
[1]

Extending Docker

Master the art of making Docker more extensible,
composable, and modular by leveraging plugins
and other supporting tools

Russ McKendrick

BIRMINGHAM - MUMBAI

Extending Docker

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1100616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-314-2

www.packtpub.com

www.packtpub.com

Credits

Author
Russ McKendrick

Reviewer
Francisco Souza

Commissioning Editor
Pratik Shah

Acquisition Editor
Rahul Nair

Content Development Editor
Mayur Pawanikar

Technical Editor
Danish Shaikh

Copy Editor
Vibha Shukla

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Russ McKendrick is an experienced solution architect who has been working
in IT and related industries for the better part of 23 years. During his career, he has
had varied responsibilities in a number of industries, ranging from looking after an
entire IT infrastructure to providing first-line, second-line, and senior support in
client-facing and internal teams for corporate organizations.

Russ works almost exclusively with Linux, using open source systems and tools
across dedicated hardware, virtual machines to public and private clouds at Node4
Limited, where he heads up the Open Source solutions team.

About the Reviewer

Francisco Souza is a software engineer working in the video area at The New York
Times. He is also one of the creators of Tsuru, an open source cloud platform, which
is built on top of Docker and other open source solutions, including CloudStack and
the Go programming language.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 vii
Chapter 1: Introduction to Extending Docker	 1

The rise of Docker	 1
Dedicated machines	 3
Virtual machines	 4
Dedicated versus virtual machines	 5
Containers	 5

Everyone should be using Docker?	 7
Life cycle of a container	 8

Installing Docker	 8
What are the limits?	 12
Summary	 16

Chapter 2: Introducing First-party Tools	 17
Docker Toolbox	 17

Why install Docker locally?	 18
Installing Docker Toolbox	 18

Docker Machine	 27
Developing locally	 27
Heading into the cloud	 29

The DigitalOcean driver	 30
The Amazon Web Services driver	 38

Other considerations	 43
Docker Swarm	 44

Creating a local cluster	 44
Creating a Remote Cluster	 48
Discovery backends	 51

Docker Compose	 52
Why Compose?	 52

Table of Contents

[ii]

Compose files	 53
Launching more	 56

Summary	 57
Chapter 3: Volume Plugins	 59

Zero volumes	 60
The default volume driver	 64

Third-party volume drivers	 72
Installing Convoy	 74
Launching containers with a Convoy volume	 75
Creating a snapshot using Convoy	 77
Backing up our Convoy snapshot	 78
Restoring our Convoy backups	 80
Summing up Convoy	 82
Block volumes using REX-Ray	 82
Installing REX-Ray	 83
Moving the REX-Ray volume	 88
Summing up REX-Ray	 90

Flocker and Volume Hub	 90
Forming your Flock	 91
Deploying into the Flock	 99
Summing up Flocker	 105

Summary	 107
Chapter 4: Network Plugins	 109

Docker networking	 109
Multi-host networking with overlays	 110

Launching Discovery	 111
Readying the Swarm	 113
Adding the overlay network	 116
Using the overlay network	 117
Back to Consul	 120
Composing multi-host networks	 121
Summing up multi-host networking	 125

Weaving a network	 125
Configuring a Cluster again	 126
Installing and configuring Weave	 128
Docker Compose and Weave	 131
Weave Scope	 133
Calling off the Swarm	 135
Weavemesh Driver	 135
Summarizing Weave	 144

Summary	 144

Table of Contents

[iii]

Chapter 5: Building Your Own Plugin	 145
Third-party plugins	 145

Convoy	 145
REX-Ray	 146
Flocker	 146
Weave	 147
The commonalities among the plugins	 147

Understanding a plugin	 148
Discovery	 148
Startup order	 149
Activation	 150
API calls	 150

Writing your plugin service	 151
Summary	 152

Chapter 6: Extending Your Infrastructure	 153
Why use these tools?	 153
Puppetize all the things	 154

Docker and Puppet	 156
A more advanced Puppet example	 164
A final note about Puppet	 165

Orchestration with Ansible	 166
Preparation	 166
The playbook	 170

Section one	 170
Section Two	 171
Section three	 173
Section four	 175

Ansible and Puppet	 175
Vagrant (again)	 176

Provisioning using Vagrant	 177
The Vagrant Docker provider	 180

Packaging images	 185
An application	 185
The Docker way	 185
Building with Packer	 188
Packer versus Docker Build	 191
Image summary	 196

Serving up Docker with Jenkins	 196
Preparing the environment	 197
Creating an application	 203

Table of Contents

[iv]

Creating a pipeline	 203
Summing up Jenkins	 213

Summary	 213
Chapter 7: Looking at Schedulers	 215

Getting started with Kubernetes	 215
Installing Kubernetes	 217
Launching our first Kubernetes application	 222
An advanced example	 226

Creating the volumes	 227
Launching MySQL	 228
Launching WordPress	 232
Supporting tools	 237

Destroying the cluster	 246
Recap	 247

Amazon EC2 Container Service (ECS)	 247
Launching ECS in the console	 248
Recap	 262

Rancher	 262
Installing Rancher	 263
Securing your Rancher installation	 265
Cattle cluster	 269
Deploying the Cluster application	 271
What's going on in the background?	 275
The catalog	 281

WordPress	 281
Storage	 283
Clustered database	 285
Looking at WordPress again	 286
DNS	 287

Docker & Rancher Compose	 289
Docker Compose	 290
Rancher Compose	 290

Back to where we started	 291
Removing the hosts	 294
Summing up Rancher	 295

Summary	 295
Chapter 8: Security, Challenges, and Conclusions	 297

Securing your containers	 297
Docker Hub	 298

Dockerfile	 298
Official images	 300

Table of Contents

[v]

Pushed images	 301
Docker Cloud	 302
Private registries	 304

The challenges	 304
Development	 304
Staging	 305
Production	 306

Summary	 307
Index	 309

[vii]

Preface
In the past few years, Docker has emerged as one of the most exciting new pieces
of technology. Numerous companies, both enterprise and start-ups, have embraced
the tool.

Several first-party and third-party tools have been developed to extend the core
Docker functionality. This book will guide you through the process of installing,
configuring, and using these tools, as well as help you understand which is the best
tool for the job.

What this book covers
Chapter 1, Introduction to Extending Docker, discusses Docker and some of the
problems that it solves. We will also discuss some of the ways in which the core
Docker engine can be extended to gain additional functionality.

Chapter 2, Introducing First-party Tools, covers the tools provided by Docker to work
alongside the core Docker Engine. These are Docker Toolbox, Docker Compose,
Docker Machine, and Docker Swarm.

Chapter 3, Volume Plugins, introduces Docker plugins. We will start by looking at the
default volume plugin that ships with Docker and look at three third-party plugins.

Chapter 4, Network Plugins, explains how to extend our container's networking across
multiple Docker hosts, both locally and in public clouds.

Chapter 5, Building Your Own Plugin, introduces how to best approach writing your
own Docker storage or network plugin.

Chapter 6, Extending Your Infrastructure, covers how to use several established
DevOps tools to deploy and manage both your Docker hosts and containers.

Preface

[viii]

Chapter 7, Looking at Schedulers, discusses how you can deploy Kubernetes, Amazon
ECS, and Rancher, following the previous chapters.

Chapter 8, Security, Challenges, and Conclusions, helps to explain the security
implications of where you deploy your Docker images from, as well as looking
at the various tools that we have covered in the previous chapters and the situations
they are best deployed in.

What you need for this book
You will need either an OS X or Windows laptop or desktop PC that is capable of
running VirtualBox (https://www.virtualbox.org/) and has access to both Amazon
Web Service and DigitalOcean accounts with permissions to launch resources.

Who this book is for
This book is aimed at both developers and system administrators who feel
constrained by their basic Docker installation and want to take their configuration
to the next step by extending the functionality of the core Docker engine to meet the
business' and their own ever-changing needs.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Once installed, you should be able to check whether everything worked as expected
by running the Docker hello-world container."

A block of code is set as follows:

Dockerfile
FROM php:5.6-apache
MAINTAINER Russ McKendrick <russ@mckendrick.io>
ADD index.php /var/www/html/index.php

https://www.virtualbox.org/

Preface

[ix]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

version: '2'
services:
 wordpress:
 container_name: "my-wordpress-app"
 image: wordpress
 ports:
 - "80:80"
 environment:
 - "WORDPRESS_DB_HOST=mysql.weave.local:3306"
 - "WORDPRESS_DB_PASSWORD=password"
 - "constraint:node==chapter04-01"

Any command-line input or output is written as follows:

curl -sSL https://get.docker.com/ | sh

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To move
to the next step of the installation, click on Continue."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/ExtendingDocker. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/ExtendingDocker
https://github.com/PacktPublishing/ExtendingDocker
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to
Extending Docker

In this chapter, we will discuss the following topics:

•	 Why Docker has been so widely accepted by the entire industry
•	 What does a typical container's life cycle look like?
•	 What plugins and third-party tools will be covered in the upcoming chapters?
•	 What will you need for the remainder of the chapters?

The rise of Docker
Not very often does a technology come along that is adopted so widely across an
entire industry. Since its first public release in March 2013, Docker has not only
gained the support of both end users, like you and I, but also industry leaders such
as Amazon, Microsoft, and Google.

Docker is currently using the following sentence on their website to describe why
you would want to use it:

"Docker provides an integrated technology suite that enables development and IT
operations teams to build, ship, and run distributed applications anywhere."

Introduction to Extending Docker

[2]

There is a meme, based on the disaster girl photo, which sums up why such a
seemingly simple explanation is actually quite important:

So as simple as Docker's description sounds, it's actually a been utopia for most
developers and IT operations teams for a number of years to have tool that can
ensure that an application can consistently work across the following three main
stages of an application's life cycle:

1.	 Development
2.	 Staging and Preproduction
3.	 Production

To illustrate why this used to be a problem before Docker arrived at the scene, let's
look at how the services were traditionally configured and deployed. People tended
to typically use a mixture of dedicated machines and virtual machines. So let's look
at these in more detail.

While this is possible using configuration management tools, such as Puppet,
or orchestration tools, such as Ansible, to maintain consistency between server
environments, it is difficult to enforce these across both servers and a developer's
workstation.

Chapter 1

[3]

Dedicated machines
Traditionally, these are a single piece of hardware that have been configured to run
your application, while the applications have direct access to the hardware, you are
constrained by the binaries and libraries you can install on a dedicated machine, as
they have to be shared across the entire machine.

To illustrate one potential problem Docker has fixed, let's say you had a single
dedicated server that was running your PHP application. When you initially deployed
the dedicated machine, all three of the applications, which make up your e-commerce
website, worked with PHP 5.6, so there was no problem with compatibility.

Your development team has been slowly working through the three PHP
applications. You have deployed it on your host to make them work with PHP 7, as
this will give them a good boost in performance. However, there is a single bug that
they have not been able to resolve with App2, which means that it will not run under
PHP 7 without crashing when a user adds an item to their shopping cart.

If you have a single host running your three applications, you will not be able to
upgrade from PHP 5.6 to PHP 7 until your development team has resolved the bug
with App2, unless you do one of the following:

•	 Deploy a new host running PHP 7 and migrate App1 and App3 to it; this
could be both time consuming and expensive

•	 Deploy a new host running PHP 5.6 and migrate App2 to it; again this could
be both time consuming and expensive

•	 Wait until the bug has been fixed; the performance improvements that the
upgrade from PHP 5.6 to PHP 7 bring to the application could increase the
sales and there is no ETA for the fix

If you go for the first two options, you also need to ensure that the new dedicated
machine either matches the developer's PHP 7 environment or that a new dedicated
machine is configured in exactly the same way as your existing environment; after
all, you don't want to introduce further problems by having a poorly configured
machine.

Introduction to Extending Docker

[4]

Virtual machines
One solution to the scenario detailed earlier would be to slice up your dedicated
machine's resources and make them available to the application by installing a
hypervisor such as the following:

•	 KVM: http://www.linux-kvm.org/
•	 XenSource: http://www.xenproject.org/
•	 VMware vSphere: http://www.vmware.com/uk/products/vsphere-

hypervisor/

Once installed, you can then install your binaries and libraries on each of the
different virtual hosts and also install your applications on each one.

Going back to the scenario given in the dedicated machine section, you will be able
to upgrade to PHP 7 on the virtual machines with App1 and App2 installed, while
leaving App2 untouched and functional while the development work on the fix.

Great, so what is the catch? From the developer's view, there is none as they have
their applications running with the PHP versions, which work best for them;
however, from an IT operations point of view:

•	 More CPU, RAM, and disk space: Each of the virtual machines will require
additional resources as the overhead of running three guest OS, as well as the
three applications have to be taken into account

•	 More management: IT operations now need to patch, monitor, and maintain
four machines, the dedicated host machine along with three virtual
machines, where as before they only had a single dedicated host.

As earlier, you also need to ensure that the configuration of the three virtual
machines that are hosting your applications match the configuration that the
developers have been using during the development process; again, you do not
want to introduce additional problems due to configuration and process drift
between departments.

http://www.linux-kvm.org/
http://www.xenproject.org/
http://www.vmware.com/uk/products/vsphere-hypervisor/
http://www.vmware.com/uk/products/vsphere-hypervisor/

Chapter 1

[5]

Dedicated versus virtual machines
The following diagram shows the how a typical dedicated and virtual machine host
would be configured:

As you can see, the biggest differences between the two are quite clear. You
are making a trade-off between resource utilization and being able to run your
applications using different binaries/libraries.

Containers
Now we have covered the way in which our applications have been traditionally
deployed. Let's look at what Docker adds to the mix.

Back to our scenario of the three applications running on a single host machine.
Installing Docker on the host and then deploying each of the applications as a
container on this host gives you the benefits of the virtual machine, while vastly
reducing the footprint, that is, removing the need for the hypervisor and guest
operating system completely, and replacing them with a SlimLine interface directly
into the host machines kernel.

Introduction to Extending Docker

[6]

The advantages this gives both the IT operations and development teams are
as follows:

•	 Low overhead: As mentioned already, the resource and management for the
IT operations team is lower

•	 Development provide the containers: Rather than relying on the IT
operations team to configure each of the three applications environments to
machine the development environment, they can simply pass their containers
to be put into production

As you can see from the following diagram, the layers between the application and
host operating system have been reduced:

All of this means that the need to use the disaster girl meme at the beginning of
this chapter should be now redundant as the development team are shipping the
application to the operations in a container with all the configuration, binaries,
and libraries intact, which means that if it works in development, it will work
in production.

This may seem too good to be true, and to be honest, there is a "but". For most web
applications or applications that are pre-compiled static binaries, you shouldn't have
a problem.

However, as Docker shares resources with the underlying host machine, such
as the Kernel version, if your application needs to be compiled or have a reliance
on certain libraries that are only compatible with the shared resources, then you
will have to deploy your containers on a like-for-like operating system, and in some
cases, hardware.

Chapter 1

[7]

Docker has tried to address this issue with the acquisition of a company called
Unikernel Systems in January 2016. At the time of writing this book, not a lot is
known about how Docker is planning to integrate this technology into their core
product, if at all. You can find out more about this technology at https://blog.
docker.com/2016/01/unikernel/.

Everyone should be using Docker?
So, is it really that simple, should everyone stop using virtual machines and use
containers instead?

In July 2014, Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio
published an IBM research report titled An Updated Performance Comparison of
Virtual Machines and Linux Containers and concluded:

"Both VMs and containers are mature technology that have benefited from a decade
of incremental hardware and software optimizations. In general, Docker equals
or exceeds KVM performance in every case we tested. Our results show that both
KVM and Docker introduce negligible overhead for CPU and memory performance
(except in extreme cases). For I/O intensive workloads, both forms of virtualization
should be used carefully."

It then goes on to say the following:

"Although containers themselves have almost no overhead, Docker is not without
performance gotchas. Docker volumes have noticeably better performance than files
stored in AUFS. Docker's NAT also introduces overhead for workloads with high
packet rates. These features represent a tradeoff between ease of management and
performance and should be considered on a case-by-case basis."

The full 12-page report, which is an interesting comparison to the traditional
technologies we have discussed and containers, can be downloaded from the
following URL:

http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195
DD819C85257D2300681E7B/$File/rc25482.pdf

Less than a year after the IBM research report was published, Docker introduced
plugins for its ecosystem. One of the best descriptions I came across was from a
Docker software engineer, Jessica Frazelle, who described the release as having
batteries included, but replaceable, meaning that the core functionality can be easily
replaced with third-party tools that can then be used to address the conclusions of
the IBM research report.

https://blog.docker.com/2016/01/unikernel/
https://blog.docker.com/2016/01/unikernel/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

Introduction to Extending Docker

[8]

At the time of writing this book, Docker currently supports volume and network
driver plugins. Additional plugin types to expose more of the Docker core to third
parties will be added in the future.

Life cycle of a container
Before we look at the various plugins and ways to extend Docker, we should look at
what a typical life cycle of a container looks like.

Using the example from the previous section, let's launch the official PHP 5.6
container and then replace it with the official PHP 7.0 one.

Installing Docker
Before we can launch our containers, we need to get Docker up and running; luckily,
this is a simple process.

In the following chapter, we will be getting into bootstrapping our Docker
environments using Docker Machine; however, for now, let's perform a quick
installation of Docker on a cloud server.

The following instructions will work on Ubuntu 14.04 LTS or CentOS 7 instances
hosted on any of the public clouds, such as the following:

•	 Digital Ocean: https://www.digitalocean.com/
•	 Amazon Web Services: https://aws.amazon.com/
•	 Microsoft Azure: https://azure.microsoft.com/
•	 VMware vCloud Air: http://vcloud.vmware.com/

You can also try a local virtual machine running locally using the following:

•	 Vagrant: https://www.vagrantup.com/
•	 Virtualbox: https://www.virtualbox.org/
•	 VMware Fusion: http://www.vmware.com/uk/products/fusion/
•	 VMware Workstation: http://www.vmware.com/uk/products/

workstation/

I am going to be using a CentOS 7 server hosted in Digital Ocean as it is convenient
to quickly launch a machine and then terminate it.

https://www.digitalocean.com/
https://aws.amazon.com/
https://azure.microsoft.com/
http://vcloud.vmware.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.vmware.com/uk/products/fusion/
http://www.vmware.com/uk/products/workstation/

Chapter 1

[9]

Once you have your server up and running, you can install Docker from the official
Yum or APT repositories by running the following command:

curl -sSL https://get.docker.com/ | sh

If, like me, you are running a CentOS 7 server, you will need to ensure that the
service is running. To do this, type the following command:

systemctl start docker

Once installed, you should be able to check whether everything worked as expected
by running the Docker hello-world container by entering the following command:

docker run hello-world

Once you have Docker installed and confirmed that it runs as expected, you can
download the latest builds of the official PHP 5.6 and PHP 7.0 images by running the
following command:

docker pull php:5.6-apache && docker pull php:7.0-apache

For more information on the official PHP images, refer to the Docker Hub page at
https://hub.docker.com/_/php/.

Now that we have the images downloaded, it's time to deploy our application as we
are keeping it really simple; all we going to be deploying is a phpinfo page, this
will confirm the version of PHP we are running along with details on the rest of the
containers environment:

mkdir app1 && cd app1
echo "<?php phpinfo(); ?>" > index.php

Now the index.php file is in place. Let's start the PHP 5.6 container by running the
following command:

docker run --name app1 -d -p 80:80 -it -v "$PWD":/var/www/html php:5.6-
apache

https://hub.docker.com/_/php/
https://hub.docker.com/_/php/

Introduction to Extending Docker

[10]

This will have launch an app1 container. If you enter the IP address of your server
instance or a domain which resolves to, you should see a page that shows that you
are running PHP 5.6:

Now that you have PHP 5.6 up and running, let's upgrade it to PHP 7. Traditionally,
this would mean installing a new set of packages using either third-party YUM or
APT repositories; speaking from experience, this process can be a little hit and miss,
depending on the compatibility with the packages for the previous versions of PHP
that you have installed.

Luckily in our case, we are using Docker, so all we have to do is terminate our
PHP 5.6 container and replace with one running PHP 7. At any time during this
process, you can check the containers that are running using the following command:

docker ps

This will print a list of the running containers to the screen (as seen in the screenshot
at the end of this section). To stop and remove the PHP 5.6 container, run the
following command:

docker rm -f app1

Chapter 1

[11]

Once the container has terminated, run the following command to launch a PHP 7
container:

docker run --name app1 -d -p 80:80 -it -v "$PWD":/var/www/html php:7.0-
apache

If you return to the phpinfo page in your browser, you will see that it is now
running PHP 7:

To terminate the PHP 7 container, run the docker rm command again:

docker rm -f app1

Introduction to Extending Docker

[12]

A full copy of the preceding terminal session can be found in the following screenshot:

This example probably shows the biggest advantage of Docker, being able to quickly
and consistently launch containers on top of code bases that are stored on your local
storage. There are, however, some limits.

What are the limits?
So, in the previous example, we launched two containers, each running different
versions of PHP on top of our (extremely simple) codebase. While it demonstrated
how simple it is to launch containers, it also exposed some potential problems and
single points of failure.

To start with, our codebase is stored on the host machines filesystem, which means
that we can only run the container on our single-host machine. What if it goes down
for any reason?

There are a few ways we could get around this with a vanilla Docker installation.
The first is use the official PHP container as a base to build our own custom image
so that we can ship our code along with PHP. To do this, add Dockerfile to the
app1 directory that contains the following content:

Dockerfile
FROM php:5.6-apache
MAINTAINER Russ McKendrick <russ@mckendrick.io>
ADD index.php /var/www/html/index.php

We can also build our custom image using the following command:

docker build -t app1:php-5.6 .

Chapter 1

[13]

When you run the build command, you will see the following output:

Once you have your image built, you could push it as a private image to the Docker
Hub or your own self-hosted private registry; another option is to export the custom
image as a .tar file and then copy it to each of the instances that need to run your
custom PHP container.

To do this, you will run the Docker save command:

docker save app1:php-5.6 > ~/app1-php-56.tar

This will make a copy of our custom image, as you can see from the following
terminal output, the image should be around a 482M tar file:

Now that we have a copy of the image as a tar file, we can copy it to our other host
machines. Once you have copied the tar file, you will need to run the Docker load
command to import it onto our second host:

docker load < ~/app1-php-56.tar

Introduction to Extending Docker

[14]

Then we can launch a container that has our code baked in by running the
following command:

docker run --name app1 -d -p 80:80 -it app1:php-5.6

The following terminal output gives you an idea of what you should see when
importing and running our custom container:

So far so good? Well, yes and no.

It's great that we can add our codebase to a custom image out of the box, then ship
the image via either of the following ways:

•	 The official Docker Hub
•	 Our own private registry
•	 Exporting the image as a tar file and copying it across our other hosts

However, what about containers that are processing data that is changing all the
time, such as a database? What are our options for a database?

Consider that we are running the official MySQL container from https://hub.
docker.com/_/mysql/, we could mount the folder where our databases are
stored (that is, /var/lib/mysql/) from the host machine, but that could cause us
permissions issues with the files once they are mounted within the container.

To get around this, we could create a data volume that contains a copy of our
/var/lib/mysql/ directory, this means that we are keeping our databases separate
from our container so that we can stop, start, and even replace the MySQL container
without destroying our data.

This approach, however, binds us to running our MySQL container on a single host,
which is a big single point of failure.

https://hub.docker.com/_/mysql/

Chapter 1

[15]

If we have the resources available, we could make sure that the host where we are
hosting our MySQL container has multiple redundancies, such as a number of hard
drives in RAID configuration that allows us to weather more than one drive failure.
We can have multiple power supply units (PSU) being fed by different power feeds,
so if we have any problems with the power from one of our feeds, the host machine
stays online.

We can also have the same with the networking on the host machine, NICs plugged
into different switches being fed by different power feeds and network providers.

While this does leave us with a lot of redundancy, we are still left with a single
host machine, which is now getting quite expensive as all of this redundancy with
multiple drives, networking, and power feeds are additional costs on top of what we
are already paying for our host machine.

So, what's the solution?

This is where extending Docker comes in, while Docker, out of the box, does not
support the moving of volumes between host servers, we can plug in a filesystem
extension that allows us to migrate volumes between hosts or mount a volume from
a shared filesystem, such as NFS.

If we have this in place for our MySQL container, should there be a problem with the
host machine, there will be no problem for us as the data volume can be mounted on
another host.

Once we have the volume mounted, it can carry on where it left off, as we have
our data on a volume that is being replicated to the new host or is accessible via a
filesystem share from some redundant storage, such as a SAN.

The same can also be said for networking. As mentioned in the summary of the IBM
research report, Docker NAT-based networking could be a bottleneck when it comes
to performance, as well as designing your container infrastructure. If it is a problem,
then you can add a networking extension and offload your containers network to a
software-defined network (SDN) rather than have the core of Docker manage the
networking using NAT and bridged interfaces within iptables on the host machine.

Once you introduce this level of functionality to the core of Docker, it can get
difficult to manage your containers. In an ideal world, you shouldn't have to worry
about which host your container is running on or if your container/host machine
stops responding for any reason, then your containers will not automatically pop up
on another host somewhere within your container network and carry on where it
left off.

Introduction to Extending Docker

[16]

In the following chapters of this book, we will be looking at how to achieve some
of the concepts that we have discussed in this chapter, and we will look at tools
written by Docker, designed to run alongside the core Docker engine. While these
tools may not be as functional as some of the tools we will be looking at in the later
chapters, they serve as a good introduction to some of the core concepts that we will
be covering when it comes to creating clusters of Docker hosts and then orchestrating
your containers.

Once we have looked at these tools, we will look at volume and networking plugins.
We will cover a few of the more well-known plugins that add functionality to the
Docker core that allows us to have a more redundant platform.

Once we have been hands-on with pre-written plugins, we will look at the best way
to approach writing your own plugin.

In the final chapters of the book, we will start to look at third-party tools that allow
you to configure, deploy, and manage the whole life cycle of your containers.

Summary
In this chapter, we have looked at Docker and some of the problems it solves.
We have also discussed some of the ways in which the core Docker engine can
be extended and the problems that you can solve with the additional functionality
that you gain by extending Docker.

In the next chapter, we will look at four different tools provided by Docker to make
deploying, managing, and configuring Docker host instances and containers as
simple and seamless as possible.

[17]

Introducing First-party Tools
Docker provides several tools that extend the functionality outside of the core
Docker engine. In this chapter, you will walk-through installing, configuring,
and running the following tools:

•	 Docker Toolbox
•	 Docker Machine
•	 Docker Swarm
•	 Docker Compose

These tools, while not as functional as some of the more advanced ones that we
will be working with in the upcoming chapters, will serve as a good introduction
to both adding additional functionality to core Docker engine as well as concepts
for deploying and orchestrating your containers, which we will be doing more of
towards the end of the book.

Docker Toolbox
Before we start to look at how to use the three other tools, we should look at installing
them on our local machine. In the previous chapter, we downloaded a script supplied
by Docker and piped it through bash to quickly configure the official Docker YUM or
APT repository (depending on the operating system you are running) on an already
provisioned server, the command we executed was as follows:

curl -sSL https://get.docker.com/ | sh

This is useful if you already have a Linux-based server up and running on one of
the many cloud services or locally on virtual machine; however, what if you want
to install Docker on a non-Linux operating system such as Mac OSX or Windows?

Introducing First-party Tools

[18]

Always check the source. It is best practice to check the source of the
bash script that you are going to be downloading and installing; in our
case, you can check this by going to https://get.docker.com/ in
your browser.

Before we look at the tools that Docker provides to do just that, we should answer
the question why?

Why install Docker locally?
So, why would we want to install Docker Toolbox, Compose, Machine, and Swarm
on a non-Linux machine? Well, to start with, you need to remember that Docker,
at its core, is an API to Linux Kernel-based technologies, such as run (https://
github.com/opencontainers/runc) and LXC (https://linuxcontainers.org),
so while you will not be able to launch containers on your Mac OS X or Windows
machine, you will be able to interact with a Docker installation on a Linux machine.

Being able to interact with Docker from your local machine means that you launch
and interact with containers across multiple hosts that can be hosted externally on a
public cloud/hosting service or locally on a virtual machine.

Luckily, Docker has you covered for installing Docker and the three other services
that we are going to be looking at in this chapter on your local machine.

Installing Docker Toolbox
Docker provides a global installer for all of their tools called Docker Toolbox, it
makes installing the following software as painless as possible:

•	 Docker Client
•	 Docker Machine
•	 Docker Compose
•	 Docker Kitematic
•	 VM VirtualBox

https://get.docker.com/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://linuxcontainers.org

Chapter 2

[19]

To get started, you will need to be running a machine that either has Mac OS X 10.8+
or has Windows 7+ installed. In my case, I am running Mac OS X 10.11 (El Capitan);
there is very little difference between the Mac OS X and Windows installers:

1.	 First of all, to get started, you will need to download the installer from the
Docker website. You can find links to download an executable for your
chosen operating system at https://www.docker.com/docker-toolbox/.

https://www.docker.com/docker-toolbox/

Introducing First-party Tools

[20]

2.	 Once you have downloaded the installer, you can launch it by double-clicking
on it. You will then be presented by a series of screens and install options.
The first screen is a welcome page that confirms the version of the toolbox
you are running. If you downloaded from the page in the preceding
screenshot, then you will always have the latest version:

3.	 To move to the next step of the installation, click on Continue.
4.	 The next screen goes into more detail about the packages that will be

installed, as well as the location at which they will be installed. There is
also a box, which, if left ticked, will gather data about the machine you
are installing Docker Toolbox on, anonymize it, and then submit it back
to Docker.

Chapter 2

[21]

This information is useful in giving Docker an idea about the types of
machine their software is being installed on, and also it will report back
any errors that you may encounter when running the installer:

I always recommend keeping this box ticked, as it all goes toward Docker
making a better product and improving the experience of future versions of
the installer.

5.	 To progress to the next step of the installation, click on Continue.

Introducing First-party Tools

[22]

6.	 The next screen will give you the option of which disk you would like to
install the various tools on. In most cases, you should stick with the defaults,
unless you are running applications across multiple drives:

7.	 To move on to the next step of the installation, again click on the Continue
button.

8.	 For majority of the people, a standard installation will be enough; however,
if its not to install one of the tools, you can click the Customize button. The
only two tools you have to install are the Docker Client and Docker Machine.

Chapter 2

[23]

As I want to install all of the tools, I have chosen to go with the standard
installation:

9.	 Once you have chosen either a standard or custom installation, you can
perform the installation by clicking the Install button.

10.	 The installation itself takes a few minutes, during which you will get
feedback on the task the installer is running:

Introducing First-party Tools

[24]

11.	 Once the installation is complete, click on the Continue button.
As running the installer also acts as an upgrader for any components you
have installed, it will run a check to see if any of the files managed by the
services (such as the virtual machine images used by the various tools) need
to be updated.
Depending on the size of any updates and how much data you have, this
process can take several minutes.
This process only applies to updates, so if you have performed a fresh
installation like I have done, this section will be skipped.

12.	 Now that the tools have been installed, you will be given the options of
launching either the Docker Quickstart Terminal or Kitematic. For the
purpose of this book, we will be skipping past this screen by clicking
on the Continue button:

Chapter 2

[25]

13.	 If everything has gone as planned, you will see a message confirming that
the installation has been completed and you can click on the Close button to
quit the installer:

Now, you have all of the tools installed on your local machine to continue with the
rest of the chapter and the book.

Before we start to look at the individual tools, we need to configure the Docker agent.
To do this, run the Docker Quickstart Terminal application. If you have multiple
terminal emulators installed, it will pop up a prompt asking you which one you would
like to use; I prefer to use the one that ships with Mac OS X, so I chose Terminal.

Introducing First-party Tools

[26]

Once you have made your selection, a new terminal window will open and the
application will configure your local installation of Docker for you:

In my case, I got the preceding terminal output when launching the Docker
Quickstart Terminal application.

Chapter 2

[27]

Docker Machine
So, when you ran the Docker Quickstart Terminal application, it created a bunch of
certificates, SSH keys, and configured your user's environment to run Docker. It also
launched a virtual machine running Docker.

Developing locally
The Docker Quickstart Terminal application did this using Docker machine, you
can check the status of the machine launched by the application by running the
following command:

docker-machine active

This will list the names of any active machines, the default machine launched when
you first install Docker is called default, if you run:

docker-machine status default

It should tell you that the virtual machine is currently running. Finally, you should
be able to SSH into the virtual machine by running the following command:

docker-machine ssh default

You will notice that when you SSH into the virtual machine, it is running the
Boot2Docker distribution.

Boot2Docker is an extremely lightweight Linux distribution based on
Tiny Core Linux, and its one purpose is to run Docker. Due to this, the
entire distribution comes in at less than 30 MB, and it boots in around five
seconds, which makes it perfect for running local development machines.
For more information on Boot2Docker, refer to http://boot2docker.
io/, and for Tiny Core Linux, refer to http://tinycorelinux.net/.

http://boot2docker.io/
http://boot2docker.io/

Introducing First-party Tools

[28]

You should something similar to the following terminal session when running
these commands:

There isn't much need to SSH into the virtual machine, though, as the Docker
client that was installed by toolbox has been configured to connect to the Docker
Engine on the virtual machine, this means that when you run the Docker commands
locally, it passes all the calls through Docker on the virtual machine, try running the
hello-world container:

docker run hello-world

Chapter 2

[29]

You should see the following output:

At this stage, you may be thinking to yourself, this all is very good, but it's hardly a
tool to get excited about. Well, you are wrong. Docker Machine has a few more tricks
up its sleeve than being able to launch a Boot2Docker virtual machine locally.

Heading into the cloud
Docker Machine is able to connect to the following services, provision an instance,
and configure your local Docker client to be able to communicate to the cloud-based
instance.

The public cloud providers that currently are supported are as follows:

•	 Amazon Web Services (AWS): https://aws.amazon.com/
•	 DigitalOcean: https://www.digitalocean.com/
•	 Microsoft Azure: https://azure.microsoft.com/
•	 Google Compute Engine: https://cloud.google.com/compute/
•	 Rackspace: http://www.rackspace.co.uk/cloud/

https://aws.amazon.com/
https://www.digitalocean.com/
https://azure.microsoft.com/
https://cloud.google.com/compute/
http://www.rackspace.co.uk/cloud/

Introducing First-party Tools

[30]

•	 IBM SoftLayer: http://www.softlayer.com
•	 Exoscale: https://www.exoscale.ch/
•	 VMware vCloud Air: http://vcloud.vmware.com/

The following self-hosted platforms can also be used:

•	 OpenStack: https://www.openstack.org/
•	 Microsoft Hyper-V: http://www.microsoft.com/virtualization/
•	 VMware vSphere: http://www.vmware.com/uk/products/vsphere/

The DigitalOcean driver
Let's start creating some instances in the cloud. First, let's launch a machine in
DigitalOcean.

There are two prerequisites for launching an instance with Docker Machine in
DigitalOcean, the first is a DigitalOcean account and the second is an API token.

To sign up for a DigitalOcean account, visit https://www.digitalocean.com/
and click on the Sign Up button. Once you have logged in to your account, you can
generate an API token by clicking on the API link in the top menu.

To grab your token, click on the Generate New Token button and follow the
on-screen instructions:

You only get one chance to make a record of your token, make
sure that you store it somewhere safe, as it will allow anyone
who has it to launch instances into your account.

http://www.softlayer.com
https://www.exoscale.ch/
http://vcloud.vmware.com/
https://www.openstack.org/
http://www.microsoft.com/virtualization/
http://www.vmware.com/uk/products/vsphere/
https://www.digitalocean.com/

Chapter 2

[31]

Once you have the token, you can launch your instance using Docker Machine. To
do this, run the following command; make sure to replace the example API token
with your own:

Using a backslash: As we have a lot options to pass to the
docker-machine command, we are using \ to split the command
over multiple lines so that it's easier to follow what is going on.

 docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \
 dotest

Introducing First-party Tools

[32]

This will launch a dotest instance into your DigitalOcean account, you will see
something similar to the following terminal output:

If you check your DigitalOcean control panel, you will now see that the instance that
was created by Docker Machine is listed here:

Chapter 2

[33]

Now we have two instances launched by Docker Machine, one running locally
running on our machine called default and one hosted in DigitalOcean called
dotest. We can confirm this by running the following command:

docker-machine ls

This will return all of the machines we have running and confirm their state, IP
address, Docker version, and name. There is also a column that allows you to know
which of the two machines your local environment is configured to communicate with:

In the preceding example, our local Docker client is configured to communicate
with the default instance, which is the run running locally. Let's change it so that it
interacts with the DigitalOcean instance.

To do this, you have change some local environment variables, luckily, Docker
Machine provides an easy way to find out what these are and also change them.

To find out what they all you have to do is simple, run the following command:

docker-machine env dotest

This will tell you exactly what you need to run to change from the default machine
to dotest. The best thing is that the command itself formats the results in such a
way that they can be executed, so we run the command again, but this time in a way
where the output will be executed:

eval $(docker-machine env dotest)

Introducing First-party Tools

[34]

Now if you get a listing from Docker Machine, you will notice that the dotest
environment is now the active one:

Now that we have our DigitalOcean instance active, you can run the docker
command on your local machine, and they will have been executed on the
DigitalOcean instance. Let's test this by running the hello-world container.

If you run the following command, you should see the image download and then the
output of running the hello-world container:

docker run hello-world

If you then run the following command, you will see that the hello-world image
exited a few seconds ago:

docker ps –a

Chapter 2

[35]

This is demonstrated by the following Terminal output:

As you can see, I used ssh to get into the DigitalOcean instance and ran the docker
ps –a and docker images commands to demonstrate that the commands I ran
locally were executed on the DigitalOcean instance; however, the beauty of this
setup is that you shouldn't have to SSH instance often.

One thing you may have noticed is that all we told Docker Machine is that we want
to use DigitalOcean and our API token; at no point did we tell it which region to
launch the instance in, what specification we wanted, or which SSH key to use.

Docker Machine has some following sensible defaults:

•	 digitalocean-image = ubuntu-15-10-x64

•	 digitalocean-region = nyc3

•	 digitalocean-size = 512mb

Introducing First-party Tools

[36]

As I am based in the UK, let's look at changing the region and the specifications
of the machine. First of all, we should remove the dotest instance by running the
following command:

docker-machine rm dotest

This will terminate the 512mb instance running in NYC3.

It is important to terminate instances that you are not using, as they
will be costing you for each hour they are active. Remember one of
the key advantages of using Docker Machine is that you can spin up
instances both quickly and with as little interaction as possible.

Now that we have removed the old instance, let's add some additional flags to our
docker-machine command to launch the new instance in the desired region and
specification, we will be calling our new instance douktest. The updated docker-
machine create command now looks similar to the following (remember to replace
the example API token with your own):

docker-machine create \
 --driver digitalocean \
 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \
 --digitalocean-region lon1 \
 --digitalocean-size 1gb \
 douktest

You should see similar output from the command as before, once the instance has
been deployed, you can make it active by running:

eval $(docker-machine env douktest)

Chapter 2

[37]

When you enter the control panel, you will notice that the instance has launched in
the specified region and at the desired specification:

Introducing First-party Tools

[38]

For full details on each of the regions and what machine types are available in
each one, you can query the DigitalOcean API by running the following command
(remember to replace the API token):

curl -X GET -H "Content-Type: application/json" -H "Authorization:
Bearer sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0"
"https://api.digitalocean.com/v2/regions" | python -mjson.tool

This will output information about each region.

One last thing, we still haven't found out about the SSH key. Each time you run
Docker Machine, a new SSH key for the instance you are launching is created and
uploaded to the provider, each key is stored in the .docker folder in your user's
home directory. For example, the key for douktest can be found by running the
following command:

cd ~/.docker/machine/machines/douktest/

Here, you will also find the certificates used to authenticate the Docker agent with
the Docker installation on the instance and also the configuration:

This covers DigitalOcean, what about other services? Let's quickly look at Amazon
Web Services so that we can get an idea between the drivers for the different cloud
providers.

The Amazon Web Services driver
If you don't already have an Amazon Web Services account, you should sign up for
one at http://aws.amazon.com/. If you are new to AWS, then you will eligible for
their free tier at http://aws.amazon.com/free/.

I would recommend reading through Amazon's getting started guide if you are
unfamiliar with AWS before working through this section of the chapter, you
can find the guide at http://docs.aws.amazon.com/gettingstarted/latest/
awsgsg-intro/gsg-aws-intro.html.

http://aws.amazon.com/
http://aws.amazon.com/free/
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html

Chapter 2

[39]

The AWS driver is similar to the DigitalOcean driver and it has some sensible
defaults, rather than going into too much detail about how to customize the EC2
instance launched by Docker Machine, I will stick to the defaults. For AWS driver,
the defaults are as follows:

•	 amazonec2-region = us-east-1 (North Virginia)

•	 amazonec2-ami = ami-26d5af4c (Ubuntu 15.10)

•	 amazonec2-instance-type = t2.micro

•	 amazonec2-root-size = 16GB

•	 amazonec2-security-group = docker-machine

Before we launch our instance, we will also need to know our AWS access and secret
keys, and also the VPC ID will be launching our instance. To get these, log in to the
AWS console that can be found at https://console.aws.amazon.com/.

You should already have a copy of your access and secret ID as these are created
when your user was first created in AWS. If you have lost these, then you can
generate a new pair by navigating to Services | IAM | Users, then selecting your
user, and finally going to the Security Credentials tab. There you should see a
button that says Create Access Key.

Amazon describes Amazon Virtual Private Cloud (VPC) as letting
you provision a logically-isolated section of the AWS cloud, where
you can launch resources in a virtual network that you define. You
have complete control over your virtual networking environment,
including selection of your own IP address range, creation of subnets,
and configuration of route tables and network gateways.

Before you find your VPC ID, you should make sure that you are in the correct
region by ensuring that it says N. Virginia at the top right-hand corner of your
AWS console, if it doesn't select it from the drop-down list.

https://console.aws.amazon.com/

Introducing First-party Tools

[40]

Once you have ensured you are in the correct region, go to Services | VPC and click
on Your VPCs. You don't need to worry about creating and configuring a VPC as
Amazon provides you with a default VPC in each region. Select the VPC and you
should see the something similar to the following screenshot:

Make a note of the VPC ID, you should now have enough information to launch
your instance using Docker Machine. To do this, run the following command:

docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key JHFDIGJKBDS8639FJHDS \

 --amazonec2-secret-key sfvjbkdsvBKHDJBDFjbfsdvlkb+JLN873JKFLSJH \

 --amazonec2-vpc-id vpc-35c91750 \

 awstest

Chapter 2

[41]

If all goes well, you should see something similar to the following output:

You should also be able to see an EC2 instance launched in the AWS Console by
navigating to Services | EC2 | Instances:

Introducing First-party Tools

[42]

You may have noticed that Docker Machine created the security group and also
assigned an SSH key to the instance without any need for us to get involved,
keeping within the principle that you don't need to be an expert in configuring the
environments that you are launching your Docker instance into.

Before we terminate the instance, let's switch our local Docker client over to use the
AWS instance and launch the Hello World container:

As you can see, once you have launched an instance using Docker Machine and
switched your local Docker client to it, there is no difference in usage between
running Docker locally and on a cloud provider.

Before we start to rack up the cost, we should terminate our test AWS instance by
running the following command:

docker-machine rm awstest

Chapter 2

[43]

Then confirm that the instance has been terminated correctly in the AWS console:

If you don't do this, the EC2 instance will quite happily sit there costing you $0.013
per hour until it is terminated.

Note that this is not Amazon's Elastic Container Service (ECS). We
will be covering Amazon ECS in Chapter 7, Looking at Schedulers.

Other considerations
As you can see from examples we have worked through, Docker Machine is a
powerful part of Docker Toolbox as it allows users of all skill levels to be able to
launch an instance either locally or in a cloud provider without having to roll their
sleeves up and get stuck in configuring server instances or their local Docker client.

The examples we have used in this chapter have been launching either Boot2Docker
or Ubuntu. Docker machine also supports the following:

•	 Debian (8.0+): https://www.debian.org/
•	 Red Hat Enterprise Linux (7.0+): https://www.redhat.com/
•	 CentOS (7+): https://www.centos.org/
•	 Fedora (21+): https://getfedora.org/
•	 RancherOS (0.3): http://rancher.com/rancher-os/

https://www.debian.org/
https://www.redhat.com/
https://www.centos.org/
https://getfedora.org/

Introducing First-party Tools

[44]

The other thing to mention about Docker Machine is that, by default,
it operates and opts in for crash reporting, considering the amount of different
configuration/environment combinations Docker Machine can be used with, it
is important that Docker get notified of any problems to help them make a better
product. If, for any reason, you want to opt-out, then running the following
command will disable crash reporting:

mkdir -p ~/.docker/machine && touch ~/.docker/machine/no-error-report

For more information on Docker Machine, you can refer to the official
documentation:

•	 Docker Machine: https://docs.docker.com/machine/
•	 Docker Machine Drivers: https://docs.docker.com/machine/drivers/
•	 Docker Machine Command Reference: https://docs.docker.com/

machine/reference/

Docker Swarm
Now that we have discussed how to launch individual Docker instances using
Docker Machine, let's get a little more adventurous and create a cluster of instances.
To do this, Docker ships a tool called Swarm. When deployed, it acts as a scheduler
between your Docker client and host Docker instances, deciding where to launch
containers based on scheduling rules.

Creating a local cluster
To start off, we are going to be using Docker Machine to create a cluster locally
using VirtualBox (https://www.virtualbox.org), which is bundled with Docker
Toolbox. To start, we are going to launch a VM to generate a discovery token. To do
this, run the following commands:

docker-machine create -d virtualbox discover

Then configure your Docker client to use the newly created local instance:

eval "$(docker-machine env discover)"

You can check that your Docker client is configured to use the discover instance
by running docker-machine ls and making sure that discover has a star in the
active column.

Finally, you can install the discovery service by running the following command:

docker run swarm create

https://docs.docker.com/machine/
https://docs.docker.com/machine/drivers/
https://docs.docker.com/machine/reference/
https://docs.docker.com/machine/reference/
https://www.virtualbox.org

Chapter 2

[45]

This will download and run the discovery service and generate the token. At the end
of the process, you will be given a token; it is important that you keep a note of this
for the next steps. If everything went as planned, you should see something similar
to the following output:

In the preceding example, the token is 40c3bf4866eed5ad14ade6633fc4cefc. Now
that we have our token, we need to launch an instance that will act as the scheduler,
this is know as a Swarm manager.

To do this, enter the following command, making sure that you replace the token
with the one you generated:

docker-machine create \

 -d virtualbox \

 --swarm \

 --swarm-master \

 --swarm-discovery token://40c3bf4866eed5ad14ade6633fc4cefc \

 swarm-master

Introducing First-party Tools

[46]

Now that we have the Swarm manager VM up and running, we can start launching
VMs that act as nodes within the cluster. Again, using the discovery token, run the
following commands to launch two nodes:

docker-machine create \

 -d virtualbox \

 --swarm \

 --swarm-discovery token://40c3bf4866eed5ad14ade6633fc4cefc \

 swarm-node-01

Then launch the second node using the following command:

docker-machine create \

 -d virtualbox \

 --swarm \

 --swarm-discovery token://40c3bf4866eed5ad14ade6633fc4cefc \

 swarm-node-02

We can check our VMs by running the docker-machine ls command and then
switch our Docker client to use the cluster by running the following command:

eval $(docker-machine env --swarm swarm-master)

Now that your Docker client is communicating with the cluster, you can run docker
info to find information about all the nodes and the cluster itself, you will see
something similar to the following screenshot:

Chapter 2

[47]

So, now we have a three CPU, 3-GB cluster running over three nodes. To test it,
let's run the Hello World container and then run docker ps -a so that we can
see which node the container launched on:

Introducing First-party Tools

[48]

As you can see from the terminal output, the container was launched on
swarm-node-01, running the container again should launch it on our second node:

So there you have it, a really basic Docker Swarm cluster that you can launch
your containers into using your local Docker client, all launched a managed
using Docker Machine.

Before we move onto the next section, we should remove the local cluster. To do this,
just run the following command:

docker-machine rm discover swarm-master swarm-node-01 swarm-node-02

Click on yes when prompted. You can then check whether the VMs have been
terminated by running the docker-machine ls command.

Creating a Remote Cluster
Before we move onto looking at the next tool, let's launch a cluster in the cloud. I am
going to be using DigitalOcean for this.

First of all, let's create a new discovery token. As all we need to do is generate a
discovery token, there is no need to launch an instance in DigitalOcean just for this
task, so we will simply bring up a machine locally, make a note of the discovery
token and then remove it:

docker-machine create -d virtualbox token

eval "$(docker-machine env token)"

docker run swarm create

docker-machine rm token

Chapter 2

[49]

Now that we have our discovery token, let's launch our Swarm cluster in
DigitalOcean, first of all we will look into Swarm manager:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --swarm \

 --swarm-master \

 --swarm-discovery token://453sdfjbnfvlknmn3435mwedvmndvnwe \

 swarm-master

Then the we will use the two nodes:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --swarm \

 --swarm-discovery token://453sdfjbnfvlknmn3435mwedvmndvnwe \

 swarm-node-01

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --swarm \

 --swarm-discovery token://453sdfjbnfvlknmn3435mwedvmndvnwe \

 swarm-node-02

Introducing First-party Tools

[50]

As you can see in the following screenshot, I launched the cluster in DigitalOcean's
London datacenter and gave the two nodes additional resources:

We will configure our local Docker client to use the remote cluster using the
following command:

eval $(docker-machine env --swarm swarm-master)

This will give us the following information:

Chapter 2

[51]

We are going to be using this cluster for the next part of this chapter, so try to keep
it running for now. If you can't, then you can remove the cluster by running the
following command:

docker-machine rm swarm-master swarm-node-01 swarm-node-02

You should also double the DigitalOcean control panel to ensure that your instances
have terminated correctly.

Remember that with public cloud services, you are paying for
that you use, so if you have an instance sat powered on, even if it
is an errored state, with Docker Machine, the meter is running
and you will be incurring cost.

Discovery backends
At this point, it is worth pointing out that Docker allows you to swap out the
Discovery backends, at the moment we are using the default one which the
Hosted Discovery with Docker Hub, which isn't recommend for production.

Swarm supports the following discovery services:

•	 etcd: https://coreos.com/etcd/
•	 Consul: https://www.consul.io/
•	 ZooKeeper: https://zookeeper.apache.org/

For the time being, we are just going to be looking at the tools Docker provides
rather than any third-party options, so we are going to stick to the default
Discovery backend.

Unfortunately, the one thing that the default Discovery backend doesn't give you
is high availability, this means that our Swarm manager is a single point of failure.
For our needs, this isn't a problem; however, I would not recommend running this
configuration in production.

For more information on the different discovery backends and high availability with
Swarm, refer to the following URLs:

•	 Discovery backends: https://docs.docker.com/swarm/discovery/
•	 Swarm High Availability: https://docs.docker.com/swarm/multi-

manager-setup/

We are going to be looking a lot more at schedulers in later chapters, so for now,
let's move onto the final service installed by Docker Toolbox.

https://coreos.com/etcd/
https://www.consul.io/
https://docs.docker.com/swarm/discovery/
https://docs.docker.com/swarm/multi-manager-setup/
https://docs.docker.com/swarm/multi-manager-setup/

Introducing First-party Tools

[52]

Docker Compose
So far in our exploration of the tools that ship with Docker Toolbox, we have been
using services which manage our Docker host machines, the final service that we are
going to look at in this chapter deals with containers. I am sure that you will agree
that so far the tools provided by Docker are quite intuitive, Docker Compose is no
different. It start off life as third-party service called Fig and was written by Orchard
Labs (the project's original website is still available at http://fig.sh/).

The original project's goal was the following:

"Provide fast, isolated development environments using Docker"

Since Fig became part of Docker, they haven't strayed too far from the original goal:

"Compose is a tool for defining and running multi-container Docker applications.
With Compose, you use a Compose file to configure your application's services.
Then, using a single command, you create and start all the services from your
configuration."

Before we start looking at Compose files and start containers up, let's think of why a
tool such as Compose is useful.

Why Compose?
Launching individual containers is as simple as running the following command:

docker run -i -t ubuntu /bin/bash

This will launch and then attach to an Ubuntu container. As we have already
touched upon, there is a little more to it than just launching simple containers
though. Docker is not here to replace virtual machines, it is here to run a single
application.

This means that you shouldn't really run an entire LAMP stack in single container,
instead, you should look at running Apache and PHP in one container, which is then
linked with a second container running MySQL. You could take this further, running
a NGINX container, a PHP-FPM container, and also a MySQL container. This is
where it gets complicated. All of sudden, your simple line for launching is now
several lines, all of which have to executed in the correct order with the correct flags.

This is exactly the problem Docker Compose tries to fix. Rather than several long
commands, you can define your containers using a YAML file. This means that you
will be able to launch your application with a single command and leave the logic of
the order in which the containers will be launched to Compose.

http://fig.sh/

Chapter 2

[53]

YAML Ain't Markup Language (YAML) is a human-friendly
data serialization standard for all programming languages.

It also means that you can ship your application's Compose file with your code base
or directly to another developer/administrator and they will be able to launch your
application exactly how you intended it be executed.

Compose files
Almost everyone at some point would have installed, used, or read about WordPress,
so for the next few examples, we will be using the official WordPress container from
the Docker Hub, you can find details on the container at https://hub.docker.
com/_/wordpress/.

WordPress is web software that you can use to create a beautiful
website, blog, or app. We like to say that WordPress is both free
and priceless at the same time. For more information, check out
https://wordpress.org/.

Let's start by getting a basic WordPress installation up and running, first of all
create a folder called wordpress and then add the following content to a file called
docker-compose.yml:

wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - "mysql:mysql"
mysql:
 container_name: my-wordpress-database
 image: mysql
 environment:
 MYSQL_ROOT_PASSWORD: "password"

You will be able to launch the application using your Swarm cluster by making sure
that your local Docker client is configured to use it, run docker-machine ls and
make sure that it is active and then run the following command:

eval $(docker-machine env --swarm swarm-master)

https://wordpress.org/

Introducing First-party Tools

[54]

Once your client is configured to communicate with your Swarm cluster, run the
following command within the folder containing the docker-compose.yml file:

docker-compose up -d

Using the -d flag at the end of the command launches the containers in detached
mode, this means that they will run in the background. If we didn't use the -d flag,
then our containers would have launched in the foreground and we would not
have been able to carry on using the same terminal session without stopping the
running containers.

You will see something similar to the following output:

As you can see, you can find out the IP address of the node where the WordPress
application has been launched by running docker ps. If you were to go to the IP
address shown in the figure, where port 80 is listed, you will see a WordPress
installation screen:

Chapter 2

[55]

One of the interesting things to note is that although the my-wordpress-app
container was defined first in the docker-compose.yml file, Compose recognized
that it was linked to the my-wordpress-database container and it launched that one
first. Also, you may have noticed that the wordpress:latest and mysql:latest
images were pulled down on all of the nodes in the Swarm cluster.

So, what of the docker-compose.yml file itself? Let's look at it again, but this time
with some comments.

As far as Compose is concerned, our WordPress application is split into two
applications, one called wordpress and another called mysql. Let's look at the
docker-compose.yml file again:

wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - "mysql:mysql"
mysql:
 container_name: my-wordpress-database
 image: mysql
 environment:
 MYSQL_ROOT_PASSWORD: "password"

Introducing First-party Tools

[56]

At the top level, we have the application name. From here, we then start to define
the configuration for the application by giving a key and value, making sure that you
pay close attention to the indentation. I tend to use two spaces to make it clear that
the indent is there, but not so much that it becomes unreadable.

The first key that we are defining is container_name, we don't have to do this as
Compose will name our containers automatically, based on the name of the folder
we are in and the application name. If we hadn't defined this key, then our containers
would have been called wordpress_wordpress_01 and wordpress_mysql_01.

The next key tells the application which image to use, this will pull the image
straight from the Docker Hub.

Then we define the ports, not that we only define the ports for the wordpress
application and not the mysql one. As we want our wordpress application to listen
on port of the host machine, we have given 80:80. In this case, the first 80 is the host
port and the second one is the container port that we want to expose.

Again, the next key is only used on the wordpress application, this defines the
links. Links are used to link containers together, exposing, in this case, the mysql
container to the wordpress container. This means that when the wordpress container
is launched, it will know the IP address of the mysql container and only its ports will
be exposed to the wordpress container.

The final key we are defining is environment, here are we passing further keys and
values that will be set as environment variables on the containers when they launch.

A full break down of all of the keys available in compose files can be found in the
official documentation at https://docs.docker.com/compose/compose-file/.

Launching more
One of the advantages of using Compose is that each of the environments it launches
is isolated, let's launch another WordPress installation using the following docker-
compose.yml file:

wordpress:
 container_name: my-other-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - "mysql:mysql"
mysql:
 container_name: my-other-wordpress-database

https://docs.docker.com/compose/compose-file/

Chapter 2

[57]

 image: mysql
 environment:
 MYSQL_ROOT_PASSWORD: "password"

As you can see, other than the container names, it is exactly the same as the previous
environment we launched:

The other thing you will notice is that the my-other-wordpress containers launched
on the second node in the cluster. At the moment, each Compose environment will
launch on a single node. As we launch more, we will start to have to change port
assignments as they will start to clash on the hosts (that is, you can't have two port
80 assigned to a single host).

Don't forget to remove any cloud-based instances that you have
launched by using the docker-machine rm command and
also check your cloud provider's control panel to ensure that the
instances have correctly terminated.

Summary
In this chapter, we have covered the additional client tools provided by Docker to
extend the functionality of your core Docker installation, all of the tools that we have
looked at have been designed to slot into your workflow and be as simple as possible
to use. In the later chapters, we will be looking at how to expand some of the core
functionality of Docker using third-party services. When we do, we will revisit a
few of the tools that we have been through in this chapter and look at how they add
additional functionality to them.

[59]

Volume Plugins
In this chapter, you will get an overview of both first and third-party volume
plugins. We will be discussing installing, configuring, and using the following
storage plugins:

•	 Docker Volumes: https://docs.docker.com/engine/userguide/
containers/dockervolumes/

•	 Convoy: https://github.com/rancher/convoy/
•	 REX-Ray: https://github.com/emccode/rexray/
•	 Flocker: https://clusterhq.com/flocker/introduction/

You will also get an understanding of how to interact with Docker plugins and how
they both differ and work with the supporting tools that we covered in Chapter 2,
Introducing First-party Tools.

This chapter assumes that you are using Docker 1.10+. Note that
some commands may not work in previous versions.

https://docs.docker.com/engine/userguide/containers/dockervolumes/
https://docs.docker.com/engine/userguide/containers/dockervolumes/
https://github.com/rancher/convoy/
https://github.com/emccode/rexray/
https://clusterhq.com/flocker/introduction/

Volume Plugins

[60]

Zero volumes
Before we look at volumes, let's look at what happens when you do not use any
volumes at all and store everything directly on the containers.

To start with, let's create a new Docker instance called chapter03 locally using
Docker Machine:

docker-machine create chapter03 --driver=virtualbox

eval $(docker-machine env chapter03)

Now that we have our machine, we can use Docker Compose to run through
a scenario with WordPress. First of all, we will need to launch our WordPress
containers, we are using the official WordPress and MySQL images from the
Docker Hub as we did earlier, our docker-compose.yml file looks similar to
the following code:

version: '2'
services:
 wordpress:
 container_name: my-wordpress-app
 image: wordpress

Chapter 3

[61]

 ports:
 - "80:80"
 links:
 - mysql
 environment:
 WORDPRESS_DB_HOST: "mysql:3306"
 WORDPRESS_DB_PASSWORD: "password"
 mysql:
 container_name: my-wordpress-database
 image: mysql
 environment:
 MYSQL_ROOT_PASSWORD: "password"

As you can see, there is nothing special about the compose file. You can launch it by
running the following command:

docker-compose up -d

Once you have launched the containers, check their status by running the following
command:

docker-compose ps

If they both have state of Up, you can go to the WordPress installation screen by
running the following command:

open http://$(docker-machine ip chapter03)/

This will open your browser and go to the IP address of your Docker instance. In my
case, this is http://192.168.99.100/. You should see the following screen:

Volume Plugins

[62]

Let's click on Continue button and install WordPress:

Once the information has been filled in, click on Install WordPress to complete the
installation. When you do, the MySQL database will be updated with your settings
and the test posts and comments will also be added. When this is completed, you
will be shown a success screen:

Chapter 3

[63]

You should now be able to rerun the following command:

open http://$(docker-machine ip chapter03)

This will take you to your very empty WordPress site:

Your command line history should look something similar to the following
terminal output:

Now that we have our WordPress site installed, let's destroy the containers by
running the following command:

docker-compose stop && docker-compose rm

Volume Plugins

[64]

Make sure you type y when prompted. You will then receive a confirmation message
that your two containers have been removed:

Now that we have removed our containers, let's recreate them by running through
the commands again:

docker-compose up -d

docker-compose ps

open http://$(docker-machine ip chapter03)/

As you can see, you are presented with an installation screen again, which is to be
expected as the MySQL database was stored on the mysql container that we removed.

Before we move onto looking at what ships with Docker, let's do some housekeeping
and remove the containers:

docker-compose stop && docker-compose rm

The default volume driver
Before we start using the third-party volume plugins, we should take a look at what
ships with Docker and how volumes solve the scenario we just worked through.
Again, we will be using a docker-compose.yml file; however, this time, we will add
a few lines to create and mount volumes:

version: '2'
services:
 wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:

Chapter 3

[65]

 - mysql
 environment:
 WORDPRESS_DB_HOST: "mysql:3306"
 WORDPRESS_DB_PASSWORD: "password"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
 mysql:
 container_name: my-wordpress-database
 image: mysql
 environment:
 MYSQL_ROOT_PASSWORD: "password"
 volumes:
 - "database:/var/lib/mysql"
volumes:
 uploads:
 driver: local
 database:
 driver: local

As you can see, here we are creating two volumes, one called uploads, which is
being mounted to the WordPress uploads folder on the WordPress container. The
second volume called database, which is being mounted in /var/lib/mysql on
our MySQL container.

You can launch the containers and open WordPress, using the following commands:

docker-compose up -d

docker-compose ps

open http://$(docker-machine ip chapter03)/

Before we complete the WordPress installation in the browser, we should make sure
that the uploads folder has the right permissions by running docker exec:

docker exec -d my-wordpress-app chmod 777 /var/www/html/wp-content/
uploads/

Now that the permissions are correctly set on the uploads folder, we can go through
the WordPress installation as per the previous test.

Volume Plugins

[66]

As WordPress creates a Hello World! test post as part of the installation, we should
go and edit the post. To do this, log in to WordPress using the credentials that you
entered during the installation. Once logged in, go to Posts | Hello World and then
upload a featured image by clicking on Set featured image button. Your edit should
look similar to the following screenshot once you have uploaded the featured image:

Once your image has been uploaded, click on Update button and then go to your
WordPress homepage by clicking on the title on the top left-hand side of the screen.
Once the home page opens, you should see your featured image:

Chapter 3

[67]

Before we remove our containers, you can run the following command to show all
the volumes that have been created in Docker:

docker volume ls

Volume Plugins

[68]

When running the command, you should the two volumes that we defined in our
docker-compose.yml file:

Remember, as we discussed in the previous chapter, Docker Compose will prefix
names with the project title (which is the name of the folder that docker-compose.
yml is in), in this case, the project is called wordpress-vol and as - is not allow in
names, it has been stripped out, leaving wordpressvol.

Now that we have the basic WordPress installation with updated content, let's
remove the containers as we did before:

docker-compose stop && docker-compose rm

docker-compose ps

Chapter 3

[69]

At this stage, you can probably guess what is going to happen next, let's relaunch our
containers and open the WordPress site in our browser:

docker-compose up -d

open http://$(docker-machine ip chapter03)/

It may take a few seconds for everything to start up, so if you don't see your
WordPress when the browser opens, refresh the page. If everything goes as
planned, you should be presented with your edited Hello World! post:

While it looks like the same screenshot as earlier, you will notice that you have been
logged out of WordPress. This is because, by default, WordPress stores its sessions
on the filesystem, and as they are not stored in the uploads directory, the session files
were lost when we removed the containers.

Volume Plugins

[70]

Volumes can also be shared between containers, if we add the following to our
docker-compose.yml file anywhere in the Services section:

 wordpress8080:
 container_name: my-wordpress-app-8080
 image: wordpress
 ports:
 - "8080:80"
 links:
 - mysql
 environment:
 WORDPRESS_DB_HOST: "mysql:3306"
 WORDPRESS_DB_PASSWORD: "password"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"

You can launch a second container with WordPress running on port 8080 and
access the file we uploaded at http://192.168.99.100:8080/wp-content/
uploads/2016/02/containers-1024x512.png.

Note that the preceding URL will differ for your installation as the IP address may be
different, along with the upload date and file name.

You can get more information on a volume by running the following command:

docker volume inspect <your_volume_name>

In our case, this returns the following information:

Chapter 3

[71]

You will have noticed that we have been using the local driver for our two volumes,
this creates the volume on our Docker instance and mounts a folder from host
machine, which is the Docker Machine host running under VirtualBox in this case.

You can view the contents on the folder by SSHing into the host machine and
going to the folder listed under the mount point returned by the docker volume
inspect command. To SSH into the host and change to the root user, run the
following commands:

docker-machine ssh chapter03

sudo su -

You will then be able to change to the folder containing the volume, the reason
for changing to the root user is to make sure that you have permissions to see the
contents on the folder:

As you can see from the preceding terminal output, the files are owned by an
unknown user with a user ID and group ID of 32, in the container, this is the Apache
user. Be careful if you add files directly or make any changes, as you may find
yourself causing all sorts of permission errors when it comes to your containers
accessing the files you have added/changed.

Volume Plugins

[72]

So far so good, but what are the limits? The biggest one is that your data is tied to
a single instance. In the last chapter, we looked at clustering Docker using Swarm,
we discussed that the containers launched with Docker Compose are tied to a single
instance, which is great for development, but not so hot for production, where we
may have several host instances that we want to start spreading our containers
across, this is where third-party volume drivers come into play.

Third-party volume drivers
There are several third-party volume drivers available, they all bring different
functionality to the table. To start with, we are going to be looking at Convoy
by Rancher.

Before we look at installing Convoy, we should look at launching a Docker
instance somewhere in the cloud. As we already have launched Docker instance
in both DigitalOcean and Amazon Web Services, we should terminate our local
chapter03 instance and relaunch it in one of these providers, I am going to be
using DigitalOcean:

docker-machine stop chapter03 && docker-machine rm chapter03

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0\

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 chapter03

eval "$(docker-machine env chapter03)"

Chapter 3

[73]

One of the reasons that we have launched the instance in a cloud provider is that
we need a full underlying operating system to be able install and use Convoy, while
the image provided by Boot2Docker is good, it is a little too lightweight for our
requirement.

Before we do anything further, I would recommend you to attach a
floating IP address to your DigitalOcean droplet. The reason for this
is that, in this section of the chapter, we are going to be installing
WordPress and then moving the installation to a new machine. Without
a floating IP address, your WordPress installation may appear broken.
You can find more details on floating IPs on the DigitalOcean website
at https://www.digitalocean.com/community/tutorials/
how-to-use-floating-ips-on-digitalocean.

https://www.digitalocean.com/community/tutorials/how-to-use-floating-ips-on-digitalocean
https://www.digitalocean.com/community/tutorials/how-to-use-floating-ips-on-digitalocean

Volume Plugins

[74]

Installing Convoy
As already mentioned, we need to install Convoy on our underlying Docker hosts
operating system. To do this, you should first SSH onto your Docker host:

docker-machine ssh chapter03

As the machine has been launched in DigitalOcean, we have connected
as the root user; this means that we don't have to use sudo in front
of the commands, however, as you could have launched the instance
in another provider, I will keep them there so that you don't end up
getting permission errors if you are not the root user.

Now that you have used ssh command to get into our Docker host, we can install
and start Convoy. Convoy is written in Go and ships as a static binary. This means
that we don't have to compile it manually; instead, we just need to grab the binary
and copy it into place:

wget https://github.com/rancher/convoy/releases/download/v0.4.3/convoy.
tar.gz

tar xvf convoy.tar.gz

sudo cp convoy/convoy convoy/convoy-pdata_tools /usr/local/bin/

There are later versions of Convoy available at https://github.com/rancher/
convoy/releases; however, these are flagged for use with Rancher only. We will be
looking at Rancher in detail in a later chapter.

Now that we have our binary in place, we need to set up our Docker installation so
that it loads the plugin:

sudo mkdir -p /etc/docker/plugins/

sudo bash -c 'echo "unix:///var/run/convoy/convoy.sock" > /etc/docker/
plugins/convoy.spec'

The convoy.spec file tells Docker where it can access Convoy; for more details on
how plugins work refer to Chapter 5, Building Your Own Plugin.

Convoy is installed and ready to go, now we just have to add some storage. For
testing purposes, we are going to be creating and using a loopback device; however,
do not do this in production!

A Loopback Device is a mechanism used to interpret files as
real devices. The main advantage of this method is that all tools
used on real disks can be used with a loopback device. Refer to
http://wiki.osdev.org/Loopback_Device.

https://github.com/rancher/convoy/releases
https://github.com/rancher/convoy/releases
http://wiki.osdev.org/Loopback_Device

Chapter 3

[75]

To create the loopback device and mount it, run the following commands:

truncate -s 4G data.vol

truncate -s 1G metadata.vol

sudo losetup /dev/loop5 data.vol

sudo losetup /dev/loop6 metadata.vol

Now that we have our storage ready, we can start Convoy by running the
following command:

sudo convoy daemon --drivers devicemapper --driver-opts dm.datadev=/dev/
loop5 --driver-opts dm.metadatadev=/dev/loop6 &

You should see something similar to the following output:

Now that we have Convoy running, type exit to leave the Docker host and return to
your local machine.

Launching containers with a Convoy volume
Now that we have Convoy up and running, we can make some changes to our
docker-compose.yml file:

version: '2'
services:
 wordpress:
 container_name: my-wordpress-app

Volume Plugins

[76]

 image: wordpress
 ports:
 - "80:80"
 links:
 - mysql
 environment:
 WORDPRESS_DB_HOST: "mysql:3306"
 WORDPRESS_DB_PASSWORD: "password"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
 mysql:
 container_name: my-wordpress-database
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: "password"
 command: mysqld --ignore-db-dir=lost+found
 volumes:
 - "database:/var/lib/mysql/"
volumes:
 uploads:
 driver: convoy
 database:
 driver: convoy

Put the docker-compose.yml file in a wordpressconvoy folder if don't you will
find you will need change the name of the volume in some of the later steps in
this section.

As you can see, I have highlighted a few changes. The first being that we have
moved over to using MariaDB, the reason for this is that as we now using an actual
filesystem rather just a folder on the host machine, we have a lost + found folder
created, presently the official MySQL container fails to work as it believes there are
already databases on the volume. To get around this, we can use the --ignore-db-
dir directive when starting MySQL, which MariaDB supports.

Let's launch our containers and take a look at the volume that is created by running:

docker-compose up -d

open http://$(docker-machine ip chapter03)/

docker-compose ps

docker volume ls

docker volume inspect wordpressconvoy_database

Chapter 3

[77]

You should see something similar to the following terminal output:

Before we do anything further, complete the WordPress installation and upload
some content:

open http://$(docker-machine ip chapter03)/

Remember to set the correct permissions on the volume before uploading content:

docker exec -d my-wordpress-app chmod 777 /var/www/html/wp-content/
uploads/

Creating a snapshot using Convoy
So far, it's no different from the default volume driver. Let's look at creating a
snapshot and then backing up of the volume, you will see why later in the chapter.

First of call, let's jump back to the Docker host:

docker-machine ssh chapter03

Volume Plugins

[78]

Let's create our first snapshot by running the following the commands:

sudo convoy snapshot create wordpressconvoy_uploads --name snap_
wordpressconvoy_uploads_01

sudo convoy snapshot create wordpressconvoy_database --name snap_
wordpressconvoy_database_01

Once a snapshot has been created, you will receive a unique ID. In my case, these
were c00caa88-087d-45ad-9498-7610844c075e and 4e2a2a6f-887c-4692-b2a8-
e1f08aa42400.

Backing up our Convoy snapshot
Now that we have our snapshots, we can use these as a basis to create our backups.
To do this, we must first make sure that the destination directory where we are going
to store it exists:

sudo mkdir /opt/backup/

Now that we have somewhere to store the backup, let's create it:

sudo convoy backup create snap_wordpressconvoy_uploads_01 --dest vfs:///
opt/backup/

sudo convoy backup create snap_wordpressconvoy_database_01 --dest vfs:///
opt/backup/

Once the backup has been completed, you will receive confirmation in the form of a
URL. For the uploads, the URL returned is as follows:

vfs:///opt/backup/?backup=34ca255e-7164-4734-8b96-579b4e79f728\
u0026volume=26a5913e-4794-4df3-bbb9-7a6361c23a75

For the database, the URL was as follows:

vfs:///opt/backup/?backup=41731035-2760-4a1b-bba9-5e906e2471bc\
u0026volume=8212de61-ea8c-4777-881e-d4bd07b800e3

It is important that you make a note of the URLs, as you will need these to restore
the backups. There is one flaw, the backups we have created are being stored on
our Docker host machine. What if it was to go down? All our hard work would
be then lost!

Convoy supports creating backups for Amazon S3, so let's do that. First, you will
need to log in to your Amazon Web Services account and create an S3 bucket to
store your backups.

Chapter 3

[79]

Once you have created a bucket, you need to add your credentials to the server:

mkdir ~/.aws/

cat >> ~/.aws/credentials << CONTENT

[default]

aws_access_key_id = JHFDIGJKBDS8639FJHDS

aws_secret_access_key = sfvjbkdsvBKHDJBDFjbfsdvlkb+JLN873JKFLSJH

CONTENT

For more information on how to create an Amazon S3 bucket,
refer to the getting started guide at https://aws.amazon.com/
s3/getting-started/, and for details on credentials files,
refer to http://blogs.aws.amazon.com/security/post/
Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-
Manage-Credentials-in-the-AWS-SDKs.

Now your Amazon S3 bucket is created. I have named mine chapter03-backup-
bucket and created it in the us-west-2 region. Your Docker host has access to
Amazon's API. You can make your backups again, but this time, push them to
Amazon S3:

sudo convoy backup create snap_wordpressconvoy_uploads_01 --dest s3://
chapter03-backup-bucket@us-west-2/

sudo convoy backup create snap_wordpressconvoy_database_01 --dest s3://
chapter03-backup-bucket@us-west-2/

As you can see, the destination URL takes the following format:

s3://<bucket-name>@<aws-region>

Again, you will receive URLs once the backups has been completed. In my case,
there are as follows:

s3://chapter03-backup-bucket@us-west-2/?backup=6cb4ed46-2084-42bc-8261-
6b4da690bd5e\u0026volume=26a5913e-4794-4df3-bbb9-7a6361c23a75

For the database backup, we will see the following:

s3://chapter03-backup-bucket@us-west-2/?backup=75608b0b-93e7-4319-b212-
7a1b0ccaf289\u0026volume=8212de61-ea8c-4777-881e-d4bd07b800e3

https://aws.amazon.com/s3/getting-started/
https://aws.amazon.com/s3/getting-started/
http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs
http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs
http://blogs.aws.amazon.com/security/post/Tx3D6U6WSFGOK2H/A-New-and-Standardized-Way-to-Manage-Credentials-in-the-AWS-SDKs

Volume Plugins

[80]

When running the preceding commands, your terminal output should have looked
something similar to the following:

Now that we have off instance backups of our data volumes, let's terminate the
Docker host and bring up a new one. If you haven't already, exit from the Docker
host and terminate it by running the following command:

docker-machine stop chapter03 && docker-machine rm chapter03

Restoring our Convoy backups
As you can see from the following screen, we have backups of our snapshots in an
Amazon S3 bucket:

Before we restore the backups, we need to recreate our Docker instance. Use the
instructions for launching a Docker host in DigitalOcean, installing and starting
Convoy, and also setting up your AWS credentials file from the previous sections
of this chapter.

Chapter 3

[81]

Remember to reassign your floating IP address to the
Droplet before you continue.

Once you have everything backed up and running, you should be able to run the
following commands to restore the volumes:

sudo convoy create wordpressconvoy_uploads --backup s3://chapter03-
backup-bucket@us-west-2/?backup=6cb4ed46-2084-42bc-8261-6b4da690bd5e\
u0026volume=26a5913e-4794-4df3-bbb9-7a6361c23a75

You should also be able to run the following command:

sudo convoy create wordpressconvoy_database --backup s3://chapter03-
backup-bucket@us-west-2/?backup=75608b0b-93e7-4319-b212-7a1b0ccaf289\
u0026volume=8212de61-ea8c-4777-881e-d4bd07b800e3

The process of restoring the volumes will take several minutes, during which you
will see a lot of output streamed to your terminal. The output should look similar
to the following screenshot:

Volume Plugins

[82]

As you can see towards the end of the preceding terminal session, the restore
process restores each block from the S3 bucket so that you will most see these
messages scroll past.

Once you have both volumes restored, go back to your Docker Compose file and run
the following command:

docker-compose up -d

If everything goes as planned, you should be able to open a browser and see your
content intact and how you left it using the following command:

open http://$(docker-machine ip chapter03)/

Don't forget, if you have finished with the Docker host, you
will need to stop and remove using docker-machine stop
chapter03 && docker-machine rm chapter03, otherwise
you may incur unwanted costs.

Summing up Convoy
Convoy is a great tool to start looking at Docker volumes, it is great to quickly move
the content around different environments, which means that you can not only share
your containers, but also share your volumes with fellow developers or sysadmins. It
is also straightforward to install and configure, as it ships as a precompiled binary.

Block volumes using REX-Ray
So far, we have looked at drivers that use local storage with backups to remote
storage. We are now going to take this one step further by looking at remote storage
that is directly attached to our container.

In this example, we are you going to be launching a Docker instance in Amazon Web
Services and launch our WordPress example and attach Amazon Elastic Block Store
volumes to our containers using REX-Ray, a volume driver by EMC.

REX-Ray supports several storage types on both public clouds and EMC's own
range, as follows:

•	 AWS EC2
•	 OpenStack
•	 Google Compute Engine
•	 EMC Isilon, ScaleIO, VMAX, and XtremIO

Chapter 3

[83]

The driver is in active development and more types of supported storage are
promised soon.

Installing REX-Ray
As we are going to be using Amazon EBS volumes, we will need to launch the
Docker host in AWS, as EBS volumes can not be mounted as block devices to
instances in other cloud providers. As per the previous chapter, this can be
accomplished using Docker Machine and the following command:

 docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key JHFDIGJKBDS8639FJHDS \

 --amazonec2-secret-key sfvjbkdsvBKHDJBDFjbfsdvlkb+JLN873JKFLSJH \

 --amazonec2-vpc-id vpc-35c91750 \

 chapter03

Switch Docker Machine to use the newly created host:

eval "$(docker-machine env chapter03)"

Then, SSH into the host, as follows:

docker-machine ssh chapter03

Once you are on the Docker host, run the following command to install REX-Ray:

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -

This will download and perform the basic configuration of the latest stable release of
REX-Ray:

Volume Plugins

[84]

Once REX-Ray is installed, we will need to configure it to use Amazon EBS volumes.
This will need to be done as the root user, to the following to add a file called
config.yml to /etc/rexray/:

sudo vim /etc/rexray/config.yml

The file should contain the following, remember to replace the values for AWS
credentials:

rexray:
 storageDrivers:
 - ec2
aws:
 accessKey: JHFDIGJKBDS8639FJHDS
 secretKey: sfvjbkdsvBKHDJBDFjbfsdvlkb+JLN873JKFLSJH

Once you have added the configuration file, you should be able to use REX-Ray
straight away, running the following command should return a list of EBS volumes:

sudo rexray volume ls

If you see the list of volumes, then you will need to start the process. If you don't
see the volumes, check whether the user that you have provided accesskey and
secretkey for has access to read and create EBS volumes. To start the process and
check whether everything is OK, run the following commands:

sudo systemctl restart rexray

sudo systemctl status rexray

You should see something similar to the following terminal output if everything
works as expected:

Chapter 3

[85]

The final step of the installation is to restart Docker on the instance so that it picks up
the new volume driver. To do this, run the following command:

sudo systemctl restart docker

Now its time to launch some containers. The only change we need make to the
Docker Compose file from the Convoy one is to change the name of the volume
driver, everything else stays the same:

version: '2'
services:
 wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - mysql
 environment:
 WORDPRESS_DB_HOST: "mysql:3306"

Volume Plugins

[86]

 WORDPRESS_DB_PASSWORD: "password"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
 mysql:
 container_name: my-wordpress-database
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: "password"
 command: mysqld --ignore-db-dir=lost+found
 volumes:
 - "database:/var/lib/mysql/"
volumes:
 uploads:
 driver: rexray
 database:
 driver: rexray

Once the application has launched, set the permissions on the upload folder by
running the following command:

docker exec -d my-wordpress-app chmod 777 /var/www/html/wp-content/
uploads/

In the AWS Console, you will notice that now there are some additional volumes:

Open your new WordPress installation in a browser by running the following
command:

open http://$(docker-machine ip chapter03)/

Chapter 3

[87]

If you have a problem opening the WordPress site in your browser, find the running
instance in the AWS Console and add a rule for port 80/HTTP to the DOCKER-
MACHINE security group. Your rules should look similar to the following image:

You will only have to add the rule once, as Docker Machine will reassign the
docker-machine security group whenever you launch more Docker hosts.

Once you have the page open, complete the WordPress installation and edit or
upload some content. You know the drill by now, once you have added your
content, it's time to stop the containers, remove them, and then terminate the
Docker host:

docker-compose stop

docker-compose rm

Before removing the host, you can check the status of the volumes by running the
following command:

docker volume ls

You will see something similar to the following image:

Volume Plugins

[88]

Finally, it's time to remove the Docker host:

docker-machine stop chapter03 && docker-machine rm chapter03

Moving the REX-Ray volume
Before we bring up a new Docker host with Docker Machine, it is worth pointing out
that our WordPress installation will probably look a little broken.

This is because moving our containers to a new host changes the IP address that we
will be accessing the WordPress site on, meaning that until you change the settings
to use the second node's IP address, you will see a broken site.

This is because it is trying to load content, such as CSS and JavaScript, from the first
Docker host's IP address.

For more information on how to update these settings, refer to the WordPress Codex
at https://codex.wordpress.org/Changing_The_Site_URL.

Also, if you have logged into the AWS Console, you may have noticed that your EBS
volumes are not currently attached to any instance:

Now that we have this out of the way, let's launch our new Docker host using
Docker Machine. If you followed the instructions in the previous section to launch
the host, connect, install REX-Ray, and launch the WordPress and Database
containers. As we have already discussed, you could update the site's IP address by
connecting to the database:

1.	 Should you want to update the IP address, then you can run the following.
First of all, connect to your database container:
docker exec -ti my-wordpress-database env TERM=xterm bash -l

https://codex.wordpress.org/Changing_The_Site_URL

Chapter 3

[89]

2.	 Then make a connection to MariaDB using the MySQL client:
mysql -uroot -ppassword --protocol=TCP -h127.0.0.1

3.	 Switch to the wordpress database:
use wordpress;

4.	 Then finally run the following SQL. In my case, http://54.175.31.251 is
the old URL and http://52.90.249.56 is the new one:
UPDATE wp_options SET option_value = replace(option_value,
'http://54.175.31.251', 'http://52.90.249.56') WHERE option_name =
'home' OR option_name = 'siteurl';
UPDATE wp_posts SET guid = replace(guid, 'http://54.175.31.251','h
ttp://52.90.249.56');
UPDATE wp_posts SET post_content = replace(post_content,
'http://54.175.31.251', 'http://52.90.249.56');
UPDATE wp_postmeta SET meta_value = replace(meta_value,'http://54.
175.31.251','http://52.90.249.56');

Your terminal session should look similar to the following screenshot:

However, we can see that the content is present, even though the site looks broken.

Volume Plugins

[90]

Summing up REX-Ray
REX-Ray is very much in early development, with more features being added all the
time. Over the next few releases, I can foresee it getting more and more useful as it is
slowly moving towards being a cluster-aware tool rather than the standalone tool it
is at the moment.

However, even in this early stage of its development, it serves as a great introduction
to using external storage with Docker Volumes.

Flocker and Volume Hub
The next tool that we are going to look at is Flocker by ClusterHQ. It's certainly the
most feature-rich of the third-party volume drivers that we are going to be looking at
in this chapter. As you can see from the following list of supported storage options, it
has the widest coverage of storage backends out of all of the volume drivers:

•	 AWS Elastic Block Storage
•	 OpenStack Cinder with any supported backend
•	 EMC ScaleIO, XtremeIO, and VMAX
•	 VMware vSphere and vSan
•	 NetApp OnTap
•	 Dell Storage SC Series
•	 HPE 3PAR StoreServ and StoreVirtual (with OpenStack only)
•	 Huawei OceanStor
•	 Hedvig
•	 NexentaEdge
•	 ConvergeIO
•	 Saratoga Speed

Chapter 3

[91]

There is also support for the following storage options coming soon:

•	 Ceph
•	 Google Persistent Disk

As most people will have access to AWS, we are going to look at launching a Flocker
cluster in AWS.

Forming your Flock
Rather than rolling our sleeves up and installing Flocker manually, we are going to
take a look at how to get Flocker up and running quickly.

For this part of the chapter, we will be launching a cluster using an AWS
CloudFormation template provided by ClusterHQ to get a Flocker cluster
up and running quickly.

AWS CloudFormation is the orchestration tool provided by
Amazon that allows you to define how you would like your AWS
infrastructure to look and be configured. CloudFormation is free to
use; however, you do pay for the resources that are launched by it.
At the time of writing, the estimated cost for running the template
for one month is $341.13. For more information on CloudFormation,
refer to https://aws.amazon.com/cloudformation/, or
for a breakdown of the costs, refer to http://calculator.
s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-
D96E035B-5A84-48DE-BF62-807FFE4740A8.

https://aws.amazon.com/cloudformation/
http://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-D96E035B-5A84-48DE-BF62-807FFE4740A8
http://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-D96E035B-5A84-48DE-BF62-807FFE4740A8
http://calculator.s3.amazonaws.com/index.html#r=IAD&s=EC2&key=calc-D96E035B-5A84-48DE-BF62-807FFE4740A8

Volume Plugins

[92]

There are a few steps that we will need to perform before we launch the
CloudFormation template. First of all, you will need to create a key pair to be used
by the template. To do this, log in to the AWS console at https://console.aws.
amazon.com/, select your region, then click on EC2, and then on the left-hand side
Key Pairs menu, the key pair you create should be called something like flocker-test:

https://console.aws.amazon.com/
https://console.aws.amazon.com/

Chapter 3

[93]

After you click on the Create button, your key pair will be downloaded, keep this
safe as you will not be able to download it again. Now that you have your key pair
created and safely downloaded, it's time to create an account on the ClusterHQ
Volume Hub, you can do this by going to https://volumehub.clusterhq.com/.

The Volume Hub (at the time of writing this book, it is in Alpha testing) is a
web-based interface to manage your Flocker volumes. You can either signup
for an account using your e-mail address or signin using your Google ID.

Once you have signed up/in, you will be presented with a notice pointing out that
You don't appear to have a cluster yet. and the option of either creating a new cluster or
connect to an existing cluster:

https://volumehub.clusterhq.com/

Volume Plugins

[94]

Clicking on Create new button will open an overlay with instructions about what
you need to do to create a cluster using AWS CloudFormation. As we have already
actioned step one, scroll down to step two. Here, you should see a button that says
Start CloudFormation Configuration Process, click on this to open a new tab that
will take you directly to the AWS CloudFormation page on the AWS console:

The first step of launching the AWS CloudFormation stack is selecting the template,
this has already been done for us, so you can click on the Next button.

You will now be asked to give some details about your stack, this includes a name
for the stack, EC2 key pair name, AWS access and secret keys, and also your Volume
Hub token.

Chapter 3

[95]

To get your Volume Hub token, visit https://volumehub.clusterhq.com/v1/
token and you will be presented with a token. This token is unique to your Volume
Hub account, it is important you don't share it:

Once you have filled in the details you can click on the Next button. On the next
page, you will be asked to tag your resources, this is optional. You should follow
your normal processes for tagging resources here. Once you have added your tags,
click on the Next button.

Note that clicking on create will launch resources in your AWS
account that will incur hourly charges. Only click on create if you
are planning on working through the next steps.

The next page gives you an overview of the details that you have provided. If you
are happy with these, click on the Create button.

https://volumehub.clusterhq.com/v1/token
https://volumehub.clusterhq.com/v1/token

Volume Plugins

[96]

After you click on the Create button, you will be taken back to the AWS
CloudFormation page, where should see your stack with a CREATE_IN_
PROGRESS status:

If you don't see your stack, click on the refresh icon on the right-hand top corner.
Typically, it will take around 10 minutes to create your cluster. While the stack is
being created, you can click on one of the Split pane icons on the bottom-right
of the screen and view the events that are taking place to launch your cluster.

Also, as the cluster is launching, you should start seeing Nodes registering
themselves in your Volume Hub account. It is important, however tempting, to not
start using the Volume Hub until your stack has a CREATE_COMPLETE status.

Chapter 3

[97]

Once your stack has been deployed, click on the Outputs tab. This will give you the
details you will need to connect to the cluster. You should see something similar to
the following:

The first thing we need to do is set the correct permissions on the key pair that we
created earlier. In my case, it is in my Downloads folder:

chmod 0400 ~/Downloads/flocker-test.pem.txt

Once you have set the permission, you will need to log in to the client node using
ubuntu as the username and your key pair. In my case, the client node IP address
is 23.20.126.24:

ssh ubuntu@23.20.126.24 -i ~/Downloads/flocker-test.pem.txt

Once you are logged in, you need to run a few more commands to get the cluster
ready. For this, you will need to make a note of the IP addresses of the Control
Node, which in the preceding screen is 54.198.167.2:

export FLOCKER_CERTS_PATH=/etc/flocker

export FLOCKER_USER=user1

export FLOCKER_CONTROL_SERVICE=54.198.167.2

Volume Plugins

[98]

Now that you have connected to the control service, you should be able to get an
overview of the cluster using the flockerctl command:

flockerctl status

flockerctl ls

When running the flockerctl ls command, you shouldn't see any datasets listed.
Now we should connect to Docker. To do this, run the following commands:

export DOCKER_TLS_VERIFY=1

export DOCKER_HOST=tcp://$FLOCKER_CONTROL_SERVICE:2376

docker info | grep Nodes

At the time of writing this book, the Flocker AWS CloudFormation template installs
and configures Docker 1.9.1 and Docker Compose 1.5.2. This means that you will
not be able to use the new Docker Compose file format. There should be, however,
Docker Compose files in both the old and new formats in the GitHub repository,
which accompanies this book.

You can find the repository at https://github.com/russmckendrick/extending-
docker/.

Your terminal output should look similar to the following session:

Now that we have everything up and running, let's launch our WordPress
installation using Flocker volumes.

https://github.com/russmckendrick/extending-docker/
https://github.com/russmckendrick/extending-docker/

Chapter 3

[99]

Deploying into the Flock
First thing we should do is create the volumes. We could let Flocker use its defaults,
which is a 75 GB EBS volume, but this is a little overkill for our needs:

docker volume create -d flocker -o size=1G -o profile=bronze
--name=database

docker volume create -d flocker -o size=1G -o profile=bronze
--name=uploads

As you can see, this is a more sensible size and we are choosing the same volume
names as we have done in the previous examples. Now that we have our volumes
created, we can launch WordPress. To do this, we have two Docker Compose files,
one will launch the containers on AgentNode1 and the other on AgentNode2. First of
all, create a folder to store the files:

mkdir wordpress

cd wordpress

vim docker-compose-node1.yml

As already mentioned, at the time of writing this book, only the original Docker
Compose file format is support, due to this, our file should have the following content:

wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - mysql
 environment:
 - "constraint:flocker-node==1"
 - "WORDPRESS_DB_HOST=mysql:3306"
 - "WORDPRESS_DB_PASSWORD=password"
 volume_driver: flocker
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
mysql:
 container_name: my-wordpress-database
 image: mariadb
 environment:
 - "constraint:flocker-node==1"
 - "MYSQL_ROOT_PASSWORD=password"

Volume Plugins

[100]

 command: mysqld --ignore-db-dir=lost+found
 volume_driver: flocker
 volumes:
 - "database:/var/lib/mysql/"

As you can see, it isn't too different from the new format. The important thing to
note is the lines that bind the containers to a node, this has been highlighted in the
preceding code.

To launch the containers, we have to pass the filename to docker-compose. To do
this, run the following commands:

docker-compose -f docker-compose-node1.yml up -d

docker-compose -f docker-compose-node1.yml ps

Once the container's have launched, run the following to set the correct permissions
on the uploads folder:

docker exec -d my-wordpress-app chmod 777 /var/www/html/wp-content/
uploads/

Now that we have our volumes created and containers launched, let's take a quick
look at the Volume Hub:

Chapter 3

[101]

As you can see, there are two volumes being shown as attached to the node with
the internal IP of 10.168.86.184. Looking at the Volumes page gives us a lot
more detail:

As you can see, we have information on the size, name, its unique ID, and which
node it is attached to. We can also see the information on the containers that are
running within our cluster:

Before we stop and remove the containers, you should configure WordPress and
then log in and upload a file. You will be able to get the IP address you can access
WordPress on by running the following command and opening the IP address where
port 80 is mapped to in your browser:

docker-compose -f docker-compose-node1.yml ps

Volume Plugins

[102]

Once you have made these changes, you can stop and remove the containers by
running the following commands:

docker-compose -f docker-compose-node1.yml stop

docker-compose -f docker-compose-node1.yml rm -f

Now that you have removed the containers, it's time to launch them on the second
node. You will need to create a second Docker Compose file, as follows:

vim docker-compose-node2.yml

wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 links:
 - mysql
 environment:
 - "constraint:flocker-node==2"
 - "WORDPRESS_DB_HOST=mysql:3306"
 - "WORDPRESS_DB_PASSWORD=password"
 volume_driver: flocker
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
mysql:
 container_name: my-wordpress-database
 image: mariadb
 environment:
 - "constraint:flocker-node==2"
 - "MYSQL_ROOT_PASSWORD=password"
 command: mysqld --ignore-db-dir=lost+found
 volume_driver: flocker
 volumes:
 - "database:/var/lib/mysql/"

As you can see, all that has changed is the node number. To launch the containers,
run the following command:

docker-compose -f docker-compose-node2.yml up -d

Chapter 3

[103]

It will take a little longer to launch, as Flocker has to unattach and reattach the
volumes to the second node. Once the containers are running, you will see that they
are now showing as being attached to the second node in the Volume Hub, as shown
in the following screenshot:

This is also reflected in the other sections of the Volume Hub:

Volume Plugins

[104]

Finally, you can see your new containers on the Containers page:

Run the following command and open the IP address in a browser:

docker-compose -f docker-compose-node2.yml ps

As mentioned in the REX-Rey section of this chapter, opening WordPress should
show you a broken-looking WordPress page, but this shouldn't matter as some
content is being served out of the database volume; otherwise, you would be seeing
the Install WordPress page.

So, there you have it. You have used Flocker and Volume Hub to launch and view
your Docker volumes, as well as move them between hosts.

As mentioned at the start of this section, you are paying by the hour to have the
cluster up and running. To remove it, you should go to the AWS Console, switch
to the CloudFormation service, select your Stack, and then delete from the actions
drop-down menu:

Chapter 3

[105]

If you get an error about not being able to remove the S3 bucket, don't worry, all of
the expensive stuff will have been terminated. To resolve the error, just go to the S3
bucket it is complaining about in the AWS Console and remove the content. Once
you have removed the content, go back to the CloudFormation page and attempt to
delete the stack again.

Summing up Flocker
Flocker is the grandfather of Docker volumes, it was one of the original solutions for
managing volumes even before the volume plugin architecture was released. This
means that it is both mature and easily the most complicated of the volume plugins
that we have looked at.

To get an idea of its complexity, you can view the CloudFormation template at
https://s3.amazonaws.com/installer.downloads.clusterhq.com/flocker-
cluster.cloudformation.json.

https://s3.amazonaws.com/installer.downloads.clusterhq.com/flocker-cluster.cloudformation.json
https://s3.amazonaws.com/installer.downloads.clusterhq.com/flocker-cluster.cloudformation.json

Volume Plugins

[106]

As you can see, there are a lot of steps. Viewing the template in the CloudFormation
visualizer gives you more of an idea of how everything is linked:

Add to the mix that Docker itself is regularly being updated and you have a very
complex installation process. This is the reason why I have not gone into detail about
how to manually install it in this chapter, as the process will no doubt have changed
by the time you come to read it.

Luckily, Cluster Labs have an extremely good documentation that is regularly
updated. It can be found at https://docs.clusterhq.com/en/latest/.

It's also worth pointing out that, at the time of writing this book, Volume Hub is in
early alpha and more functionality is being added regularly. Eventually, I can see
this being quite a powerful combination of tools.

https://docs.clusterhq.com/en/latest/

Chapter 3

[107]

Summary
In this chapter, we have looked at three different volume drivers that all work with
Docker's plugin architecture.

While the three drivers offer three very different approaches to providing persistent
storage for your containers, you may have noticed that Docker Compose files and
how we interact with the volumes using the Docker client was pretty much the same
experience across all three tools, probably to the point where I am sure it was starting
to get a little repetitive.

This repetitiveness showcases, in my opinion, one of the best features of using
Docker plugins, the consistent experience from the client's point of view. At no
point, after we configured the tools, did we have to really think about or take into
consideration how we were using the storage, we just got on with it.

This allows us to reuse our resources, such as Docker Compose files and containers,
across multiple environments such as local VMs, cloud-based Docker hosts, or even
Docker clusters.

However, at the moment, we are still bound to a single Docker host machine. In the
next chapter, we will look at how to start spanning multiple Docker hosts by looking
at Docker Networking plugins.

[109]

Network Plugins
In this chapter, we are going to be looking at the next type of plugin: networking.
We will discuss how to make use of the new networking tools introduced with
Docker 1.9, along with third-party tools that add even more functionality to the
already powerful built-in tools. The two main tools that we are going to look at are
as follows:

•	 Docker Overlay Network: https://docs.docker.com/engine/userguide/
networking/dockernetworks/

•	 Weave: https://weave.works/

This chapter assumes that you are using Docker 1.10+, some
commands may not work in the previous versions.

Docker networking
Before we start to go into detail about Networking in Docker, I should mention that
we have managed to make it to the fourth chapter in the book without having to
really think about networking, this is because, by default, Docker creates a network
bridge between the containers and your host machine's network interface. This is
Docker networking at its most basic form.

Like basic storage, this limits you to bring up your containers on a single host even
when using a clustering tool such as Docker Swarm, as you may have already
noticed in Chapter 2, Introducing First-party Tools, when we were bringing up our
WordPress installation, the web and database containers where launched on a single
host within the cluster. If we were to try and bind each of the two containers to
different host, they would not be able to talk to each other.

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://weave.works/

Network Plugins

[110]

Luckily, Docker has you covered and provides its own multi-host networking layer
to use with Docker Swarm.

Multi-host networking with overlays
Docker released its production-ready multi-host overlay networking functionality in
Docker 1.9. Before this release, the functionality was classed as experimental.

An overlay network is a computer network that is built on top of another
network. Nodes in the overlay network can be thought of as being
connected by virtual or logical links, each of which corresponds to a path,
perhaps through many physical links, in the underlying network:
https://en.wikipedia.org/wiki/Overlay_network

In Docker terms, it allows containers on one Docker host to talk directly to containers
on another Docker host as if they were on the same host, as shown in the following
screenshot:

https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Overlay_network

Chapter 4

[111]

As you can see from the preceding diagram, there are some prerequisites. Firstly,
you must be running a Docker Swarm cluster. Here we have a Docker Swarm
cluster made up of two nodes and a master, all of which have the overlay network
configured. You will also need a Service Discovery service, where it can be accessed
by the Docker Swarm cluster. For this, you can use the following applications:

•	 Consul: https://www.consul.io/
•	 Etcd: https://coreos.com/etcd/
•	 ZooKeeper: http://zookeeper.apache.org/

For the purpose of this chapter, we will be using Consul by HashiCorp (https://
hashicorp.com/) and we will also be launching our cluster using Docker Machine
in DigitalOcean.

Launching Discovery
Back in Chapter 2, Introducing First-party Tools, we launched our Docker Swarm
cluster using a one-off token from the Docker hub. One of the requirements of
multi-host networking is a persistent key/value store so that we have permanent
and accessible place to store values about our cluster, we will be using Consul to
provide this in our example cluster.

Consul is an open source tool written by HashiCorp for discovering and configuring
services in an infrastructure. It provides several key features, including Service
Discovery, health checking, and a key/value store, all while being multi-datacenter
aware.

To launch the Docker host, which will run Consul, run the following command:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 512mb \

 --digitalocean-private-networking \

 service-discovery

https://www.consul.io/
https://coreos.com/etcd/
http://zookeeper.apache.org/
https://hashicorp.com/
https://hashicorp.com/

Network Plugins

[112]

You may notice that we have added an additional line to the docker-machine
command, this launches the DigitalOcean Droplet with private networking enabled.
Once the Docker host has launched, we can launch the Consul service by running the
following command:

docker $(docker-machine config service-discovery) run -d \

 -p "8400:8400" \

 -p "8500:8500" \

 -h "consul" \

 russmckendrick/consul agent -data-dir /data -server -bootstrap-expect
1 -ui-dir /ui -client=0.0.0.0

This will download a copy of my Consul container image, also now there is
an official image that can be found at https://hub.docker.com/_/consul/;
however, this image as it is new may not work with the preceding example.

As this is the only command we need to run on this host, we are not configuring our
local Docker client to use the host; instead, we are passing the configuration over at
runtime using $(docker-machine config service-discovery). To check whether
everything is running as expected, you can run the following command:

docker $(docker-machine config service-discovery) ps

Here, you should see a single container running something similar to the following
terminal output:

https://hub.docker.com/_/consul/

Chapter 4

[113]

Before we progress further, it should be noted that launching Consul
with the -bootstrap-expect 1 flag should never be attempted in
production. You should consider bringing multiple Consul hosts. For
more information on a highly available Consul cluster, refer to the
following URL for details on how to configure a full Consul cluster:
https://www.consul.io/docs/guides/bootstrapping.html

You can also get an idea of what information Docker will be storing in Consul by
opening the web interface, to do this type the following command:

open http://$(docker-machine ip service-discovery):8500/ui

You should see an almost empty Consul view, as shown in the following image:

We will come back to the web interface once we have launched the Docker Swarm
cluster. Now we have the service discover container running and accessible, it's time
to start launching the rest of the cluster.

Readying the Swarm
Let's start to launch the Docker Swarm cluster, first of all the Swarm master. We will
call this chapter04-00:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

https://www.consul.io/docs/guides/bootstrapping.html
https://www.consul.io/docs/guides/bootstrapping.html

Network Plugins

[114]

 --digitalocean-size 1gb \

 --digitalocean-private-networking \

 --swarm --swarm-master \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-00

As you can see, the command is very similar to the one used in Chapter 2, Introducing
First-party Tools; however, we are supplying details of our Consul installation. We
are doing this by passing in the IP address of the service-discovery host using the
docker-machine ip command.

Once the Swarm master is booted, we are going to launch two Swarm nodes using
the following commands:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --digitalocean-private-networking \

 --swarm \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-01

For the second node, we are going to use the following commands:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

Chapter 4

[115]

 --digitalocean-private-networking \

 --swarm \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-02

Now that we have our master and two nodes up and running, let's switch to the
environment and make sure that the cluster is showing the correct number of hosts:

eval $(docker-machine env --swarm chapter04-00)

docker info

You should see something similar to the following screenshot when running
docker info:

So, we now have our cluster launched, and everything is talking to each other.
We will now be able to create our overlay network.

Network Plugins

[116]

Adding the overlay network
For testing purpose, we are going to be creating a very basic network and launching
a very basic container. The following command will create the overlay network, and
thanks to the service-discovery provided by Consul, the network settings will be
distributed to each node within our Docker Swarm cluster:

docker network create --driver overlay --subnet=10.0.9.0/24 chapter04-
overlay-network

So, there you have it, we have created an overlay network called chapter04-
overlay-network with a subnet of 10.0.9.0/24 on our cluster. To make sure
that everything is OK, you can run the following commands to list the networks
configured within the cluster:

docker network ls

You can also check on the individual nodes by running the following command:

docker $(docker-machine config chapter04-01) network ls

docker $(docker-machine config chapter04-02) network ls

Chapter 4

[117]

As you can see, each node has its host and bridge networks available, meaning that
you don't have to use the overlay network if you don't want to; however, we do so
that its time to launch a container and configure it to use our newly added network.

Using the overlay network
To start with, we will be launching a container that runs NGINX:

docker run -itd \

 --name=chapter04-web \

 --net=chapter04-overlay-network \

 -p 80:80 \

 --env="constraint:node==chapter04-01" \

 russmckendrick/nginx

As you can see, we are configuring our container to use chapter04-overlay-
network by passing the --net flag. We are also making sure that the container is
launched on the chapter04-01 node. Next up, let's see if we can view the content
being served by our NGINX container.

To do this, let's launch a container on our second node, chapter04-02, and run wget
to fetch the page being served by NGINX:

docker run -it \

 --rm \

 --net=chapter04-overlay-network \

 --env="constraint:node==chapter04-02" \

 russmckendrick/base wget -q -O- http://chapter04-web

If everything went as planned, you will see Hello from NGINX returned by the
command. We can also ping the NGINX container from the second node by running
the following command:

docker run -it \

 --rm \

 --net=chapter04-overlay-network \

 --env="constraint:node==chapter04-02" \

 russmckendrick/base ping -c 3 chapter04-web

Network Plugins

[118]

You should see an IP address within the 10.0.9.0/24 subnet returned, as shown in the
following screenshot:

If you want to take a look at the network that has been configured on the
chapter04-web container, you can run the following commands:

docker exec chapter04-web ip addr

docker exec chapter04-web route -n

docker exec chapter04-web ping -c 3 google.com

You should see something similar to the following terminal output returned:

Chapter 4

[119]

Finally, you can access the container in your browser by running the following
command:

open http://$(docker-machine ip chapter04-01)/

The page will look something similar to the following screenshot:

While the page itself isn't much to look at, there are actually some quite clever things
going on in the background that you may not have noticed, the biggest of which is
that we haven't had to link our containers together. In the previous chapters, we had
used the link flag when launching multiple containers to link them together. Now we
are launching our containers in the same Overlay Network, Docker assumes that all
of the containers within this network will be able to talk each other, and it handles
the linking of the containers automatically.

Docker has also configured a gateway for the containers in order to be able to route
traffic outside of our Overlay Network by default. If you wanted to create an internal
only networking, then you could add the --internal flag.

Network Plugins

[120]

Back to Consul
Don't forget that while we have been creating the networks and launching our
containers, the service discovery container has been running in the background.
Going back to the Consul web interface, you should notice that under the Key/Value
option, you will see a list of the nodes within our Docker Swarm cluster:

Clicking around, you should also see other values, such as the networking ones, that
are being shared within the Docker Swarm cluster:

Chapter 4

[121]

Before we tear down our Docker Swarm cluster, let's look at launching our
WordPress stack using Docker Compose.

Composing multi-host networks
As in the previous chapters, we are going to launch our trusty WordPress
installation. We are going to make it a little interesting by:

•	 Creating an external network called wpoutside. This network will be able to
get external access, our webserver will be launched over here.

•	 Creating an internal network called wpinside. This network will not be
able to get any external access, on containers on the same network will be
able to access, we will be adding both web server and database containers
to this network.

•	 Launching our web server container one node and the database container on
our second node.

Before we launch our containers, we should terminate the chapter04-web container:

docker rm -f chapter04-web

Now, let's create two overlay networks:

docker network create --driver overlay --subnet=10.0.10.0/24 wpoutside

docker network create --driver overlay --internal --subnet=10.0.11.0/24
wpinside

As you can see, we are giving the networks different subnets, and for wpinside,
we are passing the --internal flag, meaning that the network will not have an
external gateway.

Now, let's take a look at our docker-compose.yml file:

version: '2'
services:
 wordpress:
 container_name: my-wordpress-app
 image: wordpress
 ports:
 - "80:80"
 networks:
 - wpoutside
 - wpinside
 environment:
 - "WORDPRESS_DB_HOST=mysql:3306"

Network Plugins

[122]

 - "WORDPRESS_DB_PASSWORD=password"
 - "constraint:node==chapter04-01"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
 mysql:
 container_name: my-wordpress-database
 image: mysql
 networks:
 - wpinside
 environment:
 - "MYSQL_ROOT_PASSWORD=password"
 - "constraint:node==chapter04-02"
 volumes:
 - "database:/var/lib/mysql"
volumes:
 uploads:
 driver: local
 database:
 driver: local
networks:
 wpoutside:
 external: true
 wpinside:
 external: true

As you can see, I have highlighted the changes made in the file since the previous
chapter. The interesting thing to note is that while it is possible to define your
network within the docker-compose.yml file, you will get a lot more control by
setting up the network using the docker network create command. To do this, we
need to tell Docker Compose to use the externally defined networks for the project.
We are also using labels to bind the containers to a host in our Docker Swarm cluster.

Now that we have the two overlay networks created, you can launch the WordPress
stack by running the following command:

docker-compose up -d

You can check everything launched as expected by running the following command:

docker-compose ps

Chapter 4

[123]

To make sure that the containers have launched on different hosts, run the following
command and check the last column:

docker ps

To see what IP addresses are assigned to the containers, run the following commands:

docker inspect my-wordpress-app | grep IPAddress

docker inspect my-wordpress-database | grep IPAddress

You should see two IP addresses for my-wordpress-app and a single for
my-wordpress-database:

Before we log in to WordPress, we can try some ping tests. First, we will run the tests
on your my-wordpress-app container by running the following commands:

docker exec my-wordpress-app ping -c 3 google.com

docker exec my-wordpress-app ping -c 3 my-wordpress-database

Network Plugins

[124]

For the first command, you will see Google's external IP address returned. For the
second, you will get the IP of your my-wordpress-database container, which will be
on the 10.0.11.0/24 subnet we defined for the wpinside overlay network:

Trying similar commands on my-wordpress-database should give you different
results, try running the following commands:

docker exec my-wordpress-database ping -c 3 my-wordpress-app

docker exec my-wordpress-database ping -c 3 google.com

As you can see, pinging my-wordpress-app works fine; however, when you try and
ping Google, you get an error saying something like Network is unreachable or
some another error. This is exactly what we would expect to see as my-wordpress-
database has no external network access and therefore it cannot route to
www.google.com:

Chapter 4

[125]

Finally, if you would like to access WordPress, you can type in either of the
following commands. First of all, we need to confirm which host the my-wordpress-
app container is launched on. To confirm the host, run:

docker ps

Then, depending on which host, run one of the following three commands:

open http://$(docker-machine ip chapter04-00)/

open http://$(docker-machine ip chapter04-01)/

open http://$(docker-machine ip chapter04-02)/

Your browser will open the now familiar WordPress installation page.

Before moving on further, you should tear down your Docker Swarm cluster. To do
this, run the following command:

docker-machine stop chapter04-00 chapter04-01 chapter04-02 service-
discovery

docker-machine rm chapter04-00 chapter04-01 chapter04-02 service-
discovery

Summing up multi-host networking
Although overlay networks were classed as production-ready in Docker version 1.9,
with the advancements in Docker version 1.10 and the new Docker Compose v2 file
format, Docker networking has really come into its own.

While the overlay network functionality is built into Docker and Swarm, as you have
seen in the examples we have worked through, it is extremely powerful. When used
in conjunction with third-party volume plugins that we covered in Chapter 3, Volume
Plugins, and Docker Swarm, we can start to build highly available deployments.

Weaving a network
Next up, we are going to take a look at Weave Net and Scope by Weaveworks. This
is one of the original Docker networking tools, and at its core, it is a mature software-
defined networking service.

Network Plugins

[126]

Weave Net is described as follows:

"Weave Net creates a container SDN that can run across any mixture of public
and private cloud, virtual machines and bare metal. The container SDN can carry
any layer 2 and layer 3 traffic, including multicast. If you can run it over Ethernet,
you can run it on Weave Net."

In fact, there are two drivers provided by Weave, as follows:

•	 Weave Mesh is a local scope driver that operates without the need for a
cluster store. It can be used to create networks that span non-clustered
machines. With this, you get a single network called Weave, which spans all
of the machines you have Weave launched on.

•	 Weave, like Docker's own overlay driver, is a global scope driver. This means
that it can be used with Docker Swarm and Docker Compose, because of this,
you will need to launch a cluster store.

First of all, let's look at the Weave driver and how to use it with Docker Swarm and
then we will take a look at using the Weavemesh driver.

Configuring a Cluster again
Like Docker multi-host networking, we will need to launch a service discovery
instance and our Swarm cluster. Let's launch the service discovery host with
Docker Machine:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 512mb \

 --digitalocean-private-networking \

 service-discovery

Chapter 4

[127]

This time, we don't need to enable the Consul web interface, so run the following
command:

docker $(docker-machine config service-discovery) run -d \

 -p "8400:8400" \

 -p "8500:8500" \

 -h "consul" \

 russmckendrick/consul agent -data-dir /data -server -bootstrap-expect
1 -client=0.0.0.0

Now launch the Docker Swarm cluster, first the master:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --digitalocean-private-networking \

 --swarm --swarm-master \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-00

Then we will launch our first node:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --digitalocean-private-networking \

 --swarm \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

Network Plugins

[128]

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-01

Finally, we will launch the second node:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 --digitalocean-private-networking \

 --swarm \

 --swarm-discovery="consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-store=consul://$(docker-machine ip service-
discovery):8500" \

 --engine-opt="cluster-advertise=eth1:2376" \

 chapter04-02

To check whether everything is working as expected, run the following commands
to switch our local Docker client to connect to the Swarm cluster and also check
whether the three nodes are visible:

eval $(docker-machine env --swarm chapter04-00)

docker info

Installing and configuring Weave
Now that we have our cluster up and running, we can install and configure Weave.
Installing Weave is simple, all you have to do is download the binary and give it the
correct permissions. Let's do this on the Swarm master using docker-machine ssh
to connect to the host and run the install command:

docker-machine ssh chapter04-00 'curl -L git.io/weave -o /usr/local/bin/
weave; chmod a+x /usr/local/bin/weave'

Next, we start Weave, again using docker-machine ssh, we can run the following
command:

docker-machine ssh chapter04-00 weave launch --init-peer-count 3

Chapter 4

[129]

You will have notice that Weave deployed three containers from the Docker Hub,
they are as follows:

•	 weaveworks/weaveexec
•	 weaveworks/weave
•	 weaveworks/plugin

Also, we are telling Weave to expect three peers to join the cluster by passing
the --init-peer-count 3 flag, that's pretty much all we have to do to configure
Weave on our first cluster node.

Next, we need to install Weave onto our other two cluster nodes, again using the
docker-machine ssh command run the following:

docker-machine ssh chapter04-01 'curl -L git.io/weave -o /usr/local/bin/
weave; chmod a+x /usr/local/bin/weave'

docker-machine ssh chapter04-01 weave launch --init-peer-count 3

Now that we have Weave up and running on the node, we need to tell it to connect
to the Weave installation running on the Swarm master. To do this, run the following
command:

docker-machine ssh chapter04-01 weave connect "$(docker-machine ip
chapter04-00)"

Then on our last cluster node, we will run the following command:

docker-machine ssh chapter04-02 'curl -L git.io/weave -o /usr/local/bin/
weave; chmod a+x /usr/local/bin/weave'

docker-machine ssh chapter04-02 weave launch --init-peer-count 3

docker-machine ssh chapter04-02 weave connect "$(docker-machine ip
chapter04-00)"

Once all three nodes in the Swarm cluster have Weave installed and configured,
we will run the following command to ensure that all three nodes are talking to
each other:

docker-machine ssh chapter04-00 weave status

Network Plugins

[130]

The command should return confirmation that there are three peers with six
established connections along with other information about the installation, as
shown in the following screenshot:

Now that we have confirmation that everything is working as expected, we will list
the networks in Docker using the following command:

docker network ls

As per the following terminal session, you should see that there is a weavemesh
network called weave on each of the nodes within the cluster; we will discuss
more about that later:

Chapter 4

[131]

Docker Compose and Weave
So, let's launch our WordPress installation. The Docker Compose file looks a little
different from the overlay network one:

version: '2'
services:
 wordpress:
 container_name: "my-wordpress-app"
 image: wordpress
 ports:
 - "80:80"
 environment:
 - "WORDPRESS_DB_HOST=mysql.weave.local:3306"
 - "WORDPRESS_DB_PASSWORD=password"
 - "constraint:node==chapter04-01"
 hostname: "wordpress.weave.local"
 dns: "172.17.0.1"
 dns_search: "weave.local"
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
 mysql:
 container_name: "my-wordpress-database"
 image: mysql
 environment:
 - "MYSQL_ROOT_PASSWORD=password"
 - "constraint:node==chapter04-02"
 hostname: "mysql.weave.local"
 dns: "172.17.0.1"
 dns_search: "weave.local"
 volumes:
 - "database:/var/lib/mysql"
volumes:
 uploads:
 driver: local
 database:
 driver: local
networks:
 default:
 driver: weave

Network Plugins

[132]

I have highlighted a few changes from the Overlay Docker Compose file: first off,
we will define a hostname and provide a DNS server and search domain. To get the
right values for the dns and dns_search keys, you can run the following command
to have Weave let you know what it has configured:

docker-machine ssh chapter04-00 weave dns-args

As you can see, in my case, it returned 172.17.0.1 and weave.local:

Also, for the MySQL connection from the WordPress container to the Database one,
we are using the internal DNS name as well.

We are also letting Docker Compose create a network for us using the Weave driver,
this will add a single network named after the project. Docker Compose gets the
project name from the folder our Docker Compose file is, in my case, it's a folder
called wordpress.

To launch your containers and check whether they are running as expected, run the
following commands:

docker-compose up -d

docker-compose ps

docker ps

You should see something similar to the following terminal output:

Chapter 4

[133]

If you really want to, you can access your WordPress installation by running the
following command:

open http://$(docker-machine ip chapter04-01)/

There are some things happening in the background that Docker's multi-host
networking doesn't give you, such as internal DNS. Weave has its own internal
DNS system that you can register your containers with, as you saw in the Docker
Compose file that we provided details for records for both containers. Run the
following command:

docker-machine ssh chapter04-00 weave status dns

It will show you all the DNS records that Weave has configured. In my case, it looks
like the following screenshot:

Weave Scope
While we have our three-node Swarm cluster up and running, let's quickly install
Scope. Scope is a tool for visualizing your Containers and host. We will just be
installing it to run locally, but Weave Works will be offering a cloud-based service,
which can be found at http://scope.weave.works/ (at the time of writing this
book, it was in private beta).

Similar to the way we installed Weave Net, we will be using the docker-machine ssh
command to download the binary and launch and configure the service.

We will write the code on the Swarm master first:

docker-machine ssh chapter04-00 'curl -L git.io/scope -o /usr/local/bin/
scope; chmod a+x /usr/local/bin/scope'

docker-machine ssh chapter04-00 scope launch

Then, we will write the code for remaining two nodes:

docker-machine ssh chapter04-01 'curl -L git.io/scope -o /usr/local/bin/
scope; chmod a+x /usr/local/bin/scope'

docker-machine ssh chapter04-01 scope launch $(docker-machine ip
chapter04-00)

http://scope.weave.works/
http://scope.weave.works/

Network Plugins

[134]

docker-machine ssh chapter04-02 'curl -L git.io/scope -o /usr/local/bin/
scope; chmod a+x /usr/local/bin/scope'

docker-machine ssh chapter04-02 scope launch $(docker-machine ip
chapter04-00)

As you can see on the two remaining nodes, we are telling Scope to connect to the
Scope instance running on the Swarm master.

Now that Scope is installed, open it in your browser by running the following
command:

open http://$(docker-machine ip chapter04-00):4040/

When your browser opens, you will be presented with a visual representation of
your Swarm cluster, and the containers that are running.

I am not going to go into any more detail on Scope here, as at the moment, it
doesn't have much to do with networking, have a look around to start seeing more
information on your cluster and how it all hangs together. Mine looked similar to the
following screenshot:

Chapter 4

[135]

Calling off the Swarm
As you can see, while Weave is quite a powerful SDN, it is straightforward to
configure. However, replicating the multi-host networking Docker provides is
only one of its tricks.

Let's shut down our Swarm cluster and terminate the hosts before we start to look at
the Weavemesh network driver:

docker-machine stop chapter04-00 chapter04-01 chapter04-02 service-
discovery

docker-machine rm chapter04-00 chapter04-01 chapter04-02 service-
discovery

Before you move on, log in to your DigitalOcean control panel and make sure that
you don't have any machines labelled with chapter04 running, remember that you
will be charged per hour whether you are using them or not.

Weavemesh Driver
We have looked at how Weave Net can by used alongside a Docker Swarm cluster
to create multi-host networking, now let's take a look at the second Weave network
driver, Weavemesh. As you may recall, when we first installed Weave Net, a
network called "weave" was automatically create using the "weavemesh" driver on
each node within our cluster.

This time, let's bring up two independent Docker hosts DigitalOcean using Docker
Machine. To make it interesting, we will launch one host in London and the other in
New York City. As these are going to be acting as individual hosts, we do not need
to launch a key/value store, or configure Docker Swarm.

First, type the following command to launch a host in London host:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 mesh-london

Network Plugins

[136]

Then, the following command is to launch another host is New York City.

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region nyc2 \

 --digitalocean-size 1gb \

 mesh-nyc

Now that we have our two Docker hosts up and running, let's install and configure
Weave:

docker-machine ssh mesh-london 'curl -L git.io/weave -o /usr/local/bin/
weave; chmod a+x /usr/local/bin/weave'

docker-machine ssh mesh-london weave launch --password 3UnFh4jhahFC

As you can see, this time we are telling Weave to launch with a password. This flag
will enable encryption between the networking layer on our two hosts. Now that we
have the London host configured, let's do the one in New York City and then get it
talking to the host in London:

docker-machine ssh mesh-nyc 'curl -L git.io/weave -o /usr/local/bin/
weave; chmod a+x /usr/local/bin/weave'

docker-machine ssh mesh-nyc weave launch --password 3UnFh4jhahFC

docker-machine ssh mesh-nyc weave connect "$(docker-machine ip mesh-
london)"

Now that we have Weave configured on our two hosts, we can check the status of
Weave by running the following command:

docker-machine ssh mesh-nyc weave status

Chapter 4

[137]

As you can see from the following terminal output, encryption is enabled and we
have two peers within our Weave network:

So, let's take a look at Weave's party trick. We will keep it basic to start with by
launching our NGINX container:

docker $(docker-machine config mesh-nyc) run -itd \

 --name=nginx \

 --net=weave \

 --hostname="nginx.weave.local" \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/nginx

Now we can check whether the container is up and running:

docker $(docker-machine config mesh-nyc) ps

Network Plugins

[138]

Let's also check whether it's responding on port 80:

docker $(docker-machine config mesh-london) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base wget -q -O- http://nginx.weave.local

Finally, let's do a ping test:

docker $(docker-machine config mesh-london) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base ping -c 3 nginx.weave.local

Your terminal session should look something similar to the following screenshot:

On the surface, this test doesn't look like much; however, if you look closely at the
commands we used, you will see just how powerful the weavemesh driver is.

Chapter 4

[139]

First of all, when we launched our NGINX container on the New York City Docker
host, we did not publish any ports, meaning that port 80 was only available on the
weave network that we attached it to.

Secondly, when we ran the check on port 80 and did the ping test, we did that from
our Docker host in London. We temporally launched a basic container, attached it to
the weave network and configured it use Weave DNS service so that it could resolve
the nginx.weave.local domain.

Let's do our tests again, but this time, using a local virtual machine:

docker-machine create -d virtualbox mesh-local

Now, install Weave as we did on our other two Docker hosts:

docker-machine ssh mesh-local 'sudo curl -L git.io/weave -o /usr/local/
bin/weave; sudo chmod a+x /usr/local/bin/weave'

docker-machine ssh mesh-local sudo weave launch --password 3UnFh4jhahFC

docker-machine ssh mesh-local sudo weave connect "$(docker-machine ip
mesh-london)"

Then run the tests again:

docker $(docker-machine config mesh-local) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base wget -q -O- http://nginx.weave.local

Run the ping test, as follows:

docker $(docker-machine config mesh-local) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base ping -c 3 nginx.weave.local

Network Plugins

[140]

As you can see, it worked!

We now have three Docker hosts in our Weavemesh network, all of which can talk to
each other. To prove this, we are going to do one final test. Let's launch a container
on our local Docker host and try the tests from the New York City host.

Create a NGINX container called vm.weave.local on our local Docker host:

docker $(docker-machine config mesh-local) run -itd \

 --name=vm \

 --net=weave \

 --hostname="vm.weave.local" \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/nginx

Then try connecting to port 80 and pinging the new container from the Docker host
in New York City:

docker $(docker-machine config mesh-nyc) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base wget -q -O- http://vm.weave.local

Chapter 4

[141]

docker $(docker-machine config mesh-nyc) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base ping -c 3 vm.weave.local

My terminal session looked similar to the following screenshot:

Now that we don't have the constants of the Docker Swarm cluster, we can also start
to do some tasks that are only available outside of Swarm.

Network Plugins

[142]

First of all, you attach container to the Weave network after they have been launched,
let's launch an NGINX container called lonely on our London Docker host:

docker $(docker-machine config mesh-london) run -itd \

 --name=lonely \

 russmckendrick/nginx

Now, let's connect to the London Docker host and attached the container to the
weave network:

docker-machine ssh mesh-london weave attach lonely

When you run the command, it will return an IP address. This will be the new IP
address of our container; in my case, it is 10.40.0.0. Let's run our test from both the
New York City and Local Docker hosts:

docker $(docker-machine config mesh-nyc) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base wget -q -O- 10.40.0.0

docker $(docker-machine config mesh-local) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base ping -c 3 10.40.0.0

Chapter 4

[143]

Your terminal session should look similar to the following screenshot:

Now that we have our container on the network, we can manually add a DNS for the
host by running the following command:

docker-machine ssh mesh-london weave dns-add lonely -h lonely.weave.local

As you can see, we can now access port 80 using http://lonely.weave.local from
our New York City Docker host:

docker $(docker-machine config mesh-nyc) run -it \

 --rm \

 --net=weave \

 --dns="172.17.0.1" \

 --dns-search="weave.local" \

 russmckendrick/base wget -q -O- lonely.weave.local

http://lonely.weave.local

Network Plugins

[144]

The only downside is that there is no easy way of adding the DNS resolution to the
host we have attached to the "weave" network.

Now that we are finished with our Docker hosts, let's terminate them so that we
don't incur unnecessary cost:

docker-machine stop mesh-local mesh-london mesh-nyc

docker-machine rm mesh-local mesh-london mesh-nyc

Again, remember to check your DigitalOcean control panel to ensure that your hosts
have been correctly terminated.

Summarizing Weave
As you have seen and I have already mentioned, Weave is an incredibly powerful
software-defined network, which is really easy to configure. Speaking from
experience, this is a difficult combination to pull off, as most SDN solutions are
incredibly complex to install, configure, and maintain.

We have only touched on what is possible with "weave" and "weavemesh" drivers.
For a full feature list, along with instructions on some most of the advanced use cases,
refer to http://docs.weave.works/weave/latest_release/features.html.

Summary
In this chapter, we have looked at three different network drivers, all three of
which add quite powerful functionality to your basic Docker installation. These,
along with the volume drivers, really extend Docker to the point where you can
run large fault-tolerant clusters of containers.

Personally, when I first installed Weave and started to communicate with containers
across different Docker hosts in different hosting providers so easily, I was absolutely
blown away.

In the next chapter, we will look at how you should approach to creating your
own extension.

http://docs.weave.works/weave/latest_release/features.html
http://docs.weave.works/weave/latest_release/features.html
http://docs.weave.works/weave/latest_release/features.html

[145]

Building Your Own Plugin
Along with providing the core tools, Docker also documents an API that allows the
core Docker engine to talk to the plugin services written by third-party developers.
At the moment, this API allows you to hook your own storage and networking
engines into Docker.

This may seem like it is limiting you to a very niche set of plugins, and it is.
However, there is a good reason that Docker has taken this decision.

Let's have a look at some of the plugins that we have already installed in the
previous chapters; however, rather than covering the functionality, we will
take a look at what goes on behind the scenes.

Third-party plugins
The first page about plugins on the Docker documentation site lists a lot of
third-party plugins. As already mentioned, let's get an idea of what's going on in
the background of the plugins that we have already installed and used in Chapter 3,
Volume Plugins, and Chapter 4, Network Plugins.

Convoy
Convoy was the first third-party plugin we looked at in Chapter 3, Volume Plugins. To
install it, we launched a Docker host in DigitalOcean as we needed a more complete
underlying operating system than is provided by the Boot2Docker operating system,
which is favored by Docker Machine.

To install Convoy, we downloaded a release file from GitHub. This tar archive
contained the static binaries required to run Convoy on a Linux system, once the
static binaries were in place, we created a Docker plugin folder and then added a
symbolic link to the socket file that Convoy creates when it is first executed.

Building Your Own Plugin

[146]

We then went on to configure a loopback device that we created on a volume. We
then instructed Convoy to use the newly created volume by launching Convoy as a
daemon using the Convoy static binary that we downloaded.

In multitasking computer operating systems, a daemon is a computer
program that runs as a background process, rather than being under
the direct control of an interactive user:
https://en.wikipedia.org/wiki/Daemon(computing).

As far as Docker is concerned, for each request it gets when the --volume-
driver=convoy flag is used to launch a container, it will simply offload
anything to do with volume the daemonized Convoy process.

If you review the Convoy section of Chapter 3, Volume Plugins, you will notice that all
of our interaction with Convoy is using the convoy command and not the docker
one, in fact, the Convoy client is using the same socket file as we symbolically linked
to the Docker plugins folder.

REX-Ray
Next up, we installed REX-Ray. To do this, we ran a command, which downloaded
and executed a bash script from https://dl.bintray.com/emccode/rexray/
install.

This script works out the operating system you are running and then downloads
and installs either the DEB or RPM file. These packages, as you may have already
guessed, install the correct static binaries for your operating system.

REX-Ray goes one step further by also installing init, upstart, or systemd service
scripts for the daemon, meaning that you can start and stop it as you would with
any other services on your Docker host.

Again, once we have installed REX-Ray, the only interaction we had with the tool is
by using the rexray command.

Flocker
Flocker went one step further, rather than installing an installation script, we used
the AWS CloudFormation templates supplied by Cluster HQ to bootstrap the
environment for us.

This did the obvious task of launching the Docker host, setting up the security
groups, and installing and configuring both Docker and Flocker.

https://en.wikipedia.org/wiki/Daemon(computing)
https://dl.bintray.com/emccode/rexray/install
https://dl.bintray.com/emccode/rexray/install

Chapter 5

[147]

Flocker goes one step further than Convoy and REX-Ray by installing an agent that
interacts with the remotely-hosted web API, the volume hub.

Also, as mentioned in this chapter, Flocker existed before the concept of volume
plugins existed. So again, a lot of interaction with Flocker is done outside of Docker;
in fact, Cluster HQ wrote their own wrapper for Docker so that you could easily
create Flocker volumes before the option existed within Docker.

Weave
This was the only third-party network plugin we looked at. Like Flocker, Weave
existed before Docker launched its plugin functionality.

Weave is slightly different from the other third-party tools that we have looked at. In
this, what is downloaded is actually a bash script rather than a static binary.

This script is used to configure the host and download containers
from the Weaveworks Docker Hub account, which can be found
at https://hub.docker.com/u/weaveworks/.

The script launches and configures the containers with enough permissions to
interact with the host machine. The script is also responsible for sending commands
via the docker exec command to the running containers and also configure
iptables on the host machine.

The commonalities among the plugins
As you can see, and as you have experienced, all of these plugins have scripts and
binaries that are external to Docker itself.

They are also pretty much all written in the same language as Docker:

Plugin Language
Convoy Go
REX-Ray Go
Flocker Python
Weave Go

https://hub.docker.com/u/weaveworks/

Building Your Own Plugin

[148]

Majority of the services are written in Go, the only exception is Flocker, which is
mostly written in Python:

Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it
easy to write programs that get the most out of multicore and networked machines,
while its novel type system enables flexible and modular program construction. Go
compiles quickly to machine code yet has the convenience of garbage collection and
the power of run-time reflection. It's a fast, statically typed, compiled language that
feels like a dynamically typed, interpreted language. https://golang.org/.

Understanding a plugin
So far, we have established that all the plugins that we have installed have actually
nothing to do with Docker directly, so what does a plugin do?

Docker describes a plugin as:

"Docker plugins are out-of-process extensions which add capabilities to the Docker
Engine."

This is exactly what we have seen when installing third-party tools, they all run
alongside Docker as separate daemons.

Let's assume that we are going to be creating a volume plugin called mobyfs for the
remainder of this chapter. The mobyfs plugin is a fictional service which is written in
Go and it runs as a daemon.

Discovery
Typically, a plugin will be installed on the same host as the Docker binary. We
can register our mobyfs plugin with Docker by creating the following files in either
/run/docker/plugins if it's a Unix socket file, or /etc/docker/plugins or /usr/
lib/docker/plugins if it is one of the other two files:

•	 mobyfs.sock

•	 mobyfs.spec

•	 mobyfs.json

Plugins that use a Unix socket file must run on the same hosts as your Docker
installation. Ones which use either a .spec or .json file can run on external hosts
if your daemon supports TCP connections.

https://golang.org/

Chapter 5

[149]

If you were using a .spec file, your file would just contain a single URL to either a
TCP host and port or local socket file. Any of the following three examples are valid:

tcp://192.168.1.1:8080
tcp://localhost:8080
unix:///other.sock

If you wanted to use a .json file, it must look something similar to the following code:

{
 "Name": "mobyfs",
 "Addr": "https:// 192.168.1.1:8080",
 "TLSConfig": {
 "InsecureSkipVerify": false,
 "CAFile": "/usr/shared/docker/certs/example-ca.pem",
 "CertFile": "/usr/shared/docker/certs/example-cert.pem",
 "KeyFile": "/usr/shared/docker/certs/example-key.pem",
 }
}

The TLSConfig section of the JSON file is optional; however, if you are running your
service on host other than your Docker host, I would recommend using HTTPS for
communication between Docker and your plugin.

Startup order
Ideally, your plugin service should be started before Docker. If you are running a
host, which has systemd installed, this can be achieved by using a systemd service
file similar to the following one, which should be called mobyfs.service:

[Unit]
Description= mobyfs
Before=docker.service

[Service]
EnvironmentFile=/etc/mobyfs/mobyfs.env
ExecStart=/usr/bin/mobyfs start -p 8080
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

[Install]
WantedBy=docker.service

This will ensure that your plugin service is always started before the main
Docker service.

Building Your Own Plugin

[150]

If you are hosting your Plugin service on an external host, you may have to restart
Docker for Docker to start communicating with your plugin service.

It is possible to package your plugin inside a container. To get around Docker having
to be started before the plugin service, each activation request will retry several times
over 30 seconds.

This will give the container enough time to start and to run the plugin service run
though any bootstrapping processes before binding itself to a port on the container.

Activation
Now that the plugin service has started, and we need to let Docker know where it
should send requests to if the plugin service is called. According to our example,
service is a volume plugin and we should run something similar to the following
command:

docker run -ti -v volumename:/data --volume-driver=mobyfs russmckendrick/
base bash

This will mount the volumename volume, which we have already configured in our
plugin service to /data in a container, which runs my base container image and
attaches us to a shell.

When the mobyfs volume driver is called, Docker will search through the three
plugin directories that we covered in the Discovery section. By default, Docker will
always look for a socket file, then either a .spec or .json file. The plugin name must
match the filename in front of the file extension. If it is doesn't, the plugin will not be
recognized by Docker.

API calls
Once the plugin has been called, the Docker daemon will make a post request using
RPC-style JSON over HTTP to the plugin service using either the socket file or the
URL defined in the .spec or .json file.

This means that your plugin service must implement an HTTP server and bind itself
to the socket or port that you defined in the Discovery section.

The first request that is made by Docker will be to /Plugin.Activate. Your plugin
service must respond to one of three responses. As mobyfs is a volume plugin, the
response would be as follows:

{
 "Implements": ["VolumeDriver"]
}

Chapter 5

[151]

If it was a network driver, then the response our plugin service should give would be
as follows:

{
 "Implements": ["NetworkDriver"]
}

The final response of plugin service is as shown in the following code:

{
 "Implements": ["authz"]
}

Any other responses will be rejected and the activation will fail. Now that Docker
has activated the plugin, it will continue to make post requests to the plugin service
depending on the response it got when calling /Plugin.Activate.

Writing your plugin service
As mentioned in the previous section, Docker will interact with your plugin service
by making HTTP calls. These calls are documented on the following pages:

•	 Volume Driver Plugins: https://docs.docker.com/engine/extend/
plugins_volume/

•	 Network Driver Plugins: https://docs.docker.com/engine/extend/
plugins_network/

•	 Authorization Plugins: https://docs.docker.com/engine/extend/
plugins_authorization/

Docker also provides an SDK as a collection for Go helpers, these can be found at the
following URL:

https://github.com/docker/go-plugins-helpers

Each helper comes with examples, as well as links to open source projects, which
serve as further examples on how to implement the helper.

These API requests should not be confused with the Docker Remote API, which is
documented at the following URL:

https://docs.docker.com/engine/reference/api/docker_remote_api/

This is the API, which allows your applications to interact with Docker, and not
Docker to interact with your application.

https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_volume/
https://docs.docker.com/engine/extend/plugins_network/
https://docs.docker.com/engine/extend/plugins_network/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugins_authorization/
https://github.com/docker/go-plugins-helpers
https://docs.docker.com/engine/reference/api/docker_remote_api/

Building Your Own Plugin

[152]

Summary
As you can see, we only discussed how Docker will interact with the plugin service
that you have written and didn't cover how you can actually write a plugin service.

The reason for this is that due to the plugin service that we would have had to cover,
we would also need the following features:

•	 To be written in Go
•	 To be able run as a daemon
•	 To contain an HTTP server bound to a Unix socket or TCP port
•	 To be able to accept and answer requests made to it by the Docker daemon
•	 To translate the API requests that Docker is making to a filesystem or

network service

As you can imagine, this has the potential of being an entire book by itself.

Also, building your own plugin is quite an undertaking as you already have to have
the foundations of a service written. While it seems like there are a lot of Docker
plugins out there, searching GitHub for Docker plugins only returns a few dozen
plugins that have been written to use the Docker plugin API.

The other projects returned are all tools or plugins for third-party services (such as
Jenkins, Maven, and so on) that communicate with the Docker Remote API.

In the next chapter, we are going to look at third-party tools to extend your
infrastructure past using Docker Machine.

[153]

Extending Your Infrastructure
In Chapter 2, Introducing First-party Tools, we looked at the tools Docker provides for
extending the functionality of the core Docker engine. In this chapter, we will look
at third-party tools that extend the way you manage your Docker configuration
and build and launch containers. The tools that we are going to be discussing are as
follows:

•	 Puppet: http://puppetlabs.com/
•	 Ansible: http://www.ansible.com/docker/
•	 Vagrant: https://docs.vagrantup.com/v2/docker/
•	 Packer: https://www.packer.io/docs/builders/docker.html
•	 Jenkins: https://jenkins-ci.org/content/jenkins-and-docker/

For each of the tools, we will look at how to install, configure, and use them with
Docker. Before we look at how to use the tools, let's discuss why we would want to
use them.

Why use these tools?
So far, we have been looking at tools that either use the main Docker client or use
the tools that are provided by Docker and other third parties to support the main
Docker client.

For quite a while, the functionality that some of these tools have now did not exist
within a Docker support product. For example, if you wanted to launch a Docker
host, you couldn't just use Docker Machine, instead you had to use something such
as Vagrant to launch a virtual machine (locally or in the cloud) and then install
Docker using a bash script, Puppet, or Ansible.

http://puppetlabs.com/
http://www.ansible.com/docker/
https://docs.vagrantup.com/v2/docker/
https://www.packer.io/docs/builders/docker.html
https://jenkins-ci.org/content/jenkins-and-docker/

Extending Your Infrastructure

[154]

Once you had your Docker host up and running, you could use these tools to
place your containers on hosts as there was no Docker Swarm or Docker Compose
(remember Docker Compose started off as a third-party tool called Fig).

So while Docker has slowly been releasing their own tooling, some of these
third-party options are actually more mature and have quite an active community
behind them.

Let's start by looking at Puppet.

Puppetize all the things
Long before the following Containerize all the things meme regularly started to pop up
in people's presentations:

People were saying the same thing about Puppet. So, what is Puppet and why would
you want to use it on all things?

Puppet Labs, the makers of Puppet, describe Puppet as:

"With Puppet, you define the state of your IT infrastructure, and Puppet
automatically enforces the desired state. Puppet automates every step of the
software delivery process, from provisioning of physical and virtual machines to
orchestration and reporting; from early-stage code development through testing,
production release and updates."

Before tools such as Puppet, working as a sysadmin could sometimes be quite a
tedious process: if you weren't looking into problems, you were writing your own
scripts to bootstrap servers once they had been built, or even worse, you were
copying and pasting commands from an internal wiki to install your software stack
and configure it.

Chapter 6

[155]

Servers would very quickly evolve away from your initial installation and when
they broke, which all servers eventually do, things could get really interesting,
complicated, scary, very bad, or all of them quickly.

This is where Puppet comes in; you define what you need your server to look like
and Puppet does the heavy lifting for you, making sure that your configuration is
not only applied, but also maintained.

For example, if I had several servers behind a load balancer for my PHP-powered
website, it's important that the servers are all configured in the same way, meaning
that they all have the following:

•	 The same NGINX or Apache configuration
•	 The same version of PHP along with the same configuration
•	 The same PHP modules installed, at the same version

To do this before Puppet, I would have to ensure that not only I kept a script that is
used to do the initial installation, but I would also have to carefully manually apply
the same configuration changes across the servers or write a script to synchronize my
changes across the cluster.

I would also have to ensure that anyone who has access to the servers adheres to the
processes and procedures I have put in place in order to maintain consistency across
my load balanced web servers.

If they didn't, I would start to get configuration drift, or worse, still one in every x
requests could be being served from a server that is running a different codebase/
configuration from the other machines.

With Puppet, if I need to run an up-to-date version of PHP 5.6 because my
application doesn't work correctly under PHP 7, then I can use the following
definition to ensure that my requirements are met:

package { 'php' :
 ensure => '5.6',
}

This will make sure that the php package is installed and that the version is and
stays at 5.6, I can then take this single configuration and apply it across all of my
web servers.

So, what's this got to do with Docker?

Extending Your Infrastructure

[156]

Docker and Puppet
Before Docker Machine, Docker Compose, and Docker Swarm, I used Puppet to
bootstrap and manage my Docker hosts and containers. Let's take a look at the
excellent Docker Puppet module written by Gareth Rushgrove.

To start off, we need a virtual machine to work on. In the previous chapters, we
have been using Docker Machine to launch virtual machines that we can run our
containers on.

However, as we want Puppet to manage the installation of Docker and the container
on which we are going to be launching a local virtual machine using Vagrant,
confusingly, we are also going to be looking at Vagrant later in this chapter, so we
will not go into much detail here.

First of all, you need to ensure that you have Vagrant installed, you can get the latest
release from https://www.vagrantup.com/ and you can find a guide to perform the
installation at https://www.vagrantup.com/docs/getting-started/.

Once you have Vagrant installed, you can a launch an Ubuntu 14.04 virtual server
using VirtualBox by running the following command:

mkdir ubuntu && cd ubuntu/

vagrant init ubuntu/trusty64; vagrant up --provider VirtualBox

This will download and launch the virtual server, storing everything in the
ubuntu folder. It will also mount the ubuntu folder as a filesystem share using
the /vagrant path:

https://www.vagrantup.com/docs/getting-started/

Chapter 6

[157]

Now that we have our virtual server up and running, let's connect to it and install
the Puppet agent:

vagrant ssh

sudo su -

curl -fsS https://raw.githubusercontent.com/russmckendrick/puppet-
install/master/ubuntu | bash

Extending Your Infrastructure

[158]

You should see something similar to the following terminal session:

Now that we have the Puppet agent installed, the final step is to install the Docker
module from Puppet Forge:

puppet module install garethr-docker

You may see warnings such as the one in the following terminal session; don't worry
about these, they are to just inform you of the upcoming changes to Puppet:

Chapter 6

[159]

At this point, it's worth point out that we haven't actually installed Docker yet,
so let's do that now by running our first puppet manifest. On your local machine,
create a file called docker.pp in the ubuntu folder. The file should contain the
following contents:

include 'docker'

docker::image { 'russmckendrick/base': }

docker::run { 'helloworld':
 image => 'russmckendrick/base',
 command => '/bin/sh -c "while true; do echo hello world; sleep 1;
done"',
}

When we run this manifest using puppet apply, Puppet will know that we need
Docker installed to be able download the russmckendrick/base image and then
launch the helloworld container.

Back on our virtual machine, let's apply the manifest by running the following
command:

puppet apply /vagrant/docker.pp

You will see a lot of output from the command, as shown in the following screenshot:

Extending Your Infrastructure

[160]

The first thing that happens is that Puppet will compile a catalogue, this is essentially
a list of all the tasks that it needs to complete in order to apply the configuration
that we have defined in the manifest file. Puppet will then execute these tasks. You
should be able to see Puppet:

•	 Add the official Docker APT repository
•	 Perform an apt update to initialize the new repository
•	 Install Docker and its prerequisites
•	 Download the russmckendrick/base image
•	 Launch the helloworld container

Let's check whether this happened by confirming the Docker version, look at the
images that are downloaded, check which containers are running, and finally attach
to the helloworld container:

docker --version

docker images

docker ps

docker attach helloworld

To detach from the container, press Ctrl + C on your keyboard. This will not only
return your prompt to the virtual machine, but also stop the helloworld container:

docker ps -a

You can see the output I got when running the commands in the following terminal
session:

So what happens if we apply the manifest again? Let's see it by running puppet
apply /vagrant/docker.pp for a second time.

Chapter 6

[161]

You should see a lot less output this time, in fact, the only output you should see
other than the warnings is the confirmation that the helloworld container has
started backing up:

Now that we have an idea of how to get something basic up and running, let's
deploy our WordPress installation. First of all, by default, our virtual machine has
quite a limited vagrant configuration, so let's remove the virtual machine and bring
up a more complex configuration.

To remove the virtual machine, type exit in your terminal until you are back on your
local PC; once there, type the following command:

vagrant destroy

Once you hit Enter, you will receive a prompt asking Are you sure you want to destroy
the 'default' VM?, answer yes and the virtual machine will be powered down and
removed.

Next, replace the entire content of the file called Vagrantfile that can be found in
your ubuntu folder:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.network "private_network", ip: "192.168.33.10"
 HOSTNAME = 'docker'
 DOMAIN = 'media-glass.es'
 Vagrant.require_version '>= 1.7.0'

Extending Your Infrastructure

[162]

 config.ssh.insert_key = false

 config.vm.host_name = HOSTNAME + '.' + DOMAIN

 config.vm.provider "VirtualBox" do |v|
 v.memory = 2024
 v.cpus = 2
 end

 config.vm.provider "vmware_fusion" do |v|
 v.vmx["memsize"] = "2024"
 v.vmx["numvcpus"] = "2"
 end

$script = <<SCRIPT
sudo sh -c 'curl -fsS https://raw.githubusercontent.com/
russmckendrick/puppet-install/master/ubuntu | bash'
sudo puppet module install garethr-docker
SCRIPT

config.vm.provision "shell",
 inline: $script
end

You can also find a copy of the file in the book's GitHub repository, which can
be found at https://github.com/russmckendrick/extending-docker/blob/
master/chapter06/puppet-docker/Vagrantfile.

Once you have Vagrantfile in place, run vagrant up again and the virtual
machine will boot.

The differences between this virtual machine and the previous one that we launched
is that it will have an IP address of 192.168.33.10, which is only accessible from
your local PC. The Vagrantfile also runs the commands to install Puppet and the
Docker Puppet module.

While the machine is booting, put a copy of the following Puppet manifest in your
ubuntu folder, call it wordpress.pp:

include 'docker'

docker::image { 'wordpress': }
docker::image { 'mysql': }

docker::run { 'wordpress':

https://github.com/russmckendrick/extending-docker/blob/master/chapter06/puppet-docker/Vagrantfile
https://github.com/russmckendrick/extending-docker/blob/master/chapter06/puppet-docker/Vagrantfile

Chapter 6

[163]

 image => 'wordpress',
 ports => ['80:80'],
 links => ['mysql:mysql'],
}

docker::run { 'mysql':
 image => 'mysql',
 env => ['MYSQL_ROOT_PASSWORD=password', 'FOO2=BAR2'],
}

As you can see, the format itself resembles the Docker Compose file we used to
launch our WordPress installation back in Chapter 2, Introducing First-party Tools.
Once the virtual machine has booted, connect to it, and apply the wordpress.pp
manifest by running the following command:

vagrant ssh

sudo puppet apply /vagrant/wordpress.pp

As before, you will see quite a bit of output:

Once the manifest has been applied, you should be able to point your browser to
the IP address at http:// 192.168.33.10/ or use the following URL at http://
docker.media-glass.es/, this URL resolves to the IP address configured in
Vagrantfile and will only be accessible once the virtual machine is running and
then manifest applied.

http://docker.media-glass.es/
http://docker.media-glass.es/

Extending Your Infrastructure

[164]

From here, you can install WordPress as you have done in other chapters. Once
you have finished, don't forget to destroy your virtual machine using the vagrant
destroy command, as it will quite happily sit in the background using resources.

So, there you have it, a very basic practical introduction to running Puppet and
Docker together.

A more advanced Puppet example
So far, we have been running Puppet on a single virtual machine, this isn't actually
where its strengths lie.

Where Puppet comes into its own is when you deploy a Puppet Master server and
have the Puppet Agents on your hosts talk to the Master. Here, you are able to define
exactly how you want your hosts to look. For example, the following diagram shows
a single Puppet Master server controlling four Docker nodes:

In this example, we could have a Puppet manifest on the Puppet Master for each of
the hosts, along with a manifest for configuration this is common across all four of
the nodes.

In the example, I have Weave installed on each of the nodes, check the Puppet Forge
at https://forge.puppetlabs.com/, there is a module that allows you to manage
Weave called tayzlor/weave, this module alongside garethr/docker will allow
you to perform the following tasks:

•	 Install Docker on each node
•	 Install Weave on each node
•	 Create a Weave network across all four nodes

https://forge.puppetlabs.com/

Chapter 6

[165]

•	 Manage images on each node
•	 Launch containers on each node and configure them to use the

Weave network

By default, the Puppet agent on each of the nodes will call back to the Puppet master
server every 15 minutes; when it does this, it will work through the manifests that
apply to the node. If there are any changes, these will be applied during the Puppet
Agent run; if there are no changes to the manifests, then no action will be taken.

Add to this that the Puppet configuration, including the manifests, lends itself really
well in order to being managed by a source control and you can create some really
useful workflows.

The only downside of this configuration is that it does not replace Docker Swarm, as
all of the logic as to where the containers are launched is defined manually within
each of manifest files. That's not to say that you can't launch a Swarm cluster using
Puppet, as you can, with a little more work.

We are not going to work through the example as we still have four more tools
to work through in this chapter, there are plenty of resources available on the
Puppetlabs website:

•	 Learning VM: https://puppetlabs.com/download-learning-vm
•	 Puppet Open Source Docs: https://docs.puppetlabs.com/puppet/

You can find more details on the two Puppet modules that I have mentioned:

•	 Docker module: https://forge.puppetlabs.com/garethr/docker/
•	 Weave module: https://forge.puppetlabs.com/tayzlor/weave/

A final note about Puppet
In the next part of this chapter, we are going to be looking at Ansible, which most
people, I suspect, think that it does exactly the same job as Puppet. While its true
that there is a lot of crossover between the two, I see Ansible's strengths as an
orchestration tool and Puppet excels at being a configuration management tool.

As Puppet is a really great configuration management tool, there is the temptation to
start bundling a Puppet Agent inside your containers, using it as part of your image
build process, or even for real-time configuration, as the container launches.

Try to avoid this, as it may add unnecessary bloat to your containers as well as
introduce additional processes. Remember in an ideal world, your containers
should run a single process and be ready to work as soon as they are started.

https://puppetlabs.com/download-learning-vm
https://forge.puppetlabs.com/garethr/docker/
https://forge.puppetlabs.com/tayzlor/weave/

Extending Your Infrastructure

[166]

Orchestration with Ansible
I suspect a lot of people will be expecting an Ansible versus Puppet opening to this
section of the chapter. In fact, as mentioned at the end of the previous section, while
the two tools have a lot of crossover, their strengths lie in doing two different jobs.

They also work in completely different ways. Rather than going into the details now,
let's jump right in and install Ansible and then launch our WordPress containers
using an Ansible playbook.

Preparation
Note that if, for any reason, you are not able to work through this
section of the chapter, I have recorded a screencast to show you what
happens when you launch the Ansible playbook, which can be found
at https://asciinema.org/a/39537.

Before launching our containers, we need to do a few things. The first thing is to
install Ansible.

If you are running OS X, I would recommend installing Ansible using Homebrew.
Homebrew is available at http://brew.sh/ and can be installed with the following
single command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Once you have followed the on-screen prompts, you should be in a position to install
Ansible using the following command:

brew install ansible

Now that Ansible is installed, we need to install a certain version of the DigitalOcean
Python library. To do this, we need to use the pip command. If you don't have the
pip command installed, then you need to run:

sudo easy_install pip

Now that pip is installed, run the following command to install the correct version of
the Python library we need:

sudo pip install dopy==0.3.5

https://asciinema.org/a/39537
http://brew.sh/

Chapter 6

[167]

The final thing you will need is the name of your DigitalOcean key. The Ansible
playbook we are going to run will create one for you and upload it if you don't
have one already configured, so if that's the case, you can skip this part.

If you do happen to have one already associated with your DigitalOcean account,
then you will name the name of it to launch the two instances and then connect
to them.

To find this out, log in to the DigitalOcean control panel at https://cloud.
digitalocean.com/ and click on the cog icon on the top right-hand side of the
screen and from the menu that pops up, click on the Settings button. Once the
settings page loads, click on the Security button, you should then see a list of SSH
keys, make a note of the name you want to use:

https://cloud.digitalocean.com/
https://cloud.digitalocean.com/

Extending Your Infrastructure

[168]

In the preceding example, my SSH key is creatively called Russ Home.

Time to get a copy of the Ansible playbook we are going to be running. The code
for this can be found in the chapter06/docker-ansible folder on the GitHub
repository for this book, the complete URL is as follows:

https://github.com/russmckendrick/extending-docker/tree/master/
chapter06/docker-ansible

Once you have the playbook downloaded, open your terminal and go to the
docker-ansible folder. Once in there, run the following command, replacing the
DigitalOcean API with your own:

echo 'do_api_token:
"sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0"' >
group_vars/do.yml

echo 'ssh_key_name: "Your Key Name"' >> group_vars/do.yml

We are now in a position where we can run the playbook, but before we do,
remember that this playbook will connect to your DigitalOcean account and launch
two instances.

To launch the playbook, run the following command and wait:

ansible-playbook -i hosts site.yml

It will take several minutes to run through the entire process, but what you should
have the end of it is two Ubuntu 14.04 Droplets launched in your DigitalOcean
account. Each droplet will have the latest version of both Docker and Weave
installed, Weave will be configured so that the two hosts can talk to each other.

One droplet will be running our WordPress container and the second will be running
our MySQL container, both containers will be talking to each using the cross-host
Weave network.

https://github.com/russmckendrick/extending-docker/tree/master/chapter06/docker-ansible
https://github.com/russmckendrick/extending-docker/tree/master/chapter06/docker-ansible

Chapter 6

[169]

Once the task completes, you will should see something similar to the following
screenshot:

As you can see, in my case, I can go to http://46.101.4.247 in my browser to start
the WordPress installation.

If, for any reason, parts of the installation fail, for example, sometimes droplets can
take a little longer to start and won't be available for Ansible to connect to when
it tries to SSH to them, then don't worry, you will be able to rerun the Ansible
playbook using the following command:

ansible-playbook -i hosts site.yml

Ansible will also work through the entire playbook again, this time, skipping
anything that has already been created or actioned.

If you are not working through this example, or have problems, I have recorded an
entire run-through of launching the playbook and then rerunning it, you can view
this at https://asciinema.org/a/39537.

https://asciinema.org/a/39537

Extending Your Infrastructure

[170]

The playbook
There are quite a few parts of the playbook, as you can see from the following list of
folders and files:

├── ansible.cfg
├── group_vars
│ ├── do.yml
│ └── environment.yml
├── hosts
├── roles
│ ├── docker-install
│ │ └── tasks
│ │ └── main.yml
│ ├── docker-mysql
│ │ └── tasks
│ │ └── main.yml
│ ├── docker-wordpress
│ │ └── tasks
│ │ └── main.yml
│ ├── droplet
│ │ ├── tasks
│ │ │ └── main.yml
│ │ └── templates
│ │ └── dyn.yml.j2
│ ├── weave-connect
│ │ └── tasks
│ │ └── main.yml
│ └── weave-install
│ └── tasks
│ └── main.yml
└── site.yml

The main file we called when launching the playbook was the site.yml file, this
defines the order which tasks in defined in the roles folder are executed. Let's take a
look at the content of this file and the roles that are being called.

Section one
The file itself is split into four sections, the following first section deals with
connecting to DigitalOcean's API from your local machine and launching the
two Droplets:

- name: "Provision two droplets in DigitalOcean"
 hosts: localhost

Chapter 6

[171]

 connection: local
 gather_facts: True
 vars_files:
 - group_vars/environment.yml
 - group_vars/do.yml
 roles:
 - droplet

It loads the both the main environment.yml variables file, this is where we define
things such as which region the droplet is being launched in, name of the droplets,
size to use, and also which image should be launched.

It also loads the do.yml file which contains your DigitalOcean API key and SSH
keyname. If you look into the role task file in the droplet folder, you will see that
along with launching the two droplets, it also creates the following three host groups:

•	 dockerhosts: This group contains both droplets
•	 dockerhost01: This contains our first droplet
•	 dockerhost02: This group contains the second droplet

The final action that is taken at this stage is that a file is written to the group_vars
folder, which contains the public IP addresses of our two droplets.

Section Two
The next section of the site.yml file deals with the installation of some basic
prerequisites, Docker, and Weave on the droplets within the dockerhosts group:

- name: "Install Docker & Weave on our two DigitalOcean hosts"
 hosts: dockerhosts
 remote_user: root
 gather_facts: False
 vars_files:
 - group_vars/environment.yml
 roles:
 - docker-install
 - weave-install

The first role deals with the installation of Docker, let's take a look at what's going
within the task file for this role.

Extending Your Infrastructure

[172]

First of all, we will install curl using the apt package manager as we will need
this later:

- name: install curl
 apt: pkg=curl update_cache=yes

Once curl has been installed, we will start configuring the official Docker APT
repository by first adding the keys for the repo:

- name: add docker apt keys
 apt_key: keyserver=p80.pool.sks-keyservers.net id=58118E89F3A912897C
070ADBF76221572C52609D

Then, we'll add the actual repository:

- name: update apt
 apt_repository: repo='deb https://apt.dockerproject.org/repo ubuntu-
trusty main' state=present

Once the repository has been added, we can do the actual installation of Docker,
making sure that we update the cached repository list before the package is installed:

- name: install Docker
 apt: pkg=docker-engine update_cache=yes

Now that Docker is installed, we need to ensure that the Docker daemon has started:

- name: start Docker
 service: name=docker state=started

Now we need to install the tools that Ansible will use to interact with the Docker
daemon on our hosts, like Ansible, this is a Python program. To make sure that we
can install it, we need to ensure that pip, the Python package manager, is installed:

- name: install pip
 apt:
 pkg: "{{ item }}"
 state: installed
 with_items:
 - python-dev
 - python-pip

Now that we know that pip is installed, we can install the docker-py package:

- name: install docker-py
 pip:
 name: docker-py

Chapter 6

[173]

This package is a Docker client written in Python and supplied by Docker itself. More
details on the client can be found at https://github.com/docker/docker-py.

This ends the first role that is called in the second section of the site.yml file.
Now that Docker is installed, it's time to install Weave, this is handled by the
weave-install task.

First of all, we download the weave binary from the URL defined in the
environment.yml file to the filesystem path that is also defined in the
environment.yml file:

- name: download and install weave binary
 get_url: url={{ weave_url }} dest={{ weave_bin }}

Once we have the binary downloaded, we need to see the correct read, write, and
execute permissions on the file so that it can be executed:

- name: setup permissions on weave binary
 file: path={{ weave_bin }} mode="u+rx,g+rx,o+rwx"

Finally, we need to start weave and also pass it a password to enable encryption, the
password is also defined in the environment.yml file:

- name: download weave containers and launch with password
 command: weave launch --password {{ weave_password}}
 ignore_errors: true

As you can see, at the end of this part of the task, we are telling Ansible to ignore
any errors generated here. This is because, if the playbook was to be launched for
a second time and weave was already running, it would complain saying that the
weave router was already active. This will stop playbook from progressing any
further, as Ansible interprets this message as a critical error.

Due to this, we have to tell Ansible to ignore what it thinks is a critical error here for
the playbook to progress pass this stage.

Section three
The next section of the site.yml file performs one last piece of configuration before
launching the containers that go to make up our WordPress installation. All of these
roles are run on our first droplet:

- name: "Connect the two Weave hosts and start MySQL container"
 hosts: dockerhost01
 remote_user: root
 gather_facts: False

https://github.com/docker/docker-py

Extending Your Infrastructure

[174]

 vars_files:
 - group_vars/environment.yml
 roles:
 - weave-connect
 - docker-mysql

The first role, which is called, connects the two weave networks on the two hosts
together:

- include_vars: group_vars/dyn.yml
- name: download weave containers and launch with password
 command: weave connect {{ docker_host_02 }}

As you can see, the variable file that contains the IP address of our two droplets is
loaded for the first time here and is used to get the IP address of the second droplet;
this file, called dyn.yml, was created by the role that originally launched the two
droplets.

Once we have the IP address of the second droplet, the weave connect command
is executed and the configuration of the weave network is completed. We can now
launch the containers.

The first container that we need to launch is the database container:

- name: start mysql container
 docker:
 name: my-wordpress-database
 image: mysql
 state: started
 net: weave
 dns: ["172.17.0.1"]
 hostname: mysql.weave.local
 env:
 MYSQL_ROOT_PASSWORD: password
 volumes:
 - "database:/var/lib/mysql/"

As you can see, this is quite a similar syntax to Docker Compose files; however, there
may be slight differences, so double-check the Docker pages on the Ansible core
module documentation site to ensure that you are using the right syntax.

Once the my-wordpress-database container has been started, it means that all the
tasks we need to execute on dockerhost01 are completed.

Chapter 6

[175]

Section four
The final section of the site.yml file connects to our second droplet and then
launches the WordPress container:

- name: "Start the Wordpress container"
 hosts: dockerhost02
 remote_user: root
 gather_facts: False
 roles:
 - docker-wordpress

All this role does is launch the WordPress container, again the file has close
resemblance to the Docker Compose file:

- include_vars: group_vars/dyn.yml
- name: start wordpress container
 docker:
 name: my-wordpress-app
 image: wordpress
 state: started
 net: weave
 dns: ["172.17.0.1"]
 hostname: wordpress.weave.local
 ports:
 - "80:80"
 env:
 WORDPRESS_DB_HOST: mysql.weave.local:3306
 WORDPRESS_DB_PASSWORD: password
 volumes:
 - "uploads:/var/www/html/wp-content/uploads/"
- debug: msg="You should be able to see a WordPress installation
screen by going to http://{{ docker_host_02 }}"

The final debug line prints the message at the end of the playbook run that contains
the IP address of the second droplet.

Ansible and Puppet
Like Puppet, Ansible, when used with a playbook like the one we have discussed,
can be used as a replacement for Docker Machine and Docker Compose.

However, one thing you may have noticed is that unlike Puppet, we did not install
an agent in the target machine.

Extending Your Infrastructure

[176]

When you run an Ansible playbook, it is compiled locally, and then the compiled
script is pushed to your target servers using SSH and then executed.

This is one of the reasons why, during our playbook run, we have to install the
Docker Python library on our two droplets, without which the compiled playbook
would not have been able to launch the two containers.

Another important difference between the two tools is that Ansible executes the tasks
in the order you define in the playbook.

The Puppet example we worked through wasn't complex enough to really
demonstrate why this can be an issue when it comes to running Puppet manifests,
but Puppet works using an eventual consistency concept, meaning that it may take a
few manifest runs for your configuration to be applied.

It is possible to add requirements to Puppet manifests, for example, requiring XYZ to
be executed after ABC has run. However, this can start to cause performance issues
if your manifest is quite large; also, you could find yourself in a position where the
manifest stops working altogether as Puppet is not able to successfully execute the
manifest in the order you are defining.

This is why, in my opinion, Ansible is a lot better when it comes to orchestration
than Puppet.

It's situations like this where it really matters that the tasks you have defined are
executed in the exact order you need them to run in rather than leaving it up to the
tool you are using to figure out the most efficient way of applying the tasks.

To me, this is the reason you should not approach any task with an attitude of "I
need to choose one tool and only use that for everything," you should always choose
the tool that works for the job you want to do.

This can probably be said for a lot of the tools we are looking at in this chapter;
rather than assessing a tool in a "this versus that" manner, we should be asking "this
or that" or even "this and that" and not limit ourselves.

Vagrant (again)
As we have already discovered earlier in this chapter, Vagrant can be used as a
virtual machine manager. We have already used it to bring up a local Ubuntu 14.04
instance using VirtualBox on our local machine; however, if we wanted to, we could
have done this using VMware Fusion, Amazon Web Services, DigitalOcean, or even
OpenStack.

Chapter 6

[177]

Like Puppet and Ansible, when Docker was first released, there were a lot of
articles published around Vagrant versus Docker. In fact, when the question was
asked on Stack Overflow, the authors of both Vagrant and Docker weighed in on
the question. You can read the full discussion at http://stackoverflow.com/
questions/16647069/should-i-use-vagrant-or-docker-for-creating-an-
isolated-environment

So, in what ways can Vagrant support Docker? There are two main ones we are
going to be looking at. The first is the provisioner.

Provisioning using Vagrant
When we worked out way through Puppet, we used Vagrant to launch Ubuntu
14.04 locally using VirtualBox; as part of that, we used the Shell provisioner to
install Puppet and deploy the Docker Puppet module. Vagrant has the following
provisioners available:

•	 File: This copies files in place onto the Vagrant host
•	 Shell: This compiles/copies bash scripts to the host and executes them
•	 Ansible: This runs an Ansible playbook either on or against the host
•	 Chef and Puppet: There are around dozen different ways you can use Chef

or Puppet to provision your Vagrant host
•	 Docker: This is what we will be using to provision our containers on the

Vagrant host

The Vagrantfile looks really close to the one we used to deploy our Puppet
WordPress example:

-*- mode: ruby -*-
vi: set ft=ruby :

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "ubuntu/trusty64"
 config.vm.network "private_network", ip: "192.168.33.10"
 HOSTNAME = 'docker'
 DOMAIN = 'media-glass.es'
 Vagrant.require_version '>= 1.7.0'
 config.ssh.insert_key = false

http://stackoverflow.com/questions/16647069/should-i-use-vagrant-or-docker-for-creating-an-isolated-environment
http://stackoverflow.com/questions/16647069/should-i-use-vagrant-or-docker-for-creating-an-isolated-environment
http://stackoverflow.com/questions/16647069/should-i-use-vagrant-or-docker-for-creating-an-isolated-environment

Extending Your Infrastructure

[178]

 config.vm.host_name = HOSTNAME + '.' + DOMAIN

 config.vm.provider "VirtualBox" do |v|
 v.memory = 2024
 v.cpus = 2
 end

 config.vm.provider "vmware_fusion" do |v|
 v.vmx["memsize"] = "2024"
 v.vmx["numvcpus"] = "2"
 end

 config.vm.provision "docker" do |d|
 d.run "mysql",
 image: "mysql",
 args: "-e 'MYSQL_ROOT_PASSWORD=password'"
 d.run "wordpress",
 image: "wordpress",
 args: "-p 80:80 --link mysql:mysql -e WORDPRESS_DB_
PASSWORD=password"
 end

end

As you can see, this will download (if you don't have it already) and launch an
Ubuntu 14.04 server and then provision two containers, one WordPress and one
MySQL.

To launch the host, run the following command:

vagrant up --provider VirtualBox

Chapter 6

[179]

You should see something similar to the following terminal output:

You can also run the following command to open your browser and get to your
WordPress installation screen (remember: we have launched the Vagrant host with a
fixed local IP address, which means the following URL should resolve to your local
installation):

open http://docker.media-glass.es/

You may have already noticed one thing that happened when we launched the
Vagrant host: we didn't have to provide Vagrant any commands to install Docker;
it took care of that for us.

Also, we had to launch our MySQL container before we launched our WordPress
one. This is because we have linked our WordPress container to the MySQL one. If
we tried to launch the WordPress container first, we would have received an error
telling us that we are trying to reach a link that does not exist.

Extending Your Infrastructure

[180]

As you can see from the following terminal output, you can connect to your Vagrant
host using the vagrant ssh command:

The other thing you may notice is that the Docker version installed isn't the most
up-to-date one; this is because Vagrant installs the version that is available in the
operating system's default repository rather than the latest version provided by
Docker in their repository.

The Vagrant Docker provider
As I mentioned, there are two ways in which you can use Docker with Vagrant: the
one we just looked at is a provisioner, and the second way is to use a provider.

So, what's a provider? We have already used a provider twice in this chapter when
we launched our Docker hosts. A provider is a virtual machine process, manager, or
API that Vagrant can make a connection to and then launch a virtual machine from.

Vagrant has the following providers built in:

•	 VirtualBox
•	 Docker
•	 Hyper-V

Chapter 6

[181]

There is also a commercial plugin provided by the authors, which adds the following
provider:

•	 VMware Fusion and Workstation

Finally, Vagrant supports custom providers, such as ones for Amazon Web Services,
libvirt, and even LXC, for example. A full list of custom providers and other Vagrant
plugins can be found at http://vagrant-lists.github.io/.

Obviously, if you are using OS X, then you won't be able to use the Docker provider
natively; however, Vagrant takes care of this you. Let's look at launching an NGINX
container using the Docker provider rather than a provisioner.

The Vagrantfile looks a little different to the ones we have been using:

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.define "boot2docker", autostart: false do |dockerhost|
 dockerhost.vm.box = "russmckendrick/boot2docker"
 dockerhost.nfs.functional = false
 dockerhost.vm.network :forwarded_port, guest: 80, host: 9999
 dockerhost.ssh.shell = "sh"
 dockerhost.ssh.username = "docker"
 dockerhost.ssh.password = "tcuser"
 dockerhost.ssh.insert_key = false
 end
 config.vm.define "nginx", primary: true do |v|
 v.vm.provider "docker" do |d|
 d.vagrant_vagrantfile = "./Vagrantfile"
 d.vagrant_machine = "boot2docker"
 d.image = "russmckendrick/nginx"
 d.name = "nginx"
 d.ports = ["80:80"]
 end
 end
end

http://vagrant-lists.github.io/

Extending Your Infrastructure

[182]

As you can see, it is split into two parts: one for a Boot2Docker virtual machine and
the second part for the container itself. If you were to run vagrant up, you would
see something like the following terminal output:

As you can see, as I am using OS X, Vagrant knows that I can run Docker natively,
so it takes the first section of Vagrantfile and launches a Boot2Docker instance.
Boot2Docker is the tiny Linux distribution that powers Docker Machine's default
driver.

Once it has downloaded the Boot2Docker Vagrant Box, it launches the virtual
machine and maps port 22 on the virtual machine to port 2222 on our local PC so
that we can get SSH access. Also, as defined in Vagrantfile, port 80 from the virtual
machine is mapped to port 9999 on the local PC.

Chapter 6

[183]

Its worth noting that if I were running this on a Linux PC that had Docker installed,
then this step would have been skipped and Vagrant would have made use of my
local Docker installation.

Now that Boot2Docker has been started, the second part of the Vagrantfile can
be run. If, like in my case, Vagrant has downloaded and launched the Boot2Docker
Vagrant Box, then you will be asked for a password; this is because we have not
exchanged keys with the Boot2Docker virtual machine. The password is tcuser.

Once you have entered the password, Vagrant will download the NGINX image
from https://hub.docker.com/r/russmckendrick/nginx/ and launch the
container, opening port 80.

Once the container has been launched, you should be able to go to the NGINX
welcome page at http://localhost:9999/.

If you like, you can SSH into the Boot2Docker virtual machine, as Vagrant is
primarily managing the container and not the Boot2Docker virtual machine.
You will have to use the following command:

ssh docker@localhost -p2222

Again, because we have not exchanged keys, you will need to enter the password,
tcuser. You should then see this:

https://hub.docker.com/r/russmckendrick/nginx/

Extending Your Infrastructure

[184]

Once SSHed in, you will be able to run Docker commands locally. Finally, to
terminate both the container and virtual machine, run the following command
from within the same folder as your Vagrantfile and you will see something
as following:

vagrant destroy

This will prompt you, asking whether you are sure you would like to remove the
container and then the virtual machine; answer yes to both questions.

You must have noticed that we didn't cover our WordPress example while walking
through the Docker provider. The reason for this is that the Docker provider
functionality, in my opinion, is pretty much redundant now, especially as it has quite a
few limitations that can all be easily overcome by using the provisioner or other tools.

One such limitation is that it can only use port mapping; we cannot assign an IP
address to the virtual machine. If we did, it would have silently failed and reverted
to port mapping from the virtual machine to the host PC.

Also, the functionality offered when launching containers doesn't feel as up to date
and feature aligned to the latest version of Docker as the other tools we have been
looking at so far in the chapter.

Because of this, I would recommend that you look at using the provisioner rather
than the provider if you are looking at utilizing Vagrant.

Chapter 6

[185]

Packaging images
So far, we have been quite happily downloading prebuilt images from the Docker
Hub to test with. Next up, we are going to be looking at creating our own images.
Before we dive into creating images using third-party tools, we should have a quick
look at how to go about building them in Docker.

An application
Before we start building our own images, we should really have an application
to "bake" into it. I suspect you are probably getting bored of doing the same
WordPress installation over and over again. We are going to be looking at
something completely different.

So, we are going to build an image that has Moby Counter installed. Moby counter is
an application written by Kai Davenport, who describes it as follows:

"A small app to demonstrate keeping state inside a docker-compose application."

The application runs in a browser and will add a Docker logo to the page wherever
you click, the idea being that it uses a Redis or Postgres backend to store the number
of Docker logos and their positions, which demonstrates how data can persist on
volumes such as the ones we looked at in Chapter 3, Volume Plugins. You can find the
GitHub repository for the application at https://github.com/binocarlos/moby-
counter/.

The Docker way
Now that we know a little about the application we are going to be launching,
let's take a look at how the image would be built using Docker itself.

The code for this part of the chapter is available from the GitHub repository that
accompanies this book; you can find it at https://github.com/russmckendrick/
extending-docker/tree/master/chapter06/images/docker.

The Dockerfile for the basic build is quite simple:

FROM russmckendrick/nodejs
ADD . /srv/app
WORKDIR /srv/app
RUN npm install
EXPOSE 80
ENTRYPOINT ["node", "index.js"]

https://github.com/binocarlos/moby-counter/
https://github.com/binocarlos/moby-counter/

Extending Your Infrastructure

[186]

When we run the build, it will download the russmckendrick/nodejs image from
the Docker Hub; this, as you may have guessed, has NodeJS installed.

Once that image has been downloaded, Docker will launch the container and add
the content of the current working directory, which contains the Moby Counter code.
It will then change the working directory to where the the code was uploaded to
/srv/app.

It will then install the prerequisites required to run the application by issuing the npm
install command; as we have set the working directory, all of the commands will
be run from that location, meaning that the package.json file will be used.

Accompanying the Dockerfile is a Docker Compose file, this kicks off the build of
the Moby Counter image, downloads the official Redis image, and then launches the
two containers, linking them together.

Before we do that, we need to bring up a machine to run the build on; to do this, run
the following command to launch a local VirtualBox-based Docker host:

docker-machine create --driver "VirtualBox" chapter06

Now that the Docker host has been launched, run the following to configure your
local Docker client to talk directly to it:

eval $(docker-machine env chapter06)

Now that you have the host ready and client configured, run the following to build
the image and launch the application:

docker-compose up -d

Chapter 6

[187]

When you run the command, you should see something like the following output in
your terminal:

Now that the application has been launched, you should be able to open your
browser by running this:

open http://$(docker-machine ip chapter06)/

Extending Your Infrastructure

[188]

You will see a page that says Click to add logos, if you were to click around the page,
Docker logos would start appearing. If you were to click on refresh, the logos you
added would remain as the number of the logos, their position being stored in the
Redis database.

To stop the containers and remove them, run the following commands:

docker-compose stop

docker-compose rm

Before we look into the pros and cons of using the Docker approach to building
container images, let's look at a third-party alternative.

Building with Packer
Packer is written by Mitchell Hashimoto from Hashicorp, the same author as Vagrant's.
Because of this, there are quite a lot of similarities in the terms we will be using.

The Packer website has probably the best description of the tool:

"Packer is an open source tool for creating identical machine images for multiple
platforms from a single source configuration. Packer is lightweight, runs on every
major operating system, and is highly performant, creating machine images for
multiple platforms in parallel. Packer does not replace configuration management
like Chef or Puppet. In fact, when building images, Packer is able to use tools like
Chef or Puppet to install software onto the image."

Chapter 6

[189]

I have been using Packer since its first release to build images for both Vagrant and
public clouds.

You can download Packer from https://www.packer.io/downloads.html or, if
you installed Homebrew, you can run the following command:

brew install packer

Now that you have Packer installed, let's take a look at a configuration file. Packer
configuration files are all defined in JSON.

JavaScript Object Notation (JSON) is a lightweight data-interchange
format. It is easy for humans to read and write and for machines to
parse and generate.

The following file does almost exactly what our Dockerfile did:

{
 "builders":[{
 "type": "docker",
 "image": "russmckendrick/nodejs",
 "export_path": "mobycounter.tar"
 }],
 "provisioners":[
 {
 "type": "file",
 "source": "app",
 "destination": "/srv"
 },
 {
 "type": "file",
 "source": "npmrc",
 "destination": "/etc/npmrc"
 },
 {
 "type": "shell",
 "inline": [
 "cd /srv/app",
 "npm install"
]
 }
]
}

https://www.packer.io/downloads.html

Extending Your Infrastructure

[190]

Again, all of the files required to build the image, along with the Docker
Compose file to run it, are in the GitHub repository at https://github.com/
russmckendrick/extending-docker/tree/master/chapter06/images/packer.

Rather than using the Docker Compose file to build the image, we are going to have
to run packer and then import the image file. To start the build, run the following
command:

packer build docker.json

You should see the following in your terminal:

https://github.com/russmckendrick/extending-docker/tree/master/chapter06/images/packer
https://github.com/russmckendrick/extending-docker/tree/master/chapter06/images/packer

Chapter 6

[191]

Once Packer has built the image, it will save a copy to the folder you initiated the
Packer build command from; in our case, the image file is called mobycounter.tar.

To import the image so that we can use it, run the following command:

docker import mobycounter.tar mobycounter

This will import the image and name it mobycounter; you can check whether the
image is available by running this:

docker images

You should see something like this:

Once you have confirmed the image has been imported and is called mobycounter,
you can launch a container by running this:

docker-compose up -d

Again, you will be able to open your browser and start clicking around to place logos
by running this:

open http://$(docker-machine ip chapter06)/

While there may not seem to be much difference, let's take a look at what's going on
under the hood.

Packer versus Docker Build
Before we go into detail about the difference between the two methods of building
images, let's try running Packer again.

This time though, let's to try and reduce the image size: rather than using the
russmckendrick/nodejs image, which has nodejs preinstalled, let's use the
base image that this was built on, russmckendrick/base.

Extending Your Infrastructure

[192]

This image just has bash installed; install NodeJS and the application using Packer:

{
 "builders":[{
 "type": "docker",
 "image": "russmckendrick/base",
 "export_path": "mobycounter-small.tar"
 }],
 "provisioners":[
 {
 "type": "file",
 "source": "app",
 "destination": "/srv"
 },
 {
 "type": "file",
 "source": "npmrc",
 "destination": "/etc/npmrc"
 },
 {
 "type": "shell",
 "inline": [
 "apk update",
 "apk add --update nodejs",
 "npm -g install npm",
 "cd /srv/app",
 "npm install",
 "rm -rf /var/cache/apk/**/",
 "npm cache clean"
]
 }
]
}

As you can see, we have added a few more commands to the shell provisioner; these
use Alpine Linux's package manager to perform an update, install nodejs, configure
the application, and finally, clean both the apk and npm caches.

If you like, you can build the image using the following command:

packer build docker-small.json

Chapter 6

[193]

This will leave us with two image files. I also exported a copy of the container
we built using the Dockerfile using the following command while the container
was running:

docker export docker_web_1 > docker_web.tar

I now have three image files, and all three are running the same application, with the
same software stack installed, using as close to the same commands as possible. As
you can see from the following list of file sizes, there is a difference in the image size:

•	 Dockerfile (using russmckendrick/nodejs) = 52 MB
•	 Packer (using russmckendrick/nodejs) = 47 MB
•	 Packer (installing the full stack using packer) = 40 MB

12 MB may not seem like a lot, but when you are dealing with an image that is only
52 MB big, that's quite a decent saving.

So why is there a difference? Let's start by discussing the way in which Docker
images work.

They are essentially made up of layers of changes on top of a base. When we built
our first image using the Dockerfile, you may have noticed that each line of the
Dockerfile generated a different step in the build process.

Each step is actually Docker starting a new filesystem layer to store the changes
for that step of the build. So, for example, when our Dockerfile ran, we had six
filesystem layers:

FROM russmckendrick/nodejs
ADD . /srv/app
WORKDIR /srv/app
RUN npm install
EXPOSE 80
ENTRYPOINT ["node", "index.js"]

The first layer contains the base operating system along with the layers on which
NodeJS is installed, and the second layer contains the files for the application itself.

The third layer just contains the metadata for setting the workdir variable; next up,
we have the layer that contains the NodeJS dependencies for the application. The
fifth and sixth layers just contain the metadata needed to configure which ports are
exposed and what the "entry point" is.

As each of these layers is effectively a separate archive within the image file, we also
have the additional overhead of these archives within our image file.

Extending Your Infrastructure

[194]

A better example of how the layers work is to look at some of the most popular
images from the Docker Hub in the ImageLayers website, which can be found at
https://imagelayers.io/.

This site is a tool provided by Century Link Labs (https://labs.ctl.io/) to
visualize Docker images that have been built from a Dockerfile.

As you can see from the following screenshot, some of the official images are quite
complex and also quite large:

https://imagelayers.io/

Chapter 6

[195]

You can view the previous page at the following URL:

https://imagelayers.io/?images=java:latest,golang:latest,node:latest,
python:latest,php:latest,ruby:latest.

Even while the official images should be getting smaller thanks to Docker hiring
the creator of Alpine Linux and moving the official images over to the smaller base
operating system (check out the following hacker news post for more information
https://news.ycombinator.com/item?id=11000827), it does not change the
amount of layers required for each image. It's also worth pointing out that each
image can have a maximum of 127 layers.

So what does Packer do differently? Rather than creating a separate filesystem layer
for each step, it produces only two: the first layer is the base image you define, and
the second one is everything else—this is where our space savings come in.

The other advantage of using Packer over Dockfiles is that you can reuse your
scripts. Imagine you were doing your local development work using Docker but
when you launched into production, you for one reason or another had to launch
on one of the containerized virtual machines. Using Packer, you can do exactly that
knowing that you could actually use the same set of build scripts to bootstrap your
virtual machines as you did for your development containers.

As I have already mentioned, I have been using Packer for a while and it helps to no
end to have a single tool that you can use to target different platforms with the same
set of build scripts. The consistency this approach brings is well worth the initial
effort of learning a tool such as Packer as you will end up saving a lot of time in the
long run; it also helps with eliminating the whole "worked in development" meme
we discussed at the start of Chapter 1, Introduction to Extending Docker.

There are some downsides to using this approach, which may put some people off.

The biggest one in my opinion is that while you are able to push the final image
automatically to the Docker Hub, you will not be able to add it as an automated build.

This means that while it may be available for people to download, it might not be
considered trusted as people cannot see exactly what has been added to the image.

Next up is the lack of support for metadata—functions that configure runtime
options such as exposing ports and the command executed by default when the
container launches are not currently supported.

While this can be seen as a drawback, it is easily overcome by defining what you
would have defined in your Dockerfile in a Docker Compose file or passing the
information directly using the docker run command.

https://imagelayers.io/?images=java:latest,golang:latest,node:latest,python:latest,php:latest,ruby:latest
https://imagelayers.io/?images=java:latest,golang:latest,node:latest,python:latest,php:latest,ruby:latest
https://news.ycombinator.com/item?id=11000827

Extending Your Infrastructure

[196]

Image summary
So, to summarize, if you need to build not only container images but also target
different platforms, then Packer is exactly the tool you are after. If it's just container
images you need to build, then you may be better off sticking with the Dockerfile
build.

Some of the other tools we have looked at in this chapter, such as Ansible and
Puppet, also support building images by issuing a docker build command against
a Dockerfile, so there are plenty of ways to build that into your workflow, which
leads us to the next tool we are going be looking at: Jenkins.

Before we move on, let's quickly just double-check that you are not running any
Docker hosts. To do this, run the following commands to check for any Docker hosts
and then remove them:

docker-machine ls

docker-machine rm <name-of-host>

Don't forget to only remove hosts that you are using for following along with this
book; don't remove any you are using for you own projects!

Serving up Docker with Jenkins
Jenkins is quite a big topic to cover in a small section of a single chapter, so the
walkthrough is going to be really basic and will only deal with building and
launching containers.

The other thing to note is that I am going to be covering Jenkins 2.0; at the time of
writing this, the first beta has just been released, which means that while things
may change slightly as themes and such are refined, all of the features and basic
functionality are locked in.

The reason for covering Jenkins 2.0 rather than the Jenkins 1.x branch is that as far
as Jenkins is concerned, Docker is now a first-class citizen, meaning that it fully
supports and embraces the Docker way of working. A full overview of the current
status of Jenkins 2.0 can be found at https://jenkins.io/2.0/.

So what is Jenkins? Jenkins is an open source continuous integration tool written in
Java, and it has a lot of uses.

Personally, I am really late to the Jenkins party; being from an operations
background, I have always just shrugged it off a tool used for running unit tests
on code; however, as I have moved more into orchestration and automation, I am
finding the need for a tool that can run tasks based on the results of unit tests.

https://jenkins.io/2.0/

Chapter 6

[197]

As I have already mentioned, I am not going to go into much detail about the testing
side of Jenkins; there are plenty of resources that cover this functionality, such as the
following:

•	 Mastering Jenkins by Jonathan McAllister
•	 Jenkins Continuous Integration Cookbook by Alan Mark Berg

These are both available from https://www.packtpub.com/.

Preparing the environment
Rather than running it locally, let's launch a DigitalOcean droplet and install Jenkins
there. First off, we need to use Docker Machine to launch the droplet:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 jenkins

Once the droplet has been launched, we don't need to bother configuring our local
Docker client to talk on the droplet by running the Docker engine as Jenkins will be
handling everything to do with Docker.

Because we need Jenkins to run Docker, we will need to install it directly on our
droplet rather than run it as a container; first of all, we will need to SSH onto the
droplet. To do this, run the following command:

docker-machine ssh jenkins

Now, on the droplet, we need to install Docker Compose, Jenkins, and all of its
prerequisites. Let's start by installing Docker Compose. I have written a quick script
to do this, which can be executed by running the following command:

curl -fsS https://raw.githubusercontent.com/russmckendrick/docker-
install/master/install-compose | bash

Now that we have Docker Compose installed, it's time to install Jenkins. As version
2 is currently in beta, it is not in any of the main repositories yet; however, there is a
DEB package for it.

Extending Your Infrastructure

[198]

To install it, we need to download a local copy and run the following commands:

apt-get install gdebi-core

This will install the gdebi tool, which we will then use to install Jenkins and its
dependencies:

wget http://pkg.jenkins-ci.org/debian-rc/binary/jenkins_2.0_all.deb

gdebi jenkins_2.0_all.deb

Now that Jenkins is installed, we need to add the Jenkins user to the Docker group so
that the user has permissions to interact with Docker:

usermod -aG docker jenkins

Finally, to ensure that Jenkins picks up that it has been added to the group, we need
to restart it using this command:

/etc/init.d/jenkins restart

You can now open your browser to complete the installation:

open http://$(docker-machine ip jenkins):8080/

When your browser opens, you should be greeted with a screen that looks like
the following:

Chapter 6

[199]

For security reasons, when the Jenkins container was launched, a random string
was generated; before you can proceed with the installation, Jenkins requires you to
confirm what this string is. You can find it out by running this command:

less /var/lib/jenkins/secrets/initialAdminPassword

You can quit less by pressing the Q key.

This feature is a most welcome one as not securing your Jenkins installation correctly
from the start can have quite bad implications, as I found out when a third party
hijacked a test Jenkins 1.x installation I had up running and forgotten about—whoops!

Once you have entered the initial admin password, click on the Continue button.

The next page you come to will ask you which plugins you would like to install:

Extending Your Infrastructure

[200]

For our purposes, just click on Install suggested Plugins, which is highlighted. The
next page will show you the progress of the suggested plugins:

It will take a minute or two to complete. Once it has completed, you will be asked to
create a Jenkins user:

Chapter 6

[201]

As I have already mentioned, it's important to secure your Jenkins installation
from the start, so I recommend you don't skip this step. Once you have filled in the
requested information, click on the Save and Finish button. If all has gone well, you
will be presented with the following screen:

All you have to do now is click on Start using Jenkins and you will be logged in and
taken to the start screen, which looks like this:

Extending Your Infrastructure

[202]

This installation process is one of the many improvements that Jenkins 2 brings to the
table; earlier, you would have had to install Jenkins and then manually work through
several wizards and procedures to both secure and configure the software, which as I
have already mentioned can have bad consequences if you don't get it right.

The final step of the setup is to install the CloudBees Docker Pipeline plugin; to do
this, click on the Manage Jenkins button from the left-hand side menu, and then
click on Manage Plugins button.

As this is a new installation, you will probably see a message about plugins being
updated at some point. Ignore the request to restart Jenkins; we will be doing this as
part of the installation.

There are four tabs on the main screen; click on Available button and you will be
presented with a list of all of the Jenkins plugins.

In the top right-hand portion of the main screen, there is a search box labelled Filter.
Type in Docker Pipeline here, and you should receive one result. Tick the install
box and then click on the Download now and install after restart button.

It will take a minute or two to restart Jenkins; after it has started back up, you will be
prompted to log back in using the credentials you provided during the installation.

Now that you have Jenkins installed and configured, it's time to add our pipeline.
To do this, we need an application to add.

Chapter 6

[203]

Creating an application
There is a sample application based on Moby Counter available at the following
GitHub repository: https://github.com/russmckendrick/jenkins-docker-
example/tree/master. The main page looks like this:

Before we add the application, it is best that you fork the code, as we will be making
changes to the codebase later on. To do this, click on the Fork button in the top right
of the screen. You will be asked where you want to fork the repository. Once you
have forked it, make a note of the URL.

As I own the repository, I was not able to fork it. Because of this, I have created a copy
called jenkins-pipeline, so you will see references to this in the following section.

Creating a pipeline
Now that Jenkins is configured and we have a GitHub repository that contains the
application, we would like to deploy. It's time to roll our sleeves up and configure
the pipeline within Jenkins.

Extending Your Infrastructure

[204]

To start, click on the create new jobs button on the main page, you will be taken to a
screen that has several options on it, enter the name of the pipeline in the top box.

I am calling mine Docker Pipeline, and then click on Pipeline button. You should
see a small box that says OK button at the bottom of the screen, click on the OK
button to create the pipeline, which will take you to the configuration screen:

You will now be on the pipeline configuration screen, as you can see, there are a lot
of options. We are going to be keeping things really simple and will be just adding a
pipeline script. The script looks similar to the following code:

node {
 stage 'Checkout'
 git url: 'https://github.com/russmckendrick/jenkins-pipeline.git'

 stage 'build'
 docker.build('mobycounter')

 stage 'deploy'
 sh './deploy.sh'
}

Chapter 6

[205]

Before you add the script to the Pipeline section of the configuration page, replace
the Git URL with the one of your own repository. Leave all the other options as they
are and click on the Save button:

That's it, our pipeline is now configured. We have told Jenkins to perform the
following three tasks each time a build is triggered:

•	 Checkout: This downloads the latest code for our application from your
GitHub repository.

•	 Build: This uses Dockerfile that is in the GitHub repository to build the
Mobycounter image.

•	 Deploy: This runs a script that clears down any currently running containers
and then uses the included Docker Compose file to relaunch the application.
When launching Redis, the Docker Compose file uses the built-in volume
driver for /data, meaning that the position of the Docker logos will persist
between the containers being relaunched.

Extending Your Infrastructure

[206]

To trigger a build, click on the Build Now button option on the left-hand side menu. If
everything goes well, you should see something similar to the following screenshot:

As you can see, all three tasks are executed without error. You should be able to see
the application by opening your browser using the following command:

open http://$(docker-machine ip jenkins)/

Chapter 6

[207]

Place some logos to test that everything is working as expected, and that's it, you
have deployed your application using Jenkins:

Hold on a minute—there is a problem! As you may have already noticed, the page
title is wrong.

Extending Your Infrastructure

[208]

Let's go ahead and fix that. To do so, navigate to the following page in your GitHub
repository: your-github-repo | src | client | index.html. From here, click on
the Edit button. Once in the editing screen, update the title between the <title> and
</title> tags, and then click on the Commit changes button.

Chapter 6

[209]

Now that you have updated your application code, go back to Jenkins and click on
Build Now again. This will trigger a second build, which will deploy the changes we
made in GitHub.

As you can see from the second browser tag in the previous screenshot, the title of
our application has changed and the second build was successful. If you refresh your
application window, you should see that your title has been updated and the Docker
logos are where you left them.

A few other things to note are that that the second build confirms that there is one
commit difference between our initial build and the current one. Also, the build
itself took less time than our original build; this is because Docker didn't have to
download the base image for a second time.

Extending Your Infrastructure

[210]

You can view logs for each task by hovering your mouse over the stage you want to
see the logs for and clicking on the Logs link. This will make a dialog pop up with
the logs for the task:

Chapter 6

[211]

You can also look at the full console output for each build by clicking on the build
number, say #2, in the left-hand side menu and then clicking on the Console Output
button:

This is useful if your build has errors. Try clicking on some of the options, such as
Docker Fingerprints and Changes, to look at the other information that is recorded
during each build.

Extending Your Infrastructure

[212]

Going back to the main Jenkins page, you should see a quick summary of your
builds. You should also see a sun icon next to your pipeline, meaning that everything
is OK.

What if everything wasn't okay with the second build? Consider that we had made
a syntax error within the Dockerfile when we edited the page title, what would have
happened?

Jenkins would have checked the update files from GitHub, started the build of
the updated image, detected the error, and then failed. As this stage would have
given an error, the deploy stage would not have been executed, meaning that our
application would still be running in its current state, wrong title and all.

This is where Jenkins' strength lies, if you configure enough tests with both your
code and deployment pipelines, you can stop any potential service affecting changes
being deployed, it also records enough information to be an extremely valuable
resource when it comes to tracking down errors.

Chapter 6

[213]

Summing up Jenkins
As you may have noticed, we have only touched the tip of the iceberg when it comes
to Jenkins, there is a lot of functionality we haven't covered as it is out of scope of
this book.

However, from the little we have discussed, I hope you can see the value of using a
continuous integration and deployment platform such as Jenkins to help build and
deploy your containers and code. Don't be late to the party like I was, if you deploy
any type of code, then consider using Jenkins to assist you, don't wait until you have
deployed a serious application-breaking bug.

Summary
A common thread among all the tools we have looked at in this chapter is that they
all quickly evolved to offer support for Docker, filling in gaps in functionality, which
was missing from the core Docker toolset.

Over the past 12 months, the rapid development of Docker has meant that some of
these tools may not necessarily be required any more.

However, as they all provide a wide range of functionality outside of Docker, it
means that they can still be a valuable part of your day-to-day workflow should
Docker only be one of the technologies you are working with.

There is one thing using that the tools in this chapter does not provide and that's
some intelligence around where your containers are launched, you still have to
instruct the tools to place container A on Docker host Z.

In our next chapter, we will be looking at schedulers that make the decision as to
where a container should be launched for you, based on host availability, utilization,
and other rules such as don't place Container A on the same host as Container B, meaning
that you are no longer confined to a fixed infrastructure.

[215]

Looking at Schedulers
In this chapter, we will look at a few different schedulers that are capable of
launching containers on both your own infrastructures as well as public cloud-based
infrastructures. To start with, we will look at two different schedulers, both of which
we will use to launch clusters on Amazon Web Services. The two schedulers are
as follows:

•	 Kubernetes: http://kubernetes.io/
•	 Amazon ECS: https://aws.amazon.com/ecs/

We will then take a look at a tool that offers its own scheduler as well as supports
others:

•	 Rancher: http://rancher.com/

Let's dive straight in by looking at Kubernetes.

Getting started with Kubernetes
Kubernetes is an open source tool, originally developed by Google. It is described as:

"A tool for automating deployment, operations, and scaling of containerized
applications. It groups containers that make up an application into logical units
for easy management and discovery. Kubernetes builds upon a decade and a half of
experience of running production workloads at Google, combined with best-of-breed
ideas and practices from the community." http://www.kubernetes.io

http://kubernetes.io/
https://aws.amazon.com/ecs/
http://rancher.com/
http://www.kubernetes.io

Looking at Schedulers

[216]

While it is not the exact tool that Google uses to deploy their containers internally,
it has been built from the ground up to offer the same functionality. Google is also
slowly transitioning to internally use Kubernetes themselves. It is designed around
the following three principles:

•	 Planet scale: Designed on the same principles that allow Google to run
billions of containers a week, Kubernetes can scale without increasing your
ops team

•	 Never outgrow: Whether testing locally or running a global enterprise,
Kubernetes' flexibility grows with you in order to deliver your applications
consistently and easily no matter how complex your need is

•	 Run anywhere: Kubernetes is open source, giving you the freedom to take
advantage of on-premise, hybrid, or public cloud infrastructure, letting you
effortlessly move workloads to where it matters to you

Out of the box, it comes with quite a mature feature set:

•	 Automatic bin packing: This is the core of the tool, a powerful scheduler that
makes decisions on where to launch your containers based on the resources
currently being consumed on your cluster nodes

•	 Horizontal scaling: This allows you to scale up your application, either
manually or based on CPU utilization

•	 Self-healing: You can configure status checks; if your container fails a check,
then it will be relaunched where the resource is available

•	 Load balancing & service discovery: Kubernetes allows you to attach
your containers to services, these can expose your container either locally
or externally

•	 Storage orchestration: Kubernetes supports a number of backend storage
modules out of the box, including Google Cloud Platform, AWS, and services
such as NFS, iSCSI, Gluster, or Flocker to name a few

•	 Secret and configuration management: This allows you to deploy and
update secrets such as API keys to your containers, without exposing them
or rebuilding your container images

There are a lot more features that we could talk about; rather than covering these
features, let's dive right in and install a Kubernetes cluster.

Chapter 7

[217]

Installing Kubernetes
As hinted by the Kubernetes website, there are a lot of ways you can install
Kubernetes. A lot of the documentation refers to Google's own public cloud;
however, rather than introducing a third public cloud into the mix, we are going
to be looking at deploying our Kubernetes cluster onto Amazon Web Services.

Before we start the Kubernetes installation, we need to ensure that you have the
AWS Command Line Interface installed and configured.

The AWS Command Line Interface (CLI) is a unified tool to
manage your AWS services. With just one tool to download
and configure, you can control multiple AWS services from the
command line and automate them through scripts:
https://aws.amazon.com/cli/

As we have already used Homebrew several times during the previous chapters, we
will use that to install the tools. To do this, simply run the following command:

brew install awscli

Once the tools have been installed, you will be able to configure the tools by running
the following command:

aws configure

This will ask for the following four pieces of information:

•	 AWS Access Key ID
•	 AWS Secret Access Key
•	 Default region name
•	 Default output format

https://aws.amazon.com/cli/

Looking at Schedulers

[218]

You should have your AWS Access and Secret keys from the when we launched a
Docker Machine in Amazon Web Services in Chapter 2, Introducing First-party Tools.
For the Default region name, I used eu-west-1 (which is the closest region to me)
and I left the Default output format as None:

Now that we have the AWS Command Line Tools installed and configured, we can
install the Kubernetes Command Line Tools. This is a binary that will allow you to
interact with your Kubernetes' cluster in the same way that the local Docker client
connects to a remote Docker Engine. This can be installed using Homebrew, just run
the following command:

brew install kubernetes-cli

Chapter 7

[219]

We don't need to configure the tool once installed as this will be taken care of by the
main Kubernetes deployment script that we will be running next.

Now that we have the tools needed to launch and interact with our AWS Kubernetes
cluster, we can make a start deploying the cluster itself.

Before we kick off the installation, we need to let the installation script know a
little bit of information about where we want our cluster to launch and also how
big we would like it, this information is passed on to the installation script as
environment variables.

First of all, I would like it launched in Europe:

export KUBE_AWS_ZONE=eu-west-1c

export AWS_S3_REGION=eu-west-1

Also, I would like two nodes:

export NUM_NODES=2

Finally, we need to instruct the installation script that we would like to launch the
Kubernetes in Amazon Web Services:

export KUBERNETES_PROVIDER=aws

Now that we have told the installer where we would like our Kubernetes cluster to
be launched, it's time to actually launch it. To do this, run the following command:

curl -sS https://get.k8s.io | bash

This will download the installer and the latest Kubernetes codebase, and then launch
our cluster. The process itself can take anywhere between eight and fifteen minutes,
depending on your network connection.

Looking at Schedulers

[220]

If you prefer not to run this installation yourself, you can view a recording of a
Kubernetes cluster being deployed in Amazon Web Services at the following URL:

https://asciinema.org/a/41161

Once the installation script has completed, you will be given information on where
to access your Kubernetes cluster, you should also be able to run the following
command to get a list of the nodes within your Kubernetes cluster:

kubectl get nodes

This should return something similar to the following screenshot:

https://asciinema.org/a/41161

Chapter 7

[221]

Also, if you have the AWS Console open, you should see that a new VPC dedicated
to Kubernetes has been created:

You will also see that three EC2 instances have been launched into the Kubernetes
VPC:

Looking at Schedulers

[222]

The last thing to make a note of before we start to launch applications into our
Kubernetes cluster is the username and password credentials for the cluster.

As you may have seen during the installation, these are stored in the Kubernetes CLI
configuration, as they are right at the bottom of the file, you can get these by running
the following command:

tail -3 ~/.kube/config

Now that our Kubernetes cluster has been launched, and we have access to it using
the command-line tools, we can start launching an application.

Launching our first Kubernetes application
To start off with, we are going to be launching a really basic cluster of NGINX
containers, each container within the cluster will be serving a simple graphic and
also print its host name on the page. You can find the image for container on the
Docker Hub at https://hub.docker.com/r/russmckendrick/cluster/.

Like a lot of the tools we have looked at in the previous chapters, Kubernetes uses
the YAML format for its definition file. The file we are going to launch into our
cluster is the following file:

apiVersion: v1
kind: ReplicationController
metadata:
 name: nginxcluster
spec:
 replicas: 5
 selector:
 app: nginxcluster
 template:
 metadata:
 name: nginxcluster
 labels:
 app: nginxcluster

https://hub.docker.com/r/russmckendrick/cluster/

Chapter 7

[223]

 spec:
 containers:
 - name: nginxcluster
 image: russmckendrick/cluster
 ports:
 - containerPort: 80

Let's call the file nginxcluster.yaml. To launch it, run the following command:

kubectl create -f nginxcluster.yaml

Once launched, you will be able to see the active pods by running the following
command:

kubectl get pods

You may find that you need to run the kubectl get pods command a few times to
ensure that everything is running as expected:

Now that you have your pods up and running, we need to expose them so that we
can access the cluster using a browser. To do this, we need to create a service. To
view the current services, type the following:

kubectl get services

You should see just the main Kubernetes service. When we launched our pods, we
defined a replication controller, this is the process that manages the number of pods.
To view the replication controllers, run the following command:

kubectl get rc

Looking at Schedulers

[224]

You should see the nginxcluster controller with five pods in the desired and current
column. Now that we have confirmed that our replication controller is active with
the expected number of pods registered with it, let's create the service and expose the
pods to the outside world by running the following command:

kubectl expose rc nginxcluster --port=80 --type=LoadBalancer

Now, if you run the get services command again, you should see our new service:

kubectl get services

Your terminal session should look something similar to the following screenshot:

Great, you now have your pods exposed to the Internet. However, you may have
noticed that the cluster IP address is an internal one, so how do you access your
cluster?

As we are running our Kubernetes cluster in Amazon Web Services, when
you exposed the service, Kubernetes made an API call to AWS and launched an
Elastic Load Balancer. You can get the URL of the load balancer by running the
following command:

kubectl describe service nginxcluster

Chapter 7

[225]

As you can see, in my case, my load balancer can be accessed at http://
af92913bcf98a11e5841c0a7f321c3b2-1182773033.eu-west-1.elb.amazonaws.
com/.

Opening the load balancer URL in a browser shows our container page:

Looking at Schedulers

[226]

Finally, if you open the AWS console, you should be able to see the elastic load
balancer created by Kubernetes:

An advanced example
Let's try something more advanced than launching a few of the same instances and
load balancing them.

For the following example, we are going to launch our WordPress stack. This time
we are going to mount Elastic Block Storage volumes to store both our MySQL
database and WordPress files on:

"Amazon Elastic Block Store (Amazon EBS) provides persistent block level storage
volumes for use with Amazon EC2 instances in the AWS Cloud. Each Amazon
EBS volume is automatically replicated within its Availability Zone to protect
you from component failure, offering high availability and durability. Amazon
EBS volumes offer the consistent and low-latency performance needed to run
your workloads. With Amazon EBS, you can scale your usage up or down within
minutes – all while paying a low price for only what you provision." - https://
aws.amazon.com/ebs/

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/

Chapter 7

[227]

Creating the volumes
Before we launch our pods and services, we need to create the two EBS volumes
that we will be attaching to our pods. As we already have the AWS Command Line
Interface installed and configured, we will be using that to create the volume rather
than logging into the console and creating it using the GUI.

To create the two volumes, simply run the following command twice, making sure
that you update the availability zone to match where your Kubernetes cluster was
configured to launch:

aws ec2 create-volume --availability-zone eu-west-1c --size 10
--volume-type gp2

Each time you run the command, you will get a blob of JSON returned, this will
contain all of the metadata generated when the volume was created:

Make a note of VolumeId for each of the two volumes, you will need to know these
when we create our MySQL and WordPress pods.

Looking at Schedulers

[228]

Launching MySQL
Now that we have the volumes created, we are now able to launch our MySQL Pod
and Service. First of all, let's start with the Pod definition, make sure that you add
one of the volumeIDs at the where promoted towards the bottom of the file:

apiVersion: v1
kind: Pod
metadata:
 name: mysql
 labels:
 name: mysql
spec:
 containers:
 - resources:
 image: russmckendrick/mariadb
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: yourpassword
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 awsElasticBlockStore:
 volumeID:<insert your volume id here>
 fsType: ext4

As you can see, this follows pretty closely to our first Kubernetes application, except
this time, we are only creating a single Pod rather than one with a Replication
Controller.

Chapter 7

[229]

Also, as you can see, I have added my volumeID to the bottom of the file; you will
need to add your own volumeID when you come to launch the Pod.

I call the file mysql.yaml, so to launch it, we need to run the following command:

kubectl create -f mysql.yaml

Kubernetes will validate the mysql.yaml file before it tries to launch the Pod; if you
get any errors, please check whether the indentation is correct:

You should now have the Pod launched; however, you should probably check if it's
there. Run the following command to view the status of your Pods:

kubectl get pods

If you see that the Pod has a status of Pending, like I did, you will probably be
wondering what's going on? Luckily, you can easily find that out by getting more
information on the Pod we are trying to launch by using the describe command:

kubectl describe pod mysql

Looking at Schedulers

[230]

This will print out everything you will ever want know about the Pod, as you can
see from the following terminal output, we did not have enough capacity within our
cluster to launch the Pod:

We can free up some resources by removing our previous Pods and Services by
running the following command:

kubectl delete rc nginxcluster

kubectl delete service nginxcluster

Chapter 7

[231]

Once you run the commands to remove nginxcluster, your mysql Pod should
automatically launch after a few seconds:

Now that the Pod has been launched, we need to attach a service so that port 3306 is
exposed, rather than doing this using the kubectl command like we did before, we
will use a second file called mysql-service.yaml:

apiVersion: v1
kind: Service
metadata:
 labels:
 name: mysql
 name: mysql
spec:
 ports:
 - port: 3306
 selector:
 name: mysql

To launch the service, simply run the following command:

kubectl create -f mysql-service.yaml

So now that we have the MySQL Pod and Service launched, it's time to launch the
actual WordPress container.

Looking at Schedulers

[232]

Launching WordPress
Like the MySQL Pod and Service, we will be launching our WordPress container
using two files. The first file is for the Pod:

apiVersion: v1
kind: Pod
metadata:
 name: wordpress
 labels:
 name: wordpress
spec:
 containers:
 - image: wordpress
 name: wordpress
 env:
 - name: WORDPRESS_DB_PASSWORD
 value: yourpassword
 ports:
 - containerPort: 80
 name: wordpress
 volumeMounts:
 - name: wordpress-persistent-storage
 mountPath: /var/www/html
 volumes:
 - name: wordpress-persistent-storage
 awsElasticBlockStore:
 volumeID: <insert your volume id here>
 fsType: ext4

As an EBS volume cannot be attached to more than one device at a time, remember
to use the second EBS volume you created here. Call the wordpress.yaml file and
launch it using the following command:

kubectl create -f wordpress.yaml

Chapter 7

[233]

Then wait for the Pod to launch:

As we have already removed nginxcluster, there should be enough resources to
launch the Pod straightaway, meaning that you should not get any errors.

Although the Pod should be running, it's best to check whether the container
launched without any problems. To do this, run the following command:

kubectl logs wordpress

This should print out the container logs, you will see something similar to the
following screenshot:

Now that the Pod has launched and WordPress appears to have bootstrapped itself
as expected, we should launch the service. Like nginxcluster, this will create an
Elastic Load Balancer. The service definition file looks similar to the following code:

apiVersion: v1
kind: Service
metadata:
 labels:

Looking at Schedulers

[234]

 name: wpfrontend
 name: wpfrontend
spec:
 ports:
 - port: 80
 selector:
 name: wordpress
 type: LoadBalancer

To launch it, run the following command:

kubectl create -f wordpress-service.yaml

Once launched, check whether the service has been created and get the details of the
Elastic Load Balancer by running the following command:

kubectl get services

kubectl describe service wpfrontend

When I ran the commands, I got the following output:

Chapter 7

[235]

After a few minutes, you should be able to access the URL for Elastic Load Balancer,
and as expected, you will be presented with a WordPress installation screen:

As we did in Chapter 3, Volume Plugins when we were looking at storage plugins,
complete the installation, log in, and attach an image to the Hello World post.

Now that we have the WordPress site up and running, let's try removing the
wordpress Pod and relaunching it, first of let's make a note of the Container ID:

kubectl describe pod wordpress | grep "Container ID"

Then delete the Pod and relaunch it:

kubectl delete pod wordpress

kubectl create -f wordpress.yaml

Looking at Schedulers

[236]

Check the Container ID again to make sure that we have a different one:

kubectl describe pod wordpress | grep "Container ID"

Going to your WordPress site, you should see everything exactly as you left it:

Chapter 7

[237]

If we wanted to, we could perform the same action for the MySQL pod and our data
would be exactly as we left it, as it is stored in the EBS volume.

Let's remove the Pod and Service for the WordPress application by running the
following command:

kubectl delete pod wordpress

kubectl delete pod mysql

kubectl delete service wpfrontend

kubectl delete service mysql

This should leave us with a nice clean Kubernetes cluster for the next section of
the chapter.

Supporting tools
You may be wondering to yourself why we bothered grabbing the username and
password when we first deployed our Kubernetes cluster as we have not had to use
it yet. Let's take a look at some of the supporting tools that are deployed as part of
our Kubernetes cluster.

When you first deployed your Kubernetes cluster, there was a list of URLs printed
on the screen, we will be using these for this section. Don't worry if you didn't make
a note of them as you can get all the URLs for the supporting tools by running the
following command:

kubectl cluster-info

This will print out a list of URLs for the various parts of your Kubernetes cluster:

You will need the username and password to view some of these tools, again if you
don't have these to hand, you can get them by running the following command:

tail -3 ~/.kube/config

Looking at Schedulers

[238]

Kubernetes Dashboard
First of all, let's take a look at the Kubernetes Dashboard. You can get this by
putting the URL for the Kubernetes-dashboard in your browser. When you enter it,
depending on your browser, you will get warnings about the certificates, accept the
warnings and you will be given a login prompt. Enter the username and password
here. Once logged in, you will see the following screen:

Let's deploy the NGINX Cluster application using the UI. To do this, click on Deploy
An App and enter the following:

•	 App name = nginx-cluster
•	 Container image = russmckendrick/cluster
•	 Number of pods = 5
•	 Port = Leave blank
•	 Port = 80
•	 Target port = 80
•	 Tick the box for Expose service externally

Chapter 7

[239]

Once you click on Deploy, you will be taken back to the overview screen:

Looking at Schedulers

[240]

From here, you can click on nginx-cluster and be taken to an overview screen:

As you can see, this gives you all the details on both the Pod and Service, with
details such as the CPU and memory utilization, as well as a link to the Elastic Load
Balancer. Clicking the link should take you to the default cluster page of the image
and the container's hostname.

Let's leave nginx-cluster up and running to look at the next tool.

Grafana
The next URL that we are going to open is Grafana; going to the URL, you should see
a quite dark and mostly empty page.

Grafana is the tool that is recording all the metrics that we saw being displayed in
the Kubernetes dashboard. Let's take a look at the cluster stats. To do this, click on
the Cluster dashboard:

Chapter 7

[241]

As you can see, this gives us a breakdown of all of the metrics that you would expect
to see from a system-monitoring tool. Scrolling down, you can see:

•	 CPU Usage
•	 Memory Usage
•	 Network Usage
•	 Filesystem Usage

Looking at Schedulers

[242]

Both collectively and per individual node. You can also view details on Pods by
clicking on the Pods dashboard. As Grafana gets its data from the InfluxDB pod, which
has been running since we first launched our Kubernetes cluster, you can view metrics
for every Pod that you have launched, even if it is not currently running. The following
is the Pod metrics for the mysql pod we launched when installing WordPress:

I would recommend you to look around to view some of the other Pod metrics.

ELK
The final tool we are going to look at is the ELK stack that has been running in the
background since we first launch our Kubernetes cluster. An ELK stack is a collection
of the following three different tools:

•	 Elasticsearch: https://www.elastic.co/products/elasticsearch
•	 Logstash: https://www.elastic.co/products/logstash
•	 Kibana: https://www.elastic.co/products/kibana

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Chapter 7

[243]

Together they form a powerful central logging platform.

When we ran the following command earlier in this section of the chapter (please
note you will not be able to run it again as we removed the WordPress pod):

kubectl logs wordpress

The logs displayed for our wordpress pod the log file entries were actually read
from the Elasticsearch pod. Elasticsearch comes with its own dashboard called
Kibana. Let's open the Kibana URL.

When you first open Kibana, you will be asked to configure an index pattern. To do
this, just select Time-field name from the drop-down box and click on Create button:

Looking at Schedulers

[244]

Once the index pattern has been created, click on the Discover link in the top menu.
You will then be taken to an overview of all of the log data that has been sent to
Elasticsearch by the Logstash installations that are running on each of the nodes:

As you can see, there is a lot of data being logged; in fact, when I looked, there
were 4,918 messages logged within 15 minutes alone. There is a lot of data in here,
I would recommend clicking around and trying some searches to get an idea of what
is being logged.

Chapter 7

[245]

To give you an idea of what each log entry looks like, here is one for one of my
nginx-cluser pods:

Remaining cluster tools
The remaining cluster tools that we are yet to open in the browser are as follows:

•	 Kubernetes
•	 Heapster
•	 KubeDNS
•	 InfluxDB

These all are API endpoints, so you will not see anything other than an API
response, they are using by Kubernetes internally to both manage and schedule
within the cluster.

Looking at Schedulers

[246]

Destroying the cluster
As the cluster is sat in your Amazon Web Services account on instances that are
pay-as-you-go, we should look at removing the cluster; to do this, let's re-enter the
original configuration that we entered when we first deployed the Kubernetes
cluster by running the following command:

export KUBE_AWS_ZONE=eu-west-1c

export AWS_S3_REGION=eu-west-1

export NUM_NODES=2

export KUBERNETES_PROVIDER=aws

Then, from the same location you first deployed your Kubernetes cluster, run the
following command:

./kubernetes/cluster/kube-down.sh

This will connect to the AWS API and start to tear down all of the instances,
configuration, and any other resources that have been launched with Kubernetes.

The process will take several minutes, do not interrupt it or you maybe left with
resources that incur costs running within your Amazon Web Services account:

Chapter 7

[247]

I would also recommend logging into your Amazon Web Services console and
remove the unattached EBS volumes that we created for the WordPress installation
and also any Kubernetes labelled S3 buckets as these will be incurring costs as well.

Recap
Kubernetes, like Docker, has matured a lot since its first public release. It has become
easier to deploy and manage with each release without having a negative impact on
the feature set.

As a solution that offers scheduling for your containers, it is second to none, and as it
is not tied to any particular provider, you can easily deploy it to providers other than
Amazon Web Services, such as Google's own Cloud Platform, where it is considered
a first class citizen. It is also possible to deploy it on premise on your own bare metal
of virtual servers, making sure that it keeps itself inline with the build once and
deploy anywhere philosophy that Docker has.

Also, it adapts to work with the technologies available in every platform you deploy
it onto; for example, if you need persistent storage, then as already mentioned, there
are multiple options available to you.

Finally, just like Docker has been over the past 18 months, Kubernetes has quite a
unifying platform, with multiple vendors such as Google, Microsoft, and Red Hat.
They all support and use it as part of their products.

Amazon EC2 Container Service (ECS)
The next tool that we are going to be looking at is the Elastic Container Service from
Amazon. The description that Amazon gives is as follows:

"Amazon EC2 Container Service (ECS) is a highly scalable, high performance
container management service that supports Docker containers and allows you to
easily run applications on a managed cluster of Amazon EC2 instances. Amazon
ECS eliminates the need for you to install, operate, and scale your own cluster
management infrastructure. With simple API calls, you can launch and stop
Docker-enabled applications, query the complete state of your cluster, and access
many familiar features like security groups, Elastic Load Balancing, EBS volumes,
and IAM roles. You can use Amazon ECS to schedule the placement of containers
across your cluster based on your resource needs and availability requirements. You
can also integrate your own scheduler or third-party schedulers to meet business or
application specific requirements." - https://aws.amazon.com/ecs/

It wasn't a surprise that Amazon would offer their own container-based service.

https://aws.amazon.com/ecs/

Looking at Schedulers

[248]

After all, if you are following Amazon's best practices, then you will already be
treating each of your EC2 instances in the same way you are treating your containers.

When I deploy applications into Amazon Web Services, I always try to ensure
that I build and deploy production-ready images, along with ensuring that all the
data written by the application is sent to a shared source as the instances could be
terminated any time due to scaling events.

To help support this approach, Amazon offers a wide range of services such as:

•	 Elastic Load Balancing (ELB): This is a highly available and scalable load
balancer

•	 Amazon Elastic Block Store (EBS): This provides persistent block-level
storage volumes for your compute resources

•	 Auto Scaling: This scales EC2 resources up and down, allowing you to
manage both, peaks in traffic and failures within the application

•	 Amazon Relational Database Service (RDS): This is a highly available
database as a service supporting MySQL, Postgres, and Microsoft SQL

All of these are designed to help you remove all single points of failure within your
Amazon-hosted application.

Also, as all of Amazon's services are API-driven, it wasn't too much of a jump for
them to extend support to Docker containers.

Launching ECS in the console
I am going to be using the the AWS Console to launch my ECS cluster. As my AWS
account is quite old, a few of the steps may differ. To try and account for this, I will
be launching my cluster in one of the newer AWS regions.

Once you have logged into the AWS Console at http://console.aws.amazon.
com/, make sure that you are in the region you would like to launch your ECS
cluster in, and then click on the EC2 Container Service link from the Services
drop-down menu.

As this is your first time launching an ECS cluster, you will be greeted with an
overview video of the service.

Click on Get started to be taken to the Wizard that will help us launch our
first cluster.

http://console.aws.amazon.com/
http://console.aws.amazon.com/

Chapter 7

[249]

First of all, you will be prompted to create a task definition. This is the equivalent of
creating a Docker Compose file. Here you will define the container image that you
would like to run and the resources it is allowed to consume, such as RAM and CPU.
You will also map the ports from the host to container here.

For now, we will use the defaults and look at launching our own containers once the
cluster is up and running. Fill in the details as per the following screenshot and click
on Next step:

Looking at Schedulers

[250]

Now that the task has been defined, we need to attach it to a service. This allows
us to create a group of tasks, which initially will be three copies of the console-
sample-app-static task, and register them with an Elastic Load Balancer.
Fill in the details as per the following screenshot and click on Next step button:

Chapter 7

[251]

Now that we have the service defined, we need a location to launch it. This is where
EC2 instances come into play, and also where you still to be charged. While the
Amazon EC2 Container Service is free of charge to set up, you will be charged for the
resources used to deliver the compute side of the cluster. These will be your standard
EC2 instance charges. Fill in the details as per the following screenshot and click on
Review & launch:

Looking at Schedulers

[252]

Before anything is launched, you will get the opportunity to double-check
everything that is configured within your AWS account, this is your last chance to
back out of launching the ECS cluster. If you are happy with everything, click on
Launch instance & run service button:

Chapter 7

[253]

What you will see now is an overview of what is happening. Typically, it will
take about 10 minutes to run through these tasks. In the background, it is doing
the following:

•	 Creating an IAM role that accesses the ECS service
•	 Creating a VPC for your cluster to be launched in
•	 Creating a Launch Configuration to run an Amazon ECS-optimized Amazon

Linux AMI with the ECS IAM role
•	 Attaching the newly created Launch Configuration to an Auto Scaling Group

and configuring it with the number of instances you defined
•	 Creating the ECS Cluster, Task, and Service within the Console
•	 Waiting for the EC2 instances that have been launched by the Auto Scaling

Group to launch and register themselves with the ECS service
•	 Running the Service on your newly created ECS cluster
•	 Creating an Elastic Load Balancer and registering your Service with it

You can find more information on the Amazon ECS-Optimized Amazon Linux AMI
on its AWS Marketplace page at https://aws.amazon.com/marketplace/pp/
B00U6QTYI2/ref=srh_res_product_title?ie=UTF8&sr=0-2&qid=1460291696921.
This image is a cut-down version of Amazon Linux that only runs on Docker.

https://aws.amazon.com/marketplace/pp/B00U6QTYI2/ref=srh_res_product_title?ie=UTF8&sr=0-2&qid=1460291696921
https://aws.amazon.com/marketplace/pp/B00U6QTYI2/ref=srh_res_product_title?ie=UTF8&sr=0-2&qid=1460291696921

Looking at Schedulers

[254]

Once everything is completed, you will be given the option to go to your newly
created Service. You should see something similar to the following screenshot:

As you can see, we have three running tasks and a load balancer.

Now let's create our own task and service. From the preceding Service view, click
on Update button and change the desired count from three to zero, this will stop the
tasks and allow us to remove the Service. To do this, click on default button to go to
the cluster view and then remove the Service.

Now that the sample-webapp Service has been removed, click on the Task
Definitions button and then the Create new task definition button. On the page
that opens, click on the Add container button and fill in the following details:

•	 Container name: cluster
•	 Image: russmckendrick/cluster
•	 Maximum memory (MB): 32
•	 Port mappings: 80 (Host port) 80 (Container port) tcp (Protocol)

Chapter 7

[255]

Everything else can be left at the default values:

Looking at Schedulers

[256]

Once filled in, click on the Add button. This will take you back to the Create a Task
Definition screen, fill in the Task Definition Name, let's call it our-awesome-cluster
and then click on the Create button:

Chapter 7

[257]

Now that we have our new Task defined, we need to create a Service to attach it to.
Click on the Clusters tab, then click on the default cluster, you should see something
similar to the following image:

Click on the Create button in the Services tab. From this screen, fill in the following
information:

•	 Task Definition: our-awesome-cluster:1
•	 Cluster: default
•	 Service name: Our-Awesome-Cluster
•	 Number of tasks: 3
•	 Minimum healthy percent: 50
•	 Maximum percent: 200

Looking at Schedulers

[258]

Also, in the Optional configurations section, click on Configure ELB button and
use the Elastic Load Balancer that was originally configured for the sample-webapp
service:

Chapter 7

[259]

Once you have filled in the information, click on the Create Service button. If all goes
well, you should see something similar to the following page:

Looking at Schedulers

[260]

Clicking on View Service will give you an overview similar to the one we first saw
for the Sample-Webapp Service:

Chapter 7

[261]

All that's left to do now is to click on Load Balancer Name to be taken to the ELB
overview page; from here, you will be able to get the URL for the ELB, putting this
into a browser should show you our clustered application:

Click refresh a few times and you should see the container's hostname change,
indicating that we are being load balanced between different containers.

Rather than launching any more instances, let's terminate our cluster. To do this, go
to the EC2 service in the Services menu at the top of the AWS Console.

From here, scroll down to Auto Scaling Groups that can be found at the bottom of
the left-hand side menu. From here, remove the auto scaling group and then the
launch configuration. This will terminate the three EC2 instances that formed our
ECS cluster.

Once the instances have been terminated, click on Load Balancer and terminate the
Elastic Load Balancer.

Finally, go back to the EC2 Container Service and delete the default cluster by
clicking on the x. This will remove the remainder of the resources that were created
by us launching the ECS cluster.

Looking at Schedulers

[262]

Recap
As you can see, Amazon's EC2 Container Service can be run from the web-based
AWS Console. There are command tools available, but I won't be covering them
here. Why, you might ask?

Well, although the service offering Amazon has built is complete, it feels very much
like a product that is in an early alpha stage. The versions of Docker that ship on the
Amazon ECS-Optimized Amazon Linux AMI are quite old. The process of having to
launch instances outside of the default stack feels very clunky. Its integration with
some of the supporting services provided by Amazon is also a very manual process,
making it feel incomplete. There is also the feeling that you don't have much control.

Personally, I think the service has a lot of potential; however, in the last 12 months,
a lot of alternatives have launched and are being developed at a more rapid pace,
meaning that Amazon's ECS service is left feeling old and quite outdated compared
to the other services we are looking at.

Rancher
Rancher is a relatively new player, at the time of writing this book, it has only just hit
its 1.0 release. Rancher Labs (the developers) describe Rancher (the platform) as:

"An open source software platform that implements a purpose-built infrastructure
for running containers in production. Docker containers, as an increasingly
popular application workload, create new requirements in infrastructure services
such as networking, storage, load balancer, security, service discovery, and resource
management.

Rancher takes in raw computing resources from any public or private cloud in
the form of Linux hosts. Each Linux host can be a virtual machine or a physical
machine. Rancher does not expect more from each host than CPU, memory,
local disk storage, and network connectivity. From Rancher's perspective, a VM
instance from a cloud provider and a bare metal server hosted at a colo facility are
indistinguishable." - http://docs.rancher.com/rancher/

Rancher Labs also provide RancherOS—a tiny Linux distribution that runs the entire
operating system as Docker containers. We will look at that in the next chapter.

http://docs.rancher.com/rancher/

Chapter 7

[263]

Installing Rancher
Rancher needs a host to run on, so let's launch a server in DigitalOcean using
Docker Machine:

docker-machine create \

 --driver digitalocean \

 --digitalocean-access-token
sdnjkjdfgkjb345kjdgljknqwetkjwhgoih314rjkwergoiyu34rjkherglkhrg0 \

 --digitalocean-region lon1 \

 --digitalocean-size 1gb \

 rancher

Rancher runs as a container, so rather than using SSH to connect to the newly
launched Docker host, let's configure our local client to connect to the host and then
we can launch Rancher:

eval $(docker-machine env rancher)

docker run -d --restart=always -p 8080:8080 rancher/server

That's it, Rancher will be up and running shortly. You can watch the logs to keep an
eye on when Rancher is ready.

First of all, check what the Rancher container is called by running the following
command:

docker ps

In my case, it was jolly_hodgkin, so now run the following command:

docker logs -f <name of your container>

Looking at Schedulers

[264]

You should see a lot of log file entries scroll pass, after a while, logs will stop being
written. This is a sign that Rancher is ready and you can log in to the web interface.
To do this, run the following command to open your browser:

open http://$(docker-machine ip rancher):8080/

Once open, you should see something similar to the following screenshot:

As you can see, we have logged in straight. As this is available on a public IP
address, we have better lock the installation down. This is why the red warning
icon is next to Admin in the top menu is there.

Chapter 7

[265]

Securing your Rancher installation
As I don't have an Active Directory server configured, I am going to use GitHub to
authenticate against my Rancher installation. Just like the installation itself, Rancher
Labs have made this a really easy process. First of all, click on Admin in the top
menu and then Access Control in the secondary menu, you will be taken to a screen
that allows you to know everything you need in order to configure Rancher to use
GitHub as its authentication backend.

For me, this screen looked similar to the following image:

Looking at Schedulers

[266]

As I have a standard GitHub account rather than the Enterprise installation, all I
had to do was click on the link, this took me to a page where I could register my
Rancher installation.

This asked for several pieces of information, all of which are provided on the
following screen:

Chapter 7

[267]

Once I filled in the information, I clicked on Register application button. Once the
application had been registered, I was taken a page that gave me a Client ID and
Client Secret:

Looking at Schedulers

[268]

I entered these parameters into appropriate boxes on my Rancher page and then
clicked on Authenticate with GitHub. This prompted a pop-up window from
GitHub asking me to authorize the application. Clicking the Authorize application
button refreshed the Rancher screen and logged me in, as you can see from the
following screenshot, my application is now secure:

Now that we have the authentication configured, you should probably log out and
log back in just to double-check whether everything is working as expected before
we move onto the next step. To do this, click on your avatar at the right-hand top of
the page and click on Log Out.

Chapter 7

[269]

You will be instantly taken to the following page:

Click on Authenticate with GitHub to log back in.

So, why did we log out and then logged back in? Well, next up, we are going to be
giving our Rancher installation our DigitalOcean API key so that it can launch hosts,
if we hadn't secured our installation before adding this API key, it would mean that
anyone could stumble upon our Rancher installation and start launching hosts as
they see fit. This, as I am sure you could imagine, could get very expensive.

Cattle cluster
Rancher supports three different schedulers, we have already looked at two of them
in both this and the previous chapters. From our Rancher installation, we will be able
to launch a Docker Swarm Cluster, Kubernetes cluster, and also Rancher cluster.

For this part of the chapter, we are going to be looking at a Rancher cluster. The
scheduler that will be used here is called Cattle. It is also the default scheduler,
so we do not need to configure it, all we need to do is add some hosts.

As mentioned in the previous section, we are going to launch our hosts in
DigitalOcean; to do this, click on Add Host in the Adding your first Host
section of the front page.

You will be taken to a page with several hosting providers listed at the top, click on
DigitalOcean and then enter the following details:

•	 Quantity: I wanted to launch three hosts, so I dragged the slider to 3.
•	 Name: This is how the hosts will appear in my DigitalOcean control panel.
•	 Description: A quick description to be attached to each host.

Looking at Schedulers

[270]

•	 Access Token: This is my API token, you should have yours from Chapter 2,
The First-party Tools.

•	 Image: At the moment, only Ubuntu 14.04x64 is supported.
•	 Size: This is the size of the host you would like to launch. Don't forget, the

bigger the host, the more money you will pay while the host is online.
•	 Region: Which DigitalOcean data center would you like to launch the

hosts in?

I left the remainder of the options at their defaults:

Once I was happy with what I had entered, I clicked on Create button. Rancher then,
using the DigitalOcean API, went ahead and launched my hosts.

To check the status of the hosts, you should click on Infrastructure in the top menu
and then Hosts in the secondary menu.

Chapter 7

[271]

Here, you should see the hosts you are deploying, along with their status, which is
updating in real time. You should see messages saying the following:

•	 The host has been launched
•	 Docker is being installed and configured
•	 The Rancher agent is being installed and configured

Finally, all three of your hosts are shown as active:

There you have it, your first Cattle cluster. As you can see, so far it has been
incredibly easy to install, secure, and configure our first cluster in Rancher.
Next up, we need to deploy our containers.

Deploying the Cluster application
As per the previous two schedulers, let's look at deploying our basic cluster
application. To do this, click on the Applications tab in the top menu, and then click
on Add Service. There is an option to Add From Catalog, we will be looking at this
option when we have launched our own application.

On the Add Service page, enter the following information:

•	 Scale: Always run one instance of this container on every host
•	 Name: MyClusterApp
•	 Description: My really awesome clustered application
•	 Select Image: russmckendrick/cluster

Looking at Schedulers

[272]

•	 Port map: Add a port map for port 80 just in the Private port box

For now, leave the rest of the forms at their default values and click on the
Create button.

Chapter 7

[273]

After a few minutes, you should see that your service is active, clicking on the service
name will take you a screen that gives you the details on all of the containers running
within the service:

So, now that we have our containers running, we really need to be able to access
them. To configure a load balancer, click on Stacks and then on the downward arrow
on our default service:

Selecting Add Load Balancer from the drop-down menu will take you to a screen
that looks similar to the one where we added our cluster application.

Looking at Schedulers

[274]

Fill in the following details:

•	 Scale: Run 1 container
•	 Name: ClusterLoadBalancer
•	 Description: The Load Balancer for my clustered application
•	 Listening Ports: Source IP/Port 80 Default Target Post 80
•	 Target Service: MyClusterApp

Chapter 7

[275]

Click on the Save button and wait for the service to launch. You will be taken back
to the list of services that you have launched, clicking on the information sign next to
name of the load balancer will open an information pane at the bottom of the screen.
From here, click on the IP address listed in the Ports section:

Your browser should open the now-familiar cluster application page.

Clicking on refresh a few times should change the host name of the container you are
being connected to.

What's going on in the background?
One of Rancher's strengths is that there are a lot of tasks, configuration, and process
running in the background, which are all hidden by an intuitive and easy-to-use
web interface.

To get an idea of what's going on, let's have a look around the interface. To start off
with, click on Infrastructure in the top menu, and then click on Hosts.

Looking at Schedulers

[276]

As you can see, the running containers are now listed; alongside the containers for
our Default stack, there is a network agent container running on each host:

These containers form a network between all three of our hosts using iptables,
allowing cross-host connectivity for our containers.

iptables is a user-space application program that allows a system
administrator to configure the tables provided by the Linux kernel
firewall (implemented as different Netfilter modules) and the chains
and rules it stores:
https://en.wikipedia.org/wiki/Iptables

To confirm this, click on Containers button in the secondary menu. You will see a list
of the currently running containers, this list should include three containers running
our cluster application.

Make a note of the IP address for Default_MyClusterApp_2 (in my case, it's
10.42.220.91) and then click on Default_MyClusterApp_1.

https://en.wikipedia.org/wiki/Iptables

Chapter 7

[277]

You will be taken to a page that gives you real-time information about the CPU,
memory, network, and storage utilization of the container:

As you can see, the container is currently active on my first Rancher host. Let's get a
little more information about the container by connecting to it. At the top right-hand
side of the page, where it says Running, there is an icon with three dots, click on
that, and then select Execute Shell from the drop-down menu.

This will open a terminal within your browser to the running container. Try entering
some commands such as the following:

ps aux

hostname

cat /etc/*release

Also, while we have the shell open, let's ping our second container that is hosted on
another one of our hosts (make sure that you replace the IP address with the one
made a note of):

ping -c 2 10.42.220.91

Looking at Schedulers

[278]

As you can see, although it is on a different host within our cluster, we are able to
ping it without any problems:

Another feature that is useful is Health Check. Let's configure Health Check for our
service and then simulate an error.

Click on Applications in the top menu, then on the + next to our Default stack, this
will bring up a list of services that make up the stack. Click on the MyClusterApp
service to be taken to the overview page.

From here, as we did to access the container shell, click on the icon with the three
dots in the top right-hand side, next to where it says Active. From the drop-down
menu, select Upgrade, this will take us to a stripped-down version of the page we
filled in to create the initial service.

At the bottom of this page there are several tabs, click on Health Check and fill out
the following information:

•	 Health Check: HTTP Responds 2xx/3xx
•	 HTTP Request: /index.html
•	 Port: 80
•	 When Unhealthy: Re-create

Chapter 7

[279]

Leave the rest of the settings as they are and then click on the Upgrade button. You
will be taken back to the list of services that are in the Default stack, and next to the
MyClusterApp service, it will say Upgrading.

During the upgrade process, Rancher has relaunched our containers with the new
configuration. It did this one at a time, meaning that there would have been no
downtime as far as people browsing our application would have been concerned.

You may also notice that it says there are six containers, and also that the stack is
degraded; to resolve this, click on the MyClusterApp service in order to be taken to
the list of containers.

As you can see, three of them have a state of Stopped. To remove them, click on the
Finish Upgrade button, next to where it says Degraded, this will remove the stopped
containers and return us to a stopped state.

So now that we have a health checking, make sure that each of our containers is
serving a web page, let's stop NGINX from running and see what happens.

To do this, click on any of our three containers and then open a console by selecting
Execute Shell from the drop-down menu.

As our container is running supervised to manage the processes within the container,
all we need to do is run the following command to stop NGINX:

supervisorctl stop nginx

Looking at Schedulers

[280]

Then we need to kill the NGINX processes; to do this, find out the process IDs by
running the following code:

ps aux

In my case, the PIDs were 12 and 13, so to kill them, I will run the following command:

kill 12 13

This will stop NGINX, but keep the container up and running. After a few seconds,
you will notice that the stats in the background disappear:

Then your console will close, leaving you with something that looks similar to the
following screenshot:

Chapter 7

[281]

Going back to the list of containers for the MyClusterApp service, you will notice
that there is a new Default_MyClusterApp_2 container running under a different
IP address:

Rancher has done exactly as we instructed it to, if port 80 on any of our containers
stops responding for more than six seconds, it has to fail three checks that are made
every 2,000 ms, then remove the container, and replace it with a new one.

The catalog
I am pretty sure that you would have clicked on the Catalog item in the top menu,
this lists all the pre-built stacks that you can launch within Rancher. Let's look at
launching WordPress using the catalog item. To do this, click on Catalog and scroll
down to the bottom where you will see an entry for WordPress.

WordPress
Click on View Details to be taken to a screen where you are able to add a WordPress
stack. All it asks is for you to provide a Name and Description for the stack, fill these
in, and click on Launch.

This will launch two containers, one running MariaDB and the other running the
WordPress container. These containers use the same images from the Docker Hub
that we have been launching throughout the book.

Looking at Schedulers

[282]

If you click on Stacks in the secondary menu and then expand the two stacks. Once
the WordPress stack is active, you will be able to click on the information icon next
to where it says wordpress. Like before, this will give the IP address where you can
access your WordPress installation:

Clicking on it will open a new browser window and you will see a very familiar
WordPress installation screen.

Again, Rancher did something interesting here. Remember that we have three hosts
in total. One of these hosts is running a container that is acting as a load balancer for
our ClusterApp, this is bound to port 80 on one of these hosts.

By default, the WordPress catalog stack launches the WordPress container and
maps port 80 from the host to port 80 on the container. With no prompting from us,
Rancher realized that one of our hosts already has a service bound to port 80, so it
didn't even attempt to launch the WordPress container here, instead it chose the next
available host without a service mapped to port 80 and launched our WordPress
container there.

This is another example of Rancher doing tasks in the background to make the best
use of the resources you have launched.

Chapter 7

[283]

Storage
So far so good with Rancher, let's take a look at how we can add some shared storage
to our installation. One of the things that DigitalOcean doesn't provide is block
storage, because of which we will need to use a clustered filesystem, as we do not
want to introduce a single point of failure within our application.

Gluster FS is a scalable network filesystem. Using common off-the-shelf
hardware, you can create large distributed storage solutions for media
streaming, data analysis, and other data and bandwidth-intensive tasks:
https://www.gluster.org

As you may have noticed when browsing the catalog, there are several storage
items in there that we are going to be looking at GlusterFS to provide our
distributed storage:

Once we have our Gluster cluster up and running, we will then use Convoy to expose
it to our containers. Before we do this, we need to start GlusterFS. To do this, click on
View Details on the Gluster FS catalog item.

You will be taken to a form that details exactly what is going to be configured
and how. For our purpose, we can leave all the settings as they are and click on
the Launch button at the bottom of the page.

https://www.gluster.org

Looking at Schedulers

[284]

It will take a few minutes to launch. When it has completed, you will see that a total
of 12 containers have been created. Of these, six of them will be running and the
other six will be marked as started. This is not anything to worry about, as they are
acting as the volumes for the running containers:

Now that we have our Gluster FS cluster up and running, we need to launch Convoy
and let it know about the Gluster FS cluster. Go back to the catalog page and click on
View Details next to the Convoy Gluster FS entry.

As we kept of the default options and names selected when we launched the Gluster
FS cluster, we can leave everything at the defaults here, all we have to do is select our
Gluster FS cluster from the Gluster FS service drop-down menu.

Chapter 7

[285]

Once you have made the selection and clicked on Launch, it won't take long to
download and launch the convoy-gluster containers. Once completed, you should
have four containers running. As you may have noticed, a new icon for System has
appeared next to Stacks on the secondary menu, this is where you will find your
Convoy Gluster stack:

So, we now have our distributed storage ready. Before we put it to use, let's look at
one more catalog item.

Clustered database
We don't really want to store our database on a shared or distrusted filesystem, one
of the other items in the catalog launches a MariaDB Galera Cluster.

Galera Cluster for MySQL is a true Multimaster Cluster based
on synchronous replication. Galera Cluster is an easy-to-use,
high-availability solution that provides high-system uptime,
no data loss, and scalability for future growth:
http://galeracluster.com/products/

http://galeracluster.com/products/

Looking at Schedulers

[286]

The cluster will sit behind a load balancer, meaning that your database requests will
always be directed to an active master database server. As earlier, click on View
Details on the Galera Cluster item and then fill in the database credentials you wish
the cluster to be configured with. These credentials are as follows:

•	 MySQL Root Password
•	 MySQL Database Name
•	 MySQL DB User
•	 MySQL DB Password

Once filled in, click on the Launch button. The cluster will take a few minutes to
launch. Once launched, it will contain 13 containers, these make up the cluster and
load balancer.

Looking at WordPress again
Now that we have our clustered filesystem configured, and also our clustered
database, let's look at launching WordPress again.

To do this, click on Applications from the top menu, and then make sure that you
are on the Stacks page, click on New Stack.

From here, give it the name WordPress and then click on Create, and now click on
Add Service. You will need to fill in the following information:

•	 Scale: Run 1 container (we will scale up later)
•	 Name: WordPress
•	 Description: My WordPress cluster
•	 Select Image: wordpress
•	 Port Map: Leave the public port blank and add 80 in the

private port

•	 Service Links: Destination Service should your galera-lb and the
As Name galera-lb

We then need to enter the following details on the tabbed options along the bottom:

Command:

•	 Enviroment Vars: Add the following variables:
°° Variable = WORDPRESS_DB_HOST
°° Value = galera-lb
°° Variable = WORDPRESS_DB_NAME

Chapter 7

[287]

°° Value = The name of the DB you created when setting up Galera
°° Variable = WORDPRESS_DB_USER
°° Value = The user you created when setting up Galera
°° Variable = WORDPRESS_DB_PASSWORD
°° Value = The password of the user you created when setting up

Galera

Volumes:

•	 Add a volume as wpcontent:/var/www/html/wp-content/
•	 Volume Driver: convoy-gluster

Then click on the Launch button. It will take a minute to download and start the
container, once it has started, you should see the status change to Active. Once you
have a healthy service, click on the drop-down menu next to Add Service and add a
Load Balancer:

•	 Name: WordPressLB
•	 Description: My WordPress Load Balancer
•	 Source IP/Port: 80
•	 Default Target Port: 80
•	 Target Service: WordPress

Once you have added the Load Balancer, click on the information icon next to the
Load Balancer service to get the IP address, open this in your browser and then
perform the WordPress installation, and add the featured image as we have done in
other chapters.

Now we have a WordPress container up and running with a highly available
database backend, which we can move between hosts maintaining the same IP
address and content thanks to the load balancer and Gluster FS storage.

DNS
The last catalog item I thought I would cover is one of the DNS managers. What
these items do is automatically connect with your DNS provider's API and create
DNS records for each of the stacks and services you launch. As I use Route53 to
manage my DNS records, I clicked on View Details on the Route53 DNS Stack
on the catalog screen.

Looking at Schedulers

[288]

In the Configuration Options section, I entered the following information:

•	 AWS access key: My access key, the user must have permission to
access Route53

•	 AWS secret key: The secret key that accompanies the preceding access key
•	 AWS region: The region I want to use
•	 Hosted zone: The zone I wanted to use was mckendrick.io, so I entered

that here
•	 TTL: I left this as the default 299 seconds, if you want a quicker update to

your DNS, you should set this to 60 seconds

Then I clicked on the Launch button. After a few minutes, I checked the hosted
zone in the Route53 control panel and the service had connected automatically
and created the following records for stacks and services I already had running.

The DNS entries are formatted in the following way:

<service>.<stack>.<environment>.<hosted zone>

So in my case, I had entries for the following:

•	 clusterloadbalancer.default.default.mckendrick.io

•	 myclusterapp.default.default.mckendrick.io

As myclusterapp contained three containers, three IP addresses were added to the
entry so that round robin DNS would direct traffic to each container:

Another good thing about the DNS catalog items is that they are automatically
updated, meaning that if we were to move a container to a different host, the DNS
for the container would automatically be updated to reflect the new IP address.

Chapter 7

[289]

Docker & Rancher Compose
Another thing that you may have noticed is that when you go to add a stack,
Rancher gives you two boxes where you can enter the content of a Docker and
Rancher Compose file.

So far, we have been creating services manually using the web interface, for each
of the stacks we have built up with way you have the option of viewing it as a
configuration files.

In the following screenshot, we are looking at the Docker and Rancher compose files
for our Clustered Application stack. To get this view, click on the icon to the left of
where it says Active:

This feature allows you to ship your stacks to other Rancher users. The contents
of the preceding files are given in the following so that you can try it on your own
Rachner installation.

Looking at Schedulers

[290]

Docker Compose
This is a standard version one Docker Compose file, there are Rancher settings
passed as labels:

ClusterLoadBalancer:
 ports:
 - 80:80
 tty: true
 image: rancher/load-balancer-service
 links:
 - MyClusterApp:MyClusterApp
 stdin_open: true
MyClusterApp:
 ports:
 - 60036:80/tcp
 log_driver: ''
 labels:
 io.rancher.scheduler.global: 'true'
 io.rancher.container.pull_image: always
 tty: true
 log_opt: {}
 image: russmckendrick/cluster
 stdin_open: true

Rancher Compose
The Rancher Compose file wraps the containers defined in the Docker Compose file
in Rancher services, as you can see where we are defining the health checks for both
the Load Balancer and Cluster containers:

ClusterLoadBalancer:
 scale: 1
 load_balancer_config:
 haproxy_config: {}
 health_check:
 port: 42
 interval: 2000
 unhealthy_threshold: 3
 healthy_threshold: 2
 response_timeout: 2000
MyClusterApp:
 health_check:
 port: 80
 interval: 2000

Chapter 7

[291]

 initializing_timeout: 60000
 unhealthy_threshold: 3
 strategy: recreate
 request_line: GET "/index.html" "HTTP/1.0"
 healthy_threshold: 2
 response_timeout: 2000

Rancher Compose is also the name of the command-line tool that can locally install
to interact with your Rancher installation. As the command line duplicates the
functionality, we have already covered, I won't be going into any detail about it here;
however, if you would like give it a go, complete details about it can be found in the
official Rancher documentation at http://docs.rancher.com/rancher/rancher-
compose/.

Back to where we started
The last task we are going to do using Rancher is to launch a Kubernetes cluster in
DigitalOcean. As mentioned at the start of the chapter, Rancher not only manages its
own Cattle clusters, but also Kubernetes and Swarm ones.

To create a Kubernetes cluster, click on the drop-down menu where it says
Environment, underneath your avatar and click on Add Environment:

http://docs.rancher.com/rancher/rancher-compose/
http://docs.rancher.com/rancher/rancher-compose/

Looking at Schedulers

[292]

On the page, you will be asked which container-orchestration tool would you like to
use for the environment, what it should be called, and finally who should be able to
access it.

Select Kubernetes, fill in the remaining information, and click on the Create button.
Once you have your second environment, you will be able to check between them on
the Environment drop-down menu.

Similar to when we first launched Rancher, we will need to add some hosts that will
make up our Kubernetes cluster. To do this, click on Add Host and then enter the
details as done earlier, apart from this, time call them Kubernetes rather than Rancher.

You will then be taken to a screen that looks like the following screenshot:

It will take about 10 minutes to complete the installation. Once it has completed,
you will be taken to a familiar-looking Rancher screen; however, you will now
have Services, RCS, Pods, and kubectl listed in the secondary menu.

Chapter 7

[293]

Clicking on kubectl will take you to a page that allows you to run kubectl commands
in your browser and also you will get an option to download a kubectl config file so
that you can interact with Kubernetes from your local machine as well:

Looking at Schedulers

[294]

Another thing you will notice is that a different catalog has been loaded, this is
because Docker and Rancher Compose files won't work with Kubernetes:

Feel free to launch services like we did in the first part of this chapter or use the
catalog items to create a service.

Removing the hosts
At this point, you will have around seven instances launched in DigitalOcean. As we
are coming to the end of this chapter, you should terminate all these machines so that
you do not get charged for resources you are not using.

I would recommend doing this using the DigitalOcean control panel rather than
through Rancher, that way you can be 100% sure that the Droplets have been
successfully powered down and removed, meaning that you do not get billed
for them.

Chapter 7

[295]

Summing up Rancher
As you have seen, Rancher is not only an incredibly powerful piece of open source
software, it is also extremely user-friendly and well-polished.

We have only touched on some of the features of Rancher here, for example, you can
split your hosts between providers to create your own regions, there is a full API that
allows you to interact with Rancher from your own applications and also there is a
full command-line interface.

For a 1.0 release, it is incredibly feature-rich and stable. I don't think I saw it having
any problems during my time using it.

If you want a tool that allows you launch your own clusters and then give end users,
such as developers, access to an intuitive interface, then Rancher is going to be a
match made in heaven.

Summary
The three tools that we have looked are not the only schedulers available, there are
also tools such as the following to name a few:

•	 Nomad: https://www.nomadproject.io/
•	 Fleet: https://coreos.com/using-coreos/clustering/
•	 Marathon: https://mesosphere.github.io/marathon/

All these schedulers have their own requirements, complexities, and use cases.

If you had asked me a year ago which of the three schedulers that we have looked
in this chapter would I recommend, I would have said Amazons EC2 Container
Service. Kubernetes would have been second and I probably wouldn't have
mentioned Rancher.

In the past 12 months, Kubernetes has vastly reduced its complexity when it comes
to installing the service has removed its biggest barrier to people adopting it, and as
we have demonstrated, Rancher reduces this complexity even further.

https://coreos.com/using-coreos/clustering/
https://mesosphere.github.io/marathon/

Looking at Schedulers

[296]

Unfortunately, this has left EC2 Container Service feeling like it is a lot more complex
to both configure and operate when compared to the other tools, especially as both
Kubernetes and Rancher support launching hosts in Amazon Web Services and can
take advantage of the myriad of supporting services offer by Amazon's public cloud.

In our next and final chapter, we are going to be reviewing all the tools that we
have looked at throughout the previous chapters, we will come up with some use
cases as well, and talk about the security considerations that we will need to take
when using them.

[297]

Security, Challenges, and
Conclusions

In this, our final chapter, we are going to be looking at all of the tools we have
covered in this book and answering the following questions:

•	 How the tools can affect the security of your Docker installation?
•	 How they can work together and when should they be used?
•	 What problems and challenges can the tools be used to resolve?

Securing your containers
So far, we have quite happily been pulling images from the Docker Hub without
much thought as to who created them or what is actually installed. This hasn't been
too much of a worry as we have been creating ad-hoc environments to launch the
containers in.

As we move towards production and resolving the worked in dev problem, it starts
to become important to know what it is that you are installing.

Throughout the previous chapters, we have been using the following container images:

•	 WordPress: https://hub.docker.com/_/wordpress/
•	 MySQL: https://hub.docker.com/_/mysql/
•	 MariaDB: https://hub.docker.com/_/mariadb/

All three of these images are classified as official images and have not only been built
to a documented standard, they are also peer reviewed at each pull request.

https://hub.docker.com/_/wordpress/
https://hub.docker.com/_/mysql/
https://hub.docker.com/_/mariadb/

Security, Challenges, and Conclusions

[298]

There are then the three images from my own Docker Hub account:

•	 Consul: https://hub.docker.com/r/russmckendrick/consul/
•	 NGINX: https://hub.docker.com/r/russmckendrick/nginx/
•	 Cluster Example: https://hub.docker.com/r/russmckendrick/cluster/

Before we look at the official images, let's take a look at the Consul image from my
own Docker Hub account and why it is safe to trust it.

Docker Hub
Here, we are going to look at the three types of images that can be downloaded from
the Docker Hub.

I have chosen to concentrate on the Docker Hub rather than private registries as the
tools we have been looking at the previous chapters all pull from the Docker Hub,
and it is also more likely that you or your end users will use the Docker Hub as their
primary resource for their image files.

Dockerfile
The Consul container image is built using a Dockerfile, which is publically accessibly
on my GitHub account. Unlike images that are pushed, more on this later in the
chapter, it means that you can exactly see action has been taken to build the image.

Firstly, we are using the russmckendrick/base image as our starting point. Again,
the Dockerfile for this image is publicly available, so let's look at this now:

Dockerfile
#
See https://github.com/russmckendrick/docker
#
FROM alpine:latest
MAINTAINER Russ McKendrick <russ@mckendrick.io>
RUN apk update && apk upgrade && \
 apk add ca-certificates bash && \
 rm -rf /var/cache/apk/*

https://hub.docker.com/r/russmckendrick/consul/
https://hub.docker.com/r/russmckendrick/nginx/
https://hub.docker.com/r/russmckendrick/cluster/

Chapter 8

[299]

As you can see, all this does is:

•	 Uses the latest version of the official Alpine Linux image
•	 Runs an apk update and then apk upgrade to ensure that all the packages

are updated
•	 Installs the ca-certificates and bash packages
•	 Cleans up any artifacts left over from the upgrade and installation of the

packages

So, now that we know what the base image looks like, let's move onto the Dockerfile
for the Consul container:

Dockerfile
#
See https://github.com/russmckendrick/docker
#
FROM russmckendrick/base:latest
MAINTAINER Russ McKendrick <russ@mckendrick.io>
ENV CONSUL_VERSION 0.6.4
ENV CONSUL_SHA256
abdf0e1856292468e2c9971420d73b805e93888e006c76324ae39416edcf0627
ENV CONSUL_UI_SHA256
5f8841b51e0e3e2eb1f1dc66a47310ae42b0448e77df14c83bb49e0e0d5fa4b7
RUN apk add --update wget \
 && wget -O consul.zip https://releases.hashicorp.com/
consul/${CONSUL_VERSION}/consul_${CONSUL_VERSION}_linux_amd64.zip \
 && echo "$CONSUL_SHA256 *consul.zip" | sha256sum -c - \
 && unzip consul.zip \
 && mv consul /bin/ \
 && rm -rf consul.zip \
 && cd /tmp \
 && wget -O ui.zip https://releases.hashicorp.com/consul/${CONSUL_
VERSION}/consul_${CONSUL_VERSION}_web_ui.zip \
 && echo "$CONSUL_UI_SHA256 *ui.zip" | sha256sum -c - \
 && unzip ui.zip \
 && mkdir -p /ui \
 && mv * /ui \
 && rm -rf /tmp/* /var/cache/apk/*
EXPOSE 8300 8301 8301/udp 8302 8302/udp 8400 8500 8600 8600/udp
VOLUME ["/data"]
ENTRYPOINT ["/bin/consul"]
CMD ["agent", "-data-dir", "/data", "-server", "-bootstrap-expect",
"1", "-ui-dir", "/ui", "-client=0.0.0.0"]

Security, Challenges, and Conclusions

[300]

As you can see, there is a little more going on in this Dockerfile:

1.	 We will define that we are using the latest version of russmckendrick/base
as our base image.

2.	 Then, we will set three environment variables. Firstly, the version of Consul
we want to download, and then the checksum for the files, which we will
grab from a third-party website.

3.	 We will then install the wget binary using the APK package manager.
4.	 Next up, we will download the Consul binaries from the HashiCorp website,

notice that we are downloading over HTTPS and that we are running
sha256sum against the downloaded file to check whether it is has been
tampered with. If the file doesn't pass this test, then the build will fail.

5.	 Once the zip file is confirmed to be the correct one, we uncompress it and
copy the binary in place.

6.	 We will then do the same actions again for the Consul web interface.
7.	 Finally, we will configure some default actions of when the container is

launched by exposing the correct port, entry point, and default command.

All of this means that you can see exactly what is installed and how the image is
configured before you make the decision to download a container using the image.

Official images
There are are just over 100 images that are flagged as official. You view these in
the Docker Hub at https://hub.docker.com/explore/. Official images are easy
to spot as they are not preceded by a username, for example, the following are the
docker pull lines for the official NGINX image and also my own:

docker pull nginx

docker pull russmckendrick/nginx

As you can see, the top one is the official image.

A lot of the official images are maintained by the upstream providers, for example,
the CentOS, Debian, and Jenkins images are maintained by members of the
respective projects:

•	 https://github.com/docker-library/official-images/blob/master/
library/centos

•	 https://github.com/docker-library/official-images/blob/master/
library/debian

•	 https://github.com/docker-library/official-images/blob/master/
library/jenkins

https://hub.docker.com/explore/
https://github.com/docker-library/official-images/blob/master/library/centos
https://github.com/docker-library/official-images/blob/master/library/centos
https://github.com/docker-library/official-images/blob/master/library/debian
https://github.com/docker-library/official-images/blob/master/library/debian
https://github.com/docker-library/official-images/blob/master/library/jenkins
https://github.com/docker-library/official-images/blob/master/library/jenkins

Chapter 8

[301]

Also, there is a review process for each pull request submitted. This helps in
ensuring that each official image is both consistent and built with security in mind.

The other important thing to note about official images is that no official image can
be derived from, or depend on, non-official images. This means that there should be
no way a non-official image's content can find its way into an official image.

A full detailed explanation on the build standards for official images, as well details
of what is expected of an official image maintainer can be found in the Docker
Library GitHub page at https://github.com/docker-library/official-
images/.

The downside of Docker Hub is that it can sometimes be slow, and I mean really
slow. The situation has improved over the past 12 months, but there have been
times when Docker's build system has had a big backlog, meaning that your
build is queued.

This is only a problem if you need to trigger a build and want it immediately
available, which could be a case if you need to quickly fix this application bug
before anyone notices.

Pushed images
Finally, there is an elephant in the room, the complete images, which have been
pushed from a user to their Docker Hub.

Personally, I try to avoid pushing complete images to my Docker Hub account, as
they are something I would typically not recommend using, so why would I expect
other users to use them?

As these images are not being built by a published Dockerfile, it is difficult to get an
idea of the standard they have built to and exactly what they contain.

Docker has tried to address this by introducing content trust to the Docker Hub,
what this does is sign the image before it is pushed to the Docker Hub with the
publisher's private key. When you download the image, the Docker Engine uses
the publisher's public key to verify that the content of the image is exactly how the
publisher intended it to be.

This helps to ensure that the image has not been tampered with at any point of the
image's journey from the publisher to you running the container.

More information on Content Trust can be found at https://docs.docker.com/
engine/security/trust/content_trust/.

https://github.com/docker-library/official-images/
https://github.com/docker-library/official-images/
 https://docs.docker.com/engine/security/trust/content_trust/
 https://docs.docker.com/engine/security/trust/content_trust/

Security, Challenges, and Conclusions

[302]

This is useful if you are using the Docker Hub to publish private images that contain
propriety applications or code bases you do want to be publically available.

However, for publically available images, I would always question why the image
had to be pushed to the Docker Hub rather than being built with a Dockerfile.

Docker Cloud
Since the time I started writing this book, Docker has introduced a commercial
service called Docker Cloud. This service is described as a hosted service for
Docker container management and deployment by Docker.

You can find details of the service at the following URLs:

•	 https://www.docker.com/products/docker-cloud

•	 https://cloud.docker.com/

So, why mention this service when we are talking about security? Well, in May 2016,
Docker announced that they are adding a Security Scanning feature, which, at the
time of writing this book, is free of charge.

This feature works with your Private Repositories hosted on the Docker Hub,
meaning that any images you have pushed can be scanned.

The service performs a static analysis on your images, looking for known
vulnerabilities in the binaries you have installed.

For example, in Chapter 6, Extending Your Infrastructure, we created an image using
Packer, I still had an old build of this image on my local machine, so I pushed it to a
private Docker Hub repository and took advantage of the free trial of both Docker
Cloud and Docker Security Scanning.

https://www.docker.com/products/docker-cloud
https://cloud.docker.com/

Chapter 8

[303]

As you can see from the following result, the service has found three critical
vulnerabilities in the image:

This means that it is time to update my base image and the version of NodeJS
being used.

More details on the service and how it works can be found in the following
announcement blog post:

https://blog.docker.com/2016/05/docker-security-scanning/

There are a few alternatives to this service, such as:

•	 Clair: https://github.com/coreos/clair
•	 Banyan Collector: https://github.com/banyanops/collector
•	 The Docker Bench for Security: https://github.com/docker/docker-

bench-security

https://blog.docker.com/2016/05/docker-security-scanning/
https://github.com/coreos/clair
https://github.com/banyanops/collector
https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security

Security, Challenges, and Conclusions

[304]

However, the newly launched Docker service is the simplest one to get started with,
as it already has deep level of integration with other Docker services.

Private registries
Remember that it is possible to use a private registry to distribute your Docker
images. I would recommend taking this approach if you have to bundle your
application's code within an image.

A private registry is a resource that allows you push and pull images; typically, it is
only available to trusted hosts within your network and is not publically available.

Private registries do not allow you to host automated builds and they do not
currently support content trust, this is why they are deployed on private or locked
down networks.

More information on hosting your own private registry can be found at the official
documentation at https://docs.docker.com/registry/.

The challenges
So, why have we been looking at extending the core Docker Engine? Here are a few
scenarios that the tools we have covered in the previous chapters could be used to
add value or resolve a potential problem.

Development
Way back, at the start of Chapter 1, Introduction to Extending Docker, we saw the
Worked fine in dev, Ops problem now meme and how it is worryingly still relevant
today. Containers go a long way to resolve this issue; in fact, Docker is seen as a
great unifier by a lot of people.

However, if developers do not have a way of easily introducing these tools into their
day-to-day lives, then you are not resolving the issue raised by the meme.

The tools that could help developers start to use Docker locally as the first step of the
development process are as follows:

•	 Docker Toolbox
•	 Docker Machine
•	 Vagrant

https://docs.docker.com/registry/

Chapter 8

[305]

Along with the recently announced, but currently in private beta, native versions
of Docker for OS X and Windows, more details on this can be found in the
announcement blog post at https://blog.docker.com/2016/03/docker-for-
mac-windows-beta/.

Additionally, depending on your existing workflows, you could also use the
following tools to introduce containers to your existing workflows:

•	 Ansible
•	 Jenkins
•	 Packer
•	 Puppet

Staging
Depending on your requirements, you could use the following plugins in
conjunction with Docker Compose to create a basic staging environment with multi-
host networking and storage:

•	 Convoy
•	 Docker overlay network
•	 Docker Volumes
•	 Flocker
•	 REX-Ray
•	 Weave

You can also use these tools to give you a good level of control over where the
containers are deployed within your staging environment:

•	 Ansible
•	 Docker Swarm
•	 Jenkins
•	 Puppet
•	 Rancher

Additionally, your developers could have some level of access in order to be able to
deploy a test version using these tools either via continuous integration tools, web
interfaces, or via command line.

 https://blog.docker.com/2016/03/docker-for-mac-windows-beta/
 https://blog.docker.com/2016/03/docker-for-mac-windows-beta/

Security, Challenges, and Conclusions

[306]

Production
Again, you could use the following plugins to create a basic production-ready
environment using Docker Compose:

•	 Convoy
•	 Docker Overlay Network
•	 Docker Volumes
•	 Flocker
•	 REX-Ray
•	 Weave

However, you will probably want your production environment to look more after
itself in terms of reacting to failure, scaling events, and automatic registration of
containers with services such as DNS and Load Balancers:

•	 Ansible
•	 Amazon ECS
•	 Docker Swarm
•	 Kubernetes
•	 Puppet
•	 Rancher

All these listed tools should be considered production-ready. However, as Puppet
and Ansible offer little in the way of scheduling, you should only really consider
them if you are introducing Docker into an existing Puppet or Ansible-managed
environment.

If there is one thing I hope you have taken from this book, it is that there doesn't
have to be one size fits all when it comes to using Docker.

As we discussed, there are tools supplied by both Docker and third parties that allow
you scale your containers from a single host to potentially hundreds or thousands.

Chapter 8

[307]

Summary
In the previous chapters, we experienced using combinations of the tools together.

For example, we have been using both Docker Storage and Network plugins to
create a highly available WordPress installation using both the tools provided by
Docker themselves, that is, Docker Compose and Docker Swarm, as well Kubernetes
and Rancher.

We also deployed our underlying Docker infrastructure using Docker Machine,
Ansible, as well as tools such as Kubernetes and Rancher.

Then, we deployed various first-party and third-party plugins to help with storage,
networking, and features such as load balancing to take full advantage of the
environment that we have been deploying to, such as Amazon Web Service
and DigitalOcean.

All the tools that we have looked at compliment the core Docker Engine, and in most
cases, there is little or no change needed to be made to your Docker images to start
using the plugins or third-party tools.

All of this means that it is relatively easy to build a highly available, yet easy to use
platform to deploy your applications into whether you are using a public cloud,
your own virtual machines, bare metal servers, or just your local laptop, and tailor
it to your developers, application, and your own needs, all while ensuring that if it
worked in development, it will work in production.

[309]

Index
A
Amazon EC2 Container Service (ECS)

about 247, 248
launching 248-262
URL 247

Amazon Elastic Block Store
(Amazon EBS) 226, 248

Amazon Relational Database
Service (RDS) 248

Amazon Virtual Private Cloud (VPC) 39
Amazon Web Services driver

about 38-43
URL 38

Ansible
installing 166-169
URL 153
using 166
versus Puppet 175, 176

Ansible playbook
Docker, installing 171-173
Droplets, launching 170
folders and files 170
URL 166
Weave, installing 171-173
WordPress container, launching 175
WordPress installation,

configuring 173, 174
Authorization Plugins

URL 151
Auto Scaling 248
AWS Command Line Interface (CLI)

about 217
URL 217

AWS Console
URL 248

B
Banyan Collector

URL 303
Boot2Docker 27

C
catalog, Rancher

about 281
clustered database 285
DNS 287, 288
storage 283-285
WordPress 281, 282
WordPress, launching 286

Cattle cluster 269-271
Century Link Labs

URL 194
Clair

URL 303
CloudFormation template

URL 105
ClusterApp 282
ClusterHQ Volume Hub

reference 93
Consul

URL 111
containers

Docker Hub 298
lifecycle 8
securing 297, 298

[310]

Content Trust
URL 301

Convoy
about 145, 146
reference link 59

D
daemon

about 146
reference link 146

default volume driver 64-71
development process

tools, using 305
DigitalOcean

URL 30, 167
DigitalOcean driver 30-38
DNS, configuration options

AWS access key 288
AWS region 288
AWS secret key 288
Hosted zone 288
TTL 288

Docker
about 1, 2
containers 5, 6
dedicated machines 3
dedicated, versus virtual machines 5
images, building 185-188
installing 8-11
installing locally 18
limits 12-15
using, with Puppet 156-163
virtual machines 4
with Jenkins 196, 197

docker-ansible folder
URL 168

Docker Build
versus Packer 191-195

Docker Cloud
about 302, 303
URL 302

Docker Compose
about 52

compose files 53-56
features 52, 53
installing 197
WordPress installation, launching 56, 57

Docker Hub
about 298
Docker Cloud 302, 303
Dockerfile 298-300
official images 300, 301
private registries 304
pushed images 301
URL 9

Docker Machine
about 27
Amazon Web Services driver 38
considerations 43
developing locally 27-29
DigitalOcean driver 30
heading, into cloud 29

Docker module
URL 165

Docker networking 109
Docker Overlay Network

URL 109
Docker Remote API

URL 151
Docker Swarm

about 44
discovery backends 51
discovery services 51
local cluster, creating 44-48
Remote Cluster, creating 48-51

Docker Toolbox
about 17
installing 18-26

Docker Volumes
URL 59

E
Elastic Load Balancing (ELB) 248
Elasticsearch

URL 242
ELK 242-244

[311]

Etcd
URL 111

F
Fig

URL 52
Flocker

about 90, 146, 147
deploying 99-104
features 90, 91
installing 91
setting up 91-98
summing up 105, 106
URL 59

G
Galera Cluster

about 285
URL 285

Gluster FS
about 283
URL 283

Go
about 148
URL 148

Grafana 240-242

H
Homebrew

about 166
URL 166

I
ImageLayers

URL 194
images

best practices, for building 196
building, with application 185
building, with Docker 185-188
building, with Packer 188-191
packaging 185

iptables
about 276
URL 276

J
JavaScript Object Notation (JSON) 189
Jenkins

application, creating 203
environment, preparing 197-202
pipeline, creating 203-212
URL 153
using 213
with Docker 196, 197

Jenkins 2.0
URL 196

K
Kibana

URL 243
Kubernetes

about 215
advantages 247
application, launching 222-226
cluster, destroying 246
features 216
installing 217-222
principles 216
supporting tools 237
URL 215
WordPress stack, launching 226

Kubernetes Dashboard 238-240
KVM

URL 4

L
Learning VM

URL 165
Logstash

URL 243
Loopback Device

about 74
reference 74

[312]

M
MariaDB

URL 297
Moby Counter

URL 185
multi-host networking, with overlays

about 110
Consul 120, 121
Discovery, launching 111-113
multi-host networks, composing 121-125
overlay network, adding 116, 117
overlay network, using 117-119
summing up 125
Swarm, readying 113-115

MySQL
URL 297

N
Network Driver Plugins

URL 151
network, weaving

about 125
cluster, configuring 126-128
Docker Compose, and Weave 131-133
Swarm, calling off 135
Weave, configuring 128-130
Weave, installing 128-130
Weavemesh Driver 135-144
Weave Scope 133

NGINX
URL 298

O
official images

about 300, 301
references 300
URL 301

overlay network
reference link 110

P
Packer

about 188
images, building 188-191
URL 153, 189
versus Docker Build 191-195

plugin
about 148
activation 150
API calls, handling 150, 151
discovering 148, 149
starting 149

plugin service
writing 151

power supply units (PSU) 15
private registries

about 304
URL 304

production environment
creating 306

provisioner, Vagrant
about 177-180
Ansible 177
Chef 177
Docker 177
File 177
Puppet 177
Shell 177

Puppet
best practices 165
Docker, using with 156-163
example 164, 165
URL 153
using 154, 155
versus Ansible 175, 176

Puppet Forge
URL 164

Puppet Open Source Docs
URL 165

pushed images 301

[313]

R
Rancher

about 262
advantages 295
catalog 281
Cattle cluster 269-271
Cluster application, deploying 271-275
Cluster application, executing 275-281
hosts, removing 294
installation, securing 265-269
installing 263, 264
Kubernetes cluster, launching 291-294
URL 262

Rancher compose file
about 289, 290
URL 291

REX-Ray
about 146
reference 59
URL 146

S
software-defined network (SDN) 15
staging environment

creating 305
supporting tools, Kubernetes

cluster tools 245
ELK 242-244
Grafana 240-242
Kubernetes Dashboard 238-240

T
third party plugins

about 145
commonalities 147
Convoy 145, 146
Flocker 146, 147
REX-Ray 146
Weave 147

third party volume drivers
about 72, 73

containers, launching with
Convoy volume 75-77

Convoy backups, restoring 80, 81
Convoy, installing 74
Convoy snapshot, backing up 78-80
Convoy, summing up 82
REX-Ray, installing 83-87
REX-Ray, summing up 90
REX-Ray volume, moving 88, 89
snapshot, creating with Convoy 77, 78
volumes, blocking with REX-Ray 82

tools
need for 153, 154
used, at development process 304
used, for creating production

environment 306
used, for creating staging environment 305
used, for resolving challenges 304

V
Vagrant

about 176
URL 153
with provisioner 177-180

Vagrant Docker provider 180-184
VirtualBox

URL 44
VMware vSphere

URL 4
Volume Driver Plugins

URL 151
Volume Hub token

URL 95

W
Weave

about 147
configuring 129, 130
installing 128
reference link 109, 144
summarizing 144

[314]

Weave module
URL 165

Weave Scope
about 133
URL 133

Weaveworks Docker Hub
URL 147

WordPress
about 53
launching 232-237
URL 53

WordPress stack
launching 226
MySQL, launching 228-231
volumes, creating 227

X
XenSource

URL 4

Y
YAML Ain't Markup Language (YAML) 53

Z
zero volumes 60-64
ZooKeeper

URL 111

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to
Extending Docker
	The rise of Docker
	Dedicated machines
	Virtual machines
	Dedicated versus virtual machines
	Containers

	Everyone should be using Docker?
	Life cycle of a container
	Installing Docker

	What are the limits?
	Summary

	Chapter 2: Introducing First-party Tools
	Docker Toolbox
	Why install Docker locally?
	Installing Docker Toolbox

	Docker Machine
	Developing locally
	Heading into the cloud
	The DigitalOcean driver
	The Amazon Web Services driver

	Other considerations

	Docker Swarm
	Creating a local cluster
	Creating a Remote Cluster
	Discovery backends

	Docker Compose
	Why Compose?
	Compose files
	Launching more

	Summary

	Chapter 3: Volume Plugins
	Zero volumes
	The default volume driver
	Third-party volume drivers
	Installing Convoy
	Launching containers with a Convoy volume
	Creating a snapshot using Convoy
	Backing up our Convoy snapshot
	Restoring our Convoy backups
	Summing up Convoy
	Block volumes using REX-Ray
	Installing REX-Ray
	Moving the REX-Ray volume
	Summing up REX-Ray

	Flocker and Volume Hub
	Forming your Flock
	Deploying into the Flock
	Summing up Flocker

	Summary

	Chapter 4: Network Plugins
	Docker networking
	Multi-host networking with overlays
	Launching Discovery
	Readying the Swarm
	Adding the overlay network
	Using the overlay network
	Back to Consul
	Composing multi-host networks
	Summing up multi-host networking

	Weaving a network
	Configuring a Cluster again
	Installing and configuring Weave
	Docker Compose and Weave
	Weave Scope
	Calling off the Swarm
	Weavemesh Driver
	Summarizing Weave

	Summary

	Chapter 5: Building Your Own Plugin
	Third-party plugins
	Convoy
	REX-Ray
	Flocker
	Weave
	The commonalities among the plugins

	Understanding a plugin
	Discovery
	Startup order
	Activation
	API calls

	Writing your plugin service
	Summary

	Chapter 6: Extending Your Infrastructure
	Why use these tools?
	Puppetize all the things
	Docker and Puppet
	A more advanced Puppet example
	A final note about Puppet

	Orchestration with Ansible
	Preparation
	The playbook
	Section one
	Section Two
	Section three
	Section four

	Ansible and Puppet

	Vagrant (again)
	Provisioning using Vagrant
	The Vagrant Docker provider

	Packaging images
	An application
	The Docker way
	Building with Packer
	Packer versus Docker Build
	Image summary

	Serving up Docker with Jenkins
	Preparing the environment
	Creating an application
	Creating a pipeline
	Summing up Jenkins

	Summary

	Chapter 7: Looking at Schedulers
	Getting started with Kubernetes
	Installing Kubernetes
	Launching our first Kubernetes application
	An advanced example
	Creating the volumes
	Launching MySQL
	Launching WordPress
	Supporting tools

	Destroying the cluster
	Recap

	Amazon EC2 Container Service (ECS)
	Launching ECS in the console
	Recap

	Rancher
	Installing Rancher
	Securing your Rancher installation
	Cattle cluster
	Deploying the Cluster application
	What's going on in the background?
	The catalog
	WordPress
	Storage
	Clustered database
	Looking at WordPress again
	DNS

	Docker & Rancher Compose
	Docker Compose
	Rancher Compose

	Back to where we started
	Removing the hosts
	Summing up Rancher

	Summary

	Chapter 8: Security, Challenges, and Conclusions
	Securing your containers
	Docker Hub
	Dockerfile
	Official images
	Pushed images
	Docker Cloud
	Private registries

	The challenges
	Development
	Staging
	Production

	Summary

	Index

