

Docker	Cookbook
Second	Edition

	

Over	100	practical	and	insightful	recipes	to	build	distributed	applications	with
Docker

	

	

	

	

	

	

	

	

	

Ken	Cochrane
Jeeva	S.	Chelladhurai
Neependra	K	Khare

	

	

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

	

BIRMINGHAM	-	MUMBAI

Docker	Cookbook	Second	Edition
Copyright	©	2018	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations
embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Gebin	George
Acquisition	Editor:	Shrilekha	Inani
Content	Development	Editor:	Nithin	George	Varghese
Technical	Editor:	Prashant	Chaudhari
Copy	Editor:	Safis	Editing
Project	Coordinator:	Drashti	Panchal
Proofreader:	Safis	Editing
Indexer:	Priyanka	Dhadke
Graphics:	Tom	Scaria
Production	Coordinator:	Aparna	Bhagat

First	published:	June	2015
Second	edition:	August	2018

Production	reference:	1300818

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78862-686-6

www.packtpub.com

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.packtpub.com

For	Emily,	Zander,	and	Maddox.
																																																																																							-	Ken	Cochrane

To	Dr.	Pethuru	Raj	Chelliah,	my	mentor,	who	rekindled	my	technical	brain
and	constantly	challenges	me	with	new	technologies.

																																																																																										-	Jeeva	S.	Chelladhurai

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	authors
Ken	Cochrane	is	an	IT	professional	with	over	15	years	of	experience	working
with	organizations	to	build	large-scale	applications	and	platforms.	Ken	was	a
founding	team	member	at	Docker,	where	he	was	the	lead	developer	for	the
Docker	Hub,	and	Docker	for	AWS	products.	As	an	early	team	member,	he
worked	on	everything	from	the	Docker	Engine	to	documentation.	Ken	also
helped	create	Docker	meetup	groups	in	New	York,	Boston,	and	Portland	Maine.
Ken	currently	works	for	WEX,	a	global	payments	company,	where	he	leads	a
team	and	helps	modernize	their	technology	stack	by	moving	to	the	cloud	and
automating	their	development	pipeline	using	containers.	He	currently	resides	in
Southern	Maine	with	his	wife,	Emily,	and	two	sons,	Zander	and	Maddox.	His
Twitter	handle	is	@kencochrane.

I	would	like	to	thank	my	wife,	Emily,	and	my	two	boys,	Zander	and	Maddox,	for	giving	me	the	time	to	work
on	this	book;	also,	my	parents	for	buying	me	my	first	computer,	and	letting	me	spend	so	much	of	my	free
time	on	it.	I	would	also	like	to	thank	Solomon	Hykes,	and	Sam	Alba	for	taking	a	chance	and	hiring	me	at
dotCloud,	and	allowing	me	to	be	a	part	of	Docker.

Jeeva	S.	Chelladhurai	has	been	working	as	a	DevOps	specialist	at	the	IBM
Global	Cloud	Center	of	Excellence	(CoE)	in	India	for	the	past	8	years.	He	has
more	than	20	years	of	experience	in	the	IT	industry.	In	various	capacities,	he	has
technically	managed	and	mentored	diverse	teams	across	the	globe	in	envisaging
and	building	pioneering	telecommunication	products.	He	specializes	in	DevOps
and	cloud	solution	delivery,	with	a	focus	on	data	center	optimization,	software-
defined	environments	(SDEs),	and	distributed	application	development,
deployment,	and	delivery	using	the	newest	Docker	technology.	Jeeva	is	also	a
strong	proponent	of	agile	methodologies,	DevOps,	and	IT	automation.	He	holds
a	master's	degree	in	computer	science	from	Manonmaniam	Sundaranar
University	and	a	graduate	certificate	in	project	management	from	Boston
University.	He	has	been	instrumental	in	crafting	reusable	assets	for	IBM	solution
architects	and	consultants	in	Docker-inspired	containerization	technology.

	

Neependra	K	Khare	is	the	founder	and	principal	consultant	at	CloudYuga.
CloudYuga	provides	training	and	consulting	on	Docker,	Kubernetes,	GO

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Programming,	and	so	on.	He	is	one	of	the	Docker	Captains	and	has	run	Docker
Meetup	Group	in	Bangalore	for	around	4	years.	In	2015,	he	authored	a	book	on
Docker,	Docker	Cookbook.	In	2016,	he	coauthored	a	course	on	Cloud
Infrastructure	Technologies	at	Edx	for	the	Linux	Foundation.	Recently,	he
authored	a	course	on	Kubernetes	on	Edx,	for	the	Linux	Foundation.

About	the	reviewers
Fabrizio	Soppelsa	works	as	a	software	engineer	for	Samsung	Electronics,	in	the
cloud	computing	department.	He's	also	a	Docker	contributor	and	Docker
community	leader.	He	has	extensive	hands-on	experience	with	open	cloud
infrastructures	and	container	workloads	in	production,	run	by	some	of	the	most
iconic	companies	in	the	world.	He	shares	his	life	with	Anna	in	Moscow,	Russia.

He's	the	author	of	Docker	Clustering	with	Swarm,	edited	by	Packt	Publishing
(2017).

	

Vishnu	Gopal	is	an	engineer	with	strong	product	and	user	experience	skills,
with	experience	in	product	development,	web	development,	and	engineering
management.	He	was	part	of	the	initial	team	that	built	SlideShare	Inc.,	which
then	went	on	to	be	acquired	by	LinkedIn.	He's	been	working	in	the	web	and
mobile	development	field	for	over	10	years.	He	is	currently	the	CTO	of	SV.CO,
a	product	accelerator	for	students	based	in	India.	He	lives	in	Kochi,	India.

I	would	like	to	thank	Deepa	Pillai,	DP,	my	English	teacher	in	school,	for	her	constant	encouragement	and
love.	Like	so	many	others,	I	started	writing	because	she	taught	me	the	value	of	words,	of	careful	and	patient
editing,	and	that	most	good	writing	is	rewriting.	I	hope	she	continues	to	be	as	young	as	ever,	forever.

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

	

	

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Docker	Cookbook

Second	Edition

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	authors

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Sections

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Get	in	touch

Reviews

1.	 Introduction	and	Installation

Introduction

Namespaces

The	PID	namespace

The	net	namespace

The	IPC	namespace

The	mnt	namespace

The	UTS	namespace

The	user	namespace

Cgroups

The	union	filesystem

The	container	format

Verifying	requirements	for	Docker	installation

Getting	ready

How	to	do	it…

How	it	works…

See	also

Installing	Docker	on	Ubuntu

Getting	ready

How	to	do	it…

How	it	works...

There's	more…

See	also

Installing	Docker	on	CentOS

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Installing	Docker	on	Linux	with	an	automated	script

Getting	ready

How	to	do	it

How	it	works...

There's	more...

Installing	Docker	for	Windows

Getting	ready

How	to	do	it

How	it	works...

There's	more

See	also

Installing	Docker	for	Mac

Getting	ready

How	to	do	it

How	it	works...

There's	more...

See	also

Pulling	an	image	and	running	a	container

Getting	ready

How	to	do	it...

How	it	works…

There's	more…

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also

Adding	a	nonroot	user	to	administer	Docker

Getting	ready

How	to	do	it...

How	it	works…

Finding	help	with	the	Docker	command	line

Getting	ready

How	to	do	it…

How	it	works…

See	also

2.	 Working	with	Docker	Containers

Introduction

Listing/searching	for	an	image

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Pulling	an	image

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Listing	images

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Starting	a	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Listing	containers

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Looking	at	the	container	logs

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Stopping	a	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also

Removing	a	container

Getting	ready

How	to	do	it...

There's	more...

How	it	works...

See	also

Removing	all	stopped	containers

Getting	ready

How	to	do	it...

There's	more...

How	it	works...

See	also

Setting	the	restart	policy	on	a	container

Getting	ready

How	to	do	it...

There's	more...

See	also

Getting	privileged	access	inside	a	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Accessing	the	host	device	inside	a	container

Getting	ready

How	to	do	it...

How	it	works...

See	also

Injecting	a	new	process	into	a	running	container

Getting	ready

How	to	do	it...

How	it	works...

See	also

Reading	a	container's	metadata

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Labeling	and	filtering	containers

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Reaping	a	zombie	inside	a	container

Getting	ready

How	to	do	it...

There's	more...

How	it	works...

See	also

3.	 Working	with	Docker	Images

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction

Creating	an	image	from	the	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Creating	an	account	with	Docker	Hub

Getting	ready

How	to	do	it...

How	it	works...

See	also

Logging	in	and	out	of	the	Docker	image	registry

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Publishing	an	image	to	the	registry

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Looking	at	the	history	of	an	image

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Removing	an	image

Getting	ready

How	to	do	it...

There's	more...

See	also

Exporting	an	image

Getting	ready

How	to	do	it...

There's	more...

See	also

Importing	an	image

Getting	ready

How	to	do	it...

There's	more...

See	also

Building	an	image	using	a	Dockerfile

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Building	an	Apache	image	–	a	Dockerfile	example

Getting	ready

How	to	do	it...

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...

There's	more...

See	also

Setting	up	a	private	index/registry

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Automated	builds	–	with	GitHub	and	Bitbucket

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Creating	a	custom	base	image

Getting	ready

How	to	do	it...

How	it	works...

See	also

Creating	a	minimal	image	using	a	scratch	base	image

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Building	images	in	multiple	stages

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Visualizing	the	image	hierarchy

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

4.	 Network	and	Data	Management	for	Containers

Introduction

Accessing	containers	from	outside

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Attaching	containers	to	a	host	network

Getting	ready

How	to	do	it...

How	it	works...

See	also

Launching	containers	with	no	network

Getting	ready

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...

How	it	works...

See	also

Sharing	IP	addresses	with	other	containers

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Creating	a	user-defined	bridge	network

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Discovering	and	load	balancing	containers

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Persisting	data	using	volumes

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Sharing	data	between	the	host	and	the	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

5.	 Docker	Use	Cases

Introduction

Testing	with	Docker

Getting	ready

How	to	do	it…

How	it	works…

There's	more…

Performing	CI/CD	with	Shippable	and	Heroku

Getting	ready

How	to	do	it…

How	it	works…

See	also

Performing	CI/CD	with	TravisCI

Getting	ready

How	to	do	it…

How	it	works…

There's	more…

See	also

Setting	up	PaaS	with	OpenShift	origin

Getting	ready

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…

How	it	works…

There's	more…

See	also

Building	and	deploying	an	app	on	OpenShift	from	the	source	code

Getting	ready

How	to	do	it…

How	it	works…

There's	more…

See	also

6.	 Docker	APIs	and	SDKs

Introduction

Working	with	images	using	APIs

How	to	do	it...

How	it	works...

There's	more...

See	also

Building	images	using	APIs

How	to	do	it...

How	it	works...

There's	more...

See	also

Launching	containers	using	APIs

How	to	do	it...

How	it	works...

There's	more...

See	also

Performing	container	operations	using	APIs

How	to	do	it...

How	it	works...

See	also

Exploring	Docker	remote	API	client	libraries

Getting	ready

How	to	do	it...

How	it	works...

See	also

Configuring	the	Docker	daemon	for	remote	connectivity

How	to	do	it...

How	it	works...

There's	more...

See	also

Securing	the	Docker	daemon's	remote	connectivity

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

7.	 Docker	Performance

Introduction

Benchmarking	CPU	performance

Getting	ready

How	to	do	it…

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…

There's	more…

See	also

Benchmarking	disk	performance

Getting	ready

How	to	do	it...

How	it	works...

There's	more…

See	also

Benchmarking	network	performance

Getting	ready

How	to	do	it…

How	it	works…

There's	more…

See	also

Getting	container	resource	usage	using	the	stats	feature

Getting	ready

How	to	do	it...

How	it	works...

See	also

Setting	up	performance	monitoring

Getting	ready

How	to	do	it...

How	it	works...

There's	more…

See	also

8.	 Docker	Orchestration	and	Hosting	a	Platform

Introduction

Running	applications	with	Docker	Compose

Getting	ready

How	to	do	it

How	it	works...

There's	more...

See	also

Setting	up	a	cluster	with	Docker	Swarm

Getting	ready

How	to	do	it

How	it	works…

There's	more...

See	also

Using	secrets	with	Docker	Swarm

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Setting	up	a	Kubernetes	cluster

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Using	secrets	with	Kubernetes

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Scaling	up	and	down	in	Kubernetes	cluster

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Setting	up	WordPress	with	Kubernetes	clusters

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

9.	 Docker	Security

Introduction

Setting	Mandatory	Access	Control	(MAC)	with	SELinux

Getting	ready

How	to	do	it…

How	it	works…

There's	more...

See	also

Allowing	writes	to	volumes	mounted	from	the	host	with	SELinux	ON

Getting	ready

How	to	do	it...

How	it	works…

See	also

Removing	capabilities	to	break	down	the	power	of	a	root	user	inside	a	container

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Sharing	namespaces	between	the	host	and	the	container

Getting	ready

How	to	do	it...

How	it	works...

10.	 Getting	Help	and	Tips	and	Tricks

Introduction

Starting	Docker	in	debug	mode

Getting	ready

How	to	do	it...

How	it	works...

See	also

Building	a	Docker	binary	from	the	source

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also

Building	images	without	using	cached	layers

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Building	your	own	bridge	for	container	communication

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Changing	the	default	OCI	runtime

Getting	ready

How	to	do	it...

How	it	works...

See	also

Selecting	the	logging	driver	for	containers

Getting	ready

How	to	do	it

How	it	works...

There's	more...

See	also

Getting	real-time	Docker	events	for	containers

Getting	ready...

How	to	do	it...

How	it	works...

There's	more...

See	also

11.	 Docker	on	the	Cloud

Introduction

Docker	for	AWS

Getting	ready

How	to	do	it...

How	it	works...

There's	more

See	also

Deploying	WordPress	on	Docker	for	AWS

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

Docker	for	Azure

Getting	ready

How	to	do	it...

How	it	works...

There's	more...

See	also

Deploying	Joomla!	on	Docker	for	Azure

Getting	ready

How	to	do	it...

How	it	works...

See	also

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
With	Docker,	containers	are	becoming	mainstream	and	enterprises	are	ready	to
use	them	in	production.	This	book	is	specially	designed	to	help	you	get	up	to
speed	with	Docker	and	give	you	the	confidence	to	use	it	in	production.	This
book	also	covers	Docker	use	cases,	orchestration,	clustering,	hosting	platforms,
security,	and	performance,	which	will	help	you	understand	the	different	aspects
of	production	deployment.

With	step-by-step	instructions	to	practical	and	applicable	recipes,	Docker
Cookbook	will	not	only	help	you	with	the	current	version	of	Docker	(18.06),	but
with	the	accompanying	text,	it	will	provide	you	with	conceptual	information	to
cope	with	the	minor	changes	in	future	versions.

Docker	is	a	registered	trademark	of	Docker,	Inc.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Who	this	book	is	for
This	book	targets	developers,	system	administrators,	and	DevOps	engineers	who
want	to	use	Docker	in	their	development,	QA,	or	production	environments.

What	this	book	covers
Chapter	1,	Introduction	and	Installation,	compares	containers	with	bare	metal	and
virtual	machines.	It	helps	you	understand	Linux	kernel	features,	that	enable
containerization;	finally,	we'll	take	a	look	at	installation	recipes.

Chapter	2,	Working	with	Docker	Containers,	explains	the	different	operations	you
can	perform	with	containers,	such	as	starting,	stopping,	listing,	and	deleting.

Chapter	3,	Working	with	Docker	Images,	introduces	you	to	Docker	Hub	and	shows
you	how	to	share	images	through	Docker	Hub	and	how	to	host	your	own	Docker
registry.	It	will	also	show	you	the	different	ways	to	build	your	own	image,	along
with	a	few	Docker	image	housekeeping	operations.

	

Chapter	4,	Network	and	Data	Management	for	Containers	teaches	you	how	to
access	the	container	from	the	outside	world,	share	external	storage	within	the
container,	communicate	with	containers	running	on	other	hosts,	and	more.

Chapter	5,	Docker	Use	Cases,	explains	most	of	the	Docker	use	cases,	such	as
using	Docker	for	testing,	CI/CD,	and	setting	up	a	PaaS.

Chapter	6,	Docker	APIs	and	Language	Bindings,	dives	deep	into	the	Docker	API
and	shows	how	to	work	with	Docker	using	the	RESTful	API	and	SDK.	The	curl
command	that	ships	with	Ubuntu	18.04	has	a	bug;	so,	for	this	chapter,	we	are
using	Ubuntu	16.04	and	Docker	version	17.03.

Chapter	7,	Docker	Performance,	explains	the	approach	one	can	follow	to	compare
the	performance	of	containers	with	bare	metal	and	VMs.	It	also	covers
monitoring	tools.

Chapter	8,	Docker	Orchestration	and	Hosting	Platforms,	provides	an	introduction
to	Docker	Compose	and	Swarm,	and	then	we	take	a	look	at	using	Kubernetes	for
Docker	Orchestration.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	9,	Docker	Security,	explains	general	security	guidelines,	SELinux	for
mandatory	access	controls,	and	other	security	features	such	as	changing
capabilities	and	sharing	namespaces.

Chapter	10,	Getting	Help	and	Tips	and	Tricks,	provides	tips	and	tricks	and
resources	to	help	you	in	things	related	to	Docker	administration	and
development.

Chapter	11,	Docker	on	Cloud,	provides	an	introduction	to	Docker	for	AWS	and
Azure,	along	with	how	to	install	and	deploy	an	application.

To	get	the	most	out	of	this	book
It	is	expected	that	the	reader	should	have	basic	Linux/Unix	skills,	such	as
installing	packages,	editing	files,	and	managing	services.

Any	experience	in	virtualization	technologies,	such	as	KVM,	XEN,	and
VMware,	would	be	an	added	advantage.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Docker-Cookbook-Second-Edition.	In	case	there's	an	update	to	the	code,	it	will
be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-Cookbook-Second-Edition
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

	

A	block	of	code	is	set	as	follows:

{

							"insecure-registries":	[

									"172.30.0.0/16"

]

				}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

{

							"insecure-registries":	[

									"172.30.0.0/16"

]

				}

Any	command-line	input	or	output	is	written	as	follows:

$	docker	image	pull	ubuntu

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting
ready,	How	to	do	it...,	How	it	works...,	There's	more...,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	use	these	sections	as
follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe	and	describes	how	to	set	up
any	software	or	any	preliminary	settings	required	for	the	recipe.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works...
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the
previous	section.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make
you	more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

	

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.packtpub.com/

Introduction	and	Installation
In	this	chapter,	we	will	cover	the	following	recipes:

Verifying	the	requirements	for	Docker	installation
Installing	Docker	on	Ubuntu
Installing	Docker	on	CentOS
Installing	Docker	on	Linux	with	an	automated	script
Installing	Docker	for	Windows
Installing	Docker	for	Mac
Pulling	an	image	and	running	a	container
Adding	a	nonroot	user	to	administer	Docker
Finding	help	with	the	Docker	command	line

	

	

Introduction
At	the	very	start	of	the	IT	revolution,	most	applications	were	deployed	directly
on	physical	hardware,	over	the	host	OS.	Because	of	that	single	user	space,
runtime	was	shared	between	applications.	The	deployment	was	stable,	hardware-
centric,	and	had	a	long	maintenance	cycle.	It	was	mostly	managed	by	an	IT
department,	and	gave	much	less	flexibility	to	developers.	In	such	cases,	the
hardware	resources	were	underutilized	most	of	the	time.	The	following	diagram

depicts	such	a	setup:	

Traditional	application	deployment

For	flexible	deployments,	and	in	order	to	better	utilize	the	resources	of	the	host

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

system,	virtualization	was	invented.	With	hypervisors,	such	as	KVM,	XEN,
ESX,	Hyper-V,	and	so	on,	we	emulated	the	hardware	for	virtual	machines
(VMs)	and	deployed	a	guest	OS	on	each	virtual	machine.	VMs	can	have	a
different	OS	than	their	host;	this	means	that	we	are	responsible	for	managing
patches,	security,	and	the	performance	of	that	VM.	With	virtualization,
applications	are	isolated	at	VM	level	and	are	defined	by	the	life	cycle	of	VMs.
This	gives	us	a	better	return	on	our	investment	and	higher	flexibility	at	the	cost
of	increased	complexity	and	redundancy.	The	following	diagram	depicts	a

typical	virtualized	environment:	

Application	deployment	in	a	virtualized	environment

Since	virtualization	was	developed,	we	have	been	moving	towards	more
application-centric	IT.	We	have	removed	the	hypervisor	layer	to	reduce	hardware
emulation	and	complexity.	The	applications	are	packaged	with	their	runtime
environment,	and	are	deployed	using	containers.	OpenVZ,	Solaris	Zones,	and
LXC	are	a	few	examples	of	container	technology.	Containers	are	less	flexible

compared	to	VMs;	for	example,	we	cannot	run	Microsoft	Windows	on	Linux	OS
as	of	writing.	Containers	are	also	considered	less	secure	than	VMs,	because	with
containers,	everything	runs	on	the	host	OS.	If	a	container	gets	compromised,
then	it	might	be	possible	to	get	full	access	to	the	host	OS.	It	can	be	a	bit	too
complex	to	set	up,	manage,	and	automate.	These	are	a	few	of	the	reasons	why
we	have	not	seen	the	mass	adoption	of	containers	in	the	last	few	years,	even
though	we	had	the	technology.	The	following	diagram	shows	how	an	application
is	deployed	using	containers:	

Application	deployment	with	containers

With	Docker,	containers	suddenly	became	first-class	citizens.	All	big
corporations,	such	as	Google,	Microsoft,	Red	Hat,	IBM,	and	others,	are	now
working	to	make	containers	mainstream.

Docker	was	started	as	an	internal	project	by	dotCloud	founder	Solomon	Hykes.
It	was	released	as	open	source	in	March	2013	under	the	Apache	2.0	license.	With
dotCloud's	platform	as	a	service	experience,	the	founders	and	engineers	of
Docker	were	aware	of	the	challenges	of	running	containers.	So	with	Docker,
they	developed	a	standard	way	to	manage	containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	uses	the	operating	system's	underlying	kernel	features,	which	enable
containerization.	The	following	diagram	depicts	the	Docker	platform	and	the
kernel	features	used	by	Docker.	Let's	look	at	some	of	the	major	kernel	features
that	Docker	uses:	

Docker	platform	and	the	kernel	features	used	by	Docker

Namespaces
Namespaces	are	the	building	blocks	of	a	container.	There	are	different	types	of
namespace,	and	each	one	of	them	isolates	applications	from	the	others.	They	are
created	using	the	clone	system	call.	You	can	also	attach	to	existing	namespaces.
Some	of	the	namespaces	used	by	Docker	will	be	explained	in	the	following
sections.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	PID	namespace
The	PID	namespace	allows	each	container	to	have	its	own	process	numbering.
Each	PID	forms	its	own	process	hierarchy.	A	parent	namespace	can	see	the
children	namespaces	and	affect	them,	but	a	child	can	neither	see	the	parent
namespace	nor	affect	it.

If	there	are	two	levels	of	hierarchy,	then	at	the	top	level,	we	would	see	the
process	running	inside	the	child	namespace	with	a	different	PID.	So	a	process
running	in	a	child	namespace	would	have	two	PIDs:	one	in	the	child	namespace
and	the	other	in	the	parent	namespace.	For	example,	if	we	run	a	program	on	the
container.sh	container,	then	we	can	see	the	corresponding	program	on	the	host	as
well.

On	the	container,	the	sh	container.sh	process	has	a	PID	of	8:	

On	the	host,	the	same	process	has	a	PID	of	29778:	

The	net	namespace
With	the	PID	namespace,	we	can	run	the	same	program	multiple	times	in
different	isolated	environments;	for	example,	we	can	run	different	instances	of
Apache	on	different	containers.	But	without	the	net	namespace,	we	would	not	be
able	to	listen	on	port	80	on	each	one	of	them.	The	net	namespace	allows	us	to
have	different	network	interfaces	on	each	container,	which	solves	the	problem	I
mentioned	earlier.	Loopback	interfaces	would	be	different	in	each	container	as
well.

To	enable	networking	in	containers,	we	create	pairs	of	special	interfaces	in	two
different	net	namespaces	and	allow	them	to	talk	to	each	other.	One	end	of	the
special	interface	resides	inside	the	container	and	the	other	resides	on	the	host
system.	Generally,	the	interface	inside	the	container	is	called	eth0,	and	on	the
host	system,	it	is	given	a	random	name,	such	as	veth516cc56.	These	special
interfaces	are	then	linked	through	a	bridge	(docker0)	on	the	host	to	enable
communication	between	the	containers	and	the	route	packets.

Inside	the	container,	you	will	see	something	like	the	following:

$	docker	container	run	-it	alpine	ash

#	ip	a

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

On	the	host,	it	would	look	like	the	following:

$	ip	a

Also,	each	net	namespace	has	its	own	routing	table	and	firewall	rules.

The	IPC	namespace
The	inter-process	communication	(IPC)	namespace	provides	semaphores,
message	queues,	and	shared	memory	segments.	It	is	not	widely	used	these	days,
but	some	programs	still	depend	on	it.

If	the	IPC	resource	created	by	one	container	is	consumed	by	another	container,
then	the	application	running	on	the	first	container	could	fail.	With	the	IPC
namespace,	processes	running	in	one	namespace	cannot	access	resources	from
another	namespace.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	mnt	namespace
Using	only	a	chroot,	you	can	inspect	the	relative	paths	of	the	system	from	a
chrooted	directory/namespace.	The	mnt	namespace	takes	the	idea	of	chroots	to
the	next	level.	With	the	mnt	namespace,	a	container	can	have	its	own	set	of
mounted	filesystems	and	root	directories.	Processes	in	one	mnt	namespace
cannot	see	the	mounted	filesystems	of	another	mnt	namespace.

	

	

	

The	UTS	namespace
With	the	UTS	namespace,	we	can	have	different	hostnames	for	each	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	user	namespace
With	user	namespace	support,	we	can	have	users	who	have	a	nonzero	ID	on	the
host,	but	who	can	have	a	zero	ID	inside	the	container.	This	is	because	the	user
namespace	allows	mappings	of	users	and	groups	IDs	per	namespace.

There	are	ways	to	share	namespaces	between	the	host	and	container,	and	other
containers	as	well.	We'll	see	how	to	do	this	in	subsequent	chapters.

	

	

	

Cgroups
Control	groups	(cgroups)	provide	resource	limitations	and	accounting	for
containers.	The	following	quote	is	from	the	Linux	Kernel	documentation:

"Control	Groups	provide	a	mechanism	for	aggregating/partitioning	sets	of	tasks,	and	all	their	future
children,	into	hierarchical	groups	with	specialized	behaviour."

In	simple	terms,	they	can	be	compared	to	the	ulimit	shell	command	or	the
setrlimit	system	call.	Instead	of	setting	the	resource	limit	to	a	single	process,
cgroups	allow	you	to	limit	resources	to	a	group	of	processes.

Control	groups	are	split	into	different	subsystems,	such	as	CPU,	CPU	sets,
memory	block	I/O,	and	so	on.	Each	subsystem	can	be	used	independently,	or	can
be	grouped	with	others.	The	features	that	cgroups	provide	are	as	follows:

Resource	limiting:	For	example,	one	cgroup	can	be	bound	to	specific
CPUs,	so	that	all	processes	in	that	group	would	run	on	given	CPUs	only
Prioritization:	Some	groups	may	get	a	larger	share	of	CPUs
Accounting:	You	can	measure	the	resource	usage	of	different	subsystems
for	billing
Control:	You	can	freeze	and	restart	groups

Some	of	the	subsystems	that	can	be	managed	by	cgroups	are	as	follows:

blkio:	Sets	I/O	access	to	and	from	block	devices,	such	as	disks,	SSDs,	and
so	on
Cpu:	Limits	access	to	CPU
Cpuacct:	Generates	CPU	resource	utilization
Cpuset:	Assigns	CPUs	on	a	multicore	system	to	tasks	in	a	cgroup
Devices:	Grants	devices	access	to	a	set	of	tasks	in	a	group
Freezer:	Suspends	or	resumes	tasks	in	a	cgroup
Memory:	Sets	limits	on	memory	use	by	tasks	in	a	cgroup

There	are	multiple	ways	to	control	work	with	cgroups.	Two	of	the	most	popular
ones	are	accessing	the	cgroup	virtual	filesystem	manually	and	accessing	it	with
the	libcgroup	library.	To	use	libcgroup	on	Linux,	run	the	following	command	to

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

install	the	required	packages	on	Ubuntu	or	Debian:

$	sudo	apt-get	install	cgroup-tools

To	install	the	required	packages	on	CentOS,	Fedora,	or	Red	Hat,	use	the
following	code:

$	sudo	yum	install	libcgroup	libcgroup-tools

These	steps	are	not	possible	on	Docker	for	Mac	and	Windows,	because	you	can't	install	the
required	packages	on	those	versions	of	Docker.

Once	installed,	you	can	get	the	list	of	subsystems	and	their	mount	point	in	the
pseudo	filesystem	with	the	following	command:

$	lssubsys	-M

Although	we	haven't	looked	at	the	actual	commands	yet,	let's	assume	that	we	are
running	a	few	containers	and	want	to	get	the	cgroup	entries	for	a	container.	To	get
those,	we	first	need	to	get	the	container	ID	and	then	use	the	lscgroup	command	to
get	the	cgroup	entries	of	a	container,	which	we	can	get	using	the	following
command:

For	more	details,	visit	https://docs.docker.com/config/containers/runmetrics/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/config/containers/runmetrics/.

The	union	filesystem
The	union	filesystem	allows	the	files	and	directories	of	separate	filesystems,
known	as	layers,	to	be	transparently	overlaid	to	create	a	new	virtual	filesystem.
While	starting	a	container,	Docker	overlays	all	the	layers	attached	to	an	image
and	creates	a	read-only	filesystem.	On	top	of	that,	Docker	creates	a	read/write
layer	that	is	used	by	the	container's	runtime	environment.	You	can	read	the
Pulling	an	image	and	running	a	container	recipe	of	this	chapter	for	more	details.
Docker	can	use	several	union	filesystem	variants,	including	AUFS,	Btrfs,	zfs,
overlay,	overlay2,	and	DeviceMapper.

Docker	also	has	a	virtual	file	system	(VFS)	storage	driver.	A	VFS	doesn't
support	copy-on-write	(COW)	and	is	not	a	union	filesystem.	This	means	that
each	layer	is	a	directory	on	the	disk,	and	each	time	a	new	layer	is	created,	it
requires	a	deep	copy	of	its	parent	layer.	For	these	reasons,	it	has	lower
performance	and	requires	more	disk	space,	but	it	is	a	robust	and	stable	option
that	works	in	every	environment.

	

	

	

The	container	format
Docker	Engine	combines	the	namespaces,	control	groups,	and	UnionFS	into	a
wrapper	called	a	container	format.	In	2015,	Docker	donated	its	container	format
and	runtime	to	an	organization	called	the	the	Open	Container	Initiative	(OCI).
The	OCI	is	a	lightweight,	open-governance	structure	formed	under	the	Linux
Foundation	by	Docker	and	other	industry	leaders.	The	purpose	of	the	OCI	is	to
create	open	industry	standards	around	container	formats	and	runtimes.	There	are
currently	two	specifications:	the	Runtime	Specification	and	the	Image
Specification.

The	Runtime	Specification	outlines	how	to	run	an	OCI	runtime	filesystem
bundle.	Docker	donated	runC,	(https://github.com/opencontainers/runc)	its	OCI-
compliant	runtime	to	the	OCI,	to	serve	as	the	reference	implementation.

The	OCI	image	format	contains	the	information	needed	to	launch	the	application
on	the	target	platform.	The	specification	defines	how	to	create	the	OCI	image,
and	what	the	desired	output	would	look	like.	The	output	would	consist	of	an
image	manifest,	a	filesystem	(layer)	serialization,	and	the	image	configuration.
Docker	donated	its	Docker	V2	image	format	to	the	OCI	to	form	the	basis	of	the
OCI	image	specification.

There	are	currently	two	container	engines	that	support	the	OCI	Runtime	and
Image	Specifications:	Docker	and	rkt.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/opencontainers/runc

Verifying	requirements	for	Docker
installation
Docker	is	supported	on	many	Linux	platforms,	such	as	RHEL,	Ubuntu,	Fedora,
CentOS,	Debian,	Arch	Linux,	among	others.	It	is	also	supported	on	many	cloud
platforms,	such	as	Amazon	Web	Services,	Digital	Ocean,	Microsoft	Azure,	and
Google	Cloud.	Docker	has	also	released	desktop	applications	for	Microsoft
Windows	and	Mac	OS	X	that	allows	you	to	easily	get	Docker	up	and	running
directly	on	your	local	machine.

In	this	recipe,	we	will	verify	the	requirements	for	Docker	installation.	We	will
look	at	a	system	with	an	Ubuntu	18.04	LTS	installation,	though	the	same	steps
should	work	on	other	Linux	flavors	as	well.

	

	

	

Getting	ready
Log	in	as	a	root	user	on	the	system	that	has	Ubuntu	18.04	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Perform	the	following	steps:

1.	Docker	is	not	supported	on	32-bit	architecture.	To	check	the
architecture	on	your	system,	run	the	following	command:

								$	uname	-i

								x86_64

2.	 Docker	is	supported	on	kernel	3.8	or	later.	It	has	been	back-ported	on	some
of	the	kernel	2.6,	such	as	RHEL	6.5	and	above.	To	check	the	kernel	version,
run	the	following	command:

						$	uname	-r

						4.15.0-29-generic

3.	 Running	the	kernel	should	support	an	appropriate	storage	backend.	Some	of
the	options	for	such	a	backend	are	VFS,	DeviceMapper,	AUFS,	Btrfs,	zfs,
and	Overlayfs.

For	Ubuntu,	the	default	storage	backend	or	driver	is	overlay2,	which	has
been	available	since	Ubuntu	14.04.	Another	popular	one	is
DeviceMapper,	which	uses	the	device-mapper	thin	provisioning	module	to
implement	layers.	It	should	be	installed	by	default	on	a	majority	of	Linux
platforms.	To	check	for	device-mapper,	you	can	run	the	following
command:

												$	grep	device-mapper	/proc/devices

												253	device-mapper

On	most	distributions,	AUFS	would	require	a	modified	kernel.

4.	 Support	for	cgroups	and	namespaces	have	been	in	the	kernel	for	sometime,
and	should	be	enabled	by	default.	To	check	for	their	presence,	you	can	look
at	the	corresponding	configuration	file	of	the	kernel	you	are	running.	For
example,	on	Ubuntu,	I	can	do	something	like	the	following:

				$	grep	-i	namespaces	/boot/config-4.15.0-29-generic

				CONFIG_NAMESPACES=y

				$	grep	-i	cgroups	/boot/config-4.15.0-29-generic

				CONFIG_CGROUPS=y

The	name	of	the	config	file	is	usually	dependent	on	your	kernel	version.	Your	system	might
have	a	different	filename.	If	this	is	the	case,	change	the	command	accordingly.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
Docker	requires	that	the	host	system	meets	a	basic	set	of	requirements	in	order
for	it	to	run	correctly.	By	running	the	preceding	commands,	we	were	able	to
confirm	that	our	system	meets	those	requirements.		

See	also
Check	out	the	installation	document	on	the	Docker	website	at	https://docs.docker.c
om/install/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/install/

Installing	Docker	on	Ubuntu
There	are	a	few	different	versions	of	Ubuntu	that	are	available.	In	this	recipe,	we
will	be	installing	Docker	on	Ubuntu	18.04,	which	is	the	latest	LTS	version	as	of
writing.	These	same	steps	should	also	work	with	Ubuntu	16.04.

	$	sudo	apt-get	remove	docker	docker-engine	docker.io

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	sudo	apt-get	install	\
	apt-transport-https	\

	ca-certificates	\
	curl	\

	software-properties-common

	$	curl	-fsSL	https://download.docker.com/linux/ubuntu/gpg	|	sudo	apt-
key	add	-
	OK

	$	sudo	add-apt-repository	\
	"deb	[arch=amd64]
https://download.docker.com/linux/ubuntu	\

$(lsb_release	-cs)	\
	stable"

	$	sudo	apt-get	update

	$	sudo	apt-get	install	docker-ce

	$	sudo	docker	container	run	hello-world

How	it	works...
The	preceding	command	will	install	Docker	on	Ubuntu	and	all	the	packages
required	by	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more…
The	default	Docker	daemon	configuration	file	is	located	at	/etc/docker,	which	is
used	while	starting	the	daemon.	Here	are	some	basic	operations:

To	start	the	service,	enter	the	following:

				$	sudo	systemctl	start	docker

To	verify	the	installation,	enter	the	following:

				$	docker	info

To	update	the	package,	enter	the	following:

				$	sudo	apt-get	update

To	enable	the	start	of	the	service	at	boot	time,	enter	the	following:

				$	sudo	systemctl	enable	docker

To	stop	the	service,	enter	the	following:

				$	sudo	systemctl	stop	docker

	

	

See	also
For	more	information,	check	out	the	Ubuntu	installation	document	on	the
Docker	website	at	https://docs.docker.com/install/linux/docker-ce/ubuntu/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/install/linux/docker-ce/ubuntu/

Installing	Docker	on	CentOS
Another	popular	Linux	distribution	is	CentOS,	which	is	a	free,	enterprise-class
distribution	that	is	compatible	with	Red	Hat	Enterprise	Linux	(RHEL).	Go
through	the	following	easy	recipe	to	install	Docker	on	CentOS	7.x.

Getting	ready
The	centos-extra	repository	must	be	enabled.	This	is	usually	enabled	by	default,
but	if	you	disabled	it,	please	enable	it	again.

Previously,	the	Docker	package	had	a	different	name:	It	was	called	docker	or
docker-engine;	it	is	now	called	docker-ce.	We	will	need	to	remove	any	previous
Docker	versions	in	order	to	prevent	any	conflicts:	$	sudo	yum	remove	docker	\
docker-client	\
docker-client-latest	\
docker-common	\
docker-latest	\
docker-latest-logrotate	\
docker-logrotate	\
docker-selinux	\
docker-engine-selinux	\
docker-engine

It	is	OK	if	yum	reports	that	none	of	these	packages	are	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	sudo	yum	install	-y	yum-utils	\
	device-
mapper-persistent-data	\
	lvm2

	$	sudo	yum-config-manager	\
	--add-repo	\

	https://download.docker.com/linux/centos/docker-
ce.repo

	$	sudo	yum-config-manager	--enable	docker-ce-test

	$	sudo	yum	install	docker-ce

	Retrieving	key	from
https://download.docker.com/linux/centos/gpg

Importing	GPG	key	0x621E9F35:
	Userid	:	"Docker
Release	(CE	rpm)	<docker@docker.com>"
	Fingerprint:
060a	61c5	1b55	8a7f	742b	77aa	c52f	eb6b	621e	9f35

From	:	https://download.docker.com/linux/centos/gpg
	Is
this	ok	[y/N]:	y

	$	sudo	systemctl	start	docker

	$	docker	container	run	hello-world

How	it	works...
The	preceding	recipe	installs	Docker	on	CentOS	and	all	the	packages	required
by	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	sudo	yum	remove	docker-ce

	$	sudo	systemctl	stop	docker

See	also
For	more	information,	check	out	the	CentOS	installation	document	on	the
Docker	website	at	https://docs.docker.com/install/linux/docker-ce/centos/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/install/linux/docker-ce/centos/

Installing	Docker	on	Linux	with	an
automated	script
In	the	previous	two	recipes,	we	went	through	the	different	steps	required	to
install	Docker	on	Ubuntu	and	CentOS.	Those	steps	are	fine	when	you	are	only
installing	it	on	a	host	or	two,	but	what	if	you	need	to	install	it	on	a	hundred?	In
that	case,	you	would	want	something	a	little	more	automated	to	speed	up	the
process.	This	recipe	shows	you	how	to	install	Docker	on	different	Linux	flavors
using	an	install	script	that	is	provided	by	Docker.

	

	

	

Getting	ready
Like	all	scripts	that	you	download	off	the	internet,	the	first	thing	you	should	do
is	examine	the	script	and	make	sure	you	know	what	it	is	doing	before	you	use	it.
To	do	this,	go	through	the	following	steps:

1.	 Visit	https://get.docker.com	in	your	favorite	web	browser	to	review	the	script,
and	make	sure	you	are	comfortable	with	what	it	is	doing.	If	in	doubt,	don't
use	it.

2.	 The	script	needs	to	be	run	as	root	or	with	sudo	privileges.
3.	 If	Docker	has	already	been	installed	on	the	host,	it	needs	to	be	removed

before	running	the	script.

The	script	currently	works	with	the	following	flavors	of	Linux:	CentOS,	Fedora,
Debian,	Ubuntu,	and	Raspbian.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://get.docker.com

How	to	do	it
To	use	the	script,	go	through	the	following	steps:

1.	 Download	the	script	to	the	host	system:

								$	curl	-fsSL	get.docker.com	-o	get-docker.sh

2.	 Run	the	script:

								$	sudo	sh	get-docker.sh

How	it	works...
The	preceding	recipe	used	an	automated	script	to	install	Docker	on	Linux.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
In	order	to	upgrade	Docker,	you	will	need	to	use	the	package	manager	on	your
host.	Rerunning	the	script	can	cause	issues	if	it	attempts	to	re-add	repositories
that	were	already	added.	See	the	previous	recipes	to	learn	how	to	upgrade
Docker	on	CentOS	and	Ubuntu	using	their	respective	package	managers.

	

	

	

Installing	Docker	for	Windows
Docker	for	Windows	is	a	native	application	that	is	deeply	integrated	with	Hyper-
V	virtualization	and	the	Windows	networking	and	filesystems.	It	is	a	full-
featured	development	environment	that	can	be	used	for	building,	debugging,	and
testing	Docker	apps	on	a	Windows	PC.	It	also	works	well	with	VPNs	and
proxies	to	make	it	easier	when	used	in	a	corporate	environment.

Docker	for	Windows	supports	both	Windows	and	Linux	containers	out	of	the
box,	and	it	is	easy	to	switch	between	the	two	to	build	your	multiplatform
applications.	It	comes	with	the	Docker	CLI	client,	Docker	Compose,	Docker
Machine,	and	Docker	Notary.

Recent	releases	have	also	added	Kubernetes	support	so	that	you	can	easily	create
a	full	Kubernetes	environment	on	your	machine	with	just	the	click	of	a	button.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Docker	for	Windows	has	the	following	system	requirements:

64-bit	Windows	10	Pro,	Enterprise,	and	Education	(1607	Anniversary
Update,	Build	14393	or	later)
Virtualization	must	be	enabled	in	BIOS	and	be	CPU-SLAT-capable.
4	GB	of	RAM

If	your	system	does	not	satisfy	these	requirements,	fear	not—all	is	not	lost.	You	can	install
Docker	Toolbox	(https://docs.docker.com/toolbox/overview/),	which	uses	Oracle	VirtualBox	instead	of
Hyper-V.	It	isn't	as	good,	but	it	is	better	than	nothing.

	

	

	

https://docs.docker.com/toolbox/overview/

	$	docker	container	run	hello-world

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
This	recipe	will		show	you	how	to	install	a	Docker	development	environment	on
your	Windows	machine.

There's	more
Now	that	you	have	Docker	for	Windows	installed,	check	out	the	following	tips
to	get	the	most	out	of	your	installation:

Docker	for	Windows	supports	both	Windows	and	Linux	containers.	If	you
want	to	switch,	you	just	need	to	right-click	on	the	whale	icon,	select	Switch
to	Windows	containers...,	and	then	click	the	Switch	button:

To	switch	back,	do	the	same	thing,	except	this	time,	select	Switch	to
Linux	containers....

Docker	for	Windows	will	automatically	check	for	new	updates	and	let	you
know	when	a	new	version	is	available	to	install.	If	you	agree	to	upgrade,	it
will	download	the	new	version	and	install	it	for	you.
Kubernetes	doesn't	run	by	default.	If	you	want	to	turn	it	on,	you	will	need	to
right-click	on	the	Docker	whale	icon	in	your	task	bar,	then	select	Settings.
Inside	the	Settings	menu,	there	is	a	Kubernetes	tab.	Click	on	the	tab,	and
then	click	the	Enable	Kubernetes	option	and	hit	the	Apply	button:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
For	more	information	about	Docker	for	Windows,	and	for	links	to	labs	and	more
examples,	go	to	https://docs.docker.com/docker-for-windows/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-windows/

Installing	Docker	for	Mac
Docker	for	Mac	is	the	fastest	and	most	reliable	way	to	run	Docker	on	a	Mac.	It
installs	all	of	the	tools	required	to	set	up	a	complete	Docker	development
environment	on	your	Mac.	It	includes	the	Docker	command	line,	Docker
Compose,	and	Docker	Notary.	It	also	works	well	with	VPNs	and	proxies	to
make	it	easier	when	used	in	a	corporate	environment.

Recent	releases	have	also	added	Kubernetes	support	so	that	you	can	easily	create
a	full	Kubernetes	environment	on	your	machine	with	just	the	click	of	a	button.

	

	

	

	$	sysctl	kern.hv_support

kern.hv_support:	1

If	your	system	does	not	satisfy	these	requirements,	fear	not—all	is	not	lost.	You
can	install	Docker	Toolbox	(https://docs.docker.com/toolbox/overview/),	which
uses	Oracle	VirtualBox	instead	of	HyperKit.	It	isn't	as	good,	but	it	is	better	than
nothing.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/toolbox/overview/

How	to	do	it
To	install	Docker	for	Mac,	go	through	the	following	steps:

1.	 Download	Docker	for	Mac	from	the	Docker	Store	at	https://store.docker.com/
editions/community/docker-ce-desktop-mac.	You	will	need	to	log	in	in	order	to
download	the	installer.	If	you	do	not	have	a	Docker	account,	you	can	create
one	at	https://store.docker.com/signup.

2.	 Open	the	installation	file	that	you	downloaded	from	the	store.	It	should	be
called	something	like	Docker.dmg.

3.	 Drag	and	drop	the	whale	icon	into	the	Applications	folder:

4.	 Double-click	the	Docker.app	icon	in	the	Applications	folder	to	start	Docker,
as	shown	in	the	following	screenshot:

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/signup

5.	 You	will	be	prompted	to	authorize	Docker.app	with	your	system	password.
This	is	normal—Docker.app	needs	privileged	access	to	install	some	of	its
components.	Click	OK	and	enter	your	password	so	it	can	finish	installing:

6.	 When	Docker	is	finished,	a	little	whale	icon	will	show	up	in	the	status
menu	in	the	top	right	of	your	screen,	as	shown	in	the	following	screenshot:

7.	 If	you	click	on	the	whale,	you	can	access	the	application	preferences	and
other	options.

8.	 Select	the	About	Docker	button	to	verify	that	you	have	the	latest	version.
9.	 Check	to	make	sure	that	it	is	installed	and	working.	Open	up	a	terminal

window	and	type	the	following:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

												$	docker	container	run	hello-world

	

	

How	it	works...
The	preceding	recipe	will	download	and	install	a	Docker	development
environment	on	your	Mac.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
Now	that	you	have	Docker	for	Mac	installed,	here	are	a	few	more	tips	for	getting
started:

Docker	for	Mac	will	automatically	check	for	new	updates	and	let	you	know
when	a	new	version	is	available	for	you	to	install.	If	you	agree	to	upgrade,
it	will	do	all	the	work,	downloading	the	new	version	and	installing	it	for
you.
Kubernetes	isn't	running	by	default.	If	you	want	to	turn	it	on,	you	will	need
to	click	on	the	Docker	whale	icon	in	your	Status	menu,	then	select
Preferences.	Inside	of	Preferences,	there	is	a	Kubernetes	tab.	Click	on	the
tab,	then	click	the	Enable	Kubernetes	option,	and	hit	the	Apply	button:

	

	

	

See	also
Visit	the	Get	Started	with	Docker	for	Mac	guide	to	help	you	learn	about	the
application	and	how	best	to	use	it.	You	can	find	it	at	https://docs.docker.com/docker-
for-mac/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-mac/

Pulling	an	image	and	running	a
container
I	am	borrowing	the	following	recipe	from	the	next	chapter	to	introduce	some
concepts.	Don't	worry	if	the	recipe	doesn't	explain	everything;	we'll	cover	the
topics	in	detail	later	in	this	chapter,	or	in	the	next	few	chapters.	For	now,	let's
pull	an	image	and	run	it.	We'll	also	get	familiar	with	Docker	architecture	and	its
components	in	this	recipe.

	

	

	

Getting	ready
First,	gain	access	to	a	system	that	has	Docker	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	docker	container	run	-id	--name	demo	alpine	ash

How	it	works…
Docker	has	client–server	architecture.	Its	binary	consists	of	the	Docker	client
and	server	daemon,	and	can	reside	on	the	same	host.	The	client	can
communicate	via	sockets	or	a	RESTful	API	to	either	a	local	or	remote	Docker
daemon.	The	Docker	daemon	builds,	runs,	and	distributes	containers.	As	shown
in	the	following	diagram,	the	Docker	client	sends	the	command	to	the	Docker
daemon	running	on	the	host	machine.	The	Docker	daemon	also	connects	to
either	a	public	or	a	local	registry	to	get	images	requested	by	the	client:

So	in	our	case,	the	Docker	client	sends	a	request	to	the	daemon	running	on	the
local	system,	which	then	connects	to	the	public	Docker	registry	and	downloads
the	image.	Once	it	is	downloaded,	we	can	run	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more…
Let's	explore	some	keywords	that	we	encountered	earlier	in	this	recipe:

Images:	Docker	images	are	read-only	templates,	and	they	give	us
containers	during	runtime.	They	are	based	on	the	idea	of	a	base	image	and
layers	resting	on	top	of	it.	For	example,	we	can	have	a	base	image	of	Alpine
or	Ubuntu,	and	then	we	can	install	packages	or	make	modifications	over	the
base	image	to	create	a	new	layer.	The	base	image	and	new	layer	can	be
treated	as	a	new	image.	For	example,	in	the	following	figure,	Debian	is	the
base	image	and	then	Emacs	and	Apache	are	the	two	layers	added	on	top	of
it.	They	are	highly	portable	and	can	be	shared	easily:

	

Layers	are	transparently	laid	on	top	of	the	base	image	to	create	a
single	coherent	filesystem.

Registries:	A	registry	holds	Docker	images.	It	can	be	public	or	private,
depending	on	the	location	from	which	you	can	download	or	upload	images.
The	public	Docker	registry	is	called	Docker	Hub,	which	we	will	cover
later.
Index:	An	index	manages	user	accounts,	permissions,	searches,	tagging,
and	all	that	nice	stuff	that's	in	the	public	web	interface	of	the	Docker
registry.
Containers:	Containers	run	images	that	are	created	by	combining	the	base
image	and	the	layers	on	top	of	it.	They	contain	everything	that	is	needed	to
run	an	application.	As	shown	in	the	preceding	diagram,	a	temporary	layer	is
also	added	while	starting	the	container,	and	this	will	be	discarded	if	it	is	not
committed	after	the	container	is	stopped	and	deleted.	If	it	is	committed,
then	it	would	create	another	layer.
Repository:	Different	versions	of	an	image	can	be	managed	by	multiple
tags,	which	are	saved	with	different	GUID.	A	repository	is	a	collection	of
images	tracked	by	GUIDs.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
For	more	information,	check	out	the	documentation	on	the	Docker	website	at	htt
ps://docs.docker.com/engine/docker-overview/.

https://docs.docker.com/engine/docker-overview/

Adding	a	nonroot	user	to	administer
Docker
For	ease	of	use,	we	can	allow	a	nonroot	user	to	administer	Docker	by	adding	it
to	a	Docker	group.	This	is	not	required	when	using	Docker	on	Mac	or	Windows.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
To	prepare	to	add	a	nonroot	user	to	administer	Docker,	go	through	the	following
steps:

1.	 Create	the	Docker	group,	if	it	is	not	there	already:

				$	sudo	groupadd	docker

2.	 Create	the	user	to	whom	you	want	to	give	permissions	to	administer
Docker:

				$	sudo	useradd	dockertest

How	to	do	it...
Run	the	following	command	to	add	the	newly	created	user	to	administer	Docker:

				$	sudo	usermod	-aG	docker	dockertest

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
The	preceding	command	will	add	a	user	to	the	Docker	group.	The	added	user
will	thus	be	able	to	perform	all	Docker	operations.

Finding	help	with	the	Docker
command	line
Docker	commands	are	well	documented,	and	can	be	referred	to	whenever
needed.	Lots	of	documentation	is	available	online	as	well,	but	it	might	differ
from	the	documentation	for	the	Docker	version	you	are	running.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
First,	install	Docker	on	your	system.

How	to	do	it…
1.	 On	a	Linux-based	system,	you	can	use	the	man	command	to	find	help,	as

follows:

				$	man	docker

2.	 Subcommand-specific	help	can	also	be	found	with	either	of	the	following
commands:

				$	man	docker	ps

				$	man	docker-ps

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
The	man	command	uses	the	man	pages	installed	by	the	Docker	package	to	provide
help.

See	also
For	more	information,	see	the	documentation	on	the	Docker	website	at	https://doc
s.docker.com/engine/reference/commandline/cli/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/cli/

Working	with	Docker	Containers
In	this	chapter,	we	will	cover	the	following	recipes:

Listing/searching	for	an	image
Pulling	an	image
Listing	images
Starting	a	container
Listing	containers
Looking	at	the	container	logs
Stopping	a	container
Removing	a	container
Removing	all	stopped	containers
Setting	the	restart	policy	on	a	container
Getting	privileged	access	inside	a	container
Accessing	the	host	device	inside	a	container
Injecting	a	new	process	into	a	running	container
Reading	a	container's	metadata
Labeling	and	filtering	containers
Reaping	a	zombie	inside	a	container

	

	

Introduction
In	the	previous	chapter,	after	installing	Docker,	we	pulled	an	image	and	created	a
container	from	it.	Docker's	primary	objective	is	running	containers.	In	this
chapter,	we'll	see	the	different	operations	we	can	perform	with	containers,	such
as	starting,	stopping,	listing,	deleting,	and	so	on.	This	will	help	us	use	Docker	for
different	use	cases,	such	as	testing,	CI/CD,	setting	up	PaaS,	and	so	on,	which
we'll	cover	in	later	chapters.	Before	we	start,	let's	verify	the	Docker	installation
by	running	the	following	command:	$	docker	version

This	will	give	the	Docker	client	and	server	version,	as	well	as	other	details.

I	am	using	Ubuntu	18.04	as	my	primary	environment	in	which	to	run	these	recipes.	They
should	also	work	with	the	other	environments.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Listing/searching	for	an	image
We	need	an	image	to	get	the	container	started.	Let's	see	how	images	are	searched
for	on	the	Docker	registry.	As	we	have	seen	in	Chapter	1,	Introduction	and
Installation,	a	registry	holds	the	Docker	images,	which	can	be	both	public	and
private.	By	default,	the	search	happens	on	the	default	public	registry,	which	is
the	Docker	Hub	and	is	located	at	https://hub.docker.com/.

	

	

	

https://hub.docker.com/.

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
The	docker	search	command	lets	you	search	an	image	on	a	Docker	registry.	The
following	is	the	syntax	for	this:	docker	search	[OPTIONS]	TERM

The	following	is	an	example	of	searching	for	the	alpine	image:

				$	docker	search	--limit	5	alpine	

The	preceding	screenshot	lists	the	name,	description,	and	number	of	stars
awarded	to	the	image.	It	also	points	out	whether	the	image	is	official	and
automated	or	not:

STARS	signify	how	many	people	liked	the	given	image.
The	OFFICIAL	column	helps	us	identify	whether	the	image	is	built	from	a
trusted	source	or	not.
The	AUTOMATED	column	is	a	way	of	telling	whether	an	image	is	built
automatically	when	pushed	into	GitHub	or	Bitbucket	repositories.	More
details	about	AUTOMATED	can	be	found	in	the	next	chapter.

The	convention	for	an	image	name	is	<user>/<name>,	but	it	can	be	anything.

	

How	it	works...
Docker	searches	for	images	on	the	Docker	public	registry,	which	has	a	repository
for	images	at	https://index.docker.io/v1/.

We	can	configure	our	private	registry	as	well,	so	it	can	also	search	for	images
there.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://index.docker.io/v1/.

$	docker	search	\		--filter	is-automated=true	\
		--filter	stars=20	alpine

	

In	Chapter	3,	Working	with	Docker	Images,	we	will	see	how	to	set	up	automated
builds.

From	Docker	1.3	onwards,	the	--insecure-registry	option	for	the	Docker
daemon	is	provided,	which	allows	us	to	search/pull/commit	images	from	an
insecure	registry.	For	more	details,	look	at
https://docs.docker.com/registry/insecure/.

https://docs.docker.com/registry/insecure/

See	also
Look	at	the	help	on	Docker	search	by	running	the	following	command:

				$	docker	search	--help		

The	documentation	for	this	is	on	the	Docker	website	here:	https://docs.docker.com/e
dge/engine/reference/commandline/search/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/edge/engine/reference/commandline/search/

Pulling	an	image
After	searching	for	the	image,	we	can	pull	it	to	the	system	by	running	the	Docker
daemon.	Let's	see	how	we	can	do	that.

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
To	pull	an	image	from	the	Docker	registry,	you	can	either	run	the	following:

				docker	image	pull	[OPTIONS]	NAME[:TAG|@DIGEST]

Or	the	legacy	command:

				docker	pull	[OPTIONS]	NAME[:TAG|@DIGEST]

The	following	is	an	example	of	pulling	the	ubuntu	image:

				$	docker	image	pull	ubuntu

How	it	works...
The	pull	command	downloads	all	layers	from	the	Docker	registry	that	are
required	to	create	that	image	locally.	We	will	see	details	about	layers	in	the	next
chapter.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
Image	tags	group	images	of	the	same	type.	For	example,	CentOS	can	have
images	with	tags	such	as	centos6,	centos7,	and	so	on.	To	pull	an	image	with	a
specific	tag,	for	instance,	run	the	following	command:	$	docker	image	pull
centos:centos7

By	default,	the	image	with	latest	tag	gets	pulled.	To	pull	all	images
corresponding	to	all	tags,	use	the	following	command:

$	docker	image	pull	--all-tags	alpine		

From	Docker	1.6	(https://blog.docker.com/2015/04/docker-release-1-6/),	we	can	build
and	refer	to	images	by	a	new	content	addressable	identifier	called	a	digest.	It	is	a
very	useful	feature	when	we	want	to	work	with	the	specific	images,	rather	than
tags.	To	pull	an	image	with	a	specific	digest,	we	can	use	the	following	syntax:	$
docker	image	pull	<image>@sha256:<digest>

The	following	is	an	example	of	using	the	preceding	command:

$	docker	image	pull	nginx@sha256:788fa27763db6d69ad3444e8ba72f947df9e7e163bad7c1f5614f8fd27a311c3	

Digests	are	only	supported	with	version	2	of	the	Docker	registry.

Once	an	image	gets	pulled,	it	resides	on	the	local	cache	(storage),	so	subsequent
pulls	will	be	very	fast.	This	feature	plays	a	very	important	role	in	building
Docker	layered	images.

https://blog.docker.com/2015/04/docker-release-1-6/

See	also
Look	at	the	help	option	for	docker	image	pull:

$	docker	image	pull	--help

The	relevant	documentation	on	the	Docker	website	can	be	found	here:	https:
//docs.docker.com/engine/reference/commandline/image_pull/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/image_pull/

Listing	images
We	can	list	the	images	that	are	available	on	the	system	by	running	the	Docker
daemon.	These	images	might	have	been	pulled	from	the	registry,	imported
through	the	docker	image	pull	command,	or	created	through	a	Dockerfile.

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Run	either	one	of	the	following	commands	to	list	the	images:

				$	docker	image	ls

				$	docker	images

How	it	works...
The	Docker	client	talks	to	the	Docker	engine	and	gets	a	list	of	images	that	are
downloaded	(pulled)	to	the	Docker	host.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
All	the	images	with	the	same	name	but	with	different	tags	are	downloaded.	The
interesting	thing	to	note	here	is	that	they	have	the	same	name	but	different	tags.
Also,	there	are	two	different	tags	for	the	same	IMAGE	ID,	which	is	7328f6f8b418.

See	also
Look	at	the	help	option	of	docker	image	ls:

				$	docker	image	ls	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/image_ls/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/image_ls/

Starting	a	container
Once	we	have	the	images,	we	can	use	them	to	start	containers.	In	this	recipe,	we
will	start	a	container	with	the	ubuntu:latest	image	and	see	what	happens	behind
the	scenes.

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
We	can	start	a	container	using	either	of	the	following	syntaxes:

docker	run	[OPTIONS]	IMAGE	[COMMAND]	[ARG...]

				docker	container	run	[OPTIONS]	IMAGE	[COMMAND]	[ARG...]

The	docker	container	run	command	is	recommended	over	docker	run	because,	in	version	1.13,
Docker	logically	grouped	container	operations	under	the	docker	container	management	command,
and	so	docker	run	might	be	obsolete	in	the	future.

Here	is	an	example	of	using	the	docker	container	run	command:

$	docker	container	run	-i	-t	--name	mycontainer	ubuntu	/bin/bash

By	default,	Docker	picks	the	image	with	the	latest	tag:

The	-interactive	or	-i	option	starts	the	container	in	interactive	mode	by
keeping	the	STDIN	open
The	--tty	or	-t	option	allocates	a	pseudo-tty	and	attaches	it	to	the	standard
input

So,	with	the	preceding	command,	we	can	start	a	container	from	the	ubuntu:latest
image,	attach	pseudo-tty,	name	it	mycontainer,	and	run	the	/bin/bash	command.	If	the
name	is	not	specified,	then	a	random	string	will	be	assigned	as	the	name.

Also,	if	the	image	is	not	available	locally,	then	it	will	be	downloaded	from	the
registry	first	and	then	run.

How	it	works...
Under	the	hood,	Docker	will:

Merge	all	the	layers,	that	makeup	that	image	using	UnionFS.
Allocate	a	unique	ID	to	a	container,	which	is	referred	to	as	the	Container
ID.
Allocate	a	filesystem	and	mount	a	read/write	layer	for	the	container.	Any
changes	on	this	layer	will	be	temporary	and	will	be	discarded	if	they	are	not
committed.
Allocate	a	bridge	network	interface.
Assign	an	IP	address	to	the	container.
Execute	the	process	specified	by	the	user.

Also,	with	the	default	Docker	configuration,	it	creates	a	directory	(with	the
container's	ID	inside	/var/lib/docker/containers),	which	has	the	container's	specific
information	such	as	hostname,	configuration	details,	logs,	and	/etc/hosts.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
To	exit	from	the	container,	press	Ctrl	+	D	or	type	exit.	It	is	similar	to	exiting
from	a	shell,	but	this	will	stop	the	container.	Alternatively,	to	detach	from	the
container,	press	Ctrl	+	P	+	Q.	The	detached	container	will	detach	itself	from	the
terminal,	give	control	back	to	the	Docker	host	shell,	and	wait	for	the	docker
container	attach	command	to	attach	back	to	the	container.

The	run	command	creates	and	starts	the	container.	With	Docker	1.3	or	later,	it	is
possible	to	just	create	the	container	using	the	create	command	and	run	it	later
using	the	start	command,	as	shown	in	the	following	example:

$	ID=$(docker	container	create	-t	-i	ubuntu	/bin/bash)

				$	docker	container	start	-a	-i	$ID

The	container	can	be	started	in	the	background,	and	then	we	can	attach	to	it
whenever	needed.	We	need	to	use	the	-d	option	to	start	the	container	in	the
background:

$	docker	container	run	-d	-i	-t	ubuntu	/bin/bash	

				0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672aa48f28c4f

The	preceding	command	returns	the	container	ID	of	the	container,	which	we	can
attach	to	later,	as	follows:

$	ID=$(docker	container	run	-d	-t	-i	ubuntu	/bin/bash)`

				$	docker	attach	$ID

In	the	preceding	case,	we	chose	/bin/bash	to	run	inside	the	container.	If	we	attach
to	the	container,	we	will	get	an	interactive	shell.	We	can	run	a	non-interactive
process	and	run	it	in	the	background	to	make	a	deamonized	container,	like	the
following:

$	docker	container	run	-d		ubuntu	\

											/bin/bash	-c		\

											"while	[true];	do	date;	sleep	1;	done"

To	remove	the	container	after	it	exits,	start	the	container	with	the	--rm	option,	as
follows:

$	docker	run	--rm	ubuntu	date

As	soon	as	the	date	command	exits,	the	container	will	be	removed.

	

The	--read-only	option	of	the	run	command	will	mount	the	root	filesystem	in	read-
only	mode:

$	docker	container	run	--read-only	--rm	\

										ubuntu	touch	file

				touch:	cannot	touch	'file':	Read-only	file	system

You	can	also	set	custom	labels	for	containers,	which	can	be	used	to	group
containers	based	on	labels.	Take	a	look	at	the	Labelling	and	filtering	containers
recipe	in	this	chapter	for	more	details.

A	container	can	be	referred	to	in	three	ways:	by	name,	by	its	short	container	ID	(0df95cc49e25),
and	by	its	container	ID	(0df95cc49e258b74be713c31d5a28b9d590906ed9d6e1a2dc75672aa48f28c4f).

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	run:

				$	docker	container	run	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_run/.

https://docs.docker.com/engine/reference/commandline/container_run/

Listing	containers
We	can	list	both	running	and	stopped	containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.	You	will	also	need	a	few	running	and/or	stopped
containers.

How	to	do	it...
To	list	the	containers,	either	run	the	following	command:

				docker	container	ls	[OPTIONS]

Or	run	the	following	legacy	command:

				docker	ps	[OPTIONS]

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	Docker	daemon	will	look	at	the	metadata	associated	with	the	containers	and
list	them.	By	default,	the	command	returns	the	following:

The	container	ID
The	image	from	which	it	was	created
The	command	that	was	run	after	starting	the	container
The	details	about	when	it	was	created
The	current	status
The	ports	that	are	exposed	from	the	container
The	name	of	the	container

	

	

There's	more...
To	list	both	running	and	stopped	containers,	use	the	-a	option	as	follows:

	

	

To	return	just	the	container	IDs	of	all	containers,	use	the	-aq	option	as	follows:	

To	show	the	last	created	container,	including	non-running	containers,	run	the
following	command:	$	docker	container	ls	-l

Using	the	--filter/-f	option	to	ps,	we	can	list	containers	with	specific	labels.
Look	at	the	Labelling	and	filtering	containers	recipe	in	this	chapter	for	more
details.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	ls:

				$	docker	container	ls	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_ls/.

https://docs.docker.com/engine/reference/commandline/container_ls/

Looking	at	the	container	logs
If	the	container	emits	logs	or	output	on	STDOUT/STDERR,	then	we	can	get	them
without	logging	into	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.	You	will	also	need	a	running	container,	that	emits
logs/output	on	STDOUT.

How	to	do	it...
To	get	logs	from	the	container,	run	the	following	command:	docker	container
logs	[OPTIONS]	CONTAINER

	

Or	run	the	following	legacy	command:	docker	logs	[OPTIONS]	CONTAINER

Let's	take	an	example	from	the	earlier	section	where	we	ran	a	daemonized
container	and	looked	at	the	logs:	$	docker	container	run	-d	ubuntu	\	/bin/bash
-c	\	"while	[true];	do	date;	sleep	1;	done"

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
Docker	will	look	at	the	container's	specific	log	file	from
/var/lib/docker/containers/<Container	ID>/<Container	ID>-json.log	and	show	the	results.

There's	more...
With	the	-t	option,	we	can	get	the	timestamp	with	each	log	line,	and	with	-f	we
can	get	tail-like	behavior.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	logs:

				$	docker	container	logs	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_logs/.

https://docs.docker.com/engine/reference/commandline/container_logs/

Stopping	a	container
We	can	stop	one	or	more	containers	at	once.	In	this	recipe,	we	will	first	start	a
container	and	then	stop	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.	You	will	also	need	one	or	more	running	containers.

docker	container	stop	[OPTIONS]	CONTAINER	[CONTAINER...]

docker	stop	[OPTIONS]	CONTAINER	[CONTAINER...]

$	ID=$(docker	run	-d	-i	ubuntu	/bin/bash)	$	docker
stop	$ID

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
This	will	move	the	container	from	a	running	state	to	a	stop	state	by	stopping	the
process	running	inside	the	container.	A	stopped	container	can	be	be	started	again,
if	needed.

There's	more...
To	stop	a	container	after	waiting	for	some	time,	use	the	--time/-t	option.

To	stop	all	running	containers,	run	the	following	command:

				$	docker	stop	$(docker	ps	-q)

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	stop:

				$	docker	container	stop	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_stop/.

https://docs.docker.com/engine/reference/commandline/container_stop/

Removing	a	container
We	can	remove	a	container	permanently,	but	before	that,	we	have	to	stop	the
container	or	use	the	force	option.	In	this	recipe,	we'll	create	and	remove	a
container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.	You	will	also	need	some	containers	in	a	stopped	or
running	state	to	delete	them.

How	to	do	it...
Use	the	following	command:

$	docker	container	rm	[OPTIONS]	CONTAINER	[CONTAINER]

Or	run	the	following	legacy	command:

$	docker	rm	[OPTIONS]	CONTAINER	[CONTAINER]

Let's	first	create	a	container,	and	then	delete	it	using	the	following	commands:

$	ID=$(docker	container	create	ubuntu	/bin/bash)

				$	docker	container	stop	$ID

				$	docker	container	rm	$ID

	

As	we	can	see	from	the	preceding	screenshot,	the	container	did	not	show	up,
which	just	entered	the	docker	container	ls	command	after	being	stopped.	We	had
to	provide	the	-a	option	in	order	to	list	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
To	remove	a	running	container,	it	must	be	stopped	first	using	the	docker	container
stop	command	and	then	removed	using	the	docker	container	rm	command.

To	forcefully	remove	a	container	without	intermediate	stop,	use	the	-f	option	of
the	docker	container	rm	command.

To	remove	all	the	containers,	we	first	need	to	stop	all	running	containers	and
then	remove	them.	Be	careful	before	running	these	commands	as	they	will
remove	both	running	and	stopped	containers:	$	docker	container	stop	$(docker
container	ls	-q)	$	docker	container	rm	$(docker	container	ls	-aq)

There	are	options	to	remove	a	specified	link	and	volumes	associated	with	the
container,	which	we	will	explore	later.

How	it	works...
The	Docker	daemon	will	remove	the	read/write	layer,	which	was	created	while
starting	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	rm:

				$	docker	container	rm	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_rm/.

https://docs.docker.com/engine/reference/commandline/container_rm/

Removing	all	stopped	containers
We	can	remove	all	stopped	containers	with	a	single	command.	In	this	recipe,
we'll	create	a	bunch	of	containers	in	a	stopped	state,	and	then	delete	all	of	them.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	Docker	daemon	1.13	(and	above)	are	running	on	the	host	and	can	be
connected	through	the	Docker	client.	You	will	also	need	some	containers	in	a
stopped	or	running	state	in	order	to	delete	them.

How	to	do	it...
Use	the	following	command:

				$	docker	container	prune	[OPTIONS]

Let's	first	create	a	container,	and	then	delete	it	using	the	following	commands:

				$	docker	container	create	--name	c1	ubuntu	/bin/bash

				$	docker	container	run	--name	c2	ubuntu	/bin/bash

				$	docker	container	prune

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
By	default,	the	docker	container	prune	command	confirms	prompts	the	user	for
confirmation	before	removing	containers	that	are	not	in	a	running	state.

You	could	avoid	the	aforementioned	confirmation	by	using	the	-f	or	--force
option	of	the	docker	container	prune	command.

How	it	works...
The	Docker	daemon	will	iterate	through	containers	that	are	not	running	and	will
remove	them.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	prune:

				$	docker	container	prune	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_prune/.

https://docs.docker.com/engine/reference/commandline/container_prune/

Setting	the	restart	policy	on	a
container
Before	Docker	1.2,	when	a	container	exited	for	any	reason	or	the	Docker	host
was	rebooted,	the	container	had	to	be	manually	restarted	using	the	restart
command.	With	the	release	of	Docker	1.2,	a	policy-based	restart	capability	was
added	to	the	Docker	engine	to	automate	restarting	containers.	This	feature	is
activated	using	the	--restart	option	of	the	run	command	and	it	supports	container
restart	at	Docker	host	boot	time,	as	well	as	when	container	failures	occur.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

$	docker	container	run	--restart=POLICY	[OPTIONS]	IMAGE[:TAG]
[COMMAND]	[ARG...]	

$	docker	container	run	--restart=always	-d	-i	-t	ubuntu
/bin/bash

There	are	three	restart	policies	to	choose	from:

no:	This	does	not	start	the	container	if	it	dies
on-failure:	This	restarts	the	container	if	it	fails	with	a	nonzero	exit	code
always:	This	always	restarts	the	container	without	worrying	about	the
return	code

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
You	can	also	get	an	optional	restart	count	with	the	on-failure	policy	as	follows:

				$	docker	container	run	--restart=on-failure:3	\

										-d	-i	-t	ubuntu	/bin/bash

The	preceding	command	will	only	restart	the	container	three	times	if	any	failure
occurs.

See	also
Look	at	the	help	option	of	docker	container	run:

$	docker	container	run	--help

You	can	find	help	at	Docker's	website	here:	https://docs.docker.com/engine/reference/
commandline/conconcon_run/,	https://docs.docker.com/engine/reference/run/#restart-policies

-restart.

Docker's	documentation	on	starting	containers	automatically	can	be	found	here:	
https://docs.docker.com/engine/admin/start-containers-automatically/.

If	restart	policies	do	not	meet	your	requirements,	then	use	process	managers
such	as	systemd,	supervisor,	or	upstart.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/conconcon_run/
https://docs.docker.com/engine/reference/run/#restart-policies-restart
https://docs.docker.com/engine/admin/start-containers-automatically/

Getting	privileged	access	inside	a
container
Linux	divides	privileges	that	are	traditionally	associated	with	superusers	into
distinct	units,	known	as	capabilities	(run	man	capabilities	on	a	Linux-based
system),	which	can	be	independently	enabled	and	disabled.	For	example,	the
net_bind_service	capability	allows	nonuser	processes	to	bind	the	port	below	1,024.
By	default,	Docker	starts	containers	with	limited	capabilities.	With	privileged
access	inside	the	container,	we	allocate	more	capabilities	to	perform	operations
that	are	normally	done	by	the	root	user.	In	order	to	have	a	better	understanding
of	privileged	mode,	let's	first	try	a	simple	mount	on	an	unprivileged	container
and	observe	the	effect:

	

	

	

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
To	use	privileged	mode,	use	the	following	command:

				$	docker	container	run	--privileged	[OPTIONS]	IMAGE	[COMMAND]	[ARG...]

Now,	let's	try	the	preceding	example	with	privileged	access:

				$	docker	container	run	--privileged	-i	-t	ubuntu	/bin/bash

How	it	works...
This	provides	almost	all	capabilities	inside	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker	container	run	--cap-drop=CHOWN	[OPTIONS]	IMAGE
[COMMAND]	
	[ARG...]

Refer	to	Chapter	9,	Docker	Security,	for	more	details.

See	also
Look	at	the	help	option	of	docker	container	run:

				$	docker	container	run	--help

The	documentation	on	the	Docker	website	can	be	found	here:

https://docs.docker.com/engine/reference/commandline/container_run/	
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabiliti

es

The	Docker	1.2	release	announcement	can	be	found	here:	http://blog.docker.com/20
14/08/announcing-docker-1-2-0/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
http://blog.docker.com/2014/08/announcing-docker-1-2-0/

Accessing	the	host	device	inside	a
container
From	Docker	1.2	onwards,	we	can	give	access	of	the	host	device	to	a	container
with	the	--device	option,	following	the	run	command.	Earlier,	you	had	to	bind-
mount	it	with	the	-v	option,	and	that	had	to	be	done	with	the	--privileged	option.

	

	

	

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.	You	will	also	need	a	device	to	pass	the	container	to.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
You	can	give	access	of	a	host	device	to	the	container	using	the	following	syntax:

				docker	container	run	--device=<Host	Device>:<Container	Device	Mapping>:<Permissions>	[OPTIONS]	IMAGE	[COMMAND]		[ARG...]

		

Here	is	an	example	of	using	the	preceding	command:

				$	docker	container	run	--device=/dev/sdc:/dev/xvdc	\

														-i	-t	ubuntu	/bin/bash

How	it	works...
The	preceding	command	will	access	/dev/sdc	inside	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	help	option	of	docker	container	run:

				$	docker	container	run	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_run/.

https://docs.docker.com/engine/reference/commandline/container_run/

Injecting	a	new	process	into	a
running	container
While	doing	development	and	debugging,	we	might	want	to	look	inside	an
already	running	container.	There	are	a	few	utilities,	such	as	nsenter	(https://github.
com/jpetazzo/nsenter),	which	allow	us	to	enter	the	namespace	of	the	container	to
inspect	its	state.	With	the	exec	option,	which	was	added	in	Docker	1.3,	we	can
inject	a	new	process	inside	a	running	container.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/jpetazzo/nsenter

Getting	ready
Make	sure	that	the	Docker	daemon	is	running	on	the	host	and	that	you	can
connect	through	the	Docker	client.	You	might	also	need	a	running	container	to
inject	a	process	into.

How	to	do	it...
You	can	inject	a	process	inside	a	running	container	with	the	following	command:

					$	docker	exec	[OPTIONS]	CONTAINER	COMMAND	[ARG...]

Let's	start	an	nginx	container	and	then	inject	bash	into	it:

				$	ID=$(docker	container	run	-d	redis)

				$	docker	container	exec	-it	$ID	/bin/bash

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	exec	command	enters	the	namespace	of	the	container	and	starts	the	new
process.

See	also
Look	at	the	help	option	of	Docker	inspect:

							$	docker	container	exec	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_exec/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/container_exec/

Reading	a	container's	metadata
While	doing	debugging,	automation,	and	so	on,	we	will	need	the	container's
configuration	details.	Docker	provides	the	container	inspect	command	to	get	those
easily.

Getting	ready
Ensure	that	the	Docker	daemon	is	running	on	the	host	and	can	be	connected
through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
To	inspect	a	container,	run	the	following	command:

				$	docker	container	inspect	[OPTIONS]	CONTAINER	[CONTAINER...]

We'll	start	a	container	and	then	inspect	it,	like	so:

				$	ID=$(docker	container	run	-d	-i	ubuntu	/bin/bash)

				$	docker	container	inspect	$ID

How	it	works...
Docker	will	look	into	the	metadata	and	configuration	for	the	given	container	and
present	it	in	JSON	format.	Using	tools	like	jq	,	this	JSON	formatted	output	can
be	further	post-processed.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
With	the	-f	|	--format	option,	we	can	use	the	Go	(programming	language)
template	to	get	this	specific	information.	The	following	command	will	give	us	an
IP	address	for	the	container:

				$	docker	container	inspect	\

									--format='{{.NetworkSettings.IPAddress}}'		$ID

				172.17.0.2

See	also
Look	at	the	help	option	of	docker	container	inspect:

							$	docker	container	inspect	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_inspect/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/container_inspect/

Labeling	and	filtering	containers
With	Docker	1.6,	a	feature	has	been	added	so	that	we	can	label	containers	and
images	through	which	we	can	attach	arbitrary	key-value	pairs	as	metadata.	You
can	think	of	them	as	environment	variables,	that	are	not	available	for
applications	running	inside	containers,	but	they	are	available	to	Docker	clients
that	manage	the	images	and	containers.	Labels	attached	to	images	also	get
applied	to	containers	that	are	started	using	those	images.	We	can	also	attach
labels	to	containers	while	starting	them.	Having	labeled	an	image	or	a	container,
the	labels	can	later	be	used	for	filtering	or	selection	purposes.

For	this	recipe,	let's	assume	that	we	have	an	image	with	the	label
com.example.image=docker-cookbook.	We	will	see	how	to	assign	a	label	to	an	image	in
the	next	chapter:

As	you	can	see	from	the	preceding	screenshot,	if	we	use	filters	with	the	docker
image	ls	command,	we	only	get	the	image	where	the	corresponding	label	is	found
in	the	image's	metadata.

Getting	ready
Ensure	that	Docker	daemon	1.6	or	above	is	running	on	the	host	and	can	be
connected	to	through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Add	labels	to	the	container's	metadata	by	using	the	--label	or	-l	option	of	the
docker	container	run	command,	as	follows:	$	docker	container	run	\	--label
com.example.container=docker-cookbook	\	label-demo	date

Let's	start	a	container	without	a	label	and	start	two	others	with	the	same	label:

Now,	if	we	run	docker	container	ls	-a	without	any	filter,	it	will	list	all	the
containers.	However,	we	can	limit	the	list	of	containers	to	those	we	labelled	by
applying	filtering	to	the	docker	container	ls	-a	command	by	using	the	--filter	or	-f
option:	

How	it	works...
Docker	attaches	label	metadata	to	containers	while	starting	them	and	matches
the	label	while	listing	them	or	performing	other	related	operations.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
All	the	labels	attached	to	a	container	can	be	listed	through	the	docker	container
inspect	command.	As	we	can	see,	the	inspect	command	returns	both	the	image	and
the	container	labels	that	are	attached	to	the	container:	

You	can	apply	labels	to	a	container	from	a	file	by	using	the	--label-file	option.
The	file	should	have	a	list	of	labels	separated	by	a	new	EOL.

These	labels	are	different	from	Kubernetes	labels,	which	we	will	explore	in	Chapt
er	8,	Docker	Orchestration	and	Hosting	Platform.

See	also
The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_run/.

Labeling	key	format	recommendations	can	be	found	here:	https://docs.docker.com/e
ngine/userguide/labels-custom-metadata/#key-format-recommendations.

Labeling	value	guidelines	can	be	found	here:	https://docs.docker.com/engine/userguid
e/labels-custom-metadata/#value-guidelines.

Details	on	adding	label	support	to	Docker	can	be	found	here:	http://rancher.com/do
cker-labels/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/
https://docs.docker.com/engine/userguide/labels-custom-metadata/#key-format-recommendations
https://docs.docker.com/engine/userguide/labels-custom-metadata/#value-guidelines
http://rancher.com/docker-labels/

Reaping	a	zombie	inside	a	container
On	Linux	(and	all	Unix-like)	operating	systems,	when	a	process	exits,	all	the
resources	associated	with	that	process	are	released	with	the	exception	of	its	entry
in	the	process	table.	This	entry	in	the	process	table	is	kept	until	the	parent
process	reads	the	entry	to	learn	about	the	exit	status	of	its	child.	This	transient
state	of	a	process	is	called	a	zombie.	As	soon	as	the	parent	process	reads	the
entry,	the	zombie	process	is	removed	from	the	process	table,	and	this	is	called
reaping.	If	the	parent	process	exits	before	the	child	process,	the	init	process	(PID
1)	adopts	the	child	process	(PID	1)	and	it	eventually	reaps	adopted	child
processes	when	they	exit:

In	the	preceding	screenshot,	we	snipped	the	process	tree	for	Ubuntu	14.04	on	the
left-hand	side	and	Ubuntu	18.04	on	the	right-hand	side.	As	we	can	see,	both
process	trees	have	the	init	process	at	PID	1	on	the	left-and	right-hand	sides.

systemd	is	a	variant	of	the	init	system	and	is	adopted	by	many	Linux	distributions.

If	we	go	back	to	our	namespace	discussion	of	Docker,	the	Docker	engine	creates
a	new	PID	namespace	for	each	docker	container,	thus	the	first	process	inside	the
container	is	mapped	to	PID	1.	Docker	is	designed	to	run	one	process	per
container	and	usually	the	process	running	inside	the	containers	doesn't	create
child	processes.	However,	if	the	process	inside	the	container	creates	child
processes,	then	an	init	system	is	needed	to	reap	zombie	processes.	In	this	recipe,
we	will	look	at	how	to	configure	an	init	process	for	our	container	to	reap	zombie
processes.

Getting	ready
Ensure	that	Docker	daemon	1.13	or	above	is	running	on	the	host	and	can	be
connected	through	the	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
You	can	launch	a	container	with	the	init	process	using	the	--init	option	of	the
Docker	container	run	command,	as	shown	in	the	following	syntax:

docker	container	run	--init	[OPTIONS]	IMAGE	[COMMAND]	[ARG...]			

Let's	create	four	containers,	two	without	the	--init	option	and	another	two	with
the	--init	option,	and	compare	the	process	tree	by	using	the	pstree	command:

	

There's	more...
By	default,	the	docker	container	run	--init	command	uses	tini	(https://github.com/kra
llin/tini)	as	the	init	process.

The	daemon	flag	--init-path	allows	you	to	configure	your	own	init	process.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/krallin/tini

How	it	works...
The	Docker	daemon	will	launch	the	containers	with	init	as	the	first	process,
followed	by	the	specified	command.

See	also
Look	at	the	help	option	of	docker	container	run:

				$	docker	container	run	--help

The	documentation	on	the	Docker	website	can	be	found	here:	https://docs.docker.c
om/engine/reference/commandline/container_run/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/container_run/

Working	with	Docker	Images
In	this	chapter,	we	will	cover	the	following	recipes:

Creating	an	image	from	a	container
Creating	an	account	with	Docker	Hub
Logging	in	and	out	of	a	Docker	image	registry
Publishing	an	image	to	a	registry
Looking	at	the	history	of	an	image
Removing	an	image
Exporting	an	image
Importing	an	image
Building	an	image	using	a	Dockerfile
Building	an	Apache	image	-	a	Dockerfile	example
Setting	up	a	private	index/registry
Automated	builds	-	with	GitHub	and	Bitbucket
Creating	a	custom	base	image
Creating	a	minimal	image	using	a	scratch	base	image
Building	images	in	multiple	stages
Visualizing	the	image	hierarchy

	

	

	

Introduction
Docker	images	are	the	essential	building	blocks	of	the	Docker-inspired
containerization	paradigm.	As	you	are	already	aware,	Docker	containers	are
created	from	Docker	images.	According	to	your	application	requirements,	you
can	choose	to	create	complex	services	using	the	Docker	images	that	are	built	and
offered	by	the	folks	at	Docker	or	third	parties.	If	the	existing	images	don't	fit
your	requirements,	you	can	also	extend	the	existing	images	or	custom-build	your
own	images.

In	this	chapter,	we	will	introduce	you	to	Docker	Hub,	and	will	show	you	how	to
share	images	through	Docker	Hub	and	how	to	host	your	own	Docker	registry.
We	will	also	show	you	different	ways	to	build	your	own	image,	along	with	a	few
Docker	image	housekeeping	operations.

We	are	using	Ubuntu	18.04	as	our	primary	environment	on	which	to	run	the	z=zx.	They
should	also	work	with	other	environments.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker	container	commit	[OPTIONS]	CONTAINER
[REPOSITORY[:TAG]]

Getting	ready
Ensure	that	the	Docker	daemon	is	running	and	has	access	to	the	Ubuntu	image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Perform	the	following	steps:

1.	 Let's	start	a	container	from	an	ubuntu	image	using	the	docker	container	run
command:

2.	 Having	launched	the	container,	issue	apt-get	update	from	the	container
prompt	to	sync	the	package	list,	as	shown	in	the	following	screenshot:

3.	 Install	the	apache2	package	using	the	apt-get	install	command:

4.	 Now,	open	another	terminal	and	create	an	image	using	the	docker	container
run	command:

As	you	can	see,	the	new	image	is	now	being	committed	to	the	local	repository
with	myapache2	as	the	name	and	latest	as	the	tag.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	Chapter	1,	Introduction	and	Installation,	we	learned	that	Docker	images	are
layered	and	that	each	layer	is	stacked	on	top	of	its	parent	image.	When	we	start	a
container,	a	read/write	ephemeral	filesystem	layer	gets	created.	The	changes	to
the	filesystem	(that	is,	the	addition,	modification,	or	deletion	of	files)	through	the
apt-get	update	and	install	commands	are	preserved	in	this	read/write	ephemeral
filesystem	layer.	If	we	stop	and	delete	the	container,	the	ephemeral	layer
associated	with	that	container	is	removed	and,	essentially,	we	lose	all	the
changes	we	applied	to	the	container.

In	this	recipe,	we	persisted	the	container's	ephemeral	layer	by	using	the	docker
container	commit	command.	In	effect,	the	commit	operation	creates	another	image
layer	and	saves	it	along	with	other	images	in	the	Docker	host.

	

	

	

$	docker	diff	6289e32373bf

...OUTPUT	SNIPPED...	C	/var/log

C	/var/log/alternatives.log	A
/var/log/apache2

A	/var/log/apache2/access.log	A
/var/log/apache2/error.log	A
/var/log/apache2/other_vhosts_access.log	...	OUTPUT
SNIPPED...

We	can	see	that	there	is	a	prefix	before	each	entry	of	the	output.	The	following	is
a	list	of	those	prefixes:

A:	This	is	for	when	a	file/directory	has	been	added
C:	This	is	for	when	a	file/directory	has	been	modified
D:	This	is	for	when	a	file/directory	has	been	deleted

	

	

By	default,	a	container	gets	paused	while	doing	the	commit.	You	can	change	its
behavior	by	passing	--pause=false	to	commit.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Refer	to	the	help	option	for	docker	container	commit:

						$	docker	container	commit	--help

For	more	information,	you	can	read	the	documentation	on	the	Docker	website	at	
https://docs.docker.com/engine/reference/commandline/container_commit/.

https://docs.docker.com/engine/reference/commandline/container_commit/

Creating	an	account	with	Docker
Hub
Docker	Hub	is	a	cloud-based	public	registry	service	to	host	both	public	and
private	images,	share	them,	and	collaborate	with	others.	It	has	integration	with
GitHub	and	Bitbucket,	and	can	trigger	automated	builds.

To	host	your	image	in	Docker	Hub,	you	need	to	create	your	Docker	ID.	This
gives	you	the	ability	to	create	any	number	of	public	repositories	in	Docker	Hub.

Docker	Hub	also	gives	you	one	free	private	repository.	If	you	need	more	than	one	private
repository,	you	can	upgrade	to	a	paid	plan.	A	repository	can	hold	different	versions	of	an
image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
To	sign	up,	you	need	access	to	any	standard	web	browser.

How	to	do	it...
Perform	the	following	steps:

1.	 Go	to	https://hub.docker.com:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://hub.docker.com

2.	 Enter	your	preferred	Docker	ID,	a	valid	email	address,	and	password	in	the
fields	in	the	sign	up	section	and	then	click	the	Sign	Up	button.

3.	 Upon	successful	creation	of	the	account,	Docker	Hub	will	display	the
following	information:

4.	 As	shown	in	the	preceding	screenshot,	your	account	is	not	activated	yet.	In
order	to	activate	your	account,	you	have	to	confirm	your	email	by	pressing
the	Confirm	Your	Email	button	in	the	email	from	Docker	that	you	will	have
received	in	the	inbox	of	the	email	account	that	you	provided,	as	shown	in

the	following	screenshot:	

5.	 As	soon	as	you	confirm	your	email,	you	will	land	on	the	Welcome	to
Docker	page,	as	shown	in	the	following	screenshot:

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Now,	you	have	successfully	created	and	activated	your	Docker	Hub	account.

How	it	works...
The	preceding	steps	will	have	created	a	Docker	Hub	account	for	you.	Once	the
account	is	created,	you'll	get	a	confirmation	email,	through	which	you	need	to
confirm	your	identity.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	documentation	at	the	Docker	website:

https://docs.docker.com/docker-hub

https://docs.docker.com/docker-hub/accounts

https://hub.docker.com/help

https://docs.docker.com/docker-hub
https://docs.docker.com/docker-hub/accounts
https://hub.docker.com/help

Logging	in	and	out	of	the	Docker
image	registry
In	your	journey	through	the	world	of	containerization,	oftentimes	you	will	be
publishing	your	images	for	public	consumption	or	privately	sharing	images
using	a	Docker	registry.	To	push	an	image	to	a	public	repository,	you	must	log	in
to	a	Docker	registry	and	you	must	be	the	owner	of	that	repository.	In	the	case	of
a	private	repository,	both	pulling	and	pushing	are	allowed,	but	only	once	you	are
logged	in.	In	this	recipe,	we	will	see	how	to	log	in	and	log	out	of	a	Docker
registry.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Ensure	that	you	have	a	valid	Docker	ID	or	GitLab	account.

How	to	do	it...
The	docker	login	command	lets	you	log	in	to	more	than	one	Docker	registry	at	the
same	time.	Similarly,	the	docker	logout	command	lets	you	log	out	from	the
specified	server.	Here	is	the	syntax	for	the	Docker	login	and	logout	commands:	$
docker	login	[OPTIONS]	[SERVER]
$	docker	logout	[SERVER]

By	default,	both	the	docker	login	and	docker	logout	commands	assume	https://hub.do
cker.com/	as	the	default	registry,	but	this	can	be	changed.

Let's	learn	a	little	more	about	this	process	by	experimenting	with	the	following,
as	depicted	in	the	following	screenshot:

Logging	into	the	default	Docker	registry
Logging	into	the	registry	hosted	at	https://about.gitlab.com/
Reading	out	the	persisted	login	details
Logging	out	from	all	these	registrie

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://hub.docker.com/
https://about.gitlab.com/

	

How	it	works...
In	this	recipe,	we	logged	into	two	registries	by	using	the	docker	login	command,
and	then	explored	how	the	login	information	is	stored.	We	also	used	base64	to
retrieve	the	logged-in	user	ID,	whereas	it	also	displayed	the	stored	password.
Then	we	continued	to	log	out	from	both	the	registries	by	using	the	docker	logout
command.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
By	default,	the	docker	login	command	interactively	prompts	the	user	for	their
username	and	password.	You	can	change	this	interactive	behavior	to	batch	mode
by	supplying	the	username	using	the	-u	or	--username	option	and	the	password
using	the	-p	or	--password	option.

In	the	preceding	recipe,	the	password	stored	in	the	$HOME/.docker/config.json	file	can	be	easily
decoded	using	base64.	This	is	not	desirable	in	all	environments,	however;	in	other	scenarios,
you	could	resort	to	tools	such	as	docker-credential-helpers.

	

	

	

See	also
The	help	option	for	the	docker	login	and	docker	logout	options:

								$	docker	login	-help

								$	docker	logout	--help	

The	documentation	on	the	Docker	website:
https://docs.docker.com/engine/reference/commandline/login/

https://docs.docker.com/engine/reference/commandline/logout/

The	GitHub	repository	for	the	Docker	credential	helpers:
https://github.com/docker/docker-credential-helpers

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/logout/
https://github.com/docker/docker-credential-helpers

Publishing	an	image	to	the	registry
As	mentioned	in	the	previous	recipe,	Docker	image	registries	act	as	hubs	to	store
and	share	images.	In	this	recipe,	we'll	see	how	to	push	the	image	to	the	registry
using	the	docker	image	push	command.	Later	in	this	chapter,	we'll	cover	how	to	set
up	the	private	registry.

	

	

	

Getting	ready
Ensure	that	you	have	successfully	logged	in	to	hub.docker.com	because,	in	this
recipe,	we	will	be	pushing	an	image	to	hub.docker.com.	Alternatively,	you	could
use	a	private	or	third-party	Docker	image	registry.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
The	following	are	two	syntaxes	for	the	command	that	is	used	to	push	a	Docker
image	to	a	registry:

$	docker	image	push	[OPTIONS]	NAME[:TAG]

				$	docker	push	[OPTIONS]	NAME[:TAG]	

To	push	an	image	to	a	Docker	registry,	go	through	the	following	steps:

1.	 Begin	by	tagging	the	image	using	the	docker	image	tag	command	with	the
appropriate	user	or	organization	in	the	Docker	hub,	as	shown	in	the
following	code:

$	docker	image	tag	myapache2	cookbook/myapache2	

Here,	the	image	is	tagged	as	cookbook/myapache2	because,	in	the	next
step,	we	will	be	pushing	this	image	to	the	Docker	Hub	user	cookbook.

	

	

2.	 Now,	let's	push	the	image	to	the	Docker	Hub	using	docker	image	push,	as
shown	in	the	following	screenshot:

3.	 Having	pushed	the	image	to	the	Docker	Hub,	we	can	log	in	to	the	Docker
Hub	and	verify	the	image,	as	shown	in	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	docker	image	push	command	identifies	all	the	image	layers	that	make	up	the
image	that	is	to	be	pushed,	and	check	whether	any	of	those	images	are	already
available	in	the	registry.	Then	the	push	command	uploads	all	the	images	that	are
not	present	in	the	registry.

	

	

	

There's	more...
Let's	say	you	want	to	push	the	image	to	a	registry	that	is	hosted	locally.	To	do
this,	you	first	need	to	tag	the	image	with	the	registry	host's	name	or	IP	address
with	the	port	number	on	which	the	registry	is	running,	and	then	push	the	images.

For	example,	let's	say	our	registry	is	configured	on	shadowfax.example.com.	To	tag
the	image,	we	would	use	the	following	command:	$	docker	tag	myapache2	\	
shadowfax.example.com:5000/cookbook/myapache2

Then,	to	push	the	image,	we	would	use	the	following	command:

$	docker	push	shadowfax.example.com:5000/cookbook/myapache2		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	image	push:

								$	docker	push	--help

The	documentation	on	the	Docker	website:
	https://docs.docker.com/engine/reference/commandline/image_push/

https://docs.docker.com/engine/reference/commandline/image_push/

Looking	at	the	history	of	an	image
It	is	imperative	for	us	to	have	a	deeper	understanding	of	the	Docker	image	we
are	using.	The	docker	image	history	command	helps	us	find	all	the	layers	in	the
image,	its	image	ID,	when	it	was	created,	how	it	was	created,	the	size,	and	any
additional	comments	associated	with	that	layer.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin	the	next	recipe,	first	pull	or	import	any	Docker	image.

How	to	do	it...
To	look	at	the	history	of	the	image,	consider	the	following	syntax:

				$	docker	image	history	[OPTIONS]	IMAGE		

Here's	an	example	using	the	preceding	syntax:

				$	docker	image	history	myapache2	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	we	build	a	Docker	image,	the	Docker	engine	preserves	the	build
instruction	in	the	image	metadata.	Later,	the	docker	image	history	command
recursively	gathers	these	build	instruction	from	the	prescribed	image	to	the	base
image	and	presents	it	in	a	nice	format.

$	docker	image	inspect	--format='{{.Comment}}'	myapache2
Ubuntu	with	apache2	package

Well!	The	docker	image	inspect	command	can	work	with	only	one	image	at	a
time,	but	if	you	want	to	see	the	comments	of	all	the	image	layers,	then	you	have
to	go	through	each	image	or	automate	the	operation	through	some	scripts.	By	the
way,	the	comment	is	optional,	and	so	you	might	not	find	comments	on	all	the
images.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	image	history:

								$	docker	image	history	--help		

The	documentation	on	the	Docker	website:

	https://docs.docker.com/engine/reference/commandline/image_history/

https://docs.docker.com/engine/reference/commandline/image_history/

Removing	an	image
The	docker	image	rm	command	lets	you	remove	images	from	the	Docker	host.	This
command	can	remove	one	or	more	images,	and	you	can	specify	images	using
one	of	the	following	identifiers:

The	image's	short	ID.
The	image's	long	ID.
The	image's	digest.
The	image's	name	along	with	its	tag.	If	the	tag	is	not	specified,	then	the
latest	tag	is	assumed	by	default.

If	the	image	happens	to	have	more	than	one	tag	associated	with	it,	then	those
tags	must	be	removed	before	removing	the	image.	Alternatively,	you	can
forcefully	remove	them	using	the	-f	or	--force	option	of	the	docker	image	rm
command.	In	such	a	case,	all	the	tags	will	also	be	automatically	removed.

Here	is	the	syntax	for	the	docker	image	rm	command:	docker	image	rm
[OPTIONS]	IMAGE	[IMAGE...]

In	this	recipe,	we	will	create	multiple	tags	for	an	image	and	demonstrate	how	to
remove	them.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
One	or	more	Docker	images	should	be	locally	available	in	the	Docker	host.

How	to	do	it...
Perform	the	following	steps:

1.	 Let's	choose	one	of	the	existing	images	and	add	multiple	tags	to	it,	as
shown	in	the	following	screenshot:

Here,	we	have	selected	the	centos	image	with	the	image	ID	328edcd84f1b
and	added	another	three	tags:	tag1,	tag2,	and	tag3.	All	the	tags	have	the
same	image	ID	of	328edcd84f1b.

2.	 Now,	let's	make	an	attempt	to	delete	the	image	with	the	ID	328edcd84f1b	and
observe	the	outcome:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Clearly,	the	docker	image	rm	failed	to	remove	the	image	because	there
are	four	tags	referring	to	the	same	image	ID.

	

3.	 Remove	the	tags	from	the	image	until	all	the	tags	are	removed	and	the
image	is	deleted,	as	shown	in	the	following	screenshot:

Clearly,	the	docker	image	rm	command	removed	the	tags,	and	finally
removed	the	image	when	there	were	no	more	tags.

$	docker	container	stop	$(docker	container	ls	-q)	

$	docker	container	rm	$(docker	container	ls	-a	-q)`	

$	docker	image	rm	$(docker	image	ls	-q)

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	image	rm:

								$	docker	image	rm	--help

The	documentation	on	the	Docker	website:

	https://docs.docker.com/engine/reference/commandline/image_rm/

https://docs.docker.com/engine/reference/commandline/image_rm/

Exporting	an	image
Let's	say	you	have	a	customer	who	has	very	strict	policies	that	do	not	allow	them
to	use	images	from	the	public	domain.	In	such	cases,	you	can	share	one	or	more
images	through	tarballs,	which	can	then	later	be	imported	on	another	system.

The	docker	image	save	command	lets	you	save	or	export	images	as	tarballs.	The
command	syntax	is	as	follows:	docker	image	save	[-o|--output]=file.tar
IMAGE	[IMAGE...]

In	this	recipe,	we	will	learn	how	to	export	an	image	using	the	docker	image	save
command.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	you	begin,	first	pull	or	import	one	or	more	Docker	images	on	the	Docker
host.

$	docker	image	save	--output=myapache2.tar	myapache2

The	preceding	command	generates	the	myapache2.tar	file,	which	can	be
imported	as	described	in	the	next	recipe.

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
You	can	also	export	the	container's	filesystem	using	the	following	command:

				$	docker	container	export	--output=myapache2_cont.tar	c71ae52e382d		

See	also
The	help	option	of	docker	image	save	and	docker	container	export:

								$	docker	image	save	-help

								$	docker	container	export	--help

		

The	documentation	on	the	Docker	website:

https://docs.docker.com/engine/reference/commandline/image_save/

https://docs.docker.com/engine/reference/commandline/container_export/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/image_save/
https://docs.docker.com/engine/reference/commandline/container_export/

docker	image	import	[OPTIONS]	file|URL|-	[REPOSITORY[:TAG]]

Getting	ready
Before	you	begin,	you	need	a	local	copy	of	the	exported	Docker	image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	docker	image	import	myapache2.tar	apache2:imported

3.	 Here,	we	have	imported	our	myapache2.tar	file	as	an	apache2:imported
image.

There's	more...
You	can	also	import	TAR	files	stored	in	a	remote	location	by	specifying	their
URL.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	image	import:

						$	docker	image	import	--help

The	documentation	on	the	Docker	website:
	https://docs.docker.com/engine/reference/commandline/image_import/

https://docs.docker.com/engine/reference/commandline/image_import/

Building	an	image	using	a	Dockerfile
The	Dockerfile	is	a	text-based	build	instruction	file	that	enables	us	to	define	the
content	of	the	Docker	image	and	automate	image	creation.	The	Docker	build
engine	reads	the	instruction	in	the	Dockerfile	line	by	line	and	constructs	the	image
as	prescribed.	In	other	words,	Dockerfile	helps	us	to	craft	an	image	repeatedly	in
an	automated	fashion.	The	images	created	using	Dockerfiles	are	considered
immutable.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	mkdir	sample_image

$	cd	sample_image

$	cat	Dockerfile

#	Use	ubuntu	as	the	base	image		FROM	ubuntu

#	Add	author's	name		LABEL	maintainer="Jeeva
S.	Chelladhurai"	

#	Add	the	command	to	run	at	the	start	of	container	
CMD	date

How	to	do	it...
Perform	the	following	steps:

1.	 Run	the	following	command	inside	the	directory	where	we	created	the
Dockerfile	to	build	the	image:

$	docker	image	build	.	

In	the	preceding	setup,	we	did	not	specify	any	repository	and	tag	name	while	building	the
image.	It	is	always	recommended	that	you	build	the	image	with	a	repository	name	for	easy
reference	in	the	future.

2.	 Now,	let's	proceed	to	create	our	own	repository	name	using	the	-t	option	of
the	docker	image	build	command,	as	follows:

$	docker	image	build	-t	sample	.			

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

If	you	compare	the	output	of	step	1	and	step	2,	you	can	notice	a	subtle
difference.	In	the	output	of	step	1,	you	can	see	the	text	Running	after	the	LABEL	and
CMD	instructions,	whereas	for	step	2,	it	is	printed	as	Using	cache.	This	indicates	that
Docker	is	reusing	the	intermediate	layers	from	the	image	that	was	built	in	step	1.
The	Docker	build	system	always	reuses	the	layers	from	the	previously	built
image	if	there	is	no	change	on	that	layer.	If	you	don't	want	the	build	system	to
reuse	the	intermediate	layers,	then	add	the	--no-cache	option	to	the	build.

How	it	works...
When	we	build	a	Docker	image	using	the	docker	image	build	command,	we	specify
a	directory.	This	command	bundles	the	entire	directory	tree	as	the	build	context
and	transfers	it	to	the	Docker	engine	to	create	the	Docker	image.	This	is	evident
from	the	build	output	Sending	build	context	to	Docker	daemon	2.048	kB	message.	If
there	is	a	file	named	.dockerignore	in	the	current	working	directory	with	the	list	of
files	and	directories	(new-line	separated),	then	those	files	and	directories	will	be
ignored	in	the	build	context.	More	details	about	.dockerignore	can	be	found	at	https
://docs.docker.com/reference/builder/#the-dockerignore-file.

Now,	the	Docker	build	system	will	read	each	instruction	in	the	Dockerfile,
launch	an	intermediate	container,	execute	the	instruction	inside	the	container	or
update	the	metadata,	commit	the	intermediate	container	as	an	image	layer,	and
remove	the	intermediate	container.	This	process	is	continued	until	all	the
instructions	in	the	Dockerfile	are	executed.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/reference/builder/#the-dockerignore-file.

There's	more...
The	format	for	the	Dockerfile	is	as	follows:

INSTRUCTION	arguments

Generally,	instructions	are	given	in	uppercase,	but	they	are	not	case-sensitive.
They	are	evaluated	in	order.	The	#	code	phrase	in	the	beginning	is	treated	like	a
comment.

Let's	take	a	look	at	the	different	types	of	instruction:

FROM:	This	must	be	the	first	instruction	of	any	Dockerfile,	and	sets	the	base
image	for	subsequent	instructions.	By	default,	the	latest	tag	is	assumed	to
be	the	following:

FROM		<image>

Alternatively,	consider	the	following	tag:

FROM		<images>:<tag>	

There	can	be	more	than	one	FROM	instruction	in	one	Dockerfile	to
create	multiple	images.

If	only	the	image	names,	such	as	fedora	and	Ubuntu,	are	given,	then	the
images	will	be	downloaded	from	the	default	Docker	registry	(Docker
Hub).	If	you	want	to	use	private	or	third-party	images,	then	you	have
to	include	them	as	follows:

		[registry_hostname[:port]/][user_name/](repository_name:version_tag)		

The	following	is	an	example	using	the	preceding	syntax:

FROM	registry-host:5000/cookbook/apache2

								FROM		<images>:<tag>	AS	<build	stage>	

You	can	also	prescribe	a	build	stage	to	be	used	for	multistage	image
building,	as	you	will	see	in	the	Building	images	in	multiple	stages
recipe.

	

	

RUN:	We	can	execute	the	RUN	instruction	in	two	ways.	First,	we	can	run	it	in
the	shell	(sh	-c):

RUN	<command>	<param1>	...	<pamamN>

Second,	we	can	directly	run	an	executable:

RUN	["executable",	"param1",...,"paramN"]

As	we	know,	with	Docker	we	create	an	overlay—a	layer	on	top	of
another	layer—to	make	the	resulting	image.	Through	each	RUN
instruction,	we	create	and	commit	a	layer	on	top	of	the	earlier
committed	layer.	A	container	can	be	started	from	any	of	the
committed	layers.

By	default,	Docker	tries	to	cache	the	layers	committed	by	different
RUN	instructions	so	that	they	can	be	used	in	subsequent	builds.
However,	this	behavior	can	be	turned	off	using	--no-cache	flag	while
building	the	image.

LABEL:	Docker	1.6	added	a	new	feature	to	the	attached	arbitrary	key–value
pair	of	Docker	images	and	containers.	We	covered	part	of	this	in	the
Labeling	and	filtering	containers	recipe	in	Chapter	2,	Working	with	Docker
Containers.	To	give	a	label	to	an	image,	we	use	the	LABEL	instruction	in	the
Dockerfile—for	example,	LABEL	distro=ubuntu.
CMD:	The	CMD	instruction	provides	a	default	executable	while	starting	a
container.	If	the	CMD	instruction	does	not	have	any	executable	(parameter	2),
then	it	will	provide	arguments	to	ENTRYPOINT:

CMD		["executable",	"param1",...,"paramN"]

								CMD	["param1",	...	,	"paramN"]

								CMD	<command>	<param1>	...	<pamamN>		

Only	one	CMD	instruction	is	allowed	in	Dockerfile.	If	more	than	one	is
specified,	then	only	the	last	one	will	be	honored.

ENTRYPOINT:	This	helps	us	configure	the	container	as	an	executable.	Similar	to

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

CMD,	there	can	be	a	maximum	of	one	instruction	for	ENTRYPOINT;	if	more	then
one	is	specified,	then	only	the	last	one	will	be	honored:

ENTRYPOINT		["executable",	"param1",...,"paramN"]

								ENTRYPOINT	<command>	<param1>	...	<pamamN>

	

	

Once	the	parameters	are	defined	with	the	ENTRYPOINT	instruction,	they
cannot	be	overwritten	at	runtime.	However,	ENTRYPOINT	can	be	used	as
CMD,	if	we	want	to	use	different	parameters	for	ENTRYPOINT.

EXPOSE:	This	exposes	network	ports	on	the	container,	on	which	it	will	listen	at
runtime:

EXPOSE		<port>	[<port>	...]

We	can	also	expose	a	port	while	starting	the	container.	We	covered
this	in	the	Exposing	a	port	while	starting	a	container	recipe	in	Chapter
2,	Working	with	Docker	Containers.

ENV:	This	will	set	the	environment	variable	<key>	to	<value>.	It	will	be	passed
to	all	the	subsequent	instructions	and	will	persist	when	a	container	is	run
from	the	resulting	image:

ENV	<key>	<value>

ADD:	This	copies	files	from	the	source	to	the	destination:

ADD	<src>	<dest>	

The	following	ADD	instruction	is	for	a	path	containing	white	spaces:

ADD	["<src>"...	"<dest>"]	

<src>:	This	must	be	the	file	or	directory	inside	the	build	directory	from
which	we	are	building	an	image,	which	is	also	called	the	context	of	the
build.	A	source	can	be	a	remote	URL	as	well.
<dest>:	This	must	be	the	absolute	path	inside	the	container	in	which
files/directories	from	the	source	will	be	copied.

COPY:	This	is	similar	to	ADD.	COPY	<src>	<dest>:

COPY		["<src>"...	"<dest>"]		

The	COPY	instruction	optionally	supports	a	--from	option	for	multistage
building.

VOLUME:	This	instruction	will	create	a	mount	point	with	the	given	name	and
flag	it	as	mounting	the	external	volume	using	the	following	syntax:

VOLUME	["/data"]				

	

	

Alternatively,	you	can	use	the	following	code:

VOLUME	/data

USER:	This	sets	the	username	for	any	of	the	following	run	instructions	using
the	following	syntax:

USER		<username>/<UID>		

WORKDIR:	This	sets	the	working	directory	for	any	RUN,	CMD,	and	ENTRYPOINT
instructions	that	follow	it.	It	can	have	multiple	entries	in	the	same
Dockerfile.	A	relative	path	can	be	given	that	will	be	relative	to	the	earlier
WORKDIR	instruction	using	the	following	syntax:

WORKDIR	<PATH>	

ONBUILD:	This	adds	trigger	instructions	to	the	image	that	will	be	executed
later,	when	this	image	will	be	used	as	the	base	image	for	another	image.
This	trigger	will	run	as	part	of	the	FROM	instruction	in	a	downstream
Dockerfile	using	the	following	syntax:

ONBUILD	[INSTRUCTION]

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	image	build:

								$	docker	image	build	--help		

The	documentation	on	the	Docker	website:
	https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

Building	an	Apache	image	–	a
Dockerfile	example
Now	that	we're	armed	with	a	good	understanding	of	the	Dockerfile	constructs,	in
this	recipe	we	will	build	a	very	simple	Docker	image	that	bundles	the	apache2	web
server	and	also	adds	metadata	to	launch	the	apache2	application	inside	the
container	whenever	a	new	container	is	created	from	this	image.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	git	clone	https://github.com/docker-cookbook/apache2.git

$	cd	apache2

$	cat	Dockerfile	FROM	alpine:3.6

LABEL	maintainer="Jeeva	S.	Chelladhurai	<sjeeva@gmail.com>"

RUN	apk	add	--no-cache	apache2	&&	\		mkdir	-p
/run/apache2	&&	\		echo	"<html><h1>Docker
Cookbook</h1></html>"	>	\	
/var/www/localhost/htdocs/index.html

EXPOSE	80

	

ENTRYPOINT	["/usr/sbin/httpd",	"-D",	"FOREGROUND"]

$	docker	image	build	-t	apache2	.

Sending	build	context	to	Docker	daemon	52.74kB
Step	1/5	:	FROM	alpine:3.6

3.6:	Pulling	from	library/alpine	88286f41530e:
Pull	complete

Digest:
sha256:f006ecbb824d87947d0b51ab8488634bf69fe4094959d935c0c103f4820a417d
Status:	Downloaded	newer	image	for	alpine:3.6		--->
76da55c8019d

Step	2/5	:	LABEL	maintainer	"Jeeva	S.	Chelladhurai
<sjeeva@gmail.com>"		--->	Running	in
83e2c061c956		--->	f77381e55873

Removing	intermediate	container	83e2c061c956
Step	3/5	:	RUN	apk	add	--no-cache	apache2	&&		
mkdir	-p	/run/apache2	&&			echo	"<html><h1>Docker
Cookbook</h1></html>"	>	
/var/www/localhost/htdocs/index.html		--->	Running	in
3abde4480544	fetch	http://dl-
cdn.alpinelinux.org/alpine/v3.6/main/x86_64/APKINDEX.tar.gz
fetch	http://dl-
cdn.alpinelinux.org/alpine/v3.6/community/x86_64/APKINDEX.tar.gz
(1/6)	Installing	libuuid	(2.28.2-r2)	(2/6)	Installing
apr	(1.5.2-r1)

(3/6)	Installing	expat	(2.2.0-r1)	(4/6)	Installing
apr-util	(1.5.4-r3)	(5/6)	Installing	pcre	(8.41-r0)

(6/6)	Installing	apache2	(2.4.27-r1)	Executing
apache2-2.4.27-r1.pre-install	Executing	busybox-1.26.2-
r5.trigger	OK:	7	MiB	in	17	packages

	--->	d7585e779ee8

Removing	intermediate	container	3abde4480544

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Step	4/5	:	EXPOSE	80

	--->	Running	in	ac761e55a45c		--->
63bbb379239f

Removing	intermediate	container	ac761e55a45c
Step	5/5	:	ENTRYPOINT	/usr/sbin/httpd	-D	FOREGROUND
	--->	Running	in	fa3e5be6b893		--->
97f0bac0f021

Removing	intermediate	container	fa3e5be6b893
Successfully	built	97f0bac0f021

Successfully	tagged	apache2:latest	

How	it	works...
The	build	process	pulls	the	alpine	base	image	from	Docker	Hub,	installs	the
apache2	package,	and	creates	a	simple	HTML	page.	Then	it	continues,	adding	port
80	as	a	piece	of	metadata	to	the	image,	and	finally	sets	the	instructions	to	start	the
Apache	application	at	the	start	of	the	container.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
Let's	run	an	apache2	container	from	the	created	image,	get	its	IP	address,	and
access	the	web	page	from	it:

See	also
The	help	option	of	docker	image	build:

								$	docker	image	build	--help

The	documentation	on	the	Docker	website:
	https://docs.docker.com/engine/reference/commandline/imaim_build/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/imaim_build/

Setting	up	a	private	index/registry
Earlier,	we	used	a	Docker-hosted	registry	(https://hub.docker.com)	to	push	and	pull
images.	Nonetheless,	quite	often	you	will	come	across	use	cases	where	you	will
have	to	host	a	private	registry	in	your	infrastructure.	In	this	recipe,	we	will	host
our	own	private	registry	using	Docker's	registry:2	image.

	

	

	

https://hub.docker.com

Getting	ready
Make	sure	that	Docker	daemon	version	1.6.0	or	above	is	running	on	the	host.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker	container	run	-d	-p	5000:5000	\		--name
registry	registry:2

$	docker	tag	apache2	localhost:5000/apache2

Here,	we	will	reuse	the	apache2	image	we	built	in	the	previous	recipe.

	

3.	 Now,	let's	push	the	image	to	the	local	registry	using	the	docker	image
push	command,	as	shown	in	the	following	screenshot:

How	it	works...
The	preceding	command	to	pull	the	image	will	download	the	official	registry
image	from	Docker	Hub	and	run	it	on	port	5000.	The	-p	option	publishes	the
container	port	to	the	host	system's	port.	We	will	explore	details	about	port
publishing	in	the	next	chapter.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
The	registry	has	a	notification	framework	that	can	invoke	WebHooks	when	it
receives	a	push	or	pull	request.	These	WebHooks	can	be	chained	with	your
DevOps	flow.

See	also
The	documentation	on	GitHub:

	https://github.com/docker/docker-registry

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/docker/docker-registry

Automated	builds	–	with	GitHub	and
Bitbucket
We	saw	earlier	how	to	push	Docker	images	to	Docker	Hub.	Docker	Hub	allows
us	to	create	automated	images	from	a	GitHub	or	Bitbucket	repository	using	its
build	clusters.	The	GitHub/Bitbucket	repository	should	contain	the	Dockerfile
and	also	the	content	that	is	to	be	copied/added	inside	the	image.	We	will	be
looking	at	a	GitHub	example	in	upcoming	sections.

	

	

	

Getting	ready
For	this	you,	will	need	a	valid	Docker	ID	and	GitHub	account.

Also,	visit	https://github.com/docker-cookbook/apache2	for	the	apache2	Dockerfile.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/docker-cookbook/apache2

How	to	do	it...
Perform	the	following	steps:

1.	 Log	in	to	Docker	Hub	(https://hub.docker.com/).

2.	 The	first	step	to	create	an	automated	build	is	to	link	your	GitHub	or
Bitbucket	account.	The	account-linking	feature	is	available	in	the	Linked
Accounts	&	Services	web	wizard.	You	can	reach	this	wizard	either	by
navigating	through	the	Settings	menu	or	via	Create	Automated	Build	menu
in	the	Create	dropdown.	Here,	we	will	choose	the	former	option—that	is,
the	Settings	menu—which	is	accessible	from	the	rightmost	drop-down
menu:

https://hub.docker.com/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

3.	 In	the	preceding	wizard,	click	the	Link	Github	option;	in	the	next	screen,
you	will	be	presented	with	two	options,	as	shown	in	the	following
screenshot.	Here,	let	us	click	the	Select	button	under	the	Public	and	Private
(Recommended)	option:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

4.	 A	new	window	or	tab	will	open	for	you	to	key	in	your	GitHub	credentials,
as	shown	in	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

5.	 Having	successfully	logged	in	to	your	GitHub	account,	continue	to	Grant
permission	to	the	organizations	in	your	GitHub	account.	In	this	example,
we	have	granted	permission	to	the	docker-cookbook	organization.	Click	the
Authorize	docker	button:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

As	you	can	see	in	the	following	screenshot,	now	the	Docker	Hub
account	is	linked	to	the	GitHub	account:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

As	we	can	see	in	the	preceding	screenshot,	the	GitHub	account	is
successfully	linked	to	the	Docker	Hub	account.	Now,	we	can	proceed
to	configure	the	automated	build.

6.	 Select	the	Create	Automated	Build	option	from	the	Create	drop-down
menu,	as	shown	in	the	following	screenshot:

7.	 You	will	be	presented	with	two	options:	Create	Auto-Build	for	Github	and
Link	Account	to	link	your	account	to	Bitbucket,	as	shown	in	the	following
screenshot:

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

We	will	be	linking	our	account	with	Bitbucket	because	we	have	not
yet	linked	any	Bitbucket	account.

8.	 Click	on	the	Create	Auto-build	option:

9.	 Click	on	the	apache2	option,	which	is	the	fork	of	https://github.com/docker-coo
kbook/apache2:

https://github.com/docker-cookbook/apache2

10.	 Provide	a	short	description	and	click	Create:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

Hurray!	You	have	successfully	automated	the	build	process,	and	the
image	build	process	will	get	triggered	when	you	make	any	change	in
your	forked	repository.

11.	 Now,	you	can	navigate	to	the	Build	Details	tab	to	see	the	build	status.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	we	select	a	GitHub	repository	for	an	automated	build,	GitHub	enables	the
Docker	service	for	that	repository.	You	can	confirm	this	by	looking	at	the
Integrations	&	services	section	of	the	Settings	tab	in	the	GitHub	repository:	

Whenever	we	make	any	changes	to	any	source	code	and	commit	to	the	GitHub
repository,	the	automated	build	gets	triggered	and	builds	the	Docker	image	using
the	Dockerfile	that	resides	in	the	GitHub	repository.

There's	more...
You	can	view	the	Dockerfile	by	navigating	to	the	Dockerfile	tab	in	your
repository.

You	can	also	have	your	build	triggered	when	another	Docker	Hub	repository	is
updated	by	linking	the	other	repository	in	the	Build	Settings	tab	of	your
repository.

The	steps	for	setting	up	an	automated	build	with	Bitbucket	are	almost	identical.
The	hook	for	an	automated	build	gets	configured	under	the	Hooks	section	of	the
Bitbucket	repository's	Settings	section.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	documentation	on	the	Docker	website:

https://docs.docker.com/docker-hub/builds/

https://docs.docker.com/docker-hub/builds/

Creating	a	custom	base	image
Docker	has	a	rich	library	of	base	images,	and	we	strongly	recommend	that	you
select	a	lean	image	that	fits	your	application	well.	However,	you	may	choose	to
custom-build	your	base	image	from	the	get	go.	Here,	in	this	recipe,	we	will	use
debootstrap	to	create	our	Ubuntu	18.04	LTS	(Xenial	Xerus)	base	image.	The
debootstrap	utility	can	create	any	Debian-based	system	by	downloading	it	from
the	appropriate	repository.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Install	debootstrap	on	any	Debian-based	system	using	the	following	command:

				$	apt-get	install	debootstrap					

$	mkdir	xenial

$	sudo	debootstrap	xenial	./xenial	

$	ls	./xenial	bin	boot	dev	etc	home	lib	lib64	media
mnt	opt	proc	
	root	run	sbin	srv	sys	tmp	usr	var	

$	sudo	tar	-C	xenial/	-c	.	|	docker	image	import	-	xenial

4.	 Look	at	the	docker	image	ls	output.	You	should	have	a	new	image	with
xenial	as	the	name.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	debootstrap	command	pulls	all	the	Ubuntu	18.04	(Xenial	Xerus)	packages	to
the	directory	from	the	package	repository.	Then	they	are	bundled	as	a	TAR	file
and	pushed	to	the	Docker	image	import	command	to	create	the	Docker	image.

See	also
The	debootstrap	wiki	page:

https://wiki.debian.org/Debootstrap.
Alternative	approaches	to	creating	base	images:

https://docs.docker.com/articles/baseimages/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://wiki.debian.org/Debootstrap
https://docs.docker.com/articles/baseimages/

Creating	a	minimal	image	using	a
scratch	base	image
In	the	previous	recipe,	we	custom-created	a	base	image	without	any	parent
image.	However,	that	image	is	bloated	with	all	the	binaries	and	libraries	that	are
shipped	with	the	Ubuntu	18.04	distribution.	Typically,	to	run	an	application,	we
don't	need	the	majority	of	the	binaries	and	libraries	we	have	bundled	in	the
image.	Besides,	it	leaves	a	large	image	footprint,	and	thus	becomes	a	portability
problem.	To	overcome	this	issue,	you	can	diligently	hand-pick	the	binaries	and
libraries	that	will	constitute	your	image	and	then	bundle	the	Docker	image.
Alternatively,	you	can	build	using	Docker's	reserved	image,	called	a	scratch
image.	This	scratch	image	is	explicitly	an	empty	image,	and	it	does	not	add	any
additional	layer	to	your	image.	Furthermore,	unlike	the	previous	recipe,	you	can
automate	image	creation	using	a	Dockerfile.	In	this	recipe,	we	will	use	a	simple
builder	pattern	to	create	a	statically	linked	binary	and	create	a	Docker	image
using	a	scratch	base	image.

	

	

	

Getting	ready
First,	ensure	that	the	Docker	daemon	is	running	and	has	access	to	the	gcc	and
scratch	images.	You	should	also	ensure	that	you	have	a	clone	of	https://github.com
/docker-cookbook/scratch.git,	and	that	the	repository	contains	demo.c	and	a
Dockerfile.

The	content	of	demo.c	should	be	as	follows:

#include	<stdio.h>																																																						void	main()																																																												{																																																																																																																																								printf("Statically	built	for	demo\n");																																

}

The	content	of	the	Dockerfile	should	be	as	follows:

FROM	scratch

ADD	demo	/

CMD	["/demo"]

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/docker-cookbook/scratch.git

$	cd	scratch

	$	docker	container	run	--rm	\	
	-v	${PWD}:/src
\
	-w	/src	\
	gcc:7.2	\

	gcc	-static	-o	demo	demo.c

3.	 Having	built	the	statically	linked	executable	lets	quickly	verify	the	binary:

4.	 Continue	to	build	an	image	from	the	scratch	base	image	with	the	executable
demo	created	in	the	previous	step,	as	shown	in	the	following	code:

5.	 Finally,	let	us	verify	the	image	by	spinning	a	container	from	the	preceding
image	and	checking	the	image	size:

Evidently,	this	image	is	much	smaller,	and	the	Docker	image	is	just
20	bytes	larger	than	the	executable	demo.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	Docker	build	system	intuitively	understands	the	reserved	image	name	scratch
in	the	FROM	instruction	and	starts	bundling	the	image	without	any	additional	layer
for	the	base	image.	So,	in	this	recipe,	the	Docker	build	system	just	bundled	the
statically	linked	executable	demo	and	the	metadata	for	the	image.

	

	

	

There's	more...
As	mentioned	earlier,	the	scratch	image	doesn't	add	any	additional	layer	to	the
image.	The	docker	image	history	command	comes	in	handy	here	to	list	the	layers	in
the	image,	as	shown	in	the	following	code:	

As	we	can	see,	there	is	no	additional	layer	for	the	base	image	scratch.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	documentation	at	the	Docker	Hub:

https://hub.docker.com/_/scratch/

Alternative	approaches	to	creating	base	images:
https://docs.docker.com/articles/baseimages/

https://hub.docker.com/_/scratch/
https://docs.docker.com/articles/baseimages/

Building	images	in	multiple	stages
In	the	previous	recipe,	we	created	a	statically	linked	executable	using	the	gcc
builder	container	and	then	bundled	the	executable	using	the	scratch	image.	Build
pipelines	with	the	builder	pattern	are	very	common	because,	during	the	build
time,	you	will	need	heavyweight	building	and	supporting	tools.	However,	the
resulting	artifacts	usually	don't	need	those	tools	during	execution	time.
Therefore,	the	artifacts	are	usually	built	using	the	appropriate	runtime	with
additional	capability	and	then	the	resulting	artifacts	are	packaged	with	the
runtime	just	enough	to	run	the	artifacts.	Though	this	solution	works	very	well,
the	complexity	of	this	build	pipeline	is	managed	outside	the	Docker	ecosystem
through	scripts.	To	address	this	complexity,	Docker	introduced	a	cool	feature
called	multistage	builds	in	version	17.05.

Docker's	multistage	build	enables	us	to	orchestrate	complex	building	stages	in	a
single	Dockerfile.	In	the	Dockerfile,	we	can	define	one	or	more	intermediate
stages	with	the	appropriate	parent	image	and	the	build	ecosystem	to	build	the
artifact.	The	Dockerfile	provides	the	essential	previously	mentioned	primitives
in	building	the	image	using	Dockerfile	to	copy	the	artifacts	to	subsequent	stages
and	finally	compose	a	Docker	image	with	just	enough	runtime	and	artifacts.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

#include	<stdio.h>
void	main()
{
	printf("This	is	a
Docker	multistage	build	demo\n");
}

FROM	gcc:7.2	AS	builder
COPY	src	/src
RUN	gcc	-static	-o	/src/app
/src/app.c	&&	strip	-R	.comment	-s	/src/app
FROM	scratch
COPY	--
from=builder	/src/app	.
CMD	["./app"]

	$	cd	multistage

2.	 Build	the	image	using	the	Docker	image	build	command,	as	shown	in	the
following	screenshot:

3.	 Now	that	the	image	is	successfully	built,	let's	proceed	to	spin	a	container
from	the	image	we	created	in	the	previous	step,	as	shown	in	the	following
screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	Docker	build	system	intuitively	understands	the	reserved	image	name	scratch
in	the	FROM	instruction	and	starts	bundling	the	image	without	any	additional	layer
for	the	base	image.	So	in	this	recipe,	the	Docker	build	system	just	bundled	the
statically	linked	executable	demo	and	the	metadata	for	the	image.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
As	mentioned	earlier,	the	scratch	image	doesn't	add	any	additional	layer	to	the
image.	The	docker	image	history	command	comes	in	handy	here	to	list	the	layers	in
the	image,	as	shown	in	the	following	screenshot:	

As	we	can	see,	there	is	no	additional	layer	for	the	base	image	scratch.

See	also
The	documentation	at	Docker	Hub:

	https://hub.docker.com/_/scratch/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://hub.docker.com/_/scratch/

Visualizing	the	image	hierarchy
Docker	provides	multiple	commands	to	learn	about	its	images	in	a	textual
format.	However,	a	picture	is	worth	a	thousand	words,	so	it	is	imperative	that	we
can	visualize	the	image	hierarchy	through	graphs.	While	Docker	doesn't	support
any	image	visualization	tool,	numerous	solutions	are	available	to	visualize	the
image	hierarchy.	In	this	recipe,	we	will	visualize	the	image	hierarchy	using	a
nate/dockviz	container	and	Graphviz.

	

	

	

Getting	ready
Before	we	begin,	we	need	one	or	more	Docker	images	on	the	host	to	be	running
a	Docker	daemon.	We	also	need	to	ensure	that	Graphviz	is	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Run	the	nate/dockviz	container	by	supplying	images	--dot	as	a	command-line
argument	and	pipe	the	output	to	the	dot	(Graphviz)	command,	as	shown	in	the
following	code,	to	generate	the	image	hierarchy:

$	docker	run	--rm	\

																	-v	/var/run/docker.sock:/var/run/docker.sock	\

																	nate/dockviz	\

																	images	--dot		|	dot	-Tpng	-o	images-graph.png

The	following	is	a	graphic	view	of	the	images	in	the	Docker	host:

	

Here,	in	the	graphic	view,	nodes	with	<missing>	are	layers	within	an	image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	nate/dockviz	tool	is	written	in	go,	and	iterates	through	the	Docker	images'
metadata	and	generates	a	Graphviz	dot	output	that	is	converted	to	a	png	image	using
Graphviz.

There's	more...
You	could	also	use	nate/dockviz	to	visualize	the	dependency	between	linked
containers.	The	following	is	the	command	for	visualizing	the	container
dependencies:

				$	docker	run	--rm	\

																	-v	/var/run/docker.sock:/var/run/docker.sock	\

																	nate/dockviz	\

																	containers	--dot		|	dot	-Tpng	-o	containers-graph.png

		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	documentation	on	nate/dockerviz:

https://github.com/justone/dockviz

https://github.com/justone/dockviz

Network	and	Data	Management	for
Containers
In	this	chapter,	we	will	cover	the	following	recipes:

Accessing	containers	from	outside
Attaching	containers	to	a	host	network
Launching	containers	with	no	network
Sharing	IP	addresses	with	other	containers
Creating	a	user-defined	bridge	network
Discovering	and	load	balancing	containers
Persisting	data	using	volumes
Sharing	data	between	the	host	and	the	container

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction
Until	now,	we	have	worked	with	a	single	container	and	accessed	it	locally.	But
as	we	move	to	more	real-world	use	cases,	we	will	need	to	access	the	container
from	the	outside	world,	share	external	storage	within	the	container,	communicate
with	containers	running	on	other	hosts,	and	so	on.	In	this	chapter,	we'll	learn	how
to	fulfill	some	of	those	requirements.	Let's	start	by	understanding	Docker's
default	networking	setup	and	then	move	on	to	advanced	use	cases.

	

	

When	the	Docker	daemon	starts,	it	creates	a	virtual	Ethernet	bridge	with	the
name	docker0.	Perhaps	we	can	glean	more	insight	into	docker0	using	the	ip	addr
command	on	the	system	that	runs	the	Docker	daemon:

As	we	can	see,	docker0	has	the	IP	address	of	172.17.0.1/16.	Docker	randomly
chooses	an	address	and	subnet	from	a	private	range	defined	in	RFC	1918	(https:/
/tools.ietf.org/html/rfc1918).	Using	this	bridged	interface,	containers	can
communicate	with	each	other	and	with	the	host	system.

By	default,	every	time	Docker	starts	a	container,	it	creates	a	pair	of	virtual	run	on
Ethernet	interfaces	and	then	performs	the	following	with	the	pair:

Ties	one	end	of	the	veth	pair	to	the	docker0	bridge	interface	in	the	Docker

https://tools.ietf.org/html/rfc1918

host—let's	call	this	end	the	host	end
Ties	the	other	end	of	the	veth	pair	to	the	newly	created	container	as	its	eth0
interface—let's	call	this	end	of	the	veth	pair	the	container	end

Let's	start	a	container	and	examine	its	network	interface	IP	addresses:

In	the	preceding	screenshot,	the	container	end	of	the	veth	pair	is	named	eth0@if17,
where	17	is	the	interface	index	of	the	host	end	of	the	veth	pair.	We	can	use	this
index	to	identify	the	host	end	of	the	veth	pair	in	the	Docker	host.	The	eth0	of	the
container	is	assigned	the	IP	address	172.17.0.3,	which	belongs	to	the	docker0	subnet
—that	is,	172.17.0.1/16.

	

	

Now,	let's	take	a	peek	at	the	interface	at	the	seventeenth	index:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Here,	the	host	end	of	the	veth	interface	is	named	vethe8b40b8@if16,	wherein	16	is	the
interface	index	of	the	container	end	of	the	veth	pair.	Since	the	interface	at	index
16	is	assigned	to	the	container's	network	namespace,	it	is	not	displayed	in	the
Docker	host.	The	Docker	Engine	autogenerates	the	name	of	the	host	end	veth	pair
by	generating	a	seven-digit	hex	number	and	then	appends	it	to	the	string	veth.	In
this	example,	e8b40b8	is	the	random	number	generated	by	the	Docker	Engine.	The
Docker	Engine	also	ensures	that	this	random	number	is	unique	inside	the	Docker
host.	If	you	look	closely,	you	might	also	notice	that	the	host	end	of	the	veth
interface	is	bound	to	the	docker0	bridge.

Now	let's	create	a	few	more	containers	and	look	at	the	docker0	bridge	using	the
Linux	Ethernet	bridge	administration	command,	brctl.

The	Ubuntu	Linux	distribution	does	not	usually	carry	the	brctl	tool,	so	we	have	to	either
install	the	bridge-utils	package	or	leverage	one	of	Docker's	nifty	features	that	lets	you	share
the	Docker	host's	network	stack	with	the	Docker	container,	as	described	in	the	Attaching
container	to	the	host	network	recipe.

Here,	we	are	using	the	--network=host	option	of	the	docker	container	run	command	to
connect	to	the	Docker	host's	network	stack.	Since	the	alpine	image	is	packed	with
the	brctl	utility	command,	we	will	choose	to	spin	our	container	with	the	alpine
image	and	run	the	brctl	show	command	to	display	the	bridge	details,	as	shown	in
the	following	screenshot:

	

Evidently,	all	the	host	ends	of	the	veth	pairs	are	bound	to	the	default	Docker
bridge	docker0.	Apart	from	setting	up	the	docker0	bridge,	Docker	also	creates
iptables	NAT	rules,	so	that	all	containers	can	talk	to	the	external	world	by	default,
but	the	external	world	cannot	talk	to	the	containers.	Let's	look	at	the	NAT	rules
on	the	Docker	host:

In	the	preceding	output,	a	POSTROUTING	rule	is	configured	for	the	172.17.0.0/16
subnet.	The	sole	purpose	of	this	rule	is	to	change	the	source	IP	address	of	the
data	packets	that	originated	from	the	172.17.0.0/16	subnet	to	the	host	IP	address.
Apparently,	the	172.17.0.0/16	subnet	is	assigned	to	our	docker0	bridge.	Essentially,
this	POSTROUTING	rule	enables	the	Docker	containers	to	connect	to	the	external
world,	as	you	can	see	in	the	following	traceroute	output:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Cool,	isn't	it?	Nonetheless,	by	default,	Docker	doesn't	do	any	network	plumbing
for	the	external	world	to	connect	to	the	containers.	However,	when	you	host	a
service	inside	the	container,	it	must	be	reached	from	the	external	world.	The
Accessing	containers	from	outside	recipe	demonstrates	how	to	open	up	the
service	running	inside	the	container	to	the	external	world.	In	addition,	we	have
other	recipes	that	focus	on	various	aspects	of	single-host	container	networking.

For	more	information	about	the	different	kinds	of	networking	we	discussed	in	the	preceding
section,	visit:	https://docs.docker.com/network/.

In	this	chapter,	we	focused	only	on	single-host	container	networking.	Along	with
single-host	container	networks,	we	will	also	look	at	how	to	share	and	persist	data
in	the	container	paradigm.

https://docs.docker.com/network/

Accessing	containers	from	outside
In	the	microservice	architecture,	multiple	smaller	services	are	used	to	provide	a
meaningful	enterprise-grade	application.	The	Docker-inspired	containerization
technology	is	inherently	very	lightweight,	and	hence	it	plays	a	vital	role	in
enabling	the	microservice	architecture.	By	default,	the	Docker	container	allows
outgoing	data	traffic,	but	there	is	no	path	for	the	external	world	to	connect	to	the
services	running	inside	the	container.	Nonetheless,	Docker	provides	an	elegant
solution	to	selectively	enable	the	external	world	to	communicate	with	the	service
running	inside	the	container,	using	the	following	options	of	the	docker	container
run	command:

--publish,	-p Publish	a	container's	port	to	the	host

--publish-all,	-P Publish	all	exposed	ports	to	random	ports

	

Both	these	options	allow	the	external	world	to	connect	to	the	services	running
inside	the	containers	through	the	ports	of	the	Docker	host.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin,	make	sure	the	Docker	daemon	is	running	on	the	Docker	host.

	$	docker	container	run	-d	-p	80:80	cookbook/apache2

a101ac9009f2237a2e4356e9caed6d0cf1666b5b86768f559a629d39034b4132

$	docker	container	port	a101ac9009f2	80/tcp	->
0.0.0.0:80

<html><h1>Docker	Cookbook</h1></html>

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	a	container	is	launched	with	-p	<host	port>:<container	port>,	the	Docker
Engine	configures	the	iptables	destination	NAT	rule.	This	destination	NAT	rule	is
responsible	for	forwarding	all	the	packets	it	receives	on	the	Docker	host	port	to
the	container's	port:

Noticeably,	the	Docker	Engine	has	inserted	a	destination	NAT	rule	with	the
following	configurations:

Source	address	0.0.0.0/0:	A	wild	card	address	that	means	that	this	rule	is
applicable	to	packets	received	from	any	source
Destination	address	0.0.0.0/0:	A	wild	card	address	that	means	that	this	rule
is	applicable	to	the	packets	received	on	any	network	interface	of	the	Docker
host
Destination	port	dpt:80:	One	of	the	key	attributes	in	this	rule,	which	enables
the	iptables	to	selectively	apply	the	rule	to	the	packets	that	are	sent	only	to
port	80	of	the	Docker	host
Forwarding	address	172.17.0.2:80:	The	container's	IP	address	and	port	to
which	the	iptables	forward	the	packets	when	the	aforementioned	criteria	are
met

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
The	-p	(--publish)	option	of	the	docker	container	run	command	supports	four
configurations	that	you	can	use	to	publish	your	containerized	service	to	the
external	world,	as	shown	in	the	following	list:

1.	 <hostPort>:<containerPort>:	This	configuration	was	addressed	in	an	earlier
recipe.

2.	 <containerPort>:	In	this	configuration,	we	just	specify	the	container	port	and
let	the	Docker	Engine	select	the	Docker	host	port.	The	typical	port	range	is
from	32768	to	61000,	which	is	defined	in	/proc/sys/net/ipv4/ip_local_port_range.

3.	 <ip>:<hostPort>:<containerPort>:	This	configuration	is	very	similar	to	<hostPort>:
<containerPort>;	however,	here	you	are	specifying	a	particular	IP	interface	of
the	Docker	host.

4.	 <ip>::<containerPort>:	This	configuration	is	very	similar	to	<containerPort>;
however,	here	you	are	specifying	a	particular	IP	interface	of	the	Docker
host.

The	-P	(--publish-all)	option	of	the	docker	container	run	command	reads	out	the
container	port	from	the	image	metadata	and	maps	it	to	a	random	higher-order
port	(32768	to	61000)	in	the	Docker	host.	The	EXPOSE	instruction	of	Dockerfile	adds	the
port	information	to	the	image	metadata.

	

	

	

See	also
The	help	option	of	docker	container	run:

								$	docker	container	run	--help						

The	documentation	on	the	Docker	website:
https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Attaching	containers	to	a	host
network
In	the	previous	recipe,	Docker	by	default	attached	our	container	to	the	default
bridge	network	docker0	and	then	leveraged	the	DNAT	rule	of	iptables	to	allow	TCP
connection	from	the	external	world.	However,	there	are	many	use	cases	wherein
the	container	needs	full	access	to	the	host	network	namespace,	such	as	the	brctl
show	scenario	in	the	introduction	section	of	this	chapter.	In	this	recipe,	we	will
attach	one	container	to	the	default	bridge	network	and	another	one	to	the	host
network	and	compare	the	differences.

	

	

	

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running	and	has	access	to	the
alpine	image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Perform	the	following	steps:

1.	 First,	let's	launch	an	alpine	container	without	prescribing	any	network
option	and	invoke	the	ip	address	command,	as	shown	in	the	following
screenshot:

2.	 Now,	let's	continue	to	launch	an	alpine	container	by	attaching	it	to	the
Docker	host's	network	stack	by	using	--net=host	as	an	argument	and
executing	the	ip	address	command,	as	shown	in	the	following	screenshot:

Evidently,	in	step	1,	Docker	created	a	network	namespace	for	the	container	and
assigned	an	IP	address	for	the	container,	whereas,	in	step	2,	Docker	attached	the
container	to	the	host	network	stack,	hence	the	container	has	full	access	to	the
host's	network	stack.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	Docker	Engine	launches	the	new	container	by	attaching	the	container	to	the
Docker	host's	network	stack,	thereby	allowing	the	container	full	access	to	the
host's	network	stack.

See	also
The	help	option	of	docker	container	run:

				$	docker	container	run	--help

The	documentation	on	the	Docker	website:
https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Launching	containers	with	no
network
Docker	inherently	supports	three	types	of	network	(bridge,	hosts,	and	none),	as	is
evident	in	the	following	docker	network	ls	command	output:

In	the	previous	recipes,	we	discussed	the	bridge	and	host	networking	capability.
Nonetheless,	the	none	network	mode	comes	in	handy	when	you	package	any
utility	inside	the	container	that	doesn't	need	any	network	connectivity.	Besides,
the	none	network	mode	can	also	be	used	to	do	your	custom	network	plumbing
without	involving	the	Docker.	In	this	recipe,	we	will	launch	a	container	with	the
none	network	mode	and	explore	the	container's	network	details.

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running	and	has	access	to	the
alpine	image.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Launch	a	container	with	no	network	by	using	the	--net	none	argument	in	the	docker
container	run	command,	as	shown	in	the	following	screenshot:

Apparently,	when	we	launch	a	container	with	the	network	mode	set	to	none,
Docker	only	creates	a	loopback	interface	for	that	container.	Since	there	is	no
Ethernet	interface	defined	for	this	container,	the	container	is	isolated	from	the
network.

How	it	works...
When	a	container	is	launched	with	the	none	network	mode,	the	Docker	Engine
creates	a	network	namespace	for	the	container.	However,	it	doesn't	configure	any
network	for	that	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	docker	container	run:

$	docker	container	run	--help	

The	documentation	on	the	Docker	website:

https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/bindi

ng/

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Sharing	IP	addresses	with	other
containers
Typically,	when	we	launch	a	container,	the	Docker	Engine	assigns	an	IP	address
to	that	container.	Of	course,	we	can	use	the	host	network	mode	to	attach	the
container	to	the	Docker	host's	IP	address,	or	use	the	none	network	mode	to	launch
a	container	without	any	IP	address	assigned	to	it.	However,	you	might	come
across	scenarios	wherein	multiple	services	have	to	share	the	same	IP	address.	In
such	situations,	you	can	run	multiple	services	inside	a	container;	however,	such	a
practice	is	deemed	as	anticontainer-pattern.

	

The	better	alternative	is	to	run	each	service	inside	separate	containers,	but	share
the	IP	address,	as	shown	in	the	following	topology:

In	essence,	the	Docker	Engine	assigns	an	IP	address	for	the	IP	container	and	then
the	IP	address	is	inherited	by	the	Service1,	Service2,	and	Service3	containers.	In
this	recipe,	we	will	launch	one	container	and	share	the	IP	address	with	another
container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running	and	has	access	to	the
alpine	image.

How	to	do	it...
Perform	the	following	the	steps:

1.	 Firstly,	launch	a	container	in	the	background,	as	shown	in	the	following
screenshot:

Here,	the	container	is	named	as	ipcontainer.

	

2.	 Look	at	the	IP	address	of	the	ipcontainer,	as	shown	in	the	following
screenshot:

3.	 Finally,	let's	launch	a	container	by	attaching	its	network	to	the	ipcontainer
and	display	the	IP	addresses	attached	to	this	container:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

As	is	evident	in	step	2	and	step	3,	eth0	of	ipcontainer	in	step	2	and	the	transient
container	in	step	3	have	the	same	interface	index	of	4	and	IP	address	of	172.17.0.2.

How	it	works...
In	this	recipe,	we	created	one	container	and	then	created	subsequent	containers
to	use	the	network	of	the	first	container.	In	this	case,	the	Docker	Engine	would
create	a	network	namespace	for	the	first	container	and	then	assign	the	same
namespace	for	the	other	containers	too.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
When	containers	share	the	network	namespace,	the	original	container	that
created	the	namespace	must	be	in	a	running	state	until	the	other	containers	are
running.	If	the	original	container	is	stopped	before	the	other	containers,	it	will
put	the	other	containers	in	an	unusable	state,	as	shown	in	the	following	code:	

Containers	in	a	Kubernetes	(http://kubernetes.io/)	pod	use	this	trick	to	share	the	IP
address	between	the	containers	in	a	pod.	We	will	revisit	this	in	Chapter	8,	Docker
Orchestration	and	Hosting	Platform.

http://kubernetes.io/

See	also
The	help	option	of	docker	container	run:

$	docker	container	run	--help

The	documentation	on	the	Docker	website:
https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Creating	a	user-defined	bridge
network
In	the	previous	recipes,	we	used	the	default	bridge	that	gets	activated	when	we
install	Docker.	The	containers	that	are	connected	through	the	default	bridge	can
communicate	with	each	other	using	the	IP	address,	but	not	the	container's	name.
In	microservice	architecture,	multiple	containers	are	orchestrated	to	provide	a
meaningful	higher-level	service,	and	it	is	imperative	that	these	containers
communicate	with	each	other	effectively.	The	container	IP	address	is	assigned
during	the	container	start	time,	and	hence	it	does	not	work	well	for
multicontainer	orchestration.	Docker	made	an	attempt	to	address	this	issue	by
linking	containers	statically	using	the	--link	option	of	the	docker	container	run
command.	Unfortunately,	the	linked	containers	have	a	tightly	coupled	container
life	cycle,	so	a	restart	of	a	container	might	impede	the	complete	solution,	and	it
will	also	not	be	scalable.	Later,	between	versions	1.9	and	1.12,	Docker
introduced	a	series	of	new	capabilities	through	a	user-defined	network	that
solves	many	of	the	aforementioned	shortcomings	of	multicontainer	orchestration
and	communication.
The	user-defined	bridge	network	is	functionally	very	much	akin	to	the	default
bridge;	however,	it	provides	the	following	additional	features:

Service	discovery	through	an	embedded	DNS	server,	which	is	an	excellent
fit	for	multicontainer	orchestration	and	communication.
DNS-based	load	balancing,	another	cool	feature	that	complements
multicontainer	orchestration	and	communication.	Notably,	this	feature
allows	us	to	seamlessly	and	transparently	scale	containers.
Optionally,	we	can	configure	our	own	subnet	to	the	bridge.
Optionally,	we	can	manually	assign	an	IP	address	to	the	containers	from	the
bridge's	subnet.

In	this	recipe,	we	will	create	a	user-defined	network	and	scrutinize	some	of	its
fundamental	constructs.	In	the	following	recipe,	we	will	create	containers	in	the
user-defined	bridge	and	demonstrate	the	capabilities	of	a	user-defined	bridge
network.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running.

How	to	do	it...
1.	 Let's	begin	by	creating	a	new	user-defined	bridge	network	using	the	docker

network	create	command,	as	shown	in	the	following	screenshot:

Here,	the	user-defined	bridge	network	is	named	cookbook.

2.	 Inspect	the	user-defined	bridge	network	cookbook	using	the	docker	network
inspect	command:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Here,	the	172.18.0.0/16	subnet	is	assigned	to	the	user-defined	bridge	network
cookbook	and	the	172.18.0.1	IP	address	is	assigned	to	the	gateway.

3.	 Let's	now	look	at	the	interface	details	of	the	Docker	host:

Apparently,	a	new	Linux	bridge	interface,	br-408276d6b1f2,	is	created,	and	is
assigned	the	address	172.18.0.1/16.	The	bridge	name	is	derived	by	concatenating
the	br-	string	with	the	first	twelve	digits	of	the	network	ID.

4.	 Finally,	let's	look	at	the	iptables	to	understand	the	NATing	behavior	of	the
user-defined	bridge:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

As	highlighted	in	the	preceding	screenshot,	a	NAT	POSTROUTING	rule	has	been
added	for	the	172.18.0.0/16	subnet,	like	the	default	bridge.

How	it	works...
When	we	create	a	user-defined	bridge,	Docker	creates	a	Linux	bridge	interface
and	creates	the	necessary	NAT	rules	in	the	iptables.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
The	docker	network	create	command	provides	over	a	dozen	options	to	customize
your	network	according	to	your	business	requirements.	In	the	following
example,	we	are	creating	a	user-defined	network	on	a	10.1.0.0/16	subnet:

$	docker	network	create	10dot1net	--subnet	10.1.0.0/16

See	also
The	help	option	of	docker	network	create:

$	docker	network	create	--help

The	documentation	on	the	Docker	website:

https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Discovering	and	load	balancing
containers
In	the	previous	recipe,	we	looked	at	the	benefits	of	a	user-defined	bridge
network	and	the	steps	to	create	and	examine	a	user-defined	bridge	network.	In
this	recipe,	we	will	build	a	container	topology,	as	depicted	in	the	following
diagram:

In	this	topology,	we	will	launch	container1	and	container2	like	a	service	and	use	a
transient	container	to	demonstrate	the	following	capabilities	of	the	user-defined
bridge	network:

Service	discovery	through	an	embedded	DNS	server
DNS-based	load	balancing

	

	

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Perform	the	following	the	steps:

1.	 Let's	start	off	by	spinning	two	containers,	container1	and	container2,	by
connecting	them	to	the	user-defined	bridge	network	cookbook	using	the	docker
container	run	command,	as	shown	in	the	following	screenshot:

Here,	the	--network-alias	option	helps	us	to	group	multiple	containers	with	a
single	alias	name	and	load	balance	using	the	embedded	DNS.	The	embedded
DNS	provides	round-robin	load	balancing.

2.	 Look	at	the	IP	address	of	both	container1	and	container2	using	the	docker
container	inspect	command:

Here,	the	.NetworkSettings.Networks.cookbook.IPAddress	filter	is	applied	to	the
option	because	we	know	that	the	containers	are	connected	to	the	user-defined
bridge	network	cookbook.

3.	 Now,	let's	use	transient	containers	to	understand	the	service	discovery
capability	of	user-defined	networks,	as	demonstrated	in	the	following
screenshot:

	

	

Cool,	isn't	it!	Now	the	containers	can	communicate	with	each	other
by	using	the	containers'	names.	This	service	discovery	capability
simplifies	the	multicontainer	orchestration	a	great	deal.

4.	 Having	delved	into	the	service	discovery	capability,	let's	gain	more
understanding	of	the	DNS	load	balancing	capability	of	the	user-defined
network	by	pinging	the	network	alias	netalias,	as	shown	in	the	following
screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

As	we	can	discern	from	the	preceding	screenshot,	the	first	ping	on	netalias	got	a
response	from	the	IP	address	172.18.0.3,	which	is	container2,	and	the	second	ping
on	netalias	got	a	response	from	172.18.0.2,	which	is	container1.	In	essence,	the
embedded	DNS	load	balancer	resolved	the	netalias	using	a	round-robin
algorithm.

How	it	works...
When	a	container	is	connected	to	a	user-defined	network,	the	Docker	Engine
adds	the	container's	name	and	its	network	alias	(if	present)	to	the	user-defined
network's	DNS	record.	Then	Docker	shares	these	details	to	the	other	containers
connected	to	the	same	user-defined	network	through	the	embedded	DNS	hosted
at	127.0.0.11.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
Like	any	DNS	server,	we	can	query	our	embedded	DNS	server	for	the	DNS
records	using	dig	or	nslookup.	Here,	we	are	using	a	third-party	image	called
sequenceiq/alpine-dig	to	query	the	DNS	record	because	this	image	is	shipped
with	the	dig	command,	rather	than	the	official	alpine	image	that	does	not
have	the	dig	command:

Evidently,	the	DNS	entry	netalias	has	two	IP	addresses,	172.18.0.3	and
172.18.0.2,	as	its	A	record.

Applications,	such	as	nginx,	usually	cache	the	IP	addresses,	and	so	DNS-
based	load-balancing	solutions	usually	don't	work	well	with	such

applications.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	the	docker	network	create	command:

$	docker	network	create	-help

The	h	option	of	the	dig	command:

$	dig	-h

The	documentation	on	the	Docker	website:

	https://docs.docker.com/engine/userguide/networking/

https://docs.docker.com/engine/userguide/networking/default_network/binding/

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/default_network/binding/

Persisting	data	using	volumes
As	we	are	aware,	the	container's	read–write	layer	is	temporary,	and	is	destroyed
when	the	container	is	removed.	However,	there	are	use	cases	wherein	you	will
have	to	preserve	the	application	data	beyond	the	life	cycle	of	the	container.	For
instance,	a	Docker	registry	container	holds	all	the	images	that	are	pushed	to	it.	If
this	container	is	deleted,	then	we	will	lose	all	the	images	that	it	was	holding.
Perhaps,	we	can	resort	to	the	container's	commit	flow	to	preserve	the	data,	but	it
will	bloat	the	image	and	complicate	the	container	deployment	process.	The
recommended	alternative	is	to	persist	the	application	data	outside	of	the
container's	filesystem,	using	volumes	or	a	bind	mount.	We	will	discuss	bind
mounts	in	the	next	recipe.
Docker	volumes	are	a	special	directory	in	the	Docker	host,	and	are	created	and
managed	by	Docker	itself.	We	can	mount	these	volumes	to	our	container	and
have	the	application	store	its	data	to	the	volume.	The	Docker	volumes	are	either
named	or	anonymous.	Functionally,	the	anonymous	volumes	are	the	same	as
named	volumes;	however,	the	anonymous	volume	name	is	randomly	generated.
Docker	also	supports	the	volume	plugin	to	address	advanced	storage	needs,	which
is	outside	the	scope	of	this	book.
In	this	recipe,	we	will	demonstrate	data	persistence	using	one	named	volume	and
two	containers.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running.

How	to	do	it...
Perform	the	following	the	steps:

1.	 Let's	begin	by	creating	a	named	volume	using	the	docker	volume	create
command,	as	shown	in	the	following	code:

				$	docker	volume	create	datavol	

				datavol

2.	 List	the	volume	using	the	docker	volume	ls	command,	as	shown	in	the
following	code:

				$	docker	volume	create	ls	

				DRIVER		VOLUME	NAME	

				local			datavol

3.	 Launch	an	interactive	container	using	the	docker	container	run	command	and	-
v	option	to	mount	the	datavol	volume	to	the	container,	as	shown	in	the
following	code:

				$	docker	container	run	-it	--rm	-v	datavol:/data	alpine	/	#

4.	 Now,	let's	create	a	new	file	at	the	/data	directory	of	the	container	and	write
some	text	to	it:

/	#	echo	"This	is	a	named	volume	demo"	>	/data/demo.txt	/	#

5.	 Exit	from	the	preceding	container	and	remove	the	container	using	the
docker	container	rm	command.

6.	 Now,	launch	a	new	container	by	mounting	the	datavol	volume	again	and
print	the	content	of	the	demo.txt,	as	shown	in	the	following	code.	Here,	we
are	intentionally	choosing	an	ubuntu	image	just	to	stress	that	the	Docker
volume	functions	the	same	way	irrespective	of	the	Docker	image	from
which	the	container	is	created:

$	docker	container	run	--rm	\	-v	datavol:/data	ubuntu	cat	/data/demo.txt	

This	is	a	named	volume	demo.	Evidently,	the	text	we	wrote	from	the	first
container	is	persisted	in	the	datavol	volume,	and	later	it	is	retrieved	by	the	second

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

container.

	

	

	

How	it	works...
The	default	docker	volume	create	command	creates	a	directory	for	the	volume	under
the	/var/lib/docker/volumes/	directory	of	the	Docker	host.	For	instance,	in	this
recipe,	a	datavol	directory	is	created	under	/var/lib/docker/volumes/.	Furthermore,
Docker	internally	creates	one	more	directory	called	_data	for	each	volume	under
the	directory	it	created	for	that	volume.	We	can	confirm	the	directory	path	by
running	the	docker	volume	inspect	command,	as	shown	in	the	following	screenshot:

When	we	mount	the	volume	to	a	container,	Docker	internally	bind	mounts	the
_data	directory	of	the	volume	to	the	container.
We	will	learn	more	about	bind	mounting	in	the	next	recipe.

	

	

In	the	current	recipe,	the	/var/lib/docker/volumes/datavol/_data	directory	gets	bind
mounted	while	launching	the	container,	and	any	file	operations	on	the	volume
are	preserved	in	this	directory,	as	is	evident	in	the	following	tree	output:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

Since	the	file	operation	is	externalized	from	the	container,	the	life	cycle	of	the
volume	is	separated	from	the	container.

There's	more...
Docker	allows	us	to	share	the	volume	with	more	than	one	container,	and	so	the
volumes	can	also	be	used	as	an	effective	vehicle	to	share	data	between
containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	the	docker	volume	create	command:

$	docker	volume	create	-help

The	help	option	of	the	docker	volume	ls	command:

$	docker	volume	ls	-help

The	help	option	of	the	docker	volume	inspect	command:

$	docker	volume	inspect	-help

The	documentation	on	the	Docker	website:

https://docs.docker.com/engine/admin/volumes/volumes/

https://docs.docker.com/engine/reference/commandline/volume_create/

https://docs.docker.com/engine/reference/commandline/volume_ls/

https://docs.docker.com/engine/reference/commandline/volume_inspect/

https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_inspect/

Sharing	data	between	the	host	and
the	container
In	the	previous	recipe,	we	used	a	named	volume	to	persist	application	data.	We
also	learned	that	named	volumes	can	be	used	to	share	data	between	containers.
In	this	recipe,	we	will	use	bind	mounting	to	mount	a	Docker	host	directory	to	a
container	and	then	share	data	between	the	Docker	host	and	container	using	that
mount	point.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	begin,	ensure	that	the	Docker	daemon	is	running.

How	to	do	it...
Perform	the	following	steps:

1.	 Let's	begin	by	creating	a	new	directory	called	data_share	in	our	home
directory,	as	shown	in	the	following	code:

				$	mkdir	$HOME/data_share

2.	 Create	a	new	file	in	the	$HOME/data_share	directory	of	the	Docker	host	and
write	some	text	in	it:

$	echo	"data	sharing	demo"	>	$HOME/data_share/demo.txt

3.	 Now,	launch	a	container	by	mounting	the	$HOME/data_share	directory	and	then
print	the	content	of	the	demo.txt:

$	docker	container	run	--rm	\	

												-v	$(HOME)/data_share:/data	\	

												ubuntu	cat	/data/demo.txt	

data	sharing	demo

In	this	recipe,	we	effectively	shared	a	file	from	the	Docker	host	to	the	container.
Though	this	is	a	very	simple	example,	it	is	a	very	powerful	mechanism	to	share
your	application	configuration,	as	well	as	other	details.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	a	container	is	launched	with	the	-v	<host	path>:<container	path>	option,	the
Docker	Engine	bind	mounts	the	host	path	into	the	container	filesystem	on	the
specified	container	path.	The	bind	mount	is	a	Linux	capability	that	is	used	to
take	an	existing	directory	structure	and	map	it	to	a	different	location.

	

	

	

$	docker	container	run	--rm	\
	-v	$(HOME)/data_share/demo.txt:/demo.txt	\

	ubuntu	cat	/demo.txt	
data	sharing	demo

By	default,	when	we	mount	a	directory	or	a	file	into	a	container,	it	gets	mounted
in	read–write	mode,	so	that	the	container	can	alter	the	content	of	the	mounted
directory	or	file.	We	can	prevent	the	containers	from	modifying	the	content	of
the	mounted	directory	or	file	using	the	ro	flag,	as	demonstrated	in	the	following
code:

$	touch	file	

$	docker	container	run	-rm	\	

																				-v	${PWD}/file:/file:rw	\	

																				ubuntu	sh	-c	"echo	rw	mode	>>	/file"	

$	cat	file

rw	mode	

$	docker	container	run	-rm	\	

																				-v	${PWD}/file:/file:rw	\

																				ubuntu	sh	-c	"echo	ro	>>	/file"	

sh:	1:	cannot	create	/file:	Read-only	file	system

Apparently,	the	write	operation	failed	when	we	mounted	the	file	as	read-only.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	help	option	of	the	docker	container	run	command:

$	docker	container	run	-help

The	documentation	on	the	Docker	website:

	https://docs.docker.com/engine/admin/volumes/volumes/

https://docs.docker.com/engine/admin/volumes/volumes/

Docker	Use	Cases
In	this	chapter,	we	will	cover	the	following	recipes:

Testing	with	Docker
Performing	CI/CD	with	Shippable	and	Heroku
Performing	CI/CD	with	TravisCI
Setting	up	PaaS	with	OpenShift	Origin
Building	and	deploying	an	app	on	OpenShift	from	the	source	code

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction
Now	we	know	how	to	work	with	containers	and	images.	In	the	last	chapter,	we
also	saw	how	to	link	containers	and	share	data	between	the	host	and	other
containers.	We	also	saw	how	containers	from	one	host	can	communicate	with
containers	from	other	hosts.

Now,	let's	look	at	different	use	cases	of	Docker.	Let's	list	a	few	of	them	here:

Quick	prototyping	of	ideas:	This	is	one	of	my	favorite	use	cases.	Once	we
have	an	idea,	it	is	very	easy	to	prototype	it	with	Docker.	All	we	have	to	do
is	set	up	containers	to	provide	all	the	backend	services	we	need	and	connect
them	together.	For	example,	to	set	up	a	LAMP	application,	get	the	web	and
DB	server	and	link	them,	as	we	saw	in	the	previous	chapter.
Collaboration	and	distribution:	Git	is	one	of	the	best	examples	of
collaborating	and	distributing	code.	Similarly,	Docker	provides	features
such	as	Dockerfile,	registries,	and	import/export	to	share	and	collaborate
with	others.	We	have	covered	all	this	in	earlier	chapters.
Continuous	Integration	(CI):	The	following	definition	on	the	Martin
Fowler	website	(http://www.martinfowler.com/articles/continuousIntegration.html)
covers	it	all:

Continuous	Integration	is	a	software	development	practice	where	members	of	a	team	integrate	their	work
frequently,	usually	each	person	integrates	at	least	daily	-	leading	to	multiple	integrations	per	day.	Each
integration	is	verified	by	an	automated	build	(including	test)	to	detect	integration	errors	as	quickly	as
possible.	Many	teams	find	that	this	approach	leads	to	significantly	reduced	integration	problems	and	allows
a	team	to	develop	cohesive	software	more	rapidly.	Using	recipes	from	other	chapters,	we	can	build	an
environment	for	CI	using	Docker.	You	can	create	your	own	CI	environment	or	get	services	from	companies
such	as	Shippable	and	TravisCI.	We'll	see	how	Shippable	and	TravisCI	can	be	used	for	CI	work	later	in	this
chapter.	I	thought	it	would	be	helpful	if	I	talk	about	both	of	them	here:

Continuous	Delivery	(CD):	The	next	step	after	CI	is	Continuous	Delivery,
through	which	we	can	deploy	our	code	rapidly	and	reliably	to	our	customer,
the	cloud,	and	other	environments	without	any	manual	work.	In	this
chapter,	we'll	see	how	we	can	automatically	deploy	an	app	on	Heroku
through	Shippable	CI.
Platform-as-a-Service	(PaaS):	Docker	can	be	used	to	build	your	own
PaaS.	It	can	be	deployed	using	tools/platforms	such	as	OpenShift,	CoreOS,
Atomic,	and	so	on.	Later	in	this	chapter,	we'll	see	how	to	set	up	PaaS	using

http://www.martinfowler.com/articles/continuousIntegration.html

OpenShift	Origin	(https://www.okd.io).

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.okd.io

Testing	with	Docker
While	doing	development	or	QA,	it	will	be	helpful	if	we	can	check	our	code
against	different	environments.	For	example,	we	may	need	to	check	our	Python
code	between	different	versions	of	Python,	or	on	different	Linux	distributions
such	as	Fedora,	Ubuntu,	CentOS,	and	so	on.	For	this	recipe,	we	will	use	Flask,
which	is	a	microframework	for	Python	(https://www.palletsprojects.com/p/flask/).
We	will	use	the	sample	code	from	Flask's	GitHub	repository.	I	chose	this	to	keep
things	simple,	and	it	is	easier	to	use	for	other	recipes	as	well.

For	this	recipe,	we	will	create	images	with	one	container	with	Python	2.7	and
another	with	Python	3.7.	We'll	then	use	sample	Python	test	code	to	run	against
each	container.

	

	

	

https://www.palletsprojects.com/p/flask/

	$	cd	/tmp
	$	git	clone
https://github.com/pallets/flask

	$	cat	/tmp/Dockerfile_2.7
	FROM
python:2.7
	RUN	pip	install	flask	pytest

	ADD	flask/	/flask
	WORKDIR
/flask/examples/tutorial
	RUN	pip	install	-e	.

	CMD	["/usr/local/bin/pytest"]

	$	docker	image	build	-t	python2.7test	-f	/tmp/Dockerfile_2.7	.

	$	cat	/tmp/Dockerfile_3.7
	FROM
python:3.7
	RUN	pip	install	flask	pytest

	ADD	flask/	/flask
	WORKDIR
/flask/examples/tutorial
	RUN	pip	install	-e	.

	CMD	["/usr/local/bin/pytest"]

	$	docker	image	build	-t	python3.7test	-f	/tmp/Dockerfile_3.7	.

	$	docker	image	ls

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Now,	using	the	two	images	we	created,	let's	run	them,	to	see	the	results.

To	test	with	Python	2.7,	run	the	following	command:

$	docker	container	run	python2.7test

Similarly,	to	test	with	Python	3.7,	run	the	following	command:

$	docker	container	run	python3.7test

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
As	you	can	see	from	the	two	Dockerfiles,	before	running	the	CMD,	which	runs
the	pytest	binary,	we	add	the	Flask	source	code	to	the	image,	change	our
working	directory	to	the	tutorial	example	directory,	/flask/examples/tutorial,	and
install	the	app.	So,	as	soon	as	the	container	starts,	it	will	run	the	pytest	binary	on
our	tests.

	

	

	

There's	more…
In	this	recipe,	we	have	seen	how	to	test	our	code	with	different	versions	of
Python.	Similarly,	you	can	pick	up	different	base	images	from	Fedora,
CentOS,	and	Ubuntu,	and	test	them	on	different	Linux	distributions.
If	you	use	Jenkins	in	your	environment,	then	you	can	use	its	Docker	plugin
to	dynamically	provision	a	slave,	run	a	build,	and	tear	it	down	on	the
Docker	host.

More	details	about	this	can	be	found	at	https://plugins.jenkins.io/docker-plugin.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://plugins.jenkins.io/docker-plugin

Performing	CI/CD	with	Shippable
and	Heroku
In	the	preceding	recipe,	we	saw	an	example	of	how	Docker	can	be	used	for
testing	in	a	local	Dev	and	QA	environment.	Let's	look	at	an	end-to-end	example
to	see	how	Docker	is	now	used	in	CI/CD	environments.	In	this	recipe,	we'll	see
how	we	can	use	Shippable	(https://www.shippable.com)	to	perform	CI/CD	and
deploy	it	on	Heroku	(https://www.heroku.com).

Shippable	is	a	SaaS	platform	that	lets	you	easily	add	Continuous
Integration/Deployment	to	your	GitHub	and	Bitbucket	(Git)	repositories,	and	is
completely	built	on	Docker.	Shippable	uses	build	minions,	which	are	Docker-
based	containers,	to	run	workloads.	Shippable	supports	many	languages,	such	as
Ruby,	Python,	Node.js,	Java,	Scala,	PHP,	Go,	and	Clojure.	The	default	build
minions	are	of	Ubuntu	14.04	LTS	and	Ubuntu	16.04.	They	have	also	added
support	to	use	custom	images	from	Docker	Hub	as	minions.	Shippable	CI	needs
information	about	the	project	and	build	instructions	in	a	YAML	file	called
shippable.yml,	which	you	have	to	provide	in	your	source	code	repo.	The	yaml	file
contains	the	following	instructions:

language:	This	will	show	the	programming	language
python:	With	this,	you	can	specify	different	versions	of	the	language	to	get
test	in	a	single	build	instruction
build:	This	is	the	build	pipeline
ci:	These	are	the	instructions	for	running	the	build
on_success:	These	are	instructions	after	the	build	succeeds,	used	to	perform
deployment	on	PaaS	such	as	Heroku,	Amazon	Elastic	Beanstalk,	AWS
OpsWorks,	Google	App	Engine,	and	others

Heroku	is	a	Platform-as-a-Service	(PaaS)	that	enables	developers	to	run	and
operate	applications	entirely	in	the	cloud.

For	this	recipe,	we	will	use	the	same	example	code	we	used	in	the	previous
recipe,	to	first	test	it	on	Shippable	and	then	deploy	it	on	Heroku.

https://www.shippable.com
https://www.heroku.com

Getting	ready
Follow	the	following	prerequisites:

1.	 Create	an	account	on	Shippable	(https://www.shippable.com).
2.	 Fork	the	flask	example	from	https://github.com/kencochrane/heroku-flask-example

and	clone	it	to	your	local	machine.
3.	 Create	an	app	on	Heroku	for	the	forked	repository	with	the	following	steps:

Create	an	account	(https://signup.heroku.com)	on	Heroku,	install	the
Heroku	application,	and	log	in:	$	heroku	login

Change	your	directory	to	where	you	cloned	your	fork	from	Step	2,
and	create	an	app	on	Heroku:	$	heroku	create	--ssh-git

Push	your	code	to	Heroku	to	deploy	your	application:

															$	git	push	heroku	master

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.shippable.com
https://github.com/kencochrane/heroku-flask-example
https://signup.heroku.com

After	a	minute,	your	application	will	be	deployed:

Make	sure	your	application	has	at	least	one	dynamo,	and	open	the
app	in	your	browser,	to	make	sure	it	is	working:	$	heroku	ps:scale
web=1
$	heroku	open

Your	browser	should	open	and	load	the	page	for	your	application.	If
the	result	worked,	it	should	look	something	like	the	following:	

4.	 Update	the	shippable.yml	file	in	your	fork	to	use	your	Heroku	application's
Git	URL:

language:	python

python:

		-	3.7

build:

		ci:

				-	shippable_retry	pip	install	-r	requirements.txt

				#	Create	folders	for	test	and	code	coverage

				-	mkdir	-p	shippable/testresults

				-	mkdir	-p	shippable/codecoverage

				#	run	tests

				-	pytest

		on_success:

				#	my	heroku	app	git	urls:

				#	http	url:	https://git.heroku.com/blooming-mountain-58044.git

				#	git	url:	git@heroku.com:blooming-mountain-58044.git

				#	use	git	url	not	http.

				#	change	this	value	to	the	value	of	your	app.

				-	git	push	git@heroku.com:blooming-mountain-58044.git

5.	 Commit	the	changes	to	your	code,	and	push	it	to	your	forked	repository.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Perform	the	following	steps:

1.	 Log	in	to	Shippable,	and	select	the	Enable	a	Project	link:

2.	 Then,	select	the	correct	subscription	on	the	left,	and	it	will	show	you	a	list
of	your	repos	below.	Select	the	heroku-flask-example	repo:

3.	 Click	on	the	Play	button	and	select	Branch	to	build.	For	this	recipe,	I	chose
master:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

If	the	build	is	successful,	you	will	see	the	success	icon.

Next	time,	if	you	do	a	commit	in	your	repository,	a	build	on	Shippable
will	be	triggered	and	the	code	will	be	tested.	Now,	to	perform	Continuous
Deployment	on	Heroku,	let's	follow	the	instructions	provided	on	the
Shippable	website	(http://docs.shippable.com/ci/deploy-to-heroku/).	Shippable
will	need	to	have	permission	to	make	changes	to	our	Heroku	application;
we	grant	it	permission	by	adding	its	deployment	SSH	key	to	our	Heroku
account.

4.	 Get	the	deployment	key	from	your	Shippable	dashboard	by	clicking	the

http://docs.shippable.com/ci/deploy-to-heroku/

little	gears	icon,	and	selecting	Settings:

5.	 Toward	the	bottom	of	the	page,	there	is	a	Deployment	Key	section.	Copy
the	key:

6.	 Now	that	you	have	the	key,	go	to	your	Account	settings	in	Heroku:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

7.	 Scroll	down	until	you	see	the	SSH	Keys	section,	and	hit	the	Add	button.

8.	 A	window	will	pop	up	where	you	will	be	able	to	add	the	SSH	key	that	you
copied	from	Shippable.	Paste	the	key,	and	hit	Save	changes:

We	have	now	made	it	so	that,	when	a	build	is	successful,	Shippable	is	able	to
push	changes	to	Heroku.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
At	every	build	instruction,	Shippable	spins	up	a	new	container	depending	on	the
image	and	language	type	specified	in	the	shippable.yml	file,	and	runs	the	build	to
perform	testing.	Shippable	knows	when	to	start	a	build,	because	it	adds	a
webhook	to	your	GitHub	repository	when	you	register	your	application	with
them:	

So,	every	time	a	change	is	committed	to	GitHub,	a	build	on	Shippable	gets
triggered,	and	after	the	build	is	successful,	it	is	deployed	to	Heroku.

See	also
Detailed	documentation	is	available	on	the	Shippable	website	at	http://docs.
shippable.com.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://docs.shippable.com

Performing	CI/CD	with	TravisCI
As	mentioned	on	the	TravisCI	website	(https://travis-ci.org),	TravisCI	is	a	hosted
Continuous	Integration	service.	It	enables	you	to	conveniently	set	up	projects	to
automatically	build,	test,	and	deploy	them	as	you	make	changes	to	your	code.	As
of	now,	they	support	over	30	languages	such	as	C/C++,	Dart,	Go,	Haskell,
Groovy,	Java,	Node.js,	PHP,	Python,	Ruby,	and	Scala.	Using	TravisCI,	you	can
deploy	your	application	on	platforms	such	as	Heroku,	Google	App	Engine,
AWS,	and	Azure.

For	this	recipe,	let's	use	the	same	example	that	we	used	in	earlier	recipes.

	

	

	

https://travis-ci.org

$	cat	.travis.yml
language:	python

python:
	-	"3.6"

install:
	-	pip	install	-r
requirements.txt
script:
	-
pytest

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Follow	the	following	steps:

1.	 Trigger	a	manual	build	by	clicking	on	More	options	and	then	Trigger	build,
as	shown	in	the	following	screenshot:

2.	 If	all	went	well,	you	should	be	able	to	see	the	results	of	your	build,	with	the
logs:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
The	build	process	starts	a	new	container,	clones	the	source	code	repository,	and
runs	the	commands	that	we	specified	in	the	script	section	of	our	.travis.yml	file,
inside	of	our	test	container.

There's	more…
TravisCI	also	adds	a	webhook	in	GitHub;	thus,	the	next	time	you	commit
the	changes	in	the	repository,	a	build	will	be	triggered.
TravisCI	also	supports	Continuous	Deployment	to	different	cloud
environments,	as	we	have	seen	in	the	earlier	recipe.	To	set	that	up,	you
would	need	to	add	more	information	to	the	.travis.yml	file.	For	more	details,
check	out	the	deployment	documentation	(https://docs.travis-ci.com/user/deplo
yment/).

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.travis-ci.com/user/deployment/

See	also
The	TravisCI	documentation	at	https://docs.travis-ci.com.

https://docs.travis-ci.com

Setting	up	PaaS	with	OpenShift
origin
Platform-as-a-Service	(PaaS)	is	a	type	of	cloud	service	where	the	consumer
controls	software	deployments	and	configuration	settings	for	applications
(mostly	web),	and	the	provider	provides	servers,	networks,	and	other	services	to
manage	those	deployments.	The	provider	can	be	external	(public	provider)	or
internal	(IT	department	in	an	organization).	There	are	many	PaaS	providers,	such
as	Amazon	(https://aws.amazon.com),	Heroku	(https://www.heroku.com),	OpenShift	(http
s://www.openshift.com),	and	so	on.	In	the	recent	past,	containers	seem	to	have
become	the	natural	choice	for	applications	to	get	deployed	to.

Earlier	in	this	chapter,	we	looked	at	how	we	can	build	a	CI/CD	solution	using
Shippable	and	Heroku,	where	we	deployed	our	app	using	the	Heroku	PaaS.
Heroku	is	a	public	cloud	service,	hosted	on	Amazon	Web	Service	(AWS).
OpenShift	(https://github.com/openshift/origin)	is	a	PaaS	that	leverages
technologies	such	as	Docker	and	Kubernetes	(https://kubernetes.io)	among	others,
providing	a	complete	ecosystem	to	service	your	cloud-enabled	apps.	As	we
talked	about	Kubernetes	in	Chapter	8,	Docker	Orchestration	and	Hosting
Platform,	it	is	highly	recommended	you	read	that	first	before	continuing	into	this
recipe.	I	am	going	to	borrow	some	of	the	concepts	from	that	chapter.	Lets	look	at
the	following	diagram:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://aws.amazon.com
https://www.heroku.com
https://www.openshift.com
https://github.com/openshift/origin
https://kubernetes.io

Kubernetes	provides	container	cluster	management	with	features	such	as
scheduling	pods	and	service	discovery,	but	it	does	not	have	the	concept	of	a
complete	application,	nor	does	it	build	and	deploy	Docker	images	from	the
source	code.	OpenShift	extends	the	base	Kubernetes	model	and	fills	those	gaps.

If	we	fast-forward	and	look	at	Chapter	8,	Docker	Orchestration	and	Hosting
Platform,	for	the	Kubernetes	section,	you	will	notice	that	to	deploy	an	app,	we
need	to	define	Pods,	Services,	and	Replication-Controllers.	OpenShift	tries	to
abstract	all	that	information	and	let	you	define	one	configuration	file	that	takes
care	of	all	the	internal	wiring.	Further,	OpenShift	provides	other	features	such	as
automated	deployment	through	source	code	push,	centralized	administration	and
management	of	applications,	authentication,	team	and	project	isolation,	and
resource	tracking	and	limiting,	all	of	which	are	required	for	enterprise
deployment.

In	this	recipe,	we	will	set	up	all-in-one	OpenShift	Origin	on	a	VM	and	start	a
pod.	In	the	next	recipe,	we	will	see	how	to	build	and	deploy	an	app	through
source	code	using	the	Source-to-image	(S2I)	build	feature.	The	example	can	be
found	at	https://github.com/openshift/origin/tree/master/examples/sample-app	.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/openshift/origin/tree/master/examples/sample-app

	$	curl	https://get.docker.com	|	bash

$	cat	/etc/docker/daemon.json
	{
	"insecure-registries":	[

"172.30.0.0/16"
]
	}

	$	systemctl	start	docker

	$	yum	install	-y	wget

	$	cd	/tmp
	$	wget
https://github.com/openshift/origin/releases/download/v3.10.0/openshift-origin-
client-tools-v3.10.0-dd10d17-linux-64bit.tar.gz

		$	tar	-xvzf	openshift-origin-client-tools-v3.10.0-
dd10d17-linux-64bit.tar.gz
	$	cd	openshift-origin-client-
tools-v3.10.0-dd10d17-linux-64bit
	$	sudo	cp	oc
/usr/local/bin
	$	cd	~

How	to	do	it…
Now	that	we	have	a	VM	set	up	with	Docker	running	and	the	OpenShift	binaries
installed,	we	can	start	up	our	cluster	using	the	oc	binary.	OpenShift	has	a	web
console	that	you	can	log	into,	but	in	order	for	it	to	work	correctly,	OpenShift	will
need	to	be	able	to	determine	your	IP	address.	If	your	VM	has	more	than	one,	you
might	need	to	explicitly	tell	OpenShift	which	one	to	use	when	starting	the
cluster.	In	the	example	here,	my	public	IP	address	is	142.93.14.79;	your	IP	will	be
different:	$	oc	cluster	up	--public-hostname=<your	ip>

After	a	few	minutes,	the	cluster	is	up	and	running,	and	you	will	see	something
like	this:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

At	this	point,	we	have	two	options;	we	can	either	install	our	application	via	the
SSH	shell,	or	we	can	use	the	web	console.	Let's	try	with	the	web	console	first,
and	make	sure	that	is	working	correctly.	Open	the	web	console	URL	in	your
browser,	and	log	in	using	the	credentials	shown	in	the	output	when	starting	your
cluster.

You	will	probably	get	a	warning	from	your	browser	that	the	SSL/TLS	certificate	doesn't	match.
That	is	fine,	and	expected;	you	can	bypass	this	warning	and	continue.

Now	that	you	are	logged	in,	let's	deploy	an	example	application.	Click	on	the

Ruby	icon	in	the	catalog:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

This	brings	up	a	wizard,	that	will	help	us	add	our	application	to	the	cluster.	Click
the	Next	button:	

Click	the	Try	Sample	Repository	link,	and	it	will	auto-populate	the	form	for	us;
then,	click	the	Create	button:	

Just	like	that,	our	ruby-ex	application	was	created.	Click	the	Close	button:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

You	should	now	see	the	application	listed	in	the	web	console;	once	the
application	is	up	and	running,	you	will	watch	a	URL	where	you	can	see	the
application	in	action:	

Open	the	application	URL	in	your	browser,	and	you	should	see	something	like
the	following:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Now	that	we	have	the	example	Ruby	application	up	and	running,	let's	delete	it,
and	do	the	same	thing,	but	using	the	SSH	shell.	Under	applications,	you	can
click	the	Actions	option	and	select	Delete.	This	will	delete	the	application	for	us:

Go	back	to	the	SSH	shell,	and	let's	create	a	new	application,	but	this	time	using
the	oc	binary.	For	this	example,	we	will	be	using	one	of	the	other	built-in
examples	that	comes	with	OpenShift.	We	will	use	the	django-psql-persistent
example,	which	has	two	services,	a	Django	web	service	and	a	PostgreSQL
database	service:	$	oc	new-app	django-psql-persistent

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

After	a	few	minutes,	your	application	is	created,	and	you	should	see	something
like	the	following:

When	we	run	the	oc	status	command,	we	can	see	the	URL	for	our	project:

$	oc	status

When	we	open	that	URL	in	our	browser,	you	can	see	the	application	is	up	and
running:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

When	you	go	back	to	the	web	console,	you	can	see	the	details	of	the	application
you	just	deployed:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

If	we	want	to	delete	the	application	using	the	oc	binary,	it	is	pretty	easy.	We	just
need	to	use	the	delete	command:	$	oc	delete	dc/django/psql-persistent
$	oc	delete	dc/postgresql

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
When	OpenShift	starts,	all	Kubernetes	services	start	as	well.	Then,	we	connect
to	the	OpenShift	master	through	CLI	and	request	it	to	start	a	pod.	That	request	is
then	forwarded	to	Kubernetes,	which	starts	the	pod.	OpenShift	acts	as	the
middleman	between	you	and	Kubernetes.

There's	more…
If	you	run	the	docker	container	ls	command,	you	will	see	the	corresponding
containers	running
If	you	want	to	stop	the	OpenShift	cluster,	you	can	run	the	following
command:

				$	oc	cluster	down

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	Learn	More	section	on	https://github.com/openshift/origin.
OpenShift	documentation	at	https://docs.okd.io/latest/welcome/index.html.

https://github.com/openshift/origin
https://docs.okd.io/latest/welcome/index.html

Building	and	deploying	an	app	on
OpenShift	from	the	source	code
OpenShift	provides	the	build	process	to	build	an	image	from	source	code.	The
following	are	build	strategies	that	you	can	follow	to	build	images:

Docker	build:	In	this,	users	will	supply	to	Docker	context	(Dockerfile	and
support	files),	which	can	be	used	to	build	images.	OpenShift	just	triggers
the	docker	build	command	to	create	the	image.
Source-to-image	(S2I)	build:	In	this,	the	developer	defines	the	source	code
repository	and	the	builder	image,	which	defines	the	environment	used	to
create	the	app.	S2I	then	uses	the	given	source	code	and	builder	image	to
create	a	new	image	for	the	app.	More	details	about	S2I	can	be	found	at	https
://github.com/openshift/source-to-image.
Custom	build:	This	is	similar	to	the	Docker	build	strategy,	but	users	might
customize	the	builder	image	that	will	be	used	for	build	execution.

In	this	recipe,	we	are	going	to	look	at	the	S2I	build	process.	We	are	going	to	look
at	sample-app	from	the	OpenShift	Origin	repo	(https://github.com/openshift/origin/t
ree/master/examples/sample-app).	The	corresponding	S2I	build	file	is	located	at	https:/
/github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild

.json.

In	the	BuildConfig	section,	we	can	see	that	the	source	is	pointing	to	a	GitHub
repo	(https://github.com/openshift/ruby-hello-world)	and	the	image	under	the	strategy
section	is	pointing	to	the	centos/ruby-22-centos7	image.	So,	we	will	use	the
centos/ruby-22-centos7	image	and	build	a	new	image	using	the	source	from	the
GitHub	repo.	The	new	image,	after	the	build	is	pushed	to	the	local	or	third-party
Docker	registry,	depends	on	the	settings.	The	BuildConfig	section	also	defines
triggers	on	when	to	trigger	a	new	build,	for	instance,	when	the	build	image
changes.

In	the	same	S2I	build	file	(application-template-stibuild.json),	you	will	find
multiple	DeploymentConfig	sections,	one	for	each	pod.	The	DeploymentConfig	section
has	information	such	as	exported	port,	replicas,	environment	variables	for	pod,

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/openshift/source-to-image
https://github.com/openshift/origin/tree/master/examples/sample-app
https://github.com/openshift/origin/tree/master/examples/sample-app/application-template-stibuild.json
https://github.com/openshift/ruby-hello-world

and	other	info.	In	simple	terms,	you	can	think	of	DeploymentConfig	as	an	extended
replication	controller	for	Kubernetes.	It	also	has	triggers	to	trigger	new
deployments.	Each	time	a	new	deployment	is	created,	the	latestVersion	field	of
DeploymentConfig	is	incremented.	A	deploymentCause	is	also	added	to	the
DeploymentConfig,	describing	the	change	that	led	to	the	latest	deployment.

ImageStream	is	a	stream	of	related	images.	BuildConfig	and	DeploymentConfig	watch
ImageStream	to	look	for	image	changes	and	react	accordingly,	based	on	the
respective	triggers.

Other	sections	that	you	will	find	in	the	S2I	build	file	are	services	for	pods
(database	and	frontend),	routes	for	the	frontend	service	through	which	the	app
can	be	accessed,	and	templates.	A	template	describes	a	set	of	resources	intended
to	be	used	together	that	can	be	customized	and	processed	to	produce	a
configuration.	Each	template	can	define	a	list	of	parameters	that	can	be	modified
for	consumption	by	containers.

Similar	to	the	S2I	build,	there	are	examples	of	Docker	and	custom	builds	in	the
same	sample-app	example	folder.	I	am	assuming	you	have	the	earlier	recipe,	so
we	will	continue	from	there.

Getting	ready
You	should	have	completed	the	earlier	Setting	up	PaaS	with	OpenShift	Origin
recipe.

Make	sure	your	cluster	is	up	and	running:	$	oc	cluster	status

Clone	the	OpenShift	Git	repo	into	the	/opt/openshift/origin	directory:	$	mkdir	-p
/opt/openshift
$	cd	/opt/openshift
$	git	clone	https://github.com/openshift/origin.git
$	cd	origin/examples/sample-app

Your	current	working	directory	should	be	/opt/openshift/origin/examples/sample-app
inside	the	VM.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Submit	the	application	template	for	processing	using	the	oc	command:	$	oc	new-
app	application-template-stibuild.json

Monitor	the	build	and	wait	for	the	status	to	go	to	complete	(this	can	take	a	few
minutes):	$	oc	get	builds

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Get	a	list	of	pods:

$	oc	get	pods

Get	a	list	of	services:

$	oc	get	services

	

How	it	works…
In	the	BuildConfig	(ruby-sample-build)	section,	we	specified	our	source	as	the
ruby-hello-world	Git	repo	(git://github.com/openshift/ruby-hello-world.git)	and	our
image	as	centos/ruby-22-centos7.	So,	the	build	process	takes	that	image,	and	with
S2I	builder,	a	new	image	called	origin-ruby-sample	is	created	after	building	our
source	on	centos/ruby-22-centos7.	The	new	image	is	then	pushed	to	the	Docker
registry	that	is	built	into	OpenShift.

With	the	DeploymentConfig,	the	frontend,	and	backend	pods	are	also	deployed
and	linked	to	the	corresponding	services.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more…
In	a	multiple	node	setup,	your	pods	can	be	scheduled	on	different	systems.
OpenShift	connects	pods	through	the	overlay	network,	so	a	pod	running	on
one	node	can	access	another.	It	is	called	openshift-sdn.	For	more	details,
please	visit	https://docs.openshift.com/container-platform/3.10/architecture/network
ing/sdn.html.

https://docs.openshift.com/container-platform/3.10/architecture/networking/sdn.html

See	also
The	Learn	More	section	at	https://github.com/openshift/origin.
OpenShift	documentation	at	https://docs.openshift.com.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/openshift/origin
https://docs.openshift.com

Docker	APIs	and	SDKs
In	this	chapter,	we	will	cover	the	following	recipes:

Working	with	images	using	APIs
Building	images	using	APIs
Launching	containers	using	APIs
Performing	container	operations	using	APIs
Exploring	Docker	remote	API	client	libraries
Configuring	the	Docker	daemon	for	remote	connectivity
Securing	the	Docker	daemon's	remote	connectivity

	

	

Introduction
In	previous	chapters,	we	have	been	fiddling	a	lot	with	Docker	commands	to
work	with	Docker	images,	containers,	volumes,	and	networks.	One	of	the
hallmarks	of	Docker	is	the	amazing	user	experience	it	provides	through	its	easy-
to-remember	and	well-structured	commands.	With	a	single	Docker	command,
we	can	spin	a	very	useful	microservice	or	utility	container.	However,	behind	the
scenes,	the	Docker	client	translates	our	request	into	multiple	API	calls	in	order	to
fulfill	it.	These	APIs	are	called	Docker	Engine	APIs,	and	they	are	designed	using
the	REST	paradigm.

Note:	REST	(aka	RESTful)	stands	for	REpresentational	State	Transfer,	which	is	a	web
standard	for	data	communication	over	the	HTTP	protocol.

The	Docker	Engine	API	is	documented	using	the	OpenAPI	(formerly	known	as
Swagger)	specification.	As	a	result,	we	can	access	API	help	through	any
standard	OpenAPI	editor.	In	this	book,	we	are	using	an	editor	called	Swagger
Editor,	and	it	is	available	at	http://editor.swagger.io;	however,	you	can	use	any
OpenAPI	editor	of	your	choice.	Swagger	Editor	has	options	such	as	Try	it	out
and	Execute,	which	can	be	used	to	generate	curl	commands	with	appropriate
options.	The	following	screenshot	shows	Swagger	Editor	with	the	Docker	engine
API	document:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://editor.swagger.io

Here,	we	generated	the	Docker	Engine	API	document	from	the	swagger.yaml	file
available	at	https://docs.docker.com/engine/api/v1.35/swagger.yaml.	Of	course,	you	can
also	refer	to	the	current,	work-in-progress	version	of	the	API	from	https://raw.git
hubusercontent.com/moby/moby/master/api/swagger.yaml.

By	default,	the	Docker	engine	listens	on	/var/run/docker.sock,	a	Unix	domain

https://docs.docker.com/engine/api/v1.35/swagger.yaml.
https://raw.githubusercontent.com/moby/moby/master/api/swagger.yaml

socket,	to	communicate	with	its	client.	The	Unix	domain	socket,	also	known	as
the	inter-process	communication	socket,	enables	reliable	communication	within
a	host.	Besides	this,	/var/run/docker.sock	has	read-write	access	for	the	user	root	and
group	docker;	hence,	the	client	application	must	either	have	root	privilege	or	be	a
member	of	the	docker	group.	In	addition	to	the	Unix	socket,	the	Docker	daemon
supports	two	more	socket	types:

fd:	Systemd's	socket	activation.	On	Systemd-based	systems	such	as	Ubuntu
16.04,	the	Docker	daemon	listens	on	the	fd	socket,	which	internally	gets
mapped	to	the	Unix	socket	/var/run/docker.sock	using	the	systemd's	socket
activation	feature.
tcp:	For	remote	connectivity.	In	recipe,	Configuring	the	Docker	daemon	for
remote	connectivity,	we	will	configure	the	Docker	daemon	to	accept
unencrypted	communication	from	the	client,	and	in	recipe,	Securing	the
Docker	daemon's	remote	connectivity,	we	will	configure	the	Docker
daemon	to	use	secure	communication.

Docker	also	provides	Software	Development	Kits	(SDKs)	for	the	Python	and
Go	monogramming	language.	These	SDKs	internally	use	Docker	engine	REST
APIs.	In	addition	to	these	standard	SDKs,	there	are	many	community-supported
API	bindings	for	other	programming	languages.	Some	of	these	API	bindings	are
listed	at	https://docs.docker.com/develop/sdk/#unofficial-libraries.	However,	these
libraries	are	not	tested	by	Docker.

Throughout	this	chapter,	we	will	use	two	tools,	curl	and	jq:

curl	is	a	command-line	tool	for	transferring	data.	We	use	curl	to	connect	to
our	Docker	daemon.	Please	ensure	that	you	are	running	curl7.40	or	above,
because	curl	started	supporting	Unix	sockets	from	version	7.40.	You	can
find	more	details	about	curl	at	the	official	website	at	https://curl.haxx.se/.
jq	is	a	command	line	tool	for	processing	JSON	data.	We	use	jq	to
manipulate	the	data	we	receive	from	the	Docker	daemon.	You	can	find
more	details	about	jq	at	the	official	website	at	https://stedolan.github.io/jq/.

In	this	chapter	we	are	using	Ubuntu	16.04	and	Docker	17.10,	because	of	an	issue	with	the
default	curl	command	that	comes	along	with	the	Ubuntu	18.04	installation.	If	you	choose	to
continue	with	Ubuntu	18.04	and	Docker	18.03,	you	can	do	so	by	prefixing	any	text	in	the
Docker	API	endpoint	(http://bug/version)	as	a	workaround.

All	the	recipes	in	this	chapter	assume	that	the	Docker	is	installed	and	running.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/develop/sdk/#unofficial-libraries
https://curl.haxx.se/
https://stedolan.github.io/jq/

Working	with	images	using	APIs
As	mentioned	earlier,	Docker	internally	uses	the	Docker	engine	API	to	fulfill	all
our	containerization	need

s.	In	this	recipe,	we	will	be	using	the	curl	command	and	the	Docker	engine	APIs
to	perform	various	operations	on	the	Docker	images.

How	to	do	it...
In	this	recipe,	we'll	look	at	a	few	image	operations,	as	follows:

1.	 To	list	images,	use	the	following	API:

Here	is	an	example	of	the	preceding	syntax:	

2.	 You	can	create	an	image	by	pulling	it	from	any	registry	or	tar	file	using	the
following	API:

The	/images/create	API	supports	a	few	options,	as	listed	next,	to	work

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

with	images:	

Now	let's	look	into	a	few	examples:

3.	 Get	the	cookbook/apache2	image	from	Docker	Hub:

				$	curl	-X	POST	\

	--unix-socket	/var/run/docker.sock	\	

	http:/images/create?fromImage=cookbook/apache2

4.	 Get	the	WordPress	image	with	the	latest	tag:

5.	 Create	an	image	from	the	tar	file:

In	this	example,	we	chose	to	upload	the	image	as	a	tar	bundle	from	the	Docker
host	using	the	--data-binary	option	of	the	curl	command.	Here,	the	content	of
myimage.tar	is	sent	to	the	Docker	daemon	through	the	HTTP	message	body.	If	you
pay	closer	attention	to	the	curl	command	invocation,	you	will	notice	the	-i
option.	We	are	using	the	-i	option	of	the	curl	command	to	get	HTTP	header
information.

To	delete	an	image,	use	the	following	API:	

Here	is	an	example	of	the	preceding	syntax:	$	curl	-X	DELETE	\	--unix-socket
/var/run/docker.sock	\	http:/images/wordpress:latest

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	this	recipe,	we	performed	various	operations	on	the	Docker	image	using	the
curl	command.	The	curl	command	sends	our	API	request	to	the	Docker	daemon
as	a	REST	API	request	over	HTTP.	The	Docker	daemon,	in	turn,	will	perform
the	requested	action	on	the	image	and	reply	back	with	the	status	of	the	action.

	

	

	

There's	more...
In	this	recipe,	we	just	covered	three	APIs	related	to	Docker	image	handling,	but
there	are	more.	The	following	screenshot	lists	all	the	available	/images	APIs:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Each	API	endpoint	can	have	different	inputs	to	control	operations.	For	more
details,	visit	the	documentation	on	the	Docker	website	at	https://docs.docker.c
om/engine/api/latest/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/api/latest/

Building	images	using	APIs
In	the	previous	recipe,	we	explored	a	few	actions	on	Docker	images	using	APIs.
In	this	recipe,	we	will	build	a	Docker	image	using	the	/build	API.	Here	is	the
/build	API	snippet	from	Swagger	Editor:

$	git	clone	https://github.com/docker-cookbook/apache2	

$	cd	apache2

$	tar	cvf	/tmp/apache2.tar	*	

$	curl	-X	POST	\

	-H	"Content-Type:application/tar"	\		--data-binary
'@/tmp/apache2.tar'	\		--unix-socket	/var/run/docker.sock	\
		http:/build

{"stream":"Successfully	built	3c6f5044386d\n"}

In	the	preceding	JSON	message,	3c6f5044386d	is	the	ID	of	the	image	we	just
built	using	the	/build	API.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	this	recipe,	we	bundled	the	build	context	as	a	tar	file	and	sent	it	to	the	Docker
engine	as	part	of	the	/build	API	call.	The	Docker	engine	uses	the	build	context
and	the	Dockerfile	in	the	build	context	to	build	the	Docker	image.

There's	more...
1.	 In	this	recipe,	we	did	not	specify	any	repository	or	tag	name,	and	hence	the

image	is	created	without	any	repository	or	tag	name,	as	shown	here:

$	curl	-s	--unix-socket	/var/run/docker.sock	\

																	http:/images/json	|	jq	".[0].RepoTags"

				[

						"<none>:<none>"

]		

Of	course,	you	can	now	tag	the	image	with	the	appropriate	repository	and
tag	name	using	the	/images/{name}/tag	API.	Here	is	the	help	document
snipped	from	the	Swagger	editor:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Alternatively,	you	can	bundle	the	image	with	the	repository	name	during
the	build	time	using	the	t	parameter,	as	demonstrated	here:	$	curl	-X
POST	\	-H	"Content-Type:application/tar"	\	--data-binary
'@/tmp/apache2.tar'	\	--unix-socket	/var/run/docker.sock	\
http:/build?t=apache2:usingapi

The	tag	name	is	optional	and	if	no	tag	name	is	specified,	the	Docker
build	engine	will	assume	the	tag	name	latest.

2.	 You	can	also	create	an	image	from	a	container	using	the	following	API:

Here	is	an	example	of	committing	an	image	from	a	container	ID
4aaec8980c43:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Each	API	endpoint	can	have	different	inputs	to	control	the	operations.	For	more
details,	visit	the	documentation	on	the	Docker	website	at	https://docs.docker.com/en
gine/api/latest/.

https://docs.docker.com/engine/api/latest/

Launching	containers	using	APIs
In	Chapter	2,	Working	with	Docker	Containers,	recipe	Starting	a	container,	we
methodically	and	meticulously	explored	different	ways	of	running	containers.	In
all	those	scenarios,	we	used	the	docker	container	run	command	with	a	few	options,
and	all	our	containers	were	up	and	running.	However,	behind	the	scenes,	the
Docker	CLI	makes	it	possible	by	first	creating	the	container	layer	through	the
/create	API	and	then	launches	the	application	(cmd)	through	the	/start	API,	as
visualized	here:	

In	addition	to	the	/create	and	/start	API,	the	Docker	CLI	uses	APIs	such	as
/attach	and	/wait	to	fulfill	our	request.	In	this	recipe,	we	will	create	an	alpine
container	and	run	a	simple	ls	command	to	demonstrate	the	steps	involved	in
launching	a	container	through	the	Docker	engine	APIs.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
1.	 Begin	by	creating	a	container	from	an	alpine	image,	as	shown	here:

Here,	we	used	the	-d	option	of	the	curl	command	to	pass	our	container
configuration	as	a	JSON	data	to	the	Docker	engine.	Evidently,	the
image	is	alpine,	and	the	command	we	chose	to	run	when	the	container
starts	is	ls.	In	addition,	we	are	also	requesting	the	Docker	engine	to
attach	STDERR	and	STDOUT	to	this	container,	in	order	to	retrieve	the	output
of	the	ls	command.

The	HTTP	header	response	code	201	Created	indicates	that	our
container	is	created	successfully.	Apparently,	the	response	from	the
Docker	engine	is	also	a	JSON	payload.	The	ID	field	of	the	payload
contains	the	container	ID,	which	is
f9fd4b2e2040d4dea32deb527889bf2fb95b351d8316a4c74bfb6e2e38c9b499.	We	shall
use	the	short	version	of	the	container	ID,	f9fd4b2e2040,	to	perform
further	operations	on	this	container.

2.	 Since	we	want	to	capture	the	output	of	the	ls	command	on	the	screen,	let's
attach	to	the	container	using	the	/attach	API:

The	/attach	API	would	block	the	client	(namely,	curl)	if	it	is	called

with	the	stderr,	stdout,	and	stream	parameter,	so	we	are	running	the	curl
command	in	the	background.

3.	 Now,	proceed	to	start	the	container	using	the	/start	API,	as	demonstrated
here:

Cool,	isn't	it?	We	emulated	the	docker	container	run	command	with	the	Docker
engine	APIs.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	this	recipe,	we	used	three	Docker	engine	APIs	to	successfully	launch	a
container.	In	the	backend,	the	Docker	engine	received	the	API	calls	from	the
client,	and	on	behalf	of	the	client	it	created	the	container	for	the	/container/create
API	call,	then	blocked	the	HTTP	stream	for	the	/containers/attach	API	call,	and
finally	ran	the	ls	command	inside	the	container's	namespace	for	the
/containers/start	API	call.

	

	

	

There's	more...
The	following	is	the	list	of	APIs	that	deal	with	the	life	cycle	of	a	container:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Each	API	endpoint	can	have	different	inputs	to	control	operations.	For	more
details,	visit	the	documentation	on	the	Docker	website	at	https://docs.docker.com/en
gine/api/latest/.

https://docs.docker.com/engine/api/latest/

Performing	container	operations
using	APIs
In	the	previous	recipe,	we	launched	a	container	and	executed	a	command	inside
the	container	using	the	/create,	/attach,	and	/start	API.	In	this	recipe,	we	perform
a	few	more	operations	on	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
In	this	recipe,	we'll	look	at	a	few	container	operations:

1.	 To	list	containers,	use	the	following	API:

Here	are	a	few	examples:

Here	is	how	to	get	all	the	running	containers:

$	curl	--unix-socket	/var/run/docker.sock	\

											http:/containers/json	

Here	is	how	to	get	all	the	running	containers,	including	the	stopped	ones:

$	curl	--unix-socket	/var/run/docker.sock	\

											http:/containers/json?all=1

2.	 To	inspect	a	container,	use	the	following	API:

Here	is	an	example	of	inspecting	a	container	591ab8ac2650:

$	curl	--unix-socket	/var/run/docker.sock	\	

								http:/containers/591ab8ac2650/json		

3.	 To	get	the	list	of	processes	running	inside	a	container,	use	the	following
API:

Here	is	an	example	of	listing	the	process	running	inside	the
591ab8ac2650	container:

$	curl	--unix-socket	/var/run/docker.sock	\	

								http:/containers/591ab8ac2650/top

4.	 To	get	the	resource	usage	statistics	of	a	container,	use	the	following	API:

Here	is	an	example	of	getting	the	resource	usage	statistics	for	the	591ab8ac2650
container:

$	curl	--unix-socket	/var/run/docker.sock	\	

								http:/containers/591ab8ac2650/stats		

By	default,	this	API	streams	the	resource	usage	statistics.	However,	you	can
disable	streaming	by	using	the	stream	parameter,	as	shown	here:

$	curl	--unix-socket	/var/run/docker.sock	\	

								http:/containers/591ab8ac2650/stats?stream=0		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	we	connect	with	the	Docker	engine	using	the	APIs	described	in	this
recipe,	the	Docker	engine	would	in	turn	gather	the	relevant	information	from	its
data	source	and	send	it	back	to	the	client.

See	also
Each	API	endpoint	can	have	different	inputs	to	control	operations.	For	more
details,	visit	the	documentation	on	the	Docker	website	at	https://docs.docker.com/en
gine/api/latest/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/api/latest/

Exploring	Docker	remote	API	client
libraries
In	the	previous	recipes,	we	explored	APIs	provided	by	Docker	to	connect	and
perform	operations	on	the	Docker	daemon.	Docker	also	provides	the	Software
Development	Kit	for	the	python	and	go	languages.

In	this	recipe,	let's	explore	the	python	SDK	with	a	few	examples.

	

	

	

Getting	ready
Ensure	python3	is	installed.
ubuntu	16.04	might	not	have	pip3,	so	install	pip3	using	the	following
command:

								$	sudo	apt-get	-y	install	python3-pip		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
1.	 Let's	begin	by	installing	the	docker	package	for	python	using	pip3:

$	sudo	pip3	install	docker		

2.	 Now,	let's	launch	python3	and	import	the	docker	and	json	packages,	as
demonstrated	in	the	following:

3.	 Having	imported	the	docker	and	json	packages,	let's	connect	to	the	Docker
daemon	through	the	Unix	socket,	unix://var/run/docker.sock,	using
docker.DockerClient,	as	shown	here:

Here,	base_url	is	the	Docker	daemon's	connection	address.

4.	 Continue	on	to	print	the	Docker	daemon	version	using	the	following	code:

Here,	the	client.version()	fetched	the	version	details	from	the	Docker
server	in	json	format,	and	then	we	used	json.dump()	to	print	the	fetched
json	data	in	a	pretty	format.

5.	 Let's	write	a	little	more	code	to	list	all	the	running	containers	using

client.containers.list(),	as	shown	here:

As	you	can	see,	we	have	two	running	containers:	458b8add4a	and
62c814650f.

6.	 Finally,	let's	launch	a	container	using	client.containers.run(),	as	shown	here:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	all	the	preceding	cases,	the	Docker	module	will	translate	our	requests	to	the
appropriate	Docker	engine	API,	wrap	it	as	a	RESTful	message,	and	send	it	to	the
Docker	daemon.

See	also
You	will	find	a	clearly	articulated	Python	SDK	document	at	https://docker-py.readt
hedocs.io/en/stable/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docker-py.readthedocs.io/en/stable/

Configuring	the	Docker	daemon	for
remote	connectivity
In	the	previous	recipes,	we	were	using	the	Unix	socket	(/var/run/docker.sock)	to
talk	to	the	Docker	engine.	As	mentioned	earlier,	by	default	dockerd	listens	to	the
Unix	socket	/var/run/docker.sock.	However,	access	to	the	Unix	socket	is	confined
to	a	local	system.	But	there	will	be	use	cases	where	you	will	have	to	access	the
Docker	daemon	remotely.	You	can	achieve	this	by	configuring	the	Docker
daemon	to	listen	for	remote	connections	using	the	tcp	socket.	In	this	recipe,	we
will	configure	our	Docker	daemon	for	remote	API	connectivity.

	

	

	

How	to	do	it...
1.	 Let's	begin	by	locating	the	Systemd	unit	file	for	the	Docker	service	using

the	systemctl	command,	as	shown	here:

$	sudo	systemctl	docker	status	|	grep	Loaded

				Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	enabled)

Evidently,	/lib/systemd/system/docker.service	is	the	unit	file	for	the
Docker	service.	Here	is	the	content	of	the	default	Docker	service	unit
file:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

As	you	can	see,	ExecStart	in	the	unit	file	is	configured	to	launch	the
dockerd	(Docker	daemon)	with	fd://	as	the	listening	socket.

2.	 Continue	on	to	configure	dockerd	to	accept	connections	from	remote	systems

by	appending	-H	tcp://0.0.0.0:2375	to	the	ExecStart	line	in	the	unit	file,	as
shown	here:

ExecStart=/usr/bin/dockerd	-H	fd://	-H	tcp://0.0.0.0:2375

Here,	the	IP	address	0.0.0.0	is	a	wildcard	address	that	binds	the
service	to	all	the	IPv4	addresses	of	the	Docker	host.	The	port,	2375,	is
a	convention	used	for	clear	text	(unencrypted)	communication.

3.	 Having	modified	the	Docker	service	unit	file	of	the	Docker	service,	we
need	to	manually	reload	the	changes,	as	shown	here:

$	sudo	systemctl	daemon-reload				

4.	 Proceed	to	restart	the	Docker	service	so	that	the	dockerd	daemon	can	listen
for	communications	from	the	external	world:

								$	sudo	systemctl	restart	docker

5.	 Now,	we	can	connect	to	the	Docker	Engine	API	from	any	system	that	has
network	connectivity	to	the	Docker	host.	To	demonstrate	this	remote
connectivity,	first	let's	use	our	favorite	curl	command	to	get	the	Docker
server	version,	as	show	here:

Let's	also	demonstrate	remote	connectivity	using	the	Docker	client,	as	shown
here:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Evidently,	the	client	is	running	on	a	windows	machine	and	the	server	is	running
on	Linux.

How	it	works...
In	the	preceding	command,	we	configured	the	Docker	daemon	to	listen	for	client
connection	on	TCP	port	2375,	on	all	available	network	interfaces	in	the	Docker
host.	With	this	configuration	change,	clients	can	connect	to	the	Docker	daemon
using	any	network	interface	on	the	Docker	host.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	export
DOCKER_HOST=tcp://dockerhost.example.com:2375

Once	we	configure	the	environment	variable,	DOCKER_HOST,	the	Docker
client	will	use	that	address	to	send	our	request.	Thus,	all	the	future
docker	commands	in	that	session	by	default	will	go	to	the	remote	Docker
Host.

See	also
The	documentation	on	the	Docker	website	can	be	found	at	https://docs.docker.com/
engine/reference/commandline/dockerd/#daemon-socket-option.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option

Securing	the	Docker	daemon's	remote
connectivity
Earlier	in	this	chapter,	we	saw	how	to	configure	the	Docker	daemon	to	accept
remote	connections.	However,	with	the	approach	we	followed,	anyone	can
connect	to	our	Docker	daemon.	We	can	secure	our	connection	with	Transport
Layer	Security	(http://en.wikipedia.org/wiki/Transport_Layer_Security).

We	can	configure	TLS	either	by	using	the	existing	Certificate	Authority	(CA)
or	by	creating	our	own.	For	simplicity,	we	will	create	our	own,	which	is	not
recommended	for	production.	For	this	example,	we	assume	that	our	host	running
the	Docker	daemon	is	dockerhost.example.com.

	

	

	

http://en.wikipedia.org/wiki/Transport_Layer_Security

Getting	ready
Make	sure	you	have	the	openssl	library	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	mkdir	-p	/etc/docker/keys

$	cd	/etc/docker/keys

$	openssl	genrsa	-aes256	-out	ca-key.pem	4096		$
openssl	req	-new	-x509	-days	365	-key	ca-key.pem	\		-sha256
-out	ca.pem	

$	openssl	genrsa	-out	server-key.pem	4096	

$	openssl	req	-subj	"/CN=dockerhost.example.com"	\
	-new	-key	server-key.pem	-out	server.csr	

$	openssl	x509	-req	-days	365	-sha256	-in	server.csr	\
	-CA	ca.pem	-CAkey	ca-key.pem	-CAcreateserial	\		-
out	server-cert.pem	-extfile	extfile.cnf	

$	openssl	genrsa	-out	key.pem	4096	

$	openssl	req	-subj	'/CN=client'	-new	-key	key.pem	\
	-out	client.csr	

$	echo	extendedKeyUsage	=	clientAuth	>	client-extfile.cnf	
$	openssl	x509	-req	-days	365	-sha256	-in	client.csr	\
	-CA	ca.pem	-CAkey	ca-key.pem	-CAcreateserial	\		-
out	cert.pem	-extfile	client-extfile.cnf

$	rm	-rf	client.csr	server.csr	

$	chmod	0400	ca-key.pem	key.pem	server-key.pem

	$	chmod	0444	ca.pem	server-cert.pem	cert.pem

$	dockerd	--tlsverify	\	

	--tlscacert=ca.pem	\		--tlscert=server-cert.pem	\
		--tlskey=server-key.pem	\		-
H=0.0.0.0:2376	

$	cd	/etc/docker/keys

$	docker	--tlsverify	\		--tlscacert=ca.pem	\
		--tlscert=cert.pem	\		--tlskey=key.pem	\

	-H=127.0.0.1:2376	version	

The	Docker	client	is	able	to	seamlessly	connect	with	the	Docker	daemon	over
TLS	and	get	the	server	version.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
Once	we	configure	the	Docker	daemon	to	use	TLS	as	the	transport,	it	only
accepts	secure	TLS	connection	for	the	client,	and	fulfills	the	client's	request.

$	export	DOCKER_HOST=tcp://127.0.0.1:2376

$	export	DOCKER_TLS_VERIFY=1

ExecStart=/usr/bin/dockerd	\
	--tlsverify	\
	--
tlscacert=/etc/docker/keys/ca.pem	\
	--tlscert=/etc/docker/keys/server-
cert.pem	\
	--tlskey=/etc/docker/keys/server-key.pem	\
	-
H=0.0.0.0:2376

$	curl	--cacert	${HOME}/.docker/ca.pem	\
--
cert	${HOME}/.docker/cert.pem	\
--key
${HOME}/.docker/key.pem	\

https://127.0.0.1:2376/version

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
	The	documentation	on	the	Docker	website:	https://docs.docker.com/engine/secu
rity/https/

https://docs.docker.com/engine/security/https/

Docker	Performance
In	this	chapter,	we	will	cover	the	following	recipes:

Benchmarking	CPU	performance
Benchmarking	disk	performance
Benchmarking	network	performance
Getting	container	resource	usage	using	the	stats	feature
Setting	up	performance	monitoring

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction
In	Chapter	3,	Working	with	Docker	Images,	we	saw	how	Dockerfiles	can	be	used
to	create	images	consisting	of	different	services/software.	Later,	in	Chapter	4,
Network	and	Data	Management	for	Containers,	we	saw	how	one	Docker
container	can	talk	to	the	outside	world	with	respect	to	data	and	network.	In	Chapte
r	5,	Docker	Use	Cases,	we	looked	into	different	use	cases	of	Docker,	and	in
Chapter	6,	Docker	APIs	and	SDKs,	we	looked	at	how	to	use	remote	APIs	to
connect	to	the	remote	Docker	host.

Ease	of	use	is	all	to	the	good,	but	before	going	into	production,	performance	is
one	of	the	key	aspects	that	is	considered.	In	this	chapter,	we'll	see	performance-
impacting	Docker	features	and	what	approach	we	can	follow	to	benchmark
different	subsystems.	While	doing	performance	evaluation,	we	need	to	compare
Docker	performance	against	the	following:

Bare	metal
Virtual	machine
Docker	running	inside	a	virtual	machine

In	the	chapter,	we	will	just	look	at	an	approach	you	can	follow	to	do
performance	evaluation	rather	than	performance	numbers	collected	from	runs	to
do	a	comparison.	However,	I'll	point	out	performance	comparisons	done	by
different	companies,	which	you	can	refer	to.

Let's	first	look	at	some	of	the	Docker	performance	impacting	features:

Volumes:	While	putting	down	any	enterprise	class	workload,	you	would
like	to	tune	the	underlying	storage	accordingly.	You	should	not	use	the
primary/root	filesystem	used	by	containers	to	store	data.	Docker	provides
the	facility	to	attach/mount	external	storage	through	volumes.	As	we	saw	in
Chapter	4,	Network	and	Data	Management	for	Containers,	there	are	two
types	of	volume	as	follows:

Volumes	that	are	mounted	through	the	host	machine	using	the	-volume
option
Volumes	that	are	mounted	through	another	container	using	the	-

volumes-from	option
Storage	drivers:	We	looked	at	different	storage	drivers	in	Chapter	1,
Introduction	and	Installation,	which	are	vfs,	aufs,	btrfs,	zfs,	devicemapper,
and	overlayFS.	You	can	check	the	currently	supported	storage	drivers	and
their	selection	priority	if	nothing	is	chosen	as	the	Docker	start	time	at	https:/
/github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go.

If	you	are	running	Fedora,	CentOS,	or	RHEL,	then	the	device	mapper
will	be	the	default	storage	driver.	You	can	find	some	device	mapper-
specific	tuning	at	https://github.com/moby/moby/tree/master/daemon/graphdrive
r/devmapper.

You	can	change	the	default	storage	driver	with	the	-s	option	to	the
Docker	daemon.	You	can	update	the	distribution-specific
configuration/systems	file	to	make	changes	for	service	restart.	For
Fedora/RHEL/CentOS,	you	will	have	the	update	storage-driver	field
in	/etc/docker/daemon.json	–	something	like	the	following	so	that	you
can	use	the	btrfs	backend:

								"storage-driver":	"btrfs"

The	following	graph	shows	you	how	much	time	it	takes	to	start	and
stop	1,000	containers	with	different	configurations	of	storage	driver:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/moby/moby/blob/master/daemon/graphdriver/driver_linux.go
https://github.com/moby/moby/tree/master/daemon/graphdriver/devmapper

As	you	can	see,	overlayFS	performs	better	than	other	storage	drivers.

--net=host:	As	we	know,	by	default,	Docker	creates	a	bridge	and	associates
IPs	from	it	to	the	containers.	Using	--net=host	exposes	the	host	networking
stack	to	the	container	by	skipping	the	creation	of	a	network	namespace	for
the	container.	From	the	tests,	we	can	see	that	this	option	always	gives	better
performance	as	compared	to	the	bridged	one.

This	gives	us	some	constraints,	such	as	we	cannot	have	two
containers	or	host	apps	listening	on	the	same	port.

cgroups:	Docker's	default	execution	driver,	libcontainer,	exposes	different

cgroups	knobs,	which	can	be	used	to	fine-tune	container	performance.	Some
of	them	are	as	follows:

CPU	shares:	With	this,	we	can	give	proportional	weight	to	the
containers	so	that	the	resource	will	be	shared.	By	default,	all
containers	get	the	same	proportion	of	CPU	cycles.	To	modify	the
proportion	from	the	default	of	1024,	use	the	-c	or	--cpu-shares	flag	to	set
the	weighting	to	2	or	higher.	The	proportion	will	only	apply	when
CPU-intensive	processes	are	running.	When	tasks	in	one	container	are
idle,	other	containers	can	use	the	left-over	CPU	time.	Consider	the
following	example:

			$	docker	container	run	-it	-c	100	alpine	ash

CPUsets:	Using	CPUSets	will	allow	you	to	limit	the	container	to
just	running	on	the	selected	CPU	cores.	For	example,	the
following	code	will	only	run	threads	inside	a	container	on	the	0th
and	3rd	core:

$	docker	container	run	-it	--cpuset=0,3	alpine	ash	

Memory	limits:	We	can	set	memory	limits	to	a	container.	For
example,	the	following	will	limit	the	memory	usage	to	512	MB	for	the
container:

	$	docker	container	run	-it	-m	512M	alpine	ash

The	sysctl	and	ulimit	settings:	In	a	few	cases,	you	might	have	to	change
some	of	the	sysclt	values	depending	on	the	use	case	to	get	optimal
performance,	such	as	changing	the	number	of	open	files.	You	can	change
the	ulimit	settings	with	the	following	command:

				$	docker	container	run	-it	--ulimit	data=8192	alpine	ash

The	preceding	command	would	be	a	container-specific	setting.	We	can
also	set	some	of	these	settings	through	the	configuration	file	of	the
Docker	daemon,	which	will	be	applicable	to	all	containers	by	default.	For
example,	looking	at	the	configuration	file	for	Docker,	you	will	see
something	like	the	following	in	/etc/docker/daemon.json:

{

								"default-ulimits":	{

												"nofile":	"1048576",

												"nproc":	"1048576",

												"core":	"-1"

								}

				}

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Feel	free	to	change	the	values	to	fit	your	use	case.	If	you	are	using
Docker	for	Mac	or	Windows,	you	would	change	these	values	from	their
preferences	menu.

You	can	learn	about	Docker	performance	by	studying	the	work	done	by	others.
The	following	are	some	of	the	Docker	performance-related	studies	that	have
been	published	by	a	few	companies:

From	Red	Hat:
Performance	Analysis	of	Docker	on	Red	Hat	Enterprise	Linux:

https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker

-red-hat-enterprise-linux-7

https://github.com/redhat-performance/docker-performance

Comprehensive	Overview	of	Storage	Scalability	in	Docker:
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalabilit

y-docker/

Beyond	Microbenchmarks	–	breakthrough	container	performance	with
Tesla	efficiency:

https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-brea

kthrough-container-performance-with-tesla-efficiency/

Containerizing	Databases	with	Red	Hat	Enterprise	Linux:
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-h

at-enterprise-linux/

From	IBM:
An	Updated	Performance	Comparison	of	Virtual	Machines	and	Linux
Containers:

http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD81

9C85257D2300681E7B/$File/rc25482.pdf

https://github.com/thewmf/kvm-docker-comparison

From	VMware:
Docker	Containers	Performance	in	VMware	vSphere:

http://blogs.vmware.com/performance/2014/10/docker-containers-performance

-vmware-vsphere.html

To	do	the	benchmarking,	we	need	to	run	a	similar	workload	on	different
environments	(bare-metal/VM/Docker)	and	then	collect	results	with	different
performance	stats.	To	simplify	things,	we	can	write	common	benchmark	scripts

https://developers.redhat.com/blog/2014/08/19/performance-analysis-docker-red-hat-enterprise-linux-7
https://github.com/redhat-performance/docker-performance
https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker/
https://developers.redhat.com/blog/2014/10/21/beyond-microbenchmarks-breakthrough-container-performance-with-tesla-efficiency/
http://rhelblog.redhat.com/2014/10/29/containerizing-databases-with-red-hat-enterprise-linux/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/%24File/rc25482.pdf
https://github.com/thewmf/kvm-docker-comparison
http://blogs.vmware.com/performance/2014/10/docker-containers-performance-vmware-vsphere.html

which	can	be	run	on	different	environments.	We	can	also	create	Dockerfiles	to
spin	off	containers	with	workload	generation	scripts.	For	example,	in	the
Performance	Analysis	of	Docker	on	Red	Hat	Enterprise	Linux	article,	which	was
listed	earlier	(https://github.com/redhat-performance/docker-performance/blob/master/Docke
rfiles/Dockerfile),	the	author	used	a	Dockerfile	to	create	a	CentOS	image	and
used	the	container	environment	variable	to	select	a	Docker	and	non-Docker
environment	for	the	benchmark	script	run-sysbench.sh.

Similarly,	Dockerfiles	and	related	scripts	are	published	by	IBM	and	are	available
at	https://github.com/thewmf/kvm-docker-comparison.

We	will	be	using	some	of	the	Docker	files	and	scripts	mentioned	earlier	in	the
recipes	in	this	chapter.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/redhat-performance/docker-performance/blob/master/Dockerfiles/Dockerfile
https://github.com/thewmf/kvm-docker-comparison

Benchmarking	CPU	performance
We	can	use	benchmarks	such	as	Linpack	(http://www.netlib.org/linpack/)	and
sysbench	(https://github.com/nuodb/sysbench)	to	benchmark	CPU	performance.	For
this	recipe,	we'll	use	sysbench.	We'll	see	how	to	run	a	benchmark	on	bare	metal
and	inside	the	container.	Similar	steps	can	be	performed	in	other	environments,
like	we	mentioned	previously.

	

	

	

http://www.netlib.org/linpack/
https://github.com/nuodb/sysbench

Getting	ready
We	will	use	the	CentOS	7	container	to	run	the	benchmark	inside	the	container.
Ideally,	we	should	have	a	system	with	CentOS	7	installed	to	get	benchmark
results	on	bare	metal.	For	the	container	test,	let's	build	the	image	from	the	Git
repository	that	we	referred	to	earlier:

				$	git	clone	https://github.com/redhat-performance/docker-performance.git

				$	cd	docker-performance/Dockerfiles/

				$	docker	image	build	-t	c7perf	--rm	.

				$	docker	image	ls

				REPOSITORY						TAG							IMAGE	ID						CREATED												SIZE			

				c7perf										latest				59a10df39a82		1	minute	ago						678.3	MB

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Inside	the	same	Git	repository,	we	have	a	script	to	run	sysbench,	that	is,	docker-
performance/bench/sysbench/run-sysbench.sh.	It	has	some	configurations,	which	you
can	modify	according	to	your	needs:

1.	 As	the	root	user,	create	the	/results	directory	on	the	host:

$	mkdir	-p	/results

Now,	run	the	benchmark	after	setting	the	container	environment	variable
to	something	other	than	Docker,	which	we	used	while	building	the	c7perf
image	on	the	host	machine,	with	the	following	commands:

$	cd	docker-performance/bench/sysbench

$	export	container=no

$	sh	./run-sysbench.sh		cpu	test1

If	you	are	running	on	an	OS	other	than	CentOS,	you	might	need	to	install
sysbench	manually,	and	run	the	script	a	little	differently.	For	example,
here	is	how	you	run	the	script	with	Ubuntu	18.04:

				$	apt-get	install	sysbench

				$	cd	docker-performance/bench/sysbench

				$	export	container=no

				$	bash	./run-sysbench.sh	cpu	test1

By	default,	the	results	are	collected	in	/results.	Make	sure	you	have	write
access	to	it	or	change	the	OUTDIR	parameter	in	the	benchmark	script:

2.	 To	run	the	benchmark	inside	the	container,	we	need	to	first	start	the
container	and	then	run	the	benchmark	script:

$	mkdir	-p	/results_container

$	docker	container	run	-it	-v	/results_container:/results	c7perf	bash

#	/root/docker-performance/bench/sysbench/run-sysbench.sh	cpu	test1

As	we	mount	the	host	directory,	/results_container,	inside	the	/results
container,	the	result	will	be	collected	on	the	host:

3.	 While	running	the	preceding	test	on	Fedora/RHEL/CentOS,	where	SELinux
is	enabled,	you	will	get	a	Permission	denied	error.	To	fix	it,	relabel	the	host
directory	while	mounting	it	inside	the	container	as	follows:

				$	docker	container	run	-it	-v	/results_container:/results:z	c7perf	bash

Alternatively,	for	the	time	being,	put	SELinux	in	permissive	mode:

			$		setenforce	0

Then,	after	the	test,	put	it	back	in	permissive	mode:

				$		setenforce	1

Refer	to	Chapter	9,	Docker	Security,	for	more	details	about	SELinux.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
The	benchmark	script	internally	calls	sysbench's	CPU	benchmark	for	the	given
input.	CPU	is	benchmarked	by	using	64-bit	integer	manipulation	using	Euklid
algorithms	for	prime	number	computation.	The	result	for	each	run	gets	collected
in	the	corresponding	results	directory,	which	can	be	used	for	comparison.

There's	more…
Almost	no	difference	is	reported	between	bare-metal	and	Docker	CPU
performance.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	CPU	benchmark	results	published	in	IBM	and	VMware	using
Linpack	in	the	links	referenced	earlier	in	this	chapter.

Benchmarking	disk	performance
There	are	tools	such	as	Iozone	(http://www.iozone.org),	smallfile	(https://github.com/b
england2/smallfile),	and	Flexible	IO	(https://github.com/axboe/fio),	which	are
available	to	benchmark	disk	performance.	For	this	recipe,	we	will	use	FIO.	For
that,	we	need	to	write	a	job	file,	which	mimics	the	workload	you	want	to	run.
Using	this	job	file,	we	can	simulate	the	workload	on	the	target.	For	this	recipe,
let's	take	the	FIO	example	from	the	benchmark	results,	which	IBM	has	published
(https://github.com/thewmf/kvm-docker-comparison/tree/master/fio).

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.iozone.org
https://github.com/bengland2/smallfile
https://github.com/axboe/fio
https://github.com/thewmf/kvm-docker-comparison/tree/master/fio

Getting	ready
On	a	bare	metal/VM/Docker	container,	install	FIO	and	mount	the	disk
containing	a	filesystem	for	each	test	under	/ferrari	or	anything	which	is
mentioned	in	the	FIO	job	file.	On	bare	metal,	you	can	mount	natively;	on	the
VM,	you	can	mounted	using	the	virtual	disk	driver	or	perform	a	device	pass-
through.	On	Docker,	we	can	attach	the	filesystem	from	the	host	machine	using
Docker	volumes.

Prepare	the	workload	file.	We	will	pick:	https://github.com/thewmf/kvm-docker-comparis
on/blob/master/fio/mixed.fio:

$	curl	-o	mixed.fio	https://raw.githubusercontent.com/thewmf/kvm-docker-comparison/master/fio/mixed.fio

$	cat	mixed.fio

[global]

ioengine=libaio

direct=1

size=16g

group_reporting

thread

filename=/ferrari/fio-test-file

[mixed-random-rw-32x8]

stonewall

rw=randrw

rwmixread=70

bs=4K

iodepth=32

numjobs=8

runtime=60

This	recipe	is	specific	to	Linux;	it	may	work	on	Docker	for	Mac	or	Windows	with	some	minor
changes.

Using	the	preceding	job	file,	we	can	do	random	direct	IO	on	/ferrari/fio-test-file
with	4K	block	size	using	the	libaio	driver	on	a	16	GB	file.	The	I/O	depth	is	32
and	the	number	of	parallel	jobs	are	8.	It	is	a	mix	workload,	which	does	a	70
percent	read	and	30	percent	write.

https://github.com/thewmf/kvm-docker-comparison/blob/master/fio/mixed.fio

	$	docker	image	build	-t	docker_fio_perf	.

	$	docker	container	run	--rm	-v	/ferrari:/ferrari	

docker_fio_perf	mixed.fio

	$	docker	container	run	--rm	-v	/ferrari:/ferrari:z	
	docker_fio_perf
mixed.fio

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
FIO	will	run	the	workload	given	in	the	job	file	and	spit	out	the	results.

There's	more…
Once	the	results	are	collected,	you	can	do	a	result	comparison.	You	can	even	try
out	different	kinds	of	I/O	pattern	using	the	job	file	and	get	the	desired	result.
When	you	look	at	the	results,	a	few	of	the	things	you	will	want	to	examine	are	as
follows:

iops:	The	number	of	input/output	operations	per	second;	the	higher	the
better.

bandwidth	(bw):	The	rate	of	data	transfer,	bit	rate,	or	throughput;	the
higher	the	better.

Latency	(lat):	The	time	that	passes	between	submission	to	the	kernel	and
when	the	IO	is	completehe	lower	the	better.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	disk	benchmark	results	published	in	IBM	and	VMware	using	FIO	in
the	links	referenced	earlier	in	this	chapter.

Benchmarking	network	performance
The	network	is	one	of	the	key	aspects	to	consider	while	deploying	the
applications	in	the	container	environment.	To	do	performance	comparison	with
bare	metal,	the	VM,	and	the	container,	we	have	to	consider	different	scenarios	as
follows:

Bare	metal	to	bare	metal
VM	to	VM
Docker	container	to	a	container	with	the	default	networking	mode	(bridge)
Docker	container	to	a	container	with	host	net	(--net=host)
Docker	container	running	inside	a	VM	with	the	external	world

In	any	of	the	preceding	cases,	we	can	pick	up	two	endpoints	to	do	the
benchmarking.	We	can	use	tools	such	as	nuttcp	(http://www.nuttcp.net)	and	netperf
(https://github.com/HewlettPackard/netperf)	to	measure	the	network	bandwidth	and
request/response,	respectively.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.nuttcp.net
https://github.com/HewlettPackard/netperf

Getting	ready
Make	sure	both	the	endpoints	can	reach	each	other	and	that	you	have	the
necessary	packages/software	installed.	On	Ubuntu,	you	can	install	nuttcp	and
netperf	with	the	following	command:

$	sudo	apt-get	install	-y	nuttcp	netperf

	$	nuttcp	-S

	$	nuttcp	-t	<SERVER_IP>

	$	nuttcp	-r	<SERVER_IP>

	$	netserver

	$	netperf	-H	172.17.0.6	-t	TCP_RR

	$	netperf	-H	172.17.0.6	-t	UDP_RR

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
In	both	of	the	cases	mentioned	earlier,	one	endpoint	becomes	the	client	and
sends	the	requests	to	the	server	on	the	other	endpoint.

There's	more…
We	can	collect	the	benchmark	results	for	different	scenarios	and	compare	them.
netperf	can	also	be	used	for	throughput	tests.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	network	benchmark	results	published	by	IBM	and	VMware	in	the
links	referenced	earlier	in	this	chapter.

Getting	container	resource	usage
using	the	stats	feature
Docker	has	a	feature	to	easily	get	the	resource	usage	for	the	containers	that	it
manages.	The	following	recipe	shows	you	how	to	use	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
You	will	need	a	Docker	host	that	can	be	accessed	via	the	Docker	client.	Also,
start	a	few	containers	to	get	some	stats.

How	to	do	it...
Follow	these	steps:

1.	 Run	the	following	command	to	get	stats	from	one	or	more	containers:

					$	docker	stats	[OPTIONS]	[CONTAINERS]

For	example,	if	we	have	two	containers	with	the	names	some-mysql	and
backstabbing_turing,	then	run	the	following	command	to	get	the	stats	as	shown
in	the	below	screenshot:

					$	docker	stats	some-mysql	backstabbing_turing

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	Docker	daemon	fetches	resource	information	from	cgroups	and	serves	it
through	the	APIs.

See	also
Refer	to	the	Docker	stats	documentation	at	https://docs.docker.com/engine/reference/c
ommandline/stats/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/reference/commandline/stats/

Setting	up	performance	monitoring
We	have	tools	such	as	SNMP,	Nagios,	and	so	on	to	monitor	bare	metal,	VM
performance.	Similarly,	there	are	a	few	tools/plugins	available	to	monitor
container	performance	such	as	cAdvisor	(https://github.com/google/cadvisor)	and
Prometheus	(https://prometheus.io).	In	this	recipe,	let's	see	how	we	can	configure
cAdvisor.

https://github.com/google/cadvisor
https://prometheus.io

Getting	ready
Perform	the	following	to	set	up	cAdvisor:

The	easiest	way	to	run	cAdvisor	is	to	run	its	docker	container,	which	can	be
done	with	the	following	command:

$	sudo	docker	container	run	\

				--volume=/:/rootfs:ro	\

				--volume=/var/run:/var/run:rw	\

				--volume=/sys:/sys:ro	\

				--volume=/var/lib/docker/:/var/lib/docker:ro	\

				--publish=8080:8080	\

				--detach=true	\

				--name=cadvisor	\

				google/cadvisor:latest

If	you	want	to	run	cAdvisor	outside	Docker,	then	follow	the	instructions
given	on	the	cAdvisor	home	page:	https://github.com/google/cadvisor/blob/maste
r/docs/running.md#standalone.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/google/cadvisor/blob/master/docs/running.md#standalone

How	to	do	it...
After	the	container	starts,	point	your	browser	to	http://localhost:8080.	You	will
first	get	graphs	for	CPU,	memory	usage,	and	other	information	for	the	host
machine.	Then,	by	clicking	on	the	Docker	Containers	link,	you	will	get	the
URLs	for	containers	running	on	the	machine	under	the	Subcontainers	section.	If
you	click	on	any	one	of	them,	you	will	see	the	resource	usage	information	for	the
corresponding	container.	The	following	screenshot	shows	one	such	container:

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
With	the	docker	run	command,	we	have	mounted	a	few	volumes	from	host
machines	in	read-only	mode.	cAdvisor	will	read	the	relevant	information	from
those,	such	as	Cgroup	details	for	containers,	and	show	them	graphically.

There's	more…
cAdvisor	supports	exporting	performance	matrices	to	influxdb	(https://www.influxd
ata.com).

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.influxdata.com

See	also
You	can	look	at	the	matrices	used	by	cAdvisor	from	Cgroups	in	the
documentation	on	the	Docker	website:	https://docs.docker.com/config/containers/runm
etrics/.

https://docs.docker.com/config/containers/runmetrics/

Docker	Orchestration	and	Hosting	a
Platform
this	chapter,	we	will	cover	the	following	recipes:

Running	applications	with	Docker	Compose
Setting	up	a	cluster	with	Docker	Swarm
Using	secrets	with	Docker	Swarm
Setting	up	Kubernetes	clusters
Scaling	up	and	down	in	Kubernetes	clusters
Using	secrets	with	Kubernetes
Setting	up	WordPress	with	Kubernetes	clusters

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction
Running	Docker	on	a	single	host	may	be	good	for	the	development	environment,
but	the	real	value	comes	when	we	span	multiple	hosts.	However,	this	is	not	a
trivial	task.	You	have	to	orchestrate	these	containers.	So,	in	this	chapter,	we'll
cover	some	orchestration	tools	and	hosting	platforms.

Docker	Inc.	announced	two	such	tools:

Docker	Compose	(https://docs.docker.com/compose),	to	create	apps	consisting	of
multiple	containers.
Docker	Swarm	(https://docs.docker.com/engine/swarm/),	to	cluster	multiple
Docker	hosts.	Docker	Compose	was	previously	called	Fig	(http://www.fig.sh).

Google	started	Kubernetes	(http://kubernetes.io/)	Docker	orchestration.
Kubernetes	provides	mechanisms	for	application	deployment,	scheduling,
updating,	maintenance,	and	scaling.

	

Even	Microsoft	announced	(http://azure.microsoft.com/blog/2015/04/08/microsoft-unvei
ls-new-container-technologies-for-the-next-generation-cloud/)	a	specialized	operating
system	for	Docker.

Apache	Mesos	(http://mesos.apache.org),	which	provides	resource	management	and
scheduling	across	entire	datacenters	and	cloud	environments,	also	added	support
for	Docker	(http://mesos.apache.org/documentation/latest/docker-containerizer/).

VMware	also	launched	a	container-specific	host	called	VMware	Photon	(http://v
mware.github.io/photon/).

All	of	the	preceding	tools	and	platforms	need	separate	chapters	to	themselves.
But	in	this	chapter,	we'll	explore	Compose,	Swarm,	and	Kubernetes.

https://docs.docker.com/compose
https://docs.docker.com/engine/swarm/
http://www.fig.sh
http://kubernetes.io/
http://azure.microsoft.com/blog/2015/04/08/microsoft-unveils-new-container-technologies-for-the-next-generation-cloud/
http://mesos.apache.org
http://mesos.apache.org/documentation/latest/docker-containerizer/
http://vmware.github.io/photon/

Running	applications	with	Docker
Compose
Docker	Compose	(http://docs.docker.com/compose/)	is	the	native	Docker	tool	that
runs	interdependent	containers	that	make	up	an	application.	We	define	a
multicontainer	application	in	a	single	file	and	feed	it	to	Docker	Compose,	which
sets	up	the	application.	In	this	recipe,	we'll	once	again	use	WordPress	as	a
sample	application	to	run.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://docs.docker.com/compose/

Getting	ready
To	install	Docker	Compose,	run	the	following	command:

$	sudo	pip	install	docker-compose

$	cd	wordpress_compose/
$	cat	docker-
compose.yml
version:	'3.1'

services:

wordpress:	image:	wordpress	restart:	always	ports:

-	8080:80

environment:	WORDPRESS_DB_PASSWORD:	example	mysql:

image:	mysql:5.7

restart:	always	environment:	MYSQL_ROOT_PASSWORD:
example

2.	 We	took	the	preceding	example	from	the	official	WordPress	Docker
repository	on	Docker	Hub	(https://registry.hub.docker.com/_/wordpress/).

3.	 Within	the	app	directory,	run	the	following	command	to	build	and	start	the
app:

$	docker-compose	up

4.	 Once	the	build	is	complete,	access	the	WordPress	installation	page	from
http://localhost:8080	or	http://<host-ip>:8080.

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://registry.hub.docker.com/_/wordpress/

How	it	works...
Docker	Compose	downloads	both	MySQL	and	WordPress	images,	if	not
available	locally	from	the	official	Docker	Registry.	First,	it	starts	the	db
container	from	the	MySQL	image;	then,	it	starts	the	WordPress	container.	

$	cat	Dockerfile
FROM
wordpress:latest
#	extend	the	base	wordpress	image	with
anything	custom
#	you	might	need	for	local	dev.

ENV	CUSTOM_ENV	env-value

$	cat	docker-compose.yml
version:	"3.1"

services:
	wordpress:

	build:	.
	restart:	always

	ports:
	-	8080:80

environment:
	WORDPRESS_DB_PASSWORD:
example
	mysql:
	image:	mysql:5.7
	restart:	always

environment:
	MYSQL_ROOT_PASSWORD:	example

$	docker-compose	up

	$	docker-compose	down

	$	docker-compose	build

	$	docker-compose	exec	wordpress	bash

	$	docker-compose	ps

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
You	may	also	check	the	following	references:

Docker	Compose	YAML	file	reference	at:	https://docs.docker.com/compose/compo
se-file/.
Docker	Compose	command-line	reference	at:	https://docs.docker.com/compose/r
eference/overview/.
Docker	Compose	GitHub	repository	at:	https://github.com/docker/compose.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/reference/overview/
https://github.com/docker/compose

Setting	up	a	cluster	with	Docker
Swarm
Docker	Swarm	(https://docs.docker.com/engine/swarm/)	is	native	clustering	that	is
built	in	to	Docker.	It	groups	multiple	Docker	hosts	into	a	single	pool	in	which
you	can	launch	containers.	To	keep	things	simple,	here,	we'll	use	VirtualBox	as
the	backend	to	configure	the	hosts.

There	are	two	versions	of	Swarm.	In	this	recipe,	we	will	be	using	the	newer	of
the	two	called	Docker	Swarm	mode,	which	is	based	on	SwarmKit	(https://github.
com/docker/swarmkit).	The	newer	version	makes	it	much	easier	to	get	up	and
running,	and	removes	a	lot	of	the	steps	that	were	previously	required.	Swarm
mode	is	built	into	the	Docker	daemon,	so	there	is	no	extra	software	required	in
order	to	use	it.

Docker	Swarm	mode	supports	two	types	of	nodes;	a	manager	and	a	worker.
Manager	nodes	perform	the	orchestration	and	cluster	management	functions	for
the	Swarm.	They	dispatch	units	of	work	called	tasks	to	the	workers.	The
manager	nodes	use	the	Raft	Consensus	algorithm	(http://thesecretlivesofdata.com/r
aft/)	to	manage	the	global	cluster	state.	The	worker	nodes	receive	and	execute
the	tasks	that	are	dispatched	by	the	managers.

For	Raft	to	work	correctly,	you	need	an	odd	number	of	managers	in	order	for	the
leader	election	to	work	properly.	That	means	that,	if	you	want	a	fault-tolerant
Swarm	cluster,	you	should	have	either	three	or	five	managers.	If	you	have	three
managers,	you	can	handle	one	manager	node	failure,	and	with	five,	you	can
handle	up	to	two	node	failures	before	the	Raft	consensus	is	lost.	Pick	the	cluster
size	that	is	most	appropriate	for	your	work	load.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/engine/swarm/
https://github.com/docker/swarmkit
http://thesecretlivesofdata.com/raft/

Getting	ready
Follow	these	steps:

1.	 Install	VirtualBox	on	your	system	(https://www.virtualbox.org/).	Instructions	to
configure	VirtualBox	are	outside	the	scope	of	this	book.

2.	 Using	VirtualBox,	create	three	virtual	machines	called	dockerhost-1,
dockerhost-2,	and	dockerhost-3,	and	install	the	latest	version	of	Docker	on	it.

	

3.	 Make	sure	that	there	are	no	firewalls	blocking	access	between	dockerhost-1,
dockerhost-2,	and	dockerhost-3.

	

	

https://www.virtualbox.org/

$	docker	node	ls

	$	docker	service	create	--name	demo	--publish	80:80	nginx

	$	docker	service	ls
	$	docker	service	ps
demo

	$	docker	service	scale	demo=3

7.	 Check	to	make	sure	that	the	service	has	scaled	to	3.	It	might	take	a	few
minutes	for	the	scaling	event	to	complete:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works…
Using	the	unique	token	we	got	from	the	manager	node	when	we	initialized	the
swarm,	we	added	the	worker	nodes	to	the	cluster.	We	then	created	a	simple	nginx
service,	and	scaled	it	to	3;	this	started	a	container	one	each	of	the	nodes	in	the
Swarm.

	

	

	$	docker	swarm	join-token	manager
	To	add	a
manager	to	this	swarm,	run	the	following	command:

	docker	swarm	join	--token	SWMTKN-1-
0trltcq6gwhz9w40j3wpuqedjwviwdgksuz8zulaz6qon118s4-
2ui4f15uu7ceow6k2gc9xutb5	10.10.0.6:2377

	$	docker	swarm	join	--token	SWMTKN-1-
0trltcq6gwhz9w40j3wpuqedjwviwdgksuz8zulaz6qon118s4-
2ui4f15uu7ceow6k2gc9xutb5	10.10.0.6:2377

	This
node	joined	a	swarm	as	a	manager.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
You	can	view	the	Swarm	documentation	on	the	Docker	website	at	https://docs.doc
ker.com/engine/swarm/	for	more	information.

https://docs.docker.com/engine/swarm/

Using	secrets	with	Docker	Swarm
When	you	are	using	containers,	a	common	thing	that	you	will	need	to	do	is
connect	to	some	external	resources	such	as	a	database,	cache,	or	web	service.
These	resources	usually	need	credentials.	One	popular	way	of	passing	these
credentials	to	containers	is	to	make	them	environmental	variables	that	get
populated	on	container	startup.	This	allows	you	to	use	the	same	Docker	image
for	different	development	environments,	and	removes	the	need	for	storing
passwords	in	the	image.	This	is	a	common	trait	for	a	twelve-factor	app	(https://12
factor.net),	which	was	made	popular	by	Heroku	(https://www.heroku.com).

Adding	environmental	variables	to	a	container	at	runtime	is	very	easy,	but	it	has
its	downsides.	When	an	environment	variable	is	added	to	the	container,	it	is
accessible	to	everything	running	in	that	container.	That	means	that,	not	only	can
your	code	see	it,	code	from	third-party	libraries	can	as	well.	This	makes	it	easy
for	those	passwords	to	accidentally	get	exposed	outside	the	container.

	

This	usually	happens	accidentally	when	an	error	occurs,	and	in	the	resulting
error	stack	trace,	it	lists	all	of	the	current	environment	variables.	This	was
originally	added	to	help	you	debug	the	issue,	but	little	did	they	know	that,	by
exposing	all	of	the	environment	variables,	they	were	sharing	your	passwords	as
well,	and	creating	another	issue	in	the	process.

To	fix	this	problem,	Docker	came	out	with	a	new	feature	called	Docker	Secrets	(
https://docs.docker.com/engine/swarm/secrets/).	Docker	Secrets	is	currently	only
available	to	Swarm	services.	A	secret	can	be	any	blob	of	data,	such	as	a
password,	TLS	certificate,	and	so	on,	that	you	don't	want	to	share	with	others.

That	is	a	lot	to	take	in,	so	let's	look	at	an	example.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://12factor.net
https://www.heroku.com
https://docs.docker.com/engine/swarm/secrets/

Getting	ready
You	will	need	access	to	a	system	with	Docker	Swarm	set	up.

		$	echo	"myP@ssWord"	|	docker	secret	create
my_password	-

	$	docker	service	create	--name="my-service"	--secret="my_password"
redis

$	docker	service	ps	my-service

	$	docker	container	exec	$(docker	container	ls	--filter	name=my-service
-q)	cat	/run/secrets/my_password

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
It	works	like	this,	when	you	add	a	secret	to	Swarm,	it	will	store	this	encrypted
secret	in	its	internal	Raft	store.	When	you	create	your	service	and	reference	that
secret,	Swarm	will	give	those	containers	access	to	the	secret,	and	it	will	add	the
unencrypted	secret	as	an	in-memory	filesystem	mount	inside	the	container.	In
order	to	read	the	secret,	your	application	will	need	to	look	at	the	filesystem
mount	instead	of	the	environment.

If	the	secret	is	removed,	or	the	service	is	updated	to	remove	the	secret,	the	secret
will	no	longer	be	available	to	the	container.

	

	

	

	$	docker	secret	inspect	<secret	name>

	$	docker	secret	ls

	$	docker	secret	rm	<secret	name>

	$	docker	service	update	--secret-rm	<secret	name>	<service	name>

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
You	can	view	the	Docker	Secrets	documentation	at	https://docs.docker.com/engine/s
warm/secrets/	for	more	information.

https://docs.docker.com/engine/swarm/secrets/

Setting	up	a	Kubernetes	cluster
Kubernetes	is	an	open	source	container	orchestration	tool	used	across	multiple
nodes	in	the	cluster.	It	was	started	by	Google,	and	now,	developers	from	other
companies	are	contributing	to	it.	It	provides	mechanisms	for	application
deployment,	scheduling,	updating,	maintenance,	and	scaling.	Kubernetes'	auto-
placement,	auto-restart,	and	auto-replication	features	make	sure	that	the	desired
state	of	the	application	is	maintained,	which	is	defined	by	the	user.	Users	define
applications	through	YAML	or	JSON	files,	which	we'll	see	later	in	this	recipe.
These	YAML	and	JSON	files	also	contain	the	API	version	(apiVersion	field)	to
identify	the	schema.

Let's	look	at	some	of	the	key	components	and	concepts	for	Kubernetes:

Pods:	A	pod,	which	consists	of	one	or	more	containers,	is	the	deployment
unit	of	Kubernetes.	Each	container	in	a	pod	shares	different	namespaces
with	other	containers	in	the	same	pod.	For	example,	each	container	in	a	pod
shares	the	same	network	namespace,	which	means	they	all	can
communicate	through	the	localhost.
Node/minion:	A	node,	which	was	earlier	called	a	minion,	is	a	worker	node
in	the	Kubernetes	cluster	and	is	managed	through	the	master.	Pods	are
deployed	on	a	node,	which	includes	the	following	necessary	services	to	run
them:

docker,	to	run	containers
kubelet,	to	interact	with	the	master
proxy	(kube-proxy),	which	connects	the	service	to	the	corresponding	pod

Master:	Masters	host	cluster-level	control	services	such	as	the	following:

API	server:	This	has	RESTful	APIs	to	interact	with	the	master	and
nodes.	This	is	the	only	component	that	talks	to	the	etcd	instance.
Scheduler:	This	schedules	jobs	in	clusters,	such	as	creating	pods	on
nodes.
ReplicaSet:	This	ensures	that	the	user-specified	number	of	pod
replicas	is	running	at	any	given	time.	To	manage	replicas	with
ReplicaSet,	we	have	to	define	a	configuration	file	with	a	replica	count

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

for	a	pod.

	

Master	also	communicates	with	etcd,	which	is	a	distributed	key-value	pair.	etcd	is
used	to	store	configuration	information,	which	is	used	by	both	the	master	and
nodes.	The	watch	functionality	of	etcd	is	used	to	notify	the	changes	in	the	cluster.
etcd	can	be	hosted	on	the	master	or	on	a	different	set	of	systems.

Services:	In	Kubernetes,	each	pod	gets	its	own	IP	address,	and	pods	are
created	and	destroyed	every	now	and	then	based	on	the	replication
controller	configuration.	So,	we	cannot	rely	on	the	pod's	IP	address	to	cater
an	app.	To	overcome	this	problem,	Kubernetes	defines	an	abstraction,
which	defines	logical	set	of	pods	and	policies	to	access	them.	This
abstraction	is	called	a	service.	Labels	are	used	to	define	the	logical	set,
which	our	service	manages.
Labels:	Labels	are	key-value	pairs	that	can	be	attached	to	objects.	Using
these,	we	can	select	a	subset	of	objects.	For	example,	a	service	can	select	all
pods	with	the	label	mysql.
Volumes:	A	volume	is	a	directory	that	is	accessible	to	the	containers	in	a
pod.	It	is	similar	to	Docker	volumes,	but	not	the	same.	Different	types	of
volumes	are	supported	in	Kubernetes,	some	of	which	are	emptyDir
(ephemeral),	hostPath,	gcePersistentDisk,	awsElasticBlockStore,	and	NFS.
Active	development	is	taking	place	to	support	more	types	of	volumes.	More
details	can	be	found	at	https://kubernetes.io/docs/concepts/storage/.

Kubernetes	can	be	installed	to	VMs,	physical	machines,	and	the	cloud.	For	the
complete	matrix,	take	a	look	at	https://kubernetes.io/docs/setup/pick-right-solution/.
In	Chapter	1,	Introduction	and	Installation,	we	showed	you	how	to	install
Docker	for	Mac	and	Docker	for	Windows.	Both	of	these	tools	allow	you	to
easily	create	a	local	Kubernetes	cluster	with	the	click	of	a	button.	Refer	back	to
that	chapter	for	more	details.

In	this	recipe,	we'll	see	another	way	to	install	Kubernetes	on	your	local	host
using	MiniKube	with	VirtualBox.	This	and	the	following	recipes	on	Kubernetes
were	tried	on	v1.10.0	of	Kubernetes.

	

https://kubernetes.io/docs/concepts/storage/
https://kubernetes.io/docs/setup/pick-right-solution/

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	brew	install	kubernetes-cli

$	choco	install	kubernetes-cli

$	curl	-LO	https://storage.googleapis.com/kubernetes-
release/release/v1.10.0/bin/linux/amd64/kubectl
$	chmod
+x	./kubectl
$	sudo	mv	./kubectl
/usr/local/bin/kubectl

$	curl	-Lo	minikube
https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-linux-
amd64
$	chmod	+x	minikube
$
sudo	mv	minikube	/usr/local/bin/

On	macOS:

$	curl	-Lo	minikube	https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-darwin-amd64

$	chmod	+x	minikube

$	sudo	mv	minikube	/usr/local/bin/

	

How	to	do	it...
Run	the	following	command	to	set	up	Kubernetes	using	MiniKube	with
VirtualBox	and	refer	the	below	screenshot:

$	minikube	start	--vm-driver=virtualbox

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
MiniKube	will	download	the	MiniKube	ISO,	create	a	new	VM	in	VirtualBox,
and	then	configure	Kubernetes	inside.	Finally,	it	will	set	the	cluster	as	the	default
for	kubectl.

There's	more...
If	you	need	to	run	commands	against	the	cluster,	you'll	d	have	to	use	the	kubectl
command.	Here	are	some	common	commands	that	you	will	be	using	on	a	day-
to-day	basis:

To	create	a	new	deployment,	you	would	use	the	kubctl	run	command.	Enter
the	following	command	to	start	an	echo	web	service	and	refer	the	below
screenshot:

				$	kubectl	run	hello-minikube	--image=k8s.gcr.io/echoserver:1.4	--port=8080

				$	kubectl	expose	deployment	hello-minikube	--type=NodePort

Check	to	make	sure	it	is	up	and	running:

				$	kubectl	get	pod

Connect	to	the	new	service	using	curl	to	make	sure	it	is	working:

				$	curl	$(minikube	service	hello-minikube	--url)

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

You	can	delete	the	service	and	the	deployment	by	using	the	following
code:

				$	kubectl	delete	service	hello-minikube

				$	kubectl	delete	deployment	hello-minikube

You	can	get	a	list	of	nodes	with	the	following	code:

				$	kubectl	get	nodes

	

	

	

	

You	can	get	a	list	of	pods	with	the	following	code:

				$	kubectl	get	pods

You	can	get	a	list	of	services	with	the	following	code:

					$	kubectl	get	services

You	can	get	a	list	of	ReplicaSets	with	the	following	code:

					$	kubectl	get	rs

You	can	stop	a	MiniKube	cluster	with	the	following	code:

					$	minikube	stop				

You	can	delete	a	MiniKube	cluster	with	the	following	code:

					$	minikube	delete

You	will	see	some	pods,	services,	and	replication	controllers	listed,	as
Kubernetes	creates	them	for	internal	use.	If	you	didn't	see	any,	you	can	use	the	-
all-namespaces	command-line	flag.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
You	can	also	check	the	following	references:

Configuring	MiniKube:	https://kubernetes.io/docs/setup/minikube/.
Kubernetes	documentation:	https://kubernetes.io/docs/home/.
Kubernetes	API	conventions:	https://kubernetes.io/docs/reference/using-api/.

https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/using-api/

Using	secrets	with	Kubernetes
In	the	Using	secrets	with	Docker	Swarm	recipe,	we	showed	how	you	can	use
secrets	to	store	your	passwords	in	a	safe	way	using	Docker	Swarm.	Kubernetes
has	a	similar	feature,	so	let's	look	at	how	it	works.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
You	will	need	a	Kubernetes	cluster	set	up	and	configured,	as	described	in	the
previous	recipe.

	$	echo	-n	"MyS3cRet123"	>	./secret.txt

	$	kubectl	create	secret	generic	my-secret	--from-
file=./secret.txt
	secret/my-secret	created

	$	kubectl	describe	secrets/my-secret

apiVersion:	v1
kind:	Pod

metadata:
	name:	mypod

spec:
	containers:
	-
name:	shell
	image:	alpine

command:
	-	"bin/ash"
	-	"-c"

	-	"sleep	10000"

volumeMounts:
	-	name:	secretvol

	mountPath:	"/tmp/my-secret"
	readOnly:
true
	volumes:
	-	name:
secretvol
	secret:
	secretName:
my-secret

	$	kubectl	create	-f	./secret_pod.yml

6.	 View	the	secret	in	the	pod:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
When	you	create	a	secret,	Kubernetes	will	base64	encode	it,	and	store	that	secret
in	the	data	store	that	is	backing	the	REST	API,	for	example,	etcd.	If	you	create	a
pod	that	references	a	secret,	when	the	pod	is	created,	it	will	get	permission	to	use
that	secret.	When	it	is	deployed,	it	will	create	and	mount	a	secret	volume,	and
the	secret	values	are	base64	decoded	and	stored	in	this	volume	as	files.	Your
application	will	need	to	reference	these	files	in	order	to	access	the	secrets.

	

	

	

apiVersion:	v1
kind:	Pod

metadata:
	name:	myenvpod

spec:
	containers:
	-
name:	shell
	image:	alpine
	env:

	-	name:	MY_SECRET

valueFrom:
	secretKeyRef:

name:	my-secret
	key:	secret.txt

command:
	-	"bin/ash"
	-	"-c"

	-	"sleep	10000"

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
You	can	view	the	Kubernetes	secret	documentation	at	https://kubernetes.io/docs/con
cepts/configuration/secret/	for	more	information.

https://kubernetes.io/docs/concepts/configuration/secret/

Scaling	up	and	down	in	Kubernetes
cluster
In	the	previous	section,	we	mentioned	that	a	ReplicaSet	ensures	that	the	user-
specified	number	of	pod	replicas	is	running	at	any	given	time.	To	manage
replicas	with	the	ReplicaSet,	we	have	to	define	a	configuration	file	with	a	replica
count	for	a	pod.	This	configuration	can	be	changed	at	runtime.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Make	sure	that	the	Kubernetes	setup	is	running,	as	described	in	the	preceding
recipe,	and	that	you	are	in	the	Kubernetes	directory,	which	was	created	with	the
preceding	installation.

How	to	do	it...
Follow	these	steps:

1.	 Start	the	nginx	container	with	a	replica	count	of	3:

				$	kubectl	run	my-nginx	--image=nginx	--replicas=3	--port=80

2.	 This	will	start	three	replicas	of	the	nginx	container.	List	the	pods	to	get	the
status	as	shown	in	the	following	screenshot:

				$	kubectl	get	pods

3.	 Get	the	ReplicatSet	configuration:

				$	kubectl	get	rs

	

As	you	can	see,	we	have	a	my-nginx	controller,	which	has	a	replica	count	of	3.

4.	 Scale	down	to	a	replica	of	1	and	update	the	ReplicaSet:

				$	kubectl	scale	--replicas=1	deployment/my-nginx

				$	kubectl	get	rs

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

5.	 Get	the	list	of	pods	to	verify	that	this	has	worked;	you	should	see	only	one
pod	for	nginx:

				$	kubectl	get	pods

How	it	works...
We	request	the	ReplicSet	service	running	on	the	master	to	update	the	replicas	for
a	pod,	which	updates	the	configuration	and	requests	that	the	nodes/minions	act
accordingly	to	honor	the	resizing.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
Use	the	following	code	to	get	the	services:

$	kubectl	get	services

As	you	can	see,	we	don't	have	any	service	defined	for	our	nginx	containers	that
we	started	earlier.	This	means	that,	although	we	have	a	container	running,	we
cannot	access	from	outside	because	the	corresponding	service	is	not	defined.

	

Setting	up	WordPress	with
Kubernetes	clusters
In	this	recipe,	we	will	use	the	WordPress	example	given	in	the	Kubernetes
documentation	(https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpres
s-persistent-volume/).	There	are	three	parts	to	this	example:	creating	a	secret,
deploying	MySQL,	and	deploying	WordPress.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

Getting	ready
Follow	these	prerequisites:

Make	sure	that	the	Kubernetes	cluster	has	been	set	up,	as	described	in	the
previous	recipe.
There	are	two	pod	files	that	we	need	to	download.	You	can	find	them	here:

https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml

https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml

These	YAML	files	describe	pods	and	services	for	MySQL	and	WordPress,
respectively.
MySQL	and	WordPress	each	require	a	place	to	store	their	data.	In
Kubernetes,	this	is	called	a	PersistentVolume.	When	we	deploy	our	pod,	the
PersistentVolumeClaims	will	be	created.	Different	clusters	have	different
default	storage	classes,	ensuring	that	the	StorageClass	you	are	using	fits
your	usage	model.

	

	

https://kubernetes.io/examples/application/wordpress/mysql-deployment.yaml
https://kubernetes.io/examples/application/wordpress/wordpress-deployment.yaml

How	to	do	it...
Follow	these	steps:

1.	 We	learned	about	Kubernetes	secrets	in	the	previous	recipe.	We	will	need	to
create	one	to	store	the	MySQL	password.	Run	the	following	command	to
create	your	secret,	and	make	sure	you	change	THE_PASSWORD	to	something
unique:

				$	kubectl	create	secret	generic	mysql-pass	--from-literal=password=THE_PASSWORD

	

Check	to	make	sure	that	the	secret	was	created	successfully:

					$	kubectl	get	secrets

2.	 Deploy	the	MySQL	pod	using	the	mysql-deployment.yaml	file:

				$	kubectl	create	-f	./mysql-deployment.yaml

Make	sure	the	PersistentVolume	was	created.

It	may	take	a	few	minutes,	so	if	it	isn't	ready	right	away,	wait	a	little	longer.

We	can	check	its	status	by	looking	at	the	output	of	the	following
command.	If	it	looks	like	the	following	example,	you	are	good	to	go:

					$	kubectl	get	pvc

Verify	that	the	pod	is	up	and	running:

				$	kubectl	get	pods

3.	 Now	that	we	have	the	MySQL	database	up	and	running,	we	need	to	deploy
WordPress.	This	pod	also	has	persistent	storage,	and	it	uses	the	secret	we
created	in	Step	1	as	the	MySQL	password.	Since	we	want	to	accept	traffic
from	outside	of	the	cluster,	we	also	need	to	set	up	a	loadbalancer.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Deploy	the	WordPress	service	and	deployment	with	the	wordpress-
deployment.yaml	file:

				$	kubectl	create	-f	./wordpress-deployment.yml

Verify	that	PersistentVolume	was	created:

				$	kubectl	get	pvc

Verify	that	the	service	is	up	and	running:

				$	kubectl	get	services	wordpress

	

If	you	are	using	Minikube	for	this	example,	it	can	only	expose	services	through	NodePort.
NodePort,	as	the	name	implies,	opens	a	specific	port	on	the	host,	and	any	traffic	that	is	sent	to
this	port	is	forwarded	to	the	service.	Since	Minikube	doesn't	offer	an	integrated	load	balancer,
the	EXTERNAL-IP	is	always	going	to	be	pending.

Now	that	we	have	the	service	up	and	running,	we	need	to	get	the	IP
address:

				$	minikube	service	wordpress	--url

Using	your	favorite	web	browser,	connect	to	the	IP	address;	you
should	then	see	the	WordPress	setup	page.

Make	sure	you	complete	the	setup	wizard	by	creating	a	username	and	password.	If	you	do
not,	someone	else	can	find	it,	and	set	it	up	for	you.	If	you	won't	be	using	it,	make	sure	that
you	delete	it.

How	it	works...
In	this	recipe,	we	first	created	a	secret	to	store	our	MySQL	password.	Then	we
started	up	a	MySQL	database	using	the	password	we	provided	in	the	secret,	and
we	stored	the	data	in	a	PersistentStore	on	the	host	so	that	we	don't	lose	data
between	container	restarts.	Next,	we	deployed	a	WordPress	service	that	used	our
secret	to	get	the	password	to	connect	to	our	MySQL	database.	We	also
configured	a	load	balancer	so	that	traffic	outside	of	our	cluster	is	able	to	hit	our
WordPress	install.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
To	clean	up	your	WordPress	installation,	run	the	following	commands:

	$	kubectl	delete	secret	mysql-pass

	$	kubectl	delete	deployment	-l	app=wordpress

	$	kubectl	delete	service	-l	app=wordpress

	$	kubectl	delete	pvc	-l	app=wordpress

See	also
You	can	view	the	Kubernetes	documentation	at	https://kubernetes.io/docs/home/	for
more	information.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://kubernetes.io/docs/home/

Docker	Security
In	this	chapter,	we	will	cover	the	following	recipes:

Setting	Mandatory	Access	Control	(MAC)	with	SELinux
Allowing	writes	to	volumes	mounted	from	the	host	with	SELinux	ON
Removing	capabilities	to	break	down	the	power	of	the	root	user	inside	the
container
Sharing	namespaces	between	the	host	and	the	container

	

	

Introduction
Docker	containers,	actually,	are	not	Sandbox	applications,	which	means	they	are
not	recommended	to	run	random	applications	on	the	system	as	root	with	Docker.
You	should	always	treat	a	container	running	a	service/process	as	a
service/process	running	on	the	host	system,	and	put	all	the	security	measures
inside	the	container	you	put	on	the	host	system.

We	saw	in	Chapter	1,	Introduction	and	Installation,	how	Docker	uses
namespaces	for	isolation.	The	six	namespaces	that	Docker	uses	are	Process,
Network,	Mount,	Hostname,	Shared	Memory,	and	User.	Not	everything	in	Linux
is	namespaced,	for	example,	SELinux,	Cgroups,	Devices	(/dev/mem,	/dev/sd*),	and
Kernel	Modules.	Filesystems	under	/sys,	/proc/sys,	/proc/sysrq-trigger,	/proc/irq,
and	/proc/bus	are	also	not	namespaced,	but	they	are	mounted	as	read-only	by
default	with	the	containerD	container	runtime.

	

To	make	Docker	a	secure	environment,	a	lot	of	work	has	been	done	in	the	recent
past,	and	more	work	is	underway.

As	Docker	images	are	the	basic	building	block,	it	is	very	important	that	we
choose	the	right	base	image	to	start	with.	Docker	has	this	concept	of	official
images,	which	are	maintained	by	either	Docker,	the	vendor,	or	someone
else.	If	you	recall	from	Chapter	2,	Working	with	Docker	Containers,	we	can
search	images	on	Docker	Hub	using	the	following	syntax:

								$	docker	search	<image	name>

For	example,	consider	the	following	command:

							$	docker	search	ubuntu

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

We	will	see	a	column,	OFFICIAL,	and	if	the	images	are	official,	you	will
see	[OK]	against	that	image	in	that	column.	There	is	a	feature	in
Docker	that	does	Digital	Signal	Verification	of	official	images	after
pulling	them.	If	the	image	is	tampered,	be	will	be	notified	but	will	not
be	prevent	the	user	from	running	it.

More	details	about	official	images	can	be	found	at	https://github.com/docker-library/official-images.

In	Chapter	6,	Docker	APIs	and	SDKs,	we	saw	how	we	can	secure	a	Docker
remote	API,	when	Docker	daemon	access	is	configured	over	TCP.
We	can	also	consider	turning	off	the	default	inter-container	communication
over	the	network	with	--icc=false	on	the	Docker	host;	though	containers	can
still	communicate	through	links,	which	overrides	the	default	DROP	policy
of	iptables,	they	get	set	with	the	--icc=false	option.
We	can	also	set	Cgroups	resource	restrictions,	through	which	we	can
prevent	Denial	of	Service	(DoS)	attacks	through	system	resource
constraints.
Docker	takes	advantage	of	the	special	device,	Cgroups,	that	allows	us	to
specify	which	device	nodes	can	be	used	within	the	container.	It	blocks
processes	from	creating	and	using	device	nodes	that	could	be	used	to	attack
the	host.
Any	device	node	pre-created	on	the	image	cannot	be	used	to	talk	to	the
kernel	because	images	are	mounted	with	the	nodev	option.

The	following	are	some	guidelines	(they	may	not	be	complete)	you	can	follow	to
achieve	a	secure	Docker	environment:

Run	services	as	non-root	and	treat	the	root	in	the	container,	as	well	as
outside	the	container,	as	root.
Use	images	from	trusted	parties	to	run	the	container;	avoid	using	the	-
insecure-registry=[]	option.
Don't	run	the	random	container	from	the	Docker	registry	or	anywhere	else.
Have	your	host	kernel	up	to	date.
Avoid	using	--privileged	whenever	possible,	and	drop	container	privileges
as	soon	as	possible.
Configure	Mandatory	Access	Control	(MAC)	through	SELinux	or
AppArmor.
Collect	logs	for	auditing.

https://github.com/docker-library/official-images

Do	regular	auditing.
Run	containers	on	hosts,	which	are	specially	designed	to	run	containers.
Consider	using	Project	Atomic,	CoreOS,	or	similar	solutions.
Mount	devices	with	the	--device	option	rather	than	using	the	--privileged
option	to	use	devices	inside	the	container.
Prohibit	SUID	and	SGID	inside	the	container.

Docker	and	the	Center	of	Internet	Security	(http://www.cisecurity.org/)	released	a
best	practices	guide	for	Docker	security,	which	covers	most	of	the	preceding	and
more	guidelines	at	https://blog.docker.com/2015/05/understanding-docker-security-and-bes
t-practices/.

In	Chapter	1,	Introduction	and	Installation,	we	described	how	to	install	Docker	on
CentOS	7.5.	Let's	use	that	default	installation	to	try	an	experiment:

1.	 Disable	SELinux	using	the	following	command:

								$	sudo	setenforce	0

	

2.	 Create	a	user	and	add	it	to	the	default	Docker	group	so	that	the	user	can	run
docker	commands	without	sudo:

								$	sudo	useradd	dockertest

								$	sudo	passwd	dockertest

								$	sudo	groupadd	docker

								$	sudo	gpasswd	-a	dockertest	docker

3.	 Log	in	using	the	user	we	created	earlier,	and	start	a	container	as	follows:

				$	su	-	dockertest

				$	docker	container	run	-it	-v	/:/host	alpine	ash

4.	 From	the	container,	chroot	to	/host	and	run	the	shutdown	command:

							$	chroot	/host

							$	shutdown

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.cisecurity.org/
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/

As	we	can	see,	a	user	in	a	Docker	group	can	shut	down	the	host	system.	Docker
currently	does	not	have	authorization	control,	so	if	you	can	communicate	to	the
Docker	socket,	you	are	allowed	to	run	any	Docker	command.	It	is	similar	to
/etc/sudoers:

USERNAME	ALL=(ALL)	NOPASSWD:	ALL

This	is	really	not	good.	Let's	see	how	we	can	guard	against	this	and	more	in	the
rest	of	the	chapter.

	

Setting	Mandatory	Access	Control
(MAC)	with	SELinux
It	is	recommended	that	you	set	up	some	form	of	MAC	on	the	Docker	host,	either
through	SELinux	or	AppArmor,	depending	on	the	Linux	distribution.	In	this
recipe,	we'll	see	how	to	set	up	SELinux	on	a	Fedora/RHEL/CentOS	installed
system.	Let's	first	look	at	what	SELinux	is:

SELinux	is	a	labeling	system
Every	process	has	a	label
Every	file,	directory,	and	system	object	has	a	label
Policy	rules	control	access	between	labeled	processes	and	labeled	objects
The	kernel	enforces	the	rules

With	Docker	containers,	we	use	two	types	of	SELinux	enforcement:

Type	enforcement:	This	is	used	to	protect	the	host	system	from	container
processes.	Each	container	process	is	labeled	svirt_lxc_net_t,	and	each
container	file	is	labeled	svirt_sandbox_file_t.	The	svirt_lxc_net_t	type	is
allowed	to	manage	any	content	labeled	with	svirt_sandbox_file_t.	Container
processes	can	only	access/write	container	files.
Multi	Category	Security	enforcement:	By	setting	type	enforcement,	all
container	processes	will	run	with	the	svirt_lxc_net_t	label,	and	all	content
will	be	labeled	with	svirt_sandbox_file_t.	However,	with	just	these	settings,
we	are	not	protecting	one	container	from	another	because	their	labels	are
the	same.

We	use	Multi	Category	Security	(MCS)	enforcement	to	protect	one	container
from	another,	which	is	based	on	Multi	Level	Security	(MLS).	When	a	container
is	launched,	the	Docker	daemon	picks	a	random	MCS	label,	for	example,
s0:c41,c717	and	saves	it	with	the	container	metadata.	When	any	container	process
starts,	the	Docker	daemon	tells	the	kernel	to	apply	the	correct	MCS	label.	As	the
MCS	label	is	saved	in	the	metadata,	if	the	container	restarts,	it	gets	the	same
MCS	label.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

	

Getting	ready
You'll	require	a	Fedora/RHEL/CentOS	host	with	the	latest	version	of	Docker
installed,	which	can	be	accessed	through	a	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it…
Fedora/RHEL/CentOS	gets	installed	by	default	with	SELinux	in	enforcing
mode,	and	the	Docker	daemon	is	set	to	start	with	SELinux.	To	check	whether
these	conditions	are	being	met,	perform	the	following	steps.

1.	 Run	the	following	command	to	make	sure	SELinux	is	enabled:

				$	sudo	setenforce	1

				$	getenforce

If	the	preceding	command	returns	Enforcing,	then	it's	all	good.	If	not,	then
we	need	to	change	it	by	updating	the	SELinux	configuration	file
(/etc/selinux/config)	and	rebooting	the	system.

2.	 Docker	should	be	running	with	the	--selinux-enabled	option.	You	can	check
the	Docker	daemon	configuration	(/etc/docker/daemon.json)	file.	Also,	cross-
check	whether	the	Docker	service	has	started	with	the	SELinux	option:

								$	docker	info

	

	

	

	

	

The	preceding	command	assumes	that	you	are	not	starting	Docker	in	daemon
mode	manually.

Let's	start	a	container	(without	the	privileged	option)	after	mounting	a	host
directory	as	a	volume	and	try	to	create	a	file	in	that:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

	

As	expected,	we	see	Permission	denied	because	a	container	process	with	the
svirt_lxc_net_t	label	cannot	create	files	on	the	host's	filesystem.	If	we	look	at	the
SELinux	logs	(/var/log/audit/audit.log)	on	the	host,	we	will	see	messages	similar
to	the	following:

The	s0:c24,c960	label	is	the	MCS	label	on	the	container.

How	it	works…
SELinux	sets	both	Type	and	Multi	Category	Security	enforcement	when	the	right
options	are	set	for	SELinux	and	Docker.	The	Linux	kernel	enforces	these
enforcements.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
There	is	a	lot	we	can	do	with	SELinux	to	help	make	our	system	more	secure.
The	following	are	a	few	more	tips:

If	SELinux	is	in	the	enforcing	mode	and	the	Docker	daemon	is	configured
to	use	SELinux,	then	we	will	not	be	able	to	shut	down	the	host	from	the
container,	like	we	did	earlier	in	this	chapter:

As	we	know,	by	default,	all	the	containers	will	run	with	the	svirt_lxc_net_t
label,	but	we	can	also	adjust	SELinux	labels	for	custom	requirements.	Try
visiting	the	Adjusting	SELinux	labels	section	of	http://opensource.com/business
/15/3/docker-security-tuning.
Setting	up	MLS	with	Docker	containers	is	also	possible.	Try	visiting	the
Multi	Level	Security	mode	section	of	http://opensource.com/business/15/3/docker
-security-tuning.

	

	

http://opensource.com/business/15/3/docker-security-tuning
http://opensource.com/business/15/3/docker-security-tuning

See	also
The	SELinux	Coloring	Book	is	available	at	https://people.redhat.com/duffy/selinux/s
elinux-coloring-book_A4-Stapled.pdf.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

Allowing	writes	to	volumes	mounted
from	the	host	with	SELinux	ON
As	we	saw	in	the	earlier	recipe	when	SELinux	is	configured,	a	non-privileged
container	cannot	access	files	on	the	volume	created	after	mounting	the	directory
from	the	host	system.	However,	sometimes	it	is	needed	to	allow	access	to	host
files	from	the	container.	In	this	recipe,	we'll	see	how	to	allow	access	in	such
cases.

	

	

	

Getting	ready
You'll	require	a	Fedora/RHEL/CentOS	host	with	the	latest	version	of	Docker
installed,	which	can	be	accessed	through	a	Docker	client.	Also,	the	SELinux
should	be	set	to	enforcing,	and	the	Docker	daemon	configured	to	use	SELinux.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Mount	the	volume	with	the	z	or	Z	option,	as	follows:

$	docker	container	run	-it	-v	/tmp:/tmp/host:z	alpine	ash

$	docker	container	run	-it	-v	/tmp:/tmp/host:Z	alpine	ash

How	it	works…
While	mounting	the	volume,	Docker	will	relabel	the	volume	to	allow	access.

The	z	option	tells	Docker	that	the	volume	content	will	be	shared	between	containers.	Docker
will	label	the	content	with	a	shared	content	label.	The	shared	volume	label	allows	all
containers	to	read/write	content.	The	Z	option	tells	Docker	to	label	the	content	with	a	private
unshared	label.	Private	volumes	can	only	be	used	by	the	current	container.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	Volume	mounts	section	at	http://opensource.com/business/14/9/security-for-docker
.

http://opensource.com/business/14/9/security-for-docker

Removing	capabilities	to	break	down
the	power	of	a	root	user	inside	a
container
In	simple	terms,	with	capabilities	we	can	break	down	the	power	of	a	root	user.
Note	the	following	from	the	main	capabilities	page:

For	the	purpose	of	performing	permission	checks,	traditional	UNIX	implementations	distinguish	two
categories	of	processes:	privileged	processes	(whose	effective	user	ID	is	0,	referred	to	as	superuser	or	root),
and	unprivileged	processes	(whose	effective	UID	is	non-zero).	Privileged	processes	bypass	all	kernel
permission	checks,	while	unprivileged	processes	are	subject	to	full	permission	checking	based	on	the
process's	credentials	(usually:	effective	UID,	effective	GID,	and	supplementary	group	list).

Starting	with	kernel	2.2,	Linux	divides	the	privileges	traditionally	associated
with	superusers	into	distinct	units,	known	as	capabilities,	which	can	be
independently	enabled	and	disabled.	Capabilities	are	a	per-thread	attribute.

Some	examples	of	capabilities	are	as	follows:

CAP_SYSLOG:	This	modifies	kernel	printk	behavior
CAP_NET_ADMIN:	This	configures	the	network
CAP_SYS_ADMIN:	This	helps	you	to	catch	all	the	capabilities

	

There	are	only	32	slots	available	for	capabilities	in	kernel.	There	is	one
capability,	CAP_SYS_ADMIN,	that	catches	all	capabilities;	this	is	used	whenever	in
doubt.

Docker	has	the	ability	to	add	or	remove	capabilities	for	a	container.	It	uses	the
chown,	dac_override,	fowner,	kill,	setgid,	setuid,	setpcap,	net_bind_service,	net_raw,
sys_chroot,	mknod,	setfcap,	and	audit_write	capabilities	by	default,	and	removes	the
following	capabilities	for	a	container	by	default:

CAP_SETPCAP:	This	modifies	process	capabilities
CAP_SYS_MODULE:	This	inserts/removes	kernel	modules

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

CAP_SYS_RAWIO:	This	modifies	Kernel	Memory
CAP_SYS_PACCT:	This	configures	process	accounting
CAP_SYS_NICE:	This	modifies	the	priority	of	processes
CAP_SYS_RESOURCE:	This	overrides	Resource	Limits
CAP_SYS_TIME:	This	modifies	system	clock
CAP_SYS_TTY_CONFIG:	This	configures	tty	devices
CAP_AUDIT_WRITE:	This	writes	the	audit	log
CAP_AUDIT_CONTROL:	This	configures	audit	subsystem
CAP_MAC_OVERRIDE:	This	ignores	kernel	MAC	Policy
CAP_MAC_ADMIN:	This	configures	MAC	Configuration
CAP_SYSLOG:	This	modifies	kernel	printk	behavior
CAP_NET_ADMIN:	This	configures	network
CAP_SYS_ADMIN:	This	helps	you	catch	all	containers

We	need	to	be	very	careful	what	capabilities	we	remove,	as	applications	can
break	if	they	don't	have	enough	capabilities	to	run.	To	add	and	remove
capabilities	for	the	container,	you	can	use	the	--cap-add	and	--cap-drop	options,
respectively.

Getting	ready
You'll	require	a	host	with	the	latest	version	of	Docker	installed,	which	can	be
accessed	through	a	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	docker	container	run	--cap-drop	<CAPABILITY>	<image>
<command>

	$	docker	container	run	--cap-add	<CAPABILITY>	<image>
<command>

3.	 To	remove	setuid	and	setgid	capabilities	from	the	container	so	that	it
cannot	run	binaries,	which	have	these	bits	set,	run	the	following	command:

				$	docker	container	run	-it	--cap-drop		setuid	--cap-drop	setgid				alpine	ash

4.	 To	add	all	the	capabilities	and	just	drop	sys_admin,	run	the	following
command:

				$	docker	container	run	-it	--cap-add	all	--cap-drop	sys_admin	alpine	ash

How	it	works...
Before	starting	the	container,	Docker	sets	up	the	capabilities	for	the	root	user
inside	the	container,	which	affects	the	command	execution	for	the	container
process.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	docker	container	run	-it	--cap-drop	sys_chroot	-v	/:/host	alpine
ash
	$	chroot	/host

See	also
Dan	Walsh's	articles	at	http://opensource.com/business/14/9/security-for-docker.
There	are	efforts	to	selectively	disable	system	calls	from	container
processes	to	provide	tighter	security.	Visit	the	Seccomp	section	at	http://open
source.com/business/15/3/docker-security-future.
Similar	to	custom	namespaces	and	capabilities,	Docker	run	supports	the	--
cgroup-parent	flag	to	pass	a	specific	Cgroup	to	run	containers.	Try	visiting	htt
ps://docs.docker.com/engine/reference/commandline/run/#options.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/14/9/security-for-docker
http://opensource.com/business/15/3/docker-security-future
https://docs.docker.com/engine/reference/commandline/run/#options

Sharing	namespaces	between	the	host
and	the	container
As	we	know,	while	starting	the	container,	by	default,	Docker	creates	six	different
namespaces:	Process,	Network,	Mount,	Hostname,	Shared	Memory,	and	User,
for	a	container.	In	some	cases,	we	might	want	to	share	a	namespace	between	two
or	more	containers.	For	example,	in	Kubernetes,	all	containers	in	a	pod	share	the
same	network	namespace.

In	some	cases,	we	might	want	to	share	the	namespaces	of	the	host	system	with
the	containers.	For	example,	we	share	the	same	network	namespace	between	the
host	and	the	container	to	get	near	line	speed	inside	the	container.	In	this	recipe,
we	will	see	how	to	share	namespaces	between	the	host	and	the	container.

	

	

	

Getting	ready
You'll	require	a	host	with	the	latest	version	of	Docker	installed,	which	can	be
accessed	through	a	Docker	client.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Perform	the	following	steps:

1.	 To	share	the	host	network	namespace	with	the	container,	run	the	following
command:

								$	docker	container	run	-it	--net=host	alpine	ash

If	you	see	the	network	details	inside	the	container,	run	the	following
command:	$	ip	a

	

You	will	see	a	result	the	same	as	the	host:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

2.	 To	share	the	host	network,	PID,	and	IPC	namespaces	with	the	container,	run
the	following	command:

									$	docker	container	run	-it	--net=host	--pid=host	--ipc=host	alpine	ash

How	it	works...
Docker	does	not	create	separate	namespaces	for	the	container	when	such
arguments	are	passed	to	the	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	Help	and	Tips	and	Tricks
In	this	chapter,	we	will	look	at	the	following	recipes:

Starting	Docker	in	debug	mode
Building	a	Docker	binary	from	the	source
Building	images	without	using	cached	layers
Building	your	own	bridge	for	container	communication
Changing	the	default	OCI	runtime
Selecting	the	logging	driver	for	containers
Getting	real-time	Docker	events	for	containers

	

	

Introduction
We'll	become	more	curious	as	we	learn	more	about	Docker.	Mailing	lists	and
IRC	channels	are	the	best	places	to	get	help,	learn,	and	share	knowledge	about
Docker.	Docker	has	a	few	IRC	channels	on	freenode.net	such	as,	#docker	and
#docker-dev	to	discuss	Docker	in	general	and	dev-related	stuff,	respectively.	If	you
prefer	Slack	over	IRC,	there	is	also	a	Slack	community,	and	you	can	sign	up
here:	https://community.docker.com/network-groups.

While	working	on	Docker,	if	you	find	any	bugs,	you	can	report	them	on	GitHub
at	https://github.com/moby/moby/issues.	Similarly,	if	you	have	fixed	a	bug,	you	can
send	the	pull	request,	which	will	get	reviewed	and	then	get	merged	to	the	code
base.

Docker	also	has	a	forum	and	YouTube	channel,	which	are	great	learning
resources	as	well,	at	https://forums.docker.com	and	https://www.youtube.com/user/dockerr
un,	respectively.

There	are	many	Docker	meetup	groups	around	the	world	where	you	can	meet
like-minded	individuals	and	learn	by	sharing	experiences	at	https://events.docker.c
om/chapters/.

In	this	chapter,	I'll	also	run	through	a	few	tips	and	tricks	that	will	help	you	work
better	with	Docker.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://freenode.net/
https://community.docker.com/network-groups
https://github.com/moby/moby/issues
https://forums.docker.com
https://www.youtube.com/user/dockerrun
https://events.docker.com/chapters/

Starting	Docker	in	debug	mode
We	can	start	Docker	in	debug	mode	to	debug	logs.

Getting	ready
I	hope	you	already	have	Docker	installed	on	your	system	by	now.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	dockerd	-D

	$	cat	/etc/docker/daemon.json
	{	"debug":	true
}

	

How	it	works...
The	preceding	command	will	start	Docker	in	daemon	mode.	You	will	see	lots	of
useful	messages	as	you	start	the	daemon,	such	as	loading	up	existing	images,
settings	for	firewalls	(iptables),	and	so	on.	If	you	start	a	container,	you	will	see
messages	like	the	following:

$	docker	container	run	alpine	echo	"hello	world"

On	Ubuntu	18.04,	the	Docker	daemon	logs	can	be	viewed	by	running	this
command:

$	journalctl	-u	docker.service

If	you	are	using	something	other	than	Ubuntu	18.04,	your	Docker	logs	might	be	located
somewhere	else.	Refer	to	this	page	in	the	documentation	to	see	where	to	find	the	logs	for	your
system:	https://docs.docker.com/config/daemon/#read-the-logs.

[info]	POST	/v1.30/containers/create

[99430521]	+job	create()

......

......

In	the	proceeding	log	snippet,	you	will	be	able	to	see	the	API	request	from	the
Docker	client	to	the	Docker	daemon	for	creating	a	new	container.	If	something
isn't	working,	looking	at	the	logs	is	a	good	way	to	get	more	information	to	help
you	diagnose	what	is	causing	your	problems.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/config/daemon/#read-the-logs

See	also
See	the	Docker	daemon	configuration	documentation	for	more	information:	https
://docs.docker.com/config/daemon/.

https://docs.docker.com/config/daemon/

Building	a	Docker	binary	from	the
source
Docker	recently	reorganized	the	Docker	Engine	and	broke	it	up	into	different
parts.	The	main	parts	are	runC	(https://github.com/opencontainers/runc),	containerD	(
https://containerd.io),	and	Moby	(https://mobyproject.org).	Some	of	these	projects
were	donated	to	other	organizations	to	maintain.	Docker,	the	product,	is	now	a
combination	of	these	different	projects.

Sometimes,	it	is	necessary	to	build	a	Docker	binary	from	the	source	to	test	a
patch.	It	is	very	easy	to	build	a	Docker	binary	from	the	source.	In	order	to	build
one,	you	will	need	to	use	the	source	code	from	the	Moby	project.	Follow	these
steps	to	build	your	own	binaries.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/opencontainers/runc
https://containerd.io
https://mobyproject.org

	$	apt-get	install	-y	make

3.	 Make	sure	Docker	is	running	on	the	host	you	are	building	the	code	and	that
you	can	access	it	through	the	Docker	client,	since	the	build	we	are
discussing	here	happens	inside	a	container.

How	to	do	it...
Follow	these	steps:

1.	 Go	inside	the	cloned	directory:

								$	cd	moby

2.	 Run	the	make	command:

							$	sudo	make

This	will	take	a	little	while	and	require	more	then	1	GB	of	RAM.	If	you	do	not	give	it	enough
resources,	the	build	might	fail.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
This	will	create	a	container	and	compile	the	code	from	the	master	branch	inside
it.	Once	finished,	it	will	spit	out	the	binary	inside	the	bundles/binary-daemon/
directory.

There's	more...
You	can	also	run	tests	with	the	following	command:

										$	sudo	make	test

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Look	at	the	documentation	on	the	Moby	website	for	more	information:	https://gi
thub.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md.

https://github.com/moby/moby/blob/master/docs/contributing/set-up-dev-env.md

Building	images	without	using	cached
layers
By	default,	when	we	build	an	image,	Docker	will	try	to	use	the	cached	layers	so
that	it	takes	less	time	to	build.	However,	at	times,	it	is	necessary	to	build	from
scratch.	For	example,	you	will	need	to	force	a	system	update,	such	as	the	yum	-y
update.	Let's	see	how	we	can	do	that	in	this	recipe.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Get	a	Dockerfile	to	build	the	image.	For	this	example,	we	will	be	using	the
following	Dockerfile,	which	installs	the	nginx	web	server	in	an	Alpine	Linux
container:

FROM	alpine:3.8

RUN	apk	add	--update	nginx	&&	mkdir	/tmp/nginx	&&	rm	-rf	/var/cache/apk/*

EXPOSE	80	443

CMD	["nginx",	"-g",	"daemon	off;"]

How	to	do	it...
While	building	the	image,	pass	the	-no-cache	option	as	follows:

				$	docker	image	build	-t	test	--no-cache	-	<	Dockerfile

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
The	--no-cache	option	will	discard	any	cached	layer	and	build	one	Dockerfile
from	scratch.

There's	more...
Sometimes,	we	also	want	to	discard	the	cache	after	a	few	instructions.	In	such
cases,	we	can	add	any	arbitrary	command	that	doesn't	affect	the	image,	such	as
creation	or	setting	up	an	environment	variable.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Building	your	own	bridge	for
container	communication
As	we	already	know,	when	the	Docker	daemon	starts,	it	creates	a	bridge	called
docker0,	and	all	the	containers	will	get	the	IP	from	it.	Sometimes,	we	might	want
to	use	a	different	bridge	for	some	of	our	containers.	Let's	see	how	we	can	do	that
in	this	recipe.

	

	

	

Getting	ready
I	am	assuming	you	already	have	Docker	set	up.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	$	docker	network	create	br0	--subnet	192.168.2.1/24

	$	docker	network	ls

	$	docker	container	run	-d	--network	br0	--name	br0demo
redis
	$	docker	container	inspect	br0demo

How	it	works...
The	preceding	steps	will	create	a	new	bridge	and	it	will	assign	the	IP	from
the	192.168.2.0	subnet	to	any	of	the	containers	that	are	assigned	to	that	network.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
If	you	no	longer	need	the	network,	you	can	remove	it	by	running	this	command:

$	docker	network	rm	br0

See	also
See	the	documentation	on	the	Docker	website	for	more	information:	https://docs.
docker.com/network/.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/network/

Changing	the	default	OCI	runtime
The	Docker	daemon	relies	on	an	OCI	compliant	runtime	in	order	to	interface
with	the	Linux	kernel.	By	default,	Docker	uses	runC,	but	you	can	switch	this	out
for	any	OCI	compliant	runtime	if	needed.	In	this	recipe,	we	will	show	you	how
to	change	the	runtime	to	another	OCI	compliant	runtime,	that	is,	Intel	Clear
Containers.

	

	

	

$	sudo	sh	-c	"echo	'deb
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-
containers-3/xUbuntu_$(lsb_release	-rs)/	/'	>>	/etc/apt/sources.list.d/clear-
containers.list"
$	wget	-qO	-
http://download.opensuse.org/repositories/home:/clearcontainers:/clear-
containers-3/xUbuntu_$(lsb_release	-rs)/Release.key	|	sudo	apt-key	add	-

$	sudo	-E	apt-get	update
$	sudo
-E	apt-get	-y	install	cc-runtime	cc-proxy	cc-shim

$	cc-runtime	cc-check

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

{
	"default-runtime":	"cc-runtime",
	"runtimes":	{
	"cc-runtime":
{
	"path":	"/usr/bin/cc-runtime"
	}
	}
	}

	$	systemctl	daemon-reload
	$	systemctl	restart
docker

	$	docker	container	run	-it	busybox	sh

How	it	works...
Docker	uses	runC	to	access	kernel	features	such	as	namespaces	and	CGroups	to
run	containers.	We	switched	runC	with	another	OCI	compliant	runtime,	called
Intel	Clear	Containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
See	the	documentation	on	the	Docker	website	for	more	information	at:	https://doc
s.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options.

https://docs.docker.com/engine/reference/commandline/dockerd/#docker-runtime-execution-options

Selecting	the	logging	driver	for
containers
Docker	allows	you	to	select	the	logging	driver	while	starting	the	Docker
daemon.	With	the	release	of	Docker	18.03,	eleven	types	of	logging	drivers	are
supported:

Driver Description

None No	logs	are	available	for	the	container	and	docker	container	logs
does	not	return	any	output.

json-file

(default) The	logs	are	formatted	as	JSON.

syslog Writes	log	messages	to	the	syslog	daemon	on	the	host	machine.

journald Writes	log	messages	to	the	journald	daemon	on	the	host	machine.

gelf
Writes	log	messages	to	a	Graylog	Extended	Log	Format
(GELF)	endpoint	such	as	Graylog	or	Logstash.

fluentd Writes	log	messages	to	the	fluentd	daemon	on	the	host	machine.

awslogs Writes	log	messages	to	Amazon	CloudWatch	Logs.

splunk Writes	log	messages	to	splunk	using	the	HTTP	Event	Collector.

etwlogs
Writes	log	messages	as	Event	Tracing	for	Windows	(ETW)
events	(Windows	only).

gcplogs Writes	log	messages	to	Google	Cloud	Platform	(GCP)	logging.

logentries Writes	log	messages	to	Rapid7	log	entries.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Install	Docker	on	the	system,	if	you	haven't	done	so	already.

	$	dockerd	--log-driver=none
	$	dockerd	--log-
driver=syslog

{
	"log-driver":	"json-file",
	"log-opts":	{
	"labels":
"production_status",
	"env":	"os,customer"
	}
	}

	$	docker	container	run	-it	--log-driver	syslog	alpine	ash

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
Depending	on	the	log	driver	configuration,	Docker	daemon	selects	the
corresponding	logging	driver.

There's	more...
The	docker	logs	command	is	only	available	for	the	following	two	drivers:	json-
file	and	journald.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
See	the	documentation	on	the	Docker	website	for	more	information	at:	https://doc
s.docker.com/config/containers/logging/configure/.

https://docs.docker.com/config/containers/logging/configure/

Getting	real-time	Docker	events	for
containers
As	we	will	be	running	many	containers	in	production,	it	will	be	helpful	if	we	can
watch	the	real-time	container	events	for	monitoring	and	debugging	purposes.
Docker	containers	can	report	events	such	as	create,	destroy,	die,	export,	kill,	oom,
pause,	restart,	start,	stop,	and	unpause.	In	this	recipe,	we	will	see	how	to	enable
event	logging	and	then	use	filters	to	select	specific	event	types,	images,	and
containers.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready...
Make	sure	that	the	Docker	daemon	is	running	on	the	host	and	that	you	can
connect	through	the	Docker	client.

	$	docker	events

2.	 From	the	other	terminal,	do	some	container/image-related	operations	and
you	will	see	a	result	similar	to	the	following	screenshot	on	the	first
terminal:

	

After	the	events	collection	started,	I	created	a	container	to	just	write	a	message
to	the	console.	As	we	can	see	from	the	preceding	screenshot,	a	container	was
created,	started,	and	died.

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
With	Docker	events,	Docker	starts	listing	events.

	--since=""	Show	all	events	created	since	timestamp

	--until=""	Stream	events	until	this	timestamp

	$	docker	events	--since	'2015-01-01'

	$	docker	events	--filter	'image=alpine:3.5'

	$	docker	events	--filter	'container=b3619441cb444b87b4'

	$	docker	events	--format	'ID={{.ID	}}	Type={{.Type}}	Status=	

{{.Status}}'

	$	docker	events	--format	'{{json	.}}'

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
The	Docker	events	documentation	can	be	found	here:	https://docs.docker.com/engine
/reference/commandline/events/.

https://docs.docker.com/engine/reference/commandline/events/

Docker	on	the	Cloud
In	this	chapter,	we	will	cover	the	following	recipes:

Docker	for	AWS
Deploying	WordPress	on	Docker	for	AWS
Docker	for	Azure
Deploying	Joomla!	on	Docker	for	Azure

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction
In	the	previous	chapters,	we	talked	a	lot	about	how	to	use	Docker	on	a	single
host,	and	in	Chapter	8,	Docker	Orchestration	and	Hosting	Platform,	we	even
talked	about	how	to	use	it	on	multiple	hosts	using	orchestration.	One	of	the	most
popular	ways	to	use	Docker	these	days	is	in	the	cloud.	There	are	a	number	of
popular	cloud	platforms	available,	and	getting	Docker	set	up	and	running	on
each	of	them	is	a	little	different.	To	make	the	process	easier,	Docker	has	come
out	with	two	new	products:	Docker	for	AWS,	and	Docker	for	Azure.

The	goals	of	these	products	is	to	make	bootstrapping	your	Docker	environment
as	easy	as	possible.	Each	product	uses	the	cloud	platforms'	native	tools	to	set	up
a	Docker	Swarm	cluster.	You	should	be	able	to	go	from	nothing	to	a	full	cluster
in	a	few	minutes.	Once	the	cluster	is	up	and	running,	it	is	similar	to	any	other
Swarm	cluster,	and	you	would	manage	it	using	the	same	Docker	tools	that	we
learned	about	previously.

In	this	chapter,	we	will	learn	how	to	set	up	Docker	for	AWS	and	Docker	for
Azure,	and	deploy	an	application	to	each.

	

Docker	for	AWS
Amazon	Web	Services	(AWS)	is	the	largest	and	most	popular	cloud	platform
available	today.	AWS	provides	a	few	different	ways	of	running	Docker
workloads	on	their	cloud.	You	can	use	Elastic	Beanstalk,	Elastic	Container
Service	(ECS),	or	Elastic	Container	Service	for	Kubernetes	(EKS).	Each	of
these	products	have	different	capabilities,	which	allow	you	to	do	different	things.
None	of	these	products	are	Docker	native,	and	require	you	to	learn	a	new	set	of
tools	and	libraries	in	order	to	get	your	Docker	application	up	and	running.

Docker	for	AWS	uses	the	same	cloud-native	tools	that	these	products	use,	but
provides	a	more	Docker-native	experience.	Once	Docker	for	AWS	is	set	up,	you
can	use	the	same	Docker	tools	and	APIs	that	you	already	know	about	to	deploy
your	Docker	workload	to	AWS.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	can	install	Docker	for	AWS,	you	will	need	to	make	sure	that	you	have
satisfied	all	of	the	prerequisites:

You	will	need	an	active	AWS	account	with	either	login	access	to	the
console,	or	API	keys	for	making	CLI/API	calls.
Your	account	will	either	need	to	be	an	admin	account,	or	an	account	with
the	correct	IAM	permissions.

For	a	full	list	of	permissions,	look	at	the	documentation	at:	https://docs.docker.com/docker-for-aws/iam-
permissions/.

SSH	keys	need	to	be	created	and	added	to	your	AWS	account.

See	the	following	Amazon	documentation	for	more	information:	https://docs.aws.amazon.com/AWSEC2/la
test/UserGuide/ec2-key-pairs.html.

	

	

	

https://docs.docker.com/docker-for-aws/iam-permissions/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

How	to	do	it...
Docker	for	AWS	uses	CloudFormation	for	building	and	configuring	your	Swarm
cluster.	There	are	two	ways	to	deploy	a	CloudFormation	stack:	you	can	do	it	via
the	AWS	web	console,	or	the	AWS	Command	Line	Interface	(CLI).	Using	the
web	console	is	going	to	be	easier	to	get	up	and	running,	because	all	you	need	to
do	is	fill	out	a	web	form.	I	recommended	that	approach	if	you	are	not	familiar
with	CloudFormation.	This	is	what	I'll	be	showing	you	here.

We	are	going	to	deploy	the	latest	available	stable	version,	and	let	Docker	for
AWS	build	a	new	Virtual	Private	Cloud	(VPC)	for	us.	There	is	another	option
where	we	can	install	it	on	an	existing	VPC,	but	that	is	out	of	the	scope	of	this
recipe.

1.	 Log	in	to	the	AWS	console	and	go	to	the	CloudFormation	section.	Then,
click	on	the	Create	new	stack	button:

	

	

2.	 Under	Choose	a	template,	select	the	Specify	an	Amazon	S3	template	URL
radio	button,	enter	the	following	URL,	and	click	Next:	https://editions-us-eas
t-1.s3.amazonaws.com/aws/stable/Docker.tmpl:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://editions-us-east-1.s3.amazonaws.com/aws/stable/Docker.tmpl

3.	Fill	out	the	form,	as	shown	in	the	following	screenshot:	

The	rest	you	can	change,	or	leave	as	the	default	values.

	

4.	 Hit	the	Next	button.

5.	 Add	any	optional	tags	if	you	want	to,	otherwise,	feel	free	to	leave
everything	as	it	is	and	hit	the	Next	button:

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

6.	 Click	the	I	acknowledge	that	AWS	CloudFormation	might	create	IAM
resources	checkbox,	and	hit	the	Create	button:

7.	 It	will	take	a	few	minutes	to	create	your	stack,	and	when	it	is	completes,
you	should	go	to	the	Outputs	tab	and	click	on	the	link	next	to	Managers:

8.	 Pick	one	of	the	Public	IP	addresses	for	one	of	the	managers:

SSH	into	one	of	the	manager	nodes,	like	so:

$	ssh	docker@52.201.109.15

$	docker	node	ls

When	you	SSH	into	the	swarm	manager,	you	are	not	actually	logging	in	to	the	EC2	host
directly	–	you	are	logging	in	to	a	special	SSH	container	that	is	running	on	that	host.

Docker	for	AWS	is	now	ready	to	use.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
CloudFormation	will	take	the	information	that	we	provided	in	the	form,	and	it
will	build	a	new	Virtual	Private	Cloud	(VPC),	subnets,	internet	gateway,
routing	tables,	security	groups,	Elastic	Load	Balancer	(ELB),	and	two	EC2
AutoScaling	Groups	(ASG)	–	one	ASG	for	the	managers	and	one	for	the
workers.	The	manager	nodes	in	the	manager	ASG	will	create	new	EC2	instances
with	Docker	installed	on	them.	The	manager	instances	will	then	create	a	new
Docker	Swarm	and	join	together	to	form	a	manager	quorum.

	

Once	the	manager	nodes	are	up	and	running,	the	worker	ASG	will	start	up
worker	EC2	instances	with	Docker	on	them,	and	they	will	also	join	the	same
Swarm	and	start	accepting	tasks.	After	all	of	these	steps	are	complete,	the
Swarm	is	ready	for	action.

	

	

	

There's	more
Getting	Docker	for	AWS	up	and	running	is	only	half	the	battle.	Now	that	it	is
running,	you	will	need	to	deploy	an	application,	which	we	will	show	you	in	the
next	recipe.	In	the	meantime,	here	are	a	few	common	tasks	that	you	should	know
how	to	do:

Scaling	more	workers:	If	you	want	to	change	the	number	of	workers	that
you	have	in	your	Swarm	cluster,	you	can	do	this	by	updating	the
CloudFormation	stack.

Go	to	the	CloudFormation	management	page	and	click	the	checkbox	next	to	the
stack	you	want	to	update.	Then,	click	on	the	Actions	button	at	the	top	and	select
Update	Stack:	

	

Pick	Use	current	template,	and	then	click	Next:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Fill	out	the	same	parameters	you	specified	previously,	but	this	time,	change	your
worker	count	to	the	new	count,	and	click	Next:	

	

On	the	last	page,	it	will	let	you	preview	your	changes.	If	they	look	good,	select
the	checkbox	and	click	the	Update	button:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

CloudFormation	will	then	update	the	worker	ASG	setting	and	scale	the	number
of	worker	nodes	appropriately.	To	confirm	that	the	nodes	are	up	and	have
successfully	joined	the	Swarm,	you	can	log	in	to	a	Manager	node	and	run	the
following	command:	$	docker	node	ls

Deleting	the	Stack:	Go	to	the	CloudFormation	management	page	and	click	the
checkbox	next	to	the	stack	you	want	to	delete.	Then,	click	on	the	Actions	button
at	the	top	and	select	Delete	Stack:	

CloudFormation	will	then	remove	all	of	the	items	in	your	stack,	including	any
services	you	had	running	on	your	Swarm.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

See	also
Docker	for	AWS	documentation:	https://docs.docker.com/docker-for-aws/
How	to	upgrade	Docker	for	AWS:	https://docs.docker.com/docker-for-aws/upgrade
/

Using	a	persistent	datastore:	https://docs.docker.com/docker-for-aws/persistent-da
ta-volumes/

https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/upgrade/
https://docs.docker.com/docker-for-aws/persistent-data-volumes/

Deploying	WordPress	on	Docker	for
AWS
Now	that	we	have	an	active	Docker	for	AWS	installation	set	up,	let's	deploy	an
application	to	see	how	it	works.	In	this	recipe,	we	will	be	installing	WordPress
on	top	of	Docker	for	AWS.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	proceed,	you	will	need	to	make	sure	that	you	have	satisfied	all	of	the
prerequisites:

1.	 You	will	need	to	have	your	Docker	for	AWS	stack	from	the	previous	recipe
up	and	running.

2.	 SSH	into	one	of	the	manager	nodes.	Instructions	on	how	to	do	this	are	also
available	in	the	previous	recipe.

	

	

How	to	do	it...
Once	we	are	logged	in	to	one	of	the	manager	nodes,	the	first	thing	we	need	to	do
is	create	some	swarm	secrets	for	our	database	passwords:

$	echo	"myDbP@SSwods"	|	docker	secret	create	root_db_password	-

$	echo	"myWpressPw"	|	docker	secret	create	wp_db_password	-

	

We	also	need	to	create	an	overlay	network	so	that	our	services	can	talk	with	each
other:

$	docker	network	create	-d	overlay	wp

Let's	create	the	MariaDB	database	service	that	WordPress	is	going	to	use;	we
will	use	the	secrets	and	the	network	we	created	previously.	We	will	then	check
the	status	of	the	service	to	make	sure	it	started	correctly:

$	docker	service	create	\

				--name	mariadb	\

				--replicas	1	\

				--constraint=node.role==manager	\

				--network	wp	\

				--secret	source=root_db_password,target=root_db_password	\

				--secret	source=wp_db_password,target=wp_db_password	\

				-e	MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password	\

				-e	MYSQL_PASSWORD_FILE=/run/secrets/wp_db_password	\

				-e	MYSQL_USER=wp	\

				-e	MYSQL_DATABASE=wp	\

				mariadb:10.3

$	docker	service	ps	mariadb

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

Now	that	we	have	our	database,	let's	create	our	WordPress	service;	we	will	use
the	same	secrets	and	network	that	we	used	with	the	mariadb	service,	but	this	time
we	will	create	three	replicas.	We	will	then	check	the	status	of	the	service	to	make
sure	it	started	correctly:

$	docker	service	create	\

				--name	wp	\

				--constraint=node.role==worker	\

				--replicas	3	\

				--network	wp	\

				--publish	80:80	\

				--secret	source=wp_db_password,target=wp_db_password,mode=0400	\

				-e	WORDPRESS_DB_USER=wp	\

				-e	WORDPRESS_DB_PASSWORD_FILE=/run/secrets/wp_db_password	\

				-e	WORDPRESS_DB_HOST=mariadb	\

				-e	WORDPRESS_DB_NAME=wp	\

				wordpress:4.9

$	docker	service	ps	wp

Now	that	we	have	the	WordPress	service	up	and	running,	let's	check	to	see
whether	we	can	connect	to	it	from	our	browser.

	

To	find	out	the	correct	URL,	we	will	go	back	to	the	CloudFormation	Outputs	tab
again,	but	this	time	we	will	look	at	the	DefaultDNSTarget,	copy	that	value,	and
enter	it	into	our	browser:

Success!	As	you	can	see,	the	service	is	up	and	running:

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

If	you	are	not	going	to	be	completing	the	setup	wizard	right	away,	please	remove	or	stop	the
service,	or	else	someone	else	could	come	by	and	do	it	for	you,	and	take	over	your	WordPress
install.

How	it	works...
In	this	recipe,	we	created	two	new	services.	One	was	a	database	to	store	the
information	for	the	other	web	service.	We	used	secrets	to	protect	our	passwords,
and	we	used	those	secrets	instead	of	hardcoding	our	passwords	in	the	image,	or
passing	them	in	as	environmental	variables.

	

We	also	created	a	custom	overlay	network	for	our	application,	so	that	the	two
services	could	talk	to	each	other	across	the	cluster	and	that	traffic	was	encrypted
by	default,	which	means	that	all	communications	between	our	two	services	is
secure.

Docker	for	AWS	has	a	service	that	listens	for	new	services	that	get	added	to	the
Swarm	and,	when	a	new	service	has	ports	exposed,	it	will	automatically
configure	the	external	load	balancer	to	accept	traffic	for	that	service.	When
someone	hits	the	load	balancer,	it	will	send	the	traffic	to	one	of	the	Swarm
managers,	and	then	the	Swarm	will	route	the	traffic	to	the	correct	host	and
container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
In	the	preceding	recipe,	we	were	only	accepting	traffic	over	HTTP.	With	AWS,
you	can	get	a	free	SSL/TLS	certificate	using	the	AWS	Certificate	Manager
(ACM),	and	if	you	have	one	of	those,	you	can	configure	the	load	balancer	and
Docker	for	AWS	to	support	SSL/TLS	traffic	as	well.	Follow	these	directions	for
more	information:	https://docs.docker.com/docker-for-aws/load-balancer/.

To	destroy	the	services,	we	can	just	remove	them	from	the	Swarm,	and	it	will
take	the	site	down:

$	docker	service	rm	wp

$	docker	service	rm	mariadb

https://docs.docker.com/docker-for-aws/load-balancer/

Docker	for	Azure
Microsoft	Azure	is	a	cloud	computing	platform	created	by	Microsoft	for
building,	testing,	deploying,	and	managing	applications.	It	is	currently	the
second	most	popular	cloud	platform	behind	Amazon.	In	this	recipe,	we	will
discuss	how	to	install	Docker	for	Azure,	a	product	from	Docker	that	makes	it
easy	to	get	a	Docker	native	stack	up	and	running	on	Azure.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Getting	ready
Before	we	can	get	started,	there	are	a	few	things	you	will	need:

Access	to	a	Microsoft	Azure	account	with	admin	privileges
An	SSH	key,	which	you	will	use	when	accessing	the	Docker	for	Azure
Manager	nodes
An	Azure	Service	Principal	(SP),	which	is	used	by	Docker	for	Azure	to
authenticate	with	the	Azure	APIs

Docker	has	made	it	easy	to	create	a	Service	Principal	by	using	a	Docker	image
they	provide.	Follow	these	steps	to	create	a	Service	Principal.	The	first	thing	you
will	do	is	run	the	Docker	image,	passing	in	a	few	parameters:

$	docker	container	run	-ti	docker4x/create-sp-azure	[sp-name]	[rg-name	rg-region]

sp-name:	The	name	of	the	service	principal	(for	example,	sp1).
rg-name:	The	name	of	a	new	resource	group,	which	will	be	used	when
deploying	Docker	for	Azure	(for	example,	swarm1).
re-region:	The	name	of	the	Azure	region	where	the	resource	group	will	be
created	(for	example,	eastus).	For	a	full	list	of	available	regions,	go	to	the
following	page:	https://azure.microsoft.com/en-us/global-infrastructure/regions/:

	

It	will	then	ask	you	to	visit	a	web	page	and	enter	a	code	to	authenticate.	This	will
verify	your	account	and	link	it	to	the	Docker	container,	which	will	let	it	complete
the	creation	of	the	Service	Principal:

https://azure.microsoft.com/en-us/global-infrastructure/regions/

When	complete,	you	should	see	your	Service	Principal	credentials.	Save	this
information	in	a	safe	place;	you	will	need	it	in	a	minute:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Docker	for	Azure	uses	the	Azure	Resource	Manager	(ARM)	to	create	all	of	the
required	resources	tha

	

	

	

	

	

Open	the	following	web	page	and	select	the	Stable	channel	version:	https://docs.d
ocker.com/docker-for-azure/:	

https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure

This	will	take	you	to	the	Azure	portal	and	start	a	custom	deployment	using	the
Docker	for	Azure	ARM	template.	Add	the	Service	Principal	credentials	that	you
have	from	before,	and	answer	the	other	questions.	Don't	forget	to	include	your
SSH	public	key.	When	the	form	is	complete,	select	the	I	agree...	checkbox	and
click	on	the	Purchase	button:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

This	will	start	creating	the	resources	you	need	and	show	you	the	progress	of	the
deployment:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

When	it	is	finished,	click	on	the	Outputs	tab	and	make	note	of	the	three	outputs.
You	will	need	these	a	little	later.	Copy	the	value	for	SSH	TARGETS	and	open
the	URL	in	a	new	browser	window:	

This	is	the	list	of	Manager	nodes	that	are	in	your	Swarm.	To	connect	to	this
node,	we	can	SSH	to	the	destination	IP	address	on	the	Custom	TCP	port:	

Using	that	information,	let's	SSH	into	that	Manager	and	make	sure	it	is	working
correctly	by	listing	the	nodes	in	the	Swarm:	$	ssh	-p	50000
docker@40.76.49.102
$	docker	node	ls

If	everything	is	working	correctly,	you	should	see	the	list	of	all	of	your	manager
and	worker	nodes	with	a	Status	of	Ready.

	

When	you	SSH	into	the	swarm	manager,	you	are	not	actually	logging	into	the	Azure	host
directly,	you	are	logging	into	a	special	SSH	container	that	is	running	on	that	host.

How	it	works...
Docker	for	Azure	has	an	Azure	Resource	Manager	(ARM)	template	that,	when
applied,	will	create	all	the	required	resources	on	Azure	and	configure	them
together	to	create	the	Swarm	cluster.	Docker	for	Azure	uses	the	Service	Principal
to	make	the	required	API	calls	to	configure	all	of	the	nodes,	as	well	as	to	manage
the	cluster	once	it	is	up	and	running.

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

There's	more...
When	the	time	comes	to	remove	Docker	for	Azure,	you	will	need	to	go	into	the
Azure	portal,	find	the	deployment,	select	all	of	the	resources,	and	delete	them:	

	

Confirm	the	resources	that	you	want	to	remove:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

Due	to	some	resource	dependencies,	you	might	have	some	resources	that	can't	be	removed
until	their	dependent	resources	are	deleted.	This	means	you	will	probably	need	to	delete	the
resources	a	few	times	before	they	will	all	be	removed.

See	also
Docker	for	Azure	documentation:	https://docs.docker.com/docker-for-azure/
How	to	upgrade	Docker	for	Azure:	https://docs.docker.com/docker-for-azure/upgr
ade/

Using	a	persistent	datastore:	https://docs.docker.com/docker-for-azure/persistent-
data-volumes/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-azure/
https://docs.docker.com/docker-for-azure/upgrade/
https://docs.docker.com/docker-for-azure/persistent-data-volumes/

Deploying	Joomla!	on	Docker	for
Azure
Now	that	we	have	an	active	Docker	for	Azure	installation	set	up,	let's	deploy	an
application	to	see	how	it	works.	In	this	recipe,	we	will	be	installing	Joomla!,	a
popular	open	source	CMS,	on	top	of	Docker	for	Azure.

Getting	ready
Before	we	can	get	started,	there	are	a	few	things	you	will	need:

1.	 You	will	need	to	have	your	Docker	for	AWS	stack	up	and	running	from	the
previous	recipe.

2.	 SSH	into	one	of	the	manager	nodes.	Instructions	on	how	to	do	this	are	also
available	in	the	previous	recipe.

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	to	do	it...
Once	we	are	logged	in	to	one	of	the	manager	nodes,	the	first	thing	we	need	to	do
is	create	some	Swarm	secrets	for	our	database	passwords:	$	echo
"DbP@SSwod1"	|	docker	secret	create	root_db_password	-
$	echo	"myJ000mlaPw"	|	docker	secret	create	jm_db_password	-

Let's	confirm	that	we	added	them	correctly:

$	docker	secret	ls

They	look	good.	Let's	create	a	custom	overlay	network	so	that	our	services	can
talk	with	each	other	over	an	encrypted	connection	on	the	cluster:	$	docker
network	create	-d	overlay	joomla
$	docker	network	ls

Now,	we	are	ready	to	add	our	services.	Joomla!	requires	a	database,	so	we	are
going	to	create	a	MariaDB	service,	and	we	will	use	the	network	and	secrets	that
we	created	earlier	for	our	passwords:	$	docker	service	create	\
--name	mariadb	\
--replicas	1	\
--constraint=node.role==manager	\
--network	joomla	\
--secret	source=root_db_password,target=root_db_password	\
--secret	source=jm_db_password,target=jm_db_password	\
-e	MYSQL_ROOT_PASSWORD_FILE=/run/secrets/root_db_password	\
-e	MYSQL_PASSWORD_FILE=/run/secrets/jm_db_password	\
-e	MYSQL_USER=joomla	\
-e	MYSQL_DATABASE=joomla	\
mariadb:10.3

Now	that	we	have	all	of	our	dependencies	created,	we	can	add	our	Joomla!
service.	We	will	use	the	same	network	as	before,	but	you	will	notice	that	we	are
passing	the	database	password	as	an	environment	variable	instead	of	using	the
Docker	Secret	we	created	earlier.	This	is	because	the	Joomla!	image	does	not
currently	support	secrets,	but	hopefully	support	will	be	added	in	the	near	future,
and	we	can	switch	it	to	use	the	secret	at	that	time:	$	docker	service	create	\

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

--name	joomla	\
--constraint=node.role==manager	\
--replicas	1	\
--network	joomla	\
--publish	80:80	\
-e	JOOMLA_DB_USER=joomla	\
-e	JOOMLA_DB_PASSWORD="myJ000mlaPw"	\
-e	JOOMLA_DB_HOST=mariadb	\
-e	JOOMLA_DB_NAME=joomla	\
joomla:3.8

We	should	now	have	two	services	up	and	running.	Let's	check:

$	docker	service	ls

They	look	good.	Let's	see	whether	we	can	connect	to	the	service.	If	you

remember,	when	we	deployed	Docker	for	Azure,	there	were	some	outputs.	Two
of	those	outputs	were	APPURL	and	DEFAULTDNSTARGET.	The	first	one	is	the	load	balancer
URL,	while	the	other	is	the	public	IP	address	for	the	stack.	You	can	use	those
values	when	configuring	your	DNS	records	for	your	site:	

If	you	enter	one	of	the	aforementioned	addresses	into	a	web	browser,	you	should
be	able	to	see	the	Joomla!	configuration	page.	If	so,	our	installation	was
successful:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

	

If	you	are	not	going	to	be	completing	the	configuration	wizard	right	away,	please	remove	or
stop	the	service,	or	else	someone	else	could	come	by	and	do	it	for	you,	and	take	over	your
Joomla!	install.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

How	it	works...
In	this	recipe,	we	created	two	new	services.	One	was	a	database	to	store	the
information	for	the	Joomla!	service.	We	used	secrets	to	protect	our	passwords,
and	we	used	those	secrets	for	the	database	service	instead	of	hardcoding	our
passwords	in	the	image,	or	passing	them	in	as	environmental	variables	as	we	did
for	the	Joomla!	service.

We	also	created	a	custom	overlay	network	for	our	application,	so	that	the	two
services	could	talk	to	each	other	across	the	cluster.	That	traffic	was	encrypted	by
default,	which	means	all	communication	between	our	two	services	is	secure.

Docker	for	Azure	has	a	service	that	listens	for	new	services	that	get	added	to	the
Swarm.	When	a	new	service	has	ports	exposed,	it	will	automatically	configure
the	external	load	balancer	to	accept	traffic	for	that	service.	When	someone	hits
the	load	balancer,	it	will	send	the	traffic	to	one	of	the	Swarm	managers,	and	then
the	Swarm	will	route	the	traffic	to	the	correct	host	and	container.

See	also
Docker	for	Azure	deployment	documentation:	https://docs.docker.com/docker-f
or-azure/deploy/

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-azure/deploy/

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Mastering	Docker	-	Second	Edition
Russ	McKendrick,	Scott	Gallagher

ISBN:	978-1-78728-024-3

Become	fluent	in	the	basic	components	and	concepts	of	Docker
Secure	your	containers	and	files	with	Docker's	security	features
Extend	Docker	and	solve	architectural	problems	using	first-	and	third-party
orchestration	tools,	service	discovery,	and	plugins
Leverage	the	Linux	container	virtualization	paradigm	by	creating	highly
scalable	applications

Learn	Docker	-	Fundamentals	of	Docker	18.x
Gabriel	N.	Schenker

ISBN:978-1-78899-702-7

https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/networking-and-servers/learn-docker-fundamentals-docker-18x

Containerize	your	traditional	or	microservice-based	application
Share	or	ship	your	application	as	an	immutable	container	image
Build	a	Docker	swarm	and	a	Kubernetes	cluster	in	the	cloud
Run	a	highly	distributed	application	using	Docker	Swarm	or	Kubernetes
Update	or	rollback	a	distributed	application	with	zero	downtime
Secure	your	applications	via	encapsulation,	networks,	and	secrets
Know	your	options	when	deploying	your	containerized	app	into	the	cloud

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	

	

	Title Page
	Copyright and Credits
	Docker Cookbook Second Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Sections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Get in touch
	Reviews

	Introduction and Installation
	Introduction
	Namespaces
	The PID namespace
	The net namespace
	The IPC namespace
	The mnt namespace
	The UTS namespace
	The user namespace

	Cgroups
	The union filesystem
	The container format

	Verifying requirements for Docker installation
	Getting ready
	How to do it…
	How it works…
	See also

	Installing Docker on Ubuntu
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Installing Docker on CentOS
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing Docker on Linux with an automated script
	Getting ready
	How to do it
	How it works...
	There's more...

	Installing Docker for Windows
	Getting ready
	How to do it
	How it works...
	There's more
	See also

	Installing Docker for Mac
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Pulling an image and running a container
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Adding a nonroot user to administer Docker
	Getting ready
	How to do it...
	How it works…

	Finding help with the Docker command line
	Getting ready
	How to do it…
	How it works…
	See also

	Working with Docker Containers
	Introduction
	Listing/searching for an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Pulling an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing images
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Starting a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the container logs
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Stopping a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Removing all stopped containers
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Setting the restart policy on a container
	Getting ready
	How to do it...
	There's more...
	See also

	Getting privileged access inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing the host device inside a container
	Getting ready
	How to do it...
	How it works...
	See also

	Injecting a new process into a running container
	Getting ready
	How to do it...
	How it works...
	See also

	Reading a container's metadata
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Labeling and filtering containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reaping a zombie inside a container
	Getting ready
	How to do it...
	There's more...
	How it works...
	See also

	Working with Docker Images
	Introduction
	Creating an image from the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating an account with Docker Hub
	Getting ready
	How to do it...
	How it works...
	See also

	Logging in and out of the Docker image registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Publishing an image to the registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Looking at the history of an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Removing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Exporting an image
	Getting ready
	How to do it...
	There's more...
	See also

	Importing an image
	Getting ready
	How to do it...
	There's more...
	See also

	Building an image using a Dockerfile
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building an Apache image – a Dockerfile example
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a private index/registry
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Automated builds – with GitHub and Bitbucket
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a custom base image
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a minimal image using a scratch base image
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images in multiple stages
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Visualizing the image hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Network and Data Management for Containers
	Introduction
	Accessing containers from outside
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Attaching containers to a host network
	Getting ready
	How to do it...
	How it works...
	See also

	Launching containers with no network
	Getting ready
	How to do it...
	How it works...
	See also

	Sharing IP addresses with other containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a user-defined bridge network
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Discovering and load balancing containers
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Persisting data using volumes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing data between the host and the container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Use Cases
	Introduction
	Testing with Docker
	Getting ready
	How to do it…
	How it works…
	There's more…

	Performing CI/CD with Shippable and Heroku
	Getting ready
	How to do it…
	How it works…
	See also

	Performing CI/CD with TravisCI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Setting up PaaS with OpenShift origin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building and deploying an app on OpenShift from the source code
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Docker APIs and SDKs
	Introduction
	Working with images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Building images using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Launching containers using APIs
	How to do it...
	How it works...
	There's more...
	See also

	Performing container operations using APIs
	How to do it...
	How it works...
	See also

	Exploring Docker remote API client libraries
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring the Docker daemon for remote connectivity
	How to do it...
	How it works...
	There's more...
	See also

	Securing the Docker daemon's remote connectivity
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Performance
	Introduction
	Benchmarking CPU performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Benchmarking disk performance
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Benchmarking network performance
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Getting container resource usage using the stats feature
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up performance monitoring
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Docker Orchestration and Hosting a Platform
	Introduction
	Running applications with Docker Compose
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Setting up a cluster with Docker Swarm
	Getting ready
	How to do it
	How it works…
	There's more...
	See also

	Using secrets with Docker Swarm
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using secrets with Kubernetes
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scaling up and down in Kubernetes cluster
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up WordPress with Kubernetes clusters
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Docker Security
	Introduction
	Setting Mandatory Access Control (MAC) with SELinux
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Allowing writes to volumes mounted from the host with SELinux ON
	Getting ready
	How to do it...
	How it works…
	See also

	Removing capabilities to break down the power of a root user inside a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Sharing namespaces between the host and the container
	Getting ready
	How to do it...
	How it works...

	Getting Help and Tips and Tricks
	Introduction
	Starting Docker in debug mode
	Getting ready
	How to do it...
	How it works...
	See also

	Building a Docker binary from the source
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building images without using cached layers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building your own bridge for container communication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing the default OCI runtime
	Getting ready
	How to do it...
	How it works...
	See also

	Selecting the logging driver for containers
	Getting ready
	How to do it
	How it works...
	There's more...
	See also

	Getting real-time Docker events for containers
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also

	Docker on the Cloud
	Introduction
	Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more
	See also

	Deploying WordPress on Docker for AWS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Docker for Azure
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying Joomla! on Docker for Azure
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

