

Docker High Performance

Master performance enhancement practices for
Docker, and unlock faster and more efficient container
deployment that will improve your development workflow

Allan Espinosa

BIRMINGHAM - MUMBAI

Docker High Performance

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-680-5

www.packtpub.com

www.packtpub.com

Credits

Author
Allan Espinosa

Reviewer
Shashikant Bangera

Acquisition Editor
Aaron Lazar

Content Development Editor
Rashmi Suvarna

Technical Editors
Vijin Boricha

Humera Shaikh

Copy Editor
Shruti Iyer

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Jason Monteiro

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Allan Espinosa is a DevOps practitioner living in Tokyo. He is an active open
source contributor to various distributed systems tools, such as Docker and Chef.
Allan maintains several Docker images for popular open source software that were
popular even before their official release from the upstream open source groups.

In his career, Allan has worked on large distributed systems containing hundreds
to thousands of servers in production. He has built scalable applications on various
platforms ranging from large supercomputing centers in the U.S. to production
enterprise systems in Japan.

Allan can be contacted through his Twitter handle @AllanEspinosa. His personal
website at http://aespinosa.github.io contains several blog posts on Docker and
distributed systems in general.

I would like to thank my wife, Kana, for the continuous support that
allowed me to spend significant time writing this book.

http://aespinosa.github.io

About the Reviewer

Shashikant Bangera is a DevOps architect with 16 years of experience in
the IT sector. He has had a vast exposure to DevOps tools with core expertise in
open source DevOps tools. Shashikant has worked on a large number of
multimillion-pound projects. He helped in making the transition from employing
traditional development practices to adopting agile tooling and processes that
increase the release frequency and quality of software. Moreover, Shashikant has
designed an automated on-demand environment with open source tools. He has
hands-on experience with a variety of DevOps tools across the domain.

Shashikant has also reviewed the book Learning Docker by Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Preparing Docker Hosts	 1

Preparing a Docker host	 1
Working with Docker images	 2

Building Docker images	 3
Pushing Docker images to a repository	 4
Pulling Docker images from a repository	 6

Running Docker containers	 7
Exposing container ports	 7
Publishing container ports	 9

--publish-all	 9
--publish	 10

Linking containers	 11
Interactive containers	 12

Summary	 14
Chapter 2: Optimizing Docker Images	 15

Reducing deployment time	 16
Improving image build time	 19

Using registry mirrors	 19
Reusing image layers	 22
Reducing the build context size	 28
Using caching proxies	 30

Reducing Docker image size	 33
Chaining commands	 33
Separating build and deployment images	 35

Summary	 39

Table of Contents

[ii]

Chapter 3: Automating Docker Deployments with Chef	 41
An introduction to configuration management	 41
Using Chef	 43

Signing up for a Chef server	 44
Setting up our workstation	 46
Bootstrap nodes	 48

Configuring the Docker host	 50
Deploying Docker containers	 54
Alternative methods	 58
Summary	 59

Chapter 4: Monitoring Docker Hosts and Containers	 61
The importance of monitoring	 62
Collecting metrics to Graphite	 63

Graphite in production	 67
Monitoring with collectd	 68

Collecting Docker-related data	 71
Running collectd inside Docker	 74

Consolidating logs in an ELK stack	 74
Forwarding Docker container logs	 79
Other monitoring and logging solutions	 81
Summary	 82

Chapter 5: Benchmarking	 83
Setting up Apache JMeter	 84

Deploying a sample application	 84
Installing JMeter	 87

Building a benchmark workload	 89
Creating a test plan in JMeter	 89

Analyzing benchmark results	 92
Viewing the results of JMeter runs	 92

Calculating throughput	 92
Plotting response time	 94

Observing performance in Graphite and Kibana	 95
Tuning the benchmark	 99

Increasing concurrency	 99
Running distributed tests	 100

Other benchmarking tools	 102
Summary	 102

Chapter 6: Load Balancing	 103
Preparing a Docker host farm	 103
Balancing load with Nginx	 105

Table of Contents

[iii]

Scaling out our Docker applications	 108
Deploying with zero downtime	 110

Other load balancers	 114
Summary	 114

Chapter 7: Troubleshooting Containers	 115
Inspecting containers	 115
Debugging from the outside	 119

Tracing system calls	 119
Analyzing network packets	 122
Observing block devices	 124

A stack of troubleshooting tools	 127
Summary	 128

Chapter 8: Onto Production	 129
Performing web operations	 129
Supporting web applications with Docker	 131
Deploying applications	 133
Scaling applications	 134
Further reading	 135
Summary	 135

Index	 137

[v]

Preface
Docker is a great tool to build and deploy our applications. Its portable container
format allows us to run code anywhere, from our developer workstations to popular
cloud computing providers. The workflow around Docker makes development,
testing, and deployment easier and faster. However, this is very important to Docker's
internals and continuously improving best practices to realize its full potential.

What this book covers
Engineers that have a basic understanding of Docker can read the book sequentially,
chapter by chapter. Tech leads who have an advanced understanding of Docker or
have deployed applications in production before can go ahead and read Chapter 8,
Onto Production, first to understand how Docker can fit in your existing applications.
The following is a list of topics covered in this book:

Chapter 1, Preparing Docker Hosts, gives a quick refresher on setting up and running
Docker. It documents the setup that you will be using throughout the book.

Chapter 2, Optimizing Docker Images, shows why it is important to tune your
Docker images. A few tuning tips will be shown to improve the deployability and
performance of our Docker containers.

Chapter 3, Automating Docker Deployments with Chef, shows how to automate the
provisioning and setup of Docker hosts. It will discuss the importance of investing
in automation and how it facilitates a scalable way of deploying your Docker
containers.

Chapter 4, Monitoring Docker Hosts and Containers, gives a walk-through of
setting up a monitoring system with Graphite and logging systems with an
Elasticsearch-Logstash-Kibana (ELK) stack..

Preface

[vi]

Chapter 5, Benchmarking, is a tutorial on how to use Apache JMeter to create
workloads to benchmark the performance of your Docker containers. The chapter
reviews the monitoring system you set up in Chapter 4, Monitoring Docker Hosts and
Containers, to analyze some Docker application benchmark results, such as response
time and throughput.

Chapter 6, Load Balancing, shows you how to configure and deploy an Nginx-based
load balancer Docker container. The chapter also gives a tutorial on how to use
the load balancer you set up to scale out the performance and deployability of our
Docker applications.

Chapter 7, Troubleshooting Containers, illustrates how common debugging tools in
a typical Linux system can be used to troubleshoot your Docker containers. They
describe how each tool works and how it can read the diagnostics coming from your
running Docker containers.

Chapter 8, Onto Production, synthesizes all the performance optimizations you did
in the previous chapter and relates what it means to operate any web application in
production with Docker.

What you need for this book
A Linux workstation with a recent kernel is needed to serve as a host for Docker
1.10.0. This book uses Debian Jessie 8.2 as its base operating system to install and
set up Docker.

More details on how to get Docker up and running is covered in Chapter 1, Preparing
Docker Hosts.

Who this book is for
This book is written for developers and operations people who want to deploy their
Docker application and infrastructure to production. If you have learned the basics of
Docker already but want to move forward to the next level, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will use --link <source>:<alias> to create a link from the source container,
named source, to an alias called webapp."

A block of code is set as follows:

FROM ubuntu:14.04
MAINTAINER Docker Education Team <education@docker.com>
RUN apt-get update
RUN DEBIAN_FRONTEND=noninteractive apt-get \
 install -y -q python-all python-pip
ADD ./webapp/requirements.txt /tmp/requirements.txt
RUN pip install -qr /tmp/requirements.txt
ADD ./webapp /opt/webapp/
WORKDIR /opt/webapp
EXPOSE 5000
CMD ["python", "app.py"]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import os
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello():
 provider = str(os.environ.get('PROVIDER', 'world'))
 return 'Hello '+provider+'!'
if __name__ == '__main__':
 # Bind to PORT if defined, otherwise default to 5000.
 port = int(os.environ.get('PORT', 5000))
 app.run(host='0.0.0.0', port=port)

Any command-line input or output is written as follows:

dockerhost$ docker inspect -f "{{ .NetworkSettings.IPAddress }}" \

 source

172.17.0.15

dockerhost$ docker inspect -f "{{ .NetworkSettings.IPAddress }}" \

 destination

172.17.0.28

dockerhost$ iptables -L DOCKER

Chain DOCKER (1 references)

Preface

[viii]

target prot opt source destination

ACCEPT tcp -- 172.17.0.28 172.17.0.15 tcp dpt:5000

ACCEPT tcp -- 172.17.0.15 172.17.0.28 tcp spt:5000

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Finally,
click on Download Starter Kit."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Preparing Docker Hosts
Docker allows us to deliver applications to our customers faster. It simplifies the
workflows needed to get code from development to production by enabling us to
easily create and launch Docker containers. This chapter will be a quick refresher
on how to get our environment ready to run a Docker-based development and
operations workflow by:

•	 Preparing a Docker host
•	 Working with Docker images
•	 Running Docker containers

Most parts of this chapter are concepts that we are already familiar with and are readily
available on the Docker documentation website. This chapter shows selected commands
and interactions with the Docker host that will be used in the succeeding chapters.

Preparing a Docker host
It is assumed that we are already familiar with how to set up a Docker host. For
most of the chapters of this book, we will run our examples against the following
environment, unless explicitly mentioned otherwise:

•	 Operating system—Debian 8.2 Jessie
•	 Docker version—1.10.0

The following command displays the operating system and Docker version:

$ ssh dockerhost

dockerhost$ lsb_release –a

No LSB modules are available.

Distributor ID: Debian

Description: Debian GNU/Linux 8.2 (jessie)

Preparing Docker Hosts

[2]

Release: 8.2

Codename: jessie

dockerhost$ docker version

Client:

 Version: 1.10.0

 API version: 1.21

 Go version: go1.4.2

 Git commit: a34a1d5

 Built: Fri Nov 20 12:59:02 UTC 2015

 OS/Arch: linux/amd64

Server:

 Version: 1.10.0

 API version: 1.21

 Go version: go1.4.2

 Git commit: a34a1d5

 Built: Fri Nov 20 12:59:02 UTC 2015

 OS/Arch: linux/amd64

If we haven't set up our Docker environment yet, we can follow the instructions on
the Docker website found at https://docs.docker.com/installation/debian to
prepare our Docker host.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Working with Docker images
Docker images are artifacts that contain our application and other supporting
components to help run it, such as the base operating system, runtime and
development libraries, and so on. They get deployed and downloaded into Docker
hosts in order to run our applications as Docker containers. This section will cover
the following Docker commands to work with Docker images:

•	 docker build

•	 docker images

https://docs.docker.com/installation/debian
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[3]

•	 docker push

•	 docker pull

Most of the material in this section is readily available on the
Docker documentation website at https://docs.docker.
com/userguide/dockerimages.

Building Docker images
We will use the Dockerfile of training/webapp from the Docker Education
Team to build a Docker image. The next few steps will show us how to build
this web application:

1.	 To begin, we will clone the Git repository of webapp, which is available at
https://github.com/docker-training/webapp via the following command:
dockerhost$ git clone https://github.com/docker-training/webapp.
git training-webapp

Cloning into 'training-webapp'...

remote: Counting objects: 45, done.

remote: Total 45 (delta 0), reused 0 (de..., pack-reused 45

Unpacking objects: 100% (45/45), done.

Checking connectivity... done.

2.	 Then, let's build the Docker image with the docker build command by
executing the following:
dockerhost$ cd training-webapp

dockerhost$ docker build -t hubuser/webapp .

Sending build context to Docker daemon 121.3 kB

Sending build context to Docker daemon

Step 0 : FROM ubuntu:14.04

Repository ubuntu already being ... another client. Waiting.

 ---> 6d4946999d4f

Step 1 : MAINTAINER Docker Education Team <education@docker.com>

 ---> Running in 0fd24c915568

 ---> e835d0c77b04

Removing intermediate container 0fd24c915568

Step 2 : RUN apt-get update

 ---> Running in 45b654e66939

Ign http://archive.ubuntu.com trusty InRelease

...

Removing intermediate container c08be35b1529

https://docs.docker.com/userguide/dockerimages
https://docs.docker.com/userguide/dockerimages
https://github.com/docker-training/webapp

Preparing Docker Hosts

[4]

Step 9 : CMD python app.py

 ---> Running in 48632c5fa300

 ---> 55850135bada

Removing intermediate container 48632c5fa300

Successfully built 55850135bada

The -t flag is used to tag the image as hubuser/webapp.
Tagging containers as <username>/<imagename> is an
important convention to be able to push our Docker images
in the later section. More details on the docker build
command can be found at https://docs.docker.com/
reference/commandline/build or by running docker
build --help.

3.	 Finally, let's confirm that the image is already available in our Docker host
with the docker images command:
dockerhost$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

hubuser/webapp latest 55850135 5 minutes ago 360 MB

ubuntu 14.04 6d494699 3 weeks ago 188.3 MB

Pushing Docker images to a repository
Now that we have made a Docker image, let's push it to a repository to share and
deploy across other Docker hosts. The default installation of Docker pushes images
to Docker Hub. Docker Hub is a publicly hosted repository of Docker, Inc., where
anyone with an account can push and share their Docker images. The following steps
will show us how to do this:

1.	 Before being able to push to Docker Hub, we will need to authenticate with
the docker login command, as follows:
dockerhost$ docker login

Username: hubuser

Password: ********

Email: hubuser@hubemail.com

WARNING: login credentials saved in /home/hubuser/.dockercfg.

Login Succeeded

If we don't have a Docker Hub account yet, we can follow
the instructions to sign up for an account at https://
hub.docker.com/account/signup.

https://docs.docker.com/reference/commandline/build
https://docs.docker.com/reference/commandline/build
https://hub.docker.com/account/signup
https://hub.docker.com/account/signup

Chapter 1

[5]

2.	 We can now push our images to Docker Hub. As mentioned in the previous
section, the tag of the image identifies <username>/<imagename> in the
repository. Issue the docker push command shown as follows in order to
push our image to Docker Hub:
dockerhost$ docker push hubuser/webapp

The push refers to a repository [hubuser/webapp] (len: 1)

Sending image list

Pushing repository hubuser/webapp (1 tags)

428b411c28f0: Image already pushed, skipping

...

7d04572a66ec: Image successfully pushed

55850135bada: Image successfully pushed

latest: digest: sha256:b00a3d4e703b5f9571ad6a... size: 2745

Now that we have successfully pushed our Docker image, it will be available in Docker
Hub. We can also get more information about the image we pushed in its Docker
Hub page, which is similar to that shown in the following image. In this example, our
Docker Hub URL is https:// hub.docker.com/r/hubuser/webapp:

More details on pushing Docker images to a repository
are available at docker push --help and https://
docs.docker.com/reference/commandline/push.

https://docs.docker.com/reference/commandline/push
https://docs.docker.com/reference/commandline/push

Preparing Docker Hosts

[6]

Docker Hub is a good place to start hosting our Docker images. However, there are
some cases where we want to host our own image repository. For example, when
we want to save bandwidth when pulling images to our Docker hosts. Another
reason could be that our Docker hosts inside a datacenter may have firewalled off the
Internet. In Chapter 2, Optimizing Docker Images, we will discuss in greater detail how
to run our own Docker registry to have an in-house repository of Docker images.

Pulling Docker images from a repository
Once our Docker images are built and pushed to a repository, such as Docker Hub,
we can pull them to our Docker hosts. This workflow is useful when we first build our
Docker image in our development workstation Docker host and want to deploy it to our
production environment's Docker host in the cloud. This removes the need to rebuild
the same image in our other Docker hosts. Pulling images can also be used to grab the
existing Docker images from Docker Hub to build over our own Docker images. So,
instead of cloning the Git repository as we did earlier and redoing the build in another
one of our Docker hosts, we can pull it instead. The next few steps will walk us through
pulling the hubuser/webapp Docker image that we just pushed earlier:

1.	 First, let's clean our existing Docker host to make sure that we will download
the image from Docker Hub. Type the following command to make sure we
have a clean start:
dockerhost$ dockerhost rmi hubuser/webapp

2.	 Next, we can now download the image using docker pull, as follows:
dockerhost$ docker pull hubuser/webapp

latest: Pulling from hubuser/webapp

e9e06b06e14c: Pull complete

...

b37deb56df95: Pull complete

02a8815912ca: Already exists

Digest: sha256:06e9c1983bd6d5db5fba376ccd63bfa529e8d02f23d5

Status: Downloaded newer image for hubuser/webapp:latest

3.	 Finally, let's confirm again that we have downloaded the image successfully
by executing the following command:
dockerhost$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

ubuntu 14.04 6d494699 3 weeks ago 188.3 MB

hubuser/webapp latest 2a8815ca 7 weeks ago 348.8 MB

Chapter 1

[7]

More details on how to pull Docker images is available
at docker pull --help and https://docs.
docker.com/reference/commandline/pull.

Running Docker containers
Now that we have pulled or built Docker images, we can run and test them with the
docker run command. This section will review selected command-line flags that we
will use throughout the succeeding chapters. This section will also use the following
Docker commands to get more information about the Docker containers being run
inside the Docker host:

•	 docker ps

•	 docker inspect

More comprehensive details on all the command-line flags
are found at docker run --help and https://docs.
docker.com/reference/commandline/run.

Exposing container ports
In the training/webapp example, its Docker container is run as a web server. To
have the application serve web traffic outside its container environment, Docker
needs information on which port the application is bound to. Docker refers to this
information as exposed ports. This section will walk us through how to expose port
information when running our containers.

Going back to the training/webapp Docker image we worked on earlier, the
application serves a Python Flask web application that listens to port 5000, as
highlighted here in webapp/app.py:

import os
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello():
 provider = str(os.environ.get('PROVIDER', 'world'))
 return 'Hello '+provider+'!'
if __name__ == '__main__':
 # Bind to PORT if defined, otherwise default to 5000.
 port = int(os.environ.get('PORT', 5000))
 app.run(host='0.0.0.0', port=port)

https://docs.docker.com/reference/commandline/pull
https://docs.docker.com/reference/commandline/pull
https://docs.docker.com/reference/commandline/run
https://docs.docker.com/reference/commandline/run

Preparing Docker Hosts

[8]

Correspondingly, the Docker image makes the Docker host aware that the
application is listening on port 5000 via the EXPOSE instruction in the Dockerfile,
which can be described as follows:

FROM ubuntu:14.04
MAINTAINER Docker Education Team <education@docker.com>
RUN apt-get update
RUN DEBIAN_FRONTEND=noninteractive apt-get \
 install -y -q python-all python-pip
ADD ./webapp/requirements.txt /tmp/requirements.txt
RUN pip install -qr /tmp/requirements.txt
ADD ./webapp /opt/webapp/
WORKDIR /opt/webapp
EXPOSE 5000
CMD ["python", "app.py"]

Now that we have a basic idea of how Docker exposes our container's ports, follow
the next few steps to run the hubuser/webapp container:

1.	 Use docker run with the -d flag to run the container as a daemon process, as
follows:
dockerhost$ docker run --name ourapp -d hubuser/webapp

2.	 Finally, confirm that the Docker host has the container running with port
5000 exposed with docker ps. We can do this through the following
command:
dockerhost:~/training-webapp$ docker ps

CONTAINER ID IMAGE ... STATUS PORTS NAMES

df3e6b788fd8 hubuser... Up 4 seconds 5000/tcp ourapp

In addition to the EXPOSE instruction, exposed ports can be overridden during
runtime with the --expose=[] flag. For example, use the following command to
have the hubuser/webapp application expose ports 4000-4500:

dockerhost$ docker run -d --expose=4000-4500 \

 --name app hubuser/webapp

dockerhost $ docker ps

CONTAINER ID IMAGE ... PORTS NAMES

ca4dc1da26d hubuser/webapp:latest ... 4000-4500/tcp,5000/tcp app

df3e6b788fd8 hubuser/webapp:l... 5000/tcp ourapp

Chapter 1

[9]

This ad hoc docker run flag is useful when debugging applications. For example,
let's say our web application uses ports 4000-4500. However, we normally don't
want these ranges to be available in production. We can then use --expose=[] to
enable it temporarily to spin up a debuggable container. Further details on how to
use techniques such as this to troubleshoot Docker containers will be discussed in
Chapter 7, Troubleshooting Containers.

Publishing container ports
Exposing only makes the port available inside the container. For the application
to be served outside its Docker host, the port needs to be published. The docker
run command uses the -P and -p flags to publish a container's exposed ports. This
section talks about how to use these two flags to publish ports on the Docker host.

--publish-all
The -P or --publish-all flag publishes all the exposed ports of a container to
random high ports in the Docker host port within the ephemeral port range defined
in /proc/sys/net/ipv4/ip_local_port_range. The next few steps will go back to
the hubuser/webapp Docker image that we were working on to explore publishing
exposed ports:

1.	 First, type the following command to run a container publishing all the
exposed ports:
dockerhost$ docker run -P –d --name exposed hubuser/webapp

2.	 Next, let's confirm that the Docker host publishes port 32771 to forward
traffic to the Docker container's exposed port 5000. Type the docker ps
command as follows to perform this verification:
dockerhost$ docker ps

CONTAINER ID IMAGE ... PORTS NAMES

508cf1fb3e5 hubuser/webapp:latest ... 0.0.0.0:32771->5000/tcp exposed

3.	 We can also verify that the allocated port 32771 is within the configured
ephemeral port range of our Docker host:
dockerhost$ cat /proc/sys/net/ipv4/ip_local_port_range

32768 61000

4.	 In addition, we can confirm that our Docker host is listening on the allocated
port 32771 as well via the following command:
dockerhost$ ss -lt 'sport = *:32771'

State Recv-Q Send-Q Local Address:Port Peer Address:Port

LISTEN 0 128 :::32771 :::*

Preparing Docker Hosts

[10]

5.	 Finally, we can validate that the Docker host's port 32771 is indeed mapped
to the running Docker container by confirming that it is the training/
webapp Python application responding by making an actual HTTP request.
Run the following command to confirm:
$ curl http://dockerhost:32771

Hello world!

--publish
The -p or --publish flag publishes container ports to the Docker host. If the container
port is not yet exposed, the said container will also be exposed. According to the
documentation, the -p flag can take the following formats to publish container ports:

•	 containerPort

•	 hostPort:containerPort

•	 ip::containerPort

•	 ip:hostPort:containerPort

By specifying the hostPort, we can specify which port in the Docker host the
container port should be mapped to instead of being assigned a random ephemeral
port. By specifying ip, we can restrict the interfaces that the Docker host will accept
connections from to relay the packets to the mapped Docker container's exposed
port. Going back to the hubuser/webapp example, the following is the command to
map the Python application's exposed port 5000 to our Docker host's port 80 on the
loopback interface:

$ ssh dockerhost

dockerhost$ docker run -d -p 127.0.0.1:80:5000 training/webapp

dockerhost$ curl http://localhost

Hello world!

dockerhost$ exit

logout

Connection to dockerhost closed.

$ curl http://dockerhost

curl: (7) Failed connect to dockerhost:80; Connection refused

With the preceding invocation of docker run, the Docker host can only serve HTTP
requests in the application from http://localhost.

Chapter 1

[11]

Linking containers
The published ports described in the previous section also allow containers to talk to
each other by connecting to the published Docker host ports. Another way to directly
connect containers with each other is establishing container links. Linked containers
allow a source container to send information to the destination containers. It enables
the communicating containers to discover each other in a secure manner.

More details about linked containers can be found on the
Docker documentation site at https://docs.docker.
com/userguide/dockerlinks.

In this section, we will work with the --link flag to connect containers securely. The
next few steps give us an example of how to work with linked containers:

1.	 As preparation, make sure that our hubuser/webapp container runs with
only the exposed ports. We will create a container called source that will
serve as our source container. Type the following command to recreate this
container:
dockerhost$ docker run --name source –d hubuser/webapp

2.	 Next, we will create a destination container. We will use --link
<source>:<alias> to create a link from the source container named source
to an alias called webapp. Type the following command to create this link to
our destination container:
dockerhost$ docker run -d --link source:webapp \

 --name destination busybox /bin/ping webapp

3.	 Let's now confirm that the link was made by inspecting the newly created
destination container called destination. Execute the following command:
dockerhost$ docker inspect -f "{{ .HostConfig.Links }}" \

 destination

[/source:/destination/webapp]

What happened during the linking process was that the Docker host created a secure
tunnel between the two containers. We can confirm this tunnel in the Docker host's
iptables, as follows:

dockerhost$ docker inspect -f "{{ .NetworkSettings.IPAddress }}" \

 source

172.17.0.15

dockerhost$ docker inspect -f "{{ .NetworkSettings.IPAddress }}" \

 destination

https://docs.docker.com/userguide/dockerlinks
https://docs.docker.com/userguide/dockerlinks

Preparing Docker Hosts

[12]

172.17.0.28

dockerhost$ iptables -L DOCKER

Chain DOCKER (1 references)

target prot opt source destination

ACCEPT tcp -- 172.17.0.28 172.17.0.15 tcp dpt:5000

ACCEPT tcp -- 172.17.0.15 172.17.0.28 tcp spt:5000

In the preceding iptables, the Docker host allowed the destination container called
destination (172.17.0.28) to accept outbound connections to port 5000 of the
source container called source (172.17.0.15). The second iptable's entry allows
the container called source to receive connections to its port 5000 from the container
called destination.

In addition to the secure connections established by the Docker host between
containers, the Docker host also exposes information about the source container to
the destination container through the following:

•	 Environment variables
•	 Entries in /etc/hosts

These two sources of information will be further explored in the next section as an
example use case of working with interactive containers.

Interactive containers
By specifying the -i flag, we can specify that a container running in the foreground
is attached to the standard input stream. By combining it with the -t flag, a
pseudoterminal is also allocated to our container. With this, we can use our
Docker container as an interactive process, similar to normal shells. This feature is
useful when we want to debug and inspect what is happening inside our Docker
containers. Continuing from the previous section, we can debug what happens when
containers are linked through the following steps:

1.	 To prepare, type the following command to establish an interactive container
session linking to the container called source that we ran earlier:
dockerhost$ docker run -i -t --link source:webapp \

 --name interactive_container \

 busybox /bin/sh

/ #

Chapter 1

[13]

2.	 Next, let's first explore the environment variables that are exposed to the
interactive destination container via the following command:
/ # env | grep WEBAPP

WEBAPP_NAME=/interactive_container/webapp

WEBAPP_PORT_5000_TCP_ADDR=172.17.0.15

WEBAPP_PORT_5000_TCP_PORT=5000

WEBAPP_PORT_5000_TCP_PROTO=tcp

WEBAPP_PORT_5000_TCP=tcp://172.17.0.15:5000

WEBAPP_PORT=tcp://172.17.0.15:5000

In general, the following environment variables are set in linked
containers:

•	 <alias>_NAME=/container_name/alias_name for each
source container

•	 <alias>_PORT_<port>_<protocol> shows the URL of each
exposed port. It also serves as a unique prefix expanding to the
following more environment variables:
•	 <prefix>_ADDR contains the IP address of the source container
•	 <prefix>_PORT shows the exposed port's number
•	 <prefix>_PROTO describes the protocol of the exposed port

which is either TCP or UDP
•	 <alias>_PORT shows the source container's first exposed port

3.	 The second container discovery feature in linked containers is an updated /
etc/hosts file. The alias of the webapp linked container is mapped to the IP
address of the source source container The name of the source container is
also mapped to the same IP address. The following snippet is the content of
the /etc/hosts file inside our interactive container session, and it contains
this mapping:
172.17.0.29 d4509e3da954
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.15 webapp 85173b8686fc source

Preparing Docker Hosts

[14]

4.	 Finally, we can use the alias to connect to our source container. In the
following example, we will connect to the web application running in our
source container by making an HTTP request to its alias, webapp:
/ # nc webapp 5000

GET /

Hello world!

/ #

Interactive containers can be used to build containers as well,
together with docker commit. However, this is a tedious
process, and this development process doesn't scale beyond a
single developer. Use docker build instead and manage our
Dockerfile in version control.

Summary
Hopefully by this time, we are refamiliarized with most of the commands that will
be used throughout the book. We prepared a Docker host to be able to interact with
Docker containers. We then built, downloaded, and uploaded various Docker images
to develop and deploy containers to our development and production Docker hosts
alike. Finally, we ran Docker containers from built or downloaded Docker images. In
addition, we established some basic skills of how to communicate and interact with
running containers by learning about how Docker containers are run.

In the next chapter, you'll learn how to optimize our Docker images. So, let's dive
right in!

[15]

Optimizing Docker Images
Now that we have built and deployed our Docker containers, we can start reaping
the benefits of using them. We have a standard package format that lets developers
and sysadmins work together to simplify the management of our application's
code. Docker's container format allows us to rapidly iterate the versions of our
application and share it with the rest of our organization. Our development, testing,
and deployment time has decreased because of the lightweight feature and speed
of Docker containers. The portability of Docker containers allows us to scale our
applications from physical servers to virtual machines in the cloud.

However, we will start noticing that the same reasons for which we used Docker in
the first place are losing their effect. Development time is increasing because we have
to always download the newest version of our application's Docker image runtime
library. Deployment takes a lot of time because Docker Hub is slow. At worst,
Docker Hub may be down, and we would not be able to do any deployment at all.
Our Docker images are now so big, in the order of gigabytes, that simple single-line
updates take the whole day.

This chapter will cover the following scenarios of how Docker containers get out of
hand and suggest steps to remediate the problems mentioned earlier:

•	 Reducing image deployment time
•	 Reducing image build time
•	 Reducing image size

Optimizing Docker Images

[16]

Reducing deployment time
As time goes by while we build our Docker container, its size gets bigger and
bigger. Updating running containers in our existing Docker hosts is not a problem.
Docker takes advantage of the Docker image layers that we build over time as our
application grows. However, consider a case in which we want to scale out our
application. This requires deploying more Docker containers to additional Docker
hosts. Each new Docker host has to then download all the large image layers that
we built over time. This section will show you how a large Docker application affects
deployment time on new Docker hosts. First, let's build this problematic Docker
application by carrying out the following steps:

1.	 Write the following Dockerfile to create our "large" Docker image:
FROM debian:jessie

RUN dd if=/dev/urandom of=/largefile bs=1024 count=524288

2.	 Next, build the Dockerfile as hubuser/largeapp using the following
command:
dockerhost$ docker build -t hubuser/largeapp .

3.	 Take note of how large the created Docker image is. In the following
illustrated output, the size is 662 MB:
dockerhost$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

hubuser/largeapp latest 450e3123 5 minutes ago 662 MB

debian jessie 9a61b6b1 4 days ago 125.2 MB

4.	 Using the time command, record how long it takes to push and pull it from
Docker Hub, as follows:
dockerhost$ time docker push hubuser/largeapp

The push refers to a repository [hubuser/largeapp] (len: 1)

450e319e42c3: Image already exists

9a61b6b1315e: Image successfully pushed

902b87aaaec9: Image successfully pushed

Digest: sha256:18ef52e36996dd583f923673618483a4466aa2d1d0d6ce
9f0...

real 11m34.133s

user 0m0.164s

sys 0m0.104s

dockerhost$ time docker pull hubuser/largeapp

Chapter 2

[17]

latest: Pulling from hubuser/largeapp

902b87aaaec9: Pull complete

9a61b6b1315e: Pull complete

450e319e42c3: Already exists

Digest: sha256:18ef52e36996dd583f923673618483a4466aa2d1d0d6ce
9f0...

Status: Downloaded newer image for hubuser/largeapp:latest

real 2m56.805s

user 0m0.204s

sys 0m0.188s

As we can note in the preceding time values highlighted, it takes a lot of time when
we perform docker push to upload an image to Docker Hub. Upon deployment,
docker pull takes just as long in order to propagate our newly created Docker
image to our new production Docker hosts. These upload and download time values
also depend on the network connection between Docker Hub and our Docker hosts.
Ultimately, when Docker Hub goes down, we will lose the ability to deploy new
Docker containers or scale out to additional Docker hosts on demand.

In order to take advantage of Docker's fast delivery of applications and ease of
deployment and scaling, it is important that our method of pushing and pulling
Docker images is reliable and fast. Fortunately, we can run our own Docker
registry to be able to host and distribute our Docker images without relying on the
public Docker Hub. The next few steps describe how to set this up to confirm the
improvement in performance:

1.	 Let's run our own Docker registry by typing the following command. This
gives us a local one running at tcp://dockerhost:5000:
dockerhost$ docker run -p 5000:5000 -d registry:2

2.	 Next, let's confirm how our Docker image deployments have improved. First,
create a tag for the image we created earlier in order to push it to the local
Docker registry via the following:
dockerhost$ docker tag hubuser/largeapp \

 dockerhost:5000/largeapp

3.	 Observe how much faster it is to push the same Docker image over our
newly running Docker registry. The following tests show that pushing
Docker images is now at least 10 times faster:
dockerhost$ time docker push dockerhost:5000/largeapp

The push refers to a ...[dockerhost:5000/largeapp] (len: 1)

Optimizing Docker Images

[18]

...

real 0m52.928s

user 0m0.084s

sys 0m0.048s

4.	 Now, confirm the new performance of the pulling of our Docker images
before testing that of the pulling of images from our local Docker registry.
Let's make sure we remove the image we built earlier. The following tests
show that the downloading of Docker images is now 30 times faster:
dockerhost$ docker rmi dockerhost:5000/largeapp \

 hubuser/largeapp

Untagged: dockerhost:5000/largeapp:latest

Untagged: hubuser/largeapp:latest

Deleted:
549d099c0edaef424edb6cfca8f16f5609b066ba744638990daf3b43...

dockerhost$ time docker pull dockerhost:5000/largeapp

latest: Pulling from dockerhost:5000/largeapp

549d099c0eda: Already exists

902b87aaaec9: Already exists

9a61b6b1315e: Already exists

Digest: sha256:323bed623625b3647a6c678ee6840be23616edc357dbe07c5a0
c68b62dd52ecf

Status: Downloaded newer image for dockerhost:5000/largeapp:latest

real 0m10.444s

user 0m0.160s

sys 0m0.056s

The main cause of these improvements is that we uploaded and downloaded the
same images from our local network. We saved on the bandwidth of our Docker
hosts, and our deployment time got shorter. The best part of all is that we no longer
have to rely on the availability of Docker Hub in order to deploy.

In order to deploy our Docker images to other Docker hosts,
we need to set up security for our Docker registry. Details
on how to set this up are outside the scope of this book.
However, more details on how to set up a Docker registry
are available at https://docs.docker.com/registry/
deploying.

https://docs.docker.com/registry/deploying
https://docs.docker.com/registry/deploying

Chapter 2

[19]

Improving image build time
Docker images are the main resulting artifacts that developers work on all the
time. The simplicity of Docker files and speed of container technology allows us to
enable rapid iteration on the application that we are working on. However, these
advantages of using Docker start to diminish once the time it takes to build Docker
images starts to grow uncontrollably. In this section, we will discuss some cases of
building Docker images that take some time to run. Then, we will give you a few tips
on how to remediate these effects.

Using registry mirrors
A big contributor to image build time is the time spent in fetching upstream images.
Suppose we have a Dockerfile with the following line:

FROM java:8u45-jre

This image will have to download java:8u45-jre to be built. When we move to
another Docker host, or if the java:8u45-jre image is updated in Docker Hub,
our build time will increase momentarily. Configuring a local registry mirror will
reduce such image build time instances. This is very useful in an organization
setting, where each developer has his/her own Docker hosts at their workstations.
The organization's network only downloads the image from Docker Hub once. Each
workstation Docker host in the organization can now directly fetch the images from
the local registry mirror.

Setting up a registry mirror is as simple as setting up a local registry in the previous
section. However, in addition, we need to configure the Docker host to be aware
of this registry mirror by passing the --registry-mirror option to the Docker
daemon. Here are the steps to perform this setup:

1.	 In our Debian Jessie Docker host, configure the Docker daemon by updating
and creating a Systemd drop-in file at /etc/systemd/system/docker.
service.d/10-syslog.conf to contain the following line:
[Service]
ExecStart=
ExecStart=/usr/bin/docker daemon-H fd:// \
 --registry-mirror=http://dockerhost:5000

2.	 Now, we will reload Systemd to pick up the new drop-in configuration for
the docker.service unit, as follows:
dockerhost$ systemctl daemon-reload

Optimizing Docker Images

[20]

3.	 Next, restart the Docker daemon to start it with the newly configured
Systemd unit via the following command:
dockerhost$ systemctl restartdocker.service

4.	 Finally, run the registry mirror Docker container. Run the following
command:
dockerhost$ docker run -p 5000:5000 -d \

 -e STANDALONE=false \

 -e MIRROR_SOURCE=https://registry-1.docker.io \

 -e MIRROR_SOURCE_INDEX=https://index.docker.io \
 registry

To confirm that the registry mirror works as expected, perform the following steps:

1.	 Build the Dockerfile described at the start of this subsection and take note
of its build time. Note that most of the time needed to build the Docker
image is taken up by the time to download the upstream java:8u45-jre
Docker image, as shown in the following command:
dockerhost$ time docker build -t hubuser/mirrorupstream .

Sending build context to Docker daemon 2.048 kB

Sending build context to Docker daemon

Step 0 : FROM java:8u45-jre

Pulling repository java

4ac125456dd3: Download complete

902b87aaaec9: Download complete

9a61b6b1315e: Download complete

1ff9f26f09fb: Download complete

6f6bffbbf095: Download complete

4b61c52d7fe4: Download complete

1a9b1e5c4dd5: Download complete

2e8cff440182: Download complete

46bc3bbea0ec: Download complete

3948efdeee11: Download complete

918f0691336e: Download complete

Status: Downloaded newer image for java:8u45-jre

 ---> 4ac125456dd3

Successfully built 4ac125456dd3

real 1m58.095s

user 0m0.036s

sys 0m0.028s

Chapter 2

[21]

2.	 Now, remove the image and its upstream dependency and rebuild the image
again using the following commands:
dockerhost$ docker rmi java:8u45-jre hubuser/mirrorupstream

dockerhost$ time docker build -t hubuser/mirrorupstream .

Sending build context to Docker daemon 2.048 kB

Sending build context to Docker daemon

Step 0 : FROM java:8u45-jre

Pulling repository java

4ac125456dd3: Download complete

902b87aaaec9: Download complete

9a61b6b1315e: Download complete

1ff9f26f09fb: Download complete

6f6bffbbf095: Download complete

4b61c52d7fe4: Download complete

1a9b1e5c4dd5: Download complete

2e8cff440182: Download complete

46bc3bbea0ec: Download complete

3948efdeee11: Download complete

918f0691336e: Download complete

Status: Downloaded newer image for java:8u45-jre

 ---> 4ac125456dd3

Successfully built 4ac125456dd3

real 0m59.260s

user 0m0.032s

sys 0m0.028s

When the java:8u45-jre Docker image was downloaded for the second time, it was
retrieved from the local registry mirror instead of being connected to Docker Hub.
Setting up a Docker registry mirror improved the time of downloading the upstream
image by almost two times the usual. If we have other Docker hosts pointed at this
same registry mirror, it will do the same thing: skip the downloading from Docker Hub.

This guide on how to set up a registry mirror is based on the
one on the Docker documentation website. More details can
be found at https://docs.docker.com/articles/
registry_mirror.

https://docs.docker.com/articles/registry_mirror
https://docs.docker.com/articles/registry_mirror

Optimizing Docker Images

[22]

Reusing image layers
As we already know, a Docker image consists of a series of layers combined using
the union filesystem of a single image. When we work on building our Docker
image, the preceding instructions in our Dockerfile are examined by Docker to
check whether there is an existing image in its build cache that can be reused instead
of creating a similar or duplicate image for these instructions. By finding out how
the build cache works, we can greatly increase the speed of the subsequent builds
of our Docker images. A good example of this is when we develop our application's
behavior; we will not add dependencies to our application all the time. Most of the
time, we will just want to update the core behavior of the application itself. Knowing
this, we can design the way we will build our Docker images around this in our
development workflow.

Detailed rules on how Dockerfile instructions are cached
can be found at http://docs.docker.com/articles/
dockerfile_best-practices/#build-cache.

For example, suppose we are working on a Ruby application whose source tree looks
similar to the following:

The config.ru would be as follows:

app = proc do |env|
 [200, {}, %w(hello world)]
end
run app

The Gemfile would be as follows:

source 'https://rubygems.org'

gem 'rack'
gem 'nokogiri'

http://docs.docker.com/articles/dockerfile_best-practices/#build-cache
http://docs.docker.com/articles/dockerfile_best-practices/#build-cache

Chapter 2

[23]

The Dockerfile would be as follows:

FROM ruby:2.2.2

ADD . /app
WORKDIR /app
RUN bundle install

EXPOSE 9292
CMD rackup -E none

The following steps will show you how to build the Ruby application we wrote
earlier as a Docker image:

1.	 First, let's build this Docker image through the following command. Note
that the time it took to build is around one minute:
dockerhost$ time docker build -t slowdependencies .

Sending build context to Docker daemon 4.096 kB

Sending build context to Docker daemon

Step 0 : FROM ruby:2.2.2

 ---> d763add83c94

Step 1 : ADD . /app

 ---> 6663d8b8b5d4

Removing intermediate container 2fda8dc40966

Step 2 : WORKDIR /app

 ---> Running in f2bec0dea1c9

 ---> 289108c6655f

Removing intermediate container f2bec0dea1c9

Step 3 : RUN bundle install

 ---> Running in 7025de40c01d

Don't run Bundler as root. Bundler can ask for sudo if ...

Fetching gem metadata from https://rubygems.org/.........

Fetching version metadata from https://rubygems.org/..

Resolving dependencies...

Installing mini_portile 0.6.2

Installing nokogiri 1.6.6.2 with native extensions

Installing rack 1.6.4

Using bundler 1.10.5

Bundle complete! 2 Gemfile dependencies, 4 gems now installed.

Optimizing Docker Images

[24]

Bundled gems are installed into /usr/local/bundle.

 ---> ab26818ccd85

Removing intermediate container 7025de40c01d

Step 4 : EXPOSE 9292

 ---> Running in e4d7647e978b

 ---> a602159cb786

Removing intermediate container e4d7647e978b

Step 5 : CMD rackup -E none

 ---> Running in 407308682d13

 ---> bffce44702f8

Removing intermediate container 407308682d13

Successfully built bffce44702f8

real 0m54.428s

user 0m0.004s

sys 0m0.008s

2.	 Next, update config.ru to change the application's behavior, as follows:
app = proc do |env|
 [200, {}, %w(hello other world)]
end
run app

3.	 Let's now build again the Docker image and note the time it takes to finish
the build. Run the following command:
dockerhost$ time docker build -t slowdependencies .

Sending build context to Docker daemon 4.096 kB

Sending build context to Docker daemon

Step 0 : FROM ruby:2.2.2

 ---> d763add83c94

Step 1 : ADD . /app

 ---> 05234a367589

Removing intermediate container e9d33db67914

Step 2 : WORKDIR /app

 ---> Running in 65b3f40d6228

 ---> c656079a833f

Removing intermediate container 65b3f40d6228

Step 3 : RUN bundle install

Chapter 2

[25]

 ---> Running in c84bd4aa70a0

Don't run Bundler as root. Bundler can ask for sudo ...

Fetching gem metadata from https://rubygems.org/.........

Fetching version metadata from https://rubygems.org/..

Resolving dependencies...

Installing mini_portile 0.6.2

Installing nokogiri 1.6.6.2 with native extensions

Installing rack 1.6.4

Using bundler 1.10.5

Bundle complete! 2 Gemfile dep..., 4 gems now installed.

Bundled gems are installed into /usr/local/bundle.

 ---> 68f5dc363171

Removing intermediate container c84bd4aa70a0

Step 4 : EXPOSE 9292

 ---> Running in 68c1462c2018

 ---> c257c74eb7a8

Removing intermediate container 68c1462c2018

Step 5 : CMD rackup -E none

 ---> Running in 7e13fd0c26f0

 ---> e31f97d2d96a

Removing intermediate container 7e13fd0c26f0

Successfully built e31f97d2d96a

real 0m57.468s

user 0m0.008s

sys 0m0.004s

We can note that even with a single-line change to our application, we have to run
bundle install for each iteration of the Docker image that we are building. This
can be very inefficient, and it disrupts the flow of our development because it takes
one minute to build and run our Docker application. For impatient developers such
as us, this feels like an eternity!

Optimizing Docker Images

[26]

In order to optimize this workflow, we can separate the phase in which we prepare
our application's dependencies from that in which we prepare its actual artifacts. The
next steps show us how to do this:

1.	 First, update our Dockerfile with the following changes:
FROM ruby:2.2.2

ADD Gemfile /app/Gemfile
WORKDIR /app
RUN bundle install
ADD . /app

EXPOSE 9292
CMD rackup -E none

2.	 Next, build the newly refactored Docker image via this command:
dockerhost$ time docker build -t separatedependencies .

Sending build context to Docker daemon 4.096 kB

Sending build context to Docker daemon

...

Step 3 : RUN bundle install

 ---> Running in b4cbc6803947

Don't run Bundler as root. Bundler can ask for sudo if it is
needed, and

installing your bundle as root will break this application for all
non-root

users on this machine.

Fetching gem metadata from https://rubygems.org/.........

Fetching version metadata from https://rubygems.org/..

Resolving dependencies...

Installing mini_portile 0.6.2

Installing nokogiri 1.6.6.2 with native extensions

Installing rack 1.6.4

Using bundler 1.10.5

Bundle complete! 2 Gemfile dependencies, 4 gems now installed.

Bundled gems are installed into /usr/local/bundle.

 ---> 5c009ed03934

Removing intermediate container b4cbc6803947

Chapter 2

[27]

Step 4 : ADD . /app

...

Successfully built ff2d4efd233f

real 0m57.908s

user 0m0.008s

sys 0m0.004s

3.	 The build time is still the same at first, but note the image ID generated
in Step 3. Now, try updating config.ru again and rebuilding the image,
as follows:
dockerhost$ vi config.ru # edit as we please

dockerhost$ time docker build -t separatedependencies .

Sending build context to Docker daemon 4.096 kB

Sending build context to Docker daemon

Step 0 : FROM ruby:2.2.2

 ---> d763add83c94

Step 1 : ADD Gemfile /app/Gemfile

 ---> Using cache

 ---> a7f68475cf92

Step 2 : WORKDIR /app

 ---> Using cache

 ---> 203b5b800611

Step 3 : RUN bundle install

 ---> Using cache

 ---> 5c009ed03934

Step 4 : ADD . /app

 ---> 30b2bfc3f313

Removing intermediate container cd643f871828

Step 5 : EXPOSE 9292

 ---> Running in a56bfd37f721

 ---> 553ae65c061c

Removing intermediate container a56bfd37f721

Step 6 : CMD rackup -E none

 ---> Running in 0ceaa70bee6c

 ---> 762b7ccf7860

Removing intermediate container 0ceaa70bee6c...

Optimizing Docker Images

[28]

Successfully built 762b7ccf7860

real 0m0.734s

user 0m0.008s

sys 0m0.000s

As we can note in the preceding output, docker build reused the cache until Step
3 as there was no change in Gemfile. Note that our Docker image's build time
decreased by 80 times the usual!

This kind of refactoring for our Docker image is also useful to reduce deployment
time. As our Docker hosts in production already have image layers until Step 3 of
our Docker image in the previous version of our container, having a new version of
our Docker application will only require the Docker host to pull new image layers
for Step 4 to Step 6 in order to update our application.

Reducing the build context size
Let's suppose that we have a Dockerfile in the Git version control similar to
the following:

Chapter 2

[29]

At some point, we will notice that our .git directory is too big. This is probably the
result of having more and more code committed into our source tree:

dockerhost$ du -hsc .git

1001M .git

1001M total

Now, when we build our Docker application, we will notice that the time taken to
build our Docker application is very big as well. Take a look at the following output:

dockerhost$ time docker build -t hubuser/largecontext .

Sending build context to Docker daemon 1.049 GB

Sending build context to Docker daemon

...

Successfully built 9a61b6b1315e

real 0m17.342s

user 0m0.408s

sys 0m1.360s

If we look closely at the preceding output, we will see that the Docker client
uploaded the whole .git directory of 1 GB onto the Docker daemon because it is a
part of our build context. Also, as this is a large build context, it takes time for the
Docker daemon to receive it before being able to start building our Docker image.

However, these files are not necessary to build our application. Moreover, these
Git-related files are not at all needed when we run our application in production. We
can set Docker to ignore a specific set of files that are not needed to build our Docker
image. Follow the next few steps to perform this optimization:

1.	 Create a .dockerignore file with the following content in the same directory
as our Dockerfile:
.git

Optimizing Docker Images

[30]

2.	 Finally, build our Docker image again by executing the following command:

dockerhost$ time docker build -t hubuser/largecontext .

Sending build context to Docker daemon 3.072 kB

...

Successfully built 9a61b6b1315e

real 0m0.030s

user 0m0.004s

sys 0m0.004s

Note now that the build time is improved by over 500 times the usual just by
decreasing the size of the build context!

More information on how to use .dockerignore files can
be found at https://docs.docker.com/reference/
builder/#dockerignore-file.

Using caching proxies
Another common source causing the long runtime in building Docker images are
instructions that download dependencies. For example, a Debian-based Docker
image needs to fetch packages from APT repositories. Depending on how large
these packages are, the build time for an apt-get install instruction may be long.
A useful technique to reduce the time for these build instructions is to introduce
proxies that cache such dependency packages. A popular caching proxy is apt-
cacher-ng. This section will describe running and setting it up to improve our
Docker image building workflow.

The following is an example Dockerfile that installs a lot of Debian packages:

FROM debian:jessie

RUN echo deb http://httpredir.debian.org/debian \
 jessie-backports main > \
 /etc/apt/sources.list.d/jessie-backports.list
RUN apt-get update &&\
 apt-get --no-install-recommends \
 install -y openjdk-8-jre-headless

https://docs.docker.com/reference/builder/#dockerignore-file
https://docs.docker.com/reference/builder/#dockerignore-file

Chapter 2

[31]

Note that its build time in the following output is quite long because this
Dockerfile file downloads a lot of dependencies and packages related to Java
(openjdk-8-jre-headless). Run the following command:

dockerhost$ time docker build -t beforecaching .

...

Successfully built 476f2ebd35f6

real 3m22.949s

user 0m0.048s

sys 0m0.020s

In order to improve the workflow for building this Docker image, we will set up a
caching proxy with apt-cacher-ng. Fortunately, it is already available as a
ready-to-run container from Docker Hub. Follow the next few steps to prepare
apt-cacher-ng:

1.	 Run the following command in our Docker host to start apt-cacher-ng:
dockerhost$ docker run -d -p 3142:3142 sameersbn/apt-cacher-ng

2.	 After this, we will use the caching proxy we ran earlier, as described in the
following Dockerfile:
FROM debian:jessie

RUN echo Acquire::http { \
 Proxy\"http://dockerhost:3142\"\; \
 }\;>/etc/apt/apt.conf.d/01proxy

3.	 Build the Dockerfile we created earlier as a Docker image tagged as
hubuser/debian:jessie via the following command line:
dockerhost$ docker buid -t hubuser/debian:jessie

4.	 Finally, make hubuser/debian:jessie our new base Docker image
by updating our Dockerfile that installs a lot of Debian packages for
dependencies such as the following:
FROM hubuser/debian:jessie

RUN echo deb http://httpredir.debian.org/debian \
 jessie-backports main > \
 /etc/apt/sources.list.d/jessie-backports.list
RUN apt-get update && \
 apt-get --no-install-recommends \
 install -y openjdk-8-jre-headless

Optimizing Docker Images

[32]

5.	 To confirm the new workflow, run an initial build to warm up the cache
using the following command:
dockerhost$ docker build -t aftercaching .

6.	 Finally, execute the following commands to build the image again. However,
make sure to remove the image first:
dockerhost$ docker rmi aftercaching
dockerhost$ time docker build -t aftercaching .

...

Removing intermediate container 461637e26e05

Successfully built 2b80ca0d16fd

real 0m31.049s

user 0m0.044s

sys 0m0.024s

Note how the subsequent build is faster even though we do not use Docker's build
cache. This technique is useful when we develop base Docker images for our team
or organization. Team members that try to rebuild our Docker image will run their
builds 6.5 times faster because they can download packages from our organization's
cache proxy that we prepared earlier. Builds on our continuous integration server
will also be faster upon check-in because we already warmed up the caching server
during development.

This section gave a glance at how to use a very specific caching server. Here are a
few others that we can use and their corresponding pages of documentation:

•	 apt-cacher-ng: This supports caching Debian, RPM, and other
distribution-specific packages and can be found at https://www.unix-ag.
uni-kl.de/~bloch/acng.

•	 Sonatype Nexus: This supports Maven, Ruby Gems, PyPI, and NuGet
packages out of the box. It is available at http://www.sonatype.org/nexus.

•	 Polipo: This is a generic caching proxy useful for development that can be
found at http://www.pps.univ-paris-diderot.fr/~jch/software/polipo.

•	 Squid: This is another popular caching proxy that can work with
other types of network traffic as well. You can look this up at
http://www.squid-cache.org.

https://www.unix-ag.uni-kl.de/~bloch/acng
https://www.unix-ag.uni-kl.de/~bloch/acng
http://www.sonatype.org/nexus
http://www.pps.univ-paris-diderot.fr/~jch/software/polipo
http://www.squid-cache.org

Chapter 2

[33]

Reducing Docker image size
As we keep working on our Docker applications, the size of images tends to get
bigger and bigger if we are not careful. Most people using Docker observe that their
team's custom Docker images increase in size to at least 1 GB or more. Having larger
images means that the time to build and deploy our Docker application increases
as well. As a result, the feedback we get to determine the result of the application
we're deploying gets reduced. This diminishes the benefits of Docker, enabling us to
develop and deploy our applications in rapid iterations.

This section examines some further details of how Docker's image layers work and
how they affect the size of the resulting image. Next, we will learn how to optimize
these image layers by exploiting how Docker images work.

Chaining commands
Docker images get big because some instructions are added that are unnecessary
to build or run an image. A popular use case is packaging metadata and cache.
After installing the packages necessary to build and run our application, such
downloaded packages are no longer needed. The following patterns of instructions
in a Dockerfile are commonly found in the wild (such as in Docker Hub) to clean
the images of such unnecessary files from Docker images:

FROM debian:jessie

RUN echo deb http://httpredir.debian.org/debian \
jessie-backports main \
> /etc/apt/sources.list.d/jessie-backports.list
RUN apt-get update
RUN apt-get --no-install-recommends \
install -y openjdk-8-jre-headless
RUN rm -rfv /var/lib/apt/lists/*

However, a Docker image's size is basically the sum of each individual layer image;
this is how union filesystems work. Hence, the clean steps do not really delete the
space. Take a look at the following commands:

dockerhost$ docker build -t fakeclean .

dockerhost$ docker history fakeclean

IMAGE CREATED CREATED BY SIZE

33c8eedfc24a 2 minutes ago /bin/sh -c rm -rfv /var/lib... 0 B

48b87c35b369 2 minutes ago /bin/sh -c apt-get install ... 318.6 MB

dad9efad9e2d 4 minutes ago /bin/sh -c apt-get update 9.847 MB

Optimizing Docker Images

[34]

a8f7bf731a7d 5 minutes ago /bin/sh -c echo 'deb http:/... 61 B

9a61b6b1315e 6 days ago /bin/sh -c #(nop) CMD ["/bi... 0 B

902b87aaaec9 6 days ago /bin/sh -c #(nop) ADD file:... 125.2 MB

There is no such thing as "negative" layer size. Hence, each instruction in a
Dockerfile can only keep the image size constant or increase it. Also, as each step also
introduces some metadata, the total size keeps increasing.

In order to reduce the total image size, the cleaning steps should be performed in
the same image layer. Hence, the solution is to chain commands from the previously
multiple instructions into a single one. As Docker uses /bin/sh to run each instruction,
we can use the Bourne shell's && operator to perform the chaining, as follows:

FROM debian:jessie

RUN echo deb http://httpredir.debian.org/debian \
 jessie-backports main \
 > /etc/apt/sources.list.d/jessie-backports.list
RUN apt-get update && \
 apt-get --no-install-recommends \
 install -y openjdk-8-jre-headless && \
 rm -rfv /var/lib/apt/lists/*

Note how each individual layer is much smaller now. As the individual layers'
sizes were reduced, the total image size also decreased. Now, run the following
commands and take a look at the output:

dockerhost$ docker build -t trueclean .
dockerhost$ docker history trueclean

IMAGE CREATED CREATED BY SIZE

03d0b15bad7f About a minute ago /bin/sh -c apt-get update... 318.6 MB

a8f7bf731a7d 9 minutes ago /bin/sh -c echo deb h... 61 B

9a61b6b1315e 6 days ago /bin/sh -c #(nop) CMD... 0 B

902b87aaaec9 6 days ago /bin/sh -c #(nop) ADD... 125.2 MB

Chapter 2

[35]

Separating build and deployment images
Another source of unnecessary files in Docker images are build time dependencies.
Source libraries, such as compilers and source header files, are only necessary when
building an application inside a Docker image. Once the application is built, these
files are no longer necessary as only the compiled binary and related shared libraries
are needed to run the application.

For example, build the following application that is now ready to be deployed to a
Docker host that we prepared in the cloud. The following source tree is a simple web
application written in Go:

The following is the content of hello.go describing the application:

package main

import (
 "fmt"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "hello world")
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

Optimizing Docker Images

[36]

The following corresponding Dockerfile shows how to build the source code and
run the resulting binary:

FROM golang:1.4.2

ADD hello.go hello.go
RUN go build hello.go
EXPOSE 8080
ENTRYPOINT ["./hello"]

In the next few steps, we will show you how this Docker application's image size
gets big:

1.	 First, build the Docker image and note its size. We will run the following
commands for this:
dockerhost$ docker build -t largeapp .

dockerhost$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

largeapp latest 47a64e67fb81 4 minute... 523.1 MB

golang 1.4.2 124e2127157f 5 days ago 517.3 MB

2.	 Now, compare this to the size of the actual application that is run, as follows:
dockerhost$ docker run --name large -d largeapp

dockerhost$ docker exec -it large/bin/ls -lh

total 5.6M

drwxrwxrwx 2 root root 4.0K Jul 14 06:26 bin

-rwxr-xr-x 1 root root 5.6M Jul 20 02:40 hello

-rw-r--r-- 1 root root 231 Jul 18 05:59 hello.go

drwxrwxrwx 2 root root 4.0K Jul 14 06:26 src

One of the advantages of writing Go applications, and compiled code in general,
is that we can produce a single binary that is easy to deploy. The remaining size of
the Docker image is made up of the unnecessary files provided by the base Docker
image. We can note the large overhead coming from the base Docker image that
increases the total image size by 100 times the usual.

We can also optimize the end Docker image deployed to production by only packing
the final hello binary and some dependent shared libraries. Follow the next few
steps to perform the optimization:

1.	 First, copy the binary from the running container to our Docker host via the
following command line:
dockerhost$ docker cp -L large:/go/hello ../build

Chapter 2

[37]

2.	 If the preceding library were a static binary, we would now be done and
would proceed with the next step. However, Go tooling builds share binaries
by default. In order for the binary to run properly, it needs the shared
libraries. Run the following command to list them:
dockerhost$ docker exec -it large /usr/bin/ldd hello

linux-vdso.so.1 (0x00007ffd84747000)

libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0
(0x00007f32f3793000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6
(0x00007f32f33ea000)

/lib64/ld-linux-x86-64.so.2 (0x00007f32f39b0000)

3.	 Next, save all required shared libraries to our Docker host. Issuing the
following docker cp -L commands will do this:
dockerhost$ docker cp -L large:/lib/x86_64-linux-gnu/libpthread.so.0 \

 ../build

dockerhost$ docker cp -L large:/lib/x86_64-linux-gnu/libc.so.6 \

 ../build

dockerhost$ docker cp -L large:/lib64/ld-linux-x86-64.so.2 \

 ../build

4.	 Create a new Dockerfile to build this "binary-only" image. Note how the
ADD instructions recreate the shared library paths that the hello application
expects in this new Docker image in the following output:
FROM scratch

ADD hello /app/hello
ADD libpthread-2.19.so \
/lib/x86_64-linux-gnu/libpthread.so.0
ADD libc-2.19.so /lib/x86_64-linux-gnu/libc.so.6
ADD ld-2.19.so /lib64/ld-linux-x86-64.so.2

EXPOSE 8080
ENTRYPOINT ["/app/hello"]

Optimizing Docker Images

[38]

5.	 Now we have all the necessary files needed to run the new "binary-only"
Docker image. In the end, the files in our directory tree will look similar to
the following screenshot:

6.	 Now, build the deployable binary Docker image with the following build/
Dockerfile. The resulting image will be smaller now:
dockerhost$ docker build -t binary .

dockerhost$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

binary latest 45c327c815 seconds ago 7.853 MB

largeapp latest 47a64e67f 52 minutes ago 523.1 MB

golang 1.4.2 124e21271 5 days ago 517.3 MB

The same approach can also be used to make other compiled applications, such as
the software normally installed using the ./configure && make && make install
combinations. We can do the same for interpreted languages such as Python, Ruby,
or PHP. However, it will need a little more work to create a "runtime" Ruby Docker
image from a "build" Ruby Docker image. An example of a good time to perform this
kind of optimization is when the delivery of our applications gets too long because
the images are too big for a sustainable development workflow.

Chapter 2

[39]

Summary
In this chapter, you learned more about how Docker builds images and applied it
to improve several factors, such as the deploy time, build time, and image size. The
techniques specified in this chapter are not comprehensive; there will surely be more
ways on how to achieve these objectives as more people discover how to use Docker
for their applications. More techniques will also arise as Docker itself matures and
develops more features. The most important guiding factor for these optimizations
is to ask ourselves whether we are really getting the benefits of using Docker. Some
good example questions to ask are as follows:

•	 Is deploy time improving?
•	 Is the development team getting feedback fast enough from what the

operations team learned when running our application?
•	 Are we able to iterate on new features fast enough to incorporate the new

feedback that we discovered from customers using our application?

By keeping in mind our motivation and objective of using Docker, we can come with
our own ways to improve our workflows.

Using some of the preceding optimizations will require updating the configuration
of our Docker hosts. To be able to manage several Docker hosts at a scale, we will
need some form of automation for their provisioning and configuration. In the
next chapter, we will talk about how to automate setting up Docker hosts with
configuration management software.

[41]

Automating Docker
Deployments with Chef

By this time, we already know the various aspects of the Docker ecosystem. The
Docker host has several configuration parameters. However, manually configuring
Docker hosts is a slow and error-prone process. We will have problems scaling our
Docker deployments in production if we don't have an automation strategy in place.

In this chapter, we will learn the concept of configuration management to solve this
problem. We will use Chef, a configuration management software, to manage Docker
hosts in scale. This chapter will cover the following topics:

•	 The importance of configuration management
•	 An introduction to Chef
•	 Automatically configuring Docker hosts
•	 Deploying Docker containers
•	 Alternative automation tools

An introduction to configuration
management
The Docker engine has several parameters to tune, such as cgroups, memory,
CPU, filesystems, networking, and so on. Identifying which Docker containers run
on which Docker hosts is another aspect of configuration. The Docker containers
themselves need to be configured differently with cgroups settings, shared volumes,
linked containers, public ports, and so on. Getting the combination of parameters to
optimize our application will take time.

Automating Docker Deployments with Chef

[42]

Replicating all the preceding configuration items to another Docker host is difficult
to perform manually. We might not remember all the steps required to create a host,
and it is an error-prone and slow process. Creating a "documentation" to get this
process captured doesn't help either because such artifacts tend to get stale over time.

If we cannot provision new Docker hosts in a timely and reliable manner, we will
have no space to scale out our Docker application. It is just as important to prepare
and configure our Docker hosts in a consistent and fast manner. Otherwise, Docker's
ability to create container packages for our application will become useless very fast.

Configuration management is a strategy to manage the changes happening in all
aspects of our application, and it reports and audits the changes made to our system.
This does not only apply when developing our application. For our case, it records
all the changes to Docker hosts and the running of the Docker containers itself.
Docker, in a sense, accomplishes the following aspects of configuration management
for our application:

•	 Docker containers reproduce any environment for our application, from
development to staging, testing, and production.

•	 Building Docker images is a simple way to make application changes and
have them deployed to all environments.

•	 Docker enables all team members to get information about our application
and make the needed changes to deliver the software efficiently to customers.
By inspecting the Dockerfile, they can know which part of the application
needs to be updated and what it needs in order to properly run.

•	 Docker tracks any change in our environment to a particular Docker image.
Then, it traces it back to the corresponding version of the Dockerfile. It
traces what the change is, who made it, and when it was made.

However, what about the Docker host running our application? Just as how a
Dockerfile allows us to manage our application's environment in version control,
configuration management tools can describe our Docker hosts in code. It simplifies
the process to create Docker hosts. In the case of scaling out our Docker application,
we can recreate a new Docker host from scratch easily. When there is a hardware
failure, we can bring up new Docker hosts somewhere else from their known
configuration. If we want to deploy a new version of our Docker containers, we
can just update the Docker host's configuration code to point to the new image.
Configuration management enables us to manage our Docker deployments in scale.

Chapter 3

[43]

Using Chef
Chef is a configuration management tool that provides a domain-specific language
to model the configuration of our infrastructure. Each configuration item in our
infrastructure is modeled as a resource. A resource is basically a Ruby method that
accepts several parameters in a block. The following example resource describes
installing the docker-engine package:

package 'docker-engine' do
 action :install
end

These resources are then written together in Ruby source files called recipes. When
running a recipe against a server (a Docker host in our case), all the defined resources
are executed to reach its desired state configuration.

Some Chef recipes may depend on other supplemental items, such as configuration
templates and other recipes. All this information is gathered in cookbooks together
with the recipes. A cookbook is the fundamental unit of distributing configuration
and policy to our servers.

We will write Chef recipes to represent the desired state configuration of our Docker
hosts. Our recipes will be organized in Chef cookbooks to distribute them to our
infrastructure. However, first, let's prepare our Chef environment so that we can
start describing our Docker-based infrastructure in recipes. A Chef environment
consists of three things:

•	 A Chef server
•	 A workstation
•	 A node

The next few subsections will give you a detailed description of each component.
Then, we will set them up to prepare our Chef environment to be able to manage our
Docker host.

There are more details of setting up a Chef environment that are
out of this chapter's scope. More information can be found at
the Chef documentation website at http://docs.chef.io.

http://docs.chef.io

Automating Docker Deployments with Chef

[44]

Signing up for a Chef server
The Chef server is the central repository of cookbooks and other policy items
governing our entire infrastructure. It contains metadata about the infrastructure
that we are managing. In our case, the Chef server contains the cookbook, policy,
and metadata on our Docker host.

To prepare a Chef server, we will simply sign up for a hosted Chef server. A free
Chef server account allows us to manage up to five nodes in our infrastructure.
Follow the next few steps to prepare a hosted Chef server account:

1.	 Go to https://manage.chef.io/signup and fill out the form for our
account details as shown in the following screenshot:

2.	 After creating a user account, the hosted Chef server will now prompt us to
create an organization. Organizations are simply used to manage role-based
access control for our Chef server. Create an organization by providing the
details on the form and click on the Create Organization button:

https://manage.chef.io/signup

Chapter 3

[45]

3.	 We are now almost done getting our hosted Chef server account. Finally,
click on Download Starter Kit. This will download a zip file containing our
starter chef-repo. We will talk more about the chef-repo in the next section.

Automating Docker Deployments with Chef

[46]

Setting up our workstation
The second part of our Chef environment is the workstation. The workstation is used
to interact with the Chef server. This is where we will do most of the preparation
work and create the code to send to the Chef server. In our workstation, we will
prepare the configuration items of our infrastructure in a Chef repository.

The Chef repository contains all the information needed to interact and synchronize
with the Chef server. It contains the private key and other configuration files needed
to authenticate and interact with the Chef server. These files will be found in the
.chef directory of our Chef repository. It also contains the cookbooks that we will
write and synchronize later with the Chef server in the cookbooks/ directory. There
are other files and directories inside a Chef repository, such as data bags, roles, and
environments as well. However, it is enough for now to know about the cookbooks
and authentication files to be able to configure our Docker host.

Do you remember that starter kit we downloaded in the previous section? Unzip
this file to extract our chef-repo. We should have the following files described in the
directory tree:

Chapter 3

[47]

Another important component in our workstation is the Chef development kit. It
contains all the programs needed to read all the configuration in our chef-repo and
interact with the Chef server. Convenient programs to create, develop, and test
our cookbooks are also available in the Chef development kit. We will use various
programs in the development kit throughout the rest of this chapter.

Now, let's download the Chef development kit from https://downloads.chef.io/
chef-dk according to our workstation's platform.

Next, open the downloaded installer. Install the Chef development kit according to
the prompts from our platform. Finally, confirm that the installation was successful
with the following commands:

$ chef -v

Chef Development Kit Version: 0.6.2

chef-client version: 12.3.0

berks version: 3.2.4

kitchen version: 1.4.0

Now that we have set up our workstation, let's go to our chef-repo/ directory to
prepare the last component of our Chef environment.

https://downloads.chef.io/chef-dk
https://downloads.chef.io/chef-dk

Automating Docker Deployments with Chef

[48]

Bootstrap nodes
The last part of our Chef environment is nodes. A node is any computer that is
managed by Chef. It can be a physical machine, virtual machine, a server in the
cloud, or a networking device. In our case, our Docker host is a node.

The central component for any node to be managed by Chef is the chef-client. It
connects to the Chef server to download the necessary files to bring our node to
its configuration state. When a chef-client is run on our node, it performs the
following steps:

1.	 It registers and authenticates the node with the Chef server.
2.	 It gathers system information in our node to create a node object.
3.	 Then, it synchronizes the Chef cookbooks needed by our node.
4.	 It compiles the resources by loading our node's needed recipes.
5.	 Next, it executes all the resources and performs the corresponding actions to

configure our node.
6.	 Finally, it reports the result of the chef-client run back to the Chef server and

other configured notification endpoints.

Now, let's prepare our Docker host as a node by bootstrapping it from our
workstation. The bootstrapping process installs and configures the chef-client.
Run the following command to get this bootstrap process started:

$ knife bootstrap dockerhost

...

Connecting to dockerhost

dockerhost Installing Chef Client...

...

dockerhost trying wget...

dockerhost Comparing checksum with sha256sum...

dockerhost Installing Chef 12.3.0

dockerhost installing with dpkg...

...

Chapter 3

[49]

dockerhost Thank you for installing Chef!

dockerhost Starting first Chef Client run...

dockerhost Starting Chef Client, version 12.3.0

dockerhost Creating a new client identity for dockerhost using the
validator key.

dockerhost resolving cookbooks for run list: []

dockerhost Synchronizing Cookbooks:

dockerhost Compiling Cookbooks...

dockerhost ... WARN: Node dockerhost has an empty run list.

dockerhost Converging 0 resources

dockerhost

dockerhost Running handlers:

dockerhost Running handlers complete

dockerhost Chef Client finished, 0/0 resources updated in 12.78s

As we can note in the preceding command, the bootstrapping process did two things.
First, it installed and configured the chef-client on our Docker host node. Next, it
started the chef-client to synchronize its desired state with our Chef server. As we
haven't assigned any designed state yet to our Docker host, it didn't do anything.

We can customize this bootstrap process according to our needs.
More information on how to use knife bootstrap can be
found at http://docs.chef.io/knife_bootstrap.html.
In some cases, cloud providers have a deep Chef integration
already out of the box. So, instead of knife bootstrap, we
will just use the cloud provider's SDK. There, we just need to
specify that we want to have Chef integrated. We will provide
it with the information, such as the chef-client's client.rb
configuration and validation keys' credentials.

http://docs.chef.io/knife_bootstrap.html

Automating Docker Deployments with Chef

[50]

Our Docker host is now properly registered to the Chef server, ready to grab its
configuration. Go to https://manage.chef.io/organizations/dockerorg/
nodes/dockerhost to check our Docker host as a node in our Chef environment,
as shown in the following screenshot:

Configuring the Docker host
Now that we have all the components of our Chef environment properly set up,
we can now start writing Chef recipes to actually describe what configuration our
Docker host should have. In addition, we will leapfrog our productivity by taking
advantage of existing Chef cookbooks in the Chef ecosystem. As Docker is a popular
infrastructure stack to deploy, we can use cookbooks in the wild that allow us to
configure our Docker hosts. Chef cookbooks provided by the community can be
found in the Chef supermarket. We can go to http://supermarket.chef.io to
discover other cookbooks that we can readily use.

In this section, you will learn how to write Chef recipes and apply it to our node.
Follow the next few steps to write the recipe for our Docker host:

1.	 Use the Chef development kit's chef generate cookbook command to
generate a boilerplate for our cookbook. After entering the cookbooks
directory, issue the following command:
$ cd cookbooks

$ chef generate cookbook dockerhost

https://manage.chef.io/organizations/dockerorg/nodes/dockerhost
https://manage.chef.io/organizations/dockerorg/nodes/dockerhost
http://supermarket.chef.io

Chapter 3

[51]

The boilerplate cookbook directory structure will look similar to the
following screenshot:

2.	 Next, we will prepare to edit our cookbook. Change our working directory to
the cookbook we created earlier using the following command:
$ cd dockerhost

3.	 Install the following cookbooks from the Chef supermarket as dependencies:
apt and docker. These cookbooks provide additional resource definitions
that can be used in our recipes. We will use them later as building blocks to
set up our Docker host. To add the dependencies, update the metadata.rb
file, as follows:
name 'dockerhost'
maintainer 'The Authors'
maintainer_email 'you@example.com'

Automating Docker Deployments with Chef

[52]

license 'all_rights'
description 'Installs/Configures dockerhost'
long_description 'Installs/Configures dockerhost'
version '0.1.0'

depends 'apt', '~> 2.7.0'
depends 'docker', '~> 0.40.3'

The metadata.rb file provides metadata about our Chef
cookbooks. The information in the metadata provides hints
to the Chef server so that the cookbook can be properly
deployed to our nodes. For more information on how to
configure metadata to our Chef cookbooks, visit http://
docs.chef.io/config_rb_metadata.html.

4.	 Now that we have our dependencies declared, we can download them by
issuing the following command:
$ berks install

Resolving cookbook dependencies...

Fetching 'dockerhost' from source at .

Fetching cookbook index from https://supermarket.chef.io...

Installing apt (2.7.0)

Installing docker (0.40.3)

Using dockerhost (0.1.0) from source at .

5.	 Finally, we will write the Chef recipe equivalent to the installation
instructions found at http://blog.docker.com/2015/07/new-apt-and-
yum-repos. We will use the apt_repository resource provided by the apt
dependency cookbook we added earlier. Then, add the following lines to
recipes/default.rb:
apt_repository 'docker' do
 uri 'http://apt.dockerproject.org/repo'
 components %w(debian-jessie main)
 keyserver 'p80.pool.sks-keyservers.net'
 key '58118E89F3A912897C070ADBF76221572C52609D'
 cache_rebuild true
end

package 'docker-engine'

http://docs.chef.io/config_rb_metadata.html
http://docs.chef.io/config_rb_metadata.html
http://blog.docker.com/2015/07/new-apt-and-yum-repos
http://blog.docker.com/2015/07/new-apt-and-yum-repos

Chapter 3

[53]

Now, we are done preparing our dockerhost/ Chef cookbook. The final step is to
apply it to our Docker host so that it can pick its desired configuration. Follow the
next remaining steps to perform this:

1.	 First, upload the Chef cookbook to our Chef server. Note that in the output of
the following command, the apt and docker cookbooks that we depend on
will also be automatically uploaded:
$ berks upload

Uploaded apt (2.7.0) to: 'https://api.opscode.../dockerorg'

Uploaded docker (0.40.3) to: 'https://api.ops.../dockerorg'

Uploaded dockerhost (0.1.0) to: 'https://api.opscode.com:443/
organizations/dockerorg'

2.	 Next, apply the dockerhost recipe we wrote earlier to the node (that is, the
Docker host) by setting its run_list via the following command:
$ knife node run_list set dockerhost dockerhost

dockerhost:

 run_list: recipe[dockerhost]

3.	 Finally, run the chef-client in dockerhost. The chef-client will fetch the
Docker host's node object and apply the desired state configuration we
applied in the previous steps, as follows:
$ ssh dockerhost

dockerhost$ sudo chef-client

Starting Chef Client, version 12.3.0

resolving cookbooks for run list: ["dockerhost"]

Synchronizing Cookbooks:

 - apt

 - dockerhost

 - docker

Compiling Cookbooks...

Converging 2 resources

Recipe: dockerhost::default

 * apt_repository[docker] action add

 * execute[install-key 58118E89F3A912897C...] action run

 ...

 * apt_package[docker-engine] action install

 - install version 1.7.1-0~j... of package docker-engine

Automating Docker Deployments with Chef

[54]

Running handlers:

Running handlers complete

Chef Cl... finished, 6/7 resources updated in 24.69 seconds

Now, we have Docker installed and configured in our Docker host using Chef.
Whenever we need to add another Docker host, we can just create another server
in our cloud provider and bootstrap it to have the dockerhost Chef recipe written
earlier. When we want to update how the Docker daemons are configured in all our
Docker hosts, we will just update the Chef cookbook and rerun the chef-client.

In a production environment, the goal of having configuration
management software installed in our Docker host is to never
have the need to log in to it just to perform configuration updates.
Running the chef-client manually is only half the automation.
We will want to run the chef-client as a daemon process so that
we don't have to run it every time we perform an update. The
chef-client daemon will poll the Chef server to check whether
there are any updates to the node it is managing. By default, this
polling interval is set to 30 minutes.
For more information on how to configure the chef-client as a
daemon, refer to the Chef documentation at https://docs.
chef.io/chef_client.html.

Deploying Docker containers
The next step to manage Docker in scale is to deploy Docker containers to our pool
of Docker hosts automatically. By now, we have built a few Docker applications
already. We have a rough architectural sketch of how these containers communicate
with and consume each other. Chef recipes can be used to represent this architectural
topology in code, which is essential to managing our whole application and
infrastructure in scale. We can identify which Docker containers need to run and
know how each container connects with other containers. We can locate where our
Docker containers should be deployed. Having the whole architecture in code allows
us to place an orchestration strategy for our application.

https://docs.chef.io/chef_client.html
https://docs.chef.io/chef_client.html

Chapter 3

[55]

In this section, we will create a Chef recipe to orchestrate the deployment of the
Nginx Docker image to our Docker host. We will use the Chef resources provided by
the docker cookbook we added in the previous section to configure our Docker host.
Follow the next few steps to perform the deployment:

1.	 To begin, create the Chef recipe that we will work on. The following
command will create the recipes/containers.rb recipe file in our
dockerhost/ cookbook:
$ chef generate recipe . containers

2.	 Next, pull the official Nginx Docker image at https://registry.hub.
docker.com/_/nginx to our Docker host. Write the following code in
recipes/containers.rb:
docker_image 'nginx' do
 tag '1.9.3'
end

3.	 After downloading the Docker image, configure the Docker host to run the
container. As of version 0.40.3 of the docker cookbook, we need to specify
that our Debian Jessie Docker host deployment uses systemd as its init
system. Add the following lines to the recipes/containers.rb as well:
node.set['docker']['container_init_type'] = 'systemd'

directory '/usr/lib/systemd/system'

docker_container 'nginx' do
 tag '1.9.3'
 container_name 'webserver'
 detach true
 port '80:80'
end

The docker_container and docker_image has several
other options that we can tune to specify what we want to
do with our container. The docker cookbook also has other
resources to work with our Docker hosts. More information on
options and further usage can be found on its project page at
https://github.com/bflad/chef-docker.

4.	 Next, we will prepare the new version of our cookbook for release. Bump the
version information in metadata.rb to do this, as follows:
name 'dockerhost'
maintainer 'The Authors'

https://registry.hub.docker.com/_/nginx
https://registry.hub.docker.com/_/nginx
https://github.com/bflad/chef-docker

Automating Docker Deployments with Chef

[56]

maintainer_email 'you@example.com'
license 'all_rights'
description 'Installs/Configures dockerhost'
long_description 'Installs/Configures dockerhost'
version '0.2.0'

depends 'apt', '~> 2.7.0'
depends 'docker', '~> 0.40.3'

5.	 Update the Berksfile.lock file to pin the versions of all the cookbooks we
will upload to the Chef server in the next step. Type the following command
to perform the update:
$ berks install

Resolving cookbook dependencies...

Fetching 'dockerhost' from source at .

Fetching cookbook index from https://supermarket.chef.io...

Using dockerhost (0.2.0) from source at .

Using apt (2.7.0)

Using docker (0.40.3)

6.	 Now that all the artifacts for our new cookbook are ready, we will type the
following command to upload the updated cookbook to our Chef server.
Note how the berks upload command automatically recognizes that only
the dockerhost cookbook needs updating as it skips uploading the apt and
docker cookbooks:
$ berks upload

Skipping apt (2.7.0) (frozen)

Skipping docker (0.40.3) (frozen)

Uploaded dockerhost (0.2.0) to: 'https://ap.../dockerorg'

7.	 Next, add the recipes/containers.rb to the run list of our Docker host.
Type the following command to update the node representing our Docker
host:
$ knife node run_list add dockerhost dockerhost::containers

dockerhost:

 run_list:

 recipe[dockerhost]

 recipe[dockerhost::containers]

Chapter 3

[57]

8.	 Finally, rerun the chef-client to pick up the new configuration for our Docker
host. We can also wait for the rerun of the chef-client if we configure the
chef-client to run as a daemon process. Execute the following command:
$ ssh dockerhost

dockerhost$ sudo chef-client

Starting Chef Client, version 12.3.0

resolving cookbooks for run list: ["dockerhost",
"dockerhost::containers"]

Synchronizing Cookbooks:

 - dockerhost

 - apt

 - docker

Compiling Cookbooks...

Converging 5 resources

Recipe: dockerhost::default

...

Recipe: dockerhost::containers

 * docker_image[nginx] action pull

 * directory[/usr/lib/systemd/system] action create

 - create new directory /usr/lib/systemd/system

 * docker_container[nginx] action run

 * template[/usr/lib/.../webserver.socket] action create

 ...

 * service[webserver] action enable (up to date)

 * service[webserver] action start

 - start service service[webserver]

 * template[webserver.socket] action nothing ...

 * template[webserver.service] action nothing ...

 * service[webserver] action nothing ...

Running handlers:

Running handlers complete

Chef Client finished, 6/10 resources updated in 42.83 seconds

Automating Docker Deployments with Chef

[58]

We now have our Docker host running the nginx Docker container. We can confirm
that it is working by going to http://dockerhost. We should be able to get the
following page in the screenshot:

Alternative methods
There are other general-purpose configuration management tools that allow us
to configure our Docker host. The following is a short list of the other tools that
we can use:

•	 Puppet: Refer to http://puppetlabs.com.
•	 Ansible: This can be found at http://ansible.com.
•	 CFEngine: This is available at http://cfengine.com.
•	 SaltStack: You can find more on this at http://saltstack.com.
•	 The Docker machine: This is a very specific configuration management tool

that allows us to provision and configure Docker hosts in our infrastructure.
More information about Docker machine can be found on the Docker
documentation page at https://docs.docker.com/machine.

http://puppetlabs.com
http://ansible.com
http://cfengine.com
http://saltstack.com
https://docs.docker.com/machine

Chapter 3

[59]

If we do not want to manage our Docker host infrastructure at all, we can use
Docker hosting services. Popular cloud providers started offering Docker hosts as
a preprovisioned cloud image that we can use. Others offer a more comprehensive
solution that allows us to interact with all the Docker hosts in the cloud as a single
virtual Docker host. The following is a list of links of the popular cloud providers
describing their integration with the Docker ecosystem:

•	 Google Container Engine (https://cloud.google.com/container-engine)
•	 Amazon EC2 Container Service (http://aws.amazon.com/documentation/

ecs)
•	 Azure Docker VM Extension (https://github.com/Azure/azure-docker-

extension)
•	 Joyent Elastic Container Service (https://www.joyent.com/public-cloud)

In terms of deploying Docker containers, there are several container tools that allow
you to do this. They provide APIs to run and deploy our Docker containers. Some
of the offered APIs are even compatible with the Docker engine itself. This allows us
to interact with our pool of Docker hosts as if it is a single virtual Docker host. The
following is a list of a few tools that allow us to orchestrate the deployment of our
containers to a pool of Docker hosts:

•	 Docker Swarm (https://www.docker.com/docker-swarm)
•	 Google Kubernetes (http://kubernetes.io)
•	 CoreOS fleet (https://coreos.com/fleet)
•	 Mesophere Marathon (https://mesosphere.github.io/marathon)
•	 SmartDataCenter Docker Engine (https://github.com/joyent/sdc-docker)

However, we still need configuration management tools such as Chef to deploy and
configure our orchestration systems at the top of our pool of Docker hosts.

Summary
In this chapter, we learned how to automate the configuration of our Docker
deployments. Using Chef allows us to configure and provision multiple Docker
hosts in scale. It also enabled us to deploy and orchestrate Docker containers for
our application to our pool of Docker hosts. From this point on, you can write Chef
recipes to persist all the Docker optimization techniques you will learn in this book.

In the next chapter, we will introduce instrumentation to monitor our whole Docker
infrastructure and application. This will give us further feedback on how to better
optimize our Docker deployments for higher performance.

https://cloud.google.com/container-engine
http://aws.amazon.com/documentation/ecs
http://aws.amazon.com/documentation/ecs
https://github.com/Azure/azure-docker-extension
https://github.com/Azure/azure-docker-extension
https://www.joyent.com/public-cloud
https://www.docker.com/docker-swarm
http://kubernetes.io
https://coreos.com/fleet
https://mesosphere.github.io/marathon
https://github.com/joyent/sdc-docker

[61]

Monitoring Docker Hosts
and Containers

We now know some ways to optimize our Docker deployments. We also know how
to scale to improve performance. But how do we know that our tuning assumptions
were correct? Being able to monitor our Docker infrastructure and application is
important to figure out why and when we need to optimize. Measuring how our
system is performing allows us to identify its limits to scale and tune accordingly.

In addition to monitoring low-level information about Docker, it is also important
to measure the business-related performance of our application. By tracing the
value stream of our application, we can correlate business-related metrics to system-
level ones. With this, our Docker development and operations teams can show
their business colleagues how Docker saves their organization's costs and increases
business value.

In this chapter, we will cover the following topics about being able to monitor our
Docker infrastructure and applications at scale:

•	 The importance of monitoring
•	 Collecting monitored data in Graphite
•	 Monitoring Docker with collectd
•	 Consolidating logs in an ELK stack
•	 Sending logs from Docker

Monitoring Docker Hosts and Containers

[62]

The importance of monitoring
Monitoring is important as it provides a source of feedback on the Docker
deployment that we built. It answers several questions about our application from
low-level operating system performance to high-level business targets. Having
proper instrumentation inserted in our Docker hosts allows us to identify our
system's state. We can use this source of feedback to identify whether our application
is behaving as originally planned.

If our initial hypothesis was incorrect, we can use the feedback data to revise our
plan and change our system accordingly by tuning our Docker host and containers
or updating our running Docker application. We can also use the same monitoring
process to identify errors and bugs after our system is deployed to production.

Docker has built-in features to log and monitor. By default, a Docker host stores a
Docker container's standard output and error streams to JSON files in /var/lib/
docker/<container_id>/<container_id>-json.log. The docker logs command
asks the Docker engine daemon to read the content of the files here.

Another monitoring facility is the docker stats command. This queries the Docker
engine's remote API's /containers/<container_id>/stats endpoint to report
runtime statistics about the running container's control group regarding its CPU,
memory, and network usage. The following is an example output of the docker
stats command reporting the said metrics:

dockerhost$ docker run --name running –d busybox \
 /bin/sh -c 'while true; do echo hello && sleep 1; done'
dockerhost$ docker stats running

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O

running 0.00% 0 B/518.5 MB 0.00% 17.06 MB/119.8 kB

The built-in docker logs and docker stats commands work well to monitor
our Docker applications for development and small-scale deployments. When
we get to a point in our production-grade Docker deployment where we manage
tens, hundreds, or even thousands of Docker hosts, this approach will no longer be
scalable. It is not feasible to log in to each of our thousand Docker hosts and type
docker logs and docker stats.

Doing this one by one also makes it difficult to create a more holistic picture of our
entire Docker deployment. Also, not everyone interested in our Docker application's
performance can log in to our Docker hosts. Our colleagues dealing with only
the business aspect of our application may want to ask certain questions on how
our application's deployment in Docker improves what our organization wants.
However, they do not necessarily want to learn how to log in and start typing
Docker commands in our infrastructure.

Chapter 4

[63]

Hence, it is important to be able to consolidate all of the events and metrics from
our Docker deployments into a centralized monitoring infrastructure. It allows
our operations to scale by having a single point to ask what is happening to our
system. A centralized dashboard also enables people outside our development and
operations team, such as our business colleagues, to have access to the feedback
provided by our monitoring system. The remaining sections will show you how to
consolidate messages from docker logs and collect statistics from data sources such
as docker stats.

Collecting metrics to Graphite
To begin monitoring our Docker deployments, we must first set up an endpoint
to send our monitored values to. Graphite is a popular stack for collecting various
metrics. Its plaintext protocol is very popular because of its simplicity. Many
third-party tools understand this simple protocol. Later, we will show you how easy
it is to send data to Graphite after we finish setting it up.

Another feature of graphite is that it can render the data it gathers into graphs.
We can then consolidate these graphs to build a dashboard. The dashboard we
crafted in the end will show the various kinds of information that we need to
monitor our Docker application.

In this section, we will set up the following components of Graphite to create a
minimal stack:

•	 carbon-cache: This is the Graphite component that receives metrics over the
network. This implements the simple plaintext protocol described earlier. It
can also listen to a binary-based protocol called the pickle protocol, which is
a more advanced but smaller and optimized format to receive metrics.

•	 whisper: This is a file-based bounded time series database in which the
carbon-cache persists the metrics it receives. Its bounded or fixed-size nature
makes it an ideal solution for monitoring. Over time, the metrics that we
monitor will accumulate. Hence, the size of our database will just keep
increasing so that you will need to monitor it as well!
However, in practice we are mostly interested in monitoring our application
until a fixed point. Given this assumption, we can plan the resource
requirements of our whisper database beforehand and not think about it this
much as the operation of our Docker application continues.

•	 graphite-web: This reads the whisper database to render graphs and
dashboards. It is also optimized to create such visualizations in real time by
querying carbon-cache endpoints to display data that is yet to be persistent in
the whisper database as well.

Monitoring Docker Hosts and Containers

[64]

There are other components in carbon, such as carbon-aggregator
and carbon-relay. These are the components that are needed in
order to scale out Graphite effectively as the number of metrics
you measure grows. More information about these components
can be found at https://github.com/graphite-project/
carbon. For now, we will focus on deploying just the
carbon-cache to create a simple Graphite cluster.

The next few steps describe how to deploy the carbon-cache and a whisper database:

1.	 First, prepare a Docker image for carbon to dogfood our Docker host
deployments. Create the following Dockerfile to prepare this image:
FROM debian:jessie

RUN apt-get update && \
 apt-get --no-install-recommends \
 install -y graphite-carbon

ENV GRAPHITE_ROOT /graphite

ADD carbon.conf /graphite/conf/carbon.conf

RUN mkdir -p $GRAPHITE_ROOT/conf && \
 mkdir -p $GRAPHITE_ROOT/storage && \
 touch $GRAPHITE_ROOT/conf/storage-aggregation.conf && \
 touch $GRAPHITE_ROOT/conf/storage-schemas.conf

VOLUME /whisper
EXPOSE 2003 2004 7002

ENTRYPOINT ["/usr/bin/twistd", "--nodaemon", \
 "--reactor=epoll", "--no_save"]
CMD ["carbon-cache"]

2.	 Next, build the Dockerfile we created earlier as the hubuser/carbon image,
as follows:
dockerhost$ docker build -t hubuser/carbon .

3.	 Inside the carbon.conf configuration file, we will configure the
carbon-cache to use the Docker volume /whisper as the whisper database.
The following is the content describing this setting:
[cache]

CARBON_METRIC_INTERVAL = 0
LOCAL_DATA_DIR = /whisper

https://github.com/graphite-project/carbon
https://github.com/graphite-project/carbon

Chapter 4

[65]

4.	 After building the hubuser/carbon image, we will prepare a whisper
database by creating a data container. Type the following command to
accomplish this:
dockerhost$ docker create --name whisper \
 --entrypoint='whisper database for graphite' \
 hubuser/carbon

5.	 Finally, run the carbon-cache endpoint attached to the data container we
created earlier. We will use custom container names and publicly exposed
ports so that we can send and read metrics from it, as follows:
dockerhost$ docker run --volumes-from whisper -p 2003:2003 \
 --name=carboncache hubuser/carbon

We now have a place to send all our Docker-related metrics that we will gather
later. In order to make use of the metrics we stored, we need a way to read and
visualize them. We will now deploy graphite-web to visualize what is going on
with our Docker containers. The following are the steps to deploy graphite-web in
our Docker hosts:

1.	 Build Dockerfile as hubuser/graphite-web to prepare a Docker image to
deploy graphite-web via the following code:
FROM debian:jessie

RUN apt-get update && \
 apt-get --no-install-recommends install -y \
 graphite-web \
 apache2 \
 libapache2-mod-wsgi

ADD local_settings.py /etc/graphite/local_settings.py
RUN ln -sf /usr/share/graphite-web/apache2-graphite.conf \
 /etc/apache2/sites-available/100-graphite.conf && \
 a2dissite 000-default && a2ensite 100-graphite && \
 mkdir -p /graphite/storage && \
 graphite-manage syncdb --noinput && \
 chown -R _graphite:_graphite /graphite

EXPOSE 80
ENTRYPOINT ["apachectl", "-DFOREGROUND"]

2.	 The preceding Docker image refers to local_settings.py to configure
graphite-web. Place the following annotations to link the carbon-cache
container and whisper volume:
import os
--link-from carboncache:carbon

Monitoring Docker Hosts and Containers

[66]

CARBONLINK_HOSTS = ['carbon:7002']
--volumes-from whisper
WHISPER_DIR = '/whisper'

GRAPHITE_ROOT = '/graphite'
SECRET_KEY = os.environ.get('SECRET_KEY', 'replacekey')
LOG_RENDERING_PERFORMANCE = False
LOG_CACHE_PERFORMANCE = False
LOG_METRIC_ACCESS = False
LOG_DIR = '/var/log/graphite'

3.	 After preparing the Dockerfile and local_settings.py configuration
files, build the hubuser/graphite-web Docker image with the following
command:
dockerhost$ docker build -t hubuser/graphite-web .

4.	 Finally, run the hubuser/graphite-web Docker image linked with the
carbon-cache container and whisper volume by typing the following
command:
dockerhost$ docker run --rm --env SECRET_KEY=somestring \
 --volumes-from whisper --link carboncache:carbon \
 -p 80:80 hubuser/graphite-web

The SECRET_KEY environment variable is a necessary component
to group together multiple graphite-web instances when you
decide to scale out. More graphite-web settings can be found
at http://graphite.readthedocs.org/en/latest/
config-local-settings.html.

Now that we have a complete Graphite deployment, we can run some preliminary
tests to see it in action. We will test this by populating the whisper database with
random data. Type the following command to send random metrics called local.
random to the carbon-cache endpoint:

dockerhost$ seq `date +%s` -60 $((`date +%s` - 24*60*60)) \
 | perl -n -e \
 'print "local.random ". int(rand(100)) . " " . $_' \
 | docker run --link carboncache:carbon -i --rm \
 busybox nc carbon 2003

http://graphite.readthedocs.org/en/latest/config-local-settings.html
http://graphite.readthedocs.org/en/latest/config-local-settings.html

Chapter 4

[67]

Finally, confirm that the data is persistent by visiting our hubuser/graphite-web's
composer URL http://dockerhost/compose. Go to the Tree tab and then expand
the Graphite/local folder to get the random metric. The following is a graph that
we will see on our graphite-web deployment:

Graphite in production
In production, this simple Graphite setup will reach its limits as we monitor more
and more metrics in our Docker deployment. We need to scale this out in order to
keep up with the increased number of metrics that we monitor. With this, you need
to deploy Graphite with a cluster setup.

To scale out the metric processing capacity of carbon-cache, we need to augment it
with a carbon-relay and carbon-aggregator. For graphite-web to be more responsive,
we need to scale it out horizontally along with other caching components, such as
memcached. We also need to add another graphite-web instance that connects to
other graphite-web instances to create a unified view of all the metrics. The whisper
databases will be co-located with a carbon-cache and graphite-web, so it will
scale-out naturally along with them.

More information on how to scale out a Graphite cluster in
production is found at http://graphite.readthedocs.org.

http://dockerhost/compose
http://graphite.readthedocs.org

Monitoring Docker Hosts and Containers

[68]

Monitoring with collectd
We finished setting up a place to send all our Docker-related data to. Now, it
is time to actually fetch all the data related to our Docker applications. In this
section, we will use collectd, a popular system statistics collection daemon. It is
a very lightweight and high-performance C program. This makes it a noninvasive
monitoring software because it doesn't consume many resources from the system
it monitors. Being lightweight, it is very simple to deploy as it requires minimum
dependencies. It has a wide variety of plugins to monitor almost every component of
our system.

Let's begin monitoring our Docker host. Follow the next few steps to install
collectd and send the metrics to our Graphite deployment:

1.	 First, install collectd in our Docker host by typing the following command:
dockerhost$ apt-get install collectd-core

2.	 Next, create a minimum collectd configuration to send data to our Graphite
deployment. You may recall from before that we exposed the carbon-cache's
default plaintext protocol port (2003). Write the following configuration
entry in /etc/collectd/collectd.conf to set this up:
LoadPlugin "write_graphite"

<Plugin write_graphite>
 <Node "carboncache">
 Host "dockerhost"
 </Node>
</Plugin>

3.	 Now, it is time to measure a few things from our Docker host. Load the
following collectd plugins by placing the next few lines in /etc/collectd/
collectd.conf:
LoadPlugin "cpu"
LoadPlugin "memory"
LoadPlugin "disk"
LoadPlugin "interface"

Chapter 4

[69]

4.	 After finishing the configuration, restart collectd by typing the following
command:
dockerhost$ systemctl restart collectd.service

5.	 Finally, let's create a visualization dashboard in our graphite-web
deployment to look at the preceding metrics. Go to http://dockerhost/
dashboard, click on Dashboard, and then on the Edit Dashboard link. It
will prompt us with a text area to place a dashboard definition. Paste the
following JSON text in this text area to create our preliminary dashboard:
[
 {
 "areaMode": "stacked",
 "yMin": "0",
 "target": [
 "aliasByMetric(dockerhost.memory.*)"
],
 "title": "Memory"
 },
 {
 "areaMode": "stacked",
 "yMin": "0",
 "target": [
 "aliasByMetric(dockerhost.cpu-0.*)"
],
 "title": "CPU"
 }
]

http://dockerhost/dashboard
http://dockerhost/dashboard

Monitoring Docker Hosts and Containers

[70]

We now have a basic monitoring stack for our Docker host. The last step in
the previous section will show a dashboard that looks something similar to the
following screenshot:

Chapter 4

[71]

Collecting Docker-related data
Now, we will measure some basic metrics that govern the performance of our
application. But how do we drill down to further details on the containers running in
our Docker hosts? Inside our Debian Jessie Docker host, our containers run under the
docker-[container_id].scope control group. This information is found at /sys/
fs/cgroup/cpu,cpuacct/system.slice in our Docker host's sysfs. Fortunately,
collectd has a cgroups plugin that interfaces with the sysfs information exposed
earlier. The next few steps will show you how to use this plugin to measure the CPU
performance of our running Docker containers:

1.	 First, insert the following lines in /etc/collectd/collectd.conf:
LoadPlugin "cgroups"

<Plugin cgroups>
 CGroup "/^docker.*.scope/"
</Plugin>

2.	 Next, restart collectd by typing the following command:
dockerhost$ systemctl restart collectd.service

3.	 Finally, wait for a few minutes for Graphite to receive enough metrics from
collectd so that we can get an initial feel to visualize our Docker container's
CPU metrics.

We can now check the CPU metrics of our Docker containers by querying for the
dockerhost.cgroups-docker*.* metrics on our Graphite deployment's render API.
The following is the image produced by the render API URL http://dockerhost/
render/?target=dockerhost.cgroups-docker-*.*:

Monitoring Docker Hosts and Containers

[72]

More information about the cgroups plugin can be found
in the collectd documentation page at https://
collectd.org/documentation/manpages/
collectd.conf.5.shtml#plugin_cgroups.

Currently, the cgroups plugin only measures the CPU metrics of our running Docker
containers. There is some work in progress, but it is not yet ready at the time of this
book's writing. Fortunately, there is a Python-based collectd plugin that interfaces
itself to docker stats. The following are the steps needed to set up this plugin:

1.	 First, download the following dependencies to be able to run the plugin:
dockerhost$ apt-get install python-pip libpython2.7

2.	 Next, download and install the plugin from its GitHub page:
dockerhost$ cd /opt
dockerhost$ git clone https://github.com/lebauce/docker-collectd-
plugin.git
dockerhost$ cd docker-collectd-plugin
dockerhost$ pip install -r requirements.txt

3.	 Add the following lines to /etc/collectd/collectd.conf to configure the
plugin:
TypesDB "/opt/docker-collectd-plugin/dockerplugin.db"
LoadPlugin python

<Plugin python>
 ModulePath "/opt/docker-collectd-plugin"
 Import "dockerplugin"

 <Module dockerplugin>
 BaseURL "unix://var/run/docker.sock"
 Timeout 3
 </Module>
</Plugin>

4.	 Finally, restart collectd to reflect the preceding configuration changes via
the following command:
dockerhost$ systemctl restart collectd.service

https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_cgroups
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_cgroups
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_cgroups

Chapter 4

[73]

There is a case in which we don't want to install a whole stack
of Python to just query the Docker container stat's endpoint.
In this case, we can use the lower-level curl_json plugin
of collectd to gather statistics about our container. We
can configure it to make a request against the container stat's
endpoint and parse the resulting JSON into a set of collectd
metrics. More on how the plugin works can be found at
https://collectd.org/documentation/manpages/
collectd.conf.5.shtml#plugin_curl_json.

In the following screenshot, we can explore the metrics given out by the cgroups
plugin from our Graphite deployment at http://docker/compose:

https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_curl_json
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_curl_json

Monitoring Docker Hosts and Containers

[74]

Running collectd inside Docker
If we want to deploy our collectd configuration similarly to our applications, we
can run it inside Docker as well. The following is an initial Dockerfile that we can
use to start with deploying collectd as a running Docker container:

FROM debian:jessie

RUN apt-get update && \
 apt-get --no-install-recommends install -y \
 collectd-core

ADD collectd.conf /etc/collectd/collectd.conf
ENTRYPOINT ["collectd", "-f"]

Most plugins look at the /proc and /sys filesystems. In order for
collectd inside a Docker container to access these files, we need
to mount them as Docker volumes, such as --volume /proc:/
host/proc. However, most plugins currently read the hardwired
/proc and /sys paths. There is ongoing discussion to make
this configurable. Refer to this GitHub page to track its progress:
https://github.com/collectd/collectd/issues/1169.

Consolidating logs in an ELK stack
Not all statuses of our Docker hosts and containers are readily available to be
queried with our monitoring solution in collectd and Graphite. Some events and
metrics are only available as raw lines of text in log files. We need to transform
these raw and unstructured logs to meaningful metrics. Similar to raw metrics,
we can later ask higher-level questions on what is happening in our Docker-based
application through analytics.

The ELK stack is a popular combination suite from Elastic that addresses these
problems. Each letter in the acronym represents each of its components. The
following is a description of each of them:

•	 Logstash: Logstash is the component that is used to collect and manage
logs and events. It is the central point that we use to collect all the logs from
different log sources, such as multiple Docker hosts and containers running
in our deployment. We can also use Logstash to transform and annotate the
logs we receive. This allows us to search and explore the richer features of
our logs later.

https://github.com/collectd/collectd/issues/1169

Chapter 4

[75]

•	 Elasticsearch: Elasticsearch is a distributed search engine that is highly
scalable. Its sharding capabilities allow us to grow and scale our log storage
as we continue to receive more and more logs from our Docker containers. Its
database engine is document-oriented. This allows us to store and annotate
logs as we see fit as we continue to discover more insights about the events
we are managing in our large Docker deployments.

•	 Kibana: Kibana is an analytics and search dashboard for Elasticsearch.
Its simplicity allows us to create dashboards for our Docker applications.
However, Kibana is also very flexible to customize, so we can build
dashboards that can provide valuable insights to people who want to
understand our Docker-based applications, whether it is a low-level technical
detail or higher-level business need.

In the remaining parts of this section, we will set up each of these components and
send our Docker host and container logs to it. The next few steps describe how to
build the ELK stack:

1.	 First, launch the official Elasticsearch image in our Docker host. We will put a
container name so that we can link it easily in the later steps, as follows:
dockerhost$ docker run -d --name=elastic elasticsearch:1.7.1

2.	 Next, we will run Kibana's official Docker image by linking it against the
Elasticsearch container we created in the previous step. Note that we publicly
mapped the exposed port 5601 to port 80 in our Docker host so that the URL
for Kibana is prettier, as follows:
dockerhost$ docker run -d --link elastic:elasticsearch \
 -p 80:5601 kibana:4.1.1

3.	 Now, prepare our Logstash Docker image and configuration. Prepare the
following Dockerfile to create the Docker image:
FROM logstash:1.5.3

ADD logstash.conf /etc/logstash.conf
EXPOSE 1514/udp

4.	 In this Docker image, configure Logstash as a Syslog server. This explains
the exposed UDP port in the preceding Dockerfile. As for the logstash.
conf file, the following is the basic configuration to make it listen as a Syslog
server. The latter part of the configuration shows that it sends logs to an
Elasticsearch called elasticsearch. We will use this as the hostname when
we link the Elasticsearch container we ran earlier:
input {
 syslog {

Monitoring Docker Hosts and Containers

[76]

 port => 1514
 type => syslog
 }
}

output {
 elasticsearch {
 host => "elasticsearch"
 }
}

Logstash has a wealth of plugins so that it can read a wide
variety of log data sources. In particular, it has a collectd
codec plugin. With this, we can use an ELK stack instead of
Graphite to monitor our metrics.
For more information on how to do this setup, visit
https://www.elastic.co/guide/en/logstash/
current/plugins-codecs-collectd.html.

5.	 Now that we have prepared all the files needed, type the following command
to create it as the hubuser/logstash Docker image:
dockerhost$ docker build -t hubuser/logstash .

6.	 Run Logstash with the following command. Note that we are exposing port
1514 to the Docker host as the Syslog port. We also linked the Elasticsearch
container named elastic that we created earlier. The target name is set to
elasticsearch as it is the hostname of Elasticsearch that we configured
earlier in logstash.conf to send the logs to:
dockerhost$ docker run --link elastic:elasticsearch -d \
 -p 1514:1514/udp hubuser/logstash -f /etc/logstash.conf

7.	 Next, let's configure our Docker host's Syslog service to forward it to our
Logstash container. As a basic configuration, we can set up Rsyslog to
forward all the logs. This will include the logs coming from the Docker
engine daemon as well. To do this, create the
/etc/rsyslog.d/100-logstash.conf file with the following content:
. @dockerhost:1514

8.	 Finally, restart Syslog to load the changes in the previous step by typing the
following command:
dockerhost$ systemctl restart rsyslog.service

https://www.elastic.co/guide/en/logstash/current/plugins-codecs-collectd.html
https://www.elastic.co/guide/en/logstash/current/plugins-codecs-collectd.html

Chapter 4

[77]

We now have a basic functioning ELK stack. Let's now test it by sending a message
to Logstash and seeing it appear in our Kibana dashboard:

1.	 First, type the following command to send a test message:
dockerhost$ logger -t test 'message to elasticsearch'

2.	 Next, go to our Kibana dashboard by visiting http://dockerhost. Kibana
will now ask us to set the default index. Use the following default values and
click on Create to start indexing:

Monitoring Docker Hosts and Containers

[78]

3.	 Go to http://dockerhost/#discover and type elasticsearch in the search.
The following screenshot shows the Syslog message we generated earlier:

There are lot more things we can do on the ELK stack to
optimize our logging infrastructure. We can add Logstash
plugins and filters to annotate the logs we receive from our
Docker hosts and containers. Elasticsearch can be scaled
out and tuned to increase its capacity as our logging needs
increase. We can create Kibana dashboards to share metrics.
To find out more details on how to tune our ELK stack, visit
Elastic's guides at https://www.elastic.co/guide.

https://www.elastic.co/guide

Chapter 4

[79]

Forwarding Docker container logs
Now that we have a basic functional ELK stack, we can start forwarding our Docker
logs to it. From Docker 1.7 onwards, support for custom logging drivers has been
available. In this section, we will configure our Docker host to use the syslog driver.
By default, Syslog events from Docker will go to the Docker host's Syslog service and
since we configured Syslog to forward to our ELK stack, we will see the container
logs there. Follow the next few steps to start receiving our container logs in the ELK
stack:

1.	 The Docker engine service is configured via Systemd on our Debian Jessie
host. To update how it runs in our Docker host, create a Systemd unit file
called /etc/systemd/system/docker.service.d/10-syslog.conf with
the following content:
[Service]
ExecStart=
ExecStart=/usr/bin/docker daemon -H fd:// \
 --log-driver=syslog

2.	 Apply the changes on how we will run Docker in our host by reloading the
Systemd configuration. The following command will do this:
dockerhost$ systemctl daemon-reload

3.	 Finally, restart the Docker engine daemon by issuing the following
command:
dockerhost$ systemctl restart docker.service

4.	 Optionally, apply any Logstash filtering if we want to do custom annotations
on our Docker container's logs.

Now, any standard output and error streams coming out from our Docker container
should be captured to our ELK stack. We can do some preliminary tests to confirm that
the setup works. Type the following command to create a test message from Docker:

dockerhost$ docker run --rm busybox echo message to elk

The docker run command also supports the --log-driver
and --log-opt=[] command-line options to set up the
logging driver only for the container we want to run. We can
use it to further tune our logging policies for each Docker
container running in our Docker host.

Monitoring Docker Hosts and Containers

[80]

After typing the preceding command, our message should now be stored in
Elasticsearch. Let's go to our Kibana endpoint in http://dockerhost, and search
for the word message to elk in the textbox. It should give the Syslog entry for the
message we sent earlier. The following screenshot is what the search result should
look like in our Kibana results:

Chapter 4

[81]

In the preceding screenshot, we can see the message we sent. There is also other
information about Syslog. Docker's Syslog driver sets the default syslog annotations
on facility and severity as system and informational, respectively. In addition, the
preceding program is set to docker/c469a2dfdc9a.

The c469a2dfdc9a string is the container ID of the busybox image we ran earlier.
The default program label for Docker containers is set in the docker/<container-
id> format. All of the preceding default annotations can be configured by passing
arguments to the --log-opt=[] option.

Aside from the Syslog and JSON file-logging drivers, Docker
supports several other endpoints to send logs to. More
information about all the logging drivers and their respective
usage guides can be found in https://docs.docker.com/
reference/logging.

Other monitoring and logging solutions
There are several other solutions for us to deploy to monitor and log infrastructure to
support our Docker-based application. Some of them already have built-in support
for monitoring Docker containers. Others should be combined with other solutions,
such as the ones we showed previously because they only focus on a specific part of
monitoring or logging.

With others, we may have to do some workarounds. However, their benefits
clearly outweigh the compromise we have to make. While the following list is
not exhaustive, these are a few stacks we can explore to create our logging and
monitoring solutions:

•	 cAdvisor (http://github.com/google/cadvisor)
•	 InfluxDB (http://influxdb.com)
•	 Sensu (http://sensuapp.org)
•	 Fluentd (http://www.fluentd.org/)
•	 Graylog (http://www.graylog.org)
•	 Splunk (http://www.splunk.com)

Sometimes, our operations staff and developers running and developing our Docker
applications are not yet mature enough or do not want to focus on maintaining
such monitoring and logging infrastructures. There are several hosted monitoring
and logging platforms that we can use so that we can focus on actually writing and
improving the performance of our Docker application.

https://docs.docker.com/reference/logging
https://docs.docker.com/reference/logging
http://github.com/google/cadvisor
http://influxdb.com
http://sensuapp.org
http://www.fluentd.org/
http://www.graylog.org
http://www.splunk.com

Monitoring Docker Hosts and Containers

[82]

Some of them work with existing monitoring and logging agents, such as Syslog
and collectd. With others, we may have to download and deploy their agents to be
able to forward the events and metrics to their hosted platform. The following is a
nonexhaustive list of some solutions we may want to consider:

•	 New Relic (http://www.newrelic.com)
•	 Datadog (http://www.datadoghq.com)
•	 Librato (http://www.librato.com)
•	 Elastic's Found (http://www.elastic.co/found)
•	 Treasure Data (http://www.treasuredata.com)
•	 Splunk Cloud (http://www.splunk.com)

Summary
We now know why it is important to monitor our Docker deployments in a scalable
and accessible manner. We deployed collectd and Graphite to monitor our Docker
container's metrics. We rolled out an ELK stack to consolidate the logs coming from
various Docker hosts and containers.

In addition to raw metrics and events, it is also important to know what it means
for our application. Graphite-web and Kibana allow us to create custom dashboards
and analysis to provide insight in to our Docker applications. With these monitoring
tools and skills in our arsenal, we should be able to operate and run our Docker
deployments well in production.

In the next chapter, we will start doing performance tests and benchmark how
our Docker applications fare well with a high load. We should be able to use the
monitoring systems we deployed to observe and validate our performance testing
activities there.

http://www.newrelic.com
http://www.datadoghq.com
http://www.librato.com
http://www.elastic.co/found
http://www.treasuredata.com
http://www.splunk.com

[83]

Benchmarking
In optimizing our Docker applications, it is important to validate the parameters
that we tuned. Benchmarking is an experimental way of identifying if the elements
we modified in our Docker containers performed as expected. Our application will
have a wide area of options to be optimized. The Docker hosts running them have
their own set of parameters such as memory, networking, CPU, and storage as
well. Depending on the nature of our application, one or more of these parameters
can become a bottleneck. Having a series of tests to validate each component with
benchmarks is important for guiding our optimization strategy.

Additionally, by creating proper performance tests, we can also identify the limits of
the current configuration of our Docker-based application. With this information, we
can start exploring infrastructure parameters such as scaling out our application by
deploying them on more Docker hosts. We can also use this information to scale up
the same application by moving our workload to a Docker host with higher storage,
memory, or CPU. And when we have hybrid cloud deployments, we can use these
measurements to identify which cloud provider gives our application its optimum
performance.

Measuring how our application responds to these benchmarks is important
when planning the capacity needed for our Docker infrastructure. By creating a
test workload simulating peak and normal conditions, we can predict how our
application will perform once it is released to production.

In this chapter, we will cover the following topics to benchmark a simple web
application deployed in our Docker infrastructure:

•	 Setting up Apache JMeter for benchmarking
•	 Creating and designing a benchmark workload
•	 Analyzing application performance

Benchmarking

[84]

Setting up Apache JMeter
Apache JMeter is a popular application used to test the performance of web servers.
Besides load testing web servers, the open source project grew to support testing
other network protocols such as LDAP, FTP, and even raw TCP packets. It is highly
configurable, and powerful enough to design complex workloads of different usage
patterns. This feature can be used to simulate thousands of users suddenly visiting
our web application thus inducing a spike in the load.

Another feature expected in any load-testing software is its data capture and analysis
functions. JMeter has such a wide variety of data recording, plotting, and analysis
features that we can explore the results of our benchmarks right away. Finally, it
has a wide variety of plugins that may already have the load pattern, analysis, or
network connection that we plan to use.

More information about the features and how to use Apache JMeter
can be found on its website at http://jmeter.apache.org.

In this section, we will deploy an example application to benchmark, and prepare
our workstation to run our first JMeter-based benchmark.

Deploying a sample application
We can also bring our own web application we want to benchmark if we please. But
for the rest of this chapter, we will benchmark the following application described
in this section. The application is a simple Ruby web application deployed using
Unicorn, a popular Ruby application server. It receives traffic via a Unix socket from
Nginx. This setup is very typical for most Ruby applications found in the wild.

In this section, we will deploy this Ruby application in a Docker host called webapp.
We will use separate Docker hosts for the application, benchmark tools, and
monitoring. This separation is important so that the benchmark and monitoring
instrumentation we run doesn't affect the benchmark results.

The next few steps show us how to build and deploy our simple Ruby web
application stack:

1.	 First, create the Ruby application by creating the following Rack
config.ru file:
app = proc do |env|

 Math.sqrt rand

http://jmeter.apache.org

Chapter 5

[85]

 [200, {}, %w(hello world)]
end
run app

2.	 Next, we package the application as a Docker container with the following
Dockerfile:
FROM ruby:2.2.3

RUN gem install unicorn
WORKDIR /app

COPY . /app

VOLUME /var/run/unicorn

CMD unicorn -l /var/run/unicorn/unicorn.sock

3.	 Now we will create the Nginx configuration file nginx.conf. It will forward
requests to our Unicorn application server through the Unix socket that we
created in the previous step. In logging the request, we will record $remote_
addr and $response_time. We will pay particular attention to these metrics
later when we analyze our benchmark results:
events { }

http {
 log_format unicorn ''$remote_addr [$time_local]''
 '' ""$request"" $status''
 '' $body_bytes_sent $request_time'';
 access_log /var/log/nginx/access.log unicorn;

 upstream app_server {
 server unix:/var/run/unicorn/unicorn.sock;
 }
 server {
 location / {
 proxy_pass http://app_server;
 }
 }
}

Benchmarking

[86]

4.	 The preceding Nginx configuration will then be packaged as a Docker
container with the following Dockerfile:
FROM nginx:1.9.4

COPY nginx.conf /etc/nginx/nginx.conf

5.	 The last component will be a docker-compose.yml file to tie the two Docker
containers together for deployment:
web:
 log_opt:
 syslog-tag: nginx
 build: ./nginx
 ports:
 - 80:80
 volumes_from:
 - app
app:
 build: ./unicorn

In the end, we will have the files shown in the following screenshot in our code base:

After preparing our Dockerized web application, let us now deploy it to our Docker
host by typing the following command:

webapp$ docker-compose up -d

Chapter 5

[87]

Docker Compose is a tool for creating multi-container applications. It has a
schema defined in YML to describe how we want our Docker containers to
run and link to each other.
Docker Compose supports a curl | bash type of installation. To quickly
install it on our Docker host, type the following command:
dockerhost$ curl -L https://github.com/docker/compose/
releases/download/1.5.2/docker-compose-`uname -s`-`uname
-m` \
 > /usr/local/bin/docker-compose

We only covered Docker Compose in passing in this chapter. However, we
can get more information about Docker Compose on the documentation
website found at http://docs.docker.com/compose.

Finally, let us conduct a preliminary test to determine if our application works
properly:

$ curl http://webapp.dev

hello world

Now we are done preparing the application that we want to benchmark. In the next
section, we will prepare our workstation to perform the benchmarks by installing
Apache JMeter.

Installing JMeter
For the rest of this chapter, we will use Apache JMeter version 2.13 to perform our
benchmarks. In this section, we will download and install it in our workstation.
Follow the next few steps to set up JMeter properly:

1.	 To begin, go to JMeter's download web page at http://jmeter.apache.
org/download_jmeter.cgi.

2.	 Select the link for apache-jmeter-2.13.tgz to begin downloading the binary.
3.	 When the download finishes, extract the tarball by typing the following

command:
$ tar -xzf apache-jmeter-2.13.tgz

4.	 Next, we will add the bin/ directory to our $PATH so that JMeter can
be easily launched from the command line. To do this, we will type the
following command in our terminal:
$ export PATH=$PATH:`pwd`/apache-jmeter-2.13/bin

http://docs.docker.com/compose
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi

Benchmarking

[88]

5.	 Finally, launch JMeter by typing the following command:
$ jmeter

We will now see the JMeter UI just like the following screenshot. Now we are finally
ready to write the benchmark for our application!:

Note that Apache JMeter is a Java application. According to the
JMeter website, it requires at least Java 1.6 to work. Make sure
you have a Java Runtime Environment (JRE) properly set up
before installing JMeter.
If we were in a Mac OSX environment, we could use
Homebrew and just type the following command:
$ brew install jmeter

For other platforms, the instructions described earlier should
be sufficient to get started. More information on how to install
JMeter can be found at http://jmeter.apache.org/
usermanual/get-started.html.

http://jmeter.apache.org/usermanual/get-started.html
http://jmeter.apache.org/usermanual/get-started.html

Chapter 5

[89]

Building a benchmark workload
Writing benchmarks for an application is an open-ended area to explore. Apache
JMeter can be overwhelming at first. It has several options to tune in order to write
our benchmarks. To begin, we can use the "story" of our application as a start. The
following are some of the questions we can ask ourselves:

•	 What does our application do?
•	 What is the persona of our users?
•	 How do they interact with our application?

Starting with these questions, we can then translate them into actual requests to
our application.

In the sample application that we wrote in the earlier section, we have a web
application that displays Hello World to our users. In web applications, we are
typically interested with the throughput and response time. Throughput refers to the
number of users that can receive Hello World at a time. Response time describes the
time lag before the user receives the Hello World message from the moment they
requested it.

In this section, we will create a preliminary benchmark in Apache JMeter. Then
we will begin analyzing our initial results with JMeter's analysis tools and the
monitoring stack that we deployed in Chapter 4, Monitoring Docker Hosts and
Containers. After that, we will iterate on the benchmarks we developed, and tune it.
This way, we know that we are benchmarking our application properly.

Creating a test plan in JMeter
A series of benchmarks in Apache JMeter is described in a test plan. A test plan
describes a series of steps that JMeter will execute like performing requests to a
web application. Each step in a test plan is called an element. These elements
themselves can have one or more elements as well. In the end, our test plan will
look like a tree—an hierarchy of elements to describe the benchmark we want for
our application.

Benchmarking

[90]

To add an element into our test plan, we simply right-click on the parent element
that we want, and then select Add. This opens a context menu of elements that
can be added to the selected parent element. In the following screenshot, we add a
Thread Group element to the main element, Test Plan:

The next few steps show the way to create a test plan conducting the benchmark that
we want:

1.	 First, let us rename the Test Plan to something more appropriate. Click on
the Test Plan element. This will update the main JMeter window on the
right. In the form field labeled Name:, set the value to Unicorn Capacity.

2.	 Under the Unicorn Capacity test plan, create a thread group. Name this
Application Users. We will configure this thread group to send 10,000
requests to our application from a single thread in the beginning. Use the
following parameters for filling out the form to achieve this setting:

°° Number of Threads: 1
°° Ramp-up Period: 0 seconds
°° Loop Count: 120,000 times

When we start developing our test plans, having a low loop count
is useful. Instead of 120,000 loop counts, we can begin with 10,000
or even just 10 instead. Our benchmarks are shorter, but we get
immediate feedback when developing it such as when we proceed
to the next step. When we finish the whole test plan, we can always
revert and tune it later to generate more requests.

3.	 Next, under the Application Users thread group, we create the actual request
by adding Sampler, HTTP Request. This is the configuration where we set
the details of how we make a request to our web application:

°° Name: Go to http://webapp/
°° Server Name: webapp

Chapter 5

[91]

4.	 Finally, we configure how to save the test results by adding a listener under
the Unicorn Capacity test plan. For this, we will add a Simple Data Writer,
and name it Save Result. We set the Filename field to result.jtl to save
our benchmark results in the said file. We will refer to this file later when we
analyze the result of the benchmark.

Now we have a basic benchmark workload that generates 120,000 HTTP requests to
http://webapp/. Then the test plan saves the result of each request in a file called
result.jtl. The following is a screenshot of JMeter after the last step in creating the
test plan:

Finally, it is time to run our benchmark. Go to the Run menu, then select Start to
begin executing the test plan. While the benchmark is running, the Start button is
grayed-out and disabled. When the execution finishes, it will be enabled again.

After running the benchmark, we will analyze the results by looking at the result.
jtl file using JMeter's analysis tools in the next section.

There are various types of elements that can be placed in a JMeter test
plan. Besides the three elements we used previously to create a basic
benchmark for our application, there are several others that regulate
requests, perform other network requests, and analyze data.
A comprehensive list of test plan elements and their description can
be found on the JMeter page at http://jmeter.apache.org/
usermanual/component_reference.html.

http://jmeter.apache.org/usermanual/component_reference.html
http://jmeter.apache.org/usermanual/component_reference.html

Benchmarking

[92]

Analyzing benchmark results
In this section, we will analyze the benchmark results, and identify how the 120,000
requests affected our application. In creating web application benchmarks, there are
typically two things we are usually interested in:

•	 How many requests can our application handle at a time?
•	 For how long is each request being processed by our application?

These two low-level web performance metrics can easily translate to the business
implications of our application. For example, how many customers are using our
application? Another one is, how are they perceiving the responsiveness of our
application from a user experience perspective? We can correlate secondary metrics
in our application such as CPU, memory, and network to determine our system
capacity.

Viewing the results of JMeter runs
Several listener elements of JMeter have features that render graphs. Enabling this
when running the benchmark is useful when developing the test plan. But the time
taken by the UI to render the results in real time, in addition to the actual benchmark
requests, affects the performance of the test. Hence, it is better for us to separate the
execution and analysis components of our benchmark. In this section, we will create
a new test plan, and look at a few JMeter listener elements to analyze the data we
acquired in result.jtl.

To begin our analysis, we first create a new test plan, and name this Analyze
Results. We will add various listener elements under this test plan parent element.
After this, follow the next few steps to add various JMeter listeners that can be used
to analyze our benchmark result.

Calculating throughput
For our first analysis, we will use the Summary Report listener. This listener will
show the throughput of our application. A measurement of throughput will show
the number of transactions our application can handle per second.

To display the throughput, perform the following steps:

After loading the listener, fill out the Filename field by selecting the result.jtl
file that we generated when we ran our benchmark. For the run we did earlier, the
following screenshot shows that the 120,000 HTTP requests were sent to http://
webapp/ at a throughput of 746.7 requests per second:

Chapter 5

[93]

We can also look at how throughput evolved over the course of our benchmark with
the Graph Results listener. Create this listener under the Analyze Results test plan
element and name it Throughput over time. Make sure that only the Throughput
checkbox is marked (feel free to look at the other data points later though). After
creating the listener, load our result.jtl test result again. The following screenshot
shows how the throughput evolved over time:

Benchmarking

[94]

As we can see in the preceding screenshot, the throughput started slow while
JMeter tries to warm up its single-thread pool of requests. But after our benchmark
continues to run, the throughput level settles at a stable level. By having a large
number of loop counts earlier in our thread group, we were able to minimize the
effect of the earlier ramp-up period.

This way, the throughput displayed in the Summary Report earlier is more or less
a consistent result. Take note that the Graph Results listener wraps around its data
points after several samples.

Remember that in benchmarking, the more samples we get,
the more precise our observations can be!

Plotting response time
Another metric we are interested in when we benchmark our application is the
response time. The response time shows the duration for which JMeter has to wait
before receiving the web page response from our application. In terms of real users,
we can look at this as the time our users typed our web application's URL to the time
everything got displayed in their web browser (it may not represent the real whole
picture if our application renders some slow JavaScript, but for the application we
made earlier, this analogy should suffice).

To view the response time of our application, we will use the Response Time Graph
listener. As an initial setting, we can set the interval to 500 milliseconds. This will
average some of the response times along 500 milliseconds in result.jtl. In the
following image, you can see that our application's response time is mostly at around
1 millisecond:

Chapter 5

[95]

If we want to display the response time in finer detail, we can decrease the interval
to as low as 1 millisecond. Take note that this will take more time to display as the
JMeter UI tries to plot more points in the application. Sometimes, when there are
too many samples, JMeter may crash, because our workstation doesn't have enough
memory to display the entire graph. In case of large benchmarks, we would be better
off observing the results with our monitoring system. We will look at this data in the
next section.

Observing performance in Graphite and
Kibana
There might be a case when our workstation is so old that Java is not able to handle
displaying 120,000 data points in its JMeter UI. To solve this, we can reduce the
amount of data we have by either generating less requests in our benchmark
or averaging out some of the data like we did earlier, when graphing response
time. However, sometimes we want to see the full resolution of our data. This full
view is useful when we want to inspect the finer details of how our application
behaves. Fortunately, we already have a monitoring system in place for our Docker
infrastructure that we built in Chapter 4, Monitoring Docker Hosts and Containers.

In this section, our monitoring and logging systems are deployed
in a Docker host called monitoring. Our Docker host webapp
that runs our application containers will have Collected and
Rsyslog send events to the Docker host monitoring.

Benchmarking

[96]

Remember the Nginx configuration mentioned when describing our benchmarks?
The access log generated from the standard of the Nginx container is captured by
Docker. If we use the same setup of our Docker daemon in Chapter 4, Monitoring
Docker Hosts and Containers, these log events are captured by the local Rsyslog
service. These Syslog entries will then be forwarded to the Logstash Syslog collector,
and stored to Elasticsearch. We can then use the visualize feature of Kibana to look at
the throughput of our application. The following analysis was made by counting the
number of access log entries that Elasticsearch received per second:

We can also plot our application's response time during the course of the benchmark
in Kibana. To do this, we first need to reconfigure our Logstash configuration to
parse the data being received from the access log, and extract out the response
time as a metric using filters. To do this, update logstash.conf from Chapter 4,
Monitoring Docker Hosts and Containers, to add the grok {} filter as follows:

input {
 syslog {
 port => 1514
 type => syslog
 }
}

filter {
 if [program] == ""docker/nginx"" {
 grok {

Chapter 5

[97]

 patterns_dir => [""/etc/logstash/patterns""]
 match => {
 ""message"" => ""%{NGINXACCESS}""
 }
 }
 }
}

output {
 elasticsearch {
 host => ""elasticsearch""
 }
}

Logstash's Filter plugins are used to intermediately process
events before they reach our target storage endpoint such as
Elasticsearch. It transforms raw data such as lines of text to a
richer data schema in JSON that we can then use later for further
analysis. More information about Logstash Filter plugins can be
found at https://www.elastic.co/guide/en/logstash/
current/filter-plugins.html.

The NGINXACCESS pattern being referred to in the preceding code is defined
externally in what the grok {} filter calls a patterns file. Write the following
as its content:

REQUESTPATH \""%{WORD:method} %{URIPATHPARAM} HTTP.*\""
HTTPREQUEST %{REQUESTPATH} %{NUMBER:response_code}
WEBMETRICS %{NUMBER:bytes_sent:int} %{NUMBER:response_time:float}
NGINXSOURCE %{IP:client} \[%{HTTPDATE:requested_at}\]
NGINXACCESS %{NGINXSOURCE} %{HTTPREQUEST} %{WEBMETRICS}

Finally, rebuild our hubuser/logstash Docker container from Chapter 4, Monitoring
Docker Hosts and Containers. Don't forget to update the Dockerfile as follows to add
the patterns file to our Docker context:

FROM logstash:1.5.3

ADD logstash.conf /etc/logstash.conf
ADD patterns /etc/logstash/patterns/nginx
EXPOSE 1514/udp
EXPOSE 25826/udp

https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

Benchmarking

[98]

Now that we extracted the response times from the Nginx access logs, we can plot
these data points in a Kibana visualization. The following is a screenshot of Kibana
showing the average response time per second of the benchmark we ran earlier:

Another result that we can explore is the way our Docker host webapp responds with
the load received from our benchmark. First we can check how our web application
consumes the CPU of our Docker host. Let's log in to our monitoring system's
graphite-web dashboard and plot the metrics webapp.cpu-0.cpu-* except cpu-
idle. As we can see in the following image, the CPU of our Docker host goes to 100
percent usage the moment we start sending our application a lot of requests:

Chapter 5

[99]

We can explore other system measurements of our Docker host to see how it is
affected by the load of HTTP requests that it gets. The important point is that we use
this data and correlate it to see how our web application behaved.

Apache JMeter version 2.13 and later include a backend listener
that we can use to send JMeter data measurements in real time
to external endpoints. By default, it ships with support for the
Graphite wire protocol. We can use this feature to send benchmark
results to the Graphite monitoring infrastructure that we built in
Chapter 4, Monitoring Docker Hosts and Containers. More information
on how to use this feature is available at http://jmeter.
apache.org/usermanual/realtime-results.html.

Tuning the benchmark
At this point, we already have a basic workflow of creating a test plan in Apache
JMeter and analyzing the preliminary results. From here, there are several
parameters we can adjust to achieve our benchmark objectives. In this section, we
will iterate on our test plan to identify the limits of our Docker application.

Increasing concurrency
The first parameter that we may want to tune is increasing the Loop Count of our
test plan. Driving our test plan to generate more requests will allow us to see the
effects of the load we induced to our application. This increases the precision of our
benchmark experiments, because outlier events such as a slow network connection
or hardware failure (unless we are testing that specifically!) affect our tests.

After having enough data points for our benchmarks, we may realize that the
load being generated is not enough against our Docker application. For example,
the current throughput we received from our first analysis may not simulate the
behavior of real users. Let us say that we want to have 2000 requests per second. To
increase the rate at which JMeter generates the requests, we can increase the number
of threads in the thread group that we created earlier. This increases the number of
concurrent requests that JMeter is creating at a time. If we want to simulate a gradual
increase in the number of users, we can adjust the ramp-up period to be longer.

For workloads where we want to simulate a sudden increase
of users, we can stick with a ramp-up period of 0 to start all the
threads right away. In cases where we want to tune other behaviors
such as a constant load and then a sudden spike, we can use the
Stepping Thread Group plugin.

http://jmeter.apache.org/usermanual/realtime-results.html
http://jmeter.apache.org/usermanual/realtime-results.html

Benchmarking

[100]

We may also want to limit it to precisely just 100 requests per second. Here, we
can use Timer elements to control how our threads generate the request. To start
limiting throughput, we can use the Constant Throughput Timer. This will make
JMeter automatically slow down threads when it perceives that the throughput it is
receiving from our web application is increasing too much.

Some of the benchmark techniques here are difficult to apply with the built-in
Apache JMeter components. There are a variety of plugins that make it simpler to
generate the load to drive our application. They are available as plugins. The Apache
JMeter list of popularly used community plugins is found at http://jmeter-
plugins.org.

Running distributed tests
After tuning the concurrency parameters for a while, we realize that our result
does not change. We may set JMeter to generate 10,000 requests at a time, but that
will most likely crash our UI! In this case, we are already reaching the performance
limits of our workstation while building the benchmarks. From this point, we can
start exploring using a pool of servers that run JMeter to create distributed tests.
Distributed tests are useful, because we can grab several servers from the cloud with
higher performance to simulate spikes. It is also useful for creating load coming
from several sources. This distributed setup is useful for simulating high-latency
scenarios, where our users are accessing our Docker application from halfway across
the world.

Execute the following steps for deploying Apache JMeter on several Docker hosts to
perform a distributed benchmark:

1.	 First, create the following Dockerfile to create a Docker image called
hubuser/jmeter:
FROM java:8u66-jre

Download URL for JMeter
RUN curl http://www.apache.org/dist/jmeter/binaries/apache-
jmeter-2.13.tgz | tar xz
WORKDIR /apache-jmeter-2.13

EXPOSE 1099
EXPOSE 1100

ENTRYPOINT ["./bin/jmeter", "-j", "/dev/stdout", "-s", \
 "-Dserver_port=1099", "-Jserver.rmi.localport=1100"]

http://jmeter-plugins.org
http://jmeter-plugins.org

Chapter 5

[101]

2.	 Next, provision the number of Docker hosts we want according to our cloud
or server provider. Take note of the hostname or IP address of each Docker
host. For our case, we created two Docker hosts called dockerhost1 and
dockerhost2.

3.	 Now, we will run the JMeter server on our Docker hosts. Log in to each of
them, and type the following command:
dockerhost1$ docker run -p 1099:1099 -p 1100:1100 \

 hubuser/jmeter -Djava.rmi.server.hostname=dockerhost1

dockerhost2$ docker run -p 1099:1099 -p 1100:1100 \

 hubuser/jmeter -Djava.rmi.server.hostname=dockerhost2

4.	 To finalize our JMeter cluster, we will type the following command to launch
the JMeter UI client connected to the JMeter servers:
$ jmeter -Jremote_hosts=dockerhost1,dockerhost2

With an Apache JMeter cluster at our disposal, we are now ready to run distributed
tests. Note that the number of threads in the test plan specifies the thread count
on each JMeter server. In the case of the test plan we made in the earlier section,
our JMeter benchmark will generate 240,000 requests. We should adjust these
counts according to the test workload we have in mind. Some of the guidelines we
mentioned in the previous section can be used to tune our remote tests.

Finally, to start the remote tests, select Remote Start All from the Run menu. This
will spawn the thread groups we created in our test plan to our JMeter servers in
dockerhost1 and dockerhost2. When we look at our access logs of Nginx, we can
now see that the IP sources are coming from two different sources. The following IP
addresses come from each of our Docker hosts:

172.16.132.216 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.003

172.16.132.187 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.003

172.16.132.216 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.003

172.16.132.187 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.002

172.16.132.216 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.002

172.16.132.187 [14/Sep/2015:16:...] ""GET / HTTP/1.1"" 200 20 0.003

More information on distributed and remote testing can be found at
http://jmeter.apache.org/usermanual/remote-test.html.

http://jmeter.apache.org/usermanual/remote-test.html

Benchmarking

[102]

Other benchmarking tools
There are a few other benchmarking tools specifically for benchmarking web-based
applications. The following is a short list of such tools with their links:

•	 Apache Bench: http://httpd.apache.org/docs/2.4/en/programs/
ab.html

•	 HP Lab's Httperf: http://www.hpl.hp.com/research/linux/httperf
•	 Siege: https://www.joedog.org/siege-home

Summary
In this chapter, we created benchmarks for gauging the performance of our Docker
application. By using Apache JMeter and the monitoring system we set up in
Chapter 4, Monitoring Docker Hosts and Containers, we analyzed how our application
behaved under various conditions. We now have an idea about the limitations of our
application, and will use it to further optimize it or to scale it out.

In the next chapter, we will talk about load balancers for scaling-out our application
to increase its capacity.

http://httpd.apache.org/docs/2.4/en/programs/ab.html
http://httpd.apache.org/docs/2.4/en/programs/ab.html
http://www.hpl.hp.com/research/linux/httperf
https://www.joedog.org/siege-home

[103]

Load Balancing
No matter how we tune our Docker applications, we will reach our application's
performance limits. Using the benchmarking techniques we discussed in the
previous chapter, we should be able to identify the capacity of our application. In
the near future, our Docker application's users will exceed this limit. We cannot turn
these users away just because our Docker application cannot handle their requests
anymore. We need to scale out our application so that it can serve our growing
number of users.

In this chapter, we will talk about how to scale out our Docker applications to
increase our capacity. We will use load balancers, which are a key component in
the architecture of various web scale applications. Load balancers distribute our
application's users to multiple Docker applications deployed in our farm of Docker
hosts. The following steps covered in this chapter will help us accomplish this:

•	 Preparing a Docker host farm
•	 Balancing load with Nginx
•	 Scaling out our Docker applications
•	 Managing zero downtime releases with load balancers

Preparing a Docker host farm
A key component in load balancing our Docker application is to have a farm of
servers to send our application's requests to. In the case of our infrastructure,
this involves preparing a farm of Docker hosts to deploy our application to. The
scalable way to do this is to have a common base configuration that is managed
by configuration management software, such as Chef, as we previously covered in
Chapter 3, Automating Docker Deployments with Chef.

Load Balancing

[104]

After preparing the farm of Docker hosts, it is time to prepare the application that we
will run. In this chapter, we will scale a simple NodeJS application. The rest of this
section will describe how this application works.

The web application is a small NodeJS application written in a file called app.js. For
the purpose of visualizing how our application load balances, we will also log some
information about our application and the Docker host it is running in. The app.js
file will contain the following code:

var http = require('http');

var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 var version = "1.0.0";
 var log = {};
 log.header = 'mywebapp';
 log.name = process.env.HOSTNAME;
 log.version = version;
 console.log(JSON.stringify(log));
 response.end(version + " Hello World "+ process.env.HOSTNAME);
});
server.listen(8000);

To deploy the preceding application code, we will package it in a Docker image
called hubuser/app:1.0.0 with the following Dockerfile:

FROM node:4.0.0

COPY app.js /app/app.js
EXPOSE 8000
CMD ["node", "/app/app.js"]

Make sure that our Docker image is built and available at Docker Hub. This way, we
can easily deploy it. Run this with the following command:

dockerhost$ docker build -t hubuser/app:1.0.0 .

dockerhost$ docker push hubuser/app:1.0.0

As the final step in our preparation, we will deploy our Docker application to three
Docker hosts: greenhost00, greenhost01, and greenhost02. Log in to each of the
hosts and type the following command to start the container:

greenhost00$ docker run -d -p 8000:8000 hubuser/app:1.0.0

greenhost01$ docker run -d -p 8000:8000 hubuser/app:1.0.0

greenhost02$ docker run -d -p 8000:8000 hubuser/app:1.0.0

Chapter 6

[105]

Better yet, we can write a Chef cookbook that will deploy
the Docker application that we just wrote.

Balancing load with Nginx
Now that we have a pool of Docker applications to forward traffic to, we can prepare
our load balancer. In this section, we will briefly cover Nginx, a popular web server
that has high concurrency and performance. It is commonly used as a reverse proxy
to forward requests to more dynamic web applications, such as the NodeJS one we
wrote earlier. By configuring Nginx to have multiple reverse proxy destinations,
such as our pool of Docker applications, it will balance the load of requests coming
to it across the pool.

In our load balancer deployment, we will deploy our Nginx Docker container in a
Docker host called dockerhost. After deployment, the Nginx container will start
forwarding to the pool of Docker hosts called greenhost*, which we provisioned in
the earlier section.

The following is a simple configuration of Nginx that will forward traffic to the pool
of Docker applications that we deployed earlier. Save this file in /root/nginx.conf
inside the dockerhost Docker host, as follows:

events { }

http {
 upstream app_server {
 server greenhost00:8000;
 server greenhost01:8000;
 server greenhost02:8000;
 }
 server {
 location / {
 proxy_pass http://app_server;
 }
 }
}

The preceding Nginx configuration file is basically composed of directives. Each
directive has a corresponding effect on Nginx's configuration. To define our pool of
applications, we will use the upstream directive to define a group of servers. Next,
we will place the list of servers in our pool using the server directive. A server in
the pool is normally defined in the <hostname-or-ip>:<port> format.

Load Balancing

[106]

The following are the references referring to the described
directives mentioned earlier:

•	 upstream—http://nginx.org/en/docs/http/
ngx_http_upstream_module.html#upstream

•	 server—http://nginx.org/en/docs/http/ngx_
http_upstream_module.html#server

•	 proxy_pass—http://nginx.org/en/docs/http/
ngx_http_proxy_module.html#proxy_pass

Introductory material discussing the basics of directives can be
found at http://nginx.org/en/docs/beginners_guide.
html#conf_structure.

Now that we have prepared our nginx.conf file, we can deploy our Nginx container
together with this configuration. To perform this deployment, let's run the following
command in our dockerhost Docker host:

dockerhost$ docker run -p 80:80 -d --name=balancer \

 --volume=/root/nginx.conf:/etc/nginx/nginx.conf:ro nginx:1.9.4

Our web application is now accessible via http://dockerhost. Each request will
then be routed to one of the hubuser/webapp:1.0.0 containers we deployed to our
pool of Docker hosts.

To confirm our deployment, we can look at our Kibana visualization to show the
distribution of traffic across our three hosts. To show the distribution of traffic,
we must first generate load for our application. We can use our JMeter testing
infrastructure described in Chapter 5, Benchmarking, to achieve this. For quick testing,
we can also generate load using a long-running command similar to the following:

$ while true; do curl http://dockerhost && sleep 0.1; done

1.0.0 Hello World 56547aceb063

1.0.0 Hello World af272c6968f0

1.0.0 Hello World 7791edeefb8c

1.0.0 Hello World 56547aceb063

1.0.0 Hello World af272c6968f0

1.0.0 Hello World 7791edeefb8c

1.0.0 Hello World 56547aceb063

1.0.0 Hello World af272c6968f0

1.0.0 Hello World 7791edeefb8c

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#server
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#server
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass
http://nginx.org/en/docs/beginners_guide.html#conf_structure
http://nginx.org/en/docs/beginners_guide.html#conf_structure

Chapter 6

[107]

Recall that in the application we prepared earlier, we printed out $HOSTNAME as a
part of the HTTP response. In the preceding case, the responses show the Docker
container's hostname. Note that Docker containers get the short hash of their
container IDs as their hostname by default. As we can note from the initial output of
our test workload, we are getting responses from three containers.

We can visualize the response better in a Kibana visualization if we set up our
logging infrastructure as we did in Chapter 4, Monitoring Docker Hosts and Containers.
In the following screenshot, we can count the number of responses per minute
according to the Docker host that the log entry came from:

We can note in the preceding figure that our workload gets distributed evenly by
Nginx to our three Docker hosts: greenhost00, greenhost01, and greenhost02.

Load Balancing

[108]

To properly visualize our deployment in Kibana we have to
annotate our Docker containers and filter these log entries in
Logstash so that they get properly annotated to Elasticsearch.
We can do this via the following steps:
First, we will make sure that we use the syslog-tag
option when deploying our Docker container. This makes
our application easier to filter out later in Logstash. Run the
following code:
greenhost01$ docker run -d -p 8000:8000 \
 --log-driver syslog \
 --log-opt syslogtag=webapp \

 hubuser/app:1.0.0

With this, Logstash will receive our Docker container's log entries
with the docker/webapp tag. We can then use a Logstash
filter as follows to get this information in Elasticsearch:

filter {
 if [program] == "docker/webapp" {
 json {
 source => "message"
 }
 }
}

Scaling out our Docker applications
Now, suppose that the workload in the previous section starts to overload each of
our three Docker hosts. Without a load balancer such as our preceding Nginx setup,
our application's performance will start to degrade. This may mean a lower quality
of service to our application's users or being paged in the middle of the night to
perform heroic systems operations. However, with a load balancer managing the
connections to our applications, it is very simple to add more capacity to scale out
the performance of our application.

As our application is already designed to be load balanced, our scale-out process is
very simple. The next few steps form a typical workflow on how to add capacity to a
load-balanced application:

1.	 First, provision new Docker hosts with the same base configuration as the
first three in our Docker host pool. In this section, we will create two new
Docker hosts, named greenhost03 and greenhost04.

Chapter 6

[109]

2.	 The next step in our scale-out process is to then deploy our applications in
these new Docker hosts. Type the same command before for deployment as
the following one to each of the new Docker hosts:
greenhost03$ docker run -d -p 8000:8000 hubuser/app:1.0.0
greenhost04$ docker run -d -p 8000:8000 hubuser/app:1.0.0

3.	 At this point, new application servers in our pool are ready to accept
connections. It is now time to add them as destinations to our Nginx-based
load balancer. To add them to our pool of upstream servers, first update the /
root/nginx.conf file, as follows:
events { }

http {
 upstream app_server {
 server greenhost00:8000;
 server greenhost01:8000;
 server greenhost02:8000;
 server greenhost03:8000;
 server greenhost04:8000;
 }
 server {
 location / {
 proxy_pass http://app_server;
 }
 }
}

4.	 Finally, we will notify our running Nginx Docker container to reload its
configuration. In Nginx, this is done by sending a HUP Unix signal to its
master process. To send the signal to a master process inside the Docker
container, type the following Docker command. Send the reload signal:
dockerhost$ docker kill -s HUP balancer

More information on how to control Nginx with various
Unix signals is documented at http://nginx.org/en/
docs/control.html.

http://nginx.org/en/docs/control.html
http://nginx.org/en/docs/control.html

Load Balancing

[110]

Now that we are done scaling out our Docker application, let's look back at our
Kibana visualization to observe the effect. The following screenshot shows the
distribution of traffic across the five Docker hosts we currently have:

We can note in the preceding screenshot that after we reloaded Nginx, it started to
distribute load across our new Docker containers. Before this, each Docker container
received only a third of the traffic from Nginx. Now, each Docker application in the
pool only receives a fifth of the traffic.

Deploying with zero downtime
Another advantage of having our Docker application load balanced is that we
can use the same load balancing techniques to update our application. Normally,
operations engineers have to schedule downtime or a maintenance window in order
to update an application deployed in production. However, as our application's
traffic goes to a load balancer before it reaches our application, we can use this
intermediate step to our advantage. In this section, we will employ a technique called
blue-green deployments to update our running application with zero downtime.

Chapter 6

[111]

Our current pool of hubuser/app:1.0.0 Docker containers is called our green
Docker host pool because it actively receives requests from our Nginx load balancer.
We will update the application being served by our Nginx load balancer to pool of
hubuser/app:2.0.0 Docker containers. The following are the steps to perform
the update:

1.	 First, let's update our application by changing the version string in our app.
js file, as follows:
var http = require('http');

var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 var version = "2.0.0";
 var log = {};
 log.header = 'mywebapp';
 log.name = process.env.HOSTNAME;
 log.version = version;
 console.log(JSON.stringify(log));
 response.end(version + " Hello World "+ process.env.HOSTNAME);
});

server.listen(8000);

2.	 After updating the content, we will prepare a new version of our Docker
image called hubuser/app:2.0.0 and publish it to Docker Hub via the
following command:
dockerhost$ docker build -t hubuser/app:2.0.0 .
dockerhost$ docker push hubuser/app:2.0.0

3.	 Next, we will provision a set of Docker hosts called bluehost01,
bluehost02, and bluehost03, either through our cloud provider or by
buying actual hardware. This will become our blue Docker host pool.

4.	 Now that our Docker hosts are prepared, we will deploy our new Docker
application on each of the new hosts. Type the following commands on each
Docker host to perform the deployment:

bluehost00$ docker run -d -p 8000:8000 hubuser/app:2.0.0
bluehost01$ docker run -d -p 8000:8000 hubuser/app:2.0.0
bluehost02$ docker run -d -p 8000:8000 hubuser/app:2.0.0

Our blue Docker host pool is now prepared. It is called blue because although it
is now live and running, it has yet to receive user traffic. At this point, we can do
whatever is needed, such as performing preflight checks and tests before siphoning
our users to the new version of our application.

Load Balancing

[112]

After we are confident that our blue Docker host pool is fully functional and
working, it will be time to send traffic to it. As in the scaling-out process of our
Docker host pool, we will simply add our blue Docker hosts to the list of servers
inside our /root/nginx.conf configuration, as follows:

events { }

http {
 upstream app_server {
 server greenhost00:8000;
 server greenhost01:8000;
 server greenhost02:8000;
 server greenhost03:8000;
 server greenhost04:8000;
 server bluehost00:8000;
 server bluehost01:8000;
 server bluehost02:8000;
 }
 server {
 location / {
 proxy_pass http://app_server;
 }
 }
}

To complete the activation, reload our Nginx load balancer by sending it the HUP
signal through the following command:

dockerhost$ docker kill -s HUP balancer

At this point, Nginx sends traffic to both the old version (hubuser/app:1.0.0) and
the new version (hubuser/app:2.0.0) of our Docker application. With this, we can
completely verify that our new application is indeed working as expected because
it now serves live traffic from our application's users. In the cases when it does not
work properly, we can safely roll back by removing the bluehost* Docker hosts in
the pool and resending the HUP signal to our Nginx container.

However, suppose we are already satisfied with our new application. We can then
safely remove the old Docker application from our load balancer's configuration. In
our /root/nginx.conf file, we can perform this by removing all the greenhost*
lines, as follows:

http {
 upstream app_server {
 server bluehost00:8000;
 server bluehost01:8000;

Chapter 6

[113]

 server bluehost02:8000;
 }
 server {
 location / {
 proxy_pass http://app_server;
 }
 }
}

Now, we can complete our zero-downtime deployment with another HUP signal to
Nginx. At this point, our blue Docker host pool serves all the production traffic of our
application. This, therefore, becomes our new green Docker host pool. Optionally, we
can deprovision our old green Docker host pool to save on resource usage.

The whole blue-green deployment process we did earlier can be summarized in the
following Kibana visualization:

Note that in the preceding graph, our application still serves traffic even though we
updated our application. Note also that before this, all of the traffic was distributed
to our five 1.0.0 applications. After activating the blue Docker host pool,
three-eighths of the traffic started going to version 2.0.0 of our application. In the
end, we deactivated all the endpoints in our old green Docker host pool, and all of
the application's traffic is now served by version 2.0.0 of our application.

Load Balancing

[114]

More information about blue-green deployments and other types
of zero-downtime release techniques can be found in a book called
Continuous Delivery by Jez Humble and Dave Farley. The book's
website can be found at http://continuousdelivery.com.

Other load balancers
There are other tools that can be used to load balance applications. Some are similar
to Nginx, where configuration is defined through external configuration files. Then,
we can send a signal to the running process to reload the updated configuration.
Some have their pool configurations stored in an outside store, such as Redis,
etcd, and even regular databases, so that the list is dynamically loaded by the load
balancer itself. Even Nginx has some of these functionalities with its commercial
offering. There are also other open source projects that extend Nginx with
third-party modules.

The following is a short list of load balancers that we can deploy as some form of
Docker containers in our infrastructure:

•	 Redx (https://github.com/rstudio/redx)
•	 HAProxy (http://www.haproxy.org)
•	 Apache HTTP Server (http://httpd.apache.org)
•	 Vulcand (http://vulcand.github.io/)
•	 CloudFoundry's GoRouter (https://github.com/cloudfoundry/gorouter)
•	 dotCloud's Hipache (https://github.com/hipache/hipache)

There are also hardware-based load balancers that we can procure ourselves and
configure via their own proprietary formats or APIs. If we use cloud providers, some
of their own load balancer offerings would have their own cloud APIs that we can
use as well.

Summary
In this chapter, you learned the benefits of using load balancers and how to use
them. We deployed and configured Nginx as a load balancer in a Docker container
so that we can scale out our Docker application. We also used the load balancer to
perform zero-downtime releases to update our application to a new version.

In the next chapter, we will continue to improve our Docker optimization skills by
debugging inside the Docker containers we deploy.

http://continuousdelivery.com
https://github.com/rstudio/redx
http://www.haproxy.org
http://httpd.apache.org
http://vulcand.github.io/
https://github.com/cloudfoundry/gorouter
https://github.com/hipache/hipache

[115]

Troubleshooting Containers
Sometimes, instrumentation, such as the monitoring and logging system we set up in
Chapter 4, Monitoring Docker Hosts and Containers, is not enough. Ideally, we should
put in place a way to troubleshoot our Docker deployments in a scalable fashion.
However, sometimes, we have no choice but to log in to the Docker host and look at
the Docker containers themselves.

In this chapter, we will cover the following topics:

•	 Inspecting containers with docker exec
•	 Debugging from outside Docker
•	 Other debugging suites

Inspecting containers
When troubleshooting servers, the traditional way to debug is to log in and poke
around the machine. With Docker, this typical workflow is split into two steps:
the first is logging in to the Docker host using standard remote access tools such as
ssh, and the second is entering the desired running container's process namespace
with docker exec. This is useful as a last resort to debug what is happening inside
our application.

For most of this chapter, we will troubleshoot and debug a Docker container running
HAProxy. To prepare this container, create a configuration file for HAProxy named
haproxy.cfg with the following content:

defaults
 mode http
 timeout connect 5000ms
 timeout client 50000ms

Troubleshooting Containers

[116]

 timeout server 50000ms

frontend stats
 bind 127.0.0.1:80
 stats enable

listen http-in
 bind *:80
 server server1 www.debian.org:80

Next, using the official Docker image for HAProxy (haproxy:1.5.14), we will run
the container together with the configuration we created earlier. Run the following
command in our Docker host to start HAProxy with our prepared configuration:

dockerhost$ docker run -d -p 80:80 --name haproxy \

 -v `pwd`/haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg \

 haproxy:1.5.14

Now, we can begin inspecting our container and debugging it. A good first example
is to confirm that the HAProxy container is listening to port 80. The ss program
dumps a summary of sockets statistics available in most Linux distributions, such as
our Debian Docker host. We can run the following command to display the statistics
of the listening sockets inside our Docker container:

dockerhost$ docker exec haproxy /bin/ss -l

State Recv-Q Send-Q Local Address:Port Peer Address:Port

LISTEN 0 128 *:http *:*

LISTEN 0 128 127.0.0.1:http *:*

This approach with docker exec only worked because ss is included by default in
the debian:jessie parent container of haproxy:1.5.14. We cannot use a similar
tool that is not installed by default, such as netstat. Typing an equivalent netstat
command will give the following error:

dockerhost$ docker exec haproxy /usr/bin/netstat -an

dockerhost$ echo $?

255

Let's investigate what happened by looking at the logs of Docker Engine Service.
Typing the following command shows that the netstat program doesn't exist inside
our container:

dockerhost$ journalctl -u docker.service –o cat

...

Chapter 7

[117]

time="..." level=info msg="POST /v1.20/containers/haproxy/exec"

time="..." level=info msg="POST /v1.20/exec/c64fcf22b5c4.../start"

time="..." level=warning msg="signal: killed"

time="..." level=error msg="Error running command in existing...:"

 " [8] System error: exec: \"/usr/bin/netstat\":"

 " stat /usr/bin/netstat: no such file or directory"

time="..." level=error msg="Handler for POST /exec/{n.../start..."

time="..." level=error msg="HTTP Error" err="Cannot run exec c..."

2015/11/18 17:58:12 http: response.WriteHeader on hijacked conn...

2015/11/18 17:58:12 http: response.Write on hijacked connect...

time="..." level=info msg="GET /v1.20/exec/c64fcf22b5c47be8278..."

...

An alternative way to find out whether netstat is installed in our system is to enter
our container interactively. The docker exec command has the -it flags that we
can use to spawn an interactive shell session to perform the debugging. Type the
following command to use the bash shell to get inside our container:

dockerhost$ docker exec -it haproxy /bin/bash

root@b397ffb9df13:/#

Now that we are in a standard shell environment, we can debug with all the
standard Linux utilities available inside our container. We will cover some of these
commands in the next section. For now, let's take a look at why netstat doesn't
work inside our container, as follows:

root@b397ffb9df13:/# netstat

bash: netstat: command not found

root@b397ffb9df13:/# /usr/bin/netstat -an

bash: /usr/bin/netstat: No such file or directory

As we can see here, bash is telling us that at this point, we have figured out that we
don't have netstat installed through a more interactive debugging session.

We can provide a quick workaround by installing it inside our container, similar to
what we do in a normal Debian environment. While we are still inside the container,
we will type the following command to install netstat:

root@b397ffb9df13:/# apt-get update

root@b397ffb9df13:/# apt-get install -y net-tools

Troubleshooting Containers

[118]

Now, we can run netstat successfully, as follows:

root@b397ffb9df13:/# netstat -an

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:80 0.0.0.0:* LISTEN

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node Path

This approach of ad hoc container debugging is not recommended! We should
have proper instrumentation and monitoring in place the next time we iterate on
the design of our Docker infrastructure. Let's improve on what we initially built in
Chapter 4, Monitoring Docker Hosts and Containers, next time! The following are some
limitations of this last-resort approach:

1.	 When we stop and recreate the container, the netstat package we installed
will not be available anymore. This is because the original HAProxy Docker
image doesn't contain it in the first place. Installing ad hoc packages to
run containers defeats the main feature of Docker, enabling an immutable
infrastructure.

2.	 In case we want to package all the debugging tools inside our Docker image,
its size will increase correspondingly. This means that our deployments will
get larger and become slower. Remember that in the Chapter 2, Optimizing
Docker Images, we optimized to reduce our container's size.

3.	 In the case of minimal containers with just the required binaries, we are now
mostly blind. The bash shell is not even available! There is no way to enter
our container; take a look at the following command:
dockerhost$ docker exec -it minimal_image /bin/bash
dockerhost$ echo $?

255

In summary, docker exec is a powerful tool to get inside our containers and debug
by running various commands. Coupled with the -it flags, we can get an interactive
shell to perform deeper debugging. This approach has limitations because it assumes
that all the tools available inside our Docker container are ready to use.

More information about the docker exec command can be found
in the official documentation at https://docs.docker.com/
reference/commandline/exec.

https://docs.docker.com/reference/commandline/exec
https://docs.docker.com/reference/commandline/exec

Chapter 7

[119]

The next section deals with how to go around this limitation by having tools from
outside Docker inspect the state of our running container. We will provide a brief
overview on how to use some of these tools.

Debugging from the outside
Even though Docker isolates the network, memory, CPU, and storage resources
inside containers, each individual container will still have to go to the Docker host's
operating system to perform the actual command. We can take advantage of this
trickling down of calls to the host operating system to intercept and debug our
Docker containers from the outside. In this section, we will cover some selected
tools and how to use them to interact with our Docker containers. We can perform
the interaction from the Docker host itself or from inside a sibling container with
elevated privileges to see some components of the Docker host.

Tracing system calls
A system call tracer is one of the essential tools for server operations. It is a utility
that intercepts and traces calls made by the application to the operating system. Each
operating system has its own variation. Even if we run various applications and
processes inside our Docker containers, it will eventually enter our Docker host's
Linux operating system as a series of system calls.

On Linux systems, the strace program is used to trace these system calls. This
interception and logging functionality of strace can be used to inspect our Docker
containers from the outside. The list of system calls made throughout our container's
lifetime can give a profile-level view on how it behaves.

To get started using strace, simply type the following command to install it inside
our Debian Docker host:

dockerhost$ apt-get install strace

With the --pid=host option added to docker run, we can set
a container's PID namespace to be of the Docker host's. This way,
we'll be able to install and use strace inside a Docker container to
inspect all the processes in the Docker host itself. We can also install
strace from a different Linux distribution, such as CentOS or
Ubuntu if we use the corresponding base image for our container.
More information describing this option is at http://docs.
docker.com/engine/reference/run/#pid-settings-pid.

http://docs.docker.com/engine/reference/run/#pid-settings-pid
http://docs.docker.com/engine/reference/run/#pid-settings-pid

Troubleshooting Containers

[120]

Now that we have strace installed in our Docker host, we can use it to inspect the
system calls inside the HAProxy container we created in the previous section. Type the
following commands to begin tracing the system calls from the haproxy container:

dockerhost$ PID=`docker inspect -f '{{.State.Pid}}' haproxy`
dockerhost$ strace -p $PID

epoll_wait(3, {}, 200, 1000) = 0

epoll_wait(3, {}, 200, 1000) = 0

epoll_wait(3, {}, 200, 1000) = 0

epoll_wait(3, {}, 200, 1000) = 0

...

As you can see, our HAProxy container makes epoll_wait() calls to wait for
incoming network connections. Now, in a separate terminal, type the following
command to make an HTTP request to our running container:

$ curl http://dockerhost

Now, let's go back to our running strace program earlier. We can see the following
lines printed out:

...

epoll_wait(3, {}, 200, 1000) = 0

epoll_wait(3, {{EPOLLIN, {u32=5, u64=5}}}, 200, 1000) = 1

accept4(5, {sa_family=AF_INET, sin_port=htons(56470), sin_addr...

setsockopt(6, SOL_TCP, TCP_NODELAY, [1], 4) = 0

accept4(5, 0x7ffc087a6a50, [128], SOCK_NONBLOCK) = -1 EAGAIN (...

recvfrom(6, "GET / HTTP/1.1\r\nUser-Agent: curl"..., 8192, 0, ...

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 7

fcntl(7, F_SETFL, O_RDONLY|O_NONBLOCK) = 0

setsockopt(7, SOL_TCP, TCP_NODELAY, [1], 4) = 0

connect(7, {sa_family=AF_INET, sin_port=htons(80), sin_addr=in...

epoll_wait(3, {}, 200, 0) = 0

sendto(7, "GET / HTTP/1.1\r\nUser-Agent: curl"..., 74, MSG_DON...

recvfrom(6, 0x18c488e, 8118, 0, 0, 0) = -1 EAGAIN (Resource ...

epoll_ctl(3, EPOLL_CTL_ADD, 7, {EPOLLOUT, {u32=7, u64=7}}) = 0...

epoll_ctl(3, EPOLL_CTL_ADD, 6, {EPOLLIN|EPOLLRDHUP, {u32=6, u6...

epoll_wait(3, {{EPOLLOUT, {u32=7, u64=7}}}, 200, 1000) = 1

sendto(7, "GET / HTTP/1.1\r\nUser-Agent: curl"..., 74, MSG_DON...

epoll_ctl(3, EPOLL_CTL_DEL, 7, 6bbc1c) = 0

Chapter 7

[121]

epoll_wait(3, {}, 200, 0) = 0

recvfrom(7, 0x18c88d4, 8192, 0, 0, 0) = -1 EAGAIN (Resource ...

epoll_ctl(3, EPOLL_CTL_ADD, 7, {EPOLLIN|EPOLLRDHUP, {u32=7, u6...

epoll_wait(3, {{EPOLLIN, {u32=7, u64=7}}}, 200, 1000) = 1

recvfrom(7, "HTTP/1.1 200 OK\r\nDate: Fri, 20 N"..., 8192, 0, ...

epoll_wait(3, {}, 200, 0) = 0

sendto(6, "HTTP/1.1 200 OK\r\nDate: Fri, 20 N"..., 742, MSG_DO...

epoll_wait(3, {{EPOLLIN|EPOLLRDHUP, {u32=6, u64=6}}}, 200, 100...

recvfrom(6, "", 8192, 0, NULL, NULL) = 0

shutdown(6, SHUT_WR) = 0

close(6) = 0

setsockopt(7, SOL_SOCKET, SO_LINGER, {onoff=1, linger=0}, 8) =...

close(7) = 0

epoll_wait(3, {}, 200, 1000) = 0

...

We can see here that HAProxy made standard BSD-style socket system calls, such
as accept4(), socket(), and close(), to accept, process, and terminate network
connections from our HTTP client. Finally, it goes back to epoll_wait() again to
wait for the next connections. Also, take note that epoll_wait() calls are spread
throughout the trace even while HAProxy processes a connection. This shows how
HAProxy can handle concurrent connections.

Tracing system calls is a very useful technique to debug live production systems.
People in operations sometimes get paged and don't have access to the source code
right away. Alternatively, there are instances where we are only given compiled
binaries (or plain Docker images) running in production where there is no source
code (nor Dockerfile). The only clue we can get from a running application is to
trap the system calls it makes to the Linux kernel.

The strace webpage can be found at http://sourceforge.net/
projects/strace/. More information can be accessed through its
man page as well by typing the following command:
dockerhost$ man 1 strace

For a more comprehensive list of system calls in Linux systems, refer to
http://man7.org/linux/man-pages/man2/syscalls.2.html.
This will be useful in understanding the various outputs given by
strace.

http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://man7.org/linux/man-pages/man2/syscalls.2.html

Troubleshooting Containers

[122]

Analyzing network packets
Most Docker containers that we deploy revolve around providing some form of
network service. In the example of HAProxy in this chapter, our container basically
serves HTTP network traffic. No matter what kind of container we have running, the
network packets will eventually have to get out of the Docker host for it to complete
a request that we send it. By dumping and analyzing the content of these packets, we
can gain some insight into the nature of our Docker container. In this section, we will
use a packet analyzer called tcpdump to view the traffic of network packets being
received and sent by our Docker containers.

To begin using tcpdump, we can issue the following command in our Debian Docker
host to install it:

dockerhost$ apt-get install -y tcpdump

We can also expose the Docker host's network interfaces to a
container. With this approach, we can install tcpdump in a container
and not pollute our main Docker host with ad hoc debugging
packages. This can be done by specifying the --net=host flag on
docker run. With this, we can access the docker0 interface from
inside our Docker container with tcpdump.

The example of using tcpdump will be very specific to the Vagrant VMware
Fusion provider for VMware Fusion 7.0. Assuming we have a Docker Debian host
as a Vagrant VMware Fusion box, run the following command to suspend and
unsuspend our Docker host's virtual machine:

$ vagrant suspend

$ vagrant up

$ vagrant ssh

dockerhost$

Now that we are back inside our Docker host, run the following command and
note that we cannot resolve www.google.com anymore inside our interactive
debian:jessie container, as follows:

dockerhost$ docker run -it debian:jessie /bin/bash

root@fce09c8c0e16:/# ping www.google.com

ping: unknown host

Chapter 7

[123]

Now, let's run tcpdump in a separate terminal. While running the preceding ping
command, we will notice the following output from our tcpdump terminal:

dockerhost$ tcpdump -i docker0

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode

listening on docker0, link-type EN10MB (Ethernet), capture size 262144
bytes

22:03:34.512942 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

22:03:35.512931 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

22:03:38.520681 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

22:03:39.520099 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

22:03:40.520927 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

22:03:43.527069 ARP, Request who-has 172.17.42.1 tell 172.17.0.7, length 28

As we can see, the interactive /bin/bash container is looking for 172.17.42.1, which
is normally the IP address attached to the Docker Engine network device, docker0.
With this figured out, take a look at docker0 by typing the following command:

dockerhost$ ip addr show dev docker0

3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default

 link/ether 02:42:46:66:64:b8 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::42:46ff:fe66:64b8/64 scope link

 valid_lft forever preferred_lft forever

Now, we can view the problem. The docker0 device doesn't have an IPv4
address attached to it. Somehow, VMware unsuspending our Docker host
removes the mapped IP address in docker0. Fortunately, the solution is to
simply restart the Docker Engine, and Docker will reinitialize the docker0
network interface by itself. Restart Docker Engine by typing the following
command in our Docker host:

dockerhost$ systemctl restart docker.service

Troubleshooting Containers

[124]

Now, when we run the same command as earlier, will see that the IP address is
attached, as follows:

dockerhost$ ip addr show dev docker0

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noque...

 link/ether 02:42:46:66:64:b8 brd ff:ff:ff:ff:ff:ff

 inet 172.17.42.1/16 scope global docker0

 valid_lft forever preferred_lft forever

 inet6 fe80::42:46ff:fe66:64b8/64 scope link

 valid_lft forever preferred_lft forever

Let's go back to our initial command showing the problem; we will see that it is now
solved, as follows:

root@fce09c8c0e16:/# ping www.google.com

PING www.google.com (74.125.21.105): 56 data bytes

64 bytes from 74.125.21.105: icmp_seq=0 ttl=127 time=65.553 ms

64 bytes from 74.125.21.105: icmp_seq=1 ttl=127 time=38.270 ms

...

More information about the tcpdump packet dumper and
analyzer can be found at http://www.tcpdump.org. We
can also access the documentation from where we installed it
by typing the following command:
dockerhost$ man 8 tcpdump

Observing block devices
Data being accessed from our Docker containers will mostly reside in physical
storage devices, such as hard disks or solid state drives. Underneath Docker's
copy-on-write filesystems is a physical device that is randomly accessed. These
drives are grouped together as block devices. Data here is randomly accessed fixed-
size data called blocks.

So, in case our Docker containers have peculiar I/O behavior and performance issues,
we can trace and troubleshoot what is happening inside our block devices using a
tool called blktrace. All events the kernel generates to interact with the block devices
from processes are intercepted by this program. In this section, we will set up our
Docker host to observe the block device supporting our containers underneath.

http://www.tcpdump.org

Chapter 7

[125]

To use blktrace, let's prepare our Docker host by installing the blktrace program.
Type the following command to install it inside our Docker host:

dockerhost$ apt-get install -y blktrace

In addition, we need to enable the debugging of the filesystem. We can do this by
typing the following command in our Docker host:

dockerhost$ mount -t debugfs debugfs /sys/kernel/debug

After the preparations, we need to figure out how to tell blktrace where to listen for
I/O events. To trace I/O events for our containers, we need to know where the root
of the Docker runtime is. In the default configuration of our Docker host, the runtime
points to /var/lib/docker. To figure out which partition it belongs to, type the
following command:

dockerhost$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/dm-0 9.0G 7.6G 966M 89% /

udev 10M 0 10M 0% /dev

tmpfs 99M 13M 87M 13% /run

tmpfs 248M 52K 248M 1% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 248M 0 248M 0% /sys/fs/cgroup

/dev/sda1 236M 34M 190M 15% /boot

As described in the preceding output, our Docker host's /var/lib/docker directory
is under the / partition. This is where we will point blktrace to listen for events
from. Type the following command to start listening for I/O events on this device:

dockerhost$ blktrace -d /dev/dm-0 -o dump

Using the --privileged flag in docker run, we can use blktrace
within a container. Doing so will allow us to mount the debugged
filesystem with the increased privileges.
More information on extended container privileges can be found at
https://docs.docker.com/engine/reference/run/#runtime-
privilege-linux-capabilities-and-lxc-configuration.

https://docs.docker.com/engine/reference/run/#runtime-privilege-linux-capabilities-and-lxc-configuration
https://docs.docker.com/engine/reference/run/#runtime-privilege-linux-capabilities-and-lxc-configuration

Troubleshooting Containers

[126]

To create a simple workload that will generate I/O events in our disk, we will create
an empty file from a container until the / partition runs out of free space. Type the
following command to generate this workload:

dockerhost$ docker run -d --name dump debian:jessie \

 /bin/dd if=/dev/zero of=/root/dump bs=65000

Depending on the free space available in our root partition, this command may
finish quickly. Right away, let's get the PID of the container we just ran using the
following command:

dockerhost$ docker inspect -f '{{.State.Pid}}' dump

11099

Now that we know the PID of our Docker container that generated I/O events, we
can look this up with the blktrace program's complementary tool, blkparse. The
blktrace program only listens for the events in the Linux kernel's block I/O layer and
dumps the results on a file. The blkparse program is the accompanying tool to view
and analyze the events. In the workload we generated earlier, we can look for the I/O
events that correspond to our Docker container's PID using the following command:

dockerhost$ blkparse -i dump.blktrace.0 | grep --color " $PID "

...

254,0 0 730 10.6267 11099 Q R 13667072 + 24 [exe]

254,0 0 732 10.6293 11099 Q R 5042728 + 16 [exe]

254,0 0 734 10.6299 11099 Q R 13900768 + 152 [exe]

254,0 0 736 10.6313 11099 Q RM 4988776 + 8 [exe]

254,0 0 1090 10.671 11099 C W 11001856 + 1024 [0]

254,0 0 1091 10.6712 11099 C W 11002880 + 1024 [0]

254,0 0 1092 10.6712 11099 C W 11003904 + 1024 [0]

254,0 0 1093 10.6712 11099 C W 11004928 + 1024 [0]

254,0 0 1094 10.6713 11099 C W 11006976 + 1024 [0]

254,0 0 1095 10.6714 11099 C W 11005952 + 1024 [0]

254,0 0 1138 10.6930 11099 C W 11239424 + 1024 [0]

254,0 0 1139 10.6931 11099 C W 11240448 + 1024 [0]

...

Chapter 7

[127]

In the preceding highlighted output, we can see that the /dev/dm-0 block offset
the position of 11001856, and there was a writing (W) of 1024 bytes of data that just
completed (C). To probe further, we can look at this offset position on the events that
it generated. Type the following command to filter out this offset position:

dockerhost$ blkparse -i dump.blktrace.0 | grep 11001856

...

254,0 0 1066 10.667 8207 Q W 11001856 + 1024 [kworker/u2:2]

254,0 0 1090 10.671 11099 C W 11001856 + 1024 [0]

...

We can see the write (W) being queued (Q) to our device by the kworker process,
which means the write was queued by the kernel. After 40 milliseconds, the write
request registered was completed for our Docker container process.

The debugging walkthrough we just performed is just a small sample of what we
can do by tracing block I/O events with blktrace. For example, we can also probe
our Docker container's I/O behavior in greater detail and figure out the bottlenecks
that are happening to our application. Are there a lot of writes being made? Are the
reads so much that they need caching? Having the actual events rather than only the
performance metrics provided by the built-in docker stats command is helpful in
very deep troubleshooting scenarios.

More information on the different output values of blkparse
and flags to capture I/O events in blktrace can be found
in the user guide located at http://www.cse.unsw.edu.
au/~aaronc/iosched/doc/blktrace.html.

A stack of troubleshooting tools
Debugging applications inside Docker containers required a different approach from
normal applications in Linux. However, the actual programs being used are the same
because all the calls from inside the container will eventually go to the Docker host's
kernel operating system. By knowing how calls go outside of our containers, we can
use any other debugging tools we have to troubleshoot.

http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html
http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html

Troubleshooting Containers

[128]

In addition to standard Linux tools, there are several container-specific utilities that
package the preceding standard utilities to be more friendly for container usage. The
following are some of these tools:

•	 Red Hat's rhel-tools Docker image is a huge container containing
a combination of the tools we discussed earlier. Its documentation
page at https://access.redhat.com/documentation/en/red-hat-
enterprise-linux-atomic-host/version-7/getting-started-with-
containers/#using_the_atomic_tools_container_image shows how to
run it with the proper Docker privileges for it to function correctly.

•	 The CoreOS toolbox program is a small script utility that creates a small
Linux container using Systemd's systemd-nspawn program. By copying the
root filesystem from popular Docker images, we can install any tool we want
without polluting the Docker host's filesystem with ad hoc debugging tools.
Its use is documented on its webpage at https://coreos.com/os/docs/
latest/install-debugging-tools.html.

•	 The nsenter program is a utility to enter a Linux control group's process
namespace. It is the predecessor to the docker exec program and is considered
unmaintained. To get a history of how docker exec came to be, visit the nsenter
program's project page at https://github.com/jpetazzo/nsenter.

Summary
Remember that logging in to Docker hosts isn't scalable. Adding instrumentation at
the application level, in addition to the ones given by our operating system, helps in
faster and more efficient diagnosing of the problems that we may encounter in the
future. Remember, nobody likes waking up at two in the morning to run tcpdump to
debug a Docker container on fire!

In the next chapter, we will wrap up and look again at what it takes to get our
Docker-based workloads to production.

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#using_the_atomic_tools_container_image
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#using_the_atomic_tools_container_image
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#using_the_atomic_tools_container_image
https://coreos.com/os/docs/latest/install-debugging-tools.html
https://coreos.com/os/docs/latest/install-debugging-tools.html
https://github.com/jpetazzo/nsenter

[129]

Onto Production
Docker came out of dotCloud's PaaS, where it fulfils the needs of IT to develop and
deploy web applications in a fast and scalable manner. This is needed to keep up
with the ever-accelerating pace of using the Web. Keeping everything running in our
Docker container in production is no simple feat.

In this chapter, we will wrap up what you learned about optimizing Docker and
illustrate how it relates to operating our web applications in production. It consists of
the following topics:

•	 Performing web operations
•	 Supporting our application with Docker
•	 Deploying applications
•	 Scaling applications
•	 Further reading on web operations in general

Performing web operations
Keeping a web application running 24/7 on the Internet poses challenges in both
software development and systems administration. Docker positions itself as the
glue that allows both disciplines to come together by creating Docker images that can
be built and deployed in a consistent manner.

However, Docker is not a silver bullet to the Web. It is still important to know the
fundamental concepts in software development and systems administration as web
applications become more complex. The complexity naturally arises because these
days, with Internet technologies in particular, the multitude of web applications is
becoming more ubiquitous in people's lives.

Onto Production

[130]

Dealing with the complexity of keeping web applications up and running involves
mastering the ins and outs of web operations, and like any road to mastery, Theo
Schlossnagle boils it down to four basic pursuits: knowledge, tools, experience,
and discipline. Knowledge refers to absorbing information about web operations
available on the Internet, in conferences, and technology meetings like a sponge.
Understanding them and knowing how to filter out the signal from the noise will aid
us in designing our application's architecture when they burn in production. With
Docker and Linux containers increasing in popularity, it is important to be aware
of the different technologies that support it and dive into its basics. In Chapter 7,
Troubleshooting Containers, we showed that regular Linux debugging tools are still
useful in debugging running Docker containers. By knowing how containers interact
with our Docker host's operating system, we were able to debug the problems
occurring in Docker.

The second aspect is mastering our tools. This book basically revolved around
mastering the use of Docker by looking at how it works and how to optimize its
usage. In Chapter 2, Optimizing Docker Images, we learned how to optimize Docker
images based on how Docker builds the images and runs the container using its
copy-on-write filesystem underneath. This was guided by our knowledge of web
operations on why optimized Docker images are important both from a scalability
and deployability standpoint. Knowing how to use Docker effectively does not
happen overnight. Its mastery can only be gained by a continuous practice of
using Docker in production. Sure, we might be paged at 2 am for our first Docker
deployment in production, but as time goes by, the experience we gain from
continuous usage will make Docker an extension of our limbs and senses, as
Schlossnagle puts it.

By applying the knowledge and continuously using our tools, we gain experience that
we can draw upon in the future. This aids us in making good judgments based on
bad decisions that we made in the past. It is the place where we can see the theory
of container technology and the practice of running Docker in production collide.
Scholassnagle mentioned the challenges of acquiring experience in web operations
and how to survive the bad judgments and draw experiences from them. He
suggests having limited environments in which a bad decision's impact is minimal.
Docker is the best place to draw these types of experiences. Having a standard
format of ready-to-deploy Docker images, junior web operations engineers can have
their own environments that they can experiment with and learn from their mistakes
in. Also, since Docker environments look very similar when they move forward to
production, these engineers will already have their experience to draw upon.

Chapter 8

[131]

The last part in the pursuit of mastering web operations is discipline. However, as it
is a very young discipline, such processes are not well defined. Even with Docker,
it took a few years for people to realize the best ways to use container technologies.
Before this, the convenience of including the whole kitchen sink in Docker images
was very common. However, as we can see in Chapter 2, Optimizing Docker Images,
reducing the footprint of Docker images helps aid in managing the complexity of
the applications that we have to debug. This makes the experience of debugging
in Chapter 7, Troubleshooting Containers, much simpler because we have fewer
components and factors to think about. These disciplines of using Docker do not
come overnight just by reading Docker blogs (well, some do). It involves continuous
exposure to the knowledge of the Docker community and the practice of using
Docker in various settings for production use.

In the remaining sections, we will show how the theory and practice of using
Docker's container technology can aid in the operation of our web applications.

Supporting web applications with Docker
The following diagram shows the typical architecture of a web application. We have
the load balancer tier that receives traffic from the Internet and then the traffic, which
is typically composed of user requests, is relayed to a farm of web application servers
in a load-balanced fashion. Depending on the nature of the request, some states
will be grabbed by the web application from the persistent storage tier, similar to
database servers:

Onto Production

[132]

As we can see in the preceding diagram, each tier is run inside a Docker container
on top of a Docker host. With this layout for each component, we can take
advantage of Docker's uniform way of deploying load balancers, applications,
and databases, as we did in Chapter 2, Optimizing Docker Images, and Chapter 6,
Load Balancing. However, in addition to the Docker daemons in each Docker host,
we need supporting infrastructure to manage and observe the whole stack of our
web architecture in a scalable fashion. On the right-hand side, we can see that each
of our Docker hosts sends diagnostic information—for example, application and
system events such as log messages and metrics—to our centralized logging and
monitoring system. We deployed such a system in Chapter 4, Monitoring Docker Hosts
and Containers, where we rolled out Graphite and an ELK stack. In addition, there
might be another system that listens for specific signals in the logs and metrics and
sends alerts to the engineers responsible for the operation of our Docker-based web
application stack. These events can relate to critical events, such as the availability
and performance of our application, that we need to take action on to ensure that
our application is fulfilling the needs of our business as expected. An internally
managed system, such as Nagios, or a third-party one, such as PagerDuty, is used for
our Docker deployments to call and wake us up at 2 am for deeper monitoring and
troubleshooting sessions as in Chapter 4, Monitoring Docker Hosts and Containers, and
Chapter 7, Troubleshooting Containers.

The left-hand side of the diagram contains the configuration management system.
This is the place where each of the Docker hosts downloads all the settings it needs
to function properly. In Chapter 3, Automating Docker Deployments with Chef, we used
a Chef server to store the configuration of our Docker host. It contained information
such as a Docker host's role in our architecture's stack. The Chef server stores
information on which Docker containers to run in each tier and how to run them
using the Chef recipes we wrote. Finally, the configuration management system also
tells our Docker hosts where the Graphite and Logstash monitoring and logging
endpoints are.

All in all, it takes various components to support our web application in production
aside from Docker. Docker allows us to easily set up this infrastructure because of
the speed and flexibility of deploying containers. Nonetheless, we shouldn't skip
doing our homework about having these supporting infrastructures in place. In the
next section, we will see the supporting infrastructure of deploying web applications
in Docker using the skills you learned in the previous chapters.

Chapter 8

[133]

Deploying applications
An important component when tuning the performance of Docker containers is the
feedback telling us that we were able to improve our web application correctly. The
deployment of Graphite and the ELK stack in Chapter 4, Monitoring Docker Hosts and
Containers, gave us visibility on the effects of what we changed in our Docker-based
web application. As much as it is important to gather feedback, it is more important
to gather feedback in a timely manner. Therefore, the deployment of our Docker
containers needs to be in a fast and scalable manner. Being able to configure a Docker
host automatically, as we did in Chapter 3, Automating Docker Deployments with Chef,
is an important component for a fast and automated deployment system. The rest of
the components are described in the following diagram:

Whenever we submit changes to our application's code or the Dockerfile describing
how it is run and built, we need supporting infrastructure to propagate this change
all the way to our Docker hosts. In the preceding diagram, we can see that the
changes we submit to our version control system, such as Git, generate a trigger to
build the new version of our code. This is usually done through Git's postreceive
hooks in the form of shell scripts. The triggers will be received by a build server,
such as Jenkins. The steps to propagate the change will be similar to the blue-green
deployment process we made in Chapter 6, Load Balancing. After receiving the trigger
to build the new changes we submitted, Jenkins will take a look at the new version of
our code and run docker build to create the Docker image. After the build, Jenkins
will push the new Docker image to a Docker registry, such as Docker Hub, as we set
up in Chapter 2, Optimizing Docker Images. In addition, it will update the target Docker
hosts indirectly by updating the entry in the Chef server configuration management
system we laid out in Chapter 3, Automating Docker Deployments with Chef. With the
artifacts of changes available in the Chef server and Docker registry, our Docker
host will now notice the new configuration and download, deploy, and run the new
version of our web application inside a Docker container.

Onto Production

[134]

In the next section, we will discuss how a similar process is used to scale out our
Docker application.

Scaling applications
When we receive alerts from our monitoring system, as in Chapter 4, Monitoring
Docker Hosts and Containers, that the pool of Docker containers running our web
application is not loaded, it is time to scale out. We accomplished this using load
balancers in Chapter 6, Load Balancing. The following diagram shows the high-level
architecture of the commands we ran in Chapter 6, Load Balancing:

Once we decide to scale out and add an additional Docker host, we can automate the
process with a scale-out orchestrator component. This can be a series of simple shell
scripts that we will install inside a build server, such as Jenkins. The orchestrator will
basically ask the cloud provider API to create a new Docker host. This request will
then provision the Docker host and run the initial bootstrap script to download the
configuration from our configuration management system in Chapter 3, Automating
Docker Deployments with Chef. This will automatically set up the Docker host to
download our application's Docker image from the Docker registry. After this whole
provisioning process is finished, our scale-out orchestrator will then update the load
balancer in our Chef server with the new list of application servers to forward traffic
to. So, the next time the chef-client inside our load balancer Docker host polls the
Chef Server, it will add the new Docker host and start forwarding traffic to it.

Chapter 8

[135]

As we can note, learning the way to automate setting up our Docker host in Chapter
3, Automating Docker Deployments with Chef, is crucial to realizing the scalable load
balancing architecture setup we did in Chapter 6, Load Balancing.

Further reading
The supporting architecture to help our web applications use Docker is nothing but
a scratch on the surface. The fundamental concepts in this chapter are described in
greater detail in the following books:

•	 Web Operations: Keeping the Data On Time, which is edited by J. Allspaw and J.
Robbins. 2010 O'Reilly Media.

•	 Continuous Delivery, by J. Humble and D. Farley. 2010 Addison-Wesley.
•	 Jenkins: The Definitive Guide, J. F. Smart. 2011 O'Reilly Media.
•	 The Art of Capacity Planning: Scaling Web Resources, J. Allspaw. 2008 O'Reilly

Media.
•	 Pro Git, S. Chacon and B. Straub. 2014 Apress.

Summary
You learned a lot about how Docker works throughout this book. In addition to the
basics of Docker, we looked back at some fundamental concepts of web operations
and how it helps us realize the full potential of Docker. You gained knowledge of
key Docker and operating systems concepts to get a deeper understanding of what
is happening behind the scenes. You now have an idea of how our application goes
from our code down to the actual call in the operating system of our Docker host.
You learned a lot about the tools to deploy and troubleshoot our Docker containers
in production in a scalable and manageable fashion.

However, this should not stop you from continuing to develop and practice
using Docker to run our web applications in production. We should not be afraid
to make mistakes and gain further experience on the best ways to run Docker in
production. As the Docker community evolves, so do these practices through the
collective experience of the community. So, we should continue and be disciplined
in learning the fundamentals we started to master little by little. Don't hesitate to run
Docker in production!

[137]

Index
A
Amazon EC2 Container Service

URL 59
Ansible

URL 58
Apache HTTP Server

URL 114
Apache JMeter

installing 87, 88
page, URL 91
sample application, deploying 84-87
setting up 84
test plan, creating 89-91
test plan elements, URL 91
URL 84

applications
deploying 133
scaling 134, 135

apt-cacher-ng 32
Azure Docker VM Extension

URL 59

B
benchmark, results

analyzing 92
JMeter runs, result viewing 92
response time, plotting 94, 95
throughput, calculating 92-94

benchmark, tools
Apache Bench 102
HP Lab's Httperf 102
Siege 102

benchmark, tuning
about 99

concurrency, increasing 99
distributed tests, running 100, 101

benchmark workload
building 89
test plan, creating in JMeter 89-91

blktrace
URL 127

block devices
observing 124-126

blue-green deployments 110
build context size

reducing 28, 29

C
cAdvisor

URL 81
CFEngine

URL 58
Chef

Bootstrap nodes 48-50
cookbooks, URL 52
development kit, URL 47
recipe, URL 52
signing up, for server 44, 45
supermarket, URL 50
URL 43
using 43
workstation, setting up 46, 47

CloudFoundry's GoRouter
URL 114

collectd
monitoring with 68
running, inside Docker 74
URL 72

[138]

configuration management 41, 42
Constant Throughput Timer 100
container privileges

URL 125
containers

inspecting 115-118
Continuous Delivery book 114
CoreOS fleet

URL 59
CoreOS toolbox program

URL 128

D
dashboard

URL 69
Datadog

URL 82
debugging

from outside 119
Docker applications

scaling out 108-110
zero downtime, deploying with 110-113

docker build command
URL 4

Docker Compose
URL 87

Docker container logs
forwarding 79-81

Docker containers
deploying 54-58
interactive containers 12-14
linking 11, 12
ports, exposing 7-9
ports, publishing 9
running 7

Docker containers ports, publishing
--publish-all flag 9, 10
--publish flag 10

docker exec command
URL 118

Dockerfile
URL 22

Docker host
configuring 50-54
preparing 1, 2
URL 2

Docker host farm
preparing 103, 104

Docker Hub account
URL 4

dockerignore files
URL 30

Docker images
building 3, 4
build time, improving 19
deployment time, reducing 16-18
pulling, from repository 6, 7
pushing, to repository 4-6
URL 3
working with 2

Docker images, build time
build context size, reducing 28, 29
caching proxies, using 30-32
image layers, reusing 22-28
improving 19
registry mirrors, using 19-21

Docker images, size
build and deployment images,

separating 35-38
commands, chaining 33, 34
reducing 33

Docker machine
URL 58

Docker Swarm
URL 59

dotCloud's Hipache
URL 114

E
Elastic's Found

URL 82
ELK stack

Elasticsearch 75
Kibana 75
logs, consolidating 74-78
Logstash 74

F
Fluentd

URL 81

[139]

G
Google Container Engine

URL 59
Google Kubernetes

URL 59
Graphite

carbon-cache component 63
carbon-cache component, deploying 64-66
graphite-web component 63
in production 67
metrics, collecting 63, 64
performance, observing 95-99
scaling, URL 67
URL 64
web settings, URL 66
whisper component 63
whisper database, deploying 64-66

Graylog
URL 81

H
HAProxy

URL 114

I
image layers

reusing 22-28
InfluxDB

URL 81

J
Java Runtime Environment (JRE) 88
Joyent Elastic Container Service

URL 59

K
Kibana

performance, observing 95-99
knife bootstrap

URL 49

L
Librato

URL 82
linked containers

URL 11
load balancers 114
load balancing

with Nginx 105-108
logging

solutions 81, 82

M
Mesophere Marathon

URL 59
monitoring

collectd, running inside Docker 74
Docker-related data, collecting 71-73
importance 62
solutions 81, 82
with collectd 68-70

N
network packets

analyzing 122-124
New Relic

URL 82
Nginx

load balancing with 105-107
nsenter

URL 128

P
pid option

URL 119
Polipo

URL 32
proxy_pass

URL 106
Puppet

URL 58

[140]

R
Redx

URL 114
registry

URL 18
registry mirrors

URL 21
using 19-21

remote testing
URL 101

repository
Docker images, pulling from 6, 7
Docker images, pushing to 4-6

rhel-tools
URL 128

S
SaltStack

URL 58
Sensu

URL 81
server

URL 106
SmartDataCenter Docker Engine

URL 59
Sonatype Nexus

URL 32
Splunk

URL 81
Splunk Cloud

URL 82
Squid

URL 32
strace

URL 121
system calls

URL 121
system call tracer 119-121

T
tcpdump packet dumper

URL 124
Treasure Data

URL 82
troubleshooting tools

stack 127

U
Unix signals

URL 109
upstream

URL 106

V
Vulcand

URL 114

W
webapp

URL 3
web applications

deploying 133
scaling 134, 135
supporting, with Docker 131, 132

web operations
performing 129-131
web application, performing 129-131

Thank you for buying
Docker High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Orchestrating Docker
ISBN: 978-1-78398-478-7 Paperback: 154 pages

Manage and deploy Docker services to containerize
applications efficiently

1.	 Set up your own Heroku-like PaaS by getting
accustomed to the Docker ecosystem.

2.	 Run your applications on development
machines, private servers, or the cloud, with
minimal cost of a virtual machine.

3.	 A comprehensive guide to the smooth
management and development of Docker
containers and its services.

Docker for Web Developers
[Video]
ISBN: 978-1-78439-067-9 Duration: 01:31 hrs

Accelerate your web development skills on real web
projects in record time with Docker

1.	 Supercharge your web development process
while ensuring that everything works smoothly.

2.	 Win at 2048 using Docker's commit and restore
functionality.

3.	 Use the Docker Hub workflow to automate the
rebuilding of your web projects.

4.	 Full of realistic examples, this is a step-by-step
journey to becoming a Docker expert!.

Please check www.PacktPub.com for information on our titles

Learning Docker
ISBN: 978-1-78439-793-7 Paperback: 240 pages

Optimize the power of Docker to run your
applications quickly and easily

1.	 Learn to compose, use, and publish the Docker
containers.

2.	 Leverage the features of Docker to deploy your
existing applications.

3.	 Explore real world examples of securing and
managing Docker containers.

Docker Cookbook
ISBN: 978-1-78398-486-2 Paperback: 248 pages

80 hands-on recipes to efficiently work with the
Docker 1.6 environment on Linux

1.	 Provides practical techniques and knowledge of
various emerging and developing APIs to help
you create scalable services.

2.	 Create, manage, and automate production-
quality services while dealing with inherent
issues.

3.	 Each recipe is carefully organized with
instructions to complete the task efficiently.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing Docker Hosts
	Preparing a Docker host
	Working with Docker images
	Building Docker images
	Pushing Docker images to a repository
	Pulling Docker images from a repository

	Running Docker containers
	Exposing container ports
	Publishing container ports
	--publish-all
	--publish

	Linking containers
	Interactive containers

	Summary

	Chapter 2
: Optimizing Docker Images
	Reducing deployment time
	Improving image build time
	Using registry mirrors
	Reusing image layers
	Reducing the build context size
	Using caching proxies

	Reducing Docker image size
	Chaining commands
	Separating build and deployment images

	Summary

	Chapter 3
: Automating Docker Deployments with Chef
	An introduction to configuration management
	Using Chef
	Signing up for a Chef server
	Setting up our workstation
	Bootstrap nodes

	Configuring the Docker host
	Deploying Docker containers
	Alternative methods
	Summary

	Chapter 4
: Monitoring Docker Hosts
and Containers
	The importance of monitoring
	Collecting metrics to Graphite
	Graphite in production

	Monitoring with collectd
	Collecting Docker-related data
	Running collectd inside Docker

	Consolidating logs in an ELK stack
	Forwarding Docker container logs
	Other monitoring and logging solutions
	Summary

	Chapter 5
: Benchmarking
	Setting up Apache JMeter
	Deploying a sample application
	Installing JMeter

	Building a benchmark workload
	Creating a test plan in JMeter

	Analyzing benchmark results
	Viewing the results of JMeter runs
	Calculating throughput
	Plotting response time

	Observing performance in Graphite and Kibana

	Tuning the benchmark
	Increasing concurrency
	Running distributed tests

	Other benchmarking tools
	Summary

	Chapter 6
: Load Balancing
	Preparing a Docker host farm
	Balancing load with Nginx
	Scaling out our Docker applications
	Deploying with zero downtime

	Other load balancers
	Summary

	Chapter 7
: Troubleshooting Containers
	Inspecting containers
	Debugging from the outside
	Tracing system calls
	Analyzing network packets
	Observing block devices

	A stack of troubleshooting tools
	Summary

	Chapter 8
: Onto Production
	Performing web operations
	Supporting web applications with Docker
	Deploying applications
	Scaling applications
	Further reading
	Summary

	Index

