PO OO0 ¢ ¢ 0606060606606 +00000
POVPPOGPIIOIEIOGIOIOGOIOGOIOLEOILOGOIOGOOS
DOVPOPOSGOIIOGIOIOIOGIEIOGIOIOGIOIOGINOGOOYS
DOCGOOEIOIOIIOIOGOIOGIOIOIOGEONOGOOOS
VOOPPPOPO0000 0000000000

POOOPC00000060000000
Q0000 00000000000)4
\ 000000000000000)94

b 0 6.6
0000000660606 660600¢

,‘000000000000‘
ROV 000000050
Sesesess

Docker
Management
Design Patterns

Swarm Mode on Amazon Web Services

Deepak Vohra

Apress’

Docker Management
Design Patterns

Deepak Vohra

Apress-

Docker Management Design Patterns: Swarm Mode on Amazon Web Services

Deepak Vohra
White Rock, British Columbia, Canada

ISBN-13 (pbk): 978-1-4842-2972-9 ISBN-13 (electronic): 978-1-4842-2973-6
https://doi.org/10.1007/978-1-4842-2973-6

Library of Congress Control Number: 2017955383
Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Technical Reviewers: Michael Irwin and Massimo Nardone
Coordinating Editor: Mark Powers

Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC

and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229729. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-2973-6
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229729
http://www.apress.com/source-code

Contents at a Glance

About the AUtROrccvverimmmis s ———————————— Xiii
About the Technical REVIEWET'Sccusssssssssmssssssssssssssssssmssssssssssssssssssssssssssssssnsssannns Xv
INtroduction........cccuvcsnismnss i ——————————————_ Xvii
Chapter 1: Getting Started with DOCKET.......c.occmrrmssnnnnmmssssnnnsnssssnsnssssssnssssssssnsssssns 1
Chapter 2: Using Docker in Swarm Mode.........ccoussaemmsssnsssssnsssssnsssssnsssssnsssssasssssanss 9
Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarmccccevevsinnns 31
Chapter 4: DOCKEr SeIVICESuuuuissssrsrsssssnnssssssnnssssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 55
Chapter 5: SCaling SErViCeSccuussesmsssanssssanssssanssssanssssannsssansssssnnssssnnssssnnssssnnnsssns 85
Chapter 6: Using Mountscccccussemmmmmssssmnmmmsssssnmmsssssssmssssssssssssssssssssssssnsnsssssnnnnns 97
Chapter 7: Configuring RESOUICES.......ucccurrrssssnnnmmssssnnsssssssnnsssssssnnnssssssnnnsssssnnnnss 115
Chapter 8: Schedulingcocusesmsssanmsssssssssssssssanssssansssssnsssssnsssssnsssssnsssssnnssssnnssss 131
Chapter 9: Rolling Updates.......c.ccccmmmmssmmnmmssssnsnmmssssssnssssssssnssssssssnssssssnnssssssnnnnns 155
Chapter 10: Networkingcccvusssesnmmssssssnmmssssssnsssssssssssssssssssssssssssssssssnsnssssssnnnss 179
Chapter 11: Logging and Monitoringcccccusssesnmmssssnsnsssssssssssssssssssssssssnnssssssnnnns 201
Chapter 12: Load BalanCingccccssrsssssssmssnssssssssnnnss 219
Chapter 13: Developing a Highly Available Websitecccunneemnmnssssnnnnnsssnnnns 241
Chapter 14: Using Swarm Mode in Docker Cloud.........coccmmmmmnmmnssssssssnsnnsnsssssssnns 271
Chapter 15: Using Service Stackscccusmmmssmmmsssnsmsssssmsssssssssssssssssssssssssssnnsnss 297
INdeX.ciiiiiimiin e —————————_—————_—=—_———_ 317

iii

Contents

About the AULNOFcccceiiiiiemmnmmissssnmssssssnrssss s ass s s sannnessssnnnnesssnnnnnnsssnnns Xiii
About the Technical REVIEWEI'Scuuiesssssssssssanssssansssssnssssanssssansssssnsssssnsssssnnssssnnssssns XV
1L L0 LT T | Xvii
Chapter 1: Getting Started with DOCKET.......c.occmrrmssnnnnmmssssnnnsnssssnsnssssssnssssssssnsssssns 1
Setting the ENVIFONMENL...........coo e sn e sn e snenn 1
Running a Docker APpliCAtioncccvverrernennensenresser e sn s 3
1T RO RSS 7
Chapter 2: Using Docker in SwWarm Mode........ccciruussmmnnmmssssnsnsssssssssssssssnssssssssnsssssss 9
B LJN od (0] 0]< 9
THE SOIULION ... r e sn e sn e n e nnennnnn 10
Docker SWarm MOcoouceierrrerresrsesssse e sse e s se s sss e s sns e sse e s sss s snesenseens 10
NOUES.....vvesereessersseesssesssseessssnessseesssseesssessssesssseessssessssesssssesssseessssessssesssssessssanssssessssesssssesssssnssssessssnssane 10
L= PP 11
Desired State 0f @ SEIVICE ... e 11
Manager Node and Raft CONSENSUSceccererererererereressersesersesessesessesssessesesssssssessssesassessesessssssassanaens 11
WOTKEE NOUES .vvvvvvvrereesseeessseessssessseesssessssnssssmssssssssssesssssesssssssssessssnssssessssesssssesssssnssssesssssnssssessssnssssnes 12
000 T 12
Setting the ENVIFONMENT............ccoriiecrcecc e se s ene e 14
Initializing the Docker SWarm MOdecccooeeeeececccere e 14
Joining Nodes 10 the SWarm ... 18
Testing the SWarm ... 20
Promoting a Worker Node t0 Managerc.ccocvvrvriernennessenses s sss s ses e s ssssnssssens 24
Demoting a Manager Node t0 WOIKEFccccevverrerrersersessessenses s sessesses e sessessssssssasssssens 25

vi

CONTENTS

Making a Worker Node Leave the SWarm...........cccvcennnennncnssnssssssessssssessssessssessenns 25
Making a Manager Node Leave the SWarmccccveveverernnesssses s s e e sessesens 26
Reinitializing @ CIUSTET..........c.ccocrircrrrr s e 28
Modifying Node Availabilitycoceeriernniiennsenesnessse e s sessens 28
RemOVING @ NOUEcocirecir e n e s ne e ne s n e ene 30
SUMMANY ...ttt sr s r s r e n e r s sa e e r s n e en e r e e e nn e e e e e e e n e nnenn e s e nnennnnnnnns 30
Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarmccccvssneennns 31
LT3N (010 = 31
THE SOIULION ...t sne s en e nns 32
Setting the ENVIFONMENT..........cooevrircrr s sa e sn e sn s 33
Creating a AWS CloudFormation Stack for Docker Swarm..........ccccccvvevirrcrsenscensennaen, 34
Connecting with the Swarm Manager ... 49
USING the SWaIM........co e sa s ne e 49
Deleting @ SWarM........cccociciirr s sr e r e nr e nenan 51
1111 1P S 53
Chapter 4: DOCKEr SerVICeSccuussmemmrssssnnnssssssnnnnsssssnnnssssssnnssssssssnnsssssssnnnsssssnnnnss 55
THE PrODIBM ...ttt 55
THE SOIULION ...t a s san s 55
Setting the ENVIFONMENL..........c.ooeoececeere s e 57
The docker Service COMMANGS..........ccccrriermrernenererese e snsnenens 59
TYPES Of SEIVICESeeeercreeirerir e a e a e n e s n e s 60
Crealing @ SEIVICEcvvevereree e s a e a e sa e r e a e s r e n e n e n e sn e sn e nnennenan 60
Listing the Tasks Of @ SEIVICE........cvcererererr e sa s sassn e 61
Invoking a Hello World Service Task on the Command Line...........cceoveernvniernscrcnenens 62
Getting Detailed Information ADOUL @ SEIVICEccccrueemrerrsererissese s snesesnens 63
Invoking the Hello World Service in @ BrOWSETcccoeevevvrevnnnesses s sesssssessenens 65
Creating a Service for a MySQL Database...........ccccererererenesesese s ses s ssssessnssnenas 67
SCAlING @ SEIVICE......cceieeererresrierrsse e sre s sr s re e s sas s sn s enssr s e snnnnnennnnnas 68

CONTENTS

LiSting SErviCe TaSKS.......ccoueererersmrereseressssesesse e sse s s s sss s ssssss s ssesessesssssnsens 68
Accessing a MySQL Database in a Docker CONtainer............ccceevveveensesesesesessessesessens 70
UPAAting @ SEIVICEc.coeeeeeeerreree e sse e sse e resse e saesnesaesaesa e sn e s r e nn e nesnssnsnnennennennas 73

Updating the REPlCaAS.........ccoiiecre et e e nn e 74

Updating the Docker IMage Tag........cccuevrernncrnnresinessse e se e s s e se e sesnssnnnens 75

Updating the Placement CONSEIaintsccocccoeciinnicnnsc e sn s snnnens 79

Updating Environment Variabl@s...........ccocoienic st se e sessssnnnens 80

Updating the DOCKEr IMAGEccceeirerircrrcreriresir e e a e e snn e 81

Updating the Container LADEIScccccererecirecrcsness e sn e s sesnesesnssannens 82

Updating ReSOUICES SEHHNGSccouruiiiirereeecririsec e 82
REMOVING @ SEIVICEccvreereeireeriscre s ns 83
Creating @ GIODAI SEIVICEcccvvereererrererieree e ra e e sae e sa e e sa e sassassn s sa e saesnenes 83
BT 141 1= SRS 84
Chapter 5: Scaling ServiCescccuseermmmsssssnmmssssnnsssssssnnsessssssssssssssnssssssssnsssssssnnnnss 85
LT3N 010 = 85
THE SOIULION ...t sae s nn e 86
Setting the ENVIFONMENT..........cooeiriercrr s sa e sa s sn e sn s 87
Creating a Replicated SErviCe........ccverererererercre e snesn e sne s 87
SCAlNG UP @ SEIVICEcovrerrerierissessessssesssssssessssesss e e sss e ssssssesssssssssssssssssssssssssssssnsanens 88
SCaliNg DOWN @ SEIVICEceevererierrerrer s e e e e s sassas s e e sassassassassassasssssnssnssnsnes 91
REMOVING @ SEIVICEcceceririrer st n s nn e n s nn e n e n s 92
Global Services Cannot Be SCaled ... 92
Scaling Multiple Services Using the Same Commandc.ccoovcvieenicnennsesnsesesenens 93
Service Tasks Replacement on a Node Leaving the Swarmcccoccevvercrcrceecennne, 95
1111 1P 2SS 96
Chapter 6: Using Mountsccccueemmmmisssmnmmmssssmmmmssssssmmsssssssmssssssssssssssssssssssnnsnns 97
THE PrODIBM ...t 97
THE SOIULION ...t a e nan e 97

vii

CONTENTS

VOIUME MOUNTS......ceeeeeeeeee e nean 97
BiNd MOUNTES ...t 98
Setting the ENVIFONMENL...........coo e s 99
Creating @ Named VOIUME ..o e ss s sns s sn s s 100
Using @ Volume MOUNL...........co i e e s sn e e s ne e 102
RemOVING @ VOIUME..........coeiecere ettt sa e s sae s sa e s sn e 112
Creating and Using @ Bind Mount...........ccoriciinnincnrcrs e 112
R3]0 1] 1 TP 114
Chapter 7: Configuring ReSOUrCeS......uusurmssesmsssanssssansssssnsssssnsssssnsssssnsssssnnnsssnnnss 115
THE PrODIEM ... 115
THE SOIULION ... 116
Setting the ENVIFONMENL..........coco i snesrennens 118
Creating a Service Without Resource Specificationc.c.ccoceerverresnsesnsenesesessnens 119
RESErviNg RESOUICES.......cceereerrrrerresresiesssssessessessessessessessessessesssssessessessssnessessssnsssessessens 120
Setting Resource LIMILS ..o sse e ssessssassnessesanns 120
Creating a Service with Resource Specificationcccccovvrreeniniesnscsnscsecesecneens 121
Scaling and RESOUICES.........ccccererererereresesessesessesse e ssessessessessessessssnesnesssssssnssssssens 121
Reserved Resources Must Not Be More Than Resource Limitsc.ccccocvvrercrenencnnns 122
Rolling Update to Modify Resource Limits and Reserves..........cccccvvvrvrrercernessensaennns 124
Resource Usage and Node CapaCityccererererrerrrsessesssssessessessessessessessessssssssssssssens 125

SCaling Up the STACKccccceieeiirncrr st s sn e s a e s n s nnne 127
10T 111 0T TSRS 130
Chapter 8: Schedulingccccusrunimrmnienmnssesmmisessessssse s ss s sansesaneas 131
THE ProbIem ... s 131
LI T= 2010 0o 132
Setting the ENVIFONMENL...........coo e sne e nennens 135
Creating and Scheduling a Service: The Spread Scheduling..........ccccoveerveereresiernennnn 136
Desired State RECONCIlIAtioNccoceuvceeriiererrcse e 138

viii

CONTENTS

Scheduling Tasks Limited by Node Resource Capacity.........cccceeevrrverrerrersersersessensennens 141
Adding Service Scheduling Constraintsccccveevvrrvensnsss s 145

Scheduling on @ SPECIfIC NOGE.......ccvcerrerereerererererererseserseseree s e resersesessesessesesaesessesasessssessssassesanaens 146

Adding Multiple Scheduling CONSIIAINTS.........cccccvererererererrereerere s seseressersesesassessesessessssessssessssssaes 148

Adding Node Labels for SCheAUIING.........cccvrrererererererereresseressersesersesessesasessssessssesssssssessssessssessssssaes 150

Adding, Updating, and Removing Service Scheduling Constraints..........cccecvvvrrerrerrcenenrerenereenennns 151
Spread Scheduling and Global SErviCes..........cccvrrrrrrsrsssss s 153
SUMMEANY ...ttt r s s ae e s e re e s a e e s ne e nnennnnnn s 154
Chapter 9: Rolling Updates.......c.ccccmmmssmmmmmmsssnsnmmssssssnssssssssnssssssssnssssssnsnsssssnnnnss 155
THE ProbIem ... 155
TRE SOIULION ...t 155
Setting the ENVIFONMENL...........c.ooe e n s 157
Creating a Service with a Rolling Update POliCYcccoeerriernnmiiennsesesnssesssesesensenns 157
Rolling Update to Increase the Number of Replicas.........c.cccecvvrrirvrnsnsensenseessensennnes 158
Rolling Update to a Different Image Tag..........coeveerrrrrserssssssss s ses s sss s sssses s snssnsnnns 161
Rolling Update to Add and Remove Environment Variablesc.ccocvvvvrvrvrcercennnnns 162
Rolling Update to Set CPU and Memory Limits and ReServe.........ccocecvverrerverrersensennenns 164
Rolling Update to a Different IMageccccvvreercrcersscs e 167
ROIliNG RESTAM.......c.crireririrr st se s sa s n e sa s sn e sn e n s 171
Rolling Update to Add and Remove Mountscccceeeeersnsensessessssssssessesssssssssssssssnsenns 172
Rolling Update Failure ACHONcocvcrcrcrr e nns 173
Roll Back to Previous SPecCifiCation.........ccccververierreriennensessesssesesssesessssssessssssesssssns 175
Rolling Update on a Global SErviceccceevrierncrecnicrs e snseenes 176
1111 112 2SS 178
Chapter 10: NetWOrkingccccvssssesnsmssssssssmssnnssssssnnnnss 179
LTI (010 T PSP R 179
THE SOIULION ...t 180

THE INGrESS NELWOIKcoveererircr et s e s a e e s e s s p e e ae e nns 180

Custom OVErlay NEIWOIKSccoceerereeerirresesesssss e se s e e ss s sss s e ssssssssesasssssnsnnns 181

CONTENTS

The docker_gwbridge NETWOIKccuciviirrininrnsirserses s ses s sesssssessasssssasssssssssssassassassassens 181

The Bridge NETWOIK.......ccvverirrirrierirrer s se s e e s ss s s s s s s e s s st s sn e st s s e e s sa s s e sassassassnnnas 181
Setting the ENVIFONMENL..........coooeeecececece e 182
Networking in SWarm MOdE..........coccvvririrnnrrrer e sa e sa s sne e 183
Using the Default Bridge Network to Create a Service..........ccooeevveerieveseniesnsesesenaens 186
Creating a Service in the Ingress Network..........cccoevererenenesese s sne e 187
Creating a Custom Overlay NEtWOrKcccccevererenerenes e sssssssessssssssessessessassssssssenns 191
Using a Custom Overlay Network to Create @ Serviceccoceverrrrrrsersensessensensensenns 194
Creating an Internal Overlay NEtworKcccooeeeeeierenese s snesneens 195
Deleting @ NEtWOIK........ccocrververiererersereres e se e e e e sn s sn s sa s sn e sn s snenns 198
B30 P2 T 199
Chapter 11: Logging and Monitoringccccusssesssmssssnsnssssssssnsssssssssssssssssssssssnnnnss 201
T30 0] T 201
THE SOIULION ...t 201
Setting the ENVIFONMENT..........ccocevevirrr e n s 202
Creating @ SPM AppliCationccoecverninc s 203
Creating a Logsene AppliCatioN...........ccovcreniccrsniniennss s 205
Connecting the SPM and LOGSENE APPS.....ceerrreererreersrrsssnns 208
Deploying the Sematext Docker Agent as @ SErviCecccvevvrersersersessnssessessessennnnns 209
Creating a MySQL Database Service on a Docker Swarmcceeeeevereversensensennenns 212
Monitoring the Docker SWarm MELriCScccvvrrerrrrrsr s seeseseens 213
Getting Docker Swarm Logs iN LOGSENEccceeeeeererereesseseessesseseessssessnsssssnssnssssssnnnns 214
SUMMEAIY ...t r s a s a s s re e e r e e s an e s ae e nsnnnnnnnnas 217
Chapter 12: Load BalanCingccccccemrrrrssssssssssssnssmesssssssssssssssssssssssssssssnsssssssssnns 219
SEIVICE DISCOVEIY.....ccvierrerrrerrsersessssesssssssesss s sse s s e sss s e sss e sss s s s ssessssesssnssssssssssansanens 219
(T3 (0111 IS T 1T [0 1T SR 219
Ingress Load BalanCing.........cccceeeeeerersenessessessessessessessesssssssssssessssssssssssssssssssssssssansnns 219
THE PrODIBM ..ottt 219

0TS 10 220

CONTENTS

Setting the ENVIFONMENT...........ccoeeiiercrrcrn e 221
Creating @ Hello WOrld SErVICE.........ccverereereereereereessessessssasssssasssssasssssassassssssssssssssssnnns 222
Invoking the Hello WOorld SErvice.........cooeeeeeneccse e ses e ses s s e s s snsnnns 224
Creating an External Elastic Load BalancCercccoouvrennsennnniesnsesessssessssessesensens 227
Load Balancing in DOCKEr fOr AWS. ..o e see s ssssssssssssssssessassassassssssssssenns 234
1111 112 SRS 239
Chapter 13: Developing a Highly Available Websitecccennsemmnmnssssnnnsssssnnnns 241
B T0N £0]0] 241
THE SOIULION ...t r e n e nn e n s 242
Setting the ENVIFONMENT..........ccoce v sn s sn s sn e sa s sn e 243
Creating Multiple DOCKEr SWArMS.........cccceeerereressersesse e sssssessesssssssssssssssssssssssssssnsnns 243
Deploying @ DOCKEr SWarm SEIVICE.......c.ccuvrverrerversersersessesssssessessesssssessssssssesssssssssssnns 246
Creating an Amazon ROULE B3........ccveivierricrn e 251

Creating @ HOSTEA ZONEcoeeveerereerererereresersesesseserassessesessessesessesessesessssassesassessssesassesassassesassesssnenes 252

CoNfigUriNG NAME SEIVEIS......ccceerereererrerereresersesersesesssssssessssessssessessssesssssssssessssessesessssssssssssesassesseneres 254

Creating ResSoUrce RECOIT SEIS........cccvererrererrererersesersesersesesersssessesessesessessssessssessssesssssssssassesassesssnenes 256
Testing High Availabilitycccoorerinsnsnserses e 263
Deleting @ HOSTEA ZONEeeeeeeeeeeeececerere e sa e sn s sn e snenns 266
RS0 2 269
Chapter 14: Using Swarm Mode in Docker Cloud.........cccuccmmmmsssnnnnmnssssnnnssssssnnnns 271
BTN 0] = 27
THE SOIULION ... 27
Setting the ENVIFONMENT...........ccoeeiierrsirern e 272
Creating an IAM ROIE.........cccverererrereereeseeressaesaesasssssaesaesassassassasssssssssssassassssssssassasssnnsnns 272
Creating a Docker Swarm in DOCKer Cloudccoeeererereecnesee e ses e ssesessns s ssennnns 280
Connecting to the Docker Swarm from a Docker HOSt.........cccccoevrvervrsrnnsessessen s 289
Connecting to the Docker Swarm from a Swarm Manager...........ccooveevreeriernsesnesensenns 292
Bringing a Swarm into Docker Cloudccocvvrcercrcrcr s 294
1111 P2 7SSOSR 296

CONTENTS

Chapter 15: Using Service Stacksccucccnmmmmsmmmmmssssnsnmmssssssnmsssssssssssssssssssssssnnns 297
T30 0] T 297
THE SOIULION ...t s sr e 297
Setting the ENVIFONMENT..........ccocivrrrrrrrrr s 299
Configuring @ Service StacK.........ccccverrirernicrnsne e e 303
Creating @ STACK.........cccvvcrririerinere e 304
Y T] 7 T 6 SR 305
LiStING SEIVICES....cueieerereerrerresrersessessessessessessessessessessessessesaesressssresrssnesassnesnesnssnesnessnnnans 306
Listing DOCKEr CONTAINEISccuceeeerrierennesesssessessssessssesss s ssssssssssssessssssssssssssssssssens 307
USINg the SErviCe STACKcccvereerererersrrree e sse s ses e see e saesassassassassassaesasnnns 308
ReMOVING @ STACKccecercerircerser s sn s sn s sn s sn s sn s sn e nnenn 314
SUMMEAIY ...t r s a s e a s s ae e s e r e e s e a e e s aenrnnnnnnnnnas 315
INO@X . ueeeiiienssssnnnsssnnssssnnssssansssssnsssssnnnssan s ssssn s ssssnnansnnnansnnnnnsannan s snnn s nnnn s nnnnnnnnnnnnnnnss 317

xii

About the Author

Deepak Vohra is an Oracle certified Java programmer and web
component developer. Deepak has published in several journals,
including Oracle Magazine, OTN, IBM developerWorks, ONJava,
DevSource, WebLogic Developer’s Journal, XML Journal, Java Developer’s
Journal, FTPOnline, and devx. Deepak has published three other books on
Docker, and a dozen other books on other topics. Deepak is also a Docker
Mentor.

xiii

About the Technical Reviewers

Michael Irwin is an Application Architect at Virginia Tech (Go Hokies!) where he’s both a developer and
evangelist for cutting-edge technologies. He is helping Virginia Tech adopt Docker, cloud services, single-page
applications, CI/CD pipelines, and other current development practices. As a Docker Captain and a local
meetup organizer, he is very active in the Docker community giving presentations and trainings to help others
learn how to best utilize Docker in their organizations. Find him on Twitter at @mikesir87.

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, and cloud and IT architecture. His true IT
passions are security and Android systems.

He has been programming and teaching people how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more
than 20 years.

He holds a Master’s of Science degree in Computing Science from the
University of Salerno, Italy.

He worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

His technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.

He worked as a visiting lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He holds four international patents (in the PKI, SIP,
SAML, and Proxy areas).

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj and is a member of
ISACA, Finland Chapter Board.

Massimo has reviewed more than 40 IT books for different publishers and he is the coauthor of
Pro Android Games (Apress, 2015).

XV

Introduction

Docker, made available as open source in March 2013, has become the de facto containerization platform.
The Docker Engine by itself does not provide functionality to create a distributed Docker container cluster

or the ability to scale a cluster of containers, schedule containers on specific nodes, or mount a volume. The
book is about orchestrating Docker containers with the Docker-native Swarm mode, which was introduced
July 2016 with Docker 1.12. Docker Swarm mode should not be confused with the legacy standalone Docker
Swarm, which is not discussed in the book. The book discusses all aspects of orchestrating/managing Docker,
including creating a Swarm, using mounts, scheduling, scaling, resource management, rolling updates, load
balancing, high availability, logging and monitoring, using multiple zones, and networking. The book also
discusses the managed services for Docker Swarm: Docker for AWS and Docker Cloud Swarm mode.

Docker Swarm Design Patterns

“A software design pattern is a general reusable solution to a commonly occurring problem within a given
context in software design.” (Wikipedia)

Docker Swarm mode provides several features that are general-purpose solutions to issues inherent in
a single Docker Engine. Each chapter starting with Chapter 2 introduces a problem and discusses a design
pattern as a solution to the problem.

Why Docker Swarm Mode?

Why use the Docker Swarm mode when several container cluster managers are available? Docker Swarm
mode is Docker-native and does not require the complex installation that some of the other orchestration
frameworks do. A managed service Docker for AWS is available for Docker Swarm to provision a Swarm
on production-ready AWS EC2 nodes. Docker Cloud may be linked to Docker for AWS to provision a

new Swarm or connect to an existing Swarm. Docker 1.13 includes support for deploying a Docker Stack
(collection of services) on Docker Swarm with Docker Compose.

What the Book Covers

Chapter 1 introduces running a Docker standalone container on CoreOS Linux. The chapter establishes the
basis of the book and subsequent chapters discuss how the management design patterns provided by the
Swarm mode solve problems inherent in a standalone Docker Engine.

Chapter 2 introduces the Swarm mode, including initializing a Swarm and joining worker nodes to
the Swarm. Chapter 2 includes promoting/demoting a node, making a node (manager or worker) leave a
Swarm, reinitializing a Swarm, and modifying node availability.

xvii

http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_1
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

INTRODUCTION

Chapter 3 discusses the managed service Docker for AWS, which provisions a Docker Swarm by
supplying the Swarm parameters, including the number of managers and workers and the type of EC2
instances to use. AWS uses an AWS CloudFormation to create the resources for a Swarm. Docker for AWS
makes it feasible to create a Swarm across multiple AWS zones.

Chapter 4 is about Docker services. Two types of services are defined—replicated and global. Chapter 4
discusses creating a service (replicated and global), scaling a replicated service, listing service tasks, and
updating a service.

Chapter 5 discusses scaling replicated services in more detail, including scaling multiple services
simultaneously. Global services are not scalable.

In Chapter 6, two types of mounts are defined: a bind mount and volume mount. This chapter discusses
creating and using each type of mount.

Chapter 7 is about configuring and using resources in a Swarm. Two types of resources are supported
for configuration: memory and CPU. Two types of resource configurations are defined: reserves and limits.

It discusses creating a service with and without resources specification.

Chapter 8 discusses scheduling service tasks with the default and custom scheduling. Scheduling
constraints are also discussed.

Chapter 9 discusses rolling updates, including setting a rolling update policy. Different types of rolling
updates are provisioned, including updating to a different Docker image tag, adding/removing environment
variables, updating resource limits/reserves, and updating to a different Docker image.

Chapter 10 is about networking in Swarm mode, including the built-in overlay networking called ingress
and support for creating a custom overlay network.

Chapter 11 is about logging and monitoring in a Swarm, which does not provide a built-in support for
logging and monitoring. Logging and monitoring is provided in a Swarm with a Sematext Docker agent,
which sends metrics to a SPM dashboard and logs to a Logsene user interface and Kibana.

Chapter 12 discusses load balancing across service tasks with ingress load balancing. An external AWS
elastic load balancer may also be added for distributing client requests across the EC2 instances on which a
Swarm is based.

Chapter 13 discusses developing a highly available website that uses an Amazon Route 53 to create a
hosted zone with resource record sets configured in a Primary/Secondary failover mode.

Chapter 14 discusses another managed service, Docker Cloud, which may be used to provision a
Docker Swarm or connect to an existing Swarm.

Chapter 15 discusses Docker service stacks. A stack is a collection of services that have dependencies
among them and are defined in a single configuration file for deployment.

Who this Book Is For

The primary audience of this book includes Docker admins, Docker application developers, and Container
as a Service (CaaS) admins and developers. Some knowledge of Linux and introductory knowledge of
Docker—such as using a Docker image to run a Docker container, connecting to a container using a bash
shell, and stopping and removing a Docker container—is required.

xviii

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_5
http://dx.doi.org/10.1007/978-1-4842-2973-6_6
http://dx.doi.org/10.1007/978-1-4842-2973-6_7
http://dx.doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_10
http://dx.doi.org/10.1007/978-1-4842-2973-6_11
http://dx.doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_13
http://dx.doi.org/10.1007/978-1-4842-2973-6_14
http://dx.doi.org/10.1007/978-1-4842-2973-6_15

CHAPTER 1

Getting Started with Docker

Docker has become the de facto containerization platform. The main appeal of Docker over virtual
machines is that it is lightweight. Whereas a virtual machine packages a complete OS in addition to the
application binaries, a Docker container is a lightweight abstraction at the application layer, packaging
only the code and dependencies required to run an application. Multiple Docker containers run as isolated
processes on the same underlying OS kernel. Docker is supported on most commonly used OSes, including
several Linux distributions, Windows, and MacOS. Installing Docker on any of these platforms involves
running several commands and also setting a few parameters. CoreOS Linux has Docker installed out-
of-the-box. We will get started with using Docker Engine on CoreOS in this chapter. This chapter sets the
context of the subsequent chapters, which discuss design patterns for managing Docker Engine using the
Swarm mode. This chapter does not use Swarm mode and provides a contrast to using the Swarm mode.
This chapter includes the following sections:

e Setting the environment

e Running a Docker application

Setting the Environment

We will be using CoreOS on Amazon Web Services (AWS) EC2, which you can access at https://console.
aws.amazon.com/ec2/v2/home?region=us-east-1#. Click on Launch Instance to lauch an EC2 instance.
Next, choose an Amazon Machine Image (AMI) for CoreOS. Click on AWS Marketplace to find a CoreOS
AML. Type CoreOS in the search field to find a CoreOS AMI. Select the Container Linux by CoreOS (Stable),
as shown in the EC2 wizard in Figure 1-1, to launch an instance.

1. Choose AMI 2. Choose Instance Type Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group
. ; Cancel and Exit
Step 1: Choose an Amazon Machine Image (AMI)
An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI
provided by AWS, our user community, or the AWS Marketplace; or you can select one of your own AMIS.

Quick Start 1 to 6 of 6 Products
Q, coreos x

My AMIS
= container linux Container Linux by CoreOS (Stable)

AWS Marketplace
wrdekd (0)] 12 versions | Soid by CoreQ5

Community AMIs $0.00/hr for software

LinunAUnix, Other 1 | 84-b Amazon Machine Image (AMI) | Updated: 2817
¥ Categories Core0S Container Linux automat tware updates to ensure better security and reliability of machines

and containers running on large-si lusters. Operating system updates

All Categories
More info
Software Infrastructure (&)

Figure 1-1. Selecting an AMI for CoreOS Linux

© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_1

https://doi.org/10.1007/978-1-4842-2973-6_1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

CHAPTER 1 * GETTING STARTED WITH DOCKER

From Choose an Instance Type, choose the t2.micro Type and click on Next. In Configure Instance
Details, specify the number of instances as 1. Select a network or click on Create New VPC to create a new
VPC. Select a subnet or click on Create New Subnet to create a new subnet. Select Enable for Auto-Assign
Public IP. Click on Next.

From Add Storage, select the default settings and click on Next. In Add Tags, no tags need to be added.
Click on Next. From Configure Security Group, add a security group to allow all traffic of any protocol in all
port ranges from any source (0.0.0.0/0). Click on Review and Launch and subsequently click on Launch.

Select a key pair and click on Launch Instances in the Select an Existing Key Pair or Create a New Key
Pair dialog, as shown in Figure 1-2.

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together,
they allow you to connect to your instance securely. For Windows AMIs, the private key file is required
to obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Choose an existing key pair v
Select a key pair
coreos v

¢/ | acknowledge that | have access to the selected private key file (coreos.pem), and that

without this file, | won't be able to log into my instance.
Cancel Launch Instances

Figure 1-2. Launch instances

CHAPTER 1 © GETTING STARTED WITH DOCKER

An EC2 instance with CoreOS is launched. Obtain the public DNS or IPv4 public IP address of the EC2
instance from the EC2 Console, as shown in Figure 1-3, to SSH login into the instance.

i Connect Actions ¥ o % @
Q) | search : i-09dd4e6018d232147 Add filter (2] 1to10f1
[] Name = Instance ID - | Type - Availability Zone ~ State - Staws Checks - Alarm Status Public DNS (IPv4)
B CoreQS i-09dd4e6018d2321 12.micro us-gast-le @ running & 22checks ... Nene %6 ©c2-54-198-51-20.com..

Instance: | i-09dd4e6018d232147 (CoreOS) Public DN§: ec2-54-186-51-20.compute-1.amazenaws.com

Description Status Checks Monitoring Tags Usage Instructions
Instance 1D -09dd4eS018d232147 Public DNS {IPv4)
Instance stale running P, IPvd Puble IP
Instance type t2.micro IPvE IPs

Figure 1-3. Public DNS and public IPv4

SSH login into the EC2 instance as user “core’.

ssh -i "coreos.pem" core@<public ip>

Running a Docker Application

As mentioned earlier, Docker is pre-installed on CoreOS. Run the docker command to list its usage, as
shown in the following bash shell:

core@ip-172-30-4-75 ~ $ docker
Usage: docker [OPTIONS] COMMAND [arg...]

docker [--help | -v | --version]
A self-sufficient runtime for containers.
Options:
--config="/.docker Location of client config files
-D, --debug Enable debug mode
-H, --host=[] Daemon socket(s) to connect to
-h, --help Print usage
-1, --log-level=info Set the logging level
--tls Use TLS; implied by --tlsverify

--tlscacert="/.docker/ca.pem
--tlscert="/.docker/cert.pem
--tlskey="/.docker/key.pem
--tlsverify

-v, --version

Commands:
attach

Trust certs signed only by this CA
Path to TLS certificate file

Path to TLS key file

Use TLS and verify the remote
Print version information and quit

Attach to a running container
Build an image from a Dockerfile
Create a new image from a container's changes

build
commit

CHAPTER 1 * GETTING STARTED WITH DOCKER

cp Copy files/folders between a container and the local filesystem
create Create a new container
diff Inspect changes on a container's filesystem

Output the Docker version using the docker version command. For native Docker Swarm support, the
Docker version must be 1.12 or later as listed in the bash shell output.

core@ip-172-30-4-75 ~ $ docker version
Client:

Version: 1.12.6

API version: 1.24

Go version: gol.7.5

Git commit: a82d3s5e

Built: Mon Jun 19 23:04:34 2017
0S/Arch: linux/amd64
Server:

Version: 1.12.6

API version: 1.24

Go version: gol.7.5

Git commit: a82d35e

Built: Mon Jun 19 23:04:34 2017
0S/Arch: linux/amd64

Run a Hello World app with the tutum/hello-world Docker image.
docker run -d -p 8080:80 --name helloapp tutum/hello-world
The Docker image is pulled and a Docker container is created, as shown in the following listing.

core@ip-172-30-4-75 ~ $ docker run -d -p 8080:80 --name helloapp tutum/hello-world
Unable to find image 'tutum/hello-world:latest' locally

latest: Pulling from tutum/hello-world

658bc4dc7069: Pull complete

a3ed95caeb02: Pull complete

af3cc4bo2afal: Pull complete

doo34177ece9: Pull complete

983d35417974: Pull complete

Digest: sha256:0d57def8055178aath4c7669cbc25ec17f0acdab97cc587130150802da818d85
Status: Downloaded newer image for tutum/hello-world:latest
1b7a85df6006b41ea1260b5ab957113c9505521cc8732010d663a5€236097502

List the Docker container using the docker ps command.

core@ip-172-30-4-75 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

1b7a85df6006 tutum/hello-world "/bin/sh -c 'php-fpm " 19 minutes ago Up 19 minutes
0.0.0.0:8080->80/tcp helloapp

CHAPTER 1 © GETTING STARTED WITH DOCKER

The port mapping for the Docker container is also listed using the docker ps command, but it may also
be obtained using the docker port <container> command.

core@ip-172-30-4-75 ~ $ docker port helloapp
80/tcp -> 0.0.0.0:8080

Using the 8080 port and localhost, invoke the Hello World application with curl.
curl localhost:8080
The HTML markup for the Hello World application is output, as listed shown here.

core@ip-172-30-4-75 ~ $ curl localhost:8080
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=0pen+Sans:400,700"
rel="stylesheet' type="text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;
}
#logo {
margin-bottom: 40px;
}

</style>
</head>
<body>

<h1>Hello world!</h1>
<h3>My hostname is 1b7a85df6006</h3>
</body>
</html>

Using the public DNS for the EC2 instance, the Hello World application may also be invoked in a
browser. This is shown in the web browser in Figure 1-4.

CHAPTER 1 * GETTING STARTED WITH DOCKER

mbtutum

Hello world!

My hostname is 1b7a85df6006

Figure 1-4. Invoking the Hello World application in a web browser

The docker stop <container> command stops a Docker container. The docker rm <container>
command removes a Docker container. You can list Docker images using the docker images command.
A Docker image may be removed using the docker rmi <image> command.

core@ip-172-30-4-75 ~ $ docker stop helloapp

helloapp

core@ip-172-30-4-75 ~ $ docker rm helloapp

helloapp

core@ip-172-30-4-75 ~ $ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
tutum/hello-world latest 31e17b0746e4 19 months ago 17.79 MB

core@ip-172-30-4-75 ~ $ docker rmi tutum/hello-world

Untagged: tutum/hello-world:latest

Untagged: tutum/hello-world@sha256:0d57def8055178aath4c7669cbc25ec17f0acdab97cc587130150802da818d85
Deleted: sha256:31e17b0746€48958b27f1d3dd4fe179fbba7e8efel4ad7a51€964181a92847a6
Deleted: sha256:e1bc9d364d30cd2530cb673004dbcdfieae0286e41a0fb217dd14397bf9debc8
Deleted: sha256:a1f3077d3071bd3eed5bbe5c9c036f15ce3f6b4b36bdd77601F8b8f03c61874F
Deleted: sha256:ff7802c271f507dd79ad5661ef0e8c7321947c145f1e3cd434621fa869fa648d
Deleted: sha256:e38b71a2478cad712590a0eace1e08f100a293ee19a181d5f5d5a3cdb0663646
Deleted: sha256:5f27c27ccc6daedbcbee055621961719d7f0bb38d8e95b1c123bb9696d39916
Deleted: sha256:fab20b60d8503ff0bc94ac3d25910d4a10f366d6dalf69eas53a05bdef469426b
Deleted: sha256:a58990fe25749e088fd9a9d2999c9a17b51921eb3{7df925a00205207a172b08
core@ip-172-30-4-75 ~ $

CHAPTER 1 © GETTING STARTED WITH DOCKER

Summary

This chapter sets the basis for subsequent chapters by using a single Docker Engine on CoreOS. Subsequent
chapters explore the different design patterns for managing distributed Docker applications in a cluster. The
next chapter introduces the Docker Swarm mode.

CHAPTER 2

Using Docker in Swarm Mode -

The Docker Engine is a containerization platform for running Docker containers. Multiple Docker
containers run in isolation on the same underlying operating system kernel, with each container having its
own network and filesystem. Each Docker container is an encapsulation of the software and dependencies
required for an application and does not incur the overhead of packaging a complete OS, which could

be several GB. Docker applications are run from Docker images in Docker containers, with each Docker
image being specific to a particular application or software. A Docker image is built from a Dockerfile, with
a Dockerfile defining the instruction set to be used to download and install software, set environment
variables, and run commands.

The Problem

While the Docker Engine pre-1.12 (without native Swarm mode) is well designed for running applications in
lightweight containers, it lacks some features, the following being the main ones.

e Nodistributed computing—No distributed computing is provided, as a Docker
Engine is installed and runs on a single node or OS instance.

e No fault tolerance—As shown in the diagram in Figure 2-1, if the single node on
which a Docker Engine is running fails, the Docker applications running on the
Docker Engine fail as well.

TN
(e

X Docker Engine

Figure 2-1. Single node Docker cluster

© Deepak Vohra 2017 9
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_2

https://doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 2 * USING DOCKER IN SWARM MODE

The Solution

With Docker Engine version 1.12 onward, Docker container orchestration is built into the Docker Engine

in Swarm mode and is native to the Docker Engine. Using the Swarm mode, a swarm (or cluster) of nodes
distributed across multiple machines (OS instances) may be run in a master/worker/ pattern. Docker Swarm
mode is not enabled in the Docker Engine by default and has to be initialized using a docker command.
Next, as an introduction to the Docker Swarm mode, we introduce some terminology.

Docker Swarm Mode

Docker Swarm is a cluster of Docker hosts connected by an overlay networking for service discovery.

A Docker Swarm includes one or more manager nodes and one or more worker nodes, as shown in

Figure 2-2. In the Swarm mode, a Docker service is the unit of Docker containerization. Docker containers
for a service created from a Manager node are deployed or scheduled across the cluster and the Swarm
includes a built-in load balancing for scaling the services. The expected state for a service is declared on
the manager, which then schedules the task to be run on a node. However, the worker node itself still pulls
the image and starts the container.

Docker
Swarm

Mode
Node Node Node
Docker Docker Docker
Engine Engine Engine

Node
Docker
Engine

Node
Docker
Engine

Node
Docker
Engine

.

Figure 2-2. Docker Swarm mode cluster

%

Nodes

An instance of a Docker host (a Docker Engine) is called a node. Two types of node roles are provided:
manager nodes and worker nodes.

10

CHAPTER 2 * USING DOCKER IN SWARM MODE

Service

A service is an abstraction for a collection of tasks (also called replicas or replica tasks) distributed across

a Swarm. As an example, a service could be running three replicas of an Nginx server. Default scheduling,
which is discussed in Chapter 7, uses the “spread” scheduling strategy, which spreads the tasks across

the nodes of the cluster based on a computed node rank. A service consists of one or more tasks that run
independent of each other, implying that stopping a task or starting a new task does not affect running other
tasks. The Nginx service running on three nodes could consist of three replica tasks. Each task runs a Docker
container for the service. One node could be running multiple tasks for a service. A task is an abstraction for
the atomic unit of scheduling, a “slot” for the scheduler to run a Docker container.

Desired State of a Service

The “desired state” of a service refers to the service state as defined in the service definition when creating
the service. As an example, a service definition could define a service as consisting of three replicas of an
Nginx server.

Manager Node and Raft Consensus

When the Swarm is first created, the current node becomes the first manager node. By default, all manager
nodes are also workers. The manager node performs the cluster orchestration and manages the Swarm,
including the initial scheduling of service tasks and subsequent reconciliation, if any, between the desired
state and the actual state of services. As an example, for a service definition consisting of three replicas of an
Nginx server, the manager node would create three tasks and schedule the tasks on Swarm worker nodes in the
Swarm. Subsequently, if a node running a task were to fail, the Swarm manager would start a new replacement
task on the worker nodes still in the Swarm. The Swarm manager accepts the service definition when a service
is created and schedules the service on one or more worker nodes as service tasks. The Swarm manager node
also manages the scaling of service by adding/removing service tasks. The Swarm manager assigns each service
a unique DNS name and starts Docker containers via service replica tasks. The manager node monitors the
cluster state. The Swarm manager is also a worker node by default, which is discussed in the next section.

To refer to “the manager node” is actually a simplification of the Swarm Manager, as a Swarm may
consist of one or more manager nodes. Each manager node keeps the complete cluster state data, including
which service replica tasks are running on which node and the node roles, and participates in Swarm
management for the Raft consensus. The Raft consensus is merely an algorithm to create decisions/
agreements (consensus) within a group in a distributed fashion. Swarm uses it to make decisions such
as leader elections, cluster membership, service changes, etc. In the Swarm mode, Raft consensus is
an agreement among the manager nodes for a global cluster state parameter such as about the state
of data value stored in a database. Swarm managers share data using Raft. Raft consensus is a protocol
for implementing distributed consensus among all the reachable manager nodes in a Swarm. The Raft
Consensus Algorithm has several implementations and its implementation in the Swarm mode has the
properties typically found in distributed systems, such as the following:

e Agreement of values for fault tolerance
¢ Cluster membership management
e Leader election using mutual exclusion

Only one manager node, called the leader, performs all the cluster orchestration and management. Only
the leader node performs the service scheduling, scaling, and restarting of service tasks. The other manager
nodes are for the fault tolerance of Swarm manager, which implies that if the leader node were to fail, one of
the other manager nodes would be elected as the new leader and take over the cluster management. Leader
election is performed by a consensus from the majority of the manager nodes.

11

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

CHAPTER 2 * USING DOCKER IN SWARM MODE

Worker Nodes

A worker node actually runs the service replica tasks and the associated Docker containers. The
differentiation between node roles as manager nodes and worker nodes is not handled at service
deployment time but is handled at runtime, as node roles may be promoted/demoted. Promoting/demoting
anode is discussed in a later section. Worker nodes do not affect the manager Raft consensus. Worker

nodes only increase the capacity of the Swarm to run service replica tasks. The worker nodes themselves do
not contribute to the voting and state held in the raft, but the fact that they are worker nodes is held within
the raft. As running a service task requires resources (CPU and memory) and a node has a certain fixed
allocatable resources, the capacity of a Swarm is limited by the number of worker nodes in the Swarm.

Quorum

A quorum refers to agreement among the majority of Swarm manager nodes or managers. If a Swarm loses
quorum it cannot perform any management or orchestration functions. The service tasks already scheduled
are not affected and continue to run. The new service tasks are not scheduled and other management
decisions requiring a consensus, such as adding or removing a node, are not performed. All Swarm
managers are counted toward determining majority consensus for fault tolerance. For leader election only
the reachable manager nodes are included for Raft consensus. Any Swarm update, such as the addition or
removal of a node or the election of a new leader, requires a quorum. Raft consensus and quorum are the
same. For high availability, three to five Swarm managers are recommended in production. An odd number
of Swarm managers is recommended in general. Fault tolerance refers to the tolerance for failure of Swarm
manager nodes or the number of Swarm managers that may fail without making a Swarm unavailable.
Mathematically, “majority” refers to more than half, but for the Swarm mode Raft consensus algorithm, Raft
tolerates (N-1)/2 failures and a majority for Raft consensus is determined by (N/2)+1. N refers to the Swarm
size or the number of manager nodes in the Swarm.

Swarm Size = Majority + Fault Tolerance

As an example, Swarm sizes of 1 and 2 each have a fault tolerance of 0, as Raft consensus cannot be
reached for the Swarm size if any of the Swarm managers were to fail. More manager nodes increase fault
tolerance. For an odd number N, the fault tolerance is the same for a Swarm size N and N+1.

As an example, a Swarm with three managers has a fault tolerance of 1, as shown in Figure 2-3. Fault
tolerance and Raft consensus do not apply to worker nodes, as Swarm capacity is based only on the worker
nodes. Even if two of the three worker nodes were to fail, one Worker node, even if the manager nodes are
manager-only nodes, would keep the Swarm available though a reduction in Swarm capacity and could
transition some of the running tasks to non-running state.

12

Figure 2-3. Fault tolerance for a Swarm

CHAPTER 2 * USING DOCKER IN SWARM MODE

Node
Docker
Engine

Docker

Engine

Docker
Swarm
Mode

Node
Docker
Engine

Docker
Engine

Node
Docker
Engine

Docker
Engine

This section covers the following topics:

Setting the environment

Initializing the Docker Swarm mode

Joining nodes to the Swarm cluster

Testing the Swarm cluster

Promoting a worker node to manager

Demoting a manager node to worker

Making a worker node leave the Swarm cluster

Making A worker node rejoin the Swarm cluster

Making a manager node leave the Swarm cluster

Reinitializing a Swarm

Modifying node availability

Removing a node

13

CHAPTER 2 * USING DOCKER IN SWARM MODE

Setting the Environment

This chapter shows you how to create a three-node Swarm consisting of one manager node and two worker
nodes. Create three Amazon EC2 instances using CoreOS Stable AMI, as shown in the EC2 console in
Figure 2-4. Enable all traffic between the EC2 instances when configuring the security group for the EC2
instances. Obtain the IP address of the EC2 instance started for the Swarm manager.

(=L -L L Connect Actions v
‘ o 8 0

Q. | Instance State : Running Add filter -] 1todofta
Name = Instance ID = Instance Type - Availability Zone -~ Instance State - Status Checks ~ Alarm Status Public DNS (IPvd)

@ SwarmManager i-01b12315¢b7c833be 12.micro us-gast-1f @ running & 272 checks None Y& c2-34-204-168-217 co.
SwarmWorker i-053336322e12698 2 micre us-east-1f @ running & 212 chacks Nane %% 2c2-34-204-199-45co
SwarmWarker 10894 3beeated3ld 12 micro us-east-1f @ running @ 212 checks Nane % 2c2-34-231.70-10.com.

li-01b123 TcB33be (Swar ger) Public DNS: ec2-34-204-168-217.compute-1.amazonaws.com [_B-R=l
Description Slatus Checks Manitoring Tags Usage Instructions
Instance ID i-01b12315¢bTc833be Public DNS (IPvd)
Instance stale running IPv4 Public IP
Instance type 12 micro ! P IPs
Elaslic IPs Privale DNS ip-172-30-5-70.ec 2 internal
Availabilty zone us-east-1f Private IPs 17230570

Security groups Container Lina
0-AutogenBy

05 -Stable—1409-7- Secondary private IPs
-1. view inbound rules

Scheduled events Mo scheduled events VPCID wvpe-doObGbas

Figure 2-4. EC2 instances

Initializing the Docker Swarm Mode

Docker Swarm mode is not enabled by default and needs to be enabled. SSH login to the EC2 instance
started for the Swarm manager using the public IP address.

ssh -i "coreos.pem" core@34.204.168.217

Docker Swarm mode is available starting with Docker version 1.12. Verify that the Docker version is at
least 1.12 using the docker --version command.

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.168.217
Container Linux by Core0S stable (1409.7.0)
core@ip-172-30-5-70 ~ $ docker --version

Docker version 1.12.6, build a82d35e

To initialize the Swarm, use the docker swarm init options command. Some of the options the
command supports are listed in Table 2-1.

14

CHAPTER 2 * USING DOCKER IN SWARM MODE

Table 2-1. Command Swarm init Options

Option

Description Default Value

--advertise-addr

--availability

--force-new-cluster

--listen-addr

Advertised address in the format <ip|interface>[:port].
The advertised address is the IP address at which other nodes
may access the Swarm. If an IP address is not specified, the
Docker ascertains if the system has a single IP address and,

if it does, the IP address and port 2337 is used. If the system
has multiple IP addresses, the --advertise-addr must be
specified for inter-manager communication and overlay
networking.

Availability of the node. Should be one of active
active/pause/drain.

Whether to force create a new cluster from the current state. ~ false
We discuss why it may be required to force create and use the
option in this chapter.

Listen address in the format <ip|interface>[:port]. 0.0.0.0:2377

Use the default values for all options except the --advertise-addr for which a default value is not
provided. Use the private address for the advertised address, which may be obtained from the EC2 console,
as shown in Figure 2-5. If the EC2 instances on AWS were in different regions, the external public IP address
should be used to access the manager node, which may also be obtained from the EC2 console.

i (=L -D L Connect Actions v o 8 @

C} ' Instance State : Running Add filter (=] 1to3of3
Name = Instance ID = Instance Type - Availability Zone -~ Instance State -~ Status Checks ~ Alarm Status Public DNS [IPv4)

@ SwarmManager i-01b12315cbTc833be 12 micro us-east-1f @ running @ 212 checks Naone Yo ec2-34-204-1658-217 co
SwarmWorker i-053336322e12658 2 micro us-east-1f @ running & 212 checks Nane YN ec2-34-204-199-45.co
SwarmWorker 1-08943beeateddld L2 micre us-east-1f @ running & 212 checks Nane %% 2c2-34-231.70-10.com.

| i-01b12315¢b7c833be (

Description Status Checks
Instance ID

Instance state
Instance type
Elastic IPs
Availability zone

Security groups

Scheduled events

Figure 2-5. Private IP

Public DNS: ec2-34-204-168-217.compute-1.amazonaws.com _B-N=l

ger)

Monitoring Tags Usage Instructions

i-01b12315¢cbTcd33be Public DNS (IPvd) ec2-34-204-168-217 compute-
1.amazonaws.com
running IPvd Public IP 34 204168217
2 micro IP6 1Ps
Private DNS ip-172-30-5-T0.ec2.internal
us-gast-1f b Private IPs 172.30.5.70
Container Linux by CoreQS -Stable—-1409-7 Secondary private [Ps
O-AutogenByAWSMP-1. view inbound rules
Mo scheduled svents VPCID wvpe-deObGhbas

Run the following command to initialize Docker Swarm mode.

docker swarm init --advertise-addr 172.30.5.70

15

CHAPTER 2 * USING DOCKER IN SWARM MODE

As the output in the following listing indicates, Swarm is initialized and the current node is a manager
node. The command to add a worker node is also included in the output. The command to obtain the
command to add a manager node is also output. Copy the docker swarm join command to add a worker
node to the Swarm.

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Swarm initialized: current node (bgzgx2cfsfo5qdradxytmdcp3) is now a manager.

To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-303zilrxgkzy5gq5itr580ypopbagxnkelinzh42ovrb7znt6f-
dmgeg3veppor942vsavma3s47 \
172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

Run the docker info command to get system-wide information about the Docker Engine. The
command outputs the total number of Docker containers that are running, paused, or stopped; partial
output is listed.

core@ip-172-30-5-70 ~ $ docker info
Containers: 0

Running: 0
Paused: 0
Stopped: 0
Images: 0

Server Version: 1.12.6

Storage Driver: overlay

Backing Filesystem: extfs

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: null host bridge overlay
Swarm: active

NodeID: bgzgx2cfsfo5qdradxytmdcp3
Is Manager: true

ClusterID: 056zmo5kk6em6u7vlki8pbhc9
Managers: 1

Nodes: 1

CPUs: 1
Total Memory: 994.6 MiB

Name: ip-172-30-5-70.ec2.internal
Docker Root Dir: /var/lib/docker

The Storage Driver is overlay and the backing filesystem is extfs. The logging driver is json-file,
which is covered in Chapter 11 on logging. The Swarm is shown to be active. Information about the node
such as NodelID, whether the node is a manager, the number of managers in the Swarm, and the number of
nodes in the Swarm, is also listed.

16

http://dx.doi.org/10.1007/978-1-4842-2973-6_11

CHAPTER 2 * USING DOCKER IN SWARM MODE

The resource capacity (CPU and memory) of the node is also listed. Chapter 7 discusses more about
resource usage. The node name is the private DNS of the EC2 instance on which the Swarm is initialized.
List the nodes in the Swarm with the following command:

docker node 1s

A single node gets listed including the node ID, which is the only unique parameter for a node.
The hostname is also unique if a node has not been made to leave the Swarm and rejoined.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bgzqx2cfsfosqdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

The * after the node ID indicates that this is the current node. The nodes in the Swarm also have a
STATUS, AVAILABILITY, and MANAGER STATUS columns. STATUS can be one of the values listed in Table 2-2.

Table 2-2. Node Status

Status Description
Ready Ready for use
Down Not ready for use
Unknown Not known

AVAILABILITY can be one of the values listed in Table 2-3.

Table 2-3. AVAILABILITY Column

Availability Description

Active Scheduler may assign tasks to the node.
Pause Scheduler does not assign new tasks to the node but existing tasks keep running.
Drain Scheduler does not assign new tasks to the node and existing tasks are shut down.

Replacement tasks are started on other nodes.

MANAGER STATUS can be one of the values listed in Table 2-4. If the MANAGER STATUS column has no
value, it indicates a worker node.

17

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

CHAPTER 2 © USING DOCKER IN SWARM MODE

Table 2-4. Manager Status

Manager Status

Description

Reachable

Unreachable

Leader

The node participates in the Raft consensus quorum and, if the leader becomes
unavailable, the node is eligible to be made the leader node.

The node was a manager node that was reachable but has become unreachable
and is not able to communicate with the other manager nodes in the Swarm. An
unreachable manager node could be made reachable though not guaranteed to be
restored by doing one of the following:

-Restart the machine
-Restart the daemon
If neither of the preceding restores a unreachable manager node, the following should

be implemented.
Demote and remove the failed node.

docker node demote <NODE> and docker node rm <id-node>

Add another manager node with docker swarm join.
Or
Promote a worker node to manager node with docker node promote

Primary manager node that performs all the Swarm management and orchestration.

Joining Nodes to the Swarm

Additional nodes, manager or worker, may be added or joined to the Swarm as required. By default, manager
nodes are also worker nodes but not vice versa. The manager nodes are added for a different reason than

the worker nodes. The manager nodes are added to make the Swarm more fault tolerant and the worker
nodes are added to add capacity to the Swarm. The commands to add manager and worker nodes are also
different. The command to add a worker node is output when the Swarm is initialized. The command to add
a worker node may also be found using the following command.

docker swarm join-token worker

The command to add a manager node may be found using the following command.

docker swarm join-token manager

A reason for adding a worker node is that the service tasks scheduled on some of the nodes are not
running and are in Allocated state. A reason for adding a manager node is that another manager node has
become unreachable.

The node to join, manager or worker, must have Docker Engine version at least 1.12 installed. Next, you
add two worker nodes. Obtain the public IP address of an EC2 instance started for a worker node. SSH login
to the worker instance.

ssh -i "coreos.pem" core@34.204.199.

18

CHAPTER 2 * USING DOCKER IN SWARM MODE

Run the docker swarm join command, which has the following syntax, to join the node to the Swarm
as a worker node.

docker swarm join [OPTIONS] HOST:PORT

The options supported by the docker swarm join command are listed in Table 2-5.

Table 2-5. Options for docker swarm join Command

Option Description Default Value
--advertise-addr Advertised address in format <ip|interface>[:port].

--availability Availability of the node. One of active/pause/drain. active
--listen-addr Listen address in format <ip|interface>[:port]. 0.0.0.0:2377
--token Token for entry into the Swarm.

Run the docker swarm join command output during the initialization of the Swarm mode to join the
worker instance with the Swarm. As the output message indicates, “The node joined the Swarm as a worker”

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.199.45

Container Linux by CoreOS stable (1409.7.0)

core@ip-172-30-5-31 ~ § docker swarm join \

> --token SWMTKN-1-303zilrxgkzy5gq5itr580yp9pbagxnkelinzh42ovrb7znt6f-
dmgeg3veppor942vsavma3s47 \

> 172.30.5.70:2377

This node joined a swarm as a worker.

Similarly, SSH login to the other worker instance.
ssh -i "coreos.pem" core@34.231.70.10
Run the same docker swarm join command and the second nodes joins the Swarm as a worker node.

[root@localhost ~]# ssh -i "coreos.pem” core@34.231.70.10

Container Linux by Core0S stable (1409.7.0)

core@ip-172-30-5-108 ~ $ docker swarm join \

> --token SWMTKN-1-303zilrxgkzy5gq5itr580yp9pbagxnkelinzh42ovrb7znt6f-
dmgeg3veppor942vsavma3s47 \

> 172.30.5.70:2377

This node joined a swarm as a worker.

The following sequence of events takes place when the docker swarm join command runs to joina
worker node to the Swarm.

1. The Swarm mode for the Docker Engine on the node is enabled.
A request for a TLS certificate is sent to the manager.

The node is named with the machine hostname.

> w0 N

The current node joins the Swarm at the manager listen address. Based on the
token, the node is joined as a worker node or a manager node.

19

CHAPTER 2 * USING DOCKER IN SWARM MODE

5. Sets the current node to Active availability.
6. The ingress overlay network is extended to the current node.

When a node is joined to the Swarm using the manager token, the node joins as a manager node.

The new manager nodes should be Reachable and only the first manager node is the leader. Leader election
to a different manager node occurs only if the initial leader node were to fail or be demoted.

The worker nodes differ from the manager nodes in another regard. A worker node cannot be used to
view or modify the cluster state. Only the manager node can be used to view the cluster state such as the
nodes in the Swarm. Only the manager node can be used to modify a cluster state such as remove a node.

If the docker node 1s command is run on a worker node, the following error message is generated.

core@ip-172-30-5-31 ~ $ docker node ls
Error response from daemon: This node is not a swarm manager. Worker nodes can't be used

to view or modify cluster state. Please run this command on a manager node or promote the
current node to a manager.

Testing the Swarm

Next, you deploy a simple Hello World service to the Swarm to test the cluster. List the nodes in the Swarm
from the manager node with the following command.

docker node 1s
The three nodes should be listed.

core@ip-172-30-5-70 ~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5gmj4pp91fon3son2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active
bgzgx2cfsfosqdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

bqq4bryuobyluoglmap19tko4 ip-172-30-5-31.ec2.internal Ready Active

How do you tell if a node is a manager node or a worker node? From the Manager Status column. If the
Manager Status is empty, the node is a worker node and if the Manager Status has a value, which would be
one of the values discussed in Table 2-4, the node is a manager node. Two worker nodes and one manager
node are listed.

We already discussed that worker nodes can’t be used to view or modify cluster state. Next, create a
Docker service using the docker service create command, which becomes available only if the Swarm
mode is enabled. Using Docker image alpine, which is a Linux distribution, create two replicas and ping the
docker.com domain from the service containers.

docker service create --replicas 2 --name helloworld alpine ping docker.com

If the preceding command runs without an error, the Docker Swarm installed fine. The command
returns the service ID.

core@ip-172-30-5-70 ~ $ docker service create --replicas 2 --name helloworld alpine ping

docker.com
bkwskfzqa173dp55j54ergscg

20

CHAPTER 2 * USING DOCKER IN SWARM MODE

Services may be listed with the following command.
docker service 1s

The service helloworld is listed and the number of replicas is listed as 2/2, which implies that two
replicas exist and meet the desired state of two replicas. The REPLICAS column output is ordered “actual/
desired” The Docker image is alpine and the command to run the service is ping docker.com

core@ip-172-30-5-70 ~ $ docker service ls
D NAME REPLICAS IMAGE COMMAND
bkwskfzga173 helloworld 2/2 alpine ping docker.com

The docker service inspect command is used to find more information about the service.
docker service inspect helloworld

The detailed information about the helloworld service—including the container spec, resources,
restart policy, placement, mode, update config, and update status—is listed.

core@ip-172-30-5-70 ~ $ docker service inspect helloworld
[
{
"ID": "bkwskfzqa173dp55j54ergscg",
"Version": {
"Index": 22
15
"CreatedAt": "2017-07-22T19:11:50.345823466Z",
"UpdatedAt": "2017-07-22T719:11:50.345823466Z",
"Spec": {
"Name": "helloworld",
"TaskTemplate": {
"ContainerSpec": {
"Image": "alpine",
"Args": [
“ping",
"docker.com"
]
15

"Resources": {
"Limits": {},
"Reservations": {}

}

"RestartPolicy": {
"Condition": "any",
"MaxAttempts": 0

b
"Placement”: {}
b
"Mode": {
"Replicated": {
"Replicas": 2
}
b

21

CHAPTER 2 © USING DOCKER IN SWARM MODE

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause'

15
"EndpointSpec": {
“Mode“: llvipll
}
3,
"Endpoint”: {
"Spec": {}
1

"UpdateStatus": {
"StartedAt": "0001-01-01T00:00:00Z",
"CompletedAt": "0001-01-01T00:00:00Z"

The replicas and the nodes on which the replicas are placed may be listed with the following command
syntax.

docker service ps <SERVICE

The <SERVICE> placeholder is either a service name (like helloworld) or the actual service ID
(like bkwskfzqa173 for this example). For the helloworld service, the command becomes:

docker service ps helloworld

The preceding command also lists the node on which a replica is running. The Docker containers
started for a service are listed with same command as before, the docker ps command.

core@ip-172-30-5-70 ~ $ docker service ps helloworld

ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR

2x8gqd2gbylpkugikgopxiic2 helloworld.1 alpine 1ip-172-30-5-70.ec2.internal Running
Running 34 seconds ago

6twqivolr2gflnb6ae19hrpx9 helloworld.2 alpine ip-172-30-5-108.ec2.internal Running
Running 34 seconds ago

core@ip-172-30-5-70 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
acbdaccadé6ea alpine:latest "ping docker.com" 47 seconds ago Up 46 seconds

helloworld.1.2x8gqd2qbylpkugikgopxiic2
The docker ps command is not a Swarm mode command, but may be run on the worker nodes to find

the service containers running on a worker node. The docker ps command gives you all containers running
on a node, even if they are not service containers.

22

CHAPTER 2 * USING DOCKER IN SWARM MODE

core@ip-172-30-5-108 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
74ea31054fb4 alpine:latest "ping docker.com" About a minute ago Up About a minute

helloworld.2.6twg1volr2gflnb6ae19hrpx9

Only two nodes are listed by the docker service ps helloworld command on which replicas are
scheduled, the manager node and one of the worker nodes. The docker ps command on the other worker
node does not list any Docker containers.

core@ip-172-30-5-31 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The docker node inspect <node> command is used to get detailed information about a node, such as
the node role, availability, hostname, resources capacity, plugins, and status.

core@ip-172-30-5-70 ~ $ docker node inspect ip-172-30-5-70.ec2.internal
[
{
"ID": "bgzqx2cfsfo5qdradxytmdcp3”,

"Version": {
"Index": 10
}s

"CreatedAt": "2017-07-22T719:09:45.647701768Z",
"UpdatedAt": "2017-07-22T19:09:45.68030039Z",
"Spec": {

"Role": "manager",

"Availability": "active"
1,
"Description": {

"Hostname": "ip-172-30-5-70.ec2.internal",

"Platform": {
"Architecture": "x86_64",
"0S": "linux"

}

"Resources": {
"NanoCPUs": 1000000000,
"MemoryBytes": 1042935808

1,
"Engine": {
"EngineVersion": "1.12.6",
"Plugins": [
{

"Type": "Network",
"Name": "bridge"

b

{
"Type": "Network",
"Name": "host"

}s

23

CHAPTER 2 * USING DOCKER IN SWARM MODE

{
"Type": "Network",
"Name": "null"
}s
{
"Type": "Network",
"Name": "overlay"
1
{
"Type": "Volume",
"Name": "local"
}
]
}
15
"Status": {
"State": "ready"
3,

"ManagerStatus": {
"Leader": true,
"Reachability": "reachable",
"Addr": "172.30.5.70:2377"

A service may be removed with the docker service rm <service> command. Subsequently, the
docker service inspect <service> command should not list any replicas and running docker ps will
show no more running Docker containers.

core@ip-172-30-5-70 ~ $ docker service rm helloworld
helloworld
core@ip-172-30-5-70 ~ $ docker service inspect helloworld

[]

Error: no such service: helloworld

Chapter 4 discusses more about services.

Promoting a Worker Node to Manager

As mentioned before, a manager node is also a worker node by default, but a worker node is only a worker
node. But a worker node may be promoted to a manager node. The Docker command to promote one or
more worker nodes to a manager node has the following syntax.

docker node promote NODE [NODE...]
The command must be run from the leader node. As an example, promote the node ip-172-30-5-108.

ec2.internal. As the output indicates, the node gets promoted to a manager node. Subsequently list the
nodes in the Swarm and the node promoted should have manager status as Reachable.

24

http://dx.doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 2 * USING DOCKER IN SWARM MODE

A worker node should preferably be promoted using the node ID; the reason for which is discussed
subsequently. Promote another worker node using the node ID. Subsequently, both the worker nodes are
listed as Reachable in the Manager Status column.

core@ip-172-30-5-70 ~ $ docker node promote ip-172-30-5-108.ec2.internal
Node ip-172-30-5-108.ec2.internal promoted to a manager in the swarm.
core@ip-172-30-5-70 ~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91fon3son2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active Reachable
bgzqx2cfsfosqdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

bgq4bryuobyluoglm4p19tkos ip-172-30-5-31.ec2.internal Ready Active

Demoting a Manager Node to Worker

A manager node may be demoted to a worker node with the following Docker command.
docker node demote NODE [NODE...]

Any manager node, including the leader node, may be demoted. As an example, demote the manager
node ip-172-30-5-108.ec2.internal.

core@ip-172-30-5-70 ~ $ docker node demote ip-172-30-5-108.ec2.internal
Manager ip-172-30-5-108.ec2.internal demoted in the swarm.

Once demoted, the commands such as docker node 1s that can be run only from a manager node
cannot be run any more on the node. The docker node 1s command lists the demoted node as a worker

node; no MANAGER STATUS is listed for a worker node.

core@ip-172-30-5-70 ~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91fon3son2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active
bgzgx2cfsfosqdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

bqq4bryuobyluoglm4p19tkos ip-172-30-5-31.ec2.internal Ready Active

A node should be preferably promoted/demoted and otherwise referred to in any command that is
directed at the node using the node ID, which is unique to a node. The reason being that a demoted node, if
promoted back, could be added with a different node ID and the docker node 1s command could list two
node IDs for the same hostname. If the hostname is used to refer to a node, it could result in the node is
ambiguous error message.

Making a Worker Node Leave the Swarm

Earlier you joined a node to the Swarm as a worker node. A worker node may also be made to leave the
Swarm. As an example, make one of the worker nodes leave with the following command, which must be
run from the node you want to remove from the Swarm.

docker swarm leave

25

CHAPTER 2 © USING DOCKER IN SWARM MODE

As the message output indicates, the node has left the Swarm.

core@ip-172-30-5-31 ~ $ docker swarm leave
Node left the swarm.

Similarly, make the other worker node leave the Swarm.

core@ip-172-30-5-108 ~ $ docker swarm leave
Node left the swarm.

After a worker node has left the Swarm, the node itself is not removed and continues to be listed with
the docker node 1s command with a Down status.

core@ip-172-30-5-70 ~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5gqmj4pp91fon3son2jwjdv8 ip-172-30-5-108.ec2.internal Down Active
bgzgx2cfsfosqdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

bqq4bryuobyluoglm4p19tkos ip-172-30-5-31.ec2.internal Down Active

Making a Manager Node Leave the Swarm

While it is easier to make a worker node leave the Swarm, it is different when a manager node must leave the
Swarm. Making a worker node leave the Swarm only lowers the Swarm capacity in terms of the service tasks
that may be scheduled in the Swarm. But making a manager node leave the Swarm makes the Swarm less
available. If the fault tolerance does not allow for a manager node to fail or be removed from the Swarm, the
same docker swarm leave command that made a worker node leave the Swarm cannot be used to make a
manager node leave the Swarm. If a Swarm has only one manager node, the docker swarm leave command
generates the following error message.

core@ip-172-30-5-70 ~ $ docker swarm leave

Error response from daemon: You are attempting to leave the swarm on a node that is
participating as a manager. Removing the last manager erases all current state of the
swarm. Use "--force’ to ignore this message.

Add the --force option to the docker swarm leave command on the manager node to cause the
manager node to leave the Swarm.

core@ip-172-30-5-70 ~ $ docker swarm leave --force
Node left the swarm.

If the only manager node is removed, the Swarm no longer exists. The Swarm must be initialized again
if the Swarm mode is to be used.

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Swarm initialized: current node (cnyc2w3n8q8zuxjujcd2s729k) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-41xmisvlszjgck4lyoswsxubejfxOphlneixegho2fiq99amqf-
11mpscd8gsbbsayzren8fazki \
172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

26

CHAPTER 2 * USING DOCKER IN SWARM MODE

A new Swarm is created with only the manager node and the Swarm has only one node initially.

core@ip-172-30-5-70 ~ $ docker node ls
D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

If a Swarm has two manager nodes, making one of the manager nodes leave the Swarm has a different
effect. With two managers, the fault tolerance is 0, as discussed earlier. To create a Swarm with two manager

nodes, start with a Swarm that has one manager node and two worker nodes.

core@ip-172-30-5-70 ~ $ docker node ls

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
4z03hudbo3tz17q941eo24pvh ip-172-30-5-108.ec2.internal Ready Active
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

efsxwt43iskasabpoh2stkjeb ip-172-30-5-31.ec2.internal Ready Active
Promote one of the worker nodes to a manager node.

core@ip-172-30-5-70 ~ $ docker node promote ip-172-30-5-108.ec2.internal
Node ip-172-30-5-108.ec2.internal promoted to a manager in the swarm.

The Swarm will then have two manager nodes.

core@ip-172-30-5-70 ~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
4z03hudbo3fz17q941e024pvh ip-172-30-5-108.ec2.internal Ready Active Reachable
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

efsxwt43iskasabpoh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

Run the docker swarm leave command from a manager node that’s not the leader node. The following
message is generated.

core@ip-172-30-5-108 ~ $ docker swarm leave
The error response from the daemon is as follows:
You are attempting to leave the swarm on a node that is participating as a manager.
Removing this node leaves one manager out of two. Without a Raft quorum, your Swarm will be
inaccessible. The only way to restore a Swarm that has lost consensus is to reinitialize it with - -force-new-
cluster. Use --force to suppress this message.

To make the manager node leave, you must add the --force option to the command.

core@ip-172-30-5-108 ~ $ docker swarm leave --force
Node left the swarm.

27

CHAPTER 2 * USING DOCKER IN SWARM MODE

When one of the two managers has left the Swarm, the Raft quorum is lost and the Swarm becomes
inaccessible. As indicated, the Swarm must be reinitialized using the - -force-new-cluster option.

Reinitializing a Cluster

A Swarm that has lost quorum cannot be reinitialized using the command used to initialize a Swarm. If the
same command runs on a Swarm that has lost quorum, a message indicates that the node is already in the
Swarm and first must be made to leave the Swarm:

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Error response from daemon: This node is already part of a swarm. Use "docker swarm leave"
to leave this swarm and join another one.

To reinitialize the Swarm the --force-new-cluster option must be added to the docker swarm
init command. core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
--force-new-cluster
Swarm initialized: current node (cnyc2w3n8q8zuxjujcd2s729k) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-41xmisvlszjgck4lyoswsxubejfxophlnelxegho2fiq99amqf-
11mpscd8gs6bsayzren8fazki \
172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

The Swarm is reinitialized and the docker swarm join command to add a worker node is output.

Modifying Node Availability

The availability of a node may be modified with the D command with the --availability option. One of
the --availability options shown in Table 2-6 may be set.

Table 2-6. Availability Options

Availability Option Description

active Restores a paused or drained node to active.
pause Pauses a node so that it is not available to receive new tasks.
drain With a worker node, the node becomes down and unavailable for scheduling new

tasks. A manager node also becomes unavailable for scheduling new tasks but
continues to perform Swarm management.

As an example, you can drain a worker node as follows.

core@ip-172-30-5-70 ~ $ docker node update --availability drain ip-172-30-5-108.ec2.internal
ip-172-30-5-108.ec2.internal

28

CHAPTER 2 * USING DOCKER IN SWARM MODE

The worker node is drained. All service tasks on the drained node are shut down and started on other
nodes that are available. The output from the docker node 1s command lists the node with the status set to
Drain.

core@ip-172-30-5-70 ~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bhuzgyqvb83dx0zvms5400a58 ip-172-30-5-108.ec2.internal Ready Drain
cnyc2w3n8g8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

efsxwt43iskasabpoh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

The node detail (partial output is listed) for the drained worker node lists the node
availability as "drain".core@ip-172-30-5-70 ~ $ docker node inspect ip-172-30-5-108.ec2.
internal
[
{
"ID": "bhuzgyqvb83dx0zvms5400a58",
"Version": {
"Index": 49
1

"CreatedAt": "2017-07-22T19:30:31.544403951Z",
"UpdatedAt": "2017-07-22T719:33:37.45659544Z",
"Spec": {
"Role": "worker",
"Availability": "drain”
3
"Description": {
"Hostname": "ip-172-30-5-108.ec2.internal",
All service tasks on the drained node are shut down and started on other nodes that are available.
The node availability with the docker node 1s islisted as Drain.
A drained node can be made active again using the docker node update command with
--availability setto Active

core@ip-172-30-5-70 ~ $ docker node update --availability active ip-172-30-5-108.ec2.internal
ip-172-30-5-108.ec2.internal

The drained node becomes active and is listed with the status set to Active.

core@ip-172-30-5-70 ~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bhuzgyqvb83dx0zvms5400a58 ip-172-30-5-108.ec2.internal Ready Active
cnyc2w3n8g8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

efsxwt43iskasabpoh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

29

CHAPTER 2 © USING DOCKER IN SWARM MODE

Removing a Node

One or more nodes may be removed from the Swarm using the docker node rm command, which is run
from any manager node.

docker node rm [OPTIONS] NODE [NODE...]

The difference between docker swarm leave and docker node rmisthatthe docker node rmmay be run
only from a manager node. A demoted node can only be removed from the Swarm with the docker node rm
command. The sequence to remove a manager node without using the --force option is the following.

1. Demote the manager node, which makes it a worker node.
2. Drain the worker node.

3. Make the worker node leave the Swarm.

4

Remove the node.

Summary

This chapter discussed using Docker in Swarm mode. First, you initialized the Swarm mode with the docker
swarm init command to make the current node the manager node in the Swarm. Subsequently, you joined
worker nodes to the Swarm with the docker swarm join command. The chapter also discussed promoting
a worker node to a manager node/demoting a manager node to a worker node, making a worker node leave
a Swarm and then rejoin the Swarm, making a manager node leave a Swarm, reinitializing a Swarm, and
modifying node availability and removing a node. The next chapter introduces Docker for AWS, which is a
managed service for Docker Swarm mode.

30

CHAPTER 3

Using Docker for AWS to Create a
Multi-Zone Swarm

Docker Swarm is provisioned by first initiating a Swarm to create a manager node and subsequently joining
worker nodes to that manager node. Docker Swarm provides distributed service deployment for Docker

applications.

The Problem

By default, a Docker Swarm is provisioned on a single zone on AWS, as illustrated in Figure 3-1. With the
manager nodes and all the worker nodes in the same AWS zone, failure of the zone would make the zone
unavailable. A single-zone Swarm is not a highly available Swarm and has no fault tolerance.

Swarm Manager
Node

Docker
Swarm
(Single
Zone)

Swarm Worker Node

Swarm Worker Node Swarm Worker Node

Figure 3-1. A single-zone Swarm

© Deepak Vohra 2017 31
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_3

https://doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 3 ' USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

The Solution

Docker and AWS have partnered to create a Docker for AWS deployment platform that provisions a Docker
Swarm across multiple zones on AWS. Docker for AWS does not require users to run any commands on a
command line and is graphical user interface (GUI) based. With manager and worker nodes in multiple
zones, failure of a single AWS zone does not make the Swarm unavailable, as illustrated in Figure 3-2. Docker
for AWS provides fault tolerance to a Swarm.

/ Zone 1 Zone 2
[D D

Docker
Swarm

Swarm
Manager

Swarm
Manager

Swarm
Manager

Figure 3-2. A Multi-zone Swarm

Docker for AWS is a managed service for Docker Swarm on the AWS cloud platform. In addition to
multiple zones, Docker for AWS has several other benefits:

32

All the required infrastructure is provisioned automatically.
Automatic upgrade to new software versions without service interruption.

A custom Linux distribution optimized for Docker. The custom Linux distribution is
not available separately on AWS and uses the overlay2 storage driver.

Unused Docker resources are pruned automatically.

Auto-scaling groups for managing nodes.

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

e Logrotation native to the host to avoid chatty logs consuming all the disk space.
e Centralized logging with AWS CloudWatch.
¢ Abug-reporting tool based on a docker-diagnose script.
Two editions of Docker for Swarm are available:
e Docker Enterprise Edition (EE) for AWS
¢ Docker Community Edition (CE) for AWS

We use the Docker Community Edition (CE) for AWS in this chapter to create a multi-zone Swarm.
This chapter includes the following topics:

e Setting the environment

e Creating a AWS CloudFormation stack for the Docker Swarm
e Connecting with the Swarm manager

e Using the Swarm

e Deleting the Swarm

Setting the Environment

Two deployment options are available with Docker for AWS.
e Use a pre-existing VPC
e Use anew VPC created by Docker

Letting Docker create the VPC, subnets, and gateways is the easier option and the one used in this
chapter.

Create an AWS account if you don’t already have one at https://aws.amazon.com/resources/create-
account/. The AWS account must support EC2-VPC. Even though AWS services such as VPC are created
automatically, the account must have permissions to create EC2 instances, including auto-scaling groups,
IAM profiles, DynamoDB tables, SQS Queue, VPC (including subnets, gateways, and security groups), Elastic
Load Balancer, and CloudWatch Log Group. The only user input other than creating an account with the
required permissions is to create a SSH key pair in the AWS region in the Docker Swarm.

Select the EC2 AWS service and click on the Key Pairs link in the EC2 dashboard. Click on Create Key Pair
to create and download a key pair. Specify a key pair name (docker for example) in the Create Key Pair dialog
and click on Create. A key pair gets created, as shown in Figure 3-3. Copy the key pair file (docker . pem) to a
local Linux machine.

I‘i Services ~ Resource Groups ~ % A Deepak Vohra ~ Ohio~ Support
Elast o ORI Import Key Pair | Delete
e, (D -
Placement Groups
Key Pairs Q @ 1ta20f2
Network Interfaces ; . -
Key pair name ~ Fingerprint -
= S coreos &f:18:ce:08:2b: 2e:a%.d2: Tf: Ta:a5:6¢ :0e: 38:07:T:74: 18:72:a1
Load Balancers
B docker 3e:a%ea08:30:40:b3:73:04:Tc: 15:a0:35:2c.d6:dd . de:41:0c:44
Target Groups &

Figure 3-3. A key pair
33

https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Set the permissions on the docker . pem to 400, which gives only read permissions and removes all other
permissions.

chmod 400 docker.pem

Creating a AWS CloudFormation Stack for Docker Swarm

Navigate to https://docs.docker.com/docker-for-aws/ in a web browser and click on the Deploy Docker
for AWS option, as as shown in Figure 3-4. The label could be different, such as Deploy Docker Community

Edition [CE] for AWS [stable].

Deploy Docker
Community Edition
[CE] for AWS
[stable]

Deploy Docker
Community Edition
[CE] for AWS [edge]

Deploy Docker
Community Edition
[CE] for AWS [test]

Deploy Docker
Community Edition
[CE] for AWS

Deploy Docker
Community Edition
[CE] for AWS [edge]

uses your existing VPC

Deploy Docker
Community Edition
[CE] for AWS [test]

uses your existing VPC

[stable]
uses your existing VPC

Figure 3-4. Deploy Docker for AWS

The Create Stack wizard is started with the provision to either design a new template or choose the
default CloudFormation template for Docker on AWS. Select the Specify an Amazon S3 Template URL option
for which a URL is pre-specified, as shown in Figure 3-5. Click on Next.

34

https://docs.docker.com/docker-for-aws/

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

@ CloudFormation ~ Stacks » Create Stack

Create stack

| select Template Select Template
Specily Details
Options Select e lemplate thal describes the s1ack that you want to create. A stack is a group of related resources thal you manage as a single unit

Review

Design a template Use AWS CloudFormation Designer to create or modify an existing template. Leam mare

Design template

Choose a tempiate A template is a JSONMAML-formatied text file that 0eSCRDes Your SIACK'S reSOurces and INeir properies. Laam mone.

Select a sample template

Upload a template 1o Amazon £3
| Choose Fike | No file chosen

® Specify an Amazon $3 template URL

hitpsliedtions-us-east-1.53. amazonaws.com/aws/stable/Dockert | View/Edi template in Designer

Cancel m,
Figure 3-5. Selecting a template

In Specify Details, specify a stack name (DockerSwarm). The Swarm Parameters section has the fields
listed in Table 3-1.

Table 3-1. Swarm Parameters

Parameter Description
Number of Swarm managers? Number of Swarm manager nodes. Valid values are 1, 3, and 5.
Number of Swarm worker nodes? Number of worker nodes in the Swarm (0-1000).

Keep the default settings of 3 for Number of Swarm Managers and 5 for Number of Swarm Worker
nodes, as shown in Figure 3-6.

35

CHAPTER 3 ' USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Create stack

Sedect Template Specify Details
| Specify Details
Oplions Specify a stack name and paramater values. You can use or change the default parameter values, which are definad in the AWS CloudFomation template. Learn more.

Review

Stack name DockerSwam

Parameters

Swarm Size

Number of Swarm 3 v | Mumber of Swarm manager noces (1, 3. 5)
managers? 1

Number of Swarm worker 5 T Numiber of worker nodes in the Swarm (0-1000

nodes?
Swarm Properties

Which $5H key to use? -

Mame of an existing EC2 KeyFarr 10 anable S5H aceess to the instances

Figure 3-6. Specifying a stack name
Next, specify the Swarm properties, as discussed in Table 3-2.

Table 3-2. Swarm Properties

Swarm Property Description Value Set

Which SSH key to use? Name of an existing EC2 key pair to enable docker
SSH access to the instances.

Enable daily resource cleanup? Cleans up unused images, containers, no
networks, and volumes.

Use CloudWatch for container logging? Send all container logs to CloudWatch. yes

In the Which SSH key to use? property, select the docker SSH key. The Swarm properties are shown in
Figure 3-7.

36

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Parameters
Swarm Size
Number of Swarm 3 v | Number of Swarm manager nodes (1, 3, 5)
managers?
Number of Swarm worker 5 Number of worker nodes in the Swarm (0-1000)

nodes?
Swarm Properties

Which SSH key to use? docker -

['\\: Name of an existing EC2 KeyPair to enable SSH access to the instances
Enable daily resource no v | Cleans up unused images, containers, networks and volumes
cleanup?
Use Cloudwatch for yes v | Send all Container logs to CloudWatch

container logging?

Create EFS prerequsities no v | Create CloudStor EFS mount targets
for CloudStor?

Swarm Manager Properties
Figure 3-7. Swarm properties

Specify the Swarm Manager properties, as discussed in Table 3-3.

Table 3-3. Swarm Manager Properties

Swarm Property Description Value Set
Swarm manager instance type? EC2 HVM instance type (t2.micro, m3.medium, etc.) t2.micro
Manager ephemeral storage Size of manager’s ephemeral storage volume in GB 20

volume size?

Manager ephemeral storage Manager volume type standard
volume type?

37

CHAPTER 3 ' USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

The Swarm Manager properties are as shown in Figure 3-8. Specify the Swarm Worker properties, as
discussed in Table 3-4.

Table 3-4. Swarm Worker Properties

Swarm Worker Property Description Value Set
Agent worker instance type? EC2HVM instance t2.micro
type (t2.micro,
m3.medium, etc.)
Worker ephemeral storage volume size? Size of worker’s 20
ephemeral storage
volume in GB
Worker ephemeral storage volume type? Worker volume type standard

The Swarm Worker properties are shown in Figure 3-8. Click on Next.

Swarm Manager Properties

Swarm manager instance
type?

Manager ephemeral
storage volume size?

Manager ephemeral
storage volume type

Swarm Worker Properties

Agent worker instance
type?

Worker ephemeral storage
volume size?

Waorker ephemeral storage
volume type

Figure 3-8. Swarm worker properties

38

12 micro

20

standard

t2. micro

standard

v

ECZ HWM instance type (12 micro, m3.medium, etc

me in Gig
emeral storage volume type
EC2 HVM instance type (2.micro, m3.medium, etc
Size of Workers's ephemeral storage volume in Gig

Worker ephemeral slorage volum

Cancel

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Next, specify the options for the stack. Tags (key-value pairs) may be specified for resources in a stack.
For permissions, an IAM role for CloudFormation may be chosen. None of these options is required to be
set, as shown in Figure 3-9.

Create stack

Select Template Options
Specify Details

| optiens Tags
Rewview

You can specify 1ags (key-value pairs) for resources in your stack. You can add up 1o 50 unique key-value pairs for each stack. Leam more

Key Value

Permissions
You can choose an LAM role that CloudFormation uses (o create, mod \ or delele resownces in the stack. If you don'l choose a role, CloudFormation uses the permissions

defined in your account. Leam more.

1AM Role Choose a role (optional)

Enter role am

» Advanced

¥ou can set adaitional options for your stack. like notification options and a stack policy. Leam more

Figure 3-9. Optional settings

For Advanced options, the Notification options are set to No Notification. Set Rollback on Failure to
Yes, as shown in Figure 3-10. Click on Next.

39

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

v Advanced

You can set additional options for your stack, like notification options and a stack policy. Learn more.

Notification options

* No notification

New Amazon SNS topic

Topic

Email

Existing Amazon SNS topic

Existing topic ARN

Timeout & Minutes

Rollback on failure & @ Yes

R oo

Stack policy @ Enter policy

Figure 3-10. Setting rollback on failure

40

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Review the stack settings, as shown in Figure 3-11.

@ CloudFormation v Stacks > Create Stack

Create stack

Select Template Review

Specify Details

Options Template
| Review

Template URL hitps:/editions-us-east-1.s3. amazonaws.com/aws/stable/Docker.impl
Description Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)
Estimate cost Link is not available

Details
Stack name: DockerSwarm

Swarm Size

ManagerSize 3
ClusterSize 5

Swarm Properties

KeyName docker
EnableSystemPrune no
EnableCloudWatchLogs yes
EnableCloudStorEfs no

Swarm Manager Properties

Figure 3-11. Reviewing the stack settings

41

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Select the acknowledgement checkbox and then click on Create, as shown in Figure 3-12.

Options
Tags
No tags provided
Advanced
Netification

Timeout nong
Rollback on failure Yes

Capabilities

0 The following resource(s) require capabilities: [AWS::lAM::Role]

This template contains Identity and Access Management (LAM) resources that might provide entities access to make changes to your AWS account. Check
that you want to create each of these resources and that they have the minimum required permissions. Learn more.

|acknowledge that AWS CloudFormation might create |AM resources.

Cancel Previous Creal

Figure 3-12. Creating the stack

A new stack begins to be created. Click on the Refresh button to refresh the stacks listed, as shown in
Figure 3-13.

@ CloudFormation v Stacks

Actions = Diesign template c o

Fier: Aclive = sam{}{g‘&. J=

Create a stack

AWS ClougFomnation allows you 1o quickly and easily deploy your infrastruciure resources
and applications on AWS. You can use one of the templates we provide to get started quickly
with appiications like WordPress of Drupal, one of the many sample templates of create your

own template.

Yiou do not cummently nave any siacks. Choose Create new stack Delow 1o Create a new AWS
CloudFormation stack

Dasign a template

Templates tell AWS CloudFormation which AWS resources 1o provision and how o provision
them. When you create a CloudFarmation stack, you must submit a lemplate

To build and view templates, you can use e drag-and-arop 100l called AWS CloudFormation

Natianar Y dran.and Aron the recse s that i want b add ta e famniate and dean

Figure 3-13. Refresh

42

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

A new stack based on a CloudFormation template for Docker Swarm starts to be created, as indicated
by the status CREATE_IN_PROGRESS shown in Figure 3-14.

@ CloudFormation v Stacks

Design template Lo B
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
DockerSwarm 2017-07-22 14:59:31 UTC-0T00 i Docker CE for AWS 17.06 0-ce (17.05.0-ce-aws2)

[
Figure 3-14. CloudFormation stack status

The different tabs are provided for the different stack details. The Resources tab shows the AWS
resources created by the CloudFormation template, as shown in Figure 3-15.

@ CloudFormation v Stacks

Design template c o
Filter: Aclive » Showing 1 stack
Stack Name Created Time Status Description
- Dockerswanm 2017-07-22 145531 UTC-0700 ATE I A Docker CE for AWS 17.06.0-ce (17.06.0-ce-awsl)
Overview Outpuls Resources Events Template Parameters Tags StackPelicy Change Sets _N_ =]
Logical ID Physical ID Type Status Status Reason

2017107122 SLATEST|85561668aT27 4ebbb1 5790432 192

AZInfo 3537 Custom AZinfo CREATE_COMF
AZInfoFunction DockerSwarm-AZINfFuncion-15CF TTT1HOCFD AWS:Lambda: Function CREATE_CO
AttachGateway Docka-Altac-1VSTAXISUO 1WAY AWSEC2IVPCGalewayAttach, CREATE_COMF
CloudsorESS Policy Docke-Clou-TNMARSCSEKXLI AWEC AN Policy CREATE_COMF
DockerLogGroup DockerSwarm-g AWS Logs: LogGroup CREATE_COM
DynDBPolic ies Docke-DynD-7ZLQOTHEAY 11 AWSIAM: Policy CREATE_CO!
DynDEBVorkerPolicies Docke-OynD-1ACSTEVWOSGNE AWSIAM: Policy CREATE_COMPLE
ExternalLoadBalancer DockerSwa-External. 1HBHO1HCADSCO WS ElasticLoadBalancing:Lo... CREATE_COM

Figure 3-15. CloudFormation stack resources

43

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM
The Events tab shows the events that occur in creating a CloudFormation stack, as shown in Figure 3-16.

@ CloudFormation v Stacks

Actions = Design template c o

Filter: Aclive >

Showing 1 stack

Stack Name Created Time Status Description

DockerSwam 2017-07-22 145531 UTC-0700

Docker CE for AWS 17.06.0-ce (17.065.0-ce-awsl)

Overview Outpuls Resources Events Template Parameters Tags StackPolicy Change Sets _N Q=
2017-07-22 Status. Type Logical 1D Status reason .
» 150212 UTC-0700 CREAT RESS ANS: o M e q Resource creation Initiated

*OIS0ZM UTCO00 CF ANS = Managerisg

» 150211 UTC-0700 CREATE_COMPLETE ANS AN InstanceProfile

WorkerinstanceProfile
* 150207 UTC-0700 CREATE_COMPLETE ANEAutoScaling LaunchConfiguration ManagerLaunchConfig17060ce
aws2
* 15:02:06 UTC-0T00 CREATE_IN_FROGRESS AWEAutoScaling: LaunchConfiguration ManagerLaunchConfig1T060ce Resource creéation Initiated
awsl
* 50206 UTC-O700 AWSAuteSealing LaumnchConfiguration ManagerLaunchConfig17060ce
awsl

* 150202 UTC-0700
* 150143 UTC-0700
* 150143 UTC-0700
* 15.01:38 UTC-0700

CREATE_COMPLETE
CREATE_COMPLETE

ANS AN InstanceProfile
NS AN, Policy
NS 1AM Policy
ANS 1AM Policy

Figure 3-16. CloudFormation stack events

SroxyInstanceFrofile

DynDEWorkerPolkies
DynDEVorkerPolicies
DynDEWorkerPolicies

Resource creation Initated

When the stack creation completes, the status says CREATE_COMPLETE, as shown in Figure 3-17.

@ CloudFormation v Stacks

Actions = Design template c o

Filter: Aclive >

Showing 1 stack

Stack Name

¥ DockerSwam

Overview Outputs

2017-07-22

* 150833 UTC-O700
* 150830 UTC-0700
* 150829 UTC-0700
r 150829 UTC-0700
b 150825 UTC-0700
b 150823 UTC-0700

* 15.08.02 UTC-0TD0

»A50&01 UTC-0700

» 15,0801 UTC-0T00

Created Time

2017-07-22 145531 UTC-0700

Resources Events

Status
CREATE_COMPLETE

Status

CREATE_COMPLETE

Template Parameters Tags Stack Policy

Type

AN CloydFormation:: Stack
ANSTAUoScaling LitecycieHook
AWSAutoScaling:LidecycleHook
AN AutoSealing:LiecycleHook
AWS AutoScaling:: AutoScalingGroup
ANE-AutoScaling AutoScalingGroup

AWS. AuloScaling AuloScalingGroup
ANSTAUoScaling AmoScalingGroup

ANS AutoScaling. AutoScalingGroup

Figure 3-17. Stack status is CREATE_COMPLETE

44

Description

Change Sets

Logical 1D

DockerSwarm
SwarmWorkerUpgradeHook
SwarmWorkerLipgradeHook
SwanmWorkerlipgrade Hook
NodeAsg

HodeAsg

ModeAsg
NodeAsg

NodeAsg

Docker CE for AWS 17.06.0-ce (17.05.0-ce-awsl)

Status reason

Resource creation Initiated

mEEE

Received SUCCESS signal with Uniqueld i-0aac85te

acsTIzba3

Received SUCCESS signal wilh Unigueld i-OadfedSa

249TdeIbG

Received SUCCESS signal with Uniqueld 102711142

804212503

Recelved SUCCESS signal with Uniqueld i-04f5cT2T

e2c34304e

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

All the required resources—including auto-scaling groups, EC2 Internet Gateway, EC2 security groups,
Elastic Load Balancer, IAM policy, Log Group, and VPC Gateway—are created, as shown in Figure 3-18.

@ CloudFormation v Stacks
Actions = Design lemplate LT - |
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description

¥ DockerSwarm 2017-07-22 145931 UTC-0700 CREATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

Outputs Events Template Parameters Tags Stick Policy Change Sets _J_J=]
Loghal 1D Physical 1D Type status Status Reason .
2017071221 051
AZInfD ;g“i‘z 07122/ SLATES TIS5881565aT 27460001 5790032192 Custom-AZInto CREATE_COMPLETE
AZinfoFunction DockerSwarm-AZInfoFunclion-16CF 7TTIHOCFD AWS Lambda: Funchon CREATE_COMPLETE
AnachGateway Docke-Altac-1VS1AX18UCTWW AWS ECZ:VPCGalewayAttach. CREATE_COMPLETE
ClouastorEBEPalicy Docke-Clou-1NNARSCSEIXLI AW AN Palicy CREATE_COMPLETE
DeckerLogGroup DockerSwarm-g AWS::Lops:LogGroup CREATE_COMPLETE
DynDEPolicies Docke-DynD-7TZLOO1HIAY I ANSIAM: Policy CREATE_COMPLETE
DynDEWorkerPolicies Docke-DynD-1ACSTEWWOGVS AWS LAM, Policy CREATE_COMPLETE
[;\ ExernaloadBalancer DockerSwa-Extemal- 1HBHS1HC4DECO AWS ElasticLoadBalancing. Lo... CREATE_COMPLETE
ExternalLoadBalancerSG 59-00930€Ta AWS: EC2:SecurityGroup CREATE_COMPLETE -
Figure 3-18. Resources are created
The Outputs tab lists the Default DNS target, the zone availability comment about the number of
availability zones, and the manager nodes, as shown in Figure 3-19.
@ CloudFormation v Stacks
Actions = Design lemplate LT - |
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
s DockerSwarm 2017-07-22 14:59:31 UTC-0700 CREATE_COMPLETE Docker CE for AWS 17.06 0-ce (17.06.0-ce-aws2) =
Outputs Events Template Parameters Tags Stack Policy Change Sets EEE
Key Value Description Export Name

[y DefauDNSTarget

ZoneAvailability Comment

Managers

VRCID

ELBONSZonglD

Figure 3-19. Outputs

DockerSwa-Extemal- 1HBHST1HCADAC 0-495013
B0 us-£a51-1 8D AMAZONAWS com

This region has at keast 3 Availabilty Zones (AZ})
This is ideal to ensure a fully functional Swarm in
case you lose an AZ

hitps:/fus-east-1 coONSole AawWs aMazon comiec2iv
MI-:IHE’[EQ:DH““S-EESl- 1#instances 1ag aws.aul
ostaling groupName=DotkerSwam-Managerds
O-1LEETSSYIMCOA soM=oesc.onsName
vpc-055d3Te

Z35SXDOTRATXTK

Use this name 1o upoate your DNS reconds

Auailabity Zones Comment

You can see e manager nooes associaied wi...

Use this as the VPC for configuring Private Ho..

Use this zone 1D 1o updale your DNS records

45

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM
To list the EC2 instances for the Swarm managers, click on the link in Managers, as shown in Figure 3-20.

@ CloudFormation v Stacks

m Actions = Design lemplate < |2

Filter: Active » Showing 1 stack
stack Name Created Time Status Description
DockerSwarm 2017-07-22 14.59.:31 UTC-0700 CREATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2) 2
Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets _}_J=|
Key Value Description Export Name

DockerSwa-External- 1HBHS1HCADAC 0-495013

DefaultDNETarget
L 60 us-£a51-1.60b aMAZONAWS COM

Use this name 1o upoate your DNS reconds

This region has at keast 3 Availabilty Zones (AZ)
ZoneAvailability Comment This is ideal to ensure a fully functional Swarm in - Avaitabilty Zones Comment
case you lose an AZ

Managers You can Se€ Me Manager nodes associled wi
QILEET armzen.com/ el vi 5 east
stancestagawsuts h Dy Swarmebanagessg-1LBETSSYIMOSA sort = descdrshame
VeCID Vpe-05543Tc T T SRS
ELBONSZonelD Z35SXDOTROQTXTK Use this zone 1D to update your DNS records

Figure 3-20. The Managers link

The three manager instances are all in different availability zones. The public/private IP addresses and
the public DNS name for each EC2 instance may be obtained from the EC2 console, as shown in Figure 3-21.

Launch Insta Connect Actions v
. T o0

(g g:group ;D gerAsg-1LEETS5Y2ZMCSA | Add filler @ K < 1130t > 3
Name ~ Instance ID - | Type - Availability Zone ~ | State - Status Checks - Alarm Status Public DNS (IPv4)

B DockerSwarm-Manager i-033%f772fbf2a13 2. micro us-east-1c @ running & 22checks.. None % ec2-54-89-68-201 com
Docl ager i-0029aT 2 2micro us-east-1b @ running @ 22checks.. None Y ec2-34-226-133-197.c0
DockerSwarm-Manager i-0af8T1b372a1151ad 2. micro us-gast-1a @ running @ 2f2checks.. None % ec2-34-200-225-246.c0.

»

Instance: | 1-0339¢1772¢1bt2a18 (DockerSwarm-Manager) Public DNS: ec2-54-39-68-201.compute-1,amazonaws.com _N ==

Description Status Checks Monitoring Tags

Instance ID :-033%772MbI2a18 Public DNS (IPv4) ec2-54-89-68-201 compute-
1.amazonaws.com
Instance state running [} IPv4 Public 1P 54.89.65.201
Instance type 12.micro IPv6IPs -
Elastic IPs Private DNS ip-172-31-33-35.c2.intemnal
Avaiabiity zone us-east-Tc Private IPs 172,31.33.35
Security groups DockerSwarm-ManagerVpc$G- Secondary private IPs

TUAGHYRA351UQ, DockerSwarm-
SwarmWideSG-OWDRBSMFDAT . view
nbound rules

Figure 3-21. Manager instances on EC2

46

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

The AMI used for the EC2 instances may be found using the AMI ID, as shown in Figure 3-22. A Moby
Linux AMI is used for this Swarm, but the AMI could be different for different users and in different AWS

regions.

(UL AL =D Connect | Actions v

Q l pN D ManagerAsg-1LEETS5YZMCSA ~ Add filter
Name = Instance ID ~ Instance Type - Availability Zone ~

B DockerSwarm-Manager -0338cfTT2fb2a18 12.micro us-east-1c
DockerSwarm-Manager i-0029aT" fada2 2.micro us-gast-1b
DockerSwarm-Manager i-0af8716372a1151ad 12.micro us-east-la

Instance ID

Instance state
Instance type
Elastic IPs
Avallability zone
Security groups

Scheduled events
AMIID

Platform

0335177 2bf2a18

unning

2.micro

us-gast-1c
DeockerSwarm-ManagerVpe SG-
1UAGHYRA3IS1UQ, DockerSwarm-
SwarmWideSG-QWDRBEQAFDST . view
mbound rules.

No scheduled avents

Moby Linux 17.06 0-ce-aws2 stable (ami-

a28c51bd)

Figure 3-22. Moby Linux AMI

Instance State ~

@ running L]
@ running L]
@ running [}

Public DNS (IPvd)

IPv4 Public IP

IPv6 IPs

Private DNS

Private IPs
Secondary private IPs

VPCID
Subnet ID

Network interfaces

Status Checks ~

0 K

Alarm Status

~
None]

22 checks ...
2/2 checks ..

272 checks ...

None ‘4

None W

ec2-54-83-68-201 compute-
1.2mazonaws.com
54.89.65.201

ip-172-31-33-35 ec2.internal
172.31.33.35

vpe-055d3fTe
subnet-d1326059

ethD

o % @

1todof3 » &

Public DNS (IPvd)
ec2-54-89-68-201.com. .
2c2-34-226-138-14T.co
ec2-34-200-226-246.co

You can list all the EC2 instances by setting Instance State to Running. The Docker Swarm manager
nodes (three) and worker nodes (five) are listed, as shown in Figure 3-23. The manager and worker nodes
are in three different availability zones.

(EULTELE=DG Connect | Actions v

Q)| Instance State : Running ~ Add filter 0 K
Name = Instance ID = Instance Type - Availability Zone ~ Instance State -~ Status Checks - Alarm Status
B DockerSwarm-worker i-0adfed5a2407dc3bE 2.micro us-east-1a @ running @ 22checks... None %
DockerSwarm-worker -04f6cT2Te2c84384e 12micro us-east-1b @ running & 212 checks Naone =
DockerSwarm-worker i-0aacBileacsTI2bd3 2.micro us-gaslt-lc @ running & 22checks... None %
DockerSwarm-Manager i-0339c772fb2a13 2 micro us-east-1c @ running @ 2iZchecks... Nene %
DiockerSwarm-warker -027111d2504a125ba 2.micro us-gast-1c @ running @ 22checks... Nane “
DockerS g -0029a79d96d0fada2 12.micro us-gast-1b @ running & 2Z2checks... None =
DockerSwarm-worker i-01bb463a3a5babB4c 12.micro us-gasl-1a @ running @ 22checks... None A
DockerSwarm-Manager i-0af8716372a1151ad 12.micro us-gast-1a @ running @ 22checks ... None %
li-0 'dcibE (Docker -worker) Fublic DNS: ec2-107-23-82-165. 1 com
Description = Stalus Checks = Monitoring = Tags
Instance ID i-Dadfed5a2497de 306 Public DNS (IPvd) ec2-107-23-82-165 compute-
1 amazonaws com
Instance state running h |Pvd Public 1P 107.23.82.165
Instance type L2micro IPv6IPs -

Figure 3-23. Swarm managers and workers in three different availability zones

L 2]

1toBof8 > >

<

Public DNS (IPv4)

ec2-107-23-82-165c0...
ec2-54-173-99-220.co
8c2-54-144-50-220.co...
0c2-54-89-68-201 com..
0c2-52-23-223-212.00...
2c2-34-226-133-147 co
ec2-34-205-53-11.com...
ec2-34-200-226-246 co..

47

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Select Load Balancers in the EC2 dashboard and the provisioned Elastic Load Balancer is listed, as
shown in Figure 3-24. Click on the Instances tab to list the instances. All instances should have a status set to
InService, as shown in Figure 3-24.

Create Load Balancer TR o o 9

Filter: = C Search x K € 1tot0f1 » 3
@ Name = DNS name > State = VPCID = Availability Zones - Type
J} B Dok External-1HBHY... DockerSwa-External-1HEHS ... vpe-055d3Te us-easl-1a, us-east-1b, .. classic
v
Load balancer: | DockerSwa-External-THBH91HC4DICO _ N = N

Description Instances Health Check Listeners ManRoring Tags
Connection Draining: Disabled (Edit)

Edit Instances

Instance ID Name Availability Zone Status Actions

033877 2Mfb2at8 DockerSwarm-Manager us-gast-1c InService (1) Remove from Load Balancer

-0afB7 1b372a1151ad DockerSwarm-Manager us-gast-1a InService t Remove from Load Balancer

i-04f6cT2Te2e 04384 DockerSwarm-worker us-gast-1b InService () Remove from Load Balancer
i-01bb4E8a3asbabidc DockerSwarm-worker us-gast-1a InService [} Remove from Load Balancer

i-Dadfed5a2457dc 306 DockerSwarm-worker us-gast-1a InService (| Remove from Load Balancer

i-D029a73d96d0fada? DockerSwarm-Manager us-gast-1b InService [Remove from Load Balancer
i-027111d2804a125ba DockerSwarm-worker us-gast-1c InService (i Remove from Load Balancer -

Figure 3-24. Elastic Load Balancer

Select Launch Configurations from the EC2 dashboard. The two launch configurations—one for the
managers and one for the worker nodes—will be listed, as shown in Figure 3-25.

Create launch configuration Actions v
o e e

4

Filter: Q Filter launch configurations x 1to 2 of 2 Launch Configurations
Name - AMIID - Instance Type - Spot Price ~ Creation Time
DockerSwarm-Nodel aunchConfig 1 7060ceaws2-RYA1BSVIKDF 3 ami-a2551bd 12 micro ly 22, 2017 30529 PMUTC-7
& DockerSwarm-ManagerLaunchConfig 17060ceaws2- IVOMPPGKIXM ami-a28c51bd 2 micro July 22, 2017 3.02.06 PMUTC-7

Figure 3-25. Launch configurations

Select Auto Scaling Groups in the EC2 dashboard. The two auto-scaling groups—one for the managers
and one for the worker nodes—will be listed, as shown in Figure 3-26.

Create Auto Scaling grou| Actions v
: o s 0

Filter: = Q Filter Auto Scaling groups x ~ 1to 2 of 2 Auto Scaling Groups
Name « Launch Configuration = Instances - Desired ~ Min -~ Max ~ Availability Zones = Default Cooldow
DockerSwarm-Nodedsg- 1PWWWETKVWAMI DockerSwarm-NodeLau 5 5 o 1.000 us-east-1a, us-east-1b, us-e.. 300
h DockerSwarm-ManagerAsg-1LBETSSY2ZMCEA DockerSwarm-Manager 3 3 o 6 us-gast-1a, us-east-1b, us-e 300

Figure 3-26. Auto-scaling groups
48

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Connecting with the Swarm Manager

Next, connect to a Swarm manager node from the local machine on which the key pair docker.pemis copied.
Using the public IP address of a manager EC2 instance, SSH login into the instance with user as “docker”.

ssh -i "docker.pem" docker@54.89.68.201

The command prompt for the manager node is displayed.
[root@localhost ~]# ssh -i "docker.pem” docker@54.89.68.201
Welcome to Docker!

The Docker version of the Swarm node may be listed using docker --version. The version will be 17.06
or greater. Swarm mode is supported on Docker 1.12 or greater.

~ ¢ docker --version
Docker version 17.06.0-ce, build 02c1d87

Using the Swarm

List the Swarm nodes with docker node 1s and the three manager nodes and five worker nodes will be
listed.

~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

25511m8729rns82bmloaxs6busl ip-172-31-8-37.ec2.internal Ready Active
ikyskl4ysocymoe4pbrj3gqnh3 ip-172-31-4-154.ec2.internal Ready Active Reachable
p2ky6meej8tnphswyuw59xtmr ip-172-31-21-30.ec2.internal Ready Active Leader
r56kkltfgc4zzzfbslinrun2dl ip-172-31-24-185.ec2.internal Ready Active
soggz5qplcihk8y2y58ujomd4 ip-172-31-1-33.ec2.internal Ready Active
xbdeo8qp9jhi398h478wl2zrv * ip-172-31-33-35.ec2.internal Ready Active Reachable
ykk4odpjps6tbeqcomriqvoda ip-172-31-47-162.ec2.internal Ready Active
zrlrmijyjsvklx13ag7gayb3w ip-172-31-39-210.ec2.internal Ready Active

The leader node and two other manager nodes indicated by Manager Status of Leader and Reachable
are listed. The worker nodes are all available, as indicated by Active in the Availability column.

49

CHAPTER 3 ' USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Docker services are introduced in the next chapter, but you can run the following docker service
create command to create an example Docker service for a MySQL database.

docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--name mysql \
--update-delay 10s \
--update-parallelism 1 \

mysql

A service gets created:

~ $ docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--name mysql \
--update-delay 10s \
--update-parallelism 1 \
mysql
12hg71a3vy793quvi4uems5gk

VvV V V V VvV Vv

List the service with the docker service 1s command, which is also discussed in the next chapter, and
the service ID, mode, replicas, and image are listed.

~S docker service ls
ID NAME MODE REPLICAS IMAGE
n2tomumtl9sbniysql replicated 1/1 mysql:latest
Scale the service to three replicas with the docker service scale command. The three replicas
are scheduled—one on the leader manager node and two on the worker nodes. The docker service ps
command to list service replicas is also discussed in more detail in the next chapter.
~ S docker service scale mysql=3
mysql scaled to 3
~ S docker service ps mysql
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
slqtuf9lghxo mysq1l.1 mysql:latest ip-172-31-35-3.us-east-2.compute.internal
Running Running about a minute ago
exqsthrgszzc mysql.2 mysql:latest ip-172-31-27-83.us-east-2.compute.internal
Running Preparing 8 seconds ago

vtuhslémya85 mysql.3 mysql:latest ip-172-31-29-199.us-east-2.compute.internal Running
Preparing 8 seconds ago

50

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

Deleting a Swarm

To delete a Swarm, choose Actions » Delete Stack from the CloudFormation console, as shown in Figure 3-27.

M CloudFormation ~ Stacks

Filter: Acive = C or C Slack Showing 1 stack
Stack Name Status Description

o DockerSwarm CREATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

ViewEdil lemplate in Designer

Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Sets EEA

Stack name: DockerSwarm

Stack ID: armaws cloudformation us-east-1. 672503526585 stack/DockerSwarm 09 e3260-6129-1187-9¢ 71-500c 28027235
Status: CREATE_COMPLETE
status reason:

1AM Role:

Description Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

Figure 3-27. Choosing Actions » Delete Stack
In the Delete Stack confirmation dialog, click on Yes, Delete, as shown in Figure 3-28.
x

Delete Stack

Are you sure you want to delete this stack?
DockerSwarm

Deleting a stack deletes all stack resources.

Cancel Yes, Delete

)

Delete Stack

Figure 3-28. Delete stack confirmation dialog

51

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM
The stack’s status becomes DELETE_IN PROGRESS, as shown in Figure 3-29.

M CloudFormation v~ Stacks

Actions = Design template c o
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
¥ DockerSwanm 2017-07-22 14:59:31 UTC-0700 | PROGRESS Dacker CE for AWS 17.06.0-ce [17.06.0-ce-aws2)

Figure 3-29. Delete in progress

As each of the stack’s resources is deleted, its status becomes DELETE_COMPLETE, as shown for some of
the resources on the Events tab in Figure 3-30.

@ CloudFormation v Stacks

Design template [-
Filter: Active = Snowing 1 stack
Stack Name Created Time Status Description
- DocKerSwanm 2017-07-22 145531 UTC-0700 N RESE Docker CE for AWS 17 .06 0-ce (17.06.0-ce-aws2)
Overview Oulputs Resources Events Template Parameters Tags Stack Policy Change Sets ==A
2017-07-22 Status. Type Logical ID Status reason
» 153524 UTC-0T00 55 AWSEC2:Subnel PubSubnetaza
» 15038224 UTC-0T00 E ! 55 ANSEC2:VPCGalewayAllachment AllachGaleway
153324 UTC-0700 ELETE_IN + ANSEC2:Subnel PubSubnetazi
¥ 153824 UTC-0700 N_PROGR AWSEC2 Subnet PubSubnetazs
» 153822 UTC-0700 AWS: Elasticl 1cing: L er Externall er
P 153822 UTC-0700 AWS ElasticLoads ing:L e Externall er
» 153820 UTC-O700 AWE: DynamoDE: Table SwarmDynDETabe
» 153754 UTC-O0T00 AWNE 1AM Role ProxyRole
» 153753 UTC-0700 M RES AWNE 1AM Role ProxyRole
* 153753 UTC-0700 DELETE_COMPLETE ANS EC2: SecurityGroup NedeVeSG
* 153752 UTC-0700 RESS ANSEC2:SecurityGroup NodeVSG

Figure 3-30. Events list some of the resources with a status of DELETE_COMPLETE

52

CHAPTER 3 * USING DOCKER FOR AWS TO CREATE A MULTI-ZONE SWARM

When the EC2 instances have been deleted, the EC2 console lists their status as terminated, as shown

in Figure 3-31.

Launch Instance
4

Actions v

), Filter by tags and attibutes or search by keyword

Name >

DockerSwarm-Manager
DockerSwarm-worker
DockerSwarm-worker
DockerSwarm-Manager
DockerSwarm-worker

D ot

Instance 1D -

-0020aT9d%6d0fada2
i-01bb468aZasbabldc
H027T111d2804a125ba
033077 2Mbf2a18

04f5cT2Te2c04384e

DockerSwarm-worker

DockerSwarm-Manager

i-Oadfed5a2497de3bs
i-0aac88ieacsTi2bd3
+0af371b372a1151ad

Type -~ Availability Zone - | State ~
2.micro us-east-1b @ terminated
12.micro us-gast-1a @ terminated
2 micro us-gast-1c @ terminated
12 micro us-east-1c @ terminated
12 micro us-gast-1b @ terminated
12.micro us-east-1a @ terminated
12.micro us-easl-Tc @ terminated
12 micro us-east-1a @ terminated

Figure 3-31. EC2 instances with status set to terminated

Summary

Status Checks ~

@
Alarm Status

None
None
Nane
Nong
None
None
None

Nane

&

&

&

&

&

*

<

1to8of8

L 2]

Public DNS (IPv4)

This chapter discussed creating a multi-zone Docker Swarm provisioned by a CloudFormation template
using the Docker for AWS service. You learned how to connect to the Swarm manager to run docker
service commands. The next chapter introduces Docker services.

53

CHAPTER 4

Docker Services

A Docker container contains all the binaries and dependencies required to run an application. A user only
needs to run a Docker container to start and access an application. The CoreOS Linux operating system has
Docker installed and the Docker commands may be run without even installing Docker.

The Problem

A Docker container, by default, is started only on a single node. However, for production environments,
where uptime and redundancy matters, you need to run your applications on multiple hosts.

When a Docker container is started using the docker run command, the container starts only on
a single host, as illustrated in Figure 4-1. Software is usually not designed to run on a single host only. A
MySQL database in a production environment, for example, may need to run across a cluster of hosts for
redundancy and high availability. Applications that are designed for a single host should be able to scale up
to multiple hosts as needed. But distributed Docker applications cannot run on a single Docker Engine.

Docker
Engine

docker run -d -p
8080 tututm/ > Docker
hello-world Conainer

Figure 4-1. Docker container on a single host

The Solution

Docker Swarm mode enables a Docker application to run across a distributed cluster of Docker Engines
connected by an overlay network, as illustrated in Figure 4-2. A Docker service may be created with a specific
number of replicas, with each replica potentially running on a different host in a cluster. A Swarm consists of
one or more manager nodes with a single leader for Swarm management and orchestration. Worker nodes
run the actual service tasks with the manager nodes being worker nodes by default. A Docker service may

be started only from the leader node. Service replicas scheduled on the worker nodes, as a result, run a
distributed application. Distributed applications provide several benefits, such as fault tolerance, failover,
increased capacity, and load balancing, to list a few.

© Deepak Vohra 2017 55
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_4

https://doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 4 © DOCKER SERVICES

[S ' Docker

ihelloworld.1y Container

Swarm
Manager
g Swarm‘[Task

______ Docker

3 tutum/hello-world Worker, ihelloworld.2) Container

service replicas ’L

Jask_ ___ . Docker

______ Container

X

Figure 4-2. Docker service tasks and containers spread across the nodes

This chapter covers the following topics:
e Setting the environment
e The Docker service commands
e Types of services
e C(Creating a service
e Listing the tasks of a service
e Invoking a Hello World service task on the command line
e Getting detailed information about a service
¢ Invoking the Hello World service in a browser
e Creating a service for a MySQL database
e Scaling a service
e Listing service tasks
e Accessing a MySQL database in a Docker container
e Updating a service
e Updating the replicas
e Updating the Docker image tag

e Updating the placement constraints

56

CHAPTER 4 © DOCKER SERVICES

e Updating environment variables
e Updating the Docker image

e Updating the container labels

e Updating resources settings

e Removing a service

Setting the Environment

Create a Docker Swarm consisting of one manager and two worker nodes using the procedure discussed in
Chapter 3. First, start three CoreOS instances—one for a Swarm manager and two for the Swarm workers.
Obtain the public IP address of the Swarm manager, as shown in the EC2 console in Figure 4-3.

p (N0 Connect Actions v o & @

Q, | Instance State - Running Add filter (2] 1to3of3
Name ~ Instance ID * Ins Type - Availability Zone - | State - Status Checks - Alamm Status Public DNS (IPv4)
DockerSwarm-worker -08fe3aaflileadfcib 12 micro us-east-1c @ running & 272 checks MNane % ec2-52.91-39.-226 com
DockerSwarm-worker -014d06a4d 26559 12 micro us-east-1a @ running & 212 checks Neng Y% e 70-201 com
@ 0 Manager i-0436f9d5 9 12.micro us-east-la @ running @ 212 checks None %6 ec2-34-200-225-39.co
v
:1 (Docker Manager] Public DNS: ec2-34-200-225-39 pute-1 .com [_B- Q=0
Description Status Checks Monitoring Tags
Instance ID i-0436f3d57d0d95049 Public DNS (IPv4) ec2-34-200-225-39 compute-
1.amazonaws.com
Instance state running h IPvd Public IP 34 200,225 3%
Instance type 12 micro PGPS -
Elastic IPs Private DNS ip-172-31-13-155 ec2 intemal
Availability zone us-east-1a Private IPs ~ 172.31.13.155
Security groups Secondary private |Ps

Figure 4-3. EC2 instances for Swarm

SSH login to the Swarm manager instance with user as “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@34.200.225.39
Welcome to Docker!

Three nodes should get listed in the Swarm with the docker node ls command—one manager node
and two worker nodes.

~ $ docker node 1s

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilru4foi28ow2tlsrgohglwsj ip-172-31-10-132.ec2.internal Ready Active
w5t0186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwemt1sd93khscy5e * ip-172-31-13-155.ec2.internal Ready Active Leader

57

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 4 © DOCKER SERVICES

A worker node may be promoted to a manager node using the docker node promote <node ip>
command.

~ $ docker node promote ilru4foi28ow2tlsrg9hglwsj
Node ilru4foi28ow2tlsrgdhglwsj promoted to a manager in the swarm.

If you list the nodes again, two manager nodes should be listed. A manager node is identified by a value
in the Manager Status column. One node has a Manager Status of Reachable and the other says Leader.

~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilruafoi28ow2tlsrgohglwsj ip-172-31-10-132.ec2.internal Ready Active Reachable
w5t0186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwemtisd93khscyse * ip-172-31-13-155.ec2.internal Ready Active Leader

The manager node that is the Leader performs all the swarm management and orchestration. The
manager node that is Reachable participates in the raft consensus quorum and is eligible for election as the
new leader if the current leader node becomes unavailable.

Having multiple manager nodes adds fault tolerance to the Swarm, but one or two Swarm managers
provide the same fault tolerance. If required, one or more of the worker nodes could also be promoted to a
manager node to increase fault tolerance.

For connectivity to the Swarm instances, modify the inbound rules of the security groups associated
with the Swarm manager and worker instances to allow all traffic. The inbound rules for the security group
associated with a Swarm node are shown in Figure 4-4.

C, search:sg-6c33101d Add filter e 1to2of2
Name = Group ID ~ Group Name ~ VPCID = Description
[~ 5g-6c38101d D NodeVprSG-.. vpe-bObed3c Node SecurityGroup
sg-dc2E0cad DockerSwarm-Managervpc... vpe-blbed3c0 Manager SecuntyGroup
Security Group: sg-6c39101d [N =Q =]
Description Inbound QOutbound Tags
Edit
Type (i Protocel (i Port Range (i Source (i
All traffic Al Al 0.0.0.0/0
Al traflic Al Al 0

Figure 4-4. Setting inbound rules on a security group to allow all traffic

58

CHAPTER 4 © DOCKER SERVICES

The outbound rules for the security group associated with the Swarm manager are shown in Figure 4-5.

(), search : sg-de250cad Add filler e 1todof1
@ Name = Group 1D ~ Group Name ~ VPCID - Description
[] sg-de2Slcad D Managervipc vpe-bSbed3cd Manager SecurityGroup
Security Group: sg-de250cad [_B N =]

Description Inbound Qutbound Tags

Edit

Type (i Protocel (i Port Range (i Destination (i

[} Al traffic Al All 0.00.0/0

Figure 4-5. Setting outbound rules on a security group to allow all traffic

The docker service Commands

The docker service commands are used to manage Docker services. The docker service command
provides the sub-commands listed in Table 4-1.

Table 4-1. The docker service Sub-Commands

Command Description

docker service create Creates a new service.

docker service inspect Displays detailed information on one or more services.

docker service logs Fetches the logs of a service. The command was added in Docker 17.0.6.
docker service ls Lists services.

docker service ps Lists the tasks of one or more services.

docker service rm Removes one or more services.

docker service scale Scales one or multiple replicated services.

docker service update Updates a service.

To run docker service commands, the following requirements must be met.
e The Docker Swarm mode must be enabled

e Thedocker service commands must be run from the Swarm manager node that is
the Leader

The docker service commands are available only in Swarm mode and cannot be run outside the
Swarm mode.

The docker service commands cannot be run from a worker node. Worker nodes cannot be used to
view or modify Swarm cluster state.

59

CHAPTER 4 © DOCKER SERVICES

Types of Services

Docker Swarm mode supports two types of services, also called service modes—replicated services and
global services. Global services run one task only on every node in a Docker Swarm. Replicated services run
as a configured number of tasks, which are also referred to as replicas, the default being one. The number of
replicas may be specified when a new service is created and may be updated later. The default service type is
areplicated service. A global service requires the --mode option to be set to global. Only replicated services
may be scaled; global services cannot be scaled.

We start off by creating a replicated service. Later in the chapter, we also discuss creating a global
service.

Creating a Service

The command syntax to create a Docker service is as follows.
docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]

Some of the supported options are listed in Table 4-2.

Table 4-2. Supported Options for Creating a Service

Option Description

--constraint Placement constraints.

--container-label Container labels.

--env, -e Sets environment variables.

--env-file Reads in a file of environment variables. Option not added until Docker
1.13.

--host Sets one or more custom host-to-IP mappings. Option not added until
Docker 1.13. Format is host:ip.

--hostname Container hostname. Option not added until Docker 1.13.

--label, -1 Service labels.

--1limit-cpu Limits CPUs. Default value is 0.000.

--limit-memory Limits memory. Default value is 0.

--log-driver Logging driver for service.

--log-opt Logging driver options.

--mode Service mode. Value may be replicated or global. Default is replicated.

--mount Attaches a filesystem mount to the service.

--name Service name.

--network Network attachments. By default, the “ingress” overlay network is used.

--publish, -p Publishes a port as a node port.

--read-only Mounts the container’s root filesystem as read only. Option not added

until Docker 17.03.
Default is false.

(continued)

60

Table 4-2. (continued)

CHAPTER 4 © DOCKER SERVICES

Option

Description

--replicas
--Teserve-cpu
--reserve-memory
--restart-condition
--restart-delay
--restart-max-attempts
--tty, -t

--update-delay

--update-failure-action
--update-monitor
--update-parallelism

--user, -u

--workdir, -w

Number of tasks.

Reserves CPUs. Default is 0.000.

Reserves memory. Default is 0.

Restarts when condition is met. Value may be none, on-failure, or any.
Delays between restart attempts (ns|us|ms|s|m|h).

Maximum number of restarts before giving up.

Whether to allocate a pseudo-TTY. Option not added until Docker 1.13.
Default is false.

Delays between updates (ns|us|ms|s|m|h). Default is Os.

Action on update failure. Value may be pause or continue. Default value is
pause.

Duration after each task update to monitor for failure (ns|us|ms|s|m/h).
Default is Os.

Maximum number of tasks updated simultaneously. A value of 0 to
updates all at once. Default value is 1.

Username or UID in format: <name |uid>[:<group|gid>].

Working directory inside the container.

As an example, create a service called hello-world with Docker image tutum/hello-world consisting
of two replicas. Expose the service on port 8080 on the host. The docker service create command outputs

a service ID if successful.

~ $ docker service create \
> --name hello-world \

> --publish 8080:80 \
> --replicas 2 \
> tutum/hello-world

vyxnpstt351124h12nigm7s64

A service gets created.

Listing the Tasks of a Service

You can list the service tasks, also called replicas in the context of a replicated service, with the following

command.

docker service ps hello-world

61

CHAPTER 4 © DOCKER SERVICES

The two service tasks are listed.

~ $ docker service ps hello-world

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

zjmo3bjsqyhp hello-world.1 tutum/hello-world:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago

kezidi82015c hello-world.2 tutum/hello-world:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago

The ID column lists the task ID. The task name is in the format servicename.n; hello-world.1 and
hello-world.2 for the two replicas. The Docker image is also listed. The NODE column lists the private DNS
of the node on which the task is scheduled. The DESIRED STATE is the state that is desired as defined in the
service definition. The CURRENT STATE is the actual state of the task. At times, a task could be in a pending
state because of lack of resource capacity in terms of CPU and memory.

A service task is a slot for running a Docker container. On each node on which a task is running, a
Docker container should also be running. Docker containers may be listed with the docker ps command.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

Occdcde64e7d tutum/hello-world:latest "/bin/sh -c 'php-f..." 2 minutes ago
Up 2 minutes 80/tcp hello-world.2.kezidi82015ct81u59jpgfths1

Invoking a Hello World Service Task on the Command Line

Invoke the hello-world service using curl at <hostname>:8080. The curl command output is the HTML
markup for the service.

~ $ curl ec2-34-200-225-39.compute-1.amazonaws.com:8080
<html>
<head>
<title>Hello world!</title>
<link href="http://fonts.googleapis.com/css?family=Open+Sans:400,700" rel='stylesheet'
type="text/css'>
<style>
body {
background-color: white;
text-align: center;
padding: 50px;
font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;

}

#logo {
margin-bottom: 40px;
}

</style>

</head>
<body>

62

<h1>Hello world!</h1>
<h3>My hostname is 20b121986df6</h3>
</body>
</html>

Getting Detailed Information About a Service

CHAPTER 4 © DOCKER SERVICES

To get detailed information about the hello-world service, run the docker service inspect command.

docker service inspect hello-world

The detailed information includes the container specification, resources, restart policy, placement,
mode, update config, ports (target port and published port), virtual IPs, and update status.

~ $ docker service inspect hello-world

[
{
"ID": "vyxnpstt351124h12niqm7s64",
"Version": {
"Index": 30
1

"CreatedAt": "2017-07-23T19:00:09.98992017Z",

"UpdatedAt": "2017-07-23T719:00:09.993001487Z",

"Spec": {
"Name": "hello-world",
"Labels": {},

"TaskTemplate": {
"ContainerSpec": {

"Image": "tutum/hello-world:latest@sha256:0d57def8055178aafb4c7669cbc25e

c17foacdab97cc587f30150802da8f8d85",

"StopGracePeriod": 10000000000,
"DNSConfig": {}

}s

"Resources": {
"Limits": {},
"Reservations": {}

}s

"RestartPolicy": {
"Condition": "any",
"Delay": 5000000000,
"MaxAttempts": 0
b
"Placement": {
"Platforms": [
{
"Architecture": "amd64",
"0s": "linux"

b

63

CHAPTER 4 © DOCKER SERVICES

"ForceUpdate": o,
"Runtime": "container"

1
"Mode": {
"Replicated": {
"Replicas": 2
}
1

"UpdateConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

}5

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

1,

"EndpointSpec": {

"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
"TargetPort": 80,
"PublishedPort": 8080,
"PublishMode": "ingress"

}
]
}
1,
"Endpoint": {
"Spec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
"TargetPort": 80,
"PublishedPort": 8080,
"PublishMode": "ingress"
}
]
1,
"Ports": [
{

"Protocol": "tcp",
"TargetPort": 80,

64

CHAPTER 4 © DOCKER SERVICES

"PublishedPort": 8080,
"PublishMode": "ingress"

}
1,
"VirtualIPs": [
{
"NetworkID": "y3k655bdlp3x102a2bslh4swh”,
"Addr": "10.255.0.5/16"
}

Invoking the Hello World Service in a Browser

The Hello World service may be invoked in a browser using the public DNS of a EC2 instance on which a
Swarm node is hosted. A service replica does not have to be running on a node to invoke the service from the
node. You obtain the public DNS of a manager node from the EC2 console, as shown in Figure 4-3. Invoke
the Hello World service with <Public DNS»>:<Published Port> URL. As the Hello World service is exposed
or published on port 8080, the URL to invoke in a browser becomes <Public DNS>:8080. The service is
invoked and the service output is displayed in the browser, as shown in Figure 4-6.

" D Hello world! x h
&« C | ® ec2-34-200-225-39.compute-1.amazonaws.com:3080 hdll &

| mbtutum

Hello world!

My hostname is Occdcde64e7d .

Figure 4-6. Invoking a service in a browser

65

CHAPTER 4 © DOCKER SERVICES

Similarly, you can obtain the public DNS of a EC2 instance on which a Swarm worker node is hosted, as
shown in Figure 4-7.

L h Insta Connect Actions v
. =D oo

€, Instance State : Running Add filter © K < 1tw3era > 2
Name ~ Instance ID = | Type - il y Zone - State ~ Status Checks - Alarm Status Public DNS (IPv4)
DeckerSwarm-worker i-08fe3aat70eadfcdd 12.micro us-east-1¢ @ running & 212 checks None ‘_, ec2-52-91-39-226 com

B DockerSwarm-worker i-014d06a4d265e89... 12micro us-easl-1a @ running @ 2Zchecks.. None % ec2-52-54-70-201.com..
DeockerSwarm-Manager -04369d57d0d235049 2.micro us-gasl-1a @ running & 212 checks .. Nene % ec2-34-200-225-39.co...

,
li-01 18 (DockerSwarm-worker) Public DNS: ec2-52-54-T0-201.compute-1.amazonaws.com [_N ==

Figure 4-7. Obtaining the public DNS for a EC2 instance on which a Swarm worker node is hosted

Invoke the service using the PublicDNS:8080 URL in a browser, as shown in Figure 4-8.

. [i‘l. | a | @ ﬁ
’ [Hello world! X

“— C | ® ec2-52-54-70-201.compute-1l.amazonaws.com:8080 | [E

mtutum

Hello world!

My hostname is Occdcde64e7d

Figure 4-8. Invoking a service in a browser using public DNS for a EC2 instance on which a Swarm worker
node is hosted

A manager node is also a worker node by default and service tasks also run on the manager node.

66

CHAPTER 4 © DOCKER SERVICES

Creating a Service for a MySQL Database

Next, we create a service for a MySQL database. Using the mysql Docker image is different than using the
tutum/hello-world Docker image in two respects.

e Themysql Docker image has a mandatory environment variable called MYSQL_ROOT _
PASSWORD.

e Themysql Docker image is based on a Debian Linux and starts the MySQL database
server in Docker container, while the tutum/hello-world image is based on Alpine
Linux and starts Apache Server to run PHP applications.

Run the following docker service create command to create one replica of the MySQL database
service. Supply a root password with the MYSQL_ROOT_PASSWORD environment variable. Include some other
options for the restart condition, the restart max attempts, the update delay, and the update failure action.
Remove any previously running Docker service called mysql with the docker service rm mysql command.

~ $ docker service create \
--env MYSQL_ROOT_PASSWORD="mysql"\
--replicas 1 \
--restart-condition none \
--restart-max-attempts 5 \
--update-failure-action continue \
--name mysql \
--update-delay 10s \

mysql

A service gets created for MySQL database and the service ID gets output.

docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--restart-condition none \
--restart-max-attempts 5 \
--update-failure-action continue \
--name mysql \
--update-delay 10s \

mysql

gz18kiwy8kf3msinu5zwlfxmé

?
-+

vV V V V V V VvV Vv

List the services with the docker service 1s command; the mysql service should be listed.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
gz18kiwy8kf3 mysql replicated 1/1 mysql:latest
vyxnpstt3511 hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp

List the service tasks/replicas with the docker service ps mysql command. One task is running on
the manager worker node.

67

CHAPTER 4 © DOCKER SERVICES

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
mfw76m4rxbhp mysql.1 mysql:latest ip-172-31-37-135.ec2.internal

Running Running 16 seconds ago

How service tasks are scheduled, including node selection based on node ranking, is discussed in
Chapter 8, which covers scheduling.

Scaling a Service

Next, we scale the mysql service. Only replicated services can be scaled and the command syntax to scale
one or more services is as follows.

docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]

To scale the mysql service to three tasks, run the following command.
docker service scale mysql=3

The mysql service gets scaled to three, as indicated by the command output.

~ $ docker service scale mysql=3
mysql scaled to 3

Listing Service Tasks

The docker service ps command syntax to list service tasks is as follows.
docker service ps [OPTIONS] SERVICE [SERVICE...]
The command supports the options listed in Table 4-3.

Table 4-3. Options for the docker service ps Command

Option Description

--filter, -f Filters output based on conditions provided. The following filters are supported:

id=<task id>
name=<task name>
node=<node id or name>

desired-state=(running | shutdown | accepted)

--no-resolve Whether to map IDs to names. Default value is false.

--no-trunc Whether to truncate output. Option not added until Docker 1.13. Default value is
false.

--quiet, -q Whether to only display task IDs. Option not added until Docker 1.13. Default value is
false.

68

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

As an example, you can list only the service tasks that are running.

docker service ps -f desired-state=running mysql

Only the running tasks are listed.

~ $ docker service ps -f desired-state=runnin
ID NAME

DESIRED STATE CURRENT STATE
mfw76m4rxbhp mysql.1

Running Running 46 seconds ago
s4flvtode8od mysql.2

Running Running 8 seconds ago
j0jd92p5dmd8 mysql.3

Running Running 9 seconds ago

g mysql
IMAGE
ERROR

mysql:latest
mysql:latest

mysql:latest

CHAPTER 4 © DOCKER SERVICES

NODE

PORTS
ip-172-31-37-135.ec2.internal
ip-172-31-13-155.ec2.internal

ip-172-31-10-132.ec2.internal

All tasks are running; therefore, the effect of using the filter is not very apparent. But, in a subsequent
example, you'll list running service tasks when some tasks are not running.

Not all worker nodes are utilized for running service tasks if the number of nodes is more than the
number of tasks, as when the hello-world and mysql services had fewer than three tasks running. A node
could have more than one service task running if the number of replicas is more than the number of nodes
in a Swarm. Scaling up to five replicas starts more than one replica on two of the nodes.

~ $ docker service scale mysql=5
mysql scaled to 5
~ $ docker service ps mysql

ID NAME

DESIRED STATE CURRENT STATE
mfw76m4rxbhp mysql.1

Running Running about a minute ag
s4flvtode8od mysql.2

Running Running 44 seconds ago
j0jd92p5dmd8 mysql.3

Running Running 45 seconds ago
vh9gxhm452pt mysql.4

Running Running 26 seconds ago
6jtkvstssnkf mysql.5

Running Running 26 seconds ago

IMAGE

ERROR

mysql:latest
0

mysql:latest

mysql:latest
mysql:latest

mysql:latest

NODE

PORTS
ip-172-31-37-135.ec2.internal
ip-172-31-13-155.ec2.internal
ip-172-31-10-132.ec2.internal

ip-172-31-37-135.ec2.internal

ip-172-31-10-132.ec2.internal

Only one mysql service replica is running on the manager node; therefore, only one Docker container
for the mysql service is running on the manager node.

~ $ docker ps

NAMES

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
6bbe40000874 mysql:latest "docker-entrypoint..."

About a minute ago Up About a minute 3306/

tcp

mysql.2.s4flvtode8odjjere2z
siggdx

69

CHAPTER 4 © DOCKER SERVICES

Scaling to 10 tasks starts multiple tasks on each of the Swarm nodes.

~ $ docker service scale mysql=10
mysql scaled to 10
~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
s4flvtode8od mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running about a minute ago

j0jd92p5dmd8 mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 2 minutes ago

6jtkvstssnkf mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

jxunbdec3fnj mysql.6 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago

t1nz59dyoi2s mysql.7 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 14 seconds ago

lousvchdirng mysql.8 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago

94m10f52344d mysql.9 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago

pd40sd7qlk3j mysql.10 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago

The number of Docker containers for the mysql service on the manager node increases to three for the
three tasks running on the manager node.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

15e3253169f1 mysql:latest "docker-entrypoint..." 50 seconds ago

Up 49 seconds 3306/tcp mysql.8.lousvchdirn9fv8wot5vivkeéd
cca7ab20c914 mysql:latest "docker-entrypoint..." 50 seconds ago

Up 49 seconds 3306/tcp mysql.10.pd40sd7qlk3jc0i73huop8esr
6bbe40000874 mysql:latest "docker-entrypoint..." 2 minutes ago

Up 2 minutes 3306/tcp mysql.2.s4flvtode8odjjere2zsiggdx

Because you'll learn more about Docker services with the MySQL database service example in later
sections, and also for completeness, next we discuss using a Docker container for MySQL database to create
a database table.

Accessing a MySQL Database in a Docker Container

Next, we access MySQL database in a Docker container. The docker ps command, when run on each
instance, lists Docker containers for the mysql service on the instance. Start a bash shell for a Docker
container with the docker exec -it <containerid> bash command. The root prompt gets displayed for
the Docker container.

~ $ docker exec -it 15e3253f69f1 bash
root@15e3253f69f1:/#

70

CHAPTER 4 © DOCKER SERVICES

Start the MySQL CLI with the mysql command as user root. Specify the password when prompted;
the password used to create the service was specified in the --env option to the docker service create
command using environment variable MYSQL_ROOT_PASSWORD. The mysql> CLI command prompt is
displayed.

root@15e3253169f1:/# mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4

Server version: 5.7.19 MySQL Community Server (GPL)

Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

Set the database to use as mysql with the use mysql command.
mysql> use mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed

Create a database table with the following SQL script.

CREATE TABLE wlslog(time_stamp VARCHAR(45) PRIMARY KEY,category VARCHAR(25),type
VARCHAR(25),servername VARCHAR(25),code VARCHAR(25),msg VARCHAR(45));

The wlslog table is created.
mysql> CREATE TABLE wlslog(time_ stamp VARCHAR(45) PRIMARY KEY,category VARCHAR(25),type
VARCHAR(25),servername VARCHAR(25),code VARCHAR(25),msg VARCHAR(45));

Query OK, 0 rows affected (0.06 sec)

Add some data to the wlslog table with the following SQL commands run from the MySQL CLL
mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:16-PM-PDT', 'Notice', 'WebLogicServer',
'AdminServer', 'BEA-000365', 'Server state changed to STANDBY');

Query OK, 1 row affected (0.02 sec)
mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:17-PM-PDT', 'Notice', 'WebLogicServer',

"AdminServer', 'BEA-000365', 'Server state changed to STARTING');
Query OK, 1 row affected (0.01 sec)

71

CHAPTER 4 © DOCKER SERVICES

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:18-PM-PDT', 'Notice', 'WebLogicServer',
"AdminServer', 'BEA-000365", 'Server state changed to ADMIN');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:19-PM-PDT', 'Notice', 'WebLogicServer',
"AdminServer', 'BEA-000365", 'Server state changed to RESUMING');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:20-PM-PDT', 'Notice', 'WebLogicServer"',
'AdminServer', 'BEA-000331', 'Started WebLogic AdminServer');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:21-PM-PDT', 'Notice', 'WebLogicServer',
'AdminServer', 'BEA-000365', 'Server state changed to RUNNING');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:22-PM-PDT', 'Notice', 'WebLogicServer',
"AdminServer', 'BEA-000360', 'Server started in RUNNING mode');
Query OK, 1 row affected (0.00 sec)

Run a SQL query to list the database table data.

mysql> SELECT * FROM wlslog;

e Hmmmmmm e mmm e Hmmmmmm e Hmmmmmmeee e e +
| time_stamp | category | type | servername | code | msg |
e Hmmmmmm e mmm e Hmmmmmm e Hmmmmmmeee e e +
Apr-8-2014-7:06:16-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to STANDBY
Apr-8-2014-7:06:17-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to STARTING
Apr-8-2014-7:06:18-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to ADMIN
Apr-8-2014-7:06:19-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to RESUMING
Apr-8-2014-7:06:20-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000331	Started WeblLogic AdminServer
Apr-8-2014-7:06:21-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to RUNNING
Apr-8-2014-7:06:22-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000360	Server started in RUNNING mode
G E T C TR Hmmmmmmmeee Hmmmmm e Hmmmmmm e Hmmm e e e +
7 rows in set (0.00 sec)

Exit the MySQL CLI and the bash shell using the exit command.
mysql> exit
Bye

root@15e3253f69f1:/# exit
exit

72

CHAPTER 4 © DOCKER SERVICES

Updating a Service

A service may be updated subsequent to being created with the docker service update command, which

has the following syntax:

docker service update [OPTIONS] SERVICE

Some of the supported options are listed in Table 4-4.

Table 4-4. Options for the docker service update Command

Option

Description

--args
--constraint-add

--constraint-rm

--container-label-add

--container-label-rm

--env-add
--env-Im

--force
--group-add
--group-Im
--host-add
--host-rm

--hostname
--image
--label-add
--label-rm
--1limit-cpu
--limit-memory
--log-driver
--log-opt
--mount-add
--mount-rm
--publish-add
--publish-rm

Args for the command.

Adds or updates a placement constraint.
Removes a placement constraint.

Adds or updates a Docker container label.
Removes a container label by its key.
Adds or updates an environment variable.
Removes an environment variable.

Whether to force an update even if no changes require it. Option added in
Docker 1.13. Default is false.

Adds an additional supplementary user group to the container. Option
added in Docker 1.13.

Removes a previously added supplementary user group from the
container. Option added in Docker 1.13.

Adds or updates a custom host-to-IP mapping (host:ip). Option added in
Docker 1.13.

Removes a custom host-to-IP mapping (host:ip). Option added in
Docker 1.13.

Updates the container hostname. Option added in Docker 1.13.
Updates the service image tag.

Adds or updates a service label.

Removes a label by its key.

Updates the limit CPUs. Default value is 0.000.
Updates the limit memory. Default value is 0.
Updates logging driver for service.

Updates logging driver options.

Adds or updates a mount on a service.
Removes a mount by its target path.

Adds or updates a published port.

Removes a published port by its target port.

(continued)

73

CHAPTER 4 © DOCKER SERVICES

Table 4-4. (continued)

Option Description

--read-only Mounts the container’s root filesystem as read only. Option added in
Docker 17.06. Default is false.

--replicas Updates the number of tasks.

--reserve-cpu
--Teserve-memory
--restart-condition
--restart-delay
--restart-max-attempts
--rollback

--tty, -t

--update-delay
--update-failure-action

--update-monitor
--update-parallelism

--user, -u

--workdir, -w

Updates the reserve CPUs. Default is 0.000.

Updates the reserve memory. Default is 0.

Updates the restart when condition is met (none, on-failure, or any).
Updates the delay between restart attempts (ns|us|ms|sjm/h).
Updates the maximum number of restarts before giving up.

Whether to roll back to a previous specification. Option added in Docker
1.13. Default is false.

Whether to allocate a pseudo-TTY. Option added in Docker 1.13.
Default is false.

Updates delay between updates (ns|us|ms|s|m|h). Default is Os.
Updates action on update failure (pause|continue). Default is pause.

Duration after each task update to monitor for failure (ns|us|ms|sjm|h).
Option added in Docker 1.13. Default Os.

Updates the maximum number of tasks updated simultaneously
(0 to update all at once). Default is 1.

Adds the username or UID (format: <name |uid>[:<group|gid>]).

Updates the working directory inside the container.

Next, we update some of the parameters of a deployed service.

Updating the Replicas

First, create a mysql service to update.

docker service create \

--env MYSQL_ROOT_PASSWORD="'mysql'\

--replicas 1 \

--restart-condition on-failure \
--restart-max-attempts 5 \
--update-failure-action continue \

--name mysql \
--update-delay 10s \
mysql:5.6

74

CHAPTER 4 © DOCKER SERVICES

A service from Docker image mysql:5.6 is created and the service ID is output.

~ $ docker service rm mysql

mysql

~ $ docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--restart-condition on-failure \
--restart-max-attempts 5 \
--update-failure-action continue \
--name mysql \
--update-delay 10s \

mysql:5.6

mecdt3zluvlvxqc3hdpw8edgl

>
>
>
>
>
>
>
>

Update the number of replicas to five using the docker service update command. If the command is
successful, the service name is output from the command.

~ $ docker service update --replicas 5 mysql
mysql

Setting replicas to five does not just start four new tasks to make a total of five tasks. When a service
is updated to change the number of replicas, all the service tasks are shut down and new tasks are started.
Subsequently listing the service tasks lists the first task as being shut down and five new tasks as being
started.

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
jenofmkjja3k mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Starting less than a second ago

1616gx5880pd _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 5 seconds ago "task: non-zero exit (137)"
y350n4e8furo mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Running Running 7 seconds ago

ktrwxnn13fug mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago

2t8j1zd8uts1 mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Running Running 10 seconds ago

8tfouuwb8i31 mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Running Running 10 seconds ago

Updating the Docker Image Tag

Starting with a MySQL database service called mysql for Docker image mysql:5.6, next we update the
service to a different Docker image tag—the mysql:latest Docker image. Run the following command to
update the Docker image; the service name is output to indicate that the update is successful.

~ $ docker service update --image mysql:latest mysql
mysql

75

CHAPTER 4 © DOCKER SERVICES

You can list detailed information about the service with the docker service inspect command. The
image listed in the ContainerSpec ismysql:latest. The PreviousSpec is also listed.

~ $ docker service inspect mysql

[

{
"Spec": {
"Name": "mysql",
"Labels": {},

"TaskTemplate": {
"ContainerSpec": {
"Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133
b22b07e€32789b62618de3",
"Env": [
"MYSQL_ROOT_PASSWORD=mysql"
1,

"PreviousSpec": {
"Name": "mysql",
"Labels": {},
"TaskTemplate": {
"ContainerSpec”: {
"Image": "mysql:5.6@sha256:6ad5bd392c9190fa92e65fd21f6debc8b2a76fc541139
49f9b5bc6a0096a5285",

The update does not get completed immediately even though the docker service update command
does. While the service is being updated, the UpdateStatus for the service is listed with State set to
"updating" and the Message of "update in progress".

"UpdateStatus": {
"State": "updating",
"StartedAt": "2017-07-23T19:24:15.539042747Z",
"Message": "update in progress"

When the update completes, the UpdateStatus State becomes "completed” and the Message becomes
"update completed".

"UpdateStatus": {
"State": "completed",
"StartedAt": "2017-07-23T19:24:15.539042747Z",
"CompletedAt": "2017-07-23T19:25:25.660907984Z",
"Message": "update completed"

76

CHAPTER 4 © DOCKER SERVICES

While the service is updating, the service tasks are shutting down and the new service tasks are starting.
When the update is starting, some of the running tasks might be based on the previous image mysql:5.6

whereas others could be based on the new image mysql:latest.

~ $ docker service ps mysql

D

DESIRED STATE
jenofmkjja3k
Running
1616gx5880pd
Shutdown
y350n4e8furo
Running
bswz4sm8e3vj
Running
ktrwxnn13fug
Shutdown
wj1x26wvpopt
Running
2t8j1zd8uts1
Shutdown
hppg840ekrh7
Running
8tfouuwb8i31
Shutdown

NAME IMAGE
CURRENT STATE
mysql.1 mysql

Running 38 seconds ago
_ mysqgl.1 mysql
Failed 43 seconds ago

mysql.2 mysql
Running 45 seconds ago
mysql.3 mysql

Running 6 seconds ago
_ mysql.3 mysql
Failed 12 seconds ago

mysql.4 mysql
Running 7 seconds ago
_mysql.4 mysql

Shutdown 7 seconds ago
mysql.5 mysql
Running 2 seconds ago

_ mysql.5 mysql
Failed 8 seconds ago

ERROR
:5.6

:5.6

NODE

PORTS

ip-172-31-37-135.

ip-172-31-37-135.

"task: non-zero exit (137)"

:5.6

:5.6

:5.6

ip-172-31-13-155.
ip-172-31-37-135.

ip-172-31-37-135.

"task: non-zero exit (1)"

:latest

:5.6

:latest

:5.6

ip-172-31-13-155.
ip-172-31-10-132.
ip-172-31-10-132.

ip-172-31-10-132.

"task: non-zero exit (1)"

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

internal

internal

internal

internal

internal

internal

internal

internal

internal

The desired state of the tasks with image mysql:5.6 is set to Shutdown. Gradually, all the new service
tasks based on the new image mysql:latest are started.

~ $ docker service ps mysql

ID

DESIRED STATE
2uafxtcbjoqj
Running
jenofmkjji3k
Shutdown
1616gx5880pd
Shutdown
mkv95bvx3s11
Ready
y350n4e8furo
Shutdown
yevunzeri2vm
Running
bswz4sm8e3vj
Shutdown
ktrwxnn13fug
Shutdown
Wj1x26wvpOpt
Running

NAME IMAGE
CURRENT STATE

mysql.1 mysql
Running 30 seconds ago
_mysql.1 mysql
Failed 36 seconds ago
_mysql.1 mysql

Failed about a minute ago
mysql.2 mysql
Ready 3 seconds ago
_ mysql.2
Failed 4 seconds ago
mysql.3 mysql
Running 12 seconds ago
_ mysql.3
Shutdown 12 seconds ago
_ mysql.3 mysql
Failed 48 seconds ago
mysql.4 mysql
Running 44 seconds ago

mysql

mysql:

ERROR
:latest

:5.6

"task:

:5.6

"task:

:latest

:5.6

"task:

:latest

5.6

:5.6

"task:

:latest

NODE
ip-172-31-37-135.

ip-172-31-37-135.
non-zero exit (137)"

ip-172-31-37-135.
non-zero exit (137)"

ip-172-31-13-155.

ip—172—31—13-155.
non-zero exit (137)"
ip-172-31-37-135.

ip-172-31-37-135.
ip-172-31-37-135.

non-zero exit (1)"
ip-172-31-13-155.

PORTS

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

internal

internal

internal

internal

internal

internal

internal

internal

internal

7

CHAPTER 4 © DOCKER SERVICES

2t8j1zd8uts1
Shutdown
hppg840ekrh7
Running
8tfouuwb8i31
Shutdown

_ mysql.4 mysql:5.6
Shutdown 44 seconds ago
mysql.5
Running 39 seconds ago

_ mysql.5 mysql:5.6
Failed 44 seconds ago

mysql:latest

ip-172-31-10-132.ec2.internal

ip-172-31-10-132.ec2.internal

ip-172-31-10-132.ec2.internal

"task: non-zero exit (1)"

Filtering the service tasks with the -f option was introduced earlier. To find which, if any, tasks are
scheduled on a particular node, you run the docker service ps command with the filter set to the node.

Filtered tasks, both Running and Shutdown, are then listed.

~ $ docker service ps

D

DESIRED STATE
mkv95bvx3s11
Running
y350n4e8furo
Shutdown
oksssg7gsh79
Running
wjix26wvpopt
Shutdown

Service tasks may also be filtered by desired state. To list only running tasks, set the desired-state filter

to running.

NAME IMAGE
CURRENT STATE
mysql.2 mysql:latest

Running about a minute ago
_ mysql.2 mysql:5.6
Failed about a minute ago
mysql.4
Running 50 seconds ago
_mysql.4
Failed 55 seconds ago

mysql:latest

mysql:latest

-f node=ip-172-31-13-155.ec2.internal mysql

NODE
ERROR

PORTS

ip-172-31-13-155.ec2.internal

ip-172-31-13-155.ec2.internal

"task: non-zero exit (137)"

"task: non-zero exit (1)"

~ $ docker service ps -f desired-state=running mysql

ID

DESIRED STATE
2uafxtcbjoqj
Running
mkv95bvx3s11
Running
yevunzeri2vm
Running
oksssg7gsh79
Running
hppg840ekrh7
Running

NAME IMAGE NODE

CURRENT STATE ERROR PORTS
mysql.1 mysql:latest ip-172-31-37-135.
Running 3 minutes ago

mysql.2 mysql:latest ip-172-31-13-155.
Running 2 minutes ago

mysql.3 mysql:latest ip-172-31-37-135.
Running 2 minutes ago

mysql.4 mysql:latest ip-172-31-13-155.
Running 2 minutes ago

mysql.5 mysql:latest ip-172-31-10-132.

Running 3 minutes ago

ec2.

ec2.

ec2.

ec2.

ec2.

ip-172-31-13-155.ec2.internal

ip-172-31-13-155.ec2.internal

internal

internal

internal

internal

internal

Likewise, only the shutdown tasks are listed by setting the desired-state filter to shutdown.

~ $ docker service ps -f desired-state=shutdown mysql

D

DESIRED STATE
jenofmkjji3k
Shutdown
1616gx5880pd
Shutdown
y350n4e8furo
Shutdown

78

PORTS

ip-172-31-37-135.ec2.internal

ip-172-31-37-135.ec2.internal

NAME IMAGE NODE

CURRENT STATE ERROR

mysql.1 mysql:5.6

Failed 3 minutes ago "task: non-zero exit (137)"
_ mysqgl.1 mysql:5.6

Failed 3 minutes ago "task: non-zero exit (137)"

mysql.2 mysql:5.6

Failed 2 minutes ago

ip-172-31-13-155.ec2.internal

"task: non-zero exit (137)"

CHAPTER 4 © DOCKER SERVICES

bswz4sm8e3vj mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Shutdown 2 minutes ago

ktrwxnn13fug _ mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (1)"

wj1x26wvpopt mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Shutdown Failed 2 minutes ago "task: non-zero exit (1)"

2t8j1zd8uts1 _ mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Shutdown 3 minutes ago

8tfouuwb8i31 mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (1)"

Updating the Placement Constraints

The placement constraints may be added/removed with the --constraint-add and --constraint-rm
options. We started with a Swarm consisting of three nodes—one manager and two worker nodes. We then
promoted a worker node to a manager, resulting in a Swarm with two manager nodes and one worker node. .

Starting with service replicas running across the Swarm nodes, the replicas may be constrained to run
on only worker nodes with the following command. The docker service update command outputs the
service name if successful.

~ $ docker service update --constraint-add
mysql

"node.role==worker" mysql

It may take a while (a few seconds or minutes) for the desired state of a service to be reconciled, during
which time tasks could be running on manager nodes even though the node.role is set to worker or less
than the required number of tasks could be running. When the update has completed (the update status
may be found from the docker service inspect command), listing the running tasks for the mysql service
indicates that the tasks are running only on the worker nodes.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

smk5q4nhulrw mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running about a minute ago

wzmou8f6r2tg mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 23 seconds ago

byavev89hukv mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 23 seconds ago

erx409p0sgcc mysql.4 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 53 seconds ago

q7eqw8jlqig8 mysql.5 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 46 seconds ago

As another example, service tasks for the mysql service may be constrained to run on only manager

nodes. Starting with service tasks running on both manager and worker nodes and with no other constraints

added, run the following command to place all tasks on the manager nodes.

~ $ docker service update --constraint-add 'node.role==manager' mysql

mysql

CHAPTER 4 © DOCKER SERVICES

The tasks are not shut down on worker nodes and started on manager nodes immediately and initially
may continue to be running on worker nodes.

List the service replicas again after a while. You'll see that all the tasks are listed as running on the
manager nodes.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

7tj8bck4jrsn mysql.1 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago

uyeu3y67v2rt mysql.2 mysql:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

1t9p74791kta mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 1 second ago

t7d9c4viuosy mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago

8xufz871yx1x mysql.5 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 27 seconds ago

Updating Environment Variables

The --env-add and - -env-rm options are used to add/remove environment variables to/from a service. The
mysql service we created includes only one environment variable—the mandatory MYSQL_ROOT_PASSWORD
variable. You can use the docker service update command to add the environment variables MYSQL _
DATABASE, MYSQL_PASSWORD, and MYSQL_ALLOW_EMPTY_PASSWORD and to update MYSQL_ROOT_PASSWORD in the
same command to an empty password. The command outputs the service name if successful.

~ $ docker service update --env-add 'MYSQL _DATABASE=mysql' --env-add 'MYSQL_
PASSWORD=mysql' --env-add 'MYSQL ALLOW_EMPTY PASSWORD=yes' --env-add 'MYSQL_ROOT
PASSWORD=yes' mysql

mysql

When the update has completed, the docker service inspect command lists the environment
variables added.

~ $ docker service inspect mysql
[...
"Spec": {
"Name": "mysql",

"Env": [
"MYSQL_ROOT PASSWORD=yes",
"MYSQL _DATABASE=mysql",
"MYSQL_PASSWORD=mysql",
"MYSQL_ALLOW_EMPTY_PASSWORD=yes"
1

Updating the environment variables causes the containers to restart. So, simply adding environment
variables doesn’t cause the new database to be created in the same container. A new container is started
with the updated environment variables.

80

CHAPTER 4 © DOCKER SERVICES

Updating the Docker Image

The Docker image may also be updated, not just the image tag. As an example, update the Docker image
for a MySQL database service to use the postgres Docker image, which is for the PostgreSQL database.
The command outputs the service name if the update is successful.

~ $ docker service update --image postgres mysql
mysql

After the update has completed, showing the running service tasks lists new tasks for the postgres
image. The service name stays the same and the Docker image is updated to postgres.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

hmk71281s19a mysql.1 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 18 seconds ago

50fbkc82gpoi mysql.2 postgres:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

vogfc651hw62 mysql.3 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 31 seconds ago

miscjfon66qq mysql.4 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago

g5viy8jyzpil mysql.5 postgres:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

Updating the Docker image does not remove the environment variables associated with the mysql
Docker image, which are still listed in the service detail.

~ $ docker service inspect mysql

[

“SpeC": {
“Name“: “mysql“,

"ContainerSpec”: {
"Env": [
"MYSQL_ROOT_PASSWORD=yes",
"MYSQL DATABASE=mysql",
"MYSQL_PASSWORD=mysql",
"MYSQL_ALLOW_EMPTY PASSWORD=yes"

The added environment variables for the MySQL database need to be removed, as the PostgreSQL
database Docker image postgres does not use the same environment variables. Remove all the environment
variables from the mysql service with the - -env-rm option to the docker service update command.

To remove only the env variable, the name needs to be specified, not the env value.

docker service update --env-rm 'MYSQL DATABASE' --env-rm 'MYSQL_PASSWORD' --env-rm
"MYSQL_ALLOW_EMPTY_PASSWORD' --env-rm 'MYSQL_ROOT PASSWORD' mysql

81

CHAPTER 4 © DOCKER SERVICES

Updating the Container Labels

The --container-label-add and --container-label-rmoptions are used to update the Docker container
labels for a service. To add a container label to the mysql service, run a docker service update command,
which outputs the service name if successful.

~ $ docker service update --container-label-add 'com.docker.swarm.service.version=latest'
mysql
mysql

On listing detailed information about the service, the added label is listed in the ContainerSpec labels.

~ $ docker service inspect mysql
[
"ContainerSpec": {
"Labels": {
"com.docker.swarm.service.version": "latest"

1

The label added may be removed with the --container-1label-rm option. To remove only the label, the
key needs to be specified, not the label value.

~ $ docker service update --container-label-rm 'com.docker.swarm.service.version' mysql
mysql

Updating Resources Settings

The --1imit-cpu, --1imit-memory, --reserve-cpu, and --reserve-memory options of the docker service
update command are used to update the resource settings for a service. As an example, update the resource
limits and reserves. The command outputs the service name if successful.

~ $ docker service update --limit-cpu 0.5 --limit-memory 1GB --reserve-cpu
"0.5" --reserve-memory "1GB" mysql
mysql

The resources settings are updated. Service detail lists the updated resource settings in the Resources
JSON object.

~ $ docker service inspect mysql

[

"ContainerSpec": {
"Resources": {
"Limits": {
"NanoCPUs": 500000000,
"MemoryBytes": 1073741824
}5

"Reservations": {

82

CHAPTER 4 © DOCKER SERVICES

"NanoCPUs": 500000000,
"MemoryBytes": 1073741824

1

Removing a Service

The docker service rmcommand removes a service. If the output of the command is the service name, the
service has been removed. All the associated service tasks and Docker containers also are removed.

~ $ docker service rm mysql
mysql

Creating a Global Service

As discussed earlier, a service has two modes—replicated or global. The default mode is replicated.

The mode may also be explicitly set to replicated with the --mode option of the docker service create
command. The service mode cannot be updated after a service has been created, with the docker service
update command for example. Create a replicated service for nginx using the --mode option.

~ $ docker service create --mode replicated --name nginx nginx
no177eh3gxsyemb1gfzc9ommd

A replicated mode service is created with the default number of replicas, which is 1. List the services
with the docker service 1s command. The nginx service is listed with one replica.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
no177eh3gxsy nginx replicated 1/1 nginx:latest

A global service runs one task on each node in a Swarm by default. A global service may be required
at times such as for an agent (logging/monitoring) that needs to run on each node. A global service is used
for logging in Chapter 11. Next, we create a nginx Docker image-based service that’s global. Remove the
replicated service nginx with the docker service rm nginx command. A service name must be unique
even if different services are of different modes. Next, create a global mode nginx service with the same
command as for the replicated service, except that the --mode option is set to global instead of replicated.

~ $ docker service create --mode global --name nginx nginx
5prj6c4vibebgadodnb22gadn

A global mode service is created. The docker service 1s command lists the service. The REPLICAS
column for a global service does not list the number of replicas, as no replicas are created. Instead global is
listed in the REPLICAS column.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
5prj6c4v4beb nginx global 3/3 nginx:latest

83

http://dx.doi.org/10.1007/978-1-4842-2973-6_11

CHAPTER 4 © DOCKER SERVICES

A service task is created for a global service on each node in the Swarm on which a task can run.
Scheduling constraints may be used with a global service to prevent running a task on each node.
Scheduling is discussed in Chapter 8. Global services cannot be scaled.

Summary

This chapter introduced Docker services running on a Docker Swarm. A service consists of service tasks or
replicas. A Docker Swarm supports two types of services—replicated services and global services. A replicated
service has the assigned number of replicas and is scalable. A global service has a task on each node in a
Swarm. The term “replica” is used in the context of a replicated service to refer to the service tasks that are
run across the nodes in a Swarm. A replicated service could run a specified number of tasks for a service,
which could imply running no tasks or running multiple tasks on a particular node. The term “replica” is
generally not used in the context of a global service, which runs only one task on each node in the Swarm.
Each task (replica) is associated with a Docker container. We started with a Hello World service and invoked
the service with curl on the command line and in a browser. Subsequently, we discussed a service for

a MySQL database. We started a bash shell for a MySQL service container and created a database table.
Scaling, updating, and removing a service are some of the other service features this chapter covered.

The chapter concluded by creating a global service. The next chapter covers the Docker Swarm scaling
service in more detail.

84

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

CHAPTER 5

Scaling Services

Docker Engine is suitable for developing lightweight applications that run in Docker containers that are
isolated from each other. Docker containers are able to provide their own networking and filesystem.

The Problem

Docker Engine (prior to native Swarm mode) was designed to run Docker containers that must be started
separately. Consider the use case that multiple replicas or instances of a service need to be created.

As client load on an application running in a Docker container increases, the application may need to be
run on multiple nodes. A limitation of Docker Engine is that the docker run command must be run each
time a Docker container is to be started for a Docker image. If a Docker application must run on three nodes,
the docker run command must run on each of the nodes as well, as illustrated in Figure 5-1.

No provision to scale an application or run multiple replicas is provided in the Docker Engine

(prior to Docker 1.12 native Swarm mode support).

docker docker docker

run run

run

Node Node Node

Figure 5-1. Docker engine without provision for scaling

© Deepak Vohra 2017 85
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_5

https://doi.org/10.1007/978-1-4842-2973-6_5

CHAPTER 5 © SCALING SERVICES

The Solution

The Docker Swarm mode has the provision to scale a Docker service. A service abstraction is associated
with zero or more replicas (tasks) and each task starts a Docker container for the service. The service
may be scaled up or down to run more/fewer replicas, as required. With a single docker service

scale <svc>=<replicas> command, a service can run the required number of replicas, as illustrated in
Figure 5-2. If 10 service replicas are to be started across a distributed cluster, a single command is able to
provision scaling.

Docker
containers

docker service scale
<svc>=<number of
tasks>

Figure 5-2. Docker Swarm mode with provision for scaling

Scaling is supported only for replicated services. A global service runs one service task on each node
in a Swarm. Scaling services was introduced in Chapter 3 and, in this chapter, we discuss some of the other
aspects of scaling services not discussed in Chapter 3. This chapter covers the following topics:

e Setting the environment

e Creating areplicated service

e Scaling up a service

e Scaling down a service

e Removing a service

e Global services cannot be scaled

e Scaling multiple services in the same command

e Service replicas replacement on a node leaving the Swarm

86

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 5 * SCALING SERVICES

Setting the Environment

Create a three-node Swarm on Docker for Swarm, which is discussed in Chapter 3. A Docker for AWS Swarm
you created in another chapter may be used in this chapter. Obtain the public IP address of the EC2 instance
for the Swarm manager.

SSH login to the Swarm manager EC2 instance with user “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@34.200.225.39
Welcome to Docker!

The docker node 1s command lists the nodes in the Swarm.

~ $ docker node 1s

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilru4foi28ow2tlsrgohglwsj ip-172-31-10-132.ec2.internal Ready Active
w5to186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwemtisd93kh5cy5e * ip-172-31-13-155.ec2.internal Ready Active Leader

Creating a Replicated Service

As discussed in Chapter 4, Docker Swarm mode supports two types of services—global and replicated. The

default is the replicated mode. Only the replicated service can be scaled. Next, create a replicated service for
MySQL database using the docker service create command, initially consisting of one replica, as specified
in the --replicas option. The default number of replicas if the --replicas option is not specified is also one.

~ $ docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--name mysql \

mysql

ndugkwgk9ol7e7wxvv5bremr4

>
>
>
>

List the services using docker service ls.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
ndugkwgk9ol7 mysql replicated 1/1 mysql:latest

As service replicas take a while (albeit a few seconds) to start, initially 0/1 replicas could be listed in the
REPLICAS column, which implies that the desired state of running one service replica has not been achieved
yet. Run the same command after a few seconds and 1/1 REPLICAS should be listed as running.

Optionally, the docker service create command may also be run by setting the --mode option.
Remove the mysql service if it was created previously and use the --mode option as follows.

~ $ docker service rm mysql
mysql
~ $ docker service create \
--mode replicated \
--env MYSQL_ROOT_PASSWORD="'mysql '\
--replicas 1 \
--name mysql \
mysql
rl12s2ptgbs9z2t7fy5e63wf2]

vV V V VvV Vv

87

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 5 © SCALING SERVICES

The mysql service is created as without the --mode replicated option. List the service replicas or tasks
with docker service ps mysql. A single replica is listed.

~ $ docker service ps mysql

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
yrikmh7mciv7 mysql.1 mysql: 1ip-172-31-13- Running Running 21
latest 155.ec2.internal seconds ago

One service replica is created by default if the --replicas option is omitted. It should be mentioned
that running multiple replicas of the MySQL database does not automatically imply that they are sharing
data, so accessing one replica will not give you the same data as another replica. Sharing data using mounts
is discussed in Chapter 6.

Scaling Up a Service

The docker service scale command, which has the following syntax, may be used to scale up/down a
service, which changes the desired state of the service.

docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]
First, scale up the service to three replicas.

~ $ docker service scale mysql=3
mysql scaled to 3

Subsequently, three tasks are listed as scheduled on the three nodes in the Swarm.

~ $ docker service ps mysql

D NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
yrikmh7mciv7 mysql.1 mysql: ip-172-31-13- Running Running 37
latest 155.ec2.internal seconds ago
3zxmotmyé6n2t mysql.2 mysql: ip-172-31-37- Running Running 7
latest 135.ec2.internal seconds ago
rdfsowttd3bg mysql.3 mysql: ip-172-31-10- Running Running 7
latest 132.ec2.internal seconds ago

In addition to one replica on the manager node, one replica each is started on each of the two worker
nodes. If the docker ps command is run on the manager node, only one Docker container for the mysql
Docker image is listed.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6d2161a3b282 mysql: “docker- 50 seconds ago Up 49 3306/tcp mysql.1.yrikmh7mci
latest entrypoint..." seconds v7dsmqlinhdi621

88

http://dx.doi.org/10.1007/978-1-4842-2973-6_6

CHAPTER 5 * SCALING SERVICES

A service may also be scaled using the docker service update command with the --replicas option.
As an example, scale it to 50 replicas.

~ $ docker service update --replicas=50 mysql

mysql

The service is scaled to 50 replicas and, subsequently, 50 service tasks are listed.

~ $ docker service ps -f desired-state=running mysql

D

DESIRED STATE
t026kjbsgzmq
Running
f3tx2kbe55dh
Running
5mzej75us115
Running
wluix1b3z863
Running
91d8smvahkog
Running
3tgw8nismfil
Running
1gm8e7pxkgoo
Running
iq5p2g48oagq
Running
i4yh072h1gs6
Running
r1z5tguodg13
Running
mekfjvxigpds
Running
nd8f2pr4oivc
Running
xoughzt1j637
Running
t95flokvca2y
Running
rda5shwwfmsc
Running
ibb2fk211m3w
Running
st4ofpvrfaip
Running
iw4daunt6s63
Running
vk4nzq7utyl2
Running
0j599jcy51qw
Running

NAME IMAGE
CURRENT STATE
mysql.1 mysql

Running 11 seconds ago
mysql.2
Running 20 seconds ago
mysql.3
Running 13 seconds ago
mysql.4
Preparing 13 seconds ago

mysql.5 mysql:
Running 47 seconds ago
mysql.6 mysql:

Running 46 seconds ago
mysql.7
Running 46 seconds ago

mysql.8 mysql:
Running 45 seconds ago
mysql.9 mysql:

Running 46 seconds ago
mysql.10
Running 45 seconds ago

mysql.11 mysql:
Running 46 seconds ago
mysql.12 mysql:

Running 45 seconds ago
mysql.13
Running 45 seconds ago

mysql.14 mysql:
Running 45 seconds ago
mysql.15 mysql:

Running 45 seconds ago
mysql.16
Running 47 seconds ago

mysql.17 mysql:
Running 45 seconds ago
mysql.18 mysql:

Running 47 seconds ago
mysql.19
Running 46 seconds ago
mysql.20
Running 45 seconds ago

mysql:
mysql:

mysql:

mysql:

mysql:

mysql:

mysql:

mysql:

mysql:

ERROR
:latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

NODE
PORTS

ip-172-31-37-135.
ip-172-31-10-132.
ip-172-31-10-132.
ip-172-31-13-155.
ip-172-31-13-155.
ip-172-31-10-132.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-13-155.
ip-172-31-10-132.
ip-172-31-13-155.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-10-132.

ip-172-31-37-135.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

89

CHAPTER 5 © SCALING SERVICES

wiou769z8xeh
Running
5exwimn64w94
Running
agqongnh9uu3
Running
ynkvjwgqqqlx
Running
yf87kbsnicga
Running
Xx(qj62007cxd
Running
50ym9i8tjwds
Running
7btl2pgailso
Running
62dqj60q1018
Running
psn7z1l4th2zb
Running
khsj2an2f5gk
Running
rzpndzjpmuj7
Running
9zrcga93us5fi
Running
X5651y5ugj8m
Running
olos5dievj37
Running
dritgxqozrua
Running
n8hsoim8picr
Running
dkswognkfb63
Running
joiilo3na4ao
Running
dbshz7m2vacl
Running
ghk6s12ee048
Running
jbi8aksksozs
Running
rx3rded300a4
Running
c3zaacke440s
Running
l6ppiurx4306
Running

90

mysql.21
Running 47
mysql.22
Running 48
mysql.23
Running 45
mysql.24
Running 47
mysql.25
Running 10
mysql.26
Running 45
mysql.27
Running 45
mysql.28
Running 46
mysql.29
Running 45
mysql.30

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

Preparing 16 seconds ago

mysql.31
Running 45
mysql.32
Running 45
mysql.33
Running 45
mysql.34
Running 48
mysql.35
Running 46
mysql.36
Running 45
mysql.37
Running 47
mysql.38
Running 45
mysql.39
Running 45
mysql.40
Running 46
mysql.41
Running 45
mysql.42
Running 47
mysql.43
Running 47
mysql.44
Running 45
mysql.46
Running 46

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

seconds

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

mysql:

ago

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

latest

ip-172-31-10-132.
ip-172-31-10-132.
ip-172-31-37-135.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-37-135.
ip-172-31-10-132.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-13-155.
ip-172-31-10-132.
ip-172-31-10-132.
ip-172-31-37-135.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-37-135.
ip—172—31—13-155.
ip-172-31-37-135.
ip-172-31-13-155.
ip-172-31-37-135.
ip-172-31-13-155.

ip-172-31-10-132.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

ec2.

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

internal

CHAPTER 5 * SCALING SERVICES

of06zibtlsum mysql.47 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
kgjjwlc9zmp8 mysql.48 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
rwlicgkyw61u mysql.49 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
j5jploasjgbj mysql.50 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 47 seconds ago

A small-scale MySQL database service probably wouldn’t benefit from scaling to 50 replicas, but an
enterprise-scale application could use 50 or even more replicas.

Scaling Down a Service

A service may be scaled down just as it is scaled up. A service may even be scaled down to no replicas. The
mysql service may be scaled down to no replicas by setting the number of replicas to 0 using the docker
service update or docker service scale command.

~ $ docker service scale mysql=0
mysql scaled to 0

The service gets scaled down to no replicas. No service replicas that are running are listed.
~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS

The actual service tasks could take a while to shut down, but the desired state of all tasks is set to
Shutdown.

Scaling a service to no tasks does not run any tasks, but the service is not removed. The mysql service

may be scaled back up again from none to three tasks as an example.

~ $ docker service scale mysql=3
mysql scaled to 3

Three service tasks start running.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
py7aqwy2reku mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago

rel1l3q3iwmvo mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago

h7my2ucpfz3u mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago

91

CHAPTER 5 © SCALING SERVICES

Removing a Service

A service may be removed using the docker service rmcommand.

~ $ docker service rm mysql
mysql

The mysql service is not listed after having been removed.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS

Multiple services may be removed using the docker service rmcommand. To demonstrate, you can
create two services, hello-world and nginx.

~ $ docker service create \

> --name hello-world \
> --publish 8080:80 \
> --replicas 2 \

> tutum/hello-world
t3msb25rc8b6xcm30k0zoh4ws

~ $ docker service create --name nginx nginx
ncn4agkgzrcjc8wiuorjo5jrd

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
ncndagkgzrcj nginx replicated 1/1 nginx:latest
t3msb25rc8b6 hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp

Subsequently, remove both the services with one docker service rmcommand. The services removed
are output if the command is successful.

~ $ docker service rm nginx hello-world
nginx
hello-world

Global Services Cannot Be Scaled

A global service creates a service task on each node in the Swarm and cannot be scaled. Create a global
service for a MySQL database using the docker service create command. Notable differences in the
command are that the --mode is set to global and the --replicas option is not included.

~ $ docker service create \

> --mode global \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --name mysql-global \

> mysql

nxhnrsiulymd9n4171cie9a8j

92

CHAPTER 5 * SCALING SERVICES

The global service is created and listing the service should indicate a Mode set to global.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
nxhnrsiulymd mysql-global global 3/3 mysql:latest

One service task is created on each node in the Swarm.

~ $ docker service ps mysql-global

D NAME IMAGE

NODE DESIRED STATE CURRENT STATE ERROR PORTS
nfbmkgdh46ko mysql-global.zkxle7kafwecmt1isd93kh5cyse mysql:latest
ip-172-31-13-155.ec2.internal Running Running 22 seconds ago

t55ba3bobwzf mysql-global.w5t0186ipblpcq390625wyq2e mysql:latest
ip-172-31-37-135.ec2.internal Running Running 22 seconds ago

kqg656m3017j3 mysql-global.ilru4foi280w2tlsrgohglwsj mysql:latest
ip-172-31-10-132.ec2.internal Running Running 22 seconds ago

If another node is added to the Swarm, a service task automatically starts on the new node.
If the docker service scale command is run for the global service, the service does not get scaled.
Instead, the following message is output.

~ $ docker service scale mysql-global=5
mysql-global: scale can only be used with replicated mode

A global service may be removed just as a replicated service, using the docker service rmcommand.

~ $ docker service rm mysql-global
mysql-global

Scaling Multiple Services Using the Same Command

Multiple services may be scaled using a single docker service scale command. To demonstrate, create
two services: nginx and mysql.

~ $ docker service create \

> --replicas 1 \
> --name nginx \
> nginx

ubig4e8eg720dwzz425inhxqrp

~ $ docker service create \

> --env MYSQL ROOT_PASSWORD='mysql'\
> --name mysql \

> mysql

lumb7e2gr68s54utujrékhjgd

List the two services. One replica for each service should be running.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
1lumb7e2gr68s mysql replicated 1/1 mysql:latest
ubige8eg720d nginx replicated 1/1 nginx:latest

93

CHAPTER 5 © SCALING SERVICES

Scale the nginx service and the mysql service with a single command. Different services may be scaled
to a different number of replicas.

~ $ docker service scale mysql=5 nginx=10
mysql scaled to 5
nginx scaled to 10

The mysql service gets scaled to five tasks and the nginx service gets scaled to 10 replicas. Initially, some
of the new tasks for a service may not have started, as for the nginx service, which lists only 8 of the 10 tasks

as running.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
1lumb7e2gr68s mysql replicated 5/5 mysql:latest
ubige8eg720d nginx replicated 8/10 nginx:latest

After a while, all service tasks should be listed as running, as indicated by 10/10 for the nginx service.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
1lumb7e2gr68s mysql replicated 5/5 mysql:latest
ubige8eg720d nginx replicated 10/10 nginx:latest

The service tasks for the two services may be listed using a single docker service ps command.

~ $ docker service ps nginx mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

f9g1tw88nppk mysql.1 mysql:latest ip-172-31-26-234.ec2.internal
Running Running about a minute ago

zcligfdiqrvu nginx.1 nginx:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

VU4x099xr0y4 nginx.2 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago

xvxgfoacxjos mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago

yw0opq5y0x20 nginx.3 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago

vb92hkuabeyo mysql.3 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago

lcngwtb24zvy nginx.4 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago

hclu53xkosva mysql.4 mysql:latest ip-172-31-26-234.ec2.internal
Running Running 40 seconds ago

2Xjcw4i9xw89 nginx.5 nginx:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago

ocvb2qctuids mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago

18mlu3jpp9ocx nginx.6 nginx:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago

94

CHAPTER 5 * SCALING SERVICES

p84m8yh5ifs5t nginx.7 nginx:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago
7yp8m7ytt7z4 nginx.8 nginx:latest ip-172-31-26-234.ec2.internal
Running Running 24 seconds ago
zegs90r015nn nginx.9 nginx:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago
qftkpvy28g1g6 nginx.10 nginx:latest ip-172-31-26-234.ec2.internal
Running Running 24 seconds ago

Service Tasks Replacement on a Node Leaving the Swarm

The desired state reconciliation in Docker Swarm mode ensures that the desired number of replicas are
running if resources are available. If a node is made to leave a Swarm, the replicas running on the node are
scheduled on another node. Starting with a mysql service replica running on each node in a three-node
Swarm, you can make one worker node leave the Swarm.

~ docker swarm leave
Node left the swarm.

A replacement service task for the service task running on the shutdown node gets scheduled on
another node.

~ s docker service ps mysql

NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeus48hvs mysql.l mysql ip-10-0-0-46.ec2.internal Running Running 3 minutes ago
441cuufa7sadmoeatgbiq7vi3 mysql.2 mysql ip-10-0-0-28.ec2.internal Running Running about a minute ago
blcdm8Bh6v86gl. . pwp6zx3janv mysql.3 mysql ip-10-0-0-28.ec2.internal Running Running 4 seconds ago
Or3okigacf3d6ilssiazmga25 \ mysql.3 mysql ip-10-0-0-106.ec2.internal Shutdown Running about a minute ago

Make the other worker node also leave the Swarm. The service replicas on the other worker node also
get shut down and scheduled on the only remaining node in the Swarm.

~ s docker service ps mysql

NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeu548hv5 mysql.1 mysql ip-10-0-0-46.ec2. internal Running Running 5 minutes ago
dbdaxvl6lohlxrsxh5aobjxi8 mysq.2 mysql ip-10-0-0-46.ec2.internal Running Running 7 seconds ago
44tcuufa7sagmbeatqbiq7vi3 _ mysgl.2 mysgl ip-10-0-0-28.ec2.internal Shutdown Running 2 minutes ago
216iu28xh5hztm3bgtvy7ttk8 mysql.3 mysql ip-10-0-0-46.ec2.internal Running Running 7 seconds ago
blcdm88h6v86gLpwpbzx3janv _ mysql.3 mysql ip-10-0-0-28.ec2.internal Shutdown Running about a minute ago

Or3okigacf3d6ils5iazmga25 _ mysql.3 mysql ip-10-0-0-106.ec2.internal Shutdown Running 2 minutes ago

95

CHAPTER 5 © SCALING SERVICES

If only the replicas with desired state as running are listed, all replicas are listed as running on the
manager node.

~s docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeus548hv5 mysgl.1 mysql ip-10-0-0-46.ec2.internal Running Running 7 minutes ago
dbdaxvl6lohlxrsxh5aobjxi8 mysqgl.2 mysql ip-10-0-0-46.ec2.internal Running Running 2 minutes ago

216iu28xh5hztm3bgtvy7ttk8 mysql.3 mysql ip-10-0-0-46.ec2.internal Running Running 2 minutes ago

Summary

This chapter discussed service scaling in Swarm mode. Only a replicated service can be scaled and not a
global service. A service may be scaled up to as many replicas as resources can support and can be scaled
down to no replicas. Multiple services may be scaled using the same command. Desire state reconciliation
ensures that the desired number of service replicas are running. The next chapter covers Docker service
mounts.

96

CHAPTER 6

Using Mounts

A service task container in a Swarm has access to the filesystem inherited from its Docker image. The data is
made integral to a Docker container via its Docker image. At times, a Docker container may need to store or
access data on a persistent filesystem. While a container has a filesystem, it is removed once the container
exits. In order to store data across container restarts, that data must be persisted somewhere outside the
container.

The Problem

Data stored only within a container could result in the following issues:
e The datais not persistent. The data is removed when a Docker container is stopped.

¢ The data cannot be shared with other Docker containers or with the host filesystem.

The Solution

Modular design based on the Single Responsibility Principle (SRP) recommends that data be decoupled
from the Docker container. Docker Swarm mode provides mounts for sharing data and making data
persistent across a container startup and shutdown. Docker Swarm mode provides two types of mounts for
services:

e Volume mounts
e Bind mounts

The default is the volume mount. A mount for a service is created using the --mount option of the
docker service create command.

Volume Mounts

Volume mounts are named volumes on the host mounted into a service task’s container. The named
volumes on the host persist even after a container has been stopped and removed. The named volume may
be created before creating the service in which the volume is to be used or the volume may be created at
service deployment time. Named volumes created at deployment time are created just prior to starting a
service task’s container. If created at service deployment time, the named volume is given an auto-generated
name if a volume name is not specified. An example of a volume mount is shown in Figure 6-1, in which
anamed volume mysql-scripts, which exists prior to creating a service, is mounted into service task
containers at the directory path /etc/mysql/scripts.

© Deepak Vohra 2017 97
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_6

https://doi.org/10.1007/978-1-4842-2973-6_6

CHAPTER 6 © USING MOUNTS

Mount
Of Type
“volume”

Service
Replica

/ete/mysql/scripts /ete/mysql/scripts /etc/mysql/scripts

Named Volume: Named Volume: Named Volume:
mysql-scripts mysql-scripts mysql-scripts

Node Node Node

Figure 6-1. Volume mount

Each container in the service has access to the same named volume on the host on which the container
is running, but the host named volume could store the same or different data.

When using volume mounts, contents are not replicated across the cluster. For example, if you put
something into the mysql-scripts directory you're using, those new files will only be accessible to other
tasks running on that same node. Replicas running on other nodes will not have access to those files.

Bind Mounts

Bind mounts are filesystem paths on the host on which the service task is to be scheduled. The host
filesystem path is mounted into a service task’s container at the specified directory path. The host filesystem
path must exist on each host in the Swarm on which a task may be scheduled prior to a service being
created. If certain nodes are to be excluded for service deployment, using node constraints, the bind mount
host filesystem does not have to exist on those nodes. When using bind mounts, keep in mind that the
service using a bind mount is not portable as such. If the service is to be deployed in production, the host
directory path must exist on each host in the Swarm in the production cluster.

The host filesystem path does not have to be the same as the destination directory path in a task
container. As an example, the host path /db/mysql/data is mounted as a bind mount into a service’s
containers at directory path /etc/mysql/data in Figure 6-2. A bind mount is read-write by default, but
could be made read-only at service deployment time. Each container in the service has access to the
same directory path on the host on which the container is running, but the host directory path could store
different or the same data.

98

CHAPTER 6 * USING MOUNTS

Mount
of
Type
113 bind ”»

Service
Replica

/etc/mysql/data /ete/mysql/data /etc/mysql/data

/db/mysgql/data /db/mysql/data /db/mysql/data

Node Node Node

Figure 6-2. Bind mount

Swarm mode mounts provide shareable named volumes and filesystem paths on the host that persist
across a service task startup and shutdown. A Docker image’s filesystem is still at the root of the filesystem
hierarchy and a mount can only be mounted on a directory path within the root filesystem.

This chapter covers the following topics:

e Setting the environment

e Types of mounts

e (Creating a named volume

e Using a volume mount to get detailed info about a volume
¢ Removing a volume

e Creating and using a bind mount

Setting the Environment

Create a Docker for AWS-based Swarm consisting of one manager node and two worker nodes, as discussed
in Chapter 3. The Docker for AWS Swarm will be used for one type of mount, the volume mount. For the bind
mount, create a three-node Swarm consisting of one manager and two worker nodes on CoreOS instances.
Creating a Swarm on CoreOS instances is discussed in Chapter 2. A CoreOS-based Swarm is used because
Docker for AWS Swarm does not support bind mounts out-of-the-box. Obtain the public IP address of the
manager instance for the Docker for AWS Swarm from the EC2 console, as shown in Figure 6-3.

99

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 6 © USING MOUNTS

Connect Actions v
E——— o s 0

Q Filter by 1ags and attributes or search by keyword 9 1to3of 3
Name = Instance ID = Instance Type =~ Awvailability Zone ~ Instance State ~ Status Checks -~ Alarm Status Public DNS (IPv4)
Docker-worker -0832010a%900271 12.micro us-east-1b @ running @ 272 checks None e ec2:52-91-200-241 co
B Docker-Manager H4B12batde24%c3% 12 micro us-east-1b @ running & 212 checks Nane e ec2-52-91-115-180.c0
Docker-worker i-0aldTbad2b5adsd 12 micro us-gast-1c @ running © 212 checks None Y ec2-34-229-36-84.com..
»
: | i-0481 48249¢99¢ [Docker- ger) Public DNS: ec2-52-91-115-180.compute-1.amazonaws.com EEE -

Description Status Checks Monitoring Tags

nstance ID -04812baS4e243c90% Public ONS (IPvd) ec2-52-91-115-180.compute-
1.amazonaws.com
Instance state running IPvd Public IP 52.91.115.180
Instance type t2.micro P& Py -
Elastic IPs Private DNS ip-172-31-16-11 ec2 intemnal
Avadabdity zone us-gast-1b Private IPs 172.31.16.11
Security groups Docker-ManagerVpe SG-S0ZEXTKIWOIZ, Secondary private |Ps

Docker-SwarmWideSG-1TKYZQ83JYIGZ

wvigw inbound rules
Figure 6-3. EC2 instances for Docker for AWS Swarm nodes

SSH login into the manager instance.

[root@localhost ~]# ssh -i "docker.pem” docker@52.91.115.180
Welcome to Docker!

List the nodes in the Swarm. A manager node and two worker nodes are listed.

~ $ docker node 1ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8ynq7exfosv74ymoe7hrsghxh ip-172-31-33-230.ec2.internal Ready Active
00h7009a61ico7n1t800e281g * ip-172-31-16-11.ec2.internal Ready Active Leader

yzlv7c3qwcwozhxz439dbknj4 ip-172-31-25-163.ec2.internal Ready Active

Creating a Named Volume

A named volume to be used in a service as a mount of type volume may either be created prior to creating
the service or at deployment time. A new named volume is created with the following command syntax.

docker volume create [OPTIONS] [VOLUME]

100

CHAPTER 6 * USING MOUNTS

The options discussed in Table 6-1 are supported.

Table 6-1. Options for the docker volume create Command for a Named Volume

Option Description Type Default Value
--driver, -d Specifies volume drivername string local
--label Sets metadata for a volume value []

--name Specifies volume name string

--opt, -0 Sets driver specific options value map|]

Create a named volume called hello using the docker volume create command.

~ ¢ docker volume create --name hello
hello

Subsequently, list the volumes with the docker volume 1s command. The hello volume is listed in
addition to other named volumes that may exist.

~ $ docker volume 1s
DRIVER VOLUME NAME
local hello
You can find detailed info about the volume using the following command.
docker volume inspect hello

In addition to the volume name and driver, the mountpoint of the volume also is listed.

~ $ docker volume inspect hello

[

{
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/hello/_data",
"Name": "hello",
"Options": {},
"Scope": "local"
}

The scope of alocal driver volume is 1local. The other supported scope is global. A 1local volume is
created on a single Docker host and a global volume is created on each Docker host in the cluster.

101

CHAPTER 6 © USING MOUNTS

Using a Volume Mount

Use the hello volume in the docker service create command with the --mount option. The options
discussed in Table 6-2 may be used both with bind mounts and volume mounts.

Table 6-2. Options for Volume and Bind Mounts

Option Required

Description

Default

type No

srcor Yes for type=bind only.
source No for type=volume

dst or Yes
destination
or target

readonly No
orro

Specifies the type of mount. One of three values
may be specified:

volume-Mounts is a named volume in a container.
bind-Bind-mounts is a directory or file from the
host into a container.

tmpfs-Mounts is a tmpfs into a container.

The source directory or volume. The option has
different meanings for different types of mounts.

type=volume: src specifies the name of the volume.
If the named volume does not exist, it is created.

If src is omitted, the named volume is created

with an auto-generated name, which is unique on
the host but may not be unique cluster-wide. An
auto-generated named volume is removed when
the container using the volume is removed. The
docker service update command shuts down task
containers and starts new task containers and so
does scaling a service. volume source must not be
an absolute path.

type=bind: src specifies the absolute path to the
directory or file to bind-mount. The directory path
must be an absolute and not a relative path. The src
option is required for a mount of type bind and an
error is generated if it’s not specified.

type=tmpfs: is not supported.

Specifies the mount path inside a container. If

the path does not exist in a container’s filesystem,
the Docker engine creates the mount path before

mounting the bind or volume mount. The volume
target must be a relative path.

A boolean (true/false) or (1/0) to indicate whether
the Docker Engine should mount volumes and bind
read-write or read-only. If the option is not specified,
the engine mounts the bind or volume read-write.

If the option is specified with a value of true or 1

or no value, the engine mounts the volume or bind
read-only. If the option is specified with a value of
false or 0, the engine mounts the volume or bind
read-write.

volume

102

CHAPTER 6 * USING MOUNTS

Some of the mount options are only supported for volume mounts and are discussed in Table 6-3.

Table 6-3. Options for Volume Mounts

Option Required Description Default Value

volume-driver No Specifies the name of the volume-driver plugin to use local
for the volume. If a named volume is not specified
in src, the volume-driver is used to create a named
volume.

volume-label No Specifies one or more comma-separated metadata
labels to apply to the volume. Example: volume-
label=1abel-1=hello-world, label-2=hello.

volume-nocopy No Applies to an empty volume that is mounted in a true or 1
container at a mount path at which files and directories
already existed. Specifies whether a container’s
filesystem files and directories at the mount path (dst)
are to be copied to the volume. A host is able to access
the files and directories copied from the container to
the named volume. A value of true or 1 disables
copying of files from the container’s filesystem to the
host volume. A value of false or 0 enables copying.

volume-opt No Specifies the options to be supplied to the volume-
driver in creating a named volume if one does not
exist. The volume-opt options are specified as a
comma-separated list of key/value pairs. Example:
volume-opt-1=option-1=valuel,option-2=value2.

A named volume has to exist on each host on which
a mount of type volume is to be mounted. Creating a
named volume on the Swarm manager does not also
create the named volume on the worker nodes. The
volume-driver and volume-opt options are used to
create the named volume on the worker nodes.

The options discussed in Table 6-4 are supported only with a mount of type tmpfs.

Table 6-4. Options for the tmpfs Mount

Option Required Description Default Value
tmpfs-size No Size of the tmpfs mount in bytes Unlimited value on Linux
tmpfs-mode No Specifies the file mode of the tmpfs inoctal ~ 1777 in Linux

Next, we will use the named volume hello in a service created with Docker image tutum/hello-world.
In the following docker service create command, the --mount option specifies the src as hello and
includes some volume-1label labels for the volume.

103

CHAPTER 6 © USING MOUNTS

~ ¢ docker service create \
--name hello-world \
--mount src=hello,dst=/hello,volume-label="msg=hello",volume-label="msg2=world" \
--publish 8080:80 \
--replicas 2 \
tutum/hello-world

The service is created and the service ID is output.

~ $ docker service create \
--name hello-world \
--mount src=hello,dst=/hello,volume-label="msg=hello",volume-label="msg2=world" \
--publish 8080:80 \
--replicas 2 \
tutum/hello-world
ily37072wyxkyw2jt6okdqoz

0V V V VvV Vv

Two service replicas are created.

~ $ docker service 1s

D NAME MODE REPLICAS IMAGE PORTS
8ily37072wyx hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp
~ $ docker service ps hello-world

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

uw6coztxwghf hello-world.1 tutum/hello-world:latest ip-172-31-25-163.ec2.internal
Running Running 20 seconds ago

ctkwefwadkki hello-world.2 tutum/hello-world:latest ip-172-31-16-11.ec2.internal
Running Running 21 seconds ago

The named volume is mounted in each task container in the service.
The service definition lists the mounts, including the mount labels.

~ $ docker service inspect hello-world

[

"Spec": {
"ContainerSpec”: {
"Image": "tutum/hello-world:latest@sha256:0d57def8055178aath4c7669cbc25e
c17f0acdab97cc587130150802da8f8d85",
"Mounts": [
{
"Type": "volume",
"Source": "hello",
"Target": "/hello",
"VolumeOptions": {
"Labels": {
"msg": "hello",
"msg2": "world"

1

104

CHAPTER 6 * USING MOUNTS

In the preceding example, a named volume is created before using the volume in a volume mount. As
another example, create a named volume at deployment time. In the following docker service create
command, the --mount option is set to type=volume with the source set to nginx-root. The named volume
nginx-root does not exist prior to creating the service.

~ $ docker service create \

> --name nginx-service \
> --replicas 3\
> --mount type=volume,source="nginx-root",destination="/var/lib/nginx",volume-

label="type=nginx root dir" \
> nginx:alpine
rtz1ldok405mro3uhdk1htlnk

When the command is run, a service is created. Service description includes the volume mount in
mounts.

~ $ docker service inspect nginx-service

[

|ISpeCII: {
"Name": "nginx-service",
"Mounts": [
{

"Type": "volume",
"Source": "nginx-root",
"Target": "/var/lib/nginx",
"VolumeOptions": {
"Labels": {
"type": "nginx root dir"

)

The named volume nginx-root was not created prior to creating the service and is therefore created
before starting containers for service tasks. The named volume nginx-root is created only on nodes on
which a task is scheduled. One service task is scheduled on each of the three nodes.

~ $ docker service ps nginx-service

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

pfqinizgmgur nginx-service.1 nginx:alpine ip-172-31-33-230.ec2.internal
Running Running 19 seconds ago

mn8h3p40chgs nginx-service.2 nginx:alpine ip-172-31-25-163.ec2.internal
Running Running 19 seconds ago

k8n5zz1nn46s nginx-service.3 nginx:alpine ip-172-31-16-11.ec2.internal
Running Running 18 seconds ago

105

CHAPTER 6 © USING MOUNTS

As a task is scheduled on the manager node, a named volume called nginx-root is created on the
manager node, as listed in the output of the docker volume 1ls command.

~ $ docker volume 1ls

DRIVER VOLUME NAME
local hello
local nginx-root

Service tasks and task containers are started on each of the two worker nodes. A nginx-root named
volume is created on each of the worker nodes. Listing the volumes on the worker nodes lists the nginx-root
volume.

[root@localhost ~]# ssh -i "docker.pem" docker@34.229.86.64
Welcome to Docker!
~ $ docker volume 1ls

DRIVER
local
local

VOLUME NAME
hello
nginx-root

[root@localhost ~]# ssh -i "docker.pem" docker@52.91.200.241
Welcome to Docker!
~ $ docker volume 1ls

DRIVER VOLUME NAME
local hello
local nginx-root

A named volume was specified in sxc in the preceding example. The named volume may be omitted as
in the following service definition.

~ $ docker service create \

--name nginx-service-2 \

--replicas 3 \

--mount type=volume,destination=/var/lib/nginx \
nginx:alpine

q8ordkmkwgrwiwhmaemvcypc3

vV V VvV Vv

The service is created with a replica and is scheduled on each of the Swarm nodes.

~ $ docker service ps nginx-service-2

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

kz8d8kéebxp7u nginx-service-2.1 nginx:alpine ip-172-31-25-163.ec2.internal
Running Running 27 seconds ago

wd65qsmqixpg nginx-service-2.2 nginx:alpine ip-172-31-16-11.ec2.internal
Running Running 27 seconds ago

mbnmzldtaaed nginx-service-2.3 nginx:alpine ip-172-31-33-230.ec2.internal
Running Running 26 seconds ago

106

CHAPTER 6 * USING MOUNTS

The service definition does not list a named volume.

~ $ docker service inspect nginx-service-2
[
"Spec": {
"Name": "nginx-service-2",
"ContainerSpec": {
"Mounts": [
{

"Type": "volume",
"Target": "/var/lib/nginx"

1

Named volumes with auto-generated names are created when a volume name is not specified explicitly.
One auto-generated named volume with an auto-generated name is created on each node on which a
service task is run. One of the named volumes listed on the manager node is an auto-generated named
volume with an auto-generated name.

~ $ docker volume 1ls

DRIVER VOLUME NAME

local 305f1fa3673e811b3b320fadoe2dd5786567bcec49b3e66480eab2309101e233
local hello

local nginx-root

As another example of using named volumes as mounts in a service, create a named volume called
mysql-scripts for a MySQL database service.

~ $ docker volume create --name mysql-scripts
mysql-scripts

The named volume is created and listed.

~ $ docker volume 1s

DRIVER VOLUME NAME

local 305f1fa3673e811b3b320fad0e2dd5786567bcec49b3e66480eab2309101e233
local hello

local mysql-scripts

local nginx-root

107

CHAPTER 6 * USING MOUNTS

The volume description lists the scope as 1ocal and lists the mountpoint.

~ $ docker volume inspect mysql-scripts

[

{
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/mysql-scripts/_data",
"Name": "mysql-scripts”,
"Options": {},
"Scope": "local"
}

Next, create a service that uses the named volume in a volume mount.

~ $ docker service create \
> --env MYSQL ROOT_PASSWORD='mysql'\
> --mount type=volume,src="mysql-scripts",dst="/etc/mysql/scripts",
el="msg=mysql",volume-label="msg2=scripts" \
--publish 3306:3306\
--replicas 2 \
--name mysql \
mysql
cghaz4zoxurpyqilsikngqf4cl

vV V VvV Vv

The service is created and listed.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
8ily37072wyx hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp
cghaz4zoxurp ysql replicated 1/2 mysql:latest *:3306->3306/tcp

Listing the service tasks indicates that the tasks are scheduled on the manager node and one of the
worker nodes.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
y59yhzwch2fj mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Preparing 12 seconds ago

zg7wrludkr84 mysql.2 mysql:latest ip-172-31-16-11.ec2.internal
Running Running less than a second ago

The destination directory for the named volume is created in the Docker container. The Docker
container on the manager node may be listed with docker ps and a bash shell on the container may be
started with the docker exec -it <containerid> bash command.

108

CHAPTER 6 * USING MOUNTS

~ $ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

a855826cdc75 mysql:latest "docker-entrypoint..."

22 seconds ago Up 21 seconds 3306/tcp mysql.2.zg7wrludkr84zf

8vhdkf8wnlh
~ $ docker exec -it a855826cdc75 bash
root@a855826¢cd75: /#

Change the directory to /etc/mysql/scripts in the container. Initially, the directory is empty.

root@a855826cdc75:/# cd /etc/mysql/scripts
root@a855826cdc75:/etc/mysql/scripts# 1s -1
total 0

root@a855826cdc75: /etc/mysql/scripts# exit
exit

A task container for the service is created on one of the worker nodes and may be listed on the worker
node.

~ $ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

eb8d59cc2dff mysql:latest "docker-entrypoint..."

8 minutes ago Up 8 minutes 3306/tcp mysql.1.xjmx7qviihyg2so7n0oxiimuq

Start a bash shell for the Docker container on the worker node. The /etc/mysql/scripts directory on
which the named volume is mounted is created in the Docker container.

~ $ docker exec -it eb8d59cc2dff bash
root@eb8d59cc2dff:/# cd /etc/mysql/scripts
root@eb8d59cc2dff:/etc/mysql/scripts# exit
exit

If a service using an auto-generated named volume is scaled to run a task on nodes on which a task was
not running previously, named volumes are auto-generated on those nodes also. As an example of finding
the effect of scaling a service when using an auto-generated named volume as a mount in the service, create
a MySQL database service with a volume mount. The volume mysql-scripts does not exist prior to creating
the service; remove the mysql-scripts volume if it exists.

~ ¢ docker service create \

> --env MYSQL ROOT_PASSWORD="mysql'\

> --replicas 1\

> --mount type=volume,src="mysql-scripts",dst="/etc/mysql/scripts"\
> --name mysql \

> mysql

088ddf5ptayb3yvr5s7elyhpn

109

CHAPTER 6 © USING MOUNTS

The service task is scheduled on a node.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

x1ix91njbaqo mysql.1 mysql:latest ip-172-31-13-122.ec2.internal
Running Preparing 12 seconds ago

List the nodes; the node on which the service task is scheduled is the manager node.

~ $ docker node 1s

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
o5hyue3hzuds8vtyughswbosl ip-172-31-11-41.ec2.internal Ready Active
p6uuzp8pmoahlcwexr3wdulxv ip-172-31-23-247.ec2.internal Ready Active
qnk35m01411x8j1jp87ggnsnq * 1ip-172-31-13-122.ec2.internal Ready Active Leader

A named volume mysql-scripts and an ancillary named volume with an auto-generated name are
created on the manager node on which a task is scheduled.

~ $ docker volume 1ls

DRIVER VOLUME NAME
local a2bc631f1bida354d30aaea37935c65f9d99c51084d92341c6506f1e2aab1ds5
local mysql-scripts

The worker nodes do not list the mysql-scripts named volume, as a task is not scheduled on the
worker nodes.

~ $ docker volume 1ls
DRIVER VOLUME NAME

Scale the service to three replicas. A replica is scheduled on each of the three nodes.

~ $ docker service scale mysql=3
mysql scaled to 3

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
x1ix91njbaqo mysql.1 mysql:latest ip-172-31-13-122.ec2.internal
Running Running about a minute ago

ifk7xuvfp9p2 mysql.2 mysql:latest ip-172-31-23-247.ec2.internal
Running Running less than a second ago

3c53fxgejqyt mysql.3 mysql:latest ip-172-31-11-41.ec2.internal
Running Running less than a second ago

110

CHAPTER 6 * USING MOUNTS

A named volume mysql-scripts and an ancillary named volume with an auto-generated name are
created on the worker nodes because a replica is scheduled.

[root@localhost ~]# ssh -i "docker.pem" docker@54.165.69.9
Welcome to Docker!

~ $ docker volume 1ls

DRIVER VOLUME NAME
local 431a792646d0b04b5ace49a32e6c0631ec5e92f3dda57008b1987e4fe2a1b561
local mysql-scripts

[root@localhost ~]# ssh -i "docker.pem" docker@34.232.95.243
Welcome to Docker!

~ $ docker volume 1ls

DRIVER VOLUME NAME
local ath2401a9a916a365304b8aa0cc96b1be0c161462d375745c982912b61180873
local mysql-scripts

The auto-generated named volumes are persistent and do not get removed when a service replica is
shut down. The named volumes with auto-generated names are not persistent volumes. As an example,
scale the service back to one replica. Two of the replicas shut down, including the replica on the manager
node.

~ $ docker service scale mysql=1
mysql scaled to 1
~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

3c53fxgcjoyt mysql.3 mysql:latest ip-172-31-11-41.ec2.internal
Running Running 2 minutes ago

But the named volume mysql-scripts on the manager node is not removed even though no Docker
container using the volume is running.

~ $ docker volume 1s
DRIVER VOLUME NAME
local mysql-scripts

Similarly, the named volume on a worker node on which a service replica is shut down also does not get

removed even though no Docker container using the named volume is running. The named volume with the
auto-generated name is removed when no container is using it, but the mysql-scripts named volume does not.

111

CHAPTER 6 © USING MOUNTS

Remove the volume mysql-scripts still does not get removed.

~ $ docker service rm mysql

mysql

~ $ docker volume 1s

DRIVER VOLUME NAME
local mysql-scripts

Removing a Volume

A named volume may be removed using the following command.
docker volume rm <VOL>
As an example, remove the named volume mysql-scripts.

~ $ docker volume rm mysql-scripts
mysql-scripts

If the volume you try to delete is used in a Docker container, an error is generated instead and the
volume will not be removed. Even a named volume with an auto-generated name cannot be removed if it’s
being used in a container.

Creating and Using a Bind Mount

In this section, we create a mount of type bind. Bind mounts are suitable if data in directories that already
exist on the host needs to be accessed from within Docker containers. type=bind must be specified with the
--mount option when creating a service with mount of type bind. The host source directory and the volume
target must both be absolute paths. The host source directory must exist prior to creating a service. The
target directory within each Docker container of the service is created automatically. Create a directory on
the manager node and then add a file called createtable.sql to the directory.

core@ip-10-0-0-143 ~ $ sudo mkdir -p /etc/mysql/scripts

core@ip-10-0-0-143 ~ $ cd /etc/mysql/scripts
core@ip-10-0-0-143 /etc/mysql/scripts $ sudo vi createtable.sqgl

112

CHAPTER 6 * USING MOUNTS

Save a SQL script in the sample SQL file, as shown in Figure 6-4.

Bl root@localhost:~ (5]

File Edit View Search Terminal Help

CREATE TABLE wlslog(time stamp VARCHAR(255) PRIMARY KEY,category VARCHAR(255),ty["]
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2

INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2
INSERT INTO wlslog(time stamp,category,type,servername,code,msg) VALUES('Apr-8-2

:wql] -

Figure 6-4. Adding a SQL script to the host directory

Similarly, create a directory and add a SQL script to the worker nodes.
Create a service with a bind mount that’s using the host directory. The destination directory is specified
as /scripts.

core@ip-10-0-0-143 ~ $ docker service create \
--env MYSQL_ROOT_PASSWORD='mysql' \
--replicas 3 \
--mount type=bind,src="/etc/mysql/scripts",dst="/scripts" \
--name mysql \
mysql
okvk2hk2qigqyeem8x1r8qgkvk

VvV V V VvV Vv

Start a bash shell for the service container from the node on which a task is scheduled. The destination
directory /scripts is listed.

core@ip-10-0-0-143 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

€71275e6c65¢ mysql:latest "docker-entrypoint.sh" 5 seconds ago
Up 4 seconds 3306/tcp mysql.1.btgfrx7uffym2xvc441pubaza

core@ip-10-0-0-143 ~ $ docker exec -it e71275e6¢65c bash
root@e71275e6c65c:/# 1s -1
drwxr-xr-x. 2 root root 4096 Jul 24 20:44 scripts

Change the directory (cd) to the destination mount path /scripts. The createtable.sql script is listed
in the destination mount path of the bind mount.

root@e71275e6¢65¢: /# cd /scripts
root@e71275e6¢65¢: /scripts# 1s -1
-Tw-r--1--. 1 root root 1478 Jul 24 20:44 createtable.sql

113

CHAPTER 6 © USING MOUNTS

Each service task Docker container has its own copy of the file on the host. Because, by default, the
mount is read-write, the files in the mount path may be modified or removed. As an example, remove the
createtable.sql script from a container.

core@ip-10-0-0-137 ~ $ docker exec -it 995b9455aff2 bash
root@995b9455aff2:/# cd /scripts

root@995b9455aff2: /scripts# 1s -1

total 8

-IW-r--r--. 1 root root 1478 Jul 24 20:45 createtable.sql
root@995b9455aff2:/scripts# rm createtable.sql
root@995b9455aff2:/scripts# 1s -1

total 0

ro0t@995b9455aff2:/scripts#

A mount may be made read-only by including an additional option in the --mount arg, as discussed
earlier. To demonstrate a readonly mount, first remove the mysql service that’s already running. Create
a service and mount a readonly bind with the same command as before, except include an additional
readonly option.

core@ip-10-0-0-143 ~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql"' \

> --replicas 3 \

> --mount type=bind,src="/etc/mysql/scripts",dst="/scripts",readonly \
> --name mysql \

> mysql

c27se8vfygk2z57rtswentrix

A bind of type mount which is readonly is mounted.
Access the container on a node on which a task is scheduled and list the sample script from the host
directory.

core@ip-10-0-0-143 ~ $ docker exec -it 3bf9cf777d25 bash
root@3bfocf777d25:/# cd /scripts
root@3bf9cf777d25:/scripts# 1s -1
-Iw-r--1--. 1 root root 1478 Jul 24 20:44 createtable.sql

Remove, or try to remove, the sample script. An error is generated.

root@3bf9cf777d25:/scripts# rm createtable.sql
m: cannot remove 'createtable.sql': Read-only file system

Summary

This chapter introduced mounts in Swarm mode. Two types of mounts are supported—bind mount and
volume mount. A bind mount mounts a pre-existing directory or file from the host into each container of a
service. A volume mount mounts a named volume, which may or may not exist prior to creating a service,
into each container in a service. The next chapter discusses configuring resources.

114

CHAPTER 7

Configuring Resources

Docker containers run in isolation on the underlying OS kernel and require resources to run. Docker Swarm
mode supports two types of resources—CPU and memory—as illustrated in Figure 7-1.

Docker Swarm Mode

CPU RAM

Figure 7-1. Types of resources supported by Docker Swarm mode

The Problem

By default, Docker Swarm mode does not impose any limit on how many resources (CPU cycles or memory)
a service task may consume. Nor does Swarm mode guarantee minimum resources. Two issues can result if
no resource configuration is specified in Docker Swarm mode.

Some of the service tasks could consume a disproportionate amount of resources, while the other
service tasks are not able to get scheduled due to lack of resources. As an example, consider a node
with resource capacity of 3GB and 3 CPUs. Without any resource guarantees and limits, one service
task container could consume most of the resources (2.8GB and 2.8 CPUs), while two other service task
containers each have only 0.1GB and 0.1 CPU of resources remaining to be used and do not get scheduled,
as illustrated in Figure 7-2. A Docker service task that does not have enough resources to get scheduled is
put in Pending state.

© Deepak Vohra 2017 115
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_7

https://doi.org/10.1007/978-1-4842-2973-6_7

CHAPTER 7 © CONFIGURING RESOURCES

/’M
Capacity:

3GB,
s

> 0.1 GB
Docker LT] 2.8GB 0.1 CPUs
Containers 2.8 CPUs
0.1 GB

Figure 7-2. Unequal allocation of resources

The second issue that can result is that the resource capacity of a node can get fully used up without any
provision to schedule any more service tasks. As an example, a node with a resource capacity of 9GB and 9
CPUs has three service task containers running, with each using 3GB and 3 CPUs, as illustrated in Figure 7-3.
If a new service task is created for the same or another service, it does not have any available resources on
the node.

/’M
Capacity:

9 GB,
W

> 368
bocker] 3 GB 3 CPUs
Containers 3 CPUs
3GB

Figure 7-3. Fully resource-utilized node

The Solution

Docker Swarm mode has a provision to set resource guarantees (or reserves) and resource limits, as
illustrated in Figure 7-4. A resource reserve is the minimum amount of a resource that is guaranteed or
reserved for a service task. A resource limit is the maximum amount of a resource that a service task can use
regardless of how much of a resource is available.

116

CHAPTER 7 © CONFIGURING RESOURCES

CPU & Memory
Resources

Resource Reserves Resource Limits

Figure 7-4. Managing Swarm resources with resource reserves and limits

With resource reserves, each service task container can be guaranteed 1 CPU and 1GB in the issue
discussed previously, as illustrated in Figure 7-5.

T el =
Capacity:

3 GB,

3 CPUs
> 1cB

bocker ——""""T || 1GB 1CPUs

Containers 1 CPUs

1GB

Figure 7-5. Resource allocation with resource reserves set

And, if resource limits are implemented for service task containers, excess resources would be available
to start new service task containers. In the example discussed previously, a limit of 2GB and 2 CPUs per
service task would keep the excess resources of 3GB and 3 CPUs available for new service task containers, as
illustrated in Figure 7-6.

117

CHAPTER 7 © CONFIGURING RESOURCES

/’m
Capacity:

9 GB,
W

)
bocker — || 208 2 CPUs
Containers 2 CPUs
2GB

Figure 7-6. Resource allocation with resource limits set

This chapter covers the following topics:
e Setting the environment
e Creating a service without resource specification
e Reserving resources
e Setting resource limits
e Creating a service with resource specification
e Scaling and resources
¢ Reserved resources must be less than resource limits
¢ Rolling update to set resource limits and reserves

e Resource usage and node capacity

Setting the Environment

Create a three-node Swarm on Docker for AWS with one manager node and two worker nodes. Creating a
Swarm on Docker for AWS is discussed in Chapter 3. We use the three-node Swarm created in Chapter 6 for
this chapter also. Obtain the public IP address of the Swarm manager instance, as shown in Figure 7-7.

118

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_6

CHAPTER 7 CONFIGURING RESOURCES

(BT RLS =L Connect Actions v
— o v o

Q, File or search by keyword (=] 1to30f3
Name = Instance ID ~ Instance Type ~ Availability Zone ~ Instance State - Status Checks - Alarm Status Public DNS (IPv4)
Docker-worker i-0832010a9%002T1 12.micro us-east-1b @ running & 212 checks None Y c2-52-91-200-241 co
B Docker-Manager i-04812baS4e249¢9%c 2.micro us-east-1b @ running @ 22checks... None ‘-o ec2-52-91-115-180.¢co
Docker-worker i-0aldThad2b6a454 2. micro us-east-c @ running @ 22checks.. None % ec2-34-229-86-64.com.
»
:Ji-0481 (Docker-M Y Public DNS: ec2-52-81-115-180. pute-1 com _B-N=l
Description Status Checks Monitoring Tags
Instance 1D i-04812ba5422459:99¢ Pubkc DNS (IPvd)
nstance stale runmng [} IPv4 Public IP
Instance type t2.micro IPv6 IPs
Elastc IPs Private DNS ip-172-31-16-11 2c2 internal
Availability zone us-east-1b Private IPs 172311611

Security groups Docker-ManagerVpe SG-SO2EXTKI
Docker-Sw e SG-1TKYZQS3,

view inbound rules

Secondary private IPs

Figure 7-7. EC2 instances for Swarm nodes

SSH login into the manager instance with user as “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@52.91.115.180
Welcome to Docker!

List the Swarm nodes; a manager node and two worker nodes are listed.

~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8ynq7exfo5v74ymoe7hrsghxh ip-172-31-33-230.ec2.internal Ready Active
00h7009a61ico7n1t8ooe281g * ip-172-31-16-11.ec2.internal Ready Active Leader

yzlv7c3qwecwozhxz439dbknj4 ip-172-31-25-163.ec2.internal Ready Active

Creating a Service Without Resource Specification

We start by creating a service without any resource specification. Create a MySQL database service without
setting any resource reserves or limits.

docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--name mysql \

mysql

A single service replica is created. The output of the command is the service ID (shown in italics).

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 1 \
> --name mysql \
> mysql
2kcqbcf72t4wu94000k3sax41
119

CHAPTER 7 © CONFIGURING RESOURCES

List the services; the mysql service is listed.
~ $ docker service 1s
D NAME MODE REPLICAS IMAGE PORTS
2kcgbcf72t4n mysql replicated 1/1 mysql:latest

List the service tasks. The only service task is running on a worker node.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

sccqv4k9r22h mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 10 seconds ago

On inspecting the service, the container spec does not include any resources, limits, or reserves. The
single service task may use all of the available resources on the node on which it’s scheduled.

~ $ docker service inspect mysql

[

"Resources": {
"Limits": {},
"Reservations": {}

1

Reserving Resources

Swarm mode provides two options for resource reserves in the docker service create and docker
service update commands, as listed in Table 7-1.

Table 7-1. Options for Resource Reserves

Option Description Default Value
--reserve-cpu Reserve CPUs. A value of 0.000 implies no reserves are set. 0.000
--Ireserve-memory Reserve memory. A value of 0 implies no reserves are set. 0

Setting Resource Limits

Swarm mode provides two options for resource limits in the docker service create and docker service
update commands, as discussed in Table 7-2.

Table 7-2. Options for Resource Limits

Option Description Default Value
--limit-cpu Limit CPUs 0.000
--1imit-memory Limit Memory 0

120

CHAPTER 7 © CONFIGURING RESOURCES

Creating a Service with Resource Specification

Next, create a service using resource specification. Set resource reserves of 0.25 CPUs and 128MB and
resource limits of 1 CPU and 256MB. Remove the mysql service previously created before creating a new
service with resources defined. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql
mysql
~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\

> --replicas 1 \

> --name mysql \

> --Teserve-cpu .25 --limit-cpu 1 --reserve-memory 128mb --limit-memory 256mb \
> mysql

abwq9budo7joydo0u32z2b047

On inspecting the service, the resources limits and reserves are listed, which contrasts with the empty
settings for resources when a service is created without the resources definition.

~ $ docker service inspect mysql
[
"Resources": {
"Limits": {
"NanoCPUs": 1000000000,
"MemoryBytes": 268435456
}
"Reservations": {
"NanoCPUs": 250000000,
"MemoryBytes": 134217728

1

Scaling and Resources

Before scaling up a service, it may be suitable to determine the node capacity in terms of CPU and memory
resources. As all three nodes in the Swarm are identical, the node capacity on one node is the same as on
the other nodes. The node capacity is 1 CPU and 1GB, as listed in the output of the docker node inspect
command.

~ $ docker node inspect ip-172-31-16-11.ec2.internal

[

"Resources": {
"NanoCPUs": 1000000000,
"MemoryBytes": 1039040512

)

121

CHAPTER 7 © CONFIGURING RESOURCES

The CPU limit on each service task created in the preceding section is also 1 CPU. When scaling, the
total of the resource limits for all service tasks on a node may exceed the node's capacity. However, the total
of resource reserves must not exceed node capacity.

As an example, scale to five replicas.

~ $ docker service scale mysql=5
mysql scaled to 5

Scaling to five schedules two replicas on the manager node, two replicas on one of the worker nodes,
and one replica on the other worker node. The aggregate of the resource limits on the worker nodes is
exceeded but the aggregate of resource reserves are within the node’s capacity.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

npc5r7xf98fg mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 2 minutes ago

xokdhowntpow mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 13 seconds ago

b6h4bsf7xzdc mysql.3 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 12 seconds ago

j1d7ti7nb80u mysql.4 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 13 seconds ago

w6to9pxcdbms mysql.5 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 13 seconds ago

Reserved Resources Must Not Be More Than Resource Limits

The resource limits are not taken into consideration when scheduling a service task, only the resource
reserves are. Not setting the reserves (whether limits are set or not and whether limits exceed node capacity)
schedules the service task if the resources required to run a task are within the node capacity. Resource
reserves must not exceed resource limits or a service task may not get scheduled or might fail after a while.
As an example, delete the mysql service and create a new service where the resource reserves exceed
resource limits. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\

> --replicas 1 \

> --name mysql \

> --Teserve-cpu .75 --limit-cpu .5 --reserve-memory 256mb --limit-memory 128mb \
> mysqgl

srot5vr8x7v7iml2awc3fxbiu

The service is created and even scheduled.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

pmcjrj6p3wfp mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 20 seconds ago

122

CHAPTER 7 © CONFIGURING RESOURCES

The service configuration has the resource reserves exceeding the resource limits.

~ $ docker service inspect mysql

[

}
"Resources": {

"Limits": {

"NanoCPUs": 500000000,
"MemoryBytes": 134217728

}

"Reservations": {
"NanoCPUs": 750000000,
"MemoryBytes": 268435456

}

b

The resource reserves are within the node capacity, but because the resource limits are less than the
resource reserves, the newly started service task fails and is shut down. The service task keeps getting
restarted and shut down.

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
vjenjkwfdfkb mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 16 seconds ago

pxdku8pxviyn _ mysqgl.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Failed 21 seconds ago "task: non-zero exit (1)"
pmcjrj6p3wtp _mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (1)"

The service task resource limits can be the same as the resource reserves. Remove the mysql service and
create it again with the resource limits the same as the resource reserves. The output of the command is the
service ID (shown in italics).

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\

> --replicas 1 \

> --name mysql \

> --reserve-cpu .5 --limit-cpu .5 --reserve-memory 256mb --limit-memory 256mb \
> mysql

81bu63v97p9rm81xfyxvokile

The service is created and the single task is scheduled. The service task does not fail as when the
resource reserves exceeded the resource limit.

123

CHAPTER 7 © CONFIGURING RESOURCES

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

4i1fpha53abs mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 33 seconds ago

And a Docker container is started.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

14d555310393 mysql:latest "docker-entrypoint..." 34 seconds ago Up 33 seconds
3306/tcp mysql.1.4i1fpha53absl4gky9dgafo8t

Rolling Update to Modify Resource Limits and Reserves

This section demonstrates a rolling update to set new CPU and memory limits and reserves. The service
created in the previous section is used for updating in this section. Using the docker service update
command, update the CPU and memory reserves and limits. The output of the command is the service
name mysql (shown in italics).

~ $ docker service update --reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb
--limit-memory 512mb mysql
mysql

The resources are updated. Updating the resource specification for a service shuts down the service
replica and starts a new replica with the new resource specification.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
81bu63v97p9r mysql replicated 1/1 mysql:latest

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

xkis4mirgbtv mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 14 seconds ago

4i1fpha53abs _ mysqgl.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Shutdown 15 seconds ago

The service resources configuration is updated.

~ $ docker service inspect mysql

[
}
"Resources": {
"Limits": {
"NanoCPUs": 2000000000,
"MemoryBytes": 536870912

1

124

CHAPTER 7 © CONFIGURING RESOURCES

"Reservations": {
"NanoCPUs": 1000000000,
"MemoryBytes": 268435456

b

Resource Usage and Node Capacity

Resource usage cannot exceed node capacity. On the three-node Swarm (one manager and two worker
nodes), recall that the node capacity is 1GB and 1 CPU.

Remove the mysql service that’s already running and create a mysql service with three replicas that requests
4GB of memory. The service is created. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL ROOT_PASSWORD="mysql'\
> --replicas 3 \

> --name mysql \

> --reserve-memory=4GB\

> mysql

cgrihwij2znn4jkfe6hswxgr7

None of the service replicas is scheduled, as indicated by the Replicas column value of 0/3, because
the requested capacity is more than the node capacity of a single node.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
cgrihwij2znn mysql replicated 0/3 mysql:latest

The Current State of the replicas is listed as Pending.

~ $ docker service ps mysql

ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vm7z20krx3j6 mysql.1 mysql:latest

Running Pending 19 seconds ago

exmsheol44ef mysql.2 mysql:latest

Running Pending 19 seconds ago

kiset9poqz2s mysql.3 mysql:latest

Running Pending 19 seconds ago

If a service that was previously running with all replicas is scaled up, some or all of the replicas could
get de-scheduled. This happens if the resources required to run the new replicas exceed the available node
capacity. As an example, remove the mysql service and create a new mysql service with resource settings
within the provision of a node. The output of the command is the service ID (shown in italics).

125

CHAPTER 7 © CONFIGURING RESOURCES

~ $ docker service rm mysql
mysql
~ %

~ $ docker service create \

> --env MYSQL ROOT PASSWORD='mysql'\

> --replicas 1 \

> --name mysql \

> --reserve-cpu .5 --reserve-memory 512mb \
> mysql

ysef8n02mhuwa7sxerc9jwjqgx

The service is created and the single replica is running as indicated by the Replicas column value of 1/1.
~ $ docker service ls
D NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 1/1 mysql:latest

Incrementally scale up the service to determine if all of the service replicas are scheduled. First, scale up
to three replicas.

~ $ docker service scale mysql=3
mysql scaled to 3

The service description lists 3/3 Replicas as running.
~ $ docker service 1s
D NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 3/3 mysql:latest

The service replicas are scheduled, one replica on each node in the Swarm, using the spread scheduling
strategy, which is discussed in more detail in Chapter 8.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

8kkkdns01690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 51 seconds ago

k209uge36bih mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 16 seconds ago

oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 16 seconds ago

Scale the mysql service further up to replicas.

~ $ docker service scale mysql=10
mysql scaled to 10

Only 3/10 of the replicas are listed as running.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
ysef8no2mhuw mysql replicated 3/10 mysql:latest

126

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

CHAPTER 7 CONFIGURING RESOURCES

Some of the replicas are Allocated but not scheduled for running on any node due to insufficient
resources. The service replicas not running are listed with Current State setto Pending.

~ $ docker service ps mysql

ID

DESIRED STATE
8kkkdns01690
Running
k209uge36bih
Running
oiublpclz9eu
Running
u807b7hoqvqc
Running
jh2ep10sonxy
Running
8d19osxa4fwf
Running
k8hba8j509vi
Running
ettk65bpin3b
Running
i3otbgfsfvr7
Running
sxdi97006d3b
Running

NAME

CURRENT
mysql.1
Running
mysql.2
Running
mysql.3
Running
mysql.4
Pending
mysql.5
Pending
mysql.6
Pending
mysql.7
Pending
mysql.8
Pending
mysql.9
Pending

mysql.10

Pending

IMAGE

STATE

mysql:latest

NODE
ERROR PORTS

ip-172-31-16-11.ec2.internal

about a minute ago

mysql

35 seconds ago

mysql

35 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

mysql

7 seconds ago

:latest ip-172-31-25-163.ec2.internal

:latest ip-172-31-33-230.ec2.internal
:latest
:latest
:latest
:latest
:latest

:latest

:latest

Adding one or more new worker nodes could make the service reconcile its desired state and cause all
the replicas to run. To demonstrate next, we scale up the CloudFormation stack to increase the number of

worker nodes.

Scaling Up the Stack

To scale up the CloudFormation stack, select the Docker stack in the CloudFormation » Stacks table and
choose Actions » Update Stack, as shown in Figure 7-8.

@ CloudFormation v

Create Change Set For Current Stack

Filter: Active »

Stack Name

Stacks

]

ViewEdl lempate in Designes

Delete Stack

Status

Figure 7-8. Choosing Actions » Update Stack

Desenption

CE for AWS 17.06.0-ce (17.06.0-ce aws2

The Update Docker Stack wizard starts. It’s similar to the Create Stack wizard. In the Select Template,
click on Next without modifying any settings. In Specify Details, increase Number of Swarm Worker Nodes?
to 10, as shown in Figure 7-9. Click on Next.

127

CHAPTER 7 CONFIGURING RESOURCES

@ CloudFormation ~ Stacks > Stack Detail » Update Stack

Update Docker stack

Select Tempiate Specify Details
| specity Details
Options SDECW" parameter values. You can use or cha nge the default parameter values, which are defined in the AWS CloudFormation template. Leam more.

Review

Stack name | Docker

Parameters
Swarm Size
Number of Swarm 1 ¥ Number of Swarm manager nodes (1, 3, 5)
managers?
h Number of Swarm worker 10 Numibe: of worker nodes in the Swarm (0-1000)

nodes?

Figure 7-9. Increasing the number of worker nodes to 10

In Preview Your Changes, click on Update, as shown in Figure 7-10.

Preview your changes
Based on your input, CloudFormation will change the following resources. For more information, choose View change set details
Action Logical ID Physical ID Resource type

=D NodeAsg Docker-NoodeAsg-10UAOXESLISS) AWS:AutoScaling:-AutoScaiingGroup

Figure 7-10. Click Update to preview your changes

Replacement

Faise

Cancel Previous m

When the update completes, the stack’s status becomes UPDATE_COMPLETE, as shown in Figure 7-11.

@ CloudFormation v Stacks

[[PE——

c o

Showing 1 stack

Filter: Active =
Stack Name Created Time status Deszeripion
@ Docker 2017-07-24 09 52:37 UTC-OT00 UPDATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

Figure 7-11. Stack update is complete

128

CHAPTER 7 © CONFIGURING RESOURCES

The Swarm gets eight new worker nodes, for a total of 10 worker nodes. List the service description
periodically (after an interval of few seconds) and, as new worker nodes are created, new replicas start to
reconcile the current state with the desired state. The number of replicas in the Replicas column increases
gradually within a few seconds. All the replicas for the mysql service start running, as indicated by 10/10 in
the service listing.

~ $ docker service 1ls

ID NAME MODE REPLICAS IMAGE PORTS
ysef8no2mhuw mysql replicated 3/10 mysql:latest

~ $ docker service ls

D NAME MODE REPLICAS IMAGE PORTS
ysef8no2mhuw mysql replicated 6/10 mysql:latest

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
ysef8no2mhuw mysql replicated 9/10 mysql:latest

~ $ docker service ls

D NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 10/10 mysql:latest

Listing the service replicas lists all replicas as Running. The previously Pending replicas are scheduled
on the new nodes.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

8kkkdns01690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 7 minutes ago

k209uge36bih mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 6 minutes ago

oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 6 minutes ago

u807b7hoqvqc mysql.4 mysql:latest ip-172-31-11-105.ec2.internal
Running Running 45 seconds ago

jh2ep10sonxy mysql.5 mysql:latest ip-172-31-13-141.ec2.internal
Running Running about a minute ago

8d190sxa4fwf mysql.6 mysql:latest ip-172-31-24-10.ec2.internal
Running Running about a minute ago

k8hba8j509vi mysql.7 mysql:latest ip-172-31-0-114.ec2.internal
Running Running 55 seconds ago

ettk65bpin3b mysql.8 mysql:latest ip-172-31-5-127.ec2.internal
Running Running about a minute ago

i3otbqfsfvr7 mysql.9 mysql:latest ip-172-31-35-209.ec2.internal
Running Running 24 seconds ago

sxdi97006d3b mysql.10 mysql:latest ip-172-31-21-57.ec2.internal
Running Running 49 seconds ago

If the stack is updated again to decrease the number of worker nodes, some of the replicas shut down
and are de-scheduled. After decreasing the number of worker nodes, the Replicas column lists only 5/10
replicas as running.

129

CHAPTER 7 © CONFIGURING RESOURCES

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 5/10 mysql:latest

Some of the service tasks are listed as Shutdown because some of the worker nodes have been removed
from the Swarm.

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

8kkkdns01690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 10 minutes ago

ulknt3e5zxy1 mysql.2 mysql:latest

Ready Pending 3 seconds ago

k209uge36bih _ mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Shutdown Running 14 seconds ago

oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 9 minutes ago

mh2fpioi441k mysql.4 mysql:latest

Running Pending 3 seconds ago

u807b7hoqvqc _ mysql.4 mysql:latest v53huw84hskqsb3e8o0a2pmun
Shutdown Running about a minute ago

jzghd72nkozc mysql.5 mysql:latest

Ready Pending 3 seconds ago

jh2ep10sonxy _ mysgl.5 mysql:latest ip-172-31-13-141.ec2.internal
Shutdown Running 14 seconds ago

8d19osxa4fwf mysql.6 mysql:latest ip-172-31-24-10.ec2.internal
Running Running 4 minutes ago

dlcgstxxkdot mysql.7 mysql:latest

Running Pending 3 seconds ago

zigqslz7u9d9l _ mysqgl.7 mysql:latest ip-172-31-43-179.ec2.internal
Shutdown Assigned 57 seconds ago

k8hba8j509vi _ mysql.7 mysql:latest opldzvmt5eyc7416pclsut64p
Shutdown Running about a minute ago

ettk65bpin3b mysql.8 mysql:latest ip-172-31-5-127.ec2.internal
Running Running 4 minutes ago

i3otbqfsfvr7 mysql.9 mysql:latest ip-172-31-35-209.ec2.internal
Running Running 3 minutes ago

sxdi97006d3b mysql.10 mysql:latest ip-172-31-21-57.ec2.internal
Running Running 12 seconds ago

Summary

This chapter discussed the resources model of Docker Swarm mode, which is based on resource reserves
and resource limits. Reserved resources cannot be more than resource limits and resource allocation to

service tasks is limited by the node capacity. The next chapter discusses scheduling in Docker Swarm mode.

130

CHAPTER 8

Scheduling

In Chapter 2, the Docker Swarm was introduced. In Chapter 4, Docker Swarm services were introduced.

A service consists of zero or more service tasks (replicas), which it schedules on the nodes in a Swarm.

The desired state of a service includes the number of tasks that must be run. Scheduling is defined as the
process of placing a service task that is required to be run on a node in the Swarm to keep the desired state
of a service, as illustrated in Figure 8-1. A service task may only be scheduled on a worker node. A manager
node is also a worker node by default.

Scheduling
Task » Node

Figure 8-1. Scheduling

The Problem

Without a scheduling policy, the service tasks could get scheduled on a subset of nodes in a Swarm. As
an example, all three tasks in a service could get scheduled on the same node in a Swarm, as illustrated in
Figure 8-2.

© Deepak Vohra 2017 131
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_8

https://doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 8

SCHEDULING

Task

Task Node
Task

Docker Swarm

Service Node

Node

Figure 8-2. Avoid scheduling all tasks on one node

Not using a scheduling policy could lead to the following problems:

Underutilization of resources in a Swarm—1If all the tasks are scheduled on a single
node or a subset of nodes, the resource capacity of the other nodes is not utilized.

Unbalanced utilization of resources—If all the tasks are scheduled on a single node or
a subset of nodes, the resources on the nodes on which the tasks are scheduled are
over-utilized and the tasks could even use up all the resource capacity without any
scope for scaling the replicas.

Lack of locality—Clients access a service’s tasks based on node location. If all the
service tasks are scheduled on a single node, the external clients that are accessing
the service on other nodes cannot access the service locally, thereby incurring a
network overhead in accessing a relatively remote task.

Single point of failure—1f all services are running on one node and that node has a
problem, it results in downtime. Increasing redundancy across nodes obviates that
problem.

The Solution

To overcome the issues discussed in the preceding section, service task scheduling in a Docker Swarm is
based on a built-in scheduling policy. Docker Swarm mode uses the spread scheduling strategy to rank nodes
for placement of a service task (replica). Node ranking is computed for scheduling of each task and a task is

132

CHAPTER 8 © SCHEDULING

scheduled on the node with the highest computed ranking. The spread scheduling strategy computes node
rank based on the node's available CPU, RAM, and the number of containers already running on the node. The
spread strategy optimizes for the node with the least number of containers. Load sharing is the objective of the
spread strategy and results in tasks (containers) spread thinly and evenly over several machines in the Swarm.
The expected outcome of the spread strategy is that if a single node or a small subset of nodes go down or
become available, only a few tasks are lost and a majority of tasks in the Swarm continue to be available.

Note Because a container consumes resources during all states, including when it is exited, the spread
strategy does not take into consideration the state of a container. It is recommended that a user remove
stopped containers, because a node that would otherwise be eligible and suitable for scheduling a new task
becomes unsuitable if it has several stopped containers.

The spread scheduling strategy does not take into consideration for which service a task is scheduled.
Only the available and requested resources are used to schedule a new task. Scheduling using the spread
scheduling policy is illustrated in Figure 8-3.

Node

Docker Swarm
Service Node
Node

Figure 8-3. Using the spread scheduling policy
As a hypothetical example:

1. Start with three nodes, each with a capacity of 3GB and 3 CPUs and no containers
running.

133

CHAPTER 8

134

SCHEDULING

Create amysql service with one replica, which requests resources of 1GB and
1 CPU. The first replica gets scheduled randomly on one of the three nodes in
the Swarm as all nodes have the same ranking. If all the nodes have the same
ranking, a new task gets scheduled randomly on one of the nodes.

Scale the mysql service to three tasks. As one of the nodes is already loaded,
the two new tasks are scheduled on the other two nodes, spreading one task to
each node.

Scale the mysql service to five tasks. Two new tasks must be started and all the
nodes have the same ranking because they have the same available resource
capacity and the same number of containers running. The two new tasks are
scheduled randomly on two of the nodes. As a result, two nodes have two tasks
each and one node has one task.

Create another service for the nginx server with a desired state of two tasks,
with each task requesting 0.5GB and 0.5 CPU. Both the tasks are scheduled on
the node that has only the task of the mysql service, as it is the least loaded. As
a result, two nodes have two tasks of mysql service and an available capacity of
1GB and 1 CPU, and one node has two tasks of nginx service and one task of
mysql service and also an available resource capacity of 1GB and 1 CPU.

Scale the nginx service to three. Even though all nodes have the same available
CPU and RAM, the new task is not scheduled randomly on one of the three
nodes, but is scheduled on the node with the least number of containers. As a
result, the new nginx task gets scheduled randomly on one of the nodes, with
two tasks of mysql each. If the nodes have the same available CPU and RAM, the
node with fewer containers (running or stopped) is selected for scheduling the
new task.

This chapter covers the following topics:

Setting the environment

Creating and scheduling a service—the spread scheduling
Desired state reconciliation

Scheduling tasks limited by node resource capacity

Adding service scheduling constraints

Scheduling on a specific node

Adding multiple scheduling constraints

Adding node labels for scheduling

Adding, updating, and removing service scheduling constraints

Spread scheduling and global services

Setting the Environment

CHAPTER 8 © SCHEDULING

Create a CloudFormation stack using Docker for AWS consisting of one manager node and two worker
nodes. Docker for AWS was introduced in Chapter 3. The stack is shown in Figure 8-4.

@ CloudFormation ~ Stacks

o Introducing StackSets

AWS StackSel IS a container for a set of AWS CloudFormation stacks and allows you to create stacks across multiple AWS Accounts and AWS Regions.

Actions =

Design template

Filter: Active =

Stack Name Created Time Status

Docker 2017-07-25 09.42:40 UTC-O700

Figure 8-4. CloudFormation stack

CREATE_

COMPLETE

started

Daseription
Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

The three EC2 instances in the stack are shown in Figure 8-5.

4

pen ihe StackSets console o get

c|a

Showing 1 stack

o 8 @
Q) Filter by tags and attributes or search by keyword @ £ < 1tozota > 3
Name = Instance ID | Type - y Zone ~ | State - Status Checks -~ Alarm Status Public DNS (IPvd)
Dacker-worker i-01a92243cb984deBh 12 micro us-easi-1a @ running @ 212 checks None 3 ec2-52-203-21-60.com
Docker-worker i-03albaacbéfecade0 t2.micro us-east-1b @ running © 22checks .. None % ec2-34-205-14327co..
B Cocker-Manager i-06f35103349862c4a 2.micro us-east-1b @ running & 22checks ... None 3 ec2-54-84-133-157 co...
1 1) Public DNS: 8c2-54-84-133-157 compute-1.amazonaws.com [_R-R==
Description Status Checks Monitoring Tags
Instance D -D6f95103949862c4a Public ONS (IPvd) ec2-54-84-133-157 compute-
1.amazonaws.com
Instance state running IPvd Public IP 54 84.133.157
Instance type L2.micro IP6 1P
Elastic IPs Private DNS ip-172-31-25-121 ec2.internal
Availability zene us-east-1b Private IPs 172.31.25121

Security groups Docker-SwarmWideSG-L42ISVIPZELS,

Docker-ManagerVipe 3G-40ISRFIXNSGY

view inbound rules

Figure 8-5. EC2 instances for the Docker swarm

Secondary private IPs

SSH Login to the Swarm manager using the public IP address, which may be obtained from the EC2

console, as shown in Figure 8-5.

[root@localhost ~]# ssh -i "docker.pem" docker@54.84.133.157

Welcome to Docker!

135

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 8 © SCHEDULING

List the nodes in the Swarm; three nodes should be listed.

~ $ docker node 1s

1D HOSTNAME STATUS AVAILABILITY MANAGER
STATUS

Owaa5g3b6j641xtwsygvivwci ip-172-31-0-147.ec2.internal Ready Active

e7viginoluuoikynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active

ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

Creating and Scheduling a Service: The Spread Scheduling

First, we discuss the default spread scheduling using a MySQL database service as an example. From the
Swarm manager node, run the following command to create a five-replica service for MySQL. The output is
the service ID (shown in italics).

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 5 \

> --name mysql \

> mysql

lonpemnoz4x11h3svsumab8uo

Subsequently, list the services using docker service ls. Initially, the REPLICAS column could be 0/5,
indicating that none of the replicas are scheduled and running yet.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
lonpemnoz4xl mysql replicated 0/5 mysql:latest

Run the command again after a while; all the replicas should be running as indicated by a 5/5 in the
REPLICAS column. List the service replicas using the docker service ps mysql command. The tasks should

be running or preparing to run.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

fwjbu3gt2zno mysql.1 mysql:latest ip-172-31-0-147.ec2.internal
Running Preparing 8 seconds ago

wo521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Preparing 8 seconds ago

z9wn2nrzfzt8 mysql.3 mysql:latest ip-172-31-0-147.ec2.internal
Running Preparing 8 seconds ago

tm8jbque3xbb mysql.4 mysql:latest ip-172-31-25-121.ec2.internal
Running Preparing 8 seconds ago

7drxfy3vbmps mysql.5 mysql:latest ip-172-31-29-67.ec2.internal
Running Preparing 8 seconds ago

Following the spread scheduling strategy, two of the replicas are listed as scheduled on one of the
worker nodes, two on the other worker node, and one on the manager node. Because of the odd number of
replicas, the placement cannot be completely evenly distributed, but a single node does not have more than
two replicas.

136

CHAPTER 8 © SCHEDULING

To see how the spread scheduling strategy distributes the replicas evenly across a Swarm, scale the
service to six replicas. The output of the docker service scale command is in italics.

~ $ docker service scale mysql=6
mysql scaled to 6

Subsequently, list the replicas. Each node has two replicas scheduled on it, as the spread scheduling
policy is designed to schedule.

~ $ docker service ps mysql

D

DESIRED STATE
fwjbu3gt2zno
Running
w0521ik1awjf
Running
z9wn2nrzfzt8
Running
tm8jbque3xbb
Running
7drxfy3vbmps
Running
utjo8lwbtzf7
Running

NAME IMAGE
CURRENT STATE
mysql.1 mysql:latest

Running 13 seconds ago
mysql.2 mysql:latest
Running 12 seconds ago
mysql.3 mysql:latest
Running 13 seconds ago
mysql.4 mysql:latest
Running 8 seconds ago
mysql.5 mysql:latest
Running 12 seconds ago
mysql.6 mysql:latest
Running 5 seconds ago

NODE
ERROR

PORTS

ip-172-31-0-147.ec2.internal

ip-172-31-29-67.ec2.internal

ip-172-31-0-147.ec2.internal

ip-172-31-25-121.ec2.internal

ip-172-31-29-67.ec2.internal

ip-172-31-25-121.ec2.internal

As a service replica or task is nothing but a slot to run a container, each node runs two containers for the

mysql service.

To further demonstrate spread scheduling, scale down the service to three tasks. The command output

is in italics.

~ $ docker service scale mysql=3
mysql scaled to 3

List the service tasks. Each node has one task running on it, which again is an evenly spread scheduling

of tasks.

~ $ docker service ps mysql

D

DESIRED STATE
wo521ik1awjf
Running
z9wn2nrzfzt8
Running
utjo8lwbtzf7
Running

NAME IMAGE
CURRENT STATE
mysql.2 mysql:latest

Running 40 seconds ago
mysql.3 mysql:latest
Running 41 seconds ago
mysql.6 mysql:latest
Running 33 seconds ago

NODE
ERROR

PORTS

ip-172-31-29-67.ec2.internal

ip-172-31-0-147.ec2.internal

ip-172-31-25-121.ec2.internal

137

CHAPTER 8 © SCHEDULING

Desired State Reconciliation

When a service is created or is scaled up or down, the service initially has a discrepancy between the
current state and the desired state. The different values for the desired state are ready, running, shutdown,
and accepted. Docker services are designed for desired state reconciliation, which implies that the Swarm
manager continuously monitors the cluster state to reconcile any differences between the desired state
of a service and the current state. The current state of a task can be assigned, preparing, ready, running,
shutdown, or pending. A task that has been assigned to a node but is not currently running is in the assigned
state. A task that has desired state as running and is preparing to run is in the preparing current state. A task
is in the pending state if no node in the Swarm can run the task.

In the following task listing, some tasks have a desired state and current state of running. These tasks
have reconciled their desired state. One task has a desired state set to running, but the current state is
pending. Another task has a desired state set to shutdown and a current state set to assigned.

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 minutes ago

x30y3jleao47 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago

w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 minutes ago

j91po8ojofj7 mysql.4 mysql:latest

Running Pending 28 seconds ago

ph1zpsjsvp69 _ mysql.4 mysql:latest ip-172-31-7-137.ec2.internal
Shutdown Assigned 33 seconds ago

d3oxy6hxfjh3 _mysql.4 mysql:latest ip-172-31-40-70.ec2.internal
Shutdown Running 43 seconds ago

ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 8 minutes ago

In an earlier task listing, all tasks were in the current state preparing and the desired state running.

Swarm mode is designed to reconcile the desired state as much as feasible, implying that if node
resources are available, the desired number of replicas runs. To demonstrate, update the Docker for AWS
CloudFormation stack by choosing Actions » Update Stack, as shown in Figure 8-6.

@ CloudFormation v

Stacks

o
0 Introducing StackSets
AWS StackSel i a container for a set of AWS CloudFormation stacks and aliows you 10 create stacks across mulliple AWS ACCounts and AWS Reglons. Open he StackSets console 1o get
started
Create Stack |~ [RECTEER Design tempiate cla

Filter: AcCtive = Create Change Set For Curent Stack Showing 1 stack

Stack Mame Status Description

Delete Stack
< Docker

p700 CREATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2)

View/Ean iemplate in Designer

Figure 8-6. Updating a stack

138

CHAPTER 8 © SCHEDULING

Decrease the number of worker nodes from two to one, as shown in Figure 8-7.

@ CloudFormation

Stacks » Stack Detail

Update Docker stack

Select Template
| specity Details
Options

Review

Specify Details

> Update Stack

Specify parameter valuss, You can use of change the defaull parameter values, which are defingd in the AWS CloudFarmation template, Learn maore,

Stack name Docker

Parameters

Swarm Size

Number of Swarm
managers?

Number of Swarm worker
nodes?

Figure 8-7. Decreasing the number of worker nodes to one

Subsequently, list the service replicas from the Swarm manager node.

docker service ps mysql

The service replicas running on the Swarm worker node that was made to leave the Swarm are listed as
shutdown. New replicas are started on the remaining two nodes in the Swarm to reconcile the desired state.

~ $ docker service ps mysql

ID

DESIRED STATE

p14bbk7ijimt
Running
wo521iklawjf
Running
uatsaay7axlc
Running
z9wn2nrzfzt8
Shutdown
witlwofom42q
Running
qc75buhzzct3
Shutdown
s09ts9s8np3d
Running
utjo8lwbtzf7
Running

NAME IMAGE
CURRENT STATE
mysql.1 mysql:latest

Running 5 minutes ago
mysql.2 mysql:latest
Running 7 minutes ago
mysql.3 mysql:latest
Running about a minute ago
_mysql.3 mysql:latest
Running 2 minutes ago
mysql.4 mysql:latest
Running about a minute ago
_mysql.4 mysql:latest
Running 2 minutes ago
mysql.5 mysql:latest
Running 5 minutes ago
mysql.6 mysql:latest
Running 7 minutes ago

NODE

ERROR PORTS
ip-172-31-29-67.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-25-121.ec2.internal
Owaa5g3b6j641xtwsygvjvwci
ip-172-31-29-67.ec2.internal
0waa5g3b6j641xtwsygvijvwcl

ip-172-31-25-121.ec2.internal

ip-172-31-25-121.ec2.internal

139

CHAPTER 8 © SCHEDULING

Listing only the replicas with a desired state of running, the six replicas are listed as scheduled evenly
between the two nodes—three replicas on the manager node and three replicas on the worker node.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

p14bbk7ijimt mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 6 minutes ago

w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago

uatsaay7axlc mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 2 minutes ago

witlwofom42q mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago

s09ts9s8np3d mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 6 minutes ago

utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 8 minutes ago

The spread scheduling strategy does not reschedule already running replicas to achieve even spread
across a Swarm if new nodes are added to the Swarm. To demonstrate this, we increase the number of
worker nodes back to two, as shown in Figure 8-8.

Update Docker stack

Select sempiae Specify Details
| specity Details
Options Spec ify parameter values. You can use or change the default parameter values, which are defined in the AWS CloudFormation template. Learn mare.

Review

Stack name Docker

Parameters
Swarm Size
Number of Swarm 1 v | Number of Swanm manager nodes (1, 3, 5)
managers?
|} Number of Swarm worker 2 Numder of worker nodes in the Swam (0-1000

nodes?
Figure 8-8. Re-adding a worker node to Swarm
Adding a node to a swarm does not shut down replicas on other nodes and start replicas on the new
node. Listing the running replicas does not indicate a replacement of the service replicas. Service replicas

continue to run on the nodes they were running on before the new node was added—three on the manager
node and three on the worker node.

140

~ $ docker service ps mysql

ID

DESIRED STATE

p14bbk7ijimt
Running
wo0521iklawjf
Running
uatsaay7axlc
Running
z9wn2nrzfzt8
Shutdown
witlwofom42q
Running
qc75buhzzct3
Shutdown
s09ts9s8np3d
Running
utjo8lwbtzf7
Running

Scheduling Tasks Limited by Node Resource Capacity

NAME

IMAGE

CURRENT STATE

mysql.1
Running 15
mysql.2
Running 17
mysql.3
Running 12
_ mysql.3
Running 13
mysql.4
Running 12
_ mysqgl.4
Running 13
mysql.5
Running 15
mysql.6
Running 17

mysql:

minutes

mysql:

minutes

mysql:

minutes

mysql:

minutes

mysql:

minutes

mysql:

minutes

mysql:

minutes

mysql:

minutes

latest
ago
latest
ago
latest
ago
latest
ago
latest
ago
latest
ago
latest
ago
latest
ago

ERROR

CHAPTER 8

NODE

PORTS
ip-172-31-29-67.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-25-121.ec2.internal
Owaa5g3b6j641xtwsygvjvwci
ip-172-31-29-67.ec2.internal
0waa5g3b6j641xtwsygvijvwcl

ip-172-31-25-121.ec2.internal

ip-172-31-25-121.ec2.internal

SCHEDULING

The scheduling policy is limited by the available node resources, implying that service replicas cannot

be made to run if not enough node resources in terms of CPU and memory are available. Resource usage
cannot exceed node capacity. The replicas are still allocated to the service to define the desired state but may
not be running due to insufficient resources. To demonstrate this, we remove the service mysql and create
the service again with the specified resource requests and limits. Command outputs are shown in italics.

~ $ docker service rm mysql

mysql

~ $ docker service create \

vV VvV VvV Vv

0qe2thyodlviroli6k8thist1

--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 1 \
--name mysql \
--reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb --limit-memory 512mb mysql

Listing the services indicates that one replica of the service is created.

~ $ docker service 1s

ID
0qge2thyodlvi

NAME
mysql

MODE
replicated

REPLICAS

1/1

IMAGE
mysql:latest

PORTS

The single replica is scheduled on the manager node, which is chosen randomly if all nodes in a Swarm
have the same node ranking.

141

CHAPTER 8 © SCHEDULING

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
opxfane7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 8 seconds ago

Next, to potentially make the service replicas consume more resources than available, scale the service
to five replicas.

~ $ docker service scale mysql=5
mysql scaled to 5

Listing the services indicates that 3/5 Replicas are running.
~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
0ge2thyodlvi mysql replicated 3/5 mysql:latest

Listing the service replicas indicates that some of the replicas are pending instead of running.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

opxfane7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 4 minutes ago

x30y3jleao47 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 3 minutes ago

w4ivsbvwqqzq mysql.3 mysql:latest

Running Pending 3 minutes ago

d3oxy6hxfjh3 mysql.4 mysql:latest

Running Pending 3 minutes ago

ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 3 minutes ago

The pending state implies that the replicas are allocated to the service but not scheduled on any node
yet. Only three replicas could run based on the requested resources and available node resources, one on
each node.

Because the replicas are not scheduled due to lack of resources, we add one or more new worker nodes
to potentially schedule the replicas to reconcile the desired state. Increase the number of worker nodes to
five, as shown in Figure 8-9.

142

CHAPTER 8 © SCHEDULING

Update Docker stack

Select Template Specify Details

| Specify Details
Options Specify parameter values. You can use of change the defaull parameter values, which are defined in the AWS CloudFormation template. Leam more.
Review

Stack name Docker

Parameters

Swarm Size

Number of Swarm 1 v | Number of Swarm manager nodes (1, 3, 5
managers?

I}Numherof Swarm worker Number of worker nodes in the Swarm (0-1000
nodes?

Figure 8-9. Increasing the number of worker nodes to five

The Swarm should list six nodes after a new node is added. As resources became available for the
pending tasks, the tasks get scheduled and start running.

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 5 minutes ago

x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal

Running Running 4 minutes ago

w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal

Running Running 21 seconds ago

d3oxy6hxfjh3 mysql.4 mysql:latest ip-172-31-40-70.ec2.internal

Running Preparing 30 seconds ago

ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 4 minutes ago

If the number of worker nodes is decreased, some of the tasks are descheduled, as indicated by the
shutdown desired state.

143

CHAPTER 8 © SCHEDULING

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

opxfane7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 minutes ago

x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago

w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 minutes ago

j91lpo8ojofj7 mysql.4 mysql:latest

Running Pending 28 seconds ago

phizpsjsvp69 _mysql.4 mysql:latest ip-172-31-7-137.ec2.internal
Shutdown Assigned 33 seconds ago

d3oxy6hxfjh3 _ mysql.4 mysql:latest ip-172-31-40-70.ec2.internal
Shutdown Running 43 seconds ago

ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 8 minutes ago

Updating the service to lower CPU and memory resource usage reserved only updates the
UpdateConfig for the service. This does not lower the resource usage of the already running tasks or
make pending or shutdown tasks run. As an example, lower the resource reserves and limits for the mysql
service when some of the tasks are pending or shutdown due to lack of resources.

~ $ docker service update --reserve-cpu .1 --limit-cpu .5 --reserve-memory 64mb
--limit-memory 128mb mysql
mysql

The UpdateConfig gets modified, but only applies to new replicas created after that point.

~ $ docker service inspect mysql

[

1
"Resources": {

"Limits": {

"NanoCPUs": 500000000,
"MemoryBytes": 134217728

}

"Reservations": {
"NanoCPUs": 100000000,
"MemoryBytes": 67108864

b

Only three of the replicas in the mysql service are actually running.

144

CHAPTER 8 © SCHEDULING

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

opxfane7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 minutes ago

x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 10 minutes ago

w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 5 minutes ago

rmoujdqgevtsb mysql.5 mysql:latest

Running Pending 33 seconds ago

To force the service tasks to use the new resource settings, scale down the service to one task and then
scale back up to five tasks.

~ $ docker service scale mysql=1
mysql scaled to 1
~ $ docker service scale mysql=5
mysql scaled to 5

All five tasks are now running.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

anai3mptbnkp mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 17 seconds ago

opxf4ne7iyy6 _ mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Shutdown Shutdown 18 seconds ago

1mkn8150t334 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 seconds ago

7uz7q86wnzn4 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 11 seconds ago

ubh4m39aw8m9 mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 11 seconds ago

56pnrzajogvs mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 seconds ago

Adding Service Scheduling Constraints

Docker Swarm supports placement or scheduling constraints for scheduling new tasks. Service placement
constraints are additional criteria for placement of service tasks and could be based on node attributes,
metadata, and engine metadata. The Swarm scheduler uses the following sequence to schedule a service task.

1. Does the node satisfy all the placement constraints?
2. Does a node meet the scheduling policy requirements of an even spread?

3. Does the node have sufficient resources to schedule a task?

145

CHAPTER 8 © SCHEDULING

A placement constraint may be added using the --constraint option with the docker service create
command. For an already running service, constraints may be added and removed with the --constraint-add
and --constraint-rmoptions, respectively, with the docker service update command. The node
attributes discussed in Table 8-1 may be used to specify constraints.

Table 8-1. Node Attributes for Constraints

Node Attribute Description Example

node.id Specifies the node ID. Node IDs are listed using the node.id==a3r56hj7y
docker node 1s command.

node.hostname Specifies the node’s hostname. The node’s hostname node.hostname!=ip-10-0-0-

is listed with the docker node 1s command. ec2.internal
node.role Specifies the node role, which is one of worker or node.role==manager
manager.
node.labels Specifies the node labels added by a user. A label node.labels.db==mysql

is a key-value pair. When adding a node label, the
node.labels. prefix is to be omitted and gets added
automatically. Adding and using node labels is
discussed in a subsequent section.

engine.labels Docker Engine labels such as drivers, operating engine.labels.os==coreos
system, version.

Next, we discuss some examples of using scheduling constraints.

Scheduling on a Specific Node

In this section we schedule service replicas on specific nodes in a Swarm. List the node IDs with the docker
node ls command. The Swarm has the following three nodes available for scheduling.

~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER
STATUS

81h6uvu8uqoemnovzkgbv7mzg ip-172-31-2-177.ec2.internal Ready Active

e7viginoluuoikynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active

ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

We can schedule a service by node role. Create a mysql service with the placement constraint that the
service tasks be scheduled on worker nodes only. First, remove the mysql service if it’s already running

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql"\
> --replicas 3 \

» --constraint node.role==worker \

> --name mysql \

> mysql

nzgte4zacix8itx6t98y5gi42

146

CHAPTER 8 © SCHEDULING

The service is created and three tasks are scheduled only on the two worker nodes, as listed in the
running service tasks.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

f5t15mnrftoh mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 19 seconds ago

oxvg4ljugbyz mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago

k5jo08621vsxf mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago

Next, we use the node ID to schedule a service’s tasks. Copy the node ID for the manager node, which
is also the leader in the Swarm being the only manager node. Substitute the node ID in the following
command to create a service for the MySQL database and schedule replicas only on the manager node.

docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 3 \
--constraint node.id ==<nodeid>
--name mysql \

mysql

A service is created with three tasks. Command output is shown in italics.

~ $ docker service create \
--env MYSQL_ROOT_PASSWORD="mysql'\
--replicas 3 \
--constraint node.id==ptm7e0p346zwypos7wnpcm72d\
--name mysql \
mysql
u1qi6zqnch9hnyx6k516axq7h

VvV V V VvV Vv

All the three replicas of the service are scheduled on the manager node only.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

1bttugsqdjvy mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 21 seconds ago

89x0z940n0fb mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 21 seconds ago

3s6508aimdaj mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 22 seconds ago

147

CHAPTER 8 © SCHEDULING

Adding Multiple Scheduling Constraints

Multiple node constraints may also be specified and every constraint expression must be met using AND
for the scheduler to schedule a replica on a node. As an example, we create a service with two roles, one
that constrains the node role to worker and the other constrains the node hostname not to be a specific
hostname ip-172-31-2-177.ec2.internal.

~ $ docker service create \

> --env MYSQL ROOT_PASSWORD="mysql'\

> --replicas 3\

> --constraint node.role==worker \

> --constraint node.hostnamel=ip-172-31-2-177.ec2.internal\
> --name mysql \

> mysql

8790c8kauhz8ybdwv2ryc2vqr

A service gets created. Listing the services lists 3/3 replicas as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
87goc8kauhz8 mysql replicated 3/3 mysql:latest

Listing the service tasks indicates that all tasks are scheduled on a single worker node. The two
constraints are met: the node is a worker node and not the worker node with hostname ip-172-31-2-177.ec2.

internal.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

j1fk79mb6méa mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago

if5y39ky884q mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago

zctmémzbladu mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago

If the mysql service is updated to remove the constraints, the spread scheduling strategy reschedules the
tasks based on node ranking. As an example, update the service to remove the two placement constraints
added. A constraint is removed with the -constraint-rm option of the docker service update command.

~ $ docker service update \

> --constraint-rm node.role==worker \

> --constraint-rm node.hostname!=ip-172-31-2-177.ec2.internal\
> mysql

mysql

When a service is updated to remove constraints, all the service tasks are shut down and new service
tasks are started. The new service tasks are started, one each on the three nodes in the Swarm.

148

CHAPTER 8 © SCHEDULING

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
d22bkgteivot mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Ready Ready less than a second ago

j1fk79mb6méa _mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Running 1 second ago

mp757499j3io mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 1 second ago

if5y39ky884q _mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 2 seconds ago

jtdxuctebofl mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 4 seconds ago

zctmémzbl4du _ mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 5 seconds ago

List only the running tasks. One task is listed running on each node.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

d22bkgteivot mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 46 seconds ago

mp757499j3io mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 49 seconds ago

jtdxuctebofl mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 53 seconds ago

Similarly, multiple node constraints could be used to run replicas only on a manager node. Next, we
update the mysql service to run on a specific manager node. First, promote one of the worker nodes to
manager.

~ $ docker node promote ip-172-31-2-177.ec2.internal
Node ip-172-31-2-177.ec2.internal promoted to a manager in the swarm.

Subsequently, two manager nodes are listed as indicated by the Manager Status for two of the nodes.

~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER
STATUS
81h6uvu8uqoemnovzkgbv7mzg ip-172-31-2-177.ec2.internal Ready Active Reachable
e7viginoluuoikynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

Update the mysql service to add multiple node constraints to run replicas only on a specific manager
node. Constraints are added using the --constraint-add option of the docker service update command.

~ $ docker service update \

> --constraint-add node.role==manager \

> --constraint-add node.hostname==ip-172-31-2-177.ec2.internal\
> mysql

mysql

149

CHAPTER 8 © SCHEDULING

Again, all service tasks are shut down and new tasks are started, all on the specified manager node that
was promoted from the worker node.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

eghmior6ygsg mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 28 seconds ago

bhfngac5ssm7 mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 22 seconds ago

ts3fgvq9000s mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 25 seconds ago

Adding Node Labels for Scheduling

Next, we discuss how node labels can be used to specify service placement constraints. Labels may be
added to a node with the following command syntax, in which variables are <LABELKEY>, <LABELVALUE>, and
<NODE>. The <NODE> is the node ID or hostname.

docker node update --label-add <LABELKEY>=<LABELVALUE> <NODE>

As an example, add the label db=mysql to the node with a hostname set to ip-172-31-25-121.ec2.
internal, which is the leader node.

~ $ docker node update --label-add db=mysql ip-172-31-25-121.ec2.internal
ip-172-31-25-121.ec2.internal

A node label is added. On inspecting the node, the label is listed in the Labels field.

~ $ docker node inspect ip-172-31-25-121.ec2.internal
[
"Spec": {
"Labels": {
"db": "mysql”
1

"Role": "manager",
"Availability": "active"

1

Next, create a service that uses the node label to add a placement constraint. The --constraint option
for the label must include the prefix node.labels.

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL ROOT_PASSWORD='mysql'\

> --replicas 3 \

» --constraint node.labels.db==mysql \
> --name mysql \

> mysql

2hhccmj9senseazbetiidekoa
150

CHAPTER 8 © SCHEDULING

The service is created. Listing the tasks lists all the tasks on the Leader manager node, which is what the
node label constraint specified.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

g5jz9im3fufv mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago

bupr27bs57h1 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago

5bb2yf8aehqgn mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago

The label added may be removed with the --1abel-rm option of the docker node update commandin
which the only the label key is specified.

docker node update --label-rm db ip-172-31-25-121.ec2.internal

Adding, Updating, and Removing Service Scheduling Constraints

In an earlier section, we discussed adding placement constraints when creating a service with docker
service create. Placement constraints may be added/removed with the docker service update
command using the --constraint-add and --constraint-rm options. To discuss an example of updating
placement constraints, we create a mysql service with three replicas and no placement constraints to

start with.

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\

> --replicas 3 \
> --name mysql \
> mysql

az3cqbsxwrrk4mxkksdu21i25

Amysql service gets created with three replicas scheduled on the three nodes in the Swarm, using the
spread policy.

Next, update the service with the docker service update command to add a constraint for the service
replicas to run only on the manager nodes.

~ $ docker service update \

> --constraint-add node.role==manager \
> mysql

mysql

In a Swarm with two manager nodes, all the service tasks are shut down and new tasks are started only
on the manager nodes.

151

CHAPTER 8 © SCHEDULING

~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
pjwseruvy4rj mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 seconds ago

s66g9stz9afs _mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Shutdown Shutdown 4 seconds ago

yqco9zdovq79 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 seconds ago

8muubgbghhnd _mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Shutdown Shutdown 10 seconds ago

8x7xlavecxdau mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 7 seconds ago

gx95vwi2h547 _ mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 7 seconds ago

Scheduling constraints may be added and removed in the same docker service update command.
As an example, remove the constraint for the node to be a manager and add a constraint for the node to be a
worker.

~ $ docker service update \

> --constraint-rm node.role==manager \
> --constraint-add node.role==worker \
> mysql

mysql

Again. all the service tasks are shut down and new tasks are started only on the worker nodes.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

6ppgmvw9lv7s mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 9 seconds ago

qmoloki65v9s mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 17 seconds ago

yplotc1ft92o mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running

If the only scheduling constraint that specifies the node role as worker is removed, the spread
scheduling strategy starts new tasks spread evenly across the Swarm. To demonstrate, remove the constraint

for the node role to be a worker.

~ $ docker service update --constraint-rm node.role==worker mysql
mysql

Subsequently, new tasks are spread across the nodes in the Swarm.

152

CHAPTER 8 © SCHEDULING

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

jpx4jjw619ods mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 5 seconds ago

ngajiik1ihugb mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 12 seconds ago

40eaujzlux88 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 8 seconds ago

Spread Scheduling and Global Services

A global service runs one task on every node in a Swarm. A global service cannot be scaled to create more/
fewer tasks. As a result, the spread scheduling policy concept does not apply to global services. However,
node constraints may be applied to global services. As an example, we create a global service for the mysql
database. Apply a placement constraint that the service should be available only on worker nodes.

~ $ docker service create \

> --mode global \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --constraint node.role==worker \

> --name mysql \

> mysql

Jtzcwatpo01q9r26niuubd8me

The global service is created. Listing the service tasks for the tasks with desired state as running lists
only the tasks on the worker nodes.

~ $ docker service ps -f desired-state=running mysql

1D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

o5nskzpv27j9 mysql.e7viginoluuoilkynjnl33v9pa mysql:latest ip-172-31-29-67.ec2.internal
Running Running 17 seconds ago

If created without the constraint to schedule on worker nodes only, a global service schedules one task
on each node, as demonstrated by the following example.

~ $ docker service rm mysql

mysql

~ $ docker service create \
--mode global \
--env MYSQL_ROOT_PASSWORD="mysql'\
--name mysql \

mysql

mv9yzyyntdhzz4izssbutcsvw

vV V VvV Vv

153

CHAPTER 8 © SCHEDULING

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

mc87btddhmpl mysql.e7viginoluuolkynjnl33v9pa mysql:latest ip-172-31-29-67.ec2.internal
Running Running 19 seconds ago

oowfdq9sd8yt mysql.ptm7e0p346zwypos7wnpcm72d mysql:latest ip-172-31-25-121.ec2.internal
Running Running 19 seconds ago

wt2q5k2dhqjt mysql.81h6uvu8uqoemnovzkgbv7mzg mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago

Summary

This chapter discussed the scheduling policy of spread used in the Docker Swarm mode, whereby service
replicas are spread evenly across nodes in a Swarm based on node ranking; a higher node ranking gets a
service replica placement priority. We also discussed the effect of limited node resource capacity and how
to alleviate it by adding new nodes to the Swarm. We discussed placement constraints for scheduling new
replicas. The spread scheduling policy is not relevant for global services as they create one service task on
each node by default. However, scheduling constraints may be used with global services. In the next chapter
we discuss rolling updates to Docker services.

154

CHAPTER 9

Rolling Updates

The Docker Swarm mode provisions services consisting of replicas that run across the nodes in the Swarm.
A service definition is created when a service is first created/defined. A service definition is created with the
docker service create command. That command provides several options, including those for adding
placement constraints, container labels, service labels, DNS options, environment variables, resource
reserves and limits, logging driver, mounts, number of replicas, restart condition and delay, update delay,
failure action, max failure ratio, and parallelism, most of which were discussed in Chapter 4.

The Problem

Once a service definition has been created, it may be required to update some of the service options such as
increase/decrease the number of replicas, add/remove placement constraints, update resource reserves and
limits, add/remove mounts, add/remove environment variables, add/remove container and service labels,
add/remove DNS options, and modify restart and update parameters. If a service is required to be shut down
as a whole to update service definition options, an interruption of service is the result.

The Solution

Docker Swarm mode includes the provision for rolling updates. In a rolling update, the service is not shut
down, but individual replicas/tasks in the service are shut down one at a time and new service replicas/
tasks based on the new service definition are started one at a time, as illustrated in Figure 9-1. As a result the
service continues to be available during the rolling update. The service tasks that are served to a client could
be from both old and new service definitions during a rolling update. As an example, if the rolling update
performs an update to a more recent image tag, some of the tasks served to external clients during the rolling
update could be from a mix of old image tag and new image tag.

© Deepak Vohra 2017 155
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_9

https://doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 9 © ROLLING UPDATES

Rolling Update Service

mysql

Service
mysq|

Ser;(ice

eplicas

4 ()

N\ J \ J

4)
J _

Figure 9-1. Rolling update

Rolling update creates a new service definition and a new desired state for a service. Rolling update
involves shutting down all service replicas and starting all new service replicas and does not apply to service
replicas that have not yet been scheduled, due to lack of resources for example. Even updating just the
number of replicas in a rolling update shuts down or fails all the old replicas and starts all new replicas.

The following sequence is used by the scheduler during a rolling update.

1.

Eal A

156

The first task is stopped.
An update for the stopped task is scheduled.
A Docker container for the updated task is started.

If the update to a task returns RUNNING, wait for the duration specified in
--update-delay and start the update to the next task.

5. If during the update, a task returns FAILED, perform the --update-failure-

CHAPTER 9 * ROLLING UPDATES

action, which is to pause the update by default.

6. Restart a paused update with docker service update <SERVICE-ID>.

7. Ifanupdate failure is repeated, find the cause of the failure and reconfigure the
service by supplying other options to the docker service update.

Setting the Environment

Create a Docker Swarm consisting of a manager node and two worker nodes using Docker for AWS, as
discussed in Chapter 3. Obtain the public IP address of the manager instance from the EC2 console and then

SSH login to the instance.

[root@localhost ~]# ssh -i "docker.pem" docker@54.84.133.157

Welcome to Docker!
List the Swarm nodes.

~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
81h6uvu8uqoemnovzkgbvimzg ip-172-31-2-177.ec2.internal Ready Active
e7viginoluuoikynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active

Creating a Service with a Rolling Update Policy

A rolling update policy or update config consists of the service definition options discussed in Table 9-1.

Table 9-1. Rolling Update Options

Leader

Option

Description

Default Value

--update-delay

--update-failure-action

--update-max-failure-ratio

--update-monitor

--update-parallelism

Delay between updates (ns|us|ms|s|m|h).

Action on update failure. Value may be pause
or continue.

Duration after each task update to monitor for
failure (ns|us|ms|s|m|h).

Maximum number of tasks updated

simultaneously. A value of 0 updates all at once.

0 seconds

pause

0 seconds

157

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 9 * ROLLING UPDATES

To configure the rolling update policy at service deployment time, the options to be configured must
be supplied when the service is created. As an example, create a service for MySQL database and specify the
update policy options --update-delay and --update-parallelism.

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 1 \

> --name mysql \

> --update-delay 10s \

> --update-parallelism 1 \

> mysql:5.6

wr0z48viuguk1c40pad2ywrpn

The service is created. Listing the services may not list all replicas as running initially, as indicated by
0/1in the REPLICAS column.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
wr0z48viuguk mysql replicated 0/1 mysql:5.6

Running the same command after a while should list all replicas as running, as indicated by 1/1 in
REPLICAS column.

~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
wroz48viuguk mysql replicated 1/1 mysql:5.6

The single service replica is scheduled on the manager node itself and the Docker container for the
replica is started.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

38dmogmé6cmvk mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 13 seconds ago

Creating a service using rolling update options does not by itself demonstrate a rolling update. It only
defines the UpdateConfig settings of the service. In the next section we perform a rolling update.

Rolling Update to Increase the Number of Replicas

A rolling update could be used to update the number of replicas with the --replicas option to the docker
service update command. A rolling update updates the UpdateConfig policy applied when the service

is first deployed. Next, we update the number of replicas for the mysql:5.6 image based service from the
one replica created in the preceding section. Run the following command to update the service definition
to five replicas from one replica. The - -update-delay and --update-parallelism options modify the
UpdateConfig of the service definition. The docker service update command outputs the service name if
the update is successful.

158

CHAPTER 9 * ROLLING UPDATES

~ $ docker service update \
> --replicas 5 \

> --update-delay 20s \

> --update-parallelism 1 \
> mysql

mysql

Subsequently, the services listing may list some of the replicas as not started yet in the output to the
docker service 1ls command. But, running the command again after a while should list all replicas as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
wr0z48viuguk mysql replicated 5/5 mysql:5.6

During the rolling update, all the running tasks are shut down and new tasks are started. The desired
state of the mysql.1 task gets updated to shutdown and the current state is set to failed. A new taskmysql.1
is started.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
ydqj6vforsgw mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 26 seconds ago

38dm9gmécmvk _ mysqgl.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 31 seconds ago "task: non-zero exit (137)"

7bns96iu8ygz mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 32 seconds ago

62wfdbcv3cra mysql.3 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 33 seconds ago

ql66z5x0a21f mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 14 seconds ago

3n3b1j7ey732 _ mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 19 seconds ago "task: non-zero exit (137)"

b11365y60vuu mysql.5 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 33 seconds ago

When scaling from one to five replicas, first a few new tasks are started and then the task running
initially is shut down so that the service continues to be available during the rolling update. If the only task in
the service were to be shut down first before starting any new tasks, the service wouldn’t have any running
tasks for a short while.

The desired state of running five replicas is not immediately reconciled during a rolling update. Fewer
than five tasks could be running while the rolling update is in progress. Listing the running service tasks lists
only three tasks as running.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

ydqjévforsgw mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 35 seconds ago

7bns96iu8ygz mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 40 seconds ago

ql66z5x0a21f mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 22 seconds ago

159

CHAPTER 9 © ROLLING UPDATES

When the rolling update has completed, five tasks are running.

~ $ docker service ps -f desired-state=running mysql

1D

DESIRED STAT
u8falo7g95cq
Running
luabknwzwgoj
Running
ce4l2qgvtcanv
Running
iw8vwsxq3tjz
Running
gqfisfionjtav
Running

E

NAME IMAGE
CURRENT STATE ERROR
mysql.1 mysql:5.6
Running 20 seconds ago
mysql.2 mysql:5.6
Running 13 seconds ago
mysql.3 mysql:5.6
Running 25 seconds ago
mysql.4 mysql:5.6
Running 6 seconds ago

mysql.5 mysql:5.6

Running 25 seconds ago

NODE

PORTS
ip-172-31-25-121.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-2-177.ec2.internal

ip-172-31-25-121.ec2.internal

ip-172-31-29-67.ec2.internal

Inspecting the service should list the updated number of replicas. The UpdateConfig is also listed with
the docker service inspect command.

~ $ docker service inspect mysql

[

"Spec": {

160

"Name": "mysql",
3,
"Mode": {
"Replicated": {
"Replicas": 5
}
1,

"UpdateConfig": {

1,

"Parallelism": 1,
"Delay": 20000000000,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

"RollbackConfig": {

1

"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

CHAPTER 9 * ROLLING UPDATES

Rolling Update to a Different Image Tag

A use case for a rolling update is to update to a newer image tag. As an example, perform a rolling update to
update to Docker image mysql:latest from mysql:5.6 for the mysql service. Update parallelismissetto 2
to update two replicas at a time.

~ $ docker service update --image mysql:latest --update-parallelism 2 mysql

mysql

The service rolling update gets started. Listing the service replicas listsmysql:5.6 image-based replicas
as shutting down, as indicated by the shutdown desired state and mysql:latest image-based replicas as
starting, as indicated by the running desired state.

~ $ docker service ps mysql

D

DESIRED STATE
vqcbrhzwsuxz
Ready
8okswuu4dsgc
Shutdown
u8falo7q95cq
Shutdown
ydqj6vforsgw
Shutdown
38dm9gmé6cmvk
Shutdown
tvxjmahyo8uh
Running
luabknwzwgoj
Shutdown
7bns96iu8ygz
Shutdown
u2ea4xq4yxét
Running
ce4l2qvtcanv
Shutdown
62wfdbcv3cr4
Shutdown
iw8vwsxq3tjz
Running
ql66z5x0a21f
Shutdown
3n3b1j7ey732
Shutdown
f5vefomgluge
Running
gqfisfionjtav
Shutdown
b11365y60vuu
Shutdown

NAME IMAGE
CURRENT STATE
mysql.1 mysql:
Ready 7 seconds ago

_ mysqgl.1 mysql:
Running 7 seconds ago

_ mysqgl.1 mysql:
Failed 12 seconds ago

_ mysqgl.1 mysql:

Failed 56 seconds ago
_ mysqgl.1
Failed about a minute ago

mysql.2 mysql:
Running 2 seconds ago
_ mysql.2 mysql:

Failed 8 seconds ago
_ mysql.2
Failed 50 seconds ago

mysql.3 mysql:
Running 4 seconds ago
_ mysql.3 mysql:

Shutdown 4 seconds ago
_ mysql.3
Failed about a minute ago

mysql.4 mysql:
Running 37 seconds ago
_mysql.4 mysql:

Failed 43 seconds ago
_ mysqgl.4
Failed about a minute ago
mysql.5
Running 14 seconds ago
_ mysql.5
Failed 19 seconds ago
_ mysgl.5
Failed about a minute ago

mysql:

mysql:

mysql:

mysql:
mysql:
mysql:

mysql:

ERROR
latest

5.6

5.6
"task:
5.6
"task:
5.6
"task:
5.6

5.6
"task:
5.6

NODE
PORTS
ip-172-31-2-177.ec2.internal

ip-172-31-2-177.ec2.internal

ip-172-31-25-121.ec2.internal
non-zero exit (1)"
ip-172-31-25-121.ec2.internal
non-zero exit (1)"
ip-172-31-25-121.ec2.internal
non-zero exit (137)"
ip-172-31-29-67.ec2.internal

ip-172-31-29-67.ec2.internal
non-zero exit (137)"
ip-172-31-29-67.ec2.internal

"task: non-zero exit (137)"

latest

5.6

5.6
"task:
5.6

5.6
"task:
5.6
"task:
5.6

5.6
"task:

5.6
"task:

ip-172-31-2-177.ec2.internal
ip-172-31-2-177.ec2.internal

ip-172-31-2-177.ec2.internal
non-zero exit (1)"
ip-172-31-25-121.ec2.internal

ip-172-31-25-121.ec2.internal
non-zero exit (137)"

ip-172-31-25-121.ec2.internal
non-zero exit (137)"

ip-172-31-29-67.ec2.internal

ip-172-31-29-67.ec2.internal
non-zero exit (1)"

ip-172-31-2-177.ec2.internal
non-zero exit (1)"

161

CHAPTER 9 © ROLLING UPDATES

While the rolling update is in progress, some of the running tasks could be based on the previous
service specification (mysql:5.6), while others are based on the new service specification (mysql:latest).

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

vqcbrhzw5uxz mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 seconds ago

tvxjmahyo8uh mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 11 seconds ago

u2ea4xq4yxo6t mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 13 seconds ago

iw8vwsxq3tjz mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 46 seconds ago

f5vefomgluge mysql.5 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 23 seconds ago

When the rolling update has completed, all running tasks are based on the new service specification.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
vqcbrhzw5uxz mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 45 seconds ago

53choz0dd967 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running less than a second ago

u2ea4xqdyxo6t mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 53 seconds ago

tyo6vOyen7ev mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 21 seconds ago

upt2120sx7au mysql.5 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 25 seconds ago

Rolling Update to Add and Remove Environment Variables

The Docker image mysql requires one mandatory environment variable MYSQL_ROOT_PASSWORD for the root

password and supports some other environment variables that may also be specified. The other environment
variables are MYSQL DATABASE for the MySQL database, MYSQL_USER for the MYSQL user, MYSQL _PASSWORD for the
MySQL password, and MYSQL_ALLOW_EMPTY_PASSWORD for whether to allow the root password to be empty. The
MYSQL_ROOT_PASSWORD was already set when the mysql service was created. Using the --env-add option to the
docker service update command, we can add the other environment variables.

~ $ docker service update --env-add MYSQL DATABASE='mysqldb' --env-add MYSQL USER='mysql’
--env-add MYSQL PASSWORD='mysql' --env-add MYSQL ALLOW_EMPTY_ PASSWORD='no' --update-
parallelism 1 mysql

mysql

An output of mysql implies the command ran successfully.

The rolling update status is found with the docker service inspect command, which in addition to
listing the env variables added in the Env JSON object, lists the UpdateStatus. The State of the update status
is updating and the message is “update in progress”.

162

CHAPTER 9 * ROLLING UPDATES

~ $ docker service inspect mysql

[

{...
"Spec": {
"Name": "mysql",
"ContainerSpec": {

"Env": [
"MYSQL_ROOT_PASSWORD=mysql",
"MYSQL_DATABASE=mysqldb",
"MYSQL_USER=mysql",
"MYSQL_PASSWORD=mysql",
"MYSQL_ALLOW_EMPTY_PASSWORD=no"

1

1
"UpdateStatus": {
"State": "updating”,
"StartedAt": "2017-07-25T19:18:11.44139778Z",
"Message": "update in progress"
}
}

When the update has completed, the UpdateStatus state becomes "completed" and the Message
becomes "update completed".

~ $ docker service inspect mysql

[
. s
"UpdateStatus": {
"State": "completed"”,
"StartedAt": "2017-07-25T19:18:11.44139778Z",
"CompletedAt": "2017-07-25T19:20:37.912993431Z",
"Message": "update completed"

As indicated by the StartedAt and CompletedAt timestamp, the rolling update takes about two minutes.
Listing only tasks with desired state of running indicates that one task has been running for 21 seconds and
another task has been running for two minutes.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

3zhf94kklubr mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 21 seconds ago

ta16chskjlr9 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago

fc7uxvwvemk3 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running about a minute ago

163

CHAPTER 9 © ROLLING UPDATES

jir97p344kol mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about a minute ago

5rly53mcc8yq mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 45 seconds ago

The environment variables added may be removed with another docker service update command
and the --env-rm options for each environment variable to remove. Only the env variable name is to be
specified in - -env-1m, not the env value.

~ $ docker service update --env-rm MYSQL_DATABASE --env-rm MYSQL_USER --env-rm
MYSQL_PASSWORD ~--env-rm MYSQL ALLOW_EMPTY PASSWORD mysql

mysql

Another rolling update gets performed. All service tasks get shut down and new service tasks based
on the new service specification are started. The service definition lists only the mandatory environment
variable MYSQL_ROOT_PASSWORD.

~ $ docker service inspect mysql

[...
"Env": [
"MYSQL_ROOT_PASSWORD=mysql"
1,
}

"UpdateStatus": {
"State": "completed",
"StartedAt": "2017-07-25T19:20:57.968668604Z",
"CompletedAt": "2017-07-25T19:22:59.18517919Z",
"Message": "update completed"

Rolling Update to Set CPU and Memory Limits and Reserve

A rolling update may be used to set new resource limits and reserves.

~ $ docker service update --reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb -
-limit-memory 512mb mysql
mysql

New resource limits and reserves are configured, as listed in the service specification. The
PreviousSpec indicates that no Resources Limits and Reservations are configured to start with.

~ $ docker service inspect mysql

[

“Spec": {
"Name": "mysql",

"ContainerSpec": {

1

164

CHAPTER 9

"Resources": {

"Limits": {
"NanoCPUs": 2000000000,
"MemoryBytes": 536870912

)

"Reservations": {
"NanoCPUs": 1000000000,
"MemoryBytes": 268435456

b
13

"PreviousSpec": {

"Name": "mysql",
"Resources": {
"Limits": {},
"Reservations": {}
1
"UpdateStatus": {
"State": "updating",
"StartedAt": "2017-07-25T19:23:44.004458295Z",
"Message": "update in progress"

ROLLING UPDATES

Setting new resource limits and reserves are subject to node capacity limits. If requested resources

exceed the node capacity the rolling update may continue to run and not get completed, with some tasks in
the pending current state.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

5u7zifw15n7t mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

2kgsb16c8m8u mysql.2 mysql:latest

Running Pending about an hour ago

muo8iu9gqzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about an hour ago

aakxr8dw5s15 mysql.4 mysql:latest ip-172-31-2-177.ec2.internal
Running Running about an hour ago

26045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

If some tasks are pending, adding resources to the Swarm could make the pending tasks run. We

can update the CloudFormation stack to increase the number of worker nodes from 2 to 3, as shown in
Figure 9-2.

165

CHAPTER 9 © ROLLING UPDATES

@ CloudFormation v Stacks > Stack Detail > Update Stack

Update Docker stack

Select Template Spemfy Details
| Specity Details
Options Specifly parameter values, You can use or change the defaull parameter values, which are defined in the AWS CloudFormation template, Learn more.

Review

Stack name | Docker

Parameters
Swarm Size

Number of Swarm 1 ¥ | Number of Swamm manager nodes (1, 3, 5)
managers?

N Number of Swarm worker 3
nodes?

Figure 9-2. Increasing the number of worker nodes in the Swarm

Subsequently, the Swarm should list four nodes.

~ $ docker node 1s

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
81hbuvu8uqoemnovzkgbvimzg ip-172-31-2-177.ec2.internal Ready Active
e7viginOluuolkynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader
t4d0oaq9w2abavjx94zgkwc557 ip-172-31-42-198.ec2.internal Ready Active

With increased resources in the Swarm, the pending tasks also start to run.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

5u7zifw15n7t mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

2kgsb16c8m8u mysql.2 mysql:latest ip-172-31-2-177.ec2.internal

Running Running 7 minutes ago

mu08iu9gqzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal

Running Running about an hour ago

i5j2drlem7sf mysql.4 mysql:latest ip-172-31-42-198.ec2.internal
Running Running 4 seconds ago

26045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

166

CHAPTER 9 * ROLLING UPDATES

Rolling Update to a Different Image

Rolling update may also be used to update to a completely different Docker image. As an example, perform
a rolling update to the mysql service to use Docker image postgres instead of the mysql image it is using.
Other options such as --update-parallelism may also be set.

~ $ docker service update --image postgres --update-parallelism 1 mysql
mysql

The mysql:latest image-based tasks start to get shut down and postgres image-based replacement
tasks begin to get started one task at a time. The rolling update does not get completed immediately and
listing the service tasks with the desired state as running lists some tasks based on the postgres:latest
image, while other tasks are still using the mysql:latest image.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

9tzmSpabpcyx mysql.1 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 39 seconds ago

xj23fu5svvod mysql.2 postgres:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago

mu08iu9gqzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about an hour ago

skzxi33c6060 mysql.4 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 13 seconds ago

26045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

One replica at a time, the mysql image-based replicas are shut down and postgres image-based
replicas are started. After about two minutes, all tasks have updated to the postgres:latest image.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

9tzm5pabpcyx mysql.1 postgres:latest ip-172-31-2-177.ec2.internal

Running Running about a minute ago

xj23fu5svvod mysql.2 postgres:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago

kd9opk31vpof2 mysql.3 postgres:latest ip-172-31-42-198.ec2.internal
Running Running 35 seconds ago

skzxi33c6060 mysql.4 postgres:latest ip-172-31-2-177.ec2.internal

Running Running 59 seconds ago

umtitiuvtsgg mysql.5 postgres:latest ip-172-31-25-121.ec2.internal
Running Running 8 seconds ago

The service name continues to be the same and the replica names also include the mysql prefix. The
mysql service definition ContainerSpec lists the image as postgres. Updating the image to postgres does
not imply that all other service definition settings are updated for the new image. The postgres image
does not use the MYSQL_ROOT_PASSWORD, but the environment variable continues to be in the service
specification.

167

CHAPTER 9 © ROLLING UPDATES

~ $ docker service inspect mysql
[
"Spec": {
"Name": "mysql",
"ContainerSpec": {
"Image": "postgres:latest@sha256:e92fe211695d27be7050284229a1c8c63ac10d8
8cba58d779c243566e125aa34",
"Env": [
"MYSQL_ROOT_PASSWORD=mysql"
1,

"PreviousSpec": {
"Name": "mysql",
"ContainerSpec": {
"Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133
b22b07ee32789b62618de3",
"Env": [
"MYSQL_ROOT_PASSWORD=mysql"
}s
"UpdateStatus": {
"State": "completed"”,
"StartedAt": "2017-07-25T20:39:45.230997671Z",
"CompletedAt": "2017-07-25T20:42:04.186537673Z",
"Message": "update completed"

The MYSQL_ROOT_PASSWORD environment variable may be removed with another update command.

~ $ docker service update --env-rm MYSQL _ROOT_PASSWORD mysql
mysql

Subsequently, the ContainerSpec does not include the MYSQL_ROOT_PASSWORD environment variable.

~ $ docker service inspect mysql
[
“Spec": {
"Name": "mysql",

"ContainerSpec": {
"Image": "postgres:latest@sha256:e92fe21f695d27be7050284229a1c8c63ac10d8
8cba58d779c243566e125aa34",
"StopGracePeriod": 10000000000,
"DNSConfig": {}

b

1
"PreviousSpec": {

"ContainerSpec”: {

"Image": "postgres:latest@sha256:e92fe211695d27be7050284229a1c8c63ac10d8

8cbas58d779c243566e125aa34",

168

1

“EnV“ . [

"MYSQL_ROOT_PASSWORD=mysql"

1

"UpdateStatus": {
"State": "updating”,
"StartedAt": "2017-07-25T20:42:56.651025816Z",
"Message": "update in progress"

CHAPTER 9 * ROLLING UPDATES

A rolling update to remove an environment variable involves shutting down all service tasks and
starting all new tasks. The update takes about two minutes to complete.

~ $ docker service inspect mysql

[
1,

"UpdateStatus": {
"State": "completed"”,
"StartedAt": "2017-07-25T20:42:56.651025816Z",
"CompletedAt": "2017-07-25T20:44:55.078906359Z",
"Message": "update completed"

Listing the running tasks indicates that tasks have only been running two minutes at the maximum.

~ $ docker service ps -f desired-state=running mysql

D

DESIRED STATE
menpo2zgitsu
Running
adnid3t69sue
Running
we92apfuivil
Running
ed7vh4ozefms
Running
i2x2377ad7u0
Running

NAME IMAGE
CURRENT STATE ERROR
mysql.1 postgres
Running about a minute ago
mysql.2 postgres
Running about a minute ago
mysql.3 postgres
Running 46 seconds ago
mysql.4 postgres
Running 2 minutes ago
mysql.5 postgres

Running about a minute ago

:latest

:latest

:latest

:latest

:latest

NODE

PORTS
ip-172-31-2-177.ec2.internal
ip-172-31-25-121.ec2.internal
ip-172-31-42-198.ec2.internal

ip-172-31-29-67.ec2.internal

ip-172-31-25-121.ec2.internal

By removing the env variable MYSQL_ROOT_PASSWORD the mysql service gets updated to use Docker image
postgres. The service name itself cannot be updated. The service may be updated back to the mysql image
and the mandatory environment variable MYSQL_ROOT_PASSWORD added with another rolling update.

~ $ docker service update --image mysql --env-add MYSQL_ROOT_ PASSWORD='mysql'

mysql

mysql

169

CHAPTER 9 © ROLLING UPDATES

Again, listing the replicas with a desired state as running lists the postgres image-based replicas being
replaced by mysql image-based replicas. One replica at a time, the postgres image-based replicas are
replaced by mysql image-based replicas.

~ $ docker service ps -f desired-state=running mysql

ID

DESIRED STATE
menpo2zgit5u
Running
adnid3t69sue
Running
we92apfuivil
Running
pjvj50j822xr
Running
i2x2377ad7u0
Running

NAME

CURRENT
mysql.1
Running
mysql.2
Running
mysql.3
Running
mysql.4
Running
mysql.5
Running

IMAGE

STATE

ERROR

postgres:latest

2 minutes ago

postgres:latest

2 minutes ago

postgres:latest

about a minute ago

mysql:latest

12 seconds ago

postgres:latest

2 minutes ago

NODE

PORTS
ip-172-31-2-177.ec2.internal
ip-172-31-25-121.ec2.internal
ip-172-31-42-198.ec2.internal

ip-172-31-29-67.ec2.internal

ip-172-31-25-121.ec2.internal

Within a minute or two, all the postgres image replicas are replaced by mysql image-based replicas.

~ $ docker service ps -f desired-state=running mysql

ID

DESIRED STATE
sobd9ov7gbmz
Running
st5t7y8rdggl
Running
upekevrlbmgo
Running
pjvj50j822xr
Running
nmrmdug87cyo
Running

NAME

CURRENT
mysql.1
Running
mysql.2
Running
mysql.3
Running
mysql.4
Running
mysql.5
Running

IMAGE

STATE

ERROR

mysql:latest

about a minute ago

mysql:latest

57 seconds ago

mysql:latest

about a minute ago

mysql:latest

2 minutes ago

mysql:latest

2 minutes ago

NODE

PORTS
ip-172-31-25-121.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-42-198.ec2.internal

ip-172-31-29-67.ec2.internal

ip-172-31-2-177.ec2.internal

The service specification is updated to the mysql image and the mandatory environment variable
MYSQL_ROOT_PASSWORD is added. When the update has completed, the UpdateStatus State becomes completed.

~ $ docker service inspect mysql

[

"Spec": {
"Name" :

1

“mysql“,

"Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133

b22b07ee32789b62618de3",

"Env": [

"MYSQL_ROOT_PASSWORD=mysql"

1,

"PreviousSpec": {

"Name": "mysql",
"ContainerSpec": {

170

CHAPTER 9 * ROLLING UPDATES

"Image": "postgres:latest@sha256:e92fe211695d27be7050284229a1c8c63ac10d8
8cba58d779c243566e125aa34",
1
"UpdateStatus": {

"State": "completed"”,

"StartedAt": "2017-07-25T20:45:54.104241339Z",

"CompletedAt": "2017-07-25T20:47:47.996420791Z",

"Message": "update completed"

Rolling Restart

Docker 1.13 added a new option to perform a rolling restart even when no update is required based on the
update options. As an example starting with the mysql service with update config as --update-parallelism
1 and - -update-delay 20s, the following update command won’t perform any rolling update, as no changes
are being made to the service.

~ $ docker service update --update-parallelism 1 --update-delay 20s mysql
mysql

To force a rolling restart, include the --force option.

~ $ docker service update --force --update-parallelism 1 --update-delay 20s mysql
mysql

Service tasks begin to get shut down and new service tasks are started even though no update is made
to the service specification. Some tasks are listed as having started a few seconds ago.

~ $ docker service ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
sobd90ov7gbmz mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 3 minutes ago

tryegchir9il mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 23 seconds ago

uu7stp147xnu mysql.3 mysql:latest ip-172-31-42-198.ec2.internal
Running Running less than a second ago

pjvj50j822xr mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 4 minutes ago

nmrmdug87cyo mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 3 minutes ago

A rolling restart could take 1-2 minutes to complete.

~ $ docker service inspect mysql

[
Y

171

CHAPTER 9 © ROLLING UPDATES

"UpdateStatus": {
"State": "completed",
"StartedAt": "2017-07-25T20:49:34.716535081Z",
"CompletedAt": "2017-07-25T20:51:36.880045931Z",
"Message": "update completed"

After the rolling restart has completed, the service has all new service tasks as shown.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

z2n2qcgfsbke mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 6 seconds ago

trye9chir9il mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago

uu7sfp147xnu mysql.3 mysql:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago

laovurxkteql mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 29 seconds ago

101slqg6jibvp mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 52 seconds ago

Rolling Update to Add and Remove Mounts

Rolling update can also be used to add and remove mounts. As an example, we add a mount of type volume
with the source volume specified with src and the destination directory specified with dst.

~ $ docker service update \

> --mount-add type=volume,src=mysql-scripts,dst=/etc/mysql/scripts \
> mysql
mysql

A mount is added to the service and is listed in the service definition. Adding a mount involves shutting
down all service tasks and starting new tasks. The rolling update could take 1-2 minutes.

~ $ docker service inspect mysql

[
||SpeCII: {
"ContainerSpec": {

"Mounts": [

{
"Type": "volume",
"Source": "mysql-scripts”,
"Target": "/etc/mysql/scripts”

1,

172

CHAPTER 9 * ROLLING UPDATES

"UpdateStatus": {
"State": "completed",
"StartedAt": "2017-07-25T20:51:55.205456644Z",
"CompletedAt": "2017-07-25T20:53:56.451313826Z",
"Message": "update completed"

The mount added may be removed with the --mount-xrm option of the docker service update
command and by supplying only the mount destination directory as an argument.

~ $ docker service update \

> --mount-rm /etc/mysql/scripts \
> mysql
mysql

Another rolling update is performed and the mount is removed. It does not get listed in the service
definition. The PreviousSpec lists the mount. The UpdateStatus indicates the status of the rolling update.

~ $ docker service inspect mysql
[
lISpeCII: {
“Name": llmysqlll,
"ContainerSpec": {

"PreviousSpec": {
"Name": "mysql",

"Mounts": [
{
"Type": "volume",
"Source": "mysql-scripts",
"Target": "/etc/mysql/scripts”
}
"UpdateStatus": {
"State": "completed",
"StartedAt": "2017-07-25T20:55:56.30844324Z",
"CompletedAt": "2017-07-25T20:57:58.489349432Z",
"Message": "update completed"

Rolling Update Failure Action

The --update-failure-action option of the docker service create and docker service update
commands specifies the follow-up action to take if the update to a task fails and returns FAILED. We set the
UpdateConfig for the mysql service to include a --update-failure-action of pause (the default). The other
option setting is continue, which does not pause a rolling update but continues with the update of the next
task. To demonstrate a update failure action, specify a Docker image that does not exist, such asmysql:5.9.

173

CHAPTER 9 © ROLLING UPDATES

~ $ docker service update \

> --replicas 10 \

> --image mysql:5.9 \

> --update-delay 10s \

> --update-failure-action pause \

> mysql

image mysql:5.9 could not be accessed on a registry to record
its digest. Each node will access mysql:5.9 independently,
possibly leading to different nodes running different
versions of the image.

mysql

The rolling update is still started and the update status indicates that the update is paused. The update
status message indicates “update paused due to failure or early termination of task”.

~ $ docker service inspect mysql
[
"Spec": {

"Name": "mysql",

1

"UpdateConfig": {
"Parallelism": 1,
"Delay": 10000000000,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": 0,
"Order": "stop-first"

1

"RollbackConfig": {
"Parallelism": 1,
"FailureAction": "pause",
"Monitor": 5000000000,
"MaxFailureRatio": o,
"Order": "stop-first"

1

1

"UpdateStatus": {

"State": "paused",

"StartedAt": "2017-07-25T20:58:51.695333064Z",

"Message": "update paused due to failure or early termination of task

s1p1nox3k67uwpoj7qxg13747"

Two options are available if a rolling update is paused due to update to a task having failed.
e Restarta paused update using docker service update <SERVICE-ID>.

e Ifan update failure is repeated, find the cause of the failure and reconfigure the
service by supplying other options to the docker service update <SERVICE-ID>
command.

174

CHAPTER 9 * ROLLING UPDATES

Roll Back to Previous Specification

Docker 1.13 Swarm mode added the feature to roll back to the previous service definition. As an example,
perform a rolling update to update the image of the mysql service to postgres. The mysql-based replicas
begin to be shut down and postgres-based replicas are started. At any time during the rolling update from
the mysql image to the postgres image or after the update to the postgres image has completed, if it is
ascertained that the rolling update should not have been started or performed, the rolling update may be
rolled back with the following command. To demonstrate a rollback, we first start a mysql service.

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --env MYSQL ROOT_PASSWORD="mysql'\
> --replicas 5 \

> --name mysql \

> --update-delay 10s \

> --update-parallelism 1 \

> mysql:5.6
xkmrhnkoa444zambp9yhimk9h

We start a rolling update to the postgres image from the mysql image.

~ $ docker service update --image postgres mysql
mysql

Subsequently, some of the tasks are based on the postgres image and some on the mysql image.

~ $ docker service ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

mnm5pg9ha6lu mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 58 seconds ago

9y0fzn4sgivo mysql.2 postgres:latest ip-172-31-2-177.ec2.internal

Ready Ready 2 seconds ago

ewl7zxwio7gc _ mysql.2 mysql:5.6 ip-172-31-2-177.ec2.internal

Shutdown Running 2 seconds ago

130ck28cmtzx mysql.3 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running 22 seconds ago

1vgs3lcqvbts mysql.4 postgres:latest ip-172-31-29-67.ec2.internal

Running Running 12 seconds ago

wulljjbszesy _ mysql.4 mysql:5.6 ip-172-31-29-67.ec2.internal

Shutdown Shutdown 13 seconds ago

g3tr6z915vzx mysql.5 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running 22 seconds ago

Start a rollback to revert to the mysql image.

~ $ docker service update --rollback mysql
mysql

175

CHAPTER 9 © ROLLING UPDATES

The postgres image-based tasks start to get shut down and the mysql image-based tasks are started.

~ $ docker service ps mysql

1D

DESIRED STATE
mnm5pg9habiu
Running
gyqgtoc4ix3y
Running
9yofzn4sgivo
Shutdown
ewl7zxwio7gc
Shutdown
130ck28cmtzx
Running
ecvh8fd5308k
Running
1vgs3lcqvbts
Shutdown
wulljjbszesy
Shutdown
m27d3gz4g6dy
Running
g3tr6z915vzX
Shutdown

NAME IMAGE

CURRENT STATE ERROR
mysql.1 mysql:5.6
Running about a minute ago

mysql.2 mysql:5.6
Running 14 seconds ago

_ mysql.2 postgres:latest
Shutdown 15 seconds ago

_ mysql.2 mysql:5.6
Shutdown 23 seconds ago

mysql.3 mysql:5.6
Running 46 seconds ago
mysql.4 mysql:5.6
Running 16 seconds ago

_ mysql.4 postgres:latest
Shutdown 16 seconds ago

_mysql.4 mysql:5.6
Shutdown 37 seconds ago
mysql.5 mysql:5.6
Running 1 second ago

_ mysql.5 mysql:5.6

Failed 6 seconds ago

NODE
PORTS

ip-172-31-25-121.ec2.internal
ip-172-31-2-177.ec2.internal
ip-172-31-2-177.ec2.internal
ip-172-31-2-177.ec2.internal
ip-172-31-42-198.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-29-67.ec2.internal
ip-172-31-29-67.ec2.internal

ip-172-31-25-121.ec2.internal

ip-172-31-42-198.ec2.internal

"task: non-zero exit (1)"

The rolling update from mysql to postgres is rolled back. When the rollback has completed, all replicas
are mysql image-based, which is the desired state of the service to start with.

~ $ docker service ps -f desired-state=running mysql

ID

DESIRED STATE
xamxi290kj74
Running
gyqgtoc4ix3y
Running
130ck28cmtzx
Running
ecvh8fd5308k
Running

NAME IMAGE

CURRENT STATE ERROR
mysql.1 mysql:5.6
Running 30 seconds ago

mysql.2 mysql:5.6
Running 56 seconds ago

mysql.3 mysql:5.6
Running about a minute ago

mysql.4 mysql:5.6

Running 58 seconds ago

Rolling Update on a Global Service

A rolling update may also be performed on a global service. To demonstrate, we create a global service for
themysql:latest image.

~ $ docker service rm mysql

mysql

~ $ docker service create \

> --mode global \

> --env MYSQL_ROOT_PASSWORD="mysql'\

176

NODE

PORTS
ip-172-31-25-121.ec2.internal
ip-172-31-2-177.ec2.internal

ip-172-31-42-198.ec2.internal

ip-172-31-29-67.ec2.internal

CHAPTER 9 * ROLLING UPDATES

> --name mysql \
> mysql
7nokncnti3izudo8gfdovwxwa

Start a rolling update to Docker image mysql:5.6. ~ $ docker service update \
> --image mysql:5.6 \

> --update-delay 10s \

> mysql

mysql

The service is updated. The Spec>ContainerSpec>Image is updated tomysql:5.6 from the PreviousSpec>
ContainerSpec>Image of mysql:latest

~ $ docker service inspect mysql
[
"Spec": {
"Name": "mysql",
"ContainerSpec": {
"Image": "mysql:5.6@sha256:6ad5bd392c9190fa92e65fd21f6debc8b2a76fc54f139
49f9b5bc6a0096a5285",
1
"PreviousSpec": {
"Name": "mysql",
"ContainerSpec": {
"Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133
b22b07ee32789b62618de3",
"UpdateStatus": {
"State": "completed"”,
"StartedAt": "2017-07-25T21:06:46.973666693Z",
"CompletedAt": "2017-07-25T21:07:46.656023733Z",
"Message": "update completed"

Within a minute, all the new service tasks based onmysql:5.6 are started.

~ $ docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

ybfaxpofte8l mysql.81h6uvu8ugOemnovzkgbv7mzg mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 46 seconds ago

7nq99jeilono mysql.t4doaqow2abavjx94zgkwc557 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running about a minute ago

weng24mg7e8m mysql.e7viginoluuoikynjnl33v9pa mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running about a minute ago

ql4t2pyhra3w mysql.ptm7e0p346zwypos7wnpcm72d mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running about a minute ago

177

CHAPTER 9 © ROLLING UPDATES

A rolling update cannot be performed on a global service to set replicas with the --replicas option, as
indicated by the message in the following docker service update command.

~ $ docker service update \

> --image mysql \

> --replicas 1 \

> mysql

replicas can only be used with replicated mode

As the output indicates, while replicas are set on a replicated service mysql, replicas are not set on the
global service.

Summary

This chapter discussed rolling updates on a service. A rolling update on a service involves shutting down
previous service tasks and updating the service definition to start new tasks. In the next chapter, we discuss
configuring networking in Swarm mode.

178

CHAPTER 10

Networking

Networking on a Docker Engine is provided by a bridge network, the docker0 bridge. The docker0 bridge is local in
scope to a Docker host and is installed by default when Docker is installed. All Docker containers run on a Docker
host and are connected to the docker0 bridge network. They communicate with each other over the network.

The Problem

The default docker0 bridge network has the following limitations:

e The bridge network is limited in scope to the local Docker host to provide container-
to-container networking and not for multi-host networking.

e The bridge network isolates the Docker containers on the host from external access.
A Docker container may expose a port or multiple ports and the ports may be published
on the host for an external client host access, as illustrated in Figure 10-1, but by default
the docker0 bridge does not provide any external client access outside the network.

Exposed
port
published Docker

on the
docker0

host
interface

Expose
Soﬂ Docker
Container
Figure 10-1. The default docker0 bridge network
© Deepak Vohra 2017 179

D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_10

https://doi.org/10.1007/978-1-4842-2973-6_10

CHAPTER 10 = NETWORKING

The Solution

The Swarm mode (Docker Engine >=1.12) creates an overlay network called ingress for the nodes in the
Swarm. The ingress overlay network is a multi-host network to route ingress traffic to the Swarm; external
clients use it to access Swarm services. Services are added to the ingress network if they publish a port.

The ingress overlay network has a default gateway and a subnet and all services in the ingress network
are exposed on all nodes in the Swarm, whether a service has a task scheduled on each node or not. In
addition to the ingress network, custom overlay networks may be created using the overlay driver. Custom
overlay networks provide network connectivity between the Docker daemons in the Swarm and are used for
service-to-service communication. Ingress is a special type of overlay network and is not for network traffic
between services or tasks. Swarm mode networking is illustrated in Figure 10-2.

Swarm
Node
Dcker

Docker Host
Container Service | 1> Custom Ns:;r‘z:mkwerla
laited I 1P:10.0.0.3 container
with IP: 10.0.0.2
docker N4

run

rm Overlay Network
“ingress”

Swarm Node Docker
Host (no service task)

Docker Host (in

Docker Host (not in any another Swarm)

Swarm)

Swarm Overlay Network
“ingress”

Docker Docker
Containers Container
Dacker forTSeLvice fora
i asks Service
Container prvi

Figure 10-2. The Swarm overlay networks

The following Docker networks are used or could be used in Swarm mode.

The Ingress Network

The ingress network is created automatically when Swarm mode is initialized. On Docker for AWS, the
ingress network is available out-of-the-box because the managed service has the Swarm mode enabled by
default. The default overlay network called ingress extends to all nodes in the Swarm, whether the node has
a service task scheduled or not. The ingress provides load balancing among a service’s tasks. All services
that publish a port are added to the ingress network. Even a service created in an internal network is added
to ingress if the service publishes a port. If a service does not publish a port, it is not added to the ingress
network. A service publishes a port with the - -publish or -p option using the following docker service
create command syntax.

180

CHAPTER 10 © NETWORKING

docker service create \
--name <SERVICE-NAME> \
--publish <PUBLISHED-PORT>:<TARGET-PORT> \
<IMAGE>

If the <PUBLISHED-PORT> is omitted, the Swarm manager selects a port in the range 30000-32767 to
publish the service.
The following ports must be open between the Swarm nodes to use the ingress network.

e Port 7946 TCP/UDP is used for the container network discovery

e Port4789 UDP is used for the container ingress network

Custom Overlay Networks

Custom overlay networks are created using the overlay driver and services may be created in the overlay
networks. A service is created in an overlay network using the --network option of the docker service
create command. Overlay networks provide service-to-service communication. One Docker container

in the overlay network can communicate directly with another Docker container in the network, whether
the container is on the same node or a different node. Only Docker containers for Swarm service tasks can
connect with each using the overlay network and not just any Docker containers running on the hosts in a
Swarm. Docker containers started with the docker run command, for instance, cannot connect to
a Swarm overlay network, using docker network connect <overlay network> <container> for instance.
Nor are Docker containers on Docker hosts that are not in a Swarm able to connect and communicate with
Docker containers in the Swarm directly. Docker containers in different Swarm overlay networks cannot
communicate with each other directly, as each Swarm overlay network is isolated from other networks.

While the default overlay network in a Swarm, ingress, extends to all nodes in the Swarm whether a
service task is running on it or not, a custom overlay network whose scope is also the Swarm does not extend
to all nodes in the Swarm by default. A custom Swarm overlay network extends to only those nodes in the
Swarm on which a service task created with the custom Swarm overlay network is running.

An “overlay” network overlays the underlay network of the hosts and the scope of the overlay network is
the Swarm. Service containers in an overlay network have different IP addresses and each overlay network
has a different range of IP addresses assigned. On modern kernels, the overlay networks are allowed to
overlap with the underlay network, and as a result, multiple networks can have the same IP addresses.

The docker_gwbridge Network

Another network that is created automatically (in addition to the ingress network) when the Swarm mode is
initialized is the docker_gwbridge network. The docker_gwbridge network is a bridge network that connects
all the overlay networks, including the ingress network, to a Docker daemon’s host network. Each service
container is connected to the local Docker daemon host’s docker_gwbridge network.

The Bridge Network

A bridge network is a network on a host that is managed by Docker. Docker containers on the host
communicate with each other over the bridge network. A Swarm mode service that does not publish a port
is also created in the bridge network. So are the Docker containers started with the docker run command.
This implies that a Swarm mode Docker service that does not publish a port is in the same network as
Docker containers started with the docker run command.

181

CHAPTER 10 = NETWORKING

This chapter covers the following topics:
e Setting the environment
e Networking in Swarm mode
e Using the default overlay network ingress to create a service
e Creating a custom overlay network
e Using a custom overlay network to create a service
e Connecting to another Docker container in the same overlay network
e (Creating an internal network

e Deleting a network

Setting the Environment

Create a three-node Docker Swarm on Docker for AWS, as discussed in Chapter 3. An AWS CloudFormation
stack, shown in Figure 10-3, is used to create a Swarm.

@ CioudFormation v Stacks

o ntroducing StackSets

AWS StackSe1 18 & cOntainer 161 & s61 of AWS ClouaF ormation SIacks and aliows you 10 create SEACks Across muliple AWS Accounts and AWS Regions Open the Stac kSets ¢ on

Filter: Acive ® 3howing 1 stack

Stack Name Created Time Status Dwicription

Figure 10-3. AWS CloudFormation stack

182

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 10

Obtain the public IP address of the Swarm manager node, as shown in Figure 10-4.

(=L LS -L N Connect Actions v
4

Q, Filter by tags and attributes or search by keyword @
Name Instance 10 = Inst Type - ilability Zone ~ | State ~ Status Checks - Alarm Status
B Docker-Manager i-083eb8f373%e82ee1 2. micro us-east-1c @ running @ 22checks... None =
Docker-worker i-0d260eb7bEb 1b49 12.micro us-east-c @ running & 212 checks . Nene b
Docker-worker -09717d5de4l30%4e 2.micro us-gast-1a @ running @ 22checks... None Y
Instance: | i-083eb8f9739e82ee1 {Docker-Manager) Fublic DNS: ec2-174-125-48-148.compute-1.amazonaws.com
Description Status Checks Monitoring Tags
Instance D 1-083eb8f971%82ee1 Public DNS (IPvd) ec2-174-129-45-148 compaute-
1.amazonaws com
Instance stale running } IPv4 Public IP 174.129.45.148
Instance type t2.micro IPv6 IPs
Elastic IPs Private DNS ip-172-31-47-15.8c 2 intemnal
Availabilty zone us-east-lc Private IPs 172.31.47.15

Security groups

Scheduled events
AMILID

Figure 10-4.

Docker-ManagerVipe SG-1CEVASXMFIHAS
Docker-SwarmWideSG- 1UWOUXM4BENBGT
view inboul 5

Secondary private IPs

No scheduled events VPCID

Moby Linux 17.05 D-ce-aws2 stable {ami- Subnet ID

SSH login into the Swarm manager instance.

[root@localhost ~]# ssh -i "docker.pem" docker@174.129.48.148

Welcome to Docker!

List the Swarm nodes—one manager and two worker nodes.

~ $ docker node 1ls
ID

npz2akark8etv4ibobiob5yyk
péwat4lxq6alo3h4fp2ikgwér
tb5agvzbiorupq7b83tkoocx3 * ip-172-31-47-15.ec2.internal

HOSTNAME STATUS

ip-172-31-47-123.ec2.internal Ready

ip-172-31-3-168.ec2.internal Ready
Ready

Networking in Swarm Mode

The Swarm mode provides some default networks, which may be listed with the docker network 1s
command. These networks are available not just on Docker for AWS but on any platform (such as CoreOS)

in Swarm mode.

~ $ docker network 1s

Obtaining the public IP address of a Swarm manager node instance

NETWORKING

o 8 @

1to30t3
Public DNS (IPv4)

ec2-174-129-48-148 co
ec2-54-203-159-170.co

0c2-34-205-41-131.co...

AVAILABILITY MANAGER STATUS

Active
Active
Active

NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69ct host host local
e4lan60iwval ingress overlay swarm
eb7399d3ffdd none null local

Leader

183

CHAPTER 10 = NETWORKING

We discussed most of these networks in a preceding section. The "host" network is the networking
stack of the host. The "none" network provides no networking between a Docker container and the host
networking stack and creates a container without network access.

The default networks are available on a Swarm manager node and Swarm worker nodes even before
any service task is scheduled.

The listed networks may be filtered using the driver filter set to overlay.

docker network ls --filter driver=overlay

Only the ingress network is listed. No other overlay network is provisioned by default.
~ $ docker network ls --filter driver=overlay
NETWORK ID NAME DRIVER SCOPE

e4lan60iwval ingress overlay swarm

The network of interest is the overlay network called ingress, but all the default networks are discussed
in Table 10-1 in addition to being discussed in the chapter introduction.

Table 10-1. Docker Networks

Network Description

bridge The bridge network is the docker0 network created on all Docker hosts. The
Docker daemon connects containers to the docker0 network by default. Any Docker
container started with the docker run command, even on a Swarm node, connects to
the docker0 bridge network.

docker_gwbridge Used for communication among Swarm nodes on different hosts. The network is
used to provide external connectivity to a container that lacks an alternative network
for connectivity to external networks and other Swarm nodes. When a container is
connected to multiple networks, its external connectivity is provided via the first non-
internal network, in lexical order.

host Adds a container to the host’s network stack. The network configuration inside the
container is the same as the host’s.

ingress The overlay network used by the Swarm for ingress, which is external access. The
ingress network is only for the routing mesh/ingress traffic.

none Adds a container to a container specific network stack and the container lacks a
network interface.

The default networks cannot be removed and, other than the ingress network, a user does not need to
connect directly or use the other networks. To find detailed information about the ingress network, run the
following command.

docker network inspect ingress

184

CHAPTER 10 © NETWORKING

The ingress network's scope is the Swarm and the driver used is overlay. The subnet and gateway are
10.255.0.0/16 and 10.255.0.1, respectively. The ingress network is not an internal network as indicated
by the internal setting of false, which implies that the network is connected to external networks. The
ingress network has an IPv4 address and the network is not IPv6 enabled.

~ $ docker network inspect ingress
[
{
"Name": "ingress",
"Id": "e41an60iwvalbeq5y3stdfem9",
"Created": "2017-07-26T18:38:29.753424199Z",
"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "10.255.0.0/16",
"Gateway": "10.255.0.1"

]
1,

"Internal”: false,
"Attachable": false,
"Ingress": true,
"ConfigFrom": {
"Network": ""
}
"ConfigOnly": false,
"Containers": {
"ingress-sbox": {
"Name": "ingress-endpoint"”,
"EndpointID": "f646b5cc4316994b8f9e5041ae7c82550bc7ce733db70df3f
66b8d771d0f53c4",
"MacAddress": "02:42:0a:ff:00:02",
"IPv4Address": "10.255.0.2/16",

"IPv6Address": ""
}
b
"Options": {
"com.docker.network.driver.overlay.vxlanid _list": "4096"
}s
"Labels": {},
"Peers": [
{
"Name": "ip-172-31-47-15.ec2.internal-17c7f752fb1a",
"IP": "172.31.47.15"
}s
{

185

CHAPTER 10 © NETWORKING

"Name": "ip-172-31-47-123.ec2.internal-d6ebe8111adf",
"IP": "172.31.47.123"

1

{
"Name": "ip-172-31-3-168.ec2.internal-99510f4855ce",
"IP": "172.31.3.168"

}

Using the Default Bridge Network to Create a Service

To create a service in Swarm mode using the default bridge network, no special option needs to be specified.
The --publish or -p option must not be specified. Create a service for the mysql database.

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 1\

> --name mysql \

> mysql

likujs72e46tisgo1xjtksnky

The service is created and the service task is scheduled on one of the nodes.
~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
likujs72e46t mysql replicated 1/1 mysql:latest

The service may be scaled to run tasks across the Swarm.
~ $ docker service scale mysql=3

mysql scaled to 3
~ $ docker service ps mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

v4bn24seygc6 mysql.1 mysql:latest ip-172-31-47-15.ec2.internal

Running Running 2 minutes ago

29702ebj52gs mysql.2 mysql:latest ip-172-31-47-123.ec2.internal
Running Running 3 seconds ago

c7b8vibmsudl mysql.3 mysql:latest ip-172-31-3-168.ec2.internal

Running Running 3 seconds ago

The mysql service created is not added to the ingress network, as it does not publish a port.

186

CHAPTER 10 © NETWORKING

Creating a Service in the Ingress Network

In this section, we create a Docker service in the ingress network. The ingress network is not to be
specified using the --network option of docker service create. A service must publish a port to be created
in the ingress network. Create a Hello World service published (exposed) on port 8080.

~ $ docker service rm hello-world
hello-world

~ $ docker service create \

> --name hello-world \

> -p 8080:80\

> --replicas 3\

> tutum/hello-world
176ukzrctq22mn97dmgooatup

The service creates three tasks, one on each node in the Swarm.

~ ¢ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
176ukzrctq22 hello-world replicated 3/3 tutum/hello-world:latest *:8080->80/tcp
~ $ docker service ps hello-world

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS
S5ownzdjdtiyu hello-world.1 tutum/hello-world: latest ip-172-31-14-234.ec2.internal
Running Running 33 seconds ago

csgofrbrznhq hello-world.2 tutum/hello-world:latest ip-172-31-47-203.ec2.internal
Running Running 33 seconds ago

sctltrvn571 hello-world.3 tutum/hello-world:latest ip-172-31-35-44.ec2.internal
Running Running 32 seconds ago

187

CHAPTER 10 © NETWORKING

The service may be accessed on any node instance in the Swarm on port 8080 using the <Public DNS>:
<8080> URL. If an elastic load balancer is created, as for Docker for AWS, the service may be accessed at
<LoadBalancer DNS>:<8080>, as shown in Figure 10-5

[Hello world! x |

“— C | ® docker-externalloa-gttSyh5as8wo-331359979.us-east-1.elb.amazonaws.com:8080 | &

&tutum

Hello world!

My hostname is b65723d5a72c

Figure 10-5. Invoking a Docker service in the ingress network using EC2 elastic load balancer public DNS

The <PublishedPort> 8080 may be omitted in the docker service create command.

~ $ docker service create \
--name hello-world \

-p 80\

--replicas 3 \
tutum/hello-world
pbjcjhx163wm37d5cc5au2fog

>
>
>
>

Three service tasks are started across the Swarm.
~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
pbjcjhx163wm hello-world replicated 3/3 tutum/hello-world:latest *:0->80/tcp

188

~ $ docker service ps hello-world

D NAME IMAGE

DESIRED STATE CURRENT STATE ERROR PORTS
xotbpv10508n hello-world.1 tutum/hello-world:latest
Running Running 13 seconds ago

nvdn3j5pzuqi hello-world.2 tutum/hello-world:latest
Running Running 13 seconds ago

uuveltc5izpl hello-world.3 tutum/hello-world:latest
Running Running 14 seconds ago

CHAPTER 10 © NETWORKING

NODE
ip-172-31-37-130.ec2.internal
ip-172-31-44-205.ec2.internal

ip-172-31-15-233.ec2.internal

The Swarm manager automatically assigns a published port (30000), as listed in the docker service

inspect command.

~ $ docker service inspect hello-world

[
“Spec": {
"Name": "hello-world",

"EndpointSpec”: {

“Mode": “Vip“’
"Ports": [
{

"Protocol": "tcp",
"TargetPort": 8o,
"PublishMode": "ingress"

}
]
}
1,
"Endpoint": {
"Spec": {
"Mode": "vip",
"Ports": [
{
"Protocol": "tcp",
"TargetPort": 80,
"PublishMode": "ingress"
}
]
15
"Ports": [
{
"Protocol": "tcp",
"TargetPort": 80,
"PublishedPort": 30000,
"PublishMode": "ingress"
}

189

CHAPTER 10 = NETWORKING

"VirtualIPs": [

{
"NetworkID": "bllwwocjw5xejffmy6n8nhgm8",

"Addr": "10.255.0.5/16"

Even though the service publishes a port (30000 or other available port in the range 30000-32767),
the AWS elastic load balancer for the Docker for AWS Swarm does not add a listener for the published
port (30000 or other available port in the range 30000-32767). We add a listener with <Load Balancer
Port:Instance Port> mapping of 30000:30000, as shown in Figure 10-6.

P Create Load Balancer QU0 o 8 e

Filter: C, Search x 1to1of1

B Name ~ DNS name = State ~ VPCID ~ Availability Zones ~ Type
@ Docker-Externalloa-LPHSAXKEV140 Docker-Extemalloa-LPHSA.. vpe-1dc7Tb464 us-gast-1a, us-east-1b,... classic

Load bal .| Docker-E oa-LPHSAXKEV140 _N=Q =]
Description Instances Health Check Listeners Monitoring Tags

The following listeners are currently configured for this load balancer.

Load Balancer Protocol Load Balancer Port Instance Protocol Instance Port Cipher SSL Certificate

TCP 30000 TCP 30000 MNIA NiA

N

Edit

Figure 10-6. Adding a load balancer listener

190

CHAPTER 10 © NETWORKING

Invoke the service at the <Load Balancer DNS>:<30000> URL, as shown in Figure 10-7.

EreTe
/' [Hello world! X
o
& C | ® docker-externalloa-lphSaxkev140-1316808033.us-east-1.elb.amazonaws.com:30000 p* ¢
Hello world!
! My hostname is 3895de571703

Figure 10-7. Invoking a Hello World service on port 30000

Creating a Custom Overlay Network

We used the default overlay network ingress provisioned in Swarm mode. The ingress network is only for
the Swarm mode routing mesh in which all nodes are included. The Swarm routing mesh is provided so
that each node in the Swarm may accept connections on published ports for services in the Swarm even if a
service does not run a task on a node. The ingress network is not for service-to-service communication.

A custom overlay network may be used in Swarm mode for service-to-service communication. Next,
create an overlay network using some advanced options, including setting subnets with the - -subnet option
and the default gateway with the - -gateway option, as well as the IP range with the --ip-range option.

The - -driver option must be set to overlay and the network must be created in Swarm mode. A matching
subnet for the specified IP range must be available. A subnet is a logical subdivision of an IP network. The
gateway is a router that links a host’s subnet to other networks. The following command must be run from a
manager node.

~ $ docker network create \
--subnet=192.168.0.0/16 \
--subnet=192.170.0.0/16 \
--gateway=192.168.0.100 \
--gateway=192.170.0.100 \
--ip-range=192.168.1.0/24 \

vV V V VvV Vv

191

CHAPTER 10 - NETWORKING

> --driver overlay \
> mysql-network
mkileuo6ve329jx5xbdimério

The custom overlay network is created and listed in networks as an overlay network with Swarm scope.

~ $ docker network 1s

NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e4lan60iwval ingress overlay swarm
mkileuo6bve32 mysql-network overlay swarm
eb7399d3ffdd none null local

Listing only the overlay networks should list the ingress network and the custom mysql-network.

~ $ docker network ls --filter driver=overlay

NETWORK ID NAME DRIVER SCOPE
e4lan60iwval ingress overlay swarm
mkileuobve32 mysql-network overlay swarm

The detailed information about the custom overlay network mysql-network lists the subnets and
gateways.

~ $ docker network inspect mysql-network
[
{
"Name": "mysql-network",
"Id": "mkileuo6ve329jx5xbdim6rio”,
"Created": "0001-01-01T00:00:00Z",
"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "192.168.0.0/16",
"IPRange": "192.168.1.0/24",
"Gateway": "192.168.0.100"

1
{
"Subnet": "192.170.0.0/16",
"Gateway": "192.170.0.100"
}

15

"Internal”: false,
"Attachable": false,
"Ingress": false,

192

CHAPTER 10 © NETWORKING

"ConfigFrom": {
"Network": ""
15
"ConfigOnly": false,
"Containers": null,
"Options": {
"com.docker.network.driver.overlay.vxlanid list": "4097,4098"

1
"Labels": null

Only a single overlay network can be created for specific subnets, gateways, and IP ranges. Using a
different subnet, gateway, or IP range, a different overlay network may be created.

~ $ docker network create \
--subnet=10.0.0.0/16 \
--gateway=10.0.0.100 \
--ip-range=10.0.1.0/24 \
--driver overlay \
mysql-network-2
qwgb1lwycgvogoq9té2eaqny1

vV V V VvV Vv

The mysql-network-2 is created and added to the list of networks.

~ $ docker network 1s

NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e4lan60iwval ingress overlay swarm
mkileuobve32 mysql-network overlay swarm
qwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local

New overlay networks are only made available to worker nodes that have containers using the overlay.
While the new overlay networks mysql-network and mysql-network-2 are available on the manager node,
the network is not extended to the two worker nodes. SSH login to a worker node.

[root@localhost ~]# ssh -i "docker.pem" docker@54.209.159.170
Welcome to Docker!

The mysql-network and mysql-network-2 networks are not listed on the worker node.

~ $ docker network 1ls

NETWORK ID NAME DRIVER SCOPE
255542d86¢1b bridge bridge local
3a4436¢c0fboo docker gwbridge bridge local
bddobe4885e9 host host local
e41an60iwval ingress overlay swarm
5c5f44ec3933 none null local

193

CHAPTER 10 - NETWORKING

To extend the custom overlay network to worker nodes, create a service in the network that runs a task
on the worker nodes, as we discuss in the next section.

The Swarm mode overlay networking is secure by default. The gossip protocol is used to exchange
overlay network information between Swarm nodes. The nodes encrypt and authenticate the information
exchanged using the AES algorithm in GCM mode. Manager nodes rotate the encryption key for gossip data
every 12 hours by default. Data exchanged between containers on different nodes on the overlay network
may also be encrypted using the --opt encrypted option, which creates IPSEC tunnels between all the
nodes on which tasks are scheduled. The IPSEC tunnels also use the AES algorithm in GCM mode and rotate
the encryption key for gossip data every 12 hours. The following command creates an encrypted network.

~ $ docker network create \
> --driver overlay \

> --opt encrypted \

> overlay-network-2
aqppoe3qpybmzIln46gstunecr

A Swarm scoped network that is encrypted is created.

~ $ docker network 1ls

NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker gwbridge bridge local
6763ebad69ct host host local
e41an60iwval ingress overlay swarm
mkileuo6bve32 mysql-network overlay swarm
gwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local
aqgppoe3qpyém overlay-network-2 overlay swarm

Using a Custom Overlay Network to Create a Service

If a custom overlay network is used to create a service, the --network must be specified. The following
command creates a MySQL database service in Swarm mode using the custom Swarm scoped overlay
network mysql-network.

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 1\

> --network mysql-network \

> --name mysql-2\

> mysql

ocd9sz8qqp2becfoww2rj5p5n

The mysql-2 service is created. Scale the mysql-2 service to three replicas and lists the service tasks for
the service.

~ $ docker service scale mysql-2=3
mysql-2 scaled to 3

194

CHAPTER 10 © NETWORKING

Docker containers in two different networks for the two services—mysql (bridge network) and mysql-2
(mysql-network overlay network)—are running simultaneously on the same node.

A custom overlay network is not extended to all nodes in the Swarm until the nodes have service tasks
that use the custom network. The mysql-network does not get extended to and get listed on a worker node
until after a service task for mysql-2 has been scheduled on the node.

A Docker container managed by the default Docker Engine bridge network docker0 cannot connect
with a Docker container in a Swarm scoped overlay network. Using a Swarm overlay network in a docker
run command, connecting with a Swarm overlay network with a docker network connect command, or
linking a Docker container with a Swarm overlay network using the --1ink option of the docker network
connect command is not supported. The overlay networks in Swarm scope can only be used by a Docker
service in the Swarm.

For connecting between service containers:

e Docker containers for the same or different services in the same Swarm scoped
overlay network are able to connect with each other.

¢ Docker containers for the same or different services in different Swarm scoped
overlay networks are not able to connect with each other.

In the next section, we discuss an internal network, but before we do so, the external network should be
introduced. The Docker containers we have created as of yet are external network containers. The ingress
network and the custom overlay network mysql-network are external networks. External networks provide
a default route to the gateway. The host and the wider Internet network may connect to a Docker container
in the ingress or custom overlay networks. As an example, run the following command to ping google.com
from a Docker container’s bash shell; the Docker container should be in the ingress overlay network or a
custom Swarm overlay network.

docker exec -it <containerid> ping -c 1 google.com
A connection is established and data is exchanged. The command output is shown in italics.

~ $ docker exec -it 3762d7c4eab8 ping -c 1 google.com
PING google.com (172.217.7.142): 56 data bytes

64 bytes from 172.217.7.142: icmp_seq=0 ttl=47 time=0.703 ms
--- google.com ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.703/0.703/0.703/0.000 ms

Creating an Internal Overlay Network

In this section, we discuss creating and using an internal overlay network. An internal network does not
provide external connectivity. What makes a network internal is that a default route to a gateway is not
provided for external connectivity from the host or the wider Internet.

First, create an internal overlay network using the --internal option of the docker network create
command. Add some other options, such as --1abel, which have no bearing on the internal network. It’s
configured with the --internal option of the docker network create command.

~ $ docker network create \
--subnet=10.0.0.0/16 \
--gateway=10.0.0.100 \
--internal \

--label HelloWorldService \
--ip-range=10.0.1.0/24 \

VvV V V VvV Vv

195

CHAPTER 10 - NETWORKING

> --driver overlay \
> hello-world-network
pfwsrjeakomplo5zm6t4p19a9

The internal network is created and listed just the same as an external network would be.

~ $ docker network 1s

NETWORK ID NAME DRIVER SCOPE
194d51d460e6 bridge bridge local
a0674c5f1a4d docker_gwbridge bridge local
pfwsrjeakomp hello-world-network overlay swarm
03a68475552f host host local
tozyadp06rxr ingress overlay swarm
3dbd3c3ef439 none null local

In the network description, the internal is set to true.
core@ip-172-30-2-7 ~ $ docker network inspect hello-world-network
[

{

"Name": "hello-world-network",
"Id": "58fzvj4arudk2053q6k2t8rrk”,
"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",

"Options": null,

"Config": [

{
"Subnet": "10.0.0.0/16",

"IPRange": "10.0.1.0/24",
"Gateway": "10.0.0.100"

]
1,

"Internal": true,

"Containers": null,

"Options": {
"com.docker.network.driver.overlay.vxlanid_list": "257"

b

"Labels": {
"HelloWorldService": ""

}

Create a service that uses the internal network with the --network option.

196

CHAPTER 10 © NETWORKING

~ ¢ docker service create \

--name hello-world \

--network hello-world-network \
--replicas 3 \

tutum/hello-world
hmspfé6ftcvphdrd2zm3pp4lpj

vV V VvV Vv

The service is created and the replicas are scheduled.
Obtain the container ID for one of the service tasks, d365d4a5ff4c.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d365d4as5ff4c tutum/hello-world:latest "/bin/sh -c 'php-f..." About a minute ago
Up About a minute hello-world.3.r759ddnl1de11spo0zdi7xj4z

As before, ping google. com from the Docker container.
docker exec -it <containerid> ping -c 1 google.com
A connection is not established, which is because the container is in an internal overlay network.

~ $ docker exec -it d365d4a5ff4c ping -c 1 google.com
ping: bad address 'google.com'

Connection is established between containers in the same internal network, as the limitation is only on
external connectivity. To demonstrate, obtain the container ID for another container in the same internal
network.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

b7b505f5eb8d tutum/hello-world:latest "/bin/sh -c 'php-f..." 3 seconds ago
Up 2 seconds hello-world.6.160ezt6da2t1odwdjvecb75fx

57e612f35a38 tutum/hello-world:latest "/bin/sh -c 'php-f..." 3 seconds ago
Up 2 seconds hello-world.7.61tgnybn8twhtblpqjtvulkup

d365d4as5ff4c tutum/hello-world:latest "/bin/sh -c 'php-f..." 7 minutes ago
Up 7 minutes hello-world.3.r759ddnl1de11spo0zdi7xj4z

Connect between two containers in the same internal network. A connection is established.

~ $ docker exec -it d365d4a5ff4c ping -c 1 57e612f35a38
PING 57e612f35a38 (10.0.1.7): 56 data bytes
64 bytes from 10.0.1.7: seq=0 ttl=64 time=0.288 ms

--- 57e612f35a38 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.288/0.288/0.288 ms

197

CHAPTER 10 - NETWORKING

If a service created in an internal network publishes (exposes) a port, the service gets added to the
ingress network and, even though the service is in an internal network, external connectivity is provisioned.
As an example, we add the --publish option of the docker service create command to publish the
service on port 8080.

~ $ docker service create \

--name hello-world \

--network hello-world-network \
--publish 8080:80 \

--replicas 3 \

tutum/hello-world
mqgek4umisgycaqgy4qa206f9c

vV V V VvV Vv

Find a Docker container ID for a service task.

~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

1c52804dc256 tutum/hello-world:latest "/bin/sh -c 'php-f..." 28 seconds ago
Up 27 seconds 80/tcp hello-world.1.20152n01ng3t6uaiahpex9naf

Connect from the container in the internal network to the wider external network at google. com, as an
example. A connection is established. Command output is shown in italics.

~ $ docker exec -it 1c52804dc256 ping -c 1 google.com
PING google.com (172.217.7.238): 56 data bytes
64 bytes from 172.217.7.238: seq=0 ttl=47 time=1.076 ms

--- google.com ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1.076/1.076/1.076 ms

Deleting a Network

A network that is not in use may be removed with the docker network rm <networkid> command. Multiple
networks may be removed in the same command. As an example, we can list and remove multiple networks.

~ $ docker network 1s

NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
wozpfgo8vbmh hello-world-network swarm
6763ebad69cf host host local
e4lan60iwval ingress overlay swarm
mkileuo6bve32 mysql-network overlay swarm
qwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local
agppoe3qpyém overlay-network-2 overlay swarm

198

CHAPTER 10 © NETWORKING

Networks that are being used by a service are not removed. The command output is shown in italics.

~ $ docker network rm hello-world-network mkileuo6bve32 qugbilwycgvo overlay-network-2
hello-world-network

Error response from daemon: rpc error: code = 9 desc = network mkileuobve329jx5xbdimério is
in use by service ocd9sz8qqp2becfoww2rj5p5nqwgb1lwycgvo

overlay-network-2

Summary

This chapter discussed the networking used by the Docker Swarm mode. The default networking used in
Swarm mode is the overlay network ingress, which is a multi-host network spanning all Docker nodes

in the same Swarm to provide a routing mesh for each node to be able to accept ingress connections

for services on published ports. Custom overlay network may be used to create a Docker service with the
difference that a custom overlay network provides service-to-service communication instead of ingress
communication and extends to a Swarm worker node only if a service task using the network is scheduled
on the node. The chapter also discussed the difference between an internal and an external network. In the
next chapter, we discuss logging and monitoring in Docker Swarm mode.

199

CHAPTER 11

Logging and Monitoring

Docker includes several built-in logging drivers for containers, such as json-file, syslog, journald, gelf,
fluentd, and awslogs. Docker also provides the docker logs command to get the logs for a container. Docker
1.13 includes an experimental feature for getting a Docker service log using the docker service logs
command.

The Problem

Docker Swarm mode does not include a native monitoring service for Docker services and containers.

Also the experimental feature to get service logs is a command-line feature and required to be run per service.
Alogging service with which all the services’ logs and metrics could be collected and viewed in a dashboard
is lacking.

The Solution

Sematext is an integrated data analytics platform that provides SPM performance monitoring for metrics
and events collection, and Logsene for log collection, including correlation between performance metrics,
logs, and events. Logsene is a hosted ELK (Elasticsearch, Logtash, Kibana) stack. Sematext Docker Agent
isrequired to be installed on each Swarm node in the Swarm for continuously collecting logs, metrics, and
events, as illustrated in Figure 11-1.

© Deepak Vohra 2017 201
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_11

https://doi.org/10.1007/978-1-4842-2973-6_11

CHAPTER 11

Docker

Containers SomatextAdent SPM
\ ematextagen (Metrics & Events)

LOGGING AND MONITORING

SematextAgent

7 Swarm N\
Uo_de/ ()

7 Swarm N\ Logsene
N Node (Logs)

SematextAgent

NT—

Figure 11-1. Sematext Docker agent on each Swarm node

This chapter covers the following topics:

Setting the environment

Creating a SPM application

Creating a Logsene application

Deploying the Sematext Docker agent as a service
Creating a MySQL database deployment on Docker Swarm
Monitoring the Docker Swarm metrics

Getting Docker Swarm logs in Logsene

Setting the Environment

Start a three-node Swarm consisting of one manager and two worker nodes using Docker for AWS. (This is
discussed in Chapter 3.) Obtain the public IP address of the manager node instance from the EC2 console
and SSH login into the instance.

[root@localhost ~]# ssh -i "docker.pem” docker@54.227.123.67
Welcome to Docker!

202

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 11 " LOGGING AND MONITORING

The procedure to use Sematext SPM and Logsene for logging and monitoring with a Docker Swarm is as
follows.

1. Create an account at https://apps.sematext.com/ui/registration.
2. Loginto the user account at https://apps.sematext.com/ui/login.

3. Select the integrations (Logsene app and SPM Docker app) from https://apps.
sematext.com/ui/integrations?newUser, as listed in Steps 4 and 5.

4. Create a SPM (a performance monitoring app). An app is like a namespace for
data. A SPM token is generated that is to be used to install a Sematext agent on
each Swarm node.

5. Create a Logsene app. A Logsene token is generated that is also used to install a
Sematext agent on each Swarm node.

6. Install a Sematext agent on each Swarm node. Docker Swarm metrics, logs, and
events start getting collected in the SPM dashboard and the Logsene dashboard.

Creating a SPM Application

Login to a Sematext account at https://apps.sematext.com/ui/integrations?newlUser to display the
Integrations page. For a SPM Docker app, select Docker from Infrastructure and Application Performance
Monitoring. In the Add SPM Docker App dialog, specify an application name (DockerSwarmSPM), as shown in
Figure 11-2. Click on Create App.

>
Add SPM Docker App
&*
= Application name
i DockerSwarmSPM
Discount code

a4

Educational institution? Non-profit? Small startup? Get in touch later for discount.
| =)
& Invite team members

Enter emails separated by comma

™

Figure 11-2. Adding a SPM Docker app

203

https://apps.sematext.com/ui/registration
https://apps.sematext.com/ui/login
https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser

CHAPTER 11 © LOGGING AND MONITORING

An SPM App is created, as shown in Figure 11-3. Several client configurations are listed.

)

To start monitoring follow the steps below on each host.

1f you are using Docker Cloud to host your Docker containers, you can instead just prass the button below, and paste your 5P token 9bS552fd-001d-44f0.9452.T6046d423413 inta the Docker Cloud
template.

Client Configuration

Requirement: Docker v1.6 or newer installed (or w112 in case of Docker Swarm),

& T HME®NS v

Linux / Mac 0S X [Windows CoreCs Kubernetes Rancher0s Mesos Docker Swarm
1. Start SPM Docker Agent container (this container with SPM Agent will be used to monitor all Docker containers located on the same host):

5ug0 docker rum +d -oname Sematext-agent -.restartealmays - SO 3 - /r/rootfsirg =y fverirun/oocker.sock:/Var/run/docker. SOCk sematext/sematect-agen

Figure 11-3. SPM app is created

Click on the Client Configuration tab for Docker Swarm, as shown in Figure 11-4. The Docker Swarm
tab displays the docker service create command to create a service for a Sematext Docker agent; copy the
command. The command includes a SPM_TOKEN, which is unique for each SPM app.

Client Configuration

Requirement: Docker v1.6 or newer installed (or v1.12 in case of Docker Swarm).
Linux / Mac 0S X / Windows Core0S Kubernetes RancherQS Mesos Docker Swarm

1. The following configuration will activate Sematext Docker Agent on every node in the Swarm Cluster cluster

docker service create --mode global \

--restart-condition any \

--name sematext-agent-docker \

--mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \

--mount type=bind,src=/,dst=/rootfs,readonly=true \

- SPM_TOKEN=9b5552Fd-001d-44F0-9452-7604604a3413 sematext/sematext-agent-docker

) Waiting for data. Configure monitoring agent.

Figure 11-4. Docker Swarm configuration

204

CHAPTER 11 " LOGGING AND MONITORING

The SPM app is added to the dashboard, as shown in Figure 11-5. Click on the App link to navigate to
App Reports, which shows the monitoring data, metrics, and events collected by the SPM app and the charts
generated from the data.

<
All Apps ©
& oa
B infrastr r
. f1
I Monitor ng
Type Application Tokan Plan State Your Role Data Received Actions
& DockerSwarmsPM x-THOLBdda 3413 Pro Silver SPM Docls :
e g
“J
[o to App Reports |

Apps

Figure 11-5. DockerSwarmSPM app on the dashboard

As the message in Figure 11-6 indicates, the app has not received any data yet. All the metrics graphs are
empty initially, but they will display the graphs when data starts getting received.

&
The DockerSwarmSEM App has not received any data y x
=
1k . Prexy settings may be needed, fwewall may be biocking cutbound traffic, o your DNS could be

e i requined entries. See

ke sure the disk where
E=
=]

e Host CPU e Container CPU e Container Memory
Ther, There ata for this chart. Check
s ubleshooting guide

" W Container Count a Container Memaory Failed Counter M Container Swap

Figure 11-6. The DockerSwarmSPM app has not received any data

Creating a Logsene Application

To create a Logsene app, select Logs App from the integrations page at https://apps.sematext.com/ui/
integrations?newUser, as shown in Figure 11-7.

205

https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser

CHAPTER 11 © LOGGING AND MONITORING

£

@ Dashboards A You have no Apps for your logs yet. Create a new App and enjoy your logs!

= infrastructure b

s Monitoring -
B au Manitoring Apps
DockerSwarmSPM Logs App

Docker ' @
os N Create new Logsene app k

Custom Metrics

= Logs
23 Correlations
I Alerts & Events b

& Integrations -
Figure 11-7. Selecting the Logs app
In the Add Logsene App dialog, specify an application name (DockerSwarmLogsene) and click on Create

App, as shown in Figure 11-8.

<
Add Logsene App

@ Dashboards

£ Infrastructure b Application name
| Monitoring - | DockerSwarmlLogsene

B au Monitoring Apps
Discount code

DockerSwarmSPM
Educational institution? Non-profit? Small startup? Get in touch later for d
Docker »
Invite team members
as

. Enter emails separated by comma
Custom Metrics 2

= Logs

32 correlations

I Alerts & Events ; Creaf;App

& Integrations -

Figure 11-8. Adding the Logsene app

206

CHAPTER 11

LOGGING AND MONITORING

A new Logsene application called DockerSwarmLogsene is created, as shown in Figure 11-9. Copy the
LOGSENE_TOKEN that’s generated, which we will use to create a Sematext Docker agent service in a Docker

Swarm.
» Overdew
& Programming Languages
= Log Shippers
i BN Docker
[» We made it super simple to collect logs with Docker,
= Cocker - Setup
P e A "o LOGSENE foaf-4Tds
%o Logsens,
KuberreTes
=) The following will work with any Docker host. This will werk with Rancher0S as well
& Wetos Marathon

b sudo docker oull sematext/semutext-agent-docker
5u00 docker rum -d --name semptext-agent --restartsalwys |
-e LOGSENE_TOKEN=B1ac5345- 7 L L 1168 A\

Cloud taas [Paas

Mebile
- JVBF P/ GOCKEr , SOTKE VAN FUN/COTREr , S8CK |
105 “v jetc/localtine: fetc/localtise:ro |
SESNTENT/ SORITENE- IEANT- Jocker
Android

AL the same time, you can also eollect Docker Metrice and Events and send them to SPM for Docker monitering and alerting by adding™ e SPM_TOKEN=

<YOUR_SPM_TOKEN>" 1o the Docker run command. To get an SPM Token create SPM app for Docker.

Figure 11-9. The Logsene app is added and LOGSENE_TOKEN is generated

A new Logsene application called DockerSwarmLogsene is added to the dashboard, as shown in

Figure 11-10.

<

All Apps | ©

@ Dashboards
8 infrastructure

i 0 v oot
I mcritoring
= Logs Type Application Taken Plan
X Correlations = DockerSwarmliogsens #1ac5 395 noonononononoe de00c649116a Pro, T days, 10 GBiday
B Alurts & Events A DockerSwarmsSPM Ab555fd-wononoomonneT6046d4a 3413 Pro Silver SPM Docker

& Integrations

Figure 11-10. The DockerSwarmLogsene app

State | Your Role Data Received
B OWNER

& OWNER

b: 1o the Docker run command of the Sematext Docker Agent to get all container and host logs

Mcticns

207

CHAPTER 11 © LOGGING AND MONITORING

Click on the DockerSwarmLogsene app link to display the log data collected by the app. Initially, the app
does not receive any data, as indicated by a message in Figure 11-11, because we have not yet configured
a Sematext Docker agent service on the Docker Swarm. The Logsene Ul is integrated with the Kibana
dashboard.

> & +
= The DockerSwarmLogsene App has not received any data yet, wait a few more minutes or check troubleshooting tips: x
= Double-check your log shipping configuration, esp. any errors messages log shipper itself may be logging to its own log files or console ~source
(Y = Try running your log shipper in debug and/for verbose mode e
» Check if there are any network connectivity issues, see our wiki pags i
— . k that your servers’ clocks are correct and check that your logs have accurate timestamps and not timestamps from the future _type
. that your logs have correctly formatted timestamps. Here are some examples of acceptal
B » Elasticeearch API: 2001-08-08T08:00:011232 (1ISO8601) or 1487854172123 (milliseconds since UTC epoch) -
= » Syslog: 2001-06-08T08:00:01.123Z (ISOBE01) or Oct 11 22114115 (RFCI164 timestamp - UTC) _version
For more details around tirr mp formats see wiki page
& = Check integrations guide. once more or conside g a different log shipper Tha:

See more details on how to troubleshoot Logsene apps on Logoene troublesho
If after all of the above you still don't see your logs please contact us via mail or via our live chat. So we can help you faster, please let us know
which log shipping method you are using.

ngt wiki

I Log Counts

No data found for the selected time period

Figure 11-11. The app does not receive any data at first

Connecting the SPM and Logsene Apps

Next, connect the SPM and Logsene apps so that the metrics and events collected by the SPM are integrated
with the Logsene app. Choose Integrations » Connected Apps, as shown in Figure 11-12.

< First app 0

DaockerSwarms
¥ou can connECt any two 3pps you have access to, regardiess of their type.
Docker A single app can be connected to any number of other apps.
Second app
05, Why connect apps?

cting a logs app to a monitoring app will pre
& to correlate metrics from ol

t logs app when you

Custom Metrics

= s -

when you

nnected monitoring app, and thus save you

an alert notification for an app, the alert notification will
ludg
ermation and context for you.

B au wops appe ation (9.g. charts] from connected apps, and thus provide

cally

DockerSwarmLogsene

Connected apps
23 correlations i

I Alerts & Events 5 v of0 -
[o - : z
& Integrations First App Second App Created Bn Created By Actions
Crvacuiy There is no data available
Apps
Connocted Apps

Notficaon Heoks

Figure 11-12. Choosing Integrations » Connected Apps

208

CHAPTER 11 LOGGING AND MONITORING

Select DockerSwarmSPM as the first app and DockerSwarmLogsene as the second app, as shown in
Figure 11-13. Then click on Connect Apps.

< First app 0

DockerSwarmseM

DockerSwarmSFM < You ean connect any two apps you have access to, regardless of their type.
Docker A single app can be conrected to any number of other apps.
Second app
L Why connect apps?
car w— x -
+ connecting a logs app to & monitering app will pre-select that lags app when you
decide to correlabe metrics from the connected monitoring app. and thus save you
= Logs time.
« when you receive an alert notification for an app, the alert notification will
B all Logs Apps autornatically include information fe.g. charts) from connected apps. and thus provide
mere information and context for you.
DocherSwarmlogaens
Connected apps
XK Correlations
3 Alerts & Events. 5 v of0 -
o Integratic -
& Integrations First App Second App Created On Created By Actions
e There is no Sata available

Connected Apps
Figure 11-13. DockerSwarmLogsene

The connected apps are listed, as shown in Figure 11-14.

< First app 0

You can cornect any two
Docker A single app can be conn
Second app

Custem Metrics

0 an Logs Apos

DockerSwarmLogsene

Connected apps
32 Correlations

[Alerts & Events 5 v of1
& Integrations "I Fistapp Second App Craatad On Created By I
S DockerSwarmiogsene 2017-07-27 0018:17 dvahealT@yahoo.com

Apps [

Connected Anps

Figure 11-14. The connected apps

Deploying the Sematext Docker Agent as a Service

The docker service create command copied earlier includes just the SPM_TOKEN token. Add -e LOGSENE_TOKEN
obtained from the Logsene app. Run the docker service create command on the Swarm manager node.

~ $ docker service create --mode global \

> --restart-condition any \

> --name sematext-agent-docker \

> --mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
> --mount type=bind,src=/,dst=/rootfs,readonly=true \

> -e SPM_TOKEN=9b5552fd-001d-44f0-9452-76046d4a3413 \

> -e LOGSENE_TOKEN=81ac5395-fe8f-47d9-93b2-dc00c649116a \

> sematext/sematext-agent-docker

oubjks3mpdnjgaksdgfdxsaft

209

CHAPTER 11 = LOGGING AND MONITORING

A service for the Sematext Docker agent is created; it’s listed using docker service 1s.
~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
oubjk53mpdnj sematext-agent-docker global 3/3 sematext/sematext-agent-docker:latest

List the service tasks. As this is a global service, one task gets started on each node.

~ $ docker service ps sematext-agent-docker

D NAME IMAGE

NODE DESIRED STATE CURRENT STATE ERROR PORTS

5jvl7gnvlote sematext-agent-docker.8doqviepqu8xop402f94i8j40 sematext/sematext-agent-
docker:latest

ip-172-31-8-4.ec2.internal Running Running 2 minutes ago

y53f20d3kknh sematext-agent-docker.xks3sweqgwbcuacyypemfbxyj sematext/sematext-agent-
docker:latest

ip-172-31-31-117.ec2.internal Running Running 2 minutes ago

t5w2pxy4fc9l sematext-agent-docker.ro2ftwtp3n4mocl7v2llwggi8 sematext/sematext-agent-
docker:latest

ip-172-31-44-8.ec2.internal Running Running 2 minutes ago

If additional nodes are added to the Swarm, the Sematext Docker agent starts a service task on the new
nodes. As an example, update the CloudFormation stack to increase the number of manager nodes to three
and worker nodes to five, as shown in Figure 11-15.

@ CloudFormation ~ Stacks » Stack Detail > Update Stack

IndAata Markar ctan
paate LUockKer stack

Select Template SpECIfy Details
Specify Details
g Specify parameter values. You can use orf change the defaull parameter values, which are defingd in the AWS CloudFormation template. Learmn more.
Review
Stack name Docker
Parameters

Swarm Size

Number of Swarm 3 v | Number of Swati ranagis nodes (3
managers?

[Number of Swarm worker 5 Murnber of worker nodes in the Swarm (-1000
nodes?

Figure 11-15. Increasing the number of worker nodes

210

CHAPTER 11 " LOGGING AND MONITORING

The Swarm nodes are increased to three manager nodes and five worker nodes when the Stack update
is complete.

~ $ docker node 1s

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8dogviepqu8xop402f94i8j40 ip-172-31-8-4.ec2.internal Ready Active
9rvieygnndgecagbuf73r9gs5 ip-172-31-35-125.ec2.internal Ready Active Reachable
jamg3fyzjtsdenmr7rkiytltj ip-172-31-18-156.ec2.internal Ready Active
mhbbunh1358chah1dmrOy6i71 ip-172-31-7-78.ec2.internal Ready Active Reachable

ro2ftwtp3ndmocl7v2llwagi8 ip-172-31-44-8.ec2.internal Ready Active
vdamjjjrz7a3ri3prvofjngvy ip-172-31-6-92.ec2.internal Ready Active
xks3sweqgwbcuacyypemfbxyj * ip-172-31-31-117.ec2.internal Ready Active Leader
XXyy4ys40030bb4lsdaoicsr2 ip-172-31-21-138.ec2.internal Ready Active

Adding nodes to the Swarm starts a Sematext agent on the nodes that were added.

~ $ docker service ps sematext-agent-docker

ID NAME

IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS

cgaturwosp59 sematext-agent-docker.xxyy4ys4o030bb4l5daoicsr2

sematext/sematext-agent-docker:latest ip-172-31-21-138.ec2.internal Running
Running 2 minutes ago

1j4fa6q3ydvi sematext-agent-docker. jamg3fyzjtsdcnmr7rkiytlt]
sematext/sematext-agent-docker:latest ip-172-31-18-156.ec2.internal Running
Running 2 minutes ago

v54bjs3c8usr sematext-agent-docker.vdamjjjrz7a3ri3prvofingvy
sematext/sematext-agent-docker:latest ip-172-31-6-92.ec2.internal Running
Running 2 minutes ago

s7arohbeoake sematext-agent-docker.9rvieygnndgecagbuf73r9gss
sematext/sematext-agent-docker:latest ip-172-31-35-125.ec2.internal Running
Running 3 minutes ago

ixpri65xwpds sematext-agent-docker.mhbbunh1l358chah1dmroy6i71
sematext/sematext-agent-docker:latest ip-172-31-7-78.ec2.internal Running
Running 4 minutes ago

5jvl7gnvlote sematext-agent-docker.8doqviepqu8xop402f94i8j40
sematext/sematext-agent-docker:latest ip-172-31-8-4.ec2.internal Running
Running 15 minutes ago

y53f20d3kknh sematext-agent-docker.xks3swbqgwbcuacyypemfbxyj

sematext/sematext-agent-docker:latest ip-172-31-31-117.ec2.internal Running
Running 15 minutes ago

t5w2pxy4fcal sematext-agent-docker.ro2ftwtp3n4mocl7v2llwggis
sematext/sematext-agent-docker:latest ip-172-31-44-8.ec2.internal Running
Running 15 minutes ago

211

CHAPTER 11 = LOGGING AND MONITORING

Creating a MySQL Database Service on a Docker Swarm

In this section, we create a MySQL database service from which metrics, logs, and events can be collected
with Sematext SCM and Logsene using the Sematext Docker Agent, which we installed. To start, run the
following command to create a mysql service with 10 replicas.

~ $ docker service create \

> --env MYSQL_ROOT_PASSWORD="mysql'\
> --replicas 10 \

> --name mysql \

> mysql

rmy45fpa31twkyb3dowzpc74a

The service is created and listed in addition to the Sematext Docker agent service.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS

oubjk53mpdnj sematext-agent-docker global 8/8 sematext/sematext-agent-
docker:latest

rmy45fpa3itw mysql replicated 10/10 mysql:latest

The service tasks for the mysql service are also listed.

~ $ docker service ps mysql

D NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS

x8j221ws4kx2 mysql.1 mysql:latest ip-172-31-21-138.ec2.internal Running
Running 13 seconds ago

98rbd6nwspqz mysql.2 mysql:latest ip-172-31-44-8.ec2.internal Running
Running 11 seconds ago

vmqolylni8or mysql.3 mysql:latest ip-172-31-8-4.ec2.internal Running
Running 24 seconds ago

ovb6oda3yh3d mysql.4 mysql:latest ip-172-31-7-78.ec2.internal Running
Running 23 seconds ago

vdpplkyxyiuy mysql.5 mysql:latest ip-172-31-6-92.ec2.internal Running
Running 23 seconds ago

9ser7fwz6998 mysql.6 mysql:latest ip-172-31-18-156.ec2.internal Running
Running 17 seconds ago

vfsfvanghnso mysql.7 mysql:latest ip-172-31-18-156.ec2.internal Running
Running 17 seconds ago

v71qwpvjhhzn mysql.8 mysql:latest ip-172-31-6-92.ec2.internal Running
Running 23 seconds ago

j7172i5ml43d mysql.9 mysql:latest ip-172-31-31-117.ec2.internal Running
Running 24 seconds ago

5p5mg2wnbboo mysql.10 mysql:latest ip-172-31-35-125.ec2.internal Running

Running 20 seconds ago

212

CHAPTER 11 " LOGGING AND MONITORING

After the Sematext Docker agent service has been started on the Swarm and a MySQL database service
has been started, both the SPM and Logsene apps start receiving data, as indicated by the Data Received
column in the dashboard. See Figure 11-16.

All Apps ©

Type Application Toxen Plan State Your Role Data Rec eived Actions

days. 500 MB/day v

Figure 11-16. DockerSwarmSPM overview

Monitoring the Docker Swarm Metrics

After the mysql service is started on the Swarm, the metrics for the service start getting loaded into the SPM -
Performance Monitoring dashboard. This happens as soon as the Sematext Docker agent is installed and new
metrics from a deployment become available. Graphs for different metrics—including Host CPU, Container
CPU, Container Memory, Container Count, Container Memory Failed Counter, Container Swap, Container I/O
Throughput, Container Network Traffic, and Container Network Errors—are displayed, as shown in Figure 11-17.

; 0 comonn [0 D & #

@ Dashboards W Host CPU W Container CPU W Cantainer Memory
8 infrastructure

- Monitoring - —

TEER]

) an Monitorng Apcs

DockerSwarmSPM

Docker o A

s

s Container Count s Container Memary Failed Counter M Container Swip

(]

X Correlations

& Integrations - o
& Team T S e

& sccount

Figure 11-17. Docker Swarm SPM overview

213

CHAPTER 11 = LOGGING AND MONITORING

The Docker container metrics—including Container Count, Container CPU, Container Disk, Container
Memory, and Container Network—may be displayed by selecting Docker in the navigation. The Docker
Container Count metrics are shown in Figure 11-18.

Dashboards

& infrastructure caa>

M Monitoring =

-

E an e

DockerSwarmSPM
Docker

Container Count

Cantainer CPY

p+172+31-8 - 3452 InDernal container couns [Ip=172-3131-11T0c2.ncernal conainer count B ip~172-31-44-8.4c2 nternal consaines count
Container Network Extended

as i
. - - - -

1]

ofs =

= Ye_;m
Figure 11-18. Docker metrics

The Docker » Container Network selection displays the network traffic received and transmitted, the
receive rate, and the transmit rate. The OS Disk Space Used may be displayed by choosing OS » Disk. The
metrics collection granularity may be set to auto granularity (default), by month, by week, by day, by hour, by
5 minutes, or by 1 minute. The Logs Overview may be displayed using the Logs button.

Click the Refresh Charts button to refresh the charts if they are not set to auto-refresh, which is the

default.
Detailed logs are displayed using Logsene Ul or Kibana 4, which we discuss in the next section.

Getting Docker Swarm Logs in Logsene

Select Logs » DockerSwarmLogsene in the margin navigation to display the logs collected by Logsene.

The Log Counts, Log Events, and Filter fields are displayed, as shown in Figure 11-19. To search for logs

generated by the mysql service, add “mysql” to the search field and click on the Search button. The logs
generated by the mysql Docker service are displayed, including status messages such as "mysqld ready
for connections"”. Click on the Refresh button to refresh the logs.

214

CHAPTER 11 LOGGING AND MONITORING

< & * >
&R Dashboards mysal x n a « Type to filter fields
= infrastruct , :
nfrastructure 1l Log Counts _ P
P matches
I Monitoring - ” + containes_hostname o
0
B an Moritacing Apps 80 * container_ kg o
20
DockerSwarmsPM 3’: » container_name o
il . & & wﬁ’ §> & & & & & & & & + dockerEventaction o
i » dockerEventFrom o
* dockesEventhiost o
Custom Metrics B Log Events {’5 -
= N times r s 0 » dockerEventimageName o
= Lo 10:39:19.889 severity: info logTyse: docker sworn_service nose: [l 1472.47.8.5 logSource: 2. 98000 L] * gocerEventTyce o
® a A LR 198091600 @ [Mete] B2 of Ligt of 1y partiticesd
I Logs dpps ner_hostrume: cdI39d84ctal wearn_task_neme: SirbdinmspqarfHrylarelpt lnage neme: || = host
DockerSwarmiogsene e AR Lol dar B ki -
K correlations 19:38:19.881 docinr swnrn_service_nase: L 17.0.8 Legsource: . 2.98008 O e o
Im 5585 ago 1 d.sock’ port: 3386 Community Server
2 alerts & Events S4cF3L Swarm_tack_name: frylerelpt tnage_name: | * legSouree o
S8rbdsrwspatrfHrylarelpt swarm_nod rezftutainde * legType o
& Integrations - et der g e
& Team 10:38:19.881 info 1ogTye: docker ssarm_service_nawe: 1 1p:172.17.0.5 Iogsource: [ill.2. 000 O " logsene_orig log
1a 555 ae o 119, BBISEST © [Note] mvsald: rency fo 7
& aicouohe CONMCTIONS, ConTRiner hoStnase: CEIFCSACTEL Tdrm ALK name: MErOOGRMTpqIrrirylerelpT image | logsene_priginal type o
er-
2TTII::9. 6802 containes_nase: TN Mrbdarsogrr iy lrelpt swarm_node_fd: redFiwiping * message N
Figure 11-19. Logs generated by the mysql Docker Service
The Logsene collects all the Docker events, such as the Docker pull event for the mysql:latest image,
as shown in Figure 11-20.
& *
mysql x n * Type to filter fields
lid Log Counts - Etimestamp
matches
* * container_hostname Li]
800 * container_id o
@0
» container_name L]
& K & o $)
Qf e:é’ &ﬁ’ g\’ & . & &F -S'PP -SN? & \G\P dockerEventAction L]
* dockerEventFrom L]
* dockerEventHost o
B Log Events [R
» dock | N
Qtimestamp g Tags © dockerEvantimageName Li]
BT 2 omealuint snrsnrdlntuhetas B e * dockerEventType (1]
10:38:43.681 severity: info logType: docker swarn_service rase: [N ip:172.17.0.6 logsource: MBR-3. w8l © * host
6 435 a0 database container hostrame: foeesv3sbbsd swarm task name: vagelylnisoroucdlpiwbries isage name
7- * image_name L]
27722:38:43.6912 container_nase: AN 3. vmgelylnisorcucdlpistr?ed swarm_node_id: S0BqQuiepquEx
172-31-8-4.#c2. internal logsene original type: docker container id: feeessssbbed ip Li]
10:38:43.638 : Snfo dockerEventfron: undefined docker £ §p.172.31.7- o * logSource o
6m 435 ago ernal ip:172.17.9.3 dockeréventaction: pull message: Docker Event: pull
togs: docker | ip-172-31-7- * logType Lid
78.ec2.internal | pull mysql:latest Gtimestasmp: 2007-97-
27T22:38:43 6400 i , ;
ATTIN AN o R SR R e I3+ togsene_orig_tog
10:38:43.638 severity: Info dockergventrron: undefined Gtinestamp: 2017-97- o * logsene_original_type o
& 435 ago 27722:38:43.6387 dockerEVentHoSt: 1p-172-31-6-92.6¢2. internal 1p: 172.17.0.3 host: 1p.172-31-6-
82.ec2. internal dockerEventType: voluse dockerEventaction: mount message: Docker Event: volume ' * message
mount Contact us!

* severity

Figure 11-20. Logs for Docker event for mysql image pull

215

CHAPTER 11

Logs for another Docker event, a volume mount, are shown in Figure 11-21.

LOGGING AND MONITORING

&
mysql n B * Type t
|l Log Counts @timestamp
matches
i + container_nostname L]
00
800 + container_id L]
400
0 * container_name L
= & & B &] » £
& & & o & & & &£ & & & & dockerEventAction o
* dockerEventFrom o
¢ docwerEventHost Li]
B Log Events [R
. EventimageNar
dtimestamp source Tags © dochergventimageName [i]
a7 37T i Hhane dzndon B smae o
10:38:43.526 SNaZ5E: 360df 15cese 1
= 345 ago host
tImagenane: IGAL: 1atestishalss: seedfI7iTadf ssd2aseel 715CCSCTE2EaBRCH
. 5. voppliooey Lyl 12hasd S odyu P 1p-172-31-6+ + image_name o
create | @éfifTdadTce 1 L : 1atestishalss: d8edfIn700 28 2000
sE= ot = - 1k tadme hocts 18.173.31.6 s ip 0
[» lessanss severity: info dockergventFron: undefined Etinestanp: 2017-07- + logSource o
Em 345 a0 27T22138:143,5237 dockereventsost: 1p-172-31-31-117, 802, Internal 1p: 172,17.9.7 host: 1p-172-31-
31-117.8c2. internal dockerfventType: volume dockerfventiction: mount message: Docker Event: + logType [
volume mount h
el
desEinntions AvarfISh/IERE, Arivertlocal. broonentSon: . ¥ » logsene_orig_log
18:3§:43.262 A1 Latestdsnazse: sedf 715CC5C v bogsene_original_type Li]
6a 345 ago
5t8chals6 1 96edd 173700 60204001715 CCECTE 10N 0 message
docker | ip-172-31-31- - .
 weerity Contact us!

b4

https://apps.sematext.com/logsene-reports/mainPage.do?selected Applicatio Biquery[0]="*&queryFilters[0]=[] - g H
Dashboards » Services dvohral@yahoo.com ~ Help
10m 30m th &h 1d 29
& Integration
EY
| Results: 152 matching logs o Actions =
150 v @timestamp
| |
| 100 3 (@ host
L] > @ 'ags
’ L] 2.1 L3 T W0 {31} L] e ey O » () container_hosiname L]
I Queryl ™ 1 Selectal CSv~ Gist~ S » (@ container_id o
@timestamp _source 3 [tontainer_name L]
tl » 16:44:05.086 PST message: 2017-02-05T00:44:05.965254Z 0 [Note] I LR R ORI Tnr. | severity: - » [dockerEventAction o |
| info | host: ip-10-0-0-84.ec2internal | ip: 172.17.0.3 | logSource:
| mysqgllatest_mysql.3.bgabS8p5pd7 26rbke|792209%_783d2471967d | container_id: » () dockerEventFrom L]
| TB3d2471087d im.:i_qe name: mysqllatest | container_name: » dockerEventHost o
| » 16:44:05.956 PST message: Version: '5.7.17" socket 'J\.'amun-'msqlurmysala.soc:-\' port 3306 MySQL Community Server *@ dockerEventType [i]
[(GFL) | severity: info | host: ip-10-0-0-94 ec2 internal | ip: 172.17.0.3 | logSource: o
mysqllatest_mysal.3.bgab5en5pdT 26k TI2Z0M raacw‘esru container_id: » (@ 'magh_name
| T83d24T1087d | im age_name: my ysqllatest | container_name:
| >@ip o
b 16:44:05.965 PST message: 2017-02-05T00:44:05.965142Z 0 [Mote] End of list of non-natively paritioned) logsene_orig_log
| tables | severity: info | host: Ip-10-0-0-94 ec2intemal | ip: 172.17.0.3 | logSource: logSource o
mysgliatest_mysql.3 bgabS3pSpdT 26rbke| T922015_TS302471987d | container_id: * 0 2
f T83d24T1987d | image_name: mysqliatest | container_name: > [logType o
b 16:44:05.955 PST message: 2017-02-05T00:44:05.9546072 0 [Note] g of list of tively @ message
| tables | severity: info | host: ip-10-0-0-94 ac2intemal | ip: 1?2 17.03 Iogsource » () severity l
mysqiiatest_mysqgl.3 bgab5p5pdT 26rbke | 7922915_T53d2471867d | container_id: Contactus! + -
TE3d2471987d | image_name: mysqliatest | container_name: 'Y -

Figure 11-21. Logs for Docker event volume mount

216

CHAPTER 11 " LOGGING AND MONITORING

Summary

This chapter discussed continuous logging and monitoring of a Docker Swarm with Sematext SPM
performance monitoring and Logsene log management. First, you learned how to create a SPM app and a
Logsene app. Then you installed a Sematext agent service on each of the Swarm nodes and monitored the
metrics and events in a SPM dashboard. You also learned how to monitor the logs in the Logsene Ul or a
Kibana 4 dashboard. The next chapter discusses load balancing in a Docker Swarm.

217

CHAPTER 12

Load Balancing

A Docker Swarm mode service provides a distributed application that may be scaled across a cluster of
nodes. Swarm mode provides internal load balancing among the different services in the Swarm based on
the DNS name of a service. Swarm mode also provides ingress load balancing among a service’s different
tasks if the service is published on a host port. Additionally, service tasks may be scheduled on specific
nodes using placement constraints.

Service Discovery

A Swarm has a DNS server embedded in it. Service discovery is based on the DNS name. Swarm manager
assigns each service in the Swarm a unique DNS name entry. Swarm manager uses internal load balancing
to distribute requests for the different services in the Swarm based on the DNS name for a service.

Custom Scheduling

Service replicas are scheduled on the nodes in a Swarm using the spread scheduling strategy by default.
A user may configure placement constraints for a service so that replicas are scheduled on specific nodes.
Scheduling using constraints is discussed in Chapter 6.

Ingress Load Balancing

By default, each service that’s exposed on a published port for external access is added to the ingress
overlay network. A user may specify any available port to expose a service by using the --publish, or -p,
option. The syntax for the --publish (-p) option is - -publish <PublishedPort>:<TargetPort> in which
the <PublishedPort> variable is for the published port on the host and the <TargetPort> variable is for the
container port. If the --publish, -p option does not specify a <PublishedPort> port to publish the service
on the Swarm, the manager automatically exposes the service on a published port chosen from the range
30000-32767.

The Problem

Ingress load balancing is for distributing the load among the service tasks and is used even if a Swarm
consists of a single node. Ingress load balancing for a multi-node Swarm is illustrated in Figure 12-1. A client
may access any node in the Swarm, whether the node has a service task scheduled or not, and the client
request is forwarded to one of the service tasks using ingress load balancing.

© Deepak Vohra 2017 219
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_12

https://doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_6

CHAPTER 12 = LOAD BALANCING

Published
Port

Ingress
Load
Balancer

Client

Service | Host

Replicas

(

Node

Published
Port

Figure 12-1. Ingress load balancing

A single client accesses a single node and, as a result, the Swarm is under-utilized in terms of
distributing external client load across the Swarm nodes. The client load is not balanced across the Swarm
nodes. A single node does not provide any fault tolerance. If the node fails, the service becomes unavailable
to an external client accessing the service at the node.

The Solution

An AWS Elastic Load Balancer (ELB) is used to distribute client load across multiple EC2 instances. When
used for Docker Swarm mode an AWS Elastic Load Balancer distributes client load across the different EC2
instances, which are hosting the Swarm nodes. The external load balancer accesses (listens to) the Swarm on
each EC2 instance at the published ports for the services running in the Swarm using LB listeners. Each LB
listener has an LB port mapped to an instance port (a published port for a service) on each EC2 instance. An
ELB on a Swarm is illustrated in Figure 12-2.

220

CHAPTER 12 LOAD BALANCING

Node
Published
—1m Port
1 | External
Load
Ingress
Load Balancer
Balancer

Node
Published

Service I Port |
Replicas

(

Published
Port

Figure 12-2. External load balancer

As a client is not accessing the service at a single host even if a single node goes down or becomes
unavailable, the Swarm does not become unavailable as the external load balancer directs the client request
to a different node in the Swarm. Even when all the nodes are available, the client traffic is distributed among
the different nodes. As an example, a client could be being served from one node at a particular time and
from a different node shortly thereafter. Thus, an external load balancer serves two functions: load balancing
and fault tolerance. Additionally the cloud provider on which a Swarm is hosted may provide additional
features such as a secure and elastic external load balancing. Elastic load balancing, as provided by AWS
Elastic Load Balancer, scales the request handling capacity based on the client traffic.

This chapter discusses load balancing with a user-created Swarm on CoreOS. It also discusses the
automatically provisioned elastic load balancer on Docker for AWS managed services.

Setting the Environment

Start three CoreOS instances—one for the manager node and two for the worker nodes—as shown in
Figure 12-3. Obtain the public IP address of the manager instance from the EC2 dashboard, as shown in
Figure 12-3.

221

CHAPTER 12 = LOAD BALANCING

(B0 =L Connect | Actions v
L2 A 2]

), | Key Name : coreos Add filter (2] 1to3of3
Name = Instance ID ~ Instance Type ~ Availability Zone ~ Instance State ~ Status Checks -~ Alarm Status Public ONS (IPv4)

@ CoreOSManager i-Dad%eTeaSeddfabeld 12.micro us-gast-1b @ running & 22checks... None Y ©c2-52.91-212-2T com...
CoreOSWorker i-0c 1067b1foc03100f 2. micro us-gast-1b @ running & 212 checks Neng % ec2-54-162-11-213.c0
CoreQ3Worker i-0dd912caadfalbick 2. micro us-east-1b @ running @ 272 checks Neng % ec2-34-201-118-146.c0

'
| i-0ageT: (Core) Public DNS: ec2-52-91-212-27.compute-1.amazonaws.com [_N ==
Deseription Status Checks Monitoring Tags Usage Instructions
Instance D i-0a%TeaSeSdfabeld Public DNS (IPwd) ec2-52-91-212-27 compute-
1.amazonaws com
Instance state runming hlp-.d Public 1P 52.91.212.27
Instance type 12.micro IPvE IPs
Elastic IPs Private DNS ip-10-0-0-226.ec2 internal
Availabilty zone us-gast-1b Private IPs 10.0.0.226
Security groups Container Linux by CoreQS -Stable—1409-T- Secondary private IPs
0-AutogenByAWSMP-4 . view inbound rules

Figure 12-3. CoreOS instances on EC2 for a manager and two worker nodes

SSH login into the manager node to initiate the Swarm mode. Initializing a Swarm mode on CoreOS
and joining worker nodes to the Swarm is discussed in Chapter 2. Copy the docker swarm join command
output to join the worker nodes to the Swarm. List the Swarm nodes with the docker node 1s command.

core@ip-10-0-0-226 ~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9igh5tg7hxy8u43tlifdirioq ip-10-0-0-203.ec2.internal Ready Active
aoe1b2623qjo3852mrc5cax97 ip-10-0-0-198.ec2.internal Ready Active
dsyo3b6553ueishozhfblapad * ip-10-0-0-226.ec2.internal Ready Active Leader

Creating a Hello World Service

Next, create a hello world service with the docker service create command. Expose the service at port
8080 using the --publish option. The syntax to publish a service using --publish or -p is as follows.

docker service create \
--name <SERVICE-NAME> \
--publish <PUBLISHED-PORT>:<TARGET-PORT> \
<IMAGE>

The <PUBLISHED-PORT> is the port exposed on the hosts and the <TARGET-PORT> is the port on which the
Docker container exposes the service. Using the tutum/hello-world Docker image, <PUBLISHED-PORT> as 8080,
<TARGET-PORT> as 80, and <SERVICE-NAME> as hello-world, run the following command to create the service.

core@ip-10-0-0-226 ~ $ docker service create \

> --name hello-world \
> --publish 8080:80 \
> --replicas 3 \

> tutum/hello-world
ogk3wom7z91fpm509e60ptmb5

222

http://dx.doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 12 LOAD BALANCING

The service is added to the ingress overlay network and the service is exposed at each node on the
Swarm, whether a service task is running on the node or not. The hello-world service lists 3/3 replicas.

core@ip-10-0-0-226 ~ $ docker service 1s
ID NAME REPLICAS IMAGE COMMAND
ogk3wom7z91f hello-world 3/3 tutum/hello-world

List the service tasks using the docker service ps hello-world command and the three tasks are
listed as scheduled, one on each node.

core@ip-10-0-0-226 ~ $ docker service ps hello-world

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR

di5oilh96jmr6fdshaevkkkt2 hello-world.1 tutum/hello-world ip-10-0-0-198.ec2.internal
Running Running 24 seconds ago

5g5d075yib2td8466mh7c01cz hello-world.2 tutum/hello-world ip-10-0-0-226.ec2.internal
Running Running 24 seconds ago
5saarf4ngju3xr7uh7ninhooo hello-world.3 tutum/hello-world ip-10-0-0-203.ec2.internal
Running Running 23 seconds ago

One Docker container is running on the manager node.

core@ip-10-0-0-226 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

b73cbcdoc37e tutum/hello-world:latest "/bin/sh -c 'php-fpm " 34 seconds ago
Up 32 seconds 80/tcp hello-world.2.5g5d075yib2td8466mh7c01cz

One Docker container is running on one of the worker nodes.

core@ip-10-0-0-198 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

8bf11f2df213 tutum/hello-world:latest "/bin/sh -c 'php-fpm " 38 seconds ago
Up 36 seconds 80/tcp hello-world.1.di50ilh96jmr6fd5shaevkkkt2

And the third Docker container is running on the other worker node.

core@ip-10-0-0-203 ~ $ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

a461bfc8d4f9 tutum/hello-world:latest "/bin/sh -c 'php-fpm " 40 seconds ago
Up 38 seconds 80/tcp hello-world.3.5saarf4ngju3xr7uh7ninho0o

223

CHAPTER 12 LOAD BALANCING

Invoking the Hello World Service

Without an external load balancer, an ingress connection may be made at each of the nodes at the published
port. To invoke the service at the manager node, obtain the public DNS of the Swarm manager instance from
the EC2 console, as shown in Figure 12-3.

Invoke the service in a web browser at the <PublicDNS>:<PublishedPort> URL, as shown in Figure 12-4.

[Hello world!

<« C | ® ec2-52-91-212-27.compute-1.amazonaws.com:5080

mtutum

Hello world!

My hostname is a461bfc8d4f9

Figure 12-4. Invoking the service in a browser

224

CHAPTER 12 LOAD BALANCING

Similarly, to invoke the service at a worker node, obtain the public DNS of the worker instance from the
EC2 console and invoke the service in a web browser at the <PublicDNS>:<PublishedPort> URL, as shown
in Figure 12-5.

f S
[Hello world! x
<« C | ® ec2-54-162-11-213.compute-l.amazonaws.com:8080 + E

&tutum

Hello world!

My hostname is b73cbcd0c37e

Figure 12-5. Invoking the service at a worker node

225

CHAPTER 12 LOAD BALANCING

Similarly, to invoke the service at the other worker node, obtain the public DNS of the worker instance
from the EC2 console and invoke the service in a web browser at the <Publ1icDNS>:<PublishedPort> URL, as
shown in Figure 12-6.

[|a_ﬁ’|n:: @ﬁ

[Hello world! X

& C | @ ec2-34-201-118-146.compute-1l.amazonaws.com:8080 w

%tutum

Hello world!

My hostname is a461bfc8d4f9

Figure 12-6. Invoking the service at the other worker node

While the external AWS Elastic Load Balancer distributes the load among the EC2 instances, the ingress
load balancer distributes the load among the service tasks. In the preceding example, the same service task
is invoked when the service is invoked at the Swarm manager instance and at a Swarm worker instance, as
indicated by the same hostname (Figures 12-4 and 12-6). This demonstrates the ingress load balancing.

A different service task could get invoked if the service is invoked at the same host. As an example,
invoke the service at the Swarm manager instance again. A different service task is served, as indicated by a
different hostname in Figure 12-7. This is in comparison to the hostname served earlier in Figure 12-4, again
demonstrating the ingress load balancing.

226

CHAPTER 12 LOAD BALANCING

i ESRESIE] ™)

[} Hello world! X

| € C | ® ec2-54-162-11-213.compute-1l.amazonaws.com:8080 | e

| &tutum

Hello world!

My hostname is 8bf11f2df213

(.

Figure 12-7. Different hostname served when invoking the service at the manager node again

Creating an External Elastic Load Balancer

In this section, we create an external elastic load balancer on the AWS cloud. Click on Load Balancers in the
EC2 dashboard. Then click on Create Load Balancer to create a new load balancer, as shown in Figure 12-8.

o, S ILELR:EIELT S Actions v
‘ o s 0

Filter: Q Search X < < None found

You do not have any of these resources in this region

Select a load balancer |_ N =N

Figure 12-8. Creating a new load balancer

227

CHAPTER 12 LOAD BALANCING

AWS Elastic Load Balancing offers two types of load balancers—classic load balancers and application
load balancers. The classic load balancer routes traffic based on either application or network level
information whereas the application load balancer routes traffic based on advanced application-level
information. The classic load balancer should suffice for most simple load balancing of traffic to multiple
EC2 instances and is the one we use for Docker Swarm instances. Select the Classic Load Balancer and then

click on Continue, as shown in Figure 12-9.

Welcome to Elastic Load Balancing

Application Load Balancer ® Classic Lead Balancer

@ Pretered for HITRHTTPS

An Application Load Balancer makes routing cecisions at e application layer A Classik Load Balancer makes routing Jecisions at either the transport layer
{HTTRHTTFS), supports path-based roufing, and can route requests 1o ane or (TCPR/SSL) or the application layer (HTTR/HTTFS), and supports either EC2-
mare pors on each EC2 inglance or container instance in your VPC Classic or avPC.

Figure 12-9. Selecting the classic load balancer option

In the Define Load Balancer dialog, specify a load balancer name (HelloWorldLoadBalancer) and select
a VPC to create the load balancer in, as shown in Figure 12-10. The VPC must exist prior to creating the load
balancer and must be where the EC2 instances to be load balanced are created. The load balancer protocol
is HTTP and so is the instance protocol, by default. Keeping the default setting of HTTP protocol, specify the
load balancer port and the instance port as 8080, because the Hello World service is exposed at port 8080.

1. Define Load Balancer 2. Assgn Securily Groups 3 Configure Security Seltings 4. Configure Health Chexk 5 A EC2Instances 6. Add Tags 7. Review

Step 1: Define Load Balancer

Basic Configuration

This wizard will walk you through setting up a new Ioad balancer. Eegin by giving your new i0ad balancer a unique name 5o that you can ientify it from other load Dalancers you might create. You will a1so need to
configure ports and protocols for your lead balancer. Traffic from your clients can be routed from any lcad balancer port to any port on your EC2 instances. By default, we've configured your load balancer with a

slandard web Sérver on porl 80,

Load Balancer name: |HelloWorldLoadBakancer

Create LB Inside: | vpc-18cBa261 (1000.0.0v24) | redshift-vpe v
Create an internal load balancer: L iwhar's tha?)
Listener Configuration:
Load Balancer Protocol Load Balancer Port Instance Protocol Instance Port
[HTTR v [e0s0 HTTE . la080)

Add

Select Subnets
You will need 10 select 3 Subnel Tor each Availability Zone where you wish Lraflic 1o be rouled by your load tatancer. I you have mslances in only one Availlability Zone, please selecl al leas! lwo Subnets in
difterent Availability Zones 1o provice higher availability for your load balancer

Cancel Next: Assign Security Groups

Figure 12-10. Selecting the load balancer protocol

228

CHAPTER 12 LOAD BALANCING

In the Select Subnets tab, click on one or more subnets listed in the Available Subnets table. The subnets
are added to the selected subnets, as shown in Figure 12-11. Click on Next. To provide high availability,
select at least two subnets in different availability zones.

1. Define Load Balancer 2. Assign Securty Groups 3 &

Step 1: Define Load Balancer

Load Balancer Protocol Load Balancer Port Instance Protocol Instance Port
HTTP N 080 HTTF v 8080 (%]
Add

Select Subnets

You will need to select a Subnet for each Avallabilty Zone where you wish traffic 1o be routed by your load balancer. If you have instances in only one Availability Zone, please salect a two Subnets in

differant Avaitability Zones 1o provide hiUhPf availabdty for your load balancer
VPC vpc-18063261 (10.0.0.0024) | redshift-vpe
Available subnets
Actions Avallabliity Zone Subnet 1D Subnet CIDR Name

Selected subnets

Actions Avallability Zone Subnet ID Subnet CIDR Mame
O us-gast-la subnet-45314221 10.00.025 subnet-1
[-] us-east-1b subnet-ecddd1c0 10.0.0.12825 subnet-2

Cancel Next: Assign Security Groups
b

Figure 12-11. Selecting subnets

In the Assign Security Groups tab, select Create a New Security Group, as shown in Figure 12-12. In
Type, select Custom TCP Rule. Choose the TCP protocol and the port range as 8080. Select Anywhere for the
source and its value as 0.0.0.0/0. Click on Next.

Define Load Batance 2. Assign Security Groups 3. Confgure Secury Settings

Step 2: Assign Security Groups

“ou have setecled the option of having your Elaslic Load Balancer inskde of a VPC, which allows you o assign security groups 1o your load batancer. Please select the securily groups 1o assign to this load batancer

This can be changed at any time

Assign a security group: @ Creale 3 new Security group

Select an existing security group

Security group name: quick-create-1
Description: quick-Create-1 created on Thursday, July 27, 2017 at 12:23:46 PM UTC.
Type (i Protocal (i Port Range (i Source (i
Cuslom TCF Ruke_* TCP 8080 Anywhere | [0.0.0.000 [x]
Add Rule

Cancel Previous Next: Configure Security Settings

5,

Figure 12-12. Assigning security groups

Click on Next in Configure Security Settings, as we have not used the HTTPS or the SSL protocol. In the
Configure Health Check tab, select HTTP for the ping protocol and 8080 for the ping port. Specify the ping path
as /, as shown in Figure 12-13. Keep the defaults as is in the Advanced Details area and then click on Next.

229

CHAPTER 12

LOAD BALANCING

Step 4: Configure Health Check

our inad balancer will avlomatically perform health checks on your ECZ instances and only route traffic to instances that pass the health check. If an instance fails the health check, it is automatically removed from

the load balancer. Customize (g Neatn check o meel your specific needs.

Ping Protocol HTTP A

PFing Port 8080

Ping Path v

Advanced Details

Response Timeout [] seconds
Interval [} 0 seconds
Unhealthy threshold (j 2 v
Healthy threshold (] 10 v

Cancel

Previous

Next; Add EC2 Instances

Figure 12-13. Configuring a health check

Select the three Swarm instances listed, as shown in Figure 12-14. Also select Enable Cross-Zone Load
Balancing, which distributes traffic evenly across all backend instances in all availability zones. Click on Next.

Step 5: Add EC2 Instances

The table below ists 38l your running EC2 Instances. Check the bowes in the Select column to add those instances 1o this load balancer.

VPC vpc-18c63261 (10.0.0.0/24) | redshift-vpc

@ instance - Name

@ e CoreUSWorker

@ i-a%leas. CoreOSManager

@ i0dd91Za.. CoreDSWorker
Availability Zone Distribution

3 instances n us-east-ib

Enable Cross-Zone Load Balancing (§

Enabie Connection Draining i) |300 |seconds

Figure 12-14. Adding EC2 instances

230

State

@ running
@ running
@ running

Security groups

Container Linux by Core0S -Stable-1409-7-0-AutogenBy.
Container Linux by Core0S -Stable1409-7-0-AutogenBy.

Cantainer Linux by CoreDS -Stable--1409-T-0

Zene = SubnetiD
us-gast-1b subnet-ecdddicl
t-1b et-acdadicd
Caneel Previous

Subnet CIDR

100012825
10.0.0128725
10.0.0.12825

Next: Add Tags

CHAPTER 12 LOAD BALANCING

In the Add Tags tab, no tags need to be added. In the Review tab, click on Create, as shown in Figure 12-15.
As indicated, the load balancer is an Internet-facing type.

Step 7: Review

= Define Load Balancer

Load Balancer name:
Scheme:
Fort Configuration:

~ Configure Health Check
Ping Target:

Timeout:

Interval:

Unhealthy threshold:

Healthy threshold:

= Add EC2 Instances

Cross-Zone Load Balancing:
Cennection Draining:
Instances:

* VPC Informaticn

HelloWorkdLoadBalancer
mernet-facing
080 (HTTP) forwarding to 8080 (HTTF)

HTTPE0EN
§ seconds
30 seconds
2

10

Enabled
Enabled, 300 seconds
091 2caadfabicl (CoreOSWorker), l-0adeTeaSeddlate0d (CoreOSManager), I-0c106TL M0 1001 (CoreOSWorker)

Figure 12-15. Review your settings then create the load balancer

Aload balancer is created, as shown in Figure 12-16.

Load Balancer Creation Status

Edit load batancer definition

Edit nealth check

E0R instances

Edit subnets _

Cancel Previous @

@ Successfully created load balancer
Load balancer HelloWoridLoadBalancer was successiully created
Note: It may take a few minutes for your instances 10 become active in the new lcad balancer.

Figure 12-16. The load balancer has been created

231

CHAPTER 12 LOAD BALANCING

Obtain the DNS name of the load balancer from the EC2 console, as shown in Figure 12-17. Initially, the
status will be “0 of 3 instances in service” because the registration is still in progress.

Create Load Balancer JFT-T1 TR
e o6 0

Filter: C Search x £ < 1to20f2
Name ~ DNS name ~ Siate ~ VPCID = Aveilability Zones - Type
Docker-ExtemalLoa- 10WPS1IGIGEGT Docker-Externalloa-10WPS.. wpe-f06f1289 us-east-1a, us-east-1b, . classic
B HelloWordLoadBalancer HelloWeddLoadBalancer-13... vpc-18c6a261 us-easl-1a, us-east-1b classic
v
Load dL C1-1-08

Description Instances Health Check Listeners Monitoring Tags

Basic Configuration

MName: HelloWorndLoadBalancer Creation time: July 27, 2017 at 12225113 PMUTC-7

b * DNS name: HelioWorldLoadBalancer-1388543093 us-east- Hosted zone: Z358XDOTRATXTK

1.elb.amazonaws.com (A Record) Status: 0 of 3 Instances in service

Scheme: intemnet-facing VFC: vpc-18c6a261

Availability Zones: subnel-45314221 - us-easl-1a,
subnet-ecdd41c0 - us-east-1b

Figure 12-17. Obtaining the DNS name of the load balancer

After a while, the status should become “3 of 3 instances in service” and all the instance should be
InService, as shown in Figure 12-18.

Create Load Balancer T LLERG o % 0

Fitter: O Search x K £ 1to2of2 > 2
Name ~ DNS name ~ State ~ VPCID ~ Avallability Zones -~ Type
Docker-Externalloa-10WPS1IGIGEGT Docker-Externalloa-10WPS vpe-flEfiadd us-east-1a, us-east-1b.... classic

B HelloWaorkdLoadBalancer HelloWorkdLoadBalancer-13... wpe-1BcBa26l us-easl-1a, us-easl-1b classic

»

Load balancer: | HelloWorldLoadBalancer _B-N=l

Descripion | Instances | HealthCheck Listeners == MonHoring | Tags

Cennection Draining: Enabled, 300 seconds (Edit)

Edit Instances

Instance ID Name Avallability Zone Status Q Actions
1-0¢106Tb1fbe03100f CoreOSWorker us-gast-1b InService () Remove from Load Balancer
i-la%eTeabetdiabeld CoreOShi s-gasl-1b InService (1) Remove from Load Balancer
i-0dd912caadfaibicf CoreOSWorker us-east-1b InService (j) Remove from Load Balancer

Figure 12-18. Status indicates three of three instances InService

232

CHAPTER 12 LOAD BALANCING

The Hello World service may be invoked from the <DNSname> : <LoadBalancerPort> URL in a web
browser, as shown in Figure 12-19.

@l:ﬂ@

[} Hello world! b

“— C | ® helloworldloadbalancer-1388543093.us-east-1.elb.amazonaws.com:8080 ¥

| &tutum

Hello world!

My hostname is b73cbcd0c37e

Figure 12-19. Invoking the Hello World service

The external elastic load balancer balances the load among the EC2 instances in the Swarm. Because
the ingress load balancer balances the load among the different service tasks, a different service task could
get invoked if the service is invoked at the ELB DNS name again, as shown in Figure 12-20.

233

CHAPTER 12 LOAD BALANCING

[Hello world! *

- C | ® helloworldloadbalancer-1388543093.us-east-1.elb.amazonaws.com:808(¥

| mtutum

Hello world!

My hostname is 8bf11f2df213

(J

Figure 12-20. Different service task served

Load Balancing in Docker for AWS

While an external elastic load balancer had to be created when creating a Docker Swarm using the
command line (by first initiating the Swarm mode and subsequently joining the worker nodes to the
Swarm), the Docker for AWS managed service, which was introduced in Chapter 3, automatically
creates an elastic load balancer.

Create a Swarm (a Swarm created earlier may be updated) with three manager nodes and five worker
nodes using Docker for AWS, as shown in Figure 12-21. An external elastic load balancer is created as one of
the Swarm resources, as listed in the Resources tab in Figure 12-21.

234

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 12 LOAD BALANCING

M CloudFormation ~ Stacks

Actions Design template C | &
Filter: Active = Showing 1 stack
Stack Mame Created Time Status Descripticn

| Docker 2017-07-27 11:30:37 UTC-0700 UPDATE_COMPLETE Docker CE for AWS 17.06.0-ce (17.06.0-ce-aws2) %

Overview Outputs Resources Events Template Parameters Tags StackPolicy Change Sets _}—N=]

Legical ID Physical 1D Type Status Status Reason .

A [SLATI 25 Sadc Shaf

AZinfo :g;mm‘.r TELATESTIR2EIaIMMBcddbe I . cusmmicazinio CREATE_COMPLETE
AZinfoFunction Docker-AZInfoFunction-16Y219QNTLO06 AWS: Lambda; Function CREATE_CCMPLETE
AllachGateway Docke-Allac-1KFP 10XESADPDY AWS EC2. VPCGalewayAllach CREATE_CCMPLETE
CloudstorEBSPolicy Docke-Clou-1GKBPB2MOUKUE AWSLAM: Policy CREATE_COMPLETE
DockerLogGroup Dacker-ig AWS:Logs: LogGroup CREATE_CCMPLETE
DynDBPolicies Docke-DynD-QBAAQREHTAYY AWSTIAM Policy CREATE_COMPLETE
DynDBWorkerPoties Decke-DynD-1TINNWZTOWUYC AWSTIAM: Policy CREATE_COMPLETE
l} ExternalLs = Docher-ExtemalLoa-10WPS1IGIGSGT sticLozaBalancing Lo, CREATE_COMPLETE

ExternalLoadBalancersG 59-1875Tecd AWS EC2: SecurityGroup CREATE_CCMPLETE -

Figure 12-21. CloudFormation stack for a Docker Swarm

An Internet-facing Elastic Load Balancer is created, as shown in Figure 12-22. The public DNS for the
load balancer may be used to access the Swarm, as discussed later.

Create Load Balancer IV -TIHERG P - I |

Filter: O, Search x £ £ 1to1of1 > 3
@ MName ~ DNS name ~ | State ~ VPCID ~ Availability Zones ~ Type
[} @ Docker-Externalloa-10WPS1IGIGEGT Docker-Externalloa-10WPS.... wpe-f06f1a89 us-east-1a, us-east-1b.... classic
v
Load 1| Dock ILoa-1OWPS1IGIGSGT [_N ==
Description Instances Health Check Listeners Monitoring Tags

Basic Configuration

Name: Docker-ExternalLoa-10WPS1IGIGSGT Creation time: July 27, 2017 at 11:31:49 AM UTC-T
* DNS name: Docker-ExtemalLoa-10WPS1IGIGSGT- Hosted zone: Z3I55XDOTRATXTK
44 45 - - { (A
Regt?:; 58.us-2ast-1.elb.amazonaws.com | Status: &b R Y e

VPC: vpe-06f1ass
Scheme: Internet-facing

Availability Zones: subnet-25422309 - us-east-1b,
subnet-72608816 - us-east-1a,
subnet-g67b20% - us-east-1c

Figure 12-22. Load balancer for the Swarm created with Docker for AWS

Select the Instances tab. All the instances in the Swarm, manager or worker, are listed. All the instances
should be InService, as shown in Figure 12-23.

235

CHAPTER 12 LOAD BALANCING

Create Load Balancer JLUILLERG

Filter: (O, Search

@ Name

B Docker-Externalloa-10WPS1IGIGEGT

Descriplion Instances

Connection Draining: Disabled (Ecit)

Edit Instances

Instance ID
i-01b4#402d02425055
i-015d1c 364664811
i-086caZ2ad3404261d

i-0ac60724422253013

i-DeaT99c5a529bd 06
i-0ed6TE3aa56928e 17
i-05d0eec 162589533

i-0918ccd5e5Th53TeT

Figure 12-23. Instances status is InService

Health Check

X

~ DNS name

Docker-Manager
Docker-Manager
Dockerworker
Docker-worker
Docker-worker
Docker-Manager
Dockar-worker

Deckar-worker

Listeners

+ | State

Docker-Externalloa-10WPS .

Monitoring Tags

Avallability Zone
us-east-1b
us-east-1a
us-east-1a
us-east-Tc
us-gast-1c
us-east-ic
us-gasl-1b

us-easi-ia

Status

InService

InService (j
InService (j

InService (i

InService

InService (i

InService

InServce [|

VPC ID

wpe-f06H1a89

o % 0

1to1o0f1

= Availability Zones ~ | Type
us-east-1a. us-east-1b, classic
v

-

Actions

Remave from Load Balancer
Remave from Load Balancer
Remave from Load Balancer
Remaove from Load Balancer
Remove from Load Balancer
Remave from Load Balancer
Remaove from Load Balancer

Remave from Load Balancer

Update the load balancer listeners in the Listeners tab to add/modify a listener with a load balancer
port set to 8080 and an instance port set to 8080, which is the published port for the Hello World service we
create, as shown in Figure 12-24.

Create Load Balancer ML RS

Filter:) Search

@ Neme

B Docker-ExternalLoa-10WPS1IGIGSGT

Load :| Docker

Description Instances

X

~ DNS name

03-10WPS1IGIGEGT

Health Check Listeners

~ | State

Docker-Externalloa-10WPS ..

Monitoring | Tags

The following listeners are currenlly configured for this load balancer

Load Balancer Protocol

TCP

N

Edit

Load Balancer Port

5080

TCP

Figure 12-24. The Listeners tab

Instance Protocol Instance Port

8080

VPC ID

wpe-f06f1289

Cipher SSL Certificate

MNiA

NiA

o 8 e

1to1of1

= Availability Zones ~ | Type

us-east-1a us-easl-1b,... classic

|_N—Qm]

Obtain the public IP address of one of the manager nodes from the EC2 console.
SSH login to the manager node.

[root@localhost ~]# ssh -i "docker.pem" docker@34.205.43.53

Welcome to Docker!

236

List the Swarm nodes.

~ $ docker node 1s

ID
8doqviepqu8xop402194i83j40
8eckbotwpbuoslfr581bibplh
b6f18haf3044gkfsdhkzavoy3
k9nl2zcmjzobbqu5c5bkd829g
pod70jwh5vpjwximcicpjfjkp *
ro2ftwtp3n4moclzv21llwagi8
rd8dokksuts3aao7orhgkri3i
xks3swbggwbcuacyypemfbxyj

HOSTNAME
ip-172-31-8-4.ec2.internal
ip-172-31-32-133.ec2.internal
ip-172-31-2-148.ec2.internal
ip-172-31-21-41.ec2.internal
ip-172-31-1-130.ec2.internal
ip-172-31-44-8.ec2.internal
ip-172-31-41-86.ec2.internal
ip-172-31-31-117.ec2.internal

STATUS
Ready
Ready
Ready
Ready
Ready
Ready
Ready
Ready

CHAPTER 12

LOAD BALANCING

AVAILABILITY MANAGER STATUS

Active
Active
Active
Active
Active
Active
Active
Active

Create a Hello World service and expose the service at port 8080 (published port).

~ $ docker service create \
--name hello-world \
--publish 8080:80 \

Leader

Reachable
Reachable

vV V VvV Vv

--replicas 10 \
tutum/hello-world

n4ghmfognhjrasfsnhukr55krb

Service tasks are scheduled across the Swarm.

~ $ docker service ps hello-world

ID NAME IMAGE

DESIRED STATE CURRENT STATE ERROR
y1fetn3kpwwn hello-world.1 tutum/hello-world:latest
Running Running 15 seconds ago

5i15z19dickd hello-world.2 tutum/hello-world:latest
Running Running 17 seconds ago

k9glaavnogzg hello-world.3 tutum/hello-world:latest
Running Running 17 seconds ago

n83f89ijlokn hello-world.4 tutum/hello-world:latest
Running Running 17 seconds ago

nelf275h9tp1 hello-world.5 tutum/hello-world:latest
Running Running 16 seconds ago

w4c8zcvlq5v7 hello-world.6 tutum/hello-world:latest
Running Running 17 seconds ago

b5qvbbgkrpds hello-world.7 tutum/hello-world:latest
Running Running 16 seconds ago

qlm8dtafuv92 hello-world.8 tutum/hello-world:latest
Running Running 17 seconds ago

t3tenhpahh7g hello-world.9 tutum/hello-world:latest
Running Running 17 seconds ago

up64ekxgeftk hello-world.10 tutum/hello-world:latest
Running Running 17 seconds ago

NODE

PORTS
ip-172-31-2-148.ec2.internal
ip-172-31-44-8.ec2.internal
ip-172-31-8-4.ec2.internal
ip-172-31-41-86.ec2.internal
ip-172-31-8-4.ec2.internal
ip-172-31-32-133.ec2.internal
ip-172-31-21-41.ec2.internal
ip-172-31-31-117.ec2.internal

ip-172-31-44-8.ec2.internal

ip-172-31-1-130.ec2.internal

237

CHAPTER 12 = LOAD BALANCING

The hello-world service may be created without explicitly specifying a published port.

~ ¢ docker service create \

vV V VvV Vv

--name hello-world \
--publish 80 \
--replicas 3 \
tutum/hello-world

The Swarm manager automatically assigns a published port in the range 30000-32767; the default being
port 30000 if it’s available. The listener in the load balancer for the Docker for AWS Swarm may need to be
modified to add a mapping for the LoadBalancerPort:ServiceInstancePort, such as 30000:30000.

Obtain the public DNS for the elastic load balancer, which gets created automatically, as shown in

Figure 12-25.

Create Load Balancer WMol
1

Filter: O, Search

@ Name

B Docker-Externalloa-10WPS1IGIGEGT

X

DNS name

Load balancer: | Decker-ExternalLoa-10WPS1IGIGSGT

Description Instances

Basic Configuration

Name:

* DNS name:

Scheme:

Availability Zones:

Figure 12-25. Obtaining the public DNS of the ELB

Health Check

Listeners

ker-Extenalloa-10WPS1IGIGSGT

ftemalloa-10WPS11IGIGSGT-

449932458 us-east-1.elb. amazonaws.com (A
Record)

internet-tacing

Docker-Externalloa-10WPS..

Monitonng

State

Tags

Creation time:
Hosted zone:
Status:

VFC:

VPCID

vpe-f06f1389

o 8 @

1to1of1

Availability Zones ~ Type

us-gast-1a. us-east-1b. classic

Juty 27, 2017 at 11:31:49 AM UTC-T

Z3I5SXDOTRATXTK

instances in service

vpc-fO6f1ass

Access the service at <PublicDNS>:<PublishedPort> in a web browser, as shown in Figure 12-26. The
request is forwarded to the ingress load balancer on one of the instances in the Swarm. The instance that the
external request is forwarded to does not have to be hosting a service task. Finding a service task is what the
ingress load balancer does.

238

CHAPTER 12 LOAD BALANCING

&) =lE@

[} Hello world! X

-

“— C | ® docker-externalloa-lowpsligigSgt-449932458.us-east-1.elb.amazonaws.com:8080 | &

. @tutum

Hello world!

My hostname is 5¢339caaa9h8 '

Figure 12-26. Accessing a Docker service at the elastic load balancer DNS

Summary

This chapter discussed load balancing in Swarm mode. An ingress load balancer is used to distribute

the load among a service’s tasks. Each service in a Swarm is assigned a DNS name and an internal load
balancer balances service requests among the services based on DNS name. We also created an external
load balancer for AWS EC2 instances to distribute load among the EC2 instances. Docker for AWS creates
an external load balancer automatically on AWS. In the next chapter we discuss developing a Docker Swarm
based highly available website.

239

CHAPTER 13

Developing a Highly Available
Website

High availability of a website refers to a website being available continuously without service interruption.

A website is made highly available by provisioning fault tolerance into the Docker Swarm application. High
availability is provided at various levels. The ingress load balancer balances incoming client requests across
the multiple service tasks and provides fault tolerance at the tasks level. If one service task fails, client traffic
is routed to another service task. Using an external load balancer for a Docker Swarm hosted across multiple
availability zones is another method for providing high availability. An external load balancer provides fault
tolerance at the node level. If one node fails, client traffic is routed to Swarm nodes on another node.

The Problem

Using an external load balancer such as an AWS Elastic Load Balancer provides fault tolerance across
multiple availability zones in an AWS region. The elastic load balancer may be accessed at its DNS name by
a client host, as illustrated in Figure 13-1. The Swarm is not highly available, as failure of a single AWS region
would cause a website to become unavailable.

Availability Zone 1
. J
Load
() Balancer
Availability Zone 2 ~.—— Client
L) Host
4 \

Availability Zone 3

Figure 13-1. The elastic load balancer may be accessed at its DNS name by a client host

© Deepak Vohra 2017 241
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_13

https://doi.org/10.1007/978-1-4842-2973-6_13

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

The Solution

Amazon Route 53 provides high availability with various DNS failover options, including active-active and
active-passive failover using alias resource record sets. Amazon Route 53 provides DNS failover across AWS
regions that are geographically spread, as illustrated in Figure 13-2. We use the Amazon Route 53 active-
passive failover configuration based on the primary-secondary architectural patter for load balancer DNSes.

(Region)
1 4 \
Availability Zone 1
L) Primary
Load DNS
Balancer
4 \
Availability Zone 2
. J
_ J AWS Route 53
Hosted Zone
4 P N N
Availability Zone 2
\ J Load
Region Balancer
2 - N Secondary
DNS
Availability Zone 3
. J
\ J

Figure 13-2. Amazon Route 53 provides DNS failover across AWS regions

This chapter covers the following topics:
e Setting the environment
e Creating multiple Docker swarms
¢ Deploying a Docker Swarm service
e (Creating a AWS Route 53
e C(Creating a hosted zone
e Configuring name servers
e Creatingrecord sets
e Testing high availability

e Deleting a hosted zone

242

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Setting the Environment

We use two Docker for AWS managed Swarms for providing two DNS for active-passive DNS failover
configuration. A Route 53 provides the primary-secondary architectural pattern for the two DNSes. The only
prerequisite is an AWS account, which may be created at https://aws.amazon.com/resources/create-
account/. Create a key pair (Swarm) that is to be used for SSH login to Swarm manager nodes, as shown in
Figure 13-3. Set the permissions on the key pair to read-only by the owner only with the chmod 400 swarm.
pem command.

Resource Groups ~ * i Deepak Vohra ~ Oregon ~ Support ~
(=L =1L G Import Key Pair . Delete
B e e e MR oo o0
Q (2] 1to10f1
B Key pair name ~ Fingerprint >
@ swam ae'ed:95:29:3¢:0f-00-da-fd:5f dT-a1:c¢9:a0:29:be: 78:6f-9b:ed

Figure 13-3. Key pair

A domain name must be registered to be used for creating an Amazon Route 53 hosted zone.

Creating Multiple Docker Swarms

Create two Docker Swarms using the Docker for AWS managed service at https://docs.docker.com/
docker-for-aws/. The two Docker Swarms must be in two different AWS regions to use the high availability
provided by geographically distributed AWS regions. Create one Docker Swarm Oregon region as an
example, as shown in Figure 13-4.

ﬁ Services v Resource Groups ~ % A DeepakVohra~ Oregon ~ Support ~

@ CloudFormation v Stacks

Create Stack > Actions = Design template C Lo

‘ Filter: Active = Showing 1 stack
[Stack Name Created Time Status Description
b - DockerSwarm-1 2017-02-12 14:01:27 UTC-0800 CREATE_COMPLETE Docker for AWS 1.13.1 (ga-2)

Figure 13-4. CloudFormation stack for Docker Swarm

Each Docker Swarm has manager and worker nodes spread across the AWS availability zones in an AWS
region. The public IP of a manager node may be obtained from the EC2 console, as shown in Figure 13-5.

243

https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Resource Groups v * o Deepak Vohra ~ Oregon » Support ~
Launch Instance Connect Actions v
i, e
Q trit Vo (2] 1to8of8
Name ~ Instance ID « Instance Type ~ Availability Zone ~ Instance State -~ Status Checks ~ Alam
DockerSwarm-1-worker i-009e516538a4603d2 t2 micro us-west-2¢ @ running @ 22checks ... None
DockerSwarm-1-worker i-031913742454e9090 {2 micro us-west-2c @ running @ 22 checks .. Nare
@ DockerSwam-1-Manager i-054193cb%64bbbceS 12 micro us-west-2¢ @ running & 22checks ... None
DockerSwarm-1-Manager i-06c7242048df94d06 t2.micro us-west-2b @ running &@ 22checks ... None-
- - L3
Instance: | i-054193cb964bbbce5 (DockerSwarm-1-Manager) Public DNS: ec2-54-149-86-148.us-west- _ Nl

2.compute.amazonaws.com

Description = Status Checks Monitoring = Tags

Instance ID iH054193cb964bbbees Public DNS (IPv4) ec2-54-149-86-148.us-west-
2.compute.amazonaws.com
Instance state running t} IPv4 Public IP 54.149.86.148
Instance type t2.micro IPvEIPs -
Elastic IPs Private DNS ip-172-31-44-164.us-west- .

Figure 13-5. Obtaining the public IP of the Swarm manager node

Using the public IP address for a manager node in the first Docker Swarm, SSH login to the manager
node EC2 instance.

[root@localhost ~]# ssh -i "swarm.pem" docker@54. 149.86.148
Welcome to Docker!
~$

Create the other Docker Swarm in the Ohio AWS region as an example, as shown in Figure 13-6.
The regions may be different for different users.

T} Services ~ Resource Groups ~ %

@ CloudFormation v Stacks

Create Stack - [EEEISTSIERY Design tempiate cle

Filter: Aclive = Showing 1 stack

Stack Name Created Time Status Description

* DockerSwarm-2 2017-02-12 14:14.06 UTC-0800 MPLETE Docker for AWS 1.13.1 (ga-2)

(N

Figure 13-6. CloudFormation stack for the Docker Swarm in one region

244

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

The Swarm node EC2 instances for the second Docker Swarm are also spread across the AWS availability
zones in the second AWS region, as shown in Figure 13-7. Obtain the public IP for a manager node.

Connect Actions v
. o s 0

Q Filter by tags and attributes or sear s 0 K 1to8of8
Name * Instance ID =~ Instance Type =~ Availability Zone ~ Instance State -~ Status Checks ~ Alarm

B DockerSwam-2-Manager i-009e6f31f68a1405a 12.micro us-east-2a @ running @ 22checks ... None
DockerSwam-2-Manager i-01baf37172925¢5a6 12.micro us-east-2b @ running @ 22checks ... None
DockerSwarm-2-worker i-0431b8d8e0f0343b5 12.micro us-gast-2a @ running @ 22checks ... None
DockerSwam-2-worker i-05¢f4e0129096T 119 12.micro us-east-2c @ running @ 272 checks None
DockerSwam-2-worker i-08609eb056bBE22(T 12.micro us-east-2a @ running @ 272 checks None~
= = = iy P # - L4

Instance: | i-009e6f31f68a1405a (DockerSwarm-2-Manager) Public DNS: ec2-52-14-23-163.us-east- _N ===

2.compute.amazonaws.com

Description Status Checks = Monitoring = Tags

Instance ID i-009e6f31f68a1405a Public DNS (IPv4) ec2-52-14-23-163.us-east-
2 COI'I\pLItQ amazonaws.com
Instance stale running [} |Pv4 Public IP 52.14.23.163
Instance type t2.micro IPv6IPs - -

Figure 13-7. The Availability Zone column lists multiple zones

SSH login to the instance.

[root@1local.host —]# ssh -i “docker.pem” docker@52.14.23.163
Welcome to Docker!
~$

List the Swarm nodes in a Docker Swarm with the Docker node.
~ $ docker node 1s
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

fncv7ducej3ind4u2sy9xtwi7 ip-172-31-34-223.us-east-2.compute.internal. Ready Active
Reachable

grdeu2x49yi2fmvuy9lmoogqg ip-172-31-43-174.us-east-2.compute.internal Ready Active
ke0d75qef9bg8t22eqv9spdpm ip-172-31-30-180.us-east-2.compute.internal. Ready Active
Reachable

m2mmifbrnjbdriub5r36zxyjc * ip-172-31-8-11.us-east-2.compute.internal Ready Active Leader
genbfrmsOxv7woméwpwoyspw4 ip-172-31-27-178.us-east-2.compute.internal Ready Active
tipzy29hgh3m6og5bzkgsego8 ip-172-31-12-37.us-east-2.compute.internal Ready Active
v4xdl4jvthovrzsamujoxy3ju ip-172-31-7-219.us-east-2.compute.internal Ready Active
vuq68yex58vzgx3audj3sm23a ip-172-31-28-182.us-east-2.compute.internal Ready Active

245

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Deploying a Docker Swarm Service

Next, we deploy a Hello World service that will be hosted on a website. Run the following command on a
manager instance for the DockerSwarm-1 Swarm to create a tutum/hello-world service with two replicas
exposed at port 8080 on the host nodes.

docker service create \
--name hello-world \
--publish 8080:80 \
--replicas 2 \
tutum/hello-world

A Docker service with two service tasks is created.

~ $ docker service create \

--name hello-world \
--publish 8080:80 \

-- replicas 2 \
tutum/hello-world
vn5f18h7t65sjwk54dwcoklhu

vV V VvV Vv

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE

vn5t18h7t65s hello-world replicated 2/2 tutum/hello-world:latest

~ $ docker service ps hello-world

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

ac9ks5y9duni2 hello-world.l tutum/hello-worid:latest ip-172-31-19-220.us-west-2.compute.
internal Running Running 13 seconds ago

8s6r48wlui9 hello-world.2 tutum/hello-world:latest ip-172-31-24-250.us-west-2.compute.

internal Running Running 13 seconds ago

Scale the service to 10 replicas to provide load distribution. Subsequently, list the
services to list 10/10 replicas as running.~ $ docker service scale hello-world=10

hello-world scaled to 10
~ $ docker service ls

ID NAME MODE REPLICAS IMAGE
vn5U8h7t65s hello-world replicated 10/10 tutum/hello-world:latest
~ %

The 10 service task replicas are scheduled across the Swarm nodes, as shown in Figure 13-8.

246

1D NAME
ac9ks5y9dum2 hello-world.1
-2.compute.internal Running
8s6r48wltui9 hello-world.2
-2.compute.internal Running
k4r20unvixxs hello-world.3
-2.compute.internal Running

imz825y6j5ya hello-world.4
2.compute.internal Running
m21z9wpsbtea hello-world.5

-2.compute.internal Running
4kxgmmc3uxlw hello-world.6
-2.compute.internal Running
03ychxa9ply8 hello-world.7
-2.compute.internal Running
uriyh6hh9026 hello-world.8
-2.compute.internal Running
nmrinzvl7yj5 hello-world.9
2.compute.internal Running
ghfduagrtgqg hello-world.10
2.coﬁpute.internal Running
=

CHAPTER 13

~ $ docker service ps hello-world

IMAGE

DESIRED STATE CURRENT STATE

tutum/hello-world:latest

DEVELOPING A HIGHLY AVAILABLE WEBSITE

NODE
ERROR PORTS
ip-172-31-19-220.us-west

Running about a minute ago

tutum/hello-world:latest

ip-172-31-24-250.us-west

Running about a minute ago

tutum/hello-world:latest
Running 49 seconds
tutum/hello-world:latest
Running 46 seconds
tutum/hello-world:latest
Running 45 seconds
tutum/hello-world:latest
Running 46 seconds
tutum/hello-world: latest
Running 46 seconds
tutum/hello-world:latest
Running 46 seconds
tutum/hello-world: latest
Running 46 seconds
tutum/hello-world:latest
Running 45 seconds

ip-172-31-19-220.us-west
ago
ip-172-31-6-109.us-west-
ago
ip-172-31-44-164.us-west
ago
ip-172-31-42-245.us-west
ago
ip-172-31-36-249.us-west
ago
ip-172-31-20-251.us-west
ago
ip-172-31-3-209.us-west-
ago
ip-172-31-3-209.us-west-
ago

Figure 13-8. Service tasks scheduled across the Swarm nodes

Obtain the load balancer DNS for the first Docker Swarm from the EC2 dashboard, as shown in Figure 13-9.

A\ Deepak Vohra ~

Oregon + Support ~

Resource Groups ~ %
Create Load Balancer QRTS{1ESR
4
Filter: Q Search
[] Name DNS name

B DockerSwam-1-ELB

Load balancer: | Dockerswarm-1-ELB

Description Instances Health Check

Basic Configuration

State

DockerSwarm-1-ELB-156265..

Listeners Monitoring Tags

Name: DockerSwarm-1-ELB Creation time:

*DNS name: DockerSwarm-1-ELB-1562658885.us- Hosted zone:

west-2 elb.amazonaws.com (A Record) Status:

Scheme: internet-facing vPC:
Availability subnet-18aa%e40 - us-west-2c,

o & @

1to10f1
VPCID = Availability Z+
vpc-28Tcedf us-west-2a, us
b
EERA

February 12, 2017 at 2:02:30 PM UTC-8
Z1H1FLSHABSFS
& of & instances in service

vpc-287ceddf

Figure 13-9. Docker Swarm load balancer

247

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Access the service at <DNS>: <LoadBalancerPort> in a web browser, as shown in Figure 13-10; the load
balancer port is set to 8080, the port at which the service is exposed.

— [—

[Helo werd! x

. C | ® dockerswarm-1-elb-1562653885.us-west-2.elb.amazonaws.com:308 L

Dtutum

Hello world!

My hostname is d293e037e566

Figure 13-10. Accessing the service in a browser
Similarly for the second Docker Swarm, create a tutum/hello-world service with a published port set to
8080. Scale the service to 10 replicas for load distribution across the Swarm.
S docker service create \
> --name hello-world \
> --publish 8080:80 \
,> --replicas 2 \
> tutum/hello-world
woqx21tuibv53ctmuvssrsq8j
~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE
wogx21tuibv5 hello-world replicated 2/2 tutum/hello-world:latest

~ $ docker service ps hello-world
NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

248

CHAPTER 13

DEVELOPING A HIGHLY AVAILABLE WEBSITE

ny9ermdgb7a4 hello-world.1 tutum/hello-world:latest ip-172-31-34-223.us-east-2.compute.
internal Running Running 15 seconds ago

5w3thlgleinme hello-world.2 tutum/hello-world:latest ip-172-31-30-180.us-east-2.compute.
internal Running Running 15 seconds ago

~ $ docker service scale hello-world=10

hello-world scaled to 10

The service replicas are distributed across the Swarm nodes, as shown in Figure 13-11.

ID NAME
ny9ermdgb7a4 hello-world.1
-2.compute.internal Running
5w3thlglomme hello-world.2
-2.compute.internal Running
lwarzpstn2wk hello-world.3
.compute.internal Running
ff58q941j91m hello-world.4
.compute.internal Running
wtjskvuwhmu4 hello-world.5
-2.compute.internal Running
8vtnxaZ7yktxu hello-world.6
-2.compute.internal Running
ombtgclkgwax hello-world.?
2.compute.internal Running
twfj8nng88lu7 hello-world.8
2.compute.internal Running
98sykb376wn7 hello-world.9
-2.compute.internal Running
g6cyck25jdo8 hello-world.10
-2.cimpute.interna1 Running
iy

~ $ docker service ps hello-world

IMAGE

DESIRED STATE CURRENT STATE

tutum/hello-world:latest

NODE
ERROR PORTS
ip-172-31-34-223.us-east

Running about a minute ago

tutum/hello-world:latest

ip-172-31-30-180.us-east

Running about a minute ago

tutum/hello-world:latest
Running 25 seconds
tutum/hello-world:latest
Running 25 seconds
tutum/hello-world:latest
Running 27 seconds
tutum/hello-world:latest
Running 26 seconds
tutum/hello-world:latest
Running 26 seconds
tutum/hello-world:latest
Running 26 seconds
tutum/hello-world:latest
Running 25 seconds
tutum/hello-world:latest
Running 26 seconds

Figure 13-11. Service replicas distributed across the Swarm

ip-172-31-8-11.us-east-2
ago
ip-172-31-8-11.us-east-2
ago
1p-172-31-30-180.us-east
ago
ip-172-31-43-174.us-east
ago
ip-172-31-12-37.us-east-
ago
ip-172-31-7-219.us-east-
ago
ip-172-31-27-178.us-east
ago
ip-172-31-28-182.us-east
ago

249

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Obtain the DNS of the elastic load balancer for the second Swarm, as shown in Figure 13-12.

Resource Groups ~ %

Deepak Vohra ~ Ohio~ Support ~

Create Load Balancer QE.T-{1ERRY
L

Filter: Q Search x
[] Name ~ DNS name ~ State
@ DockerSwam-2-ELB DockerSwarm-2-ELB-823944...

Load balancer: | DockerSwarm-2-ELB
Description Instances Health Check Listeners Monitoring Tags

Basic Configuration

Name: DockerSwarm-2-ELB Creation time:
*DNS name: DockerSwarm-2-ELB-823944047 us- Hosted zone:
east-2 elb.amazonaws.com (A Record)
Status:
Scheme: internet-facin:
9 vPC:

Availability subnet-00259569 - us-east-2a,
Zones: subnet-0487437f - us-east-2b,

L A)
1to10f1
-~ VPCID ~ Availability 2
vpe-01cfGice us-east-Za, us
v
_ N N =

February 12, 2017 at 2:15:09 PM UTC-8
Z3AADJGXEKTTL2
& of & instances in service

vpc-01ct668

Figure 13-12. Obtaining the DNS name for the Swarm ELB

Access the service at <DNS>:<LoadBalancerPort> in a web browser, as shown in Figure 13-13.

— — — —— ——
[Hello workd! *

' < C | @ dockerswarm-2-elb-823944047.us-east-2.elb.amazonaws.com: 2020

'mltutum

Hello world!

My hostname is cc815a21b%e1

Figure 13-13. Accessing the service in a browser
250

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Creating an Amazon Route 53

Amazon Route 53 is a highly available and scalable cloud Domain Name Service (DNS) web service that
connects user requests to infrastructure running on the AWS, including Amazon EC2 instances, load
balancers, and Amazon S3 buckets. We already created two Docker Swarms hosting the same Docker service
using the Docker AWS managed service, which automatically creates an AWS ELB for each Docker Swarm.

In this section, we create an Amazon Route 53 to route user requests to the nosqlsearch.com domain
to the elastic load balancers for the two Docker Swarms. In Amazon Route 53, we create two resource
record sets pointing to the two different ELBs configured for failover, with one of the ELBs being the primary
resource record set and the other being the secondary resource record set.

When the nosqlsearch.com domain is opened in a web browser, the Route 53 routes the request to the
primary resource record set. If the primary record set fails, Route 53 routes the user request to the secondary
record set, in effect providing high availability of the Hello World Docker service hosted on the nosqlsearch.com
domain. To create an AWS Route 53, select Route 53 from the AWS services, as shown in Figure 13-14.

AWS Management Con: X)

L C | & Secure | https://us-east-2.console.aws.amazon.com/cons
£ Storage
S3
EFS
Glacier

Storage Gateway

F:' Database
RDS
DynamoDB
ElastiCache
Redshift

o';: Networking & Content
VPC
CloudFront
Direct Connect

\V

Figure 13-14. Selecting the Amazon Route 53 service

251

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Creating a Hosted Zone

A hosted zone is a configuration that determines how traffic to a domain on the Internet will be routed. To
create a hosted zone, open https://console.aws.amazon.com/route53/ in a web browser and click on
Create Hosted Zone in the DNS management, as shown in Figure 13-15.

Dashboard < DNS management

Hosted zones

Health checks A hosted zone tells Route 53 how

to respond to DNS queries for a

Traffic flow domain such as example.com
Traffic policies Create hosted zone
Policy records {ID

Figure 13-15. Creating the hosted zone

Alternatively, select Hosted Zones or open https://console.aws.amazon.com/route53/home#hosted-
zones in a browser and click on Create Hosted Zone, as shown in Figure 13-16.

Create Hosted Zone Go to Record Sets Delete Hosted Zone
Dashboard 4
| Hosted zones .
Health checks
-
Traffic flow
Traffic policies

Policy records

Q
]

Lomainz Amazon Route 53 is an authoritative Domain Name System (DNS) service. DNS is the
Registened domam system that translates human-readable domain names (example.com) into IP addresses
Pending requests (192.0.2.0). With authoritative name servers in data centers all over the world, Route 53 is

reliable, scalable, and fast.

I you aiready have a domain name, such as example.com, Route 53 can tell the Domain Name System (DNS) where on the Internet to
find web servers, mail servers, and other resources for your domain.
Learn More

Create Hosted Zone

Figure 13-16. Creating a hosted zone

252

https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/home#hosted-zones
https://console.aws.amazon.com/route53/home#hosted-zones

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Click on Create Hosted Zone again, as shown in Figure 13-17.

Create Hosted Zone Go to Record Sets Delete Hosted Zone
Dashboard 4)

| Hosted zones Q Sea fiekd X AlTypes v
ReathEnedts Domain Name = Type - Record Set Count ~ Comment
Traffic flow
Traffic policies

Policy records

Domains
Registered domains

Pending requests

Figure 13-17. Creating a hosted zone

-
a7
1€ & MoMosted Zones to display > 3]

Hosted Zone ID =

In the Create Hosted Zone dialog, specify a domain name (nosqlsearch.com). The domain name must
be registered with the user. Select Public Hosted Zone for the type, as shown in Figure 13-18.

Go to Record Sets Delete Hosted Zone c 9
4
Q Search all fields X All Types K Create Hosted Zone
[€ < Notosted Zonestodisplay 3 31 A. hos.!ea zone s a container that holds information about how you
= s want to route traffic for a domain, such as example.com, and its
subdomains.

Domain Name~ Type- Record Set Count~ Comment

Domain Name: nosglsearch.com

Comment:

Type: puplic Hosted Zone v

A public hosted zone determines how traffic is
routed on the Internet.

Figure 13-18. Configuring the hosted zone

253

CHAPTER 13

DEVELOPING A HIGHLY AVAILABLE WEBSITE

A new public hosted zone is created, as shown in Figure 13-19. The name servers for the hosted zone
(by default, there are four) are assigned.

Back to Hosted Zones

Q

Weighted Only

Name

@ nosgisearch.com.

nosqlsearch.com

Type

NS

Create Record Set Import Zone File

X || Any Type * Aliases Only

¢ Displaying 1o 2 out of 2 Record Sets » |

Value

ns-1293.awsdns-33.0rg.
ns-1929.awsdns-49.co.uk.
ns-175.awsdns-21.com.
ns-538.awsdns-03.net

ns-175.awsdns-21.com. awsdns-hostmaster.am;

N

Figure 13-19. The new public hosted zone

Configuring Name Servers

Delete Record Set Test Record Set

Edit Record Set
Name: nosqlsearch.com
Type: NS - Name server

Alias: Yes @ No

TTL (Seconds):

Value:

5-17¢ sdn
The domain na

Enter multiple name server
separate lines

nsd amazon.co.uk

Next, we need to configure the name servers for the domain with the domain registrar. The procedure to
configure name servers is different for different domain registrars, but an option to add a zone record for a
domain should be provided.
Specify the record type as Nameserver, as shown in Figure 13-20. Specify the host as @. Each zone record
should point to a single name server, which may be obtained from the public hosted zone we created earlier.

254

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Add Zone Record

NOSQLSEARCH.COM

-
Record type: View current

NS (Nameserver)

Host: *
@

Points to: * (9

ns-1293.awsdns-33.0rg

TIL='"*.(3) Seconds: *

Custom v 600

Figure 13-20. Adding a name server record

Add four name servers (collectively called a delegation set), as shown in Figure 13-21, for the domain for
which a hosted zone is to be created.

255

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

NOSQLSEARCH.COM ~

Status: Active | Created: 2012-07-28 | Expires: 2017-07-28 | Folder: None

Profile: None

© Renew v O Upgrade % Buy&sSel v 8 AccountChange € Delete

Settings DNS Zone File Contacts

Auto-Renew (@ Standard: OF
Extended: OF

Manage

Lock® On

Manage

Nameservers @ NS-12093 AWSDNS-33.0RG
lk NS-1929 AWSDNS-49.CO.UK
NS-175.AWSDNS-21.COM
NS-538 AWSDNS-03.NET
Updated 2017-02-12
Manage

Figure 13-21. Name servers configured on a domain

Creating Resource Record Sets

After creating and configuring a hosted zone, create one or more resource record sets. A resource record set
is a Domain Name System (DNS) configuration for routing traffic to a domain. Click on Create Record Set to
create a resource record set, as shown in Figure 13-22.

256

Back to Hosted Zones w Import Zone File

Q Record Set Name X || Any Type v Aliases Only
Weighted Only
[€ < Displaying 1to2 out of 2 Record Sets » »|
Name Type Value
ns-1293.awsdns-33.0rg.
| ncagiacarch comt Ne ns-1929. awsdns-49.co.uk.
ns-175.awsdns-21.com.
ns-538 awsdns-03.net.
nosqgisearch.com. SOA ns-175. dns-21.com. dns-h

Figure 13-22. Creating a record set

ami

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Delete Record Set Test Record Set

Edit Record Set

Name: nosglsearch.com

Type: NS -Name server

Alias: Yes @ No

TTL (Seconds): 172800 | im || Sm

Value: ns-1293.awsdns-33.0rg

ns-1929.awsdns-49.co.uk

ns-175.awsdns-21.com.

The domain name of 8 name sarver
Enter multiple name servers on
separate lines.

Example:
ns1.amazon.com
ns2 amazon.ong

ns3 amazon net
nsd amazon.co.uk

Save Record Set

In the Create Record Set tab, the type should be set to A -IPv4 address, as shown in Figure 13-23. The
name of each record set ends with the domain name. Select Yes for Alias.

Back to Hosted Zones

Create Record Sel

Import Zone File
Q Record Set Name X || AnyType v Aliases Only
Weighted Only
[€ < Displaying 1to2 out of 2 Record Sets » |
Name Type Value
ns-1293.awsdns-33.0rg.
ns-1929 awsdns-49.co.uk
nosqisearch.com. NS
ns-175.awsdns-21.com,
ns-538 awsdns-03 net
nosqgisearch.com. SOA ns-175. dns-21.com. dns-h

Figure 13-23. Configuring a record set

am;

Evaluate Target Health:

Routing Policy:

Delete Record Set Test Record Set

Create Record Set

Name: nosglsearch.com
Type: A - IPv4 address v
Alias: @ Yes () No

Alias Target: Enter target name

You can also type the domain name for the resource. Examples:

- CloudFront distribution domain name: d111111abcdefB cloudfront nat

- Elastic Beanstalk environment CNAME: exampie elasticheanstalk.com

- ELB load balancer DNS name: exampie-1.us-sast-1.¢ib amazonaws.com
- 53 website endpoint: example.s3-website-us-sast-1.amazonaws.com

- Resource record set in this hosted zone: www.example. com
Learn More

Simple v

Route 53 responds 1o queries based only on the values in this record. Leam
More

2 Yes

= No

Create

257

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Next, select the alias target as the AWS Elastic Load Balancer DNS for one of the Docker Swarms, as
shown in Figure 13-24.

Back to Hosted Zones Import Zone File Delete Record Set Test Record Set
Q Record Set Name X || Any Type v Aliases Only Crenes/Record et
Name: nosglsearch.com
Weighted Only
Type: A - IPv4 address v
[€ < Displaying 1to 2 outof 2 Record Sets » >
Alias: @ Yes () No
Name Type Value
Alias Target:
ns-1293.awsdns-33.0rg. % -
‘ou can also —_ 53 7 L= a
ns-1929 awsdns-49.co.uk o e =
nosqisearch.com. NS

= CleudFront distr E
No T: I
- Elastic Beanstal o Targsts /bl

SR - ELB load balanc — ELS8 Application load balancers —
) - 52 website endi No Targets Available
- Resource recort __ o) o rvassic koad balancers —
Learn More
HelloWorldLB-138359012.us-east-1.elb.amz
Routing Policy DockerSwal -ELB-823944047 us-east-2.
DockerSwarm-1-ELBE-1562658885.us-west-

Route 53 respond — MinudEmnt dictritutinne — ¥
Mare

ns-175.awsdns-21.com.

nosqisearch.com. SOA ns-176 dns-21.com. dns-h

.ami

Evaluate Target Health: () ves ® No

= Create

Figure 13-24. Selecting an alias target

Next, select the routing policy, as shown in Figure 13-25.

Back to Hosted Zones

Create Record Set Import Zone File Delete Record Set Test Record Set
X || AnyType v Ali Only Create Record Set
Name: nosqglsearch.com
Type: A - IPv4 address ¥

[€ < Displaying 102 out of 2 Record Sets » >
Alias: ® Yes () No

Name Type Value
Alias Target: dualstack.DockerSwarm-2-ELB-82394
NE1205 awsiiess org Alias Hosted Zone ID: Z3IAADJGXEKTTLZ
nosqisearch.com. NS ns-1929.awsdns-49.co.uk You can also type the domain name for the resource. Examples:
ns-175.awsdns-21.com. - CloudFront distribution domain name: d111111abcdef8. cloudiront net
ns-538 awsdns-02 net. s - Elastic Beanstalk environment CNAME: example elasticbeanstalk com
- ELB load balancer DNS name: example- 1, us-2ast.
nosqlsearch.com. SOA ns-175 awsdns-21 com. awsdns-hostmasteram; |~ 1-/b.amazonaws.com

- 53 website andpoint: axample s3-website-us.2ast-1 amazonaws com

- Resource record set in this hosted zone: www.example com
Learn More

Routing Policy: Simple
Route 53 responds io g

in this record.
Learn More

Weighted
Latency
Failover

Geolocation
= ea

Figure 13-25. Selecting a routing policy
258

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Select Failover for the routing policy. This configures DNS failover, as shown in Figure 13-26. Select
Failover Record Type as Primary.

Back to Hosted Zones Import Zone File

Delete Record Set Test Record Set
< Create R rd Set s
Q Record Set Name X || Any Type v Aliases Only e ==
Name: nosglsearch.com
Weighted Only
Type: A - IPv4 address v
1€ < Displaying 1to 2 outof 2 Record Sets > >
Alias: @ Yes (O No
Name Type Value
Alias Target: dualstack DockerSwarm-2-ELB-82394
P=TZ05 awsing 53,00, Alias Hosted Zone ID: Z3AADJGXEKTTLZ
nosqlsearch.com NS ;15525 avesd £.Lo ik You can also type the domain name for the resource. Examples:
ns-175.awsdns-21.com. - CloudFront distribution domain name: d111111abcdef8. cloudiront net
ns-538 awsdns-02 net. s - Elastic Beanstalk environment CNAME: example. elasticbeanstalk com
- ELB load balancer DNS name: example-1 us-east-
nosqlsearch com. SOA ns-175 awsdns-21 com. awsdns-h il | - amAnonaNe Eom
- 53 website andpoint’ axampila s3.-website-us-2ast-1 AmMaZonaws com
- Resource record set in this hosted zone: www example com
Learn More

Routing Policy: l Failover ¥ i

Route 53 responds fo queries using primary record sets if any are
healthy, or using secondary record sats otherwise. Leam Mare

k‘ Failover Record Type: @ Primary (0 Secondary

.

Figure 13-26. Selecting failover record type

For Evaluate Target Health, select Yes, as shown in Figure 13-27.
Back to Hosted Zones Import Zone File Delete Record Set Test Record Set

& Alias T t : -0 = -
% Any Type v Aliases Only as Target: dualstack.DockerSwarm-2-ELB-82394
Alias Hosted Zone ID: Z3AADJGXBKTTL2

You can also type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abcdef8. cloudfront net

. - Elastic Beanstalk environment CNAME: example elasticbeanstalic.com
1€ < Displaying 110 20utof 2Recomd Sets 3 ¥ - ELB load balancer DNS name: example-1.us-sast.
1.eib.amazonaws.com |
Name Type Value - 53 website endpoint: example s3-website-us-east-1 amazonaws.com
- Resource record set in this hosted zone: www.example com
ns-1293.awsdns-33.0rg. Leamn More

hosgbeamh comili NG ns-1929.awsdns-49.co.uk
¥ ns-175.awsdns-21.com. Routing Policy:
ns-538.awsdns-03.net.

Failover v

Route 53 responds to queries using primary record sets if any are

healthy, or using secondary record seis otherwise. Learn More
nosqisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am;

Failover Record Type: ® Primary (0 Secondary

Set ID: anafy
Evaluate Target Health: E‘res) No
Associate with Health Check: ves

= No

» Create

Figure 13-27. Selecting the Evaluate Target Health option

259

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

For Associate with Health Check, select No. Click on Create, as shown in Figure 13-28.

Back to Hosted Zones Import Zone File Delete Record Set Test Record Set
. Alias Target: : -2-ELB- -
Q Re > o b4 Any Type + Al Onk get: | dualstack DockerSwarm-2-ELB-82394
Alias Hosted Zone ID: Z3AADJGXEKTTL2
Weighted Only ‘You can also type the domain name for the resource. Examples:

- CloudFront distribution domain name: d111111abcdef8 cloudfront net
- Elastic Beanstalk environment CNAME: example elasticbeanstali. com
- ELB load balancer DNS name: example.1 us-2ast.
1.eib.amazonaws.com

[< < Displaying 11to 2 out of 2 Record Sets » »|

Name Type Value - 53 website endpoint: example.s3-website-us-sast-1. amazonaws.com
- Resource record set in this hosted zone: www.example com
ns-1293.awsdns-33.0rg. Leam More
BT - ns-1929.awsdns-49.co.uk
ns-175.awsdns-21.com. Routing Policy: Failover %
ns-538.awsdns-03.net.]

Route 53 responds to queries using primary record sets if any are

healthy, or using secondary record sets otherwise. Learn More
nosqisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.ami

Failover Record Type: ® Primary Secondary

SetID: Prmary

Evaluate Target Health: @ ves) No

Associate with Health Check: () ves @ No

. . =,

Figure 13-28. Creating a record set

A primary record set is created, as shown in Figure 13-29; “primary” implies that website traffic will be
first routed to the record set.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Record Set

X || AnyType Aliases Only

$'To get started, click Create Record Set button or click an
existing record set.

1€ < Displaying 1103 outof 3Record Sets » |
Name Type Value
nosglsearch.com. A ALIAS dualstack dockerswarm-2-elb-823944047
ns-1293.awsdns-33.0rg.
ns-1929.awsdns-49.co.uk.
nosgisearch.com. NS L]
ns-175.awsdns-21.com.

ns-538.awsdns-03.net

nosgisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am;

Figure 13-29. Primary record set

260

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

To create a secondary record set, click on Create Record Set again, as shown in Figure 13-30.

Back to Hosted Zones Import Zone File Delete Record Set Test Record Set

Q Record Set Name X! AnyType v Aliases Only
OTo get started, click Create Record Set button or click an

Weighted Only existing record set.
I€ < Displaying 1103 outof 3 Record Sets » >/
Name Type Value
nosqisearch.com. A ALIAS dualstack.dockerswarm-2-elb-823944047
ns-1293 awsdns-33.org
ns-1928.awsdns-49.co.uk
nosqglsearch.com. NS]
ns-175.awsdns-21.com.

ns-538.awsdns-03.net.

nosqisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am:

Figure 13-30. Creating another record set

Select the type as A -IPv4 address and choose Yes for Alias. Select Alias Target as the second ELB DNS,
as shown in Figure 13-31.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Record Set

X || AnyType v NEases Ounly Create Record Set

Name: nosqlsearch.com

Type: A - IPv4 address v

[4 4 Displaying 1103 outof 3 Record Sets » »]
Alias: ® Yes () No

Name Type Value

Alias Target:

nosqisearch.com. A ALIAS dualstack dockerswarm-2-elb-823944047
You can also type, — 52 website endpoints — =

- CloudFront i .
ns-1293.awsdns-33.0rg. e o Targels Available

- Elastic Beanstal
aarch NS ns-1929. awsdns-49.co.uk. J |- ELB load balanc — ELB Appiication load balancers —
nosqisearch.com. 1 ’
ns-175.awsdns-21.com. - 53 website end; No Targets Available

- Resource record

ns-538.awsdns-03.net. e — ELB Classic load balancers —

HelloWorldLB-138359012.us-east-1.elb.amz
nosgisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am; Routing Policy DockerSwarm-2-ELB-823944047 us-east-2.
DockerSwarm-1-ELB-1562658885 us-west-;

Route 53 respond b iavtFrant dictritetinng —
More

-

Evaluate Target Health: (Yes ® No
; 3 =

Figure 13-31. Selecting an alias target

261

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Select the Failover routing policy and the secondary Failover Record Type, as shown in Figure 13-32.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Record Set
= Create Record Set
QRe X | Any Type v Aliases Only R
Name: nosglsearch.com
Weighted Only
Type: | A-IPv4 address v
[€ < Displaying 1103 outof 3 Record Sets]
Alias: ® Yes () MNo
Name Type Value
Alias Target: dualstack DockerSwarm-1-ELB-15626
nosqlsearch.com. A ALIAS dualstack.dockerswarm-2-elb-823944047 Alias Hosted Zone ID: Z1H1FLSHABSFS
15-1293.awsdns-33.0rg. You can siso type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abodef8 cloudfront net
ns-1929 awsdns-49.co.uk. g i st i . ;
nosglsearch.com. NS I Elasbc Eeanstalk environment CNAME: example. elasticbeanstalk.com
ns-175.awsdns-21.com. - ELB load balancer DNS name: example-1.us-easi-
1.elb.amazonaws. com
ns-538.awsdns-03.net. - 53 webske endpoint: example s3-websiie-us-2ast-1.amazonaws.com
- Resource record set in this hosted zone: www.example.com
nosgisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am: P
Routing Policy: Failover Y
Route 53 responds to queries using primary record sets if any are
healthy, or using secondary record sets otherwise, Learn More
Failover Record Type: () Primary ® Secondary h- =
1 » Create

Figure 13-32. Selecting failover record type as secondary

Choose Yes for the Evaluate Target Health and No for the Associate with Health Check. Click on Create,
as shown in Figure 13-33.

Back to Hosted Zones Import Zone File Delete Record Set Test Record Set
Alias Target: -1-ELB- o
@ Recoid Set Nanie X | Any Type v Al onl rget: dualstack DockerSwarm-1-ELB-15626
Alias Hosted Zone ID: Z1H1FLSHABSFS
Weighted Only You can also type the domain name for the resource. Examples:
- CloudFront distribution domain name: d111111abcdef8 cloudfront net
K <€ 1io3oulol3 sets 3 31 - Elastic Beanstalk environment CNAME: example. elasticbeanstalk.com

- ELB load balancer DNS name: example-1.us-east-
1.4lb amazonaws com

Name Type Value - 53 website endpoint: example s3-website-us-2ast-1 amazonaws com
- Resource record set in this hosted Zone: www.example com
nosqglsearch.com. A ALIAS dualstack.dockerswarm-2-elb-823944047 Leam More
ns-1293.awsdns-33.0rg. Routing Policy: Failover v
nosqisearch.com. NS e "' Route 53 responds to queries using primary record sets if any are
ns-175.awsdns-21.com.

heaithy, or using secondary record sets otherwise. Learn More
ns-538.awsdns-03.net.

Failover Record Type: () Frimary @ Secondary
nosqisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster. ami

SetID: Secondary

Evaluate Target Health: ® Yes No

Associate with Health Check:) ves ® No

' . o]

Figure 13-33. Creating a secondary record set
262

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

The secondary record set is created; “secondary” implies that traffic is routed to the record set if the
primary record set fails, as shown in Figure 13-34. Click on Back to Hosted Zones.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Record Set
Qr set Name X || Any Type * Aliases Only

Q1o get started, click Create Record Set button or click an
Weighted Only existing record set

|4 4 Displaying 1104 outof 4 Record Sets >

Name Type Value

nosqlsearch.com. A ALIAS dualstack dockerswarm-2-elb-823944047

nosqlsearch.com. A ALIAS dualstack dockerswarm-1-elb-156265888 Q
ns-1293 awsdns-33.org. 8

ns-1929.awsdns-49.co.uk
ns-175.awsdns-21.com,

nosgisearch.com. NS
ns-538 awsdns-03.net.

nosqlsearch.com SOA ns-175.awsdns-21.com. awsdns-hostmaster.ams

Figure 13-34. Secondary record set is created

The domain (nosqlsearch.com) is configured with four record sets, as shown in Figure 13-35.

Create Hosted Zone Go to Record Sets Delete Hosted Zone

Q
®

Q sear I X All Types = Hosted Zone Details
Domain Name: nosglsearch.com

[€ 4 Displaying 1to 1 outof 1 Hosted Zones » >/
Type: Fublic Hosted Zone

Domain Name ~ Type~ RecordSetCount~ Comment Hosted Zone ID Hosted Zone ID: Z2ZWEJDWBFEX8U3
) Record Set Count:4
@ nosqgisearch.com. Fublic 4 Z2WEJDWBFEXSL
k Comment: &

Name Servers *: ns-175.awsdns-21.com

ns-538.awsdns-03.net

ns-1293 awsdns-33.0rg

ns-1928 awsdns-49.co.uk
* Before the Domain Name System will start fo route
quénes for this domain o Roule 53 name sanvers, you
must upaate the RAMe SEIVer recoras either with the
currant DNS senvice or with the ragisicar for the domain,
as appdicable. For more information, click the ? icon
above.

Figure 13-35. Hosted zone created

Testing High Availability
Next, we test the high availability we configured. Open the domain, including the service published port

(nosqlsearch.com:8080), in a web browser, as shown in Figure 13-36. The Docker service output should be
displayed.

263

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

—— — =)
[Hello werd! x
' “ C | ® nosglsearch.com:E08 b

Dtutum

Hello world!

My hostname is 1ed90aee6¢33

Figure 13-36. Invoking a service in a browser

To test high availability, delete the CloudFormation stack for the Docker Swarm associated with the
primary record set, as shown in Figure 13-37.

@ CloudFormation v Stacks

Creale Stack -

Actions = esign template c o

Filter: Active » Creale Change Set For Current Stack Showing 1 stack
Upadate Stack
Stack Name o Status Description
A |
e CKers Docker for AWS 1.13.1 (ga-2)

View/Edit template in Designer

Figure 13-37. Deleting a stack

Click on Yes, Delete in the Delete Stack dialog. The stack should start to be deleted, as indicated by the
DELETE_IN_PROGRESS status shown in Figure 13-38.

@ CloudFormation ~ Stacks

Create Stack | ~ [EECTSSUER Design temptate cC | &
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
o DockerSwarm-2 2017-02-12 14:14:06 UTC-0800 E_IN_PF 3} Docker for AWNS 1.13.1 (ga-2)

Figure 13-38. The delete is in progress
264

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

The DNS fails over to the secondary resource record set and the domain continues to serve the Docker
service, as shown in Figure 13-39.

— — —— — A o] -
Hello world! x |
' < X | ® nosglsearch.com:08 b4

Dtutum

Hello world!

My hostname is 1ed90aee6¢33

Figure 13-39. Domain continues to serve

The hostname in the browser could become different if the request is forwarded to a different service
task replica, as shown in Figure 13-40. But the hostname could also become different regardless of whether
failover has been initiated, because the ingress load balancer distributes traffic among the different service
replicas.

265

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

[e —— — — S o=
[Hello warld! x

| “ C | ® nosglsearch.com:B0&0 b 4

mtutum

Hello world!

My hostname is 316082fe5308

Figure 13-40. Different hostname

Deleting a Hosted Zone

Before a hosted zone can be deleted, all the resource record sets associated with the hosted zone must be
deleted. Select the resource record sets to delete and click on Delete Record Set, as shown in Figure 13-41.

Back to Hosted Zones Create Record Set Import Zone File Delete Record Set Test Record Set
Q Record Set Name X | AnyType v Aliases Only Zrecofd sete selocted
Selected resource records:
Weighted Only
Name Type
!4 4 Displaying 1104 out of 4 Record Sets + | nosgisearch.com. A
n I n A
Name 4 Type~ Value
B nosqisearch.com. A ALIAS dualstack.dockerswarm-2-elb-82394404
@ nosqlsearch.com. A ALIAS dualstack.dockerswarm-1-elb- 15626588

ns-1293.awsdns-33.0rg L

ns-1929.awsdns-49.co.uk.
ns-175.awsdns-21.com
ns-538.awsdns-03.net

nosqisearch.com. NS

nosqisearch.com SOA ns-175.awsdns-21.com. awsdns-hostmaster. an

Figure 13-41. Deleting the record sets
266

CHAPTER 13 ' DEVELOPING A HIGHLY AVAILABLE WEBSITE

Click on Confirm in the Confirm dialog, as shown in Figure 13-42.

Confirm Cancel X

Are you sure you want to delete the following 2 record
sets?

* nosqisearch.com.
® nosqlsearch.com.

(Cor'nﬁm't_I Cancel

Figure 13-42. Confirmation dialog

Click on Back to Hosted Zones, as shown in Figure 13-43.

Back to f@&d Zones Import Zone File Delete Record Set

Test Record Set

& To get started, click Create Record Set button or click an

Q X Any Type v Aliases Only
Weighted Only existing record set.
1€ 4 Displaying1to2outof 2 Record Sets > 3]
Name + Typer Value

ns-1293.awsdns-33.org.

ns-1929 awsdns-49.co.uk.
ns-175.awsdns-21.com

ns-538.awsdns-03.net n

nosqisearch.com NS

nosgisearch.com. SOA ns-175.awsdns-21.com. awsdns-hostmaster.am

Figure 13-43. Going back to the hosted zones

Select the hosted zone to delete and click on Delete Hosted Zone, as shown in Figure 13-44.

267

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Create Hosted Zone Go to Record Sets Delete Hosted Zone
«)
& L e Hosted Zone Details
Q Search all fields X | | All Types v
Domain Name: nosglsearch.com.
Displaying 1 to 1 out of 1 Hosted Zones
K < > Type: Public Hosted Zone
Domain Name ~ Type- Record SetCount Comment | Hosted Zone ID: Z2WEJDWEBFEX8U3

Record Set Count: 2
@ nosgisearch.com. Public 2

Comment: &

Name Servers *: ns-175.awsdns-21.com
ns-538.awsdns-03.net
ns-1293.awsdns-33.0rg
ns-1929.awsdns-49.co.uk

* Before the Domain Name System will start to route
quenes for this domain fo Route 53 name servers, you
must updale the name server récords aither with the
current DNS sarvice or with the registrar for the domain,
as i For more it click the ? icon
above.

Figure 13-44. Deleting a hosted zone

Click on Confirm in the Confirm dialog, as shown in Figure 13-45.

Confirm Cancel X

The name servers for this hosted zone are still the name
servers for the nosqlsearch.com domain.

if you want to use this domain name in the future, we
recommend that you either keep the hosted zone or
transfer DNS service to another provider to prevent future
DNS queries from possibly being misrouted.

Learn more

Are you sure you want to delete the nosqisearch.com
hosted zone?

| c(@ﬂnn | | Cancel
Figure 13-45. Confirmation dialog for deleting a hosted zone

The hosted zone is deleted.

268

CHAPTER 13 DEVELOPING A HIGHLY AVAILABLE WEBSITE

Summary

This chapter developed a highly available website using an Amazon Route 53 hosted zone. First, we created
two Docker Swarms using the Docker for AWS managed service and deployed the same Docker service on
each. Each Docker Swarm service may be accessed using the AWS Elastic Load Balancer for the Docker
Swarm created automatically by the Docker for AWS. The Route 53 hosted zone is to create a hosted zone for
a domain to route traffic to DNSes configured in the primary/secondary failover pattern. Subsequently, we
tested that if the Docker Swarm for the primary record set is shut down, the website is still available, as the
hosted zone routes the traffic to the secondary ELB DNS. In the next chapter we discuss using the Docker
Swarm mode in Docker Cloud.

269

CHAPTER 14

Using Swarm Mode in Docker Cloud/

Docker for AWS is a managed service for Docker Swarm based on a custom Linux distribution, and

hosted on AWS with all the benefits inherent with being integrated with the AWS Cloud platform, such as
centralized logging with CloudWatch, custom debugging, auto-scaling groups, elastic load balancing, and a
DynamoDB database.

The Problem

While AWS is a managed cloud platform, it is not a managed service for Docker containers, images, and
services per se. Docker’s builds and tests still need to be integrated.

The Solution

Docker Cloud is a managed service to test code and build Docker images and to create and manage
Docker image repositories in the Docker Cloud registry. Docker Cloud also manages Docker containers,
services, stacks, nodes, and node clusters. A stack is a collection of services and a service is a collection of
containers. Docker Cloud is an integrated cloud service that manages builds and images, infrastructure,
and nodes and apps.

Docker Cloud also introduced a Swarm mode to manage Docker Swarms. In Swarm mode, Docker
Cloud is integrated with Docker for AWS. As a result, Docker Cloud Swarm mode is an integration of two
managed services—Docker for AWS and Docker Cloud.

Docker Cloud provides some Docker images to interact between a Docker Swarm and a Docker host
client, as discussed in Table 14-1.

Table 14-1. Docker Images for Docker Swarm

Docker Image Description

dockercloud/client Used on the client side to start an interactive shell to connect to a remote
docker Swarm cluster using Docker ID credentials.

dockercloud/client-proxy Used on the client side to forward local docker API calls to a remote
swarm cluster by injecting Docker ID authorization information on
each request.

dockercloud/server-proxy Authenticates and authorizes incoming Docker API calls and forwards
them to the local Docker engine.

dockercloud/registration Registers a Swarm cluster to Docker Cloud and launches a server proxy.

© Deepak Vohra 2017 271

D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_14

https://doi.org/10.1007/978-1-4842-2973-6_14

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

In this chapter, we discuss the Docker Cloud Swarm mode to provision a Docker Swarm with
infrastructure hosted on AWS. This chapter covers the following topics:

e Setting the environment

e Creating an IAM role

e Creating a Docker Swarm in Docker Cloud

e Connecting to the Docker Swarm from a Docker host

e Connecting to the Docker Swarm from a Swarm manager

e Bringing a Swarm into Docker Cloud

Setting the Environment

As Docker Cloud is a managed service, all that is required is an account, which may be created at
https://cloud.docker.com/. An AWS account is also required and may be created at https://aws.amazon.
com/resources/create-account/. Also create a key pair in the region in which the EC2 instances for the
Docker Swarm will run, as shown in Figure 14-1.

Resource Groups ~ * AR Deepak Vohra ~ Ohio~ Support ~
. m Import Key Pair o & @
Q (2] 1to20f2
Key pair name « Fingerprint -
corneos 5f:18:ce:08:2b: 2e:a%.d2. 7F. Ta a5 .6¢ 0e.35:07 7. T4 187221
[} docker Je:abiea08:30:40:b3: T3:04:7c: 15:a0:35:2c :d6:dd-de:d1:0c .44

Figure 14-1. Creating a key pair on AWS EC2

Creating an IAM Role

The Docker Cloud Swarm mode requires an AWS role with a new policy, an embedded policy for Docker
for AWS. To create the IAM role, navigate to https://console.aws.amazon.com/iam/home?#roles in a web
browser. Click on Create New Role, as shown in Figure 14-2.

Resource Groups ~ [l Deepak Vohra~ Global ~
Showing 0 results

Role Name + Creation Time +

Mo records found

Credential report

Figure 14-2. Creating a new role

272

https://cloud.docker.com/
https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/
https://console.aws.amazon.com/iam/home?#roles

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Specify a role name (dockercloud-swarm-role), as shown in Figure 14-3, and click on Next Step.

(T Services ~ Resource Groups ~ % al Deepak Vohra ~ Global ~ Support ~

Create Role Set Role Name
Step 1 Set Role Name Enter a roke name. You cannot edi the role name afler ihe role is created

P Role Name dockercloud-swarm-role

Figure 14-3. Specifying a role name

The Select Role Type page is displayed, as shown in Figure 14-4. As we are linking two services—Docker
Cloud and Docker for AWS—we do not need to select an AWS service role.

Services ~ Resource Groups ~ % [\ DeepakVohra~ Global v S

Select Role Type
* AWS Service Roles

Step 2 : Select Role Type

» Amazen EC2
Select
Allows EC2 instances to call AWS services on your behalt
» AWS Directory Service
= Select
Allows AWS Directory Senice 1o manage access for existing directory USErs and Groups 1o AWS services
* AWSE Lambda
. Select
Allows Lambda Function to call AWS sendices on your behalf
* Amazon Redshift
Select
Allows Amazon Redshift Clusters to call AWS services on your behalt
* Amazon API Gateway
Select
Allows AP Gateway 10 ¢l AVWS resources on your behalt =

Role for Cross-Account Access

Role for ldentity Provider Access

Cancel Previous
Figure 14-4. Select the role type

Select Role for Cross-Account Access, as shown in Figure 14-5, and select the sub-choice called Provide
Access Between Your AWS Account and a 3rd Party AWS Account using the Select button.

273

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

- Resource Groups ~

Select Role Type
AWS Service Roles

ERQIE for Cross-Account Access

* Provide access between AWS accounts you own

Select
Allows LAM users from one of your other AWS accounts 10 access INis account.
+ Provide access between your AWS account and a 3rd party AWS account
ect
Allows LAM users from a 3rd party AWS account to access this account and entorces use of External 1D %

Role for Identity Provider Access

Figure 14-5. Role for cross-account access

Next, specify the account ID of the third party AWS account whose IAM users will access the AWS
account. A third-party AWS account has been set up for the Docker Cloud service and has an account ID of
689684103426, which may be used by anyone (AWS user) linking Docker Cloud service to their AWS account.
Specify the account ID as 689684103426, as shown in Figure 14-6. The external ID is a user’s Docker ID for
the Docker Cloud service account created at https://cloud.docker.com/. While the account ID will be the
same (689684103426) for everyone, the external ID will be different for different users. Keep the Require MFA
checkbox unchecked. Click on Next Step.

(1] Services ~ Resource Groups ~

Create Role Enter the 1D of the 3rd party AWS account whose LAM users will be able to access this account. Enter the external ID provided by the 3rd party. For defails, see
About the External ID

Step 1 Set Role Name

e = = Account ID: GBI6B410342E

Step 2 * Select Role Type

Step 3 : Establish Trust External 1D dvohra

Require MFA:

Cancel Previous Next Step“

Figure 14-6. Specifying account and external IDs

274

https://cloud.docker.com/

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

As we are embedding a custom policy, do not select from any of the listed policies in Attach Policy. Click
on Next Step, as shown in Figure 14-7.

Resource Group:

Step 1 Sel Role Name

Attach Policy

Slep 2 : Select Role Type
Step 3 : Estabiish Trust Fiter: Policy Type +
Step 4 : Attach Policy
Policy Name 2 Attached Entities &
il ACMinistratorAccess o
Wi AmMazonARIGatewayAdminisir o
il AmazonARIGatewayinvokeFul.]

Figure 14-7.

Wi AmazonARIGan

PushToCl 0

Wi AmazonAppSireamFulldccess (1]

i AmazonAppSireamReadOniyA.. 0

N AmazonAppSireamServiceAct o

il AmazonAthenaFullaccess]

Wi AmazonCloudDirectoryFullAcc, o

Do not select a policy

Select one or more policies to attach, Each role can have up to 10 policies attached

Showing 269 results
Creation Time 2 Edited Time &
06 10:39 POT 2015-02-06 10:39 PDT

2013-07-08 10:34 PDT
2015-07-08 10.36 POT 2015-07-08 10.36 POT
2015-11-11 1541 FOT 2015-11-11 1541 POT
2015-02-05 10:40 POT 2015.02-06 10:40 PDT
2015-02-06 1040 POT 2018-12-07 13.00 PDT
2016-11-18 20017 POT 2015-11-18 20:17 PDT
2016-11-30 08:46 POT 2018-11-30 03:46 POT
2017-02-24 16:41 POT 2017-02-24 16:41 POT

Cancel Provious m

On the Review page, click on Create Role, as shown in Figure 14-8.

Step 6 : Review

Figure 14-8.

Review

finksh.
Role Name

Role ARN
Trusted Entities
Palicies

Give this link to
users who can

switch roles in the
console

Creating a role

cockerclowd-swarm-roke

amcaws.iam, 672593526585 role/dockerchs
-swarm-role

The

count BEDEE4103426

hitps:Aisignin,aws. amazon.com'switc
account=5725935266358roleName=2
oud-swarm-rake

Review the following role information. To edn the role, cick an edf Ink, or click Create Role fo

Cancel Previous m

275

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

A new AWS IAM role called dockercloud-swarm-role is created, as shown in Figure 14-9. Click on the
dockercloud-swarm-role role name.

l‘l Services ~ Resource Groups

Showing 1 results

Dashueard
Groups

¥ Role Name & Creation Time $
Users ==
Roles b vl dockercioud-swarm-role 2017-03-16 12.22 POT
Polickes

dentity providers
Account senings

Credential report

Encryplion keys

Figure 14-9. New role

Next, we will add an embedded (also called an inline) policy. The Permissions tab should be selected by
default. Click on the v icon to expand the Inline Policies section, as shown in Figure 14-10.

- Resource Groups

AM > Holes > dockercloud-swamm-role

+ Summary
Dashioard Role ARN am:aws lam: 672583526635 role/0o kertloud-swarme-rolke
Groups Instance Profile ARN|s)
Users Path
Roles Creation Time
Give this link to users who can Link
Puolickes

switch roles in the console
ldentity providers

Account settings

Trust Access Advisor Revoke Sessions

Credential report

Managed Policies ~
Encryption keys

There are no managed pol attachad to this role

Inline Palicies \6

Figure 14-10. Expanding the inline policies

276

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

To start, no inline policies are listed. Click on the Click Here link to add an inline policy, as shown in

Figure 14-11.

Resource Groups

« = Summary

Role ARN armaws lam; 672593526635 roke/gockercloud-swanm-role
L Instance Profile ARN(s)
croups Path
Users Creation Time 2017-03-16 1222 POT
Roles Give this link to users wha can hitps-ifsignin aws amazon com hwole? Cogy Link

switch roles in the conscle aCcounl=67 2593526685 £roleNan chercloud-swarm-roke
Pulickes
Identity providers
Account seltings Trust Access Advisor Revoke Sessions
Credential report

~

Managed Policies
Encryption keys There are no managed policies attached to this role,
Inline Policies

There are palicies to show. To create one, clich

Figure 14-11. Click on the Click Here link to add an inline policy

In Set Permissions, select Custom Policy using the Select button, as shown in Figure 14-12.

Services ~ Resource Groups ~ &

tolepermissions | Set Permissions

pokicy tempiate. generate a policy. Of create a custom policy, A policy IS 8 document that formaly states one or more PermEssions, You can edit the pobcy

Selecta
on e following screen. o at a kaler Ume using the user, group. of roke delad pages.

Policy Generator

[FElcustom Policy

£

Use e policy edaor 10 cusLomiZe your own 561 of permissions.

Figure 14-12. Selecting a custom policy
A policy document lists some permissions and the policy document for an IAM role to use Docker

for AWS may be obtained from https://docs.docker.com/docker-for-aws/iam-permissions/. Click on
Validate Policy to validate the policy, as shown in Figure 14-13.

277

https://docs.docker.com/docker-for-aws/iam-permissions/

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Resource

roups v

Manage Role Permissions Review Policy
Cug
1AM guide To test the effects of this policy before applying your changes, use the 1AM Policy Simulator

Policy Name

dockercloud- swarm-palicy

Policy Document

L
"Version®: "2012-18-17",
% "Statement": [
"Sid": "Stwtl481924239005",
"Effect™: "
o “Action™: [

dformation:Car

oudformation:Continu
p:CreateCha
CreateStack”

1:CreatelploadBucket™,
1:DeleteStack”

1:Describefice
DescribeChangeSet",
DescribeStackEv
tarkReso:

ourd Frarma

Use autcformatting for palicy editing cancel

Figure 14-13. Validating the policy

Click on Apply Policy, as shown in Figure 14-14.

esource Groups

[T Services

ize permissions by editing the following policy docurnent. For more information about the access policy language, see Overview of Policies in the Uising

Validate Podi:y{? Apply Palicy

Review Policy

Customize permission
1AM guide. To fest ihe

diting the foliowing policy document. For more information about the
15 Of this policy betore applying your changes, use the LAM Polity S

lator

This policy I vald.

#s5 policy language, see Overview of Policies in the Uising

Policy Name
dockercloud-swarm-policy
Policy Document

A

“Version™: "2012-19-17%,
= "Statement": [

loudformation:CancelUpdateStack”,
cloudformation:ContinuellpdateRollback™,
loudformation:CreateChangeSet”,
loudformation:CreateStack™,
loudformation:CreatelploadBucket™,
loudformation:DeleteStack™,
cloudformation:DescribefccountLimits"”,
"eloudfermation:DescribeCh

¥ Use autotormatting for palicy editing Cancel

Figure 14-14. Applying the policy

278

vandate Poiicy | IERTUEEISIM

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

A new inline policy is added for the dockercloud- swarm-role role, as shown in Figure 14-15.

ﬁ Services Resource Groups ~ *
Creation Time 2017-02-16 12:22 POT -
Give this link to users who can hitps:isignin. witc hrobe® Copy Link

switch roles In the cansole ACOUNE=6725 Name=dockercioud-swarm-role
Dashboard
Graups —
0 F Trust Access Adviser | Revoke Sessions
O
I Roles
Managed Policies 2
Policies
lgentity providers There are no managed policies attached to this role
Attach Policy
Cragential report
nline Policies ~

Encryption keys

This view shows all Ining policies that are emoedded In tis roke

Create Role Policy

Policy Name Actions

dockercloud-swarm-policy Show Policy | Edit Policy | Remave Policy | Simutate Policy

Figure 14-15. The new inline policy is added

Copy the Role ARN String listed in Figure 14-16, as we need the ARN string to connect to the AWS Cloud
provider from Docker Cloud.

Resource Groups ~ %

Lalt > Roles = dockercloud-swam-role =
4
= Summary
Dasnboard Rale ARN amaws am. 672593526685 role/dockencioud-swarm-role
Groups Instance Profile ARN(s)
Users Path
I Roles Creation Time 2017-03-16 12:22 POT

Give this link to users who can
switch roles in the cansole

comiswitchrole?
Policies

leName=dockercioud-swarm-role
Identity providers

Account seftings

Trust Access Adviser Revoke Sessions
Cragential report

Managed Policies ~
Encryption keys
There are no managed policies attached to this role.

Attach Policy

nling Policies ~

This view shows all inine policies that are emoedded in is roke

Create Role Policy =

Figure 14-16. Role ARN

279

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Creating a Docker Swarm in Docker Cloud

In this section, we create a Docker Swarm from the Docker Cloud service. Log in to the Docker Cloud service
athttps://cloud.docker.com/. The Cloud registry page should be displayed at https://cloud.docker.com/
app/dvohra/dashboard/onboarding/cloud-registry. A Swarm Mode option is available in the margin and
it’s off by default, as shown in Figure 14-17.

O — .

& S C | @ Secure | httpsy/cloud.docker.com/app/dvohra/dashboard/onboarding/cloud-registry

., | DOCKER

\ = @ | cLoud
Y Welcome!
h A
56 4
Swarm
Mode Welcome to Docker Cloud!

Let's get you familiarized with the central concepts of Docker Cloud.

Figure 14-17. The Swarm Mode slider

Click on the Swarm Mode slider; the Swarm mode should be enabled, as shown in Figure 14-18.

) switching to Swarm mode...

Figure 14-18. Switching to Swarm mode

A Swarms toolbar option is added, as shown in Figure 14-19.

€ €| @ secure | hupsy/cloud docker.com/swarm) /) g/fcloud-registry | O

- 2 -

+ Repositories Swarms GetHelp -~ : dvohra -
Ay oA

Welcome!

Welcome to Docker Cloud!

Let's get you familiarized with the central concepts of Docker Cloud.

Figure 14-19. Swarms toolbar option

280

https://cloud.docker.com/
https://cloud.docker.com/app/dvohra/dashboard/onboarding/cloud-registry
https://cloud.docker.com/app/dvohra/dashboard/onboarding/cloud-registry

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Two options are available—Bring Your Own Swarm or Create a New Swarm. Click on Create to create a
new Swarm, as shown in Figure 14-20.

'0 n.cmaauﬁ_ "W 4 Docker Cioud

L | @ Secure | hitpsy//cloud.docker.com/swarm/dvohra/swarm/Tst/ 1 7page_size=1 ol

+ Repositories swarms GetHelp ~ l dvohra ~
BTA

Swarms

Bring your ewn swarm m

(@ ASwarm is 3 cluster of Docker Engines where you deploy services

Figure 14-20. Creating a new Swarm

Next, we will configure the Swarm, including specifying a Swarm name, selecting a cloud provider, and
selecting cloud provider options. Two Cloud service providers are supported: Amazon Web Services (AWS)
and Microsoft Azure (not yet available). We use AWS in this chapter. We need to configure the cloud settings
for AWS with the ARN string we copied earlier. Cloud settings may be configured with one of the two options.
One option is to select Cloud Settings from the account, as shown in Figure 14-21.

+ Repositories Swarms Get Help - : dvohra ~
L

e dvohra

Swarm Name + Create Organization

Account Settings

Cloud Settings &

Welcome Tour
Service Provider

og Out

' amazon
L1 Zi
% webservices™
ot
Powered by Docker CE for AW:
Docker Community Edition

Docker Community Edition (CE) is ideal for developers and small teams looking to get started with
B e

3 Mors

Figure 14-21. Cloud settings

281

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

In the Cloud Settings page, click on the plug icon that says Connect Provider for the Amazon Web
Services provider, as shown in Figure 14-22.

oy Repositaries Swarms Get Help = L dvohra =
[

arvice providers dvohra
Member since Oct 02, 2015

Source providers —
Notfications
Default Privacy . _
Service praviders m
Billing,

Amazon Web Services Add new credentals 4 ﬁh Free Tier

Source providers

Provider Account
GitHuty No account Linked]
Sithucket No account nked ¥

Figure 14-22. Connecting the provider

The Add AWS Credentials dialog is displayed, as shown in Figure 14-23.

Add AWS Credentials

NOTE: Swarm mode requires a new policy to be attached to your AWS role.

Click here for instructions.

Figure 14-23. Adding AWS credentials

282

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

The other option to configure the Cloud settings is to click on the Amazon Web Service Service Provider
icon, as shown in Figure 14-24, which also displays the Add AWS Credentials dialog.

'4' The MD«W# Docker Cloud

“« | @ Secure | hitps//cloud.docker.com/swarm dvohra/swarm/wizard Tl

<+ Repositories Swarms GetHelp - ! dvohra -
o]

Swarm Mame

Service Provider

Docker Community Edition

Daocker Community Edition (CE) is ideal for developers and small teams looking to get started with
Docker and experimenting with container-based apps.

Leamn More

Cancel

Figure 14-24. Connecting to an Amazon web services provider

Specify the ARN string copied earlier from the Add AWS Credentials dialog and click on Save, as shown
in Figure 14-25.

Add AWS Credentials
NOTE: Swarm mode requires a new policy to be attached to your AWS role.

Click here for instructions.

arn:aws:iam::672593526685:role/dockercloud-swarm-role

Figure 14-25. Saving the AWS credentials

283

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

With either option, the service provider Amazon Web Services should be connected, as indicated by the
Connect Provider icon turning to Connected, as shown in Figure 14-26.

-+ Repositories Swarms Get Help ~ ! dvohra

BETA

Cloud Settings

General
Service providers dvohra
Member since Oct 02, 2015
Source providers 4
Notifications

Default Privacy g A
Service providers

Amazon Web Services arncawsciam:672593526685 role/dockercloud-swarm-role rd [Free Tier

Figure 14-26. Amazon Web Services provider in connected mode

The Amazon Web Services option should indicate connected, as shown in Figure 14-27.

it Repositories Swarms GetHelp - 1 dvohra -
[

Create

Swarm Name

Service Provider

Docker Community Edition

Docker Community Edition (CE) is ideal for developers and small teams looking to get started with
Docker and experimenting with container-based apps.

Learn Morg

Figure 14-27. Amazon Web Services provider connected

284

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Specify a Swarm name. That name should not include any spaces, capitalized letters, or special

« »m o ou u

characters other than “,”, and “_’) as shown in Figure 14-28.

S |DOCKER ey
d CLOUD Swarm mode

Swarms Create

Swarm Name

/ DockerCloudSwarm

No spaces, capitalized letters, and special
characters other than ., _, or - are allowed

Figure 14-28. Specifying a Swarm name

Specify a valid Swarm name (docker-cloud-swarm), select the Amazon Web Services Service provider,

which is already connected, and click on Create, as shown in Figure 14-29.

+ Repositories Swarms GetHelp -~ ! dvohra =
BT

Create

Swarm Name

/ docker-cloud-swarm

Service Provider

L] Sl Microsoft
:{'m'lsgz,onw H Azure

Y
Powered by Docker CE for AWS
Docker Community Edition

Docker Community Edition (CE) is ideal for developers and small teams looking to get started with
Docker and experimenting with container-based apps,

Figure 14-29. Creating a Docker Swarm using the AWS service provider

285

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

In the region, select a region (us-east-2), the number of Swarm managers (3), the number of Swarm
workers (5), the Swarm manager instance type (t2.micro), the agent worker instance type (t2.micro), and
the SSH key. Click on Create, as shown in Figure 14-30.

Region

us-east-2 -

Region where your swarm is provisioned

Swarm Size

Number of Swarm managers? Number of Swarm worker nodes?
3 - 5

Number of sworm manager nod eds to be ar nu N of swarm worker node

Swarm Properties

Swarm manager instance type? Agent worker Instance type?
t2.micro - t2.micro v
EC2 HVM instance type (t2.micro, m3.medium, etc) EC2 HVM instance typ o, m3.medium, etc)

Which ssh key to use?
docker -

to enable S5H access to the instance

Name of an existing EC2 KeyPair to

Figure 14-30. Configuring and creating a Swarm

The Swarm should start to get deployed, as indicated by the DEPLOYING message shown in Figure 14-31.

%P 5 Swarm mode + Repositaries Swarms [L dvohra «

BETA

Swarms

Bring your own swarm Create

dvohra/docker-cloud-swarm

DEPLOYING

Figure 14-31. Deploying a Swarm

286

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

When the Swarm has been deployed, the message becomes Deployed, as shown in Figure 14-32.

+ Repositories Swarms GetHelp - l dvohra -
A

Swarms

Bring your own swarm m

dvohra/docker-cloud-swarm

{}3 DEPLOYED

Figure 14-32. The Swarm is now deployed

The AWS infrastructure for the Swarm is created and configured. A CloudFormation stack is created, as
shown in Figure 14-33.

@ CloudFormation ~ Stacks

Create Stack | ~ Actions = Design template C -
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
4 docker-Cloud-swarm 2017-03-16 12:38:07 UTC-0700 CREATE_COMPLETE Docker for AWS 1.13.1 (ga-2)

Figure 14-33. CloudFormation stack for the created Swarm

A new proxy AWS IAM role for the Swarm is added, as shown in Figure 14-34.

Services ~ Resource Groups ~

Z Create New Role Role Actions = s 8 @
Dashboard Showing 2 results
Groups

Role Name & Creation Time &

Users
Roles & d0CKer-cioud-swarm-ProxyRoke-MISSEFAIQOIR 2017-03-16 12:38 PDT
Policies (] dockercloud-swarm-roke 2017-03-16 12:22 PDT

ldentity providers
Account semings

Credential report

Figure 14-34. Proxy role and Docker Cloud Swarm AWS role

287

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

EC2 instances for the Swarm manager and worker nodes are started. Each EC2 instance is started with
the proxy IAM role created automatically, as shown for a manager node in Figure 14-35.

Launch Instance Connect Actions v
e oo 0

Q Filter by tags and atinbutes or search by keywor @| K < 1toBofz > 3l
Name ~ Instance ID + Instance Type ~ Awvailability Zone ~ Instance State ~ Stats Checks ~ Alarm Status
docker-cloud-swamm-worker i-00bd2442d55f0dede R2.micro us-gast-2b @ running @ 22checks ... None %

B dockercloudswarm-Manag.. i-03f1027044d22efb3 t2.micro us-east-2a @ munning 22 checks ... None =
docker-cloud. Manag.. i-04fdabbefBf51672d 12 micro us-gast-2b @ running @ 22checks .. None k™
docker-cloud-swam-worker 1-05169d85603d643d6 12.micro us-gast-2a @ running @ 22checks ... None Y%
docker<loud-swam-worker i-067a12b88¢06044f0 t2.micro us-east-2¢ @ running @ 22checks .. None %
docker-cloud-swam-worker i-Dae14983fcefdb264 12.micro us-east-2b @ running @ 22checks ... None %
docker-cloud-swarm-worker 1-0be 7fcf948af91805 12 micro us-gast-2c @ running @ 22checks ... None ‘,g
dockercloud-swarm-Manag.. i-0fd1a015ad15203c2 t2.micro us-east-2¢ @ running @ 22checks ... None s

»
Platform - Network interfaces ethd ®
IAM role docker-cloud-swam-ProxyRole- Source/dest. check True

MISSEFAJQQIR

Figure 14-35. IAM role for EC2 instances

Each Docker Cloud account namespace must be associated with only one AWS IAM role. If multiple
Docker Cloud accounts are to access the same AWS account, multiple roles must be created for each Docker
Cloud account or Docker Cloud account namespace. Each AWS IAM role for Docker Cloud to access AWS is
associated with an ARN string. The ARN string for a deployed Swarm may be edited with the Edit Endpoint
link, as shown in Figure 14-36.

du Repositories Swarms GetHelp ~ l dvohra -
[

Swarms

Bring your own swarm m

dvohra/docker-cloud-swarm

DEPLOYED

Figure 14-36. Edit Endpoint link

288

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

If the Swarm endpoint is to be modified, specify a new ARN string (for a different IAM role associated with
a different Docker Cloud namespace) in the Edit Endpoint dialog. Click on Save, as shown in Figure 14-37.

Edit endpoint for dvohra/docker-cloud-swarm

if left empty, Docker Cloud uses the auto-detected public IP of the manager nodes to connect to the Swarm.
You can override this value by specifying an IP address or a hostname in the field below.

docker-cloud-swarm-ELB-226413314.us-east-2.elb.amazonaws.com

Figure 14-37. Editing the endpoint

Next, we connect to the Docker Swarm. There are two ways to do so:
e Connect directly from any Docker host

e Obtain the public IP address of a Swarm manager from the EC2 dashboard and SSH
login to the Swarm manager

We discuss each of these options.

Connecting to the Docker Swarm from a Docker Host

Click on the Docker Swarm in the Docker Cloud dashboard. The Connect To dialog should be displayed with
adocker run command, as shown in Figure 14-38. Copy the docker run command.

Connect to dvohra/docker-cloud-swarm

docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e
DOCKER_HOST dockercloud/client dvohra/docker-cloud-swarm

Pro tip: Download Docker for Mac or Docker for Windows (Edge channel), login with your Docker ID, and

connect to this swarm from your desktop.
Close window

Figure 14-38. Listing and copying the docker run command to connect to the Swarm

289

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Start an EC2 instance with CoreOS AMI, which has Docker pre-installed, as shown in Figure 14-39.

1. Choose AMI 2 Choasa Instance Type 3, Configure instance 4. Acd Storage 5. Add Tags 6. Configure Secunty Group 7. Review

. H Cancel and Exit
Step 1: Choose an Amazon Machine Image (AMI) AR LA R
An AMI s a template that contains the software cenfiguration (operating system, application server, and applications) reguired to launch your instance. You can sefect an AMI provided by
AWS, our user community, of the AWS Marketplace. of you can select ong af your awn AMIS

Quick Starl 110 & of 6 Producls
Q) coreos x

My AMIs
& container linux ~ Container Linux by CoreQS (Stable)

AWS Marketplace
ek ()] 126850 Previous versions | Sold by Core0S

Community Abls S0.00ME for software + AWS usage faes

LirnocfUnix, Otfes 1258.5.0 | S4-b Amazon Machine image (AMI) | Upastsd: 3217
¥ Categories Core)5 Contasner Linux audomates softeare updates to ensure betfer secunty and relability of machines and

containers nunning on large-sc ale clusters. Operating syslem updates
All Categories
More info
Software Infrastruclure (6)

Figure 14-39. Creating an EC2 instance with CoreOS AMI

Obtain the public IP address of the CoreOS instance from the EC2 console, as shown in Figure 14-40.

[ENLLRLES-LIS Connect Actions v
4 _ % & 0

Q| search : i-0e525ed8bT9fc52b0 | Add fil @ K 1tolof1 > >
@ Name =~ Instance ID = Instance Type ~ Availability Zone ~ Instance State ~ Status Checks -
B Core0S -0e525edBbTHc5200 2 micro us-east-1c @ running Z Initializing
Instance: | i-0e525ed8b79fc52b0 (CoreOS) Public DNS: ec2-34-207-220-127 pute-1 com N =

Description Status Checks Monitoring Tags Usage Instructions

Instance 1D i-0e525ed8bT9c 5200 Public DNS (IPv4) ec2-34-207-220-127 compute-
1.amazonaws.com
Instance state running IPvd Public IP 34.207.220.127

Figure 14-40. Displaying EC2 instance detail

SSH login to the CoreOS instance.
ssh -i "coreos.pem" core@34.207.220.127

Run the command copied earlier to connect to the Docker Swarm.

docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER_HOST dockercloud/

client dvohra/docker-cloud-swarm

290

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

The dockercloud/client Docker image that’s used to connect to Docker Cloud is downloaded.
A username and password prompt should be displayed. Specify the username and password for the Docker
Cloud account in which the Swarm was created.

Container Linux by CoreOS stable (1298.5.0)

$ docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER_HOST
dockercloud/client dvohra/docker-cloud-swarm

Unable to find image 'dockercloud/client:latest' locally

latest: Pulling from dockercloud/client

b7f33ccOb4Be: Pull complete

91b7430c5c68: Pull complete

b686674c0e39: Pull complete

19aaa3dbba7za: Pull complete

Digest: sha2S6: 11d3cc5e1a62c7324]2a6€038]ccffi9]53tc91dob1c69c8D1d3b68629337558a6
Status: Downloaded newer image for dockercloud/client:latest

Use your Docker ID credentials to authenticate:

Username: dvohra

Password:

A export command is output to connect to the Swarm. Copy the command.

Use your Docker ID credentials to authenticate:

Username: dvohra

Password:

=> You can now start using the swarm dvohra/docker-cloud-swarm by executing:
export DOCKER_HOST=tcp://127.0.0.1:32768

Run the command. The Swarm is connected to the CoreOS Docker host. List the Swarm nodes using the
docker node 1s command.

>export DOCKER_HOST=tcp://127.0.0.1:32768

>docker node 1s
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

liuomlmbén6xtqdapxayumsx3 ip-172-31-0-251.us-east-2.cornpute.internal. Ready Active
bchea5x85m82jtzoq336trn8y ip-172-31-47-61.us-east-2.compute.internat. Ready Active
e2b1785z5pqouakdceomdpsbi ip-172-31-42-130.us-east-2.compute.internal. Ready Active
hzxb8choml.7gylaqtrjrhéphx ip-172-31-26-90.us-east-2.compute.internal. Ready Active
pcnple9l29w88ueonhdwlcoc ip-172-31-27-18.us-east-2.compute.internal. Ready Active
rupjaojommfchjgcshffdobhf * ip-172-31-10-153.us-east-2.compute.internal Ready Active Leader
uyl5xv7mhb6c8jamsofncplyh ip-172-31-25-137.us-east-2.compute.internal. Ready Active Reachable
wi6zurda4nawfomgku3enféio ip-172-31-34-33.us-east-2.cornpute.internal Ready Active Reachable

201

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Connecting to the Docker Swarm from a Swarm Manager

The other option is to connect to a Swarm manager using its public IP address. First, we obtain the public IP
address of a Swarm manager from the EC2 console, as shown in Figure 14-41.

Connect Actions v
B o % 0

Q i 0 K 1to8of8
Name | Instance ID « Instance Type - Availability Zone ~ Instance State - Status Checks ~ Alarm Status
doc ker-cloud-swam-worker i-00bd2442d550dede t2.micro us-east-Zb @ munning @ 22checks None =
B docker<loud-swarm-Manag i-03F1027044d22efb9 t2micro us-east-2a @ running & 22checks ... None b
doc kerloud-swarm-Manag i-04f4 fef51672d t2 micro us-east-2b @ running & 22 checks None %
doc ker<loud-swarm-worker i-05169d85603d643d6 2. micro us-east-Za @ running & 22 checks None ™
doc ker-loud-swamm-worker i-067a12b88c 0604470 t2.micro us-east-2c @ running & 212 checks .. None ‘,,
doc ker-cloud-swarm-worker i-Jae14583fcebib264 t2.micro us-east-2b @ running & 22 checks None -
doc ker-cloud-swarm-worker i-Obc Tfc f948af91805 t2.micro us-gast-2c @ running & 22 checks None -
docker<loud-swarm-Manag i-0fd1a015ad15203c2 2 micro us-gast-Je @ rmnning © 22 checks None =
8
Description Status Checks Monitoring Tags
Instance ID i-03f1027044d22efbS Public DNS (IPv4) ec2-52-14-146-223 us-east-
2. compute.amazonaws.com
Instance stale running t&’ IPv4 Public IP 52.14.146.223
Instance type t2.micro IPv6 IPs
Elastic IPs Private DNS ip-172-31-10-153.us-east- s

Figure 14-41. Obtaining the public IP of a Swarm manager

SSH login into the Swarm manager.
ssh -i "docker.pem" docker@52.14.146.223
The Swarm manager is logged in and the Swarm command prompt is displayed.

[root@locathost —]# ssh -i "docker.pem" docker@52.14.146.223

The authenticity of host 52.14.146.223 (52.14.146.223)1 cant be established.
RSA key fingerprint is e9:7f:d2:3c:de:6d:5d:94:06:€2:09:56:b7:2a:c6:9a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '52.14.146.223 (RSA) to the list of known hosts.
Welcome to Docker!

292

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

List the Swarm nodes using the docker node 1s command.
Welcome to Docker!
~ $ docker node 1.s
ID HOSTNAME STATUS
AVAILABILITY MANAGER STATUS
liuomlmbénéxtq4apxayumsx3 ip-172-31-0-251.us-east-2.compute.internal Ready Active
bchea5x85m82jtz0q336trn8y ip-172-31-47-61.us-east-2.cornpute.internal Ready Active
e2b1785z5pqouakdceonidpsbi ip-172-31-42-130.us-east-2.compute.internal Ready Active
hzxb8chomt7gyl.aqtrj rhéphx ip-172-31-26-90.us-east-2.compute.internal Ready Active
pcnple9gl29w88ueenhdwflcoc ip-172-31-27-18.us-east-2.compute.internal Ready Active
rupjaejommfchjgcshffdobhf * ip-172-31-10-153.us-east-2.compute.internal. Ready Active Leader
uylsxv7mhb6c8jainsofncplyh ip-172-31-25-137.us-east-2.compute.internal. Ready Active Reachable
wi6zurda4nawfomgku3enféie ip-172-31-34-33.us-east-2.compute.internal Ready Active Reachable
Create a service using the docker service create command and list the service with docker service 1s.
docker service create \
--name hello-world \
--publish 8080:80 \

--replicas 1 \
tutum/hello-world

The hello-world service is created. A Docker Cloud server proxy service is also listed.
$ docker service create \
> --name hello-world \
> --publish 8080:80 \
> - - replicas 1\
> tutum/hello-world
hbiejbua8u5pskabun3dzkxk4
~ $ docker service 1s
ID NAME MODE REPLICAS IMAGE
Ogzua3p56myx dockerdoud-server-proxy global 3/3 dockercioud/server-proxy:latest

hbiejbua8u50 hello-world replicated 1/1 tutum/hello-world:latest
293

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

Bringing a Swarm into Docker Cloud

Docker Cloud Swarm mode also has the provision to import an existing Swarm into Docker Cloud. The
Swarm to be imported must have the following prerequisites:

e Based on Docker Engine 1.13 or later nodes
e Swarm manager incoming port 2376 unblocked

In this section, we create a Swarm and import the Swarm into Docker Cloud. First, run the docker
--version command to determine if the Docker host version is 1.13 or later. One of the EC2 instances
provisioned by Docker for AWS may be used to create and import a Swarm, as the Docker version on the
custom Linux distribution is > Docker 1.13; the node must be made to leave the Swarm before creating a new
Swarm. Using the private IP address of the EC2 instance, initiate a new Swarm.
docker swarm init --advertise-addr 172.31.23.196

Copy the docker swarm join command output to join the worker nodes.
~ $ docker --version
Docker version 17.03.0-ce, build 60ccb22
~ $ docker swarm init --advertise-addr 172.31.23.196
Swarm initialized: current node (ylzc3h3slx05ztbujtl3yf86p) is now a manager.

To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-23snfliuieafnydizzgf37ucwuzi.khg9atqsmysmvvéiwl.arw0-do29n83jptkkdwss5fjsd3rt \

172.31.23.196:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

Join a worker node on another EC2 instance with Docker 1.13 or later.

docker swarm join \
--token SWMTKN-1-61gcsgkr1ildxz580ftd13rqos9p7h3oni2byktgvbdey3dk7r-cpes7ofdsq8abhxtznh92tijrz \
10.0.0.176:2377

The worker node joins the Swarm.

294

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

A Swarm with two nodes is created, as listed in the output to the docker node 1s command, which
runs on the Swarm manager node.

~$ docker node 1s
HOSTNAME STATUS
AVAILABILITY MANAGER STATUS
trgb2t4ehs2gp3cjbrnghs7as ip-172-31-6-64.us-east-2.compute.internal. Ready Active
yl.ic3h3stxo5ztbujtl3yf86p ip-172-31-23-196.us-east-2.compute.internal Ready Active Leader
~$
Next, import the Swarm into Docker Cloud. From the Swarm manager node, run the following
command.
docker run -ti --rm -v /var/run/docker.sock:/var/run/docker.sock dockercloud/registration
Specify the Docker ID at the username prompt and the password at the password prompt.

~ S docker run -ti --rm -v /var/run/docker.sock:/var/run/docker.sock dockercloud/
registration

Unable to find image dockercloud/registration:latest’ locally

latest: Pulling from dockercloud/registration

b7f33ccOb48e: Pull complete

b52875cf8fd4: Pull complete

23f82c866468: Pull complete

Digest: sha256: a3f39de96d2763b957e7bel22ce99b81fbba03fbdbb2e54bd6071catbelcabcl
Status: Downloaded newer image for dockercloud/registration:latest

Use your Docker ID credentials to authenticate:

Username: dvohra

Password:

Specify a cluster name for the Swarm imported into Docker Cloud, or use the default. Specify cluster
as dvohra/dockercloudswarm. The Swarm is registered with Docker Cloud. As for a Swarm created in the
Docker Cloud Swarm mode, the Swarm may be accessed from any Docker host for which a command is
output.

Enter name for the new cluster [dvohra/wkhetlq8cw5u44x22qpérideau]: dvohra/dockercloudswarm

You can now access this cluster using the following command in any Docker Engine

docker run -rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER HOST dockerctoud/
client dvohra/dockerctoudswarm

To bring the Swarm into Docker Cloud, click on the Bring Your Own Swarm button in Swarm mode, as
shown in Figure 14-42.

295

CHAPTER 14 © USING SWARM MODE IN DOCKER CLOUD

d‘ CLOUD Warm r + Repositories Swarms Get Help ~ ! dvohra

BETA

Swarms

Bring your own swarm m

R

dvohra/docker-cloud-swarm

REMOVED

Figure 14-42. Bring your own Swarm

The Swarm registered with Docker Cloud is added to the Docker Cloud Swarms, as shown in Figure 14-43.

+ Repositories Swarms GetHelp ~ ! dvohra =

BETA

Swarms

Bring your own swarm m

dvohra/swarm-coreos

UNAVAILABLE

dvohra/dockercloudswarm

DEPLOYED

Figure 14-43. Docker Cloud Swarms, including the imported Swarm

Summary

This chapter introduced the Docker Cloud Swarm mode, which is a managed service for linking the Docker
Cloud managed service to a AWS service provider account and provisioning a Swarm from Docker Cloud.
A Swarm created on the command line can be imported into Docker Cloud. In the next chapter we discuss
Docker service stacks.

296

CHAPTER 15

Using Service Stacks

The Docker Swarm mode is Docker-native as of Docker 1.12 and is used to create distributed and scalable
services for developing Docker applications.

The Problem

While single Docker image applications are also commonly used, a vast majority of Docker enterprise
applications are comprised of multiple images that have dependencies between them. Docker Compose
(standalone in v1 and v2) could be used to declare dependencies between microservices using the 1inks
and depends_on options, but Compose (standalone) is archaic, other than the format for defining services, in
the context of Swarm mode services.

The Solution

Docker Swarm mode has introduced service stacks to define a collection of services (Swarm mode services) that
are automatically linked with each other to provide a logical grouping of services with dependencies between
them. Stacks use stack files that are YAML files in a format very much like the docker-compose.yml format.
There are a few differences such as the absence of 1inks and depends_on options that were used to define
dependencies between microservices in Docker Compose (standalone). YAML (http://www.yaml.org/)is a
data serialization format commonly used for configuration files.

As of Docker v1.13, the docker stack subset of commands has been introduced to create a Docker
stack. Using a stack file that defines multiple services, including services’ configuration such as environment
variables, labels, number of containers, and volumes, a single docker stack deploy command creates a
service stack, as illustrated in Figure 15-1. The services are automatically linked to each other.

© Deepak Vohra 2017 297
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_15

https://doi.org/10.1007/978-1-4842-2973-6_15
http://www.yaml.org/

CHAPTER 15 USING SERVICE STACKS

Stack
(N\
servicel
J
A
) 4
N
docker stack deploy service2
J/
A
) 4
N
service3
\ J/

Figure 15-1. Service stack created with the docker stack deploy command

Docker Compose versions 3.x and later are fully Docker Swarm mode compatible, which implies
that a Docker Compose v3.x docker-compose.yml file could be used as a Stack file except for a few sub-
options (including build, container_name, external links, and l1inks) that are not supported in a stack
file. Docker Compose 3.x could still be used standalone to develop non-Swarm mode services, but those
microservices are not usable or scalable with the Docker Swarm mode docker service group of commands.
To use stacks to manage Swarm mode services, the following requirements must be applied.

e Docker version must be 1.13 or later
e Swarm mode must be enabled
e Stack file YAML format must be based on Docker Compose v3.x file format

To use service stacks, the Docker Compose version 3 YAML file format is used, but Docker Compose is
not required to be installed.

When using Docker Swarm mode, the Docker version requirement for Swarm mode is 1.12 or later.
Before developing stacks to manage Swarm mode services, verify that the Docker version is at least 1.13.
The Docker version used in this chapter is 17.0x. The docker stack group of commands listed in Table 15-1
becomes available in Docker v1.13 and later.

Table 15-1. The docker stack Commands

Command Description

deploy Deploys a service stack or updates an existing stack
1s Lists the stacks

ps Lists the Swarm mode tasks in a stack

m Removes a stack

services Lists the Swarm mode services in a stack

298

CHAPTER 15 © USING SERVICE STACKS

Run the docker --version command to list the Docker version. To list the commands for stack usage,
run the docker stack command.

[root@localhost ~]# ssh -i "docker.pem" docker@34.205.43.53
Welcome to Docker!

~ $ docker --version

Docker version 17.06.0-ce, build 02c1d87

~ ¢ docker stack

Usage: docker stack COMMAND
Manage Docker stacks

Options:
--help Print usage

Commands :
deploy Deploy a new stack or update an existing stack
1s List stacks
ps List the tasks in the stack
m Remove one or more stacks
services List the services in the stack

To use stacks, the following procedure is used.

1. Install Docker version 1.13 or later (not Docker version 1.12, which is used in
several of the earlier chapters).

2. Enable Swarm mode.
3. Create a Stack file using Docker Compose (version 3.x) YAML format.
4. Usethe docker stack group of commands to create and manage the stack.

The chapter creates a service stack consisting of two services, one for a WordPress blog and another for
a MySQL database to store the data in the WordPress blog.

Setting the Environment

We use Docker for AWS available at https://docs.docker.com/docker-for-aws/ to launch a Docker
Swarm mode cluster of nodes. Docker for AWS uses the AWS CloudFormation template to create a Docker
Swarm mode cluster. Click on the Deploy Docker Community Edition (stable), shown in Figure 15-2, to
launch a Create CloudFormation Stack wizard to create a Docker Swarm mode cluster.

Deploy Docker Deploy Docker Deploy Docker
Community Edition Community Edition Community Edition
[CE] for AWS [CE] for AWS [edge] [CE] for AWS [test]
[sta

Figure 15-2. Deploying the Docker Community Edition for AWS (stable)

299

https://docs.docker.com/docker-for-aws/

CHAPTER 15 © USING SERVICE STACKS
Configure a Swarm using the Create Stack wizard as discussed in Chapter 3. You can specify the number

of swarm managers to be 1, 3, or 5 and the number of Swarm worker nodes to be 1-1000. We used one
Swarm manager node and two Swarm worker nodes, as shown in Figure 15-3.

@ CloudFormation v Stacks » Create Stack

Create stack

Satuck TRmpe Specify Details

| specity Details
Options. Specify a SIack name and parameler values. You can use of change the cefaull parameter values, which are aefined in the AWS CloudFormation template. Learn mare
Review

L6} Stack name | DockerSwarm

Parameters

Swarm Size

HNumber of Swarm 1 ¥ | Humber of Swarm manager nodes (1, 3. 5)

managers?

Number of Swarm worker 2 Number of workes nooes in the Swarm (0-1000
nodes?

Swarm Properties

Figure 15-3. Configuring a CloudFormation stack
The CloudFormation stack is created, as shown in Figure 15-4.

M CloudFormation v Stacks

Design template c | o
Filter: Active = Showing 1 stack
Stack Name Created Time Status Description
DockerSwarm 2017-06-16 16:43:42 UTC-0700 CREATE_COMPLETE Docker for AWS 17.03.1-ce (aws2)
N=!

Overview Outputs Resources Events Template Parameters Tags Stack Policy Change Seis

Stack mame: DockerSwarm
us-2ast-1/67 2593526565 5tac K DOCkerSwarmy7 76fagn-52ee-11e7-9480-500c2170be62

Stack ID: amawsc

Status:
Status reason:
1AM Role:

Description: Docker for AWS 17.03.1-ce (aws2)

Figure 15-4. CloudFormation Stack for Docker on AWS

300

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 15 © USING SERVICE STACKS

Three EC2 instances—one for Docker Swarm manager node and two for the Swarm worker nodes—are
launched, as shown in Figure 15-5. The Linux distribution used by the CloudFormation stack is Moby Linux,
as shown in Figure 15-5.

Launch Instance Connect Actions v
e o %0

Q Instance State : Running Add filter © £ ¢ 1to3of3
Name = Instance ID ~ Instance Type - Availability Zone - Instance State - Status Checks - Alarm Status Public DNS [IPv4)
DockerSwam-worker i-01242202eTh019228 {2 micro us-east-1b @ running © 212 checks Nane Y ec2-34-227151-152 co
@ DockerSwarm-Manager i-0bfc8384db35835¢d t2.micro us-east-1b @ running & 22checks .. None %o ec2-54-205-48-154.com.
DockerSwam-worker i-0d85fTaTe2121al% t2.micro us-east-1c @ running & 22checks ... None % 0c2-34-227-191-199.co..
[
inbound rules =
Scheduled evenls Mo scheduled events VPCID vpe-4cceb535
AMIID Moby Linux aws-v17 03, 1-ce-aws2 (ami- Subnet ID subnet-671cbBdb
3aB1f12e)

Figure 15-5. The Moby Linux AMI used for Docker on AWS

Before being able to use Docker on AWS, enable all inbound/outbound traffic between the EC2
instances in the security groups used by the EC2 instances. This is shown for the security group for Swarm
manager node instance inbound rules in Figure 15-6.

Create Secunity Group Actions ¥
Qi S sty rows | o s e

C} | search: sg-1bbffata Add filter (2] . 1to20f2
Name ~ Group ID + Group Name ~ VPCID = Description -
sg-1bbiTata DockerSwam-NodeVpe SG- vpc-4cecB535 Node Security Group
a 5g-¢ 1be 7500 DockerSwarm-ManagetVpeS... vpe-4cec6535 Manager SecurityGroup
Security Group: sg-c1bc79b0 _N=-E =0

Description Inbound Outbound Tags

Edit

Type (i Protocol (i Port Range i Source (i
Q All trafic Al All 0.0.0.0v0

All traffic Al Al a1}

S8H TCP 22 0.0.0.0/0

Figure 15-6. The security group inbound rules are enabled for all traffic

301

CHAPTER 15 USING SERVICE STACKS

SSH login into the Swarm manager EC2 instance and obtain the public IP address from the AWS
management console, as shown in Figure 15-7.

), Instance State - Running Add filter e 1to3of3
Name = Instance ID = Instance Type ~ Availability Zone - Instance State - Status Checks - Alarm Status Public DNS (IPv4)
Do kerSwarm-worker -01242202¢ 701928 12 micro us-east-1b @ running & 22checks None ‘,. ec2-34-227-151-152.co
B DockerSwarm-Manager i-0bfc9384db35835cd 12 micro us-east-1b @ running & 22 checks Naone % ec254-20548-154.com
Dot kerSwarm-worker -0d85{TaTe2121a0% 2 micro us-east-le @ running & 22 checks None %% 0c2-34-227-191-1%9.c0
b
31 4db35835cd (Docker] Public DNS: ec2-54-205-48-154.compute-1.amazonaws.com _H =N =
Description Status Checks Monitoring Tags
Instance ID i-0bfc 9384db35835cd Public DNS (IPv4) ec2-54-205-48-154 compule-
1.amazonaws.com
natance state running IPvé Public 1P 54.205.48.154
nstance type t2.micro ks IPvE IPs
Elastic IPs Private DNS ip-172-31-19-138 ec2.intermal
Availability zone us-easl-ib Private IPs ~ 172.31.19.138
Security groups DockerSwarm-Managerpc SG- Secondary private IPs

CONEBYSUT3E2, DockerSwarm-

Figure 15-7. Public IP address

Using the key pair used to create the CloudFormation stack SSH login into the Swarm manager
instance.

ssh -i "docker.pem" docker@54.205.48.154
The command prompt for the Swarm manager node is displayed.

[root@localhost ~]# ssh -i "docker.pem” docker@54.205.48.154
Welcome to Docker!

List the nodes in the Swarm mode.
docker node 1s
Three nodes, one manager and two workers, are listed.
~ $ docker node 1s
1D HOSTNAME STATUS AVAILABILITY MANAGER
STATUS
bf4ifthh86sivqpo3ofzhk6c46 ip-172-31-21-175.ec2.internal Ready Active

ozdhlojtnricny1y95xbnhwtq ip-172-31-37-108.ec2.internal Ready Active
ud2js50r4livrqf3f4130fvor * ip-172-31-19-138.ec2.internal Ready Active Leader

302

CHAPTER 15 © USING SERVICE STACKS

Test the Swarm mode by creating and listing a Hello World service.
docker service create --replicas 2 --name helloworld alpine ping docker.com
docker service ls
The docker service commands output indicates a Docker Swarm service, so it’s created and listed.

~ $ docker service create --replicas 2 --name helloworld alpine ping docker.com
qosfef2a7cfo8cvar2ziycenv

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE PORTS
qos5fef2a7cf9 helloworld replicated 2/2 alpine:latest

~ 3

Configuring a Service Stack

To create a service stack consisting of two services, one for a WordPress blog and another for MySQL database,
create a stack file using the Docker Compose version 3 YAML format (https://docs.docker.com/compose/
compose-file/). Create a docker-cloud.yml stack file (the filename is arbitrary) to specify two services

(web and mysql) using Docker images wordpress and mysql respectively. Set the environment variables for
the Docker images. The only environment variable required to be set is MYSQL_ROOT_PASSWORD for the mysql
Docker image. The WORDPRESS_DB_PASSWORD environment variable for the wordpress Docker image defaults
to the MYSQL_ROOT_PASSWORD, but may also be set explicitly to the same value as the MYSQL_ROOT_PASSWORD.
Some of the other environment variables used by the wordpress Docker image are listed in Table 15-2.

Table 15-2. Environment Variables for the Docker Image WordPress

Environment Variable Description Default Value
WORDPRESS _DB_HOST The linked database host, which is The IP and port of the linked mysql
assumed to be MySQL database by =~ Docker container
default.
WORDPRESS_DB_USER The database user. root
WORDPRESS_DB_PASSWORD The database password. MYSQL_ROOT_PASSWORD
WORDPRESS_DB_NAME The database name. The databaseis wordpress
created if it does not already exist.
WORDPRESS_TABLE_PREFIX Table prefix. “

If we were to create a WordPress blog using the wordpress and mysql images with the docker run
command, we would create Docker containers for each of the Docker images separately and link the
containers using the -1ink option. If we were to use Docker Compose (standalone), we would need to add a
links or depends_on sub-option in the Docker Compose file.

303

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

CHAPTER 15 © USING SERVICE STACKS

Next, specify the Docker images and environment variables to the stack file for creating a service stack.
To use the Docker Compose YAML file format for Swarm mode stacks, specify the version in the stack file as
3 or a later version such as 3.1. The docker-cloud.yml file is listed:

version: '3’
services:
web:
image: wordpress
links:
- mysql
environment:
- WORDPRESS_DB_PASSWORD="mysql"
ports:
- "8080:80"
mysql:
image: mysql:latest
environment:
- MYSQL_ROOT_PASSWORD="mysql"
- MYSQL_DATABASE="mysqldb"

The ports mapping of 8080: 80 maps the WordPress Docker container port 80 to the host port 8080. Any
stack file options, such as links that are included in the preceding listing that are not supported by docker
stack deploy, are ignored when creating a stack. Store the preceding listing as docker-cloud.yml in the
Swarm manager EC2 instance. Listing the files in Swarm manager should list the docker-cloud.yml file.
~$1s -1
total 4
-TWXT-X--- 1 docker docker 265 Jun 17 00:07 docker-cloud.yml

Having configured a stack file with two services, next we will create a service stack.

Creating a Stack

The docker stack deploy command is used to create and deploy a stack. It has the following syntax.

docker stack deploy [OPTIONS] STACK

304

CHAPTER 15 © USING SERVICE STACKS
The supported options are discussed in Table 15-3.

Table 15-3. Options for the docker stack deploy Command

Option Description Default Value

--bundle-file Path to a Distributed Application
Bundle file. An application bundle
is created from a Docker Compose
file just as a Docker image is created
from a Dockerfile. An application
bundle may be used to create
stacks. Application bundles are an
experimental feature at the time the
chapter was developed and are not
discussed in this chapter.

--compose-file, -c Path to stack file.

--with-registry-auth Whether to send registry False
authentication information to Swarm
agents.

Using the stack file docker-cloud.yml, create a Docker stack called mysql with the docker stack
deploy command.

docker stack deploy --compose-file docker-cloud.yml mysql

A Docker stack is created and the 1inks option, which is not supported in Swarm mode, is ignored. Two
Swarm services—mysql_mysql and mysql_web—are created in addition to a network mysql _default.

~ $ docker stack deploy --compose-file docker-cloud.yml mysql
Ignoring unsupported options: links

Creating network mysql default

Creating service mysql mysql
Creating service mysql _web

Listing Stacks

List the stacks with the following command.
docker stack 1s

The mysql stack is listed. The number of services in the stack also are listed.
~ $ docker stack 1s

NAME SERVICES
mysql 2

305

CHAPTER 15 USING SERVICE STACKS

Listing Services

List the services in the mysql stack using the docker stack services command, which has the following
syntax.

docker stack services [OPTIONS] STACK
The supported options are listed in Table 15-4.

Table 15-4. Options for the docker stack services Command

Option Description Default Value
--filter, -f Filters output based on filters (or
conditions) provided
--quiet, -q Whether to display only the IDs of the false
services

To list all services, run the following command.
docker stack services mysql
The two services—mysql_mysql and mysql_web—are listed.

~ $ docker stack services mysql

ID NAME MODE REPLICAS IMAGE
ixvoykhuo14c mysql_mysql replicated 1/1 mysql:latest
vl7ph8ihfxan mysql_web replicated 1/1 wordpress:latest

To filter the services, add the --filter option. To filter multiple services, add multiple --filter
options, as shown in the following command.

docker stack services --filter name=mysql_web --filter name=mysql _mysql mysql

The filtered stack services are listed. As both services are specified using -filter, both services are
listed.

~ $ docker stack services --filter name=mysql_web --filter name=mysql_mysql mysql
1

ID NAME MODE REPLICAS IMAGE
ixvoykhuo14c mysql mysql replicated 1/1 mysql:latest
vl7ph8ihfxan mysql web replicated 1/1 wordpress:latest

The services created by a stack are Swarm services and may also be listed using the following command.

docker service 1s

306

CHAPTER 15 © USING SERVICE STACKS

The same two services are listed.

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE
ixvoykhuo14c mysql _mysql replicated 1/1 mysql:latest
sl2jmsat30ex helloworld replicated 2/2 alpine:latest
vl7ph8ihfxan mysql_web replicated 1/1 wordpress:latest

Listing Docker Containers

The docker stack ps command is used to list the Docker containers in a stack and has the following syntax;
output the command usage with the --help option.

~ $ docker stack ps --help
Usage: docker stack ps [OPTIONS] STACK
List the tasks in the stack

Options:
-f, --filter filter Filter output based on conditions provided
--help Print usage
--no-resolve Do not map IDs to Names
--no-trunc Do not truncate output

To list all Docker containers in the mysql stack, run the following command.
docker stack ps mysql

By default, one replica is created for each service, so one Docker container for each service in the stack
is listed. Both Docker containers are running on a Swarm worker node.

~ $ docker stack ps mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

n9oqwaikdé1g mysql web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 3 minutes ago

infzi7kxg9g9 mysql_mysql.1 mysql:latest ip-172-31-37-108.ec2.internal
Running Running 3 minutes ago

Using the -f option to filter the Docker containers to list only the mysql_web.1 container.

~ $ docker stack ps -f name=mysql_web.1 mysql

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

n9oqwaikdélg mysql web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 9 minutes ago

307

CHAPTER 15 USING SERVICE STACKS

List all the running containers by setting the desired-state filter to running.

~ $ docker stack ps -f desired-state=running mysql

D NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

ngoqwaikdélg mysql web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 10 minutes ago

infzi7kxg9g9 mysql_mysql.1 mysql:latest ip-172-31-37-108.ec2.internal
Running Running 10 minutes ago

Using the Service Stack

Next, we use the stack to create a WordPress blog. The stack service called web may be accessed on port 8080
on the Swarm manager host. Obtain the public DNS of the Swarm manager node EC2 instance, as shown in
Figure 15-8.

(UL LB -LE Connect Actions v
= o e 0

Q) ' Instance State : Running Add filter 2] 1t03 013
Name = Instance ID + Instance Type ~ Awvailability Zone ~ Instance State ~ Status Checks - Alarm Status Public DNS (IPv4)
Doc kerSwam-worker F01242202¢ Te01%028 2Zmicro us-gast-1b @ running & 212 checks None % 0c2-34-227-151-152c0
B DockerSwarm-Manager H0bfc9384db35835cd 12micro us-gast-1b @ running & 22 checks None S ec2.54.205-48-154 com
Doc kerSwarm-worker HOdESf Tafe2121a0% 12 micro us-east-1c @ running & 22 checks None % ec2-34-227-191-1%9.co
»
] (Docker ger) i} Public DNS: ec2-54-205-48-154 compute-1.amazonaws.com _N=-E=0

Description Status Checks Monitoring Tags

Instance ID 1-0bfc 9384db35835¢d Public DNS (IPv4) ec2-54-205-48-154 compute-

instance state running IPv4 Public |P

Figure 15-8. Public DNS of Swarm manager

308

CHAPTER 15 © USING SERVICE STACKS

Open the <public dns>:8080 URL in a browser. The <public dns>:8080/wp-admin/install.php URL is
displayed to start the WordPress installation. Select Continue. Specify a subtitle, username, password, e-mail,
and whether to discourage search engines from indexing the website. Then click on Install WordPress, as
shown in Figure 15-9.

[WordPress : instaliation X

< C | D Not secure | ec2-54-205-48-154 compute-Lamazonaws.com: 8080/

admin/install.phpfstep=1

Welcome

Welcome to the famous five-minute WordPress installation process! Just fill in the information below and you'll
be on your way to using the most extendable and powerful personal publishing platform in the world.

Information needed

Please provide the following information. Don’t worry, you can always change these settings later.

Site Title Docker Swarm Stacks
Username dvohra
Usernamies can have only Mphanumeric characters, spaces, underscores, hyphens, periods, and the @
Symbol.
Password sesarassrnres & Show
Strong
Important: You will need this password to log in. Please store it in a secure location.
Your Email dvohral7@yahoo.com
Dauble-chack your email address before continuing,
Search Engine # Discourage search engines from indexing this site
Visibility [t is up 10 search engines to honor this request

| tnstal wordﬁres‘-{j

Figure 15-9. Installing WordPress

309

CHAPTER 15 © USING SERVICE STACKS

WordPress is installed, as shown in Figure 15-10. Click on Log In.

[WordPress s Installation X

<« C | ® ec2-54-205-48-154.compute-1.amazonaws.com:3080

yp-admin/finstall php?step=2

Success!

WordPress has been installed. Thank you, and enjoy!

Username dvohra
Password Your chosen password.
Login |

Figure 15-10. WordPress is installed

Specify a username and password and click on Log In, as shown in Figure 15-11.

[Docker Swarm Stacks < L X

< C @ Not secure | ec2-54-205-48-154.compute-1.amazonaws.com:3080/w

Username or Email Address

dvohra

Password

Remember Me @

Figure 15-11. Loggingin

310

CHAPTER 15 USING SERVICE STACKS
The WordPress blog dashboard is displayed, as shown in Figure 15-12.

() Dashboard : Docker Swe X

e (D ec2-54-205-48-154 compute-Lamazonaws.com

& Detecey Dashboard
Home
Welcome to WordPress! &
T Wi e asie bl e Rl Rt
Q7 Me Get Started Next Steps More Actions
L I Write your first blog post B Manage wid nen
o« it + 4 ! B Tur t
hin e 2 v our 5 = Le - tes
& Appearan
| 4 i
,n', [At a Glance - Quick Draft "
y: 21 L J
B Setiings
o AvEri a8 PReme,
Activity a m
Recently Published
WordPress Events and News .
Figure 15-12. The WordPress dashboard
To add a new post, select Posts and click on Add New, as shown in Figure 15-13.
[} Posts « Docker Swarm 5t % lol o | G il
€ C (@ ec2-54-205-48-1 « B

Bulk Actions Apply Alldates T All Categories ¥ | Filter 1 item

E
3
2
1
&
4

Figure 15-13. Adding a new post

311

CHAPTER 15 © USING SERVICE STACKS

In the Add New Post dialog, specify a title and add a blog entry. Click on Publish, as shown in Figure 15-14.

Add New Post

Wordpress Blog with MySQL On Docker Swarm Mode Stack

s Permalink: hitg 54.comg T mAQR0/20L 705007 (werdpress-blog-w, cker-pwarmestack/ ot
Add New

07 Add Media

Batagragh « B T “ = ==L RE -
05 Media
B Figes The wordpress blog is created using the Docker Swam Mode feature called

"Stacks”, which Is available in Docker v1.13 and later.
¥ Comments 5
& Appearance
L Plugins
& Users
& Tools
B Settings
o
Draft saved 708

Pubdish .

T Status: Draft Egi;

ity Public i

Publizh immediately £dit

hdove o Trazh

Format a

OF'S

Figure 15-14. Publishing a new post

The new post is added. Click on View Post, as shown in Figure 15-15, to display the post.

Edit Post « Docker Swarm X

< ® (D ec2-54-205-48-154.compute- Lamazonaws.com: 3050/ wp-admin/postphplpost=

Edit Post add new

I Post published.

All Posts
Wordpress Blog with MySQL On Docker Swarm Mode Stack
Permalink: hitpe/, 0543~ L54.compite- LAMIIonaws L0 Li/wordpress-blog-w.. swarm-mode-stack) fat
4 Media & al Tex
B Pages magath v B I E E 4= = = # B = =
¥ Comments
The werdpress blog Is created using the Docker Swam Mode feature called
A Appearance "Stacks”, which is available in Docker v1.13 and later
K Plugins
& Users
& Tools
B Settings
o
- Last edited by dvohea on June 17, 2037 at 1338 am

o
Publish .
Preview Change:

? Status: Published Edit
& Visibilty: Public 2t

i Published on: Jun 17. 2017 & 00:38 Edg

Format a

& A standard

Figure 15-15. Viewing the new post

312

CHAPTER 15 © USING SERVICE STACKS

The blog post is displayed, as shown in Figure 15-16.

[Werdprass Bogwith M, X e L= | C

“ (@ 0c2-54-205-48-154 ute-1am

DOCKER SWA

Just another WordPress site

JUNE 17, 2017 BY DVOHRA
WordPress Blog with MySQL On Docker Sedihis n
Swarm Mode Stack
RECENT POSTS
The wordpress blog is created using the Docker Swam Mode feature
called “Stacks™, which is available in Docker v1.13 and later. WordPress Blog with MySOL On Docker Swarm
Mode Stack

Hello world!

n RECENT COMMENTS

A WordPress Commenter on Hello world!

Figure 15-16. Displaying a blog post
Scroll down and add a comment, as shown in Figure 15-17.

[) Wordpress Blog with M, | s | o | D

€ O @ #2-54.205-48-154 compute-Lamazonaws comB080/2017/06/17 wordpress-bl

ARCHIVES

Leave a Reply
June 2017
Logged in as dvohra. Log out?

Comment CATEGORIES

The Docker Swarm mode "Stacks™ feature is available only in
Swarm mode and in Docker v1.13 and later.

Uncategorized

META

Site Admin

Logout

Entries RSS
Post Comment Comments RSS

WordPress.org

PREVIOUS

“ Hello world!

Figure 15-17. Adding a comment

313

CHAPTER 15 © USING SERVICE STACKS

The comment is added, as shown in Figure 15-18.

— —_
[Wordpress Blog with M, %

€ O @ c2-54.205-48-154 compute-Lamazonaws com 8050/

o O
B RIPTVCT Y ST « @B :

JUNE 17, 2017 BY DVOHRA

WordPress Blog with MySQL On Docker

Swarm Mode Stack

The wordpress blog is created using the Docker Swam Mode feature
called “Stacks”, which is available in Docker v1.13 and later,

One Reply to “WordPress Blog with MySOL On Docker

Swarm Mode Stack”

dvohra
JUNE 17, 2017 AT 12:41 AM EDIT

The Docker Swarm mode “Stacks” feature is available cnly in Swarm mode and in

DockervLl3 and later.

Figure 15-18. The comment has been added

Removing a Stack

Search... a

RECENT POSTS

WordPress Blog with MyS0L On Docker Swarm
Mode Stack

Hello world!
RECENT COMMENTS

dvotia on WordPress Blog with MySQL On
Docker Swarm Mode Stack

A WordPress Commenter on Hello world!

ARCHIVES

June 2017

CATEGORIES

The docker stack rm STACK command is used to remove a stack. Remove the mysql stack using the

following command.

docker stack rm mysql

The mysql stack is removed and the docker stack service mysql command does not list the stack, as

shown in the output from the command.
~$ docker stack rm mysql

Removing service mysql mysql
Removing service mysql_web
Removing network mysql default

~$ docker stack services mysql

Nothing found in stack: mysql

314

CHAPTER 15 © USING SERVICE STACKS

Summary

This chapter introduced stacks, a Docker-native feature added in Docker 1.13. A stack is a collection of
related services and is created using a stack file, which is defined in YAML format similar to the Docker
Compose v3.x YAML syntax. This chapter concludes this book about Docker management design patterns.
As new features are added to Docker, other design patterns may be used for developing Docker-native
applications.

315

Index

A Cross-account access, 273
Current state reconciliation, 138
Amazon Route 53 service, 242, 251 Custom overlay network
Amazon Web Services (AWS), 281-284 gossip protocol, 194
CloudFormation IP range, 191
Deploy Docker, 34 IPSEC tunnels, 194
EC2, 46 mysql-network, 192-193
Elastic Load Balancer, 48 MySQL database service, creation, 194-195
launch configurations, 48 service containers, 181
Moby Linux AMI, 47
stacks, 41-46
Swarm parameters, 35 D
Swarm properties, 36-38 Desired state reconciliation, 138-139
delete stack, 51-53 Docker
editions, 33 Cloud, 271-272
key pair, 33 CoreOS, 1
manager and worker nodes, 49-50 DNS/IPv4, 3
option, 284 execution, 3-6
single/multi zone Swarm, 31-33 launch instances, 2
Application load balancers, 228 service, 239, 246
Availability zone column, 245 Docker Cloud dashboard, 289
AWS credentials dialog, 282 Docker Cloud Swarm AWS role, 287
AWS elastic load balancer, 241 Docker Cloud Swarm mode, 285, 294, 296
AWS service provider, 285 docker_gwbridge network, 181, 184
Docker docker stack deploy command, 297
B Docker Swarm load balancer, 247
Docker Swarm mode service, 219
Bind mounts, 98-99, 112-114 Domain Name Service (DNS), 251, 256
Bridge network DynamoDB database, 271

AWS CloudFormation stack, 182
create service, 186

description, 184 E
docker0 limitations, 179 Edit Endpoint link, 288
Swarm manager instance, 183 Elastic load balancer (ELB), 220, 238, 250

External load balancer, 221

C

Classic load balancers, 228 F
CloudFormation stack, 235, 244, 287 Failover record type, 259

Cloud settings page, 282 Failover routing policy, 262

© Deepak Vohra 2017 317
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6

INDEX

G protocol, 228
security settings, 229
Global service, 83 service discovery, 219
rolling update, 176, 178 service task, 226, 234
spread scheduling policy, 153 SSH login, 222
Gossip protocol, 194 types, 228
Logging and monitoring
H connecting, SPM and Logsene apps, 208-209
Docker Swarm logs, Logsene, 214-216
Hello World service, 222, 233, 237, 246, 293 Docker Swarm metrics, 213
Highly available website Logsene application, 205-206, 208
alias target, 258, 261 MySQL database service, 212
Amazon Route 53, 242 Sematext Docker agent, 209, 211
AWS elastic load balancer, 258 Sematext SPM and Logsene, 203
AWS region, 241 SPM application creation, 203-205
confirmation dialog, 267
DNSes, 243
Docker Swarm, 243 M
domain name, 243 Mounts
failover record type, 259 bind, 98-99, 112-114
hosted zone, 252, 266-268 data stored, 97
hostname, 266 EC2 instances, AWS Swarm nodes, 100
name servers, 254-255 named volume, 100-101
Host network, 184 options, 102-103
tmpfs mount options, 103
. J. K volume (see Volume mount)
» Multiple Docker Swarms, 243
IAM role, 288 MySQL database
Ingress network, 180, 185 Docker container, 70-72
add load balancer listener, 190-191 service, creation, 67
create service, 189
description, 184
docker service N, o)
create command, 188 Network
inspect command, 189, 191 custom overlay, 181
ports, 181 delete, 198-199
Ingress load balancing, 219 docker0 bridge limitations, 179
Internal overlay network, 195-198 docker_gwbridge, 181

ingress, 180
L internal overlay, 195-198

Swarm mode, 183-184
Listeners tab, 236

Load balancer listeners, 236

Load balancing Pa Q
Core0S, 221 Postgres image, 167, 170
custom scheduling, 219 Primary record set, 260
dialog, 228 Public hosted zone, 254

DNS name, 232
Docker container, 223

EC2 instances, 230 R
ELB, 220 Replicated services, 60
external elastic load balancer, 227

Resources configuration

HTTP, 228 allocation, resource reserves set, 117-118
invoke, service at worker node, 226 CPU and memory limits, 124
new security group, 229 EC2 instances, Swarm nodes, 119

318

options, resource reserves, 120

reserved resources, 117, 122-123

resource-utilized node, 116

scale up, CloudFormation stack, 127-128, 130

scaling, 121

service creation, 119-121

service resources configuration, 124

setting resource limits, 120

types, 115

unequal allocation, 116

usage and node capacity, 125-126
Rolling update

configuration, 158

ContainerSpec, 168-169

desired state, 159

environment variables, 162

failure action, 173-174

global service, 176, 178

image tag, 161-162

mounts, 172-173

mysql service to Postgres, 175

nodes, 157

options, 157

Postgres image, 167, 170

resource limits and reserves, 164-165, 167

restart, 171

running, 163

sequences, 156-157

shutting down, 155-156

status, 162

updates, 158, 160-161

S, T,U

Scaling services
docker node Is command, 87
Docker Swarm mode, 86
global service, 92
multiple services, 93-95
removing service, 92
replacement service task, 95-96
replicated service, creation, 87
scaling down, 91
scaling up, 88-91

Scheduling
add multiple constraints, 148, 150
add node labels, 150
definition, 131
lack of locality, 132
limited, node resource capacity, 141-143, 145
node attributes, constraints, 146
pending state, 142-143
remove constraints, 152
shutdown desired state, 143
single point of failure, 132

INDEX

specific nodes, 146-147

unbalanced utilization of resource, 132
underutilization of resources, 132
updating placement constraints, 151

Secondary record set, 261-263
Sematext Docker agent, 201, 202
Services

command line, 62-63
creation, 60-61
docker service inspect, 63-65
docker service ps, 68-70
EC2 instances, 57-59, 66
global, 60
MySQL database, 67
removing, 83
replicated, 60
scaling, 68
sub-commands, 59
tasks and containers, 55-57, 61
updation
container labels, 82
environment variable, 80
image, 75-78, 81
mysql, 74-75
options, 73-74
placement constraints, 79-80
resources settings, 82

Service stacks

CloudFormation stack, 300
configuration, 303-304
creation, 304-305
docker stack commands, 298-299
docker stack ps command, 307
listing stacks, 305
Moby Linux AMI, 301
options, docker stack services command, 306
public IP address, 302
removing, 314
security group inbound rules, 301
Swarm mode services, 298
WordPress
add new post, 311
comment adding, 313
dashboard, 311
displaying blog post, 313
installation, 309
logging in, 310
public DNS, Swarm manager, 308
publishing post, 312
viewing post, 312

Single responsibility principle (SRP), 97
Spread scheduling policy, global service, 153
Spread scheduling strategy

CloudFormation stack, 135
current state reconciliation, 138

319

INDEX

Spread scheduling strategy (cont.)

desired state reconciliation, 138-141
docker service scale command, 137

EC2 instances, 135
mysql service, 134
nginx server, 134

node ranking, 133

re-adding worker node, 140-141
using MySQL database, 136-137

Swarm manager node, 295
Swarm mode, 183-184
account and external IDs, 274
apply policy, 278
AWS infrastructure, 287
Cloud service, 281
CoreOS instance, 290
cross-account access, 274
deploying, 286
desired state, 11
Docker Cloud service, 280
dockercloud-swarm-role, 276
Docker images, 271
EC2 console, 292
EC2 instances, 14, 290
endpoint, 289
features, 9
IAM role, 272
initializing, 14-15, 17-18
inline policy, 276, 277, 279
joining nodes, 18-19
manager nodes, 10, 11, 24-27

320

node availability, 28-29

quorum, 12-13

Raft consensus, 11

reinitializing, 28

removing, 30

role name, 273

service, 11

testing, 20-24

worker nodes, 10, 12, 25
Swarm nodes, 220, 249
Swarms toolbar option, 280

VW, X, Y, Z
Volume mount
auto-generated named volumes, 107, 109, 111
container, 98
destination directory, 108
docker service create command, 102
mysql-scripts, 107, 110-111
named volume, 97, 103-105, 107, 111
nginx-root, 105
options, 102-103
removing, 112
service creation, 105, 108
service definition, 104, 107
service replicas, 104
service task, 110
task container, service, 109
tmpfs mount, 103
volume-label, 103

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Getting Started with Docker
	Setting the Environment
	Running a Docker Application
	Summary

	Chapter 2: Using Docker in Swarm Mode
	The Problem
	The Solution
	Docker Swarm Mode
	Nodes
	Service
	Desired State of a Service
	Manager Node and Raft Consensus
	Worker Nodes
	Quorum

	Setting the Environment
	Initializing the Docker Swarm Mode
	Joining Nodes to the Swarm
	Testing the Swarm
	Promoting a Worker Node to Manager
	Demoting a Manager Node to Worker
	Making a Worker Node Leave the Swarm
	Making a Manager Node Leave the Swarm
	Reinitializing a Cluster
	Modifying Node Availability
	Removing a Node
	Summary

	Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm
	The Problem
	The Solution
	Setting the Environment
	Creating a AWS CloudFormation Stack for Docker Swarm
	Connecting with the Swarm Manager
	Using the Swarm
	Deleting a Swarm
	Summary

	Chapter 4: Docker Services
	The Problem
	The Solution
	Setting the Environment
	The docker service Commands
	Types of Services
	Creating a Service
	Listing the Tasks of a Service
	Invoking a Hello World Service Task on the Command Line
	Getting Detailed Information About a Service
	Invoking the Hello World Service in a Browser
	Creating a Service for a MySQL Database
	Scaling a Service
	Listing Service Tasks
	Accessing a MySQL Database in a Docker Container
	Updating a Service
	Updating the Replicas
	Updating the Docker Image Tag
	Updating the Placement Constraints
	Updating Environment Variables
	Updating the Docker Image
	Updating the Container Labels
	Updating Resources Settings

	Removing a Service
	Creating a Global Service
	Summary

	Chapter 5: Scaling Services
	The Problem
	The Solution
	Setting the Environment
	Creating a Replicated Service
	Scaling Up a Service
	Scaling Down a Service
	Removing a Service
	Global Services Cannot Be Scaled
	Scaling Multiple Services Using the Same Command
	Service Tasks Replacement on a Node Leaving the Swarm
	Summary

	Chapter 6: Using Mounts
	The Problem
	The Solution
	Volume Mounts
	Bind Mounts
	Setting the Environment
	Creating a Named Volume
	Using a Volume Mount
	Removing a Volume
	Creating and Using a Bind Mount
	Summary

	Chapter 7: Configuring Resources
	The Problem
	The Solution
	Setting the Environment
	Creating a Service Without Resource Specification
	Reserving Resources
	Setting Resource Limits
	Creating a Service with Resource Specification
	Scaling and Resources
	Reserved Resources Must Not Be More Than Resource Limits
	Rolling Update to Modify Resource Limits and Reserves
	Resource Usage and Node Capacity
	Scaling Up the Stack

	Summary

	Chapter 8: Scheduling
	The Problem
	The Solution
	Setting the Environment
	Creating and Scheduling a Service: The Spread Scheduling
	Desired State Reconciliation
	Scheduling Tasks Limited by Node Resource Capacity
	Adding Service Scheduling Constraints
	Scheduling on a Specific Node
	Adding Multiple Scheduling Constraints
	Adding Node Labels for Scheduling
	Adding, Updating, and Removing Service Scheduling Constraints

	Spread Scheduling and Global Services
	Summary

	Chapter 9: Rolling Updates
	The Problem
	The Solution
	Setting the Environment
	Creating a Service with a Rolling Update Policy
	Rolling Update to Increase the Number of Replicas
	Rolling Update to a Different Image Tag
	Rolling Update to Add and Remove Environment Variables
	Rolling Update to Set CPU and Memory Limits and Reserve
	Rolling Update to a Different Image
	Rolling Restart
	Rolling Update to Add and Remove Mounts
	Rolling Update Failure Action
	Roll Back to Previous Specification
	Rolling Update on a Global Service
	Summary

	Chapter 10: Networking
	The Problem
	The Solution
	The Ingress Network
	Custom Overlay Networks
	The docker_gwbridge Network
	The Bridge Network

	Setting the Environment
	Networking in Swarm Mode
	Using the Default Bridge Network to Create a Service
	Creating a Service in the Ingress Network
	Creating a Custom Overlay Network
	Using a Custom Overlay Network to Create a Service
	Creating an Internal Overlay Network
	Deleting a Network
	Summary

	Chapter 11: Logging and Monitoring
	The Problem
	The Solution
	Setting the Environment
	Creating a SPM Application
	Creating a Logsene Application
	Connecting the SPM and Logsene Apps
	Deploying the Sematext Docker Agent as a Service
	Creating a MySQL Database Service on a Docker Swarm
	Monitoring the Docker Swarm Metrics
	Getting Docker Swarm Logs in Logsene
	Summary

	Chapter 12: Load Balancing
	Service Discovery
	Custom Scheduling
	Ingress Load Balancing
	The Problem
	The Solution
	Setting the Environment
	Creating a Hello World Service
	Invoking the Hello World Service
	Creating an External Elastic Load Balancer
	Load Balancing in Docker for AWS
	Summary

	Chapter 13: Developing a Highly Available Website
	The Problem
	The Solution
	Setting the Environment
	Creating Multiple Docker Swarms
	Deploying a Docker Swarm Service
	Creating an Amazon Route 53
	Creating a Hosted Zone
	Configuring Name Servers
	Creating Resource Record Sets

	Testing High Availability
	Deleting a Hosted Zone
	Summary

	Chapter 14: Using Swarm Mode in Docker Cloud
	The Problem
	The Solution
	Setting the Environment
	Creating an IAM Role
	Creating a Docker Swarm in Docker Cloud
	Connecting to the Docker Swarm from a Docker Host
	Connecting to the Docker Swarm from a Swarm Manager
	Bringing a Swarm into Docker Cloud
	Summary

	Chapter 15: Using Service Stacks
	The Problem
	The Solution
	Setting the Environment
	Configuring a Service Stack
	Creating a Stack
	Listing Stacks
	Listing Services
	Listing Docker Containers
	Using the Service Stack
	Removing a Stack
	Summary

	Index

