Docker

k
kboo
Coo

" WV

.

oy

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Cookbook
Second Edition

Over 100 practical and insightful recipes to build distributed applications with
Docker

Ken Cochrane
Jeeva S. Chelladhurai
Neependra K Khare

pythontesting

Packb

BIRMINGHAM - MUMBAI

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Cookbook Second Edition

Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Gebin George

Acquisition Editor: Shrilekha Inani

Content Development Editor: Nithin George Varghese
Technical Editor: Prashant Chaudhari

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tom Scaria

Production Coordinator: Aparna Bhagat

First published: June 2015
Second edition: August 2018

Production reference: 1300818

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-686-6

www . packtpub.com

pythontesting

http://www.packtpub.com

For Emily, Zander, and Maddox.
- Ken Cochrane

To Dr. Pethuru Raj Chelliah, my mentor, who rekindled my technical brain
and constantly challenges me with new technologies.

- Jeeva S. Chelladhurai

qg 6089740 21734177 IT http://t.cn/RDIAj5D

. Mapt

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

mapt.io

pythontesting

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

qg 6089740 21734177 IT http://t.cn/RDIAj5D

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

pythontesting

http://www.PacktPub.com
http://www.packtpub.com

Contributors

qg 6089740 21734177 IT http://t.cn/RDIAj5D

About the authors

Ken Cochrane is an IT professional with over 15 years of experience working
with organizations to build large-scale applications and platforms. Ken was a
founding team member at Docker, where he was the lead developer for the
Docker Hub, and Docker for AWS products. As an early team member, he
worked on everything from the Docker Engine to documentation. Ken also
helped create Docker meetup groups in New York, Boston, and Portland Maine.
Ken currently works for WEX, a global payments company, where he leads a
team and helps modernize their technology stack by moving to the cloud and
automating their development pipeline using containers. He currently resides in
Southern Maine with his wife, Emily, and two sons, Zander and Maddox. His
Twitter handle is @kencochrane.

I would like to thank my wife, Emily, and my two boys, Zander and Maddox, for giving me the time to work
on this book; also, my parents for buying me my first computer, and letting me spend so much of my free
time on it. I would also like to thank Solomon Hykes, and Sam Alba for taking a chance and hiring me at
dotCloud, and allowing me to be a part of Docker.

Jeeva S. Chelladhurai has been working as a DevOps specialist at the IBM
Global Cloud Center of Excellence (CoE) in India for the past 8 years. He has
more than 20 years of experience in the IT industry. In various capacities, he has
technically managed and mentored diverse teams across the globe in envisaging
and building pioneering telecommunication products. He specializes in DevOps
and cloud solution delivery, with a focus on data center optimization, software-
defined environments (SDEs), and distributed application development,
deployment, and delivery using the newest Docker technology. Jeeva is also a
strong proponent of agile methodologies, DevOps, and IT automation. He holds
a master's degree in computer science from Manonmaniam Sundaranar
University and a graduate certificate in project management from Boston
University. He has been instrumental in crafting reusable assets for IBM solution
architects and consultants in Docker-inspired containerization technology.

Neependra K Khare is the founder and principal consultant at CloudYuga.
CloudYuga provides training and consulting on Docker, Kubernetes, GO

pythontesting

Programming, and so on. He is one of the Docker Captains and has run Docker
Meetup Group in Bangalore for around 4 years. In 2015, he authored a book on
Docker, Docker Cookbook. In 2016, he coauthored a course on Cloud
Infrastructure Technologies at Edx for the Linux Foundation. Recently, he
authored a course on Kubernetes on Edx, for the Linux Foundation.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

About the reviewers

Fabrizio Soppelsa works as a software engineer for Samsung Electronics, in the
cloud computing department. He's also a Docker contributor and Docker
community leader. He has extensive hands-on experience with open cloud
infrastructures and container workloads in production, run by some of the most
iconic companies in the world. He shares his life with Anna in Moscow, Russia.

He's the author of Docker Clustering with Swarm, edited by Packt Publishing
(2017).

Vishnu Gopal is an engineer with strong product and user experience skills,
with experience in product development, web development, and engineering
management. He was part of the initial team that built SlideShare Inc., which
then went on to be acquired by LinkedIn. He's been working in the web and
mobile development field for over 10 years. He is currently the CTO of SV.CO,
a product accelerator for students based in India. He lives in Kochi, India.

I would like to thank Deepa Pillai, DP, my English teacher in school, for her constant encouragement and
love. Like so many others, I started writing because she taught me the value of words, of careful and patient
editing, and that most good writing is rewriting. I hope she continues to be as young as ever, forever.

pythontesting

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Table of Contents

Title Page
Copyright and Credits
Docker Cookbook
Second Edition
Dedication
Packt Upsell
Why subscribe?
PacktPub.com
Contributors
About the authors
About the reviewers
Packt is searching for authors like you
Preface
wWho this book is for
What this book covers
To get the most out of this book
Download the example code files
Conventions used
Sections
Getting ready
How to do it...
How it works...
There's more. ..

See also

pythontesting

Get in touch

Reviews

1. 1ntroduction and Installation
Introduction
Namespaces
The PID namespace
The net namespace
The IPC namespace
The mnt namespace
The UTS namespace
The user namespace
Cgroups
The union filesystem
The container format
Verifying requirements for Docker installation
Getting ready
How to do it…
How it works…
See also
Installing Docker on Ubuntu
Getting ready
How to do 1it…
How it works...
There's more…
See also

Installing Docker on Cent0S

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready
How to do it...
How it works...
There's more. ..
See also
Installing Docker on Linux with an automated script
Getting ready
How to do it
How it works...
There's more...
Installing Docker for Windows
Getting ready
How to do it
How it works...
There's more
See also
Installing Docker for Mac
Getting ready
How to do it
How it works...
There's more. ..
See also
Pulling an image and running a container
Getting ready
How to do it...
How it works…

There's more…

pythontesting

See also
Adding a nonroot user to administer Docker
Getting ready
How to do it...
How it works…
Finding help with the Docker command line
Getting ready
How to do 1it…
How it works…

See also

2. Working with Docker Containers
Introduction
Listing/searching for an image

Getting ready
How to do it...
How it works...
There's more...
See also
Pulling an image
Getting ready
How to do it...
How it works...
There's more. ..
See also
Listing images

Getting ready

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...
How it works...
There's more...
See also
Starting a container
Getting ready
How to do it...
How it works...
There's more...
See also
Listing containers
Getting ready
How to do it...
How it works...
There's more. ..
See also
Looking at the container logs
Getting ready
How to do it...
How it works...
There's more...
See also
Stopping a container
Getting ready
How to do it...
How it works...

There's more. ..

pythontesting

See also
Removing a container
Getting ready
How to do it...
There's more. ..
How it works...
See also
Removing all stopped containers
Getting ready
How to do it...
There's more...
How it works...
See also
Setting the restart policy on a container
Getting ready
How to do it...
There's more...
See also
Getting privileged access inside a container
Getting ready
How to do it...
How it works...
There's more...
See also
Accessing the host device inside a container
Getting ready

How to do it...

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...
See also
Injecting a new process into a running container
Getting ready
How to do it...
How it works...
See also
Reading a container's metadata
Getting ready
How to do it...
How it works...
There's more. ..
See also
Labeling and filtering containers
Getting ready
How to do it...
How it works...
There's more...
See also
Reaping a zombie inside a container
Getting ready
How to do it...
There's more...
How it works...

See also

3. Working with Docker Images

pythontesting

Introduction
Creating an image from the container
Getting ready
How to do it...
How it works...
There's more...
See also
Creating an account with Docker Hub
Getting ready
How to do it...
How it works...
See also
Logging in and out of the Docker image registry
Getting ready
How to do it...
How it works...
There's more...
See also
Publishing an image to the registry
Getting ready
How to do it...
How it works...
There's more...
See also
Looking at the history of an image
Getting ready

How to do it...

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...
There's more...
See also
Removing an image
Getting ready
How to do it...
There's more...
See also
Exporting an image
Getting ready
How to do it...
There's more. ..
See also
Importing an image
Getting ready
How to do it...
There's more...
See also
Building an image using a Dockerfile
Getting ready
How to do it...
How it works...
There's more...
See also
Building an Apache image – a Dockerfile example
Getting ready

How to do it...

pythontesting

How it works...
There's more...
See also
Setting up a private index/registry
Getting ready
How to do it...
How it works...
There's more...
See also
Automated builds – with GitHub and Bitbucket
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a custom base image
Getting ready
How to do it...
How it works...
See also
Creating a minimal image using a scratch base image
Getting ready
How to do it...
How it works...
There's more...
See also

Building images in multiple stages

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

How to do it...

How it works...

There's more. ..

See also

Visualizing the image hierarchy

Getting ready

How to do it...

How it works...

There's more...

See also

4. Network and Data Management for Containers
Introduction
Accessing containers from outside
Getting ready
How to do it...
How it works...
There's more...
See also
Attaching containers to a host network
Getting ready
How to do it...
How it works...
See also
Launching containers with no network

Getting ready

pythontesting

How to do it...
How it works...
See also
Sharing IP addresses with other containers
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a user-defined bridge network
Getting ready
How to do it...
How it works...
There's more...
See also
Discovering and load balancing containers
Getting ready
How to do it...
How it works...
There's more...
See also
Persisting data using volumes
Getting ready
How to do it...
How it works...
There's more...

See also

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Sharing data between the host and the container
Getting ready
How to do it...
How it works...
There's more. ..

See also

5. Docker use cases

Introduction

Testing with Docker
Getting ready
How to do 1it…
How it works…
There's more…

Performing CI/CD with Shippable and Heroku
Getting ready
How to do 1it…
How it works…
See also

Performing CI/CD with TravisCI
Getting ready
How to do 1it…
How it works…
There's more…
See also

Setting up PaaS with OpenShift origin

Getting ready

pythontesting

How to do it…
How it works…
There's more…
See also
Building and deploying an app on OpenShift from the source code
Getting ready
How to do it…
How it works…
There's more…

See also

6. Docker APIs and SDKs

Introduction

Working with images using APIs
How to do it...
How it works...
There's more...
See also

Building images using APIs
How to do it...
How it works...
There's more...
See also

Launching containers using APIs
How to do it...
How it works...

There's more...

qg 6089740 21734177 IT

See also
Performing container operations using APIs
How to do it...
How it works...
See also
Exploring Docker remote API client libraries
Getting ready
How to do it...
How it works...
See also
Configuring the Docker daemon for remote connectivity
How to do it...
How it works...
There's more...
See also
Securing the Docker daemon's remote connectivity
Getting ready
How to do it...
How it works...
There's more...

See also

7. Docker Performance
Introduction
Benchmarking CPU performance
Getting ready

How to do 1it…

pythontesting

http://t.cn/RDIAJS5D

How it works…
There's more…
See also
Benchmarking disk performance
Getting ready
How to do it...
How it works...
There's more…
See also
Benchmarking network performance
Getting ready
How to do it…
How it works…
There's more…
See also
Getting container resource usage using the stats feature
Getting ready
How to do it...
How it works...
See also
Setting up performance monitoring
Getting ready
How to do it...
How it works...
There's more…

See also

qg 6089740 21734177 IT http://t.cn/RDIAj5D

8. Docker orchestration and Hosting a Platform
Introduction
Running applications with Docker Compose
Getting ready
How to do it
How it works...
There's more. ..
See also
Setting up a cluster with Docker Swarm
Getting ready
How to do it
How it works…
There's more. ..
See also
Using secrets with Docker Swarm
Getting ready
How to do it...
How it works...
There's more. ..
See also
Setting up a Kubernetes cluster
Getting ready
How to do it...
How it works...
There's more...

See also

pythontesting

Using secrets with Kubernetes
Getting ready
How to do it...
How it works...
There's more. ..
See also
Scaling up and down in Kubernetes cluster
Getting ready
How to do it...
How it works...
There's more. ..
Setting up WordPress with Kubernetes clusters
Getting ready
How to do it...
How it works...
There's more...

See also

9. pocker Security

Introduction

Setting Mandatory Access Control (MAC) with SELinux
Getting ready
How to do 1it…
How it works…
There's more...
See also

Allowing writes to volumes mounted from the host with SELinux ON

qg 6089740 21734177

Getting ready
How to do it...
How it works…

See also

IT

http://t.cn/RDIAJS5D

Removing capabilities to break down the power of a root user inside a container

Getting ready

How to do it...

How it works...

There's more. ..

See also

Sharing namespaces between the host and the container

Getting ready

How to do it...

How it works...

10. Getting Help and Tips and Tricks
Introduction
Starting Docker in debug mode
Getting ready
How to do it...
How it works...
See also
Building a Docker binary from the source
Getting ready
How to do it...
How it works...

There's more. ..

pythontesting

See also
Building images without using cached layers
Getting ready
How to do it...
How it works...
There's more...
Building your own bridge for container communication
Getting ready
How to do it...
How it works...
There's more. ..
See also
Changing the default OCI runtime
Getting ready
How to do it...
How it works...
See also
Selecting the logging driver for containers
Getting ready
How to do it
How it works...
There's more...
See also
Getting real-time Docker events for containers
Getting ready...
How to do it...

How it works...

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more. ..

See also

11. pocker on the cloud

Introduction

Docker for AWS
Getting ready
How to do it...
How it works...
There's more
See also

Deploying WordPress on Docker for AWS
Getting ready
How to do it...
How it works...
There's more. ..

Docker for Azure
Getting ready
How to do it...
How it works...
There's more...
See also

Deploying Joomla! on Docker for Azure
Getting ready
How to do it...
How it works...

See also

pythontesting

Other Books You May Enjoy

Leave a review - let other readers know what you think

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Preface

With Docker, containers are becoming mainstream and enterprises are ready to
use them in production. This book is specially designed to help you get up to
speed with Docker and give you the confidence to use it in production. This
book also covers Docker use cases, orchestration, clustering, hosting platforms,
security, and performance, which will help you understand the different aspects
of production deployment.

With step-by-step instructions to practical and applicable recipes, Docker
Cookbook will not only help you with the current version of Docker (18.06), but
with the accompanying text, it will provide you with conceptual information to
cope with the minor changes in future versions.

Docker is a registered trademark of Docker, Inc.

pythontesting

Who this book is for

This book targets developers, system administrators, and DevOps engineers who
want to use Docker in their development, QA, or production environments.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

What this book covers

chapter 1, Introduction and Installation, compares containers with bare metal and
virtual machines. It helps you understand Linux kernel features, that enable
containerization; finally, we'll take a look at installation recipes.

chapter 2, Working with Docker Containers, explains the different operations you
can perform with containers, such as starting, stopping, listing, and deleting.

chapter 3, Working with Docker Images, introduces you to Docker Hub and shows
you how to share images through Docker Hub and how to host your own Docker
registry. It will also show you the different ways to build your own image, along
with a few Docker image housekeeping operations.

chapter 4, Network and Data Management for Containers teaches you how to
access the container from the outside world, share external storage within the
container, communicate with containers running on other hosts, and more.

chapter 5, Docker Use Cases, explains most of the Docker use cases, such as
using Docker for testing, CI/CD, and setting up a PaaS.

chapter 6, Docker APIs and Language Bindings, dives deep into the Docker API
and shows how to work with Docker using the RESTful API and SDK. The curl
command that ships with Ubuntu 18.04 has a bug; so, for this chapter, we are
using Ubuntu 16.04 and Docker version 17.03.

chapter 7, Docker Performance, explains the approach one can follow to compare
the performance of containers with bare metal and VMs. It also covers
monitoring tools.

chapter 8, Docker Orchestration and Hosting Platforms, provides an introduction
to Docker Compose and Swarm, and then we take a look at using Kubernetes for
Docker Orchestration.

pythontesting

chapter 9, Docker Security, explains general security guidelines, SELinux for
mandatory access controls, and other security features such as changing
capabilities and sharing namespaces.

chapter 10, Getting Help and Tips and Tricks, provides tips and tricks and
resources to help you in things related to Docker administration and
development.

chapter 11, Docker on Cloud, provides an introduction to Docker for AWS and
Azure, along with how to install and deploy an application.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

To get the most out of this book

It is expected that the reader should have basic Linux/Unix skills, such as
installing packages, editing files, and managing services.

Any experience in virtualization technologies, such as KVM, XEN, and
VMware, would be an added advantage.

pythontesting

Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nhttps://github.con/Packtpu
blishing/Docker-Cookbook-Second-Edition. IN case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webstorm-10*.dng disk image
file as another disk in your system."

A block of code is set as follows:

{
"insecure-registries": [
"172.30.0.0/16"

]
b

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

{
"insecure-registries": [
"172.30.0.0/16"

]
b

Any command-line input or output is written as follows:

| $ docker image pull ubuntu

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

pythontesting

Sections

In this book, you will find several headings that appear frequently (Getting
ready, How to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as
follows:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

This section tells you what to expect in the recipe and describes how to set up
any software or any preliminary settings required for the recipe.

pythontesting

How to do it...

This section contains the steps required to follow the recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

This section usually consists of a detailed explanation of what happened in the
previous section.

pythontesting

There's more...

This section consists of additional information about the recipe in order to make
you more knowledgeable about the recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

This section provides helpful links to other useful information for the recipe.

pythontesting

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

pythontesting

https://www.packtpub.com/

Introduction and Installation

In this chapter, we will cover the following recipes:

Verifying the requirements for Docker installation
Installing Docker on Ubuntu

Installing Docker on CentOS

Installing Docker on Linux with an automated script
Installing Docker for Windows

Installing Docker for Mac

Pulling an image and running a container

Adding a nonroot user to administer Docker
Finding help with the Docker command line

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Introduction

At the very start of the I'T revolution, most applications were deployed directly
on physical hardware, over the host OS. Because of that single user space,
runtime was shared between applications. The deployment was stable, hardware-
centric, and had a long maintenance cycle. It was mostly managed by an IT
department, and gave much less flexibility to developers. In such cases, the
hardware resources were underutilized most of the time. The following diagram

TRADITIOMNAL

APP A APP B

BINS/LIBS

0S5 & SHARED SERVICES

HARDWARE

depicts such a setup:

Traditional application deployment

For flexible deployments, and in order to better utilize the resources of the host

pythontesting

system, virtualization was invented. With hypervisors, such as KVM, XEN,
ESX, Hyper-V, and so on, we emulated the hardware for virtual machines
(VMs) and deployed a guest OS on each virtual machine. VMs can have a
different OS than their host; this means that we are responsible for managing
patches, security, and the performance of that VM. With virtualization,
applications are isolated at VM level and are defined by the life cycle of VMs.
This gives us a better return on our investment and higher flexibility at the cost
of increased complexity and redundancy. The following diagram depicts a

INFRASTRUCTURE AS A SERVICE (IAAS)

05

HYPERVISOR

HOST OS5

SERVER

typical virtualized environment:

Application deployment in a virtualized environment

Since virtualization was developed, we have been moving towards more
application-centric IT. We have removed the hypervisor layer to reduce hardware
emulation and complexity. The applications are packaged with their runtime
environment, and are deployed using containers. OpenVZ, Solaris Zones, and
LXC are a few examples of container technology. Containers are less flexible

qg 6089740 21734177 IT http://t.cn/RDIAj5D

compared to VMs; for example, we cannot run Microsoft Windows on Linux OS
as of writing. Containers are also considered less secure than VMs, because with
containers, everything runs on the host OS. If a container gets compromised,
then it might be possible to get full access to the host OS. It can be a bit too
complex to set up, manage, and automate. These are a few of the reasons why
we have not seen the mass adoption of containers in the last few years, even
though we had the technology. The following diagram shows how an application
is deployed using containers:

Application-Centric IT & PaaS

HARDWARE, VIRT, CLOUD

HOST 05, SHARED SERVICES

Application deployment with containers

With Docker, containers suddenly became first-class citizens. All big
corporations, such as Google, Microsoft, Red Hat, IBM, and others, are now
working to make containers mainstream.

Docker was started as an internal project by dotCloud founder Solomon Hykes.
It was released as open source in March 2013 under the Apache 2.0 license. With
dotCloud's platform as a service experience, the founders and engineers of
Docker were aware of the challenges of running containers. So with Docker,
they developed a standard way to manage containers.

pythontesting

Docker uses the operating system's underlying kernel features, which enable
containerization. The following diagram depicts the Docker platform and the
kernel features used by Docker. Let's look at some of the major kernel features
that Docker uses:

Platform - P g

Independent

Docker Engine

Platform
Specific

Compute Services

. " Other 0S
Windows Control Groups Namespaces Layer Capabilities Functionality

s Object Namespace, Registry, Union like
o Process Table, Networking filesystem extensions

Layer Capabilities
Control Groups Namespaces umzn F/fesysltjems.‘ AUFS Other OS

cgroups Pid, net, ijpc, mnt, uts birfs, vfs, Funct]ona“ty
2fs* DeviceMapper

Docker platform and the kernel features used by Docker

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Namespaces

Namespaces are the building blocks of a container. There are different types of
namespace, and each one of them isolates applications from the others. They are
created using the clone system call. You can also attach to existing namespaces.
Some of the namespaces used by Docker will be explained in the following
sections.

pythontesting

The PID namespace

The PID namespace allows each container to have its own process numbering.
Each PID forms its own process hierarchy. A parent namespace can see the
children namespaces and affect them, but a child can neither see the parent
namespace nor affect it.

If there are two levels of hierarchy, then at the top level, we would see the
process running inside the child namespace with a different PID. So a process
running in a child namespace would have two PIDs: one in the child namespace
and the other in the parent namespace. For example, if we run a program on the
container.sh container, then we can see the corresponding program on the host as
well.

On the container, the sh container.sh process has a PID of s:

bash-4.3# ps aux | grep container
8 0.0 0.0 11664 2656 7 S 07:37 0:00 sh container.sh

80 0.0 0.0 9084 840 7? S+ 07:43 0:00 grep container
bash-4.3# [|

On the host, the same process has a PID of 2977s:

[root@dockerhost ~]# ps aux | grep container
root 29778 0.0 0.0 11664 2660 pts/3 S 07:37 0:00 sh .sh

root 29912 0.0 0.0 113004 2160 pts/4 S+ 07:45 0:00 grep --color=auto
[root@dockerhost ~1# | |

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The net namespace

With the PID namespace, we can run the same program multiple times in
different isolated environments; for example, we can run different instances of
Apache on different containers. But without the net namespace, we would not be
able to listen on port 80 on each one of them. The net namespace allows us to
have different network interfaces on each container, which solves the problem I
mentioned earlier. Loopback interfaces would be different in each container as
well.

To enable networking in containers, we create pairs of special interfaces in two
different net namespaces and allow them to talk to each other. One end of the
special interface resides inside the container and the other resides on the host
system. Generally, the interface inside the container is called ethe, and on the
host system, it is given a random name, such as vethsieccse. These special
interfaces are then linked through a bridge (dockere) on the host to enable
communication between the containers and the route packets.

Inside the container, you will see something like the following:

$ docker container run -it alpine ash
ip a
bash-4.3# ip a
1: lo: <LOOPBACK,UP,LOWER _UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
269: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 gqdisc noqueue state UP group default
link/ether 02:42:ac:11:00:0b brd ff:ff:ff:ff.ff:ff
inet 172.17.0.11/16 scope global eth0
valid_1ft forever preferred_lft forever
inet6 2001:db8:1::242:acll:b/64 scope global
valid_1ft forever preferred_lft forever
inet6 fe80::42:acff:fell:b/64 scope link
valid 1ft forever preferred_1ft forever
bash-4.3# ||

pythontesting

On the host, it would look like the following:

|$ ip a
$ lssubsys -M
cpuset /sys/fs/cgroup/cpuset
cpu, cpuacct /sys/fs/cgroup/cpu,cpuacct
blkio /sys/fs/cgroup/blkio
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer

net_cls,net_prio /sys/fs/cgroup/net_cls,net_prio
perf_event /sys/fs/cgroup/perf_event

hugetlb /sys/fs/cgroup/hugetlb

pids /sys/fs/cgroup/pids

rdma /sys/fs/cgroup/rdma

$]

Also, each net namespace has its own routing table and firewall rules.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The IPC namespace

The inter-process communication (IPC) namespace provides semaphores,
message queues, and shared memory segments. It is not widely used these days,
but some programs still depend on it.

If the IPC resource created by one container is consumed by another container,
then the application running on the first container could fail. With the IPC
namespace, processes running in one namespace cannot access resources from
another namespace.

pythontesting

The mnt namespace

Using only a chroot, you can inspect the relative paths of the system from a
chrooted directory/namespace. The mnt namespace takes the idea of chroots to
the next level. With the mnt namespace, a container can have its own set of
mounted filesystems and root directories. Processes in one mnt namespace
cannot see the mounted filesystems of another mnt namespace.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The UTS namespace

With the UTS namespace, we can have different hostnames for each container.

pythontesting

The user namespace

With user namespace support, we can have users who have a nonzero ID on the
host, but who can have a zero ID inside the container. This is because the user
namespace allows mappings of users and groups IDs per namespace.

There are ways to share namespaces between the host and container, and other
containers as well. We'll see how to do this in subsequent chapters.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Cgroups

Control groups (cgroups) provide resource limitations and accounting for
containers. The following quote is from the Linux Kernel documentation:

"Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their future
children, into hierarchical groups with specialized behaviour."

In simple terms, they can be compared to the ulinit shell command or the
setrlimit system call. Instead of setting the resource limit to a single process,
cgroups allow you to limit resources to a group of processes.

Control groups are split into different subsystems, such as CPU, CPU sets,
memory block I/0, and so on. Each subsystem can be used independently, or can
be grouped with others. The features that cgroups provide are as follows:

¢ Resource limiting: For example, one cgroup can be bound to specific
CPUs, so that all processes in that group would run on given CPUs only

¢ Prioritization: Some groups may get a larger share of CPUs

e Accounting: You can measure the resource usage of different subsystems
for billing

e Control: You can freeze and restart groups

Some of the subsystems that can be managed by cgroups are as follows:

e blkio: Sets I/0 access to and from block devices, such as disks, SSDs, and
SO on

Cpu: Limits access to CPU

Cpuacct: Generates CPU resource utilization

Cpuset: Assigns CPUs on a multicore system to tasks in a cgroup
Devices: Grants devices access to a set of tasks in a group

Freezer: Suspends or resumes tasks in a cgroup

Memory: Sets limits on memory use by tasks in a cgroup

There are multiple ways to control work with cgroups. Two of the most popular
ones are accessing the cgroup virtual filesystem manually and accessing it with
the libcgroup library. To use libcgroup on Linux, run the following command to

pythontesting

install the required packages on Ubuntu or Debian:

| $ sudo apt-get install cgroup-tools

To install the required packages on CentOS, Fedora, or Red Hat, use the
following code:

| $ sudo yum install libcgroup libcgroup-tools
These steps are not possible on Docker for Mac and Windows, because you can't install the
required packages on those versions of Docker.

Once installed, you can get the list of subsystems and their mount point in the
pseudo filesystem with the following command:

|$ lssubsys -M
$ lssubsys -M
cpuset /sys/fs/cgroup/cpuset
cpu, cpuacct /sys/fs/cgroup/cpu,cpuacct
blkio /sys/fs/cgroup/blkio
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer

het_cls,net_prio /sys/fs/cgroup/net_cls,net_prio
perf_event /sys/fs/cgroup/perf_event

hugetlb /sys/fs/cgroup/hugetlb

pids /sys/fs/cgroup/pids

rdma /sys/fs/cgroup/rdma

$]

Although we haven't looked at the actual commands yet, let's assume that we are
running a few containers and want to get the cgroup entries for a container. To get
those, we first need to get the container ID and then use the 1scgroup command to
get the cgroup entries of a container, which we can get using the following
command:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
alpine "ash" 25 minutes ago Up 25 minutes
$ 1scgroup | grep c3a45b@5e3cf
pids:/docker/c3a45b@5e3cfc5e69bc@3b45bd995cadc69a661914ef@99112d7a53baf8328¢
net_cls,net_prio:/docker/c3a45b@5e3cfc5e69bc@3b45bd995ca0cf62a661914ef@99112d7a53baf8328¢
blkio:/docker/c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a661914ef099112d7a53baf8328¢

cpuset : /docker/c3a45b@5e3cfc5e69bcO3b45bd995ca@cf63a661914ef099112d7a53baf8328¢
devices:/docker/c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a66f914ef@99112d7a53baf8328¢
freezer:/docker/c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a661914ef@99112d7a53baf8328¢
hugetlb:/docker/c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a661914ef099112d7a53baf8328¢
perf_event:/docker/c3a45b05e3cfc5¢69bc@3b45bd995cadcf69a661914ef099112d7a53baf8328¢
memory : /docker/c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a661914ef@99112d7a53baf8328¢c
cpﬁ,cpuacct:/docker/c3a45b05e3cfc5e69bc03b45bd995ca@cF69066F914ef099112d7053baf8328c
$

0 For more details, visit https://docs.docker.com/config/containers/runmetrics/.

pythontesting

https://docs.docker.com/config/containers/runmetrics/.

The union filesystem

The union filesystem allows the files and directories of separate filesystems,
known as layers, to be transparently overlaid to create a new virtual filesystem.
While starting a container, Docker overlays all the layers attached to an image
and creates a read-only filesystem. On top of that, Docker creates a read/write
layer that is used by the container's runtime environment. You can read the
Pulling an image and running a container recipe of this chapter for more details.
Docker can use several union filesystem variants, including AUFS, Btrfs, zfs,
overlay, overlay2, and DeviceMapper.

Docker also has a virtual file system (VFS) storage driver. A VFS doesn't
support copy-on-write (COW) and is not a union filesystem. This means that
each layer is a directory on the disk, and each time a new layer is created, it
requires a deep copy of its parent layer. For these reasons, it has lower
performance and requires more disk space, but it is a robust and stable option
that works in every environment.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The container format

Docker Engine combines the namespaces, control groups, and UnionFS into a
wrapper called a container format. In 2015, Docker donated its container format
and runtime to an organization called the the Open Container Initiative (OCI).
The OCI is a lightweight, open-governance structure formed under the Linux
Foundation by Docker and other industry leaders. The purpose of the OCI is to
create open industry standards around container formats and runtimes. There are
currently two specifications: the Runtime Specification and the Image
Specification.

The Runtime Specification outlines how to run an OCI runtime filesystem
bundle. Docker donated runC, (https://github.Com/opencontainers/runc) its OCI-
compliant runtime to the OCI, to serve as the reference implementation.

The OCI image format contains the information needed to launch the application
on the target platform. The specification defines how to create the OCI image,
and what the desired output would look like. The output would consist of an
image manifest, a filesystem (layer) serialization, and the image configuration.
Docker donated its Docker V2 image format to the OCI to form the basis of the
OCI image specification.

There are currently two container engines that support the OCI Runtime and
Image Specifications: Docker and rkt.

pythontesting

https://github.com/opencontainers/runc

Verifying requirements for Docker
installation

Docker is supported on many Linux platforms, such as RHEL, Ubuntu, Fedora,
CentOS, Debian, Arch Linux, among others. It is also supported on many cloud
platforms, such as Amazon Web Services, Digital Ocean, Microsoft Azure, and
Google Cloud. Docker has also released desktop applications for Microsoft
Windows and Mac OS X that allows you to easily get Docker up and running
directly on your local machine.

In this recipe, we will verify the requirements for Docker installation. We will
look at a system with an Ubuntu 18.04 LTS installation, though the same steps
should work on other Linux flavors as well.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Log in as a root user on the system that has Ubuntu 18.04 installed.

pythontesting

How to do it...

Perform the following steps:

1. Docker is not supported on 32-bit architecture. To check the
architecture on your system, run the following command:

$ uname -1i
x86_64

2. Docker is supported on kernel 3.8 or later. It has been back-ported on some
of the kernel 2.6, such as RHEL 6.5 and above. To check the kernel version,
run the following command:

$ uname -r
4.15.0-29-generic

3. Running the kernel should support an appropriate storage backend. Some of
the options for such a backend are VFS, DeviceMapper, AUFS, Btrfs, zfs,
and Overlayfs.

For Ubuntu, the default storage backend or driver is overlay2, which has
been available since Ubuntu 14.04. Another popular one is
DeviceMapper, which uses the device-mapper thin provisioning module to
implement layers. It should be installed by default on a majority of Linux
platforms. To check for device-mapper, you can run the following
command:

$ grep device-mapper /proc/devices
253 device-mapper

On most distributions, AUFS would require a modified kernel.

4. Support for cgroups and namespaces have been in the kernel for sometime,
and should be enabled by default. To check for their presence, you can look
at the corresponding configuration file of the kernel you are running. For
example, on Ubuntu, I can do something like the following:

$ grep -i namespaces /boot/config-4.15.0-29-generic
CONFIG_NAMESPACES=y

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ grep -i cgroups /boot/config-4.15.0-29-generic
CONFIG_CGROUPS=y

The name of the conrig file is usually dependent on your kernel version. Your system might
have a different filename. If this is the case, change the command accordingly.

pythontesting

How it works...

Docker requires that the host system meets a basic set of requirements in order
for it to run correctly. By running the preceding commands, we were able to
confirm that our system meets those requirements.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Check out the installation document on the Docker website at https://docs.docker.c

om/install/.

pythontesting

https://docs.docker.com/install/

Installing Docker on Ubuntu

There are a few different versions of Ubuntu that are available. In this recipe, we
will be installing Docker on Ubuntu 18.04, which is the latest LTS version as of
writing. These same steps should also work with Ubuntu 16.04.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ sudo apt-get remove docker docker-engine docker.io

pythontesting

 $ sudo apt-get install \
 apt-transport-https \

 ca-certificates \
 curl \

 software-properties-common

 $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-
key add -
 OK

 $ sudo add-apt-repository \
 "deb [arch=amd64]
https://download.docker.com/linux/ubuntu \

$(Isb_release -cs) \
 stable"

 $ sudo apt-get update
 $ sudo apt-get install docker-ce

 $ sudo docker container run hello-world

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding command will install Docker on Ubuntu and all the packages
required by it.

pythontesting

There's more...

The default Docker daemon configuration file is located at /etc/docker, which is
used while starting the daemon. Here are some basic operations:

e To start the service, enter the following:

| $ sudo systemctl start docker

¢ To verify the installation, enter the following:

| $ docker info

e To update the package, enter the following:

| $ sudo apt-get update

e To enable the start of the service at boot time, enter the following:

| $ sudo systemctl enable docker

¢ To stop the service, enter the following;:

| $ sudo systemctl stop docker

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

For more information, check out the Ubuntu installation document on the
Docker website at https://docs.docker.com/install/linux/docker-ce/ubuntu/.

pythontesting

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Installing Docker on CentOS

Another popular Linux distribution is CentOS, which is a free, enterprise-class
distribution that is compatible with Red Hat Enterprise Linux (RHEL). Go
through the following easy recipe to install Docker on CentOS 7.x.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

The centos-extra repository must be enabled. This is usually enabled by default,
but if you disabled it, please enable it again.

Previously, the Docker package had a different name: It was called docker or
docker-engine; it is now called docker-ce. We will need to remove any previous
Docker versions in order to prevent any conflicts: $ sudo yum remove docker \
docker-client \

docker-client-latest \

docker-common \

docker-latest \

docker-latest-logrotate \

docker-logrotate \

docker-selinux \

docker-engine-selinux \

docker-engine

0 It is OK if yum reports that none of these packages are installed.

pythontesting

 $ sudo yum install -y yum-utils \
 device-
mapper-persistent-data \
 lvm2

 $ sudo yum-config-manager \
 --add-repo \

 https://download.docker.com/linux/centos/docker-
ce.repo

 $ sudo yum-config-manager --enable docker-ce-test
 $ sudo yum install docker-ce

 Retrieving key from
https://download.docker.com/linux/centos/gpg

Importing GPG key 0x621E9F35:
 Userid : "Docker
Release (CE rpm) <docker@docker.com>"
 Fingerprint:
060a 61c5 1b55 8a7f 742b 77aa c52f eb6b 621e 9f35

From : https://download.docker.com/linux/centos/gpg
 Is
this ok [y/N]: y

 $ sudo systemctl start docker

 $ docker container run hello-world

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding recipe installs Docker on CentOS and all the packages required
by it.

pythontesting

 $ sudo yum remove docker-ce

 $ sudo systemctl stop docker

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

For more information, check out the CentOS installation document on the
Docker website at https://docs.docker.com/install/linux/docker-ce/centos/.

pythontesting

https://docs.docker.com/install/linux/docker-ce/centos/

Installing Docker on Linux with an
automated script

In the previous two recipes, we went through the different steps required to
install Docker on Ubuntu and CentOS. Those steps are fine when you are only
installing it on a host or two, but what if you need to install it on a hundred? In
that case, you would want something a little more automated to speed up the
process. This recipe shows you how to install Docker on different Linux flavors
using an install script that is provided by Docker.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Like all scripts that you download off the internet, the first thing you should do
is examine the script and make sure you know what it is doing before you use it.
To do this, go through the following steps:

1. Visit https://get.docker.com in your favorite web browser to review the script,
and make sure you are comfortable with what it is doing. If in doubt, don't
use it.

2. The script needs to be run as root or with sudo privileges.

3. If Docker has already been installed on the host, it needs to be removed
before running the script.

The script currently works with the following flavors of Linux: CentOS, Fedora,
Debian, Ubuntu, and Raspbian.

pythontesting

https://get.docker.com

How to do it

To use the script, go through the following steps:

1. Download the script to the host system:

| $ curl -fsSL get.docker.com -o get-docker.sh

2. Run the script:

| $ sudo sh get-docker.sh

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding recipe used an automated script to install Docker on Linux.

pythontesting

There's more...

In order to upgrade Docker, you will need to use the package manager on your
host. Rerunning the script can cause issues if it attempts to re-add repositories
that were already added. See the previous recipes to learn how to upgrade
Docker on CentOS and Ubuntu using their respective package managers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Docker for Windows

Docker for Windows is a native application that is deeply integrated with Hyper-
V virtualization and the Windows networking and filesystems. It is a full-
featured development environment that can be used for building, debugging, and
testing Docker apps on a Windows PC. It also works well with VPNs and
proxies to make it easier when used in a corporate environment.

Docker for Windows supports both Windows and Linux containers out of the
box, and it is easy to switch between the two to build your multiplatform
applications. It comes with the Docker CLI client, Docker Compose, Docker
Machine, and Docker Notary.

Recent releases have also added Kubernetes support so that you can easily create
a full Kubernetes environment on your machine with just the click of a button.

pythontesting

Getting ready

Docker for Windows has the following system requirements:

e 64-bit Windows 10 Pro, Enterprise, and Education (1607 Anniversary
Update, Build 14393 or later)

e Virtualization must be enabled in BIOS and be CPU-SLAT-capable.

e 4GB of RAM

Docker Toolbox (https://docs. docker . con/too1box/overviews), Which uses Oracle VirtualBox instead of

0 If your system does not satisfy these requirements, fear not—all is not lost. You can install
Hyper-V. It isn't as good, but it is better than nothing.

https://docs.docker.com/toolbox/overview/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker container run hello-world

pythontesting

How it works...

This recipe will show you how to install a Docker development environment on
your Windows machine.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more

Now that you have Docker for Windows installed, check out the following tips
to get the most out of your installation:

e Docker for Windows supports both Windows and Linux containers. If you
want to switch, you just need to right-click on the whale icon, select Switch
to Windows containers..., and then click the Switch button:

'-Jf Switch to Windows containers ¥
Switch to Windows containers

nn You are about to switch to Windows containers. Existing containers will
continue to run, but you will not be able to manage them until you switch
back to Linux containers. No data will be lost otherwise.

Do you want to continue?

[] Don't show this message again

Switch Cancel

To switch back, do the same thing, except this time, select Switch to
Linux containers....

e Docker for Windows will automatically check for new updates and let you
know when a new version is available to install. If you agree to upgrade, it
will download the new version and install it for you.

e Kubernetes doesn't run by default. If you want to turn it on, you will need to
right-click on the Docker whale icon in your task bar, then select Settings.
Inside the Settings menu, there is a Kubernetes tab. Click on the tab, and
then click the Enable Kubernetes option and hit the Apply button:

pythontesting

& Settings

General K b ¢
LI Configure and manage the kubernetes cluster
Advanced
Enable Kubernetes
Network : .
Starts a Kubernetes single-node cluster when starting Docker.
c Default orchestrator for docker atack commands
Proxies
(changes ~/.docker/config,json]:
Daemon @) Kubernetes) Swarm
[] Show system containers (advanced)
Kubernetes Show kubernetes internal containers when using Docker commands.,
Reset

@ Docker is running Appl}r

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

For more information about Docker for Windows, and for links to labs and more
examples, go {0 https://docs.docker.com/docker-for-windows/.

pythontesting

https://docs.docker.com/docker-for-windows/

Installing Docker for Mac

Docker for Mac is the fastest and most reliable way to run Docker on a Mac. It
installs all of the tools required to set up a complete Docker development
environment on your Mac. It includes the Docker command line, Docker
Compose, and Docker Notary. It also works well with VPNs and proxies to
make it easier when used in a corporate environment.

Recent releases have also added Kubernetes support so that you can easily create
a full Kubernetes environment on your machine with just the click of a button.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ sysctl kern.hv_support

kern.hv_support: 1

If your system does not satisfy these requirements, fear not—all is not lost. You
can install Docker Toolbox (https://docs.docker.com/toolbox/overview/), which
uses Oracle VirtualBox instead of HyperKit. It isn't as good, but it is better than
nothing.

pythontesting

https://docs.docker.com/toolbox/overview/

How to do it

To install Docker for Mac, go through the following steps:

1. Download Docker for Mac from the Docker Store at https://store.docker.com/
editions/community/docker-ce-desktop-mac. You will need to log in in order to
download the installer. If you do not have a Docker account, you can create
one at https://store.docker.com/signup.

2. Open the installation file that you downloaded from the store. It should be
called something like pocker .dmg.

3. Drag and drop the whale icon into the Applications folder:

[NON | | Docker

1)(;1(356 % DRop

b

Docker.app Applications

4. Double-click the Docker.app icon in the Applications folder to start Docker,
as shown in the following screenshot:

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/signup

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

App Stare.app Atom.app Automatorapp Calculatorapp Calendarapp Chess.app Color Pickerapp Confacts.app
—— \Y
j Vi
\\ .
Dashboardapp Dictionary.app Dockerapp Oropbovapp OVDPMlayerapp FaceTime.app Flrefot.app FontBookapp GameCenterapp GarageBand.app

5. You will be prompted to authorize Docker.app with your system password.
This is normal—Docker.app needs privileged access to install some of its
components. Click OK and enter your password so it can finish installing;:

Docker needs privileged access.

Docker for Mac needs privileged access to install its networking
components and links to the Docker apps.

You will be asked for your password.

Exi

6. When Docker is finished, a little whale icon will show up in the status
menu in the top right of your screen, as shown in the following screenshot:

Q(D O3 T L 0 100%E1 E

7. If you click on the whale, you can access the application preferences and

other options.

Select the About Docker button to verify that you have the latest version.

9. Check to make sure that it is installed and working. Open up a terminal
window and type the following:

0o

pythontesting

$ docker container run hello-world

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding recipe will download and install a Docker development
environment on your Mac.

pythontesting

There's more...

Now that you have Docker for Mac installed, here are a few more tips for getting
started:

e Docker for Mac will automatically check for new updates and let you know
when a new version is available for you to install. If you agree to upgrade,
it will do all the work, downloading the new version and installing it for
you.

e Kubernetes isn't running by default. If you want to turn it on, you will need
to click on the Docker whale icon in your Status menu, then select
Preferences. Inside of Preferences, there is a Kubernetes tab. Click on the
tab, then click the Enable Kubernetes option, and hit the Apply button:

g WAy B)

+| Enable Kubernetes

® | Kubernetes Swarm

Show system containers (advanced)

Apply

@ Docker is running

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Visit the Get Started with Docker for Mac guide to help you learn about the
application and how best to use it. You can find it at https://docs.docker.com/docker -

for-mac/.

pythontesting

https://docs.docker.com/docker-for-mac/

Pulling an image and running a
container

I am borrowing the following recipe from the next chapter to introduce some
concepts. Don't worry if the recipe doesn't explain everything; we'll cover the
topics in detail later in this chapter, or in the next few chapters. For now, let's
pull an image and run it. We'll also get familiar with Docker architecture and its
components in this recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

First, gain access to a system that has Docker installed.

pythontesting

 $ docker container run -id --name demo alpine ash

$ docker container run -id --name demo alpine ash
c3a45b@5e3cfc5e69bc@3b45bd995cadcf69a661914ef099112d7a53baf8328¢
$ docker container ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

c3a45b@5e3cf dlpine "ash" 5 seconds ago Up 3 seconds
s 1]

qg 6089740 21734177

How it works...

1T http://t.cn/RDIAJS5D

Docker has client—server architecture. Its binary consists of the Docker client
and server daemon, and can reside on the same host. The client can
communicate via sockets or a RESTful API to either a local or remote Docker
daemon. The Docker daemon builds, runs, and distributes containers. As shown
in the following diagram, the Docker client sends the command to the Docker
daemon running on the host machine. The Docker daemon also connects to
either a public or a local registry to get images requested by the client:

docker butld --{-:

&

40

/
docker pull -

docker run =

|

DOCKER_HOST

Docker daemon

Containers

Q&&)E&

e
-

So in our case, the Docker client sends a request to the daemon running on the
local system, which then connects to the public Docker registry and downloads
the image. Once it is downloaded, we can run it.

pythontesting

There's more...

Let's explore some keywords that we encountered earlier in this recipe:

e Images: Docker images are read-only templates, and they give us
containers during runtime. They are based on the idea of a base image and
layers resting on top of it. For example, we can have a base image of Alpine
or Ubuntu, and then we can install packages or make modifications over the
base image to create a new layer. The base image and new layer can be
treated as a new image. For example, in the following figure, Debian is the
base image and then Emacs and Apache are the two layers added on top of
it. They are highly portable and can be shared easily:

references
parent
image

Layers are transparently laid on top of the base image to create a
single coherent filesystem.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e Registries: A registry holds Docker images. It can be public or private,
depending on the location from which you can download or upload images.
The public Docker registry is called Docker Hub, which we will cover
later.

¢ Index: An index manages user accounts, permissions, searches, tagging,
and all that nice stuff that's in the public web interface of the Docker
registry.

¢ Containers: Containers run images that are created by combining the base
image and the layers on top of it. They contain everything that is needed to
run an application. As shown in the preceding diagram, a temporary layer is
also added while starting the container, and this will be discarded if it is not
committed after the container is stopped and deleted. If it is committed,
then it would create another layer.

e Repository: Different versions of an image can be managed by multiple
tags, which are saved with different GUID. A repository is a collection of
images tracked by GUIDs.

pythontesting

See also

For more information, check out the documentation on the Docker website at ntt

ps://docs.docker.com/engine/docker-overview/.

https://docs.docker.com/engine/docker-overview/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Adding a nonroot user to administer
Docker

For ease of use, we can allow a nonroot user to administer Docker by adding it
to a Docker group. This is not required when using Docker on Mac or Windows.

pythontesting

Getting ready

To prepare to add a nonroot user to administer Docker, go through the following
steps:

1. Create the Docker group, if it is not there already:

| $ sudo groupadd docker

2. Create the user to whom you want to give permissions to administer
Docker:

| $ sudo useradd dockertest

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Run the following command to add the newly created user to administer Docker:

| $ sudo usermod -aG docker dockertest

pythontesting

How it works...

The preceding command will add a user to the Docker group. The added user
will thus be able to perform all Docker operations.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Finding help with the Docker
command line

Docker commands are well documented, and can be referred to whenever
needed. Lots of documentation is available online as well, but it might differ
from the documentation for the Docker version you are running.

pythontesting

Getting ready

First, install Docker on your system.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

1. On a Linux-based system, you can use the man command to find help, as
follows:

| $ man docker

2. Subcommand-specific help can also be found with either of the following
commands:

$ man docker ps
$ man docker-ps

pythontesting

How it works...

The man command uses the man pages installed by the Docker package to provide
help.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

For more information, see the documentation on the Docker website at nhttps://doc

s.docker.com/engine/reference/commandline/cli/.

pythontesting

https://docs.docker.com/engine/reference/commandline/cli/

Working with Docker Containers

In this chapter, we will cover the following recipes:

Listing/searching for an image

Pulling an image

Listing images

Starting a container

Listing containers

Looking at the container logs

Stopping a container

Removing a container

Removing all stopped containers

Setting the restart policy on a container
Getting privileged access inside a container
Accessing the host device inside a container
Injecting a new process into a running container
Reading a container's metadata

Labeling and filtering containers

Reaping a zombie inside a container

qg 6089740 21734177

Introduction

IT

http://t.cn/RDIAJS5D

In the previous chapter, after installing Docker, we pulled an image and created a
container from it. Docker's primary objective is running containers. In this
chapter, we'll see the different operations we can perform with containers, such

as starting, stopping, listing, deleting, and so on. This will help us use Docker for

different use cases, such as testing, CI/CD, setting up PaaS, and so on, which

we'll cover in later chapters. Before we start, let's verify the Docker installation
by running the following command: $ docker version

% docker version

Client:
Version:

APT version:
G0 version:
Git commit:
Built:
os/arch:

Server:
Version:

APT version:
G0 version:
Git commit:
Built:
os/farch:

This will give the Docker client and server version, as well as other details.

17.86.8-Cp
1.38
g01.8.3
82c1d87

Fri Jun 23
1inux/ amded

21:23:31 2017

17.86.8-ce
1.38 (minimum version 1.12)

g01.8.3
82c1d87

Fri Jun 23
linux/amded
Experimental: false

21:19:84 2817

should also work with the other environments.

0 I am using Ubuntu 18.04 as my primary environment in which to run these recipes. They

pythontesting

Listing/searching for an image

We need an image to get the container started. Let's see how images are searched
for on the Docker registry. As we have seen in chapter 1, Introduction and
Installation, a registry holds the Docker images, which can be both public and
private. By default, the search happens on the default public registry, which is
the Docker Hub and is located at https://hub.docker.com/.

https://hub.docker.com/.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

The docker search command lets you search an image on a Docker registry. The
following is the syntax for this: docker search [OPTIONS] TERM

The following is an example of searching for the aipine image:

$ docker search --limit 5 alpine
% docker search --limit 5 alpine
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
alpine 4 minimal Docker image based on Alpine Lin...
mhart/alpine-node Minimal Mode.js built on aAlpine Lim

alpine-java 8 (and 7) with GLIBC 2 = P] [o#]
saki/alpine-postgre PostgresgL docker image based on Alp DK
tenstartups/alpine Alpine linux base docker image with useful... 2 0K]

The preceding screenshot lists the name, description, and number of stars
awarded to the image. It also points out whether the image is official and
automated or not:

e stars signify how many people liked the given image.

e The orriciaL column helps us identify whether the image is built from a
trusted source or not.

e The automaten column is a way of telling whether an image is built
automatically when pushed into GitHub or Bitbucket repositories. More
details about automateo can be found in the next chapter.

8 The convention for an image name is <user>/<name>, but it can be anything.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker searches for images on the Docker public registry, which has a repository
for images at https://index.docker.io/vi/.

We can configure our private registry as well, so it can also search for images
there.

pythontesting

https://index.docker.io/v1/.

$ docker search \ --filter is-automated=true \
 --filter stars=20 alpine

% docker search --filter is-automated=true --filter stars=2e@ alpine
NAME DESCRIPTION OFFICIAL AUTOMATED
anapsix/alpine-java oracle Java 8 (and 7) with GLIBC 2.23 over...

frolvla pine-glibc Alpine Docker image with glibc (~)
kiasaki/alpine-postgres PostgresgL docker image based on Alpine Linux
zzrot/alpine-caddy Caddy Server Docker Container running on A... 32 [o#]

In Chapter 3, Working with Docker Images, we will see how to set up automated
builds.

From Docker 1.3 onwards, the --insecure-registry option for the Docker
daemon is provided, which allows us to search/pull/commit images from an
insecure registry. For more details, look at
https://docs.docker.com/registry/insecure/.

https://docs.docker.com/registry/insecure/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the help on Docker search by running the following command:

| $ docker search --help

The documentation for this is on the Docker website here: https://docs.docker.com/e

dge/engine/reference/commandline/search/.

pythontesting

https://docs.docker.com/edge/engine/reference/commandline/search/

Pulling an image

After searching for the image, we can pull it to the system by running the Docker
daemon. Let's see how we can do that.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

To pull an image from the Docker registry, you can either run the following:

| docker image pull [OPTIONS] NAME[:TAG|@DIGEST]

Or the legacy command:

| docker pull [OPTIONS] NAME[:TAG|@DIGEST]

The following is an example of pulling the ubuntu image:

$ docker image pull ubuntu
% docker image pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
dscef9edaesd: Pull complete
3d87d5: Pull complete

3cfclb: Pull complete
2e9393f@899dc: Pull complete
dc27a884864f: Pull complete
Digest: sha256:34471448724419596Ca4e898496d375
Status: Downloaded newer image for ubuntu:late

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The pu11 command downloads all layers from the Docker registry that are
required to create that image locally. We will see details about layers in the next
chapter.

pythontesting

There's more...

Image tags group images of the same type. For example, CentOS can have
images with tags such as centoss, centos7, and so on. To pull an image with a
specific tag, for instance, run the following command: $ docker image pull
centos:centos?7

By default, the image with latest tag gets pulled. To pull all images
corresponding to all tags, use the following command:

| $ docker image pull --all-tags alpine

From Docker 1.6 (https://blog.docker.com/2015/04/docker-release-1-6/), we can build
and refer to images by a new content addressable identifier called a digest. It is a
very useful feature when we want to work with the specific images, rather than
tags. To pull an image with a specific digest, we can use the following syntax: $
docker image pull <image>@sha256:<digest>

The following is an example of using the preceding command:

| $ docker image pull nginx@sha256:788fa27763db6d69ad3444e8ba72f947df9e7e163bad7c1f5614f8f
Digests are only supported with version 2 of the Docker registry.

Once an image gets pulled, it resides on the local cache (storage), so subsequent
pulls will be very fast. This feature plays a very important role in building
Docker layered images.

https://blog.docker.com/2015/04/docker-release-1-6/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the ne1p OptiOI’l for docker image pull:

| $ docker image pull --help

e The relevant documentation on the Docker website can be found here: nttps:

//docs.docker.com/engine/reference/commandline/image_pull/.

pythontesting

https://docs.docker.com/engine/reference/commandline/image_pull/

Listing images

We can list the images that are available on the system by running the Docker
daemon. These images might have been pulled from the registry, imported
through the docker image pu11 command, or created through a Dockerfile.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

Run either one of the following commands to list the images:

$ docker image ls
$ docker images

$ docker image 1s
REPOSITORY TAG

ubuntu latest

centos centos7 Bedcdaafib
alpine edge 1c97283af
nginx <NONe>

alpine
alpine
alpine
alpine
alpine
alpine
alpine
alpine
alpine

i
—+

- = = - Bl =
= T T T - T N e e I L= k]
o

1
2
o

CREATED

months
months
months
19 months
19 months

Pd P Bd B PRI RS PRI W Ea LD P

[N TR - - W R TS R WY}

(85]
-
]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The Docker client talks to the Docker engine and gets a list of images that are
downloaded (pulled) to the Docker host.

pythontesting

There's more...

All the images with the same name but with different tags are downloaded. The
interesting thing to note here is that they have the same name but different tags.
Also, there are two different tags for the same 1mace 10, which is 732sfefsbas.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the ne1p OptiOI’l of docker image 1s:

| $ docker image ls --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/image_1ls/.

pythontesting

https://docs.docker.com/engine/reference/commandline/image_ls/

Starting a container

Once we have the images, we can use them to start containers. In this recipe, we
will start a container with the ubuntu:1atest image and see what happens behind

the scenes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

We can start a container using either of the following syntaxes:

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
docker container run [OPTIONS] IMAGE [COMMAND] [ARG...]

0 The docker container run command is recommended over docker run because, in version 1.13,

Docker logically grouped container operations under the docker container management command,
and so docker run might be obsolete in the future.

Here is an example of using the docker container run command:

| $ docker container run -i -t --pame mycontainer ubuntu /bin/bash
By default, Docker picks the image with the latest tag:

e The -interactive OF -i Option starts the container in interactive mode by
keeping the stoin open

e The --tty or -t option allocates a pseudo-tty and attaches it to the standard
input

So, with the preceding command, we can start a container from the ubuntu:1atest
image, attach pseudo-tty, name it mycontainer, and run the /bin/bash command. If the
name is not specified, then a random string will be assigned as the name.

Also, if the image is not available locally, then it will be downloaded from the
registry first and then run.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Under the hood, Docker will:

e Merge all the layers, that makeup that image using UnionFS.

e Allocate a unique ID to a container, which is referred to as the Container
ID.

e Allocate a filesystem and mount a read/write layer for the container. Any
changes on this layer will be temporary and will be discarded if they are not
committed.

e Allocate a bridge network interface.

e Assign an IP address to the container.

e Execute the process specified by the user.

Also, with the default Docker configuration, it creates a directory (with the
container's ID inside /var/1ib/docker/containers), which has the container's specific
information such as hostname, configuration details, logs, and /etc/hosts.

pythontesting

There's more...

To exit from the container, press Ctrl + D or type exit. It is similar to exiting
from a shell, but this will stop the container. Alternatively, to detach from the
container, press Ctrl + P + Q. The detached container will detach itself from the
terminal, give control back to the Docker host shell, and wait for the docker
container attach command to attach back to the container.

The run command creates and starts the container. With Docker 1.3 or later, it is
possible to just create the container using the create command and run it later
using the start command, as shown in the following example:

$ ID=$(docker container create -t -i ubuntu /bin/bash)
$ docker container start -a -i $ID

The container can be started in the background, and then we can attach to it
whenever needed. We need to use the -4 option to start the container in the
background:

$ docker container run -d -i -t ubuntu /bin/bash
0df95cc49e258b74be713c31d5a28b9d590906ed9d6ela2dc75672aa48f28c4f

The preceding command returns the container ID of the container, which we can
attach to later, as follows:

$ ID=$(docker container run -d -t -i ubuntu /bin/bash)’
$ docker attach $ID

In the preceding case, we chose /bin/bash to run inside the container. If we attach
to the container, we will get an interactive shell. We can run a non-interactive
process and run it in the background to make a deamonized container, like the
following:

$ docker container run -d ubuntu \

/bin/bash -c¢ \
"while [true]; do date; sleep 1; done"

To remove the container after it exits, start the container with the --rn option, as
follows:

|$ docker run --rm ubuntu date

qg 6089740 21734177 IT http://t.cn/RDIAj5D

As soon as the date command exits, the container will be removed.

The --read-on1y option of the run command will mount the root filesystem in read-
only mode:
$ docker container run --read-only --rm \

ubuntu touch file
touch: cannot touch 'file': Read-only file system

You can also set custom labels for containers, which can be used to group
containers based on labels. Take a look at the Labelling and filtering containers
recipe in this chapter for more details.

A container can be referred to in three ways: by name, by its short container ID (odrosccagezs),
and by its container ID (odroscc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672aa48F28c4f).

pythontesting

See also

Look at the ne1p OptiOl’l of docker run:

| $ docker container run --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_run/.

https://docs.docker.com/engine/reference/commandline/container_run/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Listing containers

We can list both running and stopped containers.

pythontesting

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client. You will also need a few running and/or stopped

containers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

To list the containers, either run the following command:

| docker container 1ls [OPTIONS]

Or run the following legacy command:

Qe e &

MR D MG (A0 111 1 i

W e wm e DmE@o QUems oo s
G 1 A 1% I 0

L

e

pythontesting

How it works...

The Docker daemon will look at the metadata associated with the containers and
list them. By default, the command returns the following:

The container ID

The image from which it was created

The command that was run after starting the container
The details about when it was created

The current status

The ports that are exposed from the container

The name of the container

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

To list both running and stopped containers, use the -a option as follows:

CREATED STATUS PORTS

up 4 es 28/ /tcp
node :alpine s 5 mi Exite minutes ago
ubuntu = /bash" +

To return just the container IDs of all containers, use the -aq option as follows:
$ docker

mtainer 1s -aq

m
(]

G
C

£
2
=

(]
]
EL EU

To show the last created container, including non-running containers, run the
following command: $ docker container Is -1

Using the --filter/-f Option to ps, we can list containers with specific labels.

Look at the Labelling and filtering containers recipe in this chapter for more
details.

pythontesting

See also

Look at the help OptiOl’l of docker container 1s:

| $ docker container 1ls --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_1s/.

https://docs.docker.com/engine/reference/commandline/container_ls/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Looking at the container logs

If the container emits logs or output on stoout/sToerr, then we can get them
without logging into the container.

pythontesting

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client. You will also need a running container, that emits

logs/output on stoour.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

To get logs from the container, run the following command: docker container
logs [OPTIONS] CONTAINER

Or run the following legacy command: docker logs [OPTIONS] CONTAINER

Let's take an example from the earlier section where we ran a daemonized
container and looked at the logs: $ docker container run -d ubuntu \ /bin/bash
-c \ "while [true]; do date; sleep 1; done™

D=%(docker container run -d ubuntu /bin/bash -c¢ "while [true]; do date; sleep 1; done")
container logs $ID
] 117

m m m
i

]

o

o

wmwwmwmwmwwmwwm
I
= = = [= [= [y iy [y [y = |]

o

$
$
5
5
5
5
5
5
5
5
5

bl B bl B B B B

'8 UTC 2817

o

pythontesting

How it works...

Docker will look at the container's specific log file from
/var/lib/docker/containers/<Container ID>/<Container ID>-json.log and show the results.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

With the -+ option, we can get the timestamp with each log line, and with -r we
can get tail-like behavior.

pythontesting

See also

Look at the help OptiOl’l of docker container logs:

| $ docker container logs --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_logs/.

https://docs.docker.com/engine/reference/commandline/container_logs/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Stopping a container

We can stop one or more containers at once. In this recipe, we will first start a
container and then stop it.

pythontesting

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client. You will also need one or more running containers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

docker container stop [OPTIONS] CONTAINER [CONTAINER...]

docker stop [OPTIONS] CONTAINER [CONTAINER...]

$ ID=%$(docker run -d -i ubuntu /bin/bash) $ docker
stop $ID

pythontesting

How it works...

This will move the container from a running state to a stop state by stopping the
process running inside the container. A stopped container can be be started again,
if needed.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

To stop a container after waiting for some time, use the --time/-t option.

To stop all running containers, run the following command:

| $ docker stop $(docker ps -q)

pythontesting

See also

Look at the help OptiOl’l of docker container stop:

| $ docker container stop --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_stop/.

https://docs.docker.com/engine/reference/commandline/container_stop/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Removing a container

We can remove a container permanently, but before that, we have to stop the
container or use the force option. In this recipe, we'll create and remove a
container.

pythontesting

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client. You will also need some containers in a stopped or

running state to delete them.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Use the following command:

| $ docker container rm [OPTIONS] CONTAINER [CONTAINER]

Or run the following legacy command:

|$ docker rm [OPTIONS] CONTAINER [CONTAINER]

Let's first create a container, and then delete it using the following commands:

$ ID=$(docker container create ubuntu /bin/bash)
$ docker container stop $ID
$ docker container rm $ID

container ls
D IMAGE CREATED STATUS MNAMES.
container 1s -a
TMAGE C CREATED STATUS NAMES
ubuntu in/ B about a minute ago Created infallible_goldwasser

debSadce6697af3baad

As we can see from the preceding screenshot, the container did not show up,
which just entered the docker container 1s command after being stopped. We had
to provide the -a option in order to list it.

pythontesting

There's more...

To remove a running container, it must be stopped first using the docker container
stop command and then removed using the docker container rm command.

To forcefully remove a container without intermediate stop, use the - option of
the docker container rm command.

To remove all the containers, we first need to stop all running containers and
then remove them. Be careful before running these commands as they will
remove both running and stopped containers: $ docker container stop $(docker
container Is -q) $ docker container rm $(docker container Is -aq)

There are options to remove a specified link and volumes associated with the
container, which we will explore later.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The Docker daemon will remove the read/write layer, which was created while
starting the container.

pythontesting

See also

Look at the help OptiOl’l of docker container rm:

| $ docker container rm --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_rm/.

https://docs.docker.com/engine/reference/commandline/container_rm/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Removing all stopped containers

We can remove all stopped containers with a single command. In this recipe,
we'll create a bunch of containers in a stopped state, and then delete all of them.

pythontesting

Getting ready

Ensure that Docker daemon 1.13 (and above) are running on the host and can be
connected through the Docker client. You will also need some containers in a
stopped or running state in order to delete them.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Use the following command:

| $ docker container prune [OPTIONS]

Let's first create a container, and then delete it using the following commands:

$ docker container create --name cl1l ubuntu /bin/bash
$ docker container run --name c2 ubuntu /bin/bash
$ docker container prune

TMAGE CREATED STATUS PORTS
ubuntu in/ . 24 hours ago Up 24 hours

run --name
r 1s -a
\AGE
ubuntu

ubuntu
ubuntu i . 2 ! 0 24 hours

18 seconds ago

all stopp
u want to continue?
peleted container
fd9adel
876bfedda

CREATED STATUS PORTS
ubuntu in/ ! 24 hours ago Up 24 hours

pythontesting

There's more...

By default, the docker container prune command confirms prompts the user for
confirmation before removing containers that are not in a running state.

You could avoid the aforementioned confirmation by using the -f or --force
OptiOH of the docker container prune command.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The Docker daemon will iterate through containers that are not running and will
remove them.

pythontesting

See also

Look at the help OptiOl’l of docker container prune:

| $ docker container prune --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_prune/.

https://docs.docker.com/engine/reference/commandline/container_prune/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting the restart policy on a
container

Before Docker 1.2, when a container exited for any reason or the Docker host
was rebooted, the container had to be manually restarted using the restart
command. With the release of Docker 1.2, a policy-based restart capability was
added to the Docker engine to automate restarting containers. This feature is
activated using the --restart option of the run command and it supports container
restart at Docker host boot time, as well as when container failures occur.

pythontesting

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container run --restart=POLICY [OPTIONS] IMAGE[:TAG]
[COMMAND] [ARG...]

$ docker container run --restart=always -d -i -t ubuntu
/bin/bash

There are three restart policies to choose from:

e no: This does not start the container if it dies

e on-failure: This restarts the container if it fails with a nonzero exit code

e always: This always restarts the container without worrying about the
return code

pythontesting

There's more...

You can also get an optional restart count with the on-failure policy as follows:

$ docker container run --restart=on-failure:3 \
-d -i -t ubuntu /bin/bash

The preceding command will only restart the container three times if any failure
occurs.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the help OptiOI’l of docker container run:

| $ docker container run --help

You can find hElp at Docker's website here: https://docs.docker.com/engine/reference/
commandline/conconcon_run/, https://docs.docker.com/engine/reference/run/#restart-policies

-restart.

Docker's documentation on starting containers automatically can be found here:

https://docs.docker.com/engine/admin/start-containers-automatically/.

If restart policies do not meet your requirements, then use process managers
such as systemd, supervisor, or upstart.

pythontesting

https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://docs.docker.com/engine/admin/start-containers-automatically/

Getting privileged access inside a
container

Linux divides privileges that are traditionally associated with superusers into
distinct units, known as capabilities (run man capabilities on a Linux-based
system), which can be independently enabled and disabled. For example, the
net_bind_service capability allows nonuser processes to bind the port below 1,024.
By default, Docker starts containers with limited capabilities. With privileged
access inside the container, we allocate more capabilities to perform operations
that are normally done by the root user. In order to have a better understanding
of privileged mode, let's first try a simple mount on an unprivileged container
and observe the effect:

% docker container run -i -t --rm ubuntu

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

To use privileged mode, use the following command:

| $ docker container run --privileged [OPTIONS] IMAGE [COMMAND] [ARG...

Now, let's try the preceding example with privileged access:

| $ docker container run --privileged -i -t ubuntu /bin/bash

% docker container run -it --rm --privileged ubuntu
root@7ead78a93921: /# mount --bind Jhome/ Sfmnt/

total @
-rW-r--r-- 1 root root @ Sep 3 15:56 file-in-home

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

This provides almost all capabilities inside the container.

pythontesting

$ docker container run --cap-drop=CHOWN [OPTIONS] IMAGE
[COMMAND]
 [ARG...]

Refer to Chapter 9, Docker Security, for more details.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the help OptiOI’l of docker container run:

| $ docker container run --help
The documentation on the Docker website can be found here:

® https://docs.docker.com/engine/reference/commandline/container_run/
® https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabiliti

€s

The Docker 1.2 release announcement can be found here: nttp://blog.docker.com/20

14/08/announcing-docker-1-2-0/.

pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
http://blog.docker.com/2014/08/announcing-docker-1-2-0/

Accessing the host device inside a
container

From Docker 1.2 onwards, we can give access of the host device to a container
with the --device option, following the run command. Earlier, you had to bind-
mount it with the -v option, and that had to be done with the --privileged option.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client. You will also need a device to pass the container to.

pythontesting

How to do it...

You can give access of a host device to the container using the following syntax:

‘ docker container run --device=<Host Device>:<Container Device Mapping>:<Permissions>

Here is an example of using the preceding command:

$ docker container run --device=/dev/sdc:/dev/xvdc \
-i -t ubuntu /bin/bash

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding command will access /dev/sdc inside the container.

pythontesting

See also

Look at the help OptiOl’l of docker container run:

| $ docker container run --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_run/.

https://docs.docker.com/engine/reference/commandline/container_run/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Injecting a new process into a
running container

While doing development and debugging, we might want to look inside an
already running container. There are a few utilities, such as nsenter (https://github.
com/jpetazzo/nsenter), which allow us to enter the namespace of the container to
inspect its state. With the exec option, which was added in Docker 1.3, we can
inject a new process inside a running container.

pythontesting

https://github.com/jpetazzo/nsenter

Getting ready

Make sure that the Docker daemon is running on the host and that you can
connect through the Docker client. You might also need a running container to

inject a process into.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

You can inject a process inside a running container with the following command:

| $ docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Let's start an nginx container and then inject bash into it:

$ ID=$(docker container run -d redis)
$ docker container exec -it $ID /bin/bash

% ID=%(docker container run -d redis)

% docker container exec -it $ID /bin/bash

root@ld2f21efs428: /datag ps aux

USER PID XCPU XMEM V52 : i Ji AR TIME COMMAND

redis 1 8.2 0.4 41648 9684 ? B redis-server *:6379

root 17 8.2 8.1 28248 13 fa @ /bin/bash
8.8 8.1 f] :H:

pythontesting

How it works...

The exec command enters the namespace of the container and starts the new
process.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the ne1p option of Docker inspect:

| $ docker container exec --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_exec/.

pythontesting

https://docs.docker.com/engine/reference/commandline/container_exec/

Reading a container's metadata

While doing debugging, automation, and so on, we will need the container's
configuration details. Docker provides the container inspect command to get those
easily.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running on the host and can be connected
through the Docker client.

pythontesting

How to do it...

To inspect a container, run the following command:

| $ docker container inspect [OPTIONS] CONTAINER [CONTAINER...]

We'll start a container and then inspect it, like so:

$ ID=$(docker container run -d -i ubuntu /bin/bash)
$ docker container inspect $ID

"1d": "R3f1f7desadcicile
"Created": "2817-89-82T18:2
"path": "/bin/bash",

'status”: “"running”,
"Running”: true,
"Paused”: false,

"Restarting”: false,
"00MKilled": false,
"Dead": false,
"pid": 21116,
“ExitCode": 8,
" Y,

"startedat™: "20:

"Finishedat":

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker will look into the metadata and configuration for the given container and
present it in JSON format. Using tools like jq , this JSON formatted output can

be further post-processed.

pythontesting

There's more...

With the -f | --format option, we can use the Go (programming language)
template to get this specific information. The following command will give us an
IP address for the container:

$ docker container inspect \

--format='{{.NetworkSettings.IPAddress}}' $ID
172.17.0.2

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the help OptiOI’l of docker container inspect.

| $ docker container inspect --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_inspect/.

pythontesting

https://docs.docker.com/engine/reference/commandline/container_inspect/

Labeling and filtering containers

With Docker 1.6, a feature has been added so that we can label containers and
images through which we can attach arbitrary key-value pairs as metadata. You
can think of them as environment variables, that are not available for
applications running inside containers, but they are available to Docker clients
that manage the images and containers. Labels attached to images also get
applied to containers that are started using those images. We can also attach
labels to containers while starting them. Having labeled an image or a container,
the labels can later be used for filtering or selection purposes.

For this recipe, let's assume that we have an image with the label
com.example . image=docker -cookbook. We will see how to assign a label to an image in
the next chapter:

% docker image 1s

REPOSITORY IMAGE ID CREATED

label -demo 137e19689995 minute ago
ubuntu {CC7alldesbl 3 weeks ago
nginx baefbl8+159b 5 weeks ago
redis 04f259423416 eeks ago
fedora 49236bc2feda (

nginx alpine batab24dbads Weeks ago
alpine latest 7328fefabals 2 months ago
$ docker image 1s --filter label-com.example.image-docker-cookbook
REPOSITORY TAG IMAGE ID CREATED
label-demo latest 13719629995 2 minutes ago

[T -
—+ —+

—+

3 B b e D
(I] L [P
—+

o
L
—+

at
at
lat
at

—

As you can see from the preceding screenshot, if we use filters with the docker
image 1s command, we only get the image where the corresponding label is found
in the image's metadata.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that Docker daemon 1.6 or above is running on the host and can be
connected to through the Docker client.

pythontesting

How to do it...

Add labels to the container's metadata by using the --1abe1 or -1 option of the
docker container run command, as follows: $ docker container run \ --label
com.example.container=docker-cookbook \ label-demo date

Let's start a container without a label and start two others with the same label:

% docker container run --name containerl label-demo date
ep 4 16:55:31 UTC 2817
cker container run --name container? --label com.example.container=docker-cookbook label-demo date

Mon Sep 4 16:56:85 UTC 2817
% docker container run --name container3 --label com.example.container-docker-cookbook label-demo date
Mon Sep 4 16:56:13 UTC 2817

Now, if we run docker container 1s -a without any filter, it will list all the
containers. However, we can limit the list of containers to those we labelled by
applying filtering to the docker container 1s -a command by using the --fiiter Or -f
option:

§ docker container 1s -3

(ONTAINER I0 TMAGE (OFHAND (REATED STATLS PORTS NAMES
Mccloadanet Lbe]-demo “tate" 17 seconds ago (ontainer3
focdn2c3dh Lbe]-ea “ate" 19 seconds ago (ontainer?
1810926t Lbe]-dem “tate" 53 seconds ago (ontainerl
3f1f dedadc uunty *[bin/bash’ 47 hours g0 : NErvous_skirles
§ docker container 15 -a --filter label-con, example. inage-docker-cookbook

(ONTAINER ID TMAGE (OWHAND (REATED STATLS ORTS NAMES
crlame abe]- 0ea0 “fate" 2 minutes ago (ontainer3

focdb2c3dh abel-deno “ate" 3 ninutes ago :'." E: 3 (ontainer?

b

1810926t abe]-deno “tate" G ited (8) 3 minutes age (ontainerl

§ docker container 1s - --filter label-con,example. container-docker-cookbook

(ONTAINER ID THAGE (OWALND (REATED STATUS

Acceadaned Lbe]-ea “ate" Duintes ago Exited (8) 2 minutes ago (ontainer3
Fxited

STATLS PORTS NAES

foodad Label-dewo “tate" Duinites ago Exited (B) 2 minutes ago container?

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker attaches label metadata to containers while starting them and matches
the label while listing them or performing other related operations.

pythontesting

There's more...

All the labels attached to a container can be listed through the docker container
inspect command. As we can see, the inspect command returns both the image and
the container labels that are attached to the container:

% docker container inspect --format '{{json .Config.Labels}}"' container2 | jgq "."

'com.example. image": "docker-cookbook”,
"com.example.container”: “"docker-cookbook®

You can apply labels to a container from a file by using the --1abe1-file option.
The file should have a list of labels separated by a new EOL.

These labels are different from Kubernetes labels, which we will explore in chapt
er 8, Docker Orchestration and Hosting Platform.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_run/.

Labeling key format recommendations can be found here: nhttps://docs.docker.con/e

ngine/userguide/labels-custom-metadata/#key-format-recommendations.

Labeling value gUidEIiHES can be found here: https://docs.docker.com/engine/userguid

e/labels-custom-metadata/#value-guidelines.

Details on adding label support to Docker can be found here: nttp://rancher.com/do
cker-labels/.

pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/userguide/labels-custom-metadata/#key-format-recommendations
https://docs.docker.com/engine/userguide/labels-custom-metadata/#value-guidelines
http://rancher.com/docker-labels/

Reaping a zombie inside a container

On Linux (and all Unix-like) operating systems, when a process exits, all the
resources associated with that process are released with the exception of its entry
in the process table. This entry in the process table is kept until the parent
process reads the entry to learn about the exit status of its child. This transient
state of a process is called a zombie. As soon as the parent process reads the
entry, the zombie process is removed from the process table, and this is called
reaping. If the parent process exits before the child process, the init process (PID
1) adopts the child process (PID 1) and it eventually reaps adopted child
processes when they exit:

5 pstree —p i3 pstree
init<l> acpid(1121> isystemd(l)> accounts—daemon(1117> gdbus>(1135>
atd(1123> H gmainX(1133>
rontl122)> i acpid(187% >
bus—daemon{898> i agettyl1244)>
heclient<579>» i agettydi247>
etty{1867> i atd{(11688>
etty(1@78> i ron{1861>

etty(l@74) i bus—daemon{1881>
etty(l@75) H helient (926>

In the preceding screenshot, we snipped the process tree for Ubuntu 14.04 on the
left-hand side and Ubuntu 18.04 on the right-hand side. As we can see, both
process trees have the init process at PID 1 on the left-and right-hand sides.

0 systend iS a variant of the init system and is adopted by many Linux distributions.

If we go back to our namespace discussion of Docker, the Docker engine creates
a new PID namespace for each docker container, thus the first process inside the
container is mapped to PID 1. Docker is designed to run one process per
container and usually the process running inside the containers doesn't create
child processes. However, if the process inside the container creates child
processes, then an init system is needed to reap zombie processes. In this recipe,
we will look at how to configure an init process for our container to reap zombie
processes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that Docker daemon 1.13 or above is running on the host and can be
connected through the Docker client.

pythontesting

How to do it...

You can launch a container with the init process using the --init option of the
Docker container run command, as shown in the following syntax:

| docker container run --init [OPTIONS] IMAGE [COMMAND] [ARG...]

Let's create four containers, two without the --init option and another two with
the --init option, and compare the process tree by using the pstree command:

$ docker container run --rm alpine pstree
pstree(l)

$ docker container run --rm alpine sh -c
sh({l)---pstree(e)

$ docker container run --rm --init alpine
init(1)---pstree(s)

$ docker container run --rm --init alpine sh -c "pstree -p“
init(1)---sh(e)---pstree(7)

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

By default, the docker container run --init command uses tini (https://github.com/kra
11in/tini) as the init process.

The daemon flag --init-path allows you to configure your own init process.

pythontesting

https://github.com/krallin/tini

How it works...

The Docker daemon will launch the containers with init as the first process,
followed by the specified command.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Look at the help OptiOI’l of docker container run:

| $ docker container run --help

The documentation on the Docker website can be found here: nttps://docs.docker.c

om/engine/reference/commandline/container_run/.

pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/

Working with Docker Images

In this chapter, we will cover the following recipes:

Creating an image from a container

Creating an account with Docker Hub

Logging in and out of a Docker image registry
Publishing an image to a registry

Looking at the history of an image

Removing an image

Exporting an image

Importing an image

Building an image using a Dockerfile

Building an Apache image - a Dockerfile example
Setting up a private index/registry

Automated builds - with GitHub and Bitbucket
Creating a custom base image

Creating a minimal image using a scratch base image
Building images in multiple stages

Visualizing the image hierarchy

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction

Docker images are the essential building blocks of the Docker-inspired
containerization paradigm. As you are already aware, Docker containers are
created from Docker images. According to your application requirements, you
can choose to create complex services using the Docker images that are built and
offered by the folks at Docker or third parties. If the existing images don't fit
your requirements, you can also extend the existing images or custom-build your
own images.

In this chapter, we will introduce you to Docker Hub, and will show you how to
share images through Docker Hub and how to host your own Docker registry.
We will also show you different ways to build your own image, along with a few
Docker image housekeeping operations.

We are using Ubuntu 18.04 as our primary environment on which to run the z=zx. They
should also work with other environments.

pythontesting

$ docker container commit [OPTIONS] CONTAINER
[REPOSITORY[:TAG]]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that the Docker daemon is running and has access to the Ubuntu image.

pythontesting

How to do it...

Perform the following steps:

1. Let's start a container from an ubuntu image using the docker container run
command:

§ docker container run -1 -t ubuntu /bin/bash

roote289e3237301 . /4

2. Having launched the container, issue apt-get update from the container
prompt to sync the package list, as shown in the following screenshot:

root@6289e323730f: /# apt-get update

Get:1 http://archive,ubuntu. con/ubuntu xenial InRelease [247 k)

Get:2 http://security.ubuntu.con/ubuntu xenial-security InRelease [182 KB]
Get:3 http://archive, ubuntu. con/ubuntu xenial-updates InRelease [162 KB]

3. Install the apache2 package using the apt-get install1 command:

rootP6289e32373bf: /% apt-get install -y apache?
Reading package lists... Done

Building dependency tree
Reading state information... Done
The following additional packages will be installed:

4. Now, open another terminal and create an image using the docker container
run command:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container 1s
CONTAINER ID THAGE COMHAND (REATED STATUS PORTS
6289e323730f ubunty " fbin/bash” 38 minutes ago Up 38 minutes
$ docker container comit --author "Jeeva S. Chelladhurai® \
--Bessage “Ubuntu with apache? package” \
6289e32373bf myapache?
sha256: 061053607139907f 3014729347 25edbeda2f c17384105F944a51905a7 2303887

$ docker image Is

REPOSITORY TAG TMAGE 1D (REATED
myapache? latest 861853607139 15 seconds ago
ubunty latest Ccc7alldeshl 4 weeks ago
centos centos? 328edcdBdfib 3 weeks ago
alpine edge hab1c97283af 4 weeks ago

As you can see, the new image is now being committed to the local repository
with myapache2 as the name and 1atest as the tag.

pythontesting

How it works...

In chapter 1, Introduction and Installation, we learned that Docker images are
layered and that each layer is stacked on top of its parent image. When we start a
container, a read/write ephemeral filesystem layer gets created. The changes to
the filesystem (that is, the addition, modification, or deletion of files) through the
apt-get update and instal1 commands are preserved in this read/write ephemeral
filesystem layer. If we stop and delete the container, the ephemeral layer
associated with that container is removed and, essentially, we lose all the
changes we applied to the container.

In this recipe, we persisted the container's ephemeral layer by using the docker
container commit command. In effect, the commit Operation creates another image
layer and saves it along with other images in the Docker host.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker diff 6289e32373bf
...OUTPUT SNIPPED... C /var/log

C /var/log/alternatives.log A
/var/log/apache2

A /var/log/apache2/access.log A
/var/log/apache2/error.log A
/var/log/apache2/other_vhosts_access.log ... OUTPUT
SNIPPED...

We can see that there is a prefix before each entry of the output. The following is
a list of those prefixes:

e A: This is for when a file/directory has been added
e C: This is for when a file/directory has been modified
e D: This is for when a file/directory has been deleted

By default, a container gets paused while doing the commit. You can change its
behavior by passing - -pause=false to commit.

pythontesting

See also

Refer to the nhe1p OptiOI’l for docker container commit:

| $ docker container commit --help

For more information, you can read the documentation on the Docker website at

https://docs.docker.com/engine/reference/commandline/container_commit/.

https://docs.docker.com/engine/reference/commandline/container_commit/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating an account with Docker
Hub

Docker Hub is a cloud-based public registry service to host both public and
private images, share them, and collaborate with others. It has integration with
GitHub and Bitbucket, and can trigger automated builds.

To host your image in Docker Hub, you need to create your Docker ID. This
gives you the ability to create any number of public repositories in Docker Hub.

Docker Hub also gives you one free private repository. If you need more than one private
0 repository, you can upgrade to a paid plan. A repository can hold different versions of an

image.

pythontesting

Getting ready

To sign up, you need access to any standard web browser.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Perform the following steps:

1. Go to nttps://hub.docker .com:

ﬂ—DX

& DockerHub &

('ﬁhtt,r:f: nub dacker.cam % B'GJ:;:‘E p 'r E] i | f}' E §

g" dockerhub Qseanr Explore Help Signin

New to Docker?
Create your free Docker [D to get started.

Docker Hub

Dev4est pipeline automation, 100,000+ free apps, public and private registries

pythontesting

https://hub.docker.com

2. Enter your preferred Docker ID, a valid email address, and password in the
fields in the sign up section and then click the Sign Up button.

3. Upon successful creation of the account, Docker Hub will display the
following information:

ﬂ—DX

DockerHub L

('ﬁhti::s' /b docker.com 5 E*Gnr;;’s P v'v E] R | f} E %

%‘dockerhub Q Search Explore Help Signin

DOCker HUb Sweet! You'e almost ready

togo!
Dev-test pipeline automation, 100,000+ free apps, public and private registries Please check your email to activate your
account

v

4. As shown in the preceding screenshot, your account is not activated yet. In
order to activate your account, you have to confirm your email by pressing
the Confirm Your Email button in the email from Docker that you will have
received in the inbox of the email account that you provided, as shown in

qg 6089740 21734177

IT http://t.cn/RDIAJ5D
the following screenshot:
Please confirm your email address
“You have created a Docker ID with the username: cookbook
Confirm Your Email
(This link will expire in 2 days.)
5. As soon as you confirm your email, you will land on the Welcome to
Docker page, as shown in the following screenshot:
El - o «x
J #* Loginto Docker .\‘1}’
@ htips://id.docker.com/login/Tnext=52Fid%2Foauth%2Fauthorize%:2F%3Fclient id%3D43f11 v C v Google b 4 R~ & 18 €| =

Welcome to Docker

Login with your Docker ID

pythontesting

Now, you have successfully created and activated your Docker Hub account.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding steps will have created a Docker Hub account for you. Once the
account is created, you'll get a confirmation email, through which you need to
confirm your identity.

pythontesting

See also

e The documentation at the Docker website:
® https://docs.docker.com/docker-hub
® https://docs.docker.com/docker-hub/accounts

® https://hub.docker.com/help

https://docs.docker.com/docker-hub
https://docs.docker.com/docker-hub/accounts
https://hub.docker.com/help

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Logging in and out of the Docker
image registry

In your journey through the world of containerization, oftentimes you will be
publishing your images for public consumption or privately sharing images
using a Docker registry. To push an image to a public repository, you must log in
to a Docker registry and you must be the owner of that repository. In the case of
a private repository, both pulling and pushing are allowed, but only once you are
logged in. In this recipe, we will see how to log in and log out of a Docker
registry.

pythontesting

Getting ready

Ensure that you have a valid Docker ID or GitLab account.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

The docker 1ogin command lets you log in to more than one Docker registry at the
same time. Similarly, the docker 10gout command lets you log out from the
specified server. Here is the syntax for the Docker login and logout commands: $
docker login [OPTIONS] [SERVER]

$ docker logout [SERVER]

By default, both the docker 10gin and docker logout commands assume https://hub.do
cker.con/ as the default registry, but this can be changed.

Let's learn a little more about this process by experimenting with the following,
as depicted in the following screenshot:

Logging into the default Docker registry
Logglng into the registry hosted at nttps://about.gitlab.com/
Reading out the persisted login details

[
[
[
e Logging out from all these registrie

pythontesting

https://hub.docker.com/
https://about.gitlab.com/

$ docker login

Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID,
head over to https://hub.docker.com to create one.
Username: cookbook

Password:

Login Succeeded

¢ docker info | egrep ~\(Username\ |Registry\)
Username: cookbook

Registry: https://index.docker.io/vl/

$ docker login registry.gitlab.com

Username: sjeeva@gmail.com

Password:

Login Succeeded

§ cat ~/.docker/config.json

"auths": {
"https://index.docker.io/v1/": {
"auth": "¥29va2lvh2s6c2977WN1CmU="
b
"registry.gitlab.com”: {
"auth": "c2plZ¥zhQadtYWlsLmNvbTpzbaNlY3vyZQ=="

}
i
§ echo -n Y29va2lvb2s6c2977WNicml= | basesd -d
cookbook : sosecures
$ docker logout
Removing login credentials for https://index.docker.io/vi/
§ docker logout
Not logged in to hitps://index.docker.io/vl/
§ docker logout registry.gitlab.com
Removing login credentials for registry.gitlab.com
$ cat ~/.docker/config.json

d
"auths": {}

i

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In this recipe, we logged into two registries by using the docker login command,
and then explored how the login information is stored. We also used basess to
retrieve the logged-in user ID, whereas it also displayed the stored password.
Then we continued to log out from both the registries by using the docker 1ogout
command.

pythontesting

There's more...

By default, the docker 10gin command interactively prompts the user for their
username and password. You can change this interactive behavior to batch mode
by supplying the username using the -u or --username option and the password
using the -p Or --password option.

decoded using basess. This is not desirable in all environments, however; in other scenarios,

0 In the preceding recipe, the password stored in the snome/.docker/config. json file can be easily
you could resort to tools such as docker-credential-helpers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The help OptiOI’l for the docker 1ogin and docker logout OptiOI’lS:

$ docker login -help
$ docker logout --help

e The documentation on the Docker website:

® https://docs.docker.com/engine/reference/commandline/login/

® https://docs.docker.com/engine/reference/commandline/logout/
e The GitHub repository for the Docker credential helpers:

® https://github.com/docker/docker-credential-helpers

pythontesting

https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/logout/
https://github.com/docker/docker-credential-helpers

Publishing an image to the registry

As mentioned in the previous recipe, Docker image registries act as hubs to store
and share images. In this recipe, we'll see how to push the image to the registry
using the docker image push command. Later in this chapter, we'll cover how to set
up the private registry.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Ensure that you have successfully logged in to hub.docker.com because, in this
recipe, we will be pushing an image to hub.docker.com. Alternatively, you could

use a private or third-party Docker image registry.

pythontesting

How to do it...

The following are two syntaxes for the command that is used to push a Docker
image to a registry:

$ docker image push [OPTIONS] NAME[:TAG]
$ docker push [OPTIONS] NAME[:TAG]

To push an image to a Docker registry, go through the following steps:

1. Begin by tagging the image using the docker image tag command with the
appropriate user or organization in the Docker hub, as shown in the
following code:

| $ docker image tag myapache2 cookbook/myapache2

Here, the image is tagged as cookbook/myapache2 because, in the next
step, we will be pushing this image to the Docker Hub user cookbook.

2. Now, let's push the image to the Docker Hub using docker image push, as
shown in the following screenshot:

% docker image push cookbook/myapache2
to a repository [docker.io/cookbook/myapache2]
Pushed
Pushed
Pushed

¢ Pushed

8: Pushed
eb: Pushed
: sha256:e737888457b655C783d0945ef3423d425b586a 2585476761 chadeedcachd3cce

3. Having pushed the image to the Docker Hub, we can log in to the Docker
Hub and verify the image, as shown in the following screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Dashboard Explore Organizations Create .cockbook

7]
o
w
&)

2.4 & Repositories *

Contributed Private Repositories: Using 0 of 1 Get mor

[1:]

cookbook/myapache?2 0 1 >
public STARS PULLS DETAILS

pythontesting

How it works...

The docker image push command identifies all the image layers that make up the
image that is to be pushed, and check whether any of those images are already
available in the registry. Then the push command uploads all the images that are
not present in the registry.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

Let's say you want to push the image to a registry that is hosted locally. To do
this, you first need to tag the image with the registry host's name or IP address
with the port number on which the registry is running, and then push the images.

For example, let's say our registry is configured on shadowfax.example.com. To tag
the image, we would use the following command: $ docker tag myapache2 \
shadowfax.example.com:5000/cookbook/myapache2

Then, to push the image, we would use the following command:

| $ docker push shadowfax.example.com:5000/cookbook/myapache2

pythontesting

See also

e The help OptiOI’l of docker image push:

| $ docker push --help

e The documentation on the Docker website:

® https://docs.docker.com/engine/reference/commandline/image_push/

https://docs.docker.com/engine/reference/commandline/image_push/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Looking at the history of an image

It is imperative for us to have a deeper understanding of the Docker image we
are using. The docker image history command helps us find all the layers in the
image, its image ID, when it was created, how it was created, the size, and any
additional comments associated with that layer.

pythontesting

Getting ready

Before we begin the next recipe, first pull or import any Docker image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

To look at the history of the image, consider the following syntax:

| $ docker image history [OPTIONS] IMAGE

Here's an example using the preceding syntax:

$ docker image history myapache2
§ docker image history myapache?

TMAGE (REATED (REATED BY SIZE
P61858687f39 6 hours ago 13348
(C(7al1de5b1 4 weeks ago bin/sh - #(nop) D ["/bin/bash"] o8
(missing 4 weeks ago bin/sh -¢ mkdir -p /run/systend & echo '... 7B

(missing 4 weeks ago fbin/sh -c sed -1 "s/*#\s*\(deb.*universe\... 2.76kB
(missing 4 weeks ago fbin/sh - ra -rf /var/lib/apt/lists/* o8
(missing 4 weeks ago fbinfsh - set -xe & echo '#!/bin/sh’ »... 7458
(missing 4 weeks ago fbin/sh - #(nop) ADD file:393593ea220e68.., 12008

pythontesting

How it works...

When we build a Docker image, the Docker engine preserves the build
instruction in the image metadata. Later, the docker image history command
recursively gathers these build instruction from the prescribed image to the base
image and presents it in a nice format.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker image inspect --format="{ {.Comment} }' myapache2
Ubuntu with apache2 package

Well! The docker image inspect command can work with only one image at a
time, but if you want to see the comments of all the image layers, then you have
to go through each image or automate the operation through some scripts. By the
way, the comment is optional, and so you might not find comments on all the
images.

pythontesting

See also

e The help OptiOI’l of docker image history.

| $ docker image history --help

e The documentation on the Docker website:

https://docs.docker.com/engine/reference/commandline/image_history/

https://docs.docker.com/engine/reference/commandline/image_history/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Removing an image

The docker image rm command lets you remove images from the Docker host. This
command can remove one or more images, and you can specify images using
one of the following identifiers:

e The image's short ID.

e The image's long ID.

e The image's digest.

e The image's name along with its tag. If the tag is not specified, then the
latest tag is assumed by default.

If the image happens to have more than one tag associated with it, then those
tags must be removed before removing the image. Alternatively, you can
fOTCEfUlly remove them using the -f or --force OpﬁOI’l of the docker image rm
command. In such a case, all the tags will also be automatically removed.

Here is the syntax for the docker image rn command: docker image rm
[OPTIONS] IMAGE [IMAGE...]

In this recipe, we will create multiple tags for an image and demonstrate how to
remove them.

pythontesting

Getting ready

One or more Docker images should be locally available in the Docker host.

qg 6089740 21734177

How to do it...

Perform the following steps:

1T http://t.cn/RDIAJS5D

1. Let's choose one of the existing images and add multiple tags to it, as
shown in the following screenshot:

ocker image tag centos:latest centos:tapl

Dcker image tag centos:latest centos:tapd

Dcker image I
REPOSITORY

cookbook/myapache?
myapache?

ubuntu
centos
centos
Centos
Centos
alpine

ThG
latest
ltest
ltest
latest
tagl
tag?
tag3
latest

§

§ docker image tag centos:latest centos:tap?
§

§ d

IMAGE ID
PA1858687139
PA1858687139
(CC7alldeshl
328edcds4f1b
328edcds4f1b
328edcagdflb
328edcaddflb
7328f6f8h418

(REATED SIZE
2 weeks ago 25348
2 Weeks ago 25348
b weeks ago 12048
7 weeks ago 19348
7 weeks ago 19348
7 weeks ago 19348
7 weeks ago 1934
2 months ago 3.97H8

Here, we have selected the centos image with the image ID s2sedcdsafib
and added another three tags: tag1, tagz, and tags. All the tags have the
same image ID of 32sedcdsafib.

2. Now, let's make an attempt to delete the image with the ID s2sedcds4rib and

observe the outcome:

$ docker image rm 328edcda4fib

Error response from daemon: conflict: unable to delete 328edcdSafib (must be forced) - image is
referenced in multiple repositories

pythontesting

Clearly, the docker image rm failed to remove the image because there
are four tags referring to the same image ID.

3. Remove the tags from the image until all the tags are removed and the
image is deleted, as shown in the following screenshot:

§ docker image ra centos:tag3
Untageed: centos:tag3
§ docker inage rm centos:tag?
Untagged: centos:tag?
§ docker inage ra centos:tagl
Untageed: centos:iagl

§ docker image ra centos

Untagged: centos:latest

Untagged: centos@sha2se: 26f74cetad829671971 3eeeefsdc 12621 3bA2b 96T 2061067 354475908
Deleted: sha25é:328edcda4f1bbfansbcaledaeiTafed2]ef19beT189895904b208badsd14ba4d
Deleted: sha25e:h3e2758t4793674edb79eC507192074b2¢acf2000096R1270698 56484526 (2

Clearly, the docker image rm command removed the tags, and finally
removed the image when there were no more tags.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container stop $(docker container Is -q)
$ docker container rm $(docker container Is -a -q)*

$ docker image rm $(docker image Is -q)

pythontesting

See also

e The he1p OptiOI’l of docker image rm:

| $ docker image rm --help

e The documentation on the Docker website:

https://docs.docker.com/engine/reference/commandline/image_rm/

https://docs.docker.com/engine/reference/commandline/image_rm/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Exporting an image

Let's say you have a customer who has very strict policies that do not allow them
to use images from the public domain. In such cases, you can share one or more
images through tarballs, which can then later be imported on another system.

The docker image save command lets you save or export images as tarballs. The
command syntax is as follows: docker image save [-o|--output]=file.tar
IMAGE [IMAGE...]

In this recipe, we will learn how to export an image using the docker image save
command.

pythontesting

Getting ready

Before you begin, first pull or import one or more Docker images on the Docker
host.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker image save --output=myapache2.tar myapache2

The preceding command generates the myapache2. tar file, which can be
imported as described in the next recipe.

pythontesting

There's more...

You can also export the container's filesystem using the following command:

| $ docker container export --output=myapache2_cont.tar c7lae52e382d

qg 6089740 21734177 IT

See also

e The help OptiOI’l of docker image save and docker container export.

$ docker image save -help
$ docker container export --help

e The documentation on the Docker website:

https://docs.docker.com/engine/reference/commandline/image_save/

https://docs.docker.com/engine/reference/commandline/container_export/

pythontesting

http://t.cn/RDIAJS5D

https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/container_export/

docker image import [OPTIONS] file|[URL|- [REPOSITORY[:TAG]]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before you begin, you need a local copy of the exported Docker image.

pythontesting

 $ docker image import myapache2.tar apache2:imported

3. Here, we have imported our myapache2. tar file as an apache2: imported
image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

You can also import TAR files stored in a remote location by specifying their
URL.

pythontesting

See also

e The help OptiOI’l of docker image import.

| $ docker image import --help

e The documentation on the Docker website:

® https://docs.docker.com/engine/reference/commandline/image_import/

https://docs.docker.com/engine/reference/commandline/image_import/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building an image using a Dockerfile

The Dockerfile is a text-based build instruction file that enables us to define the
content of the Docker image and automate image creation. The Docker build
engine reads the instruction in the pockerrile line by line and constructs the image
as prescribed. In other words, pockerfile helps us to craft an image repeatedly in
an automated fashion. The images created using pockerfiles are considered
immutable.

pythontesting

$ mkdir sample_image
$ cd sample_image
$ cat Dockerfile

Use ubuntu as the base image FROM ubuntu

Add author's name L ABEL maintainer="Jeeva
S. Chelladhurai"

Add the command to run at the start of container
CMD date

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Perform the following steps:

1. Run the following command inside the directory where we created the
pockerfile to build the image:

$ docker image build .
§ docker image build .
Sending build context to Docker daemon 2.843kB
Step 1/3 + FROM ubuntu
---} (((7al1deshi
Step 2/3 + LABEL maintainer "Jeeva S. Chelladhurai’
---» Running in 485ee5672232
---) 10e78fbcécar
Removing intermediate container 485ee5672232
Step 3/3 ¢ (WD date
---3 Running in d65b84327af"
---) f080d4c18ase
Removing intermediate container desha43zzafs
Successfully built fesaddc1sase

In the preceding setup, we did not specify any repository and tag name while building the
9 image. It is always recommended that you build the image with a repository name for easy
reference in the future.

2. Now, let's proceed to create our own repository name using the -t option of
the docker image build command, as follows:

| $ docker image build -t sample .

pythontesting

§ docker inage build -t sample

Sending build context to Docker daemon 2.843KkB

Step 1/3 | FROM ubuntu

---» (((7al1d65h1

5trp 23 + LABEL maintainer "Jeeva S. Chelladhurai'
-y Using cache

-y fhd796fiaada
5t:p 33+ (D date

-y Using cache

-y D34 FRE128¢
:uccessfully built 434ffsff128t
Successfully tagged sample:latest

If you compare the output of step 1 and step 2, you can notice a subtle
difference. In the output of step 1, you can see the text running after the Laser and
cwp instructions, whereas for step 2, it is printed as using cache. This indicates that
Docker is reusing the intermediate layers from the image that was built in step 1.
The Docker build system always reuses the layers from the previously built
image if there is no change on that layer. If you don't want the build system to
reuse the intermediate layers, then add the --no-cache option to the build.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

When we build a Docker image using the docker image build command, we specify
a directory. This command bundles the entire directory tree as the build context
and transfers it to the Docker engine to create the Docker image. This is evident
from the build output sending build context to Docker daemon 2.048 kB IMeSsage. If
there is a file named .dockerignore in the current working directory with the list of
files and directories (new-line separated), then those files and directories will be
ignored in the build context. More details about .dockerignore can be found at nttps

://docs.docker.com/reference/builder/#the-dockerignore-file.

Now, the Docker build system will read each instruction in the Dockerfile,
launch an intermediate container, execute the instruction inside the container or
update the metadata, commit the intermediate container as an image layer, and
remove the intermediate container. This process is continued until all the
instructions in the Dockerfile are executed.

pythontesting

https://docs.docker.com/reference/builder/#the-dockerignore-file.

There's more...

The format for the Dockerfile is as follows:

| INSTRUCTION arguments

Generally, instructions are given in uppercase, but they are not case-sensitive.
They are evaluated in order. The # code phrase in the beginning is treated like a
comment.

Let's take a look at the different types of instruction:

¢ rrom: This must be the first instruction of any Dockerfile, and sets the base
image for subsequent instructions. By default, the latest tag is assumed to
be the following:

| FROM <image>

Alternatively, consider the following tag:

| FROM <images>:<tag>

There can be more than one rrom instruction in one Dockerfile to
create multiple images.

If only the image names, such as fedora and ubuntu, are given, then the
images will be downloaded from the default Docker registry (Docker
Hub). If you want to use private or third-party images, then you have
to include them as follows:

registry_hostname[:port]/][user_name/](repository_name:version_tag)
9

The following is an example using the preceding syntax:

FROM registry-host:5000/cookbook/apache2
FROM <images>:<tag> AS <build stage>

You can also prescribe a build stage to be used for multistage image
building, as you will see in the Building images in multiple stages
recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e run: We can execute the run instruction in two ways. First, we can run it in
the shell (sh -c):

|RUN <command> <paramil> ... <pamamN>

Second, we can directly run an executable:

| RUN ["executable", "parami",...,"paramN"]

As we know, with Docker we create an overlay—a layer on top of
another layer—to make the resulting image. Through each run
instruction, we create and commit a layer on top of the earlier
committed layer. A container can be started from any of the
committed layers.

By default, Docker tries to cache the layers committed by different
run instructions so that they can be used in subsequent builds.
However, this behavior can be turned off using --no-cache f1ag while
building the image.

e aseL: Docker 1.6 added a new feature to the attached arbitrary key—value
pair of Docker images and containers. We covered part of this in the
Labeling and filtering containers recipe in chapter 2, Working with Docker
Containers. To give a label to an image, we use the LaseL instruction in the
Dockerfile—for example, LageL distro=ubuntu.

e cwp: The cwp instruction provides a default executable while starting a
container. If the cvo instruction does not have any executable (parameter 2),
then it will provide arguments to entrypoInT:

CMD ["executable", "parami",...,"paramN"]
CMD ["paraml", ... , "paramN"]
CMD <command> <paraml> ... <pamamN>

Only one cwo instruction is allowed in Dockerfile. If more than one is
specified, then only the last one will be honored.

e entrypornT: This helps us configure the container as an executable. Similar to

pythontesting

cmp, there can be a maximum of one instruction for entrypoint; if more then
one is specified, then only the last one will be honored:

ENTRYPOINT ["executable", "parami", ..., "paramN"]
ENTRYPOINT <command> <paraml> ... <pamamN>

Once the parameters are defined with the entrvroint instruction, they
cannot be overwritten at runtime. However, entryroint can be used as
cvo, if we want to use different parameters for entryront.

e expose: This exposes network ports on the container, on which it will listen at
runtime:

| EXPOSE <port> [<port> ...]

We can also expose a port while starting the container. We covered
this in the Exposing a port while starting a container recipe in chapter
2, Working with Docker Containers.

e env: This will set the environment variable <key> to <value>. It will be passed
to all the subsequent instructions and will persist when a container is run
from the resulting image:

| ENV <key> <value>

e aoo: This copies files from the source to the destination:

| ADD <src> <dest>

The following aopb instruction is for a path containing white spaces:

| ADD ["<src>"... "<dest>"]

e <src>: This must be the file or directory inside the build directory from
which we are building an image, which is also called the context of the
build. A source can be a remote URL as well.

® <dest>: This must be the absolute path inside the container in which
files/directories from the source will be copied.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e copy: This is similar to Abp. copy <src> <dest>:

|coPY ["<src>"... "<dest>"]

The copv instruction optionally supports a --from option for multistage
building.

e voruve: This instruction will create a mount point with the given name and
flag it as mounting the external volume using the following syntax:

| VOLUME ["/data"]

Alternatively, you can use the following code:

| VOLUME /data

e user: This sets the username for any of the following run instructions using
the following syntax:

| USER <username>/<UID>

e workpIr: This sets the working directory for any run, cvo, and entrypoInt
instructions that follow it. It can have multiple entries in the same
Dockerfile. A relative path can be given that will be relative to the earlier
workpIR instruction using the following syntax:

| WORKDIR <PATH>

e onsurrp: This adds trigger instructions to the image that will be executed
later, when this image will be used as the base image for another image.
This trigger will run as part of the rrom instruction in a downstream
Dockerfile using the following syntax:

| ONBUILD [INSTRUCTION]

pythontesting

See also

e The he1p OptiOI’l of docker image build:

| $ docker image build --help

e The documentation on the Docker website:

® https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building an Apache image — a
Dockerfile example

Now that we're armed with a good understanding of the pockerfile constructs, in
this recipe we will build a very simple Docker image that bundles the apache2 web
server and also adds metadata to launch the apache2 application inside the
container whenever a new container is created from this image.

pythontesting

$ git clone https://github.com/docker-cookbook/apache?2.git
$ cd apache2
$ cat Dockerfile FROM alpine:3.6

LABEL maintainer="Jeeva S. Chelladhurai <sjeeva@gmail.com>"

RUN apk add --no-cache apache2 && \ mkdir -p
/run/apache2 && \ echo "<html><h1>Docker
Cookbook</h1></html>" > \
/var/www/localhost/htdocs/index.html

EXPOSE 80

ENTRYPOINT ["/usr/sbin/httpd", "-D", "FOREGROUND"]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker image build -t apache2 .

Sending build context to Docker daemon 52.74kB
Step 1/5 : FROM alpine:3.6

3.6: Pulling from library/alpine 88286f41530e:
Pull complete

Digest:
sha256:f006ecbb824d87947d0b51ab8488634bf69fe4094959d935c0c103f4820a4
Status: Downloaded newer image for alpine:3.6 --->
76da55c8019d

Step 2/5 : LABEL maintainer "Jeeva S. Chelladhurai
<sjeeva@gmail.com>" ---> Running in
83e2c061c956 ---> {77381e55873

Removing intermediate container 83e2c061c956
Step 3/5 : RUN apk add --no-cache apache2 &&
mkdir -p /run/apache2 && echo "<html><h1>Docker
Cookbook</h1></html>" >
/var/www/localhost/htdocs/index.html ---> Running in
3abde4480544 fetch http://dl-
cdn.alpinelinux.org/alpine/v3.6/main/x86_64/APKINDEX.tar.gz
fetch http://dl-
cdn.alpinelinux.org/alpine/v3.6/community/x86_64/APKINDEX .tar.gz
(1/6) Installing libuuid (2.28.2-r2) (2/6) Installing
apr (1.5.2-r1)

(3/6) Installing expat (2.2.0-r1) (4/6) Installing
apr-util (1.5.4-r3) (5/6) Installing pcre (8.41-r0)

(6/6) Installing apache2 (2.4.27-r1) Executing
apache2-2.4.27-r1.pre-install Executing busybox-1.26.2-
r5.trigger OK: 7 MiB in 17 packages

 ---> d7585e779ee8

Removing intermediate container 3abde4480544

pythontesting

Step 4/5 : EXPOSE 80

 ---> Running in ac761e55a45c --->
63bbb379239f

Removing intermediate container ac761e55a45c
Step 5/5 : ENTRYPOINT /usr/sbin/httpd -D FOREGROUND
 ---> Running in fa3e5be6b893 --->
97f0bac0f021

Removing intermediate container fa3e5be6b893
Successfully built 97f0bac0f021

Successfully tagged apache2:latest

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The build process pulls the aipine base image from Docker Hub, installs the
apache2 package, and creates a simple HTML page. Then it continues, adding port
so as a piece of metadata to the image, and finally sets the instructions to start the
Apache application at the start of the container.

pythontesting

There's more...

Let's run an apache2 container from the created image, get its IP address, and
access the web page from it:

§ I0-$(docker container run -d -p 80:88 apache2)
§ IP-$(docker container inspect --format-'{{.NetworkSettings.IPAddress}}' $ID)

§ curl $Ip
dhtmly<h1sDocker Cookbook</hlx</hinls

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The he1p OpﬁOI’l of docker image build:

| $ docker image build --help

e The documentation on the Docker website:

® https://docs.docker.com/engine/reference/commandline/imaim_build/

pythontesting

https://docs.docker.com/engine/reference/commandline/imaim_build/

Setting up a private index/registry

Earlier, we used a Docker-hosted registry (https://hub.docker.com) to push and pull
images. Nonetheless, quite often you will come across use cases where you will
have to host a private registry in your infrastructure. In this recipe, we will host
our own private registry using Docker's registry:2 image.

https://hub.docker.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Make sure that Docker daemon version 1.6.0 or above is running on the host.

pythontesting

$ docker container run -d -p 5000:5000 \ --name
registry registry:2

$ docker tag apache?2 localhost:5000/apache2

Here, we will reuse the apache2 image we built in the previous recipe.

3. Now, let's push the image to the local registry using the docker image
push command, as shown in the following screenshot:

% docker image push localhost: fapachez

[localhost:saee/apache2]

: sha256:feeelc263afccdsea7a7efde3afalfaedel29ca3elealvedccds3sscessb21ec size: 739

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding command to pull the image will download the official registry
image from Docker Hub and run it on port seee. The -p option publishes the
container port to the host system's port. We will explore details about port
publishing in the next chapter.

pythontesting

There's more...

The registry has a notification framework that can invoke WebHooks when it
receives a push or pull request. These WebHooks can be chained with your
DevOps flow.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The documentation on GitHub:
® https://github.com/docker/docker-registry

pythontesting

https://github.com/docker/docker-registry

Automated builds — with GitHub and
Bitbucket

We saw earlier how to push Docker images to Docker Hub. Docker Hub allows
us to create automated images from a GitHub or Bitbucket repository using its
build clusters. The GitHub/Bitbucket repository should contain the Dockerfile
and also the content that is to be copied/added inside the image. We will be
looking at a GitHub example in upcoming sections.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

For this you, will need a valid Docker ID and GitHub account.

Also, Visit https://github.com/docker-cookbook/apache2 for the apache2 Dockerfile.

pythontesting

https://github.com/docker-cookbook/apache2

How to do it...

Perform the following steps:
1. LOg in to Docker Hub (https://hub.docker.com/).

2. The first step to create an automated build is to link your GitHub or
Bitbucket account. The account-linking feature is available in the Linked
Accounts & Services web wizard. You can reach this wizard either by
navigating through the Settings menu or via Create Automated Build menu
in the Create dropdown. Here, we will choose the former option—that is,
the Settings menu—which is accessible from the rightmost drop-down
menu:

https://hub.docker.com/

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Dashboard Explore Organizations Create .cooklmnlf.

Account Settings Biling & Plans Linked Accounts & Semices Notifications Licenses
Linked Accounts & Services
Linked Accounts

These account links are currently used for Automated Builds, so that we can access your project lists and help
you configure your Automated Builds. Please note: A github/bitbucket account can be connected fo only

one docker hub account at a time.

Link Github

o

| —

Link Bitbucket

pythontesting

3. In the preceding wizard, click the Link Github option; in the next screen,
you will be presented with two options, as shown in the following
screenshot. Here, let us click the Select button under the Public and Private
(Recommended) option:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Dashboard Explore Organizations Create .cuokhonk

Connect to GitHub

We let you choose how much access we have to your GitHub account.

Public and Private (Recommended)

» Read and Write access to public and private repositories. (We only use write access fo add service hooks

and add deploy keys)
» Required if you want to setup an Automated Build from a private GitHub repository.

» Required if you want to use a private GitHub organization.
o We will automatically configure the service hooks and deploy keys for you.

Limited Access

» Public read only access.
» Only works with public repositories and organizations.
» You will need to manually make changes to your repositories in order to use Automated Build

pythontesting

4. A new window or tab will open for you to key in your GitHub credentials,
as shown in the following screenshot:

qgq 6089740

21734177

T

&

Jocker

Sign in to GitHub
to continue to Docker Hub Registry

Username or email address

Password Forgot password?

New to GitHub? Create an account.

http://t.cn/RDIAJ5D

Sign in now to use ZenHub

pythontesting

5. Having successfully logged in to your GitHub account, continue to Grant
permission to the organizations in your GitHub account. In this example,
we have granted permission to the docker-cookbook organization. Click the
Authorize docker button:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

- 0 X

o Authorize application A
(© & GitHub, Inc. (US) https://githu 1%) | € % Search T}f E O 4 4H (’} E H =
A

Authorize Docker Hub Registry

Docker Hub Registry by docker

wants to access your thedocker account

i | Repositories
|

Public and private

Organization access

ﬂ docker-cookbook + Revoke

Authorizing will redirect to
https://hub.docker.com

Sign in now to use ZenHub

@ Not owned or (© Created5yearsago &8 More than 1K
operated by GitHub

GitHub users v

pythontesting

As you can see in the following screenshot, now the Docker Hub
account is linked to the GitHub account:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Dashboard Explore Organizations Create .cookhook

Account Settings Biling & Plans Linked Accounts & Senvices Nofifications Licenses
Linked Accounts & Services
Linked Accounts

These account links are currently used for Automated Builds, so that we can access your project lists and help
you configure your Automated Builds. Please note: A github/bitbucket account can be connected to only

one docker hub account at a time.

thedocker:
read/write access

Unlink Github

0|

e

Link Bitbucket

pythontesting

As we can see in the preceding screenshot, the GitHub account is
successfully linked to the Docker Hub account. Now, we can proceed
to configure the automated build.

6. Select the Create Automated Build option from the Create drop-down
menu, as shown in the following screenshot:

Dashboard Explore Organizations Create .cnoklmnln:

T BRepostories wSlars [Contrbuted I TRERCREEI0]

& Create Automated Build

Repositories eposiory +

& Create Organization

cookbook/myapache? 0 1)

public STARS | PULLS | D6

7. You will be presented with two options: Create Auto-Build for Github and
Link Account to link your account to Bitbucket, as shown in the following
screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

n
@ Q Dashboard Explore Organizations Create .cooklmk

() GitHub (thedocker) & Link Accounts

Create Auto-build

Github

Link Account

o]

w/
Bitbucket

pythontesting

We will be linking our account with Bitbucket because we have not
yet linked any Bitbucket account.

8. Click on the Create Auto-build option:

Dashboard Explore Organizations Create .cookbauk

0 GitHub (thedocker) £ Link Accounts

Users/Organizations
A docker-cookbook ?

JL thedocker

apache2

9. Click on the apache2 option, which is the fork of nttps://github.com/docker-coo
kbook/apache2:

https://github.com/docker-cookbook/apache2

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Dashboard Explore Organizations Create .cookhook

Create Automated Build

Repository Namespace & Name*

cookbook b apache2

Visibility

public -

Short Description™

By default Automated Builds will match branch names to Docker build tags. Click here to customize behavior

10. Provide a short description and click Create:

pythontesting

Dashboard Explore Organizations Create .cool';lmol-;

PUBLIC | AUTOMATED BUILD

cookbook/apache? vy

]

Repo Info Tag

s Dockerfile Build Details Build Settings Collaborators Webhooks Settings

o

Short Description 4

apache? image

Full Description =

Full description is empty for this repo.
Docker Pull Command 0
docker pull cookbook/apacheZ

Owner

cookbook

Source Repository

) docker-cookbook/apache?2

Comments (0)

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Hurray! You have successfully automated the build process, and the
image build process will get triggered when you make any change in
your forked repository.

11. Now, you can navigate to the Build Details tab to see the build status.

pythontesting

How it works...

When we select a GitHub repository for an automated build, GitHub enables the
Docker service for that repository. You can confirm this by looking at the
Integrations & services section of the Settings tab in the GitHub repository:

docker-cookbook / apache? iz Oumaterr 1 Xsar 0 rork 0

Code (lssues 0 |1 Pull requests 0 Boards ™ Reports ' Projects 0 Wi fSetings Insights »

Opon Installed GitHub Apps

Collaborators & teams

GitHub Apps augment and extend your workflows on GitHub with commercial, open source, and homegrown tools,
Branches .

Semces Add service +
Webhooks
Iegratons senies Services are pre-builtintegrations that perform certain actions when events occur on GitHub.
Deploy keys v Dodker Edlit Delete

Whenever we make any changes to any source code and commit to the GitHub
repository, the automated build gets triggered and builds the Docker image using
the Dockerfile that resides in the GitHub repository.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

You can view the Dockerfile by navigating to the Dockerfile tab in your
repository.

You can also have your build triggered when another Docker Hub repository is
updated by linking the other repository in the Build Settings tab of your
repository.

The steps for setting up an automated build with Bitbucket are almost identical.
The hook for an automated build gets configured under the Hooks section of the
Bitbucket repository's Settings section.

pythontesting

See also

e The documentation on the Docker website:
® https://docs.docker.com/docker-hub/builds/

https://docs.docker.com/docker-hub/builds/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating a custom base image

Docker has a rich library of base images, and we strongly recommend that you
select a lean image that fits your application well. However, you may choose to
custom-build your base image from the get go. Here, in this recipe, we will use
debootstrap t0 create our Ubuntu 18.04 LTS (Xenial Xerus) base image. The
debootstrap Utility can create any Debian-based system by downloading it from
the appropriate repository.

pythontesting

Getting ready

Install debootstrap on any Debian-based system using the following command:

| $ apt-get install debootstrap

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ mkdir xenial
$ sudo debootstrap xenial ./xenial

$ Is ./xenial bin boot dev etc home lib lib64 media
mnt opt proc
 root run sbin srv sys tmp usr var

$ sudo tar -C xenial/ -c . | docker image import - xenial

4. Look at the docker image 1s output. You should have a new image with
xenial as the name.

pythontesting

How it works...

The debootstrap command pulls all the Ubuntu 18.04 (Xenial Xerus) packages to
the directory from the package repository. Then they are bundled as a TAR file
and pushed to the Docker image import command to create the Docker image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The debootstrap wiki page:
® https://wiki.debian.org/Debootstrap.
e Alternative approaches to creating base images:

® https://docs.docker.com/articles/baseimages/.

pythontesting

https://wiki.debian.org/Debootstrap
https://docs.docker.com/articles/baseimages/

Creating a minimal image using a
scratch base image

In the previous recipe, we custom-created a base image without any parent
image. However, that image is bloated with all the binaries and libraries that are
shipped with the Ubuntu 18.04 distribution. Typically, to run an application, we
don't need the majority of the binaries and libraries we have bundled in the
image. Besides, it leaves a large image footprint, and thus becomes a portability
problem. To overcome this issue, you can diligently hand-pick the binaries and
libraries that will constitute your image and then bundle the Docker image.
Alternatively, you can build using Docker's reserved image, called a scratch
image. This scratch image is explicitly an empty image, and it does not add any
additional layer to your image. Furthermore, unlike the previous recipe, you can
automate image creation using a Dockerfile. In this recipe, we will use a simple
builder pattern to create a statically linked binary and create a Docker image
using a scratch base image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

First, ensure that the Docker daemon is running and has access to the gcc and
scratch images. You should also ensure that you have a clone of nhttps://github.con
/docker -cookbook/scratch.git, and that the repository contains demo.c and a
Dockerfile.

The content of demo.c should be as follows:

#include <stdio.h> void main()

}

The content of the Dockerfile should be as follows:

FROM scratch
ADD demo /
CMD ["/demo"]

pythontesting

https://github.com/docker-cookbook/scratch.git

$ cd scratch

 $ docker container run --rm \
 -v ${PWD}:/src
\
 -w /src \
 gcc:7.2 \

 gcc -static -o demo demo.c

3. Having built the statically linked executable lets quickly verify the binary:

§ 15 -1h demo
-rr-xr-x 1 root root 928K Oct 14 18:29 demo

§ file -b demo
ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for GMU/Linux 2.6.32, not stripped

4. Continue to build an image from the scratch base image with the executable
demo created in the previous step, as shown in the following code:

§ docker image build -t scratch-demo

Sending build context to Docker daemon 1.826MB
1trp /3 1 FROM scratch

Step 2/3 + ADD demo /

---» Jc53eA859fca

Step 3/3 ¢ O /demo

---» Running in 6a6edc94088b

---3 84651950923

Removing intermediate container sacedco4eesh
Successfully built edc65195b92a
Successfully tagged scratch-demo: latest

5. Finally, let us verify the image by spinning a container from the preceding
image and checking the image size:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

§ docker container run --rm scratch-demo
Statically built for demo
§ docker image IS

REPOSITORY TAG TMAGE ID (REATED SIIE
scratch-emo Latest pC65195h923 9 minutes ago 949K8

Evidently, this image is much smaller, and the Docker image is just
20 bytes larger than the executable demo.

pythontesting

How it works...

The Docker build system intuitively understands the reserved image name scratch
in the rrom instruction and starts bundling the image without any additional layer
for the base image. So, in this recipe, the Docker build system just bundled the
statically linked executable demo and the metadata for the image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

As mentioned earlier, the scratch image doesn't add any additional layer to the
image. The docker image history command comes in handy here to list the layers in
the image, as shown in the following code:

% docker image history scratch-demo
THA CREATED CREATED BY
1 16 hours ago ! fsh -c #(nop) D ["/d

16 hours ago /bin/sh -c #(nop) ADD file:

As we can see, there is no additional layer for the base image scratch.

pythontesting

See also

e The documentation at the Docker Hub:
® https://hub.docker.com/_/scratch/
e Alternative approaches to creating base images:

® https://docs.docker.com/articles/baseimages/

https://hub.docker.com/_/scratch/
https://docs.docker.com/articles/baseimages/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building images in multiple stages

In the previous recipe, we created a statically linked executable using the gcc
builder container and then bundled the executable using the scratch image. Build
pipelines with the builder pattern are very common because, during the build
time, you will need heavyweight building and supporting tools. However, the
resulting artifacts usually don't need those tools during execution time.
Therefore, the artifacts are usually built using the appropriate runtime with
additional capability and then the resulting artifacts are packaged with the
runtime just enough to run the artifacts. Though this solution works very well,
the complexity of this build pipeline is managed outside the Docker ecosystem
through scripts. To address this complexity, Docker introduced a cool feature
called multistage builds in version 17.es.

Docker's multistage build enables us to orchestrate complex building stages in a
single Dockerfile. In the Dockerfile, we can define one or more intermediate
stages with the appropriate parent image and the build ecosystem to build the
artifact. The Dockerfile provides the essential previously mentioned primitives
in building the image using Dockerfile to copy the artifacts to subsequent stages
and finally compose a Docker image with just enough runtime and artifacts.

pythontesting

#include <stdio.h>
void main()
{
 printf("This is a
Docker multistage build demo\n");
}

FROM gcc:7.2 AS builder
COPY src /src
RUN gcc -static -0 /src/app
/src/app.c && strip -R .comment -s /src/app
FROM scratch
COPY --
from=builder /src/app .
CMD ["./app"]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ cd multistage

2. Build the image using the Docker image build command, as shown in the
following screenshot:

§ docker build -t multistage

Sending build context to Docker daemon 963.6KkB

Step 1/6 : FROM gcci7.2 AS builder

---» 709419826303

Step 2/6 + COPY src /sre

---» Dedfc2487054

Step 3/6 : RUN gec -static -o /sec/app /src/app.c & strip -R .comment -5 /src/app
---» Running in bec7cbfca25a

---) 3a3987fdapes

Removing intermediate container béc7chfc825a

Step 4/6 : FROM scratch

Step 5/6 : COPY --from=builder /src/app .

---3 39902cecdf T

Step 6/6 : C¥D ./app

---3 Running in 7hcb&7¢7dabb
---3 §34221dbeds?

Removing intermediate container 7bcba7c7debb
Successtully built 694221dbeda?
Successfully tageed multistage: latest

3. Now that the image is successfully built, let's proceed to spin a container
from the image we created in the previous step, as shown in the following
screenshot:

pythontesting

§ docker run --rm multistage

This is & Docker multistage build demo

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The Docker build system intuitively understands the reserved image name scratch
in the rrom instruction and starts bundling the image without any additional layer
for the base image. So in this recipe, the Docker build system just bundled the
statically linked executable demo and the metadata for the image.

pythontesting

There's more...

As mentioned earlier, the scratch image doesn't add any additional layer to the
image. The docker image history command comes in handy here to list the layers in
the image, as shown in the following screenshot:

§ docker image history scratch-demo
TMAGE (REATED (REATED BY

edC651950923 16 hours ago fbin/sh -¢ #(nop) WD ["/demo”]
M (53e0859fa 16 hours ago fbin/sh -¢ #(nop) ADD file:S83335d88eedd7f,.. 949KB

As we can see, there is no additional layer for the base image scratch.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The documentation at Docker Hub:

https://hub.docker.com/_/scratch/

pythontesting

https://hub.docker.com/_/scratch/

Visualizing the image hierarchy

Docker provides multiple commands to learn about its images in a textual
format. However, a picture is worth a thousand words, so it is imperative that we
can visualize the image hierarchy through graphs. While Docker doesn't support
any image visualization tool, numerous solutions are available to visualize the
image hierarchy. In this recipe, we will visualize the image hierarchy using a
nate/dockviz container and craphviz.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before we begin, we need one or more Docker images on the host to be running
a Docker daemon. We also need to ensure that craphviz is installed.

pythontesting

How to do it...

Run the natesdockviz container by supplying images --dot as a command-line
argument and pipe the output to the dot (sraphviz) command, as shown in the
following code, to generate the image hierarchy:
$ docker run --rm \
-v /var/run/docker.sock:/var/run/docker.sock \

nate/dockviz \
images --dot | dot -Tpng -o images-graph.png

The following is a graphic view of the images in the Docker host:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

<missing> w <missing>
|

\
196e0ce0c9fh 4ea294712533
centos:latest nate/dockviz:latest

ccc7alldbsbl

ubuntu:latest

4£8f7h38f8fa
cookhook/apache2:latest

06105860739
cookhook/myapache?:latest

myapache2:latest

Here, in the graphic view, nodes with <missing> are layers within an image.

pythontesting

How it works...

The nate/dockviz tool is written in go, and iterates through the Docker images'
metadata and generates a craphviz dot output that is converted to a png image using

Graphviz.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

You could also use nate/dockviz to visualize the dependency between linked
containers. The following is the command for visualizing the container
dependencies:

$ docker run --rm \
-v /var/run/docker.sock:/var/run/docker.sock \

nate/dockviz \
containers --dot | dot -Tpng -o containers-graph.png

pythontesting

See also

e The documentation on nate/dockerviz:

https://github.com/justone/dockviz

https://github.com/justone/dockviz

qq 6089740

Network and Data Management for

21734177

Containers

In this chapter, we will cover the following recipes:

Accessing containers from outside

Attaching containers to a host network
Launching containers with no network

Sharing IP addresses with other containers
Creating a user-defined bridge network
Discovering and load balancing containers
Persisting data using volumes

Sharing data between the host and the container

pythontesting

IT

http://t.cn/RDIAJS5D

Introduction

Until now, we have worked with a single container and accessed it locally. But
as we move to more real-world use cases, we will need to access the container
from the outside world, share external storage within the container, communicate
with containers running on other hosts, and so on. In this chapter, we'll learn how
to fulfill some of those requirements. Let's start by understanding Docker's
default networking setup and then move on to advanced use cases.

When the Docker daemon starts, it creates a virtual Ethernet bridge with the
name dockere. Perhaps we can glean more insight into dockere using the ip addr
command on the system that runs the Docker daemon:

4 ip addr show dockera

3: dockerd: ¢BROADCASTMULTICAST,UP, LOER_UPy wtu 1500 qdisc noqueue state UP group default
Link/ether 62:42:d9:c3:e8:af brd fH.ff.1F:FF: 561

Inet 172.17.0.1/16 stape global docker

valid 1ft forever preferred 1ft forever
inete fege: 42.d9ff:fec3 efaf/6d scope link
valid Ift forever preferred 1ft forever

As we can see, dockero has the IP address of 172.17.6.1/16. Docker randomly
chooses an address and subnet from a private range defined in RFC 1918 (https:/
/tools.ietf.org/html/rfc1918). Using this bridged interface, containers can
communicate with each other and with the host system.

By default, every time Docker starts a container, it creates a pair of virtual run on
Ethernet interfaces and then performs the following with the pair:

e Ties one end of the veth pair to the dockere bridge interface in the Docker

https://tools.ietf.org/html/rfc1918

qg 6089740 21734177 IT http://t.cn/RDIAj5D

host—Iet's call this end the host end
e Ties the other end of the veth pair to the newly created container as its ethe
interface—Ilet's call this end of the veth pair the container end

Let's start a container and examine its network interface IP addresses:

§ docker container run --rm -it alpine

[# ip addr

1: 10: <LODPBACK,UP,LONER_UP> mtu 65536 qdisc noqueue state UNKNOWN glen 1
link/loopback ©9:99:00:09:09:00 brd 09:09:00:00:00:00
inet 127.8.8.1/8 scope host lo

valid 1ft forever preferred 1ft forever
16: etha@if17: (BROADCAST,MULTICAST,UP, LOWER UP,M-DOWN> Nty 1500 qdisc noqueue state UP
link/ether 82:42:ac:11:00:03 brd ff.ff.ff:f. .4
inet 172.17.8.3/16 scope global ethe
valid Ift forever preferred 1ft forever

In the preceding screenshot, the container end of the veth pair is named ethegif17,
where 17 is the interface index of the host end of the veth pair. We can use this
index to identify the host end of the vetn pair in the Docker host. The etho of the
container is assigned the IP address 172.17.0.3, which belongs to the dockere subnet
—that is, 172.17.0.1/16.

Now, let's take a peek at the interface at the seventeenth index:

17: vetheabagba@if16: ¢BROADCAST,MULTICAST,UP,LOKER Uy ntu 1508 qdisc noqueue master dockerd state UP group default
linkfether 32:80:2a:¢1:ch:c7 brd f1:5F. . 8f:6F:7F link-netnsid 1

inete fe30: :308b: 2aff feel:cbc7/6d scope Link
valid_Ift forever preferred Ift forever

pythontesting

Here, the host end of the vetn interface is named vethesb4ebs@irie, wherein 16 is the
interface index of the container end of the vetn pair. Since the interface at index
16 is assigned to the container's network namespace, it is not displayed in the
Docker host. The Docker Engine autogenerates the name of the host end veth pair
by generating a seven-digit hex number and then appends it to the string veth. In
this example, esbaoebs is the random number generated by the Docker Engine. The
Docker Engine also ensures that this random number is unique inside the Docker
host. If you look closely, you might also notice that the host end of the vetn
interface is bound to the dockero bridge.

Now let's create a few more containers and look at the dockere bridge using the
Linux Ethernet bridge administration command, bret1.

The Ubuntu Linux distribution does not usually carry the brct1 tool, so we have to either
install the bridge-utiis package or leverage one of Docker's nifty features that lets you share
the Docker host's network stack with the Docker container, as described in the Attaching
container to the host network recipe.

Here, we are using the --network=host option of the docker container run command to
connect to the Docker host's network stack. Since the a1pine image is packed with
the brct1 utility command, we will choose to spin our container with the aipine
image and run the brct1 show command to display the bridge details, as shown in
the following screenshot:

§ docker container run --rm --network=host alpine brctl show
bridge name bridge id STP enabled interfaces
dockerd 3000, 024209¢ 3e8af Dnﬂ vethcdacdle

vethegbdns
vethbdd3f 3

Evidently, all the host ends of the veth pairs are bound to the default Docker
bridge dockere. Apart from setting up the dockere bridge, Docker also creates
iptables NAT rules, so that all containers can talk to the external world by default,
but the external world cannot talk to the containers. Let's look at the NAT rules
on the Docker host:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

§ suo iptables -t nat -L -n

(hain PREROUTING (policy ACCEPT)

target prot opt source destination

DOCKER all -- 8.0.0.8/0 ADDRTYPE match dst-type LOCAL

(hain INPUT (policy ACCERT)
target prot opt source destination

(hain OUTPUT (policy ACCERT)
target prot opt source destination
DOCKER ~ all -- ' 1127.0.0.8/8 ADDRTYPE match dst-type LOCAL

(hain POSTROUTING (policy ACCERT)
target prot opt source destination
MASQUERADE all -- 172.17.8.9/16 0.0.0.8/0

(hain DOCKER (2 references)
target prot opt source destination
RETURN all --

In the preceding output, a rostroutine rule is configured for the 172.17.0.0/16
subnet. The sole purpose of this rule is to change the source IP address of the
data packets that originated from the 172.17.0.0/16 subnet to the host IP address.
Apparently, the 172.17.0.0/16 subnet is assigned to our dockere bridge. Essentially,
this postroutINnG rule enables the Docker containers to connect to the external
world, as you can see in the following traceroute output:

pythontesting

§ docker run --rm alpine traceroute -u 3 -n 8.8.8.8
traceroute to 8.8.5.8 (8.8.8.8), 3 hops max, 46 byte packets
1 172.17.0.1 0.08505 0.002 0s 8.001 M5

2 216,182,226.48 12,345 ms 216.182.224.116 11.969 ms 216,182,224.136 52.945 WS
| 108.66.8.42 12.614 ms 21,937 ns 109.66.12.74 16.911 ms

Cool, isn't it? Nonetheless, by default, Docker doesn't do any network plumbing
for the external world to connect to the containers. However, when you host a
service inside the container, it must be reached from the external world. The
Accessing containers from outside recipe demonstrates how to open up the
service running inside the container to the external world. In addition, we have
other recipes that focus on various aspects of single-host container networking.

0 For more information about the different kinds of networking we discussed in the preceding

section, VISIt: nttps://docs.docker.com/network/.

In this chapter, we focused only on single-host container networking. Along with
single-host container networks, we will also look at how to share and persist data
in the container paradigm.

https://docs.docker.com/network/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Accessing containers from outside

In the microservice architecture, multiple smaller services are used to provide a
meaningful enterprise-grade application. The Docker-inspired containerization
technology is inherently very lightweight, and hence it plays a vital role in
enabling the microservice architecture. By default, the Docker container allows
outgoing data traffic, but there is no path for the external world to connect to the
services running inside the container. Nonetheless, Docker provides an elegant
solution to selectively enable the external world to communicate with the service
running inside the container, using the following options of the docker container
run command:

--publish, -p Publish a container's port to the host

--publish-all, -P Publish all exposed ports to random ports

Both these options allow the external world to connect to the services running
inside the containers through the ports of the Docker host.

pythontesting

Getting ready

Before we begin, make sure the Docker daemon is running on the Docker host.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker container run -d -p 80:80 cookbook/apache2

a101ac9009f2237a2e4356e9caed6d0cf1666b5b86768f559a629d39034b

$ docker container port a101ac9009f2 80/tcp ->
0.0.0.0:80

<html><h1>Docker Cookbook</h1></html>

pythontesting

How it works...

When a container is launched with -p <host port>:<container port>, the Docker
Engine configures the iptables destination NAT rule. This destination NAT rule is
responsible for forwarding all the packets it receives on the Docker host port to
the container's port:

% sudo iptables -t nat -L -n

Chain PREROUTING (policy

target prot opt so

DOCKER all 8.8.8 :] 8.8 /e ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT)
target prot opt source

Chain OUTPUT (policy A
target prot opt
DOCKER all -- e.8.8.8/8 1127.8.08.8/8 ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy
target prot opt sour

MASQUERADE all -- 172.°
MASQUERADE tcp -- 172.1

Chain DOCKER (2 refere
target prot o
RETURN all

A tcp dpt:88 to:172.17.8.2:80

Noticeably, the Docker Engine has inserted a destination NAT rule with the
following configurations:

e Source address 0.0.0.0/0: A wild card address that means that this rule is
applicable to packets received from any source

e Destination address o.0.0.0/0: A wild card address that means that this rule
is applicable to the packets received on any network interface of the Docker
host

¢ Destination port dpt:se: One of the key attributes in this rule, which enables
the iptables to selectively apply the rule to the packets that are sent only to
port se of the Docker host

e Forwarding address 172.17.0.2:80: The container's IP address and port to
which the iptapies forward the packets when the aforementioned criteria are
met

qg 6089740 21734177 IT http://t.cn/RDIAj5D

pythontesting

There's more...

The -p (--publish) OptiOI’l of the docker container run command supports four
configurations that you can use to publish your containerized service to the
external world, as shown in the following list:

1. <hostport>:<containerport>: This configuration was addressed in an earlier
recipe.

2. <containerport>: In this configuration, we just specify the container port and
let the Docker Engine select the Docker host port. The typical port range is
from 32768 to 61000, which is defined in /proc/sys/net/ipv4/ip_local_port_range.

3. <ip>:<hostPort>:<containerPort>: This configuration is very similar to <hostport>:
<containerport>; however, here you are specifying a particular IP interface of
the Docker host.

4. <ip>::<containerport>: This COI’lﬁgUI‘&tiOH is very similar to <containerport>;
however, here you are specifying a particular IP interface of the Docker
host.

The -p (--publish-all) OptiOI’l of the docker container run command reads out the
container port from the image metadata and maps it to a random higher-order
port (32768 to 61000) in the Docker host. The expose instruction of pockerfile adds the
port information to the image metadata.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The help OptiOI’l of docker container run:

| $ docker container run --help

e The documentation on the Docker website:
® https://docs.docker.com/engine/userguide/networking/

® https://docs.docker.com/engine/userguide/networking/default_network/binding/

pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Attaching containers to a host
network

In the previous recipe, Docker by default attached our container to the default
bridge network dockere and then leveraged the onat rule of iptabies to allow TCP
connection from the external world. However, there are many use cases wherein
the container needs full access to the host network namespace, such as the brct1
show Scenario in the introduction section of this chapter. In this recipe, we will
attach one container to the default bridge network and another one to the host
network and compare the differences.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before we begin, ensure that the Docker daemon is running and has access to the
alpine image.

pythontesting

How to do it...

Perform the following steps:

1. First, let's launch an alpine container without prescribing any network
option and invoke the ip address command, as shown in the following
screenshot:

§ docker container run -it --rm alpine sh
[# 1p address
1: lo: <LOOPBACK,UP,LOWER UP> mu 65536 gdisc noqueue state UNKNOWN
link/loopback 09:09:00:09.00:00 brd 00:09:00:00:00.00
inet 127.8.8.1/8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host

valid 1t forever preferred_1ft forever
9: ethe: <BROADCAST,MULTICAST,UP,LOWER UP> wtu 1588 qdisc noqueue state UP
link/ether 82:42:ac:11:00:02 brd ff:7f:Ff:Ff:FF ff
inet 172.17.8.2/16 scope global etha
valid 1t forever preferred_1ft forever
inete fegd:.42:acffifell:2/ed scope link
valid 1t forever preferred 1ft forever

2. Now, let's continue to launch an alpine container by attaching it to the
Docker host's network stack by using --net=host as an argument and
executing the ip address command, as shown in the following screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

§ docker container run -it --rm --net=host alpine sh
| & ip address
1: 1o: <LOOPBACK,UP,LOWER UP» mtu 65536 qdisc noqueue state UNKNOWN qlen 1
link/1oopback @ 100 brd 00:00:00:00:00:00
inet 127.0.8.1/8 scope host lo
valid 1ft forever preferred 1ft forever
ineté ::1/128 scope host
valid 1ft forever preferred 1ft forever
2. enpds3: <BROADCAST MULTICAST,UP,LOMER UP» wtu 1588 qdisc pfifo fast state UP glen 1600
link/ether 82:50:7:03:3f.72 brd ff.f1.ff.ff.1f:1f
inet 10.0.2.15/24 brd 10.8.2.255 scope global enpes3
valid 1ft forever pr P’rrl r Pd 1ft forever
ineté feda::50:7fff:fea3: 3672/
valid 1ft forever pr r:’rr:l red 1ft forever
3: dockerd: (BROADCAST MULTICAST,UP,LOKER UP» mtu 1509 qdisc noqueue state UP
link/ether 82:42:08:87:da:01 brd ff.ff.ff.Ff.1F:1F
inet 172.17.8.1/16 scope global dockerd
valid 1ft forever preferred 1ft forever
ineté fese:.42:deff fed7.dagl/ed scope link
valid 1ft forever preferred 1ft forever
7. vethfdcdbee@ife: <BROADCAST,MULTICAST,UP,LOWER UP,M-DOWN> wtu 1500 qdisc noqueue master dockerd state UP
link/ether 96:1a:98:bb:1e:8e brd ff.ff.ff.ff.ff.ff
ineté fese::941a:98ff febb:1e8e/64 scope ink
valid 1ft forever preferred 1ft forever

Evidently, in step 1, Docker created a network namespace for the container and
assigned an IP address for the container, whereas, in step 2, Docker attached the
container to the host network stack, hence the container has full access to the
host's network stack.

pythontesting

How it works...

The Docker Engine launches the new container by attaching the container to the
Docker host's network stack, thereby allowing the container full access to the
host's network stack.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The help OptiOI’l of docker container run:

| $ docker container run --help

e The documentation on the Docker website:
® https://docs.docker.com/engine/userguide/networking/

® https://docs.docker.com/engine/userguide/networking/default_network/binding/

pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Launching containers with no
network

Docker inherently supports three types of network (bridge, hosts, and none), as is
evident in the following docker network 1s command output:

% docker network ls
NETWORK ID DRIVER
a C bridge

host
null

In the previous recipes, we discussed the bridge and host networking capability.
Nonetheless, the none network mode comes in handy when you package any
utility inside the container that doesn't need any network connectivity. Besides,
the none network mode can also be used to do your custom network plumbing
without involving the Docker. In this recipe, we will launch a container with the
none Network mode and explore the container's network details.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before we begin, ensure that the Docker daemon is running and has access to the
alpine image.

pythontesting

How to do it...

Launch a container with no network by using the --net none argument in the docker
container run command, as shown in the following screenshot:

$ docker container run --rm --net=none alpine ip address
1: lo: <LOOPBACK,UP,LO0W 3 [p state UNKNOWN glen 1
link/loopback ea : 8

inet 127.8.8.1/8 scope host lo
valid_1ft forever preferred_lft forever

Apparently, when we launch a container with the network mode set to none,
Docker only creates a 100pback interface for that container. Since there is no
Ethernet interface defined for this container, the container is isolated from the
network.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

When a container is launched with the none network mode, the Docker Engine
creates a network namespace for the container. However, it doesn't configure any
network for that container.

pythontesting

See also

e The help OptiOI’l of docker container run:

| $ docker container run --help

e The documentation on the Docker website:
https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/bindi
ng/

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Sharing IP addresses with other
containers

Typically, when we launch a container, the Docker Engine assigns an IP address
to that container. Of course, we can use the nost network mode to attach the
container to the Docker host's IP address, or use the none network mode to launch
a container without any IP address assigned to it. However, you might come
across scenarios wherein multiple services have to share the same IP address. In
such situations, you can run multiple services inside a container; however, such a
practice is deemed as anticontainer-pattern.

The better alternative is to run each service inside separate containers, but share
the IP address, as shown in the following topology:

IP
(container)

IF Ad|dress

Servicel Service2 Service3
(container) (container) (cantainer)

In essence, the Docker Engine assigns an IP address for the IP container and then
the IP address is inherited by the Servicel, Service2, and Service3 containers. In
this recipe, we will launch one container and share the IP address with another
container.

pythontesting

Getting ready

Before we begin, ensure that the Docker daemon is running and has access to the
alpine image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Perform the following the steps:

1. Firstly, launch a container in the background, as shown in the following
screenshot:

§ docker container run -itd --name-ipcontainer alpine

110349690882016292554f 31 68097e28280549R9f1e13d13344b64e 18615

Here, the container is named as ipcontainer.

2. Look at the IP address of the ipcontainer, as shown in the following
screenshot:

§ docker container exec ipcontainer ip addr
1: lo: <LOOPBACK,UP,LOWER UP» mtu 65536 qdisc noqueue state UNKNOWN glen 1
Link/loopback @ 8@ brd 2:09:6 H.
inet 127.0.0.1/8
valid 1ft forever preferred 1ft forever

4: ethe@ifs: <BROADCAST,MULTICAST,UP,LOWER UP,M-DOWN> mtu 1588 qdisc nogueue state UP
link/ether 82:42:ac:11:00:02 brd ff:ff:ff fF.FF:1F
inet 172.17.8.2/16 scope global ethe
valid 1ft forever preferred 1ft forever

3. Finally, let's launch a container by attaching its network to the ipcontainer
and display the IP addresses attached to this container:

pythontesting

$ docker container run --rm --net container:ipcontainer alpine ip addr

1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc nogueue state UNKNOWN glen 1
link/loopback @ B0 brd 0:00:00:00:00:00
inet 127.0.0.1

valid 1ft forever preferred 1ft forever
4: etha@ifs: (BROADCAST ,MULTICAST,UP,LOWER _UP,M-DOWN> mtu 1588 qdisc noqueue state UP
link/ether 82:42:ac:11:00:02 brd ff.ff.ff.ff.ff 61
inet 172.17.8.2/16 scope global ethe
valid_1ft forever preferred 1ft forever
As is evident in step 2 and step 3, ethe Of ipcontainer in step 2 and the transient
container in step 3 have the same interface index of 4 and IP address of 172.17.0.2.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In this recipe, we created one container and then created subsequent containers
to use the network of the first container. In this case, the Docker Engine would
create a network namespace for the first container and then assign the same
namespace for the other containers too.

pythontesting

There's more...

When containers share the network namespace, the original container that
created the namespace must be in a running state until the other containers are
running. If the original container is stopped before the other containers, it will
put the other containers in an unusable state, as shown in the following code:

$ docker container run -itd --net container:ipcontainer --name servicel alpine

[65967e20f7b3520136003 213eaadbBc2c9845596ac129beadaf 1eba2f

$ docker stop ipcontainer

ipcontainer

$ docker container exec servicel ip addr

rpc error: code = 2 desc = oci runtime error: exec failed: container linux.po:255: creating new parent
process caused "container_linux.go:1462: running 1stat on namespace path \"/proc/2864/ns/net\" caused \"
Istat /proc/2864/ns/net: no such file or directory\™

$ docker container ps -a
CONTAINER ID [MAGE COMEAND CREATED STATUS
PORTS NAMES
(659e7e2¢f7b alpine " fbin/sh" About a minute ago Up About a minute
servicel
10348694882 alpine " fbin/sh" 3 minutes ago Exited (137) 33 seconds
ago ipcontainer

Containers in a Kubernetes (nttp://kubernetes.io/) pod use this trick to share the IP
address between the containers in a pod. We will revisit this in chapter 8, Docker
Orchestration and Hosting Platform.

http://kubernetes.io/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The help OptiOI’l of docker container run:

| $ docker container run --help

e The documentation on the Docker website:
® https://docs.docker.com/engine/userguide/networking/

® https://docs.docker.com/engine/userguide/networking/default_network/binding/

pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Creating a user-defined bridge
network

In the previous recipes, we used the default bridge that gets activated when we
install Docker. The containers that are connected through the default bridge can
communicate with each other using the IP address, but not the container's name.
In microservice architecture, multiple containers are orchestrated to provide a
meaningful higher-level service, and it is imperative that these containers
communicate with each other effectively. The container IP address is assigned
during the container start time, and hence it does not work well for
multicontainer orchestration. Docker made an attempt to address this issue by
linking containers statically using the --1ink option of the docker container run
command. Unfortunately, the linked containers have a tightly coupled container
life cycle, so a restart of a container might impede the complete solution, and it
will also not be scalable. Later, between versions 1.9 and 1.12, Docker
introduced a series of new capabilities through a user-defined network that
solves many of the aforementioned shortcomings of multicontainer orchestration
and communication.

The user-defined bridge network is functionally very much akin to the default
bridge; however, it provides the following additional features:

e Service discovery through an embedded DNS server, which is an excellent
fit for multicontainer orchestration and communication.

e DNS-based load balancing, another cool feature that complements
multicontainer orchestration and communication. Notably, this feature
allows us to seamlessly and transparently scale containers.

e Optionally, we can configure our own subnet to the bridge.

e Optionally, we can manually assign an IP address to the containers from the
bridge's subnet.

In this recipe, we will create a user-defined network and scrutinize some of its
fundamental constructs. In the following recipe, we will create containers in the
user-defined bridge and demonstrate the capabilities of a user-defined bridge
network.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

pythontesting

Getting ready

Before we begin, ensure that the Docker daemon is running.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

1. Let's begin by creating a new user-defined bridge network using the docker
network create cOmmand, as shown in the following screenshot:

{ docker network create cookbook

488276d6b1£2329c9508274bee2f Bc 011 363e0ef 108f Shab70644c 265694247

Here, the user-defined bridge network is named cookbook.

2. IDSPECt the user-defined brldge network cookbook USng the docker network
inspect command:

pythontesting

'5 docker network inspect cookbook

“"Name": "cookbook",
"Id": "488276d6b1f2329¢95e8274bee2facR1f f1bafsbab7ecddcasaseod2dr”,
"Created": "2017-11-83718:55;21,75943895
"Scope”: "local”,
"Driver”: “"bridge",
"EnableIPve": false,
"IPAM": {

"Driver”: “default”,

"gptions”: {},

"Config": [

{
“Subnet": "172.18.8.8/16"

"Gateway”: "17

“Internal”: false,
"Attachable”: false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
"ConfigOnly": false,
"Containers”: {},
“Options’
“Labels":

Here, the 172.18.0.0/16 Subnet is assigned to the user-defined bridge networ
cookbook and the 172.18.0.1 IP address is assigned to the gateway.

3. Let's now look at the interface details of the Docker host:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

% ip addr
1: 1o: < ACK, ER_UP> mtu 65536 gdisc nogqueue ¢ UNKNDWN group default glen 1
@ brd ee Ba

valid_ 1+t +u| er pIHTHIIHd 1ft forever
inete ::1/128 scope host
valid_1ft forever prPfPrrPd lft fﬂr""

tu 1 t-qdl ¢ pfifo_fast state WP group default glen 1eoa

2/64 scope link
1+t forever p rred_1ft forever
‘NO-CARRIER, BROADCAST ,MULTICAST,UP> miu 1588 qdisc noqueue state DOWN group default
2 :da:28 brd FF:FF:FF. 75 FF
pe global dock
”nlld 1ft forever preferred_lft forever
inete fe@d::42:a7ff:fedd:da28/ed scope link
valid 1t forever preferred_lft forever
): br-488376d6b1T2: <NO-CARRIER,BROADCA TICAST,UP> miu 1588 qdisc nogueue ¢ DOWN group default
link/ether 82:42:c4:1d 81 brd ¥ :FF:F:FF:FF
inet rigREN:FSI" scope global br-468276d6blf2
valid_1ft forever preferred_lft forever

Apparently, a new Linux bridge interface, br-4es276debif2, is created, and is
assigned the address 172.1s8.0.1/16. The bridge name is derived by concaten
the br- string with the first twelve digits of the network ID.

4. Finally, let's look at the iptabies to understand the NATing behavior of the
user-defined bridge:

pythontesting

§ sudo iptables -t mat -L -nm

Chain PREROUTING (policy ACCEPT)

target prot opt "CE destination

DOCKER all @) 8. /8 ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt destination

5
DOCKER all -- @) 1127.8.8.8/8 ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination
MASQUERADE all -- 172.18.8.8/16 8.8.8.8/8
MASQUERADE all -- 172.17.8.8/16 8.8 a8

Chain DOCKER (2 references)

target prot opt source destination
RETURN all

RETURN all

As highlighted in the preceding screenshot, a NAT rostrouting rule has been
added for the 172.18.0.0/16 subnet, like the default bridge.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

When we create a user-defined bridge, Docker creates a Linux bridge interface
and creates the necessary NAT rules in the iptabies.

pythontesting

There's more...

The docker network create command provides over a dozen options to customize
your network according to your business requirements. In the following
example, we are creating a user-defined network on a 1e.1.0.0/16 subnet:

|$ docker network create 10dotlnet --subnet 10.1.0.0/16

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The help OptiOI’l of docker network create:

| $ docker network create --help

e The documentation on the Docker website:
https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Discovering and load balancing

containers

In the previous recipe, we looked at the benefits of a user-defined bridge

network and the steps to create and examine a user-defined bridge network. In

this recipe, we will build a container topology, as depicted in the following

diagram:

Container Mame : containerl
Metwork Alias : netfalios
IF Address @ 172.18.0.2

Container Mome : container2
Metwork Alias netalias
IP Address : 172.18.0.3

Tronsient Confoiner

User-defined network: cookbook | Subnet: 172.18.0.0/16 | Gateway: 172.18.0.1

In this topology, we will launch container1 and container2 like a service and use a
transient container to demonstrate the following capabilities of the user-defined

bridge network:

e Service discovery through an embedded DNS server

e DNS-based load balancing

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before we begin, ensure that the Docker daemon is running.

pythontesting

How to do it...

Perform the following the steps:

1. Let's start off by spinning two containers, container1 and containerz, by
connecting them to the user-defined bridge network cookbook using the docker
container run command, as shown in the following screenshot:

$ docker container run -itd --name containerl --network-alias netalias --net cookbook alpine
ecbaddednecaldstbaraledsc15e823550C716b9c 4816618763 c6bb1c5cebdas

$ docker container run -itd --name container? --network-alias netalias --net cookbook alpine
61373938298a3218d58bcalad102df5cep942calbaac 2al16e7ff 1672419468

Here, the --network-alias option helps us to group multiple containers w
single alias name and load balance using the embedded DNS. The eml
DNS provides round-robin load balancing.

2. Look at the IP address of both container1 and container2 llSiI'lg the docker
container inspect command:

$ docker container inspect --format '{{ .MetworkSettings.Networks.cookbook.IPAddress }}' containerl
172.18.8.2

$ docker container inspect --format '{{ .MetworkSettings.Networks.cookbook.IPAddress }}' container2
172.18.8.3

Here, the .networksettings.Networks.cookbook.IPAddress filter is apphed to th
option because we know that the containers are connected to the user-
bridge network cookbook.

3. Now, let's use transient containers to understand the service discovery
capability of user-defined networks, as demonstrated in the following
screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container run --rm --net cookbook alpine ping -c1 containerl
PING containerl (172.18.8.2): 56 data bytes
64 bytes from 172.18.8.2: seq=@ ttl-64 time-8.897 ms

--- containerl ping statistics ---
1 packets transmitted, 1 packets received, 8% packet loss
round-trip min/avg/max = @.897/8. 5

% docker container run --rm --net cookbook alpine ping -c1 container2
PING container2 (172.13.8.3): 56 data bytes
64 bytes from 172.18.8.3: seq=0 ttl-64 time-8.896 ms

--- container? ping statistics ---
1 packets transmitted, 1 packets received, 8% packet loss

Cool, isn't it! Now the containers can communicate with each other
by using the containers' names. This service discovery capability
simplifies the multicontainer orchestration a great deal.

4. Having delved into the service discovery capability, let's gain more
understanding of the DNS load balancing capability of the user-defined
network by pinging the network alias netalias, as shown in the following
screenshot:

pythontesting

$ docker container run --rm --net cookbook alpine ping -c1 netalias
PING netalias (172.13.8.3): 56 data bytes
64 bytes from 172.18.8.3: seq=0 ttl-64 time=8.217 ms

--- netalias ping statistics ---
1 packets transmitted, 1 packets received, o% packet loss
round-trip min/avg/max = @. ;

$ docker container run --rm --net cookbook alpine ping -c1 netalias
PING netalias (172.18.8.2): 56 data bytes
64 bytes from 172.18.8.2: seq=0 ttl-64 time=8.292 ms

--- netalias ping statistics ---
1 packets transmitted, 1 pac eceived, a¥ packet loss
round-trip min/avg/max = 8.292/8.292/8.292 ms

As we can discern from the preceding screenshot, the first ping on netalias got a
response from the IP address 172.18.0.3, which is container2, and the second ping
on netalias got a response from 172.18.0.2, which is container1. In essence, the
embedded DNS load balancer resolved the netalias using a round-robin
algorithm.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

When a container is connected to a user-defined network, the Docker Engine
adds the container's name and its network alias (if present) to the user-defined
network's DNS record. Then Docker shares these details to the other containers
connected to the same user-defined network through the embedded DNS hosted
at 127.0.0.11.

pythontesting

There's more...

e Like any DNS server, we can query our embedded DNS server for the DNS
records using dig Or nsiookup. Here, we are using a third-party image called
sequenceig/alpine-dig to query the DNS record because this image is shipped
with the dig command, rather than the official aipine image that does not
have the dig command:

§ docker container run --rm --net cookbook sequenceig/alpine-dig dig netalias

3 40 D16 9.18.2 <¢»> nefalias

15 Elobal options: +Cmd

15 Got answer:

1+ -»)HEADER¢<- opcode: QUERY, status: NOERROR, id: 47362

1+ flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: @, ADDITIONAL: @

v QUESTION SECTION:
snetalias.

}» ANSWER SECTION:
netalias,] A 172.18.8.3
netalias. R0 i 172.18.0.2

15 Query time: @ msec
1+ SERVER: 127.0.8.11#53(127.8.8.11)
y» WHEN: Sun Nov @5 @8:3@:36 UTC 2817

13 MSG SIZE rovd: 74

Evidently, the DNS entry netalias has two IP addresses, 172.1s8.0.3 and
172.18.0.2, as its A record.

e Applications, such as nginx, usually cache the IP addresses, and so DNS-
based load-balancing solutions usually don't work well with such

qg 6089740 21734177 IT http://t.cn/RDIAj5D

applications.

pythontesting

See also

e The he1p OptiOI’l of the docker network create command:

| $ docker network create -help

e The n option of the dig command:

|$ dig -h
e The documentation on the Docker website:

https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Persisting data using volumes

As we are aware, the container's read—write layer is temporary, and is destroyed
when the container is removed. However, there are use cases wherein you will
have to preserve the application data beyond the life cycle of the container. For
instance, a Docker registry container holds all the images that are pushed to it. If
this container is deleted, then we will lose all the images that it was holding.
Perhaps, we can resort to the container's commit flow to preserve the data, but it
will bloat the image and complicate the container deployment process. The
recommended alternative is to persist the application data outside of the
container's filesystem, using volumes or a bind mount. We will discuss bind
mounts in the next recipe.

Docker volumes are a special directory in the Docker host, and are created and
managed by Docker itself. We can mount these volumes to our container and
have the application store its data to the volume. The Docker volumes are either
named or anonymous. Functionally, the anonymous volumes are the same as
named volumes; however, the anonymous volume name is randomly generated.
Docker also supports the vo1iune plugin to address advanced storage needs, which
is outside the scope of this book.

In this recipe, we will demonstrate data persistence using one named volume and
two containers.

pythontesting

Getting ready

Before we begin, ensure that the Docker daemon is running.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Perform the following the steps:

1. Let's begin by creating a named volume llSiI'lg the docker volume create
command, as shown in the following code:

$ docker volume create datavol
datavol

2. List the volume using the docker volume 1s command, as shown in the
following code:

DRIVER VOLUME NAME

$ docker volume create 1ls
local datavol

3. Launch an interactive container using the docker container run command and -
v option to mount the datavol volume to the container, as shown in the
following code:

| $ docker container run -it --rm -v datavol:/data alpine / #

4. Now, let's create a new file at the /data directory of the container and write
some text to it:

| / # echo "This is a named volume demo" > /data/demo.txt / #

5. Exit from the preceding container and remove the container using the
docker container rm command.

6. Now, launch a new container by mounting the datavo1 volume again and
print the content of the demo.txt, as shown in the following code. Here, we
are intentionally choosing an ubuntu image just to stress that the Docker
volume functions the same way irrespective of the Docker image from
which the container is created:

| $ docker container run --rm \ -v datavol:/data ubuntu cat /data/demo.txt
This is a named volume demo. Evidently, the text we wrote from the f
container is persisted in the datavo1 volume, and later it is retrieved by

pythontesting

container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The default docker volume create command creates a directory for the volume under
the /var/1ib/docker/volumes/ directory of the Docker host. For instance, in this
recipe, a datavol directory is created under /var/1ib/docker/volumes/. Furthermore,
Docker internally creates one more directory called _data for each volume under
the directory it created for that volume. We can confirm the directory path by
running the docker volume inspect command, as shown in the following screenshot:

§ docker volume inspect datavol

[

“Driver®; "local”,
"Labels"; {},

Wountpoint™: °fvar/lib/docker /volumes/datavol/ data”,

"Nane"; “datavol",
"options™: {},
"Scope”: "local®

When we mount the volume to a container, Docker internally bind mounts the
_data directory of the volume to the container.
We will learn more about bind mounting in the next recipe.

In the current recipe, the /var/1ib/docker/volumes/datavol/_data directory gets bind
mounted while launching the container, and any file operations on the volume
are preserved in this directory, as is evident in the following tree output:

pythontesting

} sudo tree -a /var/11b/docker/volumes/datavol

— demo. txt

directory, 1 file

Since the file operation is externalized from the container, the life cycle of the
volume is separated from the container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

Docker allows us to share the volume with more than one container, and so the
volumes can also be used as an effective vehicle to share data between
containers.

pythontesting

See also

e The he1p OptiOI’l of the docker volume create command:

| $ docker volume create -help

e The ne1p option of the docker volume 1s command:

| $ docker volume 1ls -help

e The he1p OptiOI’l of the docker volume inspect command:

| $ docker volume inspect -help

e The documentation on the Docker website:
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_ls/

https://docs.docker.com/engine/reference/commandline/volume_inspect/

https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_inspect/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Sharing data between the host and
the container

In the previous recipe, we used a named volume to persist application data. We
also learned that named volumes can be used to share data between containers.
In this recipe, we will use bind mounting to mount a Docker host directory to a
container and then share data between the Docker host and container using that
mount point.

pythontesting

Getting ready

Before we begin, ensure that the Docker daemon is running.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Perform the following steps:

1. Let's begin by creating a new directory called data_share in our home
directory, as shown in the following code:

| $ mkdir $HOME/data_share

2. Create a new file in the sHome/data_share directory of the Docker host and
write some text in it:

| $ echo "data sharing demo" > $HOME/data_share/demo. txt

3. Now, launch a container by mounting the s+ome/data_share directory and then
print the content of the demo. txt:
$ docker container run --rm \
-v $(HOME)/data_share:/data \

ubuntu cat /data/demo.txt
data sharing demo

In this recipe, we effectively shared a file from the Docker host to the container.
Though this is a very simple example, it is a very powerful mechanism to share
your application configuration, as well as other details.

pythontesting

How it works...

When a container is launched with the -v <host path>:<container path> option, the
Docker Engine bind mounts the host path into the container filesystem on the
specified container path. The bind mount is a Linux capability that is used to
take an existing directory structure and map it to a different location.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container run --rm \
 -v $(HOME)/data_share/demo.txt:/demo.txt \

 ubuntu cat /demo.txt
data sharing demo

By default, when we mount a directory or a file into a container, it gets mounted
in read—write mode, so that the container can alter the content of the mounted
directory or file. We can prevent the containers from modifying the content of
the mounted directory or file using the ro flag, as demonstrated in the following
code:

$ touch file
$ docker container run -rm \
-v ${PwWwD}/file:/file:rw \
ubuntu sh -c¢ "echo rw mode >> /file"
$ cat file
rw mode
$ docker container run -rm \
-v ${PwWwD}/file:/file:rw \
ubuntu sh -c¢ "echo ro >> /file"
sh: 1: cannot create /file: Read-only file system

Apparently, the write operation failed when we mounted the file as read-only.

pythontesting

See also

e The he1p OptiOI’l of the docker container run command:

| $ docker container run -help

e The documentation on the Docker website:

https://docs.docker.com/engine/admin/volumes/volumes/

https://docs.docker.com/engine/admin/volumes/volumes/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Use Cases

In this chapter, we will cover the following recipes:

Testing with Docker

Performing CI/CD with Shippable and Heroku

Performing CI/CD with TravisCI

Setting up PaaS with OpenShift Origin

Building and deploying an app on OpenShift from the source code

pythontesting

Introduction

Now we know how to work with containers and images. In the last chapter, we
also saw how to link containers and share data between the host and other
containers. We also saw how containers from one host can communicate with
containers from other hosts.

Now, let's look at different use cases of Docker. Let's list a few of them here:

¢ Quick prototyping of ideas: This is one of my favorite use cases. Once we
have an idea, it is very easy to prototype it with Docker. All we have to do
is set up containers to provide all the backend services we need and connect
them together. For example, to set up a LAMP application, get the web and
DB server and link them, as we saw in the previous chapter.

e Collaboration and distribution: Git is one of the best examples of
collaborating and distributing code. Similarly, Docker provides features
such as Dockerfile, registries, and import/export to share and collaborate
with others. We have covered all this in earlier chapters.

¢ Continuous Integration (CI): The following definition on the Martin
Fowler website (http://www.martinfowler.com/articles/continuousIntegration.html)
covers it all:

Continuous Integration is a software development practice where members of a team integrate their work
frequently, usually each person integrates at least daily - leading to multiple integrations per day. Each
integration is verified by an automated build (including test) to detect integration errors as quickly as
possible. Many teams find that this approach leads to significantly reduced integration problems and allows
a team to develop cohesive software more rapidly. Using recipes from other chapters, we can build an
environment for CI using Docker. You can create your own CI environment or get services from companies
such as Shippable and TravisCI. We'll see how Shippable and TravisCI can be used for CI work later in this
chapter. I thought it would be helpful if I talk about both of them here:

e Continuous Delivery (CD): The next step after CI is Continuous Delivery,
through which we can deploy our code rapidly and reliably to our customer,
the cloud, and other environments without any manual work. In this
chapter, we'll see how we can automatically deploy an app on Heroku
through Shippable CI.

¢ Platform-as-a-Service (PaaS): Docker can be used to build your own
PaaS. It can be deployed using tools/platforms such as OpenShift, CoreOS,
Atomic, and so on. Later in this chapter, we'll see how to set up Paa$S using

http://www.martinfowler.com/articles/continuousIntegration.html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

OpenShift Ol‘lglIl (https 2/ /www . okd . io).

pythontesting

https://www.okd.io

Testing with Docker

While doing development or QA, it will be helpful if we can check our code
against different environments. For example, we may need to check our Python
code between different versions of Python, or on different Linux distributions
such as Fedora, Ubuntu, CentOS, and so on. For this recipe, we will use Flask,
which is a microframework for PythOH (https://www. palletsprojects.com/p/flask/).
We will use the sample code from Flask's GitHub repository. I chose this to keep
things simple, and it is easier to use for other recipes as well.

For this recipe, we will create images with one container with Python 2.7 and
another with Python 3.7. We'll then use sample Python test code to run against
each container.

https://www.palletsprojects.com/p/flask/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ cd /tmp
 $ git clone
https://github.com/pallets/flask

 $ cat /tmp/Dockerfile_2.7
 FROM
python:2.7
 RUN pip install flask pytest

 ADD flask/ /flask
 WORKDIR
/flask/examples/tutorial
 RUN pip install -e .

 CMD ["/usr/local/bin/pytest"]

 $ docker image build -t python2.7test -f /tmp/Dockerfile_2.7 .

 $ cat /tmp/Dockerfile_3.7
 FROM
python:3.7
 RUN pip install flask pytest

 ADD flask/ /flask
 WORKDIR
/flask/examples/tutorial
 RUN pip install -e .

 CMD ["/usr/local/bin/pytest"]

 $ docker image build -t python3.7test -f /tmp/Dockerfile_3.7 .

 $ docker image ls

$ docker image 1s
REPOSITORY ¢ IMAGE ID CREATED SIZE

python3.7test latest c6badd9cf7co 4 minutes ago 936MB
python2.7test latest f14bb76061f3 7 minutes ago 917MB

pythontesting

How to do it...

Now, using the two images we created, let's run them, to see the results.

To test with Python 2.7, run the following command:

$ docker container run python2.7test

§ docker container run python2.7test
test session starts
platform linux2 -- Python 2.7.15, pytest-3.7.1, py-1.5.4, pluggy-0.7.1
rootdir: /flask/examples/tutorial, inifile: setup.cfg
collected 24 1items

tests/test_auth.py [33%]

tests/test_blog.py [83%]
tests/test_db.py .. [91%]
tests/test_factory.py .. [100%]

Similarly, to test with Python 3.7, run the following command:

| $ docker container run python3.7test

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container run python3.7test
test session starts
platform linux -- Python 3.7.0, pytest-3.7.1, py-1.5.4, pluggy-0.7.1
rootdir: /flask/examples/tutorial, inifile: setup.cfg
collected 24 items

tests/test_auth.py [33%]
tests/test_blog.py [83%]
tests/test_db.py .. [91%]
tests/test_factory.py .. [100%]

pythontesting

How it works...

As you can see from the two Dockerfiles, before running the CMD, which runs
the pytest binary, we add the Flask source code to the image, change our
working directory to the tutorial example directory, /flask/examples/tutorial, and
install the app. So, as soon as the container starts, it will run the pytest binary on
our tests.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

e In this recipe, we have seen how to test our code with different versions of
Python. Similarly, you can pick up different base images from Fedora,
CentOS, and Ubuntu, and test them on different Linux distributions.

¢ If you use Jenkins in your environment, then you can use its Docker plugin
to dynamically provision a slave, run a build, and tear it down on the
Docker host.

0 More details about this can be found At nttps://plugins.jenkins.io/docker-plugin.

pythontesting

https://plugins.jenkins.io/docker-plugin

Performing CI/CD with Shippable
and Heroku

In the preceding recipe, we saw an example of how Docker can be used for
testing in a local Dev and QA environment. Let's look at an end-to-end example
to see how Docker is now used in CI/CD environments. In this recipe, we'll see
how we can use Shippable (https://www.shippable.com) to perform CI/CD and
deploy it on Heroku (https://www. heroku.com).

Shippable is a SaaS platform that lets you easily add Continuous
Integration/Deployment to your GitHub and Bitbucket (Git) repositories, and is
completely built on Docker. Shippable uses build minions, which are Docker-
based containers, to run workloads. Shippable supports many languages, such as
Ruby, Python, Node.js, Java, Scala, PHP, Go, and Clojure. The default build
minions are of Ubuntu 14.04 LTS and Ubuntu 16.04. They have also added
support to use custom images from Docker Hub as minions. Shippable CI needs
information about the project and build instructions in a YAML file called
shippable.ym1l, which you have to provide in your source code repo. The yaml file
contains the following instructions:

® 1language: This will show the programming language

e python: With this, you can specify different versions of the language to get
test in a single build instruction

e puild: This is the build pipeline

e ci: These are the instructions for running the build

® on_success: These are instructions after the build succeeds, used to perform
deployment on PaaS such as Heroku, Amazon Elastic Beanstalk, AWS
OpsWorks, Google App Engine, and others

Heroku is a Platform-as-a-Service (PaaS) that enables developers to run and
operate applications entirely in the cloud.

For this recipe, we will use the same example code we used in the previous
recipe, to first test it on Shippable and then deploy it on Heroku.

https://www.shippable.com
https://www.heroku.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Follow the following prerequisites:

1. Create an account on Shlppable (https://www. shippable.com).

2. Fork the flask example from https://github.com/kencochrane/heroku-flask-example
and clone it to your local machine.

3. Create an app on Heroku for the forked repository with the following steps:

Create an account (https://signup.heroku.com) on Heroku, install the
Heroku application, and log in: $ heroku login

$ heroku login
heroku: Enter your login credentials
Email [kencochrane@gmail.com]: kencochrane@gmail.com

Password:; *®®%¥k*
Logged in as

s 1

Change your directory to where you cloned your fork from Step 2,
and create an app on Heroku: $ heroku create --ssh-git

§ heroku create --ssh-git
Creating app... done, @ blooming-mountain-58044

https://blooming-mountain-58044.herokuapp.com/ |
i1

Push your code to Heroku to deploy your application:

$ git push heroku master

pythontesting

https://www.shippable.com
https://github.com/kencochrane/heroku-flask-example
https://signup.heroku.com

$ git push heroku master

Counting objects: 21, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (17/17), done.

Writing objects: 100% (21/21), 6.82 KiB | 3.41 MiB/s, done.

Total 21 (delta 5), reused 4 (delta 0)
remote: Compressing source files... done.
remote: Building source:

remote:

> Python app detected
After a minute, your application will be deployed:

> Launching...
Released v3
https://blooming-mountain-58044.herokuapp.com/ deployed to Heroku

remote: Verifying deploy... done.
To heroku.com:blooming-mountain-58044.git
* [new branch] master -> master

Make sure your application has at least one dynamo, and open the
app in your browser, to make sure it is working: $ heroku ps:scale
web=1

$ heroku open

$ heroku ps:scale web=1
Scaling dynos... done, now running web at 1:Free

$ heroku open

$ (]

Your browser should open and load the page for your application. If
the result worked, it should look something like the following:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

(| @ Secure | https://blooming-mountain-58044.herokuapp.com

Hello Heroku!

The time is currently: Thursday, 16 Aug 2018 4:31 PM.

4. Update the shippable.ymi file in your fork to use your Heroku application's
Git URL:

language: python
python:
- 3.7
build:
ci:
- shippable_retry pip install -r requirements.txt
Create folders for test and code coverage
- mkdir -p shippable/testresults
- mkdir -p shippable/codecoverage
run tests
- pytest
on_success:
my heroku app git urls:
http url: https://git.heroku.com/blooming-mountain-58044.git
git url: git@heroku.com:blooming-mountain-58044.git
use git url not http.
change this value to the value of your app.
git push git@heroku.com:blooming-mountain-58044.git

LI - %

5. Commit the changes to your code, and push it to your forked repository.

pythontesting

How to do it...

Perform the following steps:

1. Log in to Shippable, and select the Enable a Project link:

shippable ¢

" Vs v Views | Home o+

Home

LETS GET BUILDING!
SUBSCRIPTIONS

() sitie)

Welcome aboard, captaint Heres hoy getthis ship undenway in notime;

Enable Private Repostaries

On GitHub you myst gy us to access your private repositores before we can buildthem,
SEARCH
Enable a Projct
Q " You can enable your first project by navigating to a subscription using the subscription drop-down on the side panel
tory
Run 2 uild
Once you configure a shippable.yml for your project,you'll be able to run your buld,
ACCOUNT
Explare Sample Project
B Pl Wantto get hands on quickly? Use this sample projectto experment with oursyste,
Assembly fnes and Beyond
Itegatons Learm how to use assemly ines to deploy images to your contaner services,
Account d: 54067720399939140041689 | Load Time: 0.008 seconds
Ken Cochrang :
Lol 20180 Shippable. V674

2. Then, select the correct subscription on the left, and it will show you a list
of your repos below. Select the heroku-flask-example repo:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

& shippable

" " 5 Subscriptions) GitHub & kencochrane | Enable .
Home

SUBSCRIPTIONS PROFILE

() situb x

Synchronize SCMs

kencochrane
This happens automatically every dhs. But if you add something to SCM and wantto se it immediately use
- this.
N -
Enable Private Repositories
SEARCH
Q Histoy
ENABLE CI PROJECT OR ADD ASSEMBLY LINE by
ACCOUNT
Search: heroky

& Pofle

Repo Name « Enable C! Add Assembly Ling

django-cms-heroku o ,
herokbuildpack python ‘\) ,

heroku-flask-example o +
e Ken Cochrane
Loggedin Kencochrane_blog_heroku (') +

) ntegratons

3. Click on the Play button and select Branch to build. For this recipe, I chose
master:

pythontesting

@ shippable

d
" Views Y Subscriptions () GitHub & kencochrane | heroku-fask-example W B ® ﬁ: P ¢
Home
PARALLEL JOBS: 0 OF 1
SUBSCRIPTIONS
YML +
() Gitub v
LATEST STATUS N
kencochrane
Search; /
| B |
Job Version Status Context Started At Duration Triggered By Message Action
SEARCH) CEQ Vmese Bould [l Paise
Q Histoy
HISTORY =
ACCOUNT
Search;
Profe
@ Itegiations Job Version Status Context Started At Duration Triggered By Message
No history found
Project Id: 5075907f8305800700ab8d65 | Load Time: (.182 seconds
Ken Cochrane :
Loelin 2018 @ Shippable. V.74

If the build is successful, you will see the success icon.

Next time, if you do a commit in your repository, a build on Shippable
will be triggered and the code will be tested. Now, to perform Continuous
Deployment on Heroku, let's follow the instructions provided on the
Shlppable website (http://docs.shippable.com/ci/deploy-to-heroku/). Shlppable
will need to have permission to make changes to our Heroku application;
we grant it permission by adding its deployment SSH key to our Heroku
account.

4. Get the deployment key from your Shippable dashboard by clicking the

http://docs.shippable.com/ci/deploy-to-heroku/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

little gears icon, and selecting Settings:

B WM @ & 4+ O

Mode Pools
. Integrations

Settings

B Billing

5. Toward the bottom of the page, there is a Deployment Key section. Copy
the key:

DEPLOYMENT KEY

This key is initialized in the session in which your job is executing. It can be used to initialize connections to external entities using SSH protocol.

SSH public key

ssh-rsa

ARAAB3NzaClyc2EARAADAQABAARBAQCWx00AIKZX19bZSknb02 /y TDTBOSGEFBD3Sx8MdgD]1 7J%cr /WQP 7pRX2qLbgnW1IpNIhS 5847511001 £13R10mE
72gWRMx6+cWInBykvrilg3Mp4 /ZQJEb+32SGhGUOVdLaY8xAQC1VhI/j2s/2IHDzqtrNgn53BSdFebtkqgblqWO+AryRjNdb/pFZvFBc4205UcvbEO20Yz

6. Now that you have the key, go to your Account settings in Heroku:

pythontesting

kencochrane@gmail.com

[l

Account settings
!. Motifications
—

Sign out

7. Scroll down until you see the SSH Keys section, and hit the Add button.

S5HKeys Registered SSH Keys ‘ Add ‘
Need help? Checkout out our guide to

putaating 351 ks ken@ken-cochranes-nachook-pro. local ssh-rsa AAAAB3NZaClyc2EARAABIWARAQEASagnIx X

8. A window will pop up where you will be able to add the SSH key that you
copied from Shippable. Paste the key, and hit Save changes:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

New 55H Key

55H Key

‘ Issh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCWxO0AIKZX19bZSkmbO2 /y7D ‘

We have now made it so that, when a build is successful, Shippable is able to
push changes to Heroku.

pythontesting

How it works...

At every build instruction, Shippable spins up a new container depending on the
image and language type specified in the shippable.ymi file, and runs the build to
perform testing. Shippable knows when to start a build, because it adds a
webhook to your GitHub repository when you register your application with
them:

Options Webhooks Add webhook

Collaborators
Webhooks allow external services to be notified when certain events happen. When the specified events happen,

Branches we'll send a POST request to each of the URLS you provide. Learn mare in our Webhooks Guide.

e v/ hitps;fap.shippable.com/projects/5b7" 5jnewBuld (pul, request, push, and..
Integrations & services Edt Delete
Deploy keys

Moderation

Interaction limits

So, every time a change is committed to GitHub, a build on Shippable gets
triggered, and after the build is successful, it is deployed to Heroku.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

¢ Detailed documentation is available on the Shippable website at nttp://docs.

shippable.com.

pythontesting

http://docs.shippable.com

Performing CI/CD with TravisCI

As mentioned on the TravisCI website (https://travis-ci.org), TravisCI is a hosted
Continuous Integration service. It enables you to conveniently set up projects to
automatically build, test, and deploy them as you make changes to your code. As
of now, they support over 30 languages such as C/C++, Dart, Go, Haskell,
Groovy, Java, Node.js, PHP, Python, Ruby, and Scala. Using TravisCI, you can
deploy your application on platforms such as Heroku, Google App Engine,
AWS, and Azure.

For this recipe, let's use the same example that we used in earlier recipes.

https://travis-ci.org

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ cat .travis.yml
language: python

python:
 - "3.6"

install:
 - pip install -r
requirements.txt
script:
 -
pytest

pythontesting

How to do it...

Follow the following steps:

1. Trigger a manual build by clicking on More options and then Trigger build,

as shown in the following screenshot:

0 kencochrane [heroku-flask-example

Current Branches Build History Pull Requests

v master Added TravisCl config

o Commit decasis
| Compare cc2afc8. dcca519
? Branch master

(©) Ken Cochrane authored and committed

o #1 passed

(11 Ranfor 22 se¢

7| 4 minutes ago

More options

Settings
Requests

Caches

2. If all went well, you should be able to see the results of your build, with the

logs:

qq 6089740

21734177

£ kencochrane / heroku-flask-example) coe==m

Current Branches BuildHistory Pull Requests
+/ master Added TravisCl config o #1 passed
Commit dcca519 ' Ran for 22 sec
Compare cc2afc8. dcca519 | 2 minutes ago
Branch master

©® Ken Cochrane authored and committed

Joblog View config

Worker information
Build system information

Network availability confirmed.

$ git clone --depth=50 --branch=master https://github.com/kencochrane/heroku-flask-example.qit
$ source ~/virtualenv/python3.6/bin/activate

§ python --version

Python 3.6.3

$ pip --version

pip 9.6.1 from /home/travis/virtualenv/python3.6.3/1ib/python3.6/site-packages (python 3.6)

$§ pip install -r reguirements.txt
§ pytest

e ———— A L AT D C AL r————————————

platform linux -- Python 3.6.3, pytest-3.3.0, py-1.5.2, pluggy-0.6.8
rootdir: /home/travis/build/kencochrane/heroku-flask-example, inifile:
collected 1 item

tests/test_home.py . [106%]

The command "pytest" exited with @.

Done. Your build exited with 0.

pythontesting

1T http://t.cn/RDIAJS5D

More options

(> Restart build

worker_into

system_info

git.checkout

install

How it works...

The build process starts a new container, clones the source code repository, and
runs the commands that we specified in the script section of our .travis.ym file,
inside of our test container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

e TravisCI also adds a webhook in GitHub; thus, the next time you commit
the changes in the repository, a build will be triggered.

e TravisCI also supports Continuous Deployment to different cloud
environments, as we have seen in the earlier recipe. To set that up, you
would need to add more information to the .travis.ym1 file. For more details,
check out the deployment documentation (https://docs .travis-ci.com/user/deplo
yment/).

pythontesting

https://docs.travis-ci.com/user/deployment/

See also

The TravisCI documentation at https://docs.travis-ci.com.

https://docs.travis-ci.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting up PaaS with OpenShift
origin

Platform-as-a-Service (PaaS) is a type of cloud service where the consumer
controls software deployments and configuration settings for applications
(mostly web), and the provider provides servers, networks, and other services to
manage those deployments. The provider can be external (public provider) or
internal (IT department in an organization). There are many PaaS providers, such
as Amazon (https://aws.amazon.com), Heroku (https://www.heroku.com), OpenShlft (http
s://www.openshift.com), and so on. In the recent past, containers seem to have
become the natural choice for applications to get deployed to.

Earlier in this chapter, we looked at how we can build a CI/CD solution using
Shippable and Heroku, where we deployed our app using the Heroku PaaS.
Heroku is a public cloud service, hosted on Amazon Web Service (AWS).
OpenShift (https://github.com/openshift/origin) is a PaaS that leverages
technologies such as Docker and Kubernetes (nttps://kubernetes.io) among others,
providing a complete ecosystem to service your cloud-enabled apps. As we
talked about Kubernetes in Chapter 8, Docker Orchestration and Hosting
Platform, it is highly recommended you read that first before continuing into this
recipe. I am going to borrow some of the concepts from that chapter. Lets look at
the following diagram:

pythontesting

https://aws.amazon.com
https://www.heroku.com
https://www.openshift.com
https://github.com/openshift/origin
https://kubernetes.io

Openshitt CLI Tool

OpensShift Master

Kubernetes Mastar

[1
Reqistry Pod Web Pod

Openshift Node

OpenShift All-In-One

Kubernetes provides container cluster management with features such as
scheduling pods and service discovery, but it does not have the concept of a
complete application, nor does it build and deploy Docker images from the
source code. OpenShift extends the base Kubernetes model and fills those gaps.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

If we fast-forward and look at Chapter 8, Docker Orchestration and Hosting
Platform, for the Kubernetes section, you will notice that to deploy an app, we
need to define Pods, Services, and Replication-Controllers. OpenShift tries to
abstract all that information and let you define one configuration file that takes
care of all the internal wiring. Further, OpenShift provides other features such as
automated deployment through source code push, centralized administration and
management of applications, authentication, team and project isolation, and
resource tracking and limiting, all of which are required for enterprise
deployment.

In this recipe, we will set up all-in-one OpenShift Origin on a VM and start a
pod. In the next recipe, we will see how to build and deploy an app through
source code using the Source-to-image (S2I) build feature. The example can be
found at https://github.com/openshift/origin/tree/master/examples/sample-app .

pythontesting

https://github.com/openshift/origin/tree/master/examples/sample-app

 $ curl https://get.docker.com | bash

$ cat /etc/docker/daemon.json
 {
 "insecure-registries": [

"172.30.0.0/16"
]
 }

 $ systemctl start docker
 $ yum install -y wget

 $ cd /tmp
 $ wget
https://github.com/openshift/origin/releases/download/v3.10.0/openshift-origin-
client-tools-v3.10.0-dd10d17-linux-64bit.tar.gz

 $ tar -xvzf openshift-origin-client-tools-v3.10.0-
dd10d17-linux-64bit.tar.gz
 $ cd openshift-origin-client-
tools-v3.10.0-dd10d17-linux-64bit
 $ sudo cp oc
/usr/local/bin
 $ cd ~

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Now that we have a VM set up with Docker running and the OpenShift binaries
installed, we can start up our cluster using the oc binary. OpenShift has a web
console that you can log into, but in order for it to work correctly, OpenShift will
need to be able to determine your IP address. If your VM has more than one, you
might need to explicitly tell OpenShift which one to use when starting the
cluster. In the example here, my public IP address is 142.93.14.79; your IP will be
different: $ oc cluster up --public-hostname=<your ip>

$ oc cluster up --public-hostname=142.93.14.79

Getting a Docker client ...

Checking if image openshift/origin-control-plane:v3.10 is available ...
Checking type of volume mount ...

Determining server IP ...

Using public hostname IP 142.93.14.79 as the host IP

Checking if OpenShift is already running ...

Checking for supported Docker version (=>1.22) ...

Checking if insecured registry is configured properly in Docker ...
Checking if required ports are available ...

Checking if OpenShift client is configured properly ...

Checking if image openshift/origin-control-plane:v3.10 is available ...
Starting OpenShift using openshift/origin-control-plane:v3.10 ...

10816 00:28:00.262155 30376 config.go:42] Running "create-master-config"

After a few minutes, the cluster is up and running, and you will see something
like this:

pythontesting

Login to server ..,

(reating initial project "myproject” ...
Server Information ...

OpenShift server started,

The server 1s accessible via web console at:
https://142.93.14.79; 8443

You are logged in as;
User: developer
Password: <any value>

To login as administrator:
oc login -u system:adnin

§ oc cluster status
Web console URL:|https://142,93.14.79;8443/console/

(onfig is at host directory

Volumes are at host directory

Persistent volumes are at host directory /root/openshift/openshift.local.clusterup/openshift.local.pv
Data will be discarded when cluster is destroyed

At this point, we have two options; we can either install our application via the
SSH shell, or we can use the web console. Let's try with the web console first,
and make sure that is working correctly. Open the web console URL in your
browser, and log in using the credentials shown in the output when starting your
cluster.

You will probably get a warning from your browser that the SSL/TLS certificate doesn't match.
That is fine, and expected; you can bypass this warning and continue.

Now that you are logged in, let's deploy an example application. Click on the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Ruby icon in the catalog:
000 () OnenShit Web Console

€ (' | ANotSecure | hites:/142.93:14.79:843(consolecatelog * 0

Oy &deeoper

My Projects # Create Project
Browse Catamg Deployimage ImportYAML/JSON Selet o Projc

10f1 Projects

Languages Databases Middleware CIICD Other

Fiter v | 20 ttems Incal developer poject

Geting Started
o/ e ¢ A

NET Core Apache HTTP Server CakePHP + MySQL Dancer + MySQL Django + PostgresQL

(httpd)

Jenkins (Ephemeral) MariaDB MongoDB Nginx HTTP server and a
reverse proxy (nginy)

nde e 'M

Nodejs Node,js + MongaDB Pipeline Build Example

P ¢ &

PostgresQL Python Ralls + PostgreSQL WildFly

pythontesting

This brings up a wizard, that will help us add our application to the cluster. Click
the Next button:

Ruby X

Information Configuration Results

Ruby

BUILDER RUBY

Build and run Ruby 2.5 applications on CentQS 7. For more information about using this builder image, including OpenShift considerations, see
https.//github.com/sclorg/s2i-ruby-container/blob/master/2 5/README.md.

Sample Repositary: https://github.com/sclorg/ruby-ex.git

Cancel < Back m

Click the Try Sample Repository link, and it will auto-populate the form for us;
then, click the Create button:

qg 6089740 21734177

Ruby

Information

* Add to Project

My Project

Version

2.5 — latest

* Application Name

ruby-ex

* Git Repository

https.//github.com/sclorg/ruby-ex.git

Try Sample Repository 1

If you have a private Git repository ar need to change application defaults, view advanced options.

pythontesting

Configuration

Results

IT

http://t.cn/RDIAJ5D

e

Just like that, our ruby-ex application was created. Click the Close button:

Ruby X

Information Configuration Results

&

@ ruby-ex has been created in My Project successfully.

Cancel < Back m

You should now see the application listed in the web console; once the
application is up and running, you will watch a URL where you can see the
application in action:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

€ - (' ANotSecure httns:/142.93.14.79:8443 console/project/myproject/overview % 0
K O Ldeeloper v
My Project ’ Search Catlog AddtoProet v

Ovenview Name v fitert Listby Applcation v

Applicaions APPLICATION
bey-EX hittp:/fruby-ex-myproject.142.93.14.79.nip.o
Buids DERLOYMENT CONFIG A
ruby-ex, #1 i
Resources
CONTAINERS

Storage by

@ Image: myprojectiuby-ex 86dfdd5 1839 MB W

2 Build: rubyee, #1 pod
Monitoring ¢ Source: Merge pul request #18 from durandom/master bobg701

 Ports: 80B0/TCP

Catalog
NETWORKING
Service - Internal Traffi Rautas - External Traffic
ruby-ex http://ruby-ex-myproject.142.93.14.79.nipio @
BBOITCP (B0B0-1cp) - 8080 Route ruby-ex, target port B080-cp
BUILDS
FUD%EX v Buld #11s complete created 2 minutes ago View FullLog

Pushed 5/10 layers, 55% complete
Pushed 6/18 layers, &7% complete
Pushed 7/18 layers, 72% complete
Pushed 8/10 layers, 83% complete
Pushed 9/18 layers, 98% complete
Pushed 18/18 layers, 100% complete
Push successful

Open the application URL in your browser, and you should see something like
the following:

pythontesting

@ (Not Secure | ruby-ex-myproject.142.93.14.79.nip.io

Welcome to your Ruby application on OpenShift

Deploying code changes
The source code for this application is available to be forked from the OpenShift GitHub

repository. You can configure a webhook in your repository to make OpenShift
automatically start a build whenever you push your code:

1. From the Web Console homepage, navigate to your project

2. Click on Browse > Bullds

3. From the view for your Bulld click on the button to copy your GitHub webhook

4, Navigate o your repository on GitHub and click on repository settings >
webhooks

5. Paste your webhook URL provided by OpenShift — that's it!

After you save your webhook, I you refresh your settings page you can see the status of
the ping that Github sent to OpenShift to verify it can reach the server.

Note: adding a webhook requires your OpenShift server to be reachable from GitHub.

Working in your local Git repository

If you forked the applicatin from the OpenShift GitHub example, you'll need to manually
clone the repositery to your local system. Copy the application's source code Git URL
and then run:

$ git clone <git_url» <directory_to_creates

Within your project directory
Commit your changes and push to OpenShift

$ git commit -a -m 'Some commit message'

$ git push

Adter pushing changes, you'll need to manually trigger & build if you did not setup &
webhook as described above.

Built on

£ OPENSHIFT

by Red Hat

Managing your application

Documentation on how to manage your application from the Web Console or Command
Line is available at the Developer Guide.

Web Cansole

You can use the Web Console to view the state of your application components and
launch new builds.

Command Line

With the OpenShift command line interface (CLI), you can create applications and
manage projects from a terminal.

Development Resources

+ OpenShift Documentation

+ Openshift Origin GitHub

+ Source To Image GitHub

+ Getting Started with Ruby on OpenShift
+ Stack Overflow questions for OpenShift
+ Git documentation

Now that we have the example Ruby application up and running, let's delete it,
and do the same thing, but using the SSH shell. Under applications, you can
click the Actions option and select Delete. This will delete the application for us:

qq 6089740

¢

21734177

C A Not Secure | httes:/142.93.14.79:8443/console/project/myproject/browse/de/ruby-ex?tab=history

My Project

Deployments > ruby-ex

Overview
ruby-ex.

Applications am

History ~ Configuration ~ Environment ~ Events

« Deployment #1 is active. View Log

treated 3 minutes ago
Resources

Add
Storage
Deployment Status Created

#1 (1atest) & Active, 1 replica Iminutes ago

Monitoring

Catalog

1T http://t.cn/RDIAJS5D

w0

A O Ldewlopery

Trigger

Config change

Aud to Project v

Deploy ‘ Actions v
Edt

Pase Rollouts

Add Storage

Add Autoscaler

Edit Rescurce Limits
Edit Health Checks
Edit YAML

Delete

Go back to the SSH shell, and let's create a new application, but this time using
the oc binary. For this example, we will be using one of the other built-in
examples that comes with OpenShift. We will use the django-psq1-persistent
example, which has two services, a Django web service and a PostgreSQL
database service: $ oc new-app django-psql-persistent

pythontesting

§ oc new-app djongo-psql-persistent
wgrning; Cannot find git, Ensure that 1t 15 installed and 1n your path, Git 15 required to work with git repositories,
--> Deploying template "openshift/diango-psql-persistent” to project myproject

Django + PostgreS(QL

An example Django application with a PostgreSQL database. For more infornation about using this template, including OpenShift consi

derations, see https://github. con/openshift/django-ex/blob/master/READNE .nd.
The following service(s) have been created in your project: djongo-psql-persistent, postgresql,

For nore infornation about using this template, tncluding OpenShift considerations, see https://qithub. con/openshift/django-ex/blob
/master/README nd,

After a few minutes, your application is created, and you should see something
like the following:

--> (reating resources ...
secret "django-psql-persistent” created
service "django-psql-persistent” created
route "django-psql-persistent” created
imagestrean "django-psql-persistent” created
buildconfig "django-psql-persistent” created
deploymentconfig "django-psql-persistent” created

persistentvolumeclaim "postgresql" created
service "postgresql” created
deploymentconfig "postgresql” created
--> SUCcess
Access your application via route 'django-psql-persistent-myproject.142,93.14.79.nip.10'
Build scheduled, use 'oc logs -f bc/django-psql-persistent' to track its progress.
Run 'oc status' to view your app.

When we run the oc status command, we can see the URL for our project:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

|$ oc status

$ oc status
In project My Project (myproject) on server https://142.93.14.79:8443

http://django-psql-persistent-myproject.142.93.14.79.nip.io |(svc/django-psql-persistent)
dc/django-psql-persistent deploys istag/django-psql-persistent:latest <-
bc/django-psql-persistent source builds https://github.com/openshift/django-ex.git on openshift/python:3.6
deployment #1 deployed 27 seconds ago - 1 pod

svc/postgresql - 172.30.233.156:5432
dc/postgresql deploys openshift/postgresql:9.6
deployment #1 deployed about a minute ago - 1 pod

When we open that URL in our browser, you can see the application is up and
running:

pythontesting

& (Mot Secure | django-psql-persistent-myproject.14283.14.79.nip.io

Welcome to your Django application on OpenShift

How to use this example application

For instructions on how to use this application with OpenShift, start by reading the
Developer Guide.

Deploying code changes
The source code for this application is avallable to be forked from the OpenShift GitHub

repository. You can configure a webhook n your repository to make OpenShift
automatically start a build whenever you push your code:

1. From the Web Gonsole homepage, navigate to your project

2. Click on Browse > Builds

3. Click the link with your BuildCenfig name

4, Click the Gonfiguration tab

5. Click the "Copy to clipboard" icon to the right of the 'GitHub webhook URL" field

6. Navigate to your repository on GitHub and click on repository settings >
webhooks > Add webhook

7. Paste your webhook URL provided by OpenShift

8. Leave the defaults for the remaining fields — that's it

After you save your webhook, if you refresh your settings page you can see the status of
the ping that Github sent to OpenShift to verify it can reach the server.

Note: adding a webhook requires your OpenShift server to be reachable from GitHub.,

Working in your local Git repository

If you forked the application from the OpenShift GitHub example, you'll need to manually
clone the repository to your local system. Copy the application's source code Git URL
and then run.

§ git clone <git_url> <directory_to_creates

Within your project directory
Commit your changes and push to OpenShift

§ git commit =a -m 'Some commit message’
§ git push

Managing your application

Dacumentation on how to manage your application from the Web Conscle or Command
Line is available at the Developer Guide.

Web Console

You can use the Web Console to view the state of your application components and
launch new builds.

Command Line

With the OpenShift command line interface (CLI), you can create applications and
manage projects from a tamingl.

Development Resources

+ OpenShift Documentation

+ Openshift Origin GitHub

+ Source To Image GitHub

+ Getting Started with Python on OpenShift
+ Stack Overflow questions for OpenShiit

+ Git documentation

Request information

Server hostname: django-psql-persistent=I-xp2vn
Database server: PostgreSOL (172.38.233.156:5432/default)

Page views: 1

qg 6089740 21734177 IT http://t.cn/RDIAj5D

When you go back to the web console, you can see the details of the application
you just deployed:

pythontesting

Applcations

Resources

Storage

Monitoring

(atalog

DEPLOYMENT CONFIG

django-psql-persistent, #1

CONTAINERS

django-psglpersistent
) Image: myprajectidango-psql-persistent b15BB6 2225 148
< Build:django-psqlpersistent, #1
Source: Merge pull request #128 from adambkaplan/sclorg-rename bb79508
Y Ports: BOBOITCP

NETWORKING

Senvice - Internal Traffic
django-psqhpersistent
BOBOITCP) - 380

BUILDS

django-psqhpersistent

DEPLOYMENT CONFIG

postgresql, #1

CONTAINERS

postgresg|
Image: openshitfpostaresg|
r Ports: S3UTCP

NETWORKING

Senvice - Internal Traffic

postgresal
S432MTCP (postgresg)~ 432

[oP

nod

Routes - External Traffic
hitp://django-psal-persistent-myproject 142.93.14.79.nip.o

Route django-psgl-persistent

o Build #11s complete - created 4 minutes ago

nod

Routes - External Traffc
@ Create Route

& devsloper v

AddtoProect v

qg 6089740 21734177 IT http://t.cn/RDIAj5D

If we want to delete the application using the oc binary, it is pretty easy. We just
need to use the deiete command: $ oc delete dc/django/psql-persistent
$ oc delete dc/postgresql

$ oc delete dc/django-psql-persistent
deploymentconfig.apps.openshift.io "django-psql-persistent” deleted

$ oc delete dc/postgresql
deploymentconfig.apps.openshift.io "postgresql" deleted

s 1l

pythontesting

How it works...

When OpenShift starts, all Kubernetes services start as well. Then, we connect
to the OpenShift master through CLI and request it to start a pod. That request is
then forwarded to Kubernetes, which starts the pod. OpenShift acts as the
middleman between you and Kubernetes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

e If you run the docker container 1s command, you will see the corresponding
containers running

¢ If you want to stop the OpenShift cluster, you can run the following
command:

| $ oc cluster down

pythontesting

See also

e The Learn More section on https://github.com/openshift/origin.
° OpenShlft documentation at https://docs.okd.io/latest/welcome/index.html.

https://github.com/openshift/origin
https://docs.okd.io/latest/welcome/index.html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building and deploying an app on
OpenShift from the source code

OpenShift provides the build process to build an image from source code. The
following are build strategies that you can follow to build images:

¢ Docker build: In this, users will supply to Docker context (Dockerfile and
support files), which can be used to build images. OpenShift just triggers
the docker build command to create the image.

e Source-to-image (S2I) build: In this, the developer defines the source code
repository and the builder image, which defines the environment used to
create the app. S2I then uses the given source code and builder image to
create a new image for the app. More details about S2I can be found at nttps
://github.com/openshift/source-to-image.

e Custom build: This is similar to the Docker build strategy, but users might
customize the builder image that will be used for build execution.

In this recipe, we are going to look at the S2I build process. We are going to look
at sample—app from the Op@l’lShlft Ol‘lgll'l repo (https://github.com/openshift/origin/t

ree/master/examples/sample-app). The COFFESpODdng S2I build file is located at https:/
/github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild

.json.

In the BuildConfig section, we can see that the source is pointing to a GitHub
repo (https://github.Com/openshift/ruby-hello-world) and the image under the strategy
section is pointing to the centos/ruby-22-centos7 image. So, we will use the
centos/ruby-22-centos7 image and build a new image using the source from the
GitHub repo. The new image, after the build is pushed to the local or third-party
Docker registry, depends on the settings. The BuildConfig section also defines
triggers on when to trigger a new build, for instance, when the build image
changes.

In the same S2I build file (application-template-stibuild.json), you will find
multiple peploymentconfig sections, one for each pod. The pepioymentconfig section
has information such as exported port, replicas, environment variables for pod,

pythontesting

https://github.com/openshift/source-to-image
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/ruby-hello-world

and other info. In simple terms, you can think of pep1loymentconfig as an extended
replication controller for Kubernetes. It also has triggers to trigger new
deployments. Each time a new deployment is created, the 1atestversion field of
DeploymentConfig 1S incremented. A deploymentcause iS also added to the
peploymentconfig, describing the change that led to the latest deployment.

ImageStream is a stream of related images. suildconfig and peploymentconfig watch
mmagestrean t0 look for image changes and react accordingly, based on the
respective triggers.

Other sections that you will find in the S2I build file are services for pods
(database and frontend), routes for the frontend service through which the app
can be accessed, and templates. A template describes a set of resources intended
to be used together that can be customized and processed to produce a
configuration. Each template can define a list of parameters that can be modified
for consumption by containers.

Similar to the S2I build, there are examples of Docker and custom builds in the
same sample-app example folder. I am assuming you have the earlier recipe, so
we will continue from there.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

You should have completed the earlier Setting up PaaS with OpenShift Origin
recipe.

Make sure your cluster is up and running: $ oc cluster status

Clone the OpenShift Git repo into the /opt/openshift/origin directory: $ mkdir -p
/opt/openshift

$ cd /opt/openshift

$ git clone https://github.com/openshift/origin.git

$ cd origin/examples/sample-app

Your current working diFECtOFy should be /opt/openshift/origin/examples/sample-app
inside the VM.

pythontesting

How to do it...

Submit the application template for processing using the oc command: $ oc new-
app application-template-stibuild.json

qg 6089740 21734177 IT http://t.cn/RDIAj5D

§ oc new-app application-template-stibuild, json
--> Deploying template "myproject/ruby-helloworld-sample" for “application-template-stibuild.json" to project myproject

ruby-helLoworLd-sample

This exanple shows how to create a Simple ruby application in openshift origin v3

* With paraneters;
* WYSQL_USER=user(T4 # generated
* NYSQL_PASSHORD=p3PgW0D # generated
* NYSQL_DATABASE=root

--> (reqting resources ...
secret "dbsecret” created
service "frontend" created
route "route-edge" created
imagestrean "origin-ruby-sample" created
Inagestrean "ruby-22-centos?" created
buildconfig "ruby-sample-build" created
deploynentconfig "frontend" created
service "database” created
deploynentconfig "databose” created

-+ Sccess
Access your application via route "ww,exanple. con'
Build scheduled, use "o logs -f be/ruby-sample-build' to track its progress.,
Run "oc status' to view your app.

Monitor the build and wait for the status to go to compiete (this can take a few
minutes): $ oc get builds

pythontesting

$ oc get builds
NAME TYPE FROM

ruby-sample-build-1 Source Git@7ccd324

d |

Get a list of pods:

$ oc get pods
$ oc get pods
NAME
database-1-bxw89
frontend-1-4tm8z
frontend-1-6vbth
ruby-sample-build-1-build

Get a list of services:

$ oc get services
$ oc get services
NAME TYPE CLUSTER-IP

database ClusterIP 172.30.239.31
frontend ClusterIP 172.30.1.2

STATUS STARTED
Complete 3 minutes ago

STATUS
Running
Running
Running
Completed

EXTERNAL-IP
<none>
<none>

RESTARTS
0

0
0
0

PORT(S)
5434/TCP
5432/TCP

DURATION
58s

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In the BuildConfig (ruby-sampie-build) section, we specified our source as the
I‘Uby—hEHO—WOﬂd Git repo (git://github.com/openshift/ruby-hello-world.git) and our
image as centos/ruby-22-centos7. S0, the build process takes that image, and with
S21I builder, a new image called origin-ruby-sample is created after building our
SOUrce on centos/ruby-22-centos7. 1he new image is then pushed to the Docker
registry that is built into OpenShift.

With the DeploymentConfig, the frontend, and backend pods are also deployed
and linked to the corresponding services.

pythontesting

There's more...

¢ In a multiple node setup, your pods can be scheduled on different systems.
OpenShift connects pods through the overlay network, so a pod running on
one node can access another. It is called openshift-sdn. For more details,
please visit https://docs.openshift.com/container-platform/3.10/architecture/network
ing/sdn.html.

https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e The Learn More section at https://github.com/openshift/origin.
° OpenShlft documentation at https://docs.openshift.com.

pythontesting

https://github.com/openshift/origin
https://docs.openshift.com

Docker APIs and SDKs

In this chapter, we will cover the following recipes:

Working with images using APIs

Building images using APIs

Launching containers using APIs

Performing container operations using APIs

Exploring Docker remote API client libraries
Configuring the Docker daemon for remote connectivity
Securing the Docker daemon's remote connectivity

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction

In previous chapters, we have been fiddling a lot with Docker commands to
work with Docker images, containers, volumes, and networks. One of the
hallmarks of Docker is the amazing user experience it provides through its easy-
to-remember and well-structured commands. With a single Docker command,
we can spin a very useful microservice or utility container. However, behind the
scenes, the Docker client translates our request into multiple API calls in order to
fulfill it. These APIs are called Docker Engine APIs, and they are designed using
the REST paradigm.

Note: REST (aka RESTful) stands for REpresentational State Transfer, which is a web
standard for data communication over the HI'TP protocol.

The Docker Engine API is documented using the OpenAPI (formerly known as
Swagger) specification. As a result, we can access API help through any
standard OpenAPI editor. In this book, we are using an editor called Swagger
Editor, and it is available at http://editor.swagger.io; however, you can use any
OpenAPI editor of your choice. Swagger Editor has options such as Try it out
and Execute, which can be used to generate cur1 commands with appropriate
options. The following screenshot shows Swagger Editor with the Docker engine
API document:

pythontesting

http://editor.swagger.io

Container Create and manage containers. >

Image >

Metworks are user-defined networks that containers

hat containers can Network can be attached to. See the networking >
documentation for more infarmation.

‘engine/use

Create and manage persistent storage that can be
attached to containers

Volume

that can be :
[volumes Listvolumes

[volumes/create Create avolume

[volumes/{name} Inspectavolume

120313 /volumes/{name} Remove avolume
you first need to
. Instruct the driver to remave the volume.
API endpoints are
Parameters Try it out
Name Description
name * reavirsd Volume name or ID
string
(path)
force Force the removal of the volume
boolean
{query)

Here, we generated the Docker Engine API document from the swagger.yami file
available at https://docs.docker.com/engine/api/v1.35/swagger.yaml. Of course, you can

also refer to the current, work-in-progress version of the API from nttps://raw.git
hubusercontent.com/moby/moby/master/api/swagger.yaml.

By default, the Docker engine listens on /var/run/docker.sock, @ Unix domain

https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml

qg 6089740 21734177 IT http://t.cn/RDIAj5D

socket, to communicate with its client. The Unix domain socket, also known as
the inter-process communication socket, enables reliable communication within
a host. Besides this, /var/run/docker.sock has read-write access for the user root and
group docker; hence, the client application must either have root privilege or be a
member of the docker group. In addition to the Unix socket, the Docker daemon
supports two more socket types:

e rd: Systemd's socket activation. On Systemd-based systems such as Ubuntu
16.04, the Docker daemon listens on the rd socket, which internally gets
mapped to the Unix socket /var/run/docker.sock using the systemd's socket
activation feature.

e tcp: For remote connectivity. In recipe, Configuring the Docker daemon for
remote connectivity, we will configure the Docker daemon to accept
unencrypted communication from the client, and in recipe, Securing the
Docker daemon's remote connectivity, we will configure the Docker
daemon to use secure communication.

Docker also provides Software Development Kits (SDKs) for the Python and
Go monogramming language. These SDKs internally use Docker engine REST
APIs. In addition to these standard SDKs, there are many community-supported
API bindings for other programming languages. Some of these API bindings are
listed at nhttps://docs.docker.com/develop/sdk/#unofficial-libraries. However, these
libraries are not tested by Docker.

Throughout this chapter, we will use two tools, cur1 and jq:

e curl is a command-line tool for transferring data. We use cur1 to connect to
our Docker daemon. Please ensure that you are running curiz.4e or above,
because curl started supporting Unix sockets from version 7.4e. You can
find more details about cur1 at the official website at https://curl.haxx.se/.

® jqis a command line tool for processing JSON data. We use jq to
manipulate the data we receive from the Docker daemon. You can find
more details about jq at the official website at https://stedolan.github.io/jq/.

In this chapter we are using Ubuntu 16.04 and Docker 17.10, because of an issue with the
default curl command that comes along with the Ubuntu 18.04 installation. If you choose to
continue with Ubuntu 18.04 and Docker 18.03, you can do so by prefixing any text in the
Docker API endpoint (http://bug/version) as a workaround.

All the recipes in this chapter assume that the Docker is installed and running.

pythontesting

https://docs.docker.com/develop/sdk/#unofficial-libraries
https://curl.haxx.se/
https://stedolan.github.io/jq/

Working with images using APIs

As mentioned earlier, Docker internally uses the Docker engine API to fulfill all
our containerization need

s. In this recipe, we will be using the cur1 command and the Docker engine APIs
to perform various operations on the Docker images.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

In this recipe, we'll look at a few image operations, as follows:

1. To list images, use the following API:
/images/json Listimages

Here is an example of the preceding syntax:

§ curl -s --unix-socket /var/run/docker.sock http:/images/json | jq "."
|
{
s -1,
: 1509747018,

1,

: 3965917
: 3965917

2. You can create an image by pulling it from any registry or tar file using the
following API:

/images/create Create animage

The /images/create API supports a few options, as listed next, to work

pythontesting

with images:

Hame

fromimage

gtring

(query)

L

fromSrc
string

(query)

repo
string

(queary)

tag
gtring

)

(quet

[
1'l

Deszcription

Mame of the image to pull. The name may include a tag or
digest. This parameter may only be used when pulling an
image. The pull is cancelled if the HTTF connection is
closed.

Source to import. The value may be a URL from which the
image can be retrieved or - to read the image from the

request body. This parameter may only be used when
importing an image.

Repository name given to an image when it is imported. The
repo may include a tag. This parameter may only be used
when importing an image.

Tag or digest. If empty when pulling an image, this causes all
tags for the given image to be pulled.

Now let's look into a few examples:

3. Get the cookbook/apache2 image from Docker Hub:

$ curl -X POST \
--unix-socket /var/run/docker.sock \
http:/images/create?fromImage=cookbook/apache2

4. Get the WordPress

$ curl -X POST

image with the 1atest tag:

--unix-socket /var/run/docker.sock \

> http:/images/create?fromImage=wordpress\&tag=latest

5. Create an image from the tar file:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

curl -1 -X POST \
-H "Content-Type: application/octet-stream” \
--data-binary "@myimage.tar" \
> --unix-socket /var/run/docker.sock \
> http:/images/create?fromSrc=-\&repo=myimage
HTTP/1.1 100 Continue

HTTP/1.1 200 OK

Api-Version: 1.33

Content-Type: application/json
Docker-Experimental: false

Ostype: linux

Server: Docker/17.10.0-ce (linux)
Date: Mon, 06 Nov 2017 05:02:48 GMT
Transfer-Encoding: chunked

{"status":"sha256:7fcOdc205e957c46cc51fbbb8481722b1db775b9¢1662¢0210931477e2697b59" }

In this example, we chose to upload the image as a tar bundle from the Docker
host using the --data-binary option of the cur1 command. Here, the content of
myimage.tar iS sent to the Docker daemon through the HTTP message body. If you
pay closer attention to the cur1 command invocation, you will notice the -i
option. We are using the -i option of the cur1 command to get HTTP header
information.

To delete an image, use the following API:

m /image=/{name} Remove animage

Here is an example of the preceding syntax: $ curl -X DELETE \ --unix-socket
/var/run/docker.sock \ http:/images/wordpress:latest

pythontesting

How it works...

In this recipe, we performed various operations on the Docker image using the
curl command. The cur1 command sends our API request to the Docker daemon
as a REST API request over HTTP. The Docker daemon, in turn, will perform
the requested action on the image and reply back with the status of the action.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

In this recipe, we just covered three APIs related to Docker image handling, but
there are more. The following screenshot lists all the available /images APISs:

pythontesting

Image v

GE

Jimages/json List Images

POST

II

Jimages/create Create an image

(]
m
==

Jimages/{name}/json Inspect an image

Gl
]

Jimages/{name} /history Get the history of an image

POST

Jimages/{name} /push Push animage

POST

Jimages/{name}/tag Taganimage

DELETE

Jimages/{name} Remove animage

G
m
)

Jimages/search Search images

POST

Jimages/prune Delete unused images

GET

Jimages/{name}/get Export an image

GET

Jimages/get Export several images

POST

Jimages/load Import images

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e Each API endpoint can have different inputs to control operations. For more
details, visit the documentation on the Docker website at https://docs.docker .c

om/engine/api/latest/.

pythontesting

https://docs.docker.com/engine/api/latest/

Building images using APIs

In the previous recipe, we explored a few actions on Docker images using APIs.
In this recipe, we will build a Docker image using the /buiid API. Here is the
sbuild API snippet from Swagger Editor:

Jbuild Build an image

Build an image from a tar archive with a Dockerfile in it

The Dockerfile specifies how the image 15 built from the tar archive. It
15 typically in the archive’s root, but can be at a different path or have a
different name by specifying the dockerfile parameter. See the
Dockerfile reference for more information.

The Docker daemon performs a preliminary validation of the Dockerfile
before starting the build, and returns an error if the syntax is incorrect.
After that, each instruction is run one-by-one until the ID of the new image
15 output.

The build is canceled if the client drops the connection by quitting or
being killed.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ git clone https://github.com/docker-cookbook/apache2
$ cd apache2

$ tar cvf /tmp/apache2.tar *
$ curl -X POST \

 -H "Content-Type:application/tar" \ --data-binary
'@/tmp/apache2.tar' \ --unix-socket /var/run/docker.sock \
 http:/build

{"stream":"Successfully built 3c6f5044386d\n" }

In the preceding JSON message, 3c6f5044386d is the ID of the image we just
built using the /build API.

pythontesting

How it works...

In this recipe, we bundled the build context as a tar file and sent it to the Docker
engine as part of the /buiid API call. The Docker engine uses the build context
and the pockerfile in the build context to build the Docker image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

1. In this recipe, we did not specify any repository or tag name, and hence the
image is created without any repository or tag name, as shown here:

$ curl -s --unix-socket /var/run/docker.sock \
http:/images/json | jq ".[0].RepoTags"
[

""<none>:<none>"

1

Of course, you can now tag the image with the appropriate repository and
tag name using the /images/{name}/tag API. Here is the help document
snipped from the Swagger editor:

pythontesting

IR /images/{name}/tag Taganimage

Tag an image so that it becomes part of a repository.

Parameters Try it out
Hame Description

name * "=virsd |mage name or ID to tag.

string

(path)

repo The repository to tag in. For example,
string someuser/someimage.

{query)

tag The name of the new tag.

atring

{query)

Alternatively, you can bundle the image with the repository name during
the build time using the ¢ parameter, as demonstrated here: $ curl -X
POST \ -H "Content-Type:application/tar" \ --data-binary
'@/tmp/apache2.tar’ \ --unix-socket /var/run/docker.sock \
http:/build?t=apache2:usingapi

The tag name is optional and if no tag name is specified, the Docker
build engine will assume the tag name 1atest.

2. You can also create an image from a container using the following API:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Jocommit Create a newimage from a container

Here is an example of committing an image from a container ID
4aaec8980c43.

$ curl -X POST --unix-socket /var/run/docker.sock \

> http:/commit?container=4aaec8980c43
{"Id":"sha256:792f4e9f7a%b5667175530af02c4d2342ee631209476acfd50eeIeac0239794"}

pythontesting

See also

Each API endpoint can have different inputs to control the operations. For more

details, visit the documentation on the Docker website at nttps://docs.docker.com/en
gine/api/latest/.

https://docs.docker.com/engine/api/latest/

qq 6089740

21734177

IT

Launching containers using APIs

In chapter 2, Working with Docker Containers, recipe Starting a container, we
methodically and meticulously explored different ways of running containers. In
all those scenarios, we used the docker container run command with a few options,
and all our containers were up and running. However, behind the scenes, the

Docker CLI makes it possible by first creating the container layer through the

screate API and then launches the application (cmd) through the /start API, as

visualized here:

http://t.cn/RDIAJS5D

read-write
layer

Docker Image

Docker Container
State: Created

read-write
layer
di di
: create p : start
1
alpine alpine

alpine

Docker Container
State: Running

In addition to the /create and /start API, the Docker CLI uses APIs such as
sattach and swait to fulfill our request. In this recipe, we will create an aipine
container and run a simple 1s command to demonstrate the steps involved in
launching a container through the Docker engine APIs.

pythontesting

How to do it...

1. Begin by creating a container from an a1pine image, as shown here:

$ curl -i -X POST -H "Content-Type: application/json™
: , "Cmd": ["1s"], "AttachStderr”: true, "Attachstdout™: true}' 1\
un/docker.sock 1\

application/json
rimental: false

Content-Length: 9@

1"1d": "fofd4b2e2eqedadea32debs27889bf 2fb95b351d8316a4c 7abfbee2e38c9ba99" , "Harnings ™ :null}

Here, we used the -4 option of the cur1 command to pass our container
configuration as a JSON data to the Docker engine. Evidently, the
image is alpine, and the command we chose to run when the container
starts is 1s. In addition, we are also requesting the Docker engine to
attach stoerr and stoout to this container, in order to retrieve the output
of the 1s command.

The HTTP header response code 201 created indicates that our
container is created successfully. Apparently, the response from the
Docker engine is also a JSON payload. The ID field of the payload
contains the container ID, which is
fofd4b2e2040d4dea32deb527889bF2fb95h351d8316a4c74bfh6e2e38cobage. We shall
use the short version of the container ID, fofdabzeze40, to perform
further operations on this container.

2. Since we want to capture the output of the 1s command on the screen, let's
attach to the container using the sattach API:

$ curl -X POST --unix-socket /var/run/docker.sock %

» http:/containers/f9fdab2e2e48/

The /attach API would block the client (namely, cur1) if it is called

qg 6089740 21734177 IT http://t.cn/RDIAj5D

with the stderr, stdout, and stream parameter, so we are running the cur1
command in the background.

3. Now, proceed to start the container using the /start API, as demonstrated
here:

& curl -X POST
» http:/containers/f9
Fbin

proc
root
run

sbin

5y

Cool, isn't it? We emulated the docker container run command with the Docker
engine APIs.

pythontesting

How it works...

In this recipe, we used three Docker engine APIs to successfully launch a
container. In the backend, the Docker engine received the API calls from the
client, and on behalf of the client it created the container for the /container/create
API call, then blocked the HTTP stream for the /containers/attach API call, and
finally ran the 1s command inside the container's namespace for the
/containers/start API call.

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

There's more...

The following is the list of APIs that deal with the life cycle of a container:

POST Jfcontainers/{id}/stop Stop a container
SooT e ET e
container

POST Jecontainers/{id}/kill Kill a container

POST Jcontainers/{id} /pause Pause a container

POST Jfcontainers/{id} /unpause APt o

container

DELETE Jocontainers/{id} Remove a container

pythontesting

See also

Each API endpoint can have different inputs to control operations. For more

details, visit the documentation on the Docker website at nttps://docs.docker.com/en
gine/api/latest/.

https://docs.docker.com/engine/api/latest/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Performing container operations
using APIs

In the previous recipe, we launched a container and executed a command inside
the container using the /create, /attach, and /start API. In this recipe, we perform
a few more operations on the container.

pythontesting

How to do it...

In this recipe, we'll look at a few container operations:

1. To list containers, use the following API:

Jocontainers/j=son Listcontainers

Here are a few examples:

e Here is how to get all the running containers:

$ curl --unix-socket /var/run/docker.sock \
http:/containers/json

e Here is how to get all the running containers, including the stopped ones:

$ curl --unix-socket /var/run/docker.sock \
http:/containers/json?all=1

2. To inspect a container, use the following API:

fcontainers/{id}/j=on Inspecta container

Here is an example of inspecting a container s91absac265e:

$ curl --unix-socket /var/run/docker.sock \
http:/containers/591ab8ac2650/json

3. To get the list of processes running inside a container, use the following
API:

List processes running inside a

Jocontainers/{id}/top TREERLS

Here is an example of listing the process running inside the
591absac2650 CONtainer:

qg 6089740 21734177 IT

$ curl --unix-socket /var/run/docker.sock \
http:/containers/591ab8ac2650/top

4. To get the resource usage statistics of a container, use the following API:

Get container stats based an

tai id tat
Jcontainers/{id}/stats e

Here is an example of getting the resource usage statistics for the so1absac2es0
container:

$ curl --unix-socket /var/run/docker.sock \
http:/containers/591ab8ac2650/stats

By default, this API streams the resource usage statistics. However, you can
disable streaming by using the stream parameter, as shown here:

$ curl --unix-socket /var/run/docker.sock \
http:/containers/591ab8ac2650/stats?stream=0

pythontesting

http://t.cn/RDIAJS5D

How it works...

When we connect with the Docker engine using the APIs described in this
recipe, the Docker engine would in turn gather the relevant information from its
data source and send it back to the client.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Each API endpoint can have different inputs to control operations. For more

details, visit the documentation on the Docker website at nttps://docs.docker.com/en
gine/api/latest/.

pythontesting

https://docs.docker.com/engine/api/latest/

Exploring Docker remote API client
libraries

In the previous recipes, we explored APIs provided by Docker to connect and
perform operations on the Docker daemon. Docker also provides the Software
Development Kit for the python and go languages.

In this recipe, let's explore the python SDK with a few examples.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

e Ensure pythons is installed.
® ubuntu 16.04 might not have pips, so install pips using the following
command:

| $ sudo apt-get -y install python3-pip

pythontesting

How to do it...

1. Let's begin by installing the docker package for python using pips:

| $ sudo pip3 install docker

2. Now, let's launch pythons and import the docker and json packages, as
demonstrated in the following:

% python3

fault, Sep 14 2817, 22:51:86)

689] on linux
"help”, "copyright®, "credits” or "license" for more information.
import docker
import json

3. Having imported the docker and json packages, let's connect to the Docker
daemon thFOUgh the Unix socket, unix://var/run/docker .sock, using
docker.DockerClient, dS shown here:

»»» client = docker.DockerClient(base url="unix://var/run/docker.sock")

Here, vase_ur1 is the Docker daemon's connection address.

4. Continue on to print the Docker daemon version using the following code:

»»» print(json.dumps{client.version(), indent=2))
{

"@oversion":

Here, the c1ient.version() fetched the version details from the Docker
server in json format, and then we used json.dump() to print the fetched
json data in a pretty format.

5. Let's write a little more code to list all the running containers using

qg 6089740 21734177 IT http://t.cn/RDIAj5D

client.containers.list(), dS shown here:

»»> for item in client.containers.list():
print{item.short_id, item.name, item.image)

d4a youthful coff <Image: "cookbook/apache2:latest®»
saf optimistic i

As you can see, we have two running containers: 4ssbsadd4a and
62c814650f.

6. Finally, let's launch a container using ciient.containers.run(), as shown here:

» client.containers.run("alpine’, "echo hello world")

b'hello worldyn®

pythontesting

How it works...

In all the preceding cases, the Docker module will translate our requests to the
appropriate Docker engine API, wrap it as a RESTful message, and send it to the
Docker daemon.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

You will find a clearly articulated Python SDK document at nttps://docker-py. readt
hedocs.io/en/stable/.

pythontesting

https://docker-py.readthedocs.io/en/stable/

Configuring the Docker daemon for
remote connectivity

In the previous recipes, we were using the Unix socket (/var/run/docker.sock) t0
talk to the Docker engine. As mentioned earlier, by default dockerd listens to the
Unix socket /var/run/docker.sock. However, access to the Unix socket is confined
to a local system. But there will be use cases where you will have to access the
Docker daemon remotely. You can achieve this by configuring the Docker
daemon to listen for remote connections using the tcp socket. In this recipe, we
will configure our Docker daemon for remote API connectivity.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

1. Let's begin by locating the Systemd unit file for the Docker service using
the systemct1 command, as shown here:

$ sudo systemctl docker status | grep Loaded
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)

EVidEI’lﬂy, /1ib/systemd/system/docker.service 1S the unit file for the
Docker service. Here is the content of the default Docker service unit
file:

pythontesting

$ cat /lib/systemd/system/docker.service

[Unit]

Description=Docker Application Container Engine
Documentation=https://docs.docker. com
After=network-online.target docker.socket firewalld.service
Wants=network-online.target

Requires=docker.socket

[service]

Type-notify

the default is not to use systemd for cgroups because the delegate issues still
exists and systemd currently does not support the cgroup feature set required
for containers run by docker

ExecStart=/usr/bin/dockerd -H fd://

ExecReload=/bin/kill -s HUP $MAINPID

LimitNOFILE=1848576

Having non-zero Limit*s causes performance problems due to accounting overhead
in the kernel. We recommend using cgroups to do container-local accounting.
LimitNPROC=infinity

LimitCORE=infinity

Uncomment TasksMax if your systemd version supports it.

Only systemd 226 and above support this version.

TasksMax=infinity

TimeoutstartSec=8

set delegate yes so that systemd does not reset the cgroups of docker containers
Delegate=yes

kill only the docker process, not all processes in the cgroup

KillMode=process

restart the docker process if it exits prematurely

Restart=on-failure

startLimitBurst=3

StartLimitInterval-68s

[Install]
WantedBy-multi-user.target

As you can see, execstart in the unit file is configured to launch the
dockerd (Docker daemon) with d:// as the listening socket.

2. Continue on to configure dockerd to accept connections from remote systems

qg 6089740 21734177 IT http://t.cn/RDIAj5D

by appending -+ tcp://6.0.0.0:2375 to the execstart line in the unit file, as
shown here:

| ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375

Here, the IP address o.0.0.0 is a wildcard address that binds the
service to all the IPv4 addresses of the Docker host. The port, 2375, is
a convention used for clear text (unencrypted) communication.

3. Having modified the Docker service unit file of the Docker service, we
need to manually reload the changes, as shown here:

|$ sudo systemctl daemon-reload

4. Proceed to restart the Docker service so that the dockerd daemon can listen
for communications from the external world:

| $ sudo systemctl restart docker

5. Now, we can connect to the Docker Engine API from any system that has
network connectivity to the Docker host. To demonstrate this remote
connectivity, first let's use our favorite cur1 command to get the Docker
server version, as show here:

curl -s http://192.168.

Let's also demonstrate remote connectivity using the Docker client, as shown
here:

pythontesting

Client:
version:
APT
Go version:
Git commit:
Built:
0s/Arch:

Server:
Version:
APT
Go version:
Git commit:
Built:

xperimental:

Evidently, the client is running on a windows machine and the server is running

on Linux.

version:

version:

17/.03.0-ce
1.26
gol.7.5
60ccb?2?2
Thu Mar 2

01:11:00 2017

windows /amd64

17.10.0-ce

version

1.33 (minimum version 1.12)

gol.8.3
f41fd25

Tue Oct 17

Tinux/amd
false

19:02:56 2017

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In the preceding command, we configured the Docker daemon to listen for client
connection on TCP port 2375, on all available network interfaces in the Docker
host. With this configuration change, clients can connect to the Docker daemon
using any network interface on the Docker host.

pythontesting

$ export
DOCKER_HOST=tcp://dockerhost.example.com:2375

Once we configure the environment variable, DOCKER_HOST, the Docker
client will use that address to send our request. Thus, all the future
docker commands in that session by default will go to the remote Docker
Host.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

The documentation on the Docker website can be found at https://docs.docker.con/
engine/reference/commandline/dockerd/#daemon-socket-option.

pythontesting

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option

Securing the Docker daemon's remote
connectivity

Earlier in this chapter, we saw how to configure the Docker daemon to accept
remote connections. However, with the approach we followed, anyone can
connect to our Docker daemon. We can secure our connection with Transport
Layer SECUFity (http://en.wikipedia.org/wiki/Transport_Layer_Security).

We can configure TLS either by using the existing Certificate Authority (CA)
or by creating our own. For simplicity, we will create our own, which is not
recommended for production. For this example, we assume that our host running
the Docker daemon is dockerhost.example.com.

http://en.wikipedia.org/wiki/Transport_Layer_Security

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Make sure you have the openss1 library installed.

pythontesting

$ mkdir -p /etc/docker/keys
$ cd /etc/docker/keys

$ openssl genrsa -aes256 -out ca-key.pem 4096 $
openssl req -new -x509 -days 365 -key ca-key.pem \ -sha256
-out ca.pem

$ openssl genrsa -out server-key.pem 4096

$ openssl req -subj "/CN=dockerhost.example.com" \
 -new -key server-key.pem -out server.csr

$ openssl x509 -req -days 365 -sha256 -in server.csr \
 -CA ca.pem -CAkey ca-key.pem -CAcreateserial \ -
out server-cert.pem -extfile extfile.cnf

$ openssl genrsa -out key.pem 4096

$ openssl req -subj '/CN=client' -new -key key.pem \
 -out client.csr

$ echo extendedKeyUsage = clientAuth > client-extfile.cnf
$ openssl x509 -req -days 365 -sha256 -in client.csr \
 -CA ca.pem -CAkey ca-key.pem -CAcreateserial \ -
out cert.pem -extfile client-extfile.cnf

$ rm -rf client.csr server.csr

$ chmod 0400 ca-key.pem key.pem server-key.pem
 $ chmod 0444 ca.pem server-cert.pem cert.pem
$ dockerd --tlsverify \

 --tlscacert=ca.pem \ --tlscert=server-cert.pem \
 --tlskey=server-key.pem \ -
H=0.0.0.0:2376

$ cd /etc/docker/keys

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker --tlsverify \ --tlscacert=ca.pem \
 --tlscert=cert.pem \ --tlskey=key.pem \

 -H=127.0.0.1:2376 version

The Docker client is able to seamlessly connect with the Docker daemon over
TLS and get the server version.

pythontesting

How it works...

Once we configure the Docker daemon to use TLS as the transport, it only
accepts secure TLS connection for the client, and fulfills the client's request.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ export DOCKER_HOST=tcp://127.0.0.1:2376
$ export DOCKER_TLS_VERIFY=1

ExecStart=/usr/bin/dockerd \
 --tlsverify \
 --
tlscacert=/etc/docker/keys/ca.pem \
 --tlscert=/etc/docker/keys/server-
cert.pem \
 --tlskey=/etc/docker/keys/server-key.pem \
 -
H=0.0.0.0:2376

$ curl --cacert ${HOME}/.docker/ca.pem \
--
cert ${HOME}/.docker/cert.pem \
--key
${HOME}/.docker/key.pem \

https://127.0.0.1:2376/version

pythontesting

See also

e The documentation on the Docker website: https://docs.docker.com/engine/secu
rity/https/

https://docs.docker.com/engine/security/https/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Performance

In this chapter, we will cover the following recipes:

Benchmarking CPU performance

Benchmarking disk performance

Benchmarking network performance

Getting container resource usage using the stats feature
Setting up performance monitoring

pythontesting

Introduction

In chapter 3, Working with Docker Images, we saw how Dockerfiles can be used
to create images consisting of different services/software. Later, in chapter 4,
Network and Data Management for Containers, we saw how one Docker
container can talk to the outside world with respect to data and network. In chapte
r 5, Docker Use Cases, we looked into different use cases of Docker, and in
Chapter 6, Docker APIs and SDKs, we looked at how to use remote APIs to
connect to the remote Docker host.

Ease of use is all to the good, but before going into production, performance is
one of the key aspects that is considered. In this chapter, we'll see performance-
impacting Docker features and what approach we can follow to benchmark
different subsystems. While doing performance evaluation, we need to compare
Docker performance against the following:

e Bare metal
¢ Virtual machine
e Docker running inside a virtual machine

In the chapter, we will just look at an approach you can follow to do
performance evaluation rather than performance numbers collected from runs to
do a comparison. However, I'll point out performance comparisons done by
different companies, which you can refer to.

Let's first look at some of the Docker performance impacting features:

¢ Volumes: While putting down any enterprise class workload, you would

like to tune the underlying storage accordingly. You should not use the
primary/root filesystem used by containers to store data. Docker provides
the facility to attach/mount external storage through volumes. As we saw in
chapter 4, Network and Data Management for Containers, there are two
types of volume as follows:

e Volumes that are mounted through the host machine using the -volume

option
e Volumes that are mounted through another container using the -

qg 6089740 21734177 IT http://t.cn/RDIAj5D

volumes-from option
e Storage drivers: We looked at different storage drivers in Chapter 1,
Introduction and Installation, which are vfs, aufs, btrfs, zfs, devicemapper,
and overlayFS. You can check the currently supported storage drivers and
their selection priority if nothing is chosen as the Docker start time at https:/
/github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go.

If you are running Fedora, CentOS, or RHEL, then the device mapper
will be the default storage driver. You can find some device mapper-
specific tuning at https://github.com/moby/moby/tree/master/daemon/graphdrive

r/devmapper.

You can change the default storage driver with the -s option to the
Docker daemon. You can update the distribution-specific
configuration/systems file to make changes for service restart. For
Fedora/RHEL/CentQOS, you will have the update storage-driver field
In /etc/docker/daemon.json — something like the fOHOWiI'lg so that you
can use the btrfs backend:

"storage-driver": "btrfs"

The following graph shows you how much time it takes to start and
stop 1,000 containers with different configurations of storage driver:

pythontesting

https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper

ofrumming hupd con@iners

Container Create/Destroy Times

1000

00

500

a0

00

200
overlayts direct-om btrfs loopum

N\
EEPIEIPECEESSIFIEPIESESISAIPIERS

Time (sec)

100

—loop-lvm —loop-lvm+volume — direct-lvm — direct-lvm+volume
— btrfs birfs+volume ~ —overlayfs — overlayfs+volume

As you can see, overlayFS performs better than other storage drivers.

® ..net=host: As we know, by default, Docker creates a bridge and associates
IPs from it to the containers. Using --net=host exposes the host networking
stack to the container by skipping the creation of a network namespace for
the container. From the tests, we can see that this option always gives better
performance as compared to the bridged one.

This gives us some constraints, such as we cannot have two
containers or host apps listening on the same port.

e cgroups: Docker's default execution driver, libcontainer, exposes different

qg 6089740 21734177 IT http://t.cn/RDIAj5D

cgroups knobs, which can be used to fine-tune container performance. Some
of them are as follows:

e CPU shares: With this, we can give proportional weight to the
containers so that the resource will be shared. By default, all
containers get the same proportion of CPU cycles. To modify the
proportion from the default of 1024, use the -c or --cpu-shares flag to set
the weighting to 2 or higher. The proportion will only apply when
CPU-intensive processes are running. When tasks in one container are
idle, other containers can use the left-over CPU time. Consider the
following example:

| $ docker container run -it -c 100 alpine ash
e CPUsets: Using CPUSets will allow you to limit the container to
just running on the selected CPU cores. For example, the
following code will only run threads inside a container on the Oth
and 3rd core:
| $ docker container run -it --cpuset=0,3 alpine ash

e Memory limits: We can set memory limits to a container. For
example, the following will limit the memory usage to 512 MB for the
container:

| $ docker container run -it -m 512M alpine ash

e The sysctl and ulimit settings: In a few cases, you might have to change
some of the syscit values depending on the use case to get optimal
performance, such as changing the number of open files. You can change
the ulinit settings with the following command:

| $ docker container run -it --ulimit data=8192 alpine ash

The preceding command would be a container-specific setting. We can
also set some of these settings through the configuration file of the
Docker daemon, which will be applicable to all containers by default. For
example, looking at the configuration file for Docker, you will see
something like the fOHOWng In /etc/docker/daemon. json:

"default-ulimits": {
"nofile": "1048576",
"nproc": "1048576",
Ilcorell: ll_1ll

pythontesting

Feel free to change the values to fit your use case. If you are using
Docker for Mac or Windows, you would change these values from their
preferences menu.

You can learn about Docker performance by studying the work done by others.
The following are some of the Docker performance-related studies that have
been published by a few companies:

e From Red Hat:
e Performance Analysis of Docker on Red Hat Enterprise Linux:
® https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker
-red-hat-enterprise-linux-7
® https://github.com/redhat-performance/docker-performance
e Comprehensive Overview of Storage Scalability in Docker:
® https://developers.redhat.com/blog/2014/09/30/0overview-storage-scalabilit
y-docker/
e Beyond Microbenchmarks — breakthrough container performance with
Tesla efficiency:
® https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-brea
kthrough-container-performance-with-tesla-efficiency/
e Containerizing Databases with Red Hat Enterprise Linux:
® http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-h

at-enterprise-linux/

e From IBM:
e An Updated Performance Comparison of Virtual Machines and Linux
Containers:
® http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD81
9C85257D2300681E7B/$File/rc25482.pdf

® https://github.com/thewmf/kvm-docker-comparison

¢ From VMware:
e Docker Containers Performance in VMware vSphere:
® http://blogs.vmware.com/performance/2014/10/docker-containers-performance

-vmware-vsphere.html

To do the benchmarking, we need to run a similar workload on different
environments (bare-metal/VM/Docker) and then collect results with different
performance stats. To simplify things, we can write common benchmark scripts

https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://github.com/redhat-performance/docker-performance
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
https://github.com/thewmf/kvm-docker-comparison
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

which can be run on different environments. We can also create Dockerfiles to
spin off containers with workload generation scripts. For example, in the
Performance Analysis of Docker on Red Hat Enterprise Linux article, which was
listed earlier (https://github.com/redhat-performance/docker-performance/blob/master/Docke
rfiles/Dockerfile), the author used a Dockerfile to create a CentOS image and
used the container environment variable to select a Docker and non-Docker
environment for the benchmark script run-sysbench. sh.

Similarly, Dockerfiles and related scripts are published by IBM and are available
at https://github.com/thewmf/kvm-docker-comparison.

We will be using some of the Docker files and scripts mentioned earlier in the
recipes in this chapter.

pythontesting

https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/thewmf/kvm-docker-comparison

Benchmarking CPU performance

We can use benchmarks such as Linpack (http://www.netlib.org/1linpack/) and
sysbench (https://github.com/nuodb/sysbench) to benchmark CPU performance. For
this recipe, we'll use sysbench. We'll see how to run a benchmark on bare metal
and inside the container. Similar steps can be performed in other environments,
like we mentioned previously.

http://www.netlib.org/linpack/
https://github.com/nuodb/sysbench

qq 6089740

21734177 IT

Getting ready

http://t.cn/RDIAJS5D

We will use the CentOS 7 container to run the benchmark inside the container.
Ideally, we should have a system with CentOS 7 installed to get benchmark
results on bare metal. For the container test, let's build the image from the Git
repository that we referred to earlier:

$ git clone https://github.com/redhat-performance/docker-performance.git
$ cd docker-performance/Dockerfiles/

$ docker image build -t c7perf --rm .

$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

c7perf latest 59a10df39a82 1 minute ago 678.3 MB

pythontesting

How to do it...

Inside the same Git repository, we have a script to run sysbench, that is, docker-
performance/bench/sysbench/run-sysbench.sh. It has some configurations, which you
can modify according to your needs:

1. As the root user, create the /resuits directory on the host:

| $ mkdir -p /results

Now, run the benchmark after setting the container environment variable
to something other than Docker, which we used while building the c7perf
image on the host machine, with the following commands:

$ export container=no

$ cd docker-performance/bench/sysbench
$ sh ./run-sysbhench.sh cpu test1l

If you are running on an OS other than CentOS, you might need to install
sysbench manually, and run the script a little differently. For example,
here is how you run the script with Ubuntu 18.04:

$ cd docker-performance/bench/sysbench
$ export container=no

$ apt-get install sysbench
$ bash ./run-sysbench.sh cpu testil

By default, the results are collected in /resuits. Make sure you have write
access to it or change the outpir parameter in the benchmark script:

$ cd docker-performance/bench/sysbench/

$ export container=no

$ sh ./run-sysbench.sh cpu testl

Database storage directories do not exist; creating /root/data and /root/log

which: no sysbench in (/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin)
sysbench not installed...installing
2018-08-08_10_35_39 running sysbench cpu test for 10 samples

3

qg 6089740 21734177 IT http://t.cn/RDIAj5D

2. To run the benchmark inside the container, we need to first start the
container and then run the benchmark script:
$ mkdir -p /results_container

$ docker container run -it -v /results_container:/results c7perf bash
/root/docker-performance/bench/sysbench/run-sysbench.sh cpu test1l

As we mount the host directory, /results_container, iNside the /results
container, the result will be collected on the host:

$ mkdir -p /results_container

$ docker container run -it -v /results_container:/results c7perf bash

[root@352287d98cfd /]# /root/docker-performance/bench/sysbench/run-sysbench.sh cpu testl
Running in a container

Database storage directories do not exist; creating /root/data and /root/log

which: no sysbench in (/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin)
sysbench not installed...installing

2018-08-08_10_41_51 running sysbench cpu test for 10 samples

[root@952287d98¢f0 /1# |

3. While running the preceding test on Fedora/RHEL/CentOS, where SELinux
is enabled, you will get a Permission denied error. To fix it, relabel the host
directory while mounting it inside the container as follows:

| $ docker container run -it -v /results_container:/results:z c7perf bash

Alternatively, for the time being, put SELinux in permissive mode:

$ setenforce 0

Then, after the test, put it back in permissive mode:

| $ setenforce 1

9 Refer to Chapter 9, Docker Security, for more details about SELinux.

pythontesting

How it works...

The benchmark script internally calls sysbench's CPU benchmark for the given
input. CPU is benchmarked by using 64-bit integer manipulation using Euklid
algorithms for prime number computation. The result for each run gets collected
in the corresponding results directory, which can be used for comparison.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

Almost no difference is reported between bare-metal and Docker CPU
performance.

pythontesting

See also

Look at the CPU benchmark results published in IBM and VMware using
Linpack in the links referenced earlier in this chapter.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Benchmarking disk performance

There are tools such as Iozone (http://www.iozone.org), smallfile (https://github.com/b
englandZ/smallfile),EH]d F1erb1e IC)(https://github.com/axboe/fio),VthCh.aFe
available to benchmark disk performance. For this recipe, we will use FIO. For
that, we need to write a job file, which mimics the workload you want to run.
Using this job file, we can simulate the workload on the target. For this recipe,
let's take the FIO example from the benchmark results, which IBM has published
(https://github.com/thewmf/kvm-docker-Comparison/tree/master/fio).

pythontesting

http://www.iozone.org
https://github.com/bengland2/smallfile
https://github.com/axboe/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio

Getting ready

On a bare metal/VM/Docker container, install FIO and mount the disk
containing a filesystem for each test under /ferrari or anything which is
mentioned in the FIO job file. On bare metal, you can mount natively; on the
VM, you can mounted using the virtual disk driver or perform a device pass-
through. On Docker, we can attach the filesystem from the host machine using
Docker volumes.

Prepare the workload file. We will ple https://github.com/thewmf/kvm-docker-comparis

on/blob/master/fio/mixed.fio.

$ curl -o mixed.fio https://raw.githubusercontent.com/thewmf/kvm-docker-comparison/m
$ cat mixed.fio

[global]

ioengine=libaio

direct=1

size=16g

group_reporting

thread

filename=/ferrari/fio-test-file

[mixed-random-rw-32x8]
stonewall

rw=randrw
rwmixread=70

bs=4K

iodepth=32

numjobs=8

runtime=60

0 This recipe is specific to Linux; it may work on Docker for Mac or Windows with some minor

changes.

Using the preceding job file, we can do random direct IO on /ferrari/fio-test-file
with 4K block size using the libaio driver on a 16 GB file. The I/O depth is 32
and the number of parallel jobs are 8. It is a mix workload, which does a 70
percent read and 30 percent write.

https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker image build -t docker_fio_perf .

 $ docker container run --rm -v /ferrari:/ferrari

docker_fio_perf mixed.fio

 $ docker container run --rm -v /ferrari:/ferrari:z
 docker_fio_perf
mixed.fio

pythontesting

How it works...

FIO will run the workload given in the job file and spit out the results.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

Once the results are collected, you can do a result comparison. You can even try
out different kinds of I/O pattern using the job file and get the desired result.
When you look at the results, a few of the things you will want to examine are as
follows:

¢ iops: The number of input/output operations per second; the higher the
better.

e bandwidth (bw): The rate of data transfer, bit rate, or throughput; the
higher the better.
e Latency (lat): The time that passes between submission to the kernel and
when the 10 is completehe lower the better.

pythontesting

See also

Look at the disk benchmark results published in IBM and VMware using FIO in
the links referenced earlier in this chapter.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Benchmarking network performance

The network is one of the key aspects to consider while deploying the
applications in the container environment. To do performance comparison with
bare metal, the VM, and the container, we have to consider different scenarios as
follows:

Bare metal to bare metal

VM to VM

Docker container to a container with the default networking mode (bridge)
Docker container to a container with host net (--net=host)

Docker container running inside a VM with the external world

In any of the preceding cases, we can pick up two endpoints to do the
benchmarking. We can use tools such as nuttcp (http://www.nuttcp.net) and netperf
(https://github.com/HewlettPackard/netperf) to measure the network bandwidth and
request/response, respectively.

pythontesting

http://www.nuttcp.net
https://github.com/HewlettPackard/netperf

Getting ready

Make sure both the endpoints can reach each other and that you have the
necessary packages/software installed. On Ubuntu, you can install nuttcp and
netperf with the following command:

| $ sudo apt-get install -y nuttcp netperf

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ nuttcp -S

 $ nuttcp -t <SERVER_IP>

 $ nuttcp -r <SERVER_IP>

 $ netserver

 $ netperf -H 172.17.0.6 -t TCP_RR

 $ netperf -H 172.17.0.6 -t UDP_RR

$ netperf -H 10.136.105.137 -t UDP_RR

MIGRATED UDP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port @ AF_INET to 10.136.105.137 () port @ AF_INET : demo : first burst @
Local /Remote

Socket Size Request Resp. Elapsed Trans.

Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

212992 212992 1 1 10.00 4144 .82
212992 212992

pythontesting

How it works...

In both of the cases mentioned earlier, one endpoint becomes the client and
sends the requests to the server on the other endpoint.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

We can collect the benchmark results for different scenarios and compare them.
netperf can also be used for throughput tests.

pythontesting

See also

Look at the network benchmark results published by IBM and VMware in the
links referenced earlier in this chapter.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting container resource usage
using the stats feature

Docker has a feature to easily get the resource usage for the containers that it
manages. The following recipe shows you how to use it.

pythontesting

Getting ready

You will need a Docker host that can be accessed via the Docker client. Also,
start a few containers to get some stats.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Follow these steps:

1. Run the following command to get stats from one or more containers:

| $ docker stats [OPTIONS] [CONTAINERS]

For example, if we have two containers with the names some-mysql and
backstabbing_turing, then run the following command to get the stats as shown
in the below screenshot:

$ docker stats some-mysql backstabbing_turing

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/0
backstabbing_turing 0.00% 4,191 MiB/62.84 GiB 0.01% 2.502 KiB/648 B

some - mysql 0.06% 232.1 MiB/62.84 GiB 0.36% 648 B/648 B

pythontesting

How it works...

The Docker daemon fetches resource information from cgroups and serves it
through the APIs.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

Refer to the Docker stats documentation at https://docs.docker .com/engine/reference/c

ommandline/stats/.

pythontesting

https://docs.docker.com/engine/reference/commandline/stats/

Setting up performance monitoring

We have tools such as SNMP, Nagios, and so on to monitor bare metal, VM
performance. Similarly, there are a few tools/plugins available to monitor
container performance such as cAdvisor (https://github.com/google/cadvisor) and
Prometheus (nhttps://prometheus.io). In this recipe, let's see how we can configure

cAdvisor.

https://github.com/google/cadvisor
https://prometheus.io

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Perform the following to set up cAdvisor:

e The easiest way to run cAdvisor is to run its docker container, which can be
done with the following command:

$ sudo docker container run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
- -publish=8080:8080 \
--detach=true \
- -name=cadvisor \
google/cadvisor:latest

¢ If you want to run cAdvisor outside Docker, then follow the instructions
given on the cAdvisor home page: https://github.com/google/cadvisor/blob/maste

r/docs/running.md#standalone.

pythontesting

https://github.com/google/cadvisor/blob/master/docs/running.md#standalone

How to do it...

After the container starts, point your browser to http://localhost:808e. You will
first get graphs for CPU, memory usage, and other information for the host
machine. Then, by clicking on the Docker Containers link, you will get the
URLs for containers running on the machine under the Subcontainers section. If
you click on any one of them, you will see the resource usage information for the
corresponding container. The following screenshot shows one such container:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Total Usage

0.16
0.12
0.08

0.00

Cores

G:38:30 PM 6:38:40 PM 6:38:50 PM 6:39:00 PM 6:39:10 PM 6:39:20 PM
Bl Total

Usage per Core

012

0.09

E—

0.06

Cores

f:38:30 FM f:38:40 FM £:38:50 PM 6:39:00 FM 6:39:10 PM £:39:20 PM
Bcoe0 BWCorel [lcCore? [l Cored

pythontesting

How it works...

With the docker run command, we have mounted a few volumes from host
machines in read-only mode. cAdvisor will read the relevant information from
those, such as Cgroup details for containers, and show them graphically.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

cAdvisor supports exporting performance matrices to influxdb (https://www.inf1uxd

ata.com).

pythontesting

https://www.influxdata.com

See also

You can look at the matrices used by cAdvisor from Cgroups in the
documentation on the Docker website: https://docs.docker.com/config/containers/runm

etrics/.

https://docs.docker.com/config/containers/runmetrics/

qq 6089740

Docker Orchestration and Hosting a

21734177

Platform

this chapter, we will cover the following recipes:

Running applications with Docker Compose
Setting up a cluster with Docker Swarm

Using secrets with Docker Swarm

Setting up Kubernetes clusters

Scaling up and down in Kubernetes clusters
Using secrets with Kubernetes

Setting up WordPress with Kubernetes clusters

pythontesting

IT

http://t.cn/RDIAJS5D

Introduction

Running Docker on a single host may be good for the development environment,
but the real value comes when we span multiple hosts. However, this is not a
trivial task. You have to orchestrate these containers. So, in this chapter, we'll
cover some orchestration tools and hosting platforms.

Docker Inc. announced two such tools:

e Docker Compose (https://docs.docker .com/compose), tO create apps consisting of
multiple containers.

e Docker Swarm (https://docs.docker.com/engine/swarm/), to cluster multiple
Docker hosts. Docker Compose was previously called Fig (http://www.fig.sh).

Google started Kubernetes (http://kubernetes.io/) Docker orchestration.
Kubernetes provides mechanisms for application deployment, scheduling,
updating, maintenance, and scaling.

Even Microsoft announced (http://azure.microsoft.com/blog/2015/04/08/microsoft-unvei
ls-new-container-technologies-for-the-next-generation-cloud/) d specialized operating
system for Docker.

Apache Mesos (http://mesos.apache.org), Which provides resource management and
scheduling across entire datacenters and cloud environments, also added support
for Docker (http://mesos.apache.org/documentation/latest/docker-containerizer/).

VMware also launched a container-specific host called VMware Photon (http://v

mware.github. io/photon/).

All of the preceding tools and platforms need separate chapters to themselves.
But in this chapter, we'll explore Compose, Swarm, and Kubernetes.

https://docs.docker.com/compose
https://docs.docker.com/engine/swarm/
http://www.fig.sh
http://kubernetes.io/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://mesos.apache.org
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://vmware.github.io/photon/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running applications with Docker
Compose

Docker Compose (http://docs.docker .con/compose/) is the native Docker tool that
runs interdependent containers that make up an application. We define a
multicontainer application in a single file and feed it to Docker Compose, which
sets up the application. In this recipe, we'll once again use WordPress as a
sample application to run.

pythontesting

http://docs.docker.com/compose/

Getting ready

To install Docker Compose, run the following command:

| $ sudo pip install docker-compose

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ cd wordpress_compose/
$ cat docker-
compose.yml
version: '3.1'

services:
wordpress: image: wordpress restart: always ports:
- 8080:80
environment: WORDPRESS_DB_PASSWORD: example mysql:
image: mysql:5.7

restart: always environment: MYSQL_ROOT_PASSWORD:
example

2. We took the preceding example from the official WordPress Docker
repository on Docker Hub (https://registry.hub.docker.com/ /wordpress/).
3. Within the app directory, run the following command to build and start the

app:

$ docker-compose up

4. Once the build is complete, access the WordPress installation page from
http://localhost:8080 or http://<host-ip>:8080.

pythontesting

https://registry.hub.docker.com/_/wordpress/

How it works...

Docker Compose downloads both MySQL and WordPress images, if not
available locally from the official Docker Registry. First, it starts the db
container from the MySQL image; then, it starts the WordPress container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ cat Dockerfile
FROM
wordpress:latest
extend the base wordpress image with
anything custom
you might need for local dev.

ENV CUSTOM_ENV env-value

$ cat docker-compose.yml
version: "3.1"

services:
 wordpress:

 build: .
 restart: always

 ports:
 - 8080:80

environment:
 WORDPRESS_DB_PASSWORD:
example
 mysql:
 image: mysql:5.7
 restart: always

environment:
 MYSQL_ROOT_PASSWORD: example
$ docker-compose up

 $ docker-compose down

 $ docker-compose build

 $ docker-compose exec wordpress bash

 $ docker-compose ps

pythontesting

See also

You may also check the following references:

e Docker COIIlpOSE YAML file reference at: https://docs.docker.com/compose/compo
se-file/.

e Docker COIIlpOSE command-line reference at: https://docs.docker.com/compose/r
eference/overview/.

e Docker COIIlpOSE GitHub repository at: https://github.com/docker/compose.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/reference/overview/
https://github.com/docker/compose

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting up a cluster with Docker
Swarm

Docker Swarm (https://docs.docker.com/engine/swarm/) is native clustering that is
built in to Docker. It groups multiple Docker hosts into a single pool in which
you can launch containers. To keep things simple, here, we'll use VirtualBox as
the backend to configure the hosts.

There are two versions of Swarm. In this recipe, we will be using the newer of
the two called Docker Swarm mode, which is based on SwarmKit (https://github.
com/docker/swarmkit). The newer version makes it much easier to get up and
running, and removes a lot of the steps that were previously required. Swarm
mode is built into the Docker daemon, so there is no extra software required in
order to use it.

Docker Swarm mode supports two types of nodes; a manager and a worker.
Manager nodes perform the orchestration and cluster management functions for
the Swarm. They dispatch units of work called tasks to the workers. The
manager nodes use the Raft Consensus algorithm (http://thesecretlivesofdata.com/r
aft/) to manage the global cluster state. The worker nodes receive and execute
the tasks that are dispatched by the managers.

For Raft to work correctly, you need an odd number of managers in order for the
leader election to work properly. That means that, if you want a fault-tolerant
Swarm cluster, you should have either three or five managers. If you have three
managers, you can handle one manager node failure, and with five, you can
handle up to two node failures before the Raft consensus is lost. Pick the cluster
size that is most appropriate for your work load.

pythontesting

https://docs.docker.com/engine/swarm/
https://github.com/docker/swarmkit
http://thesecretlivesofdata.com/raft/

Getting ready

Follow these steps:

1. Install VirtualBox on your system (https://www.virtualbox.org/). Instructions to
configure VirtualBox are outside the scope of this book.

2. Using VirtualBox, create three virtual machines called dockerhost-1,
dockerhost-2, and dockerhost-3, and install the latest version of Docker on it.

3. Make sure that there are no firewalls blocking access between dockerhost-1,
dockerhost-2, and dockerhost-3.

https://www.virtualbox.org/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker node Is
 $ docker service create --name demo --publish 80:80 nginx

 $ docker service ls
 $ docker service ps
demo

 $ docker service scale demo=3

7. Check to make sure that the service has scaled to 3. It might take a few
minutes for the scaling event to complete:

$ docker service 1s

1D NAME MODE REPLICAS IMAGE PORTS
y4zwluhhx1fj demo replicated 3/3 nginx:latest *:80->80/tcp
$ docker service ps demo

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE

i7m3njcsbvfr demo.1 nginx:latest dockerhost-2 Running Running 2 minutes ago
ejhd4lvptsifo demo.2 nginx:latest dockerhost-1 Running Running 10 seconds ago
696umwvgyvop demo.3 nginx:latest dockerhost-3 Running Running 10 seconds ago
s]

pythontesting

How it works...

Using the unique token we got from the manager node when we initialized the
swarm, we added the worker nodes to the cluster. We then created a simple nginx
service, and scaled it to 3; this started a container one each of the nodes in the
Swarm.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker swarm join-token manager
 To add a
manager to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-
Otrltcg6gwhz9w40j3wpugedjwviwdgksuz8zulaz6qon118s4-
2ui4f15uu7ceowbk2gc9xutb5 10.10.0.6:2377

 $ docker swarm join --token SWMTKN-1-
Otrltcg6gwhz9w40j3wpugedjwviwdgksuz8zulaz6qon118s4-
2ui4f15uu7ceowbk2gc9xutb5 10.10.0.6:2377

 This
node joined a swarm as a manager.

pythontesting

See also

You can view the Swarm documentation on the Docker website at https://docs.doc
ker.com/engine/swarm/ for more information.

https://docs.docker.com/engine/swarm/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using secrets with Docker Swarm

When you are using containers, a common thing that you will need to do is
connect to some external resources such as a database, cache, or web service.
These resources usually need credentials. One popular way of passing these
credentials to containers is to make them environmental variables that get
populated on container startup. This allows you to use the same Docker image
for different development environments, and removes the need for storing
passwords in the image. This is a common trait for a twelve-factor app (https://12
factor.net), which was made popular by Heroku (https://www.heroku.com).

Adding environmental variables to a container at runtime is very easy, but it has
its downsides. When an environment variable is added to the container, it is
accessible to everything running in that container. That means that, not only can
your code see it, code from third-party libraries can as well. This makes it easy
for those passwords to accidentally get exposed outside the container.

This usually happens accidentally when an error occurs, and in the resulting
error stack trace, it lists all of the current environment variables. This was
originally added to help you debug the issue, but little did they know that, by
exposing all of the environment variables, they were sharing your passwords as
well, and creating another issue in the process.

To fix this problem, Docker came out with a new feature called Docker Secrets (
https://docs.docker.com/engine/swarm/secrets/). Docker Secrets is Currently Oﬂly
available to Swarm services. A secret can be any blob of data, such as a
password, TLS certificate, and so on, that you don't want to share with others.

That is a lot to take in, so let's look at an example.

pythontesting

https://12factor.net
https://www.heroku.com
https://docs.docker.com/engine/swarm/secrets/

Getting ready

You will need access to a system with Docker Swarm set up.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ echo "myP@ssWord" | docker secret create
my_password -

 $ docker service create --name="my-service" --secret="my_password"
redis

$ docker service ps my-service

 $ docker container exec $(docker container ls --filter name=my-service
-q) cat /run/secrets/my_password

$ docker container exec $(docker container ls --filter name=my-service -q) cat /run/secrets/my_password

pythontesting

How it works...

It works like this, when you add a secret to Swarm, it will store this encrypted
secret in its internal Raft store. When you create your service and reference that
secret, Swarm will give those containers access to the secret, and it will add the
unencrypted secret as an in-memory filesystem mount inside the container. In
order to read the secret, your application will need to look at the filesystem
mount instead of the environment.

If the secret is removed, or the service is updated to remove the secret, the secret
will no longer be available to the container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker secret inspect <secret name>
 $ docker secret 1s
 $ docker secret rm <secret name>

 $ docker service update --secret-rm <secret name> <service name>

pythontesting

See also

You can view the Docker Secrets documentation at https://docs.docker.com/engine/s
warm/secrets/ for more information.

https://docs.docker.com/engine/swarm/secrets/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting up a Kubernetes cluster

Kubernetes is an open source container orchestration tool used across multiple
nodes in the cluster. It was started by Google, and now, developers from other
companies are contributing to it. It provides mechanisms for application
deployment, scheduling, updating, maintenance, and scaling. Kubernetes' auto-
placement, auto-restart, and auto-replication features make sure that the desired
state of the application is maintained, which is defined by the user. Users define
applications through YAML or JSON files, which we'll see later in this recipe.
These YAML and JSON files also contain the API version (apiVersion field) to
identify the schema.

Let's look at some of the key components and concepts for Kubernetes:

e Pods: A pod, which consists of one or more containers, is the deployment
unit of Kubernetes. Each container in a pod shares different namespaces
with other containers in the same pod. For example, each container in a pod
shares the same network namespace, which means they all can
communicate through the localhost.

e Node/minion: A node, which was earlier called a minion, is a worker node
in the Kubernetes cluster and is managed through the master. Pods are
deployed on a node, which includes the following necessary services to run
them:

® docker, tO run containers

® Lubelet, to interact with the master

® proxy (kube-proxy), which connects the service to the corresponding pod
e Master: Masters host cluster-level control services such as the following:

e API server: This has RESTful APIs to interact with the master and
nodes. This is the only component that talks to the etcd instance.

e Scheduler: This schedules jobs in clusters, such as creating pods on
nodes.

e ReplicaSet: This ensures that the user-specified number of pod
replicas is running at any given time. To manage replicas with
ReplicaSet, we have to define a configuration file with a replica count

pythontesting

for a pod.

Master also communicates with etcd, which is a distributed key-value pair. etcd is
used to store configuration information, which is used by both the master and
nodes. The watch functionality of etcd is used to notify the changes in the cluster.
etcd can be hosted on the master or on a different set of systems.

e Services: In Kubernetes, each pod gets its own IP address, and pods are
created and destroyed every now and then based on the replication
controller configuration. So, we cannot rely on the pod's IP address to cater
an app. To overcome this problem, Kubernetes defines an abstraction,
which defines logical set of pods and policies to access them. This
abstraction is called a service. Labels are used to define the logical set,
which our service manages.

e Labels: Labels are key-value pairs that can be attached to objects. Using
these, we can select a subset of objects. For example, a service can select all
pods with the label mysq].

e Volumes: A volume is a directory that is accessible to the containers in a
pod. It is similar to Docker volumes, but not the same. Different types of
volumes are supported in Kubernetes, some of which are emptyDir
(ephemeral), hostPath, gcePersistentDisk, awsElasticBlockStore, and NFS.
Active development is taking place to support more types of volumes. More
details can be found at https://kubernetes.io/docs/concepts/storage/.

Kubernetes can be installed to VMs, physical machines, and the cloud. For the
Complete matriX, take a look at https://kubernetes.io/docs/setup/pick-right-solution/.
In Chapter 1, Introduction and Installation, we showed you how to install
Docker for Mac and Docker for Windows. Both of these tools allow you to
easily create a local Kubernetes cluster with the click of a button. Refer back to
that chapter for more details.

In this recipe, we'll see another way to install Kubernetes on your local host
using MiniKube with VirtualBox. This and the following recipes on Kubernetes
were tried on v1.10.0 of Kubernetes.

https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/setup/pick-right-solution/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

pythontesting

$ brew install kubernetes-cli
$ choco install kubernetes-cli

$ curl -LO https://storage.googleapis.com/kubernetes-
release/release/v1.10.0/bin/linux/amd64/kubectl
$ chmod
+x ./kubectl
$ sudo mv ./kubectl
/usr/local/bin/kubectl

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-linux-
amd64
$ chmod +x minikube
$
sudo mv minikube /usr/local/bin/

o On macOS:

$ curl -Lo minikube https://storage.googleapis.com/minikube/relec
$ chmod +x minikube
$ sudo mv minikube /usr/local/bin/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Run the following command to set up Kubernetes using MiniKube with
VirtualBox and refer the below screenshot:

$ minikube start --vm-driver=virtualbox
$ minikube start --vm-driver=virtualbox
Starting local Kubernetes v1.10.@ cluster...
Starting WM...
Downloading Minikube ISO

160.27 MB / 160.27 MB [
Getting VM IP address...
Moving files into cluster...
Downloading kubeadm v1.1@.@
Downloading kubelet v1.10.@
Finished Downloading kubelet v1.10.0@
Finished Downloading kubeadm v1.10.0
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
S5tarting cluster components...
Kubectl is now configured to use the cluster.
Loading cached images from config file.

$]

pythontesting

How it works...

MiniKube will download the MiniKube ISO, create a new VM in VirtualBox,
and then configure Kubernetes inside. Finally, it will set the cluster as the default
for kubectl.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

If you need to run commands against the cluster, you'll d have to use the kubect1
command. Here are some common commands that you will be using on a day-
to-day basis:

e To create a new deployment, you would use the kubct1 run command. Enter
the following command to start an echo web service and refer the below
screenshot:

$ kubectl run hello-minikube --image=k8s.gcr.io/echoserver:1.4 --port=8080
$ kubectl expose deployment hello-minikube --type=NodePort

§ kubectl run hello-minikube --image=k8s.gcr.io/echoserver:1.4 --port=8080
deployment.apps/hello-minikube created

§ kubectl expose deployment hello-minikube --type=NodePort
service/hello-minikube exposed

Check to make sure it is up and running;:

$ kubectl get pod
$ kubectl get pod
NAME READY STATUS RESTARTS AGE

hello-minikube-6c47c66d8-sdwpo 1/1 Running @ 4m

Connect to the new service using cur1 to make sure it is working:

| $ curl $(minikube service hello-minikube --url)

pythontesting

$ curl $(minikube service hello-minikube --url)
CLIENT VALUES:

client_address=172.17.0.1

command=GET

real path=/

query=nil

request_version=1.1
request_uri=http://192.168.99.100:8080/

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:
accept=*/*
host=192.168.99.100:30773
user-agent=curl/7.54.0
BODY:

-no body in request-$ |

You can delete the service and the deployment by using the following
code:

$ kubectl delete service hello-minikube
$ kubectl delete deployment hello-minikube

¢ You can get a list of nodes with the following code:

| $ kubectl get nodes

* You can get a list of pods with the following code:

| $ kubectl get pods

qg 6089740 21734177 IT http://t.cn/RDIAj5D

¢ You can get a list of services with the following code:

| $ kubectl get services

* You can get a list of ReplicaSets with the following code:

| $ kubectl get rs

¢ You can stop a MiniKube cluster with the following code:

| $ minikube stop

¢ You can delete a MiniKube cluster with the following code:

| $ minikube delete

You will see some pods, services, and replication controllers listed, as
Kubernetes creates them for internal use. If you didn't see any, you can use the -
all-namespaces command-line ﬂag

pythontesting

See also

You can also check the following references:

° Configuring MiniKube: https://kubernetes.io/docs/setup/minikube/.
e Kubernetes documentation: nttps://kubernetes.io/docs/home/.
e Kubernetes API conventions: https://kubernetes.io/docs/reference/using-api/.

https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/using-api/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using secrets with Kubernetes

In the Using secrets with Docker Swarm recipe, we showed how you can use
secrets to store your passwords in a safe way using Docker Swarm. Kubernetes
has a similar feature, so let's look at how it works.

pythontesting

Getting ready

You will need a Kubernetes cluster set up and configured, as described in the
previous recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ echo -n "MyS3cRet123" > ./secret.txt

 $ kubectl create secret generic my-secret --from-
file=./secret.txt
 secret/my-secret created

 $ kubectl describe secrets/my-secret

apiVersion: v1
kind: Pod

metadata:
 name: mypod

spec:
 containers:
 -
name: shell
 image: alpine

command:
 - "bin/ash"
 - "-c"

 - "sleep 10000"

volumeMounts:
 - name: secretvol

 mountPath: "/tmp/my-secret"
 readOnly:
true
 volumes:
 - name:
secretvol
 secret:
 secretName:
my-secret

 $ kubectl create -f ./secret_pod.yml

6. View the secret in the pod:

$ kubectl exec mypod -c shell -i -t -- ash
/ # mount | grep my-secret
tmpfs on /tmp/my-secret type tmpfs (ro,relatime)

/ # cat /Stmp/my-secret/secret.txt
MyS3cRetl23/ #

J‘r#D

pythontesting

How it works...

When you create a secret, Kubernetes will basess encode it, and store that secret
in the data store that is backing the REST API, for example, etcd. If you create a
pod that references a secret, when the pod is created, it will get permission to use
that secret. When it is deployed, it will create and mount a secret volume, and
the secret values are bases4 decoded and stored in this volume as files. Your
application will need to reference these files in order to access the secrets.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

apiVersion: v1
kind: Pod

metadata:
 name: myenvpod

spec:
 containers:
 -
name: shell
 image: alpine
 env:

 - name: MY_SECRET

valueFrom:
 secretKeyRef:

name: my-secret
 key: secret.txt

command:
 - "bin/ash"
 - "-c"

 - "sleep 10000"

$ kubectl create -f ./secret_env_pod.yml
pod/myenvpod created
$ kubectl exec myenwvpod -c shell -i -t -- ash

/ # echo $MY_SECRET
MyS3cRet123
7 #]

pythontesting

See also

You can view the Kubernetes secret documentation at https://kubernetes.io/docs/con
cepts/configuration/secret/ for more information.

https://kubernetes.io/docs/concepts/configuration/secret/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Scaling up and down in Kubernetes
cluster

In the previous section, we mentioned that a ReplicaSet ensures that the user-
specified number of pod replicas is running at any given time. To manage
replicas with the ReplicaSet, we have to define a configuration file with a replica
count for a pod. This configuration can be changed at runtime.

pythontesting

Getting ready

Make sure that the Kubernetes setup is running, as described in the preceding
recipe, and that you are in the Kubernetes directory, which was created with the

preceding installation.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Follow these steps:

1. Start the nginx container with a replica count of 3:

| $ kubectl run my-nginx --image=nginx --replicas=3 --port=80

2. This will start three replicas of the nginx container. List the pods to get the
status as shown in the following screenshot:

| $ kubectl get pods
% kubectl run my-nginx --image=nginx --replicas=3 --port=8@
deployment .apps/my-nginx created
$ kubectl get pods
NAME READY STATUS RESTARTS AGE

my-nginx-77f56b88c8-kdcxz 1/1 Running 56s
my-nginx-77f56b88cB-gkcBE 1/1 Running 56s
my-nginx-77f56b88cB-vbmél 1/1 Running 56s

$]

3. Get the ReplicatSet configuration:

| $ kubectl get rs
$ kubectl get rs
NAME DESIRED CURRENT

my-nginx-77fS5cb88c8 3 3

$]

As you can see, we have a my-nginx controller, which has a replica count of s.

4. Scale down to a replica of 1 and update the ReplicaSet:

$ kubectl scale --replicas=1 deployment/my-nginx
$ kubectl get rs

pythontesting

$ kubectl scale --replicas=1 deployment/my-nginx
deployment , extensions/my-nginx scaled
$ kubectl get rs

NAME DESIRED CURRENT READY AGE
my-nginx-77f56b88c8 1 1 1 26m

5. Get the list of pods to verify that this has worked; you should see only one
pod for nginx:

| $ kubectl get pods

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

We request the ReplicSet service running on the master to update the replicas for
a pod, which updates the configuration and requests that the nodes/minions act
accordingly to honor the resizing.

pythontesting

There's more...

Use the following code to get the services:

| $ kubectl get services
$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <nones 443/TCP 1h

$ [l

As you can see, we don't have any service defined for our nginx containers that
we started earlier. This means that, although we have a container running, we
cannot access from outside because the corresponding service is not defined.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting up WordPress with
Kubernetes clusters

In this recipe, we will use the WordPress example given in the Kubernetes
d(KHlD]eDIatﬂ)D,(https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpres
s-persistent-volume/). There are three parts to this example: creating a secret,
deploying MySQL, and deploying WordPress.

pythontesting

https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

Getting ready

Follow these prerequisites:

e Make sure that the Kubernetes cluster has been set up, as described in the
previous recipe.
e There are two pod files that we need to download. You can find them here:

® https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
® https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml

e These YAML files describe pods and services for MySQL and WordPress,
respectively.

e MySQL and WordPress each require a place to store their data. In
Kubernetes, this is called a PersistentVolume. When we deploy our pod, the
PersistentVolumeClaims will be created. Different clusters have different
default storage classes, ensuring that the StorageClass you are using fits
your usage model.

https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Follow these steps:

1. We learned about Kubernetes secrets in the previous recipe. We will need to
create one to store the MySQL password. Run the following command to
create your secret, and make sure you change txe_passworo to something
unique:

| $ kubectl create secret generic mysql-pass --from-literal=password=THE_PASSWORD

Check to make sure that the secret was created successfully:
| $ kubectl get secrets
2. Deploy the MYSQL pOd USiIlg the mysql-deployment.yaml file:
| $ kubectl create -f ./mysql-deployment.yaml

Make sure the persistentvolume was created.

0 It may take a few minutes, so if it isn't ready right away, wait a little longer.

We can check its status by looking at the output of the following
command. If it looks like the following example, you are good to go:
$ kubectl get pvc

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

mysql-pv-claim Bound pvc-2557bc33-a223-11e8-85d3-0800277df986 20Gi RWO standard 10s

Verify that the pod is up and running;:

| $ kubectl get pods

3. Now that we have the MySQL database up and running, we need to deploy
WordPress. This pod also has persistent storage, and it uses the secret we
created in Step 1 as the MySQL password. Since we want to accept traffic
from outside of the cluster, we also need to set up a loadbalancer.

pythontesting

e Deploy the WordPress service and deployment with the wordpress-
deployment.yaml file:

$ kubectl create -f ./wordpress-deployment.yml

] Verlfy that persistentvolume was created:

$ kubectl get pvc

e Verify that the service is up and running:

$ kubectl get services wordpress

If you are using Minikube for this example, it can only expose services through NodePort.
NodePort, as the name implies, opens a specific port on the host, and any trdffic that is sent to
this port is forwarded to the service. Since Minikube doesn't offer an integrated load balancer,
the EXTERNAL-IP is always going to be pending.

Now that we have the service up and running, we need to get the IP
address:

$ minikube service wordpress --url

Using your favorite web browser, connect to the IP address; you
should then see the WordPress setup page.

not, someone else can find it, and set it up for you. If you won't be using it, make sure that

0 Make sure you complete the setup wizard by creating a username and password. If you do
you delete it.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In this recipe, we first created a secret to store our MySQL password. Then we
started up a MySQL database using the password we provided in the secret, and
we stored the data in a PersistentStore on the host so that we don't lose data
between container restarts. Next, we deployed a WordPress service that used our
secret to get the password to connect to our MySQL database. We also
configured a load balancer so that traffic outside of our cluster is able to hit our
WordPress install.

pythontesting

There's more...

To clean up your WordPress installation, run the following commands:

$ kubectl delete secret mysql-pass

$ kubectl delete deployment -1 app=wordpress
$ kubectl delete service -1 app=wordpress

$ kubectl delete pvc -1 app=wordpress

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

You can view the Kubernetes documentation at https://kubernetes.io/docs/home/ fOT
more information.

pythontesting

https://kubernetes.io/docs/home/

Docker Security

In this chapter, we will cover the following recipes:

e Setting Mandatory Access Control (MAC) with SELinux

e Allowing writes to volumes mounted from the host with SELinux ON

e Removing capabilities to break down the power of the root user inside the
container

e Sharing namespaces between the host and the container

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction

Docker containers, actually, are not Sandbox applications, which means they are
not recommended to run random applications on the system as root with Docker.
You should always treat a container running a service/process as a
service/process running on the host system, and put all the security measures
inside the container you put on the host system.

We saw in Chapter 1, Introduction and Installation, how Docker uses
namespaces for isolation. The six namespaces that Docker uses are Process,
Network, Mount, Hostname, Shared Memory, and User. Not everything in Linux
is namespaced, for example, SELinux, Cgroups, Devices (/dev/men, /dev/sd*), and
Kernel Modules. Filesystems under /sys, /proc/sys, /proc/sysrq-trigger, /proc/irq,
and /proc/bus are also not namespaced, but they are mounted as read-only by
default with the containerD container runtime.

To make Docker a secure environment, a lot of work has been done in the recent
past, and more work is underway.

e As Docker images are the basic building block, it is very important that we
choose the right base image to start with. Docker has this concept of official
images, which are maintained by either Docker, the vendor, or someone
else. If you recall from Chapter 2, Working with Docker Containers, we can
search images on Docker Hub using the following syntax:

| $ docker search <image name>

For example, consider the following command:

$ docker search ubuntu
$ docker search ubuntu
NAME DESCRIPTION OFFICIAL AUTOMATED
ubuntu Ubuntu is a Debian-based Linux operating sys.. [0K]
dorowu/ubuntu-desktop-1xde-vnc Ubuntu with openssh-server and NoVNC [OK]

rastasheep/ubuntu-sshd Dockerized SSH service, built on top of offi.. [0K]
ansible/ubuntul4.@4-ansible Ubuntu 14.04 LTS with ansible [OK]
ubuntu-upstart Upstart is an event-based replacement for th.
neurodebian NeuroDebian provides neuroscience research s..

pythontesting

We will see a column, orric1aL, and if the images are official, you will
see [ok] against that image in that column. There is a feature in
Docker that does Digital Signal Verification of official images after
pulling them. If the image is tampered, be will be notified but will not
be prevent the user from running it.

0 More details about official images can be found at nttps://github. con/docker-1ibrary/official-images.

e In chapter 6, Docker APIs and SDKs, we saw how we can secure a Docker
remote API, when Docker daemon access is configured over TCP.

e We can also consider turning off the default inter-container communication
over the network with --icc=faise on the Docker host; though containers can
still communicate through links, which overrides the default DROP policy
of iptables, they get set with the --icc=fa1se option.

e We can also set Cgroups resource restrictions, through which we can
prevent Denial of Service (DoS) attacks through system resource
constraints.

e Docker takes advantage of the special device, Cgroups, that allows us to
specify which device nodes can be used within the container. It blocks
processes from creating and using device nodes that could be used to attack
the host.

e Any device node pre-created on the image cannot be used to talk to the
kernel because images are mounted with the nodev option.

The following are some guidelines (they may not be complete) you can follow to
achieve a secure Docker environment:

¢ Run services as non-root and treat the root in the container, as well as
outside the container, as root.

e Use images from trusted parties to run the container; avoid using the -
insecure-registry=[] OptiOH.

e Don't run the random container from the Docker registry or anywhere else.

e Have your host kernel up to date.

¢ Avoid using --privileged whenever possible, and drop container privileges
as soon as possible.

e Configure Mandatory Access Control (MAC) through SELinux or
AppArmor.

e Collect logs for auditing.

https://github.com/docker-library/official-images

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e Do regular auditing.

¢ Run containers on hosts, which are specially designed to run containers.
Consider using Project Atomic, CoreOS, or similar solutions.

e Mount devices with the --device option rather than using the --privileged
option to use devices inside the container.

e Prohibit SUID and SGID inside the container.

Docker and the Center of Internet Security (http://www.cisecurity.org/) released a
best practices guide for Docker security, which covers most of the preceding and
more gLﬂckﬂjnes at https://blog.docker.com/2015/05/understanding-docker-security-and-bes

t-practices/.

In chapter 1, Introduction and Installation, we described how to install Docker on
CentOS 7.5. Let's use that default installation to try an experiment:

1. Disable SELinux using the following command:

| $ sudo setenforce 0

2. Create a user and add it to the default Docker group so that the user can run
docker commands without sudo:

sudo useradd dockertest

sudo passwd dockertest

sudo groupadd docker

sudo gpasswd -a dockertest docker

LR

3. Log in using the user we created earlier, and start a container as follows:

$ su - dockertest
$ docker container run -it -v /:/host alpine ash

4. From the container, chroot t0 /host and run the shutdown command:

$ chroot /host
$ shutdown

pythontesting

http://www.cisecurity.org/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

$ su - dockertest

Last login: Wed Aug 8 23:07:46 UTC 2018 on pts/0

[dockertest@dockerhost ~]$ docker container run -it -v /:/host alpine ash
Unable to find image 'alpine:latest' locally

latest: Pulling from library/alpine

8e3ballec2aZ: Pull complete

Digest: sha256:7043076348bf5040220df6ad703798fd8593a0918d06d3ce30coc9I3bell7e430
Status: Downloaded newer image for alpine:latest

/ # chroot /host

[root@3622ad25ff3b /]# shutdown

Shutdown scheduled for Wed 2018-08-08 23:10:03 UTC, use 'shutdown -c' to cancel.
[root@3622ad25ff3b /]#

Broadcast message from root@dockerhost (Wed 2018-08-08 23:09:03 UTC):

The system is going down for power-off at Wed 2018-08-08 23:10:03 UTC!

As we can see, a user in a Docker group can shut down the host system. Docker
currently does not have authorization control, so if you can communicate to the
Docker socket, you are allowed to run any Docker command. It is similar to

/etc/sudoers.

USERNAME ALL=(ALL) NOPASSWD: ALL

This is really not good. Let's see how we can guard against this and more in the
rest of the chapter.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Setting Mandatory Access Control
(MAC) with SELinux

It is recommended that you set up some form of MAC on the Docker host, either
through SELinux or AppArmor, depending on the Linux distribution. In this
recipe, we'll see how to set up SELinux on a Fedora/RHEL/CentOS installed
system. Let's first look at what SELinux is:

SELinux is a labeling system

Every process has a label

Every file, directory, and system object has a label

Policy rules control access between labeled processes and labeled objects
The kernel enforces the rules

With Docker containers, we use two types of SELinux enforcement:

e Type enforcement: This is used to protect the host system from container
processes. Each container process is labeled svirt_ixc_net_t, and each
container file is labeled svirt_sandbox_file_t. The svirt_ixc_net_t type is
allowed to manage any content labeled with svirt_sandbox_file_t. Container
processes can only access/write container files.

e Multi Category Security enforcement: By setting type enforcement, all
container processes will run with the svirt_1xc_net_t label, and all content
will be labeled with svirt_sandbox_file_t. However, with just these settings,
we are not protecting one container from another because their labels are
the same.

We use Multi Category Security (MCS) enforcement to protect one container
from another, which is based on Multi Level Security (MLS). When a container
is launched, the Docker daemon picks a random MCS label, for example,
s0:c41,c717 and saves it with the container metadata. When any container process
starts, the Docker daemon tells the kernel to apply the correct MCS label. As the
MCS label is saved in the metadata, if the container restarts, it gets the same
MCS label.

pythontesting

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

You'll require a Fedora/RHEL/CentOS host with the latest version of Docker
installed, which can be accessed through a Docker client.

pythontesting

How to do it...

Fedora/RHEL/CentOS gets installed by default with SELinux in enforcing
mode, and the Docker daemon is set to start with SELinux. To check whether
these conditions are being met, perform the following steps.

1. Run the following command to make sure SELinux is enabled:

$ sudo setenforce 1
$ getenforce

$ getenforce
Enforcing

s 1

If the preceding command returns enforcing, then it's all good. If not, then
we need to change it by updating the SELinux configuration file
(/etc/selinux/config) and FEbOOtng the system.

2. Docker should be running with the --se1inux-enabled option. You can check
the Docker daemon configuration (/etc/docker/daemon.json) file. Also, cross-
check whether the Docker service has started with the SELinux option:

$ cat /etc/docker/daemon. json

{ "selinux-enabled": true }

$ docker info

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker info
Containers: 1

Running: @

Paused: 0

Stopped: 1

Images: 1
Server Version: 18.06.0-ce
Storage Driver: overlay?2

Backing Filesystem: xfs

Supports d_type: true

Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: bridge host macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk syslog
Swarm: inactive

Runtimes: runc

Default Runtime: runc

Init Binary: docker-init

containerd version: d64cobif1d51c48782c9cec8fda7604785193587
runc version: 69663f0bd4660df09991c08812a60108003fa340
init version: fec3683

Security Options:

seccomp

Profile: ,défault

selinux

Kernel Version: 3.10.0-862.2.3.el17.x86_64
Operating System: CentOS Linux 7 (Core)
0SType: Llinux

Architecture: x86_64

The preceding command assumes that you are not starting Docker in daemon
mode manually.

Let's start a container (without the privileged option) after mounting a host
directory as a volume and try to create a file in that:

pythontesting

$ su - dockertest

Last login: Wed Aug 8 23:29:12 UTC 2018 on pts/0

[dockertest@dockerhost ~]$ mkdir -p ~/dirl

[dockertest@dockerhost ~]$ docker container run -it -v ~/dirl:/dirl alpine ash

/ # touch /dirl/filel
touch: /dirl/filel: Permission denied
/ # |}

As expected, we see Permission denied because a container process with the
svirt_lxc_net_t label cannot create files on the host's filesystem. If we look at the
SELinux logs (/var/1og/audit/audit.1og) on the host, we will see messages similar
to the following:

type=AVC msg=audit(1533770986.198:176): avc: denied { write } for pid=1954 comm="touch" name="dirl" dev="vdal" ino=37749120 scontext=system_u:system_r:cont

ainer_t:s0@:c24,c960 tcontext=unconfined_u:object_r:user_home_t:s@ tclass=dir

The se:c24, cos0 label is the MCS label on the container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

SELinux sets both Type and Multi Category Security enforcement when the right
options are set for SELinux and Docker. The Linux kernel enforces these
enforcements.

pythontesting

There's more...

There is a lot we can do with SELinux to help make our system more secure.
The following are a few more tips:

e If SELinux is in the enforcing mode and the Docker daemon is configured
to use SELinux, then we will not be able to shut down the host from the
container, like we did earlier in this chapter:

$ getenforce

Enforcing

$ su - dockertest

Last login: Wed Aug & 23:29:27 UTC 2018 on pts/@

[dockertest@dockerhost ~]$ docker container run -it -v /:/host alpine ash
/ # chroot /host

sh-4.2# shutdown

Failed to talk to shutdownd, proceeding with immediate shutdown: Permission denied
Failed to open /dev/initctl: Permission denied

Failed to talk to init daemon.

sh-4.2# |

e As we know, by default, all the containers will run with the svirt_ixc_net_t
label, but we can also adjust SELinux labels for custom requirements. Try
ViSitiDg the Adjusting SELinux labels section of http://opensource.com/business
/15/3/docker-security-tuning.

e Setting up MLS with Docker containers is also possible. Try visiting the
Multi Level SECUFity mode section of http://opensource.com/business/15/3/docker

-security-tuning.

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

The SELinux COIOTng Book is available at https://people.redhat.com/duffy/selinux/s
elinux-coloring-book_A4-Stapled.pdf.

pythontesting

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Allowing writes to volumes mounted
from the host with SELinux ON

As we saw in the earlier recipe when SELinux is configured, a non-privileged
container cannot access files on the volume created after mounting the directory
from the host system. However, sometimes it is needed to allow access to host
files from the container. In this recipe, we'll see how to allow access in such
cases.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

You'll require a Fedora/RHEL/CentOS host with the latest version of Docker
installed, which can be accessed through a Docker client. Also, the SELinux
should be set to enforcing, and the Docker daemon configured to use SELinux.

pythontesting

How to do it...

Mount the volume with the z or z option, as follows:

| $ docker container run -it -v /tmp:/tmp/host:z alpine ash

$ docker container run -it -v /tmp:/tmp/host:Z alpine ash
[dockertest@dockerhost ~]$ docker container run -it -v /tmp:/tmp/host:z alpine ash
/ # touch /tmp/host/file

/ #]

qg 6089740 21734177 IT

How it works...

While mounting the volume, Docker will relabel the volume to allow access.

The - option tells Docker that the volume content will be shared between containers. Docker

will label the content with a shared content label. The shared volume label allows all
containers to read/write content. The z option tells Docker to label the content with a private
unshared label. Private volumes can only be used by the current container.

pythontesting

http://t.cn/RDIAJS5D

See also

The Volume mounts section at http://opensource.com/business/14/9/security-for-docker

http://opensource.com/business/14/9/security-for-docker

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Removing capabilities to break down
the power of a root user inside a
container

In simple terms, with capabilities we can break down the power of a root user.
Note the following from the main capabilities page:

For the purpose of performing permission checks, traditional UNIX implementations distinguish two
categories of processes: privileged processes (whose effective user ID is 0, referred to as superuser or root),
and unprivileged processes (whose effective UID is non-zero). Privileged processes bypass all kernel
permission checks, while unprivileged processes are subject to full permission checking based on the
process's credentials (usually: effective UID, effective GID, and supplementary group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated
with superusers into distinct units, known as capabilities, which can be
independently enabled and disabled. Capabilities are a per-thread attribute.

Some examples of capabilities are as follows:

e cap_sysioe: This modifies kernel printk behavior
o cap_neT_aomin: This configures the network
e cap_svys_aomin: This helps you to catch all the capabilities

There are only 32 slots available for capabilities in kernel. There is one
capability, car_svs_aomin, that catches all capabilities; this is used whenever in
doubt.

Docker has the ability to add or remove capabilities for a container. It uses the
chown, dac_override, fowner, kill, setgid, setuid, setpcap, net_bind_service, net_raw,
sys_chroot, mknod, setfcap, and audit_write capabilities by default, and removes the
following capabilities for a container by default:

e cap_seTrcap: This modifies process capabilities
e cap_sys_moouLe: This inserts/removes kernel modules

pythontesting

cap_sys_rawto: This modifies Kernel Memory
cap_svs_paccT: This configures process accounting
cap_sys_nice: This modifies the priority of processes
cap_svs_resource: This overrides Resource Limits
cap_sys_time: This modifies system clock
cap_sys_TTy_conFic: This configures tty devices
cap_auprT_wriTe: This writes the audit log
cap_aup1T_conTroL: This configures audit subsystem
cap_mac_overrine: This ignores kernel MAC Policy
cap_mac_somin: This configures MAC Configuration
cap_systoe: This modifies kernel printk behavior
cap_neT_aomin: This configures network
cap_svs_somin: This helps you catch all containers

We need to be very careful what capabilities we remove, as applications can
break if they don't have enough capabilities to run. To add and remove
capabilities for the container, you can use the --cap-add and --cap-drop Options,
respectively.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

You'll require a host with the latest version of Docker installed, which can be
accessed through a Docker client.

pythontesting

 $ docker container run --cap-drop <CAPABILITY> <image>
<command>

 $ docker container run --cap-add <CAPABILITY> <image>
<command>

3. To remove setuid and setgid capabilities from the container so that it
cannot run binaries, which have these bits set, run the following command:

$ docker container run -it --cap-drop setuid --cap-drop ¢

4. To add all the capabilities and just drop sys_admin, run the following
command:

$ docker container run -it --cap-add all --cap-drop sys_admir

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Before starting the container, Docker sets up the capabilities for the root user
inside the container, which affects the command execution for the container
process.

pythontesting

 $ docker container run -it --cap-drop sys_chroot -v /:/host alpine
ash
 $ chroot /host

[dockertest@dockerhost ~]$ docker container run -it --cap-drop sys_chroot -v /:/host alpine ash
/ # chroot /host

chroot: can't change root directory to '/host': Operation not permitted
/#]]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e Dan Walsh's articles at http://opensource.com/business/14/9/security-for-docker.

e There are efforts to selectively disable system calls from container
processes to provide tighter security. Visit the Seccomp section at nttp://open
source.com/business/15/3/docker-security-future.

e Similar to custom namespaces and capabilities, Docker run supports the --
cgroup-parent flag to pass a specific Cgroup to run containers. Try visiting ntt

ps://docs.docker.com/engine/reference/commandline/run/#options.

pythontesting

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/15/3/docker-security-future
https://docs.docker.com/engine/reference/commandline/run/#options

Sharing namespaces between the host
and the container

As we know, while starting the container, by default, Docker creates six different
namespaces: Process, Network, Mount, Hostname, Shared Memory, and User,
for a container. In some cases, we might want to share a namespace between two
or more containers. For example, in Kubernetes, all containers in a pod share the
same network namespace.

In some cases, we might want to share the namespaces of the host system with
the containers. For example, we share the same network namespace between the
host and the container to get near line speed inside the container. In this recipe,
we will see how to share namespaces between the host and the container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

You'll require a host with the latest version of Docker installed, which can be
accessed through a Docker client.

pythontesting

How to do it...

Perform the following steps:

1. To share the host network namespace with the container, run the following
command:

| $ docker container run -it --net=host alpine ash

If you see the network details inside the container, run the following
command: $ ip a

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker container run -it --net=host alpine ash
/#1ipa
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN glen 1000
Link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
. eth@: <BROADCAST,MULTICAST,UP,LONER_UP> mtu 1500 qdisc pfifo_fast state UP glen 1000
Link/ether 62:76:7d:57:62:36 brd ff.ff.ff:ff.ff.ff
inet 142.93.50.102/20 brd 142.93.63.255 scope global ethd
valid_lft forever preferred_lft forever
inet 10.10.0.6/16 brd 10.10.255.255 scope global ethd
valid_lft forever preferred_lft forever
inetb 2604:a880:400:d1::830:4001/64 scope global
valid_lft forever preferred_lft forever
inetb fe80::6076:7dff:fe57:6236/64 scope link
valid_Lft forever preferred_lft forever
. ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP gqlen 1000
link/ether 12:7d:66:72:d0:3c brd ff:ff:ff.ff.ff . ff
inet 10.136.88.117/16 brd 10.136.255.255 scope global ethl
valid_lft forever preferred_lft forever
inet6 fe80::107d:66ff:fe72:d03c/64 scope link
valid_Lft forever preferred_lft forever
4: docker@: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
link/ether 02:42:12:08:8d:83 brd ff.ff:ff.ff.ff.ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker®
valid_lft forever preferred_lft forever
ineto fe80::42:12ff:fe@8:8d83/64 scope link
valid_Lft forever preferred_lft forever

/#]

You will see a result the same as the host:

pythontesting

$ipa
1: lo: <LOOPBACK,UP,LONER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

Link/Toopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o

valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host

valid_1ft forever preferred_lft forever

2: ethQ: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default glen 1000

link/ether 62:76:7d:57:62:36 brd ff:ff:ff:ff:ff:ff

inet 142.93.50.102/20 brd 142.93.63.255 scope global ethd
valid_1ft forever preferred_lft forever

inet 10.10.0.6/16 brd 10.10.255.255 scope global ethd
valid_1ft forever preferred_lft forever

inetb 2604:0880:400:d1::830:4001/64 scope global
valid_1ft forever preferred_lft forever

inet6 fe80::6076:7dff:fe57:6236/64 scope link
valid_1ft forever preferred_lft forever

3: ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000

link/ether 12:7d:66:72:d0:3c brd ff:ff:ff:ff:ff:ff

inet 10.136.88.117/16 brd 10.136.255.255 scope global ethl
valid_1ft forever preferred_lft forever

inet6 fe80::107d:66ff:fe72:d03c/64 scope link
valid_1ft forever preferred_lft forever

4: docker@: <NO-CARRIER,BROADCAST ,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default

1

link/ether 02:42:12:08:8d:83 brd ff.ff.ff.ff.ff:ff

inet 172.17.0.1/16 brd 172.17.255.255 scope global dockerd
valid_1ft forever preferred_lft forever

inetb fed0Q::42:12ff:fe08:8d83/64 scope link
valid_1ft forever preferred_lft forever

2. To share the host network, PID, and IPC namespaces with the container, run
the following command:

$ docker container run -it --net=host --pid=host --ipc=host alpine ash

$ docker container run -it --net=host --pid=host --ipc=host alpine ash
/ # ps aux

PID

USER
root
root
root
root
root
root

TIME COMMAND
0:02 /usr/lib/systemd/systemd --switched-root --system --deserialize 21
0:00 [kthreadd]

0:00 [ksoftirqd/@]
0:00 [kworker/@:0H]
9:00 [kworker/u4:@]
0:00 [migration/Q]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker does not create separate namespaces for the container when such
arguments are passed to the container.

pythontesting

Getting Help and Tips and Tricks

In this chapter, we will look at the following recipes:

Starting Docker in debug mode

Building a Docker binary from the source

Building images without using cached layers

Building your own bridge for container communication
Changing the default OCI runtime

Selecting the logging driver for containers

Getting real-time Docker events for containers

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction

We'll become more curious as we learn more about Docker. Mailing lists and
IRC channels are the best places to get help, learn, and share knowledge about
Docker. Docker has a few IRC channels on freenode.net such as, #docker and
#docker-dev t0 discuss Docker in general and dev-related stuff, respectively. If you
prefer Slack over IRC, there is also a Slack community, and you can sign up
here: https://community.docker.com/network-groups.

While working on Docker, if you find any bugs, you can report them on GitHub
at https://github.com/moby/moby/issues. Slmllarly, if you have fixed a bug, you can
send the pull request, which will get reviewed and then get merged to the code
base.

Docker also has a forum and YouTube channel, which are great learning
resources as Well, at https://forums.docker.com and https://www.youtube.com/user/dockerr
un, respectively.

There are many Docker meetup groups around the world where you can meet
like-minded individuals and learn by sharing experiences at nttps://events.docker.c

om/chapters/.

In this chapter, I'll also run through a few tips and tricks that will help you work
better with Docker.

pythontesting

http://freenode.net/
https://community.docker.com/network-groups
https://github.com/moby/moby/issues
https://forums.docker.com
https://www.youtube.com/user/dockerrun
https://events.docker.com/chapters/

Starting Docker in debug mode

We can start Docker in debug mode to debug logs.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

I hope you already have Docker installed on your system by now.

pythontesting

 $ dockerd -D

 $ cat /etc/docker/daemon.json
 { "debug": true
}

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding command will start Docker in daemon mode. You will see lots of
useful messages as you start the daemon, such as loading up existing images,
settings for firewalls (iptabies), and so on. If you start a container, you will see
messages like the following:

| $ docker container run alpine echo "hello world"

On Ubuntu 18.04, the Docker daemon logs can be viewed by running this
command:

| $ journalctl -u docker.service
If you are using something other than Ubuntu 18.04, your Docker logs might be located
0 somewhere else. Refer to this page in the documentation to see where to find the logs for your

System: https://docs.docker.com/config/daemon/#read-the-1logs.

[info] POST /v1.30/containers/create
[99430521] +job create()

In the proceeding log snippet, you will be able to see the API request from the
Docker client to the Docker daemon for creating a new container. If something
isn't working, looking at the logs is a good way to get more information to help
you diagnose what is causing your problems.

pythontesting

https://docs.docker.com/config/daemon/#read-the-logs

See also

See the Docker daemon configuration documentation for more information: nhttps

://docs.docker.com/config/daemon/.

https://docs.docker.com/config/daemon/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building a Docker binary from the
source

Docker recently reorganized the Docker Engine and broke it up into different
parts. The main parts are runC (https://github.com/opencontainers/runc), containerD (
https://containerd.io), and MOby (https://mobyproject.org). Some of these pFOjECtS
were donated to other organizations to maintain. Docker, the product, is now a
combination of these different projects.

Sometimes, it is necessary to build a Docker binary from the source to test a
patch. It is very easy to build a Docker binary from the source. In order to build
one, you will need to use the source code from the Moby project. Follow these
steps to build your own binaries.

pythontesting

https://github.com/opencontainers/runc
https://containerd.io
https://mobyproject.org

 $ apt-get install -y make

3. Make sure Docker is running on the host you are building the code and that
you can access it through the Docker client, since the build we are
discussing here happens inside a container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Follow these steps:

1. Go inside the cloned directory:

| $ cd moby

2. Run the make command:

| $ sudo make
This will take a little while and require more then 1 GB of RAM. If you do not give it enough
resources, the build might fail.

pythontesting

How it works...

This will create a container and compile the code from the master branch inside
it. Once finished, it will Spit out the binary inside the bundles/binary-daemon/
directory.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

You can also run tests with the following command:

| $ sudo make test

pythontesting

See also

Look at the documentation on the Moby website for more information: nttps://gi

thub.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md.

https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building images without using cached
layers

By default, when we build an image, Docker will try to use the cached layers so
that it takes less time to build. However, at times, it is necessary to build from
scratch. For example, you will need to force a system update, such as the yum -y
update. Let's see how we can do that in this recipe.

pythontesting

Getting ready

Get a Dockerfile to build the image. For this example, we will be using the
following Dockerfile, which installs the nginx web server in an Alpine Linux

container:

FROM alpine:3.8

RUN apk add --update nginx && mkdir /tmp/nginx && rm -rf /var/cache/apk/*
EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

While building the image, pass the -no-cache option as follows:

$ docker image build -t test --no-cache - < Dockerfile
$ docker image build -t test --no-cache - < Dockerfile
Sending build context to Docker daemon 2.048kB
Step 1/4 : FROM alpine:3.8
3.8: Pulling from library/alpine
Digest: sha256:7043076348bf5040220df6ad703798fd859300918d06d3ce30cocI3bell7e430
Status: Downloaded newer image for alpine:3.8
---> 11cd0b38bc3c
Step 2/4 : RUN apk add --update nginx & mkdir /tmp/nginx && rm -rf /var/cache/apk/*
---> Running in aed6@ed2dd48
fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/main/x86_64/APKINDEX. tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.8/community/x86_64/APKINDEX.tar.gz
(1/2) Installing pcre (8.42-r@)
(2/2) Installing nginx (1.14.0-r0)
Executing nginx-1.14.0-r@.pre-install
Executing busybox-1.28.4-r@.trigger
OK: 6 MiB in 15 packages
Removing intermediate container aedo0ed2dd48
---> 930dab5e1bof
Step 3/4 : EXPOSE 80 443
---> Running in c123bae74387
Removing intermediate container c123bae74387
---> fof527edd3co
Step 4/4 . (MD ["nginx", "-g", "daemon off;"]
---> Running in c6@cabdcla3l
Removing intermediate container c6@ca6@cla3l
---> 9600d5d4de99
Successfully built 9600d5d4ded9
Suicessfully tagged test:latest
$

pythontesting

How it works...

The --no-cache option will discard any cached layer and build one Dockerfile
from scratch.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

Sometimes, we also want to discard the cache after a few instructions. In such
cases, we can add any arbitrary command that doesn't affect the image, such as
creation or setting up an environment variable.

pythontesting

Building your own bridge for
container communication

As we already know, when the Docker daemon starts, it creates a bridge called
dockero, and all the containers will get the IP from it. Sometimes, we might want
to use a different bridge for some of our containers. Let's see how we can do that
in this recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

I am assuming you already have Docker set up.

pythontesting

 $ docker network create brQ --subnet 192.168.2.1/24
 $ docker network ls

 $ docker container run -d --network br0 --name brOdemo
redis
 $ docker container inspect br0demo

"Networks": {
"br": {
"IPAMConfig": null,
"Links": null,
"Aliases": [
"4dadc12e7ba2"

ip
"NetworkID": "2b71d6adc30db214f19aa76689cec7e8f88db757de3cc9cal3e8oc37e007c66"

"EndpointID": "c40ffcd2d20719bfd6205ee7dadef7cdbae38a5¢c312962d49d78890216524f2"
"Gateway": "192.168.2.1",

"IPAddress": "192.168.2.2",
"IPPrefixLen": 24,

"IPvoGateway": "",
"GlobalIPvbAddress": "",
"GlobalIPvbPrefixLen": 0,
"MacAddress": "02:42:¢0:08:02:02",
"DriverOpts": null

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

The preceding steps will create a new bridge and it will assign the IP from
the 192.168.2.0 subnet to any of the containers that are assigned to that network.

pythontesting

There's more...

If you no longer need the network, you can remove it by running this command:

| $ docker network rm bre

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

See the documentation on the Docker website for more information: nttps://docs.

docker.com/network/.

pythontesting

https://docs.docker.com/network/

Changing the default OCI runtime

The Docker daemon relies on an OCI compliant runtime in order to interface
with the Linux kernel. By default, Docker uses runC, but you can switch this out
for any OCI compliant runtime if needed. In this recipe, we will show you how
to change the runtime to another OCI compliant runtime, that is, Intel Clear
Containers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ sudo sh -c "echo 'deb
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-
containers-3/xUbuntu_$(Isb_release -rs)/ /' >> /etc/apt/sources.list.d/clear-
containers.list"
$ wget -qO -
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-
containers-3/xUbuntu_$(Isb_release -rs)/Release.key | sudo apt-key add -

$ sudo -E apt-get update
$ sudo
-E apt-get -y install cc-runtime cc-proxy cc-shim

$ cc-runtime cc-check

pythontesting

{
 "default-runtime": "cc-runtime",
 "runtimes": {
 "cc-runtime":
{
 "path": "/usr/bin/cc-runtime"
 }
 }
 }

 $ systemctl daemon-reload
 $ systemctl restart
docker

 $ docker container run -it busybox sh

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker uses runc to access kernel features such as namespaces and CGroups to
run containers. We switched runc with another OCI compliant runtime, called
Intel Clear Containers.

pythontesting

See also

See the documentation on the Docker website for more information at: https://doc

s.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options.

https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Selecting the logging driver for
containers

Docker allows you to select the logging driver while starting the Docker
daemon. With the release of Docker 18.03, eleven types of logging drivers are
supported:

Driver Description

None No IOgS are available for the container and docker container logs
does not return any output.

json-file

(default) The logs are formatted as JSON.

syslog Writes log messages to the sysiog daemon on the host machine.
journald Writes log messages to the journaid daemon on the host machine.
| (GELE) exdporntouch os Greylogor Logsash +
fluentd Writes log messages to the fiventd daemon on the host machine.
awslogs Writes log messages to Amazon CloudWatch Logs.

splunk Writes log messages to spiunk using the HTTP Event Collector.
etwlogs Writes log messages as Event Tracing for Windows (ETW)

events (Windows only).

gcplogs Writes log messages to Google Cloud Platform (GCP) logging.

logentries | Writes log messages to Rapid7 log entries.

pythontesting

Getting ready

Install Docker on the system, if you haven't done so already.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ dockerd --log-driver=none
 $ dockerd --log-
driver=syslog

{
 "log-driver": "json-file",
 "log-opts": {
 "labels":
"production_status",
 "env'": "os,customer"
 }
 }

 $ docker container run -it --log-driver syslog alpine ash

pythontesting

How it works...

Depending on the log driver configuration, Docker daemon selects the
corresponding logging driver.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more...

The docker 1ogs command is only available for the following two drivers: json-
file and journald.

pythontesting

See also

See the documentation on the Docker website for more information at: https://doc

s.docker.com/config/containers/logging/configure/.

https://docs.docker.com/config/containers/logging/configure/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting real-time Docker events for
containers

As we will be running many containers in production, it will be helpful if we can
watch the real-time container events for monitoring and debugging purposes.
Docker containers can report events such as create, destroy, die, export, kill, oom,
pause, restart, start, stop, and unpause. In this recipe, we will see how to enable
event logging and then use filters to select specific event types, images, and
containers.

pythontesting

Getting ready...

Make sure that the Docker daemon is running on the host and that you can
connect through the Docker client.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 $ docker events

2. From the other terminal, do some container/image-related operations and
you will see a result similar to the following screenshot on the first
terminal:

$ docker events

2018-08-04T13:33:09.670533800-04:00 container create 1fc6dac800fbad2c7a1418bd13711283aaa90aed88f17b2710c6708f742afa3c (image=alpine, name=inspiring_lovelace)
2018-08-04T13:33:09.712915400-04:00 container attach 1fc6dac800fbad2c7a1418bd13711283aaa90aed88f17b2710c6708f742afa3c (image=alpine, name=inspiring_lovelace)
2018-08-04T13:33:10.026735400-04:00 network connect ac814b252e@ecf3daefc4360d64f950845c16ea69030992bb15e971al19afaa5f (container=1fc6dac800fbad2c7a1418bd1371128
3aa090aed88f17b2710c6708f742afa3c, name=bridge, type=bridge)

2018-08-04T13:33:12.109918900-04:00 container start 1fc6dac800fbad2c7al1418bd13711283aaa90aed88f17b2710c6708f742afa3c (image=alpine, name=inspiring_lovelace)

2018-08-04T13:33:12.130098000-04:00 container resize 1fc6dac800fbad2c7al418bd13711283aaa%0aed88f17b2710c6708f742afa3c (height=25, image=alpine, name=inspiring_

lovelace, width=80)
2018-08-04T13:34:05.617524200-04:00 container die 1fc6dac800fbad2c7a1418bd13711283aaa%@aed88f17b2710c6708f742afa3c (exitCode=0, image=alpine, name=inspiring_lo

velace)
2018-08-04T13:34:05.889969700-04:00 network disconnect ac814b252e@ecf3daefc4360d641950845¢c16ea69030992bb15e971a19afaas5f (container=1fc6dac800fbad2c7a1418bd1371

1283aaa90aed88f17b2710c6708f742afa3c, name=bridge, type=bridge)

After the events collection started, I created a container to just write a message
to the console. As we can see from the preceding screenshot, a container was
created, started, and died.

pythontesting

How it works...

With Docker events, Docker starts listing events.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

 --since="" Show all events created since timestamp

 --until="" Stream events until this timestamp

 $ docker events --since '2015-01-01'
 $ docker events --filter 'image=alpine:3.5'
 $ docker events --filter 'container=b3619441cb444b87b4'

 $ docker events --format 'TD={{.ID }} Type={{.Type}} Status=

{{.Status} }'

 $ docker events --format '{ {json .} }'

pythontesting

See also

The Docker events documentation can be found here: https://docs.docker.com/engine

/reference/commandline/events/.

https://docs.docker.com/engine/reference/commandline/events/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker on the Cloud

In this chapter, we will cover the following recipes:

Docker for AWS

Deploying WordPress on Docker for AWS
Docker for Azure

Deploying Joomla! on Docker for Azure

pythontesting

Introduction

In the previous chapters, we talked a lot about how to use Docker on a single
host, and in chapter 8, Docker Orchestration and Hosting Platform, we even
talked about how to use it on multiple hosts using orchestration. One of the most
popular ways to use Docker these days is in the cloud. There are a number of
popular cloud platforms available, and getting Docker set up and running on
each of them is a little different. To make the process easier, Docker has come
out with two new products: Docker for AWS, and Docker for Azure.

The goals of these products is to make bootstrapping your Docker environment
as easy as possible. Each product uses the cloud platforms' native tools to set up
a Docker Swarm cluster. You should be able to go from nothing to a full cluster
in a few minutes. Once the cluster is up and running, it is similar to any other
Swarm cluster, and you would manage it using the same Docker tools that we
learned about previously.

In this chapter, we will learn how to set up Docker for AWS and Docker for
Azure, and deploy an application to each.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker for AWS

Amazon Web Services (AWS) is the largest and most popular cloud platform
available today. AWS provides a few different ways of running Docker
workloads on their cloud. You can use Elastic Beanstalk, Elastic Container
Service (ECS), or Elastic Container Service for Kubernetes (EKS). Each of
these products have different capabilities, which allow you to do different things.
None of these products are Docker native, and require you to learn a new set of
tools and libraries in order to get your Docker application up and running.

Docker for AWS uses the same cloud-native tools that these products use, but
provides a more Docker-native experience. Once Docker for AWS is set up, you
can use the same Docker tools and APIs that you already know about to deploy
your Docker workload to AWS.

pythontesting

Getting ready

Before we can install Docker for AWS, you will need to make sure that you have
satisfied all of the prerequisites:

¢ You will need an active AWS account with either login access to the
console, or API keys for making CLI/API calls.

¢ Your account will either need to be an admin account, or an account with
the correct IAM permissions.

0 For a full list of permissions, look at the documentation at: nttps: /sdocs. docker. con/docker - for-aws/ian-

permissions/.

e SSH keys need to be created and added to your AWS account.

See the following Amazon documentation for more information: nttps:/sdocs. aws. amazon. con/Ansec2/1a
test/UserGuide/ec2-key-pairs.html.

https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Docker for AWS uses CloudFormation for building and configuring your Swarm
cluster. There are two ways to deploy a CloudFormation stack: you can do it via
the AWS web console, or the AWS Command Line Interface (CLI). Using the
web console is going to be easier to get up and running, because all you need to
do is fill out a web form. I recommended that approach if you are not familiar
with CloudFormation. This is what I'll be showing you here.

We are going to deploy the latest available stable version, and let Docker for
AWS build a new Virtual Private Cloud (VPC) for us. There is another option
where we can install it on an existing VPC, but that is out of the scope of this
recipe.

1. Log in to the AWS console and go to the CloudFormation section. Then,
click on the Create new stack button:

Create a stack

AWS CloudFormation allows you to guickly and easily deploy your infraggfucture resources and
applications on AWS. You can use one of the templates we provide {gfget started quickly with
applications like WordPress or Drupal, one of the many sample tegfiplates or create your own

template.

You do not currently have any stacks. Choose Create neyfstack below to create a new AWS
CloudFormation g

2. Under Choose a template, select the Specify an Amazon S3 template URL
radio button, enter the following URL, and click Next: nttps://editions-us-eas

t-1.s3.amazonaws.com/aws/stable/Docker.tmpl:

pythontesting

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

Select Template

Select the template that describes the stack that you want to create. A stack is a group of related resources that you manage as a single unit.

Design a template Use AWS CloudFormation Designer to create or modify an existing template. Learn more.

Design template

Choose atemplate Atemplate is a JSON/YAML-formatted text file that describes your stack's resources and their properties. Learn more.

) Select a sample template

“r

") Upload a template to Amazon S3

Choose File N0 file chosen

© Specify an Amazon S3 template URL

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl | View/Edit template in Designer

Gancel Next
3. Fill out the form, as shown in the following screenshot:
Stackname demostack
Parameters
Swarm Size
Number of Swarm 3 3| Number of Swarm manager nodes (1, 3, §)
managers?
MNumber of Swarm worker 1 Number of worker nodes in the Swarm (0-1000).

nodes?

Swarm Properties

Which SSH key to use? | Ken Cochrane ssh -

Name of an existing EG2 KeyPair to enable S5H access to the instances

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

The rest you can change, or leave as the default values.

4. Hit the Next button.

5. Add any optional tags if you want to, otherwise, feel free to leave
everything as it is and hit the Next button:

Options

Tags

You can speciy tags (key-value pairs) for resources in your stack, You can add up to 50 unique key-value pairs for each stack. Leam more,

Key (127 characters maximum) Valua (255 characters maximum)

Permissions

You can choose an |AM role that CloudFomation uses to create, madify, or delete resources in the stack. f you don't choose a role, CloudFormetion uses the permissions defined in your account, Leam
more.

IAMRole Choosa a role optional) c

Enter role am

» Rollback Triggers

Rollback triggers enable you to have AWS CloudFormation monitor the state of your application during stack creation and Lpdating, and to rollback that operation i the application braaches the
threshold of any of the alarms you've specfied. Leem more

+ Advanced

You can set additional options for your stack, ike notification options and stack palicy. Leam more,

Cancel | Previous m

pythontesting

6. Click the I acknowledge that AWS CloudFormation might create IAM
resources checkbox, and hit the Create button:

Capabilities

0 The following resource(s) require capabilties: [AWS:.IAM: Role]

Thistemplate containg denify and Access Management AV resources that might provide entties access to meke changes to your AWS accourt, Check that you want to create each of
these resources and that they have the minimum required perrmissions. Lear mare.

| acknowledge that AWS CloudFormation migh create 1AM resources.

Quick Create Stack (Graate stacks similar o tis one, with most detalls auto-papulatad)

Cancel Previous

7. Tt will take a few minutes to create your stack, and when it is completes,
you should go to the Outputs tab and click on the link next to Managers:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

@ CloudFormation v Stacks

Create Stack [bt Actions = Design template fed -]
Filter: Active ~ Showing 1 stack
Stack Name Created Time Status Description
demostack 2018-08-08 20:14:47 UTC-0400 Docker CE for AWS 18.03.0-ce (18.03.0-ce-aws1)
Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets Rollback Triggers [N =l =]
Key Value Description Export Name

demostack-External-X338C6JRDJOK-75735144
DefaultDNSTarget Use this name to update your DNS records
3.us-east-1.elb.amazonaws.com
This region has at least 3 Avallability Zones (AZ).
ZoneAvailabilityGomment This is ideal to ensure a fully functional Swarm in Availabilty Zones Gomment
case you lose an AZ.

https://us-east-1.console.aws.amazon.com/ec2/
v2/home?region=us-east-1#Instances:tag:aws:a

Managers 4 9 9 ‘You can see the manager nodes associated wi...
utoscaling:groupName=demostack-ManagerAsg

-1QCTDO1FBOWRX;sort=desc:dnsName

VPCID vpc-00f41c61a110a3848 Use this as the VPG for configuring Private Ho...
NodeSecurityGrouplD sg-032a1cbaecce75d3d SecurityGroup ID of NodeVpcSG
ELBDNSZonelD Z358XDOTRQ7XTK Use this zone ID to update your DNS records
ManagerSecurityGrouplD sg-086fc64716f0c2948 SecurityGroup ID of ManagerVpcSG
SwarmWideSecurityGrouplD 5g-0c0ab40100b6bdecs SecurityGroup ID of SwarmWideSG

8. Pick one of the Public IP addresses for one of the managers:

Launch Instance Actions v

aws:autoscaling:groupName : demostack-ManagerAsg-1QCTDO1FBOWRX Instance State : Running Add filter

Name + | Instance Type Availability Zone Instance State Public DNS (IPv4) IPv4 Public IP IPvE IPs
demostack-Manager t2.micro us-east-1c @ running ec2-52-201-109-15.¢co... 52.201.109.15
demostack-Manager t2.micro us-east-1b @ running ec2-54-84-197-62.com.. 54.84.197 62
demostack-Manager t2.micro us-east-1a @ running 0c2-34-227-117-208.co... | 34.227.117.208

SSH into one of the manager nodes, like so:

$ ssh docker@52.201.109.15

$ docker node 1ls
$ ssh docker@52.201.109.15
The authenticity of host '52.201.109.15 (52.201.109.15)' can't be established.
ECDSA key fingerprint is SHA256:BXCdWi8K3i/YmBJfR17565905ZCvukie3wboKcbRz6A.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.201.109.15' (ECDSA) to the list of known hosts.
Welcome to !
~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
hx1thjnat3a6m55sc6quoléno ip-172-31-11-161.ec2.internal Ready Active Leader 18.03.0-ce
1wo3njlox73yqjrucvoncwnac ip-172-31-30-8.ec2.internal Ready Active Reachable 18.03.0-ce
wjtswqd3zjc2zeyn@gjd8cmal ip-172-31-41-4.ec2.internal Ready Active 18.03.0-ce
oprri58y|“7a328000jjnk3711 i ip-172-31-42-126.ec2.internal Ready Active Reachable 18.03.0-ce
~$

When you SSH into the swarm manager, you are not actually logging in to the EC2 host
directly — you are logging in to a special SSH container that is running on that host.

Docker for AWS is now ready to use.

pythontesting

How it works...

CloudFormation will take the information that we provided in the form, and it
will build a new Virtual Private Cloud (VPC), subnets, internet gateway,
routing tables, security groups, Elastic Load Balancer (ELB), and two EC2
AutoScaling Groups (ASG) — one ASG for the managers and one for the
workers. The manager nodes in the manager ASG will create new EC2 instances
with Docker installed on them. The manager instances will then create a new
Docker Swarm and join together to form a manager quorum.

Once the manager nodes are up and running, the worker ASG will start up
worker EC2 instances with Docker on them, and they will also join the same
Swarm and start accepting tasks. After all of these steps are complete, the
Swarm is ready for action.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

There's more

Getting Docker for AWS up and running is only half the battle. Now that it is
running, you will need to deploy an application, which we will show you in the
next recipe. In the meantime, here are a few common tasks that you should know
how to do:

¢ Scaling more workers: If you want to change the number of workers that
you have in your Swarm cluster, you can do this by updating the
CloudFormation stack.

Go to the CloudFormation management page and click the checkbox next to the
stack you want to update. Then, click on the Actions button at the top and select
Update Stack:

i
| Actions ~ | Design template

Filter: Active v Create Change Set For Current Stack

Stack Name Status

Change termination protection
Delete Stack

demostack CREATE_COMPLETE

View/Edit template in Designer

Pick Use current template, and then click Next:

pythontesting

Update demostack stack

| Select Tempite Select Template
Specify Detalls
Options To update an existing stack, provide a template that specifies the changes for the resources and properties that you want to update. AWS CloudFormation updates only the

resources that have changed. Leam more,
Review

Choose atemplate A template s a JSON/YAML-formatted text filethat describes your stack's resources and thelr properties. Learn more.

© Use current template

View/Edit template in Designer

") Upload a template to Amazon 83

thoose Fle No file chosen

) Specify an Amazon 53 template URL

Cancel m

Fill out the same parameters you specified previously, but this time, change your
worker count to the new count, and click Next:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Specify Details

SDSCIW parameter values. You can use or change the default parameter values, which are defined in the AWS CloudFormation template. Learn more.

Stackname demostack

Parameters

Swarm Size

Number of Swarm 3 + Number of Swarm manager nodes (1, 3, 5)

managers?

Number of Swarm worker | 2 Number of worker nodes In the Swarm (0-1000).
nodes?

On the last page, it will let you preview your changes. If they look good, select
the checkbox and click the Update button:

pythontesting

Capabilities

0 The following resource(s) require capabilities: [AWS::AM::Role]

This template contains Identty and Access Management (IAM) resources that might provide entities access to make changes to your AWS account, Check that
you want to create each of these resources and that they have the minimum required permissions. Leam mre.

| acknowledge that AWS CloudFormation might create IAM resources.

Preview your changes
Based on your input, CloudFormation will change the following resources. For more information, choose View change set detalls.
Action Logical ID Physical ID Resource type Replacement

m NodeAsg demostack-NodeAsg-1EBUKIZSOQYTO AWS::AutoScaling: AutoScalingGroun False

Cancel | Previous

CloudFormation will then update the worker ASG setting and scale the number
of worker nodes appropriately. To confirm that the nodes are up and have
successfully joined the Swarm, you can log in to a Manager node and run the
following command: $ docker node Is

Deleting the Stack: Go to the CloudFormation management page and click the
checkbox next to the stack you want to delete. Then, click on the Actions button
at the top and select Delete Stack:

qg 6089740 21734177

‘ Actions - ‘ Design template

Fiter: Active~

Stack Name

demostack

Create Change Set For Current Stack

Update Stack
Change termination protection

View/Edit template in Designer

20:14:47 UTC-0400

IT

Status

CREATE_COMPLETE

http://t.cn/RDIAJS5D

CloudFormation will then remove all of the items in your stack, including any
services you had running on your Swarm.

pythontesting

See also

e Docker for AWS documentation: https://docs.docker.com/docker - for -aws/

e How to upgrade Docker for AWS: https://docs.docker.com/docker-for-aws/upgrade
/

° [JSh]g d pEFSiStETH daIaStOFeZhttps://docs.docker.Com/docker-for-aws/persistent-da

ta-volumes/

https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deploying WordPress on Docker for
AWS

Now that we have an active Docker for AWS installation set up, let's deploy an
application to see how it works. In this recipe, we will be installing WordPress
on top of Docker for AWS.

pythontesting

Getting ready

Before we proceed, you will need to make sure that you have satisfied all of the
prerequisites:

1. You will need to have your Docker for AWS stack from the previous recipe
up and running.

2. SSH into one of the manager nodes. Instructions on how to do this are also
available in the previous recipe.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How to do it...

Once we are logged in to one of the manager nodes, the first thing we need to do
is create some swarm secrets for our database passwords:

$ echo "myDbP@SSwods" | docker secret create root_db_password -
$ echo "myWpressPw" | docker secret create wp_db_password -

~ $ echo "myDbP@SSwods" | docker secret create root_db_password -
z4rtlgpntaju@lhyon215nvzf

~ $ echo "myWpressPw" | docker secret create wp_db_password -
3vr'xipwr'p8vpsi 7fmxnryhqgks

~ $

We also need to create an overlay network so that our services can talk with each
other:

| $ docker network create -d overlay wp
~ $ docker network create -d overlay wp
vcwuadpl2wrjlr2k73uo@wgqgs

~$|

Let's create the MariaDB database service that WordPress is going to use; we
will use the secrets and the network we created previously. We will then check
the status of the service to make sure it started correctly:

$ docker service create \
--name mariadb \
--replicas 1 \
--constraint=node.role==manager \
--network wp \
--secret source=root_db_password, target=root_db_password \
--secret source=wp_db_password, target=wp_db_password \
-e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
-e MYSQL_PASSWORD_FILE=/run/secrets/wp_db_password \
-e MYSQL_USER=wp \
-e MYSQL_DATABASE=wp \
mariadb:10.3

$ docker service ps mariadb

pythontesting

$ docker service create \
--name mariadb \
--replicas 1 \
--constraint=node.role==manager \
--network wp \
--secret source=root_db_password,target=root_db_password \
--secret source=wp_db_password,target=wp_db_password \
MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
MYSQL_PASSWORD_FILE=/run/secrets/wp_db_password \
MYSQL_USER=wp \
MYSQL_DATABASE=wp \
> mariadb:10.3
tdt8r14t08i31gd2021ruswqgj
overall progress: 1 out of 1 tasks
1/1: running [=
verify: Service converged
~ $ docker service ps mariadb
D NAME IMAGE DESIRED STATE CURRENT STATE
ERROR PORTS
m9asx6cp4qqr mariadb.1 mariadb:10.3 ip-172-31-11-161.ec2.internal Running Running 13 seconds ago

>
>
>
>
>
>
>
>
>
i g

Now that we have our database, let's create our WordPress service; we will use
the same secrets and network that we used with the mariadb service, but this time
we will create three replicas. We will then check the status of the service to make
sure it started correctly:

$ docker service create \
--name wp \
--constraint=node.role==worker \
--replicas 3 \
--network wp \
--publish 80:80 \
--secret source=wp_db_password, target=wp_db_password, mode=0400 \
-e WORDPRESS_DB_USER=wp \
-e WORDPRESS_DB_PASSWORD_FILE=/run/secrets/wp_db_password \
-e WORDPRESS_DB_HOST=mariadb \
-e WORDPRESS_DB_NAME=wp \
wordpress:4.9

$ docker service ps wp
$ docker service create \
--name wp \
--constraint=node.role==worker \
--replicas 3 \
--network wp \
--publish 80:80 \
--secret source=wp_db_password,target=wp_db_password,mode=0400 \
-e WORDPRESS_DB_USER=wp \
-e WORDPRESS_DB_PASSWORD_FILE=/run/secrets/wp_db_password \
-e WORDPRESS_DB_HOST=mariadb \
-e WORDPRESS_DB_NAME=wp \
> wordpress:4.9
le6yypep5nbzvnaywwgdzchfo
overall progress: 3 out of 3 tasks
1/3: running
2/3: running
3/3: running [==
verify: Service converged
~ $ docker service ps wp
1D NAME IMAGE NODE DESIRED STATE CURRENT STATE
N
u7flntszlcpd wp.1 wordpress:4.9 ip-172-31-41-4.ec2.internal Running Running 12 seconds ago

VVVVVVVVVYV2Q

yllek@thbnfg wp.2 wordpress:4.9 ip-172-31-41-4.ec2.internal Running Running 10 seconds ago

f54jist15k6e wp.3 wordpress:4.9 ip-172-31-41-4.ec2.internal Running Running 10 seconds ago

qg 6089740 21734177

1T http://t.cn/RDIAJS5D

Now that we have the WordPress service up and running, let's check to see
whether we can connect to it from our browser.

To find out the correct URL, we will go back to the CloudFormation Outputs tab
again, but this time we will look at the DefaultDNSTarget, copy that value, and
enter it into our browser:

Filter: Active~
Stack Name

demostack

Created Time Status

2018-08-08 20:14:47 UTC-0400

Template Parameters Tags

Value

CREATE_COMPLETE

Stack Policy

Overview Qutputs Resources Events
Key
DefaultDNSTarget

demostack-External-X335C6JRDJOK-75735144
3.us-east-1.elb.amazonaws.com

ZoneAvallabilityComment

Managers

VPCID
NodeSecurityGrouplD
ELBDNSZonelD
ManagerSecurityGrouplD

SwarmWideSecurityGrouplD

This region has at least 3 Availability Zones (AZ).
This is ideal to ensure a fully functional Swarm in
case you lose an AZ.

https://us-east-1.console.aws.amazon.com/ec2/
v2/home?region=us-east-1#Instances:tag:aws:a
utoscaling:groupName=demostack-ManagerAsg
-1QCTDO1FBOWRX;sort=desc:dnsName

vpc-00f41c61al10a3g48
sg-032a1cbaecce7od3d
Z35SXDOTRQTXTK
sg-086fc64716f0c2048

sg-0c0ab40100bébdecs

Showing 1 stack

Description

Docker CE for AWS 18.03.0-ce (18.03.0-ce-aws1)

Change Sets Rollback Triggers _ N =] =]

Description Export Name

Use this name to update your DNS records

Availabilty Zones Comment

You can see the manager nodes associated wi...

Use this as the VPG for configuring Private Ho...
SecurityGroup ID of NodeVpcSG

Use this zone ID to update your DNS records
SecurityGroup 1D of ManagerVpcSG

SecurityGroup ID of SwarmWideSG

Success! As you can see, the service is up and running;:

pythontesting

“ = I(D Not Secure | demostack-external-x33scBjrdj0k-757351443.us-east-1.elb.amazonaws.com/wp-admin/install.php

English (United States)
Afrikaans

el

g paall Ayl
Tt

sl R 8
Azarbaycan dili
Benapyckan moea
Burrapcku

qreet

He-lim

Bosanski

Catala

Cebuano

Cestina

Cymraeg

Dansk

Deutsch (Sie)
Deutsch

Deutsch (Schweiz)
Deutsch (Schweiz, Du)
Fom

FAAnuierds

If you are not going to be completing the setup wizard right away, please remove or stop the
8 service, or else someone else could come by and do it for you, and take over your WordPress
install.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

In this recipe, we created two new services. One was a database to store the
information for the other web service. We used secrets to protect our passwords,
and we used those secrets instead of hardcoding our passwords in the image, or
passing them in as environmental variables.

We also created a custom overlay network for our application, so that the two
services could talk to each other across the cluster and that traffic was encrypted
by default, which means that all communications between our two services is
secure.

Docker for AWS has a service that listens for new services that get added to the
Swarm and, when a new service has ports exposed, it will automatically
configure the external load balancer to accept traffic for that service. When
someone hits the load balancer, it will send the traffic to one of the Swarm
managers, and then the Swarm will route the traffic to the correct host and
container.

pythontesting

There's more...

In the preceding recipe, we were only accepting traffic over HTTP. With AWS,
you can get a free SSL/TLS certificate using the AWS Certificate Manager
(ACM), and if you have one of those, you can configure the load balancer and
Docker for AWS to support SSL/TLS traffic as well. Follow these directions for
more information: https://docs.docker.com/docker-for-aws/load-balancer/.

To destroy the services, we can just remove them from the Swarm, and it will

take the site down:

$ docker service rm wp
$ docker service rm mariadb

~ $ docker service ls

ID NAME MODE
mariadb replicated
wp replicated

~ $ docker service rm wp

wp
~ $ docker service rm mariadb
mariadb
~ $ docker service 1s

NAME

REPLICAS IMAGE PORTS
25/ mariadb:10.3
3/3 wordpress:4.9 *:80->80/tcp

REPLICAS

https://docs.docker.com/docker-for-aws/load-balancer/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker for Azure

Microsoft Azure is a cloud computing platform created by Microsoft for
building, testing, deploying, and managing applications. It is currently the
second most popular cloud platform behind Amazon. In this recipe, we will
discuss how to install Docker for Azure, a product from Docker that makes it
easy to get a Docker native stack up and running on Azure.

pythontesting

Getting ready

Before we can get started, there are a few things you will need:

e Access to a Microsoft Azure account with admin privileges

e An SSH key, which you will use when accessing the Docker for Azure
Manager nodes

e An Azure Service Principal (SP), which is used by Docker for Azure to
authenticate with the Azure APIs

Docker has made it easy to create a Service Principal by using a Docker image
they provide. Follow these steps to create a Service Principal. The first thing you
will do is run the Docker image, passing in a few parameters:

| $ docker container run -ti docker4x/create-sp-azure [sp-name] [rg-name rg-region]

® sp-name: The name of the service principal (for example, sp1).

® rg-name: The name of a new resource group, which will be used when
deploying Docker for Azure (for example, swarm1).

® re-region: The name of the Azure region where the resource group will be
created (for example, eastus). For a full list of available regions, go to the
fOHOWng page: https://azure.microsoft.com/en-us/global-infrastructure/regions/.

$ docker container run -ti dockeré4x/create-sp-azure:latest spl swarml eastus
Executing command login
To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code AWAX778WP to authenticate.
Added subscription Free Trial
Setting subscription "Free Trial" as default

+
login command OK
The following subscriptions were retrieved from your Azure account
1) Q475a:Free_Trial
Please select the subscription option number to use for Docker swarm resources: 1
Using subscription 0475a
Executing command account set
Setting subscription to "Free Trial" with id "
Changes saved
account set command OK

It will then ask you to visit a web page and enter a code to authenticate. This will
verify your account and link it to the Docker container, which will let it complete
the creation of the Service Principal:

https://azure.microsoft.com/en-us/global-infrastructure/regions/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

———

& C | & Secure | https:/flogin.microsoftonline.com/common/reprocess?ctx=rQllAdNi.. ¥ | O

Microsoft Azure Cross-
nlatform Command Line
nterface

You have signed in to the Microsoft Azure Cross-
platform Command Line Interface application on
your device. You may now close this window.

When complete, you should see your Service Principal credentials. Save this
information in a safe place; you will need it in a minute:

Your access credentials

AD ServicePrincipal App ID: 87330c7a7c4l
AD ServicePrincipal App Secret: Belif LQq

AD ServicePrincipal Tenant ID: 78e7fa7 3d732
Resource Group Name: swarml
Resource Group Location: eastus

$

pythontesting

How to do it...

Docker for Azure uses the Azure Resource Manager (ARM) to create all of the
required resources tha

Open the following web page and select the Stable channel version: nttps://docs.d

ocker.com/docker-for-azure/.

https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure

qg 6089740 21734177

IT http://t.cn/RDIAJ5D

Docker Community Edition (CE) for Azure

Quickstart

If your account has the proper permissions, you can generate the Service Principal and then choose from

the stable or edge channel to bootstrap Docker for Azure using Azure Resource Manager. For more about

stable and edge channels, see the FAQs.

Stable channel

This deployment is fully baked and tested, and
comes with the latest CE version of Docker.

This is the best channel to use if you want a
reliable platform to work with.

Stable is released quarterly and is for users that
want an easier-to-maintain release pace.

Edge channel

This deployment offers cutting edge features of
the CE version of Docker and comes with
experimental features turned on, described in the
Docker Experimental Features README on
GitHub. (Adjust the branch or tag in the URL to
match your version.)

This is the best channel to use if you want to
experiment with features under development, and
can weather some instability and bugs. Edge is for
users wanting a drop of the latest and greatest
features every month

We collect usage data on edges across the board.

Deploy Docker Community Edition (CE]
for Azure [stable)

Deploy Docker Community Edition (CE)
for Azure (edge)

This will take you to the Azure portal and start a custom deployment using the
Docker for Azure ARM template. Add the Service Principal credentials that you
have from before, and answer the other questions. Don't forget to include your
SSH public key. When the form is complete, select the I agree... checkbox and

click on the Purchase button:

pythontesting

Custom deployment
Deploy from a custom template

* Subscription Free Trial i
* Resource group .:\. Create new -’é‘u Use existing

swarm v
* Location i AV
SETTINGS
* Ad Service Principal App 1D @ ‘ 41 J|
* Ad Service Principal App Secret @ R \,|
Enable Ext Logs @ yes ™
Enable System Prune @ no W
* Linux 55H Public Key @ ssh-rsa AAAAI ' : Ay..
Linux Worker Count @ 1 i
Linux Worker VM Size @ Standard_D2_v2 W
Manager Count 1 W
Manager VM Size @ Standard_D2_v2 k4

Swarm Name @ dockerswarm

TERMS AND CONDITIONS

Azure Marketplace Terms | Azure Marketplace

By clicking “Purchase,” | (a} agree to the applicable legal terms associated with the offering; (b} authorize Microsoft to charge or bill
my current paymggt method for the fees associated the offering(s), including applicable taxes, with the same billing frequency as my
Azure subscri . until | discontinue use of the offering(s); and () agree that, if the deployment involves 3rd party offerings,

qq 6089740

21734177

IT

http://t.cn/RDIAJ5D

This will start creating the resources you need and show you the progress of the

deployment:

i Delete @ Cancel |T] Redeploy U Refresh

0 Deplaying

Deplayment name
Microsoft. Template

Status
Deplaying
Subscription
Free Trial

Resource group
swarm1

RESOURCE

swarm-worker-vmss

externalS5HLoadBalancer

externalLoadBalancer

dockerswarm-externalsSH...

dockerswarm-vnet

3kia3tagTkehkdocker

dockerswarm-externalLoa...

qgadaokpfxSladocker
nuulégkjhvgaclogs
iubgw73ugbdmsdocker
ekll5T3pmghnydacker

tupkaxSficozbdocker

pythontesting

TYPE

Microsoft Compute/virtual...
Microsoft Network/loadBa...
Microsoft Network/loadBa...
Microsoft.Network/publicl...
Microsoft.Network/virtual...
Microsoft Storage/storage...
Microsoft.Network/publicl...
Microsoft Storage/storage...
Microsoft Storage/storage...
Microsoft Storage/storage...
Microsoft Storage/storage...

Microsoft Storage/storage...

STATUS

Created

Created

Created

0K

CK

0K

OK

CK

0K

CK

CK

CK

w

Last modified

8/9/2018, 8:05:03 PM

Duration
38 seconds

Correlation 1D

3243ec5-1002-4555-8711-131¢157d78fa

TIMESTAMP

8/9/2018, £:05:36 PM

B8/9/2018, 8:05:29 PM

8/9/2018, 8:05:08 PM

8/9/2018, 8:05:28 PM

8/9/2018, 8:05:16 PM

B/9/2018, B:05:26 PM

B/9/2018, 8:05:03 PM

B8/9/2018, 8:05:26 PM

6/9/2018, B:05:26 PM

8/9/2018, 8:05:20 PM

B8/9/2018, 8:05:20 PM

8/9/2018, 8:05:25 PM

Cperation details
Operation details
Cperation details
Operation details
Cperation details
Operation details
Cperation details
Operation details
Operation details
Operation details
Cperation details

Operation details

When it is finished, click on the Outputs tab and make note of the three outputs.
You will need these a little later. Copy the value for SSH TARGETS and open
the URL in a new browser window:

s A APPURL | applb-lbrféebpfédda.eastus.cloudapp.azure.com |E
DEFAULTDNSTARGET 40.121.71.166]
Cverview
SSH TARGETS https://portal.azure.com/#resource/subscriptions/c676ceB4-70ca-4916-ab70-3623199047.... E
Cutputs
= Inputs
Template

This is the list of Manager nodes that are in your Swarm. To connect to this
node, we can SSH to the destination IP address on the Custom TCP port:

== Add

B

NAME IP VE... DESTINATION TARGET SERVICE

default.0 1Pv4 40.76.49.102 swarm-manager-vmss (instan... Custom §TCP/50000)

Using that information, let's SSH into that Manager and make sure it is working
correctly by listing the nodes in the Swarm: $ ssh -p 50000
docker@40.76.49.102

$ docker node Is

$ ssh -p 50000 docker@40.76.49.102

The authenticity of host '[40.76.49.102]:50000 ([49.76.49.102]:50000)' can't be established.
RSA key fingerprint is SHA256:8cP3sMieWootHG+U/4Ih7NGu/JyWPt/@yN19f89vRa4.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[40.76.49.102]:50000' (RSA) to the list of known hosts.

Welcome to Docker!

swarm-manager@00000:~$ docker node 1s

ID HOSTNAME NS AVAILABILITY MANAGER STATUS ENGINE VERSION
scztcxkaeb58z0z8q916114ip * swarm-manager@0000@ Ready Active Leader 18.03.0-ce
fkj4998h9uuhhclv2qyh87g8n swarm-worker@00000 Ready Active 18.03.0-ce
swarm-manager@00000:~$ ||

If everything is working correctly, you should see the list of all of your manager
and worker nodes with a status of ready.

When you SSH into the swarm manager, you are not actually logging into the Azure host
directly, you are logging into a special SSH container that is running on that host.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

How it works...

Docker for Azure has an Azure Resource Manager (ARM) template that, when
applied, will create all the required resources on Azure and configure them
together to create the Swarm cluster. Docker for Azure uses the Service Principal
to make the required API calls to configure all of the nodes, as well as to manage
the cluster once it is up and running.

pythontesting

There's more...

When the time comes to remove Docker for Azure, you will need to go into the
Azure portal, find the deployment, select all of the resources, and delete them:

+ Add SE Editcolumns [Delete resource group U Refresh =3 Move ‘ Assigntags [Delete

Subscription (change) Subscription 1D Deployments
Free Trial cE76ce84-T0ca-4916-ab70-36231... 1 Succeeded

Tags ichange)
Click here to add tags

|l Allty|.:|.es v:_ All locations ~ [Nao grougingv]
13 of 13 items selected Show hidden types @
HAME TYPE LOCATION
L g 3kia3tagTkehkdocker Storage account East UsS
o j dockerswarm-externalLoadBalancer-public-ip Public IP address East US
' :‘ dockerswarm-externalSSHLoadBalancer-public-ip Public IP address East US
V| ¢ dockerswarm-vnet Virtual network East US
L g ekll573jxghnydocker Storage account East US
L ,:} externalLoadBalancer Load balancer East US
L {P externalS5HLoadBalancer Load balancer East US
\d g iubgw73ugb4msdocker Storage account East US
L g nuulégkjhvgaologs Storage account East US
L 3 ggadackpfxSladocker Storage account East US
' TE“_] swarm-manager-vmss Virtual machine scale set East US
v r'i’i] swarm-worker-vmss Virtual machine scale set East US
L g tupkax5f3coz6docker Storage account East US

Confirm the resources that you want to remove:

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Delete Resources *

Deleting 13 resources

Do you want to delete all the selected resources?

Warning! Deleting the selected resources is irreversible. This

will permanently delete the selected resources, their related
A resources and contents. If you are not sure about the

selected resource dependencies, please go to individual

resource type blade to perform the delete operation.

This action cannot be undone. Do you want to continue?

Confirm delete @
| yed v

Selected resources

3Ikia3tagTkehkdocker (Storage account)

dockerswarm-externalloadBalancer-public-ip {Public..

i &

dockerswarm-externalS5HLoadBalancer-public-ip {P--

o5
*
W

dockerswarm-vnet (Virtual network)
ekll5T3xghnydocker (Storage account)
externalloadBalancer {Load balancer)
externalssiHLoadBalancer {Load balancer)
iubgw73ugbdmsdocker (Storage account)
nuulégkjhvgaologs (Storage account)
ggadaokpfxSladocker (Storage account)
swarm-manager-vmss (Virtual machine scale set)

swarm-waorker-vmss (Virtual machine scale set)

X X X X X X X X X X X XX

@4 iliDne e

tupkax5f3cozbdocker (Storage account)

poto | concal

pythontesting

until their dependent resources are deleted. This means you will probably need to delete the

0 Due to some resource dependencies, you might have some resources that can't be removed
resources a few times before they will all be removed.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e Docker for Azure documentation: nhttps://docs.docker .com/docker-for-azure/

e How to upgrade Docker for Azure: https://docs.docker.com/docker-for-azure/upgr
ade/

° IJSh]g d persistern daIaStOFEZhttps://docs.docker.Com/docker-for-azure/persistent-

data-volumes/

pythontesting

https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/

Deploying Joomla! on Docker for
Azure

Now that we have an active Docker for Azure installation set up, let's deploy an
application to see how it works. In this recipe, we will be installing Joomla!, a
popular open source CMS, on top of Docker for Azure.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Getting ready

Before we can get started, there are a few things you will need:

1. You will need to have your Docker for AWS stack up and running from the
previous recipe.

2. SSH into one of the manager nodes. Instructions on how to do this are also
available in the previous recipe.

pythontesting

How to do it...

Once we are logged in to one of the manager nodes, the first thing we need to do
is create some Swarm secrets for our database passwords: $ echo
"DbP@SSwod1" | docker secret create root_db_password -

$ echo "myJ000mlaPw" | docker secret create jm_db_password -

swarm-manager@@0@00:~$ echo "DbP@SSwodl" | docker secret create root_db_password -
scx18b5ymg61lcm33ampundyis

swarm-manager@@0000:~$% echo "myJ@@@mlaPw" | docker secret create jm_db_password -
p7swlybwsj711fc8azZnfpxo3w

Let's confirm that we added them correctly:

$ docker secret ls
swarm-manager@00000:~$ docker secret ls
ID NAME DRIVER CREATED UPDATED
p7swlybwsj711fc8a2nfpxo3w jm_db_password 29 seconds ago 29 seconds ago
scx18b5ymg6lcm33ampundyis root_db_password 35 seconds ago 35 seconds ago
swarm-manager@00000:~$ |]

They look good. Let's create a custom overlay network so that our services can
talk with each other over an encrypted connection on the cluster: $ docker
network create -d overlay joomla

$ docker network Is

swarm-manager@@0000:~$ docker network create -d overlay joomla
S5cwachpwzluhnkti7iophhha@

swarm-manager@@0000:~$ docker network 1s

NETWORK ID NAME DRIVER SCOPE
bb9047293be9 bridge bridge local

be27b6154ed?2 docker_gwbridge bridge local
b46cc377aae4 host host local
umn@19xvk;jpo ingress overlay swarm
S5cwachpwzluh joomla overlay swarm
3970275e1638 none null local
swarm-manager@00000:~$ ||

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Now, we are ready to add our services. Joomla! requires a database, so we are
going to create a MariaDB service, and we will use the network and secrets that
we created earlier for our passwords: $ docker service create \

--name mariadb \

--replicas 1\

--constraint=node.role==manager \

--network joomla \

--secret source=root_db_password,target=root_db_password \

--secret source=jm_db_password,target=jm_db_password \

-e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
-e MYSQL_PASSWORD_FILE=/run/secrets/jm_db_password \

-e MYSQL_USER=joomla \

-e MYSQL_DATABASE=joomla \

mariadb:10.3

swarm-manager@@0000:~$ docker service create \

> --name mariadb \

> --replicas 1 \

> --constraint=node.role==manager \

5 --network joomla \

> --secret source=root_db_password,target=root_db_password \
> --secret source=jm_db_password,target=jm_db_password \
>

>

>

>

>

-e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password \
-e MYSQL_PASSWORD_FILE=/run/secrets/jm_db_password \
-e MYSQL_USER=joomla \
-e MYSQL_DATABASE=joomla \
mariadb:10.3
nghierafl7cbZbthtbtu38buf
overall progress: 1 out of 1 tasks
1/1: running
verify: Service converged
swarm-manager@00000:~$ |

Now that we have all of our dependencies created, we can add our Joomla!
service. We will use the same network as before, but you will notice that we are
passing the database password as an environment variable instead of using the
Docker Secret we created earlier. This is because the Joomla! image does not
currently support secrets, but hopefully support will be added in the near future,
and we can switch it to use the secret at that time: $ docker service create \

pythontesting

--name joomla \

--constraint=node.role==manager \

--replicas 1\

--network joomla \

--publish 80:80 \

-e JOOMLA_DB_USER=joomla \

-e JOOMLA_DB_PASSWORD="myJ000mlaPw" \
-e JOOMLA_DB_HOST=mariadb \

-e JOOMLA_DB_NAME-=joomla \

joomla:3.8

swarm-manager@@0000:~$ docker service create \
--name joomla \
--constraint=node.role==manager \
--replicas 1 \

--network joomla \

--publish 80:80 \

-e JOOMLA_DB_USER=joomla \

- JOOMLA_DB_PASSWORD="myJ]@@@mlaPw" \

-e JOOMLA_DB_HOST=mariadb \

-e JOOMLA_DB_NAME=joomla \

joomla:3.8

b76xq3mtoqt19wex10w59dwe]

overall progress: 1 out of 1 tasks

1/1: running [
verify: Service converged
swarm-manager@000o: ~$ ||

>
>
P
>
>
>
>
>
>
>

We should now have two services up and running. Let's check:

$ docker service 1ls

swarn-nanager000000:~§ docker service 1s
) NAME MODE REPLICAS IMAGE PORTS
b76xg3ntoqt1 joonla replicated 0 joonla:3,8 *:80->80/tcp

nghierafl7ch mariadb replicated 1/1 mariadb:10.3
swarn-nanager000000;~§

They look good. Let's see whether we can connect to the service. If you

qg 6089740 21734177 IT http://t.cn/RDIAj5D

remember, when we deployed Docker for Azure, there were some outputs. Two
of those outputs were appurL and perauLtonsTareeT. The first one is the load balancer
URL, while the other is the public IP address for the stack. You can use those
values when configuring your DNS records for your site:

P “ apuRL applb-lbrfbebpfbdda eastus.cloudapp.azure.com E
DEFAULTONSTARGET | 40.121.71.166 E
d& Overview . .
S5H TARGETS https//portal azure.com/#resource/subscriptions/c676ceBd- T0ca-4916-ab70-3623199047.. E
Qutputs
2 Inputs
Template

If you enter one of the aforementioned addresses into a web browser, you should
be able to see the Joomla! configuration page. If so, our installation was
successful:

pythontesting

« C |®Not Secure | 40.121.71.166/installation/index.php 1&‘ OH!{

i Joomlal

Joomla! is free software released under the GNU General Public License.

@ Configuration @) Database (E)) Overview

Select Language English (United States) v
Main Configuration
ey Super User Account Details
Enter the name of your Joomla! site. Email*
Descripiion Enter an email address. This will be the

email address of the website Super User.

Username *
Enter a description of the overall website
that is to be used by search engines. Set the username for your Super User
Generally, a maximum of 20 words is account.
optimel.
Password *
Set the password for your Super User
account and confirm it in the field below.
Confirm Administrator
Password *

Site Offine ygg m

Set the site Frontend offiine when installation is completed. The site can be set online later on through the Global
Configuration.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

stop the service, or else someone else could come by and do it for you, and take over your

0 If you are not going to be completing the configuration wizard right away, please remove or
Joomla! install.

pythontesting

How it works...

In this recipe, we created two new services. One was a database to store the
information for the Joomla! service. We used secrets to protect our passwords,
and we used those secrets for the database service instead of hardcoding our
passwords in the image, or passing them in as environmental variables as we did
for the Joomla! service.

We also created a custom overlay network for our application, so that the two
services could talk to each other across the cluster. That traffic was encrypted by
default, which means all communication between our two services is secure.

Docker for Azure has a service that listens for new services that get added to the
Swarm. When a new service has ports exposed, it will automatically configure
the external load balancer to accept traffic for that service. When someone hits
the load balancer, it will send the traffic to one of the Swarm managers, and then
the Swarm will route the traffic to the correct host and container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

See also

e Docker for Azure deployment documentation: https://docs.docker .com/docker -

or-azure/deploy/

pythontesting

https://docs.docker.com/docker-for-azure/deploy/

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Docker

Mastering Docker - Second Edition
Russ McKendrick, Scott Gallagher

ISBN: 978-1-78728-024-3

e Become fluent in the basic components and concepts of Docker

e Secure your containers and files with Docker's security features

e Extend Docker and solve architectural problems using first- and third-party
orchestration tools, service discovery, and plugins

¢ Leverage the Linux container virtualization paradigm by creating highly
scalable applications

‘Gabriel N. Schenker

Learn Docker -
Fundamentals
of Docker 18.x

Learn Docker - Fundamentals of Docker 18.x
Gabriel N. Schenker

ISBN:978-1-78899-702-7

https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Containerize your traditional or microservice-based application

Share or ship your application as an immutable container image

Build a Docker swarm and a Kubernetes cluster in the cloud

Run a highly distributed application using Docker Swarm or Kubernetes
Update or rollback a distributed application with zero downtime

Secure your applications via encapsulation, networks, and secrets

Know your options when deploying your containerized app into the cloud

pythontesting

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Docker Cookbook Second Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Sections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Get in touch
	Reviews

	Introduction and Installation
	Introduction
	Namespaces
	The PID namespace
	The net namespace
	The IPC namespace
	The mnt namespace
	The UTS namespace
	The user namespace

	Cgroups
	The union filesystem
	The container format

	Verifying requirements for Docker installation
	Getting ready
	How to do it…
	How it works…
	See also

	Installing Docker on Ubuntu
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Installing Docker on CentOS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing Docker on Linux with an automated script
	Getting ready
	How to do it
	How it works...
	There's more...

	Installing Docker for Windows
	Getting ready
	How to do it
	How it works...
	There's more
	See also

	Installing Docker for Mac
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Pulling an image and running a container
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Adding a nonroot user to administer Docker
	Getting ready
	How to do it...
	How it works…

	Finding help with the Docker command line
	Getting ready
	How to do it…
	How it works…
	See also

	Working with Docker Containers
	Introduction
	Listing/searching for an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Pulling an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Starting a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the container logs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Stopping a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Removing all stopped containers
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Setting the restart policy on a container
	Getting ready
	How to do it...
	There's more...
	See also

	Getting privileged access inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing the host device inside a container
	Getting ready
	How to do it...
	How it works...
	See also

	Injecting a new process into a running container
	Getting ready
	How to do it...
	How it works...
	See also

	Reading a container's metadata
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Labeling and filtering containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reaping a zombie inside a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Working with Docker Images
	Introduction
	Creating an image from the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating an account with Docker Hub
	Getting ready
	How to do it...
	How it works...
	See also

	Logging in and out of the Docker image registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Publishing an image to the registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the history of an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Exporting an image
	Getting ready
	How to do it...
	There's more...
	See also

	Importing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Building an image using a Dockerfile
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building an Apache image – a Dockerfile example
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a private index/registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Automated builds – with GitHub and Bitbucket
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a custom base image
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a minimal image using a scratch base image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images in multiple stages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Visualizing the image hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Network and Data Management for Containers
	Introduction
	Accessing containers from outside
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Attaching containers to a host network
	Getting ready
	How to do it...
	How it works...
	See also

	Launching containers with no network
	Getting ready
	How to do it...
	How it works...
	See also

	Sharing IP addresses with other containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a user-defined bridge network
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Discovering and load balancing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Persisting data using volumes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing data between the host and the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Use Cases
	Introduction
	Testing with Docker
	Getting ready
	How to do it…
	How it works…
	There's more…

	Performing CI/CD with Shippable and Heroku
	Getting ready
	How to do it…
	How it works…
	See also

	Performing CI/CD with TravisCI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up PaaS with OpenShift origin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building and deploying an app on OpenShift from the source code
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Docker APIs and SDKs
	Introduction
	Working with images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Building images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Launching containers using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Performing container operations using APIs
	How to do it...
	How it works...
	See also

	Exploring Docker remote API client libraries
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring the Docker daemon for remote connectivity
	How to do it...
	How it works...
	There's more...
	See also

	Securing the Docker daemon's remote connectivity
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Performance
	Introduction
	Benchmarking CPU performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Benchmarking disk performance
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Benchmarking network performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Getting container resource usage using the stats feature
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up performance monitoring
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Docker Orchestration and Hosting a Platform
	Introduction
	Running applications with Docker Compose
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Setting up a cluster with Docker Swarm
	Getting ready
	How to do it
	How it works…
	There's more...
	See also

	Using secrets with Docker Swarm
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using secrets with Kubernetes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scaling up and down in Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up WordPress with Kubernetes clusters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Security
	Introduction
	Setting Mandatory Access Control (MAC) with SELinux
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Allowing writes to volumes mounted from the host with SELinux ON
	Getting ready
	How to do it...
	How it works…
	See also

	Removing capabilities to break down the power of a root user inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing namespaces between the host and the container
	Getting ready
	How to do it...
	How it works...

	Getting Help and Tips and Tricks
	Introduction
	Starting Docker in debug mode
	Getting ready
	How to do it...
	How it works...
	See also

	Building a Docker binary from the source
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images without using cached layers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building your own bridge for container communication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing the default OCI runtime
	Getting ready
	How to do it...
	How it works...
	See also

	Selecting the logging driver for containers
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Getting real-time Docker events for containers
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also

	Docker on the Cloud
	Introduction
	Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Deploying WordPress on Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Docker for Azure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying Joomla! on Docker for Azure
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

