represents a task with a single container running, but you can
also define a task with linked containers. The task definition reference describes all
possible keys that can be used to define a task. To continue with our example of run-
ning WordPress with two containers (a wordpress one and a mysql one), you can
define a wordpress task. It is similar to a Compose definition (see Recipe 7.1) file to
AWS ECS task definition format. It will not go unnoticed that a standardization effort
among compose, pod, and task would benefit the community.

[
{
"image": "wordpress",
"name": "wordpress",
"cpu": 10,

266 | Chapter8: Dockerin the Cloud

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

"memory": 200,
"essential": true,
"links": [
"mysql”
1,
"portMappings": [
{
"containerPort": 80,
"hostPort": 80

1
1,
"environment": [
{
"name": "WORDPRESS_DB_NAME",
"value": "wordpress"
1,
{
"name": "WORDPRESS_DB_USER",
"value": "wordpress"
1,
{
"name": "WORDPRESS_DB_PASSWORD",
"value": "wordpresspwd"
1
1
},
{
"image": "mysql",
"pame": "mysql",
"cpu": 10,
"memory": 200,
"essential": true,
"environment": [
{
"name": "MYSQL_ROOT_PASSWORD",
"value": "wordpressdocker"
}s
{
"name": "MYSQL_DATABASE",
"value": "wordpress"
}s
{
"name": "MYSQL_USER",
"value": "wordpress"
}s
{
"name": "MYSQL_PASSWORD",
"value": "wordpresspwd"
}
1
}

8.13 Starting Docker Containers on an ECS Cluster

267

The task is registered the same way as done previously with Nginx, but you specify a
new family. But when the task is run, it could fail due to constraints not being met. In
this example, my container instances are of type t2.micro with 1GB of memory.
Since the task definition is asking for 500 MB for wordpress and 500 MB for mysql,
there’s not enough memory for the cluster scheduler to find an instance that matches
the constraints and running the task fails:

$ aws ecs register-task-definition --family wordpress \
--cli-input-json file://$PWD/wordpress.json
$ aws ecs run-task --task-definition wordpress:1 --count 1

| RunTask |
R e +
|| failures ||
R e T T +|
|| arn | reason |
R e T T +|

	arn:aws:ecs:us-east-1:587264368683:container-instance/...	RESOURCE:MEMORY	
	arn:aws:ecs:us-east-1:587264368683:container-instance/...	RESOURCE:MEMORY	
	arn:aws:ecs:us-east-1:587264368683:container-instance/...	RESOURCE:MEMORY	

You can edit the task definition, relax the memory constraint, and register a new task
in the same family (revision 2). It will successfully run. If you log in to the instance
running this task, you will see the containers running alongside the ECS agent:

$ aws ecs run-task --task-definition wordpress:2 --count 1
$ ssh -1 ~/.ssh/id_rsa_ecs ec2-user@54.152.108.134

| ¢ __\ Amazon ECS-Optimized Amazon Linux AMI
N/

[ec2-user@ip-172-31-36-83 ~]$ docker ps

CONTAINER ID IMAGE ... PORTS NAMES
36d590a206df wordpress:4 ... 0.0.0.0:80->80/tcp ecs-wordpress. .
893d1bd24421 mysql:5 ... 3306/tcp ecs-wordpress...

81023576f81e amazon/amazon-ecs ... 127.0.0.1:51678->51678/tcp ecs-agent

Enjoy ECS and keep an eye on improvements and general availability.

See Also

o Task definition reference

268 | Chapter8: Dockerin the Cloud

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

8.14 Starting an Application in the Cloud Using Docker
Support in AWS Beanstalk

Problem

You would like to deploy a Docker-based application in the cloud by just pushing
your Dockerfile. You want the cloud service to automatically spin up instances and
configure possible load-balancers.

Solution

Use AWS Elastic Beanstalk. Beanstalk uses AWS EC2 instances, and can automatically
create an elastic load-balancer, create a security group, and monitor the health of your
application and resources. Docker support in Beanstalk was announced in April
2014. Originally, Beanstalk supported only single-container applications, but recently
AWS announced a coupling between AWS ECS and Beanstalk. This coupling allows
you to let Beanstalk use an ECS cluster as an environment for your application and
run multiple containers per instances.

To illustrate Docker support in Beanstalk, you are going to set up a Beanstalk envi-
ronment using AWS CLI tools, and deploy the 2048 game using a single Dockerfile.
This is a variant of the official Beanstalk documentation.

To get started, you will need a few things:

o An AWS account (see Figure 8-1)
o The AWS CLI (see Recipe 8.2)

o Register for Beanstalk by accessing the console and following the onscreen
instructions

The application deployment consists of three steps:

1. Create a Beanstalk application with awscli.

2. Create a Beanstalk environment based on a Docker software stack (called a solu-
tion stack in Beanstalk).

3. Create your Dockerfile and deploy it using the eb CLI.

All these steps can be done via the AWS console. This recipe shows
a complete CLI-based deployment, but the output of the awscli
calls are truncated.

8.14 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk | 269

http://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/blogs/aws/aws-elastic-beanstalk-for-docker/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_ecs.html
http://gabrielecirulli.github.io/2048/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_docker_image.html
https://console.aws.amazon.com/elasticbeanstalk/

With the AWS CLI, create an application foobar, list the solution stacks, and pick the
Docker environment you need. Create a configuration template by using the solution
stack of your choice, and finally, create an environment:

$ aws elasticbeanstalk create-application --application-name foobar
$ aws elasticbeanstalk list-available-solution-stacks

$ aws elasticbeanstalk create-configuration-template
--application-name foobar
--solution-stack-name="64bit Amazon Linux 2014.09 vi1.2.1 \
running Docker 1.5.0"
--template-name foo

$ aws elasticbeanstalk create-environment
--application-name foobar
--environment-name cookbook
--template-name foo

At this point, if you head over to the AWS Beanstalk console, you will see a foobar
application and a cookbook environment being created. Once Beanstalk has finished
creating the environment, you can use the describe-environments API call and see
that the environment is ready. In the console, you will also see that an EC2 instance, a
security group, and an elastic load-balancer have been created. You can configure the
load-balancers through the Beanstalk console.

Going back to our CLI steps, check that the environment is ready:

$ aws elasticbeanstalk describe-environments

| DescribeEnvironments |
R R T T R +
Il Environments |
|- B R e T +|
|| ApplicationName | foobar |
|| CNAME | cookbook-pmpgzmx2e6.elasticbeanstalk.com |

	DateCreated	2015-03-30T15:32:47.814Z	
	DateUpdated	2015-03-30T15:38:14.291Z	
	EndpointURL	awseb-e-7-AWSEBLoa-CUXDVD6RLOR7-992275618.eu-west-1...	
	EnvironmentId	e-7hamntqgnw	
	EnvironmentName	cookbook	
	Health	Green	
	SolutionStackName	64bit Amazon Linux 2014.09 v1.2.1 running Docker 1.5.0]	
	Status	Ready	
4mmm e B e +			
[11 Tier [11			
R R LR +[1			
		Name	WebServer

|1l Type | Standard |

||| Version | |11
R R LR +[1

270 | Chapter8: Dockerin the Cloud

Once it is ready, you can push your Docker application to it. This is most easily done
by using the eb CLI, which unfortunately is not included in the awscli. To finish the
deployment, you will perform the following steps:

5.

1. Install the awsebcli.

2. Create your Dockerfile.
3.
4

. List the environment to make sure you are using the cookbook environment cre-

Initialize the application foobar that you created earlier.

ated previously.

Deploy the application.

Let’s do this: install awsebcl1, and create your application directory with our Docker-
file in it:

$ sudo pip install awsebcli
$ mkdir beanstalk

$ cd beanstalk

$ cat > Dockerfile

FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

RUN echo "daemon off;" >> /etc/nginx/nginx.conf

RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/ \

gabrielecirulli/2048/zip/master

RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && \
rm -rf 2048-master master.zip

EXPOSE 80

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

You can then use the eb CLI to initialize the application (using the application name
used in the preceding steps—foobar) and deploy it with eb deploy:

$ eb init foobar

$ eb list

* cookbook

$ eb deploy

Creating application version archive "app-150331_181300".

Uploading foobar/app-150331_181300.zip to S3. This may take a while.
Upload Complete.

INFO: Environment update is starting.

INFO: Successfully built aws_beanstalk/staging-app

INFO: Docker container ba7e79c37c43 is running aws_beanstalk/current-app.
INFO: New application version was deployed to running EC2 instances.
INFO: Environment update completed successfully.

8.14 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk | 271

Your application is now deployed. Head over to the Beanstalk console (shown in
Figure 8-12) and you will find the URL of the application. Click the URL and it will
open the 2048 game. This is fronted by an elastic load-balancer, which means that
increased load on the game will trigger the creation of additional instances serving
the game behind the load-balancer.

fl AWS ~ Services v sebastien ~ Ireland ~ Support ~
.r Elastic Beanstalk deploy ~ foobar ~ help ~ My First Elastic Beanstalk Application ¥ Create New Environment
foobar » cookbook (cookbook-e3h2ufjshe.elasticbeanstalk.com) Actions ~
Dashboard I
Overview 2 Refresh

Configuration

Logs Health Running Version
T -150331_181300
Monitoring Green app - %
i Upload and Depl
Alarms Monitor pload and Deploy doc er

Configuration

Events
64bit Amazon Linux 2014.09
Tags v1.2.1 running Docker 1.5.0
Change
Recent Events Show All

Time Type Details

2015-03-31 18:16:54 UTC+0200 INFO Environment update completed successfully.

Figure 8-12. AWS Beanstalk console

Discussion

In the preceding example, our application is encapsulated in a single Dockerfile with
no additional dependencies.

272 | Chapter8: Docker in the Cloud

CHAPTER 9
Monitoring Containers

9.0 Introduction

When operating distributed systems and distributed applications, you need access to
as much information as possible. You will never need to monitor a large number of
resources, extract trends, and trigger alerts. You will also need to collect logs from all
processes running in containers and aggregate those logs in data stores for further
indexing and searching. Finally, you will need to visualize all this information to
quickly navigate your application and debug it if need be.

This chapter starts with some Docker commands that give you basic debugging tools
that you can use in small-scale deployments or when you have to dive deeper into a
specific container. Recipe 9.1 introduces the docker inspect method that gives you
all the information about a container of an image. Recipe 9.2 shows you how to use
docker stats to get a stream of resource usage for a specific container. Finally,
Recipe 9.3 presents docker events, which listens to Docker events on a particular
host. These capabilities are available through the Docker API and hence can be used
through any Docker client that supports them.

As you build your application you will want to collect the logs of your services run-
ning in containers. This is not specifically monitoring, but logs can be used to derive
new metrics that you need to monitor. Docker provides a simple mechanism to look
at stdout of the foreground process running in a container, Recipe 9.4. You can also
redirect those logs to a remote syslog server of another log aggregation system like
Fluentd, which we show in Recipe 9.5. Prior to the log driver feature, a container was
made famous for solving the logging challenge in Docker, logspout. In Recipe 9.6 we
show you how logspout works. While it does not need to be used anymore it is still
an interesting system worth your time. To wrap up this section we show you how to
deploy an ELK stack using containers in Recipe 9.8. ELK stands for Elastic, Logstash,

273

and Kibana. Logstash is a log aggregator system that can feed data to Elastic. Elastic is
a distributed data store that provides efficient indexing and searching capability.
Kibana is a dashboard system to visualize data stored in Elastic. If you want an alter-
native to ELK you might like Recipe 9.11, which lays the foundation for using
InfluxDB as a data store and Grafana as a dashboard.

While docker stats gives you single-container usage statistics, you might want to
collect these metrics for multiple containers and aggregate them. Recipe 9.9 is an
advanced recipe that brings together multiple concepts. It features a two-hosts setup.
One host runs an ELK stack, and the other host runs logspout and collectd, which is
the system statistics collection daemon. What this recipe shows is that the resource
usage of all containers started on the second host will be collected by collectd via the
docker stats API and further aggregated by logspout, which will send the data to
the ELK setup. Certainly worth your time if you need to bring up your own monitor-
ing solution. While this setup works perfectly, Recipe 9.10 introduces cAdvisor, a
containerized solution to container monitoring. You can deploy cAdvisor on all your
Docker hosts and it will monitor all the rescue usage of all the containers running on
your hosts.

We finish this chapter with a look at Weave Scope in Recipe 9.12. This is a container
infrastructure visualization tool. If you imagine thousands of containers composing
your complete applications, having an interactive explorer for a distributed applica-
tion is very appealing. Weave Scope has the potential to fulfill that promise and give
you quick insight into your application.

9.1 Getting Detailed Information About a Container with
docker inspect

Problem

You want to get detailed information about a container—such as when it was created,
what command was passed to the container, what port mappings exist, what IP
address the container has, and so forth.

Solution

Use the docker inspect command. For example, start an Nginx container and use
inspect:

$ docker run -d -p 80:80 nginx
$ docker inspect kickass_babbage
[{
"AppArmorProfile": "",
"Args": [

".g",

274 | Chapter9: Monitoring Containers

https://influxdb.com
http://grafana.org
https://collectd.org

"daemon off;"

1,

"ExposedPorts": {
"443/tcp": {3,
"80/tcp": {}

1,

"NetworkSettings": {

"IPAddress": "172.17.0.3",

The inspect command also works on an image:

$ docker inspect nginx

[{

"Architecture": "amd64",

"Author": "NGINX Docker Maintainers \"docker-maint@nginx.com\"",

"Comment": ""

"Config": {
"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [

"nginx",
"-g",
"daemon off;"
1,
Discussion

The Docker inspect command takes a format option. You can use it to specify a
Golang template and extract specific information about a container or image instead
of getting the full JSON output:

$ docker inspect --help
Usage: docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]
Return low-level information on a container or image

-f, --format="" Format the output using the given go template.
--help=false Print usage

For example, to get the IP address of a running container and check its state:

$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' kickass_babbage
172.17.0.3

$ docker inspect -f '{{ .State.Running }}' kickass_babbage

true

9.1 Getting Detailed Information About a Container with docker inspect | 275

If you prefer to use another Docker client such as docker-py (see Recipe 4.10), you
can also access the detailed information about containers and images by using stan-
dard Python dictionary notation:

$ python

>>> from docker import Client

>>> c=Client(base_url="unix://var/run/docker.sock")

>>> c.inspect_container('kickass_babbage')['State']['Running']

True

>>> c.inspect_container('kickass_babbage')['NetworkSettings']['IPAddress']
u'172.17.0.3"

9.2 Obtaining Usage Statistics of a Running Container

Problem

You have a running container on one of your Docker hosts and would like to monitor
its resource usage (e.g., memory, CPU, network).

Solution

Use the docker stats command. This new API endpoint was introduced on Febru-
ary 10, 2015 and is accessible in Docker 1.5. The usage syntax is simple: you pass the
container name (or container ID) to it and receive a stream of statistics. Here you
start a Flask application container and run stats on it:

$ docker run -d -p 5000:5000 runseb/flask

$ docker stats dreamy_mccarthy

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/0
dreamy_mccarthy 0.03% 24.01 MiB/1.955 GiB 1.20% 648 B/648 B

Since you are receiving a stream, you will not press the Ctrl-C keys to kill the stream.

Discussion

Getting quick stats from the command line is useful for interactive debugging. How-
ever, you will most likely want to collect all these statistics and aggregate them with a
log collector solution like Logstash for futher visualization and analysis.

To prepare for such a monitoring framework, you can try to use the stats API via
curl, by issuing TCP requests to the Docker daemon. First you will need to configure
your local Docker daemon to listen on port 2375 over TCP. On Ubuntu systems,
edit /etc/default/docker to include the following:

DOCKER_OPTS="-H tcp://127.0.0.1:2375"

276 | Chapter9: Monitoring Containers

http://logstash.net

Restart your Docker daemon with sudo service docker restart. You are now
ready to use curl and target the Docker remote API. The syntax is again simple: it is
an HTTP GET request to the /containers/(id)/stats URL Try it like so:

$ $ docker -H tcp://127.0.0.1:2375 run -d -p 5001:5000 runseb/flask
$ curl http://127.0.0.1:2375/containers/agitated_albattani/stats
{"read":"2015-04-01T11:48:40.6094699132",\
"network":{"rx_bytes":648,"rx_packets":8,"...

Do not forget to replace agitated_albattani with the name of your container. You
will start receiving a stream of statistics that you can interrupt with Ctrl-C. For practi-
cal purposes, I truncated most of the results from the previous command. This is
handy for trying things out, but if (like me) you like Python, you might want to
access these statistics from a Python program. To do this, you can use docker-py (see
Recipe 4.10). A Python script like the one here will put you on the right track:

#!/usr/bin/env python

import json
import docker
import sys

cli=docker.Client(base_url="tcp://127.0.0.1:2375")
stats=cli.stats(sys.argv[1])
print json.dumps(json.loads(next(stats).rstrip('\n')),indent=4)

The stats object in this Python script is a generator, which yields
results instead of the standard return behavior of functions. It is
used to capture the statistics stream and pick up where it left off.
next(stats) in the script is the way to yield the latest result from
the stream.

See Also

o Original GitHub pull request for stats

o API documentation

9.3 Listening to Docker Events on Your Docker Hosts

Problem

You want to monitor Docker events on your host. You are interested in image untag-
ging and deletion and container life-cycle events (e.g., create, destroy, kill).

9.3 Listening to Docker Events on Your Docker Hosts | 277

http://bit.ly/container-stats
https://github.com/docker/docker/pull/9984
http://bit.ly/container-stats

Solution

Use the docker events command. It will return a stream of events as they happen on
your Docker host. The command takes a few optional arguments if you want to select
events for a specific time range:

$ docker events --help
Usage: docker events [OPTIONS]

Get real time events from the server

-f, --filter=[] Provide filter values (i.e., 'event=stop')
--help=false Print usage
--since="" Show all events created since timestamp

--until= Stream events until this timestamp

Although docker events will work and block until you Ctrl-C the stream, you can
use the --since or --until options like so:

$ docker events --since 1427890602
2015-04-01T12:17:04....9393146cb55e5bc9f04e20eb5a0622b3e26aae7: untag
2015-04-01T12:17:09....d5266f8777bfbad974ac56e3270e7760f6f0a81: untag
2015-04-01T12:17:22....d5266f8777bfba4974ac56e3270e7760f6f0a85: untag
2015-04-01T12:17:23....66f8777bfbad974ac56e3270e7760f6f0a81253: delete
2015-04-01T12:17:23....e9b5a793523481a0a18645fc77ad53c4eadsfa2: delete
2015-04-01T12:17:23....878585defcc1bc6f79d2728a13957871b345345: delete

Just as a reminder, you can get the current timestamp in Epoch
with date +"%s".

Discussion

This events command is also available as an API call, and you can use curl to access
it (see Recipe 9.2). Let’s leave this as an exercise and give an example of using docker -
py to get the list of events.

Recipe 9.2 reconfigured the Docker daemon to access the remote API over TCP. You
can also use docker -py to access the Unix Docker socket. A sample Python script that
would do this and save you some time to reconfigure the Docker daemon looks like
this:

#!/usr/bin/env python
import json

import docker

import sys

278 | Chapter9: Monitoring Containers

cli=docker.Client(base_url="unix://var/run/docker.sock")
events=cli.events(since=sys.argv[1],until=sys.argv[2])
for e in events:

print e

This script takes two timestamps as arguments and returns the events between these
two. An example output is as follows:

$./events.py 1427890602 1427891476

{"status":"untag","id":"967a84dbleff36cab6e77fe9c9393146c..."," "time":1427890624}
{"status":"untag","1d":"4986bf8c15363d1c5d15512d5266f8777...","time":1427890629}
{"status":"untag","id":"4986bf8c15363d1c5d15512d5266f8777...","time":1427890642}
{"status":"delete","1d":"4986bf8c15363d1c5d15512d5266f877...","time":1427890643}
{"status":"delete","1d":"ea13149945cb6b1e746bf28032f02e9b..."," "time":1427890643}
{"status":"delete","1d":"df7546f9f060a2268024c8a230d86398...","time":1427890643}

Event-based tools like StackStorm take advantage of this to orchestrate various parts
of a Docker base infrastructure.

See Also

o API documentation

9.4 Getting the Logs of a Container with docker logs

Problem

You have a running container that runs a process in the foreground within the con-
tainer. You would like to access the process logs from the host.

Solution

Use the docker logs command.

For example, start an Nginx container and open your browser on port 80 of the
Docker host:

$ docker run -d -p 80:80 nginx

$ docker ps

CONTAINER ID IMAGE ... PORTS NAMES

dd0e926c4015 nginx:latest ... 443/tcp, 0.0.0.0:80->80/tcp gloomy_mclean

$ docker logs gloomy_mclean

192.168.34.1 - - [10/Mar/2015:10:12:35 +0000] "GET / HTTP/1.1" 200 612 "-" ...
Discussion

You can get a continuous log stream by using the - f option:

9.4 Getting the Logs of a Container with docker logs | 279

http://stackstorm.com
http://bit.ly/monitor-events

$ docker logs -f gloomy_mclean
192.168.34.1 - - [10/Mar/2015:10:12:35 +0000] "GET / HTTP/1.1" 200 612 "-" ...

In addition, you can monitor the process running in the container with docker top:

$ docker top gloomy_mclean

UID PID PPID ... CMD
root 5605 4732 ... nginx: master process nginx -g daemon off;
syslog 5632 5605 ... nginx: worker process

9.5 Using a Different Logging Driver than the Docker
Daemon

Problem

By default, Docker provides container logs through JSON files. The logs are available
via the docker logs command (see Recipe 9.4). However, you would like to collect
and aggregate your logs differently, potentially using systems like syslog or jour
nald.

Solution

Start containers by using the - -log-driver option and specify a logging driver. This
feature was introduced in Docker 1.6, and various drivers are being added in new
Docker releases. With the logging driver functionality, you can direct the Docker logs
to syslog, journald, GELF (Graylog Extended Log Format), and Fluentd. You can
also disable any logging entirely by setting the driver to none: - -log-driver=none.
Each driver and its options are well documented.

When you define a logging driver different from the default json-
file driver, the docker logs command will not work.

\

You can use the logging driver functionality to redirect your logs to local syslog or
journald. But to illustrate this feature in a more advanced way, let’s use Fluentd to
collect all the logs of running containers. First you need to install the Fluentd pack-
ages on your Docker host. The easiest way to do this is to use the Treasure Data dis-
tribution of Fluentd called td-agent. If you trust their installation procedure, you can
get it via curl:

$ curl -L https://td-toolbelt.herokuapp.com/sh/\
install-ubuntu-trusty-td-agent2.sh | sh

280 | Chapter9: Monitoring Containers

https://www.graylog.org
http://www.fluentd.org
https://docs.docker.com/reference/logging/overview/
http://www.treasuredata.com

Once the package is installed, you need to configure td-agent, telling it to match cer-
tain events and redirect them to a specific location. For example, to match all Docker
events (which by default are tagged with docker.<CONTAINER_ID>) and redirect them
to stdout, edit the td-agent configuration file /etc/td-agent/td-agent.conf and add the
following line:

<match docker.**>

type stdout
</match>

Then restart the service:
$ sudo service td-agent restart

You are now ready to start using Fluentd to manage your Docker logs. Let’s start an
Nginx container and use this logging driver:

$ docker run -d -p 80:80 --name nginx --log-driver=fluentd nginx

Now if you access Nginx in your browser and then check the td-agent log file, you will
see the Docker logs:

$ tail -n 3 /var/log/td-agent/td-agent.log

2015-08-17 13:41:10 docker.dc3a645abfaa: {"log":"192.168.33.1 ...,\
"container_1id":"dc3a645abfaa...",\

"container_name":"/nginx",\
"source":"stdout"}

You see that the logs are prefixed with docker.<CONTAINER_ID>. If you wanted to pre-
fix the logs with something else, you could specify a different Go template (currently
{{.1D}}, {{.FulliD}}, {{.Name}}). For example, to prefix the logs with the name of
the container, use the log-opt option like so:

$ docker kill nginx
$ docker rm nginx
$ docker run -d -p 80:80 --name nginx \
--log-driver=fluentd \
--log-opt fluentd-tag=docker.{{.Name}} nginx

The logs will become similar to the following:

$ tail -n 3 /var/log/td-agent/td-agent.log

2015-08-17 13:43:45 docker./nginx: {"container_id":"e4152ad9bdba...",\

"container_name":"/stupefied_franklin",\

"source":"stdout",\

"log":"192.168.33.1 ...}
In this example, you redirected the logs to only the Fluentd logs themselves. This is
not extremely useful or practical. In a production deployment, you would redirect the
logs to a remote data store like elasticsearch, influxdb, or mongoDB, for example.

9.5 Using a Different Logging Driver than the Docker Daemon | 281

Discussion

In the solution section, you ran td-agent as a local service on the Docker host. You
could also run it in a local container. Lets write a configuration file in your working
directory called test.conf that contains the following:
<source>
type forward
</source>
<match docker.**>
type stdout
</match>
Then let’s start a fluentd container. You specify a volume mount to put your configu-
ration file in the running container and specify an environment variable that points
to this file:
$ docker run -it -d -p 24224:24224 -v [path/to/conf:/fluentd/etc \
-e FLUENTD_CONF=test.conf fluent/fluentd:latest
By default, the fluentd logging driver tries to reach a fluentd server on localhost at
port 24224. Therefore, if you run another container with the - - log-driver=fluentd
option, it will automatically reach fluentd running in the container.

Now start an Nginx container as you did earlier and watch the logs on the Fluentd
container with docker logs.

See Also

« Configuring logging drivers

o Fluentd logging driver for Docker documentation

9.6 Using Logspout to Collect Container Logs

Problem

Container logs can be obtained from docker logs, as seen in Recipe 9.4, but you
would like to collect these logs from containers running in multiple Docker hosts and
aggregate them.

Solution

Use logspout. Logspout can collect logs from all containers running on a host and
route them to another host. It runs as a container and is purely stateless. You can use
it to route logs to a syslog server or send it to Logstash for processing. Logspout was
created prior to the release of Docker 1.6, which introduced the logging driver (see

282 | Chapter9: Monitoring Containers

https://docs.docker.com/reference/logging/overview/
https://github.com/docker/docker/blob/master/docs/reference/logging/fluentd.md
https://github.com/gliderlabs/logspout
http://logstash.net

Recipe 9.5) functionality. You can still use Logspout, but the logging driver also gives
you a straightforward way to redirect your logs.

Let’s install Logspout on one Docker host to collect logs from an Nginx container.
You run nginx on port 80 of the host. Start logspout, mount the Docker Unix
socket /var/run/docker.sock in /tmp/docker.sock, and specify a syslog endpoint (here
you use another Docker host with the IP address of 192.168.34.11):

$ docker pull nginx

$ docker pull gliderlabs/logspout

$ docker run -d --name webserver -p 80:80 nginx

$ docker run -d --name logspout -v /var/run/docker.sock:/tmp/docker.sock \
gliderlabs/logspout syslog://192.168.34.11:5000

To collect the logs, you'll use a Logstash container running at 192.168.34.11. To sim-
plify things, it will listen for syslog input on UDP port 5000 and output everything to
stdout on the same host. Start by pulling the logstash image. (This example uses the
image ehazlett/logstash, but there are many Logstash images that you might want to
consider.) After pulling the image, you’ll build your own and specify a custom Log-
stash configuration file (this is based on the /etc/logstash.conf.sample from the eha-
zlett/logstash image):

$ docker pull ehazlett/logstash
$ cat logstash.conf
input {
tep {
port => 5000
type => syslog
}
}

filter {
if [type] == "syslog" {
grok {
match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} \
%{SYSLOGHOST :syslog_hostname} \
%{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?: \
%{GREEDYDATA:syslog_message}" }
add_field => ["received_at", "%{@timestamp}"]
add_field => ["received_from", "%{host}"]

}
syslog_pri { }
date {
match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]
}
}
}
output {
stdout { codec => rubydebug }
}

9.6 Using Logspout to Collect ContainerLogs | 283

$ cat Dockerfile
FROM ehazlett/logstash

COPY logstash.conf /etc/logstash.conf
ENTRYPOINT ["/opt/logstash/bin/logstash"]
$ docker build -t logstash .

You are now ready to run the Logstash container, and bind port 5000 of the container
to port 5000 of the host listening for UDP traffic:

$ docker run -d --name logstash -p 5000:5000/udp logstash -f /etc/logstash.conf

Once you open your browser to access Nginx running on the first Docker host you
used, logs will appear in the Logstash container:

$ docker logs logstash

{
"message" => "<14>2015-03-10T13:00:39Z 889bbf0753a8 nginx[1]: 192.168.34.1 - \

- [10/Mar/2015:13:00:39 +0000] \"GET / HTTP/1.1\" 200 612 \"-\"
\"Mozilla/5.0 \
(Macintosh; Intel Mac 0S X 10_8_5) \
ApplelWebKit/600.3.18 (KHTML, like Gecko) \
Version/6.2.3 Safari/537.85.12\" \"-\"\n",
"@version" => "1",
"@timestamp" => "2015-03-10T13:00:36.241Z",
"type" => "syslog",
"host" => "192.168.34.10",
"tags" => [

Discussion

To simplify testing Logspout with Logstash, you can clone the repository accompany-
ing this book and go to the ch09/logspout directory. A Vagrantfile will start two
Docker hosts and pull the required Docker images on each host:

$ git clone https://github.com/how2dock/docbook.git
$ vagrant up

$ vagrant status

Current machine states:

w running (virtualbox)
elk running (virtualbox)

On the web server node, you can run Nginx and the Logspout container. On the elk
node, you can run the Logstash container:

$ vagrant ssh w

$ docker run --name nginx -d -p 80:80 nginx

$ docker run -d --name logspout -v /var/run/docker.sock:/tmp/docker.sock \
gliderlabs/logspout syslog://192.168.34.11:5000

284 | Chapter9: Monitoring Containers

$ vagrant ssh elk

$ cd /vagrant

$ docker build -t logstash .

$ docker run -d --name logstash -p 5000:5000/udp logstash -f /etc/logstash.conf
You should see your Nginx logs in the Logstash container. Experiment with more
hosts and different containers, and play with the Logstash plug-ins to store your logs
in different formats.

See Also

o Logstash website
« Configuration of Logstash

« Plug-ins for Logstash inputs, outputs, codecs, and filters

9.7 Managing Logspout Routes to Store Container Logs

Problem

You are using Logspout to stream your logs to a remote server, but you would like to
modify this endpoint. Specifically, you want to debug your containers by looking
directly at Logspout, change the endpoint it uses, or add more endpoints.

Solution

In Recipe 9.6, you might have noticed that the Logspout container has port 8000
exposed. You can use this port to manage routes via a straightfoward HTTP APIL

You can bind port 8000 to the host to access this API remotely, but as an exercise you
are going to use a linked container to do it locally. Pull an image that contains curl
and start a container interactively. Verify that you can ping the Logspout container
(here I assume that you have the same setup as in Recipe 9.6). Then use curl to
access the Logspout API at http://logspout:8000.

$ docker pull tutum/curl

$ docker run -ti --link logspout:logspout tutum/curl /bin/bash
root@c94adeacb7cc: /# ping logspout

PING logspout (172.17.0.10) 56(84) bytes of data.

64 bytes from logspout (172.17.0.10): icmp_seq=1 ttl=64 time=0.075 ms

root@c94adeacb7cc: /# curl http://logspout:8000/logs
logspout|[martini] Started GET /logs for 172.17.0.12:38353
nginx|192.168.34.1 [10/Mar/2015:13:57:38 +0000] "GET / HTTP/1.1" 200 ...
nginx|192.168.34.1 [10/Mar/2015:13:57:43 +0000] "GET / HTTP/1.1" 200 ...

9.7 Managing Logspout Routes to Store Container Logs | 285

http://logstash.net
http://logstash.net/docs/1.4.2/configuration
http://logstash.net/docs/1.4.2/index
http://logspout:8000

Discussion

To manage the log streams, the API exposes a /routes route. The standard HTTP
verbs GET, DELETE, and POST can be used to list, delete, and update the streaming end-
points, respectively:

root@1fbb2f9636a8: /# curl http://logspout:8000/routes

[
{
"1d": "e508de0c9689",
"target": {
"type": "syslog",
"addr": "192.168.34.11:5000"
}
}
1
root@1fbb2f9636a8:/# curl http://logspout:8000/routes/e508dedc9689
{
"{d": "e508de0c9689",
"target": {
"type": "syslog",
"addr": "192.168.34.11:5000"
}

}
root@1fbb2f9636a8:/# curl -X DELETE http://logspout:8000/routes/e508dedc9689

root@1fbb2f9636a8: /# curl http://logspout:8000/routes
[1
root@1fbb2f9636a8: /# curl -X POST \
-d '{"target": {"type": "syslog", \
"addr": "192.168.34.11:5000"}}"' \
http://logspout:8000/routes
{
"1d": "f60d30502654",
"target": {
"type": "syslog",
"addr": "192.168.34.11:5000"
}
}
root@1fbb2f9636a8: /# curl http://logspout:8000/routes
[
{
"id": "f60d30502654",
"target": {
"type": "syslog",
"addr": "192.168.34.11:5000"
}
}
1

286 | Chapter9: Monitoring Containers

You can create a route to Papertrail that provides automatic backup
to Amazon S3.

9.8 Using Elasticsearch and Kibana to Store and Visualize
Container Logs

Problem

Recipe 9.6 uses Logstash to receive logs and send them to stdout. However, Logstash
has many plug-ins that allow you to do much more. You would like to go further and
use Elasticsearch to store your container logs.

Solution

Start an Elasticsearch and a Kibana container. Kibana is a dashboard that allows you
to easily visualize and query your Elasticsearch indexes. Start a Logstash container by
using the default configuration from the ehazlett/logstash image:

$ docker run --name es -d -p 9200:9200 -p 9300:9300 ehazlett/elasticsearch
$ docker run --name kibana -d -p 80:80 ehazlett/kibana
$ docker run -d --name logstash -p 5000:5000/udp \

--link es:elasticsearch ehazlett/logstash \

-f /etc/logstash.conf.sample

Notice that the Logstash container is linked to the Elasticsearch
container. If you do not link it, Logstash will not be able to find the
Elasticsearch server.

With the container running, you can open your browser on port 80 of the Docker
host where you are running the Kibana container. You will see the Kibana default
dashboard. Select Sample Dashboard to extract some information from your index
and build a basic dashboard. You should see the logs obtained from hitting the Nginx
server, as shown in Figure 9-1.

9.8 Using Elasticsearch and Kibana to Store and Visualize Container Logs | 287

https://papertrailapp.com
http://logstash.net
http://logstash.net/docs/1.4.2/index
http://www.elasticsearch.com
http://www.elasticsearch.org/overview/kibana/

DOCUMENTS

010 3 of 3 avalable for paging

Fields O _source (select columns from the list to the left)

/ ("message’s"<1452015-08-10T13:36:552 8890bf07 5328 nginx{1) 192.168.34.1 5 +0000] V'GET / HTTP/1.1\" 304 0 \"\" 'Mozila/5.0 (Macintosh; Intel Mac OS X 10_8_5)

AppleWebKit/537 36 (KHTML, ke Gecko) Crrome/40.0.2214.111 SafarV/537 & imestamp™:”...
Type tofiter...
("message™" |6Z 883bL07 53a8 nginx[1): 192. 11 - 16 +0000] \'GET / HTTP/1.1\" 304 0 \"\" \'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5)

AppleWebKit/537 36 (KHTML, lke Gecko) Chvome/40.0.2214.111 imestamp...

{"message’:"<14>2015-03-10T13:37:122 88900I07 5388 nginx{ 1 192.168.34.1 - - 2 40000) VGET / HTTP/1.1\" 304 0 V™" \Mozila/5.0 (Macintosh; Intel Mac OS X 10_8_5)
AppleWebKIY/537.36 (KHTML, ke Gecko) Cvoma/40.0.2214.111 Safar/537 36\" \"\\n',"@ imestamps...

0 to 3 of 3 avalable for paging

Figure 9-1. Snapshot of a Kibana dashboard obtained with this recipe

Discussion

In the solution, Elasticsearch is running on a single container. The index created
when storing your logs streamed by Logspout will not persist if you kill and remove
the Elasticsearch container. Consider mounting a volume and backing it up to persist
your Elasticsearch data. In addition, if you need more storage and an efficient index,
you should create an Elasticsearch cluster across multiple Docker hosts.

9.9 Using Collectd to Visualize Container Metrics

Problem

In addition to visualizing application logs (see Recipe 9.8), you would like to monitor
container metrics such as CPU.

Solution

Use Collectd. Run it in a container on all hosts where you have running containers
that you want to monitor. By mounting the /var/run/docker.sock socket in a collectd
container, you can use a Collectd plug-in that uses the Docker stats API (see Recipe
9.2) and sends metrics to a Graphite dashboard running in a different host.

This is an advanced recipe that uses several concepts covered ear-
lier. Make sure to do Recipe 7.1 and Recipe 9.8 before doing this
recipe.

To test this, you'll use the following setup, with two Docker hosts. One runs four con-
tainers: an Nginx container used to generate dummy logs to stdout, a Logspout con-
tainer that will route all stdout logs to a Logstash instance, one that generates a syn-
thetic load (i.e., borja/unixbench), and one Collectd container. These four containers
can be started using Docker Compose.

288 | Chapter9: Monitoring Containers

https://collectd.org

The other host runs four containers as well: a Logstash container to collect the logs
coming from Logspout, an Elasticsearch container to store the logs, a Kibana con-
tainer to visualize those logs, and a Graphite container. The Graphite container also
runs carbon to store the metrics.

Figure 9-2 illustrates this two-host, eight-container setup.

User

S
J
—
| NPy Fp S —" p——— |
1
|

[Nginx Logspout

I
| \ \
A:p[Logstash —>[ElasticSearch

l

)

I

! . .
| Graphite + .

J:»[Carbon [Kibana

Unix Bench
synthetic load Gl
)
Compose definition i Compose definition
192.168.33.10 192.168.33.11
v v

Figure 9-2. Two-host, Collectd, Logstash, Kibana, Graphite setup

On the first host (the worker), you can start all the containers with Docker Compose
(see Recipe 7.1) using a YAML file like this one:

nginx:
image: nginx
ports:
- 80:80
logspout:
image: gliderlabs/logspout
volumes:
- Jvar/run/docker.sock:/tmp/docker.sock
command: syslog://192.168.33.11:5000
collectd:
build: .
volumes:
- /var/run/docker.sock:/var/run/docker.sock
load:
image: borja/unixbench

The Logspout container uses a command that specifies your Logstash endpoint.
Change the IP if you are running in a different networking environment. The Col-
lectd container is built by Docker Compose and based on the following Dockerfile:

9.9 Using Collectd to Visualize Container Metrics | 289

FROM debian:jessie

RUN

RUN
RUN

RUN
ADD
ADD
ADD
RUN

CMD

apt-get update && apt-get -y install \
collectd \

python \

python-pip

apt-get clean

pip install docker-py

groupadd -r docker && useradd -r -g docker docker
docker-stats.py /opt/collectd/bin/docker-stats.py
docker-report.py /opt/collectd/bin/docker-report.py
collectd.conf /etc/collectd/collectd.conf

chown -R docker /opt/collectd/bin

["/usr/sbin/collectd","-f"]

In the discussion section of this recipe, you will go over the scripts used in this Dock-

erfile.

On the second host (the monitor), you can start all containers with Docker Compose
(see Recipe 7.1) using a YAML file like this one:

es:
image: ehazlett/elasticsearch
ports:
- 9300:9300
- 9200:9200
kibana:
image: ehazlett/kibana
ports:
- 8080:80
graphite:
image: hopsoft/graphite-statsd
ports:
- 80:80
- 2003:2003
- 8125:8125/udp
logstash:
image: ehazlett/logstash
ports:
- 5000:5000

- 5000:5000/udp

volumes:

- Jroot/docbook/ch®9/collectd/logstash.conf:/etc/logstash.conf

links:

- es:elasticsearch

command: -f /etc/logstash.conf

290 |

Chapter 9: Monitoring Containers

Several nonofficial images are used in this setup: gliderlabs/logsp-
out, borja/unixbench, ehazlett/elasticsearch, ehazlett/kibana, eha-
zlett/logstash, and hopsoft/graphite-statsd. Check the Dockerfile of

\ these images on Docker Hub or build your own images if you do
not trust them.

Once all the containers are up on the two hosts, and assuming that you set up the
networking and any firewall that may exist properly (open ports on security groups if
you are using cloud instances), you will be able to access the Nginx container on port
80 of the worker host, the Kibana dashboard on port 8080 of the monitor host, and
the Graphite dashboard on port 80 of the monitor host.

The Graphite dashboard will show you basic CPU metrics coming from all the con-
tainers running on the worker host. See Figure 9-3 for what you should see.

Graphﬁe Login Documentation Dashboard flot events
Tree | Search | Auto-Completer Graphite Composer [=]
== Graphite I i 7™ 2% | From April 7, 2015 4:30 AM GMT+02 Until April 7, 2015 5:30 AM GMT+02:00
& D carbon 3000.0 G
(== collectd
3] ad0ded56b131
250006
=7 collectd_collectd_1 /
=7 docker-cpu y"

gmuge_cpuo 2000.0 G /
249 collectd_load_1
=3 docker-cpu 1500.0 6 /
=] gauge-cpud

N -
=23 collectd_logspout_1 1000.0 G —
={-Jdocker-cpu //,/
=] gauge-cpuo 500.0 G o
=17 collectd_nginx_1 L et —— -
= 53 docker-cpu o - ——
=lsauge-cpud 05:40 05:50 06:00 06:10 06:20
D stats W collectd. collectd_load_1 docker-cpu.gauge-cpud W collectd.collectd_collectd_1. docker-cpu. gauge-cpud
[[stats_counts M collectd collectd logspout_1 docker-cpu gauge-cpud [collectd collectd_nginx_1.docker-cpu gauge-cput
H [statsd
] User Graphs Graph Options + Graph Data | |Auto-Refresh

Figure 9-3. The Graphite dashboard showing CPU metrics for all containers

Discussion

You can get all the scripts used in this recipe by using the online material that comes
with this book. Clone the repository if you have not done so already and head over to
the docbook/ch09/collectd directory:

$ git clone https://github.com/how2dock/docbook.git
$ cd docbook/ch@9/collectd
$ tree

}— Dockerfile
}— README.md
}— vagrantfile

9.9 Using Collectd to Visualize Container Metrics | 291

— collectd.conf
}— docker-report.py
}— docker-stats.py
}— logstash.conf
}— monitor.yml

L— worker.yml

The Vagrantfile allows you to start two Docker hosts on your local machine to experi-
ment with this setup. However, you can clone this repository in two cloud instances
that have Docker and Docker Compose installed and then start all the containers. If
you use Vagrant, do the following:

$ vagrant up
$ vagrant ssh monitor
$ vagrant ssh worker

While using Vagrant for this recipe, I encountered several intermit-
tent errors as well as delays when downloading the images. Using
“ cloud instances with better network connectivity might be more
\ enjoyable.

The two YAML files are used to easily start all containers on the two hosts. Do not
run them on the same host:

$ docker-compose -f monitor.yml up -d
$ docker-compose -f worker.yml up -d

The logstash.conf ftile was discussed in Recipe 9.6. Go back to this recipe if you do not
understand this configuration file.

The Dockerfile is used to build a Collectd image and was shown in the solution sec-
tion earlier. It is based on a Debian Jessie image and installs docker-py (see Recipe
4.10) and a few other scripts.

Collectd uses plug-ins to collect metrics and send them to a data store (e.g., Carbon
with Graphite). In this setup, you use the simplest form of Collectd plug-in, which is
called an exec plug-in. This is defined in the collectd.conf file in the following section:

<Plugin exec>
Exec "docker" "/opt/collectd/bin/docker-stats.py"
NotificationExec "docker" "/opt/collectd/bin/docker-report.py"
</Plugin>
The Collectd process running in the foreground in the Collectd container will rou-
tinely execute the two Python scripts defined in the configuration file. This is also
why you copy them in the Dockerfile. The docker-report.py script outputs values to
syslog. This has the benefit that you will also collect them via your Logspout con-
tainer and see them in your Kibana dashboard. The docker-stats.py script uses the
Docker stats API (see Recipe 9.2) and the docker -py Python package. This script lists

292 | Chapter9: Monitoring Containers

https://collectd.org/wiki/index.php/Table_of_Plugins

all the running containers, and obtains the statistics for them. For the stats called
cpu_stats, it writes a PUTVAL string to stdout. This string is understood by Collectd
and sent to the Graphite data store (a.k.a Carbon) for storage and visualization. The
PUTVAL string follows the Collectd exec plug-in syntax:

#!/usr/bin/env python

import random
import json
import docker
import sys

cli=docker.Client(base_url="unix://var/run/docker.sock")
types = ["gauge-cpu0"]

for h in cli.containers():
if not h["Status"].startswith("uUp"):
continue
stats = json.loads(cli.stats(h["Id"]).next())
for k, v in stats.items():
if k == "cpu_stats":
print("PUTVAL %s/%s/%s N:%s" % (h['Names'][0].lstrip('/'), \
'docker-cpu', types[0], \
v['cpu_usage']['total_usage']))

The example plug-in in this recipe is minimal, and the statistics
need to be processed further. You might want to consider using this
Python-based plug-in instead.

See Also

o Collectd website

+ Collectd Exec plug-in

o Graphite website

o Logstash website

o Collectd Docker plug-in

9.9 Using Collectd to Visualize Container Metrics | 293

https://github.com/cloudwatt/docker-collectd-plugin
https://collectd.org
http://collectd.org/documentation/manpages/collectd-exec.5.shtml
http://graphite.wikidot.com
http://logstash.net
https://github.com/cloudwatt/docker-collectd-plugin

9.10 Using cAdvisor to Monitor Resource Usage
in Containers

Problem

Although Logspout (see Recipe 9.6) allows you to stream application logs to remote
endpoints, you need a resource utilization monitoring system.

Solution

Use cAdvisor, created by Google to monitor resource usage and performance of its
lemtfy containers. cAdvisor runs as a container on your Docker hosts. By mounting
local volumes, it can monitor the performance of all other running containers on that
same host. It provides a local web UL, exposes an API, and can stream data to
InfluxDB. Streaming data from running containers to a remote InfluxDB cluster
allows you to aggregate performance metrics for all your containers running in a
cluster.

To get started, let’s use a single host. Download the cAdvisor image as well as borja/
unixbench, an image that enables you to simulate a workload inside a container:

$ docker pull google/cadvisor:latest
$ docker pull borja/unixbench
$ docker run -v /var/run:/var/run:rw\
-v /[sys:/sys:ro \
-v /var/lib/docker/:/var/lib/docker:ro \
-p 8080:8080 \
-d\
--name cadvisor \
google/cadvisor:latest
$ docker run -d borja/unixbench

With the two containers running, you can open your browser at http://
<IP_DOCKER_HOST>:8080 and you will enjoy the cAdvisor UI (see Figure 9-4).
You will be able to browse the running containers and access metrics for each of
them.

294 | Chapter9: Monitoring Containers

https://github.com/google/cadvisor
https://github.com/google/lmctfy
https://github.com/google/cadvisor/blob/master/docs/api.md
http://influxdb.com
http://<IP_DOCKER_HOST>:8080
http://<IP_DOCKER_HOST>:8080

Total Usage
1.2
0.9
2
§ 0.6
0.3
0.0
3:57:40 PM 3:57:50 PM 3:56:00 PM 3:58:10 PM 3:58:20 PM 3:56:30 PM
M Total
Usage per Core
12
09
M
§ 06
03
0.0
3:57:40 PM 3:57:50 PM 3:66:00 PM 3:58:10 PM 3:58:20 PM 3:58:30 PM
M Core 0

Figure 9-4. The cAdvisor UI

See Also

o cAdvisor API documentation

9.10 Using cAdvisor to Monitor Resource Usage in Containers | 295

https://github.com/google/cadvisor/blob/master/docs/api.md

9.11 Monitoring Container Metrics with InfluxDB,
Grafana, and cAdvisor

Problem

You would like to use an alternative to Elastic/Logstash/Kibana for your logging and
monitoring stack.

Solution

Consider using cAdvisor (see Recipe 9.10) in conjunction with InfluxDB for storing
the time-series data, and Grafana for visualizing the information. cAdvisor collects
good metrics from the containers running on your Docker host, and has an InfluxDB
storage driver that enables you to store all the metrics as a time series in InfluxDB (a
distributed database for time-series data). Visualizing the data from InfluxDB can be
done with Grafana, an equivalent to Kibana.

The following is the basic setup for a single node. You would run cAdvisor, config-
ured to send data to an InfluxDB host, and you would run InfluxDB and Grafana. All
of these come as containers:

$ docker run -d -p 8083:8083 -p 8086:8086 \
-e PRE_CREATE_DB="db" \
--name influxdb \
tutum/influxdb:0.8.8

$ docker run -d -p 80:80 \
--link=influxdb:influxdb \
-e HTTP_USER=admin \
-e HTTP_PASS=root \
-e INFLUXDB_HOST=influxdb \
-e INFLUXDB_NAME=db \
--name=grafana \
tutum/grafana

$ docker run -v /var/run:/var/run:rw \
-v /[sys:/sys:ro \
-v /var/lib/docker/:/var/lib/docker:ro \
-p 8080:8080 \
--1link=influxdb:influxdb \
-d --name=cadvisor \
google/cadvisor:latest \
-storage_driver=influxdb \
-storage_driver_host=i1nfluxdb:8086 \
-storage_driver_db=db

In a multiple hosts setup, you would run only cAdvisor on all your nodes. InfluxDB
would be running in a distributed manner on several hosts, and Grafana might be
behind an Nginx proxy for load-balancing. Considering the fast pace of development

296 | Chapter9: Monitoring Containers

https://influxdb.com
http://grafana.org

of these systems and the changes going on in the images, you might have to adjust the
docker run commands shown previously to get a working system.

9.12 Gaining Visibility into Your Containers’ Layout with
Weave Scope

Problem

Building a distributed application based on a microservices architecture leads to hun-
dreds of (and potentially more) containers running in your data center. Visibility into
that application and all the containers that it's made of is crucial and a key part of
your overall infrastructure.

Solution

Weave Scope from Weaveworks provides a simple yet powerful way of probing your
infrastructure and dynamically creating a map of all your containers. It gives you
multiple views—per container, per image, per host, and per application—allowing
you to group containers and drill down on their characteristics.

It is open source and available on GitHub.

To facilitate testing, I prepared a Vagrant box, similar to many other recipes in this
book. Clone the repository with Git and launch the Vagrant box:

$ git clone https://github.com/how2dock/docbook.git
$ cd how2dock/ch@9/weavescope
$ vagrant up

The Vagrant box installs the latest Docker version (i.e., 1.6.2 as of this writing) and
installs Docker Compose (see Recipe 7.1). In the /vagrant folder, you will find a com-
pose file that gives you a synthetic three-tiered application made of two load-
balancers, two application containers, and three database containers. This is a toy
application meant to illustrate Weave Scope. Once the VM has booted, ssh into it, go
to the /vagrant folder, and launch Compose and the Weave Scope script (i.e., scope)
like so:

$ vagrant ssh

$ cd /vagrant

$ docker-compose up -d
$./scope launch

You will end up with eight containers running: seven for the tiered toy application
and one for Weave Scope. The toy application is accessible at http://
192.168.33.10:8001 or http://192.168.33.10:8002. Of course, the most interesting part
is the Weave Scope dashboard. Open your browser at http://192.168.33.10:4040 and
you will see something similar to Figure 9-5.

9.12 Gaining Visibility into Your Containers’ Layout with Weave Scope | 297

http://martinfowler.com/articles/microservices.html
http://weave.works
https://github.com/weaveworks/scope
http://192.168.33.10:8001
http://192.168.33.10:8001
http://192.168.33.10:8002
http://192.168.33.10:4040

w Wea\IESCOpe APPLICATIONS CONTAINERS HOSTS

BY NAME BY IMAGE

ONNO

vagrant__app1_1 weavescope
Vagrant-ubuntu-trusty-64 vagrant-ubuntu-trusty-64

vagrant_Ib1_1

vagrant-ubuptu-trusty-64

vagrant_app2_1

vagrapit-ubuntu-trusty-64

vagrant_db2_1 vagrant_db3_1 vagrant_db1_1 vagrant_|b2_1

vagrant-ubuntu-trusty-64 vagrant-ubuntu-trusty-64 vagrant-ubuntu-trusty-64 vagrant-ubuntu-trusty-64

Figure 9-5. The Weave Scope dashboard

Navigate through the UlI, explore the various grouping capabilities, and explore the
information of each container.

Discussion

Weave Scope is still in early development and considered pre-alpha as of this writing.
You should expect more features to be added to this open source product. Keeping an
eye on this visibility solution for Docker containers is definitely worthwhile.

Building from source is straightforward with a Makefile that builds a Docker image.

See Also

o Detect, Map, and Monitor Docker Containers with Weave Scope

298 | Chapter9: Monitoring Containers

http://bit.ly/dmm-weave

CHAPTER 10
Application Use Cases

10.0 Introduction

To finish this book, I will argue that Docker makes building distributed applications
painless. You now have all the tools in your arsenal to build a microservices applica-
tion that will scale within and outside of your datacenter. At the very least, deploying
existing distributed systems/frameworks is made easier because you need to only
launch a few containers. Docker Hub is full of MongoDB, Elastic, and Cassandra
images, and more. Assuming that you like what is inside those images, you can grab
them and run one or multiple containers, and you are done.

This last chapter presents a few use-cases that are meant as teasers and put you on
your way to building your own application. First in Recipe 10.1, Pini Reznik shows
you how to build a continuous integration pipeline with Docker and Jenkins. He then
shows you how to extend it and build a continuous deployment pipeline using Mesos
in Recipe 10.2.

In Recipe 10.3, we present an advanced recipe that show you how to build a dynamic
load-balancing setup. It leverages registrator with a consul key-value store and
confd. confd is a system to manage configuration templates. It watches keys in your
key-value store and upon modification of the values of those keys automatically re-
writes a configuration file based on a template. Using this setup you can, for example,
automatically reconfigure a load-balancer when new backends are added. This is key
to building an elastic load-balancer.

With Recipe 10.4, we build an S3-compatible object store, based on Cassandra run-
ning in Kubernetes and a software called pithos, which exposes an S3 API and man-
ages buckets in Cassandra. It scales automatically through the use of Kubernetes rep-
lication controllers.

299

https://hub.docker.com
http://pithos.io

In Recipe 10.5 and Recipe 10.6 we build a MySQL Galera cluster using Docker Net-
work. Docker network is still experimental at the time of writing but this recipe will
give you a great insight into what will be possible with it. With automatic container
linking, nodes of a MySQL Galera cluster can discover themselves on a multihost net-
work and build a cluster as if the containers were on a single host. This is extremely
powerful and will simplify distributed application design.

We finish with a Big Data example by deploying Spark, a large-scale data processing
system. You can run a Spark on a Kubernetes cluster but you can also run it on a
Docker Network-based infrastructure extremely easily. This last recipe shows you
how.

Enjoy this last chapter and hopefully it will spark your interest.

10.1 CI/CD: Setting Up a Development Environment

Contributed by Pini Reznik

Problem

You need a consistent and reproducible development environment for your Node.js
application. You don’t want to rebuild the Docker image every time you make small
changes to the Node.js sources.

Solution

Create a Docker image that includes all the required dependencies. Mount external
volumes during the development and use the ADD instruction in the Dockerfile for
distributing the image with the application to other developers.

First you need a Node.js Hello World application that includes two files:
app.js:

// Load the http module to create an http server.
var http = require('http');

// Configure our HTTP server to respond with Hello World to all requests.

var server = http.createServer(function (request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.end("Hello World");

s

// Listen on port 8000, IP defaults to "0.0.0.0"
server.listen(8000);

// Put a friendly message on the terminal
console.log("Server running at http://127.0.0.1:8000/");

300 | Chapter 10: Application Use Cases

http://spark.apache.org

package.json:
{

"name": "hello-world",
"description": "hello world",
"version": "0.0.1",
"private": true,
"dependencies": {

"express": "3.x"

}s
"scripts": {"start": "node app.js"}

}

To create the Docker image, you can use the following Dockerfile:

FROM google/nodejs

WORKDIR /app

ADD package.json /app/
RUN npm install

ADD . /app

EXPOSE 8000
CMD []
ENTRYPOINT ["/nodejs/bin/npm", "start"]

This Dockerfile installs all the application dependencies and adds the application to
the image, ready to be started by using the ENTRYPOINT instruction.

The order of the instructions in the Dockerfile is important.
Adding package.json and installing dependencies before the addi-
tion of the rest of the application will help to shorten the build time
in all cases when the application changes but dependencies remain
the same. This is because the ADD instruction invalidates the
Docker cache when any of copied files have been changed, and this
leads to the repetitive execution of all the commands that follow.

When you have your three files, you can build the Docker image and run a container:

$ docker build -t my_nodejs_image .
$ docker run -p 8000:8000 my_nodejs_1image

This starts a container with the application built into the image by the ADD instruc-
tion. To be able to test your application changes, you can mount a volume with the
source into the container by using the following command:

$ docker run -p 8000:8000 -v "SPWD":/app my_nodejs_image

This mounts the current folder with the latest sources inside the container as the
application folder. This way, you can inject the latest sources during the development
without rebuilding the image.

10.1 C1/CD: Setting Up a Development Environment | 301

To share the images between the developers and push the images to alternative testing
environments, you can use a Docker registry. The following commands build and
push the image to the specified Docker registry:

$ docker build -t <docker registry URL>:<docker registry port> \
/containersol/nodejs_app:<image tag>

$ docker push <docker registry URL>:<docker registry port>\
/containersol/nodejs_app:<image tag>

To simplify the work with the development environment and ease the future integra-
tion into a centralized testing environment, you can use the following three scripts:
build.sh, test.sh, and push.sh. These scripts will become a single command interface
for every common operation you are required to perform during the development.

build.sh:

#!/bin/bash

The first parameter passed to this script will be used as an image version.
If none is passed, latest will be used as a tag.
if [-z "${1}"]; then
version="latest"
else
version="${1}"
fi

cd nodejs_app
docker build -t localhost:5000/containersol/nodejs_app:${version} .
cd ..

test.sh:

#!/bin/bash

The first parameter passed to this script will be used as an image version.
If none is passed, latest will be used as a tag.
if [-z "${1}"]; then
version="T1latest"
else
version="${1}"
fi
docker run -d --name node_app_test -p 8000:8000 -v "$SPWD":/app localhost:5000/ \
containersol/nodejs_app:S${version}

echo "Testing image: localhost:5000/containersol/nodejs_app:${version}"

Allow the webserver to start up
sleep 1

Test will be successful if the webpage at the
following URL includes the word “success”

curl -s GET http://localhost:8000 | grep success
status=$?

302

| Chapter 10: Application Use Cases

Clean up the testing container
docker kill node_app_test
docker rm node_app_test

if [$status -eq 0] ; then
echo "Test succeeded"
else
echo "Test failed"
fi

exit $status

push.sh:
#!/bin/bash

The first parameter passed to this script will be used as an image version.
If none is passed, latest will be used as a tag.
if [-z "${1}"]; then
version="T1latest"
else
version="${1}"
fi

docker push localhost:5000/containersol/nodejs_app:"${version}"

Now you can build, test, and push the resulting image to a Docker registry by using
the following commands:

$./build.sh <version>
$./test.sh <version>
$./push.sh <version>

Discussion

It is generally a good practice to have a consistent set of build, test, and deployment
commands that can be executed in any environment, including development
machines. This way, developers can test the application in exactly the same way as it is
going to be tested in the continuous integration environment and catch the problems
related to the environment itself at earlier stages.

This example uses simple shell scripts, but a more common way to achieve the same
results is to use build systems such as Maven or Gradle. Both systems have Docker
plug-ins and can be easily used to build and push the images, using the same build
interface already used for compiling and packaging the code.

Our current testing environment has only a single container, but in case you need a
multicontainer setup, you can use docker-compose to set up the environment as well
as replace a simple curl/grep combination with more-appropriate testing systems
such as Selenium. Selenium is also available in a Docker container and can be

10.1 C1/CD: Setting Up a Development Environment | 303

deployed together with the rest of the application containers by using docker -
compose.

10.2 CI/CD: Building a Continuous Delivery Pipeline with
Jenkins and Apache Mesos

Contributed by Pini Reznik

Problem

You would like to set up a continuous delivery pipeline for an application packaged
using Docker containers.

Solution

Set up a Jenkins continuous integration server to deploy an application to a Mesos
cluster in case the tests are passing.

Figure 10-1 gives a graphical representation of the environment you are going to use
at the end of this recipe. The goal is to take an application from a development envi-
ronment, package it into a Docker container, push it to the Docker registry in case the
tests are passing, and tell Marathon to schedule the application on Mesos.

J,.%
b o

LT
@ EBM‘I QWAEI\'I on S vy

I i’!‘;“i_._sgig MESOS

s

dacker hu

srtamrsautons ikl &0

Figure 10-1. Continuous delivery pipeline using Jenkins and Apache Mesos

This recipe uses the previous example in Recipe 10.1. You can also see a way to set up
a Mesos cluster for development purposes in Recipe 7.2.

304 | Chapter 10: Application Use Cases

First you need to set up a Jenkins server. The easiest way is to use the following
Docker Compose configuration:
jenkins:
image: jenkins
volumes:
- jenkins-home:/var/jenkins_home

ports:
- "8080:8080"

The volumes defined in the preceding Compose file act as persistent storage to avoid
losing your build configurations and data every time you restart your Jenkins con-
tainer. It is the responsibility of the owner to back up and maintain those folders out-
side Docker containers.

Start Docker Compose with the following command:
$ docker-compose up

You get a functional Jenkins server running on the following address: http://localhost:
8080.

This was an easy task, but unfortunately not useful because you need to build an
image that includes your application and also need to start containers using the newly
built image to test your application. This is not possible in a standard Docker con-
tainer.
To solve this, you can add two more lines to docker-compose.yml:
jenkins:

image: jenkins

volumes:

- jenkins-home:/var/jenkins_home

- [var/run/docker.sock:/var/run/docker.sock

- Jusr/bin/docker: /usr/bin/docker

ports:
- "8080:8080"

Two new volumes will mount the socket used for the communication between
Docker client and server and add the Docker binary itself to act as a client. This way,

you can run Docker commands inside the Jenkins container, and they will be exe-
cuted on the host in parallel to the Jenkins container itself.

Another hurdle on the way toward a fully functional Jenkins server capable of run-
ning Docker commands is permissions. By default, /var/run/docker.sock is accessible
to root or anyone in the group called docker. The default Jenkins container is using a
user called jenkins to start the server. The Jenkins server does not belong to the
docker group, but even if it was in such a group inside the container, it still would not
get the access to the Docker socket, as groups” and users’ IDs differ between the host

10.2 C1/CD: Building a Continuous Delivery Pipeline with Jenkins and Apache Mesos | 305

http://localhost:8080
http://localhost:8080

and the containers running on it (with exception of root, which always has ID 0). To
solve this, you can use root to start the Jenkins server.

For this, you need to add a new user instruction to docker-compose.yml:

jenkins:
image: Jenkins
user: root
volumes:
- jenkins-home:/var/jenkins_home
- [var/run/docker.sock:/var/run/docker.sock
- Jusr/bin/docker: /usr/bin/docker
ports:
- "8080:8080"

Now, when you have a functional Jenkins server, you can deploy the Node.js applica-
tion described in Recipe 10.1.

In the Node.js recipe, you already have scripts to build, test, and push the image to a
Docker registry. You need to add a configuration file to schedule the application on
Mesos, using Marathon and another script to deploy the application.

You call the application configuration for Marathon app_marathon. json:

{
"id": "app",
"container": {
"docker": {
"image": "localhost:5000/containersol/nodejs_app:latest",
"network": "BRIDGE",
"portMappings": [
{"containerPort": 8000, "servicePort": 8000}

1
}
}s
"cpus": 0.2,
"mem": 512.0,

"instances": 1

}

This configuration uses our application Docker image that you are going to build
using Jenkins and deploy it on Mesos by using Marathon. This file also defines the
resources needed for your application and can also include a health check.

The last piece of the configuration is the deployment script that you are going to run
from Jenkins.

deploy.sh:
#!/bin/bash

marathon=<Marathon URL>

306 | Chapter 10: Application Use Cases

if [-z "${1}"]; then
version="1latest"
else
version="${1}"

fi

destroy old application
curl -X DELETE -H "Content-Type: application/json" \
http://${marathon}:8080/v2/apps/app

At this point we can query Marathon until the application is down.
sleep 1

these lines will create a copy of app_marathon.json and update the image
version. This is required for sing the cottect image tag, as the marathon
configuration file does not support variables.

cp -f app_marathon.json app_marathon.json.tmp

sed -1 "s/latest/${version}/g" app_marathon.json.tmp

post the application to Marathon

curl -X POST -H "Content-Type: application/json" \
http://${marathon}:8080/v2/apps \
-d@app_marathon. json.tmp

Now you can start the Jenkins server by using docker-compose and define the execu-
tion steps in the Jenkins job configuration. Figure 10-2 shows the UI where this con-
figuration can be done.

nodejs_app Config [Jenkins] - Mozilla Firefox

£ nodejs_app Config[... *

€) @ localhost:8080/jc » ¢||B~ Google Q w8 ¥ & =
Jenkins nodejs_app configuration
Build Triggers
Build after other projects are built ’f“}
Build periodically [2]
Poll SCM ®
Build
Execute shell iﬁl

Command |, shuild.sh ${BUILD_ID}
./test.sh ${BUILD ID}
./push.sh ${BUILD ID}
.fdeploy.sh S{BUILD ID}H

Add build step ~

Figure 10-2. The Jenkins UI

10.2 C1/CD: Building a Continuous Delivery Pipeline with Jenkins and Apache Mesos | 307

Discussion

There are multiple ways to solve the problem of starting containers from within a
container. Mounting a socket used by Docker for communication between the server
and client is one of them. Additional methods may include running a container
directly within a container using a privileged container. Another way is to configure
the Docker server to receive remote API calls and configure the Docker client within
the Jenkins container to communicate with it using a full URL. This requires config-
uring networking to allow communication between the server and the client.

10.3 ELB: Creating a Dynamic Load-Balancer with Confd
and Registrator

Problem

You want to build a dynamic load-balancer that gets dynamically reconfigured when
containers come and go.

Solution

The solution is based on registrator (see Recipe 7.13), which acts as a service-
discovery mechanism, and confd, which gets information from the key-value store
used by registrator and writes configuration files based on templates.

To illustrate this, you will build a simple one-node setup. A simple hostname applica-
tion will run in multiple containers. An Nginx load-balancer will front these contain-
ers to distribute the load among the containers. These containers will get automati-
cally registered in a Consul key-value store, thanks to registrator. Then confd will
pull information from Consul to write an Nginx configuration file. The load-balancer
(i.e., Nginx) will then get restarted using the new configuration. Figure 10-3 illus-
trates this example.

308 | Chapter 10: Application Use Cases

https://github.com/kelseyhightower/confd

Docker Host

Docker Daemon

: gliderlabs/registrator -v :
:": /var/run/docker.sock:/tmp/docker.sock !

eth0: 192.168.33.10

!

Network

Figure 10-3. Dynamic load-balancing schematic

To get started, you will reproduce the steps explained in Recipe 7.13. You will start a
Consul-based key-value store via a single container.

In production deployments, you will want to use a multinode
key-value store running separately from the nodes running your
application.

This is done easily with the Docker image progrium/consul, like so:

$ docker run -d -p 8400:8400 -p 8500:8500 -p 8600:53/udp
-h cookbook progrium/consul -server
-bootstrap -ui-dir /ui
Then you will start the registrator container and set the registry URI to consul://
192.168.33.10:8500/elb. The IP address of your Docker host will be different.

$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
-h 192.168.33.10 gliderlabs/registrator
-ip 192.168.33.10 consul://192.168.33.10:8500/elb

Next you will start your toy application. You can use your own and pull runseb/host
name, which is a simple application that returns the container ID. Start two of them at
first:

$ docker run -d -p 5001:5000 runseb/hostname
$ docker run -d -p 5002:5000 runseb/hostname

10.3 ELB: Creating a Dynamic Load-Balancer with Confd and Registrator | 309

If you check the Consul Ul, you will see that the two containers are properly regis-
tered, thanks to registrator, as shown in Figure 10-4.

G SERVICES NODES KEY/VALUE
6

ELB/HOSTNAME/ +

192.168.33.10:adoring_hodgkin:5000

l 192.168.33.10:sad_banach:5000

elb/hostname/192.168.33.10:sad_banach:5000

192.168.33.10:5001

e

UPDATE CANCEL DELETE KEY

Figure 10-4. Consul dynamic load-balancing nodes

Create an Nginx configuration file that acts as a load-balancer for these two applica-
tions. Assuming your Docker host is 192.168.33.10, the following example will
work:

events {
worker_connections 1024;

}

http {
upstream elb {
server 192.168.33.10:5001;
server 192.168.33.10:5002;

}

server {
listen 80;
location / {
proxy_pass http://elb;
}

310 | Chapter 10: Application Use Cases

}

Next start your Nginx container, binding port 80 of the container to port 80 of the
host, and mount your configuration file inside the container. Give your container a
name that will prove handy later:
$ docker run -d -p 80:80 -v /home/vagrant/nginx.conf:/etc/nginx/nginx.conf

--name elb nginx
At this stage, you have a basic load-balancing setup. The Nginx container exposes
port 80 on the host, and load balances two application containers. If you use curl to
send an HTTP request to your Nginx container, you will get the container ID of the
two application containers. It will look like this:

$ curl http://192.168.33.10
8eaab9c3lela
$ curl http://192.168.33.10
a970ec6274ca
$ curl http://192.168.33.10
8eaab9c3lela
$ curl http://192.168.33.10
a970ec6274ca

Up to now, there is nothing dynamic except the registration of the containers. To be
able to reconfigure Nginx when containers come and go, you need a system that will
watch keys in Consul and write a new Nginx configuration file when the values
change. That is where confd comes into play. Download a confd binary from the Git-
Hub release page.

The quick start guide is good. But we will go over the basic steps. First let’s create the
directories that will hold your configuration templates:

sudo mkdir -p /etc/confd/{conf.d,templates}

Next create a resource template, resource config. This file basically tells confd where
the configuration template is that you want to be managed and tells where to write
the configuration file after the values have been replaced. In /etc/confd/conf.d/
config.toml write:

[template]

src = "config.conf.tmpl"

dest = "/home/vagrant/nginx.conf"
keys = [

"/elb/hostname",
]
Now let’s write our Nginx template file in /etc/confd/templates/config.conf.tmpl. These
templates are Golang text templates, so anything that you can do in a Golang tem-
plate, you can do in this template:

10.3 ELB: Creating a Dynamic Load-Balancer with Confd and Registrator | 311

https://github.com/kelseyhightower/confd
https://github.com/kelseyhightower/confd/releases
https://github.com/kelseyhightower/confd/blob/master/docs/quick-start-guide.md
http://golang.org/pkg/text/template/#pkg-overview

events {
worker_connections 1024;

}

http {
upstream elb {
{{range getvs "/elb/hostname/*"}}
server {{.}};
{{end}}
}

server {
listen 80;

location / {
proxy_pass http://elb;
}

}

This template is a minimal Nginx load-balancing configuration file. You see that the
upstream defined as elb will have a set of servers that will be extracted from the /elb/
hostname/ keys stored in Consul.

Now that your templates are in place, lets try confd in a one-time shot mode. This
means that you will call confd manually, you will specify the type of backend (i.e., in
our case, Consul), and it will write the file /home/vagrant/nginx.conf (this was defined
as the dest key in the config.toml file):

$./confd -onetime -backend consul -node 192.168.33.10:8500

Since you have already written your nginx.conf file when you started the Nginx con-
tainer, the configuration file written by confd should be exactly the same. Now let’s
start a new application container and rerun the confd command:

$ docker run -d -p 5003:5000 runseb/hostname

$./confd -onetime -backend consul -node 192.168.33.10:8500

... ./confd[832]: WARNING Skipping confd config file.

... ./confd[832]: INFO /home/vagrant/nginx.conf has md5sum \
acf6552d92cb9eb79b1068cf40b8ecdf should be 001894b713827404d0c5e72e2a66844d
... ./confd[832]: INFO Target config /home/vagrant/nginx.conf out of sync

... ./confd[832]: INFO Target config /home/vagrant/nginx.conf has been updated

You see that confd detects that the configuration has changed and it writes a new
configuration file. When we start the new application container, registrator auto-
matically registers it in consul, and confd is able to detect this and write the new con-
figuration. Now since you did this as a one-time command, let’s restart the Nginx
container, and you will see that it will use the new configuration (which is accessible
via a volume mount in the Nginx container):

312 | Chapter 10: Application Use Cases

$ docker restart elb

$ curl http://192.168.33.10
a970ec6274ca

$ curl http://192.168.33.10
8eaab9c31lela

$ curl http://192.168.33.10
71d8297c1538

The only thing left to do now is to run confd in a daemon mode, and instruct it to
stop and restart the Nginx container when changes to the configuration are done. To
do this, edit /etc/confd/conf.d/config.toml and add a reload_cmd to restart Nginx like
so (this assumes you named your Nginx container elb as indicated earlier):

[template]
src = "config.conf.tmpl"
dest = "/home/vagrant/nginx.conf"
keys = [
"/elb/hostname",
1

reload_cmd = "docker restart elb"

Finally, run confd in daemon mode, and for testing, set a short interval for when it
will poll Consul. Then have fun starting and stopping your application container. You
will see that every time you start or stop/kill an application container, confd will
dynamically update your configuration and restart the elb container:

$./confd -backend consul -interval 5 -node 192.168.33.10:8500

... ./confd[1463]: WARNING Skipping confd config file.

... ./confd[1463]: INFO /home/vagrant/nginx.conf has md5sum \
acf6552d92cb9eb79b1068cf40b8ecOf should be 001894b713827404d0c5e72e2a66844d

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf out of sync

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf has been updated
... ./confd[1463]: INFO /home/vagrant/nginx.conf has md5sum \
001894b713827404d0c5e72e2a66844d should be cecb5ddc469ba3ef17f9861cde9d529a

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf out of sync

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf has been updated
... ./confd[1463]: INFO /home/vagrant/nginx.conf has md5sum \
cecb5ddc469ba3ef17f9861cde9d529a should be 0b97f157f437083ffbad3f93a426d28f

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf out of sync

... ./confd[1463]: INFO Target config /home/vagrant/nginx.conf has been updated

This is dynamic load balancing with Docker. To make it elastic, you would need to
monitor the load and automatically start a new application container, which would
trigger a reconfiguration of the elb configuration.

Discussion

This recipe is quite long and has many steps. To facilitate the testing, I prepared a
Vagrant box, as always; try this:

10.3 ELB: Creating a Dynamic Load-Balancer with Confd and Registrator | 313

$ git clone https://github.com/how2dock/dockbook.git
$ cd docbook/ch10/confd
$ vagrant up
$ vagrant ssh

You will have all the images downloaded and ready to go:

$ docker images

REPOSITORY TAG

progrium/consul latest
nginx latest
runseb/hostname latest

gliderlabs/registrator latest

IMAGE ID

e66fb6787628
319d2015d149
7c9d1ddd2ceb
b1c29d1a74a9

CREATED

10 days ago
3 weeks ago
3 months ago
4 months ago

VIRTUAL SIZE
69.43 MB
132.8 MB
349.3 MB
11.79 MB

And the confd configuration files will be already set in /etc/confd/conf.d/config.toml
and /etc/confd/templates/config.conf.tmp.

Just start the containers:

$ docker

$ docker

$ docker

$ docker
$ docker

run -d -p 8400:8400 -p 8500:8500 -p 8600:53/udp

-h cookbook progrium/consul -server
-bootstrap -ui-dir /ui

run -d -v /var/run/docker.sock:/tmp/docker.sock

-h 192.168.33.10 gliderlabs/registrator

-ip 192.168.33.10 consul://192.168.33.10:8500/elb
run -d -p 80:80 -v /home/vagrant/nginx.conf:/etc/nginx/nginx.conf

--name elb nginx

run -d -p 5001:5000 runseb/hostname
run -d -p 5002:5000 runseb/hostname

You can start those containers via Docker Compose (see Recipe

7.1).

And run confd:

$./confd -backend consul -interval 5 -node 192.168.33.10:8500

See Also

o Quick Start guide for confd

314 | Chapter 10: Application Use Cases

https://github.com/kelseyhightower/confd/blob/master/docs/quick-start-guide.md

10.4 DATA: Building an S3-Compatible Object Store with
Cassandra on Kubernetes

Problem

You would like to build your own S3-like object store.

Solution

Amazon S3 is the leading cloud-based object storage service. Since it came online,
several storage backends have developed an S3-compatible API frontend to their dis-
tributed storage system: RiakCS, GlusterFS, and Ceph. The Apache Cassandra dis-
tributed database is also a good choice, and recently a project called Pithos has started
that builds an S3-compatible object store on top of Cassandra.

This is particularly interesting because Cassandra is widely used in the enterprise.
However, for Docker this might be challenging as you would need to build a Cassan-
dra cluster using Docker containers. Thankfully, with a cluster manager/container
orchestration system like Kubernetes, it is relatively painless to run a Docker-based
Cassandra cluster. The Kubernetes documentation has an example of how to do it.

Therefore, to build our S3 object store, you are going to run a Cassandra cluster on
Kubernetes and run a Pithos frontend that will expose an S3-compatible AP

It is possible to do the same with Docker Swarm.

To start, you need to have access to a Kubernetes cluster. The easiest way is to use
Google Container Engine (see Recipe 8.10). If you do not want to use Google Con-
tainer Engine or need to learn about Kubernetes, check Chapter 5 and you will learn
how to deploy your own cluster. Whatever technique you use, before proceeding, you
should be able to use the kubectl client and list the nodes in your cluster. For example:

$./kubectl get nodes

NAME LABELS STATUS
k8s-cookbook-935a6530-node-hsdb kubernetes.io/hostname=...-node-hsdb Ready
k8s-cookbook-935a6530-node-mukh kubernetes.io/hostname=...-node-mukh Ready
k8s-cookbook-935a6530-node-t9p8 kubernetes.io/hostname=...-node-t9p8 Ready
k8s-cookbook-935a6530-node-ugp4 kubernetes.io/hostname=...-node-ugp4 Ready

You are now ready to start a Cassandra cluster. You can use the Kubernetes example
directly or clone my own repo:

10.4 DATA: Building an S3-Compatible Object Store with Cassandra on Kubernetes | 315

http://aws.amazon.com/s3/
http://docs.basho.com/riakcs/latest/
http://www.gluster.org
http://ceph.com
http://cassandra.apache.org
http://pithos.io
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/cassandra
https://cloud.google.com/container-engine/
https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/cassandra

$ git clone https://github.com/how2dock/dockbook.git
$ cd chO5/examples

Since Kubernetes is a fast evolving software, the API is changing
quickly. The pod, replication controller, and service specification
files may need to be adapted to the latest API version.

Then launch the Cassandra replication controller, increase the number of replicas,
and launch the service:

$ kubectl create -f ./cassandra/cassandra-controller.yaml
$ kubectl scale --replicas=4 rc cassandra
$ kubectl create -f ./cassandra/cassandra-service.yaml

Once the image is downloaded, you will have your Kubernetes pods in a running
state. Note that the image currently used comes from the Google registry. Thats
because this image contains a discovery class specified in the Cassandra configura-
tion. You could use the Cassandra image from Docker Hub but would have to put
that Java class in there to allow all Cassandra nodes to discover each other. Changing
the number of replicas allows you to scale your Cassandra cluster, and starting a ser-
vice allows you to expose a DNS endpoint for it.

Check that the specified number of pods is running:
$ kubectl get pods --selector="name=cassandra"

Once Cassandra discovers all nodes and rebalances the database storage, you will get
something like this (it will depend on the number of replicas you set, and the IDs will
change):

$./kubectl exec cassandra-5f709 -c cassandra nodetool status
Datacenter: datacenterl

Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack

UN 10.16.2.4 84.32 KB 256 46.0% 8a0c8663-074f-4987... rackl
UN 10.16.1.3 67.81 KB 256 53.7% 784c8f4d-7722-4d16... rackl
UN 10.16.0.3 51.37 KB 256 49.7% 2f551b3e-9314-4f12... rackl
UN 10.16.3.3 65.67 KB 256 50.6% a746b8b3-984f-4ble... rackl

You can access the logs of a container in a pod with the handy
kubectl logs command.

316 | Chapter 10: Application Use Cases

Now that you have a fully functioning Cassandra cluster, you can move on to launch-
ing Pithos, which will provide the S3 API and use Cassandra as the object store.

Pithos is a daemon that “provides an S3-compatible frontend to a Cassandra cluster”
So if you run Pithos in your Kubernetes cluster and point it to your running Cassan-
dra cluster, you can expose an S3-compatible interface.

To that end, I created a Docker image for Pithos, runseb/pithos, on Docker Hub. It’s
an automated build, so you can check out the Dockerfile there. The image contains
the default configuration file. You will want to change it to edit your access keys and
bucket store definitions.

You will now launch Pithos as a Kubernetes replication controller and expose a ser-
vice with an external load-balancer created on GCE. The Cassandra service that you
launched allows Pithos to find Cassandra by using DNS resolution.

However, you need to set up the proper database schema for the object store. This is
done through a bootstrapping process. To do it, you need to run a nonrestarting pod
that installs the Pithos schema in Cassandra. Use the YAML file from the example
directory that you cloned earlier:

$ kubectl create -f ./pithos/pithos-bootstrap.yaml

Wait for the bootstrap to happen (i.e., for the pod to get in succeed state). Then launch
the replication controller. For now, you will launch only one replica. Using a replica-
tion controller makes it easy to attach a service and expose it via a public IP address.

$ kubectl create -f ./pithos/pithos-rc.yaml

$ kubectl create -f ./pithos/spithos.yaml

$./kubectl get services --selector="name=pithos"

NAME LABELS SELECTOR IP(S) PORT(S)

pithos name=pithos name=pithos 10.19.251.29 8080/TCP
104.197.27.250

Since Pithos will serve on port 8080 by default, make sure that you open the firewall
for the public IP of the load-balancer. Once the Pithos pod is in its running state, you
are done and have built an S3-compatible object store backed by Cassandra running
in Docker containers managed by Kubernetes. Congratulations!

Discussion

The setup is interesting, but you need to be able to use it and confirm that it is indeed
S3 compatible. To do this, you can try the well-known S3 utilities like s3cmd or boto.

For example, start by installing s3cmd and create a configuration file:

$ cat ~/.s3cfg

[default]

access_key = AKIAIOSFODNN7EXAMPLE

secret_key = wJalrXUtnFEMI/K7MDENG/bPXRfiCYEXAMPLEKEY

10.4 DATA: Building an S3-Compatible Object Store with Cassandra on Kubernetes | 317

http://pithos.io
http://s3tools.org/s3cmd

check_ssl_certificate = False
enable_multipart = True
encoding = UTF-8

encrypt = False

host_base = s3.example.com
host_bucket = %(bucket)s.s3.example.com
proxy_host = 104.197.27.250
proxy_port 8080
server_side_encryption = True
signature_v2 = True

use_https = False

verbosity = WARNING

Replace the proxy_host with the IP that you obtained from the Pithos service external
load-balancer.

This example uses an unencrypted proxy. Moreover, the access and
secret keys are the default stored in the Dockerfile; change them.

\

With this configuration in place, you are ready to use s3cmd and create buckets to
store content:

$ s3cmd mb s3://foobar

Bucket 's3://foobar/' created
$ s3cmd 1s

2015-06-09 11:19 s3://foobar

If you wanted to use Boto in Python, this would work as well:

#!/usr/bin/env python

from boto.s3.key import Key
from boto.s3.connection import S3Connection
from boto.s3.connection import OrdinaryCallingFormat

apikey="AKIAIOSFODNN7EXAMPLE'
secretkey="wJalrXUtnFEMI/K7MDENG/bPxRf{1CYEXAMPLEKEY"

cf=0rdinaryCallingFormat()

conn=S3Connection(aws_access_key_1id=apikey,
aws_secret_access_key=secretkey,
is_secure=False,host="'104.197.27.250",
port=8080,
calling_format=cf)

conn.create_bucket('foobar")

318 | Chapter 10: Application Use Cases

https://github.com/runseb/pithos
https://github.com/boto/boto3

And that’s it. All of these steps may sound like a lot, but it has never been that easy to
run an S3 object store. Docker truly makes running distributed applications a breeze.

10.5 DATA: Building a MySQL Galera Cluster on
a Docker Network

Problem

You would like to deploy a MySQL Galera cluster on two Docker hosts, taking advan-
tage of the new Docker Network feature (see Recipe 3.14). Galera is a multimaster
high-availability MySQL database solution.

Solution

Docker Network, which you saw in Recipe 3.14, can be used to build a network over-
lay using the VXLAN protocol across multiple Docker hosts. The overlay is useful as
it gives containers IP addresses in the same routable subnet and also manages name
resolution by updating /etc/hosts on each container. Therefore, every container
started in the same overlay can reach the other ones by using their container names.

This significantly simplifies networking across hosts, and makes a lot of solutions that
have been built for single hosts also valid for a multiple-hosts setup.

At time of this writing Docker Network is in preview in the experi-
mental Docker binaries (i.e., 1.8.0-dev). It should be available in
“ Docker 1.9. The use of a Consul server may not be needed in the
future.

To build your Galera cluster on two Docker hosts, you will start by setting up the
hosts with the experimental Docker binary. You will then follow the instructions
described in a blog post. The setup of this recipe is the same as the one depicted in
Recipe 3.14. You will start several containers on each node by using the erkules/
galera:basic image from Docker Hub.

As always, let’s use a Vagrant box from the repository accompanying this book:

$ git clone https://github.com/how2dock/dockbook.git
$ cd dockbook/ch10/mysqlgalera

$ vagrant up

$ vagrant status

Current machine states:

consul-server running (virtualbox)
mysql-1 running (virtualbox)
mysql-2 running (virtualbox)

10.5 DATA: Building a MySQL Galera Cluster on a Docker Network | 319

http://galeracluster.com
http://galeracluster.com/2015/05/getting-started-galera-with-docker-part-1/

The consul-server machine is currently used by Docker Network, but this may
change. Currently we use this Consul server as a key-value store; the Docker engine
on each host uses it to store information about each host. As a reminder, check the
Vagrantfile and see the DOCKER_OPTS specified at start-up; you will see that we also
define a default overlay network called multihost.

Once the machines are up, ssh to the first one and start the first node of your Galera
cluster by using the image erkules/galera:basic. You can check the reference to see
what is in the Dockerfile used to build this image.

Let’s do it:

$ vagrant ssh mysql-1
$ docker run -d --name nodel -h nodel erkules/galera:basic \
--wsrep-cluster-name=local-test \
--wsrep-cluster-address=gcomm://

Get on host mysql-2 and start two additional Galera nodes. Note that you use the
node name node1 for the cluster address. This will work because Docker Network will
automatically properly define the /etc/hosts file and it will contain the IP address of
nodel, node2, and node3. Since the three containers are in the same overlay, they will
be able to reach one another without any port mapping, container linking, or other
more complex network setup:

$ vagrant ssh mysql-2
$ docker run --detach=true --name node2 -h node2 erkules/galera:basic \
--wsrep-cluster-name=local-test \
--wsrep-cluster-address=gcomm: //nodel
$ docker run --detach=true --name node3 -h node3 erkules/galera:basic \
--wsrep-cluster-name=local-test \
--wsrep-cluster-address=gcomm: //nodel

Back on mysql-1, you will see that after a short time, the two nodes started on
mysql-2 have automatically joined the cluster:

$ docker exec -ti nodel mysql -e 'show status like "wsrep_cluster_size"'

B LR Fommmmm- +
| Variable_name | value |
B LR Fommmmm- +
| wsrep_cluster_size | 3 |
B LR Fommmmm- +

And indeed the /etc/hosts file on the nodel container has the IP address of the other
two nodes:

$ docker exec -ti nodel cat /etc/hosts

1.0.6 nodel.multihost
172.21.0.6 nodel
172.21.0.8 node2
172.21.0.8 node2.multihost

320 | Chapter 10: Application Use Cases

http://galeracluster.com/2015/05/getting-started-galera-with-docker-part-1/

172.21.0.9 node3
172.21.0.9 node3.multihost

This recipe is interesting because using Docker Network allows you to use the exact
same deployment methodology that you would have used on a single Docker host.

Discussion

Try adding more Galera nodes, killing some, and you will see that the cluster size
varies.

See Also

« Blog post on building a Galera cluster on a single Docker host

« Blog post on building a Galera cluster on multiple Docker hosts

10.6 DATA: Dynamically Configuring a Load-Balancer for a
MySQL Galera Cluster

Problem

Recipe 10.5 created a multinode Galera cluster on two Docker hosts, taking advantage
of the Docker Network capability to create a network overlay. Now you would like to
automatically configure a load-balancer to share the load among all the nodes of this
Galera cluster.

Solution

Use the setup described in Recipe 10.3. Use registrator to dynamically register the
MySQL nodes in a key-value store like Consul, and use confd to manage an nginx
template that will balance the load among the Galera cluster nodes. Figure 10-5
depicts a two-node setup in which Docker Network is used across the nodes, regis
trator runs to publish the services running on each node, and Nginx runs on one of
the nodes to provide load-balancing between these nodes.

10.6 DATA: Dynamically Configuring a Load-Balancer for a MySQL Galera Cluster | 321

http://galeracluster.com/2015/05/getting-started-galera-with-docker-part-1/
http://galeracluster.com/2015/05/getting-started-galera-with-docker-part-2-2/

consul-server

Docker Daemon

progrium/consul -p _
8500:8500 E<_

Mysql-2

: gliderlabs/registrator -v
]
]

| . .
] gliderlabs/registrator -v
/var/run/docker.sock:/tmp/docker.sock !

|
|
/var/run/docker.sock:/tmp/docker.sock '

-
[}
[}
[}
[}
[}
[}
[}
[}
[}
]

-
[}
[}
[}
[}
[}
[}
[}
[}
[}
]

!
e 4IIIIIIIINS i IIIIIIIInS i 5
| nginx-p80:80 1 | erkules/galera 1 - | erkules/galera 1 - i
P lmmee e d H
eth0: 192.168.33.10 eth0: 192.168.33.11
Network Network

Figure 10-5. Dynamic load balancing of a Galera cluster

Run registrator on each host, pointing to the consul-server running on the separate
VM at 192.168.33.10 and start the first two nodes of the Galera cluster using the
image erkules/galera:basic.

On mysql-1at 192.168.33.11 run the following:

$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
gliderlabs/registrator
-ip 192.168.33.11 consul://192.168.33.10:8500/galera
$ docker run -d --name nodel
-h nodel erkules/galera:basic
--wsrep-cluster-name=local-test --wsrep-cluster-address=gcomm://

On mysql-2 at 192.168.33.12 use this:

$ docker run -d -v /var/run/docker.sock:/tmp/docker.sock
gliderlabs/registrator

322 | Chapter 10: Application Use Cases

-ip 192.168.33.12 consul://192.168.33.10:8500/galera
$ docker run -d --name node2
-h node2 erkules/galera:basic
--wsrep-cluster-name=1local-test --wsrep-cluster-address=gcomm://nodel

Create an Nginx configuration file that acts as a load-balancer for these two applica-
tions. Assuming you decide to run the load-balancer on the Docker host with IP
192.168.33.11, the following example will work:

events {
worker_connections 1024;
}
http {
upstream galera {
server 192.168.33.11:3306;
server 192.168.33.12:3306;
}
server {
listen 80;
location / {
proxy_pass http://galera;
}
}
}

Next start your Nginx container, binding port 80 of the container to port 80 of the
host, and mount your configuration file inside the container. Give your container a
name, as this will prove handy later:

$ docker run -d -p 3306:3306 -v /home/vagrant/nginx.conf:/etc/nginx/nginx.conf
--name galera nginx

Test that your load-balancing works. Then head back to Recipe 10.3 and use the same
steps presented there. Use confd to automatically reconfigure your nginx configura-
tion template when you add MySQL containers.

10.7 DATA: Creating a Spark Cluster

Problem

You are looking for a data-processing engine that can work in parallel for fast compu-
tation and access to large datasets. You have settled on Apache Spark and would like
to deploy it using containers.

Solution

Apache Spark is an extremely fast data-processing engine that works at large scale
(for a large number of worker nodes) and that can also handle a large amount of data.

10.7 DATA: Creating a Spark Cluster | 323

http://spark.apache.org
http://spark.apache.org

With Java, Scala, Python, and R interfaces, Spark is a great tool to program complex
data-processing problems.

A Spark cluster can be deployed in Kubernetes, but with the development of Docker
Network, the Kubernetes deployment scenario can be used almost as is. Indeed,
Docker Network (see Recipe 3.14) builds isolated networks across multiple Docker
hosts, manages simple name resolution, and exposes services.

Hence to deploy a Spark cluster, you are going to use a Docker network and then do
the following:

o Start a Spark master by using the image available on the Google registry and used
by the Kubernetes example.

o Start a set of Spark workers by using a slightly modified image from the Google
registry.

The worker image uses a start-up script that hardcodes the Spark master port to 7077
instead of using an environment variable set by Kubernetes. The image is available on
Docker Hub and you can see the start-up script on GitHub.

Let’s start a master, making sure that you define the hostname spark-master:

$ docker run -d -p 8080:8080 --name spark-master -h spark-master gcr.io/ \
google_containers/spark-master

Now let’s create three Spark workers. You could create more and create them on any
hosts that are on the same Docker network:

To avoid crashing your nodes and/or containers, limit the memory
allocated to each Spark worker container. You do this with the -m
option of docker run.

$ docker run -d -p 8081:8081 -m 256m --name worker-1 runseb/spark-worker
$ docker run -d -p 8082:8081 -m 256m --name worker-2 runseb/spark-worker
$ docker run -d -p 8083:8081 -m 256m --name worker-3 runseb/spark-worker

You might have noticed that you exposed port 8080 of the Spark master container on
the host. This gives you access to the Spark master web interface. As soon as the

Spark master container is running, you can access this UL After the workers come
online, you will see them appear in the dashboard, as shown in Figure 10-6.

324 | Chapter 10: Application Use Cases

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/spark
https://registry.hub.docker.com/u/runseb/spark-worker/
https://registry.hub.docker.com/u/runseb/spark-worker/
https://github.com/runseb/spark-docker

qu,-‘,:f .o Spark Master at spark://spark-master:7077

URL: spark://spark-master:7077

REST URL: spark://spark-master:6066 (cluster mode)
Workers: 3

Cores: 3 Total, 3 Used

Memory: 2.9 GB Total, 1536.0 MB Used
Applications: 1 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id Address State Cores Memory
worker-20150719093848-172.21.0.3-47174 172.21.0.3:47174 ALIVE 1(1Used) 977.0 MB (512.0 MB Used)
worker-20150719093853-172.21.0.6-50122 172.21.0.6:50122 ALIVE 1 (1 Used) 977.0 MB (512.0 MB Used)
worker-20150719095004-172.21.0.11-51070 172.21.0.11:51070 ALIVE 1(1Used) 977.0 MB (512.0 MB Used)

Running Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration
app-201507198085145-0000 (kil) PySparkShell 3 512.0 MB 2015/07/18 09:51:45 root RUNNING 5.4 min

Completed Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Figure 10-6. The Spark master UI

This is it. The ease of deployment comes from the fact that the Spark workers try to
reach the master node with the hostname spark-master. Because the Docker Net-
work manages name resolution, each container automatically knows the IP of the
master and can reach it.

Discussion

If you check the network services that have been published, you see your four con-
tainers on the multihost network (i.e., spark-master, worker-1, worker-2,
worker-3). But since you also published the ports for the UI, each container was also
attached to the bridge network. In the following example, you see only the worker
nodes on the bridge because this lists the services on the node that is not running the
master. If you check the Docker host that is running the master, you will see that the
spark-master is also on the bridge network:

$ docker service 1s

SERVICE ID NAME NETWORK CONTAINER
92e90b6556b5 worker-1 bridge ba80b36e5abc
1831b9378d37 worker-2 bridge clc8becO1a2a
bc64584793df worker-3 bridge f7be3797affb
2bbe0®0afc559 worker-1 multihost ba80b36e5abc
7be77369abac worker-2 multihost clc8becO1a2a

10.7 DATA: Creating a Spark Cluster | 325

3a576b7233b6 worker-3 multihost f7be3797affb
e3¢75728c402 spark-master multihost fadd4cce982df

Since you exposed the Spark worker’s web interface port, you can access the UL
Figure 10-7 shows a snapshot of a task that has already completed on this worker.

Spqﬂz’*’ .o Spark Worker at 172.21.0.3:47174

1D: worker-20150719093848-172.21.0.3-47174
Master URL: spark://spark-master:7077
Cores: 1 (1 Used)

Memory: 977.0 MB (512.0 MB Used)

Back to Master

Running Executors (1)

ExecutorlD Cores State Memory Job Details Logs

3 1 LOADING 512.0 MB ID: app-20150719095145-0000 stdout stderr
Name: PySparkShell
User: root

Finished Executors (1)

ExecutoriD Cores State Memory Job Details Logs

1 1 EXITED 512.0 MB ID: app-20150719085145-0000 stdout stderr
Name: PySparkShell
User: root

Figure 10-7. The Spark worker UI

The task shown in the dashboard is the result of running the Spark shell, which is a
quick way to start learning Spark and running tasks on your containerized Spark
cluster. You can run the Spark shell via another interactive container as shown here:

$ docker run -it gcr.io/google_containers/spark-base
root@ac912dd21619:/# . ./setup_client.sh spark-master 7077
root@ac912dd21619: /# pyspark

Python 2.7.9 (default, Mar 1 2015, 12:57:24)

wéicome to
. /]
NN N

/| __/_,_/_] /]_/_\ version 1.4.0
/-]

>>>

326 | Chapter 10: Application Use Cases

https://spark.apache.org/docs/latest/quick-start.html

Because libnetwork is changing rapidly, the network connectivity

between the Spark master and the workers might be unreliable.

o The service publication mechanism might also change. Treat this

\ example as a work in progress of what could be done, but not as a
production deployment scenario. If you experience problems,
remember to check the logs of each container with docker logs -
f <container_ids>.

See Also

o The Kubernetes Spark example that inspired this recipe

10.7 DATA: Creating a Spark Cluster | 327

https://github.com/GoogleCloudPlatform/kubernetes/tree/master/examples/spark

Symbols
--net=host, 79
.dockerignore, 46

A
Amazon Linux AMI, 237
Amazon S3, 315
Amazon Web Services (see AWS)
Another Union File System (AUFS), 126
Ansible, 53, 210-212
Ansible Docker module, 210-212, 225
Apache Libcloud, 188
Apache Mesos (see Mesos)
Apache Spark cluster, 323-327
application programming interface (API)
Docker remote, 119-121
Kubernetes, 158-161
application use cases, 299-327
continuous delivery pipeline with Jenkins
and Apache Mesos, 304-308
dynamic load balancer with confd and reg-
istrator, 308-314
dynamically configuring a load-balancer for
a MySQL Galera cluster, 321-323
MySQL Galera cluster on Docker Network,
319-321
S3-compatible object store with Cassandra
on Kubernetes, 315
setting up development environment,
300-304
Spark cluster, 323-327
Atomic, 182, 184
AUFS (Another Union File System), 126
authentication, 165

Index

automated builds, 62
AWS (Amazon Web Services), 190
account creation, 233
CLI, 235-238
ECS (see EC2 container service)
Elastic Beanstalk, 269-272
principles, 234
running Weave Net, 96
starting a Docker host with Docker
Machine, 243-245
starting Atomic instance to use Docker, 184
starting Docker host on AWS EC2, 235-238
Ubuntu Core Snappy instance on AWS EC2,
188-191
AWS EC2
Docker host on, 235-238
Ubuntu Core Snappy instance on, 188-191
Azure, 190, 233, 241-243, 245-247

B

background, running service in, 22
Bash, xiii
Beanstalk, 269-272
binary (see Docker binary)
Bitbucket, 62-66
Boot2Docker
and GCE CLI, 248
docker-py integration with, 124
for getting Docker host on OS X, 9-13
on Windows 8.1 desktop, 13-15
Borg, 129
Boto, 261, 264, 318
bridge, custom, 88
build trigger, 65

329

builds, automated, 62-68

C
CA (certificate authority), 121
cAdvisor
container metrics monitoring, 296
resource usage monitoring, 294
Canonical, 186
cases, application (see application cases)
Cassandra, 315
CentOS 6.5, 3
CentOS 7,4
CentOS project, 42
certificate authority (CA), 121
child image, 58
CI/CD (continuous integration/continuous
deployment)
development environment, 300-304
pipeline with Jenkins and Apache Mesos,
304-308
CLI (see command line interface)
cloud
accessing public clouds to run Docker,
232-235
application using Docker support in AWS
Beanstalk, 269-272
cloud provider CLI in a Docker container,
247-249
Docker containers on an ECS cluster,
265-268
Docker host on AWS EC2, 235-238
Docker host on AWS with Docker Machine,
243-245
Docker host on Azure with Docker
Machine, 245-247
Docker host on Google GCE, 239-241
Docker host on Microsoft Azure, 241-243
Docker in, 231-272
Docker in GCE Google-container instances,
252-254
Docker Machine to start Docker host in,
15-18
EC2 container service, 259-261
ECS cluster, 261-265
GCR to store Docker images, 250-252
Kubernetes via GCE, 254-258
cloud-init
configuring cloud instances, 238
starting container on CoreOS, 173

cluster IP services, 146-150
cluster(s)
configuring authentication to, 165
configuring client to access remote, 167
CoreOS, 175-178
creating with Docker Compose, 151-154
Docker Machine to create, 202
ECS, 261-265
fleet to start containers on, 178
Kubernetes, with Pods, 139-140
Lattice for running containers on, 217-219
load-balancer for MySQL Galera cluster,
321-323
Mesos Docker containerizer on, 224
multinode, 135-138
on Docker Network, 319-321
Rancher to manage containers on, 213-216
Spark, 323-327
starting containers on, with Docker Swarm,
199-201
CMD instruction, 41
Collectd, 288-293
command line interface (CLI)
AWS, 235-238
cloud provider, 247-249
GCE, 248
gcloud CLI, 256
Conduit, 67
confd, 311-314
config.rb, 171
configuring, 118-128
(see also development)
changing storage driver, 126-128
Docker daemon, 108, 118, 121-123
docker-py, 123-126, 125
Kubernetes, 165, 167
consul, 228
container images (see images)
container linking
alternatives for large-scale systems, 74
and networking, 73-75
container logs
docker logs for obtaining, 279
managing Logspout routes to store, 285
using Elasticsearch and Kibana to store and
visualize, 287
using Logspout to collect, 282-285
container metrics

330 | Index

monitoring with InfluxDB, Grafana, and
cAdvisor, 296

visualizing with Graphite, 288-293

container VMs, 240
container(s), 273-298

and pipework, 81-83

backing up database running in, 30-32

cAdvisor to monitor resource usage in, 294

cluster IP services for dynamic linking,
146-150

Collectd to visualize container metrics,
288-293

copying data to and from, 35

creating, 23

data sharing between, 33

Docker in GCE Google-container instances,
252-254

Elasticsearch and Kibana to store and visu-
alize container logs, 287

exposing port on host, 71-73

finding IP address, 70

flannel for overlay network between Docker
hosts, 98

Flask application in, 43

fleet to start on CoreOS cluster, 178

gaining visibility into layout with Weave
Scope, 297

getting detailed information with docker
inspect, 274-276

getting logs with docker logs, 279

in detached mode, 22

keeping changes by committing to image,
38

logging driver other than Docker daemon,
280-282

Logspout to collect container logs, 282-285

managing locally with Kitematic U,
204-206

managing Logspout routes to store con-
tainer logs, 285

managing through Docker UI, 206-208

Mesos Docker containerizer on Mesos clus-
ter, 224

monitoring, 273-298

monitoring Docker events on Docker hosts,
277-279

monitoring metrics with InfluxDB, Grafana,
and cAdvisor, 296

network namespace selection, 79-81

networking basics, 76-78
networking on multiple hosts with Docker
Network, 100-103
networking pods for connectivity, 134
obtaining usage statistics while running, 276
orchestrating with Ansible Docker module,
210-212
Rancher for managing containers on cluster
of Docker hosts, 213-216
removing, 23
runc and, 115-117
running Docker containers with Atomic,
182
running Hello World in, 20-22
running multiple, in a pod, 144-146
running on a cluster with Lattice, 217-219
running on multiple hosts, 175-178
running on RancherOS, 191
running on Weave network, 94-96
running via Apache Mesos and Marathon,
219-223
saving as tar files for sharing, 39
sharing data in Docker host with, 32
starting, 23
starting on an ECS cluster, 265-268
starting on Kubernetes cluster with pods,
139-140
starting with --net=host, 80
stopping, 23
Supervisor to run WordPress in, 25-27
WordPress blog with two containers, 28-30
continuous delivery pipeline, 304-308
CoreOS
and cloud-init, 173
and flannel overlay, 180-182
and fleet, 178
and OCP, 117
running containers on multiple hosts,
175-178
CoreOS Linux distribution, 170-172
curl, 118, 123
custom bridge, 88

D
dashboard
Kibana, 287
Kubernetes, 162
data container, 33
data management

Index | 331

backing up a database running in a con-
tainer, 30-32
copying data to and from containers, 35
sharing data between containers, 33
sharing data in Docker host with containers,
32
debugging, nsenter for, 113-115
detached mode, 22
development, 107-117
compiling Docker binary from source,
109-111
compiling Kubernetes to create your own
release, 154-157
exploring Docker remote API to automate
Docker tasks, 119-121
nsenter for debugging, 113-115
replacing current Docker binary with new
one, 112
runc, 115-117
running Docker test suite for, 111
setting up development environment,
300-304
discovery, 130
discovery token, Swarm, 202
Docker
basics, 1-36
experimental binaries, 19
installation, 2-18
(see also installation, Docker)
local host setup using Vagrant, 4
Docker binary
compiling from source, 109-111
replacing current with new, 112
Docker Compose
for single-node Kubernetes cluster, 151-154
for WordPress site creation, 194-196
testing Apache Mesos and Marathon with,
197
docker cp command, 35
docker create command, 23
Docker daemon
IP tables/IP forwarding settings, 81-83
logging driver alternatives to, 280-282
managing and configuring, 108
remote access to, 118
remote access using docker-py, 123-126
securing for remote access, 121-123
Docker engine, 1
docker events command, 278

docker exec, 114
Docker host
monitoring Docker events on, 277-279
on AWS EC2, 235-238
on AWS with Docker Machine, 243-245
on Azure with Docker Machine, 245-247
on Google GCE, 239-241
on Microsoft Azure, 241-243
Docker Hub
publishing images to, 55-57
setting up automated build for images on,
62-66
webhooks, 67
docker inspect, 274-276
docker kill command, 23
docker logs, 201
Docker Machine
for creating Swarm cluster across cloud pro-
viders, 202
starting a Docker host on AWS with,
243-245
starting a Docker host on Azure with,
245-247
starting Docker host in the cloud using,
15-18
Docker Network
for networking containers on multiple
hosts, 100-103
MySQL Galera cluster on, 319-321
namespaces configuration, 104
docker package (Ubuntu), 2
Docker provider, 49-51
docker ps command, 201
Docker remote AP, 119-121
docker restart command, 23
docker rm command, 23
docker search command, 57
docker start command, 23
docker stats command, 276
docker stop command, 23
Docker Swarm (see Swarm)
docker tag command, 47
Docker test suite, 111
Docker Toolbox, 7-9
Docker Ul, managing containers through,
206-208
docker-compose command, 194-196
docker-py

332 | Index

for remote access of Docker daemon,
123-126
with TLS secure access, 125
docker0 bridge, 76
Dockerfile
defined, 2, 24
for packaging a Flask application inside a
container, 44
image building with, 24
optimizing by following best practices,
45-47
order of instructions, 301
writing your first, 40-43
dynamic load balancer
configuring for a MySQL Galera cluster,
321-323
creating with confd and registrator, 308-314

E
EC2 container service (ECS)
and Mesos, 219
cluster creation, 261-265
principles for instances, 234
setting up for testing, 259-261
starting Docker containers on, 265-268
Elasticsearch, 287
ELB (Elastic Load Balancing), 308-314
encapsulation, 91-94
ENTRYPOINT instruction, 41
etcd, 175, 177, 180, 226-228
events, monitoring, 277-279
experimental binaries, 19
expose command, 257

F
Fig, 196
flannel daemon
overlay networking between CoreOS instan-
ces, 180-182
overlay networking between Docker hosts,
98
Flask, 43
fleet, 178
fleetctl CLI, 178
Fluentd, 280-282
FROM instruction, 41

G

Galera cluster
dynamically configuring a load-balancer
for, 321-323
on Docker Network, 319-321
GCE (see Google Computing Engine)
generator, 277
Generic Routing Encapsulation (GRE) tunnel,
91-94
Git, xiv
Git Hook, for automated builds, 66
GitHub, 62-66
Go (build system), xiv, 154
Google, 129
Google Computing Engine (GCE), 190
account creation, 233
CLI, 248
principles for instances, 235
starting Docker host on, 239-241
using Docker in GCE Google-container
instances, 252-254
using Kubernetes in cloud via, 254-258
Google Container Engine (GKE), 139, 145, 255
Google Container Registry (GCR), 250
Gradle, 303
Grafana, 296
GRE (Generic Routing Encapsulation) tunnel,
91-94

H

hack directory, 110

HAProxy, 96

HashiCorp, 51

Hello World, echoing in container, 20-22
host (see Docker host)

HTTPD, 28-32

hyperkube, 153, 157

I

images
and ONBUILD directive, 58
automated builds with Docker Hub, 62-66
automated builds with Git Hook and private

registry, 66

building with Dockerfile, 24
Conduit for continuous deployment, 67
creation and sharing, 37

Index | 333

Dockerfile optimization with best practices,
45-47
keeping changes made to container by com-
mitting to, 38
migrating from Vagrant to Docker with
Docker provider, 49-51
packaging a Flask application inside a con-
tainer, 43
publishing to Docker Hub, 55-57
running private registry for, 59-61
saving as tar files for sharing, 39
using GCR to store, 250-252
using Packer to create, 51-54
versioning with tags, 47-49
writing Dockerfile for, 40-43
InfluxDB, 296
inspect method, 75
installation, Docker, 2-18
Cent0S 6.5, 3
CentOS 7, 4
Docker host in cloud with Docker Machine,
15-18
local host setup with Vagrant, 4
OS X with Boot2Docker, 9-13
OS X with Docker Toolbox, 7-9
Raspberry Pi, 6
Ubuntu 14.04, 2
Windows 8.1 desktop with Boot2Docker,
13-15
IP addresses, container, 70
IP forwarding, 78, 81-83
IP tables, 81-83

J

Jenkins, 304-308

K
Kibana, 287
Kismatic, 162
Kitematic UI, 204-206
kubectl, 142, 167, 256-258
kubectl create, 143
kubectl get pods, 140
kubelet service, 131, 253
Kubernetes, 129-168
API, 158-161
architecture basics, 131-134
compiling to create your own release,
154-157

configuring authentication to cluster, 165

configuring client to access remote clusters,
167

creating single-node cluster using Docker
Compose, 151-154

dashboard, 162

multinode cluster creation with Vagrant,
135-138

networking pods for container connectivity,
134

querying objects via labels, 140

running multiple containers in a pod,
144-146

S3-compatible object store with Cassandra,
315

Spark cluster deployment, 324

starting components with hyperkube
binary, 157

starting containers on a cluster with pods,
139-140

upgrading from old API version, 163

using cluster IP services for dynamic linking
of containers, 146-150

using in cloud via GCE, 254-258

using replication controller to manage pod
replicas, 142-143

L
labels, querying Kubernetes objects via, 140
Lattice, 217-219
Libcloud, 188
logging driver, 280-282
logs (see container logs)
Logspout
collecting container logs with, 282-285
managing routes to store container logs, 285
Logstash, 282-285
ltc create command, 218

M
Machine (see Docker Machine)
Makefile, 111
Marathon (Mesos framework)
running containers via, 219-223
using Docker Compose to test, 197
Maven, 303
Mesos
continuous delivery pipeline using, 304-308
running containers via, 219-223

334 | Index

using Docker Compose to test, 197
Microsoft Azure (see Azure)
MySQL (see Galera cluster)
MySQL database, 28-32

N

namespace
for container, 79-81
for Docker Network, 104
nsenter and, 114
networking, 69-105
and pipework, 81-83
basics of networking Docker containers,
76-78
configuring Docker daemon IP tables/IP
forwarding settings, 81-83
container networking namespace selection,
79-81
containers on multiple hosts with Docker
Network, 100-103
custom bridge for Docker, 88
Docker Network namespaces configuration,
104
exposing container port on host, 71-73
finding IP addresses for container, 70
flannel overlay between Docker hosts, 98
GRE tunnel between Docker hosts, 91-94
linking containers in Docker, 73-75
of pods for container connectivity, 134
running containers on Weave network,
94-96
running Weave Net on AWS, 96
using OVS with Docker, 90
Node.js, development environment for,
300-304
nodes, 129
nsenter, 113-115

0
object store, S3-compatible, 315
ONBUILD directive, 58
Open Container Project (OCP), 115, 117
Open vSwitch (OVS), 90
operating system distributions, Docker-
optimized, 169-192
Atomic on AWS, 184
Atomic to run Docker containers, 182
CoreOS and flannel overlay, 180-182

CoreOS cluster to run containers on multi-
ple hosts, 175-178
CoreOS Linux distribution, 170-172
CoreOS with cloud-init, 173
CoreOS with fleet, 178
RancherOS, 191
Ubuntu Core Snappy, 185-187
Ubuntu Core Snappy instance on AWS EC2,
188-191
Orchard, 196
orchestration system, 129
0sX
Docker installation using Docker Toolbox,
7-9
using Boot2Docker to get Docker host on,
9-13
overlay networking, flannel, 180-182
OVS (Open vSwitch), 90

P
Packer, 51-54
paravirtualized (PV) Amazon Linux AMI, 237
parent image, 58
pipework, 81-83
Pithos, 315, 317
pods, 131
and gcloud CLI, 256
and replication controllers, 142-143
defined, 132
networking, 134
running multiple containers in, 144-146
scheduling, 133
starting containers on a cluster with,
139-140
port, container, 71-73
postrouting rule, 82
private registry, 59-61, 66
process logs, 279
Project Atomic (see Atomic)
project directory, 110
proxy, 132
public clouds, accessing, 232-235
public registry, 21
PV (paravirtualized) Amazon Linux AMI, 237
Python
about, xiv
and Wharfee, 209
Boto (see Boto)
Flask framework, 43

Index | 335

Q

queries, Kubernetes objects, 140

R
Rancher, 213-216
RancherOS, 191
Raspberry Pi, 6
RedHat Atomic (see Atomic)
registrator
and dynamic load balancer, 308-311
discovering Docker services with, 226-229
registry, private, 59-61, 66
registry, public, 21
remote access
configuring Kubernetes client for cluster
access, 167
Docker remote API, 119-121
securing Docker daemon for, 121-123
to Docker daemon, 118
using docker-py to access Docker daemon,
123-126
replication controllers
and pods, 134, 142-143
defined, 131
resource utilization monitoring, 294
REST API
Docker remote API as, 119
Kubernetes and, 158
Rancher and, 216
Rocket, 172
rung, 115-117

S

Selenium, 303
service, running in background, 22
shellinit command, 13
single-node cluster, 151-154
Snappy
running Docker on, 185-187
starting an instance on AWS EC2, 188-191
Spark cluster, 323-327
SSH key, 16
ssh, accessing instance via, 236
storage driver, 126-128
Supervisor, 25-27
supervisord, 2
Swagger, 159
Swarm

creating clusters across cloud providers, 202
starting containers on a cluster with,
199-201
swarm discovery token, 202
systemd unit file, 109

T
tags, versioning image with, 47-49
tar files, 39
tarball, 39
task (defined), 265
tools, 193-229
Ansible Docker module, 210-212
Apache Mesos/Marathon, 219-223
Docker Compose (to create WordPress site),
194-196
Docker Compose (to test Apache Mesos and
Marathon), 197
Docker Machine, 202
Docker Swarm, 199-201
Docker UI, 206-208
Kitematic UI, 204-206
Lattice, 217-219
Mesos Docker containerizer, 224
Rancher, 213-216
registrator, 226-229
Wharfee, 208
TUN device, 182

]

Ubuntu 14.04, Docker installation on, 2
Ubuntu Core Snappy (see Snappy)

use cases (see application use cases)
user-data, 172-177

v

Vagrant

about, xiv

Ansible provisioner with, 212

for multinode Kubernetes cluster creation,
135-138

installation, 5

local host setup using, 4

migrating images to Docker with Docker
provider, 49-51

running CoreOS Linux distribution on local
machine with, 170-172

336 | Index

starting CoreOS cluster to run containers on

multiple hosts, 175-178

WordPress and, 26
Vagrantfile, Ansible Docker module and, 210
virtual machine (VM), 241-243

(see also Vagrant)
virtual switch, 90
VirtualBox, 202
virtualization, 86
VXLAN encapsulation, 182
VXLAN interfaces, 104

W

Weave Net, 94-96

Weave Scope, 297

webhooks, 65, 67

Wharfee interactive shell, 208

Windows 8.1, running Boot2Docker on desk-
top, 13-15

WordPress
and Ansible playbook, 211
and MySQL database, 28-32
running linked containers with Kubernetes,
147-149
running multiple containers in pod with
Kubernetes, 144-146
running single container with Supervisor,
25-27
running with two containers, 266-268
running with two linked containers, 28-30
using Docker Compose for site creation,
194-196
wordpress.yml, 211

z

Zookeeper, 219

Index | 337

About the Author

Sébastien Goasguen built his first compute cluster in the late 90s (when they were
still called Beowulf clusters) while working on his PhD; he has been working on mak-
ing computing a utility since then. He has done research in grid computing and high-
performance computing, and with the advent of virtualization moved to cloud com-
puting in the mid-2000s when he was a professor at Clemson University.

He is currently a senior open source solutions architect at Citrix, where he works pri-
marily on the Apache CloudStack project helping develop the CloudStack ecosystem.
He was elected vice president of the Apache CloudStack project in March 2015. He is
also a member of the project management committee (PMC) of Apache libcloud, and
a member of the Apache Software Foundation. Sébastien focuses on the cloud ecosys-
tem and has contributed to dozens of open source projects.

Colophon

The animal on the cover of Docker Cookbook is a beluga whale (Delphinapterus leu-
cas), which along with the narwhal is one of two members of the family
Monodontidae.

Because it is adapted to life in the Arctic, the beluga whale is anatomically different
from most other types of whales. It is all white in color, does not have a dorsal fin, has
the highest percentage of blubber, and has a very large protuberance on its forehead
that houses its echolocation organ (called the “melon”). The melon is very important
because it not only allows the whale to hunt, but it also enables it to find blowholes
among shifting ice sheets.

Belugas are very gregarious creatures, and usually live in groups of around 10 indi-
viduals. During the summer, these groups gather in coastal areas for breeding,
meaning that there can be hundreds or even thousands of belugas in one place. The
worldwide population has been estimated at 150,000, with the majority living in the
seas off of North America, Russia, and Greenland.

The native peoples of North America and Russia have hunted belugas for centuries,
but the whales were also hunted commercially during the 19th and early 20th centu-
ries. Since whale hunting came under international regulation in the 1970s, only cer-
tain Inuit and Alaska Native tribes are allowed to continue the practice today.

Belugas in the wild can live for 70 to 80 years, but they are a popular species of whale
for aquarium display, where the lifespan is significantly less. Currently the beluga is
considered to be a “near threatened” species because of population loss due to chang-
ing habitat, polluted water, and infectious disease.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from A History of British Quadrupeds. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	How This Book Is Organized
	Technology You Need to Understand
	Online Content
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started with Docker
	1.0 Introduction
	1.1 Installing Docker on Ubuntu 14.04
	Problem
	Solution
	Discussion
	See Also

	1.2 Installing Docker on CentOS 6.5
	Problem
	Solution
	Discussion

	1.3 Installing Docker on CentOS 7
	Problem
	Solution

	1.4 Setting Up a Local Docker Host by Using Vagrant
	Problem
	Solution
	Discussion

	1.5 Installing Docker on a Raspberry Pi
	Problem
	Solution
	Discussion
	See Also

	1.6 Installing Docker on OS X Using Docker Toolbox
	Problem
	Solution
	Discussion

	1.7 Using Boot2Docker to Get a Docker Host on OS X
	Problem
	Solution
	Discussion

	1.8 Running Boot2Docker on Windows 8.1 Desktop
	Problem
	Solution
	Discussion
	See Also

	1.9 Starting a Docker Host in the Cloud by Using Docker Machine
	Problem
	Solution
	Discussion
	See Also

	1.10 Using Docker Experimental Binaries
	Problem
	Solution
	See Also

	1.11 Running Hello World in Docker
	Problem
	Solution
	Discussion

	1.12 Running a Docker Container in Detached Mode
	Problem
	Solution
	Discussion
	See Also

	1.13 Creating, Starting, Stopping, and Removing Containers
	Problem
	Solution
	Discussion

	1.14 Building a Docker Image with a Dockerfile
	Problem
	Solution
	See Also

	1.15 Using Supervisor to Run WordPress in a Single Container
	Problem
	Solution
	Discussion
	See Also

	1.16 Running a WordPress Blog Using Two Linked Containers
	Problem
	Solution
	Discussion

	1.17 Backing Up a Database Running in a Container
	Problem
	Solution
	Discussion

	1.18 Sharing Data in Your Docker Host with Containers
	Problem
	Solution
	See Also

	1.19 Sharing Data Between Containers
	Problem
	Solution
	See Also

	1.20 Copying Data to and from Containers
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Image Creation and Sharing
	2.0 Introduction
	2.1 Keeping Changes Made to a Container by Committing to an Image
	Problem
	Solution
	Discussion
	See Also

	2.2 Saving Images and Containers as Tar Files for Sharing
	Problem
	Solution
	Discussion

	2.3 Writing Your First Dockerfile
	Problem
	Solution
	Discussion
	See Also

	2.4 Packaging a Flask Application Inside a Container
	Problem
	Solution
	Discussion

	2.5 Optimizing Your Dockerfile by Following Best Practices
	Problem
	Solution
	Discussion

	2.6 Versioning an Image with Tags
	Problem
	Solution
	Discussion

	2.7 Migrating from Vagrant to Docker with the Docker Provider
	Problem
	Solution
	Discussion
	See Also

	2.8 Using Packer to Create a Docker Image
	Problem
	Solution
	Discussion

	2.9 Publishing Your Image to Docker Hub
	Problem
	Solution
	Discussion
	See Also

	2.10 Using ONBUILD Images
	Problem
	Solution
	See Also

	2.11 Running a Private Registry
	Problem
	Solution
	Discussion
	See Also

	2.12 Setting Up an Automated Build on Docker Hub for Continuous Integration/Deployment
	Problem
	Solution
	Discussion
	See Also

	2.13 Setting Up a Local Automated Build by Using a Git Hook and a Private Registry
	Problem
	Solution
	Discussion

	2.14 Using Conduit for Continuous Deployment
	Problem
	Solution
	See Also

	Chapter 3. Docker Networking
	3.0 Introduction
	3.1 Finding the IP Address of a Container
	Problem
	Solution
	See Also

	3.2 Exposing a Container Port on the Host
	Problem
	Solution
	Discussion

	3.3 Linking Containers in Docker
	Problem
	Solution
	Discussion
	See Also

	3.4 Understanding Docker Container Networking
	Problem
	Solution
	Discussion
	See Also

	3.5 Choosing a Container Networking Namespace
	Problem
	Solution
	Discussion
	See Also

	3.6 Configuring the Docker Daemon IP Tables and IP Forwarding Settings
	Problem
	Solution
	Discussion

	3.7 Using pipework to Understand Container Networking
	Problem
	Solution
	Discussion
	See Also

	3.8 Setting Up a Custom Bridge for Docker
	Problem
	Solution
	Discussion

	3.9 Using OVS with Docker
	Problem
	Solution
	See Also

	3.10 Building a GRE Tunnel Between Docker Hosts
	Problem
	Solution
	Discussion
	See Also

	3.11 Running Containers on a Weave Network
	Problem
	Solution
	Discussion
	See Also

	3.12 Running a Weave Network on AWS
	Problem
	Solution
	Discussion
	See Also

	3.13 Deploying flannel Overlay Between Docker Hosts
	Problem
	Solution
	Discussion

	3.14 Networking Containers on Multiple Hosts with Docker Network
	Problem
	Solution
	Discussion

	3.15 Diving Deeper into the Docker Network Namespaces Configuration
	Problem
	Solution
	Discussion

	Chapter 4. Docker Configuration and Development
	4.0 Introduction
	4.1 Managing and Configuring the Docker Daemon
	Problem
	Solution
	Discussion

	4.2 Compiling Your Own Docker Binary from Source
	Problem
	Solution
	Discussion
	See Also

	4.3 Running the Docker Test Suite for Docker Development
	Problem
	Solution
	See Also

	4.4 Replacing Your Current Docker Binary with a New One
	Problem
	Solution
	Discussion

	4.5 Using nsenter
	Problem
	Solution
	Discussion
	See Also

	4.6 Introducing runc
	Problem
	Solution
	Discussion
	See Also

	4.7 Accessing the Docker Daemon Remotely
	Problem
	Solution
	Discussion

	4.8 Exploring the Docker Remote API to Automate Docker Tasks
	Problem
	Solution
	Discussion

	4.9 Securing the Docker Daemon for Remote Access
	Problem
	Solution
	Discussion

	4.10 Using docker-py to Access the Docker Daemon Remotely
	Problem
	Solution
	Discussion

	4.11 Using docker-py Securely
	Problem
	Solution
	See Also

	4.12 Changing the Storage Driver
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Kubernetes
	5.0 Introduction
	Enhanced capabilities
	New concepts

	5.1 Understanding Kubernetes Architecture
	Problem
	Solution
	Discussion

	5.2 Networking Pods for Container Connectivity
	Problem
	Solution
	Discussion
	See Also

	5.3 Creating a Multinode Kubernetes Cluster with Vagrant
	Problem
	Solution
	Discussion
	See Also

	5.4 Starting Containers on a Kubernetes Cluster with Pods
	Problem
	Solution
	Discussion

	5.5 Taking Advantage of Labels for Querying Kubernetes Objects
	Problem
	Solution
	See Also

	5.6 Using a Replication Controller to Manage the Number of Replicas of a Pod
	Problem
	Solution
	Discussion
	See Also

	5.7 Running Multiple Containers in a Pod
	Problem
	Solution
	Discussion

	5.8 Using Cluster IP Services for Dynamic Linking of Containers
	Problem
	Solution
	Discussion
	See Also

	5.9 Creating a Single-Node Kubernetes Cluster Using Docker Compose
	Problem
	Solution
	Discussion
	See Also

	5.10 Compiling Kubernetes to Create Your Own Release
	Problem
	Solution
	Discussion
	See Also

	5.11 Starting Kubernetes Components with the hyperkube Binary
	Problem
	Solution

	5.12 Exploring the Kubernetes API
	Problem
	Solution
	Discussion
	See Also

	5.13 Running the Kubernetes Dashboard
	Problem
	Solution
	Discussion

	5.14 Upgrading from an Old API Version
	Problem
	Solution
	Discussion

	5.15 Configuring Authentication to a Kubernetes Cluster
	Problem
	Solution
	Discussion
	See Also

	5.16 Configuring the Kubernetes Client to Access Remote Clusters
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Optimized Operating System Distributions for Docker
	6.0 Introduction
	6.1 Discovering the CoreOS Linux Distribution with Vagrant
	Problem
	Solution
	Discussion
	See Also

	6.2 Starting a Container on CoreOS via cloud-init
	Problem
	Solution
	Discussion

	6.3 Starting a CoreOS Cluster via Vagrant to Run Containers on Multiple Hosts
	Problem
	Solution
	Discussion
	See Also

	6.4 Using fleet to Start Containers on a CoreOS Cluster
	Problem
	Solution
	Discussion
	See Also

	6.5 Deploying a flannel Overlay Between CoreOS Instances
	Problem
	Solution
	Discussion

	6.6 Using Project Atomic to Run Docker Containers
	Problem
	Solution
	See Also

	6.7 Starting an Atomic Instance on AWS to Use Docker
	Problem
	Solution
	Discussion

	6.8 Running Docker on Ubuntu Core Snappy in a Snap
	Problem
	Solution
	Discussion
	See Also

	6.9 Starting an Ubuntu Core Snappy Instance on AWS EC2
	Problem
	Solution
	Discussion
	See Also

	6.10 Running Docker Containers on RancherOS
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. The Docker Ecosystem: Tools
	7.0 Introduction
	7.1 Using Docker Compose to Create a WordPress Site
	Problem
	Solution
	Discussion

	7.2 Using Docker Compose to Test Apache Mesos and Marathon on Docker
	Problem
	Solution
	Discussion
	See Also

	7.3 Starting Containers on a Cluster with Docker Swarm
	Problem
	Solution
	Discussion
	See Also

	7.4 Using Docker Machine to Create a Swarm Cluster Across Cloud Providers
	Problem
	Solution
	Discussion
	See Also

	7.5 Managing Containers Locally Using the Kitematic UI
	Problem
	Solution
	See Also

	7.6 Managing Containers Through Docker UI
	Problem
	Solution
	Discussion
	See Also

	7.7 Using the Wharfee Interactive Shell
	Problem
	Solution
	See Also

	7.8 Orchestrating Containers with Ansible Docker Module
	Problem
	Solution
	Discussion
	See Also

	7.9 Using Rancher to Manage Containers on a Cluster of Docker Hosts
	Problem
	Solution
	Discussion

	7.10 Running Containers on a Cluster Using Lattice
	Problem
	Solution
	Discussion
	See Also

	7.11 Running Containers via Apache Mesos and Marathon
	Problem
	Solution
	Discussion
	See Also

	7.12 Using the Mesos Docker Containerizer on a Mesos Cluster
	Problem
	Solution
	Discussion
	See Also

	7.13 Discovering Docker Services with Registrator
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Docker in the Cloud
	8.0 Introduction
	8.1 Accessing Public Clouds to Run Docker
	Problem
	Solution
	Discussion
	See Also

	8.2 Starting a Docker Host on AWS EC2
	Problem
	Solution
	Discussion
	See Also

	8.3 Starting a Docker Host on Google GCE
	Problem
	Solution
	Discussion

	8.4 Starting a Docker Host on Microsoft Azure
	Problem
	Solution
	Discussion
	See Also

	8.5 Starting a Docker Host on AWS Using Docker Machine
	Problem
	Solution
	Discussion

	8.6 Starting a Docker Host on Azure with Docker Machine
	Problem
	Solution
	Discussion
	See Also

	8.7 Running a Cloud Provider CLI in a Docker Container
	Problem
	Solution
	Discussion
	See Also

	8.8 Using Google Container Registry to Store Your Docker Images
	Problem
	Solution
	Discussion

	8.9 Using Docker in GCE Google-Container Instances
	Problem
	Solution
	Discussion

	8.10 Using Kubernetes in the Cloud via GCE
	Problem
	Solution
	Discussion
	See Also

	8.11 Setting Up to Use the EC2 Container Service
	Problem
	Solution
	Discussion
	See Also

	8.12 Creating an ECS Cluster
	Problem
	Solution
	Discussion
	See Also

	8.13 Starting Docker Containers on an ECS Cluster
	Problem
	Solution
	Discussion
	See Also

	8.14 Starting an Application in the Cloud Using Docker Support in AWS Beanstalk
	Problem
	Solution
	Discussion

	Chapter 9. Monitoring Containers
	9.0 Introduction
	9.1 Getting Detailed Information About a Container with docker inspect
	Problem
	Solution
	Discussion

	9.2 Obtaining Usage Statistics of a Running Container
	Problem
	Solution
	Discussion
	See Also

	9.3 Listening to Docker Events on Your Docker Hosts
	Problem
	Solution
	Discussion
	See Also

	9.4 Getting the Logs of a Container with docker logs
	Problem
	Solution
	Discussion

	9.5 Using a Different Logging Driver than the Docker Daemon
	Problem
	Solution
	Discussion
	See Also

	9.6 Using Logspout to Collect Container Logs
	Problem
	Solution
	Discussion
	See Also

	9.7 Managing Logspout Routes to Store Container Logs
	Problem
	Solution
	Discussion

	9.8 Using Elasticsearch and Kibana to Store and Visualize Container Logs
	Problem
	Solution
	Discussion

	9.9 Using Collectd to Visualize Container Metrics
	Problem
	Solution
	Discussion
	See Also

	9.10 Using cAdvisor to Monitor Resource Usage in Containers
	Problem
	Solution
	See Also

	9.11 Monitoring Container Metrics with InfluxDB, Grafana, and cAdvisor
	Problem
	Solution

	9.12 Gaining Visibility into Your Containers’ Layout with Weave Scope
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Application Use Cases
	10.0 Introduction
	10.1 CI/CD: Setting Up a Development Environment
	Problem
	Solution
	Discussion

	10.2 CI/CD: Building a Continuous Delivery Pipeline with Jenkins and Apache Mesos
	Problem
	Solution
	Discussion

	10.3 ELB: Creating a Dynamic Load-Balancer with Confd and Registrator
	Problem
	Solution
	Discussion
	See Also

	10.4 DATA: Building an S3-Compatible Object Store with Cassandra on Kubernetes
	Problem
	Solution
	Discussion

	10.5 DATA: Building a MySQL Galera Cluster on a Docker Network
	Problem
	Solution
	Discussion
	See Also

	10.6 DATA: Dynamically Configuring a Load-Balancer for a MySQL Galera Cluster
	Problem
	Solution

	10.7 DATA: Creating a Spark Cluster
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Author

