

Docker

i

About the Tutorial

This tutorial explains the various aspects of the Docker Container service. Starting with

the basics of Docker which focuses on the installation and configuration of Docker, it

gradually moves on to advanced topics such as Networking and Registries. The last few

chapters of this tutorial cover the development aspects of Docker and how you can get up

and running on the development environments using Docker Containers.

Audience

This tutorial is meant for those who are interested in learning Docker as a container

service. This product has spread like wildfire across the industry and is really making an

impact on the development of new generation applications. So anyone who is interested

in learning all the aspects of Docker should go through this tutorial.

Prerequisites

The prerequisite is that the readers should be familiar with the basic concepts of Windows

and the various programs that are already available on the Windows operating system. In

addition, it would help if the readers have some exposure to Linux.

Copyright & Disclaimer

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

Docker

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. DOCKER ─ OVERVIEW .. 1

2. DOCKER – INSTALLING DOCKER ON LINUX .. 3

Docker Version .. 10

Docker Info ... 11

Docker for Windows.. 12

Docker ToolBox ... 13

3. DOCKER ─ INSTALLATION .. 15

Docker for Windows.. 15

Docker ToolBox ... 16

Working with Docker Toolbox ... 19

4. DOCKER – DOCKER HUB .. 22

5. DOCKER ─ IMAGES ... 26

Displaying Docker Images.. 26

Downloading Docker Images ... 27

Removing Docker Images .. 28

docker images -q ... 29

docker inspect ... 30

6. DOCKER – CONTAINERS ... 31

Running a Container .. 31

Docker

iii

Listing of Containers .. 31

docker ps -a ... 32

docker history ... 33

7. DOCKER – WORKING WITH CONTAINERS .. 34

docker top ... 34

docker stop ... 35

docker rm .. 35

docker stats ... 36

docker attach .. 37

docker pause ... 38

docker unpause ... 39

docker kill.. 39

Docker – Container Lifecycle ... 40

8. DOCKER – DOCKER ARCHITECTURE ... 42

9. DOCKER – CONTAINER AND HOSTS ... 44

Docker Images ... 44

Running a Container .. 44

Listing All Containers ... 45

Stopping a Container ... 45

10. DOCKER – CONFIGURING DOCKER .. 46

service docker stop ... 46

service docker start ... 46

11. DOCKER – CONTAINERS AND SHELLS ... 48

nsenter .. 49

12. DOCKER – DOCKER FILE ... 51

Docker

iv

13. DOCKER – BUILDING DOCKER FILES ... 53

docker build .. 53

14. DOCKER – PUBLIC REPOSITORIES... 56

docker tag ... 58

docker push... 59

15. DOCKER – MANAGING PORTS ... 61

docker inspect ... 63

16. DOCKER – PRIVATE REGISTRIES ... 66

17. DOCKER – BUILDING A WEB SERVER DOCKER FILE .. 70

18. DOCKER – INSTRUCTION COMMANDS .. 73

CMD Instruction .. 73

ENTRYPOINT ... 74

ENV ... 75

WORKDIR .. 77

19. DOCKER – CONTAINER LINKING ... 79

20. DOCKER – DOCKER STORAGE .. 81

Data Volumes .. 83

Changing the Storage Driver for a Container ... 85

Creating a Volume ... 86

Listing all the Volumes .. 87

21. DOCKER ─ DOCKER NETWORKING ... 88

Listing All Docker Networks... 88

Inspecting a Docker network ... 89

Creating Your Own New Network ... 91

Docker

v

22. DOCKER – SETTING NODE.JS .. 93

23. DOCKER – SETTING MONGODB ... 96

24. DOCKER – SETTING NGINX... 101

25. DOCKER – DOCKER TOOLBOX .. 105

Running in Powershell ... 106

Pulling Images and Running Containers... 106

Kitematic ... 107

26. DOCKER – SETTING ASP.NET .. 112

Prerequisites ... 112

Installing the ASP.Net Container ... 114

27. DOCKER – DOCKER CLOUD .. 117

Getting started .. 117

Connecting to the Cloud Provider .. 118

Setting Up Nodes .. 125

Deploying a Service ... 127

28. DOCKER – LOGGING .. 129

Daemon Logging.. 129

Container Logging ... 131

29. DOCKER – DOCKER COMPOSE ... 132

Docker Compose ─ Installation .. 132

Creating Your First Docker-Compose File .. 133

30. DOCKER – CONTINUOUS INTEGRATION... 136

31. DOCKER – KUBERNETES ARCHITECTURE .. 140

32. DOCKER – WORKING OF KUBERNETES .. 142

Docker

1

Docker is a container management service. The keywords of Docker are develop, ship

and run anywhere. The whole idea of Docker is for developers to easily develop

applications, ship them into containers which can then be deployed anywhere.

The initial release of Docker was in March 2013 and since then, it has become the buzzword

for modern world development, especially in the face of Agile-based projects.

Features of Docker

 Docker has the ability to reduce the size of development by providing a smaller

footprint of the operating system via containers.

 With containers, it becomes easier for teams across different units, such as

development, QA and Operations to work seamlessly across applications.

 You can deploy Docker containers anywhere, on any physical and virtual machines

and even on the cloud.

 Since Docker containers are pretty lightweight, they are very easily scalable.

Components of Docker

Docker has the following components

 Docker for Mac – It allows one to run Docker containers on the Mac OS.

 Docker for Linux - It allows one to run Docker containers on the Linux OS.

1. Docker ─ Overview

Docker

2

 Docker for Windows - It allows one to run Docker containers on the Windows

OS.

 Docker Engine – It is used for building Docker images and creating Docker

containers.

 Docker Hub – This is the registry which is used to host various Docker images.

 Docker Compose – This is used to define applications using multiple Docker

containers.

We will discuss all these components in detail in the subsequent chapters.

The official site for Docker is https://www.docker.com/ The site has all information and

documentation about the Docker software. It also has the download links for various

operating systems.

https://www.docker.com/

Docker

3

To start the installation of Docker, we are going to use an Ubuntu instance. You can use

Oracle Virtual Box to setup a virtual Linux instance, in case you don’t have it already.

The following screenshot shows a simple Ubuntu server which has been installed on Oracle

Virtual Box. There is an OS user named demo which has been defined on the system

having entire root access to the sever.

To install Docker, we need to follow the steps given below.

Step 1: Before installing Docker, you first have to ensure that you have the right Linux

kernel version running. Docker is only designed to run on Linux kernel version 3.8 and

higher. We can do this by running the following command:

uname

This method returns the system information about the Linux system.

Syntax

uname -a

Options

a – This is used to ensure that the system information is returned.

Return Value

This method returns the following information on the Linux system:

 kernel name

 node name

 kernel release

 kernel version

 machine

 processor

 hardware platform

 operating system

Example

uname –a

2. Docker – Installing Docker on Linux

Docker

4

Output

When we run above command, we will get the following result:

From the output, we can see that the Linux kernel version is 4.2.0-27 which is higher than

version 3.8, so we are good to go.

Step 2: You need to update the OS with the latest packages, which can be done via the

following command:

apt-get

This method installs packages from the Internet on to the Linux system.

Syntax

sudo apt-get update

Options

 sudo - The sudo command is used to ensure that the command runs with root

access.

 update - The update option is used ensure that all packages are updated on the

Linux system.

Return Value

None

Example

sudo apt-get update

Docker

5

Output

When we run the above command, we will get the following result:

This command will connect to the internet and download the latest system packages for

Ubuntu.

Step 3: The next step is to install the necessary certificates that will be required to work

with the Docker site later on to download the necessary Docker packages. It can be done

with the following command:

sudo apt-get install apt-transport-https ca-certificates

Docker

6

Step 4: The next step is to add the new GPG key. This key is required to ensure that all

data is encrypted when downloading the necessary packages for Docker.

The following command will download the key with the ID

58118E89F3A912897C070ADBF76221572C52609D from the keyserver

hkp://ha.pool.sks-keyservers.net:80 and adds it to the adv keychain. Please note that

this particular key is required to download the necessary Docker packages.

sudo apt-key adv \

 --keyserver hkp://ha.pool.sks-keyservers.net:80 \

 --recv-keys 58118E89F3A912897C070ADBF76221572C52609D

Docker

7

Step 5: Next, depending on the version of Ubuntu you have, you will need to add the

relevant site to the docker.list for the apt package manager, so that it will be able to

detect the Docker packages from the Docker site and download them accordingly.

 Precise 12.04 (LTS) ─ deb https://apt.dockerproject.org/repo ubuntu-precise main

 Trusty 14.04 (LTS) ─ deb https://apt.dockerproject.org/repo ubuntu-trusty main

 Wily 15.10 ─ deb https://apt.dockerproject.org/repo ubuntu-wily main

 Xenial 16.04 (LTS) ─ deb https://apt.dockerproject.org/repo ubuntu-xenial main

Since our OS is Ubuntu 14.04, we will use the Repository name as “deb

https://apt.dockerproject.org/repo ubuntu-trusty main”

And then, we will need to add this repository to the docker.list as mentioned above.

echo "deb https://apt.dockerproject.org/repo ubuntu-trusty main” | sudo tee

/etc/apt/sources.list.d/docker.list

Step 6: Next, we issue the apt-get update command to update the packages on the

Ubuntu system.

Docker

8

Step 7: If you want to verify that the package manager is pointing to the right repository,

you can do it by issuing the apt-cache command.

apt-cache policy docker-engine

In the output, you will get the link to https://apt.dockerproject.org/repo/

Step 8: Issue the apt-get update command to ensure all the packages on the local

system are up to date.

https://apt.dockerproject.org/repo/

Docker

9

Step 9: For Ubuntu Trusty, Wily, and Xenial, we have to install the linux-image-extra-*

kernel packages, which allows one to use the aufs storage driver. This driver is used by

the newer versions of Docker.

It can be done by using the following command:

sudo apt-get install linux-image-extra-$(uname -r) linux-image-extra-virtual

Step 10: The final step is to install Docker and we can do this with the following command:

sudo apt-get install –y docker-engine

Here, apt-get uses the install option to download the Docker-engine image from the

Docker website and get Docker installed.

The Docker-engine is the official package from the Docker Corporation for Ubuntu-based

systems.

Docker

10

In the next section, we will see how to check for the version of Docker that was installed.

Docker Version

To see the version of Docker running, you can issue the following command:

Syntax

docker version

Options

 version – It is used to ensure the Docker command returns the Docker version

installed.

Return Value

The output will provide the various details of the Docker version installed on the system.

Example

sudo docker version

Docker

11

Output

When we run the above program, we will get the following result:

Docker Info

To see more information on the Docker running on the system, you can issue the following

command:

Syntax

docker info

Options

 info – It is used to ensure that the Docker command returns the detailed

information on the Docker service installed.

Return Value

The output will provide the various details of the Docker installed on the system such as

 Number of containers

 Number of images

 The storage driver used by Docker

 The root directory used by Docker

 The execution driver used by Docker

Example

sudo docker info

Docker

12

Output

When we run the above command, we will get the following result:

Docker for Windows

Docker has out-of-the-box support for Windows, but you need to have the following

configuration in order to install Docker for Windows.

System Requirements

Windows OS Windows 10 64 bit

Memory 2 GB RAM (recommended)

Docker

13

You can download Docker for Windows from: https://docs.docker.com/docker-for-windows/

Docker ToolBox

Docker ToolBox has been designed for older versions of Windows, such as Windows 8.1

and Windows 7. You need to have the following configuration in order to install Docker for

Windows.

System Requirements

Windows OS Windows 7 , 8, 8.1

Memory 2 GB RAM (recommended)

Virtualization This should be enabled.

https://docs.docker.com/docker-for-windows/

Docker

14

You can download Docker ToolBox from: https://www.docker.com/products/docker-

toolbox

https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox

Docker

15

Let’s go through the installation of each product.

Docker for Windows

Once the installer has been downloaded, double-click it to start the installer and then

follow the steps given below.

Step 1: Click on the Agreement terms and then the Install button to proceed ahead with

the installation.

3. Docker ─ Installation

Docker

16

Step 2: Once complete, click the Finish button to complete the installation.

Docker ToolBox

Once the installer has been downloaded, double-click it to start the installer and then

follow the steps given below.

Step 1: Click the Next button on the start screen.

Docker

17

Step 2: Keep the default location on the next screen and click the Next button.

Step 3: Keep the default components and click the Next button to proceed.

Docker

18

Step 4: Keep the Additional Tasks as they are and then click the Next button.

Step 5: On the final screen, click the Install button.

Docker

19

Working with Docker Toolbox

Let’s now look at how Docker Toolbox can be used to work with Docker containers on

Windows. The first step is to launch the Docker Toolbox application for which the shortcut

is created on the desktop when the installation of Docker toolbox is carried out.

Next, you will see the configuration being carried out when Docker toolbox is launched.

Docker

20

Once done, you will see Docker configured and launched. You will get an interactive shell

for Docker.

To test that Docker runs properly, we can use the Docker run command to download and

run a simple HelloWorld Docker container.

The working of the Docker run command is given below:

docker run

This command is used to run a command in a Docker container.

Syntax

docker run image

Options

 Image – This is the name of the image which is used to run the container.

Return Value

The output will run the command in the desired container.

Example

sudo docker run hello-world

This command will download the hello-world image, if it is not already present, and run

the hello-world as a container.

Docker

21

Output

When we run the above command, we will get the following result:

If you want to run the Ubuntu OS on Windows, you can download the Ubuntu Image using

the following command:

Docker run –it Ubuntu bash

Here you are telling Docker to run the command in the interactive mode via the –it option.

In the output you can see that the Ubuntu image is downloaded and run and then you will

be logged in as a root user in the Ubuntu container.

Docker

22

Docker Hub is a registry service on the cloud that allows you to download Docker images

that are built by other communities. You can also upload your own Docker built images to

Docker hub. In this chapter, we will see how to download and the use the Jenkins Docker

image from Docker hub.

The official site for Docker hub is: https://www.docker.com/products/docker-hub

Step 1: First you need to do a simple sign-up on Docker hub.

Step 2: Once you have signed up, you will be logged into Docker Hub.

4. Docker – Docker Hub

https://www.docker.com/products/docker-hub

Docker

23

Step 3: Next, let’s browse and find the Jenkins image.

Step 4: If you scroll down on the same page, you can see the Docker pull command. This

will be used to download the Jenkins image onto the local Ubuntu server.

Docker

24

Step 5: Now, go to the Ubuntu server and run the following command:

sudo docker pull jenkins

To run Jenkins, you need to run the following command:

sudo docker run -p 8080:8080 -p 50000:50000 jenkins

Note the following points about the above sudo command:

 We are using the sudo command to ensure it runs with root access.

 Here, jenkins is the name of the image we want to download from Docker hub and

install on our Ubuntu machine.

 -p is used to map the port number of the internal Docker image to our main Ubuntu

server so that we can access the container accordingly.

Docker

25

You will then have Jenkins successfully running as a container on the Ubuntu machine.

Docker

26

In Docker, everything is based on Images. An image is a combination of a file system and

parameters. Let’s take an example of the following command in Docker.

docker run hello-world

 The Docker command is specific and tells the Docker program on the Operating

System that something needs to be done.

 The run command is used to mention that we want to create an instance of an

image, which is then called a container.

 Finally, "hello-world" represents the image from which the container is made.

Now let’s look at how we can use the CentOS image available in Docker Hub to run CentOS

on our Ubuntu machine. We can do this by executing the following command on our

Ubuntu machine:

sudo docker run centos –it /bin/bash

Note the following points about the above sudo command:

 We are using the sudo command to ensure that it runs with root access.

 Here, centos is the name of the image we want to download from Docker Hub and

install on our Ubuntu machine.

 ─it is used to mention that we want to run in interactive mode.

 /bin/bash is used to run the bash shell once CentOS is up and running.

Displaying Docker Images

To see the list of Docker images on the system, you can issue the following command.

docker images

This command is used to display all the images currently installed on the system.

Syntax

docker images

Options

None

5. Docker ─ Images

Docker

27

Return Value

The output will provide the list of images on the system.

Example

sudo docker images

Output

When we run the above command, it will produce the following result:

From the above output, you can see that the server has three images: centos,

newcentos, and jenkins. Each image has the following attributes:

 TAG – This is used to logically tag images.

 Image ID – This is used to uniquely identify the image.

 Created – The number of days since the image was created.

 Virtual Size – The size of the image.

Downloading Docker Images

Images can be downloaded from Docker Hub using the Docker run command. Let’s see in

detail how we can do this.

Syntax

The following syntax is used to run a command in a Docker container.

docker run image

Options

 Image – This is the name of the image which is used to run the container.

Return Value

The output will run the command in the desired container.

Docker

28

Example

sudo docker run centos

This command will download the centos image, if it is not already present, and run the

OS as a container.

Output

When we run the above command, we will get the following result:

You will now see the CentOS Docker image downloaded. Now, if we run the Docker images

command to see the list of images on the system, we should be able to see the centos

image as well.

Removing Docker Images

The Docker images on the system can be removed via the docker rmi command. Let’s

look at this command in more detail.

docker rmi

This command is used to remove Docker images.

Docker

29

Syntax

docker rmi ImageID

Options

 ImageID – This is the ID of the image which needs to be removed.

Return Value

The output will provide the Image ID of the deleted Image.

Example

sudo docker rmi 7a86f8ffcb25

Here, 7a86f8ffcb25 is the Image ID of the newcentos image.

Output

When we run the above command, it will produce the following result:

Let’s see some more Docker commands on images.

docker images -q

This command is used to return only the Image ID’s of the images.

Syntax

docker images -q

Options

 q – It tells the Docker command to return the Image ID’s only.

Return Value

The output will show only the Image ID’s of the images on the Docker host.

Example

sudo docker images -q

Output

When we run the above command, it will produce the following result:

Docker

30

docker inspect

This command is used see the details of an image or container.

Syntax

docker inspect Repository

Options

 Repository – This is the name of the Image.

Return Value

The output will show detailed information on the Image.

Example

sudo docker inspect jenkins

Output

When we run the above command, it will produce the following result:

Docker

31

Containers are instances of Docker images that can be run using the Docker run

command. The basic purpose of Docker is to run containers. Let’s discuss how to work

with containers.

Running a Container

Running of containers is managed with the Docker run command. To run a container in

an interactive mode, first launch the Docker container.

sudo docker run –it centos /bin/bash

Then hit Crtl+p and you will return to your OS shell.

You will then be running in the instance of the CentOS system on the Ubuntu server.

Listing of Containers

One can list all of the containers on the machine via the docker ps command. This

command is used to return the currently running containers.

docker ps

Syntax

docker ps

Options

None

Return Value

The output will show the currently running containers.

Example

sudo docker ps

6. Docker – Containers

Docker

32

Output

When we run the above command, it will produce the following result:

Let’s see some more variations of the docker ps command.

docker ps -a

This command is used to list all of the containers on the system.

Syntax

docker ps -a

Options

 ─a – It tells the docker ps command to list all of the containers on the system.

Return Value

The output will show all containers.

Example

sudo docker ps -a

Output

When we run the above command, it will produce the following result:

Docker

33

docker history

With this command, you can see all the commands that were run with an image via a

container.

Syntax

docker history ImageID

Options

 ImageID – This is the Image ID for which you want to see all the commands that

were run against it.

Return Value

The output will show all the commands run against that image.

Example

sudo docker history centos

The above command will show all the commands that were run against the centos image.

Output

When we run the above command, it will produce the following result:

Docker

34

In this chapter, we will explore in detail what we can do with containers.

docker top

With this command, you can see the top processes within a container.

Syntax

docker top ContainerID

Options

 ContainerID – This is the Container ID for which you want to see the top processes.

Return Value

The output will show the top-level processes within a container.

Example

sudo docker top 9f215ed0b0d3

The above command will show the top-level processes within a container.

Output

When we run the above command, it will produce the following result:

7. Docker – Working with Containers

Docker

35

docker stop

This command is used to stop a running container.

Syntax

docker stop ContainerID

Options

 ContainerID – This is the Container ID which needs to be stopped.

Return Value

The output will give the ID of the stopped container.

Example

sudo docker stop 9f215ed0b0d3

The above command will stop the Docker container 9f215ed0b0d3.

Output

When we run the above command, it will produce the following result:

docker rm

This command is used to delete a container.

Syntax

docker rm ContainerID

Options

 ContainerID – This is the Container ID which needs to be removed.

Docker

36

Return Value

The output will give the ID of the removed container.

Example

sudo docker rm 9f215ed0b0d3

The above command will remove the Docker container 9f215ed0b0d3.

Output

When we run the above command, it will produce the following result:

docker stats

This command is used to provide the statistics of a running container.

Syntax

docker stats ContainerID

Options

 ContainerID – This is the Container ID for which the stats need to be provided.

Return Value

The output will show the CPU and Memory utilization of the Container.

Example

sudo docker rm 9f215ed0b0d3

The above command will provide CPU and memory utilization of the Container

9f215ed0b0d3.

Docker

37

Output

When we run the above command, it will produce the following result:

docker attach

This command is used to attach to a running container.

Syntax

docker attach ContainerID

Options

 ContainerID – This is the Container ID to which you need to attach.

Return Value

None

Example

sudo docker attach 07b0b6f434fe

The above command will attach to the Docker container 07b0b6f434fe.

Output

When we run the above command, it will produce the following result:

Docker

38

Once you have attached to the Docker container, you can run the above command to see

the process utilization in that Docker container.

docker pause

This command is used to pause the processes in a running container.

Syntax

docker pause ContainerID

Options

 ContainerID – This is the Container ID to which you need to pause the processes

in the container.

Return Value

The ContainerID of the paused container.

Example

sudo docker pause 07b0b6f434fe

The above command will pause the processes in a running container 07b0b6f434fe.

Output

When we run the above command, it will produce the following result:

Docker

39

docker unpause

This command is used to unpause the processes in a running container.

Syntax

docker unpause ContainerID

Options

 ContainerID – This is the Container ID to which you need to unpause the

processes in the container.

Return Value

The ContainerID of the running container.

Example

sudo docker unpause 07b0b6f434fe

The above command will unpause the processes in a running container: 07b0b6f434fe

Output

When we run the above command, it will produce the following result:

docker kill

This command is used to kill the processes in a running container.

Syntax

docker kill ContainerID

Options

 ContainerID – This is the Container ID to which you need to kill the processes in

the container.

Return Value

The ContainerID of the running container.

Docker

40

Example

sudo docker kill 07b0b6f434fe

The above command will kill the processes in the running container 07b0b6f434fe.

Output

When we run the above command, it will produce the following result:

Docker – Container Lifecycle

The following illustration explains the entire lifecycle of a Docker container.

 Initially, the Docker container will be in the created state.

 Then the Docker container goes into the running state when the Docker run

command is used.

 The Docker kill command is used to kill an existing Docker container.

 The Docker pause command is used to pause an existing Docker container.

Docker

41

 The Docker stop command is used to pause an existing Docker container.

 The Docker run command is used to put a container back from a stopped state to

a running state.

Docker

42

The following image shows the standard and traditional architecture of virtualization.

 The server is the physical server that is used to host multiple virtual machines.

 The Host OS is the base machine such as Linux or Windows.

 The Hypervisor is either VMWare or Windows Hyper V that is used to host virtual

machines.

 You would then install multiple operating systems as virtual machines on top of the

existing hypervisor as Guest OS.

 You would then host your applications on top of each Guest OS.

The following image shows the new generation of virtualization that is enabled via Dockers.

Let’s have a look at the various layers.

8. Docker – Docker Architecture

Docker

43

 The server is the physical server that is used to host multiple virtual machines. So

this layer remains the same.

 The Host OS is the base machine such as Linux or Windows. So this layer remains

the same.

 Now comes the new generation which is the Docker engine. This is used to run the

operating system which earlier used to be virtual machines as Docker containers.

 All of the Apps now run as Docker containers.

The clear advantage in this architecture is that you don’t need to have extra hardware for

Guest OS. Everything works as Docker containers.

Docker

44

The good thing about the Docker engine is that it is designed to work on various operating

systems. We have already seen the installation on Windows and seen all the Docker

commands on Linux systems. Now let’s see the various Docker commands on the Windows

OS.

Docker Images

Let’s run the Docker images command on the Windows host.

From here, we can see that we have two images: ubuntu and hello-world.

Running a Container

Now let’s run a container in the Windows Docker host.

9. Docker – Container and Hosts

Docker

45

We can see that by running the container, we can now run the Ubuntu container on a

Windows host.

Listing All Containers

Let’s list all the containers on the Windows host.

Stopping a Container

Let’s now stop a running container on the Windows host.

So you can see that the Docker engine is pretty consistent when it comes to different

Docker hosts and it works on Windows in the same way it works on Linux.

Docker

46

In this chapter, we will look at the different options to configure Docker.

service docker stop

This command is used to stop the Docker daemon process.

Syntax

service docker stop

Options

None

Return Value

A message showing that the Docker process has stopped.

Example

sudo service docker stop

Output

When we run the above command, it will produce the following result:

service docker start

This command is used to start the Docker daemon process.

Syntax

service docker start

Options

None

10. Docker – Configuring Docker

Docker

47

Return Value

A message showing that the Docker process has started.

Example

sudo service docker start

Output

When we run the above command, it will produce the following result:

Docker

48

By default, when you launch a container, you will also use a shell command while

launching the container as shown below. This is what we have seen in the earlier chapters

when we were working with containers.

In the above screenshot, you can observe that we have issued the following command:

sudo docker run –it centos /bin/bash

We used this command to create a new container and then used the Ctrl+P+Q command

to exit out of the container. It ensures that the container still exists even after we exit

from the container.

We can verify that the container still exists with the Docker ps command. If we had to exit

out of the container directly, then the container itself would be destroyed.

Now there is an easier way to attach to containers and exit them cleanly without the need

of destroying them. One way of achieving this is by using the nsenter command.

Before we run the nsenter command, you need to first install the nsenter image. It can

be done by using the following command:

docker run --rm -v /usr/local/bin:/target jpetazzo/nsenter

11. Docker – Containers and Shells

Docker

49

Before we use the nsenter command, we need to get the Process ID of the container,

because this is required by the nsenter command. We can get the Process ID via the

Docker inspect command and filtering it via the Pid

As seen in the above screenshot, we have first used the docker ps command to see the

running containers. We can see that there is one running container with the ID of

ef42a4c5e663.

We then use the Docker inspect command to inspect the configuration of this container

and then use the grep command to just filter the Process ID. And from the output, we

can see that the Process ID is 2978.

Now that we have the process ID, we can proceed forward and use the nsenter command

to attach to the Docker container.

nsenter

This method allows one to attach to a container without exiting the container.

Syntax

nsenter –m –u –n –p –i –t containerID command

Options

 -u is used to mention the Uts namespace

 -m is used to mention the mount namespace

 -n is used to mention the network namespace

 -p is used to mention the process namespace

 -i is to make the container run in interactive mode.

 -t is used to connect the I/O streams of the container to the host OS.

 containerID – This is the ID of the container.

 Command – This is the command to run within the container.

Return Value

None

Docker

50

Example

sudo nsenter –m –u –n –p –i –t 2978 /bin/bash

Output

From the output, we can observe the following points:

 The prompt changes to the bash shell directly when we issue the nsenter

command.

 We then issue the exit command. Now normally if you did not use the nsenter

command, the container would be destroyed. But you would notice that when we

run the nsenter command, the container is still up and running.

Docker

51

In the earlier chapters, we have seen the various Image files such as Centos which get

downloaded from Docker hub from which you can spin up containers. An example is again

shown below.

If we use the Docker images command, we can see the existing images in our system.

From the above screenshot, we can see that there are two images: centos and nsenter.

But Docker also gives you the capability to create your own Docker images, and it can be

done with the help of Docker Files. A Docker File is a simple text file with instructions on

how to build your images.

The following steps explain how you should go about creating a Docker File.

Step 1: Create a file called Docker File and edit it using vim. Please note that the name

of the file has to be "Dockerfile" with "D" as capital.

Step 2: Build your Docker File using the following instructions:

#This is a sample Image

FROM ubuntu

MAINTAINER demousr@gmail.com

RUN apt-get update

RUN apt-get install –y nginx

CMD [“echo”,”Image created”]

The following points need to be noted about the above file:

 The first line "#This is a sample Image" is a comment. You can add comments to

the Docker File with the help of the # command.

 The next line has to start with the FROM keyword. It tells docker, from which base

image you want to base your image from. In our example, we are creating an

image from the ubuntu image.

12. Docker – Docker File

mailto:demousr@gmail.com

Docker

52

 The next command is the person who is going to maintain this image. Here you

specify the MAINTAINER keyword and just mention the email ID.

 The RUN command is used to run instructions against the image. In our case, we

first update our Ubuntu system and then install the nginx server on our ubuntu

image.

 The last command is used to display a message to the user.

Step 3: Save the file. In the next chapter, we will discuss how to build the image.

Docker

53

We created our Docker File in the last chapter. It’s now time to build the Docker File. The

Docker File can be built with the following command:

docker build

Let’s learn more about this command.

docker build

This method allows the users to build their own Docker images.

Syntax

docker build -t ImageName:TagName dir

Options

 -t is to mention a tag to the image

 ImageName – This is the name you want to give to your image

 TagName – This is the tag you want to give to your image

 Dir – The directory where the Docker File is present.

Return Value

None

Example

sudo docker build –t myimage:0.1 .

Here, myimage is the name we are giving to the Image and 0.1 is the tag number we

are giving to our image.

Since the Docker File is in the present working directory, we used "." at the end of the

command to signify the present working directory.

13. Docker – Building Docker Files

Docker

54

Output

From the output, you will first see that the Ubuntu Image will be downloaded from Docker

Hub, because there is no image available locally on the machine.

Finally, when the build is complete, all the necessary commands would have run on the

image.

Docker

55

You will then see the successfully built message and the ID of the new Image. When you

run the Docker images command, you would then be able to see your new image.

You can now build containers from your new Image.

Docker

56

Public repositories can be used to host Docker images which can be used by everyone

else. An example is the images which are available in Docker Hub. Most of the images

such as Centos, Ubuntu, and Jenkins are all publicly available for all. We can also make

our images available by publishing it to the public repository on Docker Hub.

For our example, we will use the myimage repository built in the "Building Docker Files"

chapter and upload that image to Docker Hub. Let’s first review the images on our Docker

host to see what we can push to the Docker registry.

Here, we have our myimage:0.1 image which was created as a part of the “Building

Docker Files” chapter. Let’s use this to upload to the Docker public repository.

The following steps explain how you can upload an image to public repository.

Step 1: Log into Docker Hub and create your repository. This is the repository where your

image will be stored. Go to https://hub.docker.com/ and log in with your credentials.

14. Docker – Public Repositories

https://hub.docker.com/

Docker

57

Step 2: Click the button "Create Repository" on the above screen and create a repository

with the name demorep. Make sure that the visibility of the repository is public.

Once the repository is created, make a note of the pull command which is attached to the

repository.

The pull command which will be used in our repository is as follows:

docker pull demousr/demorep

Docker

58

Step 3: Now go back to the Docker Host. Here we need to tag our myimage to the new

repository created in Docker Hub. We can do this via the Docker tag command.

We will learn more about this tag command later in this chapter.

Step 4: Issue the Docker login command to login into the Docker Hub repository from the

command prompt. The Docker login command will prompt you for the username and

password to the Docker Hub repository.

Step 5: Once the image has been tagged, it’s now time to push the image to the Docker

Hub repository. We can do this via the Docker push command. We will learn more about

this command later in this chapter.

docker tag

This method allows one to tag an image to the relevant repository.

Syntax

docker tag imageID Repositoryname

Options

 imageID – This is the ImageID which needs to be tagged to the repository.

 Repositoryname – This is the repository name to which the ImageID needs to be

tagged to.

Return Value

None

Example

sudo docker tag ab0c1d3744dd demousr/demorep:1.0

Docker

59

Output

A sample output of the above example is given below.

docker push

This method allows one to push images to the Docker Hub.

Syntax

docker push Repositoryname

Options

 Repositoryname – This is the repository name which needs to be pushed to the

Docker Hub.

Return Value

The long ID of the repository pushed to Docker Hub.

Example

sudo docker push demousr/demorep:1.0

Output

Docker

60

If you go back to the Docker Hub page and go to your repository, you will see the tag

name in the repository.

Now let’s try to pull the repository we uploaded onto our Docker host. Let’s first delete the

images, myimage:0.1 and demousr/demorep:1.0, from the local Docker host. Let’s

use the Docker pull command to pull the repository from the Docker Hub.

From the above screenshot, you can see that the Docker pull command has taken our

new repository from the Docker Hub and placed it on our machine.

Docker

61

In Docker, the containers themselves can have applications running on ports. When you

run a container, if you want to access the application in the container via a port number,

you need to map the port number of the container to the port number of the Docker host.

Let’s look at an example of how this can be achieved.

In our example, we are going to download the Jenkins container from Docker Hub. We are

then going to map the Jenkins port number to the port number on the Docker host.

Step 1: First, you need to do a simple sign-up on Docker Hub.

Step 2: Once you have signed up, you will be logged into Docker Hub.

15. Docker – Managing Ports

Docker

62

Step 3: Next, let’s browse and find the Jenkins image.

Step 4: If you scroll down on the same page, you can see the Docker pull command. This

will be used to download the Jenkins Image onto the local Ubuntu server.

Docker

63

Step 5: Now go to the Ubuntu server and run the command:

sudo docker pull jenkins

Step 6: To understand what ports are exposed by the container, you should use the

Docker inspect command to inspect the image.

Let’s now learn more about this inspect command.

docker inspect

This method allows one to return low-level information on the container or image.

Syntax

docker inspect Container/Image

Options

 Container/Image – The container or image to inspect.

Docker

64

Return Value

The low-level information of the image or container in JSON format.

Example

sudo docker inspect jenkins

Output

The output of the inspect command gives a JSON output. If we observe the output, we

can see that there is a section of "ExposedPorts" and see that there are two ports

mentioned. One is the data port of 8080 and the other is the control port of 50000.

To run Jenkins and map the ports, you need to change the Docker run command and add

the ‘p’ option which specifies the port mapping. So, you need to run the following

command:

sudo docker run -p 8080:8080 -p 50000:50000 jenkins

The left-hand side of the port number mapping is the Docker host port to map to and the

right-hand side is the Docker container port number.

Docker

65

When you open the browser and navigate to the Docker host on port 8080, you will see

Jenkins up and running.

Docker

66

You might have the need to have your own private repositories. You may not want to host

the repositories on Docker Hub. For this, there is a repository container itself from Docker.

Let’s see how we can download and use the container for registry.

Step 1: Use the Docker run command to download the private registry. This can be done

using the following command:

sudo docker run –d –p 5000:5000 –-name registry registry:2

The following points need to be noted about the above command:

 Registry is the container managed by Docker which can be used to host private

repositories.

 The port number exposed by the container is 5000. Hence with the –p command,

we are mapping the same port number to the 5000 port number on our localhost.

 We are just tagging the registry container as “2”, to differentiate it on the Docker

host.

 The –d option is used to run the container in detached mode. This is so that the

container can run in the background.

16. Docker – Private Registries

Docker

67

Step 2: Let’s do a docker ps to see that the registry container is indeed running.

We have now confirmed that the registry container is indeed running.

Step 3: Now let’s tag one of our existing images so that we can push it to our local

repository. In our example, since we have the centos image available locally, we are going

to tag it to our private repository and add a tag name of centos.

sudo docker tag 67591570dd29 localhost:5000/centos

The following points need to be noted about the above command:

 67591570dd29 refers to the Image ID for the centos image.

 localhost:5000 is the location of our private repository.

 We are tagging the repository name as centos in our private repository.

Step 4: Now let’s use the Docker push command to push the repository to our private

repository.

sudo docker push localhost:5000/centos

Here, we are pushing the centos image to the private repository hosted at

localhost:5000.

Docker

68

Step 5: Now let’s delete the local images we have for centos using the docker rmi

commands. We can then download the required centos image from our private repository.

sudo docker rmi centos:latest

sudo docker rmi 67591570dd29

Step 6: Now that we don’t have any centos images on our local machine, we can now

use the following Docker pull command to pull the centos image from our private

repository.

sudo docker pull localhost:5000/centos

Docker

69

Here, we are pulling the centos image to the private repository hosted at

localhost:5000.

If you now see the images on your system, you will see the centos image as well.

Docker

70

We have already learnt how to use Docker File to build our own custom images. Now let’s

see how we can build a web server image which can be used to build containers.

In our example, we are going to use the Apache Web Server on Ubuntu to build our image.

Let’s follow the steps given below, to build our web server Docker file.

Step 1: The first step is to build our Docker File. Let’s use vim and create a Docker File

with the following information.

FROM ubuntu

RUN apt-get update

RUN apt-get install –y apache2

RUN apt-get install –y apache2-utils

RUN apt-get clean

EXPOSE 80

CMD [“apache2ctl”, “-D”, “FOREGROUND”]

The following points need to be noted about the above statements:

 We are first creating our image to be from the Ubuntu base image.

 Next, we are going to use the RUN command to update all the packages on the

Ubuntu system.

 Next, we use the RUN command to install apache2 on our image.

 Next, we use the RUN command to install the necessary utility apache2 packages

on our image.

 Next, we use the RUN command to clean any unnecessary files from the system.

 The EXPOSE command is used to expose port 80 of Apache in the container to the

Docker host.

 Finally, the CMD command is used to run apache2 in the background.

Now that the file details have been entered, just save the file.

17. Docker – Building a Web Server Docker File

Docker

71

Step 2: Run the Docker build command to build the Docker file. It can be done using the

following command:

sudo docker build –t=”mywebserver” .

We are tagging our image as mywebserver. Once the image is built, you will get a

successful message that the file has been built.

Step 3: Now that the web server file has been built, it’s now time to create a container

from the image. We can do this with the Docker run command.

sudo docker run –d –p 80:80 mywebserver

Docker

72

The following points need to be noted about the above command:

 The port number exposed by the container is 80. Hence with the –p command, we

are mapping the same port number to the 80 port number on our localhost.

 The –d option is used to run the container in detached mode. This is so that the

container can run in the background.

If you go to port 80 of the Docker host in your web browser, you will now see that Apache

is up and running.

Docker

73

Docker has a host of instruction commands. These are commands that are put in the

Docker File. Let’s look at the ones which are available.

CMD Instruction

This command is used to execute a command at runtime when the container is executed.

Syntax

CMD command param1

Options

 command – This is the command to run when the container is launched.

 param1 – This is the parameter entered to the command.

Return Value

The command will execute accordingly.

Example

In our example, we will enter a simple Hello World echo in our Docker File and create an

image and launch a container from it.

Step 1: Build the Docker File with the following commands:

FROM ubuntu

MAINTAINER demousr@gmail.com

CMD [“echo” , “hello world”]

Here, the CMD is just used to print hello world.

18. Docker – Instruction Commands

mailto:demousr@gmail.com

Docker

74

Step 2: Build the image using the Docker build command.

Step 3: Run a container from the image.

ENTRYPOINT

This command can also be used to execute commands at runtime for the container. But

we can be more flexible with the ENTRYPOINT command.

Syntax

ENTRYPOINT command param1

Options

 command – This is the command to run when the container is launched.

 param1 – This is the parameter entered into the command.

Return Value

The command will execute accordingly.

Example

Let’s take a look at an example to understand more about ENTRYPOINT. In our example,

we will enter a simple echo command in our Docker File and create an image and launch

a container from it.

Step 1: Build the Docker File with the following commands:

FROM ubuntu

MAINTAINER demousr@gmail.com

ENTRYPOINT [“echo”]

mailto:demousr@gmail.com

Docker

75

Step 2: Build the image using the Docker build command.

Step 3: Run a container from the image.

ENV

This command is used to set environment variables in the container.

Syntax

ENV key value

Options

 Key – This is the key for the environment variable.

 value – This is the value for the environment variable.

Docker

76

Return Value

The command will execute accordingly.

Example

In our example, we will enter a simple echo command in our Docker File and create an

image and launch a container from it.

Step 1: Build the Docker File with the following commands:

FROM ubuntu

MAINTAINER demousr@gmail.com

ENV var1=Tutorial var2=point

Step 2: Build the image using the Docker build command.

Step 3: Run a container from the image.

mailto:demousr@gmail.com

Docker

77

Step 4: Finally, execute the env command to see the environment variables.

WORKDIR

This command is used to set the working directory of the container.

Syntax

WORKDIR dirname

Options

 dirname – The new working directory. If the directory does not exist, it will be

added.

Return Value

The command will execute accordingly.

Example

In our example, we will enter a simple echo command in our Docker File and create an

image and launch a container from it.

Docker

78

Step 1: Build the Docker File with the following commands:

FROM ubuntu

MAINTAINER demousr@gmail.com

WORKDIR /newtemp

CMD pwd

Step 2: Build the image using the Docker build command.

Step 3: Run a container from the image.

mailto:demousr@gmail.com

Docker

79

Container Linking allows multiple containers to link with each other. It is a better option

than exposing ports. Let’s go step by step and learn how it works.

Step 1: Download the Jenkins image, if it is not already present, using the Jenkins pull

command.

Step 2: Once the image is available, run the container, but this time, you can specify a

name to the container by using the –-name option. This will be our source container.

Step 3: Next, it is time to launch the destination container, but this time, we will link it

with our source container. For our destination container, we will use the standard Ubuntu

image.

When you do a docker ps, you will see both the containers running.

Step 4: Now, attach to the receiving container.

19. Docker – Container Linking

Docker

80

Then run the env command. You will notice new variables for linking with the source

container.

Docker

81

Storage Drivers

Docker has multiple storage drivers that allow one to work with the underlying storage

devices. The following table shows the different storage drivers along with the technology

used for the storage drivers.

Technology Storage Driver

OverlayFS overlay or overlay2

AUFS aufs

Btrfs brtfs

Device Manager devicemanager

VFS vfs

ZFS zfs

Let us now discuss some of the instances in which you would use the various storage

drivers:

AUFS

 This is a stable driver; can be used for production-ready applications.

 It has good memory usage and is good for ensuring a smooth Docker experience

for containers.

 There is a high-write activity associated with this driver which should be considered.

 It’s good for systems which are of Platform as a service type work.

Devicemapper

 This is a stable driver; ensures a smooth Docker experience.

 This driver is good for testing applications in the lab.

 This driver is in line with the main Linux kernel functionality.

Btrfs

 This driver is in line with the main Linux kernel functionality.

 There is a high-write activity associated with this driver which should be considered.

 This driver is good for instances where you maintain multiple build pools.

20. Docker – Docker Storage

Docker

82

Ovelay

 This is a stable driver and it is in line with the main Linux kernel functionality.

 It has a good memory usage.

 This driver is good for testing applications in the lab.

ZFS

 This is a stable driver and it is good for testing applications in the lab.

 It’s good for systems which are of Platform-as-a-Service type work.

To see the storage driver being used, issue the docker info command.

Syntax

docker info

Options

None

Return Value

The command will provide all relative information on the Docker component installed on

the Docker Host.

Example

sudo docker info

Docker

83

Output

The following output shows that the main driver used is the aufs driver and that the root

directory is stored in /var/lib/docker/aufs.

Data Volumes

In Docker, you have a separate volume that can shared across containers. These are

known as data volumes. Some of the features of data volume are:

 They are initialized when the container is created.

 They can be shared and also reused amongst many containers.

 Any changes to the volume itself can be made directly.

 They exist even after the container is deleted.

Let’s look at our Jenkins container. Let’s do a docker inspect to see the details of this

image. We can issue the following command to write the output of the docker inspect

command to a text file and then view the file accordingly.

sudo docker inspect Jenkins > tmp.txt

When you view the text file using the more command, you will see an entry as

JENKINS_HOME=/var/Jenkins_home.

Docker

84

This is the mapping that is done within the container via the Jenkins image.

Now suppose you wanted to map the volume in the container to a local volume, then you

need to specify the –v option when launching the container. An example is shown below:

sudo docker run –d –v /home/demo:/var/jenkins_home –p 8080:8080 –p 50000:50000

jenkins

The –v option is used to map the volume in the container which is /var/jenkins_home

to a location on our Docker Host which is /home/demo.

Now if you go to the /home/demo location on your Docker Host after launching your

container, you will see all the container files present there.

Docker

85

Changing the Storage Driver for a Container

If you wanted to change to the storage driver used for a container, you can do so when

launching the container. This can be done by using the –volume-driver parameter when

using the docker run command. An example is given below:

sudo docker run –d –volume-driver=flocker –v /home/demo:/var/jenkins_home –p

8080:8080 –p 50000:50000 jenkins

The –volume-driver option is used to specify another storage driver for the container.

To confirm that the driver has been changed, first let’s use the docker ps command to

see the running containers and get the container ID. So, issue the following command

first:

sudo docker ps

Then issue a docker inspect against the container and put the output in a text file using

the command.

sudo docker inspect 9bffb1bfebee > temp.txt

Docker

86

If you browse through the text file and go to the line which says VolumeDriver, you will

see that the driver name has been changed.

Creating a Volume

A volume can be created beforehand using the docker command. Let’s learn more about

this command.

Syntax

docker volume create –-name=volumename –-opt options

Options

 name – This is the name of the volume which needs to be created.

 opt – These are options you can provide while creating the volume.

Return Value

The command will output the name of the volume created.

Example

sudo docker volume create –-name=demo –opt o=size=100m

Docker

87

In the above command, we are creating a volume of size 100MB and with a name of demo.

Output

The output of the above command is shown below:

Listing all the Volumes

You can also list all the docker volumes on a docker host. More details on this command

is given below:

Syntax

docker volume ls

Options

None

Return Value

The command will output all the volumes on the docker host.

Example

sudo docker volume ls

Output

The output of the above command is shown below:

Docker

88

Docker takes care of the networking aspects so that the containers can communicate with

other containers and also with the Docker Host. If you do an ifconfig on the Docker Host,

you will see the Docker Ethernet adapter. This adapter is created when Docker is installed

on the Docker Host.

This is a bridge between the Docker Host and the Linux Host. Now let’s look at some

commands associated with networking in Docker.

Listing All Docker Networks

This command can be used to list all the networks associated with Docker on the host.

Syntax

docker network ls

Options

None

21. Docker ─ Docker Networking

Docker

89

Return Value

The command will output all the networks on the Docker Host.

Example

sudo docker network ls

Output

The output of the above command is shown below

Inspecting a Docker network

If you want to see more details on the network associated with Docker, you can use the

Docker network inspect command.

Syntax

docker network inspect networkname

Options

 networkname – This is the name of the network you need to inspect.

Return Value

The command will output all the details about the network.

Example

sudo docker network inspect bridge

Docker

90

Output

The output of the above command is shown below:

Now let’s run a container and see what happens when we inspect the network again. Let’s

spin up an Ubuntu container with the following command:

sudo docker run –it ubuntu:latest /bin/bash

Now if we inspect our network name via the following command, you will now see that the

container is attached to the bridge.

sudo docker network inspect bridge

Docker

91

Creating Your Own New Network

One can create a network in Docker before launching containers. This can be done with

the following command:

Syntax

docker network create –-driver drivername name

Options

 drivername – This is the name used for the network driver.

 name – This is the name given to the network.

Return Value

The command will output the long ID for the new network.

Example

sudo docker network create –-driver bridge new_nw

Docker

92

Output

The output of the above command is shown below:

You can now attach the new network when launching the container. So let’s spin up an

Ubuntu container with the following command:

sudo docker run –it –network=new_nw ubuntu:latest /bin/bash

And now when you inspect the network via the following command, you will see the

container attached to the network.

sudo docker network inspect new_nw

Docker

93

Node.js is a JavaScript framework that is used for developing server-side applications. It

is an open source framework that is developed to run on a variety of operating systems.

Since Node.js is a popular framework for development, Docker has also ensured it has

support for Node.js applications.

We will now see the various steps for getting the Docker container for Node.js up and

running.

Step 1: The first step is to pull the image from Docker Hub. When you log into Docker

Hub, you will be able to search and see the image for Node.js as shown below. Just type

in Node in the search box and click on the node (official) link which comes up in the search

results.

22. Docker – Setting Node.js

Docker

94

Step 2: You will see that the Docker pull command for node in the details of the repository

in Docker Hub.

Step 3: On the Docker Host, use the Docker pull command as shown above to download

the latest node image from Docker Hub.

Once the pull is complete, we can then proceed with the next step.

Docker

95

Step 4: On the Docker Host, let’s use the vim editor and create one Node.js example file.

In this file, we will add a simple command to display “HelloWorld” to the command prompt.

In the Node.js file, let’s add the following statement:

Console.log(‘Hello World’);

This will output the “Hello World” phrase when we run it through Node.js.

Ensure that you save the file and then proceed to the next step.

Step 5: To run our Node.js script using the Node Docker container, we need to execute

the following statement:

sudo docker run –it –rm –name=HelloWorld –v “$PWD”:/usr/src/app –w /usr/src/app

node node HelloWorld.js

The following points need to be noted about the above command:

 The –rm option is used to remove the container after it is run.

 We are giving a name to the container called “HelloWorld”

 We are mentioning to map the volume in the container which is /usr/src/app to

our current present working directory. This is done so that the node container will

pick up our HelloWorld.js script which is present in our working directory on the

Docker Host.

 The –w option is used to specify the working directory used by Node.js.

 The first node option is used to specify to run the node image.

 The second node option is used to mention to run the node command in the node

container.

 And finally we mention the name of our script.

We will then get the following output. And from the output, we can clearly see that the

Node container ran as a container and executed the HelloWorld.js script.

Docker

96

MongoDB is a famous document-oriented database that is used by many modern-day web

applications. Since MongoDB is a popular database for development, Docker has also

ensured it has support for MongoDB.

We will now see the various steps for getting the Docker container for MongoDB up and

running.

Step 1: The first step is to pull the image from Docker Hub. When you log into Docker

Hub, you will be able to search and see the image for Mongo as shown below. Just type in

Mongo in the search box and click on the Mongo (official) link which comes up in the search

results.

23. Docker – Setting MongoDB

Docker

97

Step 2: You will see that the Docker pull command for Mongo in the details of the

repository in Docker Hub.

Step 3: On the Docker Host, use the Docker pull command as shown above to download

the latest Mongo image from Docker Hub.

Docker

98

Step 4: Now that we have the image for Mongo, let’s first run a MongoDB container which

will be our instance for MongoDB. For this, we will issue the following command:

sudo docker –it –d mongo

The following points can be noted about the above command:

 The –it option is used to run the container in interactive mode.

 The –d option is used to run the container as a daemon process.

 And finally we are creating a container from the Mongo image.

You can then issue the docker ps command to see the running containers:

Take a note of the following points:

 The name of the container is tender_poitras. This name will be different since the

name of the containers keep on changing when you spin up a container. But just

make a note of the container which you have launched.

 Next, also notice the port number it is running on. It is listening on the TCP port of

27017.

Step 5: Now let’s spin up another container which will act as our client which will be used

to connect to the MongoDB database. Let’s issue the following command for this:

sudo docker run –it –link=tender_poitras:mongo mongo /bin/bash

The following points can be noted about the above command:

 The –it option is used to run the container in interactive mode.

 We are now linking our new container to the already launched MongoDB server

container. Here, you need to mention the name of the already launched container.

 We are then specifying that we want to launch the Mongo container as our client

and then run the bin/bash shell in our new container.

You will now be in the new container.

Docker

99

Step 5: Run the env command in the new container to see the details of how to connect

to the MongoDB server container.

Step 6: Now it’s time to connect to the MongoDB server from the client container. We can

do this via the following command:

mongo 172.17.0.2:27017

The following points need to be noted about the above command

 The mongo command is the client mongo command that is used to connect to a

MongoDB database.

 The IP and port number is what you get when you use the env command.

Once you run the command, you will then be connected to the MongoDB database.

Docker

100

You can then run any MongoDB command in the command prompt. In our example, we

are running the following command:

use demo

This command is a MongoDB command which is used to switch to a database name demo.

If the database is not available, it will be created.

Now you have successfully created a client and server MongoDB container.

Docker

101

NGINX is a popular lightweight web application that is used for developing server-side

applications. It is an open-source web server that is developed to run on a variety of

operating systems. Since nginx is a popular web server for development, Docker has

ensured that it has support for nginx.

We will now see the various steps for getting the Docker container for nginx up and

running.

Step 1: The first step is to pull the image from Docker Hub. When you log into Docker

Hub, you will be able to search and see the image for nginx as shown below. Just type in

nginx in the search box and click on the nginx (official) link which comes up in the search

results.

Step 2: You will see that the Docker pull command for nginx in the details of the

repository in Docker Hub.

24. Docker – Setting NGINX

Docker

102

Step 3: On the Docker Host, use the Docker pull command as shown above to download

the latest nginx image from Docker Hub.

Step 4: Now let’s run the nginx container via the following command:

sudo docker run –p 8080:80 –d nginx

We are exposing the port on the nginx server which is port 80 to the port 8080 on the

Docker Host.

Docker

103

Once you run the command, you will get the following output if you browse to the URL

http://dockerhost:8080. This shows that the nginx container is up and running.

Step 5: Let’s look at another example where we can host a simple web page in our ngnix

container. In our example, we will create a simple HelloWorld.html file and host it in our

nginx container.

Let’s first create an HTML file called HelloWorld.html

Let’s add a simple line of Hello World in the HTML file.

Let’s then run the following Docker command.

sudo docker run –p 8080:80 –v “$PWD”:/usr/share/nginx/html:ro –d nginx

The following points need to be noted about the above command:

 We are exposing the port on the nginx server which is port 80 to the port 8080 on

the Docker Host.

 Next, we are attaching the volume on the container which is

/usr/share/nginx/html to our present working directory. This is where our

HelloWorld.html file is stored.

http://dockerhost:8080/

Docker

104

Now if we browse to the URL http://dockerhost:8080/HelloWorld.html we will get the

following output as expected:

http://dockerhost:8080/HelloWorld.html

Docker

105

In the introductory chapters, we have seen the installation of Docker toolbox on Windows.

The Docker toolbox is developed so that Docker containers can be run on Windows and

MacOS. The site for toolbox on Windows is https://docs.docker.com/docker-for-windows/

For Windows, you need to have Windows 10 or Windows Server 2016 with Hyper-V

enabled.

The toolbox consists of the following components:

 Docker Engine – This is used as the base engine or Docker daemon that is used

to run Docker containers.

 Docker Machine for running Docker machine commands.

 Docker Compose for running Docker compose commands.

 Kinematic – This is the Docker GUI built for Windows and Mac OS.

 Oracle virtualbox

Let’s now discuss the different types of activities that are possible with Docker toolbox.

25. Docker – Docker Toolbox

https://docs.docker.com/docker-for-windows/

Docker

106

Running in Powershell

With Docker toolbox on Windows 10, you can now run Docker commands off powershell.

If you open powershell on Windows and type in the command of Docker version, you will

get all the required details about the Docker version installed.

Pulling Images and Running Containers

You can also now pull Images from Docker Hub and run containers in powershell as you

would do in Linux. The following example will show in brief the downloading of the Ubuntu

image and running of the container off the image.

The first step is to use the Docker pull command to pull the Ubuntu image from Docker

Hub.

The next step is to run the Docker image using the following run command:

docker run –it ubuntu /bin/bash

You will notice that the command is the same as it was in Linux.

Docker

107

Kitematic

This is the GUI equivalent of Docker on Windows. To open this GUI, go to the taskbar and

on the Docker icon, right-click and choose to open Kitematic.

It will prompt you to download Kitematic GUI. Once downloaded, just unzip the contents.

There will be a file called Kitematic.exe. Double-click this exe file to open the GUI

interface.

You will then be requested to log into Docker Hub, enter through the GUI. Just enter the

required username and password and then click the Login button.

Docker

108

Once logged in, you will be able to see all the images downloaded on the system on the

left-hand side of the interface.

On the right-hand side, you will find all the images available on Docker Hub.

Let’s take an example to understand how to download the Node image from Docker Hub

using Kitematic.

Step 1: Enter the keyword of node in the search criteria.

Docker

109

Step 2: Click the create button on official Node image. You will then see the image being

downloaded.

Once the image has been downloaded, it will then start running the Node container.

Docker

110

Step 3: If you go to the settings tab, you can drill-down to further settings options, as

shown below.

 General settings – In this tab, you can name the container, change the path

settings, and delete the container.

 Ports – Here you can see the different port mappings. If you want, you can create

your own port mappings.

Docker

111

 Volumes - Here you can see the different volume mappings.

 Advanced – It contains the advanced settings for the container.

Docker

112

ASP.Net is the standard web development framework that is provided by Microsoft for

developing server-side applications. Since ASP.Net has been around for quite a long time

for development, Docker has ensured that it has support for ASP.Net.

In this chapter, we will see the various steps for getting the Docker container for ASP.Net

up and running.

Prerequisites

The following steps need to be carried out first for running ASP.Net.

Step 1: Since this can only run on Windows systems, you first need to ensure that you

have either Windows 10 or Window Server 2016.

Step 2: Next, ensure that Hyper-V is and Containers are installed on the Windows system.

To install Hyper–V and Containers, you can go to Turn Windows Features ON or OFF. Then

ensure the Hyper-V option and Containers is checked and click the OK button.

The system might require a restart after this operation.

Step 3: Next, you need to use the following Powershell command to install the 1.13.0-

rc4 version of Docker. The following command will download this and store it in the temp

location.

Invoke-WebRequest "https://test.docker.com/builds/Windows/x86_64/docker-1.13.0-

rc4.zip" -OutFile "$env:TEMP\docker-1.13.0-rc4.zip" –UseBasicParsing

26. Docker – Setting ASP.Net

Docker

113

Step 4: Next, you need to expand the archive using the following powershell command.

Expand-Archive -Path "$env:TEMP\docker-1.13.0-rc4.zip" -DestinationPath

$env:ProgramFiles

Step 5: Next, you need to add the Docker Files to the environment variable using the

following powershell command.

$env:path += ";$env:ProgramFiles\Docker"

Step 6: Next, you need to register the Docker Daemon Service using the following

powershell command.

dockerd --register-service

Step 7: Finally, you can start the docker daemon using the following command.

Start-Service Docker

Use the docker version command in powershell to verify that the docker daemon is

working.

Docker

114

Installing the ASP.Net Container

Let’s see how to install the ASP.Net container.

Step 1: The first step is to pull the image from Docker Hub. When you log into Docker

Hub, you will be able to search and see the image for Microsoft/aspnet as shown below.

Just type in asp in the search box and click on the Microsoft/aspnet link which comes up

in the search results.

Docker

115

Step 2: You will see that the Docker pull command for ASP.Net in the details of the

repository in Docker Hub.

Step 3: Go to Docker Host and run the Docker pull command for the microsoft/aspnet

image. Note that the image is pretty large, somewhere close to 4.2 GB.

Step 4: Now go to the following location https://github.com/Microsoft/aspnet-docker and

download the entire Git repository.

Step 5: Create a folder called App in your C drive. Then copy the contents from the

4.6.2/sample folder to your C drive. Go the Docker File in the sample directory and issue

the following command:

docker build –t aspnet-site-new –build-arg site_root=/

The following points need to be noted about the above command:

 It builds a new image called aspnet-site-new from the Docker File.

 The root path is set to the localpath folder.

https://github.com/Microsoft/aspnet-docker

Docker

116

Step 6: Now it’s time to run the container. It can be done using the following command:

docker run –d –p 8000:80 –name my-running-site-new aspnet-site-new

Step 7: You will now have IIS running in the Docker container. To find the IP Address of

the Docker container, you can issue the Docker inspect command as shown below.

Docker

117

The Docker Cloud is a service provided by Docker in which you can carry out the following

operations:

 Nodes ─ You can connect the Docker Cloud to your existing cloud providers such

as Azure and AWS to spin up containers on these environments.

 Cloud Repository ─ Provides a place where you can store your own repositories.

 Continuous Integration ─ Connect with Github and build a continuous

integration pipeline.

 Application Deployment ─ Deploy and scale infrastructure and containers.

 Continuous Deployment ─ Can automate deployments.

Getting started

You can go to the following link to getting started with Docker Cloud:

https://cloud.docker.com/

27. Docker – Docker Cloud

https://cloud.docker.com/

Docker

118

Once logged in, you will be provided with the following basic interface:

Connecting to the Cloud Provider

The first step is to connect to an existing cloud provider. The following steps will show you

how to connect with an Amazon Cloud provider.

Step 1: The first step is to ensure that you have the right AWS keys. This can be taken

from the aws console. Log into your aws account using the following link -

https://aws.amazon.com/console/

https://aws.amazon.com/console/

Docker

119

Step 2: Once logged in, go to the Security Credentials section. Make a note of the access

keys which will be used from Docker Hub.

Step 3: Next, you need to create a policy in aws that will allow Docker to view EC2

instances. Go to the profiles section in aws. Click the Create Policy button.

Docker

120

Step 4: Click on ‘Create Your Own Policy’ and give the policy name as dockercloud-

policy and the policy definition as shown below.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "ec2:*",

 "iam:ListInstanceProfiles"

],

 "Effect": "Allow",

 "Resource": "*"

 }

]

}

Next, click the Create Policy button.

Docker

121

Step 5: Next, you need to create a role which will be used by Docker to spin up nodes on

AWS. For this, go to the Roles section in AWS and click the Create New Role option.

Step 6: Give the name for the role as dockercloud-role.

Docker

122

Step 7: On the next screen, go to ‘Role for Cross Account Access’ and select “Provide

access between your account and a 3rd party AWS account”

Step 8: On the next screen, enter the following details:

 In the Account ID field, enter the ID for the Docker Cloud service: 689684103426.

 In the External ID field, enter your Docker Cloud username.

Docker

123

Step 9: Then, click the Next Step button and on the next screen, attach the policy which

was created in the earlier step.

Step 10: Finally, on the last screen when the role is created, make sure to copy the arn

role which is created.

arn:aws:iam::085363624145:role/dockercloud-role

Docker

124

Step 11: Now go back to Docker Cloud, select Cloud Providers, and click the plug

symbol next to Amazon Web Services.

Enter the arn role and click the Save button.

Docker

125

Once saved, the integration with AWS would be complete.

Setting Up Nodes

Once the integration with AWS is complete, the next step is to setup a node. Go to the

Nodes section in Docker Cloud. Note that the setting up of nodes will automatically setup

a node cluster first.

Step 1: Go to the Nodes section in Docker Cloud.

Docker

126

Step 2: Next, you can give the details of the nodes which will be setup in AWS.

You can then click the Launch Node cluster which will be present at the bottom of the

screen. Once the node is deployed, you will get the notification in the Node Cluster screen.

Docker

127

Deploying a Service

The next step after deploying a node is to deploy a service. To do this, we need to perform

the following steps.

Step 1: Go to the Services Section in Docker Cloud. Click the Create button.

Step 2: Choose the Service which is required. In our case, let’s choose mongo.

Docker

128

Step 3: On the next screen, choose the Create & Deploy option. This will start deploying

the Mongo container on your node cluster.

Once deployed, you will be able to see the container in a running state.

Docker

129

Docker has logging mechanisms in place which can be used to debug issues as and when

they occur. There is logging at the daemon level and at the container level. Let’s look

at the different levels of logging.

Daemon Logging

At the daemon logging level, there are four levels of logging available:

 Debug ─ It details all the possible information handled by the daemon process.

 Info ─ It details all the errors + Information handled by the daemon process.

 Errors ─ It details all the errors handled by the daemon process.

 Fatal ─ It only details all the fatal errors handled by the daemon process.

Go through the following steps to learn how to enable logging.

Step 1: First, we need to stop the docker daemon process, if it is already running. It

can be done using the following command:

sudo service docker stop

Step 2: Now we need to start the docker daemon process. But this time, we need to

append the –l parameter to specify the logging option. So let’s issue the following

command when starting the docker daemon process.

sudo dockerd –l debug &

The following points need to be noted about the above command:

 dockerd is the executable for the docker daemon process.

 The –l option is used to specify the logging level. In our case, we are putting this

as debug.

 & is used to come back to the command prompt after the logging has been enabled.

28. Docker – Logging

Docker

130

Once you start the Docker process with logging, you will also now see the Debug Logs

being sent to the console.

Now, if you execute any Docker command such as docker images, the Debug information

will also be sent to the console.

Docker

131

Container Logging

Logging is also available at the container level. So in our example, let’s spin up an Ubuntu

container first. We can do it by using the following command.

sudo docker run –it ubuntu /bin/bash

Now, we can use the docker log command to see the logs of the container.

Syntax

Docker logs containerID

Parameters

 containerID – This is the ID of the container for which you need to see the logs.

Example

On our Docker Host, let’s issue the following command. Before that, you can issue some

commands whilst in the container.

sudo docker logs 6bfb1271fcdd

Output

From the output, you can see that the commands executed in the container are shown in

the logs.

Docker

132

Docker Compose is used to run multiple containers as a single service. For example,

suppose you had an application which required NGNIX and MySQL, you could create one

file which would start both the containers as a service without the need to start each one

separately.

In this chapter, we will see how to get started with Docker Compose. Then, we will look at

how to get a simple service with MySQL and NGNIX up and running using Docker Compose.

Docker Compose ─ Installation

The following steps need to be followed to get Docker Compose up and running.

Step 1: Download the necessary files from github using the following command:

curl -L "https://github.com/docker/compose/releases/download/1.10.0-rc2/docker-

compose-$(uname -s)-$(uname -m)" -o /home/demo/docker-compose

The above command will download the latest version of Docker Compose which at the time

of writing this article is 1.10.0-rc2. It will then store it in the directory /home/demo/.

Step 2: Next, we need to provide execute privileges to the downloaded Docker Compose

file, using the following command:

chmod +x /home/demo/docker-compose

We can then use the following command to see the compose version.

Syntax

docker-compose version

29. Docker – Docker Compose

Docker

133

Parameters

 version – This is used to specify that we want the details of the version of Docker

Compose.

Output

The version details of Docker Compose will be displayed.

Example

The following example shows how to get the docker-compose version.

sudo ./docker-compose -version

Output

You will then get the following output:

Creating Your First Docker-Compose File

Now let’s go ahead and create our first Docker Compose file. All Docker Compose files are

YAML files. You can create one using the vim editor. So execute the following command

to create the compose file:

sudo vim docker-compose.yml

Docker

134

Let’s take a close look at the various details of this file:

 The database and web keyword are used to define two separate services. One

will be running our mysql database and the other will be our nginx web server.

 The image keyword is used to specify the image from dockerhub for our mysql

and nginx containers.

 For the database, we are using the ports keyword to mention the ports that need

to be exposed for mysql.

 And then, we also specify the environment variables for mysql which are required

to run mysql.

Now let’s run our Docker Compose file using the following command:

sudo ./docker-compose up

This command will take the docker-compose.yml file in your local directory and start

building the containers.

Once executed, all the images will start downloading and the containers will start

automatically.

Docker

135

And when you do a docker ps, you can see that the containers are indeed up and running.

Docker

136

Docker has integrations with many Continuous Integrations tools, which also includes the

popular CI tool known as Jenkins. Within Jenkins, you have plugins available which can

be used to work with containers. So let’s quickly look at a Docker plugin available for the

Jenkins tool.

Let’s go step by step and see what’s available in Jenkins for Docker containers.

Step 1: Go to your Jenkins dashboard and click Manage Jenkins.

30. Docker – Continuous Integration

Docker

137

Step 2: Go to Manage Plugins.

Step 3: Search for Docker plugins. Choose the Docker plugin and click the Install

without restart button.

Docker

138

Step 4: Once the installation is completed, go to your job in the Jenkins dashboard. In

our example, we have a job called Demo.

Step 5: In the job, when you go to the Build step, you can now see the option to start

and stop containers.

Docker

139

Step 6: As a simple example, you can choose the further option to stop containers when

the build is completed. Then, click the Save button.

Now, just run your job in Jenkins. In the Console output, you will now be able to see that

the command to Stop All containers has run.

Docker

140

Kubernetes is an orchestration framework for Docker containers which helps expose

containers as services to the outside world. For example, you can have two services: One

service would contain nginx and mongoDB, and another service would contain nginx

and redis. Each service can have an IP or service point which can be connected by other

applications. Kubernetes is then used to manage these services.

The following diagram shows in a simplistic format how Kubernetes works from an

architecture point of view.

The minion is the node on which all the services run. You can have many minions running

at one point in time. Each minion will host one or more POD. Each POD is like hosting a

service. Each POD then contains the Docker containers. Each POD can host a different set

of Docker containers. The proxy is then used to control the exposing of these services to

the outside world.

31. Docker – Kubernetes Architecture

Docker

141

Kubernetes has several components in its architecture. The role of each component is

explained below:

 etcd ─ This component is a highly available key-value store that is used for storing

shared configuration and service discovery. Here the various applications will

be able to connect to the services via the discovery service.

 Flannel ─ This is a backend network which is required for the containers.

 kube-apiserver ─ This is an API which can be used to orchestrate the Docker

containers.

 kube-controller-manager ─ This is used to control the Kubernetes services.

 kube-scheduler ─ This is used to schedule the containers on hosts.

 Kubelet ─ This is used to control the launching of containers via manifest files.

 kube-proxy ─ This is used to provide network proxy services to the outside world.

Docker

142

In this chapter, we will see how to install Kubenetes via kubeadm. This is a tool which

helps in the installation of Kubernetes. Let’s go step by step and learn how to install

Kubernetes:

Step 1: Ensure that the Ubuntu server version you are working on is 16.04.

Step 2: Ensure that you generate a ssh key which can be used for ssh login. You can do

this using the following command:

ssh-keygen

This will generate a key in your home folder as shown below.

Step 3: Next, depending on the version of Ubuntu you have, you will need to add the

relevant site to the docker.list for the apt package manager, so that it will be able to

detect the Kubernetes packages from the kubernetes site and download them

accordingly.

We can do it using the following commands:

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -

echo "deb http://apt.kubernetes.io/ kubernetes-xenial main” | sudo tee

/etc/apt/sources.list.d/docker.list

32. Docker – Working of Kubernetes

Docker

143

Step 4: We then issue an apt-get update to ensure all packages are downloaded on the

Ubuntu server.

Step 5: Install the Docker package as detailed in the earlier chapters.

Step 6: Now it’s time to install kubernetes by installing the following packages:

apt-get install –y kubelet kubeadm kubectl kubernetes-cni

Docker

144

Step 7: Once all kubernetes packages are downloaded, it’s time to start the kubernetes

controller using the following command:

kubeadm init

Once done, you will get a successful message that the master is up and running and nodes

can now join the cluster.

