Docker in Production

LESSONS FROM THE TRENCHES

Written by: Joe Johnston, Antoni Batchelli, Justin Cormack
John Fiedler, Milos Gajdos

BLEEDING EDGE PRESS

Docker in Production

Lessons from the Trenches

Joe Johnston, Antoni Batchelli, Justin Cormack, John Fiedler, Milos Gajdos

Docker in Production

Copyright (c) 2015 Bleeding Edge Press

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

This book expresses the authors views and opinions. The information contained in this
book is provided without any express, statutory, or implied warranties. Neither the
authors, Bleeding Edge Press, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

ISBN 9781939902184

Published by: Bleeding Edge Press, Santa Rosa, CA 95404

Title: Docker in Production

Authors: Joe Johnston, Antoni Batchelli, Justin Cormack, John Fiedler, Milos Gajdos
Editor: Troy Mott

Copy Editor: Christina Rudloff

Cover Design: Bob Herbstman

Website: bleedingedgepress.com

Table of Contents

Preface Xi
CHAPTER 1: Getting Started 19
Terminology 19
Image vs. Container 19
Containers vs. Virtual Machines 19
Cl/CD: Continuous Integration / Continuous Delivery 20
Host Management 20
Orchestration 20
Scheduling 20
Discovery 20
Configuration Management 21
Development to Production 21
Multiple Ways to Use Docker 21
What to Expect 22
Why is Docker in production difficult? 22
CHAPTER 2: The Stack 25
Build System 26
Image Repository 26
Host Management 26
Configuration Management 26

Deployment 27

vi

Table of Contents

Orchestration

CHAPTER 3: Example - Bare Bones Environment

Keeping the Pieces Simple
Keeping The Processes Simple
Systems in Detail
Leveraging systemd
Cluster-wide, common and local configurations
Deploying services
Support services
Discussion
Future

Summary

CHAPTER 4: Example - Web Environment

Orchestration
Getting Docker on the server ready to run containers
Getting the containers running

Networking

Data storage

Logging

Monitoring

No worries about new dependencies

Zero downtime

Service rollbacks

Conclusion

CHAPTER 5: Example - Beanstalk Environment

Process to build containers

Process to deploy/update containers
Logging
Monitoring

Security

27

29
29
31
32
34
37
38
39
39
40
40

41
43
44
44
47
47
48
49
49
49
50
50

51
52
52
53
54
54

Summary

CHAPTER 6: Security
Threat models
Containers and security
Kernel updates
Container updates
suid and guid binaries
root in containers
Capabilities
seccomp

Kernel security frameworks

Resource limits and cgroups

ulimit
User namespaces

Image verification

Running the docker daemon securely

Monitoring
Devices

Mount points

ssh

Secret distribution

Location

CHAPTER 7: Building Images

Not your father’simages

Copy on Write and Efficient Image Storage and Distribution
Docker leverage of Copy-on-Write
Image building fundamentals

Layered File Systems and Preserving Space

Keeping images small

Making images reusable

Table of Contents

54

55
55
56
56
57
57
58
58
59
59
60
60
61
61
62
62
62
62
63
63
63

65
65
66
68
69
70
74
74

Making an image configurable via environment variables when the processis not 76

Make images that reconfigure themselves when Docker changes

79

vii

Table of Contents

Trust and Images
Make your images immutable

Summary

CHAPTER 8: Storing Docker Images
Getting up and running with storing Docker images
Automated builds
Private repository
Scaling the Private registry

S3
Load balancing the registry
Maintenance
Making your private repository secure
SSL
Authentication
Save/Load
Minimizing your image sizes

Other Image repository solutions

CHAPTER 9: CI/CD
Let everyone just build and push containers!
Build all images with a build system
Suggest or don’t allow the use of non standard practices
Use a standard base image
Integration testing with Docker

Summary

CHAPTER 10: Configuration Management
Configuration Management versus Containers
Configuration Management for Containers

Chef
Ansible
Salt Stack
Puppet

viii

83
83
84

85
85
86
87
87
88
88
89
89
89
89
90
90
91

93
95
95
96
96
96
97

99

99
100
101
102
104
105

Summary

CHAPTER 11: Docker Storage Drivers
AUFS
DeviceMapper
btrfs
overlay
vfs

Summary

CHAPTER 12: Docker Networking
Networking basics
IP address allocation
Port allocation
Domain name resolution
Service discovery
Advanced Docker networking
Network security
Multihost inter-container communication
Network namespace sharing
IPv6

Summary

CHAPTER 13: Scheduling
What is scheduling?
Strategies
Mesos
Kubernetes
OpenShift
Thoughts from Clayton Coleman at RedHat

CHAPTER 14: Service Discovery
DNS service discovery
DNS servers reinvented

Zookeeper

Table of Contents

106

107
108
112
116
119
123
124

127
128
130
131
136
139
143
143
146
148
151
152

155
155
156
157
158
158
159

161
163
165
166

Table of Contents

Service discovery with Zookeeper 167
etcd 168
Service discovery with etcd 169
consul 171
Service discovery with consul 173
registrator 173
Eureka 177
Service discovery with Eureka 178
Smartstack 179
Service discovery with Smartstack 179
nsqlookupd 181
Summary 182
CHAPTER 15: Logging and Monitoring 183
Logging 183
Native Docker logging 184
Attaching to Docker containers 185
Exporting logs to host 186
Sending logs to a centralized logging system 187
Side mounting logs from another container 187
Monitoring 188
Host based monitoring 190
Docker deamon based monitoring 191
Container based monitoring 194

Summary 196

Preface

Docker is the new sliced bread of infrastructure. Few emerging technologies compare to
how fast it swept the DevOps and infrastructure scenes. In less than two years, Google, Am-
azon, Microsoft, IBM, and nearly every cloud provider announced support for running
Docker containers. Dozens of Docker related startups were funded by venture capital in
2014 and early 2015. Docker, Inc., the company behind the namesake open source technol-
ogy, was valued at about $1 billion USD during their Series D funding round in Q1 2015.

Companies large and small are converting their apps to run inside containers with an
eye towards service oriented architectures (SOA) and microservices. Attend any DevOps
meet-up from San Francisco to Berlin or peruse the hottest company engineering blogs,
and it appears the ops leaders of the world now run on Docker in the cloud.

No doubt, containers are here to stay as crucial building blocks for application packag-
ing and infrastructure automation. But there is one thorny question that nagged this
book’s authors and colleagues to the point of motivating another Docker book.

Who is This Book For?

Readers with intermediate to advanced DevOps and ops backgrounds will likely gain the
most from this book. Previous experience with both the basics of running servers in pro-
duction as well as creating and managing containers is highly recommended.

Many books and blog posts already cover individual topics related to installing and run-
ning Docker, but few resources exist to weave together the myriad and sometimes
forehead-to-wall-thumping concerns of running Docker in production. Fear not, if you en-
joyed the movie Inception, you will feel right at home running containers in virtual ma-
chines on servers in the cloud.

This book will give you a solid understanding of the building blocks and concerns of ar-
chitecting and running Docker-based infrastructure in production.

Who is Actually Using Docker in Production?

Or more poignantly, how do you navigate the hype to successfully address real world pro-
duction issues with Docker? This book sets out to answer these questions through a mix of

Xi

Xii

Preface

interviews, end-to-end production examples from real companies, and referable topic
chapters from leading DevOps experts. Although this book contains useful examples, it is
not a copy-and-paste “how-to” reference. Rather, it focuses on the practical theories and
experience necessary to evaluate, derisk and operate bleeding-edge technology in produc-
tion environments.

As authors, we hope the knowledge contained in this book will outlive the code snippets
by providing a solid decision tree for teams evaluating how and when to adopt Docker re-
lated technologies into their DevOps stacks.

Running Docker in production gives companies several new options to run and manage
server-side software. There are many readily available use cases on how to use Docker, but
few companies have publicly shared their full-stack production experiences. This book is a
compilation of several examples of how the authors run Docker in production as well as a
select group of companies kind enough to contribute their experience.

Why Docker?

The underlying container technology used by Docker has been around for many years,
even before dotCloud, the Platform-as-a-Service startup, pivoted to become Docker as we
now know it. Before dotCloud, many notable companies like Heroku and Iron.io were run-
ning large scale container clusters in production for added performance benefits over vir-
tual machines. Running software in containers instead of virtual machines gave these com-
panies the ability to spin up and down instances in seconds instead of minutes, as well as
run more instances on fewer machines.

So why did Docker take off if the technology wasn’t new? Mainly, ease of use. Docker
created a unified way to package, run, and maintain containers from convenient CLI and
HTTP API tools. This simplification lowered the barrier to entry to the point where it be-
came feasible--and fun--to package applications and their runtime environments into self-
contained images rather than into configuration management and deployment systems
like Chef, Puppet, and Capistrano.

Fundamentally, Docker changed the interface between developer and DevOps teams by
providing a unified means of packaging the application and runtime environment into one
simple Dockerfile. This radically simplified the communication requirements and boundary
of responsibilities between devs and DevOps.

Before Docker, epic battles raged within companies between devs and ops. Devs wanted
to move fast, integrate the latest software and dependencies, and deploy continuously.
Ops were on call and needed to ensure things remained stable. They were the gatekeepers
of what ran in production. If ops was not comfortable with a new dependency or require-
ment, they often ended up in the obstinate position of restricting developers to older soft-
ware to ensure bad code didn’t take down an entire server.

In one fell swoop, Docker changed the roll of DevOps from a “mostly say no” to a “yes, if
it runs in Docker” position where bad code only crashes the container, leaving other serv-

https://www.dotcloud.com/
https://www.heroku.com/
http://www.iron.io/

Preface

ices unaffected on the same server. In this paradigm, DevOps are effectively responsible for
providing a PaaS to developers, and developers are responsible for making sure their code
runs as expected. Many teams are now adding developers to PagerDuty to monitor their
own code in production, leaving DevOps and ops to focus on platform uptime and security.

Development vs. Production

For most teams, the adoption of Docker is being driven by developers wanting faster itera-
tions and release cycles. This is great for development, but for production, running multi-
ple Docker containers per host can pose security challenges, which we cover in chapter 10
on Security. In fact, almost all conversations about running Docker in production are domi-
nated by two concerns that separate development environments from production: 1) or-
chestration and 2) security.

Some teams try to mirror development and production environments as much as possi-
ble. This approach is ideal but often not practical due to the amount of custom tooling re-
quired or the complexity of simulating cloud services (like AWS) in development.

To simplify the scope of this book, we cover use cases for deploying code but leave the
exercise of determining the best development setup to the reader. As a general rule, always
try to keep production and development environments as similar as possible and use a
continuous integration / continuous deliver (Cl/CD) system for best results.

What We Mean by Production

Production means different things to different teams. In this book, we refer to production
as the environment that runs code for real customers. This is in contrast to development,
staging, and testing environments where downtime is not noticed by customers.

Sometimes Docker is used in production for containers that receive public network traf-
ffic,and sometimes it is used for asynchronous, background jobs that process workloads
from a queue. Either way, the primary difference between running Docker in production vs.
any other environment is the additional attention that must be given to security and stabil-
ity.

A motivating driver for writing this book was the lack of clear distinction between actual
production and other envs in Docker documentation and blog posts. We wagered that four
out of five Docker blog posts would recant (or at least revise) their recommendations after
attempting to run in production for six months. Why? Because most blog posts start with
idealistic examples powered by the latest, greatest tools that often get abandoned (or
postponed) in favor of simpler methods once the first edge case turns into a showstopper.
This is a reflection on the state of the Docker technology ecosystem more than it is a flaw of
tech bloggers.

xiii

Xiv

Preface

Bottom line, production is hard. Docker makes the work flow from development to pro-
duction much easier to manage, but it also complicates security and orchestration (see
chapter 4 for more on orchestration).

To save you time, here are the cliff notes of this book.

All teams running Docker in production are making one or more concessions on tradi-
tional security best practices. If code running inside a container can not be fully trusted, a
one-to-one container to virtual machine topology is used. The benefits of running Docker
in production outweigh security and orchestration issues for many teams. If you run into a
tooling issue, wait a month or two for the Docker community to fix it rather than wasting
time patching someone else’s tool. Keep your Docker setup as minimal as possible. Auto-
mate everything. Lastly, you probably need full-blown orchestration (Mesos, Kubernetes,
etc.) a lot less than you think.

Batteries Included vs. Composable Tools

A common mantra in the Docker community is “batteries included but removable.” This
refers to monolithic binaries with many features bundled in as opposed to the traditional
Unix philosophy of smaller, single purpose, pipeable binaries.

The monolithic approach is driven by two main factors: 1) desire to make Docker easy to
use out of the box, 2) golang’s lack of dynamic linking. Docker and most related tools are
written in Google’s Go programming language, which was designed to ease writing and
deploying highly concurrent code. While Go is a fantastic language, its use in the Docker
ecosystem has caused delays in arriving at a pluggable architecture where tools can be
easily swapped out for alternatives.

If you are coming from a Unix sysadmin background, your best bet is to get comfortable
compiling your own stripped down version of the docker daemon to meet your production
requirements. If you are coming from a dev background, expect to wait until Q3/Q4 of 2015
before Docker plugins are a reality. In the meantime, expect tools within the Docker ecosys-
tem to have significant overlap and be mutually exclusive in some cases.

In other words, half of your job of getting Docker to run in production will be deciding
on which tools make the most sense for your stack. As with all things DevOps, start with
the simplest solution and add complexity only when absolutely required.

As of May, 2015, Docker, Inc., released Compose, Machine, and Swarm that compete
with similar tools within the Docker ecosystem. All of these tools are optional and should
be evaluated on merit rather than assumption that the tools provided by Docker, Inc., are
the best solution.

Another key piece of advice in navigating the Docker ecosystem is to evaluate each open
source tool’s funding source and business objective. Docker, Inc., and CoreOS are frequent-
ly releasing tools at the moment to compete for mind and market share. It is best to wait a
few months after a new tool is released to see how the community responds rather than
switch to the latest, greatest tool just because it seems cool.

https://golang.org/
https://docs.docker.com/compose/
https://docs.docker.com/machine/
https://docs.docker.com/swarm/
https://coreos.com/

Preface

What Not to Dockerize

Last but not least, expect to not run everything inside a Docker container. Heroku-style 12
factor apps are the easiest to Dockerize since they do not maintain state. In an ideal micro-
services environment, containers can start and stop within milliseconds without impacting
the health of the cluster or state of the application.

There are startups like ClusterHQ working on Dockerizing databases and stateful apps,
but for the time being, you will likely want to continue running databases directly in VMs or
bare metal due to orchestration and performance reasons.

Any app that requires dynamic resizing of CPU and memory requirements is not yet a
good fit for Docker. There is work being done to allow for dynamic resizing, but it is unclear
when this will become available for general production use. At the moment, resizing a con-
tainer’s CPU and memory limitations requires stopping and restarting the container.

Also, apps that require high network throughput are best optimized without Docker due
to Docker’s use of iptables to provide NAT from the host IP to container IPs. It is possible to
disable Docker’s NAT and improve network performance, but this is an advanced use case
with few examples of teams doing this in production.

Authors

As authors, our primary goal was to organize and distribute our knowledge as expediently
as possible to make it useful to the community. The container and Docker infrastructure
scene is evolving so fast, there was little time for a traditional print book.

This book was written over the course of a few months by a team of five authors with
extensive experience in production infrastructure and DevOps. The content is timely, but
care was also given to ensure the concepts are able to stand the test of time.

XV

http://12factor.net/
http://12factor.net/
https://clusterhq.com/

Preface

Joe Johnston is a full-stack developer, entrepreneur, and advisor to startups in San
Francisco. He co-founded Airstack, a microservices infrastructure startup, as well as Califor-
nia Labs and Connect.Me. @joejohnston

John Fiedler is the Director of Engineering Operations at RelatelQ. His team focuses on
Docker based solutions to power their SaaS infrastructure and developer operations.
@johnfielder

Justin Cormack is a consultant especially interested in the opportunities for innovation
made available by open source software, the cloud, and distributed systems. He is current-
ly working on unikernels. You can find him on github. @justincormack

Xvi

https://twitter.com/joejohnston
https://twitter.com/johnfiedler
https://github.com/justincormack
https://twitter.com/justincormack

Preface

Antoni Batchelli is the Vice President of Engineering at PeerSpace and co-founder of
PalletOps, an infrastructure automation consultancy. When he is not thinking about mix-
ing functional programming languages with infrastructure he is thinking about helping en-
gineering teams build awesome software. @tbatchelli

Lt

Milos Gajdos is an independent consultant, Infrastructure Tsar at Infrahackers Ltd.,
helping companies understand Linux container technology better and implement contain-
er based infrastructures. He occasionally blogs about containers. @milosgajdos

Technical Reviewers

We would like to the thank the following technical reviewers for their early feedback and
careful critiques: Mika Turunen, Xavier Bruhiere, and Felix Rabe.

Xvii

https://www.peerspace.com
http://palletops.com
https://twitter.com/tbatchelli
http://containerops.org/
https://twitter.com/milosgajdos

Getting Started

The first task of setting up a Docker production system is to understand the terminology in
a way that helps visualize how components fit together. As with any rapidly evolving tech-
nology ecosystem, it’s safe to expect over ambitious marketing, incomplete documenta-
tion, and outdated blog posts that lead to a bit of confusion about what tools do what job.

Rather than attempting to provide a unified thesaurus for all things Docker, we’ll in-
stead define terms and concepts in this chapter that remain consistent throughout the
book. Often, our definitions are compatible with the ecosystem at large, but don’t be too
surprised if you come across a blog post that uses terms differently.

In this chapter, we’ll introduce the core concepts of running Docker in production, and
containers in general, without actually picking specific technologies. In subsequent chap-
ters, we’ll cover real-world production use cases with details on specific components and
vendors.

Terminology

Let’s take a look at the Docker terminology we use in this book.

Image vs. Container

+ Image is the filesystem snapshot or tarball.

+ Container is what we call an image when it is run.

Containers vs. Virtual Machines

+ VMs hold complete OS and application snapshots.
« VMs run their own kernel.
« VMs can run OSs other than Linux.

« Containers only hold the application, although the concept of an application can ex-
tend to an entire Linux distro.

19

20

CHAPTER 1: Getting Started

« Containers share the host kernel.

« Containers can only run Linux, but each container can contain a different distro and
still run on the same host.

CI/CD: Continuous Integration / Continuous Delivery

System for automatically building new images and deploying them whenever application
new code is committed or upon some other trigger.

Host Management

The process for setting up--provisioning--a physical server or virtual machine so that it’s
ready to run Docker containers.

Orchestration

This term means many different things in the Docker ecosystem. Typically, it encompasses
scheduling and cluster management but sometimes also includes host management.

In this book we use orchestration as a loose umbrella term that encompasses the pro-
cess of scheduling containers, managing clusters, linking containers (discovery), and rout-
ing network traffic. Or in other words, orchestration is the controller process that decides
where containers should run and how to let the cluster know about the available services.

Scheduling

This is deciding which containers can run on which hosts given resource constraints like
CPU, memory, and I0.

Discovery

The process of how a container exposes a service to the cluster and discovers how to find
and communicate with other services. A simple use case is a web app container discover-
ing how to connect to the database service.

Docker documentation refers to linking containers, but production grade systems often
use a more sophisticated discovery mechanism.

Development to Production

Configuration Management

Configuration management is often used to refer to pre-Docker automation tools like Chef
and Puppet. Most DevOps teams are moving to Docker to eliminate many of the complica-
tions of configuration management systems.

In many of the examples in this book, configuration management tools are only used to
provision hosts with Docker and very little else.

Development to Production

This book focuses on Docker in production, or non-development environments, which
means we will spend very little time on configuring and running Docker in development.
But since all servers run code, it is worth a brief discussion on how to think about applica-
tion code in a Docker versus a non-Docker system.

Unlike traditional configuration management systems like Chef, Puppet, and Ansible,
Docker is best used when application code is pre-packaged into a Docker image. The image
typically contains all of the application code as well as any runtime dependencies and sys-
tem requirements. Configuration files containing database credentials and other secrets
are often added to the image at runtime rather than being built into the image.

Some teams choose to manually build Docker images on dev machines and push them
to image repositories that are used to pull images down onto production hosts. This is the
simple use case. It works, but it is not ideal due to workflow and security concerns.

A more common production example is to use a CI/CD system to automatically build
new images whenever application code or Dockerfiles change.

Multiple Ways to Use Docker

Over the years, technology has changed significantly from physical servers to virtual
servers to clouds with platform-as-a-service (PaaS) environments. Docker images can be
used in current environments without heavy lifting or with completely new architectures. It
is not necessary to immediately migrate from a monolithic application to a service orient-
ed architecture to use Docker. There are many use cases that allow for Docker to be inte-
grated at different levels.

A few common Docker uses:

+ Replacing code deployment systems like Capistrano with image-based deployment.
« Safely running legacy and new apps on the same server.

+ Migrating to service oriented architecture over time with one toolchain.

+ Managing horizontal scalability and elasticity in the cloud or on bare metal.

+ Ensuring consistency across multiple environments, from development to staging to
production.

21

22

CHAPTER 1: Getting Started

« Simplifying developer machine setup and consistency.

Migrating an app’s background workers to a Docker cluster while leaving the web
servers and database servers alone is a common example of how to get started with Dock-
er. Another example is migrating parts of an app’s REST API to run in Docker with a Nginx
proxy in front to route traffic between legacy and Docker clusters. Using techniques like
these allows teams to seamlessly migrate from a monolithic to a service oriented architec-
ture over time.

Today’s applications often require dozens of third-party libraries to accelerate feature
development or connect to third-party SaaS and database services. Each of these libraries
introduces the possibility of bugs or dependency versioning hell. Then add in frequent li-
brary changes and it all creates substantial pressure to deploy working code consistently
without the failure on infrastructure.

Docker’s golden image mentality allows teams to deploy working code--either mono-
lithic, service oriented, or hybrid---in a way that is testable, repeatable, documented, and
consistent for every deployment due to bundling code and dependencies in the same im-
age. Once an image is built, it can be deployed to any number of servers running the Dock-
er daemon.

Another common Docker use case is deploying a single container across multiple envi-
ronments, following a typical code path from development to staging to production. A con-
tainer allows for a consistent, testable environment throughout this code path.

As a developer, the Docker model allows for debugging the exact same code in produc-
tion on a developer laptop. A developer can easily download, run, and debug the problem-
atic production image without needing to first modify the local development environment.

What to Expect

Running Docker containers in production is difficult but achievable. More and more com-
panies are starting to run Docker in production everyday. As with all infrastructure, start
small and migrate over time.

Why is Docker in production difficult?

A production environment will need bulletproof deployment, health checks, minimal or
zero downtime, the ability to recover from failure (rollback), a way to centrally store logs, a
way to profile or instrument the app, and a way to aggregate metrics for monitoring. Newer
technologies like Docker are fun to use but will take time to perfect.

Docker is extremely useful for portability, consistency, and packaging services that re-
quire many dependencies. Most teams are forging ahead with Docker due to one or more
pain points:

« Lots of different dependencies for different parts of an app.

What to Expect

« Support of legacy applications with old dependencies.
« Workflow issues between devs and DevOps.

Out of the teams we interviewed for this book, there was a common tale of caution
around trying to adopt Docker in one fell swoop within an organization. Even if the ops
team is fully ready to adopt Docker, keep in mind that transitioning to Docker often means
pushing the burden of managing dependencies to developers. While many developers are
begging for this self-reliance since it allows them to iterate faster, not every developer is
capable or interested in adding this to their list of responsibilities. It takes time to migrate
company culture to support a good Docker workflow.

In the next chapter we will go over the Docker stack.

23

The Stack

Every production Docker setup includes a few basic architectural components that are uni-
versal to running server clusters--both containerized and traditional. In many ways, it is
easiest to initially think about building and running containers in the same way you are
currently building and running virtual machines but with a new set of tools and techni-
ques.

Build and snapshot an image.

Upload the image to repository.
Download the image to a host.

Run the image as a container.

Connect the container to other services.
Route traffic to the container.

Ship container logs somewhere.

N~ WD

Monitor the container.

Unlike VMs, containers provide more flexibility by separating hosts (bare metal or VM)
from applications services. This allows for intuitive improvements in building and provi-
sioning flows, but it comes with a bit of added overhead due to the additional nested layer
of containers.

The typical Docker stack will include components to address each of the following con-
cerns:

Build system
+ Image repository
« Host management

Configuration management
» Deployment

Orchestration

+ Logging
Monitoring

25

26

CHAPTER 2: The Stack

Build System

» How do images get built and pushed to the image repo?
+ Where do Dockerfiles live?

There are two common ways to build Docker images:

1. Manually build on a developer laptop and push to a repo.
2. Automatically build with a CI/CD system upon a code push.

The ideal production Docker environments will use a Cl/CD (Configuration Integration /
Continuous Deployment) system like Jenkins or Codeship to automatically build images
when code is pushed. Once the container is built, it is sent to an image repo where the au-
tomated test system can download and run it.

Image Repository

+ Where are Docker images stored?

The current state of Docker image repos is less than reliable, but getting better every
month. Docker’s hosted image repo hub is notoriously unreliable, requiring additional re-
tries and failsafe measures. Most teams will likely want to run their own image repo on
their own infrastructure to minimize network transfer costs and latencies.

Host Management

« How are hosts provisioned?
+ How are hosts upgraded?

Since Docker images contain the app and dependencies, host management systems
typically just need to spin up new servers, configure access and firewalls, and install the
Docker daemon.

Services like Amazon’s EC2 Container Service eliminate the need for traditional host
managment.

Configuration Management

« How do you define clusters of containers?
+ How do you handle run time configuration for hosts and containers?
+ How do you manage keys and secrets?

As a general rule, avoid traditional configuration management as much as possible. It is
added complexity that often breaks. Use tools like Ansible, SaltStack, Chef or Puppet only

https://registry.hub.docker.com/
http://aws.amazon.com/ecs/
http://www.ansible.com/
http://saltstack.com/
https://www.chef.io/chef/
https://puppetlabs.com/

Deployment

to provision hosts with the Docker daemon. Try to get rid of reliance on your old configura-
tion management systems as much as possible and move toward self-configured contain-
ers using the discovery and clustering techniques in this book.

Deployment

+ How do you get the container onto the host?
There are two basic methods of image deployment:

1. Push - deployment or orchestration system pushes an image to the relevant hosts.
2. Pull-image is pulled from image repo in advance or on demand.

Orchestration

+ How do you organize containers into clusters?

« What servers do you run the containers on?

« How do you schedule server resources?

+ How do you run containers?

« How do you route traffic to containers?

« How do you enable containers to expose and discover services?

Orchestration = duct tape. At least most of the time.

There are many early stage, full-featured container orchestration systems like Docker
Swarm, Kubernetes, Mesos, and Flynn. These are often overkill for most teams due to the
added complexity of debugging when something goes wrong in production. Deciding on
what tools to use for orchestration is often the hardest part of getting up and running with
Docker.

In the next chapter we cover a minimalistic approach to building Docker systems that
Peerspace took.

27

https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
http://kubernetes.io/
http://mesos.apache.org/
http://flynn.io

Example - Bare Bones Environment

Container usage in production has been associated with large companies deploying thou-
sands of containers on a similarly large number of hosts. You don’t need to be building
such large systems in order to levergage containers, in fact it is quite the contrary. It is
smaller teams that can benefit the most from containers, making it so that building and
deploying services is easy, repeatable and scalable.

This chapter describes a minimalistic approach to building systems that Peerspace, one
of such smaller companies, took. This minimalistic approach allowed them to boostrap a
new market in a short time and with limited resources, all the while keeping a high devel-
opment velocity.

Peerspace set out to build their systems in a way that would be both easy to develop on
and stable in production. These two goals are usually contradictory, since the large
amounts of change that come with high development velocity in turn generate a great deal
of change on how systems are built and configured. As most any experienced system ad-
ministrator would agree, such a rate of change leads to instability.

Docker seemed a great fit from the start, given that it is developer friendly and it also
favors agile approaches to building and operating systems. But even though Docker simpli-
fies some aspects of development and systems configurations, it is at times over-simplistic.
Striking the right balance between ease of development and robust operations is not trivi-
al.

Keeping the Pieces Simple

Peerspace’s approach to achieving the goals of developer velocity and stable production
environments consists of embracing simplicity. In this case, simple means that each piece
of the system--container--has one goal and one goal only. This goal is that the same pro-
cesses, such as log collection, are done in the same way everywhere, and that the way in
which pieces connect together is defined explicitly and statically--you can look at a config-
uration file.

Such a simple system makes it is easy for developers to build on different parts of the
system concurrently and independently, knowing that the containers they’re building will

29

30

CHAPTER 3: Example - Bare Bones Environment

fit together. Also, when problems appear in production, the same simplicity makes it quite
straightforward to troubleshoot and resolve these issues.

Keeping the system simple over time requires a great deal of thought, compromise, and
tenacity, but in the end this simplicity pays off.

PeerSpace’s system is comprised of 20 odd mircroservices, some of which are backed up
by a MongoDB database and/or an ElasticSearch search engine. The system was designed
with the following guidelines:

1. Favor stateless services. This is probably the biggest decision in simplifying Peer-
Space’s production environment: most of their services are stateless. Stateless serv-
ices do not keep any information that should be persisted, except for temporary in-
formation that is needed to process the current ongoing requests. The advantage of
stateless services is that they can be easily destroyed, restarted, replicated and
scaled, all without regard of handling any data. Stateless services are also easier to
write.

2. Favor static configuration. The configuration of all hosts and services is static: once a
configuration is pushed to the servers, this configuration will remain in effect until a
new one is explicitly pushed. This is in contraposition to systems that are dynamical-
ly configured, where the actual configuration of the system is generated in real time
and can autonomously change based on factors such as available hosts and incom-
ing load. Static configurations are easier to understand and troubleshoot, although
dynamic systems scale better and can have interesting properties like the ability to
heal in front of certain failures.

3. Favor network layout is also static: if a service is to be found in one host, it will al-
ways be found in that host until a new configuration is decided and committed.

4. Treat stateless and stateful services differently. Although most of PeerSpace’s serv-
ices are stateless, they use MongoDB and ElasticSearch to persist data. These two
types of services are very different in nature and should be treated accordingly. For
example, while you can easily move a stateless service from one host to another by
just starting the new service and then stopping the old one, doing so with a database
requires to also move the data. Moving this data can take a long time, require the
service to be stopped while the migration is taking place, or device methods to per-
form an online migration. In our field it is common to refer to such stateless services
as cattle--nameless, easy to replace and scale--and stateful services as pets--unique,
named, need upkeep, and hard to scale. Fortunately, in the case of Peerspace, as in
any farm, their number of cattle largely outnumber their pets.

These design principles above are the foundation of the simplicity of Peerspace’s sys-
tems. Separating stateful from stateless services allows for the different treatment of serv-
ices that are essentially very different, thus this treatment is optimized and as simple as
possible in each case. Running stateless services with static configuration allows for the
procedures required to operate the systems to be very straightforward: most of the times

Keeping The Processes Simple

they are reduced to copying files and restarting containers, with no regard of other consid-
erations like dependencies on third-party systems.

=l APl Router

- stateless o stateful >

The proof of whether these design guidelines lead to a simplified system depends on
whether or not operating the system is equally simple.

Keeping The Processes Simple

When designing their operational processes, PeerSpace used the assumption, based upon
observation, that the layers of their infrastructure closer to the hardware are the ones that
change less often, whereas the ones closer to the end user are the ones that change most
often.

31

32

CHAPTER 3: Example - Bare Bones Environment

closer to user
changes often

Service Config cheaper changes

Host Config

Hardware Config harder changes
changes rarely
Metwork Config

i
%,

According to this observation, the number of servers used in a production environment
rarely change, usually due to either scaling issues or hardware failure. These server’s con-
figuration might change more often, usually for reasons related to performance patches,
0S bug fixes, or security issues.

The number and kind of services that run on the above servers changes more often. This
usually means moving services around, adding new kinds of services, or running opera-
tions on data. Other changes at this level can be related to newer versions deployed that
require reconfiguration, or changes in third-party services. These changes are still not very
common.

Most of the changes that take place in such infrastructure are related to pushing new
versions of the many services. On any given day PeerSpace can perform many deploy-
ments of newer versions of their services. Most often pushing one of these new versions is
simply replacing the current with new ones running a newer image. Sometimes, the same
image is used but the configuration parameters change.

PeerSpace processes are built to make the most frequent changes the easiest and sim-
plest to perform, even if this might have made infrastructure changes harder (it hasn’t).

Systems in Detail

PeerSpace runs three production-like clusters: integration, staging and production. Each
cluster contains the same amount of services and they are all configured in the same way,
except for their raw capacity (CPU, RAM, etc.). Developers also run full or partial clusters on
their computers.

Each cluster is composed by:

Systems in Detail

1. Anumber of docker hosts running CentOS 7, using systemd as the system supervi-
Sor.

2. AMongoDB server or replica set.
3. An ElasticSearch server or cluster.

The MongoDB and/or the ElasticSearch servers might be dockerized on some environ-
ments and not dockerized on others. They are also shared by multiple environments. In
production, and for operational and performance reasons, these data services are not
dockerized.

Docker 2

PV
Docker 1/~
Ml AFlRouter - .
—..q .'-.l
Y -] / Search Custer
| ll ServiceB R E

Dockerd /| 7 / B

J

Service A |

Each docker hosts runs a static set of services, and each of these services is built follow-
ing the same pattern:

« All of their configuration is set via environment variables. This includes the addresses
(and ports) of other services.

» They don’t write any data to disk.

+ They send their logs to stdout.

« Their lifecycle is managed by systemd and defined in a systemd unit file.

33

http://www.freedesktop.org/wiki/Software/systemd/

CHAPTER 3: Example - Bare Bones Environment

Leveraging systemd

Each service is managed by systemd. Systemd is a service supervisor loosely based on
0SX’s launchd and, among other things, uses plain data files named units to define each
service’s lifecycle--as opposed to other more traditional supervisors that use shell scripts
for such matters.

Docker Host (CentOs)
systemd
Service A Service A Service Z
unit unit unit

Docker Service

%,

.

Y T
Container A Carﬁ:alner B
Service B
¥
Container 2

PeerSpace’s services only have the Docker process as their sole runtime dependency.
Systemd’s dependency management is only used to ensure that Docker is running, but not
to ensure that their own services are started in the right order. The services are built in such
a way that they can be started in any order.

Each of the services is composed by:

1. Acontainerimage.
2. Asystemd unit file.

Systems in Detail

3. An environment variable file specific for this container.

4. Aset of shared environment variable files for global configuration parameters.

Production Cluster

service
canfig

A
Config [v._
service
S locations
A - -
Docker [: '.‘_‘..
1
Image ! U Cluster |
' iprod) |
; |
AUnit | [Tt
S
B
Config k
B e
Docker L J
Image

.......

{prod)

»| £ Unit
y 3
Z
Z Dacker
Config Image

All units follow the same structure. Before the service starts, there are a set of files that

are loaded for their environment variables:

EnvironmentFile=/usr/etc/service-locations.env
EnvironmentFile=/usr/etc/service-config.env

EnvironmentFile=/usr/etc/cluster.env
EnvironmentFile=/usr/etc/secrets.env

EnvironmentFile=/usr/etc/%n.env

This ensures that each service loads a set of common environment files (service-
locations.eny, service-config.eny, cluster.env and secrets.env)
plus one that is specific to this particular service: %n.env, where at runtime %n is re-
placed by the full name of the unit. For example, docker-search.service is re-

placed for a service unit named docker-search.

Next are entries to ensure the container is properly removed before we start a new one:

35

36

CHAPTER 3: Example - Bare Bones Environment

ExecStartPre=-/bin/docker kill %n
ExecStartPre=-/bin/docker rm -f %n

Containers are named after the unit’s full name, using %n. Naming the containers after a
variable makes the unit file a bit more generic and portable. Pre-pending the path to the
docker binary with — prevents the unit from failing to start if the command fails; you need
to ignore potential failures because these commands will fail if there is no pre-exisiting
container, which is a legal situation.

The main entry in the unit is ExecStart, where it instructs systemd how to start the
container. There is quite a bit going on here, but let’s highlight the most important bits:

ExecStart=/bin/docker \
run \
-p "${APP_PORT}:${APP_PORT}" \
-e "APP_PORT=${APP_PORT}" \
-e "SERVICE_C_HOST=${SERVICE_C_HOST}" \
-e "SERVICE_D_HOST=${SERIVCE_D_HOST}" \
-e "SERVICE_M_HOST=${SERVICE_M_HOST}" \
--add-host docker01:${DOCKERO1_IP} \
--add-host docker02:${DOCKERO2_IP} \
--volume /usr/local/docker-data/%n/db:/data/data \
--volume /usr/local/docker-datas%n/logs:/data/logs \
-—-name %n \
${IMAGE_NAME}:${IMAGE_TAG}

1. Use the environment variables loaded by EnvironmentFi le to configure the
container (succh as the ports exported with -p).

2. Add the address of the other hosts in the cluster in the container’s /etc/hosts
(--add-host).

3. Map some volumes for logs and data. This is mostly a honey pot, so you can check
those directories to ensure no one is writing on them.

4. Theimage itself (name and version) comes from the environment variables loaded

by Zusr/etc/%n.env, so in this example case it would map to Zusr/etc/
docker-search.service.env.

To finalize, here are some entries to define how to stop the container and other lifecycle
concerns:

ExecStop=-/bin/docker stop %n
Restart=on-failure
RestartSec=1s
TimeoutStartSec=120
TimeoutStopSec=30

Cluster-wide, common and local configurations

Cluster-wide, common and local configurations

PeerSpace breaks out the configuration of their clusters into two types of files: environ-
ment variable files and systemd units. We’ve already talked about the units and how they
load the environment variable files, so let’s see what’s in the environment files.

The environment variables are broken into different files, mostly because of how these
files are to be changed, or not, across clusters, but also for other operational reasons:

. service-locations.env:the host names of all services in the cluster. This is
often the same across clusters, but doesn’t have to be.

« service-config.env: config related to the services themselves. This should be
the same across clusters if they’re running the compatible versions of the services.

+ secrets.env: the secret keys. This file is handled differently than the others be-
cause of its content, and is different on each cluster.

« cluster .env: everything that is different across clusters goes here, such as
which db-prefix to use, whether test or production, external address, and more. The
most relevant information in this file is the ip addresses of all of the hosts that be-
long to the cluster.

The following are all the files in some example clusterThis is the cluster . env file:

CLUSTER_ID=alpha
CLUSTER_TYPE=""test"
DOCKERO1_IP=x.X.X.226
DOCKEROZ2_IP=x.x.x.144
EXTERNAL_ADDRESS=https://somethingorother.com
LOG_STORE_HOST=x.x.x.201
LOG_STORE_PORT=9200
MONGODB_PREFIX=alpha
MONGODB_HOST_01=x.x.x.177
MONGODB_HOST_02=x.X.X.299
MONGODB_REPLICA_SET_1D=rs001

And thisis the service-locations.env:

SERVICE_A_HOST=docker01
SERVICE_B_HOST=docker03
CLIENTLOG_HOST=docker02
SERIVCE_D_HOST=docker01
SERVICE_Y_HOST=docker03
SERVICE_Z_HOST=docker01

Each systemd unit contains references to the other hosts in the cluster, and these refer-
ences come from environment variables. These variables containing service host names
are threaded into the docker command to make them available to the container process.

37

CHAPTER 3: Example - Bare Bones Environment

This is done wusing -e, for example: -e "SERVICE_D HOST=${SER-
IVCE_D HOST}".

IP address of the docker hosts are also injected into the container by ——add-host
docker01:${DOCKERO1_ IP}. This allows you to spread the containers across differ-
ent number of hosts by only changing those two files and keeping the units intact.

Deploying services

Changes done at the container level or at configuration level are done in three steps: first
make the changes on our config repository (git), second copy the config files to a staging
area on the hosts (ssh), and third make the configuration changes effective by running a
script on the host that deploys each service individually. This approach provides versiona-
ble configuration, pushing a coherent configuration at once, and a flexible way to make
this pushed configuration effective.

When you need to make changes on a set of services, first make the changes on git and
commit them. Then, run a script that pushes this configuration to a staging area within
each of the hosts. Once this configuration is pushed, run a script on each of the hosts to
deploy or re-deploy a subset of all of the containers on the host. This script does the fol-
lowing for each of the listed service:

1. Copies the config files from the staging are into their final place:
® systemd unit
B shared config files
® this service’s config file
® secrets (decrypted)

2. Downloads the image if necessary (the image is defined in the service’s own config
file).

3. Reloads systemd’s configuration so that the new unit is picked up.
4. Restarts the systemd unit corresponding to the container.

PeerSpace has two deployment workflows, and understanding them might help clarify
their deploy processes: one for development and the other to push to production, with the
latter being a superset of the former.

During development, they deploy ad-hoc builds to their integration servers by:

1. Creating a new container image with the latest codebase.
2. Pushing this image to the image repository.
3. Run the deploy script on the host running the container for this image.

Development systemd units are tracking the latest version of the image, so as long as
the configuration does not change, it is sufficient to push the image and redeploy.

Support services

Production-like servers (prod and staging) are similar to the development ones
configuration-wise, but the one main difference is that container images in production are
all tagged with a version number instead of latest. Here is the process of deploying a
released image to a production-like container:

1. Run the release script on the repo for the container image. This script will tag the git
repo with the new version number and build and push the image with this version
number.

2. Update the per-service environment variable file to refer to this new image tag.

3. Push the new configuration for the host(s).

4. Run the deploy script on the host(s) running the container for this image.

When services move from development to production they usually do it in batches (usu-
ally every two weeks). When pushing a release to production, the config files used in devel-
opment for that release are copied to the production directory. Most of these files are
copied verbatim, as they are abstracted from the concrete aspects of the cluster (ips, num-
ber of hosts, and more), but cluster.env and secrets. env are usually different on
each cluster and these are not updated while releasing. Usually, all newer versions of the
services are pushed at once.

Support services

PeerSpace uses a set of services to support their own services. These services include:

+ log aggregation: a combination of fluentd + kibana, and docker-gen . Docker-gen al-
lows creating and recreating a configuration file based on the containers running on
the host. Docker-gen generates a fluentd entry for each running container that sends
the logs to kibana. This works well and is easy to debug.

Monitoring: Datadog, a SaaS monitoring service. The datadog agent is running a con-
tainer, and it is used to monitor performance metrics as well as APl usage and busi-
ness events. Datadog provides extensive support to tags, allowing you to tag every
single event in multiple ways, and this is done by fluentd. This extensive tagging al-
lows you to slice and dice the data in multiple ways after the data is collected (such
as same service across clusters, all docker services, all APl endpoints using a certain
release, and more).

Discussion

This system results in a very explicit configuration of all of the hosts and services, which
allow all developers to easily understand the system’s configuration and also to be able
work on different parts of the system without interference. Each developer can push to an
integration cluster at any time, and to production with minimal coordination.

39

https://github.com/jwilder/docker-gen

40

CHAPTER 3: Example - Bare Bones Environment

Since the configuration of each cluster is kept on git, it is easy to track changes in config-
uration and troubleshoot a cluster when there are configuration issues.

Because of the way the configuration is pushed, once a new configuration is set in place,
this configuration does not change. This static configuration provides you with a great deal
of stability.

Also, the way the services are written--configured by environment variables, logging to
console, stateless, and more--makes them very amenable to be used later as-is by cluster
managers like Mesos or Kubernetes.

Of course, these tradeoffs come at a price. One of the most obvious downsides is that
configuration is somewhat tedious, repetitive and error prone. There is a great deal of au-
tomation that we could implement to generate these configuration files.

Changes on global configuration might require restarting more than one container. Cur-
rently it is up to the developer to restart the right containers. In production, you can usually
do a rolling restart when pushing many changes, which is not ideal. This is definitely a
weak point, but so far it is manageable.

Future

There are a few extensions to this system that are being considered. One of them is ena-
bling zero downtime deployments using a reverse proxy. This would also allow Peerspace
to scale horizontally each of the services.

Another direction is to generate all of the configuration files from a higher level descrip-
tion of the cluster. This option has the potential of computing which containers need to be
restarted after configuration changes.

When considering these future directions, Peerspace is also weighing the possibility of
using Mesos or Kubernetes, as they argue that adding any more complexity to their deploy-
ment scripts would be stretching this simplistic model a bit too much.

Summary

Although this chapter has covered a radically minimalistic approach to Docker, we hope it
provides the foundation to “thinking in Docker,” an ability that we think will pay off as your
read the rest of the book, regardless of whether you decide to try a bare bones approach or
you decide to try your luck with a cluster management system.

Of course there are many other ways to approach Docker, and the next chapter walks
through a real live production web server environment that has been running at RelatelQ
for over a year now with Docker.

Example - Web Environment

Most companies we’ve seen have been successful using Docker by running a low container
to host ratio of 1-2 containers to a single host machine. In other words, you don’t need to
run Apache Mesos or Kubernetes to be successful running Docker in production. In this ex-
ample we’ll walk through a real live production web server environment that has been run-
ning at RelatelQ for over a year now with Docker. For example, this environment uses Dock-
er on standard Amazon Web Services instances running Ubuntu to power their production
CRM web application. The reason Docker was used initially was to provide zero downtime
deployments for their customers due to the ability to spin up and down containers quickly,
provide dependency isolation between web versions, and use instant rollbacks. Here is a
high level image of the environment.

41

42

CHAPTER 4: Example - Web Environment

ELE

Web Server

— Hipache

s

: n - Redis
—m
—_—
~—— Web Container

e F

Believe it or not this web environment has the following: stable and zero downtime de-
ploys, rollbacks, centralized logging, monitoring, and a way to profile a JVM. All of this is
powered by orchestrating Docker images through bash scripts. Let’s look closer at a single
machine.

Orchestration

Traffic
: Load Balancer
Live Database e Zero Downtime
for Hipache Redis Deploys
Lnk =~/ \ Instant Rollback
&, &,/
?:-} W ‘v v

{logs

Container Container

/data V1

Yy — L. —

Old version MNew container
of container with new code
for Rollback

The web server is running on a single AWS server with four containers running on Dock-
er. Some of the containers are linked to provide communication to other containers on the
Docker bridge. It has multiple ports exposed to the host in order to provide HTTP and JVM
monitoring for profiling. It uses an Amazon ELB load balancer (where it does health
checks). All of the containers store their logs to the host so existing logging solutions still
work (SumoLogic), and there is a simple bash orchestration script to deploy and setup new
versions of the web service.

Let’s look into some of the specifics to help understand some of the main areas that
many companies have questions on when running Docker in production.

Orchestration

When you break down orchestration there are essentially two things happening. One is
how you get the server installed with Docker and ready to run the containers, and the other
is how to get the container up and running on the server.

43

44

CHAPTER 4: Example - Web Environment

Getting Docker on the server ready to run containers

The server is deployed on AWS using a standard base Ubuntu AMI. The host is setup using a
standard configuration management system in Chef. The setup is very traditional to many
environments today. After the server is launched Chef will run and setup the ssh users, ssh
keys, then install basic packages with Chef’s package installer (such as iostat), install and
configure the monitoring agent (Datadog in this scenario), raid some ephemeral drives for
data or log storage, install and configure the logging agent (SumoLogic), install the latest
version of Docker, and lastly create the bash setup script and configure it to run in a cron
job.

After Chef runs on the server the host is now setup to run any containers that are need-
ed on the machine. It’s also configured with monitoring and logging software for future de-
bugging. This environment can run any type of container service, and is not different than
most server environments run today even in physical environments. Now that Docker is in-
stalled and the host is ready with the core operations tools, let’s move on to getting the
containers on the host to run the web application.

Getting the containers running

Most companies that started running Docker early on typically used bash scripts to setup
the containers. This environment is no different by using a cron job setup to run a bash
script every five minutes in order to do all the orchestration of the containers. The core
function of the script is programed to setup the correct containers and pull down the latest
web server image. Lets dive deeper into snippits of the script that they use.

This script does the following:

1. Check if the containers are running (typically they are, this is just in case it’s a new
machine).

2. If they are not running, then deploy hipache and redis containers and link them to-
gether.

3. Pull the latest web server container.
4. Wait for the web server to health check before adding it to the load balancer.

5. Once successful, send a message to the mini load balancer hipache on the server (in
this case a redis-cli command using netcat) with the random port it received from
docker and the ip address.

6. Keep the old container running so that it’s possible to rollback if needed.
7. Clean up old images.

Here are snippits from their script (some lines removed for readability):

#1/bin/bash

check for hipache container

http://www.chef.io

Orchestration

STATE=$(docker inspect hipache | jq ".[0]-State.Running™)
if [["$STATE"™ 1= "true"]]; then

set +e

docker rm hipache > /dev/null 2>&1

set -e

mkdir -p /logs/hipache/

docker run -p 80:80 -p 6379:6379 --name hipache -v /logs/
hipache:/logs -d repo.com/hipache

echo "$(date +"%Y-%m-%d %H:%M:%S %Z') Ipush frontend:* de-
fault”

sleep 5

(echo -en "lpush frontend:* default\r\n"; sleep 1) | nc lo-
calhost 6379
fi

#pull the latest image
IMAGE_ID=$(docker images | grep ${IMAGE_NAME} | grep $RE-
MOTE_VERSION | head -n 1 | awk "{print $3}~)
if [-z $IMAGE_ID]; then
docker pull $DOCKER_IMAGE_NAME
fi

echo $REMOTE_VERSION > $VERSION_FILE

#launch a new one
echo "$(date +"%Y-%m-%d %H:%M:%S %Z') launching $DOCKER_IM-
AGE_NAME, logging to $LOG_DIR"
mkdir -p $LOG_DIR
NEW_WEBAPP_ ID=""abcdefghi jkImnopqgrstuvwxyz"
MAX_TIMEOUT=5
set +e
until [$MAX_TIMEOUT -le O] || NEW_WEBAPP_ID=$(docker run -P -
h $(hostname) --link hipache:hipache $(dockerParameters
$BRANCH) -d -v $LOG_DIR:/logs $DOCKER_IMAGE_NAME); do
echo -n "."
sleep 1
let MAX_TIMEOUT-=1
done
set -e

#check to see if web app container started
NEW_WEBAPP_IP_ADDR=$(docker inspect $NEW_WEBAPP_ID | jq ".
[0]-NetworkSettings. IPAddress”® -r)
if [-z "$NEW_WEBAPP_IP_ADDR" -o "$NEW_WEBAPP_IP_ADDR" =
“"null™]; then
echo "$(date +"%Y-%m-%d %H:%M:%S %Z') no new webapp ip,
failed to start”
send_deploy_message $HOSTNAME $BRANCH $IMAGE_NAME “‘error™
send_webhook $HOSTNAME $BRANCH $BUILD_I1D $BUILD_NUMBER
“failure"

45

46

CHAPTER 4: Example - Web Environment

exit 1
fi

echo -n "$(date +"%Y-%m-%d %H:%M:%S %Z'") new instance $NEW_WE-
BAPP_ID starting, on ip $NEW_WEBAPP_IP_ADDR"
5 minutes
MAX_TIMEOUT=300
HEALTH_RC=1
set +e
until [$HEALTH_RC == 0]; do
if [$MAX_TIMEOUT -le O]; then
echo "$(date +"%Y-%m-%d %H:%M:%S %Z'') failed to be
healthy within 5 minutes, killing and exiting..."
docker kill $NEW_WEBAPP_ID
docker rm $NEW_WEBAPP_ID
send_deploy_message $HOSTNAME $BRANCH $IMAGE_NAME *“‘er-
ror"
send_webhook $HOSTNAME $BRANCH $BUILD_I1D $BUILD_NUMBER
“failure"
exit 1
fi

${SCRIPT_HOME}/health_sh $NEW_WEBAPP_IP_ADDR
HEALTH_RC=$?
echo -n "."
sleep 5
let MAX_TIMEOUT-=5
done
set -e
echo

add myself as a backend to redis

(echo -en "rpush frontend:* http://${NEW_WEBAPP_I1P_ADDR}: ${WE-
BAPP_PORTI\r\n"; sleep 1) | nc localhost 6379

ensure 1 am First backend to redis

(echo -en "lset frontend:* 1 http://${NEW_WEBAPP_IP_ADDR}:${WE-
BAPP_PORT}\r\n"; sleep 1) | nc localhost 6379

remove all but 1 backend to redis

(echo -en "ltrim frontend:* 0 1\r\n"; sleep 1) | nc localhost
6379

As you can see, most of the script does some very basic bash stuff. With some bash
scripting experience any system administrator or operations engineer can do the same
type of orchestration. Orchestration for containers can be simple, but it does require some
iteration and over time the scripts will become more robust. In a failure scenario the script
is also setup appropriately so it doesn’t bring the new container online if the container
doesn’t pass the health checks. As new technology around Docker comes out, such as sys-

Networking

tems like Apache Mesos and Kubernetes, it should replace the need for bash scripts to do
orchestration. Lets jump into some other areas on how this environment works.

Networking

The networking for a single host running Docker run and a container is easy enough once
you get the hang of it. Docker exposes ports in the container to the host through the Docker
run command. The ports exposed on the server are port 80 (ssl is terminated on the load
balancer) that the load balancer listens on, a profiling port for Java profiling, a port for re-
dis to switch the load balancer backend, and a port for the web server itself (deep dive in
later chapters). The load balancer siting outside of the server only monitors port 80. On the
host itself the web server launches with a random port that the hipache proxy will forward
requests onto from port 80.

Data storage

Since this is a web service, there typically isn’t a lot you need for storage. Sometimes you
will need to store logs and maybe some type of file cache or static content to load from. For
this case we use the hosts storage and not the container. The reason why we store the data
on the host is simple. If the container dies we still want to be able to troubleshoot what
happened. Typically services log to a file path. In this case we have the Docker container
map to the hosts file system and redirect the persistent logs from within the container to
the host for future log analysis. This is easily done with the volume -v command in Docker
run.

47

CHAPTER 4: Example - Web Environment

Logging
Logging using -V /logs:
flogs
Containers Hosts

/logs/hipache

{logs/Redis

/logs/webapp

{logs/webapp

ﬂ

»
collector pushes logs to central server

Container logs are systematic based on the service. For instance, we use /logs/redis, /
logs/hipache, and /logs/webserver/. An important note here is the web server logs errors
and request logs based on the date time stamp of the requests. When a container logs it
will look like this: /logs/webserver/2015-03-01.request.log. It will auto append to the same
file if it exists. If another container or even more come up it will automatically log to the
same file due to the append. Log rotate is installed with Chef to keep the logs from growing
out of control.

In a production environment you will typically have a centralized log server so the logs
on the server are only temporary until they are picked up from the collector. Since each of
the containers log to the host there is no need to use a whole new logging technology for

48

Monitoring

Docker. An environment not running Docker will most likely log the same exact way allow-
ing for operations to keep their existing monitoring framework in place. In this environ-
ment the logs are easily shipped to the central log server (Splunk, Sumologic, and Loggly)
as new log files get created or appended to for analysis.

Monitoring

The important note here is that the load balancer is monitoring for the uptime of the server
and will automatically send the next request to another available web service if needed.
The host is monitored via the monitoring agent on the host with a docker plug-in (Datadog
in this case). The monitoring in this example is a full stack monitor. This agent monitors for
host usage like CPU, memory, disk 10, JVM monitoring, and number of running containers.
The application metrics in this environment are sent via StatsD to a central collector. Met-
rics like web hits, application query speed, and function specific latency metrics.

This environment uses a JVM profiling tool called Yourkit to monitor what’s going on in
the heap. The usage of this allows for the ops team or developers to connect to the host
with their profiling tool to figure out deep issues with the call stack of the application. One
downside is you need to have a single port per container and it can’t be the same if two
containers are running on the host at the same time. So it requires a quick ssh or tools to
check this port. Newer technologies are able to monitor this such as New Relic and Sysdig
(mentioned in the ecosystem).

No worries about new dependencies

Since all of the application dependencies are stored within the container image, the opera-
tions team now only has to manage the dependencies for their server management as-
pects. This simplifies the Chef configuration management framework and amount of
scripts used to keep the environment up to date.

Zero downtime

This web service environment can provide zero downtime deployment. The zero downtime
deployment works using hipache with a realtime web query engine backed by redis, which
is a perfect database to use since it’s single threaded. Hipache will redirect the HTTP ses-
sions to the top most server in the database list. When a new container comes online and a
command is sent to the redis server to update the list, the new container receives all the
new hits. The session state is stored in a backend database so the containers can stay
ephemeral and clients don’t lose state.

49

50

CHAPTER 4: Example - Web Environment

Service rollbacks

Leveraging dockers image store on the server and its speed of container start time this en-
vironment can easily roll back old code if necessary. Since the machine has multiple con-
tainers stored on the host it’s easy to spin up the old container and swap out the new (bad
deploy) container with a similar script or another orchestration.

Conclusion

RelatelQ has been running the setup described in this chapter for over a year now in pro-
duction with great success. The team took standard operations tools and applied it to
Docker to create a very feature full web orchestration layer. This has allowed the team to
experiment with newer technology without introducing major underlining foundational
changes. They were also able to combine Docker with their current infrastructure monitor-
ing and logging solutions, making it easy to run in production. If you would like to read
more about this environment they have blogged and discussed their environment in sever-
al talks.

In the next chapter we will look at how RelatelQ is using a web environment per branch
with Docker fully orchestrated using AWS Beanstalk.

https://blog.relateiq.com/zero-downtime-pushes-say-goodbye-to-the-workout-robot/
http://blog.heavybit.com/blog/2015/3/23/dockermeetup

Example - Beanstalk Environment

In most software companies today there are several infrastructure environments. These
are typically a three-tier structure with a test, staging, and production environment. Some
companies have pre-prod or even canary environments in addition to these, but those are
special cases. These different environments provide isolation for the life cycle of new code
or even infrastructure components. The environments are typically made up of at least a
web server tier for application logic and presentation and a database tier. Over the last 10
years or so these environments have been fairly static within companies. We found a an-
other great Docker environment example from RelatelQ. They are doing something inter-
esting that could break up the standard environment model.

RelatelQ has a web environment per branch fully orchestrated using AWS Beanstalk.
This is a new type of infrastructure environment using Docker technology through their
CI/CD infrastructure. They have essentially disconnected the web tier from the data tier.
This turns the typical three tier model into only data stores. This might be a little hard to
imagine at first, so let’s see it visually.

cl/co Builds Web Server
per Branch L

MNew Branch New APD £ T

Builds
&0
==

Build Web Server P
R t
R containerper | NEROEeTY J

Mainline

a,

Mainline

gl

51

52

CHAPTER 5: Example - Beanstalk Environment

This image shows three different branches with a PerfTest, a New APD, and a New Ul
branch. Each branch gets its own purpose-built web container through the CI/CD system.
After its built and tested it will then be pushed to the repository. This allows a web environ-
ment per branch for every developer or team that needs one. It also allows you to think
differently on how to use containers and rethink your environments all together. One of the
huge advantages of using this model in a SaaS company is the power to see changes quick-
er. Think about how product managers and designers can leverage these types of environ-
ments if they are used in a continuous delivery model.

As an example, RelatelQ in the summer of 2014 completely redesigned their entire web
application from CSS to a new look and feel using this new model with Docker. They were
able to run A/B testing with side-by-side web servers to compare the old version to the new
version. As developers would commit code within 15-30 minutes, the designers and prod-
uct managers were able to see the newly reflected changes in an isolated environment.
The web server also had a way to redirect the backend from the staging data servers to
production data servers using an environment variable. With a quick restart of the Docker
container they were able to see their newly reflected changes against production data in a
matter of minutes. When RelatelQ was about to launch their newly designed site they
switched the containers to the production data instead of staging. This allowed the devel-
opers to make sure the data and new Ul matched up properly.

Process to build containers

In this environment, RelatelQ uses Teamcity to build and deploy their applications. They
were able to use VCS triggers to monitor for specific branch names off of their github repos-
itory to perform automatic builds. For instance, they used docker-<branch>. If a branch
was created in their repository starting with “docker-”" they would automatically build this
branch’s own Docker container. To get started quickly, most developers create their branch
right off of staging. Once they create their new branch, Teamcity would build the container
and push it to a local repository. They use the Beanstalk service from Amazon Web Services
to deploy and update their containers.

Process to deploy/update containers

“AWS Elastic Beanstalk is an easy-to-use service for deploying and scaling web applications
and services developed with Java, .NET, PHP, Node.js, Python, Ruby, Go, and Docker on fa-
miliar servers such as Apache, Nginx, Passenger, and IIS.

You can simply upload your code and Elastic Beanstalk automatically handles the de-
ployment, from capacity provisioning, load balancing, and auto-scaling, to application
health monitoring. At the same time, you retain full control over the AWS resources power-
ing your application and can access the underlying resources at any time.” Sourced from
Amazon

http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/elasticbeanstalk/

Logging

Beanstalk will automatically deploy a Load balancer, setup auto scaling groups, provi-
sion the number of instances/servers based on the setting, pull down and run the Docker
containers, provide health monitoring, and secure the servers with security groups. This
gets a company really far with infrastructure if they are just starting out. When combining
this with a container per web service it becomes a really useful environment for a SaaS
company.

The deployment can be performed in a couple of ways, from Elastic Beanstalk to using
an S3 bucket JSON file or an API call to the service itself. In this example they were using
the S3 bucket JSON file created within their Teamcity configuration. A build step would
write a new file and push the changes to the S3 bucket. The file contains where the con-
tainer is, ports that need to be open, and the name of the container. When the new file is
uploaded, the Elastic Beanstalk environment will automatically spin up another server,
pull the container and set it up on the machine, then tear down the old container and serv-
er when its health checks pass. This essentially creates a zero downtime deployment to the
new service.

Beanstalk

ELB
P 9 Beanstalk pullls the
container and sets

-,c,ONw'e m m m up an instance

Creal® ASG Group
L9
Q
Push Conts; ,f;‘?‘ Can switch environment
Ainey ; FaiN s .
» Repository O & < data on Boot/Restart using
& ¢ environment variable

= D

Using Elastic Beanstalk shows that its only a matter of time before infrastructure provid-
ers really start to own running containers just like they did running virtual infrastructure.

Logging

Logging from the Elastic Beanstalk containers is fully automated, just like the rest of the
infrastructure. You are able to pull logs through their GUI tool with the options of the full
logs on the server or just the last 100 lines from Standard Output. These two options are
only useful for troubleshooting purposes so they also offer a new option to tail the logs to
an S3 bucket. Using a centralized logging service that can consume logs from S3 services

53

54

CHAPTER 5: Example - Beanstalk Environment

allows a company to integrate these logs directly into their current logging solution. There
are a couple of notes around their logs. The names of the logs are not based on the con-
tainer name it self. The name is created from a random generated service name that only
pertains as a unique ID to the service. It can be troublesome to track down which unique ID
belongs to which Elastic Beanstalk service.

Monitoring

All services that are provided through Amazon Web Services typically have their own cloud
monitoring solution built in. Elastic Beanstalk is also supported. The monitoring you get,
however, is very basic. You’ll get the ELB metrics and server metrics but nothing from the
container itself. This is due to the fact that the Elastic Beanstalk service has a 1:1 container
per server ratio. This means network, CPU, disk, and memory metrics are typically the met-
rics from the container running on the host. If something goes rouge on the machine,
though, you’ll have to SSH into the service to troubleshoot or deploy a new version.

Security

Beanstalk provides automated firewall port security with their security groups along with
IAM roles to secure user access. Since Beanstalk uses a low container to host ratio, just like
a normal application and server environment, it is easy to isolate containers from other
containers. Beanstalk templates also provide the ability to deploy new environments con-
sistently across new deployments making security easy to change across a wide number of
hosts.

Summary

By using Docker and an automated infrastructure with Elastic Beanstalk from Amazon Web
Services, RelatelQ was able to provide a web environment for each of their front end engi-
neers in a scalable template environment. The environments are super easy to create, and
with a little orchestration from a CI/CD system, its completely automated. One note: if
you’re thinking of trying this in your own infrastructure, this environment comes with a lot
of moving parts. The logging could be better since unique ID’s from Beanstalk environ-
ments can be a pain, and at the time of writing you can only have a single container run-
ning on the service (soon multiple containers will be supported). Just keep in mind that
when using Docker you can make your environment extremely flexible and provide new in-
novative ways to drive faster development.
In the next chapter we will dive into the topic of security with Docker.

Security

Security is always a difficult area. Striking the correct balance between paranoia and get-
ting things into production, and getting a development team to think about security are
the hallmarks of a good security professional.

Docker has always had a difficult relationship with security, as the model of doing usa-
bility first and then tagging security on later was always going to lead to criticism. In addi-
tion it does not have a single strong security model and response, but instead it relies on
many layers, some of which may not be there yet, or may not work for your application.
The official security documentation is also very minimal, so users need more support.

This reflects the Linux security approach, given how there are lots of options at the ba-
zaar. These options are not all container specific, but containers have added more tools,
leaving an even more complex security environment than most non containerized environ-
ments face.

Threat models

The security assessment of containers, or a microservice architecture in general, requires
understanding threat models. These models depend on the individual circumstances, but
many have a lot in common.

If you are going to run untrusted code, as a service provider might, or run a platform as
a service, where people may deliberately upload hostile code, then your requirements are
different from a small team developing and hosting an application. A large enterprise is in
a different position, where regulatory requirements mean that certain forms of isolation
are mandated.

If you are a service provider, currently virtualization is the most mature technology for
isolating hostile code. This is not to say there have been no security issues, but the number
is low and the attack surface smaller. That does not mean that containers are not also part
of the solution; in particular if you are providing a language runtime, such as ruby or
Node. js then many of the techniques below are entirely applicable. Containers are an
extended form of isolation and can be used to reduce attack surface further, as a layered
protection.

55

http://docs.docker.com/articles/security/

56

CHAPTER 6: Security

Google, in the Borg paper explains how they have a very different architecture for trus-
ted internal jobs where “We use a Linux chroot jail as the primary security isolation mecha-
nism between multiple tasks on the same machine,” a weaker form of security than con-
tainers, versus: “VMs and security sandboxing techniques are used to run external software
by Google’s AppEngine (GAE) and Google Compute Engine (GCE). We run each hosted VM in
a KVM process that runs as a Borg task.”

It is the large and small companies looking at the security of a microservice architecture
built around containers that will concern us most in this chapter.

Security is a complex area, and needs evaluating in the context of the applications you
are running. There are no magic bullets, and defense in depth is key, which is why this
chapter will cover many different ways to make your applications more secure. Many of
them may eventually be baked into the tools you use, but it is still important to understand
what they will and will not protect against, and whether a more specific solution can be
used instead of a generic one.

Containers and security

Linux containers are not a monolithic entity, unlike for example FreeBSD’s jail, which has a
single system call to create and configure a container. Rather they are a set of facilities that
further increase process isolation over and above the traditional Unix mechanisms of user
ids and permissions.

Containers are essentially built from namespaces, cgroups and capabilities.

The core of containers in Linux is a series of “namespaces”, modelled on ideas from the
Plan 9 operating system. A process namespace hides all of the processes outside the name-
space, giving you a new set of process IDs including a new init (pid 1). A network name-
space hides the system’s network interfaces and replaces them with a new set. The security
aspect here is that if an item does not have a name you can reference, you cannot interact
with it, so there is isolation.

Not everything in the system is namespaced; there remains a lot of global state. Clocks,
for example, do not have a namespace, so if a container sets the system time it affects ev-
erything running on the kernel. Most of these can only be affected by a process running as
root.

Another issue is that the Linux kernel interface is huge, and there are bugs hiding in it.
There are over 300 system calls, and many thousands of miscellaneous 1octl operations,
and a bug in validating user input on one of these can lead to a kernel exploit.

We do have a lot of ways to mitigate these risks, however, which we will cover below.

Kernel updates

The most basic recommendation is to keep your kernel up to date with security fixes. It is
not always clear what changes are security issues, as many bugs may be exploitable, but

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
https://www.freebsd.org/cgi/man.cgi?format=html&query=jail%282%29

Container updates

no one has found an exploit yet. This means you will need regular reboots of your contain-
er host machines, and hence also to restart your all of your containers.

Clearly you do not want all of your cluster rebooting at the same moment, thus taking
all services down and losing quorum on distributed systems, so managing this needs some
thought. CoreOS machines that detect that they are in a cluster, because they are running
etcd, will take a reboot lock in etcd so that only one machine at a time reboots. Other
systems will need a similar mechanism for staggered reboots.

Container updates

You must keep the host kernel and the host OS updated, and keeping the running contain-
ers patched for security updates is a key requirement.

If you are running “fat” containers with a whole host OS in them, such as RHEL or Ubun-
tu, then it is pretty simple to keep them updated. You can just run the same tooling as you
would for a virtual machine. This takes no advantage of a container based workflow, but at
least it is a well understood problem.

The situation people are worried about is if Docker is used as a way to get developers to
put random containers that no one really knows what is inside them into production.
Clearly this is not what you want to happen. Containers need to be reproducibly built from
scratch, and must be rebuilt if there are security issues in the components if they are not
being updated at runtime.

The closest way to do this to traditional practices is to take a traditional distro, config-
ure it with tools like Puppet, and then use that as a base Docker image.

The microservices route is to make the container only contain a statically linked binary,
as produced for example by Go, so the build process is simply to rebuild the application
with updated dependencies. Then the upgrade problem becomes a build time dependency
management problem. A Java application may also be similar to this.

Between these extremes there are a lot of other models; the important thing is to have a
model, and ideally to have tests that can test build artifacts. For example, after the bash
shellshock bug, you want to be able to inspect the containers you have in production and
test if they contain bash and are vulnerable.

suid and guid binaries

Unix has long had a rather poorly designed privilege escalation mechanism where a file
can be marked as suid or guid, in which case it runs the program as the owner (or
group) of the file rather than the user running the program. Usually this is used to run pro-
grams as root that need special privileges. If programs are well written they will drop this
root status as soon as possible, before parsing any user input and having done as little as
possible. If they do not, there is a risk that they can be subverted.

57

https://coreos.com/docs/cluster-management/setup/update-strategies/
http://en.wikipedia.org/wiki/Shellshock_%28software_bug%29

58

CHAPTER 6: Security

Typical binaries that may be suid root include su, sudo, mount and ping. Most of
these are not needed inside a container, so they can be removed, the suid bit removed, or
the container root mounted with the nosuid option so they are ignored. This is some-
thing your security test suite can test for.

Note that we have not yet seen many distributions specifically designed to run inside
containers, which would address this type of issue. Current distributions assume that these
basic commands are needed. Some lightweight container base systems use the small
Busybox core tools, which do not implement suid programs securely, as they do not drop
privileges, and this should never be run with suid enabled.

Commands like this:

find / -xdev -perm -4000 -a -type f -print
find / -xdev -perm -2000 -a -type f -print

will look on a system for all of the suid and guid files.

root in containers

Containers should be designed so that nothing in them needs root privileges. In particular
you should not be using docker run --privileged ..., which will run a con-
tainer with full root access, and the ability to do anything that the host can do.

Capabilities (see below) are one way of giving a subset of root’s capabilities to a process
if necessary.

User namespaces (see below) are intended to provide a magic root-but-not-root uni-
corn, allowing root usage. We discuss this magic in more detail below.

Unfortunately, many existing containers do require root access, often for not very good
reasons that just need fixing. An example is the docker registry, which creates lock files in
a directory owned by root, unless you disable search, but the issue is still open.

Capabilities

Linux has some finer grained permissions for the capabilities that root has, and these can
be given individually to a container. The man page for capabilities(7) lists which capabili-
ties correspond to which actions. For example:

docker run --cap-add=NET_ADMIN ubuntu sh -c "ip link ethO down"

will take the ethO interface down in a container with the NET_ADMIN permission on-
ly, which is the minimum needed to do that. This should allow running binaries that might
otherwise be suid or which would otherwise need the whole container to run as root, butin

http://www.busybox.net/
https://github.com/docker/docker-registry/issues/915
http://linux.die.net/man/7/capabilities

seccomp

general it should be avoided, and containers should run with no capabilities for maximal
security.

seccomp

While capabilities restrict the kind of actions that can be taken, seccomp filters can com-
pletely remove the ability to use specified system calls, or calls with certain arguments.

The difficulty with this is knowing which calls your application may need to use. You can
take traces, but you need 100% code coverage, which is difficult. Your code may change
and the calls used may change. So for general purpose use cases the easiest strategy is to
blacklist system calls that are essentially administrative, and not generally used by appli-
cations, or are largely obsolete. About 25% of calls fall into these categories.

At the time of writing only the Docker Ixc backend has hooks for running a seccomp fil-
ter, not the default libcontainer backend. There are sample filters in the contrib directory
in the docker repo. It would also be possible to get an application to set its own filters.

Kernel security frameworks

Linux supports several kernel security frameworks, the best known being SELinux, de-
signed by the NSA, which ships with RedHat Linux. There is also the similar AppArmor,
which ships with Ubuntu.

SeLinux is a framework for implementing a mandatory access control policy. It is im-
portant to note that it is just a framework, and the actual policy must be defined. Very few
people define policies, and it is a complex and poorly documented process. So most peo-
ple use the vendor provided policies if that; indeed the most popular Google search com-
pletion for SELinux is still “disable”, despite the existence of a coloring book explaining it.

Defining security policies that actually lock things down is difficult if you do not work in
an organization with a long running structure like the US Department of Defense where
these originated. They could be used in principle, however, to isolate access to different
types of data, for PCI compliance, HR data, or personal information. Unfortunately, the
tooling to support these uses is rather lacking.

We would recommend however not disabling vendor policies if possible, and under-
standing how to label items to allow access. The vendor policies are better than no policy.
Policies for containers are relatively new, and may not always work well.

Docker supports SELinux, since version 1.3, although it is off by default. docker --
selinux-enabled will enable it and then options such as --security-
opt=""label :user:USER" can set the user, role, type and labels when containers are
run.

59

https://github.com/docker/libcontainer/
https://github.com/docker/docker/blob/487a417d9fd074d0e78876072c7d1ebfd398ea7a/contrib/mkseccomp.sample
https://github.com/docker/docker/blob/487a417d9fd074d0e78876072c7d1ebfd398ea7a/contrib/mkseccomp.sample
https://en.wikipedia.org/wiki/Mandatory_access_control
http://opensource.com/business/13/11/selinux-policy-guide

60

CHAPTER 6: Security

Resource limits and cgroups

The kernel cgroup facility was created by Google for running applications at scale in its
Borg scheduler, a precursor to Kubernetes.

A cgroup limits the resources allocated to a group of processes, typically a container.
There is a large and complex set of cgroup controllers, but the important ones relate to re-
stricting CPU time, memory and storage.

The simplest restrictions are those on memory and CPU access. Memory usage can be
set with docker run -m 128m. You can set which CPUs a container can run on with
docker run --cpuset=0-3 and allocate shares of CPU time with docker-run
-cpu-shares=512.

The important point with these is to stop an application affecting others running on the
same host by using up all the memory, 10 nadwidth or CPU time.

Depending on how you set up containers there may well still be some interference. For
example, cache will be shared unless you completely allocate CPUs, and 10 is contended if
you share |10 devices such as network or disks. How much this matters depends upon work-
loads and how much you oversubscribe resources, but usually this is a throughput rather
than a security issue, although side channel attacks are possible.

Docker 1.6 adds the ability to attach a container to an existing cgroup with the
cgroup-parent option. This means you can manage cgroups externally from Docker
with other tools, and then select which cgroup to add containers to. This lets you use all of
the controls for cgroups, whether or not these are exposed in the docker command line.

ulimit

Docker 1.6 introduces the ability to control ul imit per container. This is an old Unix fa-
cility to control resources on a per process basis, a somewhat weaker concept than cgroups
which apply limits to a group of processes. Keep in mind that ul imit will also let you
configure maximum numbers of processes. For many purposes Ul imit may be simpler
than using cgoups for resource control, and more familiar to sysadmins.

Previously containers would inherit the ul imi t from the docker process, for which the
limits were generally set fairly high. Now you can for example use

docker -d --default-ulimit nproc=1024:2048

to set the default ulimit for the number of processes that can be created to a 1024 soft
limit and 2048 hard limit. The soft limit is the limit that will be enforced, but a process can
increase the soft limit up to the hard limit.

You can then overwrite the limits on a per container level, for example:

docker run -d --ulimit nproc=2048:4096 httpd

https://en.wikipedia.org/wiki/Side-channel_attack

User namespaces

This will increase the process ulimit for just the httpd container.

User namespaces

User namespaces were added later than the other namespaces in the Linux kernel and are
somewhat more complicated.

The idea is like other forms of namespacing, but for user ids (uid) and group ids (gid). In
particular, inside a container that is in a user namespace the root user, uid 0, can be map-
ped to a different, unprivileged user in the host.

This means that in the host system, the container root user is simply a normal user, and
cannot do anything special. So in what way is it root? It is root with respect to resources
that only belong in its container, such as the container network interfaces; so it can recon-
figure the container network interface for example, or bind to port 80.

This introduces more complexities, as uids are stored on filesystems to assign permis-
sions to files, and therefore they will mean different things depending on the namespace.
This also meant there was a long delay from the time the feature was introduced until it
was production ready, not helped by some major security holes being found in the imple-
mentation. These delays, for example, mean that it missed the deadline for RHEL 7.0, and
there is not yet direct support from Docker, although it is expected soon and there is some
supportin the Ixc driver.

Another less visible advantage of user namespaces is that namespaces can be created
without root permission at all. This allows the Docker daemon to internally reduce the
amount of code that needs to run as root.

The most basic feature, just to introduce a root user in a container that is not root in the
host system, covered in pull 12648 has missed the deadline for Docker 1.7, and is now be-
ing targeted for Docker 1.8, due to conflicts between the user namespace code and the lib-
network code. More complex abilities of user namespaces are even further off.

Image verification

Docker 1.3 introduced the beginning of a roadmap toward verification of Docker images.
This is just the beginning; the aim is to have a full model along the lines of Linux package
managers, where you have a set of keys you trust, which may include trusted vendors as
well as signatures from your organization, and to not allow running unsigned images.

The current implementation is just a beginning, as it only warns on signature failure and
does not block the install of unsigned packages, so it does not really offer any security ben-
efits yet. But it is the beginning of a roadmap; the signed images issue is a good place to
see what is planned and follow the implementation.

61

https://github.com/docker/docker/pull/12648
http://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/
https://github.com/docker/docker/issues/2700

62

CHAPTER 6: Security

Running the docker daemon securely

By default the docker daemon is only accessible from a local Unix domain socket, which
means that access can be controlled locally via the permissions on the socket, and no re-
mote access is possible.

Access to the docker daemon gives full root access on the computer, as you can run a
docker container as root to run any command on the host, so protecting access is impor-
tant.

If you force docker to bind to a tcp port for remote control (rather than for example con-
trol over ssh), using the —H option, then you need to control access with iptables and SSL.
This is not a recommended behavior for most use cases.

Monitoring

Monitoring containers is important in order to know what is going on, including finding se-
curity related issues. We have a chapter on monitoring, so start there in designing your
monitoring strategy.

Devices

If your containers need access to device nodes that provide access to hardware or virtual
devices, use the ——device option to pass through exactly the device that is needed and
set permissions.

For example docker run --device=/dev/snd:/dev/snd:r ... will
pass through the /dev/snd audio device, making it read only in the container.

Device nodes are part of the attack surface, as they allow 1octl access, and there may
be bugs in the underlying kernel driver, especially for unusual devices. So a policy of pro-
viding devices only as needed and with minimal permissions is best.

Mount points

Docker, when it uses the default I ibcontainer driver, is careful to mount necessary
virtual file systems with read-only permissions. If you use the Ixc driver, you need to do this
yourself. Write access to filesystems such as /sys and /proc/bus can lead to host com-
promise if there is root access in the container.

ssh

ssh

Do not run ssh in your containers. Get used to managing them from the host. Not only does
this simplify your containers, but it removes a whole level of complexity of access. Get used
to the tools that Docker provides to let you see what is going on in a container when you
need to.

Simplified containers are much easier to manage, and entering containers from the host
is easy; Docker effectively ends up managing the processes very well, and ssh is not neces-
sary and adds complexity.

Secret distribution

Services need keys in order to access other services, such as keys to access AWS, or to vali-
date whether they can join clusters or access resources. Key management is hard, and is
not yet a solved problem but there are better and worse ways, and useful tools are starting
to appear rapidly.

Keys should be distributed only on an as-needed basis, so if they are discovered, the
least possible access is compromised. Keys should be rotated regularly so a one off breach
becomes time limited. Keys should not be checked into source code, as updating keys
should not require a new deployment, and they will end up in a public github repo.

Being able to audit access to keys is also a desirable goal, so usage can be tracked.

Services that are appearing include Keywhiz from Square, and Vault from Hashicorp.
Kubernetes also has an excellent design document on secret management, which will be
the basis for a secret management framework.

Location

If your services running on one host or virtual machine are all services that have the same
level of access to the same data, then you can potentially worry less about isolation. This is
after all no worse than a monolithic application after all, where there is no real isolation of
components.

While microservices do allow you to build a more secure architecture with high levels of
privilege separation, doing this for applications not having access to sensitive data is not a
priority. You want to concentrate your security efforts where they will bring the most bene-
fit.

User facing services, which face untrusted input, are clearly a weak point and should be
isolated from any access to important data. PCl compliance related endpoints should not
run on the same hosts as other services, and should be isolated to their own cluster to re-
duce the audit boundary.

In the next chapter we will learn all about building images in Docker.

63

https://corner.squareup.com/2015/04/keywhiz.html
https://www.vaultproject.io/
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/secrets.md

Building Images

All containers run off of an image, and consequently, dominating the art of building images
is essential when building your Docker infrastructure.

How you build your images will determine how fast the containers can be deployed,
how easy is to get the logs from the container, how much you can configure them, and how
safe they are. Although the first concern when building an image is that the containers that
run it work as expected, all of these listed factors become very important in production.

Before we get down to the business of building images, we need to understand a few
aspects of how they are implemented.

Not your father’s images

Although on the surface Docker images are not much different from the ones used for Virtu-
al Machines (VM), they are implemented quite differently. VM images provide full filesystem
virtualization: the filesystem in the image can be completely different from the host filesys-
tem where the image resides. VM images are usually implemented as volumes that live as
large files on the host operating system. Once a volume is allocated for the VM, the guest
operating system in the VM will create and format one or more paritions on this volume.
The VM hypervisor will present these files to the guest operating system as a raw disk.

This approach to virtualized filesystems provides a great deal of isolation and flexibility,
but it can be inefficient. For example, you lose efficiency when you run multiple VMs using
the same image or you need slightly different images that all stem from the same base im-
age. The standard approach to cloning a VM has been to create a new copy of the file sys-
tem for the new image so the filesystem in both images can evolve independently. This ap-
proach is costly both in disk space consumed and the time that it takes to create such copy,
and because of this VM vendors have relied on Copy-on-Write techniques to make the use
of images more efficient in these scenarios where the plain copy won’t work well.

65

66

CHAPTER 7: Building Images

Copy on Write and Efficient Image Storage and Distribution

Copy-on-write (CoW) is a technique that saves time and space when creating and running
many processes start from the same baseline data. In the case of virtualization we use CoW
so that if, for example, 20 Virtual Machines (VMs) need to use the same base image you
don’t need to create 20 copies of such image (one per VM). Instead, all VMs can start from
the same image file, which results in much faster startup times and a big save in terms of
the disk space required to run all VMs. CoW makes the guest Operating System (OS) in each
VM believe that they are making changes to the file system in the base image independent-
ly, and it does so by providing each VM an overlay on top of the shared base image that can
be modified independently of the other VMs. Whenever the OS attempts to make a change
to the file system, it does so on this overlay, leaving the base image intact.

When the OS wants to make changes to the file system, the VM, behind the scenes,
copies the disk sector or sectors to be edited onto the overlay and presents these copies to
the guest OS as if they were the original ones. Then, the hypervisor allows the guest oper-
ating system to modify the copies in the overlay, leaving the original sectors in the base
image intact. From there on, the original shared copy of these sectors are not visible to this
VM anymore, only the copies in the overlay. The hypervisor provides the guest OS the ‘illu-
sion’ of a file system that is the result of merging the overlay and the base image, as if it
were a single volume.

Not your father’s images

CentOSs

' CentOS !

Service C Service F

Service B Service E

Docker images are natively based on CoW techniques, and unlike standard VMs, Dock-
er's images are not full virtualized; they are built right on top of the host’s file system.
Whether this approach provides any peformance advantages over full virtualization is up
for debate and depends very much on the use case. For example, CoW in the VM world is
usually sector-based, that is, only the file disk sectors that change on the base image are
copied and edited on the overlay, whereas with Docker the full file is copied and edited, so
if only a portion of a large file changes, the whole file needs to be copied. On the other
hand, with Docker images there is no file system translation needed between the guest and
the host operating systems. What’s important for our discussion of building images in

67

68

CHAPTER 7: Building Images

Docker is that Docker takes the CoW approach a bit further by making it very easy to stack
many CoW overlays to create an image or a family of related images.

Docker leverage of Copy-on-Write

Docker uses CoW for two main purposes. The first one is to allow you to build images inter-
actively, adding one layer at a time. The second has much deeper implications and has to
do with the storage and delivery of images. Most often, when we build our systems, we do
so in a way that all services are based on the same small set of operating systems, even
sharing some basic configuration. Container images in such setups only differ from each
other on the last mile of their configuration, this last mile containing only what makes this
image different from the others, and sometimes containers use the same exact images. In
these scenarios CoW is very effective in saving time and space.

Docker also uses CoW to run each container on an overlay and never directly on the im-
age. The original image is used in Read-Only mode, and any changes that the container
might make to the file system are performed solely on the overlay. You might read the the
Docker literature that Docker images are immutable, and this is exactly what this means:
once an image is created, the image never gets modified, so all you can do is build new
images off of it.

What makes Docker’s usage of overlays really powerful is how these overlays can be
shared across hosts. Each overlay contains a reference to their base image, which is in turn
another overlay. Each overlay has a unique ID, and can optionally have a name and a ver-
sion. Docker images name overlays stored and shared in image repositories. When a con-
tainer is deployed, Docker checks the image required by the container that is already
present in the local repository. If it doesn’t exist locally, Docker checks the image reposito-
ry for this image and pulls references to all of the overlays that are part of the image and
determines which ones of those layers are already on them locally, downloading the miss-
ing overlays.

This approach can reduce the space required to hold all of the images needed in a host,
and can dramatically reduce the download times for new images. For example, in a scenar-
io running 10 containers off of 10 images that all stem from the same base CentOS 7 image,
the host only needs to download the base image once and then each of the 10 different
overlays, as opposed to downloading 10 images each containing a full copy of CentOS 7.
Similarly, downloading an updated image would require only downloading the last few
overlays.

We will discuss in more detail how you can leverage these features later in this chapter,
but first let’s look at the primary aspect of building an image: making it work.

Image building fundamentals

Image building fundamentals

At the most basic level, building a container image (image from here on) can be done in
two ways. The first method is to start a container from a base image (ubuntu-14.04), run a
series of commands inside the container, such as install package and edit configuration
files, and once the image is at the desired state, save it.

Let’s see how it works. In one terminal you start a container running /bin/bash inter-
actively, using a base image of ubuntu. Once at the shell inside the container, we create a
file in the root directory named docker-was-here. This operation should not modify
the base image, instead, the new file is created in this container’s filesystem overlay:

[~1 docker run -ti ubuntu /bin/bash

root@4621ac608b25:/# pwd

/

root@4621ac608b25:/# Is

bin boot dev etc home Llib 1ib64 media mnt opt proc
root run sbin srv sys tmp usr var
root@4621ac608b25:/# touch docker-was-here
root@4621ac608b25:/#

Now, in a second terminal we create a new image based on what is currently on the pre-
vious container, with ID 4621ac608b25 in the previous example.

docker commit 4621ac608b25 my-new-image
6aeffe57ec698e0e5d618bd7b8202adad5c6a826694b26ch95448dda788d4ed8

Finally, we start a new container on this second terminal, this time using our newly cre-
ated image my-new-image. We can verify that the image contains our very own
docker-was-herefile.

$ docker run -ti my-new-image /bin/bash

root@50d33db925e4:/# Is

bin boot dev docker-was-here etc home 1lib [1ib64 media
mnt opt proc root run sbhbin srv sys tmp usr var
root@®50d33db925e4:/# Is -la

total 72

drwxr-xr-x 32 root root 4096 May 1 03:33 .

drwxr-xr-x 32 root root 4096 May 1 03:33 ..

—rWXIr-Xr-x 1 root root 0 May 1 03:33 .dockerenv
—rWXr-Xr-x 1 root root 0 May 1 03:33 .dockerinit
drwxr-xr-x 2 root root 4096 Mar 20 05:22 bin

drwxr-xr-x 2 root root 4096 Apr 10 2014 boot
drwxr-xr-x 5 root root 380 May 1 03:33 dev

-rw-r-—-r-- 1 root root 0 May 1 03:31 docker-was-here
drwxr-xr-x 64 root root 4096 May 1 03:33 etc

69

70

CHAPTER 7: Building Images

drwxr-xr-x 12 root root 4096 Apr 21 22:18 var
root@®50d33db925e4 : /#

Although this interactive method for building build images is quite straightforward, it
does not lend itself to reproducibility and automation. For production settings it is very de-
sirable to automate the building of images in such a way that it can be easily reproduced.
Docker provides a method to do just this, based on a file named Dockerfile.

A DockerfFi le contains a series of instructions for Docker to run in a container in or-
der to generate an image. These instructions can be divided into two groups: the ones that
change the filesystem of the image and the ones that change the metadata of the image.
An example of an instruction that changes the filesystem would be ADD, which will write it
into the image’s file system files from a remote location as defined by a URL, or RUN, that
will run a command on the image. An example of the latter would be CMD, which sets up
the default command with its parameters to run when the container process starts.

When using docker bui ld, Docker starts a temporary container with the base im-
age indicated by the Dockerfile instruction FROM, and then runs each instruction in the
context of the container. For each instruction, Docker creates an intermediate image. This
is to make it easy for the person building the image to do so incrementally: when you
change or add an instruction in the Dockerfile, Docker knows that there haven’t been any
changes in the previous instructions and so it uses the image built after running the last
image.

As an example, this is the Dockerfi le to build the same image that we previously
built interactively, then create a new directory, and inside this directory, create a file
named Dockerfile with the following:

FROM ubuntu
MAINTAINER Me Myself and 1|
RUN touch /docker-was-here

Next we tell Docker to build the image my—-new-image using this dockerfile:
$ docker build -t my-new-image .

Docker by default looks the DockerFile in the current directory. If you are using a
different name or the dockerfile is somewhere else, use —F to tell Docker about the path to
the dockerfile to use:

$ docker build -t my-new-image -f my-other-dockerfile .

Layered File Systems and Preserving Space

As discussed in the previous section, Docker images present a layered architecture where
images consist of a stack of filesystem overlays. Each layer is a set of additions, modifica-

Image building fundamentals

tions and deletions of files from the previous layer. When a layer adds a file, a new file is
created. When a layer removes a file, the file is marked as deleted, but notice that it is still
contained in the previous layer(s). When a layer modifies a file, depending on the storage
driver that Docker is running (more on this later in the storage chapter), either the whole
file is recreated in the new layer, or only some of the disk sectors in this file are replaced by
new ones in the new layer. Either way, the old file is left untouched in the previous layer(s)
and the new layer contains new changes to it. At each layer there is an image that is the
result of sequentially overlaying previous layers on top of the base image. At the top is the
resulting image, which again, is the result of all of the previous layers.

When building Docker images, you usually start with an existing base image, which may
already consist of many layers. Docker runs each instruction in the dockerfile in order,
and at the end of each instruction Docker generates a new layer with the filesystem
changes resulting from running the instruction. This is a great feature because it allows for
the incremental development of images without having to wait for all of the instructions to
run every time. For example, if Docker fails to build an image because the 10th instruction
contains an error, then when you try again to build it after fixing the failing instruction,
Docker will not run again the previous nine instructions. Instead, it will start at the last cor-
rect build layer, and then resume the build starting from the previously failing instruction.
This is a great time saver, since some instructions might run commands that take a while to
complete.

This layered architecture is also advantageous during deployment because when de-
ploying a new image, chances are some of the deeper layers are already on the host, so
only new layers need to be sent over the network. When running many containers off of the
same or similar images, this feature will greatly reduce the time and space it takes to do so.

71

72

CHAPTER 7: Building Images

without with
copy-on-write copy-on-write

Y
Image
v1.2
Image i
i + = + o: Service B
H H

This layered architecture also comes with some caveats that you need to consider in re-
al life scenarios. One is that images never shrink. If an image with all of its layers is 500MB
in the filesystem, any custom image that extends it will be at least 500MB in the filesystem,
even if upper layers remove files present in lower layers.

Image size matters especially when installing these images on hosts, both because the
time it takes for the image to be downloaded to the host depends on it size, but also be-
cause the larger the image the more disk space is needed on the host. Size also matters
greatly during development, as for a new developer, for someone starting with a new set of
Docker hosts or even for Continuous Integration / Continuous Deployment servers, it can
take a large amount of time to download all the images for the containers needed during
development. This can be frustrating considering that Docker is meant to speed up devel-
opment processes.

Image building fundamentals

NOTE: Making images smaller is all the more important if you are deploying a microser-
vices architecture, and most of what follows in this section will not make much of a differ-
ence if you are deploying large VM-like containers, as you probably are using a full fledged
operating system.

START SMALL

Preserving space in images requires starting with the smallest possible base image. At the
extreme, you can start with an empty file system and deploy your OS in there, but this ap-
proach is probably not the most widely used.

The next options are micro-distributions like busybox or alpine. Busybox is a mere
2.5MB and is a bare bones distro initially created for embedded applications. It contains
the bare minimum of Unix utilities to get you going, but you also can create your own busy-
box distro with extra (or removed) commands. Busybox is often good enough of an image
to support running statically-compiled binaries, such as a process written in Go.

Alpine is based on Busybox and extends it by adding a security-focused kernel build and
a package manager named apk, and is based around Musl libc, a lighter and potentially
faster version of libc. Alpine can be used as a general purpose Linux distribution for your
containers, but you will have to work harder to get it configured to your needs: although
Alpine provides a package manager, the list of available packages is much smaller than full
distros like Debian or CentOS. The advantage of Alpine in front of full fledged distros is that
it has many less moving parts, and therefore it’s both smaller and simpler to understand,
and as a corollary, it is also easier to secure.

The next option is using one of the container-optimized versions of mainstream Linux
distributions, like Ubuntu or CentOS. These containers usually run slimmed-down versions
of the full distro, with anything desktop removed and with a configuration that is opti-
mized for production servers. These images are usually a few hundreds of MBs, for example
Ubuntu 14.04 is ~190MB and CentOS 7 is ~215MB, but they provide a full fledged operating
system. This is by far the easiest place to start when building a custom image, since their
support of packaged services is excellent and there is plenty of documentation and how-
tos around the web to look for inspiration. The Docker registry is full of these images, most
of them supported directly by Docker Inc.

It is always a good idea to standardize to one particular image version and use it across
all of the containers possible. If all of the containers in a host have the same base image,
once the first container is downloaded the rest of the containers will download much faster
since they don’t have to re-download the base image layers. Notice though that this only
works when you download an image after the base image is already downloaded. At the
time of writing this, if you download many images in parallel when the base image is not
yet downloaded, the base image will be downloaded once per image since it doesn’t exist
yet in the local repository when the image downloads started.

73

http://www.busybox.net
http://www.alpinelinux.org
http://www.musl-libc.org

74

CHAPTER 7: Building Images

Keeping images small

The next step after choosing a small base image is to keep the image small after running
your Dockerfile.

Each time a command in the Dockerfile is run, a new image layer is generated. When a
layer is generated, a new minimum image size is set: even if you remove files in the next
command in the Docker file, no space will be released and the image size on the once on
host file system won’t shrink.

For this reason, how you organize your commands in the Dockerfile will have an impact
in the final image size. An example of this is installing a package via the package manager:
when you invoke the package manager, its indices get updated, it downloads some pack-
ages to its cache directory, and then it expands packages on a staging area before the files
in the packages are finally put in their final locations on the file system. If you run the pack-
age installation command as is, the cached package files that will never be used will be
part of the image forever. But if you remove them as part of the same installation com-
mand, it will be as if these files never existed.

For example, this is how you can install Scala and perform the clean up in a single step.

RUN curl -o /tmp/scala-2.10.2.tgz http://www.scala-lang.org/
files/archive/scala-2.10.2._tgz \

&& tar xzf /tmp/scala-2.10.2.tgz -C /usr/share/ \

&& In -s /usr/share/scala-2.10.2 /usr/share/scala \

&& for 1 in scala scalc fsc scaladoc scalap; do In -s /Zusr/
share/scala/bin/${i} Zusr/bin/${i}; done \

&& rm -f /tmp/scala-2.10.2._tgz

In the example above, if you were to run the above commands independendtly like this:

RUN curl -o /tmp/scala-2.10.2.tgz http://www.scala-lang.org/
files/archive/scala-2.10.2._tgz

RUN tar xzf /tmp/scala-2.10.2.tgz -C /usr/share/

RUN In -s /usr/share/scala-2.10.2 /usr/share/scala

RUN for i in scala scalc fsc scaladoc scalap; do In -s /usr/
share/scalasbin/${i} Zusr/bin/${i}; done

RUN rm -f /tmp/scala-2.10.2.tgz

the next images would carry the . tgz file, even though after the last command the file
would not be visible in the filesystem.

Making images reusable

There are a two ways to configure the process or processes running inside of a container.
One method is passing the configuration to processes inside the container through envi-
ronment variables. Another is by mounting configuration files and/or directories into the

Image building fundamentals

container. Both methods take place at the container startup time. Both methods are useful
and have their applications, but they are also quite different in nature.

CONFIGURING VIA ENVIRONMENT VARIABLES

When Docker starts up a container, it can forward environment variables to the container
process, which will in turn be forwarded to the process running inside the container. Let’s
see how it works. Start a container and run a command in the shell to print the value of the
environment variable MY_VAR:

$ docker run -e "MY_VAR=docker-was-here" --rm busybox /bin/sh -
c "echo "my variable is $MY_VAR""

my variable is

The environment variable is not predefined in the container, therefore there is no value
for it. Now run the same command inside the container, but this time we are passing an
environment variable to the container via Docker:

$ docker run -e "MY_VAR=docker-was-here" --rm busybox /bin/sh -
c "echo "my variable is $MY_VAR""

my variable is docker-was-here

Ideally the process running inside the container will be fully configurable via environ-
ment variables. Sometimes we containerize services that take their configuration via con-
figuration files. We will discuss how to handle these scenarios in the next section, but for
now we focus on the straightforward use of environment variables.

Using environment variables provides a great deal of isolation between the process and
its configuration, and is considered to be the better approach in 12 factor, a manifesto for
building service-based applications. Docker encourages this pattern by implementing an
option of passing these environment variables to the container at start time.

The benefit of this separation is that you can use the same image regardless of how you
compute the configuration under which you want to run your container. When the contain-
erized process takes all of its configuration via the environment, all of the configuration re-
sponsibilities belong to the process that calls Docker to start the container. This pattern
allows for a great deal of flexibility since the configuration can come hardcoded in the
script starting the container, from a file, from some distributed configuration service, or
even from a scheduler.

75

http://12factor.net/config

76

CHAPTER 7: Building Images

Making an image configurable via environment variables when the
process is not

Sometimes you need to wrap a service that is not configurable via environment variables.
The most common scenario is a process that reads its configuration from one or more con-
figuration files, such as nginx.

USING TEMPLATE FILES

There is a widely used pattern to handle these scenarios: use an entry-point script that
takes the environment variables and generates the configuration files on the file system,
then calls the actual process, which will read those newly generated configuration files at
startup time.

Let’s see an example. This is how you can build a container that sends push notifica-
tions to iOS and Android phones using node-pusherver. For this example, we create a shell
script named entrypoint.sh that will be added inside the container in the docke-
file:

from node:0.10

RUN npm install node-pushserver -g \
&& npm install debug -g

ADD entrypoint.sh /entrypoint.sh

ADD config.json.template /config.json.template
ADD cert-dev.pem /cert-dev.pem

ADD key-dev.pem /key-dev.pem

ENV APP_PORT 8000

ENV CERT_PATH /cert-dev.pem

ENV KEY_PATH /key-dev.pem

ENV GATEWAY_ADDRESS gateway.push.apple.com
ENV FEEDBACK_ADDRESS feedback.push.apple.com

CMD [""/entrypoint.sh™]

This dockerfi le has many default values for environment variables. As you can see,
these environment variables determine, from the service’s own port to MongoDB’s host/
port and also the location of the needed certificates and even the Apple servers to use
(they can be different in development vs. production). Finally, the process that the contain-
erwill run is our own entrypoint.sh, which looks like this:

#1/bin/sh

render a template configuration file
expand variables + preserve formatting

https://www.npmjs.com/package/node-pushserver

Image building fundamentals

render_template() {
eval "echo \"$(cat $1)\""

}

Refuse to start if there is no monogodb prefix
[-z ""MONGODB_CONNECT_URL'™] && echo "ERROR: you need to speci-
fy MONGODB_CONNECT_URL™ && exit -1

escape quotes so that they"re not removed by rendering
cat /config.json._template | sed s/A"/\\\\\"/g > /
config.json.escaped

Render the template

render_template /config.json.escaped > /config.json

cat /config.json

/usr/local/bin/pushserver -c /config.json

There are a few things to note in this script file. First, we define a function ren-
der_template that takes a single variable containing the contents of a file and returns
the same contents, but with the environment variables in it expanded.

Next we have some gatekeeping for failing fast if there is not some key configuration
present. In this case, we are requiring that the caller provides an environment variable
named MONGODB__ CONNECT__URL, for which there is no default.

Finally we have the part that does the generation of the configuration file from a tem-
plate. The template looks like this:

{
“webPort": ${APP_PORT},
"mongodbUrl™: "${MONGODB_CONNECT_URL}",
"apn": {
"'connection': {
"gateway': "${GATEWAY_ADDRESS}",
“cert”: "${CERT_PATH}",
“key": "${KEY_PATH}"
3.
"feedback": {
"address": "${FEEDBACK_ADDRESS}",
"cert": "${CERT_PATH}",
“key": "${KEY_PATH}",
"interval": 43200,
"batchFeedback": true
}
}
}

We escape the double quotes because the super-simple rendering engine ren-
der_template will remove them otherwise. And then, we call render_template,

7

78

CHAPTER 7: Building Images

which takes the file with the escaped double quotes and generates the final configuration
file. This is how it looks:

{
"webPort': 8300,

"mongodbUrl*: "mongodb://10.54.199.197/staging-
pushserver ,mongodb://10.54.199.209?replicaSet=rsO&readPrefer-
ence=primaryPreferred",

tapn': {
“connection™: {
""gateway'': '‘gateway.push.apple.com",
“"cert': "/certs/apn-cert.pem”,
"key': "'/certs/apn-key.pem"

3,
"feedback™: {

"address': 'feedback.push.apple.com™,
“cert': "/certs/apn-cert.pem”,
"key': "'/certs/apn-key.pem",
"interval': 43200,

"batchFeedback™: true

}

Finally, this script calls the actual service via /usr/local/bin/pushserver -
c /config.json, which loads our newly generated config. jsonfile.

MOUNTING THE CONFIGURATION FILES

Notice that the previous configuration file that we generated also loads two certificates,
and even though we could pass those as environment variables too, like with echo $
{CERT} > /certs/apn-cert.pem, in this instance we are supplying them as
mounted files. This is an alternative method for handling these containers that only take
files for their configuration.

When starting a container you can mount local directories and files into the container
filesystem, and this happens before the container process is started. With this in mind, an
alternative way to configure the container above is to run the script that generates the con-
figuration file before starting the container, and then mounting the file inside the contain-
er. The drawback of this approach is that you need to find a proper place on the host where
to write these configuration files, potentially a different version for each container, and
then properly clean up these files when containers are destroyed. Since there is no added
benefit to customizing configuration files outside the container vs. inside the container, the
latter options is preferable since it contains the config files inside the container.

Image building fundamentals

Make images that reconfigure themselves when Docker changes

Sometimes we need some containers to be aware of other containers on the same host,
and provide services to them. An example of this is a container that provides log collection
services, which sends all the other containers’ logs to some log aggregator like Kibana.
Other needs can be related to the monitoring of such containers.

These kinds of containers need access to the host’s Docker process so they can commu-
nicate with it and query about existing containers and their configuration.

Before discussing how to implement such containers, let’s discuss the kinds of problems
these containers can solve using a logging example: we want to send the logs from all con-
tainers to some log aggregation service, and we want to do it from within a container. This
requires us to run a log collection process like logstash or fluentd, and configure it so that
it picks up the logs from each container. Docker usually stores the logs for each containerin
its own directory, following this pattern: /var/log/docker/containers/$CON-
TAINER_ID/$CONTAINER_ID-json. 1og --in this case for json logging.

One solution is to build our own log collector that understands this layout and can talk
to Docker to query about existing containers.

Most of the time though you won’t want to code your own log collector services, and
instead configure an existing one. This means that the configuration for this log collector
will change when new containers are added or removed from the host. Fortunately, there
are already some tools to rebuild configuration files based on information coming from the
host’s Docker server.

One such tool is docker-gen. This tool uses provided templates to generate configura-
tion files based on container information provided by Docker. The templating language
that it offers is powerful enough for most tasks, and the way it operates is that it can either
watch or poll the Docker process for changes in the containers (added, removed, etc.) and
will regenerate the configuration files from the templates any time there is a change.

In our example, we wanted to regenerate the log collector configuration so that the logs
for all containers are properly parsed, tagged, and sent to whatever log aggregator we use.

Let’s see how this works with a real world example using fluendD as a log collector and
ElasticSearch/Kibana as the log aggregator.

First we need to create our log collector container:

FROM phusion/baseimage

Set correct environment variables.
ENV HOME /root

Use baseimage-docker®s init system.
CMD ["/sbin/my_init™]

RUN apt-get update && apt-get -y upgrade \
&& apt-get install -y curl build-essential ruby ruby-dev
wget libcurl4-openssl-dev \

79

https://www.elastic.co/products/kibana
http://logstash.net
http://www.fluentd.org
https://github.com/jwilder/docker-gen

80

CHAPTER 7: Building Images

&& gem install fluentd --no-ri --no-rdoc \

&& gem install fluent-plugin-elasticsearch --no-ri --no-
rdoc \

&& gem install fluent-plugin-record-reformer --no-ri --no-
rdoc

ADD . Zapp
WORKDIR /Zapp
RUN wget https://github.com/jwilder/docker-gen/releases/down-
load/0.3.6/docker-gen-linux-amd64-0.3.6.tar.gz \
&& tar xvzf docker-gen-linux-amd64-0.3.6.tar.gz \
&& mkdir /etc/service/dockergen

ADD fluentd.sh /etc/service/fluentd/run
ADD dockergen.sh /etc/service/dockergen/run

The relevant parts of this Dockerfile is that we install fluentd, and then we install some
plugins for fluentd. The first to send the logs to ElasticSearch, and the other named
record-reformer that let’s us transform and tag the logs before sending them over to
ElasticSearch. Finally, we install dockergen.

Since we need to run both docker-gen and fluentd on the same container, we need
some sort of service supervisor. In this case our image is based off of phusion/base-
image, which is a dockerized and stripped down version of Ubuntu. One of the customiza-
tions that this image offers over stock Ubuntu is that it uses runit as the process supervi-
sor. In the last two lines of our Dockerfile, we have two ADD directives that add the run
scripts for both docker-gen and fluentd. Once the container starts up, these two scripts will
be run and both docker-gen and fluentd will be running and supervised.

The startup script for docker-gen starts docker-gen with the following settings: it will
watch for changes in the containers run by the docker host, and if there is any change, it
will regenerate the file /etc/Fluent.conT from the template Zapp/templates/
Ffluentd.conf_tmpl. Onceitisdone,itwillrunsv force-restart Fluentd,
which forces a restart on fluentd (via runit), which in turn results in fluentd reloading the
new configuration. Here is the startup file for docker-gen:

#1/bin/sh

exec /app/docker-gen \
-watch \
-notify "sv force-restart fluentd” \
/app/templates/fluentd.conf._tmpl \
/etc/fluent_conf

The startup script for fluentd is a bit more straightforward, as it just starts fluentd using
the configuration file /etc/fluent. conf that docker-gen generates:

Image building fundamentals

#1/bin/sh

exec /usr/local/bin/fluentd -c /etc/fluent.conf -v

The next thing we need are the template files that docker-gen uses to generate the con-
figuration for FluentD. This is a non-trivial example used in a real world scenario:

File input
read docker logs with tag=docker.container

{{range $key, $value := _}}
<source>

type tail

format json

time_key time

time_format %Y-%m-%dT%T .%LZ

path /var/lib/docker/containers/{{ $value.ID }}/
{{ $value.ID }}-json.log

pos_file /var/lib/docker/containers/{{ $value.ID }}/
{{ $value.ID }}-json.log.pos

tag docker.container.{{ $value.Name }}

rotate wait 5

read_from_head true
</source>

{{end}}

{{range $key, $value := _}}
<match docker.container.{{ $value_Name }}>
type record_reformer
renew_record false
enable_ruby false
tag ps-{{ $value_Name }}
<record>
hostname {{ $.Env.HOSTNAME }}
cluster_id {{ $.Env.CLUSTER_ID }}
container_name {{ $value.Name }}
image_name {{ $value.lmage.Repository }}
image_tag {{ $value.lmage.Tag }}
</record>
</match>

{{end}}

{{range $key, $value := _}}

<match ps.{{ $value_Name }}>
type elasticsearch
host {{ $.Env.ELASTIC_SEARCH_HOST }}
port {{ $.Env.ELASTIC_SEARCH_PORT }}
index_name fluentd

81

82

CHAPTER 7: Building Images

type_name {{ $value._.Name }}
logstash_format true
buffer_type memory
flush_interval 3
retry_limit 17
retry_wait 1.0
num_threads 1

</match>

{{end}}

There is a lot going on here, but focus on the key aspects of this template. For each con-
tainer, we are generating 3 entries, one of type source and two of type match. The way
we generate these entries in this example is by iterating over each container
({{range ...}}) andbuilding the entry (e.g. <source ...> ... </source>)
for each of them. Inside a range block, we can access the data for the current container
with the variable $value, which is a dictionary that contains all of the information that
Docker has about the container.

For example, in the source entry, we are telling fluentd where to find the log files for
each container. The logs for each container are located inside /var/lib/docker/
containers, inside a directory named after the container’s ID, and in a file also named
after the container’s ID. This is done by:

path /var/lib/docker/containers/{{ $value.ID }}/{{ $value.ID }}-
json.log

We are also tagging the logs coming from this source with the container name, which
will be useful later on for filtering:

tag docker.container.{{ $value.Name }}

The rest of the entries in the template follow the same structure. The first match entry
is used to rewrite the log entry and add some extra information on it, such as the cluster
name and the host name. Both of these values come from environment variables:

hostname {{ $.Env.HOSTNAME }}
cluster_id {{ $.Env.CLUSTER_ID }}

We also add other useful information coming from Docker: the name of the image that
the container is running and the tag for the image. This way, we can filter the logs later on
by the image name and even by the version of this image. This is quite helpful when differ-
ent versions of the same image are displaying different error rates, don’t you agree? These
are the lines that add these tags:

image_name {{ $value.lmage.Repository }}
image_tag {{ $value.lmage.Tag }}

Image building fundamentals

The final match entry sends the log entries to ElasticSearch, and its address and port
also come from environment variables.

Now, with this setup, every time a new container is created or one is destroyed, the
file Zetc/Fluent.conf is regenerated with the above 3 entries for each container.
This way we get the logs from all of the containers to ElasticSearch properly timestamped
and tagged.

Trust and Images

A common and well founded concern when using Docker images is how trustworthy they
are. Docker and other container providers are working hard to provide a high level of trust
on the images that you download and run. This trust comes at two levels. One is whether
the image itself is trustworthy, and that the image is authored by a trusted developer, such
as Docker Inc. or Red Hat. The other level is ensuring that the image downloaded is actual-
ly the image you intended to download. At the time of writing this, Docker still hadn’t pro-
vided an end-to-end chain of trust, although some pieces are there already.

To protect ourselves from running images that contain malware or other risks, the best
we can do now is to build the images by ourselves. Most of the images available are open
source and need the Dockerfiles to generate them. Instead of downloading the image, copy
the Dockerfile, inspect it, and then build the image from this Dockerfile. To be totally cer-
tain that the image is not compromised, you need to follow the image layers all the way to
the base operating system. That is, if an image is based off of an image that is in turn based
on a known OS image, then you need to verify and build the first two.

Make your images immutable

Although the container filesystems are writable, it is always better to treat them as read
only and only write to them at startup time in the cases in which we need to generate con-
fig files. The main reasons for wanting to treat the container filesystems as read only are
that these filesystems are slower than the host’s filesystem, but also because the data can
be easily lost when the container is destroyed. Obviously, if a container runs a database,
you need to write the data somewhere, and in this case you can either use the container’s
own filesystem, or write on a host-mounted volume.

But chances are most of your containers don’t need to write to the file system at all,
since they don’t hold data. In most of these cases, the processes still write to the filesystem
to generate logs.

A common pattern among container practitioners is to write the logs to the process’
standard output instead of logging to the file system. This way, you rely on Docker’s own
log collection to pick up those logs and you don’t need to write to the container’s filesys-
tem anymore. Then on each host you run a log collector process that picks up these
Docker-generated logs and sends them off to a central logging server for archival, analysis

83

84

CHAPTER 7: Building Images

and querying. This pattern is very prevalent when running microservices architectures
where the number of different containers is large and dynamic.

When building images for 3rd party services, sometimes we cannot tell the service to
output the logs to the standard output. For example, most web servers don’t do that. But
there is a relatively easy way to achieve the same behavior: linking the log file to standard
output.

For example, nginXx only writes the logs to log files in the filesystem. In this case, we
instruct nginx to continue to do so:

access_log /var/log/nginx/access.log main;

But in the Dockerfile, we link /Zdev/stdout to this file, so when nginx is writing to
access. log, itisinstead writing to the container’s standard output:

RUN In -sf /dev/stdout /var/log/nginx/access. log

Summary

Understanding Docker’s use of overlay file systems and how to build images that are nim-
ble, configurable, reusable and that play well with the ecosystem provides a good founda-
tion for building an efficient Docker infrastructure. As we’ve shown, sometimes we need to
go a little out of our way to make Docker-friendly images using software designed with
different configuration paradigms and runtimes in mind, but this extra effort pays off in the
long run and it is relatively small compared to the time and headaches it will save us.

One of the key pieces of the Docker infrastructure is the image repository. The next
chapter covers this topic in detail.

Storing Docker Images

If you’ve used Docker in development or production already, you will know that storing im-
ages is one of the easier things to accomplish with Docker images. Docker since day one
has had a central repository that allows you to easily store images. This central model has
made pushing and pulling images trival while allowing engineers to make their code and
services extremly portable. There are three different ways to store Docker images: public,
private, or save/load. Each of these options have their pro’s and con’s so it really depends
on your type of environment, what works best, and company security requirements.

For open source or public projects it’s suggested that you use the public repository. If
you need higher security and better performance the private registry is suggested. If you
need something custom then save/load is the way to go. A company should also consider
the quantity and size of the images being stored. Image sizes are typically several hundred
megabytes in storage so you’ll need to make sure your repository will be performant while
provisioning new containers.

By default when you use Docker to pull or push a image you’ll be using the Docker Hub
unless you specify your local repo. For instance, if you use this command you’ll push direct-
ly from Docker Hub.

- docker push redis

If you specify a namespace before the image name then you can redirect to an internal
private repository. For instance, this command will push from a local repo if repo.do-
main.com is hosted internally.

- docker push repo.domain.com/redis

Let’s dive into each of the ways to store images.

Getting up and running with storing Docker images

The most common way to store Docker images for development and public use is to use
the default repository in hub.docker.com (Docker Hub). You can think of Docker Hub as a

85

86

CHAPTER 8: Storing Docker Images

github for Docker images. It provides a great way to see many different types of images, so
you can star or favorite the best ones, see the contents of the Dockerfile, and even see de-
scriptions or comments about what the image does. It is very easy to get up and running
with Docker hub. All you need to do is create an account and you’ll get a single free reposi-
tory to start using right away. After your account is setup you can push to Docker Hub by
taking a newly built image by typing.

- docker push -t newrepository/webimage
Pulling an image from Docker Hub is also very easy.
- docker pull newrepository/webimage

When using the Public repository you need to be aware of several security settings.
When using Docker Hub, images can be easily made public or private. If you’re storing
source code, security keys, or environment details within your image you should be very
cautious of making the image public. If you have images that contain sensitive information
Docker Hub does provide the ability to secure images by making the repository private (on-
ly accessible via the administrator or collaborators account). It also provides authentica-
tion to protect who can make modifications to your repository and the ability to assign col-
laborators to your repository.

If you’re curious about the technology behind Docker Hub here is a link to a Meetup
presentation done by Jéréme Petazzoni.

If you’re just getting started with Docker try these official images.

Automated builds

Docker Hub offers a not very well known but rather great feature that allows you to get
your container images built automatically by Docker Hub’s servers. To set up the automa-
ted build point the Docker Hub repository to a Github or Bitbucket repository or a pathin a
repository that has a Dockerfile in it.

Once you've set up the automated build Docker Hub will then automatically build the
new container image every time you make a change in the configured source code reposi-
tory. The newly built container image is then pushed to the registry, marked as an automa-
ted build and made available for download.

Benéefits:

« less work for you or your infrastructure

+ automated builds have the base dockerlibrary images automatically updated with
security patches \o/

+ event driven approach (via Webhooks) - the images reflect latest up to date version
of the application code - this is especially useful for the open source projects

http://blog.heavybit.com/blog/2015/3/23/dockermeetup
http://blog.heavybit.com/blog/2015/3/23/dockermeetup
https://registry.hub.docker.com/search?q=library&f=official

Private repository

Private repository

Another common way to store Docker images is the use of a private registry. Docker pro-
vides an open source server to store your images located here. The private registry allows
companies to securely store their images behind their firewalls and VPN’s to make sure
their code and image repository is secure. It’s also very easy to get the private registry up
and running. Here is a link to get started.

When Docker first started out the private registry was part of the main code in Docker.
Since the Docker registry is an extremely important part of its ecosystem they decided to
split the private registry as its own product. Docker has since moved the code to its own
branch and even made it a downloadable Docker image. The private registry has seen bet-
ter days over the past year. If you started out early with Docker you know the private regis-
try has gone from very unstable to now stable with many new improvements and releases.

Now that the private repository is stable many companies have started to use their own
internal registry due to performance improvements and higher security requirements. If
you’re just getting started you should consider some architecture decisions if you’re look-
ing to run your own private registry. You will need to consider the network bandwidth, log-
in credentials, ssl security, monitoring, and disk storage requirements.

Benefits:

+ Speed - Having your repository inside your own network makes the push and pull of
an image much faster.

« Security

Scaling the Private registry

When companies first start using the private registry they quickly install it on a server and
they’re are off and running. Companies soon realize images take up quite a bit of storage,
consume a ton of network bandwidth, and will be exposed to the many file system issues
that ship with the different types of file systems Docker uses (see the Data Storage chap-
ter). If you’re planning on running the private Docker registry in your own network you’ll
need to treat it like a first class server.

When running your own internal private registry. It is recommened to use network
based storage and load balance the repository servers for redundancy. Let’s take a look at
a live production private repository.

This environment has a load balancer, two repository web servers setup in an autoscal-
ing group, and uses S3 for backend storage. The environment consists of 526751 total ob-
jects in the repository. Objects are made up of the images and tags that get stored in the
repository. The total size of this environment in bytes is 2678702030780 which comes out
to 2.43TB of used storage.

87

http://docs.docker.com/docker-hub-enterprise
http://docs.docker.com/docker-hub-enterprise/install/

88

CHAPTER 8: Storing Docker Images

This environment gets consistent bursts of network traffic that can spike up to 1Gbps,
but are typically around 300mbps. Here are some images that capture two weeks of net-
work throughput in and out of the web servers.

It’s not that hard to scale the private registry but you should consider the storge and
networking throughput as you continue to use Docker long term. This we hope gives you a
good idea of the some of the metrics around this environment for when you play to imple-
ment your own. Let’s dive into some deeper areas.

It is also good to check out the administrator’s guide that Docker supplies located here
or the deployment guide located here.

S3

We’ve seen how most of the companies running a private registry use S3 to store their im-
ages. Docker Hub also uses S3 to store their images. The big advantage here is nearly un-
limited storage and the ease of administration. If you’re using an AWS infrastructure the
speed will also be very good since it will be localy routed to the S3 service. This also makes
your private respository server immutable since the persistence storage will be S3 in this
configuration. Allowing you to autoscale and load balance the web portion of your registry.
You can use the S3 storage driver when configurating the private registry in the settings.

LOCAL STORAGE

Local storage is another common way to run the private registry. If you prefer this option or
don’t have an Amazon account you can store the registry files on a local mount point, but
we recommend using a NFS or NAS based mount point so you can scale the reads, writes,
and capacity requirements as you continue to store new images. Using a network-based
storage will also allow you to scale the web portions of your registry. The size requirements
can get out of control fast so make sure to plan accordingly.

Load balancing the registry

A single Docker repository server might not be enough over time due to the network band-
width requirements. Docker was smart and decided to provide a plugable storage driver
architecture in the private registry. This enables you to store the images within a network
based scalable file store (such as S3) so you can load balance web portion of repository.
This enables companies to put the registry images behind a load balancer of your choice.
By putting your repository behind a web load balancer you can easily start to scale the net-
work bandwidth and reduce a single point of failure of a single repositiory server.

http://docs.docker.com/docker-hub-enterprise/adminguide/
https://docs.docker.com/registry/deploying/

Maintenance

Maintenance

Over time you’ll no longer use older images and tags. Currently there is no auto pruning
options in the Docker repository so operational best practices recommend you clean out
unused tags and images on some regular interval. You are not able to delete images or tags
via the Docker API (as of 1.6), so this will require sshing into the machine and cleaning out
old images through the Docker CLI commands.

You will also need to keep in mind the Docker repository is an extremly active project so
you’ll need to keep an eye out for upgrades and new features. Please check the lastest doc-
umentation for information on the proper ways to upgrade the Docker repository.

Making your private repository secure

The Docker private registry is simple to secure on the network since you only need to allow
port 5000. However, it is easy to reconfigure the registry on port 80 or 443 since it is a stan-
dard web server. We recommend following your companies best practice for configuring
your firewalls to block access to only the ports needed.

SSL

You can protect your images from man in the middle attacks with the use of SSL certifi-
cates. There are multiple ways to achieve having your registry secure the transmission with
an SSL certificate. You can use the built in nginx server, configure TLS, or another popular
option is to off-load the certificate on a load balancer. If you’re using AWS for instance, you
can configure an SSL certificate on an Elastic Load Balancer (ELB) and then transmit in http
to registry web servers. Installing an SSL certificate is trivial on the Docker registry. Here is
a link to get you started.

Authentication

Authentication is important to protect your registry from getting invalid or insecure images
uploaded. It also secures the intellectual property of your source code or information pro-
vided in your images. For high secure environments this will be an important factor to con-
sider. There are currently two authentication providers provided in the private registry, silly
and token.

Token based authentication is really the only secure option to choose from. Token
based authentication is a well established authentication paradigm with a high degree of
security that many companies use today. Silly authentication is as insecure as its name im-
plies. Silly authentication just checks for the existence of the Authorization header in the
HTTP request. If you don’t supply a header it will still authenticate.

89

https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/deploying/

90

CHAPTER 8: Storing Docker Images

Save/Load

There is one other way to store images by using the save/load feature that Docker imple-
mented in their pre 1.0 version. Some companies adopted the Dogestry pattern due the
instability of the private registry in the early days and have stayed with it. Today this is the
least preferred way to move images around, but it is certainly possible to use if it fits your
enviornment. You can use the save/load feature by using the built in Docker commands. An
example is to do the following:

« docker build redis

« docker save redis > /tmp/redis_docker_save.tar

« copy the image to your remote server (or use it locally)
« docker load < /tmp/redis_docker_save.tar

By using the save/load commands you can have as much flexiblity as needed. It is possi-
ble to save the image as a tar and upload it to your repository or a network share to be
used centrally. One thing to note, you can use the Export command in Docker. It is slightly
different than Save. The Export command flattens the image, which means it loses the his-
tory and meta-data. It can keep the image smaller in size. Keep this in mind if you use the
save/load methods when moving images around.

Minimizing your image sizes

Docker images can get large in size depending on the dependencies used to build the im-
age. Let’s say for instance you use Ubuntu as a base image and then you use apt-get to up-
date any libraries and then install a package such as nginx. Apt-get will install a bunch of
cached libraries and dependencies that are unnecessary to use after the container is built.
A common pattern is to remove the cached files and directories minimizing your image. If
you find yourself needing to minimize Docker images, you can use a great community
project called docker-squash. Here is a quick example of how to use it.

- docker save <image id> | sudo docker-squash -t newtag |
docker load

We ran docker-squash against a public image in mesosphere/marathon image and was
able to reduce the size by 11%. The initial size when we pulled down the image was
831.7MB. After running docker-squash on the image we created a new one of 736.2MB. The
space improvements can add up over time and also save network bandwidth if you’re look-
ing to improve the storage and performance in your repository.

If you would like to read more on compacting images we also suggest this blog post.

https://github.com/dogestry
https://github.com/jwilder/docker-squash
https://blog.jtlebi.fr/2015/04/25/how-i-shrunk-a-docker-image-by-98-8-featuring-fanotify/

Other Image repository solutions

Other Image repository solutions

As the Docker echo system grows you should also keep in mind other image repositories as
you explore new environments to run Docker.

« Artifactory

- Quay

» Dogestry Updated by New Relic.

» Google Container Repository

« Docker on Azure

In the next chapter we cover how to use CI/CD systems with Docker images.

91

https://www.jfrog.com/confluence/display/RTF/Docker+Repositories
http://quay.io
https://github.com/dogestry
http://googlecloudplatform.blogspot.ca/2015/01/secure-hosting-of-private-Docker-repositories-in-Google-Cloud-Platform.html
http://azure.microsoft.com/blog/2014/10/15/new-windows-server-containers-and-azure-support-for-docker/

CI/CD

Now that you are familiar with building and storing containers, we wanted to briefly talk
about using CI/CD systems with Docker images. Many companies today have adopted
Dev/Ops practices and use an automatic build system such as Jenkins, TravisCl, or Teamci-
ty to automatically build their code. When code is automatically built it’s simple to add the
code to a container within the Docker build process. If you’re thinking of running Docker in
production we highly suggest building your images with an automatic continuous integra-
tion and continuous deployment (CI/CD) build system. The ease of Docker’s build and
push, while combined with a CI/CD system, might be one of the most powerful Dev/Ops
service deployment methods to date.

Docker in its essence is an application delivery framework. Even Docker’s website motto
is build, ship, and run. If you are able to automate the build and ship pieces of your code
delivery process, then you’re most likely able to deliver products to your customers faster.
Developers like to ship code early and often. Companies, however, ship products. Docker
allows the ability to package an entire product into a container providing the ability to not
just ship code early and often but as an entire product. Over the next few years we’ll see
more and more products delivered as a container image instead of a downloaded msi, jar,
or zip file. If you are a company that needs to deliver code faster to customers via a Saas,
or you’re delivering your product as a container, you’ll want to start building Docker im-
ages with your build system.

If your build system already builds your code and artifacts, the next step is to get your
build system building Docker images. Let’s imagine a web container that runs Jetty and
uses a jar from Java code to run its application. A CI/CD system will build the code, package
it up, then deploy the final jar in an artifact location such as Artifactory, a file system, AWS
S3, or store it within its own internal system. At this point, when you build a Docker image
you'll just need to add the JAR file by using ADD code.jar /jetty/bin/
code. jar within the Dockerfile. When the container is running, Jetty just needs to be
configured to use that JAR in /jetty/bin/code.jar to load your application. If you want to
look at an example here is one from Rally Soft.

CICD systems are not only great for building and packaging code, but are also fantastic
at building Docker images. A Docker image just requires the Dockerfile (the code) and a
build command to compile. Once it’s built you just need to ship the package to a reposito-

93

https://www.rallydev.com/blog/engineering/deploying-java-apps-docker-and-armada

CHAPTER 9: CI/CD

ry. A CI/CD system will automate the entire process for you on each commit to Github if it’s
setup to do so. This will allow your developer’s or infrastructure operation’s team to deploy
new components, infrastructure, or applications in an automated deployment system.

Building Docker images with a CI/CD system requires talking to a Docker daemon. A sim-
ple approach is to just install Docker on your build agents, which can then build and then
ship the images. Another option you might have heard about is a term called Docker in
Docker (aka DIND. You can read more about it here in this blog post. But in short, DIND
allows you to send build commands to another Docker daemon to do builds for you. Re-
gardless of the option you choose, you’ll need an automated way to build Docker images
and add your code to it during the build process.

Build systems typically work in steps. Let’s break down a couple of possible builds with
using Docker.

Building a Docker image

1. Pull the latest Dockerfile code from Github.com

2. Runthedocker build -t repo.com/image . tobuildtheimage
3. Ship the image to the repository with docker push repo.com/image

Building a Docker image with code

1. Pull the latest Java code from Github.com
2. Compile and test the Java code with Maven and set the output as code.jar

3. Pull the latest Dockerfile code from Github.com (The Dockerfile has the ADD
code.jar /jetty/bin/code. jar command)

4. Runthedocker build -t repo.com/image . tobuildtheimage
5. Ship the image to the repository with docker push repo.com/image

Building a Docker image with code and integration tests

1. Pull the latest Java code from Github.com
2. Compile and test the Java code with Maven and set the output as code.jar

Pull the latest Dockerfile code from Github.com (The Dockerfile has the ADD
code.jar /jetty/bin/code.jar command)

. Runthedocker build -t repo.com/image . tobuildtheimage

w

. Spin up a test Docker infrastructure

4
5

6. Run full end to end integration tests

7. Spin down the test Docker infrastructure
8

. Ship the image to the repository with docker push repo.com/image

These examples are not that complex, but most of the time it doesn’t need to be. Dock-
er images are super easy to build and ship. The hardest part is understanding Docker and
getting your build system to automatically run the Docker commands. Automating this

https://github.com/jpetazzo/dind
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/

Let everyone just build and push containers!

process will only enhance your engineering outcomes. Let’s cover a couple more topics
around using an automated CI/CD system to build your Docker images.

Let everyone just build and push containers!

So you’ve got your CI/CD system automatically building images and you’re now running
Docker in production. You’ve probably at this point realized that your infrastructure can
run almost any container you throw at it. Why not just have developers build and push a
Docker image to production after they write new code? Or just put that in the build system
and automatically deploy containers to production? This sounds like a fantastic world in
theory but it’s not in reality. An enterprise environment will quickly get out of control, espe-
cially if you unleash every developer to build their own web server container with whatever
code in a Docker image and then hand that image to the operations team to run. The oper-
ations team will throw up their hands and walk out of the building. They will quickly realize
that they have lost control and have no idea what’s in the containers. If they do stick
around they might start asking some questions like: Does it run Jetty? Does it run Nginx?
Does it run Apache? Is the version of the web server the latest? Is it configured with the
latest security hardening best practices? Does it have SSH in it? How does it log? Does it use
a standard logging format? On and On the questions will pursue. Letting everyone build
and push containers is an idea that some teams get, but it often quickly turns into a terrible
practice. We highly suggest taking the higher route and working on standards sooner rath-
er than later.
Here are some standards we’ve come to recognize teams using Docker in production.

Build all images with a build system

If operations or developer teams consistently push images from their workstation, some
information or best practices will be disregarded. Consistency is key to scaling environ-
ments and spreading knowledge. Standards should be well thought out on how you’re go-
ing to build, add to, use, and run Docker containers. Building all of your Docker images in a
central system provides documentation. It’s just like infrastructure as code but for building,
compiling, and packaging your images. It also allows you to start standardizing on where
containers get pushed, what images to base from, code verifications, and much much
more.

Over time your security teams will find out what you’re doing and want to know more.
New approaches to security have been involving security teams more in the build process.
So give your security team access and let them review what’s being built. They can also
leverage tools to test for vulnerable packages, insecure configurations, and even bad prac-
tices such as including secrets in code.

95

96

CHAPTER 9: CI/CD

Suggest or don’t allow the use of non standard practices

Does your Docker image run Apache, Jetty, Nginx, or all three? Does one Docker image run
Gwizard and another run Dropwizard? You should be asking these questions constantly if
you’ve not created an engineering best practice around containers. At some point you or
your operations team will be called into to debug an image thats been long forgotten
about. Having a consistent standard in services or packages you use within your images
will go a long way in the success of your engineering practices. If your engineering team
prefers to run Nginx with Jetty, then use those services to deliver your web services. If your
team prefers to use Dropwizard over Gwizard then use those packages. The faster your
team standardizes on what you put in your images the better your success will be.

Use a standard base image

If you’re following the first and second standard you’ve probably come to the realization
that a default base Docker image is a good idea. Let’s say your team uses Python 2.6 as a
code language. If you have a new developer on the team pull the latest base image of
Python, but it was 3.0, you’ll be bound to run into issues. Setting a practice of inheriting
your images from a standard base image helps a lot. Some teams have started to have
their operations team build base images for them that they then just inherit off of. An ex-
ample is if your operations team creates a base Ubuntu image with the appropriate config-
uration for logging, setup proper security, and installed the correct version of Python 2.6.
The only thing you’re development team needs to do is to use the base image using FROM
and ADD their code into the image during build, like this example:

FROM company.com/python_base:2015 02
ADD code.py /code.py

CMD ["python', "./code.py"]

This drastically simplifies the image creation process along with leaving a lot of the de-
tails to whomever owns and maintains the base image. Providing a standard base image
will allow your operations team to always know what’s running in the containers (most of
the time), it simplifies the build process, allows developers to focus on code, and helps to
scale Docker images on your infrastructure since it creates consistency.

Integration testing with Docker

Docker allows you not to only package your application in an image and ship it, but also
full pieces of infrastructure. Let’s say you run integration tests within your production

Summary

builds and you have a static environment with static data. You’ll most likely build your
code and then run the integration tests against the static environment. In a world with
Docker you can turn that static environment into a dynamic one by integrating Docker im-
ages in your test infrastructure. Docker is very fast to spin up and down along with the ease
of making golden images could power your test infrastructure on demand. When a build is
finished you can run the integration infrastructure on the same agent or another host sys-
tem (calling the Docker API) and then power it back down when finished. This may even
save the company money to keep the static infrastructure up.

To this date we’ve not seen a plethora of innovation in the CI/CD test space with Docker,
but there are new projects starting to emerge. We've seen Docker run Selenium browser
tests inside of images and even provide full end-to-end testing for companies, but there are
no standards we’ve seen yet. We look forward to seeing more come out of this space soon.
If you’re curious about Docker and Selenium check out this github project Docker Seleni-
um.

Summary

Dev/Ops is all about a culture of delivering code and infrastructure as one team. When your
engineering team practices Dev/Ops and is able to use a single system to configure and de-
ploy your Docker images to your infrastructure you’ve begun to enter nirvana. Recently
we’ve seen Jenkins go all in on Docker, along with Docker at DockerCon 15, and even the
Microsoft Visual Studio team has shown off the power of building and deploying applica-
tions and infrastructure with Docker images. We hope to see more and more companies
starting to use Docker within their CI/CD environments and build more best practices.
Configuration management is important with Docker and is covered in the next chapter.

97

https://github.com/elgalu/docker-selenium
https://github.com/elgalu/docker-selenium

Configuration Management

Configuration management (CM) has become a widespread tool in the infrastructure tool-
shed over the last decade, with platforms like Chef, Puppet, and cfengine becoming com-
mon place in most server rooms. CM tooling became ever more important as infrastructure
became more dynamic with the adoption of cloud infrastructure providers like Amazon or
Rackspace. The goal of CM tools is to standardize and automate the tasks of configuring
new servers and update the configuration of existing servers. CM is used for tasks that
range from adding new users to creating complex computer clusters that run Big Data serv-
ices. These platforms need to deal with a large variety of operating systems’ families and
versions, services and use cases. Over time these tools have gained more criticality in the
datacenter, and the kinds of automation builds with them have become more and more
complex. In part, the lure of containers has been fueled by their promise to remove the
complexity from configuration management.

Configuration Management versus Containers

Compared to bare iron servers or Virtual Machines (VMs), the configuration management of
containerized infrastructure is much simpler. When looking at configuration management
from the perspective of how often configuration changes take place, you realize that there
are three different layers of configuration changes, each with different levels of entropy.

At the top level there is the number of hosts that are part of the system, along with their
capacity, configuration, and how they relate to each other. This configurtion seldom
changes except for hardware/VM failures, and usually the change is one of replacing bro-
ken servers with functioning ones.

The second level is the configuration of hosts themselves. This includes installing pack-
ages, applying patches, and writing configuration files. This changes more often than the
previous layer.

Finally, the level that changes more often is the one related to the applications that are
run on the host. This includes bug fixes, optimizations, new features, new versions, new
configuration, and other changes. This is where most of the entropy of modern infrastruc-
ture exists.

10

99

100

CHAPTER 10: Configuration Management

The use of containers makes this difference in rate of change between these three layers
more extreme. Whereas all hosts that run containers look the same and they rarely need to
change, the containers that are run on each host change much more often.

Since a configuration manager’s forté is setting up hosts, these mangers have little work
to do in this new containerized world. Their role thus changes from configuring every as-
pect of a system to only configuring the infrastructure where these services will run, which
ranges from setting up Docker hosts to building Mesos clusters.

This work of setting up the container infrastructure is so much more static, generic and
repetitive that you must ponder whether using a traditional configuration manager is even
a cost worth bearing. These configuration managers are complex and are built to do much
more than what is required now because of Docker, and with this complexity comes a
learning curve, a cost of operation and a cost of customization.

Also, traditional configuration management has become less mission-critical because
most of the configuration changes needed are happening at the Docker container level. If
there are no base infrastructure changes, you don’t need a configuration manager to push
new versions of the services or to push the new configuration of those services.

Configuration Management for Containers

Even though Configuration Management (CM) has become less central in containerized en-

vironments, it is still relevant, and chances are you are not going to work in a fully contain-

erized environment that still requires CM, so integrating containers into it just makes sense.
There are three areas where CM help Docker users:

1. Set up and maintain Docker hosts. This covers from provisioning new hardware with
the base operating system to installing and configuring the Docker process, and
keeping these hosts up-to-date with security patches. This allows users to quickly
setup new hosts to increase capacity and also manage a fleet of Docker hosts’ con-
tainers in a centralized manner.

2. Management of Docker containers and Docker images. This covers everything from
the lifecycle of images (creating them, pushing them, etc.) to running and managing
containers that run these images.

3. Building images. Although Docker provides for a simple way of building images using
Dockerfiles, there already exists a large selection of CM formulas to install and config-
ure most of the software you would run in a container. You can use the mechanisms
that install these kinds of software on VMs to install it on a Docker container, bypass-
ing Dockerfiles.

Of the three functionalities provided by CM tooling, the one that is more pervasive
among Docker users is the first one--setting up Docker hosts. The two others might not be
compelling enough for users who don’t already have an existing CM set up, since they offer
little over what Docker already offers.

Configuration Management for Containers

In this section we’ll explore how some of the most used CM systems that support Dock-
er.

Chef

Chef provides Docker the host installation and management of images and containers via
the docker-chef cookbook. This cookbook is quite complete in its support for the different
Docker host configuration options (storage drivers, daemon startup options, etc.), and also
in its support of host operating systems.

Installation of Docker in the host is as easy as adding the following to your cookbook:

include_recipe "docker”

The management of images and containers is equally straightforward and nicely maps
to docker commands, such as pulling an image is done via a resource like this:

docker_image “nginx-”

This will install the latest nginx image. If instead you want to pull a different version of
the image you do so with:

docker_image “nginx” do
tag “1.9.1°
end

Running containers off of images is not any more difficult. For example, this is how
you’d start a container from the previous image, opening port 80 and mounting a local di-
rectory to /www:

docker_container “nginx" do
detach true
port “80:80*
volume "/mnt/docker:/www*
end

Finally, you can operate containers in the same way you would do with Docker. This, for
example, would be run to commit the current container as a new image named my-
company/nginx:my-new-version

docker_container “nginx" do
repository “my-company”
tag “my-new-version®
action :-commit

end

101

https://github.com/bflad/chef-docker

102

CHAPTER 10: Configuration Management

There is much more functionality in this cookbook that maps to existing Docker func-
tionality like push, cp, export, and more, but the gist is always the same and it maps neatly
the functionality that the Docker binary offers.

Chef also offers functionality to build images using their standard configuration infra-
structure. What they provide is a Chef Container, a Docker image that has the Chef agent
installed and configures images to run a full operating system with runit as the process su-
pervisor. Containers running this image will connect to a Chef server and configure them-
selves with the predetermined cookbooks. This offers a nice transition from the VM/bare
metal world to Docker, allowing you to use the same cookbooks across VMs, containers
and bare metal servers.

There are many other cookbooks that the Chef community provides to automate the
configuration of other pieces in the Docker ecosystem, including service discover (etcd,
consul, etc.), schedulers and resource managers like Mesos and Kubernetes. They even pro-
vide a docker-api gem to allow Chef recipes to talk directly to the Docker process via its
API.

In summary, if you are already a Chef user, you probably want to explore what Chef of-
ffersin the realm of containers. Chef can offer a straightforward migration path from your
current infrastructure to containers, and once in Docker world, the use of Chef will depend
mostly on environmental factors (like having other users in the company) and how deeply
you embrace the Docker philosophy of moving away from VMs into single process contain-
ers.

Ansible

Similarly to Chef, Ansible provides support for Docker that ranges from host configuration
to image and container management.

Ansible’s approach to configuration management fits well with Docker in that they’re
both quite simple and direct. Whereas Chef and Puppet have a master/server architecture
(offering standalone side-projects) where an agent running inside the machine (and con-
tainer) pulls changes in the configuration needed, Ansible offers a much more direct ap-
proach where configuration is pushed from a remote machine on to the target machine via
SSH. This approach fits a bit better with Docker than the agent model.

Installing Docker on a host with Ansible is straightforward. Although Ansible does not
provide an official playbook for this matter, you can find some inspiration from the dock-
er.ubuntu role from Paul Durivage that installs Docker on Ubuntu. For example, to install
Docker so it listens on port 7890 you add this to your Ansible playbook:

- name: Install Docker on Port
hosts: all
roles:
- role: angstwad.docker_ubuntu
docker_opts: "-H tcp://0.0.0.0:7890"
kernel_pkg_state: present

https://github.com/chef/chef-container
https://github.com/angstwad/docker.ubuntu
https://github.com/angstwad/docker.ubuntu

Configuration Management for Containers

Ansible does provide official support for managing docker hosts: the [Docker mod-
ule(http://docs.ansible.com/docker_module.html)]. With this module you can manage
images and create/start/stop/delete containers, which is pretty much everything you can
do directly with Docker. When it comes to containers, you can also specify restart policies
that will determine what Ansible needs to do when a container fails. Ansible’s Docker mod-
ule also provides nice management facilities when you have multiple containers. You can,
for example, address all of the containers that run the same image and restart them.

You can add Docker operations directly to your playbook. For example, with the follow-
ing in your playbook, Ansible will ensure the image myimage:1.2. 3 is downloaded and
a container named mycontainer is created, with a volume in /Zusr/data and run-
ning the downloaded image:

- name: data container
docker:

name: mycontainer
image: myimage:1.2.3
state: present
volumes:
- /usr/data
command: myservice --myparam myvalue
state: started
expose:
- 1234

The rest of the options should be self-explanatory at this point. The container will run
the command my-service at startup, with the parameters ——myparam myvalue.
The container will also expose port 1234.

Another example would be to restart all existing containers in a host that is running the
exact same image. For example, to restart all containers runningmyimage:1.2.3 you'd
add the following to your playbook:

- name: restart myimage:1.2.3
docker:
image: myimage:1.2.3
state: restarted

Another way in which Ansible can help with your Docker infrastructure is by building im-
ages from playbooks. For this to work, you need to create a Dockerfile that sets up Ansible
locally and copies the playbook to run, and then run it:

FROM ubuntu

install ansible

RUN apt-get -y update

RUN apt-get install -y python-yaml python-jinja2 git

RUN git clone http://github.com/ansible/ansible._git Zusr/lib/
ansible

103

http://docs.ansible.com/docker_module.html

104

CHAPTER 10: Configuration Management

WORKDIR Zusr/lib/ansible

ENV PATH Zusr/lib/ansible/bin:/sbin:/usr/sbin:/usr/bin
ENV ANSIBLE_LIBRARY /usr/lib/ansible/library

ENV PYTHONPATH /Zusr/lib/ansible/1ib:$PYTHON_ PATH

Download copy the playbooks and hosts
ADD playbooks Zusr/lib/ansible-playbooks
ADD inventory /etc/ansible/hosts
WORKDIR Zusr/lib/ansible-playbooks

Run the playbook to let Ansible configure the image
RUN ansible-playbook my-playbook.yml -c local

Other docker config
EXPOSE 22 4000
ENTRYPOINT [“myservice’]

With the Dockerfile above you can push all of the configuration affairs into the play-
books that will be copied into the image, and Ansible will take care of everything else. This
is very convenient when you already have those playbooks and have no desire to redo the
configuration automation work directly in the Dockerfile.

The official Docker module also offers functionality for image management, like push-
ing, pulling, the removal and the download of images. Notice though that most of these
functions are equally easy to achieve by having Ansible run the Docker CLI directly.

Salt Stack

As of version 2014 .7 .0 Salt Stack has complete support for Docker, ranging for support
for the main Docker operations to getting information from Docker into Salt Mine.

Salt provides the DOCKER 10 module to manage Docker containers. With it, you define
the desired Docker states and the Salt Minions will take care of contacting Docker to ach-
ieve the desired state. For example, if you want a state that represents a container named
mycontainer that runs the image myorg/myimage:1.2.3, you can define the de-
sired state as the following:

my_service:
docker.running:

- container: mycontainer
- iImage: myorg/myimage:1.2.3
- port_bindings:
5000/ tcp™:
Hostlp:
HostPort: "5000"

Configuration Management for Containers

The rest of the Docker operations are similar. As in the case of Ansible, operating Docker
via its CLI with Salt Stack is fairly easy too. For example, following is roughly equivalent to
the previous state:

my_service:
cmd.run:
- name: docker run -p5000 --name mycontainer
myorg/myimage:1.2.3

Puppet

You can install and manage Docker hosts, images and containers with Puppet through the
very complete Docker Module provided by Gareth Rushgrove. This module makes operat-
ing Docker quite simple if you are already running Puppet.

Installing Docker itself is fairly easy and the installation works with Ubuntu 12.04 and
14.04 and Centos 6.6 and 7.0, although it might work unmodified on other Debian- and
RHEL-based distros. This is how you go about installing the latest Docker on a host:

include "docker”
class { "docker":
version => "latest”,

}

The installation class has many options, for example you can change the port that Dock-
er will bind, or even where the socket gets created:

class { "docker-:
version => "latest",
tcp_bind => "tcp://127.0.0.1:4243",
socket_bind => "unix:///var/run/docker.sock”,

}

Once Docker is installed, managing its images and containers is also quite straightfor-
ward. For example, pulling our image is done with:

docker::image { "myorg/myimage”:
image_tag => "1.2.3"
}

and removing it is done with:

docker::image { "myorg/myimage”:
ensure => "absent”,
image_tag => "1.2.3"

}

105

https://forge.puppetlabs.com/garethr/docker/readme

106

CHAPTER 10: Configuration Management

Running a container is not much more difficult:

docker::run { "myservice":
image => "myorg/myimage:1.2.3",
command => "myservice --myparam myvalue®,

}

docker: zrun has many more configuration options that map nicely to standard
Docker run options, like exposed ports, environment variables, restart policies, etc. It also
provides some options that transcend Docker itself, like container dependencies. These de-
pendencies are coded into initd or systemd.

Finally, a handy feature in this module provides the ability to run exec commands in-
side running containers:

docker::exec { "myservice-Is":

detach => true,
container => "myservice",
command = "lIs",
tty => true,
}
Summary

Current CM tooling offers some level of Docker support. Whether this support is sufficient
and whether the cost of using these tools compensates the benefits is up to your own cir-
cumstances. Certainly these tools offer some transition for companies that have already
made the investment in them for managing VMs.

Docker storage drivers provide Docker with efficiency, and they are covered in the next
chapter.

Docker Storage Drivers

One of the biggest benefits of using Docker is the speed of starting new containers from an
existing image. Historically, LXC containers, out of which Docker has evolved, would make
a full physical copy of the image root filesystem into a separate path on the host for each
newly created container. This was obviously quite inefficient. The disk space usage grew
with each newly created container and container start time would take several seconds de-
pending on the amount of data that needed to be copied from one path to another. Docker
addressed both of these issues by using layered images.

On a high level, image layers are simply filesystem trees, which can be mounted and
modified when needed. New image layers can be created either from scratch or from an
existing layer also called a parent layer. Image layer created from an existing layer is an
exact copy of it - both the parent and the new layer can be addressed by Docker via the
same unique name. Once you’ve modified the new layer, a new unique name is generated
and assigned to it. From this moment on, the parent layer stays untouched and the further
modifications are made only to the new layer. If this reminds you of the well known Copy
on write (CoW) mechanism then you would be spot on!

To implement the image layering, Docker relies on various CoW filesystems, some of
which are included in the mainline Linux kernel. Instead of making a full copy of a parent
image, Docker only keeps track of the changes (called diffs) between the parent and the
layers created from it. This provides for quite a huge disk space savings. The image filesys-
tems grow only by the size of the diffs between the image layers.

Docker applies the similar concepts to containers. Every container has two layers:

« init layer - layer based on the parent image layer; it contains few files that must exist
in every Docker container: /etc/hosts, /etc/resolv.confetc.

« container filesystem layer - layer based on the init layer; it contains the data stored
in the container.

Docker exposes the image layers via its remote API, which provides for some handy fea-
tures like container versioning and image tagging. If you want to save a layer from a con-
tainer you simply invoke docker commit container_id and Docker finds all of
the changes applied from the init layer all the way to the container layer, and creates a
new layer on top of the parent layer. You can tag the committed layers and either build new

107

11

https://linuxcontainers.org/
http://en.wikipedia.org/wiki/Copy-on-write
http://en.wikipedia.org/wiki/Copy-on-write

108

CHAPTER 11: Docker Storage Drivers

images or start new containers from them. By applying the same CoW concept to the con-
tainer filesystems, Docker offers super fast container start times.

A picture is worth a thousand words - if you are interested in evaluating image layers of
any Docker images stored in Docker Hub you can use the fantastic Image Layers tool cre-
ated by Centurylink Labs, which allows you to inspect available image layers manually
and provides even more functionality.

Now that we have covered the basics of how Docker deals with image and container file-
systems, we will evaluate all of the storage driver options provided by Docker on the fol-
lowing lines. We will dive deep into some of the core concepts to give you a better under-
standing and show a few practical examples so you can follow them by running the com-
mands listed in each of them directly on your Docker host.

Docker provides quite a few storage drivers out of the box. All you need to do is to pick
one of them. Once you have decided which storage driver to use, you need to tell it to the
Docker daemon by passing a —-—storage-driver command line flag via the DOCK-
ER_OPTS environment variable. As always, you must restart the daemon in order to pick
up the new configuration. We will start our exploration of the storage drivers by looking at
the driver that is enabled in Docker by default: aufs.

AUFS

As mentioned earlier auFs is the default storage driver provided by Docker. The reason for
this is partly because the Docker team were using it to run containers at dotCloud, so they
have acquired a solid knowledge and operational experience running it in production set-
up.

As the name [suspiciously] suggests, aufs uses the AUFS filesystem for the image and
container storage. AUFS works by “stacking” multiple filesystem layers called branches on
top of each other and making them available to the user via a single mount point as one
filesystem. Each branch is a simple directory containing regular files and metadata. The
topmost branch is the only read-write layer. AUFS relies on metadata to look up files
across all of the stacked layers. The lookup always starts at the top and if read-write opera-
tion is required, the file is copied to the topmost layer. This can take a significant amount of
time when the file is too big.

So much for the theory. Let’s have a look at a practical example to show how Docker
uses the AUFS storage driver. First we will make sure that auFs is indeed in use by inspect-
ing the Docker setup:

sudo docker info

Containers: 10

Images: 60

Storage Driver: aufs

Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs

https://imagelayers.io/
http://www.centurylinklabs.com/
https://www.dotcloud.com/
http://aufs.sourceforge.net/

AUFS

Dirs: 80
Execution Driver: native-0.2
Kernel Version: 3.13.0-40-generic
Operating System: Ubuntu 14.04.1 LTS
CPUs: 1
Total Memory: 490 MiB
Name: docker-hacks
ID: DK4P:GBM6:NWWP :VOWT : PNDF : AG6E : B4FZ - XMXA-LSNB:JLGB:TUOL:J31IH

As you can see, the base image directory of AUFS driver is /var/lib/docker/
aufs. Let’s explore its contents:

Is -1 /var/lib/docker/aufs/

total 36

drwxr-xr-x 82 root root 12288 Apr 6 15:29 diff
drwxr-xr-x 2 root root 12288 Apr 6 15:29 layers
drwxr-xr-x 82 root root 12288 Apr 6 15:29 mnt

If you haven’t created any containers yet, all of the above directories will be empty. Like
the name suggests, the mnt subdirectory contains the mount points for the filesystems of
the containers. These are only mounted when the container is running. So let’s create a
new container and see this in practice. We will run the top utility inside the new Docker
container to keep it running until we stop it:

docker run -d busybox top

Unable to find image "busybox:latest” locally

511136ea3c5a: Pull complete

df7546F9f060: Pull complete

eal3149945cb: Pull complete

4986bT8c1536: Pull complete

busybox:latest: The image you are pulling has been verified. Im-
portant: image verification is a tech preview feature and

should not be relied on to provide security.

Status: Downloaded newer image for busybox:latest
£534838e081ea8c3fc6c76aa55a719629dccbf7d628535a88be0b3996574Fa47

As you can see from the above output, the busybox image consists of five image layers
that translate into 5 AUFS branches. AUFS branches are stored in the di FF directory and
you can easily verify that each subdirectory of the d i FF directory corresponds to each of
the above image layers:

Is -1 /var/lib/docker/aufs/diff/

511136ea3c5a641264b78b5433614aec563103b4d4702F3ba7d4d2698e22¢c158
df7546191060a2268024c8a230d8639878585defcclbc6f79d2728a13957871b
eal3149945cb6ble746b128032F02e9b5a793523481a0a18645fFc77ad53c4ea2
4986bT8c15363d1c5d15512d5266F8777bfbad974ac56e3270e7760F6f0a8125
534838e081ea8c3fc6c76aa55a719629dcchf7d628535a88be0b3996574Fad7

109

110

CHAPTER 11: Docker Storage Drivers

¥534838e081ea8c3fc6c76aa55a719629dccbf7d628535a88be0b3996574Fa47-
init

You can also see that the init layer has been created from the topmost layer when we
started the container as discussed at the beginning of this chapter. Now that the container
is running, its filesystem should be mounted, so let’s verify that:

grep 534838e08le /proc/mounts

/var/lib/docker/aufs/mnt/
534838e081ea8c3fc6c76aab5a719629dcchf7d628535a88be0b3996574Fad7
aufs rw,relatime,si=fa8a65c73692f82b 0 O

The mount point of the running container filesystem maps to /var/lib/docker/
aufs/mnt/container_id and that is mounted in read-write mode. Let’s modify the
filesystem of the running container by creating a simple file in it (/etc/test) and com-
mit it afterwards:

docker exec -it 534838e08le touch /etc/test
docker commit ¥534838e081e
41F22ae4060997F14703b49edd8dc1938438F1ce73070349a4d4413d16a284e2

The above should create a new image layer containing the new file and storing the diff
in a particular diff directory. This is easy to verify by listing the d i £F subdirectories:

find /var/lib/docker/aufs/diff/
41F22ae4060997F14703b49edd8dc1938438F1ce73070349a4d4413d16a284e2/
-type T

/var/lib/docker/aufs/diff/
41£22ae4060997F14703b49edd8dc1938438F1ce73070349a4d4413d16a284e2/
etc/test

You can now start a new container from the above created image layer that contains
the /etc/testfile:

docker run -d
41F22ae4060997F14703b49edd8dc1938438F1ce73070349a4d4413d16a284e2
top
9celbef93b3ac8c3d37118cO0cTf08ea698c66c153d78e0d8ab040edd34bcOed9
docker ps -q

9ceObef93b3a

534838e081e

Verify that the file is present in the newly created container:

AUFS

docker exec -it 9ceObef93b3a Is -1 /etc/test
-rw-r-—-r-- 1 root root O Apr 7 00:27 /etc/
test

Let’s have a look what happens when we delete a file and commit the container:

docker exec -it 9ceObef93b3a rm /etc/test
docker commit 9ceObef93b3a
e3b7c789792da957¢c4785190a5044a773¢c972717f6c2bas555a579ee68F4a4472

When you delete a file, AUFS creates a so called “whiteout” file, which is basically a
renamed file with a “wh.” prefix. This is how AUFS marks the files as deleted. This is very
easy to verify by inspecting the contents of this particular image layer directory:

Is -a /var/lib/docker/aufs/diff/
e3b7c789792da957¢c4785190a5044a773¢c972717f6¢c2bas555a579ee68F4a4472/
etc/

. .. .wh.test

The hidden file is physically present on the host filesystem, but when you start a new
container from the above created layer, AUFS magic kicks in and this file will not be present
in the running container filesystem:

docker run --rm -it
e3b7c789792da957¢c4785190a5044a773¢c972717f6c2bas555a579ee68F4a4472
test -f /etc/.wh.test || echo "File does not exist"

File does not exist

This concludes our tour of the aufs storage driver. We looked at how Docker uses
some of the features provided by the AUFS filesystem for creating containers and showed
some practical examples. We will finish this chapter by a short summary and move on to
discuss another storage driver.

AUFS mounts are very fast and they provide for the very fast creation of new containers.
They also offer native read/write speeds. This makes it a decent and battle tested option to
run your containers. AUFS performance can suffer when used in scenarios that require writ-
ing big files, so using aufs storage driver to store database files is probably not a great
idea. Similarly, too many image layers can lead to long file lookup times, so try not to go
overboard with the image layers in your containers.

While you can work around the previous deficiencies (for example by volume mounting
the data directories and squashing image layers), the biggest problem with aufs storage
driver is that the AUFS filesystem has never been included into the mainline Linux kernel
and most likely never will be. Therefore it’s not available on the majority of Linux distribu-
tions and its use often requires some hackery, which is not very convenient for users and
makes applying updates to the Linux kernel even more painful than it already is. Even
Ubuntu, who were shipping AUFS support in their kernel decided to disable it in version

111

https://lists.ubuntu.com/archives/ubuntu-devel/2012-February/034850.html

112

CHAPTER 11: Docker Storage Drivers

12.04 and encourage users to migrate to OverlayFS, which has been included in Ubuntu
kernel from version 11.10 and which is being actively developed. We will talk more about
about OverlayFS later in this chapter. Let’s discuss another storage driver that builds on
quite mature Linux storage technology: devicemapper.

DeviceMapper

Devicemapper is an advanced storage framework provided by Linux kernel, which maps
physical block devices into virtual block devices. It is the underlying technology used by
LVM2, block level storage encryption, multipathing and many other linux storage tools.
You can read more about devicemapper in the official Linux kernel documentation. In this
chapter we are going to focus on how Docker uses devicemapper to manage the container
and image storage.

devicemapper storage driver uses the devicemapper’s thin provisioning module to
implement the image layers. On a high level, thin provisioning (also known as thinp) pro-
vides a pool of raw physical storage [blocks] out of which you can create virtual block devi-
ces or virtual disks of arbitrary size. The “magic” trick with thinp is that these devices are
not taking any disk space, or the raw storage blocks won’t be marked as used until you
actually start writing data into them.

Additionally, thinp is capable of creating volume snapshots. You can also create a
copy of an existing volume and the new snapshot volume won’t take any extra storage
space. Again, the extra storage will only be allocated from the storage pool once the you
start writing into it.

The thin provisioner uses two block devices:

+ data device - a storage pool device, generally quite large

+ metadata device - stores information about mappings between the storage blocks
in created volumes (including snapshots) and storage pool

Copy on write in the devicemapper storage driver will happen on a block device lev-
el as opposed to a filesystem level, which is the case with auFs driver. When the Docker
daemon starts, it automatically creates two block devices required by the thin provisioning
to work:

+ device for the storage pool
« device to hold the metadata

By default these devices are just sparse files backed by a loopback device. These files
are 100GB and 2GB in size, but because they are sparse they don’t actually use much disk
space on the host.

A practical example will provide a better understanding of these concepts. First we need
to tell Docker daemon to use the devicemapper storage driver by setting the DOCK-

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
http://sourceware.org/lvm2/
http://en.wikipedia.org/wiki/Linux_DM_Multipath
https://www.kernel.org/doc/Documentation/device-mapper/
https://www.kernel.org/doc/Documentation/device-mapper/thin-provisioning.txt
http://en.wikipedia.org/wiki/Sparse_file

DeviceMapper

ER_OPTS environment variable accordingly and then restarting the daemon. Once the
daemon has restarted we can verify it is now using the devicemapper storage driver:

docker info
Containers: 0
Images: O
Storage Driver: devicemapper
Pool Name: docker-253:1-143980-pool
Pool Blocksize: 65.54 kB
Backing Filesystem: extfs
Data file: /dev/loop0
Metadata file: /dev/loopl
Data Space Used: 305.7 MB
Data Space Total: 107.4 GB
Metadata Space Used: 729.1 kB
Metadata Space Total: 2.147 GB
Udev Sync Supported: false
Data loop file: /var/lib/docker/devicemapper/devicemapper/data
Metadata loop file: /var/lib/docker/devicemapper/devicemapper/
metadata
Library Version: 1.02.82-git (2013-10-04)
Execution Driver: native-0.2
Kernel Version: 3.13.0-40-generic
Operating System: Ubuntu 14.04.1 LTS
CPUs: 1
Total Memory: 490 MiB
Name: docker-book
ID: 1ZT7:TU36:TNKP:RELL:2Q2J:CA24:0K6Z:A5KZ:HP5Q:WBPG:X4UJ:WB6A

Let’s explore the /var/lib/docker/devicemapper/ directory where all of the
devicemapper action happens:

Is -alhs /var/lib/docker/devicemapper/devicemapper/
total 292M

4_0K drwx------ 2 root root 4.0K Apr 7 20:58 .

4_0K drwx------ 4 root root 4.0K Apr 7 20:58 ..

291IM -rw-—---——-— 1 root root 100G Apr 7 20:58 data
752K —-rw--—-—-—- 1 root root 2.0G Apr 7 21:07 metadata

As you can see in the output above, data and metadata files created by the Docker
daemon use very little disk space. We can confirm that these files are actually backed by
loopback devices by running this command:

Isblk

NAME MAJ:MIN RM SIZE RO TYPE
MOUNTPOINT

loopO 7:0 0O 100G O loop

docker-253:1-143980-pool (dm-0) 252:0 0 100G O dm

113

114

CHAPTER 11: Docker Storage Drivers

docker-253:1-143980-base (dm-1) 252:1 0 10G O dm
loopl 7:1 (0] 2G 0 loop
docker-253:1-143980-pool (dm-0) 252:0 0 100G O dm

docker-253:1-143980-base (dm-1) 252:1 0 10G O dm

In addition to creating the sparse files for thin provisioning, the Docker daemon also
creates a “base device” on the thin pool containing an empty ext4 filesystem. All of the
new image layers are a snapshots of the base device, which means that every container
and image gets its own block device. At any point in time you can create a snapshot of any
existing image or container. By default the size of the base device is set to 10GB, which is
the maximum size the containers and images can take, but due to thin provisioning the us-
age footprint is actually much smaller. You can easily verify the existence of the base device
by running this command:

dmsetup Is
docker-253:1-143980-base (252:1)
docker-253:1-143980-pool (252:0)

Let’s create a simple container and do a bit of exploring like we did with the aufs driv-
er:

docker run -d busybox top

Unable to find image "busybox:latest® locally

511136ea3c5a: Pull complete

df7546F9f060: Pull complete

eal3149945chb: Pull complete

4986b¥8c1536: Pull complete

busybox: latest: The image you are pulling has been verified. Im-
portant: image verification is a tech preview feature and

should not be relied on to provide security.

Status: Downloaded newer image for busybox:latest
5a805967279e0e07c597c0607afe9adb82514d6184F4fed4c24Ff064el1fda8c0l

If we list the /Zvar/lib/docker/devicemapper/mnt/ directory we will find a
list of directories for each image layer:

Is -1 /var/lib/docker/devicemapper/mnt/
511136ea3c5a641264b78b5433614aec563103b4d4702F3ba7d4d2698e22¢c158
df7546191060a2268024c8a230d8639878585defcclbc6f79d2728a13957871b
€al3149945cb6b1e746bT28032F02e9b5a793523481a0a18645fFc77ad53c4ea2
4986b18c15363d1c5d15512d5266F8777bfbad974ac56e3270e7760F6F0a8125
5a805967279e0e07c597c0607afe9adb82514d6184F4fe4c24Ff064elfda8cOl
£5a805967279e0e07c597c0607afe9adb82514d6184F4fe4c24Ff064elfda8cO0l-
init

These directories serve as mount points for a particular devicemapper image layer. Un-
less a particular layer is mounted, for example when a container is running, you will find

DeviceMapper

the contents of its directory completely empty. You can easily verify this by checking the
mount point of the running container:

docker ps -q

£5a805967279

grep f5a805967279 /proc/mounts
/dev/mapper/docker-253:1-143980-

T5a805967279e0e07c597c0607afe9adb82514d6184F4Fed4c24F064el1fda8c0l /

var/lib/docker/devicemapper/mnt/
£5a805967279e0e07c597c0607afe9adb82514d6184F4fed4c24f064el1fda8c0l
extd rw,relatime,discard,stripe=16,data=ordered 0 0O

If you now list the content of the above directory you will find the contents of the con-
tainer filesystem inside it. Once you stop the container, its backing block device will be un-
mounted and the contents of the mount point directory will be empty:

docker stop 5a805967279

5a805967279

Is -1 /var/lib/docker/devicemapper/mnt/
5a805967279e0e07c597c0607afe9adb82514d6184F4fe4c24Ff064el1fda8cOl
total O

This means that when using the devicemapper storage driver, you don’t have much
visibility of the diffs between the image layers.

Furthermore, when using the devicemapper driver by default Docker will use sparse
files for container and image backend storage. This has a significant impact on the perfor-
mance. Each time a container modifies its filesystem, new storage blocks have to be alloca-
ted from the storage pool, which in the case of sparse files can take some time. Now imag-
ine running hundreds of containers each of which is modifying its filesystem.

Luckily, Docker allows you to use real block devices for both the data and metadata de-
vicemapper devices by using particular command line options passed to the Docker dae-
mon via the -—storage-opt command line switch. These are:

. dm.datadev for data block device
. dm.metadatadevV for metadata block device

You should ALWAYS use real block devices for both the data and metadata when using
devicemapper driver in production setups. This is especially important when you are
running a lot of containers!

You can read about all available options provided by devicemapper driver on the
following link.

TIP: If you are thinking of switching from the au¥s driver to the devicemapper driver,
you must first save all images to separate tar files by running docker save, and once the
devicemapper driver has been been picked up by Docker daemon you can easily load the
saved images in by running docker load.

115

https://github.com/docker/docker/tree/master/daemon/graphdriver/devmapper

116

CHAPTER 11: Docker Storage Drivers

As you can see, the devicemapper storage driver provides an interesting container
storage alternative in Docker. If you are familiar with LVM and its rich toolset, you can easily
manage the Docker storage in the familiar way. However, as always there are some caveats
you must keep an eye on when you decide to use this driver:

- devicemapper driver requires at least basic operational knowledge of device-
mapper subsystem

« changing any of the devicemapper options requires stopping the Docker dae-

mon and wiping out contents of the /var/ 1 ib/docker directory

by default the size of the container filesystem is set to 10GB as discussed earlier (you

can change this via dm. basesize when the daemon starts)

expanding the size of the running container that has outgrown the configured base
device size is quite laborious

+ you can’t easily expand the size of the image - committing a container which is bigger
than its base size is not easy

Now that you have a pretty good idea about how to use the devicemapper driver,
it’s time to move on to discuss the next option that builds on a filesystem that has been
making waves (positive and negative) in the Linux community for quite a while: btrfs.

btrfs

It does not take a rocket scientist to guess that the btrfs storage driver uses the btrfs
filesystem to perform the Docker’s copy on the write image layer magic. In order to under-
stand the btrFs storage driver let’s take a short tour of some btrfs filesystem features and
then have a look at some practical examples of how they are used in Docker.

btrfs is an overlay filesystem that has been in the mainline Linux kernel for quite
some time, but somehow it still has not reached the quality or the maturity required from a
production filesystem. It has been designed to compete with some of the features provided
by Sun Microsystems’ ZFS filesystem. Some notable features provided by btrfs include:

+ snapshotting

« subvolumes

« adding or removing block devices without interruption
+ transparent compression

btrfs stores data in chunks. A chunk is simply a piece of raw storage typically ~1GB in
size which btrfs can use to put the actual data on. Chunks are spread across all of the un-
derlying block devices. You can run out of chunks even though there is still free storage
available. When this happens you will need to rebalance your filesystem, which will relo-
cate data from empty or near-empty chunks to free up some disk space. This operation can
be done without downtime.

http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
http://en.wikipedia.org/wiki/ZFS

btrfs

So that was a little bit of theory. Now, let’s look at the practical usage of the btrfs
driver. In order to use this driver Docker requires the /var/ 1 ib/docker directory to be
on a btrfs filesystem. We will not list the steps on how to do that - we will simply assume
that you have prepared a btrfs partition and created the particular directories required by
the btrfsdriveronit:

grep btrfs /proc/mounts
/dev/sdbl /var/lib/docker btrfs rw,relatime,space_cache 0 0

Now you need to tell the Docker daemon to use the btr¥s driver by modifying the
DOCKER_OPTS environment. Once the daemon has been restarted you can verify that
the driver is now ready to use:

docker info

Containers: 0

Images: O

Storage Driver: btrfs

Execution Driver: native-0.2
Kernel Version: 3.13.0-24-generic
Operating System: Ubuntu 14.04 LTS
CPUs: 1

Total Memory: 490.1 MiB

Name: docker

ID: NQIM:HHFZ:5636:VGNJ: 1CQA:FK4U:6A7F-EUDC:VFQL:PJFF:MI7N:TX7L
WARNING: No swap limit support

You can inspect the btrfs filesystem by running the following commands, which will give
you a quick overview of the filesystem usage:

btrfs filesystem show /var/lib/docker

Label: none uuid: 1d65647c-b920-4dc5-b2f4-de96f14feb5af
Total devices 1 FS bytes used 14.63MiB
devid 1 size 5.00GiB used 1.03GiB path /dev/sdbl

Btrfs v3.12

btrfs filesystem df /var/lib/docker

Data, single: total=520.00MiB, used=14.51MiB
System, DUP: total=8.00MiB, used=16.00KiB
System, single: total=4_00MiB, used=0.00
Metadata, DUP: total=255.94MiB, used=112.00KiB
Metadata, single: total=8_.00MiB, used=0.00

Docker takes advantage of the btrfs subvolume feature. You can read more about sub-
volumes in the following link. In the gist, the subvolume is quite a complex concept that
can be thought of as POSIX file namespace that can be accessed via the top-level subvo-
lume of the filesystem, or it can be mounted in its own right.

117

https://lwn.net/Articles/579009/

CHAPTER 11: Docker Storage Drivers

Every newly created Docker container is allocated a new btrfs subvolume, and starts out
as a snapshot of the parent subvolume if there is any parent. The same applies for Docker
images. Let’s create a new container and explore these concepts further:

docker run -d busybox top

Unable to find image "busybox:latest” locally

511136ea3c5a: Pull complete

df7546F9f060: Pull complete

eal3149945cb: Pull complete

4986bT8c1536: Pull complete

busybox:latest: The image you are pulling has been verified. Im-
portant: image verification is a tech preview feature and

should not be relied on to provide security.

Status: Downloaded newer image for busybox:latest
86ab6d8602036cadb842d3a030adf2b05598ac0el178ada876da84489c7ebc612

You can easily verify that each layer has been allocated a new btrfs subvolume:

btrfs subvolume list /var/lib/docker/

ID 258 gen 9 top level 5 path btrfs/subvolumes/
511136ea3c5a641264b78b5433614aec563103b4d4702F3ba7d4d2698e22¢c158
ID 259 gen 10 top level 5 path btrfs/subvolumes/
df7546191060a2268024c8a230d8639878585defcclbc6f79d2728a13957871b
ID 260 gen 11 top level 5 path btrfs/subvolumes/
€a13149945ch6b1e746b128032F02e9b5a793523481a0a18645fc77ad53c4ea?
ID 261 gen 12 top level 5 path btrfs/subvolumes/
4986b18c15363d1c5d15512d5266F8777bfbad974ac56e3270e7760F6F0a8125
ID 262 gen 13 top level 5 path btrfs/subvolumes/
86ab6d8602036cadb842d3a030adf2b05598ac0el178ada876da84489c7ebc612-
init

ID 263 gen 14 top level 5 path btrfs/subvolumes/
86ab6d8602036cadh842d3a030adf2b05598ac0e178ada876da84489c7ebc612

You can take a snapshot of any of the layers at any time. A snapshot is again simply a
subvolume that shares its data (and metadata) with another subvolume. Since a snapshot
is a subvolume, snapshots of snapshots are also possible. A practical example will make
this clearer. We will make a change in the running container and commit it:

docker exec -it 86ab6d860203 touch /etc/testfile
docker commit 86ab6d860203
32cbh186de0d0890c807873a3126e797964c0117ce814204bcbf7dc143c812a33

Committing the container has created a new btrfs subvolume in the /Zvar/lib/
docker/btrfs/subvolumes/
32¢ch186de0d0890c807873a3126e797964c0117ce814204bcbf7dc143c812a33
directory as expected. If you explore the contents of this subvolume, however, you will no-
tice that it actually contains a full image filesystem as opposed to just a differential image.

118

overlay

This is due to btrfs having no concept of the read-write layer and no easy way to list the
differences between snapshots. This might change in the future.

Let’s now discuss what to keep an eye on when using the btrFs storage driver in Dock-
er. As already mentioned the btr¥s driver requires /var/lib/docker to be present
on a btrfs filesystem. This has the advantage of keeping the rest of your operating system
protected from the potential filesystem corruption. We would also recommend to put
the /Zvar/lib/docker/vfs/ directory on some battle tested filesystem like ext4 or
vTs.

Th btrfs filesystem is very sensitive to low disk space. You must make sure you monitor
the chunk usage and continuously rebalance the filesystem when needed. This can be a bit
of a burden for the operators, especially when you are running a lot of containers and you
need to keep a lot of container images on the host. On the other hand, you get an ability to
easily expand the storage without service interruption.

The btrfs copy on write capability makes backing up containers and images super easy
by taking advantage of its snapshotting feature. The copy on write is not very suitable for
containers that create and modify a lot of small files, such as databases. This often leads to
filesystem fragmentation and therefore requires frequent filesystem rebalancing. You
might want to disable the copy on write for the directory or volume that is bind mounted
into the containers with high 10 activity to avoid these issues.

If you decide to remove docker btrfs subvolumes make sure you use btrfs subvo-
lume delete subvolume_directory before you actually physically remove the
underlying directory by running rm -rT, since you can cause filesystem corruption. This
sometimes happens when you try to remove an image or destroy a container, so make sure
you keep an eye on this, too.

In summary, the biggest strength and weakness of the btrfs storage driver is the btrfs
filesystem itself. It requires a solid operational knowledge of using it and lacks good perfor-
mance required from various production workloads. The btrfs also does not allow page
cache sharing, which can lead to higher memory usage. These are the main reasons why
CoreOS decided to drop btrfs from their operating system distribution recently.

overlay

The overlay storage driver is the latest storage driver introduced to Docker. It uses the
OverlayFs filesystem to provide the copy on write for Docker image layering. Again, turn-
ing this driver on requires modifying the DOCKER_OPTS environment variable and re-
starting the Docker daemon. Before we dive into some practical examples, let’s first discuss
the OverlayFs filesystem.

OverlayFsS is a union filesystem that was merged into the mainline Linux kernel 3.18. It
combines two filesystem:

+ upper - child filesystem
+ lower - parent filesystem

119

https://coreos.com
https://lwn.net/Articles/627232/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt

120

CHAPTER 11: Docker Storage Drivers

OverlayFS introduces a concept of workdir, which is a directory that resides on the up-
per filesystem and basically serves for atomic copies between the upper and lower layers.

The lower filesystem can be any filesystem supported by the kernel (including overlayFS
itself) and is generally read-only. In fact, there can be multiple lower filesystem layers
which are then stacked or “overlay-ed” on top of each other. The upper filesystem is nor-
mally writable. Being a union filesystem, overlayFS also implements the familiar “white-
out” files to mark files for removal, just like the AUFS filesystem that we discussed in the
first chapter.

Overlaying mainly involves merging directories. Two files with the same path in each
directory tree would appear to occupy the same directory in the overlay-ed filesystem.
OverlayFS improves the lookup times in comparison to AUFS where the lookup times can
take longer the more image layers your container has. Whenever a lookup is requested in a
merged directory, it is performed in both merged directories and the combined result is
cached in the entry belonging to the overlay filesystem. If both lookups find directories,
both are stored and a merged directory is created, otherwise only one is stored: the upper
if it exists, otherwise the lower.

So how does Docker use OverlayFS? The lower filesystem serves as the base image lay-
er, and when you create new Docker containers, a new upper filesystem is created contain-
ing only the diffs between the two layers. This is exactly the same behavior we have seen
when discussing AUFS. As expected, committing a container creates a new layer containing
only the diffs between the base and a new layer.

So much for the theory. Let’s examine an example. In order to follow it you will need a
Linux kernel of version 3.18 or higher. If your kernel version is smaller, Docker will drop to
the next available storage driver and won’t use the over lay.

As always, you need to tell the Docker daemon to use the overlay storage driver.
Note, the name of the driver is overlay not overlayfs:

docker info
Containers: 0
Images: O
Storage Driver: overlay
Backing Filesystem: extfs
Execution Driver: native-0.2
Kernel Version: 3.18.0-031800-generic
Operating System: Ubuntu 14.04 LTS
CPUs: 1
Total Memory: 489.2 MiB
Name: docker
ID: NQIM:HHFZ:5636:VGNJ: 1CQA:FK4U:6A7F:EUDC:VFQL:PJFF:MI7N:TX7L
WARNING: No swap limit support

Now let’s create a new container and explore the /var/ 1 ib/docker directory after-
ward:

overlay

docker run -d busybox top

Unable to find image "busybox:latest® locally

511136ea3c5a: Pull complete

df7546T9f060: Pull complete

€al3149945cb: Pull complete

4986bT8c1536: Pull complete

busybox: latest: The image you are pulling has been verified. Im-
portant: image verification is a tech preview feature and

should not be relied on to provide security.

Status: Downloaded newer image for busybox:latest
eb9e1a68c70532ecd31e20d8ca4b7¥598d2259d1ac8accaa02090f32ee0b95cl

All of the image layers are available under the /var/lib/docker/overlay direc-
tory as expected. Finding out the base image and the container layer is as easy as looking
up the mounted container filesystem and inspecting the lower and upper directories as
you can see here:

grep eb9ela68c705 /proc/mounts

overlay /var/lib/docker/overlay/
eb9ela68c70532ecd31e20d8ca4b7¥598d2259d1ac8ac-
caa02090f32ee0b95c1/merged overlay

rw,relatime, lowerdir=/var/lib/docker/overlay/
4986b18c15363d1c5d15512d5266F8777bfbad974ac56e3270e7760F6F0a8125/
root,upperdir=/var/lib/docker/overlay/
eb9e1a68c70532ecd31e20d8cad4b7¥598d2259d1ac8ac-
caa02090f32ee0b95c1/upper ,workdir=/var/lib/docker/overlay/
eb9ela68c70532ecd31e20d8cadb7¥598d2259d1ac8ac-
caa02090f32ee0b95c1/work 0 O

Just like we have tested the previous drivers, we will now create an empty file in the
running container and commit it, which will trigger creating a new layer:

docker exec -it eb9ela68c705 touch /etc/testfile

docker ps

CONTAINER 1D IMAGE COMMAND

CREATED STATUS PORTS

NAMES

eb9el1a68c705 busybox: latest "top" 9
minutes ago Up 9 minutes

cocky_bohr

docker commit eb9ela68c705
eaeb654d10c2c6467e975a80559dcc2dd57178baaea57dd8d347¢c950a46c404b

You can easily confirm that the new image layer has been created and that it contains
the new file:

Is -1 /var/lib/docker/overlay/
eaeb6654d10c2c6467e975a80559dcc2dd57178baaea57dd8d347¢c950a46c404b/

121

CHAPTER 11: Docker Storage Drivers

root/etc/testfile

-rw-r--r-—- 1 root root O Apr 8 21:44 /var/lib/docker/overlay/
eaeb654d10c2c6467e975a80559dcc2dd57178baaea57dd8d347¢c950a46c404b/
root/etc/testfile

All of the above is what you would expect and it is pretty much the same as when the
auTfs driver was used. There are a few differences, though. There is no di FF subdirecto-
ry. However, that doesn’t mean we can’t inspect the filesystem deltas - they are just “hid-
ing” somewhere else. over lay driver creates three subdirectories for each container:

« upper - thisis the read-write upper filesystem layer
« work - temporary directory for atomic copy
« merged - mount point for the running container

Additionally, the driver creates a file called lower-id, which contains the id of the parent
layer whose “root” directory shall be used as the lower layer in the overlay - this file basi-
cally serves as a lookup id for the parent layer.

Let’s start a new container from the earlier committed layer:

docker run -d
eaeb654d10c2c6467e975a80559dcc2dd57178baaea57dd8d347c950a46c404b
007c9cabbb483474f1677349a25¢c769ee7435F7b22473305F18cccb2fca21333

We can easily verify the parent container id by investigating the “lower-id” file:

cat /var/lib/docker/overlay/
007c9cabbb483474F1677349a25¢c769ee7435F7b22473305F18cccbh2fca21333/
lower-id

€ae6654d10c2c6467e975a80559dcc2dd57178baaea57dd8d347c950a46c404b

We are not going to spend more time exploring the over lay storage driver given how
it is very similar to what we have seen when we tested the aufs driver. So why is there so
much excitement surrounding the over lay driver? There are a couple of reasons for it:

+ OverlayFs filesystem is available in the mainline kernel - there is no need for any cus-
tom kernel patches

« it has low memory footprint since it allows for page cache sharing

it’s faster than the aufs driver, although it still suffers from slow copy between low-
er and upper layers

identical files are hardlinked between the images, which avoids composing overlays
and allows for quicker create/destroy times

Despite all of these advantages, OverlayFS is still a very young filesystem. Although the
initial tests look promising, we have yet to see it properly being used in production setups.

122

vfs

Given that, more companies like CoreOS are jumping on the OverlayFS board train, so we
can expect more active development and improvements in the future.

It’s time to abandon the awesome realm of Copy on Write magic and look at the last
storage driver available in Docker that does not provide it: vFs.

vis

Like we mentioned earlier, VFs storage driver is the only available storage driver that does
not take advantage of any copy on write mechanism. Each image layer is just a simple di-
rectory. When Docker creates a new layer it does a full physical copy of the base layer di-
rectory into the newly created directory. This can make using this driver very slow and disk
space inefficient.

Let’s have a look at a practical example when VFs is used. As always, first we need to
modify DOCKER_OPTS to tell the Docker daemon to use the VFs driver and restart it:

ps -ef]grep docker
root 2680 1 0 21:51 7 00:00:02 Zusr/bin/docker
-d --storage-driver=vfs

We will illustrate some of the features of VFs driver on a small busybox container that
will run the familiar top utility:

docker run -d busybox top
[FILTERED OUTPUT]

de8c6e2684acefale84791b163212d92003886ba8cb73eccef4b2c4dl67a59a4

VFS image layers are stored in the /var/lib/docker/vfs/dir directory. We will
now try to demonstrate the speed and disk space usage inefficiency when using this driver.
We will start a new container and generate a reasonably large file inside it:

docker run -ti busybox /bin/sh

/ # dd if=/dev/zero of=sample.txt bs=200M count=1
1+0 records in

1+0 records out

/ # du -sh sample.txt

200.0M sample.txt

/ #

Commit this layer to trigger a creation of a new image layer and observe the speed:

time docker commit 24247ae7clcO
7¥3a2989b52e0430e6372e34399757a47180080b409b94cb46d6cd0a7c46396e

123

https://coreos.com/
http://lwn.net/Articles/627232/

124

CHAPTER 11: Docker Storage Drivers

real Oml1.029s
user Om0.008s
sSys Om0.008s

It took over 1 second to create a new image layer - this is due to an existence of the
200M file we have created in the base image layer. Finally, let’s create a new container from
the newly committed layer and observe the speed again:

time docker run --rm -it
7¥3a2989b52e0430e6372e34399757a47180080b409b94cb46d6cd0a7c46396e
echo VFS is slow

VFS is slow

real Om3.124s
user Om0.021s
sSys Om0.007s

Creating a new container from the previously committed image layer took over 3 sec-
onds! Furthermore, we now have two containers each taking up 200M in disk space on the
host filesystem!

The above example should hopefully demonstrate that VFS was not designed for pro-
duction use. It is a rather fallback storage driver solution when no copy on write filesystem
is available on the host. Despite this, VFS continues to be a suitable solution for Docker
VOLUMEs due to its platform portability and that it can be a good option when trying to
run Docker on non-Linux platforms such as FreeBSD.

Summary

Docker provides quite a comprehensive choice of storage drivers. This is both a blessing
and a curse since often an inexperienced user, once introduced to the great world of possi-
bilities, ends up confused about what to do. The well known quote about premature opti-
mization by [Donald Knuth] often comes to mind when discussing technical options.

While you should always pick a tool you have the most experience operating in produc-
tion environment with, we will finish this chapter by providing a short summary to high-
light some important points you might want to take into consideration when making a de-
cision about which storage driver to use.

AUFS OverlayFS BTRFS DeviceMapper
Provisioning Very Fast Very Fast Fast Fast
SmallFiles1/O Very Fast Very Fast Fast Fast

http://en.wikipedia.org/wiki/Program_optimization#When_to_optimize
http://en.wikipedia.org/wiki/Program_optimization#When_to_optimize

Summary

AUFS OverlayFS BTRFS DeviceMapper
Large Files1/O Slow Slow Fast Fast
Memory Usage Efficient Efficient Efficient Not so efficient
Drawbacks - Not in mainline Kernel

« Layer limit

+ Random concurrency quirks | - immature | - almost mature, but not really - laborious
storage increase - requires solid operational knowledge | - high disk usage with high
container density - rough around the edges - most operational knowledge required |

One area that Docker packs a punch is in the area of networking, which will be covered
in the next chapter.

125

Docker Networking

In the previous chapter we learned about various Docker storage drivers and how they help
to package and run Docker containers from the built images efficiently. The real power of
Docker comes to light when using it to build distributed applications. Distributed applica-
tions consist of an arbitrary number of services running on a computer network over which
they communicate in order to perform some computing task. This chapter will try to an-
swer a simple question: How can we make applications running inside Docker containers
accessible on the network? In order to answer this question we need to understand the
Docker networking model.

The topic of Docker networking is threefold. It comprises IP allocation, [domain] name
resolution and container or service discovery. All of these concepts are the basis of the con-
cept known as Zero Configuration Networking or zeroconf. In short, zeroconf is a set of
technologies that automatically create and configure a TCP/IP network without any man-
ual intervention.

The concept of an automatic network configuration becomes especially important in
complex environments in which the density of Docker containers on every host can [and
often does] rapidly fluctuate. Managing and operating such environments, ideally within
secure network infrastructure that sometimes spreads across multiple cloud providers, can
be a real challenge. Achieving the zeroconf “mantra” in these environments should be the
ultimate networking goal. It takes off the burden of manual network configuration from
both developers and operators. On the following lines we will discuss what options are
provided to us by Docker to get as close to this mantra as possible.

When making the applications running inside Docker containers available on a comput-
er network users often face some of the following questions:

» How do | access an application or service running inside the Docker container?

» How do | connect or discover dependent application services running in Docker con-
tainers in a secure way?

+ How do I secure the application running in Docker container on the network?

In this chapter we will try to find the answers on these questions. We will start by discus-
sing the Docker networking internals, which should hopefully give you a good understand-
ing of the current networking model. We will then examine some practical examples, which

12

127

http://zeroconf.org/

128

CHAPTER 12: Docker Networking

you can easily follow by running the commands directly on a Docker host. Finally, we will
discuss some alternative solutions available on the market should the current networking
model not fit your requirements. Let’s roll our sleeves up and get to it!

Networking basics

The Docker networking model is very simple, yet quite powerful. By default (i.e. with de-
fault Docker daemon configuration), all of the newly created Docker containers are auto-
matically connected to the internal Docker network without any manual intervention re-
quired from the user: you simply run the familiar docker run <image> <cmd>
command and once your container is started it is available on the network. This feels like
magic, so let’s have a closer look at what is hiding behind it.

When the Docker daemon starts on a host machine with a default configuration, it cre-
ates a Linux network bridge device and names it dockerOQ. The bridge is then automati-
cally assigned a random IP address and subnet from the private IP range defined by RFC
1918. The chosen subnet defines the IP range from which all newly created containers are
going to have their IP addresses allocated. You can see the current network model in this
figure:

Docker Host

172.16.0.012

http://en.wikipedia.org/wiki/Bridging_%28networking%29
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918

Networking basics

Apart from creating the bridge device, the Docker daemon also modifies iptables
rules on the host machine. It creates a special filter chain called DOCKER and inserts it on
top of the FORWARD chain. It also modifies the iptables nat table to enable the out-
bound connections from the container to the outside world. The rules are set up so that
the connections between the Docker containers will appear to the receiver as coming from
the container’s IP address, however, the connections to the outside world will appear to
originate from one of the host’s IP addresses, not the IP address of the container that origi-
nated the connection. This sometimes surprises first time users.

If you don’t want Docker to modify any iptables rules on the host machine you
must start the Docker daemon with the ——iptables option set to false. You can do this
easily by setting DOCKER_OPTS environment variable and restarting the daemon. In the
default configuration this option is set to true.

NOTE: DOCKER_OPTS must be set when the Docker daemon starts. If you want your
changes to persist between Docker host restarts, you have to modify some init service config-
uration or script file. This differs between various Linux distributions; on Ubuntu you can ac-
complish this by modifying the /etc/defaul t/docker file.

By creating a separate iptables chain to manage the access to containers, Docker
allows the system administrators to conveniently manage the external access to containers
by modifying the DOCKER chain without touching any other i ptables rules on the host
machine that prevents accidental modifications. Appending and modifying the rules in the
DOCKER chain is in essence how Docker manages links between the containers as we will
find out later on in this chapter.

The Docker daemon creates a new network namespace for each newly created contain-
er. It then generates a pair of veth devices. Veth (shortcut for Virtual Ethernet) is a special
kind of Linux network device that always comes in pairs (a.k.a. peers) and on a high level
acts like a “network pipe”: whatever you send on one end comes out on the other end. It
turns out, this is a convenient way to communicate between different network namespaces
in the Linux kernel. Docker assigns one veth peer to the container network namespace and
keeps the other peer, with randomly generated name starting with veth prefix, in the host’s
network namespace. Each peer of the veth pair is only visible in a network namespace it is
presentin.

Docker then adds the host’s veth peer to the docker0 bridge and assigns the contain-
er's veth peer an IP address from the private IP range chosen when the Docker daemon
starts. Once the host veth peer is bridged to the dockerO device, Docker inserts a new
network route for the chosen IP range to the host’s routing table and enables IP forwarding
on the host. This allows the users to communicate with the containers directly from the
host. From a detailed point of view we can illustrate this setup as shown here:

129

130

CHAPTER 12: Docker Networking

Docker Host

Docker Container MNetwork
Namespace

172.17.0.9/16

VETH xox

VETH PAIR

1721742116

aLio0aLTil

Docker Host Network Mamespace

By default Docker containers are accessible on a private network, which is not publicly
routable. Docker does not facilitate access to the containers from the public network,
therefore they are not directly accessible from outside the host machine.

NOTE: /f you start the Docker daemon with the ——iptables option set to “false”, the
daemon will not touch iptables on the host. Neither will it set up IP forwarding, which
means that your containers will not be able to communicate with the outside world nor with
each other. If this is not the desired behavior, you will have to enable the IP forwarding man-
ually. On Linux, you can do so by setting the /proc/sys/net/ipv4/ip_forward
kernel parameter to “1”.

IP address allocation

Managing IP address space manually in an environment where the containers can come
and go frequently and in large numbers is not a sustainable way of doing things. This is
where the Docker IP address allocation steps in. Like mentioned earlier IP allocation is one

IP address allocation

of the pillars of zerconf networking and Docker has a solution in hand. Docker assigns IP
addresses to newly created containers automatically without manual intervention. The
Docker daemon manages a list IP addresses that have already been allocated to running
Docker containers to prevent assigning the same IP address again. When a container stops
or is removed, its IP address is released back into the IP address pool managed by the
Docker daemon and can be reused straight away when a new container starts.

Instant reuse of the released IP addresses can cause ARP collisions on a local network if
the cached ARP entry mapping the released IP address to the container’s MAC address has
not been purged immediately after the container was destroyed. Docker addresses this
problem by generating a random MAC address from the allocated IP address. The MAC ad-
dress generator is guaranteed to be consistent: the same IP will always yield the same MAC
address. Docker also allows users to specify the MAC address manually when creating a
new container, however, we would not recommended doing this due to the above men-
tioned issue with the ARP collisions, unless you come up with some mechanism that will
help you avoid it.

This is great! IP [and MAC address] allocation happens “automagically” without any
user manual intervention. As soon as the containers are created they are available on the
private Docker network via their automatically assigned IP addresses. This is exactly what
you would expect from zeroconf. Docker takes this even one step further: in order to en-
able the communication with the services running inside the containers Docker must also
handle port allocation.

Port allocation

When a container starts, Docker can automatically assign arbitrary UDP or TCP port(s) to it
and make them accessible on the host machine. The ports can be exposed either via the
EXPOSE directive in Dockerfi le, from which the container image is built, or by using
the ——expose command line switch when the container is started. The command line
flag allows you to define a port range as opposed to a single port, however, be aware of the
implications of long port ranges since all of this information is made available by the Dock-
er daemon via remote API, so querying a container that has a big port range can easily ex-
pose the daemon.

The Docker daemon then picks a random port number from a port range defined on Li-
nux hosts from the following file: /proc/sys/net/ipva/
ip_local_port_range. If this fails, for example when the Docker daemon runs on a
non-Linux host, Docker tries to allocate the port from the following port range:
49153-65535. This is not done automatically: the Docker daemon merely maintains the
port numbers exposed by containers running on the host. Users must explicitly trigger the
host port mapping by what Docker calls “port publishing”. Port publishing allows the
users to bind any exposed port to any externally routable IP address available on the host
machine. If you did not expose any ports when you built a Docker image, publishing ports

131

http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/MAC_address

132

CHAPTER 12: Docker Networking

will have no effect on external availability of the service running inside the Docker contain-
er.

You can find out what ports have been exposed in the container by running the follow-
ing command:

docker inspect -f "{{.Config.ExposedPorts}}" <container_id>

WARNING: You can only publish any of the exposed ports when you start a new container;
once the container is running there is no way to publish any more of its exposed ports. You
must recreate the containers from scratch!

You can choose to publish all exposed ports or just pick the ones you are willing to make
available externally. Docker provides convenient command line options to achieve various
combinations. Please do check the Docker help for all of the available options.

The magic behind port allocation lies in the iptables “dance” Docker does with the
previously mentioned DOCKER chain and nat table. To understand this better we will ex-
amine a practical example illustrated in the following diagram:

IP address allocation

Docker Host

Docker Container Network
MNamespace

172.17.0.9/16 |

-
i

VETH xxxx |8

VETH | PAIR

172.17.42.1/16

m 1.2.3.4:80

SL/OO9LELL

| IPTABLES

Let’s say we want to run a nginx web server in a Docker container and make it publicly
available on the host via externally routable IP address 1.2 .3 .4 on TCP port 80. We will
use the library/nginx Docker image, which is the default nginx image that gets
pulled from DockerHub when you run docker pull nginx. We can accomplish this
task by running the following command (note the use of the —p command line option):

sudo docker run -d -p 1.2.3.4:80:80 nginx
al10e2dc0fdfb2dc8259e9671dccd6853d77¢c831b3a19e3c5863b133976ca4691
#

You can verify that the container created from this image exposes TCP port 80 by run-
ning the following command:

133

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://hub.docker.com/

134

CHAPTER 12: Docker Networking

sudo docker inspect -f "{{.Config.ExposedPorts}}" alOe2dcOfdfb
map[443/tcp:map[] 80/tcp:map[]]

You can see that the ngiNX image we used to start the container also exposes port 443.
Now that the container is running you can easily inspect all of its published ports (a.k.a
host port bindings) by running the following command:

sudo # docker inspect -f "{{.HostConfig.PortBindings}}"
al0e2dcOfdfb
map[80/tcp: [map[Hostlp:1.2.3.4 HostPort:80]]]

TIP: There is a convenient command line shortcut for checking IP:port bindings of a partic-
ular Docker container: docker port container_id.

Excellent! nginX is now running inside the Docker container and its service should be
publicly accessible on the given IP address and port. We should be able to access the de-
fault ng i nx site by running a simple cur I command from outside the host machine (giv-
en that your firewall is not blocking the access to port 80 from the outside):

curl -1 1.2.3.4:80

HTTP/1.1 200 OK

Server: nginx/1.7.11

Date: Wed, 01 Apr 2015 12:48:47 GMT
Content-Type: text/html

Content-Length: 612

Last-Modified: Tue, 24 Mar 2015 16:49:43 GMT
Connection: keep-alive

ETag: "551195a7-264"

Accept-Ranges: bytes

When you publish a port on the host machine, the Docker daemon appends a new
iptables rule to the DOCKER chain, which forwards all of the traffic destined to
1.2.3.4:80 on the host to the particular container on port 80 and also modifies the
nat table accordingly. You can easily inspect this by running the following commands:

iptables -nL DOCKER

Chain DOCKER (1 references)

target prot opt source destination
**ACCEPT tcp -- 0.0.0.0/0 1.2.3.4
tcp dpt:80**

iptables -nL -t nat

Chain PREROUTING (policy ACCEPT)

target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0
ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT)

IP address allocation

target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 1127.0.0.0/8
ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0
**MASQUERADE tcp -- 172.17.0.5

172.17.0.5 tcp dpt:80**

Chain DOCKER (2 references)

target prot opt source destination

**DNAT tcp -- 0.0.0.0/0 1.2.3.4 tcp

dpt:80 t0:172.17.0.5:80**

NOTE: When you stop or remove a container that published an arbitrary number of ports,
Docker removes all of the necessary iptables rules that it originally created, so you don’t
have to worry about them any more.

Finally, let’s have a look at what happens if we start a new container with the —P switch
enabled, which does not require us to specify any host port or IP addresses to bind the ex-
posed ports to. We will use the same nginX image as in the previous example:

docker run -d -P nginx
995faf55ede505c001202b7eel197a552¢ch4¥507bc40203a3d86705e9d08ee71d

As mentioned earlier, since we didn’t explicitely specify any host interfaces to bind the
container’s ports to, Docker will map the ports to a random port range. To discover the con-
tainer port bindings you can run the following command:

docker port 995faf55ede5
443/tcp -> 0.0.0.0:49153
80/tcp -> 0.0.0.0:49154

You can also inspect the networking ports directly by running the following command:

docker inspect -f “"{{ .NetworkSettings.Ports }}" 995faf55edeb5
map[443/tcp:[map[Hostlp:0.0.0.0 HostPort:49153]] 80/tcp:
[map[Hostlp:0.0.0.0 HostPort:49154]1]1]

You can see that both exposed TCP ports have been bound to all network interfaces on
the host to ports 49153 and 49154 respectively. As you may have guessed, Docker expo-
ses this information via its remote API, which allows for a very simple service discovery of
the containers that need to communicate with each other. When you are starting a new

135

136

CHAPTER 12: Docker Networking

container you can pass it the host port mappings via an environment variable. There is a
better, and more secure way, which we’ll discuss later on in this chapter.

All of this looks fantastic. We don’t have to manually manage IP address space for Dock-
er containers running on the host: the Docker daemon does all of this right out of the box!
However, some problems can arise when we start scaling our Docker infrastructure. Since
the Docker daemon is completely in charge of the IP assignment on a particular docker
host, how do we make sure that the same IP address is not assigned to different containers
on different hosts? Do we even need to care about this problem? The answer to these ques-
tions is the very familiar: it depends. We will explore this topic further in the chapter when
we discuss advanced networking concepts. Let’s now move on to the next zeroconf pillar:
domain name resolution.

Domain name resolution

Docker provides a few options that allow you to manage domain name resolution in your
container infrastructure. As always, in order to take advantage of these options and avoid
unnecessary surprises we need to understand how Docker handles the name resolution in-
ternally.

When Docker creates a new container, by default it assigns it a randomly generated
hostname and a unique container name. These are two completely different concepts
that can be a bit confusing for the newcomers as their use sometimes overlaps.

The hostname works just like a regular Linux hostname: it allows the processes running
inside the container to resolve the container hostname to its IP address. Container host-
name is NOT resolvable from the outside of the container environment and by default it
is set to container ID which is a unique string that allows you to address any container on
the host machine from the command line or via remote API. Container name, on the other
hand, is a conceptinternal to Docker and it has nothing to do with any Linux internals.

You can easily inspect the container name using the Docker command line client by run-
ning the following command:

docker inspect -f "{{.Name}}" container_id

The container name has two main uses in Docker:

« it allows you to address containers via remote APl using human readable names as
opposed to container IDs

« it helps to facilitate basic container discovery via Docker

You can override the default values set by the Docker daemon by using the particular
command like options provided by the Docker client.

Both the container hostname and the container name can be set to the same value, but
unless you have some way of managing them automatically, we recommend you avoid do-

Domain name resolution

ing so, as with a higher density of the containers, this can turn into an unmanageable situa-
tion and a maintenance nightmare.

Neither the hostname nor the name are hard-coded into the container images when
they are built. What Docker actually does is that it generates /etc/hostname
and /etc/hosts files on the Docker host and then bind-mounts both files into the new-
ly created container on its start. You can easily verify this by checking the contents of the
following files on the host machine:

cat /var/lib/docker/containers/container_id/hostname
cat /var/lib/docker/containers/container_id/hosts

TIP: You can find out the paths to the above files by running docker inspect -f
"{{printf "%s\n%s' _HostnamePath _HostsPath}}" container_id
on the command line.

We will discuss the container name concept in more detail later on in this chapter; for
now let’s just remember that if you want to address Docker containers by a human reada-
ble name instead of by a randomly generated container ID, you can assign them a custom
name. You can NOT change the assigned name after the container has been created--you
will have to recreate it from scratch.

NOTE: As of version 0.7, Docker generates container names from the names of notable sci-
entists and hackers. If you would like to contribute to the Docker project, you can open a Pull
Request on Github suggesting a name of a person whom you think deserves a recognition.
The Go package which handles this in Docker is called namesgenerator and you can find
it in the pkg subdirectory of the Docker codebase.

Now that you know how a container resolves its hostname to its IP address it’s time to
find out how it resolves external DNS names. If you guessed that the containers use
the Zetc/resolv.conffilejust like a regular Linux host you would be spot on! Docker
generates the /etc/resolv.conf file for each newly created container on the host
machine and mounts it inside the container when it starts it. You can easily verify this by
inspecting the following file on the Docker host:

sudo cat /var/lib/docker/containers/container_id/resolv.conf

TIP: You can find out the path to the above file by running docker inspect -F
"{{-ResolvConfPath}}" container_id onthecommand line.

By default Docker reuses the host machine’s Zetc/resolv.conf file in the newly
created containers. As of version 1.5 when you modify this file to change the host machine
DNS settings and want these changes to be propagated into already running containers
(that were created with the original settings) you must restart all of them in order to pick
up the new changes. If you are using an older version of Docker this is not the case and you
must recreate the containers from scratch.

137

https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
https://github.com/docker/docker
http://golang.org/

138

CHAPTER 12: Docker Networking

If you don’t want your Docker containers to use the host machine’s DNS settings you
can easily override them by modifying the DOCKER_OPTS environment variable, either
on the command line when starting the daemon or you can make the changes persistent
by modifying a particular configuration file on the host machine (on Ubuntu Linux distribu-
tionitis /etc/default/docker).

Let’s say you have a dedicated DNS server that you want the Docker containers to use
for DNS resolution. We will assume that the DNS server is accessible on the 1.2.3.4 IP
address and that it manages example.com domain. You would modify the DOCK-
ER_OPTS environment variable as per the following:

DOCKER_OPTS="--dns 1.2.3.4 --dns-search example.com”

In order for the Docker daemon to pick up the new settings you need to restart it. You
can easily verify that newly created containers now reflect the new DNS settings by inspect-
ing the /etc/resolv._conffile by running the following command:

sudo cat /var/lib/docker/containers/container_id/resolv.conf
nameserver 1.2.3.4
search example.com

All of the containers that were started before you modified the Docker daemon DNS set-
tings will remain unaffected. If you want these containers to use the new settings, you must
recreate them from scratch: simply restarting the containers will not have the desired ef-
ffect!

NOTE: The earlier mentioned Docker daemon DNS options will NOT override the host DNS
settings. They will merely become the default DNS settings for all of the containers created on
the host machine from the point the daemon picks up the change. You can, however, explicitly
override them per container.

Docker allows for even more fine grained control over the container DNS settings. You
can override the global DNS settings on the command line when starting a new container
like this:

sudo docker run -d --dns 8.8.8.8 nginx
995faf55ede505c001202b7eel197a552ch41507bc40203a3d86705e9d08ee71d
sudo cat $(docker inspect -f "{{.ResolvConfPath}}"
995faf55edeb)

nameserver 8.8.8.8

search example.com

There is a small catch that you may have noticed. As you can see in the output of the
command above, we only set the ——dns setting for the new container, yet Search direc-
tive inside the Zetc/resolv.conf file has been modified, too. Docker merges the op-
tions specified on the command line with the settings imposed by the Docker daemon.
When the Docker daemon sets ——dns—-search to some domain and you only override

Service discovery

the ——dns option then when you start a new container. The container will inherit the dae-
mon’s search domain setting, not the settings set by the host machine. At the moment
there is no way to change this behavior so keep an eye on this!

Additionally, containers created with custom DNS settings will not be affected by any
changes made to the Docker daemon DNS settings even after you restart these containers.
If you want them to pick up the settings set by the Docker daemon, you will have to recre-
ate them without specifying the custom options.

WARNING: /f you modified either of the /etc/resolv.conf, /etc/hostname,
or /etc/hosts files directly inside the running container, be aware that the changes you
have made will not be saved by docker commit nor will they persist when the containers
are restarted!

As you can see in this chapter, Docker configures DNS settings in each container auto-
matically without any manual intervention required from the user. This is once again per-
fectly in line with the zeroconf mantra. Even if you export the container and migrate it to
another host, Docker will pick up its original DNS settings, so you don’t have to worry
about configuring them again from scratch.

Being able to resolve external DNS names from inside the containers straight after they
are started is very convenient, but what if we want to access some container from inside
another container? As you learned earlier, container hostnames are not resolvable from
outside the containers themselves, so you can’t use the container hostnames to enable in-
ter container communication. In order for one container to communicate with another
container it will have to know the other container’s IP address, which you can find out by
querying the Docker remote API. This is not possible from inside the container unless you
bind mount the Docker daemon socket on container start or expose the Docker API on the
dockerO bridge interface. Furthermore, querying the API requires an extra effort that
often introduces unnecessary complexity and is not really in line with the zeroconf ideal we
set out to pursue. The solution to this problem comes down to the final zeroconf pillar:
service discovery.

Service discovery

Out of the box Docker provides a basic, yet powerful service discovery mechanism: docker
links. As we have already learned, all of the containers are accessible on the Docker private
network, so by default all containers can communicate directly with each other if they
know each other’s IP addresses. Discovering IP addresses of another container is not
enough. You also need to discover the port on which the containerized service accepts in-
coming connections.

Docker linking allows a user to let any container discover both the IP address and ex-
posed ports of other Docker containers. In order to accomplish this, Docker provides a con-
venient command line option that does this automatically for us without too much effort.
This option is called —— 1 1nk. When you create a new container and link it with another

139

140

CHAPTER 12: Docker Networking

container Docker exports all of the connection details to the source container via various
environment variables. This can be hard to understand. Let’s look at an example to make
this much clearer.

We will illustrate the Docker linking on the ng INX container, which we started when we
were exploring IP address and port allocation. You can find out the container’s IP address
by running the following command:

docker ps -q

alOe2dcOfdfb

docker inspect -T “{{.NetworkSettings.lPAddress}}"
alO0e2dcOfdfb

172.17.0.2

The ——11nk syntax follows the following pattern: container_id:alias where
the container_id is the id of the running container and alias is an arbitrary name that we
will explain later. We will try to ping the IP address of the nginx container from inside a
new, “throwaway” container (the ——rm flag removes the container once the command ex-
ecuted in it exits):

docker run --rm -it --link=al0e2dcOfdfb:test busybox ping -c
2 172.17.0.2

PING 172.17.0.2 (172.17.0.2): 56 data bytes

64 bytes from 172.17.0.2: seg=0 ttl=64 time=0.615 ms

64 bytes from 172.17.0.2: seg=1 ttl=64 time=0.248 ms

--- 172.17.0.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.248/0.431/0.615 ms

This is an expected outcome, since by default the containers are able to communicate
with each other on the private network (unless the inter container communication is dis-
abled as you will find out later in the advanced container networking chapter).

When the containers are linked Docker updates the /etc/hosts file of the source
container with the IP address of the destination container using the link al 1as name pro-
vided on the command line, which in our case is simply “test”. You can easily verify this by
running the command below (see the entry at the bottom of the output):

docker run --rm -it --link=alOe2dcOfdfb:**test** busybox
cat /etc/hosts

172.17.0.13 a51e855bac00

127.0.0.1 localhost

o localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

f00::0 ip6-mcastprefix

f02::1 ip6-allnodes

Service discovery

f02::2 ip6-allrouters
172.17.0.2 test

This means that instead of using the destination container IP address for the previously
done ping test, you could have easily referred the linked container via it’s alias name as
shown here:

docker run --rm -it --link=edb055f7f592:test busybox ping -c
2 test

PING test (172.17.0.2): 56 data bytes

64 bytes from 172.17.0.2: seq=0 ttl=64 time=0.492 ms

64 bytes from 172.17.0.2: seqg=1 ttl=64 time=0.230 ms

--— test ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.230/0.361/0.492 ms

We mentioned earlier when linking two containers Docker also creates a few environ-
ment variables that can help the source container easily discover the ports exposed by the
destination container. The source container does not need to know neither the IP address
nor the exposed ports of the destination container when it tries to establish a connection
with it. It can simply read the contents of the environment variables, which are automati-
cally created by Docker for every exposed port and are made available to the source con-
tainer execution environment. The names of these environment variables have the follow-
ing pattern:

ALIAS_NAME

ALIAS_PORT
ALIAS_PORT_<EXPOSEDPORT>_TCP
ALIAS_PORT_<EXPOSEDPORT>_TCP_PROTO
ALIAS_PORT_<EXPOSEDPORT>_TCP_PORT
ALIAS_PORT_<EXPOSEDPORT>_TCP_ADDR

You can verify this by running the following command and inspecting its output:

docker run --rm -it --link=alOe2dcOfdfb:test busybox env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin

HOSTNAME=Ff03fba501lea

TERM=xterm

TEST_PORT=tcp://172.17.0.2:80
TEST_PORT_80_TCP=tcp://172.17.0.2:80
TEST_PORT_80_TCP_ADDR=172.17.0.2

TEST_PORT_80_TCP_PORT=80

TEST_PORT_80_TCP_PROTO=tcp

141

142

CHAPTER 12: Docker Networking

TEST_PORT_443_TCP=tcp://172.17.0.2:443
TEST_PORT_443_TCP_ADDR=172.17.0.2
TEST_PORT_443_TCP_PORT=443
TEST_PORT_443_TCP_PROTO=tcp
TEST_NAME=/mad_euclid/test
TEST_ENV_NGINX_VERSION=1.7.11-1~wheezy
HOME=/root

From the above you can see that the NginX container we have been using to explore
the linking, exposes two TCP ports: 80 and 443. Docker therefore creates two environment
variables: TEST_PORT_80_TCP and TEST_PORT_443 TCP for each of the exposed
ports. By exporting the above environment variables through linking, Docker provides sim-
ple and portable service discovery while keeping the containers safe and secure. However
as it happens, nothing comes for free. Links are an awesome concept, yet they are fairly
static as you will find out.

Whenever a destination container you are linking to dies, the source container loses the
connection to the service provided by the linked container. This is a problem in dynamic
environments where containers come and go very frequently. Unless you implement some
basic health checking into your application, or at least some failover, you should keep an
eye on this behavior.

Furthermore, when you bring the broken destination container back up, the source con-
tainer’s /etc/hosts file is automatically updated with the newly allocated IP address of
the destination container, but the environment variables exported via links on the
source container are not updated, so this is not an ideal situation if you don’t know the
port of the service in advance. Additionally, you should not rely on these environment vari-
ables for discovering the IP address of the destination containers, but preferably use the
link alias, which will resolve to the updated IP address via /etc/hosts.

One solution to address the static nature of the links is a tool called docker-grand-
ambassador. It addresses some of the issues you can encounter when using Docker links.
A more advanced and widely adopted solution to use for container discovery without intro-
ducing extra complexity is to use the good old DNS. There are some open source DNS serv-
er implementations available that provide service discovery for Docker containers out of
the box and that don’t require too much hassle to integrate into your Docker infrastructure.

By discussing the Docker service discovery we have concluded the tour of the zeroconf
pillars. You can see that as long as you run all of your containers on one host machine,
Docker can satisfy all of the zeroconf requirements to a high degree. However, Docker un-
fortunately fails to deliver once you start scaling containers across multiple machines or
even multiple cloud providers. We are very excited about the upcoming development of
docker swarm and the new networking model, which will address the woes discussed in
this chapter.

Let’s now move to more advanced networking topics that will dive deeper into the core
networking model and discuss some solutions available to you to address the issues dis-
cussed in the previous chapters.

https://github.com/cpuguy83/docker-grand-ambassador
https://github.com/cpuguy83/docker-grand-ambassador
https://github.com/docker/swarm/
https://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/

Advanced Docker networking

Advanced Docker networking

We will start this section by discussing network security, then we will move on to the topic
of inter container communication across multiple Docker hosts and finish by discussing
network namespace sharing.

Network security

The topic of network security is quite complex and it could easily cover a whole separate
book. We will only touch on a few points in this chapter that you should keep an eye on
when designing your Docker infrastructure or when using one provided for you by an exter-
nal vendor. Our focus will be on solutions which are native to Docker and we will mention
other non-native alternatives at the end of this chapter.

By default, Docker allows inter-container communication without any restrictions. This
is, as you may have guessed, a security risk. What if one of the containers on the Docker
network gets compromised and launches a Denial of Service attack on any other contain-
ers on the same network? The attack can be triggered either deliberately or it could simply
be a result of a software bug. This is especially concerning in multi-tenant environments.

Luckily, Docker allows you to completely disable Inter Container Communication by
passing a special flag to the Docker daemon when it starts. The flag is called —-iccC and
by default it’s set to true. If you want to completely disable the communication between
Docker containers you must set this flag to false by modifying the DOCKER_OPTS envi-
ronment variable and restart the Docker daemon afterwards. What happens in the back-
ground is, the Docker daemon inserts a new DROP policy iptables rule to the FOR-
WARD chain, which drops all of the packets destined for the Docker containers. You can
easily verify this once the Docker daemon has been restarted by running the command be-
low:

sudo iptables -nL FORWARD
Chain FORWARD (policy ACCEPT)

target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0
DROP all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ctstate RELATED,ESTABLISHED

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

From this moment on, the containers can no longer communicate with each other. We
can verify this by doing a simple ping test against the already running Nnginx container.
First, we need to find out the IP address of the Ng i NX container:

143

http://en.wikipedia.org/wiki/Denial-of-service_attack

144

CHAPTER 12: Docker Networking

docker inspect -f "{{.NetworkSettings.IPAddress}}"
alO0e2dcOfdfb
172.17.0.2

Now, let’s ping it from a throwaway container:

docker run --rm -it busybox ping -c 2 172.17.0.2
PING 172.17.0.2 (172.17.0.2): 56 data bytes

--— 172.17.0.2 ping statistics ---
2 packets transmitted, O packets received, 100% packet loss

As you can see, the ping test has correctly failed since the inter-container communica-

tion has been disabled. We can, however, still reach the nginx container from the host
machine:

ping -c 2 172.17.0.2

PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.098 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.066 ms

--- 172.17.0.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.066/0.082/0.098/0.016 ms

Additionally, all of the previously published ports remain untouched, so the nginx
server running inside the NgINX container is still perfectly accessible:

curl -1 1.2.3.4:80

HTTP/1.1 200 OK

Server: nginx/1.7.11

Date: Wed, 01 Apr 2015 12:48:47 GMT
Content-Type: text/html

Content-Length: 612

Last-Modified: Tue, 24 Mar 2015 16:49:43 GMT
Connection: keep-alive

ETag: "551195a7-264"

Accept-Ranges: bytes

How do we now enable access only between the containers that need to communicate
with each other? The answer is i ptables. If you don’t like manipulating the iptables
manually, don’t worry. Docker provides a convenient command line option, which does
this automatically for you when you create a new container. In fact, we are familiar with
this option since we explored the service discovery: ——I'Ink. Linking the Docker contain-
ers not only allows for a simple service discovery mechanism, but it also secures the com-
munication between the linked containers: ONLY the containers that are linked together

Advanced Docker networking

can talk to one another and even then ONLY via the ports which are exposed by them.
Docker does this by inserting a “bidirectional” communication iptables rules into
DOCKER chain.

Practical example will help us understand this better. Again, we are going to reuse the
already running ng i nXx container and link to it from a throwaway container. Let’s first veri-
fy that links really allow only the communication on the exposed ports. Since the nginx
container is still running it should have the same IP address allocated:

docker inspect -f "{{.NetworkSettings.lPAddress}}"
al0e2dcOfdfb
172.17.0.2

Let’s try to ping it from within a throw away container:

docker run --rm -it -link=alOe2dcOfdfb:test busybox ping -c 2
172.17.0.2
PING 172.17.0.2 (172.17.0.2): 56 data bytes

--- 172.17.0.2 ping statistics ---
2 packets transmitted, O packets received, 100% packet loss

Ping is correctly failing as expected because ping uses ICMP protocol, which is a net-
work layer protocol and has no concept of port. We can easily verify that the default site
served by the Nng I NX container is still perfectly accessible as expected:

docker run --rm -link=alOe2dcOfdfb:test -ti busybox wget
172.17.0.2

--2015-04-01 14:11:58-- http://172.17.0.2/

Connecting to 172.17.0.2:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 612 [text/html]

Saving to: Tindex.html*

100%

L >]

612 --.-K/s in Os

2015-04-01 14:11:58 (16.4 MB/s) - "index.html® saved [612/612]

You can inspect the Iptables rules which have been created by Docker when the
containers were linked by checking the DOCKER chain using the following command:

iptables -nL DOCKER
Chain DOCKER (1 references)

target prot opt source destination
ACCEPT tcp -- 0.0.0.0/0 172.17.0.2
tcp dpt:80

145

http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

146

CHAPTER 12: Docker Networking

ACCEPT tcp -- 172.17.0.9 172.17.0.2
tcp dpt:443
ACCEPT tcp -- 172.17.0.2 172.17.0.9
tcp spt:-443
ACCEPT tcp -- 172.17.0.9 172.17.0.2
tcp dpt:80
ACCEPT tcp -- 172.17.0.2 172.17.0.9
tcp spt:80

Like we have already discussed, another alternative to secure the inter container com-
munication is by modifying iptables rules in the DOCKER chain directly. We would ad-
vise you not to do this, because with the higher density of containers running on the host
this can become a real maintenance problem since you must keep the track of the every
container lifetime and continuously add and remove the rules when the containers come
and go.

Another important point with regards to security is a network segmentation. At the mo-
ment Docker does not provide any native way to segment your container network. All of
the container traffic is passing through the dockerO bridge device. The Linux bridge is a
special network device that runs in promiscuous mode. What this means is anyone with
root privileges on the host machine can snoop all of the container traffic. This can be a bit
concerning in multi-tenant environments, so you should always make sure any network
traffic entering and leaving your containers is encrypted on both ends.

Like we’ve said, there is so much more to talk about with the network security. We have
merely scratched this topic on the surface to highlight some of the basic concepts. We will
now move on and explore how we can interconnect the containers across multiple Docker
hosts.

Multihost inter-container communication

As always, we have a few options at our disposal to achieve this. Armed with our knowl-
edge of port publishing and container linking we can apply what came to be known in the
Docker community as “ambassador pattern”, which combines both of these concepts.

Ambassador pattern works by interconnecting containers running on different Docker
hosts using a special container that runs on all of the Docker hosts you are trying to inter-
connect. This special container runs a socat network proxy that proxies the connections
between the Docker host machines. The following diagram should hopefully make this
clearer:

Advanced Docker networking

Docker Host 1 Docker Host 2

APP Ll C 8l AMBASSADOR |

A AMBASSADOR i7" s APP
Container [T Container “

Link Container

Container

You can read more about this pattern in the Docker official documentation. In the gist,
this patterns boils down to publishing ports on one host and discovering the published
bindings on the other host via environment variables exposed to us through linking to the
ambassador container running on the other host. The downside of this pattern is, you must
run extra container on each host which handles the proxying. The upside is, your contain-
ers can become more portable if you refer to destination container via their name as op-
pose to container IDs. If you export any container and transfer it to another docker host
where you have another container running which uses the same name as your exported
container is supposed to be linked in to, all you need to do is just to start the migrated con-
tainer and you’re done.

Now that we have covered how to connect containers across multiple hosts via native
Docker options, it’s time to look at more complicated concepts. In particular, we will look
at how to run and integrate containers on your own dedicated private network.

Docker allows you to explicitly specify an IP address range for the network you want to
run your containers in. Like we learned earlier, the IP addresses of the containers are allo-
cated in the private IP subnet chosen randomly by the Docker daemon when it starts. If you
want to run the containers on your own dedicated network you can specify your own IP
subnet by passing special options to the Docker daemon. This seems like a natural way to
interconnect the containers across multiple hosts on your own private network.

You must first assign an IP address to the dockerO bridge and then specify an IP ad-
dress range for the Docker containers. The IP address range must be a subset of the sub-
net the bridge has been placed into. So if we wanted our containers to be on the
192.168.20.0/24 network we could set the DOCKER_OPTS environment variable to
the following value:

DOCKER_OPTS="--bip=192.168.20.5/24 --Fixed-
cidr=192.168.20.0/25"

What seemed like an easy and convenient way to configure custom private networking
for Docker containers, actually requires adding special routes and iptables rules on the
host machine. Another downside to this solution is as you may have expected the IP ad-
dress assignment, which we discussed earlier. Since the Docker daemons don’t communi-
cate with each other, IP address allocations can lead to IP address clashes. This will hope-
fully be addressed by Docker once the libnetwork is introduced in the future version,

147

https://docs.docker.com/articles/ambassador_pattern_linking/
https://github.com/docker/libnetwork

148

CHAPTER 12: Docker Networking

which should be pretty soon. In the meantime we can take advantage of integrating third
party tools with Docker.

One popular solution to private Docker multihost networking is to use Open Virtual
Switch (OVS) and GRE tunnelling. The idea behind this is to replace the default dockerO
bridge with the one created by OVS and create a secure GRE tunnel between the hosts on
the private network. This requires at least a basic knowledge of how OVS works and can get
a bit too complex the more Docker hosts you are trying to interconnect (this will be ad-
dressed in the future releases of Docker via libnetwork or can be avoided by using
swarm). By default, using OVS still does not solve the issue of IP address allocation across
multiple Docker hosts like we have mentioned few times earlier, so you will need to come
up with some solution to it. You can read more about how you can go about using OVS with
Docker on the following blog post.

Docker offers another way to make the inter-container communication across multiple
hosts easier: network namespace sharing.

Network namespace sharing

The concept of network namespace sharing has been popularized by the Kubernetes
project where it became known as a pod. We will show how you can exploit network name-
space sharing for interconnecting the Docker hosts.

When starting a new container you can specify a container “network mode”. Network
mode allows you to specify how the Docker daemon creates network namespaces in the
newly created container. The Docker client provides the ——net command line option to
do this. By default it is set to bridge, which we have already described at the very begin-
ning of this chapter.

In order to share the network namespace between arbitrary number of containers, the
argument which we need to pass to ——net command line switch has the following for-
mat: container :NAME_or_ID.

In order to use this option, you must first create a “source” container that will create a
“base” network namespace which other containers can join. Again a simple example will
illustrate this better.

We will create a new container that will join a network namespace created by our famili-
ar and already running NginxX container. But first, let’s list the network interfaces inside
the nginx container:

docker exec -it alOe2dcOfdfb ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UN-
KNOWN mode DEFAULT

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
71: ethO: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state
UP mode DEFAULT

link/ether 02:42:ac:11:00:05 brd ff:ff:ff:fF:ff:ff

http://openvswitch.org/
http://openvswitch.org/
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulation
https://github.com/docker/libnetwork
https://github.com/docker/swarm
https://goldmann.pl/blog/2014/01/21/connecting-docker-containers-on-multiple-hosts/
http://kubernetes.io/
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/pods.md

Advanced Docker networking

There should be nothing surprising in the list of interfaces printed above. We will now
create a new throw away container that will join the above container’s namespace and list
the network interfaces available to it:

docker run --rm -it --net=container:alOe2dcOfdfb busybox ip
link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UN-
KNOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
71: ethO: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue state
UP mode DEFAULT group default

link/ether 02:42:ac:11:00:05 brd ff:ff:ff:ff-fF:ff

This is again exactly what we would expect based on the documentation: the newly cre-
ated container can see and bind to the Ng 1 NX container network interfaces. No new net-
work namespace is created for the new container - it merely joins an existing namespace.

The advantage of namespace sharing is a smaller resource usage in the Linux kernel, as
well as simpler network management in some situations: there is no need to keep an eye
on any Iptables rules, and incoming connections can appear to originate from the con-
tainer IP if the connection is established on the internal network. Another advantage is that
you can communicate between the services running inside the containers via loopback in-
terface. However, you can no longer bind different services to the same IP address and
port.

Furthermore, if the source container stops running you will have to recreate it and get
all the other containers to rejoin it’s new network namespace: network namespaces can’t
be recycled! You can get around this problem by creating a “named” network namespace.
You can find out more about network namespaces in this presentation. Docker currently
does not provide an easy way to list what containers share network namespace together.

Now that we have a better understanding of the network namespace sharing between
Docker containers, we will have a look at how we can exploit this for connecting multiple
Docker hosts. The magic again lies in the ——net command line option.

Docker allows you to create containers that share the network namespace with the host
machine. The host machine itself is running it’s network stack in the namespace of the pro-
cess with PID 1, therefore it is perfectly possible for containers to simply join the host net-
work namespace. What this translates into is: container network stack is shared with the
host.

This means that the container, which joins the host’s network namespace has the read-
only access (unless ——privileged flag is passed) to the host’s network. Whenever you
start a new service in the container that shares the network namespace with the host, the
service can bind to any of the IP addresses available on the host and therefore it is avail-
able on the host without any further effort.

149

https://speakerdeck.com/gyre007/exploring-networking-in-linux-containers

150

CHAPTER 12: Docker Networking

WARNING: Try to avoid sharing network namespace with the host as you might be intro-
ducing a potential security hole on your host machine. Until the security woes of Docker are
addressed you must do this with caution!

To understand what this looks like in practice we will look at a very simple example. We
will create a new container, list the network interfaces inside it, and compare it to the net-
work interfaces available on the host. First, let’s list the network interfaces on the host by
running the following command:

ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UN-
KNOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfi-
fo_fast state UP mode DEFAULT group default gqlen 1000

link/ether 04:01:47:4f:c6:01 brd ff:ff:fF:fF-fF:ff
4: dockerO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc no-
queue state UP mode DEFAULT group default

link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:FF-FF:fF

There’s nothing extraordinary to notice above: we have a loopback device, one ethernet
device and a Docker bridge. Now, let’s create a new throw away container that shares the
network namespace with the host and lists the network interfaces available inside it:

docker run --rm --net=host -it busybox ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UN-
KNOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfi-
fo_fast state UP mode DEFAULT group default glen 1000

link/ether 04:01:47:4Ff:c6:01 brd ff:ff:ff:fF:-fF:ffF
4: dockerO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc no-
queue state UP mode DEFAULT group default

link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:fr:ff:ff

As you can see, no new network interface has been created for this container and all of
the host interfaces are available to it. This allows for easy container interconnection be-
tween the hosts as it simply removes the need for docker private network. This can howev-
er make your containers easily exposed on the network and removes a lot of advantages
you gain if you run containers in their own private network namespaces.

Furthermore, when sharing the network namespace with the host we need to keep an
eye on one not very obvious thing. Network namespace includes Unix sockets, which
means that all the the Unix sockets exposed on the host by various operating system serv-
ices are available to the container as well. This can sometimes lead to unexpected sur-
prises. Keep this in mind when you start stopping services inside the container that shares

https://github.com/docker/docker/issues/6401
https://github.com/docker/docker/issues/6401

IPv6

the network namespace with the host and try to avoid running these containers in privi-
leged mode.

A simple example case where this could be useful is to proxy a traffic via SSH-agent at
docker build time when you don’t have the private SSH key available to you, since having
it packaged in the container image is a security risk (unless you recycle the keys after every
build). One workaround to this problem is to run a socat proxy container, which shares
the network namespace with the host and therefore has access to the ssh-agent on the
host. The proxy can then listen on a TCP port through which you can proxy the private traf-
ffiat build time. You can see an example of this in the following gist.

A more secure version of this is to create a network namespace as normal and then
move a host interface into the new network namespace, using the ip link set
netns command, and then configuring it in the container. There is not yet any Docker
command line support for this.

This type of setup precludes running in most cloud environments, as they rarely provide
more than a single physical network port, and do not accept additional MAC addresses be-
ing added to existing ports. However, if you are running on physical hardware multiple
physical ports, SR-I0V ports, vlans or macvtap interfaces are all possible.

IPv6

Most Docker deployments use the standard IPv4, but many large scale data center opera-
tors such as Google and Facebook have switched to using the newer IPv6 internally. There
is no shortage of IPv6 addresses, as addresses are 128 bits long, and the standard alloca-
tion for a single host is a /64, or 18,446,744,073,709,551,616 addresses!

This means that it is perfectly possibly for each container to have its own globally routa-
ble IPv6 address, which means that communication between containers on different host
is much simpler.

Recent versions of Docker have IPv6 support, and setup is now well documented.
Docker needs at least a /80 address to allocate to containers, which means that it can work
on a host with a /64 or even in a larger setup where a single /64 is divided between multiple
hosts, in a setup with up to 4096 hosts. Direct routing between containers on different
hosts is possible.

Again, in a cloud environment there are few providers that provide IPv6 yet, but this is
gradually changing. Digital Ocean only provides a very minimal 16 IPv6 addresses per host,
which is supported but with difficulty, as discussed in the NDP proxy section of the docu-
mentation. However, there are other providers such as Vultr and BigV from Bytemark that
provide cloud services with a full /64 that makes Docker ipv6 support easy.

The ongoing IPv4 address shortage may well encourage more people to look at IPv6 as a
way to return to simpler network topologies without NAT, but the lack of widespread sup-
port does make it problematic still.

151

https://gist.github.com/milosgajdos83/0ca37bc08a28338d1475
https://docs.docker.com/articles/networking/#ipv6

152

CHAPTER 12: Docker Networking

Summary

As shown in this chapter, the Docker engine provides an extensive amount of options avail-
able to you to connect the containers in your infrastructure. Sadly, more advanced setups
require a fair amount of user effort and solid understanding of networking internals like
routing and iptables that can be rather off putting for a user who just wants to run her
application and not worry about the nitty gritty low level networking details. Furthermore,
the native options provided by Docker are rather static and don’t scale very well across
multiple hosts. We hope that all of these woes will eventually be solved by the promised
network APl which will be based on the Iibnetwork we mentioned earlier in a future
Docker release. There is no need to worry until this materializes, as this is where the awe-
some rapidly growing Docker ecosystem steps in.

While standard Docker networking tries to abstract away the network setup, the use of
iptables and potentially tunnelling protocols has a performance cost. New Relic found
out that in some cases, for applications needing high network performance, it could be as
much as twenty times slower to use the standard docker networking setup.

There are lots of ready to use tools available to you that can address the discussed net-
working issues. The simplest, but still very powerful is called pipework created by the one
and only Jérome Petazzoni of Docker Inc. Pipework is essentially a simple shell script
which allows for more advanced network setups like configuring multiple IP addresses in
containers, using Mac VLAN devices or even using DHCP for IP address allocation. There is
even a Docker image, which delivers pipework in a container. This provides an opportunity
to integrate it into your application via docker compose.

Another very useful tool is called weave by a company called Weaveworks. Weave
probably deserves a separate chapter, however, we will provide a simple intro and various
links you can explore it further. Weave can create an overlay network across multiple hosts
and cloud providers and thus easily connect the Docker containers without any hassle.
Weave also provides some really powerful features like enhanced security and already
mentioned weave-dns for easy DNS based service discovery. Weave is arguably the easi-
est tool on the market to use based on our experience, since it does not require the user to
think too much about the low level networking details. The company has recently an-
nounced some really interesting features like weave scope, which is a tool that provides
better container visibility which can be priceless in high density environments. You can
read a quick introduction to scope on the following post. With the announcement of ver-
sion 1.0 comes big news of a fast network path, which is built on top of a previously dis-
cussed OVS. Using the fast path means that you no longer have the strong cryptography,
but it’s a trade off worth considering. Finally, with the recent announcement of docker plu-
gins, the native Docker integration got much easier as you can use weave simply as a Dock-
er plugin.

The team at CoreOS developed their own overlay networking solution called flannel.
Flannel was originally developed to address Google Cloud Platform centric networking na-
ture of Kubernetes, but the project has evolved since the first release and it now offers

https://blog.newrelic.com/
https://github.com/jpetazzo/pipework
https://twitter.com/jpetazzo
https://registry.hub.docker.com/u/dreamcat4/pipework/
https://github.com/weaveworks/weave
http://weave.works/
http://blog.weave.works/2015/06/16/weave-net-cryptography-faq/
https://github.com/weaveworks/scope
http://thenewstack.io/how-to-detect-map-and-monitor-docker-containers-with-weave-scope-from-weaveworks/
http://blog.weave.works/2015/06/18/weave-1-0-is-out-and-it-is-good/
http://blog.weave.works/2015/06/12/weave-fast-datapath/
https://blog.docker.com/2015/06/extending-docker-with-plugins/
https://blog.docker.com/2015/06/extending-docker-with-plugins/
http://blog.weave.works/2015/06/22/weave-as-a-docker-network-plugin/
https://coreos.com/
https://github.com/coreos/flannel

Summary

some really interesting features like VXLAN. Flannel stores its configuration in etcd, which
makes the integration with the CoreOS operating system an easy ride.

Finally, the latest player on the field of Docker networking is project calico, which offers
layer 3 solution to Docker as well as Open Stack. At the moment the project takes advan-
tage of the ClusterHQ powerstrip, which allows for simple plugin registration before the
native plugin is implemented in Docker engine. The big advantage of project calico is na-
tive IPv6 support and easy scaling across multiple Docker hosts. Calico achieves this by im-
plementing some sort of distributed BGP router across multiple Docker host machine. This
is a project to keep an eye on.

By listing the third party tools we will now conclude the Docker networking tour. Hope-
fully the topics described here helped you to get a better understanding of how you can
model network in your own Docker infrastructure.

We will now move on to discuss how you can schedule Docker containers across multi-
ple hosts in the next chapter.

153

http://en.wikipedia.org/wiki/Virtual_Extensible_LAN
https://github.com/coreos/etcd
http://www.projectcalico.org/
https://github.com/ClusterHQ/powerstrip

Scheduling

So far we have looked at Docker running on a single machine. At some point your infra-
structure will start growing beyond one host or you simply have a requirement to run Dock-
er containers in some high availability setup. You need to start scaling out to multiple ma-
chines. This brings a lot of challenges not only around multi-host docker networking but
even more importantly around container orchestration and cluster management.

Without proper clustering or orchestration tools you will either find yourself fighting the
container infrastructure, as opposed to managing and operating it, or you will simply end
up writing a lot of container management tooling yourself. Indeed, Docker has recognized
this need and invested a significant effort into reworking its networking model and creat-
ing the Docker native cluster manager called swarm.

The topic of cluster management would certainly deserve a separate book. Among
many issues it covers adding and removing hosts, making sure they are healthy, and scal-
ing up and down to manage load. In this chapter we will focus only on one particularly im-
portant aspect of cluster management and orchestration: scheduling.

The basic idea of job scheduling is simple, and goes back a long way to mainframes and
high performance computing (HPC); Rather than dedicating computers to particular work-
load(s) you treat the entire datacenter as a large pool of compute and storage resources,
and just set computing jobs running, as if it is one huge computer. Indeed Mesosphere, one
of the infrastructure players in the Docker space, offer “Datacenter Operating System” as
their main product.

Let’s take a step back now from the concrete implementations and focus a little bit on
the underlying problem. In order to understand the problem of container scheduling
across a cluster of Docker machines, we need to lay some groundwork and define what
scheduling actually means.

What is scheduling?

From a 30 thousand foot view the scheduling problem can be defined as assigning some
computing tasks to a set of hardware resources (CPUs, memory, storage and network ca-
pacity for example) that can complete them while satisfying the task requirements.

1

155

https://en.wikipedia.org/wiki/Computer_cluster
https://blog.docker.com/2015/06/networking-receives-an-upgrade/
https://github.com/docker/swarm/

156

CHAPTER 13: Scheduling

There are a lot of factors that can influence the scheduling decisions. Cost obviously
comes to play, but so does latency, throughput, error rates, time to completion and meas-
ures of quality of service. So tasks need to be prioritized for example as important (custom-
er facing), or less time critical jobs that can be scheduled as load fluctuates.

Each task may also be made up of a number of processes, with different data storage
and networking requirements that may require certain bandwidth or locality, so they need
to be placed near each other, and also redundancy requirements that may require place-
ment of replicas far away, such as an another data center or availability zone.

Applications have varying levels of resource requirements over time as the load
changes, so they may need to be rescheduled as they scale up and down. In addition there
will be new applications deployed over time, so the scheduling decision must be re-
examined regularly. Some tasks are only short lived, while others are long running and may
perhaps benefit from being moved over their lifetime.

Measurement and monitoring are the keys: throughput and latency versus require-
ments, resource usage and capacity planning are important, as well as cost and budget,
and the value that is being generated. Often the solution to scheduling problem falls into a
category of the optimization problem when you are trying to optimize for some end goal
(such as maximizing throughput, minimizing latency, and so on).

We take scheduling on a single machine for granted most of the time, since operating
systems generally do a good job, having been tuned for decades. Scheduling across multi-
ple machines is much less mature.

Unlike scheduling virtual machines, containers are not a fixed size; for example they
may change their memory usage over time. This makes the scheduling problem even much
harder than the bin packing problem of fitting a few known size Virtual Machines (VMs)
into bare metal machines.

Optimal scheduling is thus a very difficult problem, and it is only at very large scale that
significant engineering efforts may be needed.

Strategies

Like we mentioned earlier, compared to the scheduling problem on a single computer,
scheduling across a cluster is much more complex. The scheduling on a single computer
concerns running a large number of threads and processes on a small number of CPUs, and
the aim is to avoid starvation, where one process does not run for a very long time, and to
make sure that deadlines for interactive processes are hit. Beyond that, some notions of
fairness in resource use, such as 10 bandwidth, are used. Locality is accounted for a little, in
NUMA systems, but it is not a major driver.

In a datacenter, or multiple datacenters, or in the cloud, the scale of the problem is a
few orders of magnitude larger. Latency becomes hugely more important, computers are
failing while running jobs, and the timescales are longer. In addition, workloads vary a lot,
from Hadoop MapReduce jobs, a workload which has usually expected to own a whole

https://en.wikipedia.org/wiki/Program_optimization
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/MapReduce

Mesos

cluster, through MPI that expects certain amount of resources to be available before the
work can even start, to traditional web applications, which used to just be given more ca-
pacity than they need.

So, scheduling containers on a cluster is a hard problem that involves both with hetero-
genous environments and heterogenous workloads. As always there is no “One size fits all”
solution so a whole suite of schedulers have been created by various organizations, most
of them addressing a particular workload problem from different angles.

Mesos

One particularly interesting solution developed by researchers at the University of Cali-
fornia, Berkley that has been creating a lot of waves recently is called Mesos. On a very
high level, Mesos enables what is referred to as two-level scheduling in which the Mesos
itself provides abstractions of raw computing resources in the compute cluster and offers
[or schedules] them to arbitrary number of [heterogenous] frameworks running on top of
it. Each framework then implements its own task scheduling based on its own particular
workload.

This means that Mesos merely manages the cluster resources and decides which ones
to offer to which framework based on the Dominant Resource Fairness algorithm. What is
important is the actual task scheduling is delegated to particular framework, which has its
advantages and disadvantages.

This model gives you a flexibility to write your own task scheduler tuned for your partic-
ular workload without worrying about low level compute resources. On the other hand,
you have no overview of the overall cluster state, and neither can you force Mesos to allo-
cate more resources if you need them at some point in time than what Mesos assumes is a
fair share. This can be based on some criteria you specify to the Mesos allocator when the
framework starts.

This can get tricky if you are running a lot of long running tasks that can hog up the
compute resources and starve out the yet to be scheduled tasks. In other words: Mesos per-
forms the best when used in homogenous batch processing workloads that is very well
manifested by success of the projects like Apache Spark, which implements a super fast
data processing framework running on top of Mesos.

The actual computing tasks scheduled by Mesos frameworks running on top of Mesos
are performed by what Mesos refers to as process containerizer. Since version 0.20 Mesos
supports Docker as one of the containerizer options. While the full Docker support has not
been fully implemented yet, the feature coverage is big enough to schedule complex Dock-
er tasks.

Twitter has proven that you can use Mesos to run large scale infrastructure with hetero-
genous workloads successfully. They have developed the Aurora framework for long run-
ning processes that support preemption and many other useful features. Another very

157

https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.berkeley.edu/
http://www.berkeley.edu/
http://mesos.apache.org/
https://www.cs.berkeley.edu/~alig/papers/drf.pdf
https://spark.apache.org/
https://twitter.com/
http://aurora.apache.org/

158

CHAPTER 13: Scheduling

popular framework is Marathon developed by Mesosphere, which even provides a remote
REST API for easier orchestration.

If you are looking to find more deatiled information about Mesos you should read the
actual white paper.

Kubernetes

Kubernetes is a much younger product than Mesos, only having been started in June 2014,
and the 1.0 release, which was released in July 2015. However, it has a longer history, being
created by Google as an open source version of its internal scheduling systems, which
started with Omega and then Borg.

The paper published by Google on Borg gives a great overview of that history, and how
Google uses scheduling in its internal, container based, architecture. This heritage means
that there has been a lot of interest in Kubernetes, and it is being developed and used by
companies such as CoreOS and RedHat.

Kubernetes covers the whole scope of application deployment, scheduling, updating,
maintenance, and scaling. It supports Docker containers, grouped into small clusters
called “pods” that share a network namespace, so can communicate more simply among
themselves; this is meant for a small group of containers that together make up a single
application, such as a web application and a Redis store.

The Kubernetes API lets containers, pods, replication, volumes, secrets, metadata and
all the other components be controlled, and in many ways is the key strength of Kuber-
netes; the API design comes from Google’s earlier projects so it is already well tested.

Kubernetes is not yet the easiest thing to install. A very clear tutorial is RedHat’s get-
ting started with Kubernetes guide, but there are a lot of manual steps. Docker may re-
duce the amount of config management you have to do, but setting it up as a scheduling
environment still requires a lot.

Right now the easiest way to try it out and get a feel is to use the Google Container En-
gine implementation. There is the obligatory Wordpress hello world tutorial, which is very
quick and easy, at which point you will have the standard “kubectl” Kubernetes command
line tool installed and configured, and can run your own Docker containers easily in your
cluster.

OpenShift

Scheduling systems are a basic building block for a platform as a service, and Kubernetes is
becoming a key building block in this space.

RedHat’s OpenShift product is an open source (and hosted) platform as a service prod-
uct. Prior to version 3 it was a fairly standard open source “Heroku clone” PaaS, but ver-
sion 3 is a complete rewrite, based on Docker and Kubernetes in particular, and Project
Atomic, RedHat’s answer to CoreQS, as well as a whole host of other open source projects.

https://mesosphere.github.io/marathon/
https://mesosphere.com/
http://mesos.berkeley.edu/mesos_tech_report.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
https://access.redhat.com/articles/1353773
https://access.redhat.com/articles/1353773
https://cloud.google.com/container-engine/docs/hello-wordpress
https://www.openshift.com/
https://blog.openshift.com/openshift-v3-platform-combines-docker-kubernetes-atomic-and-more/
https://blog.openshift.com/openshift-v3-platform-combines-docker-kubernetes-atomic-and-more/
http://www.projectatomic.io/
http://www.projectatomic.io/

OpenShift

OpenShift 3 was released for general availability in June 2015, and provides another entry
point to Kubernetes if you want a fully fledged PaaS.

Thoughts from Clayton Coleman at RedHat

To get a feel for how OpenShift fits in with containers we interviewed Clayton Coleman, the
lead engineer for OpenSHift at RedHat.

Is OpenShift v3 an opinionated product or a bunch of open source projects that work
together and can be swapped out? Obviously to some extent it is both, but | am interested
in how this dynamic of product versus tools works with your clients and your development
process.

Clayton Coleman: “OpenShift is a collection of deployment, build, and app lifecycle
tools build on top of Kubernetes. We try not to be axiomatic about particular technologies
for the individual components. For instance, for edge routing and proxying we are writing
in a way that is compatible with Apache, Nginx, F5, and many other configurable load bal-
ancers, but we ship a default HAProxy setup. We expect to receive build inputs from many
sources, but we primarily enable Git. Kubernetes is gaining support for the Rocket contain-
er engine, so OpenShift would be able to leverage that instead of Docker eventually. We try
to be the glue between many different concepts and developer workflows rather than as-
suming a total top to bottom application lifecycle.”

How is PaaS being introduced into the enterprise? Who are the early adopters, what
kinds of decisions are being made? Have containers and the Docker hype changed speed of
adoption? Obviously it is a big change, and the processes of change are interesting.

Clayton Coleman: “PaaS in the enterprise is driven by large shops with extensive internal
application deployments looking to standardize their patterns and processes, as well as or-
ganizations looking to benefit from increased flexibility in infrastructure and tooling. | think
Docker has been more of a bottom up change, being that it’s a technology that has a low
barrier to entry for simple tasks that it does well. The way we have seen Docker being used
in many organizations is in high touch operational flows, where dev/ops teams benefit
from the deployment of images as atomic chunks. However, the flip side of that is that they
are still heavily custom / scripted flows, so while they can give big improvements, we think
the introduction of larger scale patterns (via cluster management / PaaS tools) can deliver
a similarly large improvement on top of that (multiplicative improvement, vs additive).”

You described the pod model in Kubernetes as a bit like a mini VM, a collection of appli-
cations working together with local communication over Unix sockets and disks for exam-
ple, rather than remote network IO. Is this a tool for migrating existing applications with
this structure, with improved security potentially as per Redhat’s container security
page. So, do you see a migration of existing applciations, or are people largely running new
applications on PaaS?

Clayton Coleman: “The mix we have seen is very much split between new and old, so
any model that picks one or the other tends to oversimplify in a way that makes the other
mode hard. A good percentage of applications are more complex than “just one container”,

159

https://securityblog.redhat.com/2015/04/29/container-security-just-the-good-parts/
https://securityblog.redhat.com/2015/04/29/container-security-just-the-good-parts/

160

CHAPTER 13: Scheduling

and the abstractions they typically need are shared disk, local network, or “side-car” style
agents that shouldn’t be coupled with the main container. So building from day one with
the idea that you need a local grouping concept helps both new and old application mod-
els”

Immutability, and Project Atomic are obviously very new, how much use of or demand
for immutability are you seeing? How do you see this going forward?

Clayton Coleman: “To make immutability work, you need to be able to constantly
change in a repeatable way. The flow of new immutable images is totally predicated on an
automatable and understandable build pipeline. The benefit of immutability is reducing
the number of variables you need to understand to reproduce a problem or triage a failure,
but the cost of immutability is automating all the things.”

Some other Linux vendors seem to be pushing containers for legacy stuff, i.e. full muta-
ble systems running multiple applciations, while RedHat seems to be pushing for the single
app per container structure, with pods around that if necessary. Is that a fair characteriza-
tion? Is that driven by customer demand?

Clayton Coleman: “Occasionally it is useful and necessary to have more complex con-
tainers. It’s good practice to reduce complexity in general, but there are often real needs
that complex containers satisfy that can still benefit from flexible infrastructure around
them. | think the benefits of containerized infrastructure depends to a large degree on the
ability to split areas of responsibility into multiple components (as people advocated with
SOA, or lately micro services). But that should not preclude large, mutable, or complex con-
tainers.”

In the next chapter we look at service discovery in Docker, which allows any service on a
computer network to discover other services it needs to communicate with.

Service Discovery 1

Service discovery is a mechanism that allows any service on a computer network to discov-
er other services it needs to communicate with. It is a key component of most distributed
systems. If you are running infrastructures that run or follow Service Oriented Architec-
ture (SOA) you can almost never avoid deploying some kind of service discovery solution.
The same applies for a new concept in software application design, which shares a lot of
similarities with traditional SOA and which has become to be known as microservices.

The service discovery problem definition is quite simple: How does a client discover an IP
address and a port of a service it is trying to communicate with?

1.2.3.4:10 1.23.411

SERVICE e RERL
c D

1.23.512 1.23.6:13

161

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://martinfowler.com/articles/microservices.html

162

CHAPTER 14: Service Discovery

Various solutions to this problem often hide a lot of subtleties before users. In order to
understand service discovery better we first need to define at least some basic require-
ments for it. The absolute bare minimum we need from service discovery solution is:

+ service registration/service announcement: a process in which a service registers
its presence on a network. This is normally done by adding a record to some kind of
service database, which is often referred to as service registry or service directory. Ser-
vice registry entry must contain at least the service IP address and port, but can and
often does contain service metadata like protocol, environment details, version, and
more.

service lookup/service discovery: a process of querying the network to find out the
connection details for the service you are trying to communicate with. This boils
down to finding the IP address and port number of given service by querying the ser-
vice directory database. Ideally, you should be able to query the service directory by
different criterions for example by the above mentioned metadata.

The process of service registration is a bit more complex than what we have outlined
above. In general, there are two ways in which it can be implemented:

« embed the service registration directly into your application service source code
« use a sidekick process (a.k.a. co-process) which will handle the registration for you

Embedding the service registration into your application source code puts certain re-
quirements on client libraries. Often the availability of the client libraries for a particular
programming language is limited so you might end up writing a lot of extra code that might
introduce unnecessary complexity in your code base. Embedding service discovery code
into the application source code often leads to creating “thick clients”, which are not easy
to write and often result in debugging challenges. Taking this approach can tie you to a cer-
tain service discovery solution that can lead to smaller portability of your applications and
services. Finally, integrating with “third party” services that you might need to run your in-
frastructure, such as redis, will require an extra effort. However, if there is a stable and
actively maintained solution, you can gain a lot of benefits from it such as client side ser-
vice load balancing, connection pooling, automatic service heartbeats and failover.

Another widely adopted solution to service registration is to run a sidekick process that
runs alongside the application service and performs the service registration on its behalf.
The advantages of this solution are obvious. It is very pragmatic as it does not require the
application author to write any extra code. By integrating the sidekick process with your
init system you can make sure (to certain degree) that the service is only registered when
it’s fully started and when it operates properly. Taking this approach to service registration
also allows for easy integration with third party services. However, the downside is that you
often need to run a separate process for every service you need to register. Additionally,
using the sidekick process puts extra requirements on the actual service registration pro-
cess: how do you provide the sidekick process with the configuration of the service you are
trying to register? Knowing the service configuration is necessary as the service registration

DNS service discovery

often requires to update some service metadata. Clearly, using sidekick method provides
some advantages but it also introduces some operation and maintenance challenges.

The more complex our infrastructures get the more requirements we put on the service
directory database. Comprehensive solutions should offer much more than what we have
outlined earlier, in particular at least the following:

+ high availability of service directory database

« ability to easily scale the service directory database across multiple hosts while guar-
anteeing a required level of data consistency

ability to notify about the service availability so that the service is removed from the
directory when it becomes unavailable

ability to notify about changes to particular service directory entries for example
when some service metadata changes

What does this all have to do with Docker you ask? Well, Docker in fact makes the prob-
lem of service discovery even more visible. This is especially important when you start scal-
ing your container infrastructure across multiple host machines. Once you start using
Docker to package and run the applications you find yourself continuously looking up the
IP address and port which the particular service running inside the docker container is lis-
tening on. Luckily, Docker makes it quite easy to discover the service connection details: all
you need to do is to query the remote APl exposed to you by the Docker daemon. Often
times users end up writing simple shell scripts and pass the connection details information
parsed out from Docker APl response to new containers via environment variables. While
this can be a handy aproach for local environments, it is arguably not a very scalable and
sustainable solution. Not only can the maintenance of custom scripts turn into a night-
mare, the problem gets even worse when the application or service instances are spread
across multiple hosts or data centers. This problem is even more exacerbated in cloud en-
vironments where the services come and go very frequently.

In this chapter we will try to shed a bit more light on the topic of service discovery and
discuss various open source solutions we have at our disposal to tackle this problem when
running Docker containers. Roll up your sleeves and read on.

DNS service discovery

DNS is one of the core technologies supporting the World Wide Web. On a high level, DNS
is an eventually consistent distributed database primarily used to resolve human readable
names to machine readable IP addresses. It is also well known to be used for looking up
email servers responsible for a given domain. Using DNS for service discovery seems like a
natural choice - it is a battle tested, widely deployed and very well understood technology.
There is a wealth of open source server implementations available for use as well as whole
suite of client libraries pretty much in any programming language you can think of. DNS

163

http://en.wikipedia.org/wiki/World_Wide_Web

164

CHAPTER 14: Service Discovery

supports client side caching and a simple domain name delegation which makes it a very
scalable solution.

The most well understood part of DNS is the already mentioned resolution of domain
names to IP addresses via DNS A records. Using just A records for service discovery is
however not sufficient enough as they do not provide any information about what port a
given service listens on. Furthermore A records don’t provide any metadata informa-
tion about the services running in your infrastructure. In order to use the DNS to imple-
ment full feature service discovery we need to use at least two extra types of DNS records:

« SRV - usually used to provide the information about service location on the network,
such as the port number

+ TXT - usually used to provide arbitrary service metadata information i.e. environ-
ment, version, and more

These resource records are the bare minimum to use DNS as a service discovery solu-
tion. While you can rely on conventions and run the services on well known ports and then
simply use A records you won’t be able to perform more complex lookups should you
need to.

Service registration and unregistration requires adding and removing particular DNS re-
cords into DNS server configuration, which then often needs to be reloaded in order for the
changes to take a desired effect. You must implement a certain level of automation to keep
the server configuration up to date in line with the services running in your infrastructure.
DNS was created in a fairly “static” Internet world when the need to modify DNS records
was not as frequent as it is in the new “cloud era” when servers and services can come and
go very frequently. DNS record modification can take some time to propagate due to multi-
ple layers of caching in the DNS infrastructure. Users often try to work around the propaga-
tion times by lowering TTL value to minimum, which has the effect of creating way too
much unnecessary traffic, slows down the communication, and adds an extra load on the
DNS servers as the service lookup happen way too frequently.

While there are some well known DNS server implementations that are more dynamic
with regards to its configuration than the battle-tested bind server, often times users are
not willing to run their own DNS servers since regardless of the amount of implemented
automation, they still require a fair amount of operation and maintenance effort. And while
there is a wealth of choice of cloud DNS providers that offer simple API control, like AWS
Route53, using them will require again an extra effort to write and maintain code, which
does not have to be desirable and still does not solve the problem of service chattiness.
Indeed, nothing comes for free.

With the dawn of Docker and the microservices architecture, a new breed of DNS servers
has come to its existence. These DNS servers alleviate some of the earlier discussed issues
and are often easily used to provide simple service discovery solution not only for services
running inside Docker containers. In the next chapter we will have a look at the most well
known implementations and discuss how you can use them in your infrastructure.

http://en.wikipedia.org/wiki/List_of_DNS_record_types#A
http://en.wikipedia.org/wiki/SRV_record
http://en.wikipedia.org/wiki/TXT_Record
http://en.wikipedia.org/wiki/Time_to_live
http://bind-dlz.sourceforge.net/
https://www.isc.org/downloads/bind/
http://aws.amazon.com/route53/
http://aws.amazon.com/route53/

DNS service discovery

DNS servers reinvented

One of the most well known “new generation” DNS server implementations that can be
used to implement service discovery in your infrastructure is called SkyDNS. You can either
compile it from source or deploy it as a Docker container. You can find its Docker image on
docker hub. The latest version of SkyDNS uses etcd service for storing its DNS records.
We will discuss etcd later on in this chapter - for now, let’s just assume that etcd is a
distributed key-value store.

SkyDNS offers a remote JSON API, which allows you to handle the service registration
dynamically by sending a HTTP POST request to a given APl endpoint. This will create a
SRV DNS record, which as we learned earlier, can be used to discover connection ports of
the services running on the network. You can also set the TTL on any value, which will au-
tomatically unregister the service once the TTL expires. SkyDNS also offers DNSSEC. In or-
der to set it up you need to make some extra configuration. Head over to Github to read the
project documentation.

If you want to use SkyDNS with Docker, you will need to write a SkyDNS client library
that will help you handle service registration. Luckily, as mentioned earlier this should not
be a big problem thanks to the remote API provided by SkyDNS. Once the service is regis-
tered, you can use any DNS library to look it up. This is quite a big win given the abundance
of open source DNS libraries. Easier options to use SkyDNS with Docker, although not quite
scalable at the moment, is to use skydock created by Michael Crosby of Docker Inc. Sky-
dock will handle all the Docker container service registration dance for you automatically
as it watches for Docker APl events: service registration and unregistration are handled au-
tomatically for you. The only problem with Skydock is that it is usable only on one Docker
host at the moment, however, that might change in the future. Skydock certainly is one of
the tools worth to keep an eye on. If you want to find out more about Skydock and how it
can used with Docker containers there is a great YouTube screencast created by Michael
who walks you through all of the Skydock features.

Another player on the Docker DNS server field is weave-dns. The biggest advantage of
weave-dns is that you can use it very easily out of the box with very little effort. Just like
Skydock, it watches docker APl events and registers containers by adding and removing
particular DNS records automatically. While Skydock use is limited to one Docker machine,
weave-dns works across multiple hosts. However, to take the full advantage of it, you
must use it in weave overlay network, which can be a bit of downside for some users.
Weave network is a Software Defined Network (SDN) which gives you a simple and secure
overlay network across multiple docker hosts, however, if you are already using a different
SDN solution, weave-dns might not be the best option for you. Furthermore, at the mo-
ment weave-dns relies on users using well known ports as opposed to discovering them
via SRV or TXT records.

Given the size and a speed of growth of the Docker ecosystem, there are most likely
many more DNS server implementations available to use, some as standalone servers oth-
er ones as part of the full blown SDN offering. We will leave those for you to discover as it

165

https://github.com/skynetservices/skydns
https://registry.hub.docker.com/u/skynetservices/skydns/
http://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions
https://github.com/skynetservices/skydns/blob/master/README.md
https://github.com/crosbymichael/skydock
https://twitter.com/crosbymichael
https://www.youtube.com/watch?v=Nw42q1ofrV0
https://github.com/weaveworks/weave/tree/master/weavedns
http://en.wikipedia.org/wiki/Software-defined_networking

166

CHAPTER 14: Service Discovery

would be almost impossible to cover all of them in this book. We will now move on to dis-
cuss the service discovery solutions which have become de facto a standard in distributed
systems world. We will start with the well known Zookeeper project.

Zookeeper

Zookeeper is an Apache Foundation project that offers distributed coordination services
to distributed systems. It provides simple primitives to empower the clients to build more
complex coordination functionality. Zookeeper really aims to be a kernel or merely a base
building block for building powerful distributed applications. We could write a whole book
about Zookeeper, and indeed there already is one. Instead we will discuss the basic con-
cepts and focus on how you can use Zookeeper as a service discovery solution in your in-
frastructure.

On a very high level Zookeeper provides distributed in memory data storage registers
called znodes. These are organized in hierarchical namespaces similar to standard file-
systems. Znode hierarchy is often referred to as “data tree”. There are two types of zno-
des:

« regular - created and deleted by clients explicitly

+ ephemeral - same as regular with addition of client having the option of delegating
their deletion to the cluster automatically once the client session is terminated

Clients can set up a watch on any znode in the cluster, which lets the Zookeeper notify
them about any data modifications or removals automatically. Arguably one of the biggest
advantages of Zookeeper is the simplicity of its API; it provides only seven znode opera-
tions. Zookeeper offers strong data consistency guarantees and partition tolerance by im-
plementing Zookeeper Atomic Broadcast (ZAB) consensus algorithms. In a very short de-
scription, ZAB defines a leader and followers (which elect the leader). All write requests are
forwarded to the leader that then applies them to the system. Read requests can be served
by followers. ZooKeeper can only work properly if the quorum (majority) of the servers is
correct, therefore you must always deploy Zookeeper clusters in sizes of 3, 5 etc. or more
formally: you must always run the cluster of 2n+1 nodes (n is a postive number of
servers). A cluster of this size tolerates N node failures. The earlier described properties
have implications on zookeeper’s scalability; adding new nodes improves read throughput,
but degrades write throughput. Furthermore, write speed decreases when the quorum
must wait for leader election votes over the remote site, so if you are thinking of running
zookeeper cluster across multiple data centers you should take all of these points into con-
sideration.

http://www.apache.org/
http://www.amazon.com/ZooKeeper-Distributed-Coordination-Flavio-Junqueira/dp/1449361307
http://zookeeper.apache.org/doc/r3.2.1/zookeeperOver.html#Simple+API
http://zookeeper.apache.org/doc/r3.2.1/zookeeperOver.html#Simple+API
http://web.stanford.edu/class/cs347/reading/zab.pdf

Service discovery with Zookeeper

Service discovery with Zookeeper

You can implement service discovery with Zookeeper by taking advantage of its ephemeral
znodes feature. Registering service would create an ephemeral znode in the cluster un-
der a given namespace on its start and then populate its content with its location on the
network (IP address and port). Zookeeper hierarchical namespaces provide a simple mech-
anism for grouping services of the same kind which is useful if you have multiple instances
of the same service running in your infrastructure.

Service registration has to be embedded into the advertising service source code or you
can write a simple sidekick service, which will speak Zookeeper protocol and handle the
registration on the service behalf. Either way you won’t be able to avoid writing code. Cli-
ents can discover registered services by looking them up in particular Zookeeper znode
namespace. Like we have already mentioned earlier ephemeral znodes exist as long as
the TCP session created by the registering service is active. As soon as the service discon-
nects from Zookeeper, the znode is deleted and the service is unregistered. Clients set up
watch on a znode they want to be notified about. A watch is triggered and removed
when the znode changes.

Zookeeper is fully written in Java. The project also provides a comprehensive Java cli-
ent library to communicate with a Zookeeper cluster. Other client programming language
bindings exist, however, not all of them provide full feature set and their implementation
often differs from one to another which is sometimes confusing to end users. Clients have
to handle load balancing between discovered services as well as automatic service failover
in case some of the discovered services no longer respond or closed their zookeeper ses-
sion after the client lookup. If you are using the Java programming language, there is an
excellent library which wraps zookeeper client library and provides a lot of extra function-
ality out of the box. It’s called Curator and just like Zookeeper it is also an Apache project.
You can find a great guide for working with Curator on the following link.

Zookeeper can provide a rock solid battle tested solution for service discovery. Howev-
er, running Zookeeper cluster in your infrastructure introduces a certain amount of com-
plexity which requires some operational experience and carries an extra maintenance cost.
Given that Zookeeper provides strong consistency guarantees, when a partition happens
services located on a non-quorum side will not be able to register or find other registered
services even if they continue to function properly. Zookeeper might not be the best option
in the write heavy environments where services come and go too frequently. One of the
trickiest problems with using Zookeeper for service discovery, though, is its reliance on the
existence of the TCP session created by the registered service. The mere existence of the
TCP session provides no guarantees of the service health. Application services can perform
a diverse set of tasks. You can’t often test the health these tasks by merely checking if the
TCP session is alive. Therefore you should never rely just on the TCP connection liveness
to assume that the service is healthy! This is often underestimated by a lot of users and
leads to a lot of unexpected surprises.

167

http://zookeeper.apache.org/doc/r3.2.1/zookeeperOver.html#Conditional+updates+and+watches
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZKClientBindings
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ZKClientBindings
http://curator.apache.org/
http://tomaszdziurko.pl/2014/07/zookeeper-curator-and-microservices-load-balancing/

168

CHAPTER 14: Service Discovery

Zookeeper shines when used as a building block in your architecture. It can’t be easily
used directly in your Docker infrastructure, but it is “sneakily” crawling in via other systems
which build on top of it. A classic example is Apache Mesos, which you can use with to
schedule your containers across a Mesos cluster of Docker hosts by using one of its plugins.
If you want to use Zookeeper as a standalone service discovery solution you would have to
write a simple sidekick client which would run alongside your “dockerised” application ser-
vice and handle the registration on its behalf. However it’s much easier to use some solu-
tion that builds on top of Zookeeper such as Smartstack, which we will discuss later on in
this chapter.

We will now move on to discuss relatively new entrants on the distributed key-value
store field which are arguably easier to use as service discovery solutions in your Docker
infrastructure than Zookeeper. The first subject of our discussion will be a tool called
etcd.

etcd

Etcd is a distributed key-value store written in Go programming language by CoreOS. It
shares a lot of similarities with Zookeeper. We will have a look at some of its basic features
and then describe how can it be used for service discovery.

Similar to Zookeeper, etcd stores data in a hierarchical namespace. It defines the con-
cepts of directory and Key (this is not unique to etcd). Any directory can contain
multiple keys that are essentially unique identifiers used to look up data stored in etcd.
Data stored in etcd can be persistent or ephemeral. The difference between etcd and
Zookeeper is the way the ephemeral data is implemented. While in the Zookeeper the life-
times of the ephemeral data is equal to the lifetime of the TCP session of the client which
creates it, etcd takes a different approach which is similar to DNS. Any key in etcd can
have a TTL (Time To Live) value set on it. TTL defines amount of time after which the data
set under its key expires and is permanently deleted. TTL can be refreshed any time by the
client to extend the lifetime of the stored data. Clients can also set up watch on any key or
a directory which allows them to get notified about any changes made to the data stored
under them. Etcd watch implementation relies on HTTP(s) long polling.

One of the biggest advantages of using etcd is that it abstracts away low level data
operations by providing a remote JSON API. This is a big win for application developers
since they are no longer tied to a particular programming language client implementation.
All you need to do to interact with etcd is a simple HTTP client (every etcd release ships
with a command line client utility called etcdctl); you can even simply use curl to inter-
act with a etcd cluster as you can see in many examples in the official documentation.
Etcd uses the Raft consensus algorithm to manage data via replicated log across the clus-
ter. Similar to ZAB, used by Zookeeper, Raft defines leader and follower nodes. All write re-
quests must be applied by leader which keeps log which is then replicated/replayed by its
followers.

http://mesos.apache.org/
http://golang.org/
https://coreos.com/
http://en.wikipedia.org/wiki/Push_technology#Long_polling
https://github.com/coreos/etcd/blob/master/Documentation/api.md
https://ramcloud.stanford.edu/raft.pdf

etcd

In order for etcd to operate properly it must be deployed in clusters of 2n+1 nodes i.e.
3,5, 7 etc. You can see recommended production cluster setups on the following link. Just
like Zookeeper etcd provides strong data consistency guarantees and partition tolerance.
Etcd also provides a decent security model, which allows to use SSL/TLS as well as au-
thentication through client certificates both for the communication between client and
cluster and between the nodes in the cluster. Managing the etcd cluster can be a bit of a
challenge, though. Thankfully, etcd provides great administration and clustering guides
that are an absolute must read before you deploy an etcd cluster in your infrastructure.
There is much more to etcd than what we have shortly described here, so | would encour-
age you to explore the official documentation. We will now move on to discuss how to use
etcd for service discovery.

Service discovery with etcd

You can implement service discovery using etcd by taking advantage of its TTL feature. A
registering service creates a new key entry in the etcd cluster and populates it with con-
nection details. The new key can either be created standalone or inside a key directory; di-
rectory provides a nice way of grouping multiple instances of the same service running in
your infrastructure (directory itself is also represented as a key). The service can then set
up a TTL on a given key which allows the data stored under it to expire automatically
without any further effort to be done by it; TTL thus provides a simple automatic mecha-
nism to unregister the service. The TTL value can be updated to extend the data expiry
time which is exactly what long lived services must do to avoid a continuous (un)registra-
tion. Clients discover registered services by querying a particular key or directory in the
cluster. Like we have already mentioned earlier, clients can set up watch on any key and be
notified about any data modifications stored under the given key.

Thanks to the remote JSON API provided by etcd service registration can either be em-
bedded into the service source code or you can use a sidekick process that would imple-
ment a simple HTTP client - etcdctl or curl will do - to interact with the etcd cluster.
Being able to register a service using a simple command line utility makes third party ser-
vice integration quite easy: you create a new entry in etcd on the service startup and re-
move the key when the service shuts down. SystemD makes starting and stopping sidekick
processes along the main service process quite easy.

You can easily take the same approach to service registration when using docker. The
sidekick process introspects the service container a populates the particular etcd key
with the parsed IP address and port. This key can then be read by other docker containers
which simply need to query etcd cluster.

Using a sidekick process for the service registration can turn into a maintenance head-
ache as you will need to continuously update the TTL value as well as monitor the health
of the registered service. Users usually implement this via a simple shell script which runs
in an infinite loop and checks the health of the running service in certain time interval and

169

https://coreos.com/docs/cluster-management/setup/cluster-architectures/
https://github.com/coreos/etcd/blob/master/Documentation/security.md
https://github.com/coreos/etcd/blob/master/Documentation/admin_guide.md
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
http://www.freedesktop.org/wiki/Software/systemd/

170

CHAPTER 14: Service Discovery

updates particular etcd key. You can read about a simple example which takes this ap-
proach on the following link.

As for the client, there is plenty of tools and libraries in different programming languag-
es available at your disposal, many of which are under active development. Again, as it’s
always the case, the native Go library offers a full feature coverage. Unfortunately, it still
does not provide service load balancing or failover, so you will need to handle those as-
pects yourself.

Etcd provides a really good solution for service discovery. It is still under active develop-
ment, however many companies already use it their production environments. Program-
ming language agnostic remote API interface means a big plus for application developers
as it gives them much more freedom. However, just like Zookeeper, etcd introduces an
extra complexity to your infrastructure. You need to get familiar with how to operate the
cluster, which is not an easy feast. Often the lack of understanding of etcd internals can
lead to unexpected behaviour or even the data loss in some situations.

Consequently, scaling etcd can be a rather challenging task for a newcomer depending
on the amount of data you store in the cluster. Service directory records must have their
TTLs to be continuously refreshed by the registered service, which requires a bit of extra
work from the developer and in the environment where the service lifetime is short it can
create a fair amount of traffic. Provided that etcd is the base stone of many other projects
like already mentioned SkyDNS or Kubernetes and that it ships by default with CoreOS Li-
nux distribution, it’s more than likely that the project will continue to evolve and certainly
improve.

Etcd has become a very popular building block when implementing service discovery
solutions in Docker infrastructures. It has inspired a whole suite of new solutions. One
many which is worth mentioning was created by Jason Wilder. It combines etcd with an-
other popular open source software called HAproxy. It takes a sidekick process approach to
service discovery and leverages Docker API events, which it then uses to generate HAproxy
configuration that routes and load balances the service requests to other services running
in Docker containers. You can read more about it on the introductory blog post. Again,
there is probably tonnes of service discovery implementations that use etcd, however Ja-
son’s project illustrate the basic concepts very well and defines a service discovery pattern
which has been adopted by large in the Docker community. We can see an illustration of it
in the following diagram:

https://coreos.com/docs/launching-containers/launching/launching-containers-fleet/#run-a-simple-sidekick
https://github.com/coreos/etcd/blob/master/Documentation/libraries-and-tools.md
https://github.com/coreos/go-etcd
http://kubernetes.io/
https://github.com/coreos/etcd/blob/master/Documentation/production-ready.md
https://twitter.com/jaswilder
http://jasonwilder.com/blog/2014/07/15/docker-service-discovery/

consul

ETCD Cluster
Docker Host

-
CONTAINER ———
D GENERATE | CONFIGURATION

CONTAINER
B
CONTAINER C CONTAINER A {2350
1.2.3.4:15 1.2.3.4:12

{E
g -+
z

[deplE]

NTAINER
C

—

L J

REGISTER

In this setup, HAproxy runs directly on the host (i.e. not in a Docker container) and pro-
vides a single point of entry for all the services running inside Docker containers. Services
running inside Docker containers register with etcd when they start by creating a particu-
lar key entry. A special process (such as conf.d)monitors the key namespace in etcd clus-
ter, generates new HAproxy configuration and reloads HAproxy process afterwards. The ser-
vice requests get automatically routed and load balanced to other services running in
Docker containers. This resembles a model championed by Smartstack - another service
discovery solution which we will discuss later on in this chapter.

We will leave it to you to explore the Docker ecosystem to find other service discovery
solutions built around etcd. We will now move to discuss the etcd’s younger yet argua-
bly more powerful sibling: consul.

consul

Consul is a multifunctional distributed system tool written by HashiCorp. Just like the ear-
lier described etcd, consul is written in Go programming language. Consul nicely integra-
tes all of its features into a bespoke piece of software which is simple to use and operate.
We are not going to spend too much time describing what consul is as you can find an ex-
cellent and very extensive documentation with a lot of practical examples on its dedicated
site. Instead we will summarize its main features and discuss how you can use it to imple-
ment the service discovery in your Docker infrastructure. Finally, at the end of this chapter

171

https://github.com/kelseyhightower/confd
https://hashicorp.com
https://www.consul.io/docs/index.html

172

CHAPTER 14: Service Discovery

we will show a practical example using a simple tool, which leverages features provided by
consul as one of the pluggable backends to provide hassle free service discovery for appli-
cations running in Docker containers.

To describe consul we have chosen to use the word multifunctional on purpose as con-
sul really can be used without any extra effort as a standalone tool for any of the following
functions:

« distributed key-value store
« distributed monitoring tool
« DNS server

The above features and the ease of use makes consul a very powerful and popular tool
in DevOps community. Let’s have a quick look at what hides behind the consul’s curtains
which allows it to be used in so many different ways.

Consul, just like etcd, implements the Raft consensus algorithm, therefore it should be
deployed in clusters of 2n+1 nodes (n is a positive number of nodes) to guarantee the prop-
er functionality. Equally to etcd, consul provides remote JSON APl which makes it more
accessible for clients written in different programming languages. By providing the remote
API consul allows the users to build new services on top of it or leverage the features pro-
vided by it out of the box.

In terms of deployment, consul defines a concept of agent. The agent can be run in
either of the two available modes:

« server - provides distributed key value store and DNS server
« client - registers services, runs health checks, and forwards queries to servers

Both server and client agents form a cluster. Consul implements cluster membership
and node discovery by leveraging another tool written by HashiCorp called serf. Serf pro-
vides the SWIM gossip protocol implementation with some performance improvements.
You can read more about the gossip internals in consul in the following link. Leveraging the
gossip protocol and combining it with local service health checking allows consul to imple-
ment a simple but powerful distributed fault detector. This is a huge win for both develop-
ers and operators. Developers can expose health check endpoints in their applications and
easily add the application services to the consul’s distributed service collection. Operators
can write simple tools which use consul APl to monitor the health of the services or they
can simply use the consul Web UL.

There is so much more to consul than what we have discussed here. | would strongly
encourage you to read the fantastic official documentation, as we have barely scratched
on the surface. If you are interested in finding out how consul compares to other tools
available on the market, don’t hesitate to read the documentation dedicated to this topic
in detail. Let’s move on now and see how we can use consul to provide service discovery in
our infrastructure.

https://www.serfdom.io/
http://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf
https://www.consul.io/docs/internals/gossip.html
https://github.com/hashicorp/consul/blob/master/ui/README.md
https://www.consul.io/intro/vs/index.html

consul

Service discovery with consul

Of all the already described tools, consul is arguably the easiest one to use as a bespoke
service discovery solution. There are several options available to you to register your ser-
vice into consul’s service catalog:

« embed the service registration into your application code by taking advantage of
consul’s remote API

+ use a simple sidekick script/client tool which will register the service on start via re-
mote API

« create a simple service definition configuration file which the consul agent reads on
start or when it’s reloaded

Registered services can be looked up either via remote API or simply via DNS which is
provided by consul out of the box. This is handy because you’re no longer limited by one
particular service lookup option and you get both of the options without any further effort
required form you! Furthermore, consul allows you to define custom health checks for your
application services. You’re not tied to TCP session lifetime like you would be with Zoo-
keeper or to TTL values as is the case with etcd. The consul agent continuously monitors
the health of the registered services locally and automatically removes it from the service
catalogue when the health check fails.

Consul provides a very comprehensive service discovery solution that requires surpris-
ingly very little effort. Services can be looked up either via remote APl or DNS. In order to
register the services you can avoid using remote APl completely and simply use JSON
based configuration files; this makes it easy to integrate consul with traditional configura-
tion management tools. Using consul introduces an extra complexity in your infrastructure,
but you gain a lot of benefits in return. In comparison to etcd, consul clusters are argua-
bly easier to administer. Consul scales well across multiple datacenters - in fact consul pro-
vides some extra tools solely dedicated for multi datacenter scaling. Consul can be used as
a standalone tool as well as a building block in building complex distributed systems; there
is a whole new ecosystem of tools built around it. In the next chapter we will look at one
such tool called registrator, which provides an easy automatic service registration
solution to applications running in Docker containers using consul as one its pluggable
backends.

registrator

On a very high level registrator listens on Docker Unix socket for Docker container
start and die events, and automatically registers the container by creating new records in
any of the plugged in backends. It’s meant to be run as a Docker container; you can find the
registrator Docker image on Docker Hub. Registrator provides a fair amount of con-
figuration options, so feel free to check them out in the extensive documentation on the
Github project page.

173

https://www.consul.io/intro/getting-started/services.html
https://registry.hub.docker.com/u/gliderlabs/registrator/
https://github.com/gliderlabs/registrator

174

CHAPTER 14: Service Discovery

Let’s have a look at a short practical example. We will use registrator to make
redis in-memory database running in Docker container, which is easy to discover on
your network via consul. You can apply a similar approach to any application service
running in your Docker infrastructure.

First we need to start consul container. We will use the image created by the regis-
trator creator Jeff Lindsay:

docker run -d -p 8400:8400 -p 8500:8500 -p 8600:53/udp -h
nodel progrium/consul -server -bootstrap
37c136e493a60a2f5cef4220T0b38fFalace76e2c332dbe49b1b9bb596e3ead39
#

Now that our backend discovery service is running we will start the registrator
container and pass it a consul connection URL as an argument:

docker run -d -v /var/run/docker.sock:/tmp/docker.sock -h
$HOSTNAME gliderlabs/registrator consul://$CONSUL_IP:8500
e2452c138dfa9414e907a9aef0eb8ad73e8F6e28d303e8a374245ea6¢cd0e9cdd

We can verify that both containers are up and running and we are all set up to register
redis service:

docker ps

CONTAINER ID IMAGE COM-

MAND CREATED STATUS

PORTS

NAMES

e2452c138dfa gliderlabs/registrator:latest "/bin/regis-
trator co 3 seconds ago Up 2 sec-

onds

distracted_sammet

37c136e493a6 progrium/consul : latest "/bin/start
-server 2 minutes ago Up 2 minutes 53/tcp,

0.0.0.0:8400->8400/tcp, 8300-8302/tcp, 8301-8302/udp,
0.0.0.0:8500->8500/tcp, 0.0.0.0:8600->53/udp furious_kirch

For the completeness, the following command will show that we are running one node
consul cluster and that there are no registered services running at the moment:

curl $CONSUL_IP:8500/v1/catalog/nodes
[{'Node':"'consull™,"Address™:"172.17.0.2"}]
curl $CONSUL_IP:8500:8500/v1/catalog/services

{"consul™:[1}

Let’s start a red s container now and publish all of the ports it exposes:

https://twitter.com/progrium

consul

docker run -d -P redis
55136c98150ac7c44179da035bel1705a8c295cd82cd452fb30267d2F1e0830d6

If everything went as expected we should be able to find the redi s service in the con-
sul service catalog:

curl -s localhost:8500/v1/catalog/service/redis |python -
mjson_tool

L
{
"Address': "172.17.0.6",
"Node': "nodel",
"ServiceAddress': "',
"ServicelD": "docker-hacks:hungry archimedes:6379",
"ServiceName'": "‘redis",
""ServicePort'": 32769,
"ServiceTags': null
}
1

In the above output you can see the format of the service definition used by the reg-
istrator. You can read more about it in the project documentation. As we have
learned in the previous chapter, consul provides DNS service out of the box, so all the regis-
tered services can be discovered via DNS. We can verify that very easily. First we need to
find out what port is the DNS server provided by consul mapped to on the host machine:

docker port 37c136e493a6
53/udp -> 0.0.0.0:8600
8400/tcp -> 0.0.0.0:8400
8500/tcp -> 0.0.0.0:8500

Excellent, we can see that the DNS service is mapped to all interfaces on the host and
listens on port 8600. Now we can fire some DNS queries using the well known Linux dig
utility. From the consul documentation we know that by default the DNS records of the reg-
istered services have the form of NAME.service.consul. So in our case this would be re-
dis.service.consul as registrator uses the Docker image name when regis-
tering a new service (you can indeed override this if you need to). Let’s run the DNS query
now:

dig @172.17.42.1 -p 8600 redis.service.consul +short
172.17.0.6

We now know the IP address of the red i s server, but that’s not enough information to
communicate with the service. We need to find out the TCP port which the server listens
on. Luckily that’s easy enough. All we need to do is to query consul DNS for SRV record of

175

https://github.com/gliderlabs/registrator#how-it-works

176

CHAPTER 14: Service Discovery

the same DNS name. If all goes well we should get back port number 32769 as we could
see earlier when we queried consul service catalog via its remote API:

dig @172.17.42.1 -p 8600 -t SRV redis.service.consul +short
1 1 32769 nodel.node.dcl.consul.

This is fantastic! We have got the full discovery solution running for our Docker contain-
ers and all we needed to set it up was to run two simple commands! We didn’t have to
write a simple line of code.

If we now stop the redis container, consul will mark it as stopped and it will no longer
return any response back to our queries. This is again very easy to verify:

docker stop 55136c98150a
55136c98150a

dig @172.17.42.1 -p 8600 -t SRV redis.service.consul +short
dig @172.17.42.1 -p 8600 -t SRV redis.service.consul

; <<>> DiG 9.9.5-3ubuntu0.1-Ubuntu <<>> @172.17.42.1 -p 8600 -t
SRV redis.service.consul

; (1 server found)

;5 global options: +cmd

;> Got answer:

;; —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 56543

;; Flags: qr aa rd ra; QUERY: 1, ANSWER: O, AUTHORITY: O, ADDI-
TIONAL: O

;> QUESTION SECTION:
;redis.service.consul. IN SRV

;5> Query time: 3 msec

;> SERVER: 172.17.42_1#8600(172.17.42.1)
;> WHEN: Tue May 05 17:59:35 EDT 2015

:; MSG SIZE rcvd: 38

If you are looking for a simple easy to plug in solution to service discovery, regis-
trator can provide you with just that with almost no effort, albeit it requires you to run
some storage backend like consul or etcd. However, the benefits of simple deployment
and native docker integration outweigh the downsides.

We will now conclude this chapter and move on to the solutions that do not rely on any
consensus algorithm that guarantees strong consistency of data, but nevertheless still pro-
vide interesting alternatives to implement service discovery in your infrastructure.

Eureka

Eureka

Over the past few years Netflix engineering teams have produced such big amounts of
open source tools to help them master their microservices cloud architecture that to make
it easy for users to browse they had to create their own Open Source Software Center.
Most of their tools are written in the Java programming language and very often are not
easy to integrate into private infrastructures without reusing many other tools from their
0SS toolkit. In this chapter we will have a look at Eureka which provides an interesting
alternative to implement service discovery.

Eureka is a REST based service that was primarily designed to provide “mid-tier” load
balancing, service discovery and failover service. The recommended use case is if you run
your infrastructure in AWS cloud, where Eureka was battle-tested, and you have a fair
amount of internal services which you do not want to register with AWS ELB or expose to
the traffic from outside world. Arguably, inability of ELBs to provide internal load balancing
was the primary motivation to create Eureka. Ideally the services discovered via Eureka are
stateless as it does not provide sticky session. From architecture point of view Eureka has
two components:

« Server - provides service registry

+ Client - handles service registration, and provides basic round robin load balancing
and failover

The recommended deployment is to have one Eureka server cluster per AWS region, or
at least one server per AWS zone. Eureka server does not know about any servers in other
AWS regions. Its primary purpose of holding information is for load balancing within one
AWS region. Servers in the Eureka cluster replicate their service registries between each
other in asynchronous fashion. Replication may take some time to reflect in the Eureka
servers. This can take sometimes several minutes due to the caching on the server side. In
comparison to Zookeeper, etcd or consul, Eureka favours service availability over strong
data consistency, so there is always a chance that the client might have to deal with the
stale reads. This is by design. Eureka focusses on resilience in frequently failing cloud envi-
ronments. Taking this approach means that Eureka can operate even when the cluster gets
partitioned due to some failure but sacrifices data consistency.

Eureka clients register with the server and then renew their “lease” every 30 seconds. If
the client does not renew its lease for 90 seconds it is automatically removed from server’s
registry and must register again. This is similar to a mechanism implemented via TTL in
etcd although with Eureka you don’t have a choice of choosing the lifetime of the registry
entry. Eureka clients are resilient to server failures. They keep local registry caches, so they
can operate reasonably well even if the registry servers fail; this obviously puts some re-
quirements on the client side to deal with service failover. Once the partition heals, local
state is merged with the server state. To deal with service failures easily, there is another
library in Netflix OSS arsenal called Ribbon.

177

http://techblog.netflix.com/
http://netflix.github.io/
https://github.com/Netflix/eureka
http://aws.amazon.com/
https://github.com/Netflix/ribbon

178

CHAPTER 14: Service Discovery

Older versions of client are pull based, however the latest Eureka release brings a lot of
improvements both on the server and client side. It separates write and read clusters,
which improves performance and scalability. Clients can create a subscription to a certain
group of services and they can be notified about any changes by the server just like it is the
case with the previously described tools. It also provides a simple dashboard and makes
deployment to other cloud providers easier. You can read about motivations for the new
design at the following link.

Service discovery with Eureka

Like we have already mentioned, the design goal of Eureka is client side mid-tier load bal-
ancing. In order to load balance between the services you must first look them up in the
server registry. Since Eureka is written in Java programming language, it should be fairly
easy to integrate the Java client to your application codebase. The native client provides
full feature coverage including simple round robin load balancing. Service registers itself
with the Eureka server on its start and continuously sends heart beats every 30 seconds.
Unregistration happens automatically after 90 seconds of inactivity.

Eureka exposes REST APl which allows you to implement your own client easily. There is
a few client libraries available in various programming languages, but none of them really
offers the quality and feature coverage of the native client implementation. Another option
you have is to implement a small sidekick java program running alongside your service
which handles the service registration and heartbeats using the native client library. This
would mean an extra work and unnecessary maintenance complexity, however you gain a
full power of native client library.

The biggest advantage of using Eureka for service discovery is its resilience to failures
which makes it a great solution to run in cloud environments as long as you can deal with
service failover and stale reads. Indeed, the cloud deployment was the primary driver of its
design. Unfortunately, you have no control of the lifetime of service registry entries and
must continuously send heartbeats which can cause a fair amount of traffic in your infra-
structure and puts a bit of extra load on the registry servers. Clients always retrieve full ser-
vice list; there is also no filtering or search granularity in service lookups. This will improve
in 2.0 release, which also introduces a concept of service subscriptions that you can get
server notifications about.

Eureka was designed with auto scaling in mind so it scales reasonably well. Again, the
latest release improves the scaling capability even more. The biggest Achilles heel though
is that if you want to take a full advantage of Eureka you must use few other Netflix OSS
components such as already mentioned Ribbon library or Archaius configuration server
which in turn depends on Zookeeper. This, as you may have already realized, introduces a
lot of often unnecessary complexity in your infrastructure.

We will now move on from the realms of Netflix 0SS and discuss a solution different var-
iations of which have become very popular and convenient way of implementing service
discovery and which has a rather intriguing name. Meet smartstack!

https://github.com/Netflix/eureka/wiki/Eureka-2.0-Architecture-Overview
https://github.com/Netflix/eureka/wiki/Eureka-2.0-Motivations
https://github.com/Netflix/archaius

Smartstack

Smartstack

Smartstack is a service discovery solution created by the engineering team of AirBnb.
Smartstack has a special place in the service discovery ecosystem since its design inspired
a whole suite of other solutions. As its name suggests, smartstack is really a stack of smart
services, which comprises nerve and synapse.

Nerve and synapse are both written in the Ruby programming language and are avail-
able as Ruby gems. They interact with HAproxy and the already described Zookeeper. You
can read more about the motivations behind creating Smartstack on the excellent intro-
ductory blog post. In this chapter we will discuss its main features and provide a short
summary at the end. Don’t hesitate to check the extensive online documentation before
you decide to deploy the smartstack in your infrastructure.

Service discovery with Smartstack

Smartstack champions the sidekick process model of service discovery on both registra-
tion and discovery side: Synapse and nerve run both as separate standalone processes
alongside the application service and handle the service registration and service lookup
automatically on behalf of the application service. In production setups running one in-
stance of synapse per host machine should suffice. Smartstack leverages Zookeeper as a
service catalogue backend and HAproxy as a single point of entry and a load balancer for
the discovered services. Smartstack is quite easy to integrate with your docker infrastruc-
ture. You can see a simple architecture using smartstack for service discovery on the fol-
lowing diagram:

179

http://nerds.airbnb.com/
https://github.com/airbnb/nerve
https://github.com/airbnb/synapse
http://www.haproxy.org/
http://nerds.airbnb.com/smartstack-service-discovery-cloud/

180

CHAPTER 14: Service Discovery

r m Zookeeper Cluster
Docker Host

o
\i“)
WATCH
SYNAPSE 1 >
ZNODE

GENERATE | CONFIGURATION

Y
CONTAINER
bl ——

L = 1 J

HEALTH CHECK

Docker Host é Y
@ CONTAINER »
B - *
- J
HEALTH | CHECK

NERVE

REGISTER
| CONTAINER B

Application developers don’t need to write any service discovery code and they get load
balancing and automatic service failover for free out of the box. Let’s have a closer look at
both of the smartstack’s core services to get a better understanding of how the smartstack
service discovery works.

NERVE

Nerve is a simple utility to monitor the health of machines and services. It stores the ser-
vice health status in some distributed storage. At the moment only Zookeeper backend is
fully supported, but there is also an experimental support for etcd. In the context of service
discovery nerve handles the service registration by creating and removing znodes in a
Zookeeper cluster based on the service health. If you use etcd as a backend storage,
nerve will create an K-V entry in etcd cluster and set its TTL to 30s. It will then continu-
ously update it based on the service health.

Nerve encourages a good practice of service development, which requires the applica-
tion developers to provide some mechanism to properly monitor the service health. This is
important not only for reliable service discovery implementation. Nerve leverages the
available health monitoring options provided by application service to drive the service

nsqlookupd

registration process. Finally, nerve can also be used as a standalone service monitoring
watchdog without being a part of a service discovery solution.

If you want to find out more about nerve you should head out to Github to read the
official documentation.

SYNAPSE

Synapse is a simple service discovery implementation that defines a concept of service
watcher and allows you to watch for events on a given backend. Synapse generates
HAproxy configuration file based on the received events. There are several service watch-
ersavailable in synapse:

« stub - no watch is used - a list of services is specified manually

« zookeeper - zookeeper watches are registered on particular znodes in the cluster
+ docker - docker API events are watched

« EC2 - watches servers via AWS EC2 tags

Synapse rewrites HAproxy configuration files every time a watched service becomes un/
available and reloads the HAproxy process afterward. All client requests are proxied via
HAproxy, which takes care of properly routing the requests to the particular application
services. This is a win for both application developers as well as operation engineers:

« developers don’t need to write any service discovery code

« operators can rely on the battle-tested solution with regards to service load balanc-
ing and failover

Again, do check out the official Github documentation.

Smartstack is a great technology agnostic solution to implement service discovery in
your infrastructure. It does not require to write any extra application code and can be easi-
ly deployed on bare metal, virtual machine or in docker containers. However, while particu-
lar smartstack components are quite simple, overall the whole setup requires to maintain
at least four different pieces of technology: Zookeeper, HAproxy, synapse and nerve. For
example, if you aren’t already running Zookeeper in your infrastructure you might find it
hard to justify running full smartstack setup. Furthermore, whilst running HAproxy in front
of your services gives you a nice service abstraction along with load balancing and service
failover, managing at least one HAproxy instance on every host machine introduces certain
amount of complexity and often requires a fair amount of maintenance.

nsqlookupd

We will finish this chapter with a short description of a tool developed by the engineering
team of bitly called nsqlookupd. nsqlookupd does not provide full service discovery

181

https://github.com/airbnb/nerve
https://github.com/airbnb/synapse
http://word.bitly.com/
http://nsq.io/components/nsqlookupd.html

182

CHAPTER 14: Service Discovery

solution, it merely offers an innovative way of discovering instances of nsqd, or distributed
message queue daemons running in your infrastructure at application runtime.

Service registration is done by the actual nsqd daemons that advertise their presence
to arbitrary number of nsqlookupd instances when they start and then periodically
send heartbeats with their status to them.

nsqglookupd instances serve as service registries queried directly by clients. They on-
ly provide a weekly consistent database of the nsqd instances on the network. Clients nor-
mally query each available instance and then merge the results.

If you are looking for a distributed message queue solution that can run in a wide range
of infrastructure topologies you can read more about nsqd and nsglookupd at the
project official documentation.

Summary

In this chapter we have discussed a number of service discovery solutions. As it always
happens, there is no silver bullet and picking the right tool for a job depends on what the
jobis and what requirements does it have to satisfy. Instead of recommending a particular
solution, we will finish this chapter by providing a table overview which, along with the
content of this chapter, will hopefully help you decide to make the right decision when
picking the best service discovery tool for your infrastructure:

Name Registration Data Consistency Language
SkyDNS client strong Go
weave-dns auto strong Go
ZooKeeper client strong java

eted sidekick+client strong Go

consul client+configtauto strong Go
eureka client eventual java
nsqglookupd client eventual Go

In the next and final chapter in this book we will examine logging and monitoring in
Docker.

http://nsq.io/components/nsqd.html
http://nsq.io/components/nsqd.html

Logging and Monitoring

When the age of virtualization came about many companies needed a way to monitor their
new abstract environments. The industry of monitoring tools needed to be updated to sup-
port monitoring a host and guest environment. The same type of life cycle is happening
again with the container infrastructure deployments. Logging and monitoring in a Docker
environment can be hard to wrap your head around at first but breaking down the environ-
ment and using newly available tools will allow you to get the most of this new abstract
environment.

The systems and applications we put in containers are no different from the ones we
deploy on virtual servers today. For many it can be hard to think about monitoring and log-
ging in a context of another virtual layer on top of a virtual system. Regardless of the com-
plexity and abstraction we still need to setup monitoring and logging to understand the
health and performance of our applications as well as for various audit requirements. The
biggest issue it seems for companies is the fact that there is a layer of abstraction our cur-
rent tools lack visibility on. Let’s break down logging and monitoring into a couple scenar-
ios so you can be successful at running Docker containers inside your environment.

Logging

You have a couple different options when you need to view logs of a Docker container. The
options will vary depending on whether the container is running or is destroyed/removed.
When you break down logging within running containers your options are the following:

Native Docker logging support

Extracting logs by attaching to a running container
Exporting logs to the host

Sending logs to a central logging system

Loading the logs to another Docker container

I

As for a destroyed/removed container your options are limited. Since containers by de-
fault are ephemeral, you’ll lose data when they terminate. Losing logging data can be detri-
mental to an investigation of a failed application. In order to keep logs around after a con-

1

183

184

CHAPTER 15: Logging and Monitoring

tainer terminates you’ll need to export those logs to a host or network based system from
the container.

Native Docker logging

Docker automatically captures the stdout and stderr of the process running in Dock-
er container and directs in into a given log path on the container root file system: container
log path is accessible directly from the host for a user with root privileges. You can find
out the container log path on the host by running the following command:

docker inspect - "{{.LogPath}}" <container_id>

Because of this, running processes inside Docker containers in a foreground mode easily
allows you to leverage the native Docker logging capabilities.

As of version 1.6 there are a few log drivers available in Docker out of the box. By default
Docker uses json-Fi le, which stores the application logs in Json formatted files in the
earlier mention file system path. This is very convenient as many centralized logging solu-
tions require j Son formatted streams for easy search indexing.

You can view the contents of the container log by running the built in Docker client
logs command. Be aware that running the 10gs command will output all the available
logs from the start of the container, so it’s better to redirect it to some viewer utility like
more or less:

docker logs redis

As you will notice, the Docker command line client automatically decodes the json
encoded files and present them in the plain text format on your screen.

If you are investigating an issue of a running container this is typically the first com-
mand to run. This command tells Docker to get the logs of a container named redi s from
the host system where its recorded the logs. Like we said, the container logs by default, if
not changed, are logged to the container root file system where the containers files are
kept. Keep in mind when running containers in production you’ll typically need to rotate
your log files or store the log files on a scalable disk store if your application logs a lot of
output. If you run the following command you’ll get a constant stream of logs as they are
written to the file system:

docker logs redis --follow (or -Fforshort)

Docker also includes an option within its 10gs command to show the time stamp of a
file and limit the size of the viewable lines of logs. You can use the ——timestamps (or -
1) command to show the time stamp of the log lines if you need to debug a time sensitive
issue. You can also leverage the ——tai l with a following numerical value such as —-
tail 10 toshow the last 10 lines of output from the containers stdout and stderr.

The 1ogs command provided by Docker can only get you so far. Let’s say for instance
you’re running a redis database server that logs to /logs/redis. log inside the
container. Running docker logs redis will not show you the logs of this file as

Logging

docker only captures stdout and stderr output. We will explain how to deal with
these logs later on in this chapter.

The second log driver option available in docker is Syslog. When used, Docker sends
all the application logs to the syslog running on the host machine. You have to explicitly
specify this option when starting the container. In our model redis example the com-
mand you would want to run would look like this:

docker run -d --log-driver=syslog redis

If you now inspect the contents of the host machine syslog file you will see the con-
tents of the log produced by the above started redis container. This is a very convenient
log option as many open source log shipping utilities are built to parse and ship the logs
from the sysl10g. You can easily reuse these tools in a traditional way by running them
directly on the host machine and feeding them the host syslog as you would normally in
non-Docker world.

Finally, Docker provides the none log driver, which discards all of the application gen-
erated logs. Again, just like with syslog driver, this option must be explicitly enabled
when you start the container. While not capturing any logs is not a recommended way of
running applications in production environments, it is a convenient option in some setups
for some containers which generate huge amount of arbitrary logs and that can cause a
real I/O havoc on the host file system.

Attaching to Docker containers

Its typically not recommended to look at log files within the container or the host operating
system. However when troubleshooting, you might need to continue your investigation
and look at additional log files inside the running container. The next step typically is to
attach to a running container in order to continue your investigation. Attaching to a run-
ning container requires additional security access (root and ssh) of a container which
can be cumbersome to do repeatedly. However, if you need to do so you can use the attach
command that comes with Docker. Here is an example of the command in action.

docker attach redis

Attaching to the container will attach to the shell of the running process inside the con-
tainer. When attaching to the container you will be limited to the commands you can runin
the container operating system since most images are lightweight to run a single process.

In version 1.3 Docker introduced the docker exec subcommand, which allows you
to execute any command inside the running Docker container including your favorite shell.
This is a better way than attaching to your TTY to the running containers. You can easily run
bash (if installed in the container image) by running the following command and inspect
the logs or any other files on the container file system:

docker exec -it redis /bin/bash

This will create a new process inside the running container that runs alongside the re-
dis process. Once you are inside the container you can look at additional log files that

185

https://blog.docker.com/2014/10/docker-1-3-signed-images-process-injection-security-options-mac-shared-directories/

186

CHAPTER 15: Logging and Monitoring

might not record to stderr or stdout. This is useful to help debug a failing application
or to look at performance based log files. However, this is not a scalable solution to use in
production systems. Production systems typically use a centralized logging system to view
the streams of logs.

Exporting logs to host

Companies today usually run or use centralized logging systems. In a traditional server en-
vironment there is some kind of agent software (e.g. Syslog) that reads a file system
folder or file location for logs and then ships them off to a centralized system. In order to
use the centralized logging system you’ll need to get the log files out of the container and
onto the host system. Getting the logs to the host system with Docker is not hard. There are
two common ways you can get logs to record to the host system. You can use the VOLUME
instruction within the Dockerfile image or use the docker run -v option to
mount a file location from inside the container to a location on the host file system.

The docker run -v volume option is the recommended way to use when get-
ting logs to the host system. The —V option gives you flexibility on where to redirect the file
system output. The VOLUME instruction within the Dockerfi le by default uses the lo-
cation of the container that is typically a root file system location. If your root filesystem
fills up you can run into major issues on your host machine and it could be hard to clean
up. For instance, let’s take a container configured to run redis to log to /redislogs/
redis. log and get the log files to the host system.

If the redis configuration file is set to log the files to /redislogs/redis.log,
using the VOLUME command in the Dockerfile can easily be achieved by VOLUME /
redislogs. The VOLUME instruction in the image causes docker run to create a new
mount point at /redislogs location within the container and copy the contents to the
newly created volume folder on the host system. The volume folder on the host system is
not in a well known location however. #TODO (get example of log location). In this case it
will be hard to configure a centralized logging agent on the host to pick up the files in the
volume. This is why it’s recommended to use the docker run -v option for persistent
logs.

By using the docker run -V option when starting the container you can essentially
redirect a folder or file location within the container to a location on the host file system. A
common practice is to “redirect” the logs directory within the container to the host system
log location like thisdocker run -v /logs:/apps/logs.

When redirecting the logs to a central place on the host machine such as /logs/
apps you can easily configure a logging agent to pick up all logs from /logs/apps and
send them to the centralized system. This is also useful when running multiple containers
on a host. Let’s take for instance you’re running Nnginx, redis, and a worker container
on the same host. By running the following docker commands you’ll get three log files in
your /apps directory:

Logging

1. docker run -v /logs/apps/nginx/nginx.log nginx
2. docker run -v /logs/apps/redis/redis.log redis
3. docker run -v /logs/apps/worker/worker.log worker

The logging agent that runs on the host, if configured to read from /logs/apps/**/
*_log, will pick up all three of the log files and ship them off. This is an easy way to model
your container and log agents so your dev/ops teams can easily remember where to look
for log files.

Sending logs to a centralized logging system

Sending logs to a centralized logging system is similar to exporting to the host except in
one way. You won'’t redirect the log files to the host system. Instead you can use another
method of exporting logs by running a logging agent inside the container alongside the ap-
plication process and shipping the logs directly over the network. If your operation’s team
is not against running multiple processes within a container, you can treat your container
just like a server by installing and configuring the agent on startup in the container.

Let’s take for instance a standard syslog setup. Inside the container your application
will log to /logs/apps and a syslog daemon is installed and configured to read any
logs from that folder location. It’s then configured to ship the logs to a centralized logging
server. As new logs are appended to files within that folder the syslog daemon reads
and ships the logs as intended.

This model is useful, however it has some drawbacks. The drawbacks include running
multiple processes inside a container making the container heavier in process utilization, it
adds more complexity to the container start scripts and removes the convenience of appli-
cation isolation. If you have 10 containers on a system running this model you’ll essentially
have 10 running syslog daemons on the host. If these Syslog agents were consolida-
ted to a single process you might achieve better performance.

Another option to export your logs to a network system is directly from the application.
Let’s say you have a Java application running inside your container. The Java code could
be configured to write any log files to a function within the code. The function could be
setup to ship logs to a centralized queue (e.g. kafka) on a remote server to be processed by
another system later. This option gives developers an easy to configure logging model that
could scale to any containerized system. This model however is only available to the appli-
cation sharing the same Java code with the remote logging function. If another container is
running a Python script another remote logging function would need to be written.

Side mounting logs from another container

The last option for getting logs from a container is starting to become popular. The ability
to use shared volumes from another container on the system will allow you to pull data (in

187

http://kafka.apache.org/

188

CHAPTER 15: Logging and Monitoring

this case logs) into another running container. We like to think of this as side mounting logs
from another container just like a side mounted seat on a motorcycle. This option could
save processing time on a system that has many containers. Let’s say if each container on
the system runs a service to send logs it would waste resources since every container runs
the duplicate service. If you were able to pull all the logs from each container into a single
container, then collect and send the logs to a centralized system. You would save a bunch
of resources by consolidating the log collector process.

Let’s use a simple example of two containers. One container runs a redis server that logs
events to /logs/redis.log inside its container on a volume /logs. If we start another contain-
er and use the docker run flag of ——volumes-Ffrom you could then pull the /logs vol-
ume into the new container. This might be hard to conceptualize so here are some com-
mands.

First we start up a new container named redis. We create a new volume with -v and
since we named the container with ——name it will be easy to pull it from another.
docker run -d -v /logs --name redis registry/redis

Then we’ll start a log collector container to mount the /logs volume from the first con-
tainer using ——volumes-Ffrom flag. Take note of the redi s name. docker run -d
--volumes-from redis --name log collector registry/logcol-
lector

This will allow a system that runs many Docker containers the ability to use a shared
resource. This practice has been found to be common in grid like deployments such as
Mesosphere.

Docker allows many different options to collect and view logs. We suggest picking a sol-
ution that your comfortable with maintaining and scales for your infrastructure. Compa-
nies use the model that works best in their environment. Now let’s take a look at monitor-
ing Docker containers.

Monitoring

Monitoring Docker containers really comes down to how you want to monitor the services
running in the containers and what metrics you need to collect. Your approach to monitor-
ing Docker containers really depends on your current tools and your style of monitoring.
Our recommendation is to pick the tools that you are comfortable with and your team en-
joys using. Enterprise organizations will most likely have mature tools like Nagios where
monitoring a new technology such as Docker might require getting creative. Startups often
times start out with the latest greatest technology which might already have Docker sup-
port such as New Relic, Datadog, or Sysdig. Either tool will work great in most sceneries so
it’s just a matter of what your team prefers to use and its effectiveness.

Monitoring can be thought of in a very similar approach to getting logs from your con-
tainers. You can take the approach of monitoring the running containers just like a service
that’s running on the system with an init file. Another option is to monitor the Docker sub-

Monitoring

system (using docker ps or docker stats) and as long as the container is still running it
could be considered healthy. Some companies have even put monitoring agents within the
container itself just like a traditional server. You could monitor the health of a container by
accessing the application layer with a http://<service>/health endpoint or some other
measure. Finally, if you take the Etsy engineering approach, you will measure everything
about your system that you might choose to monitor by collecting metrics on the host,
Docker process, and container health.

Many companies who have started to use Docker containers have switched to a Service
Oriented Architecture (SOA), which may require a new style of monitoring. We won’t go in
depth in how to monitor SOA environments, but you should be aware of the the differ-
ences. Services in a SOA architecture are typically run in an ephemeral way. Meaning if the
running containers would die, thats ok. A service will most likely have multiple containers
of the same service running load balanced and if they terminate they will be automatically
restarted, re-register themselves to service discovery, and then they’ll be backup and run-
ning with no downtime. The emphasis of monitoring in a load balanced ephemeral system
is typically for application service health and not a service on a server. Most of the time this
means the service will be monitored through an outside system at the application layer or
port monitor instead which might require new monitoring tools.

There are about a million ways to monitor servers, services, and applications. Were go-
ing to walk through a simple environment with a monitoring tool called Datadog, and a
simple Python script for HTTP endpoint monitoring. Datadog has a host based agent for
monitoring the server and host services along with a statsd backend for application level
monitoring. This example environment has a single server running a single Docker contain-
er. We’ll need to monitor the hosts CPU, Memory, and DisklO. We’'ll get some statistics
about the Docker process. Then we’ll use a Python script running on another system to
monitor the application http endpoints which will send metrics to the statsd backend. In
the end we’ll have end to end monitoring of a system running a Docker container.

189

http://<service>/health

190

CHAPTER 15: Logging and Monitoring

Python Httpmonitor

StatsD
L J
Container L) :
i StatsD =
Docker L 9
Datadog —
Agent
Y Y Y
CPU
o melll 10 |
Server

Host based monitoring

Most server environments will have a monitoring system that will measure and alert on
CPU, Memory, and DisklO the traditional metrics used for monitoring. When monitoring the
host for these metrics most monitoring systems will work just fine. Since services will now
be running in a single process under Docker they won’t be easily monitored through the
traditional command calls like ps aux | grep nagios or service nagios
status. You'll need to look at your monitoring system to see if it can monitor the Docker
processes or pull it’s API for health. If it doesn’t have Docker integration then you’ll need to
monitor it yourself if you feel the need to do so.

Monitoring the host with Datadog is pretty straight forward in this example environ-
ment. The Datadog agent is just like most traditional monitoring system agents where it
installs locally and ships the metrics off to a central system. Much in the same way that
Nagios, Zabbix, or Hyperic monitoring agents work. Installing the agent is pretty simple,
just follow Datadog’s setup instructions to quickly install their host agent (Ubuntu in this
example). Here is what we use currently DD_AP1_KEY=cdfadffdada9a. .. bash
-c "$(curl -L https://raw.githubusercontent.com/DataDog/dd-
agent/master/packaging/datadog-agent/source/
install_agent.sh)". After the agent is installed, it will start sending data immedi-

Monitoring

ately to the Datadog infrastructure. Within a couple minutes the host will have all your
CPU, Memory, and DisklO metrics available in their metrics explorer and dashboards. Once
data is in the system, alerts can be then setup to email or page an employee if needed.
Here is an example of data collected in a simple dashboard.

E D ATA Do G Events Dashboards Infrastructure Monitars Metrics Integrations

Load Add Graphs +

@ show| 1d The Past Day

nong i 0| |webloa #0
0.6
1 - —
o = s =
- -’ -
— = = =
5 02 = F - q—= .
N == =g
L TAM L ety
. 0 . . !
18:00 Sat 20 06:00 12:00 18:00 Sat 20 06:00 12:00
assandras load 1 (Oregon) £ @ | | cass offline disk util #0

W SN o BN A VAR AN
Sat 20 06:00 12:00

ket
06:00

At this point you can only see one third of what most infrastructure teams want to moni-
tor in application environments. We only have visibility into the host metrics like CPU,
Memory, and DisklO at this point. What we don’t get is the ability to see individual process
or service usage on the system. Most likely if you have a situation where you have high CPU
you’ll want to know what container, process, or service is taking up the majority of the re-
sources. It will be critical to gather the performance metrics of each Docker container run-
ning on the system in order to reduce the mean time to repair (MTTR). Currently on the
system we know nothing about the Docker process, the running containers performance,
or health. So let’s take a look at monitoring the Docker process and how we can achieve
gathering that data.

Docker deamon based monitoring

Docker provides several ways to monitor containers and get information out of the system.
We’ll cover a couple different commands Docker provides to get you started. Then we’ll
cover how to use Datadog to monitor the Docker deamon and gather container metrics for
you. By default Datadog does not collect Docker metrics from their API. You will need to
enable the integration on their web site. The integration will gather metrics from Docker so

191

192

CHAPTER 15: Logging and Monitoring

you can monitor containers at scale. Before we jump into the example let’s first look at get-
ting the the state of containers by using docker ps.

When running services in Docker containers you won’t be able to rely on some well
known tools to monitor container processes anymore. By running your services or process-
es as a container the host system won’t have visibility into their health, only the Docker
service. Tools for checking if a process is running such as ps will be abstracted now under
the Docker service that now will require running docker ps or docker info to get
detailed process information now running as containers.

The command docker ps is a simple command which returns the status of running
containers. Running it is simple. Just type docker ps on the system you have Docker
installed on. You’re not going to get a ton of information about containers, but you’ll get
the most important metric, container state. Some companies get all they need from just
running docker ps. It allows you to see if a specific container is running and restart it if
its not. A simple example could be running a bash script to monitor for a specific redis con-
tainer’s running state. If the container is not running then start it.

#1/bin/bash

Check for running Redis container, if its not running then
start it
STATE=$(docker inspect redis | jq ".[0].State.Running™)
if [["$STATE" 1= "true"]]; then

docker run -p 6379:6379 --name redis -v /logs/apps/redis/:/
logs -d hub.docker.com/redis
fi

This is a very simple and rudimentary example of how to monitor the running state of a
container, but this is how many companies do it today. The orchestration components of
most production environments use very similar examples to maintain and automate the
health of their systems. As you scale your Docker deployments and have many container
running at any given time you’ll most likely need better tools and orchestration. If you
want to build your own (many companies have already), there are other ways to get the
state of the containers other than using bash scripts such as using the Docker python API
docker-py or using the Docker Remote API. You can even use a Docker cluster manage-
ment system such as Shipyard to see the status of multiple containers on multiple sys-
tems.

You now have an understanding of getting the state of containers running on your sys-
tem. We’'ll need to get metrics about the performance of our containers. Using the earlier
example of a system with very high CPU. We’ll need to find which container on the system
is grabbing the most CPU. For this use case there is another Docker command you should
get familiar with. Docker version 1.5 or greater provides a fantastic stats APl and command
line tool in docker stats to get live metrics about your containers such as CPU, Mem-
ory, NetworklO, DisklO and BlocklO. It’s essentially a raw dump of the cgroup metrics some

https://github.com/docker/docker-py
https://docs.docker.com/reference/api/docker_remote_api/
https://github.com/shipyard/shipyard

Monitoring

used before the APl was available. This new API is what most monitoring companies are
starting to use to get more metrics from the Docker system. You can also roll your own
monitoring system using this command. The docker stats command gives you a ton
of information so you could build your own very sophisticated dashboard to provide exact-
ly what your looking for.

Using the docker ps and docker stats commands will get you pretty far in
monitoring the basic status of your containers. However, when you start to scale containers
out beyond a single system you’ll need a tool to help aggregate and scale the metrics in an
easy to use dashboard. Let’s revisit our example of using Datadog to provide the the moni-
toring at scale.

Datadog’s Docker integration uses the Docker daemon socket to reach the Docker API.
By using the API, Datadog is able to monitor how many containers are running on the host
system, Docker CPU and Memory usage, events on Docker container status changes, un-
common metrics from cgroups, Docker image stats, and more. This can provide a wealth of
knowledge on how your container health and performance is on your running container-
ized services. Datadog does not monitor the Docker API by default so you’ll need to enable
it on their website. Once you turn on the integration you’ll need to make it so the Datadog
agent can access Docker by adding it to the Docker group on the system. Once everything
is working Datadog will consume the metrics from the system and automatically send data
to their infrastructure. At this point you’ll be able to setup dashboards and alerts for specif-
ic docker metrics you team needs. Here is an example of the metrics you’ll be able to view
using their metrics explorer from Datadog’s example.

193

https://www.datadoghq.com/blog/2014/06/monitor-docker-datadog/

CHAPTER 15: Logging and Monitoring

Metrics Explorer Show | (4

Craph:
docker]

docker.cpu.user

docker.mem.cache
docker.disk.size
docker.mem.pgpgin
docker.cpu.system

docker.mem.pgpgout

docker.mem.pgfault
On each graph, aggregate with the

Average of reported values v

{1- Options »

By using Datadog’s Docker integration we’re able to see how many containers are run-
ning on a single host or even across many hosts, events on container state changes, and
even metrics on specific images. Operations and development teams can use this informa-
tion to now monitor their container level services state and performance. If there is a large
change we could notify an operations team of an issue and then alert them of them prob-
lem. By using the Docker monitoring integration that Datadog provides you’re now able to
get the abstracted metrics and information beyond what the normal host level agent can
provide. Now that we host based metrics and Docker metrics you can see we have quite a
bit of visibility on the system. The only piece were missing is the health of the application
itself within the container. We can now move on to the final component of this example.

Container based monitoring

There are a number of ways you can monitor the health of the application inside of your
container. Since a container can run any type of application since it in it self is a full blow
0S. You could treat your running container just like a server if you wanted to by installing a
host base agent inside the container during the image creation process. However, we

194

Monitoring

strongly recommend keeping your containers as light as possible, a single process even. It’s
not recommended, but some companies do it successfully and sometimes its easy to inte-
grate into your current monitoring infrastructure. In this example our container on the sys-
tem is running a simple http process with a /health endpoint. In order to make sure the
application health is good inside the container we can monitor it several ways. You can use
StatsD or some custom monitoring framework such as a bash or python script. Let’s first
look at the StatsD approach.

StatsD is a lightweight monitoring tool for easy stats aggregation created by Etsy de-
tailed here. It’s become a very popular application monitoring service since its light weight
and can scale in large environments. One option for monitoring application health inside a
container is to send application metrics from the code itself by using a StatsD library. For
instance, let’s say this web application inside the container gets a POST request to process
some credit card data. It would receive the POST request and send a metric to the StatsD
server in order to track how many post requests it has received. The server would then pro-
cess the credit card by connecting to an API at a credit card processor. Right before con-
necting the code could be setup to record the time. After the call returns and the credit
card is processed then the code could again record the time. The code could then take the
difference between the recorded times to get how long the processing took and fire off an-
other StatsD metric. When it responds then to the client submitting the POST request a fi-
nal StatsD metric is sent with a successful metric in order to show the number of total cred-
it cards processed. In this example if all of the StatsD metrics are graphed on a dashboard
you can see the health of the application in near real time. You would be able to see how
many POST requests the container is getting, processing time to hit the API, and number of
completed credit card processes. This would be one way to measure the health of the ap-
plication within the container. If the dashboard for instance take a sudden drop in comple-
ted credit card processes you could then send an alert to get it looked at.

Since we’ve eluded to a /health endpoint in our example, we’ll cover this in some detail.
StatsD (and Datadog’s implementation) will take any string input along with a metric and
then aggregate the stats for you. For instance, if we want to monitor the http endpoint at
http://myservice.corp/health, we could use echo 'myservice.status-
code:"curl -sL -w "%{http_code}" "http://myservice.corp/
health”" |Jc" | nc -u -w0 statsd.server.com 8125. This command
would check the status code of the health endpoint on the server and then net cat the met-
ric to StatsD. Datadog has integration with StatsD that can then be used to monitor and
alert on the metrics you send statsd. In this example if the service was healthy it would re-
turn a status code of 200. Datadog would get a metric of myservice.statuscode and the re-
sult would be 200. If the status code would return a 500 or 404 error we could then use
Datadog to send a failure notice via email or a pager system. Here is an example Python
script that utilizes Datadog’s StatsD implementation.

import requests # For URL monitoring
import statsd # We installed the Datadog statsd module
import sys

195

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://myservice.corp/health

196

CHAPTER 15: Logging and Monitoring

import time
sites = ["http://myservice.corp/health]

def check_web_response_code(url):

r = requests.get(url,allow_redirects=True,veri-
fy=False,stream=True)

return str(r.status_code)

def send_dogstatsd(options,site):
c = statsd.DogStatsd(options.statsd, options.statsport)
c.connect(host=options.statsd, port=options.statsport)
statname = "httpmonitor*

tags = [1

tags += ["site:"+site]

r = check_web_response_code(site)
c.gauge(statname, r, tags=tags)

def monitor_sites(options):
for site in sites:
send_dogstatsd(options,site)

def main():
while True:
monitor_sites(options)
time_sleep(30);

if _ name_ == " main__ ":
sys.exit(main())

This simple Python script can run in a container and monitor the health of many other
containers. This is a very simple and easy way to get the application health. Check out the
StatsD github project for more details and additional code libraries.

Summary

In conclusion, this example has complete end-to-end service monitoring of a system with
Docker and a running container. With a single tool we were able to monitor the server it
self, the Docker daemon process, and the container application. By using Datadog, our ex-
ample can be measured in a consolidated dashboard on Datadog that can also provide
alerts on host, Docker process, and application health. This is a very basic example, but we
hope it shows you how to get started monitoring your applications running in a Docker in-
frastructure.

And that wraps up our book. We hope you now have the tools and information to use
Docker in a production environment.

	Table of Contents
	Preface
	Who is This Book For?
	Who is Actually Using Docker in Production?
	Why Docker?
	Development vs. Production
	What We Mean by Production
	Batteries Included vs. Composable Tools
	What Not to Dockerize
	Authors

	Getting Started
	Terminology
	Development to Production
	Multiple Ways to Use Docker
	What to Expect

	The Stack
	Build System
	Image Repository
	Host Management
	Configuration Management
	Deployment
	Orchestration

	Example - Bare Bones Environment
	Keeping the Pieces Simple
	Keeping The Processes Simple
	Systems in Detail
	Cluster-wide, common and local configurations
	Deploying services
	Support services
	Discussion
	Future
	Summary

	Example - Web Environment
	Orchestration
	Networking
	Data storage
	Logging
	Monitoring
	No worries about new dependencies
	Zero downtime
	Service rollbacks
	Conclusion

	Example - Beanstalk Environment
	Process to build containers
	Logging
	Monitoring
	Security
	Summary

	Security
	Threat models
	Containers and security
	Kernel updates
	Container updates
	suid and guid binaries
	root in containers
	Capabilities
	seccomp
	Kernel security frameworks
	Resource limits and cgroups
	ulimit
	User namespaces
	Image verification
	Running the docker daemon securely
	Monitoring
	Devices
	Mount points
	ssh
	Secret distribution
	Location

	Building Images
	Not your father’s images
	Image building fundamentals
	Summary

	Storing Docker Images
	Getting up and running with storing Docker images
	Automated builds
	Private repository
	Scaling the Private registry
	Maintenance
	Making your private repository secure
	Save/Load
	Minimizing your image sizes
	Other Image repository solutions

	CI/CD
	Let everyone just build and push containers!
	Build all images with a build system
	Suggest or don’t allow the use of non standard practices
	Use a standard base image
	Integration testing with Docker
	Summary

	Configuration Management
	Configuration Management versus Containers
	Configuration Management for Containers
	Summary

	Docker Storage Drivers
	AUFS
	DeviceMapper
	btrfs
	overlay
	vfs
	Summary

	Docker Networking
	Networking basics
	IP address allocation
	Domain name resolution
	Service discovery
	Advanced Docker networking
	IPv6
	Summary

	Scheduling
	What is scheduling?
	Strategies
	Mesos
	Kubernetes
	OpenShift

	Service Discovery
	DNS service discovery
	Zookeeper
	Service discovery with Zookeeper
	etcd
	consul
	Eureka
	Smartstack
	nsqlookupd
	Summary

	Logging and Monitoring
	Logging
	Monitoring
	Summary

