
Kubernetes 
Microservices 
with Docker

—
Deepak Vohra
Foreword by Massimo Nardone

THE E XPER T ’S  VOICE®  IN  O P E N  S O U R C E



     Kubernetes 
Microservices with 

Docker 

    Deepak Vohra 



Kubernetes Microservices with Docker

Deepak Vohra				  
White Rock, British Columbia					  
Canada			 

ISBN-13 (pbk): 978-1-4842-1906-5		  ISBN-13 (electronic): 978-1-4842-1907-2
DOI 10.1007/978-1-4842-1907-2 

Library of Congress Control Number: 2016937418

Copyright © 2016 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction 
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted 
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied 
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser 
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright 
Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. 
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to 
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,  

Celstin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,  
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,  
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer  
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.  
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk 
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at 
www.apress.com/9781484219065. For additional information about how to locate and download your book’s 
source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the 
Supplementary Material section for each chapter.

Printed on acid-free paper

http://www.apress.com/9781484219065
http://www.apress.com/source-code/


iii

Contents at a Glance

About the Author ...................................................................................................xvii

About the Technical Reviewer ................................................................................xix

Foreword ................................................................................................................xxi

 ■Part I: Getting Started ......................................................................... 1

 ■Chapter 1: Installing Kubernetes Using Docker ..................................................... 3

 ■Chapter 2: Hello Kubernetes ................................................................................ 39

 ■Chapter 3: Using Custom Commands and Environment Variables ...................... 77

 ■Part II: Relational Databases ............................................................ 95

 ■Chapter 4: Using MySQL Database ...................................................................... 97

 ■Chapter 5: Using PostgreSQL Database ............................................................. 115

 ■Chapter 6: Using Oracle Database ..................................................................... 141

 ■Part III: NoSQL Database ................................................................. 165

 ■Chapter 7: Using MongoDB Database ................................................................ 167

 ■Chapter 8: Using Apache Cassandra Database .................................................. 201

 ■Chapter 9: Using Couchbase .............................................................................. 231

 ■Part IV: Apache Hadoop Ecosystem ................................................ 275

 ■Chapter 10: Using Apache Hadoop Ecosystem .................................................. 277

 ■Chapter 11: Using Apache Solr .......................................................................... 313

 ■Chapter 12: Using Apache Kafka ....................................................................... 347



 ■ CONTENTS AT A GLANCE

iv

 ■Part V: Multi Containers and Nodes ................................................ 373

 ■Chapter 13: Creating a Multi-Container Pod ...................................................... 375

 ■Chapter 14: Installing Kubernetes on a Multi-Node Cluster .............................. 399

Index ..................................................................................................................... 429



v

Contents

About the Author ...................................................................................................xvii

About the Technical Reviewer ................................................................................xix

Foreword ................................................................................................................xxi

 ■Part I: Getting Started ......................................................................... 1

 ■Chapter 1: Installing Kubernetes Using Docker ..................................................... 3

Setting the Environment ................................................................................................... 4

Installing Docker .............................................................................................................. 5

Installing Kubernetes ..................................................................................................... 15

Starting etcd ................................................................................................................... 23

Starting Kubernetes Master ........................................................................................... 25

Starting Service Proxy .................................................................................................... 28

Listing the Kubernetes Docker Containers ..................................................................... 29

Installing kubectl ............................................................................................................ 32

Listing Services .............................................................................................................. 35

Listing Nodes .................................................................................................................. 36

Testing the Kubernetes Installation ................................................................................ 36

Summary ........................................................................................................................ 38

 ■Chapter 2: Hello Kubernetes ................................................................................ 39

Overview ........................................................................................................................ 39

What Is a Node? .................................................................................................................................... 39

What Is a Cluster?................................................................................................................................. 40

What Is a Pod? ...................................................................................................................................... 40



 ■ CONTENTS

vi

What Is a Service? ................................................................................................................................ 40

What Is a Replication Controller? ......................................................................................................... 40

What Is a Label? ................................................................................................................................... 41

What Is a Selector? ............................................................................................................................... 41

What Is a Name? .................................................................................................................................. 41

What Is a Namespace? ......................................................................................................................... 41

What Is a Volume? ................................................................................................................................ 41

Why Kubernetes?.................................................................................................................................. 41

Setting the Environment ................................................................................................. 42

Creating an Application Imperatively .............................................................................. 43

Creating a Service ................................................................................................................................ 44

Describing a Pod ................................................................................................................................... 46

Invoking the Hello-World Application .................................................................................................... 47

Scaling the Application ......................................................................................................................... 48

Deleting a Replication Controller .......................................................................................................... 52

Deleting a Service ................................................................................................................................ 53

Creating an Application Declaratively ............................................................................. 53

Creating a Pod Defi nition ...................................................................................................................... 54

Creating a Service Defi nition ................................................................................................................ 58

Creating a Replication Controller Defi nition.......................................................................................... 61

Invoking the Hello-World Application .................................................................................................... 64

Scaling the Application ......................................................................................................................... 68

Using JSON for the Resource Defi nitions ....................................................................... 70

Summary ........................................................................................................................ 76

 ■Chapter 3: Using Custom Commands and Environment Variables ...................... 77

Setting the Environment ................................................................................................. 77

The ENTRYPOINT and CMD Instructions ......................................................................... 78

The Command and Args Fields in a Pod Defi nition......................................................... 79

Environment Variables .................................................................................................... 80



 ■ CONTENTS

vii

Using the Default ENTRYPOINT and CMD from a Docker Image ..................................... 81

Overriding Both the ENTRYPOINT and CMD .................................................................... 84

Specifying both the Executable and the Parameters in the Command Mapping ........... 87

Specifying Both the Executable and the Parameters in the Args Mapping .................... 90

Summary ........................................................................................................................ 93

 ■Part II: Relational Databases ............................................................ 95

 ■Chapter 4: Using MySQL Database ...................................................................... 97

Setting the Environment ................................................................................................. 97

Creating a Service .......................................................................................................... 99

Creating a Replication Controller.................................................................................. 100

Listing the Pods ............................................................................................................ 104

Listing Logs .................................................................................................................. 104

Describing the Service ................................................................................................. 106

Starting an Interactive Shell ......................................................................................... 107

Starting the MySQL CLI ................................................................................................ 109

Creating a Database Table ............................................................................................ 110

Exiting the MySQL CLI and Interactive Shell ................................................................. 111

Scaling the Replicas ..................................................................................................... 111

Deleting the Replication Controller ............................................................................... 113

Summary ...................................................................................................................... 114

 ■Chapter 5: Using PostgreSQL Database ............................................................. 115

Setting the Environment ............................................................................................... 115

Creating a PostgreSQL Cluster Declaratively ............................................................... 117

Creating a Service .............................................................................................................................. 117

Creating a Replication Controller ........................................................................................................ 119

Getting the Pods ................................................................................................................................. 123

Starting an Interactive Command Shell .............................................................................................. 123



 ■ CONTENTS

viii

Starting the PostgreSQL SQL Terminal ............................................................................................... 124

Creating a Database Table .................................................................................................................. 125

Exiting the Interactive Command Shell ............................................................................................... 126

Scaling the PostgreSQL Cluster .......................................................................................................... 127

Listing the Logs .................................................................................................................................. 128

Deleting the Replication Controller ..................................................................................................... 130

Stopping the Service .......................................................................................................................... 131

Creating a PostgreSQL Cluster Imperatively ................................................................ 131

Creating a Replication Controller ........................................................................................................ 132

Getting the Pods ................................................................................................................................. 132

Creating a Service .............................................................................................................................. 133

Creating a Database Table .................................................................................................................. 134

Scaling the PostgreSQL Cluster .......................................................................................................... 137

Deleting the Replication Controller ..................................................................................................... 138

Stopping the Service .......................................................................................................................... 139

Summary ...................................................................................................................... 139

 ■Chapter 6: Using Oracle Database ..................................................................... 141

Setting the Environment ............................................................................................... 141

Creating an Oracle Database Instance Imperatively .................................................... 142

Listing Logs ........................................................................................................................................ 144

Creating a Service .............................................................................................................................. 145

Scaling the Database .......................................................................................................................... 146

Deleting the Replication Controller and Service ................................................................................. 147

Creating an Oracle Database Instance Declaratively ................................................... 148

Creating a Pod .................................................................................................................................... 148

Creating a Service .............................................................................................................................. 150

Creating a Replication Controller ........................................................................................................ 153

Keeping the Replication Level ............................................................................................................ 156

Scaling the Database .......................................................................................................................... 158

Starting the Interactive Shell .............................................................................................................. 159



 ■ CONTENTS

ix

Connecting to Database...................................................................................................................... 160

Creating a User ................................................................................................................................... 161

Creating a Database Table .................................................................................................................. 162

Exiting the Interactive Shell ................................................................................................................ 163

Summary ...................................................................................................................... 163

 ■Part III: NoSQL Database ................................................................. 165

 ■Chapter 7: Using MongoDB Database ................................................................ 167

Setting the Environment ............................................................................................... 167

Creating a MongoDB Cluster Declaratively ................................................................... 169

Creating a Service .............................................................................................................................. 169

Creating a Replication Controller ........................................................................................................ 173

Creating a Volume ............................................................................................................................... 176

Listing the Logs .................................................................................................................................. 178

Starting the Interactive Shell for Docker Container ............................................................................ 180

Starting a Mongo Shell ....................................................................................................................... 182

Creating a Database ........................................................................................................................... 182

Creating a Collection .......................................................................................................................... 183

Adding Documents ............................................................................................................................. 184

Finding Documents ............................................................................................................................. 186

Finding a Single Document ................................................................................................................. 186

Finding Specifi c Fields in a Single Document .................................................................................... 187

Dropping a Collection ......................................................................................................................... 188

Exiting Mongo Shell and Interactive Shell .......................................................................................... 188

Scaling the Cluster ............................................................................................................................. 188

Deleting the Replication Controller ..................................................................................................... 189

Deleting the Service ........................................................................................................................... 190

Using a Host Port ................................................................................................................................ 190

Creating a MongoDB Cluster Imperatively .................................................................... 194

Creating a Replication Controller ........................................................................................................ 194



 ■ CONTENTS

x

Listing the Pods .................................................................................................................................. 195

Listing the Logs .................................................................................................................................. 196

Creating a Service .............................................................................................................................. 197

Scaling the Cluster ............................................................................................................................. 198

Deleting the Service and Replication Controller ................................................................................. 200

Summary ...................................................................................................................... 200

 ■Chapter 8: Using Apache Cassandra Database .................................................. 201

Setting the Environment ............................................................................................... 201

Creating a Cassandra Cluster Declaratively ................................................................. 203

Creating a Service .............................................................................................................................. 203

Creating a Replication Controller ........................................................................................................ 206

Scaling the Database .......................................................................................................................... 211

Describing the Pod ............................................................................................................................. 212

Starting an Interactive Shell ............................................................................................................... 213

Starting the CQL Shell......................................................................................................................... 215

Creating a Keyspace ........................................................................................................................... 215

Altering a Keyspace ............................................................................................................................ 215

Using a Keyspace ............................................................................................................................... 216

Creating a Table .................................................................................................................................. 216

Deleting from a Table .......................................................................................................................... 217

Truncating a Table ............................................................................................................................... 218

Dropping a Table and Keyspace .......................................................................................................... 218

Creating a Volume ............................................................................................................................... 219

Creating a Cassandra Cluster Imperatively .................................................................. 225

Creating a Replication Controller ........................................................................................................ 225

Creating a Service .............................................................................................................................. 227

Scaling the Database .......................................................................................................................... 228

Deleting the Replication Controller and Service ................................................................................. 229

Summary ...................................................................................................................... 230



 ■ CONTENTS

xi

 ■Chapter 9: Using Couchbase .............................................................................. 231

Setting the Environment ............................................................................................... 231

Creating a Couchbase Cluster Declaratively ................................................................ 234

Creating a Pod .................................................................................................................................... 234

Creating a Service .............................................................................................................................. 237

Creating a Replication Controller ........................................................................................................ 239

Listing the Pods .................................................................................................................................. 243

Listing the Logs .................................................................................................................................. 243

Describing the Service ....................................................................................................................... 244

Listing the Endpoints .......................................................................................................................... 244

Setting Port Forwarding ...................................................................................................................... 244

Logging into Couchbase Web Console ................................................................................................ 246

Confi guring Couchbase Server ........................................................................................................... 247

Adding Documents ............................................................................................................................. 255

Starting an Interactive Shell ............................................................................................................... 264

Using the cbtransfer Tool .................................................................................................................... 265

Creating a Couchbase Cluster Imperatively ................................................................. 266

Creating a Replication Controller ........................................................................................................ 266

Listing the Pods .................................................................................................................................. 266

Creating a Service .............................................................................................................................. 268

Scaling the Cluster ............................................................................................................................. 269

Keeping the Replication Level ............................................................................................................ 270

Setting Port Forwarding ...................................................................................................................... 272

Logging in to Couchbase Admin Console ............................................................................................ 272

Summary ...................................................................................................................... 273

 ■Part IV: Apache Hadoop Ecosystem ................................................ 275

 ■Chapter 10: Using Apache Hadoop Ecosystem .................................................. 277

Setting the Environment ............................................................................................... 277

Creating an Apache Hadoop Cluster Declaratively ....................................................... 278

Creating a Service .............................................................................................................................. 279



 ■ CONTENTS

xii

Creating a Replication Controller ........................................................................................................ 281

Listing the Pods .................................................................................................................................. 283

Listing Logs ........................................................................................................................................ 284

Scaling a Cluster ................................................................................................................................. 285

Starting an Interactive Shell ............................................................................................................... 286

Running a MapReduce Application ..................................................................................................... 287

Running Hive ................................................................................................................ 296

Running HBase ............................................................................................................. 302

Deleting the Replication Controller and Service ........................................................... 307

Creating an Apache Hadoop Cluster Imperatively ........................................................ 307

Creating a Replication Controller ........................................................................................................ 307

Listing the Pods .................................................................................................................................. 308

Scaling a Cluster ................................................................................................................................. 309

Creating a Service .............................................................................................................................. 309

Starting an Interactive Shell ............................................................................................................... 310

Summary ...................................................................................................................... 311

 ■Chapter 11: Using Apache Solr .......................................................................... 313

Setting the Environment ............................................................................................... 314

Creating a Service ........................................................................................................ 315

Listing Service Endpoints ............................................................................................. 317

Describing the Service ................................................................................................. 317

Creating a Replication Controller.................................................................................. 318

Listing the Pods ............................................................................................................ 321

Describing a Replication Controller .............................................................................. 322

Listing the Logs ............................................................................................................ 323

Starting an Interactive Shell ......................................................................................... 325

Creating a Solr Core ..................................................................................................... 328

Indexing Documents ..................................................................................................... 329

Accessing Solr on Command Line with a REST Client ................................................. 332



 ■ CONTENTS

xiii

Setting Port Forwarding ............................................................................................... 337

Accessing Solr in Admin Console ................................................................................. 338

Scaling the Cluster ....................................................................................................... 344

Summary ...................................................................................................................... 345

 ■Chapter 12: Using Apache Kafka ....................................................................... 347

Setting the Environment ............................................................................................... 348

Modifying the Docker Image ........................................................................................ 349

Creating a Service ........................................................................................................ 355

Creating a Replication Controller.................................................................................. 358

Listing the Pods ............................................................................................................ 361

Describing a Pod .......................................................................................................... 362

Starting an Interactive Shell ......................................................................................... 363

Starting the Kafka Server ............................................................................................. 364

Creating a Topic ............................................................................................................ 366

Starting a Kafka Producer ............................................................................................ 367

Starting a Kafka Consumer .......................................................................................... 367

Producing and Consuming Messages .......................................................................... 367

Scaling the Cluster ....................................................................................................... 368

Deleting Replication Controller and Service ................................................................. 370

Summary ...................................................................................................................... 371

 ■Part V: Multi Containers and Nodes ................................................ 373

 ■Chapter 13: Creating a Multi-Container Pod ...................................................... 375

How to fi nd Number of Containers in a Pod? ............................................................... 376

Types of Applications Using a Multi-Container Pod ...................................................... 376

Setting the Environment ............................................................................................... 377

Creating a Service ........................................................................................................ 378

Describing a Service  ................................................................................................... 379

Creating a Replication Container .................................................................................. 380



 ■ CONTENTS

xiv

Listing the Pods ............................................................................................................ 382

Listing the Docker Containers ...................................................................................... 383

Describing the Service after Creating Replication Controller ....................................... 384

Invoking the Hello World Application on Command Line .............................................. 385

Starting the Interactive Shell ........................................................................................ 386

Starting PostgreSQL Shell ............................................................................................ 387

Setting Port Forwarding ............................................................................................... 387

Opening the Hello World Application in a Browser ....................................................... 388

Scaling the Cluster ....................................................................................................... 389

Listing the Docker Containers ............................................................................................................ 391

Describing the Service after Scaling .................................................................................................. 392

Setting Port Forwarding ...................................................................................................................... 392

Opening the Hello World Application in a Browser ............................................................................. 393

Invoking the Hello World Application from Command Line ................................................................. 394

Deleting the Replication Controller ..................................................................................................... 396

Deleting the Service ........................................................................................................................... 397

Summary ...................................................................................................................... 397

 ■Chapter 14: Installing Kubernetes on a Multi-Node Cluster .............................. 399

Components of a Multi-Node Cluster ........................................................................... 400

Setting the Environment ............................................................................................... 400

Installing the Master Node ........................................................................................... 402

Setting Up Flanneld and etcd  ............................................................................................................ 402

Starting the Kubernetes Master ......................................................................................................... 409

Running the Service Proxy ................................................................................................................. 411

Testing the One-Node Cluster ...................................................................................... 412

Adding a Worker Node .................................................................................................. 412

Exporting the Master IP ...................................................................................................................... 412

Setting Up Flanneld ............................................................................................................................ 413

Starting Up Kubernetes on Worker Node ............................................................................................ 418

Running the Service Proxy ................................................................................................................. 419



 ■ CONTENTS

xv

Testing the Kubernetes Cluster .................................................................................... 419

Running an Application on the Cluster ......................................................................... 419

Exposing the Application as a Service ......................................................................... 420

Testing the Application in a Browser ............................................................................ 422

Scaling the Application ................................................................................................. 423

Summary ...................................................................................................................... 427

Index ..................................................................................................................... 429



         



xvii

             About the Author 

     Deepak   Vohra       is a consultant and a principal member of the NuBean.com 
software company. Deepak is a Sun-certified Java programmer and Web 
component developer. He has worked in the fields of XML, Java 
programming, and Java EE for over seven years. Deepak is the coauthor of 
 Pro XML Development with Java Technology  (Apress, 2006). Deepak is also 
the author of the  JDBC 4.0  and  Oracle JDeveloper for J2EE Development, 
Processing XML Documents with Oracle JDeveloper 11g, EJB 3.0 Database 
Persistence with Oracle Fusion Middleware 11g , and  Java EE Development 
in Eclipse IDE  (Packt Publishing). He also served as the technical reviewer 
on  WebLogic: The Definitive Guide (O’Reilly Media, 2004)  and  Ruby 
Programming for the Absolute Beginner  (Cengage Learning PTR, 2007). 
Deepak is the author of  Pro Couchbase Development, Pro MongoDB 
Development , and  Pro Docker , all published by Apress in 2015. 

       



         



xix

        About the Technical Reviewer 

     Massimo   Nardone       holds a Master of Science degree in Computing 
Science from the University of Salerno, Italy. He has worked as a Project 
Manager, Software Engineer, Research Engineer, Chief Security Architect, 
Information Security Manager, PCI/SCADA Auditor, and Senior Lead IT 
Security/Cloud/SCADA Architect for many years. He currently works as 
Chief Information Security Office (CISO) for Cargotec Oyj. He has more 
than 22 years of work experience in IT including Security, SCADA, Cloud 
Computing, IT Infrastructure, Mobile, Security, and WWW technology 
areas for both national and international projects. He worked as a visiting 
lecturer and supervisor for exercises at the Networking Laboratory of the 
Helsinki University of Technology (Aalto University). He has been 
programming and teaching how to program with Android, Perl, PHP, Java, 
VB, Python, C/C++, and MySQL for more than 20 years. He holds four 
international patents (PKI, SIP, SAML, and Proxy areas). 

 He is the coauthor of  Pro Android Games  (Apress, 2015). 
 Massimo dedicates his work on this book to his loving brothers Mario 

Nardone and Roberto Nardone, who are always there when he needs them. 

       

       



         



xxi

    Foreword   

 It is a great pleasure to provide the Foreword for this book, as I’ve been reading and following Deepak 
Vohra’s work for some time. Deepak has been developing Web components and Java applications for many 
years, and the scope of his expertise is reflected in the books he has written – as is his passion to share that 
knowledge with others. 

 About a year ago, I was given the opportunity to perform a technical review on his Pro Couchbase 
Development book, and we formed an immediate connection. Since then, I’ve served as technical reviewer 
on several more of his books, including this one. The reason I keep coming back is simple – I always come 
away knowing more than I did before. 

 Docker is a new container technology that has become very popular because it is great for building 
and sharing disk images and enables users to run different operating systems such as Ubuntu, Fedora, and 
Centos. Docker is often used when a version control framework is required for an application’s operating 
system, to distribute applications on different machines, or to run code on laptop in the same environment 
as on the server. In general, Docker will always run the same, regardless of the environment in which it will 
be running. 

 Kubernetes is an open source container cluster manager that complements and extends Docker’s 
software encapsulation power and makes it easier to organize and schedule applications across a fleet 
of machines. It’s a lightweight, portable (suited for the cloud architecture) and modular tool that can be 
run on almost any platform with different local machine solutions. Kubernetes offers a number of distinct 
advantages, first and foremost being that it combines all necessary tools – orchestration, service discovery, 
and load balancing – together in one nice package for you. Kubernetes also boasts heavy involvement from 
the developer community. 

 Kubernetes Microservices with Docker will show you how to use these two powerful tools in unison to 
manage complex big data and enterprise applications. Installing Kubernetes on single nodes and multi-
node clusters, creating multi-container pods, using Kubernetes with the Apache Hadoop Ecosystem and 
NoSQL Databases – it’s all here, and more. So sit back, and let Deepak be your guide.

  —Massimo Nardone 

 Chief Security Information Officer (CISO), Cargotec Oyj              



          PART I 

  Getting Started 

        



3© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_1

    CHAPTER 1   

 Installing Kubernetes 
Using Docker           

 Kubernetes is software for managing a cluster of Docker containers. Kubernetes orchestration includes 
scheduling, distributing workload, and scaling. Kubernetes takes the software encapsulation provided by 
Docker further by introducing Pods. A Pod is a collection of one or more Docker containers with single 
interface features such as providing networking and filesystem at the Pod level rather than at the container 
level. Kubernetes also introduces “labels” using which services and replication controllers (replication 
controller is used to scale a cluster) identify or select the containers or pods they manage. Kubernetes is 
lightweight, portable (suited for the cloud architecture), and modular. 

 Kubernetes may be run on almost any platform.    Local machine solutions include local Docker based, 
Vagrant, and no-VM local cluster. Hosted solutions include Google Container Engine. Some of the other 
platforms supported by Kubernetes are Fedora (Ansible and Manual), Amazon Web Services, Mesos, 
vSphere, and CoreOS. Kubernetes is an orchestration software for Docker containers; the recommended 
solution for installation is to use the Docker Engine. In this chapter we shall install Kubernetes on Docker, 
which runs on Ubuntu. We shall use an Amazon EC2 instance hosting Ubuntu as the operating system. In 
this chapter, a single node installation of Kubernetes is discussed. Multi-node installation of Kubernetes is 
discussed in chapter   14    . This chapter has the following sections.

   Setting the Environment  

  Installing Docker  

  Installing Kubernetes  

  Starting etcd  

  Starting Kubernetes Master  

  Starting Service Proxy  

  Listing the Kubernetes Docker Containers  

  Installing kubectl  

  Listing Services  

  Listing Nodes  

  Testing the Kubernetes Installation    

http://dx.doi.org/10.1007/978-1-4842-1907-2_14


CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

4

     Setting the Environment 
  The following software is required for this chapter.

   - Docker Engine (latest version)  

  - Kubernetes (version 1.01)    

 Linux is required to support 64-bit software. We have used an Amazon EC2 instance created from AMI 
Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-d05e75b8. An Amazon EC2 instance based on the 
Ubuntu AMI is shown in Figure  1-1 .  

  Figure 1-1.    Amazon EC2 Instance Based on Ubuntu AMI       

 A different Ubuntu version may be used if the requirement of a 64-bit architecture is met. The minimum 
kernel version requirement is 3.10. The kernel version may be verified with the following command. 

    uname –r    

 The Public IP would be different for different users. Multiple Amazon EC2 instances and therefore 
multiple Public IP addresses have been used in the book as a different Public IP is assigned each time an 
Amazon EC2 instance is started. The Private IP Address of an Amazon EC2 instance is the same across 
restarts. SSH into an Ubuntu instance on Amazon EC2 (Public IP is 52.91.80.173 in following command). 

    ssh -i "docker.pem" ubuntu@52.91.80.173    

 The Amazon EC2 instance  gets   logged in as shown in Figure  1-2 . The command prompt becomes 
“ubuntu@ip-172-30-1-190” instead of root@localhost. Ip 172.30.1.190 is the Private IP of the Amazon EC2 
instance and would also be different for different users.  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

5

 In the next section we shall install Docker on Ubuntu hosted on an Amazon EC2 instance .  

     Installing Docker 
 Ubuntu uses apt for package management; apt stores a list of repositories in the /etc/apt/sources.list list. 
Docker’s apt repository is kept in the /etc/apt/sources.list.d/docker.list file. First, add the new repository key 
(gpg key) for the Docker repository with the following command. 

    sudo apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys 
58118E89F3A912897C070ADBF76221572C52609D    

  Figure 1-2.    Loging into an Amazon EC2 instance       

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

6

  The new gpg key gets  added   as shown in Figure  1-3 .  

 Next, update  the   apt sources for the Docker repository in the /etc/apt/sources.list.d/docker.list file 
based on the Ubuntu distribution, which may be found with the following command. 

    lsb_release –a    

 For Ubuntu Trusty, add the following line to the /etc/apt/sources.list.d/docker.list file; the docker.list 
file may be opened with sudo vi /etc/apt/sources.list.d/docker.list. 

    deb https://apt.dockerproject.org/repo ubuntu-trusty main    

  Create the /etc/apt/sources.list.d/docker.list file if the file does not already exist. The updated file is 
shown in Figure  1-4 .    Save the file with the :wq command if opened in the vi editor.  

  Figure 1-3.    Adding a new gpg key        

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

7

 The entry to be added would be different for  different   Ubuntu distributions as listed in Table  1-1 .  

  Figure 1-4.    Creating the docker.list file        

   Table 1-1.    The docker.list file Entry Based on Ubuntu Distribution   

 Ubuntu Distribution  Entry 

 Ubuntu Precise 12.04 (LTS)  deb    https://apt.dockerproject.org/repo      ubuntu-precise main 

 Ubuntu Trusty 14.04 (LTS)  deb    https://apt.dockerproject.org/repo      ubuntu-trusty main 

 Ubuntu Vivid 15.04  deb    https://apt.dockerproject.org/repo      ubuntu-vivid main 

 

https://apt.dockerproject.org/repo
https://apt.dockerproject.org/repo
https://apt.dockerproject.org/repo


CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

8

 Run the following commands after updating the /etc/apt/sources.list.d/docker.list file to update the apt 
package index. 

    sudo apt-get update    

  Apt package index gets updated as shown in Figure  1-5 .   

  Figure 1-5.    Updating  Ubuntu   Package List       

 Purge the old repository if it exists with the following command. 

    sudo apt-get purge lxc-docker*    

 The output in Figure  1-6  indicates that the old  packages   lxc-docker and lxc-docker-virtual-package are 
not installed and therefore not removed.  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

9

 Run the following command to verify that apt is pulling from the updated repository for Docker. 

    sudo apt-cache policy docker-engine    

 The output in Figure  1-7  indicates that the  new   repository ubuntu-trusty as specified in the /etc/apt/
sources.list.d/docker.list is being used.  

  Figure 1-6.    Purging the  Old   Repository       

  Figure 1-7.    Using the  Updated   Repository verification       

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

10

 Next, install the prerequisites for Ubuntu, but first update the package manager with the following 
command. 

    sudo apt-get update    

  The package manager gets  updated   as shown in Figure  1-8 .  

  Figure 1-8.    Updating the Package Manager        

 Install the  prerequisite   linux-image-extra package with the following command. 

    sudo apt-get install linux-image-generic-lts-trusty    

 When the preceding command is run, select Y if prompted with the following message.

   After this operation, 281 MB of additional disk space will be used.  

  Do you want to continue? [Y/n]    

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

11

  The message prompt is shown in Figure  1-9 .  

  Figure 1-9.     Message Prompt to   Continue        

 Subsequently, before the command completes, a Package Configuration dialog might prompt with the 
following message:

   A new version of /boot/grub/menu.lst is available, but the version installed currently has 
been locally modified. What would you like to do about menu.lst?    

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

12

 Reboot the system with the following command. 

    sudo reboot    

 When the sudo reboot command is run the AmazonEC2 instance is exited. Reconnect with the Amazon 
EC2 Ubuntu instance with the same ssh command as before. 

    ssh -i "docker.pem" ubuntu@52.91.80.173    

 After the host system reboots, update the package manager again with the following command. 

     sudo apt-get update    

  Figure 1-10.    Selecting the  Default   Package Configuration        

  Select the default selection, which is “keep the local version currently installed” and click on Enter as 
shown in Figure  1-10 .  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

13

 Package manager gets updated as shown in Figure  1-11 .  

  Figure 1-11.    Updating Package  Manager   List after Reboot        

 Install Docker with the following command. 

    sudo apt-get install docker-engine    

 Select Y at the following prompt, if displayed, as shown in Figure  1-12 .

    After this operation, 60.3 MB of    additional     disk space will be used.  

  Do you want to continue? [Y/n]     

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

14

  The Docker engine gets installed as shown in Figure  1-13 .  

  Figure 1-13.    Installing  the   Docker Engine        

  Figure 1-12.    Message Prompt about the additional disk space being added        

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

15

 Start the Docker service with the following command. 

    sudo service docker start    

 To verify the status of the Docker service, run the following command. 

    sudo service docker status    

 The output from the preceding commands is shown in Figure  1-14 . The docker engine is indicated as 
running as process 2697.  

  Figure 1-14.    Starting  Docker and   verifying its Status       

 Having installed Docker, next we shall install Kubernetes.  

     Installing Kubernetes 
 Kubernetes is an open source container cluster manager. The  main   components of Kubernetes are the 
following:

    1.    etcd  

    2.    Kubernetes master  

    3.    Service proxy  

    4.    kubelet     

 etcd is a simple, secure, fast and reliable distributed key-value store. 
 Kubernetes master exposes the Kubernetes API using which containers are run on nodes to handle tasks. 
 kubelet is an agent that runs on each node to monitor the containers running on the node, restarting 

them if required to keep the replication level. 
 A service proxy runs on each node to provide the Kubernetes service interface for clients. A service is an 

abstraction for the logical set of pods represented by the service, and a service selector is used to select the 
pods represented by the service.  The   service proxy routes the client traffic to a matching pod. Labels are used 
to match a service with a pod. 

 Optionally create a directory (/kubernetes) to install Kubernetes and set its permissions to global (777). 

    sudo mkdir /kubernetes 
 sudo chmod -R 777 /kubernetes    

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

16

 Change directory to the /kubernetes directory and start the Docker engine. 

    cd /kubernetes 
 sudo service docker start    

 If the Docker Engine is not running, it gets started.  The   Docker Engine is shown as already running in 
Figure  1-16 .  

  Figure 1-15.    Creating  a   Directory to install Kubernetes       

 The output from the preceding commands is shown in Figure  1-15 .  

  Figure 1-16.    Starting Docker if not already running       

 As a prerequisite we need to set some Linux kernel parameters if not already set. Add support for 
memory and swap accounting.  The   following configs should be turned on in the kernel. 

    CONFIG_RESOURCE_COUNTERS=y 
 CONFIG_MEMCG=y 
 CONFIG_MEMCG_SWAP=y 
 CONFIG_MEMCG_SWAP_ENABLED=y 
 CONFIG_MEMCG_KMEM=y    

 The kernel configs are enabled when the Ubuntu system boots and  the   kernel configuration file is in the 
/boot directory. Change directory (cd) to the /boot directory and list the files/directories. 

    cd /boot 
 ls –l    

 The files in  the   /boot directory get listed as shown in Figure  1-17 . The kernel configs are configured in 
the config-3.13.0-48-generic file. The kernel version could be different for different users; for example, the 
kernel config file could /boot/config-3.13.0-66-generic.  

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

17

 Open the config-3.13.0-48-generic file in a vi editor. 

    sudo vi /boot/config-3.13.0-48-generic    

 The  kernel   configuration parameters get listed as shown in Figure  1-18 .  

  Figure 1-18.     Kernel Configuration   Parameter       

  Figure 1-17.    Listing the Files in the  /boot Directory         

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

18

 Most of the configs listed earlier are already turned on as shown in Figure  1-19 . The CONFIG_MEMCG_
SWAP_ENABLED config is not set.  

  Figure 1-19.    Most of the Required  Kernel   Parameters are already Set       

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

19

 Next, we need to add support for memory and swap accounting to the kernel. The command-line 
parameters provided to the kernel may be listed with the following command. 

    cat /proc/cmdline    

 As shown in Figure  1-21  memory and  swap   accounting are not turned on.  

  Figure 1-20.    Setting  the   CONFIG_MEMCG_SWAP_ENABLED Kernel Parameter       

  Figure 1-21.    Listing  the   Command-Line Parameters       

 Set CONFIG_MEMCG_SWAP_ENABLED =  y   and save the kernel configuration file as shown in 
Figure  1-20 .  

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

20

 Grub 2 is the default boot loader for Ubuntu. To turn on memory and swap accounting, open the /etc/
default/grub file in the vi editor.  The   GRUB_CMDLINE_LINUX is set to an empty string as shown in 
Figure  1-22 .  

  Figure 1-22.    The /etc/default/grub  file         

 Set the GRUB_CMDLINE_LINU as follows, which enables memory and swap accounting in the kernel 
at boot. 

    GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"    

 The modified /etc/default/grub file  is   shown in Figure  1-23 . Save the file with the :wq command.  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

21

 Update the grub.cfg file with the following command. 

    sudo update-grub    

  Figure 1-23.    Modified /etc/default/grub  file         

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

22

 Reboot the system. 

    sudo reboot    

 Connection to  the   Ubuntu Amazon EC2 instance gets closed as shown in Figure  1-25 .  

  Figure 1-25.    Rebooting  Ubuntu   Instance       

 SSH log in back into the Ubuntu instance. Rerun the command to list the command-line kernel 
parameters. 

    cat /proc/cmdline    

 The cgroup_enable =  memory   swapaccount = 1 settings get output as shown in Figure  1-26 .  

  The   grub configuration file gets generated as shown in Figure  1-24 .  

  Figure 1-24.    Generating an  Updated   Grub Configuration file       

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

23

 Having set the  prerequisite   kernel parameters, next we shall start the Kubernetes components etcd, 
master, and service proxy.  

     Starting etcd 
  Run etcd with the following docker run command. 

    sudo docker run --net=host -d gcr.io/google_containers/etcd:2.0.12 /usr/local/bin/etcd 
--  addr=127.0.0.1:4001 --bind-addr=0.0.0.0:4001 --data-dir=/var/etcd/data    

  Figure 1-26.    Updated  Settings         

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

24

 The docker run command to start  etcd is   required to be run each time the Kubernetes cluster manager 
is to be started. Subsequent starts of etcd do not need to download the container image as shown in 
Figure  1-28 .   

 The docker run command parameters are as follows (Table  1-2 ).  

   Table 1-2.    The docker run Command Parameters to start etcd   

 Parameter  Description 

 --net = host  Connects the Docker container to a network 
making use of the host container network inside 
the container 

 -d  Starts the container in the background 

 gcr.io/google_containers/etcd:2.0.12  The container image 

 /usr/local/bin/etcd --addr = 127.0.0.1:4001 
--bind-addr = 0.0.0.0:4001 --data-dir=/var/etcd/data 

 The command to run 

 The output from the preceding command is shown in Figure  1-27 .  

  Figure 1-27.    Starting etcd       

  Figure 1-28.    Subsequent Start of etcd does not need to download the container Image again        

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

25

     Starting Kubernetes Master 
 The Kubernetes master is started using the kubelet, which also starts the other Master components 
apiserver, scheduler, controller, and pause, which are discussed in Table  1-3 .  

   Table 1-3.    The docker run  Command   Parameters to start etcd   

 Master Component  Description 

 Apiserver  The apiserver takes API requests, processes them, and stores the result in etcd if 
required and returns the result. 

 Scheduler  The scheduler monitors the API for unscheduled pods and schedules them on a 
node to run and also notifies the about the same to the API. 

 Controller  The controller manages the replication level of the pods, starting new pods in a 
scale up event and stopping some of the pods in a scale down. 

 Pause  The pause keeps the port mappings of all the containers in the pod or the network 
endpoint of the pod. 

  Run the Kubernetes master with the following command. 

    sudo docker run \ 
     --volume=/:/rootfs:ro \ 
     --volume=/sys:/sys:ro \ 
     --volume=/dev:/dev \ 
     --volume=/var/lib/docker/:/var/lib/docker:ro \ 
     --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \ 
     --volume=/var/run:/var/run:rw \ 
     --net=host \ 
     --pid=host \ 
     --privileged=true \ 
     -d \ 
     gcr.io/google_containers/hyperkube:v1.0.1 \ 
      /hyperkube kubelet --containerized --hostname-override="127.0.0.1" 

--address="0.0.0.0" --api- 
 servers=http://localhost:8080 --config=/etc/kubernetes/manifests    



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

26

 The docker run command parameters are discussed in Table  1-4 .  

   Table 1-4.    The docker run Command Parameters to start etcd   

 Parameter  Description 

 --volume=/:/rootfs:ro \ 
 --volume=/sys:/sys:ro \ 
 --volume=/dev:/dev \ 
 --volume=/var/lib/docker/:/var/lib/docker:ro \ 
 --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \ 
 --volume=/var/run:/var/run:rw \ 

 The Docker volumes to use 

 --net = host  Connects the Docker container to a network making 
use of the host container network inside the container 

 --pid = host  Sets the pid namespace 

 --privileged = true  Provides access to most of the capabilities of the host 
machine in terms of kernel features and host access 

 -d  Starts the container in the background 

 gcr.io/google_containers/hyperkube:v1.0.1  The container image 

 hyperkube kubelet 
--containerized 
--hostname-override = "127.0.0.1" 
--address = "0.0.0.0" 
--api- 
 servers=   http://localhost:8080      
--config=/etc/kubernetes/manifests 

 The command run 

http://localhost:8080/


CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

27

  Figure 1-29.    The docker run Command to start Kubernetes Master       

 The output from the docker run command to start the master is shown in Figure  1-29 .  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

28

     Starting Service Proxy 
  To start the service proxy, which is a proxy for the Kubernetes service providing a pod/s interface using a 
service selector with labels, start the service proxy by running the following docker run command. 

    sudo docker run -d --net=host --privileged gcr.io/google_containers/hyperkube:v1.0.1 
/hyperkube proxy -- master=http://127.0.0.1:8080 --v=2    

 The command parameters for the preceding command are discussed in Table  1-5 .  

 The Master is required to be started each time the Kubernetes cluster manager is to be started. 
The container image is downloaded only the first time the command is run, and on subsequent runs the 
image is not downloaded as shown in Figure  1-30 .    

  Figure 1-30.    Subsequent starts  of   Kubernetes Master do not need to download Container image again       

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

29

 The output from the  preceding   docker run command is shown in Figure  1-31 .   

   Table 1-5.    The docker run Command Parameters to start service proxy   

 Parameter  Description 

 -d  Runs the container in the background 

 --net = host  Sets the network for the container to the host’s network 

 --privileged  Provides access to most of the capabilities of the host 
machine in terms of kernel features and host access 

 gcr.io/google_containers/hyperkube:v1.0.1  The container image 

 hyperkube proxy -- master=
   http://127.0.0.1:8080      --v = 2 

 The command to run. The master url is set to 
   http://127.0.0.1:8080     . 

  Figure 1-31.    Starting the Service proxy        

     Listing the Kubernetes Docker Containers 
 The Docker containers started for a Kubernetes cluster manager may be listed with the following command. 

    sudo docker ps    

 The Docker containers listed include a container for the service proxy; a container for the kubelet; a 
container for etcd; and containers each for the master scheduler, controller, and apiserver, and pause as 
shown in Figure  1-32 .  

 

http://127.0.0.1:8080/
http://127.0.0.1:8080/


CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

30

 The Docker container info may be found using the Docker container id. For example, obtain the 
container id for the Docker container running the controller as shown in Figure  1-33 .  

  Figure 1-32.    Listing  the   Docker Containers       

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

31

 Run the following command to find the detail about the Docker container. 

    sudo docker inspect 37971b53f2c1    

  Figure 1-33.    Obtaining  the   Docker Container Id       

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

32

 The detail such as the master ip and about the Docker container running the controller manager gets 
output as shown in Figure  1-34 .   

  Figure 1-34.    Listing  Docker   Container Information       

     Installing kubectl 
  The kubectl is used to control the Kubernetes cluster manager including running an image, getting the pods, 
getting the replication controller, making an application available as a service exposed at a specified port, 
and scaling the cluster. Download Kubectl binaries with the following command. 

    sudo wget https://storage.googleapis.com/kubernetes-release/release/v1.0.1/bin/linux/amd64/kubectl    

 The kubectl binaries get downloaded as shown in Figure  1-35 .  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

33

 Make the kubectl application executable by applying the + x permissions. 

    sudo chmod +x kubectl    

 Move the kubectl binaries to the /usr/local/bin/ directory. 
 sudo mv kubectl /usr/local/bin/ 
 The output from the preceding commands is shown in Figure  1-36 .  

  Figure 1-35.    Installing Kubectl       

  Figure 1-36.    Moving and making kubectl Binaries executable       

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

34

  Figure 1-37.    Kubectl Command Usage       

 The kubectl command lists the usage as shown in Figure  1-37 .  

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

35

  Figure 1-39.    Listing the Kubernetes Service       

  Figure 1-38.    Command Parameters for Kubect l       

 The command parameters also  get   listed as shown in Figure  1-38 .   

     Listing Services 
 The following command should list the Kubernetes service. 

    kubectl get services    

 The  kubernetes   service gets listed as shown in Figure  1-39 .   

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

36

     Listing Nodes 
 The following command should list the Kubernetes node. 

 kubectl  get   nodes 

 The single node in the cluster gets listed as shown in Figure  1-40 .   

  Figure 1-41.    Running he nginx Application on Kubernetes Cluster       

  Figure 1-40.    Listing the Nodes       

     Testing the Kubernetes Installation 
  To test the Kubernetes cluster manager, run the nginx application using the following command. 

    kubectl -s http://localhost:8080 run nginx --image=nginx --port=80    

 The output from the kubectl run command lists the replication controller, container/s, image/sm 
selector, and replicas as shown in Figure  1-41 .  

 Expose the nginx application replication controller as a service with the kubectl expose command. 

    kubectl expose rc nginx --port=80    

 The nginx Kubernetes service gets created running on port 80 as shown in Figure  1-42 .  

  Figure 1-42.    Creating a Kubernetes Service for nginx Application       

 

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

37

 List the detail about the nginx service with the kubectl get svc command. 

    kubectl get svc nginx    

 The nginx service detail gets listed as shown in Figure  1-43 .  

  Figure 1-43.    Listing the Kubernetes Service nginx       

 The cluster IP may be obtained with the following command. 

    kubectl get svc nginx --template={{.spec.clusterIP}}    

 The cluster ip is listed as 10.0.0.146 as shown in Figure  1-44 .  

  Figure 1-44.    Listing the Cluster IP       

 The web server may be called making use of the cluster ip with the following command. 

    curl 10.0.0.146    

 

 



CHAPTER 1 ■ INSTALLING KUBERNETES USING DOCKER 

38

  Figure 1-45.    Using curl  to   invoke Application       

 The html output as text gets output as shown in Figure  1-45 .    

     Summary 
 In this chapter we installed Kubernetes using Docker. An Amazon EC2 instance running Ubuntu is used to 
install Docker and Kubernetes. The nginx application is run only to test the installation of the Kubernetes 
cluster manager. The kubectl commands to create an application, replication controller, and service are 
discussed in more detail in the next chapter.     

 



39© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_2

    CHAPTER 2   

 Hello Kubernetes           

 Kubernetes is a cluster manager for Linux containers. While Kubernetes supports other types of containers 
such as Rocket, and support for more types is to be added, we shall discuss Kubernetes in the context of 
Docker containers only. Docker is an open source container virtualization platform to build, package, and 
run distributed applications in containers that are lightweight snapshots of the underlying OS. A Docker 
image, which is application specific, encapsulates all the required software including dependencies for 
an application and is used to create Docker containers to run applications in the containers. The Docker 
containers are isolated from each other and have their own networking and filesystem and provide 
Container as a Service (CaaS). Docker is similar to virtual machines based on virtualization platforms such 
as Oracle VirtualBox and VMWare Player in that it is a virtualization over the underlying OS, but is different 
in that while a virtual machine makes use of an entire operating system, multiple Docker containers share 
the kernel and run in isolation on the host OS. Docker containers run on the Docker Engine, which runs on 
the underlying OS kernel. 

 In this chapter we shall introduce Kubernetes concepts using a Hello-World application. This chapter 
has the following sections.

   Overview  

  Why Kubernetes  

  Setting the Environment  

  Creating an Application Imperatively  

  Creating an Application Declaratively  

  Using JSON for the Resource Definitions    

     Overview 
 Kubernetes concepts include Pod, Service, and Replication controller and are defined in the following 
subsections. 

     What Is a Node? 
 A  node  is  a   machine (physical or virtual) running Kubernetes onto which Pods may be scheduled. The node 
could be the  master node  or one of the  worker nodes . In the preceding chapter on installing Kubernetes only 
a single node was used. In a later chapter, Chapter   14    , we shall discuss creating a multi-node cluster with a 
master and worker node/s.  

http://dx.doi.org/10.1007/978-1-4842-1907-2_14


CHAPTER 2 ■ HELLO KUBERNETES

40

     What Is a Cluster? 
  A    cluster  is a collection of nodes including other resources such as storage to run Kubernetes applications. 
A cluster has a single Kubernetes master node and zero or more worker nodes. A highly available cluster 
consists of multiple masters or master nodes.  

     What Is a Pod? 
 A   Pod  is a   collection of containers that are collocated and form an atomic unit. Multiple applications may 
be run within a Pod and though the different containers within a Pod could be for the same application, 
typically the different containers are for different applications. A Pod is a higher level abstraction for 
managing a group of containers with shared volumes and network namespace. All the applications 
(containers) in a Pod share the same filesystem and IP address with the port on which each application is 
exposed being different. Applications running in a Pod may access each other at “localhost”. Scheduling 
and replication are performed at the Pod level rather than at the individual container level. For example 
if a Pod defines two containers for different applications and replication level is set at 1, a single replica 
of the Pod consists of two containers, one each for the two applications. Pods facilitate resource sharing 
and communication what would otherwise be implemented using --link in individually running Docker 
containers. A Pod consisting of multiple containers would typically be used for tightly coupled applications. 
For example, if an  nginx  application makes use of MySQL database, the two applications are able to interact 
by Kubernetes running containers for each in the same Pod.  

     What Is a Service? 
 A  Service  is the  external   interface for one or more Pods providing endpoint/s at which the application/s 
represented by the Service may be invoked. A Service is hosted at a single IP address but provides zero or 
more endpoints depending on the application/s interfaced by the Service. Services are connected to Pods 
using label selectors. Pods have label/s on them and a Service with a selector expression the same as a Pod 
label represents the Pod to an external client. An external client does not know or need to know about the 
Pods represented by a Service. An external client only needs to know the name of the Service and the port at 
which a particular application is exposed. The Service routes requests for an application based on a round-
robin manner to one of the Pods selected using a label selector/. Thus, a Service is a high level abstraction 
for a collection of applications leaving the detail of which Pod to route a request to up to the Service. 
A Service could also be used for load balancing.  

     What Is a Replication Controller? 
 A  Replication Controller  manages the replication level of Pods as specified by the “replicas” setting in a 
Replication Controller definition or on the command line with the  –replicas  parameter.  A   Replication 
Controller ensures that the configured level of Pod replicas are running at any given time. If a replica fails or 
is stopped deliberately a new replica is started automatically. A Replication Controller is used for scaling the 
Pods within a cluster. A replica is defined at the Pod level implying that if a Pod consists of two containers a 
group of the two configured containers constitute a replica.  



CHAPTER 2 ■ HELLO KUBERNETES

41

     What Is a Label? 
 A  Label  is a key-value  pair   identifying a resource such as a Pod, Service, or Replication Controller: most 
commonly a Pod. Labels are used to identify a group or subset of resources for tasks such as assigning them 
to a Service. Services use label selectors to select the Pods they manage. For example, if a Pod is labeled 
“app = helloApp” and a Service “selector” is set as “app = helloApp” the Pod is represented by the Service. 
Service selectors are based on labels and not on the type of application they manage. For example, a Service 
could be representing a Pod running a hello-world application container with a specific label. Another 
Pod also running a hello-world container but with a label different than the Service selector expression 
would not be represented by the Service. And a third Pod running an application that is not a hello-world 
application but has the same label as the Service selector would also be represented by the same Service.  

     What Is a Selector? 
 A   selector    is a key-value expression to identify resources using matching labels. As discussed in the 
preceding subsection a Service selector expression “app = helloApp” would select all Pods with the label 
“app = helloApp”. While typically a Service defines a selector to select Pods a Service could be defined to not 
include a selector and be defined to abstract other kinds of back ends. Two kinds of selectors are supported: 
equality-based and set-based. A selector could be made of multiple requirements implying that multiple 
expressions (equality-based or set-based) separated by ',' could be specified. All of the requirements must 
be met by a matching resource such as a Pod for the resource to be selected. A resource such as a Pod could 
have additional labels, but the ones in the selector must be specified for the resource to be selected. The 
equality-based selector, which is more commonly used and also the one used in the book, supports =,!=,== 
operators, the = being synonymous to ==.  

     What Is a Name? 
 A  name  is identifies a resource. A name is not the same as a label. For matching resources with a Service a 
label is used and not a name.  

     What Is a Namespace? 
  A    namespace  is a level above the name to demarcate a group of resources for a project or team to prevent 
name collisions. Resources within different namespaces could have the same name, but resources within a 
namespace have different names.  

     What Is a Volume? 
  A    volume  is a directory within the filesystem of a container. A volume could be used to store data. Kubernetes 
volumes evolve from Docker volumes.  

     Why Kubernetes? 
 Docker containers introduced a new level of modularity and fluidity for applications with the provision 
to package applications including dependencies, and transfer and run the applications across different 
environments. But with the use of Docker containers in production, practical problems became apparent 
such as which container to run on which node (scheduling), how to increase/decrease the number of 
running containers for an application (scaling), and how to communicate within containers. Kubernetes 



CHAPTER 2 ■ HELLO KUBERNETES

42

was designed to overcome all these and other practical issues of container cluster management. Kubernetes 
provides dynamic container cluster orchestration in real time.   Kubernetes as a   cluster manager provides the 
following benefits.

   -Microservices by breaking an application into smaller, manageable, scalable 
components that could be used by groups with different requirements.  

  -Fault-tolerant cluster in which if a single Pod replica fails (due to node failure, 
for example), another is started automatically.  

  -Horizontal scaling in which additional or fewer replicas of a Pod could be run 
by just modifying the “replicas” setting in the Replication Controller or using the 
 –replicas  parameter in the  kubectl scale  command.  

  -Higher resource utilization and efficiency.  

  -Separation of concerns. The Service development team does not need to 
interface with the cluster infrastructure team .      

     Setting the Environment 
  The following software is required for this chapter.

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)    

 We have used an Amazon EC2 Linux instance created from AMI Ubuntu Server 14.04 LTS (HVM), SSD 
Volume Type - ami-d05e75b8. 

 SSH Login to the Ubuntu  interface   (Public IP address would be different for different users and multiple 
IP Addresses may have been used in this chapter). 

    ssh -i "docker.pem" ubuntu@54.152.82.142    

 Install Docker as discussed in Chapter   1     and start the Docker Engine and verify its status using the 
following commands. 

    sudo service docker start 
 sudo service docker status    

 Install kubectl and start the Kubernetes cluster manager as discussed in Chapter   1    . Output the 
Kubernetes cluster information using the following command. 

    kubectl cluster-info    

 The Kubernetes Master is shown running on  http://localhost:8080  in Figure  2-1 .  

  Figure 2-1.    Getting Cluster Info       

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1
http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 2 ■ HELLO KUBERNETES

43

 In the following sections we shall run a  hello-world  application using the Kubernetes cluster manager. 
An application may be run imperatively using the  kubectl  tool on the command line or declaratively using 
definition files for a Pod, Replication Controller, and Service. We shall discuss each of these methods. The 
kubectl tool is used throughout this chapter and in subsequent chapters and a complete command reference 
is available at    https://cloud.google.com/container-engine/docs/kubectl/      .  

     Creating an Application Imperatively 
  With the Kubernetes master running on  http://localhost:8080 , as obtained in the preceding section, run 
the following  kubectl run  command to run a  hello-world  application using the image  tutum/hello-world . 
The  –s  option specifies the Kubernetes API server host and port. The  –image  command parameter specifies 
the Docker image to run as  tutum/hello-world . The  –replicas  parameter specifies the number of replicas 
to create as 1. A Replication Controller is created even if the  –replicas  parameter is not specified. 
The default number of replicas is 1. The  –port  parameter specifies the container port the application is 
hosted at as 80. 

    kubectl -s http://localhost:8080 run hello-world --image=tutum/hello-world --replicas=1 --port=80    

 A new application  container   called  hello-world  gets created as shown in Figure  2-2 . A Replication 
Controller called “hello-world” also gets created. The Pod is created implicitly and label “run = hello-world” 
is added to the Pod. The number of replicas created is 1. The Replication Controller’s selector field is also set 
to “run=hello-world”. The Pods managed by a Replication Controller must specify a label that is the same as 
the selector specified at the Replication Controller level. By default a Replication Controller selector is set to 
the same expression as the Pod label.  

  Figure 2-2.    Creating an Application including a Replication Controller and Pod Replica/s       

 The Replication Controller created may be listed with the following command. 

    kubectl get rc    

 The  hello-world  Replication Controller gets listed as shown in Figure  2-3 .  

  Figure 2-3.    Listing the Replication Controllers       

 

 

https://cloud.google.com/container-engine/docs/kubectl/


CHAPTER 2 ■ HELLO KUBERNETES

44

 The Pods created and started are listed with the following command. 

    kubectl get pods    

 The single Pod created gets listed as shown in Figure  2-4 . A Pod name is assigned automatically. A Pod 
STATUS “Running” is listed, but the Pod may still not be ready and available. The READY column value of 
0/1 indicates that 0 of 1 containers in the Pod are ready, which implies that the Pod has been created and is 
running but not yet ready. It could take a few seconds for a Pod to become Ready.  

  Figure 2-4.    Listing the Pods       

  Figure 2-5.    Listing a Pod as ready with all containers in the Pod as ready       

 Run the same command again after a few seconds or a minute. 

    kubectl get pods    

 The Pod gets listed as ready as indicated by 1/1 in the READY column in Figure  2-5 . A value of 1/1 in 
the READY column indicates that 1 of 1 containers in the Pod are ready. The syntax for the READY column 
value is  nReady/nTotal , which implies that  nReady  of the total  nTotal  containers in the Pod are ready. The 
Kubernetes Pod  k8s-master-127.0.0.1 , for example, has a READY column value of 3/3, which implies that 
3 of 3 containers in the Kubernetes Pod are ready.  

 Running a Pod and a Replication Controller does not implicitly create a Service. In the next subsection 
we shall create a Service for the  hello-world  application.  

     Creating a Service 
  Create a Kubernetes Service using the  kubectl expose  command, which creates a Service from a Pod, 
Replication Controller, or another Service. As we created a Replication Controller called  hello-world , create 
a Service using the following command in which the port to expose the Service is set to 8080 and the Service 
type is  LoadBalancer . 

    kubectl expose rc hello-world --port=8080 --type=LoadBalancer    

 

 



CHAPTER 2 ■ HELLO KUBERNETES

45

 A Kubernetes Service  called    hello-world  gets created as shown in Figure  2-6 . The Service labels and 
selector also get set. The Service selector, listed in Figure  2-6 , is set to the same expression  run=hello-world  
as the Replication Controller selector, which is shown in Figure  2-3 , which implies that the Service manages 
the Pods in the Replication Controller  hello-world .  

  Figure 2-6.    Creating a Kubernetes Service       

 The different types of Services are ClusterIp, NodePort, and LoadBalancer with the default being 
ClusterIP, as discussed in Table  2-1 .  

   Table 2-1.    Types of Services   

 Service Type  Description 

 ClusterIp  Uses a cluster-internal IP only. 

 NodePort  In addition to a cluster IP exposes the Service on each node of the cluster. 

 LoadBalancer  In addition to exposing the Service on a cluster internal Ip and a port on each 
node on the cluster, requests the cloud provider to provide a load balancer for 
the Service. The load balancer balances the load between the Pods in the Service. 

 List all the Kubernetes Services with the following command. 

    kubectl get services    

 In addition to the “kubernetes” Service for the Kubernetes cluster manager a “hello-world” Service gets 
created as shown in Figure  2-7 .    

  Figure 2-7.    Listing the Services       

 

 



CHAPTER 2 ■ HELLO KUBERNETES

46

     Describing a Pod 
 Using the Pod name  hello-world-syrqz  obtained from the NAME column in the result for the  kubectl get 
pods  command use the  kubectl describe pod  command to list detailed information about the Pod. 

    kubectl describe pod hello-world-syrqz    

 Detailed information about the  Pod   including the IP address gets listed as shown in Figure  2-8 . The Pod 
has a Label run=hello-world, which is the same as the replication controller  selector  and also same as the 
service  selector , which implies that the replication controller manages the Pod when scaling the cluster of 
Pods for example, and the service represents the Pod to external clients.   

  Figure 2-8.    Describing a Pod       

 



CHAPTER 2 ■ HELLO KUBERNETES

47

 Next, we shall invoke the application using the IP Address  172.0.17.2  listed in the IP field.   

     Invoking the Hello-World Application 
  The  hello-world  application may be invoked using the IP for the application as listed in Figure  2-8  with the 
following  curl  command. 

    curl 172.17.0.2    

 The HTML output from the application is shown in Figure  2-9 .  

  Figure 2-9.    Invoking a Application using Pod IP with curl       

 



CHAPTER 2 ■ HELLO KUBERNETES

48

 To display the HTML output in a browser we need to invoke the application from a browser using URL 
 172.17.0.2:80 . If a browser is not available on the Amazon EC2 Ubuntu instance, as it is not by default, 
we need to set up a SSH tunnel to the IP Address of the application using local port forwarding. Obtain the 
Public DNS for the Amazon EC2 instance (ec2-52-91-200-41.compute-1.amazonaws.com in the example) 
and run the following command to set up a SSH tunnel to the  172.17.0.2:80 host:port  from a local 
machine. The  –L  indicates that local port forwarding is used to forward local port 80 to  172.17.0.2:80 . 

    ssh -i "docker.pem" -f -nNT -L 80:172.17.0.2:80 ubuntu@ec2-52-91-200-41.compute-1.amazonaws.com    

 Invoke the URL  http://localhost  in a browser on the local machine. The HTML output from the 
 hello-world  application gets displayed as shown in Figure  2-10 . The hostname is listed the same as the Pod 
name in Figure  2-5 .   

  Figure 2-10.    Invoking  the   Hello-World Application in a Browser        

     Scaling the Application 
  A Replication Controller was created by default when we created the  hello-world  application with replicas 
set as 1. Next, we shall scale up the number of Pods to 4. The  kubectl scale  command is used to scale a 
Replication Controller. Run the following command to scale up the Replication Controller  hello-world  to 4. 

    kubectl scale rc hello-world --replicas=4    

 Subsequently, list the Pods using the following command. 

    kubectl get pods    

 



CHAPTER 2 ■ HELLO KUBERNETES

49

 The additional Pods get listed but some of the new Pods could be listed in various states such as 
running but not ready, or image ready and container creating as shown in Figure  2-11 .  

  Figure 2-11.    Scaling the Cluster of Pods with the Replication Controller       

 After a few seconds run the same command again to list the Pods. 

    kubectl get pods    

 If the Pods have started all the Pods are listed with STATUS- > Running and READY state 1/1 as shown in 
Figure  2-12 . Scaling to 4 replicas does not create 4 new Pods, but the total number of Pods is scaled to 4 and 
the single Pod created initially is included in the new scaled replicas of 4.  

  Figure 2-12.    Listing all the Pods as Running and Ready       

 

 



CHAPTER 2 ■ HELLO KUBERNETES

50

 Describe the  hello-world  Service using the following command. 

    kubectl describe svc hello-world    

 The Service name, label/s, selector, type, IP, and Endpoints get listed as shown in Figure  2-13 . 
The Service may be invoked using the Endpoints for the various Pod replicas.  

  Figure 2-13.    Describing the Service hello-world       

 As discussed previously, set up SSH tunneling with port forwarding for the newly added endpoints. The 
following command sets up a SSH tunnel with port forwarding from  localhost  port 8081 to  172.17.0.3:80  
on the Amazon EC2 instance. 

    ssh -i "docker.pem" -f -nNT -L 8081:172.17.0.3:80 ubuntu@ec2-52-91-200-41.compute-1.
amazonaws.com    

 Subsequently invoke the  hello-world  application in a browser on a local machine with url 
 http://localhost:8081  to display the application output as shown in Figure  2-14 .  

 



CHAPTER 2 ■ HELLO KUBERNETES

51

 Similarly the following command from a local machine sets up a SSH tunnel with port forwarding from 
 localhost  port 8082 to  172.17.0.4:80  on the Amazon EC2 instance. 

    ssh -i "docker.pem" -f -nNT -L 8082:172.17.0.4:80 ubuntu@ec2-52-91-200-41.compute-1.
amazonaws.com    

 Subsequently invoke the  hello-world  application using url  http://localhost:8082  to display the 
application output as shown in Figure  2-15 .    

  Figure 2-14.    Invoking an Application in a Local Browser       

 



CHAPTER 2 ■ HELLO KUBERNETES

52

     Deleting a Replication Controller 
  The Replication Controller  hello-world  may be deleted with the following command. 

    kubectl delete rc hello-world    

 The Replication Controller gets deleted as shown in Figure  2-16 . Subsequently invoke the following 
command to list the Replication Controllers.  

    kubectl get rc    

 The  hello-world  Replication Controller does not get listed as shown in Figure  2-16 . 

  Figure 2-16.    Deleting a Replication Controller       

  Figure 2-15.    Invoking the  second   Service Endpoint in a Local Browser       

 

 



CHAPTER 2 ■ HELLO KUBERNETES

53

 Deleting a Replication Controller deletes the Replication Controller and the Pods associated with the 
Replication Controller but does not delete the Service representing the Replication Controller. The  kubectl 
get services  command still lists the Service as shown in Figure  2-17 .    

  Figure 2-17.    Deleting a  Replication   Controller does not delete the Service       

  Figure 2-18.    Deleting the hello-world Service       

     Deleting a Service 
 To delete the  Service    hello-world  run the following command. 

    kubectl delete svc hello-world    

 Subsequently invoke the following command to list the Services. 

    kubectl get services    

 The output from the preceding two commands is shown in Figure  2-18  and does not list the  hello-
world  Service.    

     Creating an Application Declaratively 
 Next, we shall create the same hello-world application declaratively using definition files for a Pod, Service, 
and Replication Controller. The definition files may be configured in YAML or JSON. We have used YAML 
initially and also discussed the JSON alternative later. 

 

 



CHAPTER 2 ■ HELLO KUBERNETES

54

     Creating a Pod Definition 
  Create a  hello-world.yaml  file and specify a definition for a Pod in the file. For the  hello-world  application 
the following definition is used in which the  apiVersion  mapping is for the API schema version ( v1 ),  kind  
mapping is the resource and set to  Pod . The metadata mapping specifies the Pod’s metadata and sets the 
name to  hello-world  (arbitrary). The  spec  mapping specifies the Pod behavior. The  spec - >  containers  
mapping specifies a collection of images to run. The  hello-world.yaml  specifies a single container for 
image  tutum/hello-world . Container name is set to  hello-world  and container  ports  mapping is a list of 
ports with a single  containerPort  mapping for 8080 port. 

    apiVersion: v1 
 kind: Pod 
 metadata: 
 name: hello-world 
 spec: 
   containers: 
     - 
       image: tutum/hello-world 
       name: hello-world 
       ports:           
         -containerPort: 8080    

 The preceding is equivalent to the following command. 

    kubectl run hello-world --image=tutum/hello-world --port=8080    

 Only a few of the schema elements have been used in the  hello-world.yaml . For the complete Pod 
schema refer    http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_pod     . 

 Next, create the  hello-world  application using the  hello-world.yaml  definition file with the following 
 kubectl create  command. The  –validate  option validates the Pod definition file. A YAML lint validator 
(   http://www.yamllint.com/     ) may be used to validate the YAML syntax in the  hello-world.yaml  . The 
syntax validation does not validate if the definition file conforms to the Pod schema. 

    kubectl create -f hello-world.yaml --validate    

 A Pod called  hello-world  gets created as shown in Figure  2-19 .  

  Figure 2-19.    Creating a Pod using a Definition File       

 List the Pods with the following command, which is the same regardless of how a Pod has been created. 

    kubectl get pods    

 The  hello-world  Pod gets listed as shown in Figure  2-20 . Initially, the Pod may not be READY- > 1/1. 
A READY column value of “0/1” implies that 0 of 1 containers in the Pod are ready.  

 

http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_pod
http://www.yamllint.com/


CHAPTER 2 ■ HELLO KUBERNETES

55

 Run the same command again after a few more seconds. 

    kubectl get pods    

 The  hello-world  Pod gets listed with STATUS as “Running” and READY state as “1/1,” which implies 
that 1 of 1 containers in the Pod are ready, as shown in Figure  2-21 .  

  Figure 2-20.    Listing the Pods soon after creating the Pods       

  Figure 2-21.    Listing the Pod as Ready and Running       

 Describe the  hello-world  Pod with the following command. 

    kubectl describe pod hello-world    

 

 



CHAPTER 2 ■ HELLO KUBERNETES

56

 The output from the preceding command is shown in Figure  2-22 .  

  Figure 2-22.    Describing the hello-world Pod       

 Invoke the  hello-world  Pod application using the IP  172.17.0.2 . 

    curl 172.17.0.2    

 The HTML output from the  hello-world  application gets listed as shown in Figure  2-23 .  

 



CHAPTER 2 ■ HELLO KUBERNETES

57

 Set up port forwarding from a local machine to the IP address of the  hello-world  Pod. 

    ssh -i "docker.pem" -f -nNT -L 80:172.17.0.2:80 ubuntu@ec2-52-91-200-41.compute-1.amazonaws.com    

 Subsequently invoke the url  http://localhost:80  in a browser on a local machine to display the 
HTML output from the application as shown in Figure  2-24 . The default Hypertext transfer protocol port 
being 80, has been be omitted from the URL, as shown in Figure  2-24 .    

  Figure 2-23.    Invoking the hello-world Application with curl       

 



CHAPTER 2 ■ HELLO KUBERNETES

58

     Creating a Service Definition 
  We created a Pod definition file and started a single Pod, but the Pod is not associated with any Service 
or Replication Controller. External clients have to access the Pod directly and are not able to scale the 
application with just a single unassociated Pod. Create a Service definition file  hello-world-service.yaml  
as listed below. If copying and pasting YAML files listed in this chapter and other chapters it is 
recommended to use the YAML Lint (   http://www.yamllint.com/     ) to format the files before using in an 
application. 

    apiVersion: v1 
 kind: Service 
 metadata: 
   labels: 
     app: hello-world 
   name: hello-world 
 spec: 
   ports: 
     - 
       name: http 
       port: 80 
       targetPort: http 
   selector: 
     app: hello-world 
   type: LoadBalancer    

  Figure 2-24.    Invoking the hello-world Application in  a   Browser on a local machine       

 

http://www.yamllint.com/


CHAPTER 2 ■ HELLO KUBERNETES

59

 The main mappings of the Service definition file are  kind ,  metadata , and  spec . The  kind  is set to 
 Service  to indicate a Kubernetes Service. The label  app  and the  name  constitute the metadata. The  spec  
mapping includes a  ports  mapping for port 80 with name  http . Optionally a  targetPort  may be set, which 
defaults to the same value as port. The  selector  is the main mapping in the  spec  and specifies a mapping to 
be used for selecting the Pods to expose via the Service. The  app:hello-world  selector implies that all Pods 
with label  app=hello-world  are selected. The definition file may be created in the vi editor and saved with 
the  :wq  command as shown in Figure  2-25 .  

  Figure 2-25.    Service Definition File hello-world-service.yaml       

 



CHAPTER 2 ■ HELLO KUBERNETES

60

 A complete reference to the Kubernetes Service schema is available at    http://kubernetes.io/v1.1/
docs/api-reference/v1/definitions.html#_v1_service     . 

 Create a Service using the definition file with the  kubectl create  command. 

    kubectl create -f hello-world-service.yaml    

 The  hello-world  Service gets created as shown in Figure  2-26 .  

  Figure 2-26.    Creating the hello-world Service using the Definition File       

  Figure 2-27.    Listing the hello-world Service       

 List the Services with the following command. 

    kubectl get services    

 The  hello-world  Service gets listed in addition to the  kubernetes  Service as shown in Figure  2-27 .  

 Describe the  hello-world  Service with the following command. 

    kubectl describe svc hello-world    

 The Service name, namespace, labels, selector, type, Ip get listed as shown in Figure  2-28 . Because the 
 hello-world  Pod created using the Pod definition file does not include a label to match the Service selector, 
it is not managed by the Service. As the  hello-world  Service is not managing any Pods, no endpoint gets 
listed.   

 

 

http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_service
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_service


CHAPTER 2 ■ HELLO KUBERNETES

61

     Creating a Replication Controller Definition 
  Next, we shall create a Replication Controller and label the Replication Controller to match the selector 
of the Service created previously. Create a Service definition file  hello-rc.yaml . The kind mapping of 
a Replication Controller is  ReplicationController . The  replicas ’ sub-mapping in the  spec  mapping 
is set to 2 to create two replicas from the Pod also specified in the  spec . At least one of the labels in the 
template- > metadata- > labels must match the Service selector in the Service definition file for the Pod 
to be exposed by the Service. As the Service selector in the  hello-world  Service is  app:hello-world  add 
the  app:hello-world  label to the Replication Controller template. The app:hello-world setting in YAML 
translates to app=hello-world. The template may define one or more containers to be included in the Pod 
created from the Replication Controller. We have included container definition for only one container for 
image  tutum/hello-world . The  hello-rc.yaml  is listed below. A YAML lint (   http://www.yamllint.com/     ) 
may be used to validate the YAML syntax. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   name: hello-world 
 spec: 
   replicas: 2 
   template: 
     metadata: 
       labels: 
         app: hello-world 

  Figure 2-28.    Describing  the   hello-world Service        

 

http://www.yamllint.com/


CHAPTER 2 ■ HELLO KUBERNETES

62

     spec: 
       containers: 
         - 
           image: tutum/hello-world 
           name: hello-world 
           ports: 
             - 
               containerPort: 8080 
               name: http    

 A complete schema for the Replication Controller is available at    http://kubernetes.io/v1.1/docs/
api-reference/v1/definitions.html#_v1_replicationcontroller     . 

 Create the Replication Controller using the definition file with the  kubectl create  command, the same 
command that was used to create a Pod and a Service. 

    kubectl create -f hello-rc.yaml    

 Subsequently run the following command to list the Replication Controllers. 

     kubectl get rc     

 A  hello-world  Replication Controller gets created and gets listed as shown in Figure  2-29 . The number 
of replicas are listed as 2 as specified in the definition file.  

  Figure 2-29.    Creating a Replication Controller       

 List the Pods created with the Replication Controller with the following command. 

    kubectl get pods    

 The two Pods created from the definition file get listed as shown in Figure  2-30 . The Pod created the Pod 
definition file also gets listed but is not associated with the Replication Controller. Initially some or all of the 
new Pods may be listed as not ready as indicated by the 0/1 value in the READY column for one of the Pods 
in Figure  2-30 .  

  Figure 2-30.    Listing the Pods soon after creating a Replication Controller       

 

 

http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_replicationcontroller
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_replicationcontroller


CHAPTER 2 ■ HELLO KUBERNETES

63

 Invoke the same command again to list the Pods after a few more seconds. 

    kubectl get pods    

 All the Pods get listed as READY- > 1/1 and Running as shown in Figure  2-31 .  

  Figure 2-32.    Describing the Service hello-world       

  Figure 2-31.    Listing all the Pods as Running and Ready       

 To describe the  hello-world  Service run the following command. 

    kubectl describe service hello-world    

 The Service detail including the Endpoints get listed as shown in Figure  2-32 . The service selector is 
app = hello-world and the service endpoints are 172.17.0.3:8080 and 172.17.0.4:8080.  

 All the preceding commands to create the  hello-world  Replication Controller, list its Pods and 
endpoints association with the  hello-world  Service shown in Figure  2-33 .    

 

 



CHAPTER 2 ■ HELLO KUBERNETES

64

     Invoking the Hello-World Application 
  The Pods associated with the hello-world Replication Controller and Service by the same name may be 
invoked using the Service endpoints as listed in the Service description in Figure  2-33 . For example, invoke 
the  172.17.0.3  endpoint with the following  curl  command. 

    curl 172.17.0.3    

 The HTML output from the Pod gets output as shown in Figure  2-34 .  

  Figure 2-33.    Summary of Commands  to   create a Replication Controller       

 



CHAPTER 2 ■ HELLO KUBERNETES

65

 Similarly, invoke the 172.17.0.4 endpoint with the following curl command. 

    curl 172.17.0.4    

 The HTML output from the other Pod gets output as shown in Figure  2-35 .  

  Figure 2-34.    HTML Output from invoking the hello-world Application with curl       

 



CHAPTER 2 ■ HELLO KUBERNETES

66

  Figure 2-35.    Invoking another Service Endpoint with curl       

 



CHAPTER 2 ■ HELLO KUBERNETES

67

 To invoke the Service endpoints in a browser on a local machine configure local port forwarding for the 
Service endpoints. 

    ssh -i "docker.pem" -f -nNT -L 8081:172.17.0.3:8080 ubuntu@ec2-52-91-200-41.compute-1.
amazonaws.com 
 ssh -i "docker.pem" -f -nNT -L 8082:172.17.0.4:8080 ubuntu@ec2-52-91-200-41.compute-1.
amazonaws.com    

 Subsequently invoke the  localhost:8081  URL in a browser on a local machine as shown in Figure  2-36  
to display the HTML output from the Pod at endpoint  172.17.0.3:8080 .  

  Figure 2-36.    Invoking the hello-world Application in a Local machine Browser with its Service Endpoint       

 



CHAPTER 2 ■ HELLO KUBERNETES

68

 Similarly invoke the  localhost:8082  URL in a browser on a local machine as shown in Figure  2-37  to 
display the HTML output from the Pod at endpoint  172.17.0.4:8080 .    

  Figure 2-37.    Invoking  another   Service Endpoint in a Browser       

     Scaling the Application 
  To scale the  hello-world  Replication Controller to 6 replicas, for example, run the following  kubectl scale  
command. 

    kubectl scale rc hello-world --replicas=6    

 An output of “scaled” as shown in Figure  2-38  indicates the Replication Controller has been scaled.  

  Figure 2-38.    Scaling an Application       

 The number of Pods for the hello-world Replication Controller increases when the Replication 
Controller is scaled up to 6. To list the Pods run the following command. 

    kubectl get pods    

 

 



CHAPTER 2 ■ HELLO KUBERNETES

69

 Six Pods get listed in addition to the  hello-world  Pod created initially using a Pod definition file as 
shown in Figure  2-39 . The preceding command may have to be run more than once to list all the Pods with 
STATUS as Running and READY state as 1/1. The  hello-world  Pod is not associated with the  hello-world  
Replication Controller as it does not include a label that matches the selector label (same as template label) 
in the Replication Controller.  

  Figure 2-39.    Listing Pods after Scaling       

 In the preceding example we scaled  up  the Replication Controller, but the  kubectl scale  command 
may also be used to scale  down  the Replication Controller. As an example, scale down the  hello-world  
Replication Controller to 2 replicas. 

    kubectl scale rc hello-world --replicas=2    

 Subsequently list the Pods. 

    kubectl get pods    

 The number of replicas gets listed as 2 in addition to the  hello-world  Pod as shown in Figure  2-40 .     

 



CHAPTER 2 ■ HELLO KUBERNETES

70

     Using JSON for the Resource Definitions 
 In the preceding section we used the YAML format to create the Pod, Service, and Replication 
Controller definition files.  The   definition files may be developed in JSON format instead. The YAMLToJSON 
utility (   http://yamltojson.com/     ) may be used to convert from YAML to JSON and the JSON lint 
(   http://jsonlint.com/     ) may be used to validate the JSON. A JSON to YAML utility is also available at 
   http://jsontoyaml.com/     . The  JSON   definition file  hello-world-service.json  for the  hello-world  
Service is listed: 

    { 
   "apiVersion": "v1", 
   "kind": "Service", 
   "metadata": { 
     "name": "hello-world", 
     "labels": { 
       "app": "hello-world" 
     } 
   }, 
   "spec": { 
     "ports": [ 
       { 
         "name": "http", 
         "port": 80, 
         "targetPort": "http" 
       } 
     ], 
     "selector": { 
       "app": "hello-world" 
     }, 
     "type": "LoadBalancer" 
   } 
 }    

 Create a   hello-world-service.json  file   using a vi editor and copy and paste the preceding listing to 
the file. Save the file using :wq as shown in Figure  2-41 .  

  Figure 2-40.     Scaling   Down to 2 Replicas       

 

http://yamltojson.com/
http://jsonlint.com/
http://jsontoyaml.com/


CHAPTER 2 ■ HELLO KUBERNETES

71

 Delete the  hello-world  Service and  hello-world  Replication Controller created previously. Run the 
following command to create a Service from the JSON format definition file. 

    kubectl create –f hello-world-service.json    

 The  hello-world  Service gets created as shown in Figure  2-42 .  

  Figure 2-41.     Service   Definition File in JSON Format       

  Figure 2-42.    Creating a Service from the JSON Definition File       

 

 



CHAPTER 2 ■ HELLO KUBERNETES

72

 Subsequently list all the Kubernetes Services. 

    kubectl get services    

 The  hello-world  Service gets listed as shown in Figure  2-43 .  

  Figure 2-43.    Listing the  Service  s       

 The JSON format version of  the   Replication Controller definition file,  hello-rc.json,  is as follows. 

    { 
   "apiVersion": "v1", 
   "kind": "ReplicationController", 
   "metadata": { 
     "name": "hello-world" 
   }, 
   "spec": { 
     "replicas": 2, 
     "template": { 
       "metadata": { 
         "labels": { 
           "app": "hello-world" 
         } 
       }, 
       "spec": { 
         "containers": [ 
           { 
             "image": "tutum/hello-world", 
             "name": "hello-world", 
             "ports": [ 
               { 
                 "containerPort": 8080, 
                 "name": "http" 
               } 
             ] 
           } 
         ] 
       } 
     } 
   } 
 }    

 



CHAPTER 2 ■ HELLO KUBERNETES

73

 Create  the    hello-rc.json  file in a vi editor and save the file with :wq as shown in Figure  2-44 .  

  Figure 2-44.    Creating  the   hello-rc.json File in vi Editor       

 Delete all previously created Pods and Replication Controllers. Run the following command to create 
the  hello-world  Replication Controller. 

    kubectl create –f hello-rc.json    

 The  hello-world  Replication Controller gets created as shown in Figure  2-45 . Subsequently run the 
following command to list the Replication Controllers.  

    kubectl get rc    

  The    hello-world  Replication Controller gets listed as shown in Figure  2-45 . List the Pods created by the 
Replication Controller using the following command. 

 



CHAPTER 2 ■ HELLO KUBERNETES

74

    kubectl get pods    

 Because  replicas  is set as 2 two  Pods   get listed as shown in Figure  2-45 . 

  Figure 2-46.    Describing the hello-world Service       

  Figure 2-45.    Creating a  Replication   Controller from the JSON format Definition File       

 Describe the  hello-world  Service with the following command. 

    kubectl describe svc hello-world    

 Because the label on the  hello-world  Replication Controller matches the Service selector, the two Pods 
created using the Replication Controller are represented by the Service and have endpoints in the Service as 
shown in Figure  2-46 .  

 

 



CHAPTER 2 ■ HELLO KUBERNETES

75

 Invoke a Service endpoint using a curl command as follows. 

    curl 172.17.0.2    

 The HTML output from  the   curl command gets output as shown in Figure  2-47 .  

  Figure 2-47.    Invoking the hello- world   Application with curl       

 



CHAPTER 2 ■ HELLO KUBERNETES

76

 Set up local port forwarding to a Service endpoint. 

    ssh -i "docker.pem" -f -nNT -L 80:172.17.0.2:8080 ubuntu@ec2-52-91-200-41.compute-1.
amazonaws.com    

 Subsequently invoke the Service endpoint in a browser in a local machine to display  the   HTML output 
as shown in Figure  2-48 .   

  Figure 2-48.    Displaying hello- world   Application HTML in a Browser       

     Summary 
 In this chapter we introduced the Kubernetes concepts such as Pod, Service, Replication Controller, Labels, 
and Selector. We also developed a hello-world application both imperatively on the command line, and 
declaratively using definition files. We discussed two different supported formats for the definition files: 
YAML and JSON. In the next chapter we shall discuss using environment variables in Pod definitions.     

 



77© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_3

    CHAPTER 3   

 Using Custom Commands and 
Environment Variables           

 Kubernetes orchestrates Docker containers, and the instructions to run for a Docker image are specified in 
the  Dockerfile . The  ENTRYPOINT  instruction specifies the command to run, and the  CMD  instruction specifies 
the default arguments for the  ENTRYPOINT  command. Kubernetes provides two fields,  "Command"  and  "Args" , 
to be specified for a container image in a Pod definition to override the default settings of  ENTRYPOINT  and 
 CMD . We shall discuss these fields in this chapter. We shall also discuss using environment variables in a Pod 
definition’s container mapping with the  "env"  field mapping. 

 This chapter has the following sections.

   Setting the Environment  

  The ENTRYPOINT and CMD Instructions  

  The Command and Args Fields in a Pod Definition  

  Environment Variables  

  Using the default ENTRYPOINT and CMD from a Docker Image  

  Overriding Both the ENTRYPOINT and CMD in a Docker Image  

  Specifying both the Executable and the Parameters in the Command Mapping  

  Specifying both the Executable and the Parameters in the Args Mapping    

     Setting the Environment 
 The following  software   is used in this chapter.

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)    

 Install Docker engine, Kubernetes, and Kubectl as discussed in chapter   1    . Start Docker Engine and verify 
its status with the following commands. 

    sudo service docker start 
 sudo service docker status    

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

78

 The output shown in Figure  3-1  indicates that Docker is running.   

     The ENTRYPOINT and CMD Instructions 
 The  ENTRYPOINT  in a Docker image’s  Dockerfile  specifies the command to run when the image is run. The 
 ENTRYPOINT  has two forms discussed in Table  3-1 . A  Dockerfile  may have only one  ENTRYPOINT . If multiple 
 ENTRYPOINT s are specified, the last  ENTRYPOINT  entry is run.  

  Figure 3-1.    Starting Docker  and   Verifying Its Status       

   Table 3-1.    ENTRYPOINT  Forms     

 Form  Description  Format 

 Exec form  Runs an executable using the specified parameters. 
The exec form is the preferred form if environment 
variable substitution is not used. But if environment 
variable substitution is used the shell form must 
be used. The exec form does not perform any 
environment variable substitution. 

 ENTRYPOINT [“executable“”, 
“param1”, “param2”] 

 Shell form  Runs the command in a shell and prevents any 
CMD or run command-line arguments to be used 
in conjunction with ENTRYPOINT. The shell form 
starts a shell with /bin/sh -c even though a shell is 
not invoked explicitly. 

 ENTRYPOINT command 
param1 param2 

 The  CMD  instruction specifies the args for the  ENTRYPOINT  command in exec form. The  CMD  has three 
forms as discussed in Table  3-2 . A Dockerfile may have only one  CMD  entry. If multiple  CMD s are specified the 
last  CMD  entry is run.  The    CMD  instruction may include an executable.  

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

79

 If command-line args are provided to  the    docker run  command those override the default args in  CMD  
instruction. The  ENTRYPOINT  instruction could also be used in combination with a helper script. Next, we 
shall discuss the two fields, “command” and “args” that could be used to override the  ENTRYPOINT  and  CMD  
instructions in a  Dockerfile  respectively.  

      The Command and Args Fields in a Pod Definition 
 Kubernetes has the provision to override the  ENTRYPOINT  (command) and  CMD  (args) instructions specified 
in the Dockerfile. Two field mappings in a Pod’s definition file could be used to override the  ENTRYPOINT  and 
 CMD  instructions. These fields are “Command” and “Args,” and they override the Dockerfile “ENTRYPOINT 
“and “CMD” instructions respectively. The overriding applies based on which of these instructions and 
fields are specified. Some examples of overriding are discussed in Table  3-3 .    

   Table 3-2.    CMD Forms   

 Form  Description  Format 

 Exec form  The exec form specifies the command to 
invoke and the command parameters in 
JSON array format. The exec form does not 
perform environment variable substitution. 
If environment variable substitution is to be 
performed, use the shell form or invoke the 
shell explicitly in the exec form. In JSONs array 
format, double quotes “” must be used around 
names. 

 CMD [“executable”, “param1”, 
“param2”] 

 Default parameters 
to ENTRYPOINT 

 Specifies the default args to the ENTRYPOINT 
command. Both the ENTRYPOINT and CMD 
must be specified. Both the ENTRYPOINT 
and CMD must be specified using JSON array 
formats. In JSONs array format, double quotes 
“” must be used around names. 

 CMD [“param1”, ”param2”] 

 Shell form  Invokes a  shell   to invoke the specified 
command using the parameters. The command 
is invoked as a sub-command of /bin/sh –c. 

 CMD command param1 param2 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

80

     Environment Variables 
 A Pod’s schema has the provision to specify environment variables. The environment variables are specified 
as “name” and “value” field mappings as a collection within a  container   definition’s “ env ” mapping. The 
format for specifying environment variables is as follows. 

    spec: 
   containers: 
     - 
     image: "image name" 
     name: "container name " 
     env: 
       - 
         name: "env variable 1" 
         value: " env variable 1 value" 
       - 
         name: "env variable 2" 
         value: " env variable 2 value"    

   Table 3-3.    Examples of Overriding ENTRYPOINT  and   CMD with Command and Args   

 ENTRYPOINT  CMD  Command  Args  Used 

 Example 1  yes  yes  yes  yes  The Command and Args field mappings 
in the Pod definition file override the 
ENTRYPOINT and CMD instructions in 
Dockerfile. 

 Example 2  yes  yes  no  no  The Dockerfile ENTRYPOINT command 
and CMD args are used. 

 Example 3  yes  yes  yes  no  Only the command in the Command is 
used and Dockerfile ENTRYPOINT and 
CMD instructions are ignored. 

 Example 4  yes  yes  no  yes  The Docker image’s command as 
specified in the ENTRYPOINT is used 
with the args specified in the Pod 
definition’s Args. The args from the 
Dockerfile’s CMD are ignored. 

 Example 5  no  yes  no  no  The command and parameters from the 
CMD instruction are run. 

 Example 6  no  yes  yes  yes  The Command and Args field mappings 
in the Pod definition file are used. 
The CMD instruction in Dockerfile is 
overridden. 

 Example 7  no  yes  no  yes  The Args field mapping in the Pod 
definition file is used. The CMD 
instruction in Dockerfile is overridden. 

 Example 8  no  yes  yes  no  The command in the Command mapping 
is used, and Dockerfile CMD instruction 
is ignored. 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

81

 The environment variables are added to the  docker run  command using  –e  when the Docker image is 
run by Kubernetes. The environment variables may also be used in “command” and “args” mappings using 
the environment variable substitution if a shell is used to run the Docker image command. A shell is invoked 
if one or more of the following is used:

   -The shell form of the ENTRYPOINT or CMD is used  

  -The shell is invoked explicitly in the ENTRYPOINT or CMD instruction    

 In the following sections we shall use the “ubuntu” Docker image to demonstrate overriding the default 
 ENTRYPOINT  command and the default  CMD  args. We shall start with using the default  ENTRYPOINT  and  CMD  
instructions.  

     Using the Default ENTRYPOINT and CMD from a Docker Image 
  The  Dockerfile  for the Ubuntu image does not provide an  ENTRYPOINT  instruction but the  CMD  instruction 
is set to  CMD ["/bin/bash"] . In the example in this section we shall create a Pod definition that does not 
override the  ENTRYPOINT  or  CMD  instruction from the Docker image. Create a Pod definition file as follows 
with the image as “ubuntu” and some environment variables set. 

    apiVersion: v1 
 kind: Pod 
 metadata: 
   name: "hello-world" 
   labels: 
     app: "helloApp" 
 spec: 
   restartPolicy: Never 
   containers: 
     - 
       image: "ubuntu" 
       name: "hello" 
       ports: 

   containerPort: 8020 
       env: 
         - 
           name: "MESSAGE1" 
           value: "hello" 
         - 
           name: "MESSAGE2" 
           value: "kubernetes"    

 The  env.yaml  file may be created in a vi editor and saved with the :wq command as shown in 
Figure  3-2 .  



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

82

 Run the following command to create a Pod from the definition file  env.yaml . 

    kubectl create –f env.yaml    

 The  hello-world  pod gets created as shown in Figure  3-3 . Run the following command to list the pods.  

  Figure 3-2.    A Pod definition file env.yaml to demonstrate Environment Variables       

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

83

    kubectl get pods    

 The  hello-world  pod gets created but the Docker container created is listed as “creating” as shown 
in Figure  3-3 . 

 When the Docker container gets created the  STATUS  column value transitions to “Running” and the 
 READY  column value becomes 1/1, which indicates that 1 of 1 containers in the Pod are ready and which 
is not shown in Figure  3-4  because the  READY  state transitions to 0/1 quickly thereafter. After the Pod 
command/args have run the Pod terminates and  STATUS  becomes  ExitCode:0  as shown in Figure  3-4 .  

  Figure 3-3.    Creating and listing a Pod       

  Figure 3-4.    After the Command/Args have run, a Pod terminates and the Pod’s Status becomes ExitCode:0       

 Run the following command to list the output from the Pod. 

    kubectl logs hello-world    

 As the default  CMD ["/bin/bash"]  in the “Ubuntu” Docker image is just the invocation of the bash shell 
using  /bin/bash,  no output is generated as shown in Figure  3-5 .   

 

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

84

     Overriding Both the ENTRYPOINT and CMD 
  In the second example we shall override both the  ENTRYPOINT  and  CMD  in a  Dockerfile  using  Command  
and  Args  mappings in the Pod definition file.    Using in combination  ENTRYPOINT  and CMD will help us to 
specify the default executable for the image and also it will provide the default arguments to that executable. 
Environment variable substitution is used for the  MESSAGE1  and  MESSAGE2  environment variables with the 
 $(VARIABLE_NAME)  syntax. 

    command: ["/bin/echo"] 
 args: [" $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  Pod definition file is listed: 

    apiVersion: v1 
 kind: Pod 
 metadata: 
   name: "hello-world" 
   labels: 
     app: "helloApp" 
 spec: 
   restartPolicy: Never 
   containers: 
     - 
       image: "ubuntu" 
       name: "hello" 
       ports: 
           - 
           containerPort: 8020 
       env: 
         - 
           name: "MESSAGE1" 
           value: "hello" 
         - 
           name: "MESSAGE2" 
           value: "kubernetes" 
       command: ["/bin/echo"] 
       args: [" $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  file may be opened and modified in the vi editor and saved using the :wq command as 
shown in Figure  3-6 .  

  Figure 3-5.    No output generated  with   Default CMD [“/bin/bash”] in “ubuntu” Docker Image        

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

85

 First, we need to delete the  hello-world  pod created in the first example with the following command. 

    kubectl delete pod hello-world    

 The  hello-world  pod gets deleted as shown in Figure  3-7 .  

  Figure 3-6.    Modifying env.yaml in a vi Editor       

  Figure 3-7.    Deleting the hello-world Pod       

 

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

86

 Run the  kubectl create  command to create a Pod from the definition file  env.yaml . 

    kubectl create –f env.yaml    

 The  hello-world  Pod gets created as shown in Figure  3-8 .  

  Figure 3-10.    Outputting Message Generated from Environment Variables using Value Substitution        

  Figure 3-8.    Creating the hello-world Pod from definition file env.yaml       

  Figure 3-9.    Listing the Pods with transitioning STATUS value       

 Run the  kubectl get  command to list the pods. 

    kubectl get pods    

 The  hello-world  pod gets listed as shown in Figure  3-9 . The Pod transitions quickly from the  STATUS  of 
“Running” to  ExitCode:0  as shown in Figure  3-9 .  

 Run the following command to list the output from the Pod. 

    kubectl logs hello-world    

 The message created from environment variables  MESSAGE1  and  MESSAGE2  using substitution gets listed 
as shown in Figure  3-10 .   

 

 

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

87

     Specifying both the Executable and the Parameters in the 
Command Mapping 
  In the third example, specify that both the executable and the parameters are specified in the Command 
mapping in the Pod definition file. Environment variable substitution is used for the  MESSAGE1  and  MESSAGE2  
environment variables. The shell is not required to be invoked/started explicitly if the environment variable 
syntax  $(VARIABLE_NAME)  is used, which is what we have used. 

    command: ["/bin/echo", " $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  Pod definition file is listed: 

    apiVersion: v1 
 kind: Pod 
 metadata: 
   name: "hello-world" 
   labels: 
     app: "helloApp" 
 spec: 
   restartPolicy: Never 
   containers: 
     - 
       image: "ubuntu" 
       name: "hello" 
       ports: 
           - 
           containerPort: 8020 
       env: 
         - 
           name: "MESSAGE1" 
           value: "hello" 
         - 
           name: "MESSAGE2" 
           value: "kubernetes" 
       command: ["/bin/echo", " $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  file may be opened and modified in the vi editor and saved using the :wq command as 
shown in Figure  3-11 .  



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

88

 Run the  kubectl create  command to create a Pod from the definition file  env.yaml . 

    kubectl create –f env.yaml    

 The  hello-world  pod gets created as shown in Figure  3-12 . Run the  kubectl get  command to list the pods.  

  Figure 3-11.    The Command mapping with both the Command Executable and the Parameters       

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

89

    kubectl get pods    

 The  hello-world  pod gets listed though initially the Pod  STATUS  is not listed as “Running” as shown 
in Figure  3-12 . The Pod transitions quickly to the  READY  value of 1/1 and subsequently 0/1. The 1/1 READY 
value is not shown in Figure  3-12  as it transitions quickly to 0/1. After the command has run the Pod 
terminates and the  STATUS  becomes  ExitCode:0  as shown in Figure  3-12 . 

 Subsequently invoke the following command to list the output generated by the Pod. 

    kubectl get logs    

 The message created from environment variables  MESSAGE1  and  MESSAGE2  gets listed as shown in 
Figure  3-13 .   

  Figure 3-12.    Creating and Listing the Pod with Definition file from Figure  3-11        

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

90

     Specifying Both the Executable and the Parameters in the 
Args Mapping 
  In the fourth example, specify both the executable and the parameters in the  Args  mapping in the Pod 
definition file as a result overriding the  CMD  instruction in the  Dockerfile . Environment variable substitution 
is used for the  MESSAGE1  and  MESSAGE2  environment variables with the environment variable syntax 
 $(VARIABLE_NAME) . 

    args: ["/bin/echo", " $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  Pod definition file is listed: 

    apiVersion: v1 
 kind: Pod 
 metadata: 
   name: "hello-world" 
   labels: 
     app: "helloApp" 
 spec: 
   restartPolicy: Never 
   containers: 
     - 
       image: "ubuntu" 
       name: "hello" 
       ports: 
           - 
           containerPort: 8020 
       env: 
         - 
           name: "MESSAGE1" 
           value: "hello" 
         - 
           name: "MESSAGE2" 
           value: "kubernetes" 
       args: ["/bin/echo", " $(MESSAGE1)", " $(MESSAGE2)"]    

 The  env.yaml  file may be opened and modified in the vi editor and saved using the :wq command as 
shown in Figure  3-14 .  

  Figure 3-13.    Message output by  Pod   created in Figure   3-12        

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

91

 The  hello-world  Pod created from the previous example must be deleted as otherwise the error shown 
in Figure  3-15  gets generated when the  kubectl create  command is run.  

  Figure 3-14.    The args Mapping in the Pod definition file specifies both the Command Executable and the 
Parameters       

  Figure 3-15.    Error Generated if hello-world Pod already exists       

 

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

92

 Run the  kubectl create  command to create a Pod from the definition file  env.yaml . 

    kubectl create –f env.yaml    

 The output from the command is shown in Figure  3-16 .  

  Figure 3-16.    Creating a Pod from definition file in Figure  3-14        

 The  hello-world  pod gets created as shown in Figure  3-17 . Run the  kubectl get  command to list 
the pods.  

  Figure 3-18.    Outputting  the   Message Generated by Pod        

  Figure 3-17.    The Pod terminates and its Status transitions to ExitCode:0 after the command has run       

    kubectl get pods    

 The  hello-world  pod gets listed as shown in Figure  3-17 . The Pod transitions quickly to the READY 
value of 1/1 and subsequently 0/1. The 1/1 READY value is not shown in Figure  3-17  as it transitions quickly 
to 0/1. After the command has run the Pod terminates and the STATUS becomes ExitCode:0 as shown in 
Figure  3-17 . 

 Subsequently invoke the following command to list the output generated by the Pod. 

    kubectl get logs    

 The message created with environment variables substitution from  MESSAGE1  and  MESSAGE2  gets listed 
as shown in Figure  3-18 .   

 

 

 



CHAPTER 3 ■ USING CUSTOM COMMANDS AND ENVIRONMENT VARIABLES

93

     Summary 
 In this chapter we discussed the  ENTRYPOINT  and  CMD  instructions in a Docker image  Dockerfile : 
instructions used to run the default command with the default parameters when the image is run in a 
Kubernetes Pod. We also discussed the  Command  and  Args  mappings in a Pod definition file that could be 
used to override the  ENTRYPOINT  and  CMD  instructions. We discussed various examples of overriding the 
default instructions for the “ubuntu” Docker image with “command” and “args” field mappings in a Pod 
definition file. We also demonstrated the use of environment variables in a Pod definition file. In the next 
chapter we shall discuss using MySQL Database with Kubernetes.     



          PART II 

  Relational Databases 

        



97© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_4

    CHAPTER 4   

 Using MySQL Database           

 MySQL database is the most commonly used open source database. The Docker image “mysql” could be 
used to create a Docker container running a MySQL database instance. Running Docker separately for a 
single MySQL instance or multiple instances lacks the features of scheduling multiple instances, scaling, and 
providing a service for external clients. In this chapter we shall discuss how the Kubernetes container cluster 
manager could be used to overcome all of those deficiencies. 

   Setting the Environment  

  Creating a Service  

  Creating a Replication Controller  

  Listing the Pods  

  Listing Logs  

  Describing the Service  

  Starting an Interactive Shell  

  Starting the MySQL CLI  

  Creating a Database Table  

  Exiting the MySQL CLI and Interactive Shell  

  Scaling the Replicas  

  Deleting the Replication Controller    

     Setting the Environment 
  The following software is required for this chapter.

   -Docker Engine (latest version)  

  -Kubernetes Cluster Manager (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image “mysql” (latest version)    



CHAPTER 4 ■ USING MYSQL DATABASE

98

 We have used an Amazon EC2 instance created from AMI Ubuntu Server 14-04 LTS (HVM), SSD 
Volume Type - ami-d05e75b8 to install the required software. The procedure to install Docker, Kubernetes, 
and Kubectl is discussed in chapter   1    . Obtain the Public IP address of the Amazon EC2 instance as shown in 
Figure  4-1 .  

 SSH log in to the Ubuntu instance using the Public IP Address, which would be different for different 
users. 

    sh -i "docker.pem" ubuntu@52.90.43.0    

 Start the Docker engine and verify its status. 

    sudo service docker start 
 sudo service docker status    

 The Docker Engine should be listed as “running” as shown in Figure  4-2 .   

  Figure 4-1.    Obtaining the Public IP Address       

  Figure 4-2.    Starting Docker  and   Verifying Its Status        

 

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 4 ■ USING MYSQL DATABASE

99

     Creating a Service 
  In this section we shall create a Kubernetes service using a definition file. We have used the YAML format for 
definition files, but JSON could be used just as well. Create a service definition file called  mysql-service.yaml  
and copy the following listing to the file. Within the  spec  field mapping for the service the “selector” expression 
is set to  app: "mysql-app,"  which translates to service selector app=mysql-app and which implies that the 
service routes traffic to Pods with the label  app=mysql-app . If the  selector  expression is empty all Pods are 
selected. The port to expose the service is set to 3306 within the ports listing. And the service has a label 
 app: "mysql-app" . The  kind field  mapping must have value “Service.” 

    apiVersion: v1 
 kind: Service 
 metadata: 
  name: "mysql" 
  labels: 
   app: "mysql-app" 
 spec: 
  ports: 
   # the port that this service should serve on 
   - port: 3306 
  # label keys and values that must match in order to receive traffic for this service 
  selector: 
   app: "mysql-app"    

 The service schema is available at    http://kubernetes.io/v1.1/docs/api-reference/v1/
definitions.html#_v1_service     . Setting the  selector  field in the YAML definition file to  app: "mysql-app"  
implies that all Pods with the YAML definition file label setting  app: "mysql-app"  are managed by the 
service. Create the service using the definition file with the  kubectl create  command. 

    kubectl create -f mysql-service.yaml    

 The  mysql  service gets created and the output is “services/mysql” as shown in Figure  4-3 .  

 List the service using  the   following command. 

    kubectl get services    

  Figure 4-3.    Creating a Service for MySQL Database       

 

http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_service
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_service


CHAPTER 4 ■ USING MYSQL DATABASE

100

      Creating a Replication Controller 
 In this section we shall create a replication controller managed by the service created in the previous section. 
Create a replication controller definition file called  mysql-rc.yaml  and copy the following/next listing to the 
file. The  kind  field mapping must have value “ReplicationController.” The replication controller has a label 
 app: "mysql-app"  in the  metadata  field mapping. If the labels are empty they are defaulted to the labels of 
the Pods the replication controller manages. The  "spec"  field mapping defines the replication controller 
and includes the  "replicas"  field mapping for the number of replicas to create. The  replicas  is set to 1 
in the following/next listing. The default number of replicas is also 1. The  spec  includes a  selector field  
mapping called  app: "mysql-app,"  which selects all Pods with label  app: "mysql-app"  for the replication 
controller to manage and count toward the “replicas” setting. A Pod could have other labels in addition 
to the selector, but must include the selector expression/s of a replication controller to be managed by 
the replication controller. Similarly, a replication controller could be managing Pods not started with the 
replication controller definition file. 

 Labels and selector expression settings in YAML definition files are not used as such, but are translated 
to a label/selector by replacing the ‘:’ with the ‘=’. For example, service/replication controller selector setting 
app: “mysql-app” becomes selector app = mysql-app selector and label setting app: “mysql-app” becomes 
label app = mysql-app. 

 If a  selector  is not specified the labels on the template are used to match the Pods and count toward 
the “replicas” setting. The  "template"  field mapping defines a Pod managed by the replication controller. 
The  spec  field mapping within the  template  field specifies the behavior of the Pod. The  "containers"  field 
mapping within the  "spec"  field defines the collection/list of containers to create including the image, the 
environment variables if any, and the ports to use for each container. 

 We need to use an environment variable for the MySQL database replication controller. The Docker 
image “mysql” requires (is mandatory) the environment variable  MYSQL_ROOT_PASSWORD  to run a Docker 
container for MySQL database. The  MYSQL_ROOT_PASSWORD  variable sets the password for the  root  user. 
Environment variables are set with the  "env"  mapping within a  containers  field listing. An  env  mapping 
consists of a  name  mapping and a  value  mapping. The  MYSQL_ROOT_PASSWORD  environment variable is set 
as shown in the following listing. The  "ports"  field collection includes a  containerPort  mapping for port 
3306. The indentations and hyphens in a YAML file must be well formatted and the following listing should 
be copied and syntax validated in the YAML Lint (   http://www.yamllint.com/     ). The YAML lint only validates 
the syntax and does not validate if the Pod definition field conforms to the schema for a pod. The Pod schema 
is available at    http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_podspec     . 

  Figure 4-4.    Listing the mysql Service        

 The  mysql  service gets listed as shown in Figure  4-4 .   

 

http://www.yamllint.com/
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_podspec


CHAPTER 4 ■ USING MYSQL DATABASE

101

    --- 
 apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   labels: 
     app: "mysql-app" 
 spec: 
   replicas: 1 
   selector: 
     app: "mysql-app" 
   template: 
     metadata: 
       labels: 
         app: "mysql-app" 
     spec: 
       containers: 
       - 
         env: 
           - 
             name: "MYSQL_ROOT_PASSWORD" 
             value: "mysql" 
         image: "mysql" 
         name: "mysql" 
         ports: 
           - 
             containerPort: 3306    

 The  mysql-rc.yaml  definition file may be created in the vi editor and saved with the :wq command as 
shown in Figure  4-5 .  



CHAPTER 4 ■ USING MYSQL DATABASE

102

 Create a replication controller from the service definition file with the  kubectl create  command. 

    kubectl create -f mysql-rc.yaml    

 As the output in Figure  4-6  indicates, the  mysql  replication controller gets created.  

  Figure 4-5.    Definition File for Replication Controller       

  Figure 4-6.    Creating a Replication Controller for MySQL Database       

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

103

 List the replication with the following command. 

    kubectl get rc    

 The  mysql  replication controller including the container name, image name, selector expression 
(app=mysql-app), and number of replicas get listed as shown in Figure  4-7 .  

 To describe the  mysql  replication controller run the following command. 

    kubectl describe rc mysql    

 The  replication controller   name, namespace, image, selector, labels, replicas, pod status, and events get 
listed as shown in Figure  4-8 .   

  Figure 4-7.    Listing the MySQL Replication Controller       

  Figure 4-8.    Describing the MySQL Replication Controller        

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

104

     Listing Logs 
 List the  Pod   logs for a pod: for example, the  mysql-wuo7x  pod, with the following command. 

    kubectl logs mysql-wuo7x    

  Figure 4-9.    Listing the Pod/s  for   MySQL Database       

     Listing the Pods 
  The   Pods created may be listed with the following command. 

    kubectl get pods    

 As shown in Figure  4-9  the 2 replicas created by the replication controller get listed. Initially the Pods 
may not be listed as READY 1/1. Run the preceding command after a few seconds, multiple times if required, 
to list all the Pods as ready.   

 



CHAPTER 4 ■ USING MYSQL DATABASE

105

  Figure 4-10.    Listing the  Logs   generated by the Pod for MySQL Database       

 The Pod logs get listed as shown in Figure  4-10 .  

 



CHAPTER 4 ■ USING MYSQL DATABASE

106

 The MySQL Server is listed as started and “ready for connections” as shown in Figure  4-11 .   

     Describing the Service 
 To describe the   mysql    service run the following command. 

    kubectl describe svc mysql    

 The service name, namespace, labels, selector, type, Ip, port and endpoints get listed. Because the 
number of replicas is set to 1 only one endpoint is listed as shown in Figure  4-12 .   

  Figure 4-11.    Listing mysqld  as   Ready for Connections       

 



CHAPTER 4 ■ USING MYSQL DATABASE

107

     Starting an Interactive Shell 
  Bash is the free version of the Bourne shell distributed with Linux and GNU operating systems (OS). 
For Docker images that have a Linux OS image as the base image as specified in the  FROM  instruction in 
the  Dockerfile , the software running in a Docker container may be accessed using the Bash shell. The 
 "mysql"  Docker image is based on the  "debian"  image and as a result supports access to software running in 
the Docker containers via a bash interactive shell. 

 Next, we shall start an  interactive shell   to start the MySQL CLI. But first we need to obtain the container 
id for one of the containers running MySQL. Run the following command to list the Docker containers. 

    sudo docker ps    

  Figure 4-12.    Describing  the   MySQL Service       

 



CHAPTER 4 ■ USING MYSQL DATABASE

108

 Using the Docker container id from the output from the preceding command, start an interactive shell. 

    sudo docker exec -it 526f5d5f6c2e bash    

 An interactive shell or tty gets started as shown in Figure  4-14 .   

  Figure 4-13.    Listing the Docker Containers       

  Figure 4-14.    Starting the Interactive Terminal        

 The Docker container for the  mysql  image is shown listed in Figure  4-13 .  

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

109

     Starting the MySQL CLI 
  Within the interactive shell run the following command to start the MySQL CLI as user root. 

    mysql –u root –p    

 When prompted with Password: set the password as the value of the environment variable 
 MYSQL_ROOT_PASSWORD , which was set as “mysql” in the  mysql-rc.yaml  definition file. The MySQL CLI gets 
started as shown in Figure  4-15 .  

 List the databases with the following command. 

    show databases;    

 The default databases shown in Figure  4-16  include the  "mysql"  database, which we shall use to create 
a database table. The other databases are system databases and should not be used for user tables.  

  Figure 4-15.    Starting the MySQL CLI Shell       

  Figure 4-16.    Listing the Databases       

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

110

 Set the database “mysql” as the current database with the following command. 

    use mysql    

 The database gets set as  mysql   as   indicated by the “Database changed” output in Figure  4-17 .   

     Creating a Database Table 
  Next, create a database table called  Catalog  with the following SQL statement. 

    CREATE TABLE Catalog(CatalogId INTEGER PRIMARY KEY,Journal VARCHAR(25),
Publisher VARCHAR(25),Edition VARCHAR(25),Title VARCHAR(45),Author VARCHAR(25));    

 Add a row of data to the  Catalog  table with the following SQL statement. 

    INSERT INTO Catalog VALUES('1','Oracle Magazine','Oracle Publishing',
'November December 2013','Engineering as a Service','David A. Kelly');    

 The  Catalog  table gets created and a row of data gets added as shown in Figure  4-18 .  

 Subsequently run the following  SQL   statement to query the database table  Catalog . 

    SELECT * FROM Catalog;    

  Figure 4-17.    Setting the Database        

  Figure 4-18.    Creating a MySQL Database Table       

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

111

     Exiting the MySQL CLI and Interactive Shell 
 Exit the MySQL CLI with the “quit”    command. 

     quit      

 Exit the interactive terminal with the “exit” command. 

    exit    

 The output from the preceding commands is shown in Figure  4-20 .   

      Scaling the Replicas 
 One of the main benefits of Kubernetes is to be able to scale the number of MySQL instances in the cluster. 
Run the following  kubectl scale  command to scale the replicas from 1 to 4. 

    kubectl scale rc mysql --replicas=4    

 Subsequently run the following command to list the Pods. 

    kubectl get pods    

  Figure 4-19.    Querying the Database Table        

  Figure 4-20.    Exiting the MySQL CLI Shell and Docker Container Interactive Shell       

 The single row of data added gets listed as shown in Figure  4-19 .   

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

112

 The number of Pods for the MySQL database gets increased to 4 as shown in Figure  4-21 . Some of the 
Pods may be listed as READY- > 0/1, which implies the Pod/s are not ready yet. When READY becomes 1/1 
a Pod is ready to be accessed. The 0/1 value implies that 0 of the 1 Docker containers in the Pod are ready 
and similarly the 1/1 value implies that 1 of 1 containers is ready. The general syntax for the READY column 
value if all the n containers in the Pod are running is of the form n/n. The STATUS must be “Running” for a 
Pod to be considered available.  

 To describe the  mysql  service, run the following command. 

    kubectl describe svc mysql    

 The service description is the same as before except that the number of endpoints has increased to 4 as 
shown in Figure  4-22 .  

  Figure 4-21.    Scaling the Pod Replicas to Four       

 



CHAPTER 4 ■ USING MYSQL DATABASE

113

 The command “scale” will also allow us to specify one or more preconditions for the scale actions 
needed. The following (Table  4-1 ) preconditions are supported.    

     Deleting the Replication Controller 
  To delete the replication controller  mysql , run the following command. 

    kubectl delete rc mysql    

 The replication controller gets deleted as shown in Figure  4-23 . Whenever a  kubectl  command output 
to create or delete an artifact (a Pod, service or replication controller) is of the form  artifact type/artifact 
name , it implies that the command has succeeded to create/delete the pod/service/replication controller.  

  Figure 4-22.    Describing the MySQL Service  After   Scaling the Pod Replicas       

  Figure 4-23.    Deleting the Replication Controller       

 Subsequently run the following command to get the replication controllers. The  mysql  rc does not get 
listed as shown in Figure  4-24 .  

    kubectl get rc    

   Table 4-1.    Preconditions for the ‘kubernetes scale’ command    

 Precondition  Description 

 --current-replicas  The current number of replicas for the scale to be performed. 

 --resource-version  The resource version to match for the scale to be performed. 

 

 



CHAPTER 4 ■ USING MYSQL DATABASE

114

 Describe the service  mysql  again with the following command. 

    kubectl describe svc mysql    

 No “Endpoints” get listed as shown in Figure  4-24  because all the Pods get deleted when the replication 
controller managing them is deleted.   

     Summary 
 In this chapter we discussed orchestrating the MySQL database cluster using the Kubernetes cluster 
manager. We created a Kubernetes service to represent a MySQL-based Pod. The “mysql” Docker image is 
used to create a Pod. We used a replication controller to create replicas for MySQL base Pods. Initially the 
number of replicas is set to 1. We used a Docker container running a MySQL instance to start the MySQL 
CLI and create a database table. Subsequently, we scaled the number of replicas to 4 using the replication 
controller. When scaled, the number of replicas and therefore the number of MySQL instances becomes 4. The 
replication controller maintains the replication level through replica failure or replica shut down by a user. 
This chapter also demonstrates the use of environment variables. The  MYSQL_ROOT_PASSWORD  environment 
variable is required to run a container for the Docker image “mysql” and we set the  MYSQL_ROOT_PASSWORD  
environment variable in the Pod spec in the replication controller. In the next chapter we shall discuss using 
another open source database, the PostgreSQL database.     

  Figure 4-24.    Describing the Service  after   Deleting the Replication Controllers       

 



115© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_5

    CHAPTER 5   

 Using PostgreSQL Database           

  PostgreSQL   is an open source object-relational database. PostgreSQL is scalable both in terms of the quantity 
of data and number of concurrent users. PostgreSQL is supported in several of Apache Hadoop ecosystem 
projects such as Apache Sqoop and may be used for Apache Hive Metastore. PostgreSQL 9.5 offers several 
new features such as support for  UPSERT ,  BRIN  indexing, faster sorts, and the  TABLESAMPLE  clause for getting a 
statistical sample of a large table. In this chapter we shall discuss creating a PostgreSQL 9.5 cluster using the 
Kubernetes cluster manager. We shall discuss both the imperative approach and the declarative approach for 
creating and scaling a PostgreSQL cluster. This chapter has the following sections.

   Setting the Environment  

  Creating a PostgreSQL Cluster Declaratively  

  Creating a PostgreSQL Cluster Imperatively    

     Setting the Environment 
 We have used the same type of Amazon EC2 instance in this chapter as in other chapters, an instance based 
on Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-d05e75b8 AMI. The following software is 
required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes Cluster Manager (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker Image “postgres” (latest version)    

 The procedure to install the required software, start Docker engine and Kubernetes cluster manager, is 
discussed in chapter   1    . To install the software first we need to log in to the Amazon EC2 instance. Obtain the 
Public IP Address of the Amazon EC2 instance as shown in Figure  5-1 .  

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 5 ■ USING POSTGRESQL DATABASE

116

 SSH Login to the  Ubuntu instance   using the Public IP Address. 

    ssh -i "docker.pem" ubuntu@52.91.60.182    

 Start the  Docker engine   and verify its status. 

    sudo service docker start 
 sudo service docker status    

 Docker should be indicated as “running” as shown in Figure  5-2 .  

 List the services with the following command. 

    kubectl get services    

  Figure 5-1.    Obtaining the Public IP Address       

  Figure 5-2.    Starting Docker       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

117

 The  kubernetes service   should get listed as shown in Figure  5-3 .   

     Creating a PostgreSQL Cluster Declaratively 
 In the following subsections we shall create and manage a PostgreSQL  cluster declaratively  , which implies 
we shall use definition files. The definition files could be based on the YAML format or the JSON format. 
We shall be using YAML format. It is recommended to create the service first so that any pods created 
subsequently have a service available to represent them. If the RC (replication controller) is created first, the 
pods are not usable until a service is created. 

     Creating a Service 
 Create a service definition  file    postgres-service.yaml  and copy the following listing to the file. The  "spec"  
field mapping for the service specifies the behavior of the service. The ports on which the service is exposed 
are defined in the  "ports"  field mapping. Only the port 5432 is exposed because PostgreSQL runs on port 5432. 
The  selector  expression is set to  app: "postgres" . All Pods with the label  app=postgres  are managed by 
the service. 

    apiVersion: v1 
 kind: Service 
 metadata: 
   name: "postgres" 
   labels: 
     app: "postgres" 
 spec: 
   ports: 
     - port: 5432 
   selector: 
     app: "postgres"    

 The  postgres-service.yaml  file may be created using the vi editor and saved with the :wq command as 
shown in Figure  5-4 .  

  Figure 5-3.    Listing the Kubernetes Services       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

118

 Create the service using the  kubectl create  command with the  postgres-service.yaml  definition file. 

    kubectl create -f postgres-service.yaml    

 Subsequently list the services. 

    kubectl get services    

 Also list the Pods. 

    kubectl get pods    

 An output of  services/postgres  from the first command indicates that the service has been created. 
The second command lists the  postgres  service as running at port 5432 as shown in Figure  5-5 . The IP 
Address of the service is also listed. Creating a service by itself does not create a Pod by itself and only the 
Pod for the Kubernetes is listed. A service only manages or provides an interface for Pods with the label that 
matches the  selector  expression in the service.  

  Figure 5-4.    Service Definition File postgres-service.yaml       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

119

 Describe the service  postgres  with the following command. 

    kubectl describe svc postgres    

 The service name, namespace, labels, selector, type, IP address, Port exposed on, and Endpoints get listed. 
Because no Pods are initially associated with the service, no endpoints are listed as shown in Figure  5-6 .   

     Creating a Replication Controller 
 In this section we shall create a definition file for a replication  controller  . Create a definition file called 
 postgres-rc.yaml . The definition file has the field discussed in Table  5-1 .  

  Figure 5-5.    Creating a Service and listing the Service       

  Figure 5-6.    Describing the postgres Service       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

120

 Optionally the replication controller’s  selector  field mapping may be specified. The key:value 
mapping in the  selector  must match a label in the template- > metadata field mapping for the replication 
controller to manage the Pod in the template. The  selector  field mapping if not specified defaults to 
the template- > metadata- >  labels  field mapping. In the following listing the  selector  is italicized and 
not included in the definition file used. The Pod's template- > metadata- > labels field mapping specifies 
an expression  app: "postgres", which translates to Pod label app=postgres . The  labels  field 
expression must be the same as the  "selector"  field expression in the service definition file, which was 
discussed in the previous section, for the service to manage the Pod. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   name: "postgres" 

   Table 5-1.    Replication Controller Definition File postgres-rc.yaml   

 Field  Value  Description 

 apiVersion  v1  The API version. 

 kind  ReplicationController  Defines the file to be a replication 
controller. 

 metadata  Metadata for the replication controller. 

 metadata- > name  The name of the replication controller. 
Either the name or the generateName 
field must be specified. The 
generateName field is the prefix to use in 
an automatically generated name. 

 spec  The specification for the replication 
controller. 

 spec- > replicas  2  The number of Pod replicas to create. 

 template  Specifies the template for the Pod that 
the replication controller manages. 

 template- > metadata  The metadata for the Pod including 
labels. The label is used to select the Pods 
managed by the replication controller 
and must manage the selector expression 
in the service definition file if the service 
is to represent the Pod. 

 template- > spec  Pod specification or configuration. 

 template- > spec- > containers  The containers in a Pod. Multiple 
containers could be specified but in 
this chapter only the container for 
PostgreSQL is specified. 

 template- > spec- > containers- > image 
 template- > spec- > containers- > name 

 The Docker image to run in the container. 
For PostgreSQL the image is “postgres.” 
The name field specifies the container 
name. 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

121

 spec: 
   replicas: 2  
   selector:  
      - app: "postgres" 
    template: 
     metadata: 
        labels:  
          app: "postgres"  
     spec: 
       containers: 
       - 
         image: "postgres" 
         name: "postgres"    

 Copy the preceding listing to the  postgres-rc.yaml  file. The  postgres-rc.yaml  file may be opened in 
the vi editor and saved with :wq as shown in Figure  5-7 .  

  Figure 5-7.    Replication Controller Definition File       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

122

 Create a replication controller using the definition file  postgres-rc.yaml . 

    kubectl create -f postgres-rc.yaml    

 Subsequently list the replication controllers. 

    kubectl get rc    

 An output of  replicationcontrollers/postgres  from the first command as shown in Figure  5-8  
indicates that the replication controller  postgres  has been created. The second command lists the  postgres  
replication controller. As discussed before the Replication Controller SELECTOR column is set to the same 
value as the Pod label, app=postgres.  

 Describe the replication controller  postgres  with the following command. 

    kubectl describe rc postgres    

 The replication controller's name, namespace, image associated with the rc, selectors if any, labels, 
number of replicas, pod status, and events get listed as shown in Figure  5-9 .   

  Figure 5-9.    Describing the Replication Controller for PostgreSQL Database       

  Figure 5-8.    Creating and listing the Replication Controller for PostgreSQL Database       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

123

     Getting the Pods 
 To get and list the  Pods   run the following command. 

    kubectl get pods    

 The two Pods created by the replication controller get listed as shown in Figure  5-10 . The Pods should 
have the Running STATUS and have the READY column value as 1/1.   

  Figure 5-10.    Listing the Pods for PostgreSQL Database       

     Starting an Interactive Command Shell 
 To be able to create a PostgreSQL table we need to start an  interactive   bash shell to access the PostgreSQL 
server running in a Docker container, and start the psql SQL shell for PostgreSQL. But, first we need to find 
the container id for a Docker container running the PostgreSQL database. Run the following command to list 
the Docker containers. 

    sudo docker ps    

 Two of the Docker containers are based on the “postgres” image as shown in Figure  5-11 . Copy the 
container id for the first Docker container for the  postgres  image from the CONTAINER ID column.  

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

124

 Using the container id start the interactive shell. 

    sudo docker exec -it a786960b2cb6 bash    

 The interactive shell gets started as shown in Figure  5-12 .   

  Figure 5-11.    Listing the Docker Containers       

  Figure 5-12.    Starting an Interactive Shell       

     Starting the PostgreSQL SQL Terminal 
 Next, start the psql SQL shell for PostgreSQL. Set the user as  postgres . 

    su –l postgres    

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

125

 Start the psql command line shell with the following command. 

    psql postgres    

 The psql shall get started as shown in Figure  5-13 .  

 For the general command syntax for the  psql  command refer    http://www.postgresql.org/docs/9.5/
static/app-psql.html     .  

     Creating a Database Table 
 In the psql shell run the following SQL statements to create a database  table   called  wlslog  and add data to 
the table. 

    CREATE TABLE wlslog(time_stamp VARCHAR(255) PRIMARY KEY,category VARCHAR(255),type 
VARCHAR(255),servername VARCHAR(255),code VARCHAR(255),msg VARCHAR(255)); 
 INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:16-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000365','Server state changed 
to STANDBY'); 
 INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:17-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000365','Server state changed 
to STARTING'); 
 INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:18-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000360','Server started in 
RUNNING mode');    

 Database table  wlslog  gets created and a row of data gets added as shown in Figure  5-14 .  

  Figure 5-13.    Starting the  psql CLI Shell         

  Figure 5-14.    Creating a Database Table       

 

 

http://www.postgresql.org/docs/9.5/static/app-psql.html
http://www.postgresql.org/docs/9.5/static/app-psql.html


CHAPTER 5 ■ USING POSTGRESQL DATABASE

126

 Run the following SQL statement to query the database table  wlslog . 

    SELECT * FROM wlslog;    

 The 3 rows of data added get listed as shown in Figure  5-15 .   

     Exiting the Interactive Command Shell 
 To exit the psql shell run the following command. 

    \q    

 To exit the interactive terminal run the following command. 

    exit    

 The  psql shell   and the interactive shell get exited as shown in Figure  5-16 .   

  Figure 5-15.    Querying the Database Table       

  Figure 5-16.    Exiting the psql Shell and Docker Container Interactive Shell       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

127

     Scaling the PostgreSQL Cluster 
 One of the main benefits of the Kubernetes cluster manager is to be able to scale the cluster as required. 
Initially we created 2 replicas. For example, to scale up the number of PostgreSQL instances to 4 run the 
following command. 

    kubectl scale rc postgres --replicas=4    

 An output of “scaled” from the preceding command indicates that the cluster has been scaled as shown 
in Figure  5-17 .  

 Subsequently list the pods with the following command. 

    kubectl get pods    

 The 4 Pods get listed as shown in Figure  5-18 . Initially some of the Pods could be listed as not “Running” 
and/or not in READY (1/1) state.  

 Run the preceding command again after a few seconds. 

    kubectl get pods    

 The new Pods added to the cluster also get listed as “Running” and in READY state 1/1 as shown in 
Figure  5-19 .  

  Figure 5-17.     Scaling   the number of Pod Replicas to 4       

  Figure 5-18.    Listing the Pods after Scaling       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

128

 Describe the  postgres  service again. 

    kubectl describe svc postgres    

 Initially no Endpoint was listed as being associated with the service when the service was initially 
started. With 4 Pods running 4 Endpoints get listed as shown in Figure  5-20 .   

     Listing the Logs 
 To list the logs  data   for a Pod, for example the postgres-v0k42 Pod, run the following command. 

    kubectl logs postgres-v0k42    

 The output in Figure  5-21  lists the PostgreSQL starting.  

  Figure 5-19.    Listing all the Pods as running and ready       

  Figure 5-20.    Describing the postgres Service       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

129

 When the PostgreSQL database gets started completely the message “database system is ready to accept 
connections” gets output as shown in Figure  5-22 .   

  Figure 5-21.    Listing the Logs for a Pod running PostgreSQL Database       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

130

     Deleting the Replication Controller 
 To delete the replication  controller    postgres  and as a result delete all the Pods managed by the replication 
controller run the following command. 

    kubectl delete rc postgres    

 The  postgres  replication controller gets deleted as indicated by the  replicationcontrollers/
postgres  output shown in Figure  5-23 . Subsequently, run the following command to list the replication 
controllers.  

    kubectl get rc    

  Figure 5-22.    PostgreSQL Database listed as Started and subsequently Shutdown in the Logs       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

131

 The  postgres  replication controller does not get listed as shown in Figure  5-23 . Deleting the replication 
controller does not delete the service managing the replication controller. To demonstrate list the services. 

    kubectl get services    

 The  postgres  service is still getting listed, as shown in Figure  5-23 .  

     Stopping the Service 
 To stop the service  postgres  run the following  command  . 

    kubectl stop service postgres    

 Subsequently run the following command again. 

    kubectl get services    

 The  postgres  service does not get listed as shown in Figure  5-24 .    

  Figure 5-24.    Stopping the postgres Service       

  Figure 5-23.    Deleting a Replication Controller       

     Creating a PostgreSQL Cluster Imperatively 
 Using a declarative approach with definition files offers finer control over the service and replication 
controller. But a replication controller and service could also be created on the command line with  kubectl  
commands. In the following subsections we shall create a replication controller and a service.     

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

132

     Creating a Replication Controller 
 To create a replication  controller   called  postgres  for image “postgres” with number of replicas as 2 and Post 
as 5432 run the following command. 

    kubectl run postgres --image=postgres --replicas=2 --port=5432    

 The  postgres  replication controller with 2 replicas of Pod with image  postgres  and  selector  
expression  run=postgres  gets created as shown in Figure  5-25 .  

 List the replication controllers with the following command. 

    kubectl get rc    

 The  postgres  replication controller gets listed as shown in Figure  5-26 .   

     Getting the Pods 
 To list the Pods managed by the replication controller run the following command. 

    kubectl get pods    

 The two  Pods   get listed as shown in Figure  5-27 . Initially some of the Pods could be listed not Ready as 
indicated by the 0/1 READY column value. Run the preceding command again to list the Pods as ready with 
READY column value as 1/1.   

  Figure 5-25.    Creating a Replication Controller Imperatively       

  Figure 5-27.    Listing the Pods       

  Figure 5-26.    Listing the Replication Controllers       

 

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

133

     Creating a Service 
 To create a  service   we need to run the  kubectl expose  command. Initially only the  kubernetes  service is 
running. To demonstrate, run the following command. 

    kubectl get services    

 As shown in Figure  5-28  only the  kubernetes  service is listed.  

 To create a service for the replication controller  "postgres"  run the following command in which the 
 –port  parameter specifies the port at which the service is exposed. The service type is set as  LoadBalancer . 

    kubectl expose rc postgres --port=5432 --type=LoadBalancer    

 Subsequently list the services. 

    kubectl get services    

 The postgres service gets listed as shown in Figure  5-29 .   

  Figure 5-28.    Listing the “kubernetes” Service       

  Figure 5-29.    Creating a Service exposed at Port 5432       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

134

     Creating a Database Table 
 The procedure to create a database  table   is the same as discussed previously for the declarative section and 
is discussed only briefly in this section. List the Docker containers with the following command. 

    sudo docker ps    

 Two of the  Docker containers   are listed with image as  postgres  in the IMAGE column as shown in 
Figure  5-30 . Copy the container id for one of these columns from the CONTAINER ID column.  

  Figure 5-30.    Listing the Docker Containers       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

135

 Start the interactive shell with the following command. 

    sudo docker exec -it af0ac629b0e7d bash    

 The interactive terminal gets started as shown in Figure  5-31 .  

 Set the user as  postgres . 

    su –l postgres    

 Start the  psql  command line shell. 

    psql postgres    

 The   psql  shell   is shown in Figure  5-32 .  

 Run the following SQL statements to create a database table called  wlslog  and add data to the table. 

    CREATE TABLE wlslog(time_stamp VARCHAR(255) PRIMARY KEY,category VARCHAR(255),type 
VARCHAR(255),servername VARCHAR(255),code VARCHAR(255),msg VARCHAR(255)); 

   INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:16-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000365','Server state changed 
to STANDBY'); 
 INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:17-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000365','Server state changed 
to STARTING'); 
 INSERT INTO wlslog(time_stamp,category,type,servername,code,msg) VALUES('Apr-8-2014-7:
06:18-PM-PDT','Notice','WebLogicServer','AdminServer','BEA-000360','Server started in 
RUNNING mode');    

  Figure 5-32.    Starting the psql Shell       

  Figure 5-31.    Starting the TTY       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

136

 The database table  wlslog  gets created as shown in Figure  5-33 .  

 Run the following SQL statement to query the  wlslog  table. 

    SELECT * FROM wlslog;    

 The three rows of data added get listed as shown in Figure  5-34 .  

 To quit the  psql  shell and the interactive shell for the Docker container running PostgreSQL, run the 
following commands. 

     \q     
 exit     

 The psql shell and the tty get exited as shown in Figure  5-35 .   

  Figure 5-33.    Creating a Database Table       

  Figure 5-34.    Querying the wlslog Database Table       

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

137

     Scaling the PostgreSQL Cluster 
 When we created the cluster initially we set the replicas to 2. List the pods as follows.    

    kubectl get pods    

 Only two Pods get listed as shown in Figure  5-36 .  

 Scale the cluster to 4 replicas with the following command. 

    kubectl scale rc postgres --replicas=4    

 An output of “scaled” as shown in Figure  5-37  indicates that the cluster has been scaled.  

 Subsequently list the Pods. 

    kubectl get pods    

 The preceding command may have to be run multiple times to list all the Pods as “Running” and in 
READY state 1/1 as shown in Figure  5-38 .   

  Figure 5-36.    Listing the Pods       

  Figure 5-37.    Scaling the Pod Replicas to 4       

  Figure 5-35.    Exiting the Shells       

 

 

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

138

     Deleting the Replication Controller 
 To  delete   the replication controller run the following command. 

    kubectl delete rc postgres    

 List the Pods subsequent to deleting the rc. 

    kubectl get pods    

 List the services. 

    kubectl get services    

 The  postgres  replication controller gets deleted and does not get listed subsequently as shown in 
Figure  5-39 . The  postgres  service still gets listed also shown in Figure  5-39 .   

  Figure 5-38.    Listing the Pods in various states of starting       

 



CHAPTER 5 ■ USING POSTGRESQL DATABASE

139

     Stopping the Service 
 To  stop   the service run the following command. 

    kubectl stop service postgres    

 The  postgres  service gets stopped as shown in Figure  5-40 . Subsequently run the following command.  

    kubectl get services    

 The  postgres  service does not get listed as shown in Figure  5-40  also.   

     Summary 
 In this chapter we used the Kubernetes cluster manager to start and manage a PostgreSQL server cluster. 
We demonstrated creating a cluster both imperatively on the command line and declaratively using 
definition files. We scaled the cluster using a replication controller and exposed a service for the cluster 
using a Kubernetes service. In the next chapter we shall discuss creating and managing an Oracle 
Database cluster.     

  Figure 5-40.    Stopping the Service       

  Figure 5-39.    Deleting the Replication Controller       

 

 



141© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_6

    CHAPTER 6   

 Using Oracle Database           

  Oracle Database   is the most commonly used relational database (RDBMS). Installing and configuring 
Oracle Database would usually involve downloading the software, setting the kernel parameters, installing 
and configuring the software, all of which is quite involved. Using Docker containers coordinated with 
Kubernetes makes the task of installing, configuring, and orchestrating a Oracle Database cluster much 
easier. Oracle Database cluster consisting of multiple instances could benefit from the schedulability, 
scalability, distributedness, and failover features of the Kubernetes container cluster manager. In this 
chapter we shall install Oracle Database using a Docker image for the database. We shall create multiple 
replicas of the database Pod using a replication controller and expose the database as a service. This chapter 
has the following sections.

   Setting the Environment  

  Creating an Oracle Database Instance Imperatively  

  Creating an Oracle Database Instance Declaratively  

  Keeping the Replication Level  

  Scaling the Database  

  Starting the Interactive Shell  

  Connecting to Database  

  Creating a User  

  Creating a Database Table  

  Exiting the Interactive Shell    

     Setting the Environment 
 The following software is required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker Image for Oracle Database (Oracle Database XE 11g)    



CHAPTER 6 ■ USING ORACLE DATABASE

142

 If not already installed, install Docker Engine, Kubernetes, and Kubectl as discussed in Chapter   1    . 
SSH login to the Ubuntu instance on Amazon EC2 using the Public IP Address of the EC2 instance. 

    ssh -i "docker.pem" ubuntu@52.90.115.30    

 Start the Docker instance and verify its status with the following commands. 

    sudo service docker start 
 sudo service docker status    

 Docker is indicated as running in Figure  6-1 .  

 List the services running. 

    kubectl get services    

 Only the  kubernetes  service is listed as running in Figure  6-2 .   

     Creating an Oracle Database Instance Imperatively 
 In this section we shall create an Oracle Database cluster using  kubectl  on the command line. Several 
Docker images are available for Oracle Database and we shall be using the  sath89/oracle-xe-11g  image 
(   https://hub.docker.com/r/sath89/oracle-xe-11g/     ). Run the following  kubectl  command to create an 
Oracle Database cluster consisting of 2 replicas with port set as 1521.     

    kubectl run oradb --image=sath89/oracle-xe-11g --replicas=2 --port=1521    

 The output from the command in Figure  6-3  lists a replication controller called  oradb , a Docker 
container called  oradb , a selector ( run=oradb ) to select Pods that comprise the replication controller 
replicas, and the number of replicas (2). The Pod label is also set to  run=oradb .  

  Figure 6-1.    Starting Docker and verifying its Status       

  Figure 6-2.    Listing the Kubernetes Service       

 

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1
https://hub.docker.com/r/sath89/oracle-xe-11g/


CHAPTER 6 ■ USING ORACLE DATABASE

143

 List the replication  controller   with the following command. 

    kubectl get rc    

 The  oradb  replication controller shown in Figure  6-4  gets listed.  

  Figure 6-3.    Creating a Replication Controller and Pod Replicas for Oracle Database       

  Figure 6-4.    Listing the Replication Controllers       

 List the Pods using the following command. 

    kubectl get pods    

 In addition to the Kubernetes Pod  k8s-master-127.0.0.1  two other pods get listed for Oracle Database 
as shown in Figure  6-5 . Initially the Pods could be listed as “not ready” as shown in Figure  6-5  also. Run the 
preceding command after a duration of a few seconds, multiple times if required, to list the two Pods are 
Running and READY (1/1).  

  Figure 6-5.    Listing the Pods in various stages of running       

 

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

144

 Get the nodes with the following command. 

    kubectl get nodes    

 And get the Kubernetes services with the following command. 

    kubectl get services    

 Only the  kubernetes  service gets listed as shown in Figure  6-6  because we have not yet created a service 
for Oracle Database.  

     Listing Logs 
 List the  logs   for one of the Pods using the following command. 

    kubectl logs oradb-ea57r    

 The logs generated by a started Oracle Database instance get output as shown in Figure  6-7 . Oracle Net 
Listener is indicated as having been started.   

  Figure 6-6.    Creating a Replication Controller does not create a Service       

 



CHAPTER 6 ■ USING ORACLE DATABASE

145

     Creating a Service 
 Next, expose the replication controller  oradb  as a Kubernetes service on port 1521. Subsequently list the 
Kubernetes  services  . 

    kubectl expose rc oradb --port=1521 --type=LoadBalancer 
 kubectl get services    

 The first of the two preceding commands starts the  oradb  service. Subsequently the service gets listed 
as shown in Figure  6-8 . The service selector is run=oradb, which is the same as the replication controller 
selector.  

  Figure 6-7.    Listing Logs for a Pod       

 



CHAPTER 6 ■ USING ORACLE DATABASE

146

 Describe the service with the following command. 

    kubectl describe svc oradb    

 The service name, namespace, labels, selector, type, IP, Port,NodePort, and endpoints get listed as 
shown in Figure  6-9 .   

     Scaling the Database 
 Run the  kubectl scale  command to scale the replicas. For example, reduce the number of replicas to 1. 

    kubectl scale rc oradb --replicas=1    

  Figure 6-8.    Creating a Service Imperatively       

  Figure 6-9.    Describing the oradb Service       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

147

 An output of “scaled” indicates that the replicas have been scaled as shown in Figure  6-10 .  

 Subsequently list the running Pods. 

    kubectl get pods    

 Only one Oracle Database Pod gets listed as the other has been stopped to reduce the replication level 
to one as shown in Figure  6-11 . Subsequently, describe the service.  

    kubectl describe svc oradb    

 Because the cluster has been scaled down to one replica the number of endpoints also gets reduced to 
one as shown in Figure  6-11 .  

     Deleting the Replication Controller and Service 
 In subsequent sections we shall be creating a cluster of Oracle Database instances declaratively using 
definition files. As we shall be using the same configuration parameters,  delete   the  "oradb"  replication 
controller and the  "oradb"  service with the following commands.    

    kubectl delete rc oradb 
 kubectl delete svc oradb    

  Figure 6-10.     Scaling   the Replicas to 1       

  Figure 6-11.    Listing and Describing the Single Pod       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

148

 Both the replication controller and the service get deleted as shown in Figure  6-12 .    

     Creating an Oracle Database Instance Declaratively 
 In this section we shall create Oracle Database cluster  declaratively   using definition files for a Pod, 
replication controller, and service. We have used the YAML format in the definition files but the JSON format 
may be used instead. 

     Creating a Pod 
 Create a definition file for a  Pod   called  oradb.yaml . Copy the following listing, which defines a Pod named 
“oradb” with a label setting  name: "oradb" , which translates to Pod label name=oradb. The container image 
is set as “sath89/oracle-xe-11g” and the container port is set as 1521. 

    apiVersion: v1 
 kind: Pod 
 metadata: 
   name: "oradb" 
   labels: 
     name: "oradb" 
 spec: 
   containers: 
     - 
       image: "sath89/oracle-xe-11g" 
       name: "oradb" 
       ports: 
         - 
           containerPort: 1521 
   restartPolicy: Always    

 The  oradb.yaml  file may be created in the vi editor and saved with the :wq command as shown in 
Figure  6-13 .  

  Figure 6-12.    Deleting the Replication Controller and Service       

 



CHAPTER 6 ■ USING ORACLE DATABASE

149

 Create a Pod using the definition file  oradb.yaml  with the  kubectl create  command. 

    kubectl create -f oradb.yaml --validate    

 An output of “pods/oradb” in Figure  6-14  indicates that the  oradb  Pod has been created.  

  Figure 6-13.    Pod Definition File       

  Figure 6-14.    Creating a Pod from a Definition File       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

150

 Subsequently list the running Pods with the following command. 

    kubectl get pods    

 The single Pod  oradb  gets listed as shown in Figure  6-15 . Initially, the  oradb  Pod could be listed in 
various phases of starting such as Image “is ready, container is creating” or the READY value could be 0/1 
indicating that the Pod is not ready yet. When the STATUS column becomes “Running” and the READY 
column becomes 1/1 the Pod is started and ready. The preceding command may have to be run multiple 
times to list the Pod as Running and Ready.   

     Creating a Service 
 Next, create a service for an Oracle Database cluster. The service does not specify how many instances 
(replicas) of the Oracle Database image are running or should be running. The replicas are controlled by 
the replication controller. The service only defines a port to expose the service at, a label for the service 
and a selector to match the Pods to be managed by the service. The selector setting is app: “oradb”, which 
translates to service selector app=oradb. Create a service definition file  oradb-service.yaml  and copy the 
following listing to the definition file.    

    apiVersion: v1 
 kind: Service 
 metadata: 
   name: "oradb" 
   labels: 
     app: "oradb" 

  Figure 6-15.    Listing the Pod/s, which could initially be not Running and not Ready       

 



CHAPTER 6 ■ USING ORACLE DATABASE

151

 spec: 
   ports: 
     - 
       port: 1521 
   selector: 
     app: "oradb"    

 The  oradb-service.yaml  definition file may be created in the vi editor and saved with :wq as shown in 
Figure  6-16 .  

  Figure 6-16.    Service Definition File       

 



CHAPTER 6 ■ USING ORACLE DATABASE

152

 Run the following command to create a service from the service definition file. 

    kubectl create -f oradb-service.yaml    

 The  oradb  service gets created as indicated by the “services/oradb” output in Figure  6-17 . Subsequently 
list the services.  

    kubectl get services    

 The  oradb  service gets listed as shown in Figure  6-17 . 

 Describe the  oradb  service with the following command. 

    kubectl describe svc oradb    

 No service endpoint gets listed as shown in Figure  6-18  because the service selector does not match 
the label on the Pod already running. The service selector app=oradb has to match a Pod label for the 
service to be able to manage the Pod. In the next section we shall create a replication controller with a 
matching label.   

  Figure 6-17.    Creating a Service from a Service Definition File       

  Figure 6-18.    Describing a Service for Oracle Database       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

153

     Creating a Replication Controller 
 Create a replication controller definition file called  oradb-rc.yaml  and copy the following listing, 
which defines a replication controller, to the definition file. For the replication controller to manage the 
Pods defined in the spec field the key:value expression of the selector in the replication controller has 
to match a label in the Pod template mapping. The  selector  is omitted in the  oradb-rc.yaml  but the 
spec- > template- > metadata- > labels must be specified. The selector defaults to the same setting as the 
 spec->template->metadata->labels . The template- > spec- > containers mapping defines the containers in 
the Pod. Only the Oracle Database container “sath89/oracle-xe-11g” is defined.    

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   name: "oradb" 
   labels: 
     app: "oradb" 
 spec: 
   replicas: 2 
   template: 
     metadata: 
       labels: 
         app: "oradb" 
     spec: 
       containers: 
         - 
           image: "sath89/oracle-xe-11g" 
           name: "oradb"    



CHAPTER 6 ■ USING ORACLE DATABASE

154

 The  oradb-rc.yaml  file may be edited in the vi editor and saved with the :wq command as shown in 
Figure  6-19 .  

 Next, run the following command to create a replication controller from the definition file  oradb-rc.yaml . 

    kubectl create -f oradb-rc.yaml    

 The replication controller gets created as shown in Figure  6-20 . List the replication controller with the 
following command.  

    kubectl get rc    

  Figure 6-19.    Replication Controller Definition File       

 



CHAPTER 6 ■ USING ORACLE DATABASE

155

 The  oradb  replication controller gets created as shown in Figure  6-20 . 

 The Pods created by the replication controller are listed with the following command. 

    kubectl get pods    

 Three Oracle Database Pods get listed as shown in Figure  6-21 . Why do three Pods get listed even 
though the replication controller replicas are set to 2? Because the Pod started using the Pod definition file 
 oradb.yaml  does not include a label that matches the selector in the replication controller. The replication 
controller selector is  app: "oradb"  while the label on the Pod is  name: "oradb" . Two replicas are started by 
the replication controller and one Pod was started earlier by the pod definition file.  

 Describe the service  oradb  with the following command. 

    kubectl describe svc oradb    

 The service endpoints get listed as shown in Figure  6-22 . Only two endpoints get listed because the 
service selector app: “oradb” matches the Pod label in the replication controller with two replicas. The Pod 
created earlier does not include a label that matches the selector expression.   

  Figure 6-20.    Creating and listing a Replication Controller from a Definition File       

  Figure 6-21.    Listing the Pod Replicas       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

156

     Keeping the Replication Level 
 The task of the replication controller is to maintain the replication level of the Pods. Because the  replicas  
field mapping in the replication controller spec is 2, two replicas of the Pod configured in the Pod spec must 
be running at all time while the replication controller is running. To demonstrate that the replication level is 
kept, delete a Pod.    

    kubectl delete pod oradb-5ntnj    

 Subsequently list the running Pods. 

    kubectl get pods    

 One of the two replicas got deleted with the  kubectl delete  pod command but another replica is 
listed as getting started in Figure  6-23 . It may take a few seconds for the replicas to reach the replication 
level. Run the preceding command multiple times to list the replicas as running. The number of replicas 
gets back to 2.  

  Figure 6-22.    Describing the Service after creating the Replication Controller       

 



CHAPTER 6 ■ USING ORACLE DATABASE

157

 The  "oradb"  Pod is not associated with the replication controller and therefore it is not counted as 
one of the replicas managed by the replication controller. The  oradb  Pod is not managed by the replication 
controller because, as discussed earlier, the label on the  oradb  Pod does not match the label on the 
replication controller. To demonstrate that the  oradb  pod is not managed by the replication controller delete 
the Pod. 

    kubectl delete pod oradb    

 Subsequently list the running Pods. 

    kubectl get pods    

 The  oradb  Pod gets deleted and a replacement Pod does not get started and does not get listed in the 
running Pods as shown in Figure  6-24 .   

  Figure 6-23.    Maintaining the Replication Level       

 



CHAPTER 6 ■ USING ORACLE DATABASE

158

     Scaling the Database 
 The replication controller may be used to scale the number of Pods running for Oracle Database. As an 
example scale up the number of Pod replicas to 3 from 2.    

    kubectl scale rc oradb --replicas=3    

 The “scaled” output indicates that the replicas have been scaled. Subsequently run the following 
command, multiple times if required, to list the new Pod replica as running and ready. 

    kubectl get pods    

 Three replicas of the Pod get listed as shown in Figure  6-25 .  

  Figure 6-25.    Scaling the Cluster to 3 Replicas       

  Figure 6-24.    The oradb Pod is not managed by the Replication Controller       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

159

 Describe the service again. 

    kubectl describe svc oradb    

 Three endpoints get listed instead of two as shown in Figure  6-26 . The service has a single IP address.   

     Starting the Interactive Shell 
 In this section we shall start an interactive tty (shell) to connect to the software, which is Oracle Database, 
running in a Docker container started with and managed by Kubernetes. First, list the Docker containers 
with the following command.    

    sudo docker ps    

 Copy the container id for one of the Docker containers for the  sath89/oracle-xe-11g  image as shown 
in Figure  6-27 .  

  Figure 6-26.    Listing the 3 Endpoints in the Service       

 



CHAPTER 6 ■ USING ORACLE DATABASE

160

  Figure 6-27.    Copying the Container Id for a Docker Container       

 Using the container id start an interactive shell with the following command. 

    sudo docker exec -it 9f74a82d4ea0 bash    

 The interactive shell gets started as shown in Figure  6-28 .   

  Figure 6-28.    Starting an Interactive Shell       

     Connecting to Database 
 In the interactive tty change the user to “oracle.” 

    su -l oracle    

 The difference between  su oracle  and  su - oracle  is that the latter logs in with the environment 
variables of  oracle  user and also sets the current directory to oracle home directory while the former logs in 
as  oracle  but the environment variables and current directory remain unchanged.    

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

161

 Subsequently start the SQL*Plus. Using the  /nolog  option does not establish an initial connection with 
the database. 

    sqlplus /nolog    

 Run the following command to connect  SYS  as  SYSDBA . 

    CONNECT SYS AS SYSDBA    

 Specify the Password as “oracle” when prompted. The output from the preceding commands to start 
SQL*Plus and connect  SYS  are shown in Figure  6-29 . A connection gets established.   

     Creating a User 
 To create a user called OE and grant  CONNECT  and  RESOURCE  roles to the user, run the following commands.    

    CREATE USER OE QUOTA UNLIMITED ON SYSTEM IDENTIFIED BY OE; 
 GRANT CONNECT, RESOURCE TO OE;    

 The  OE  user gets created and the roles get granted as shown in Figure  6-30 .   

  Figure 6-29.    Starting SQL*Plus       

  Figure 6-30.    Connecting as SYSDBA and creating a User       

 

 



CHAPTER 6 ■ USING ORACLE DATABASE

162

     Creating a Database Table 
 Create a database table called  OE.Catalog  with the following SQL statement.    

    CREATE TABLE OE.Catalog(CatalogId INTEGER PRIMARY KEY,Journal VARCHAR2(25),Publisher 
VARCHAR2(25),Edition VARCHAR2(25),Title VARCHAR2(45),Author VARCHAR2(25));    

 Add a row of data to the OE.Catalog table with the following SQL statement. 

    INSERT INTO OE.Catalog VALUES('1','Oracle Magazine','Oracle Publishing',
'November December 2013','Engineering as a Service','David A. Kelly');    

 The  OE.Catalog  table gets created and a row of data gets added as shown in Figure  6-31 .  

 Run the following SQL statement to query the  OE.CATALOG  table. 

    SELECT * FROM OE.CATALOG;    

 The single row of data added gets listed as shown in Figure  6-32 .   

  Figure 6-31.    Creating a Database Table       

 



CHAPTER 6 ■ USING ORACLE DATABASE

163

  Figure 6-32.    Querying the Database Table       

     Exiting the Interactive Shell 
 Logout from SQL*Plus command with the “exit” command and exit the “oracle” user with the “exit” 
command and exit the interactive terminal with the “exit” command also as shown in Figure  6-33 .       

     Summary 
 In this chapter we used Kubernetes to create and orchestrate an Oracle Database cluster. We discussed both 
the imperative and declarative approaches to creating and managing a cluster. Using the imperative method, 
the  kubectl  commands may be used directly without a definition file to create a replication controller and a 
service. With the declarative method definition files for a Pod, replication controller and service have to be 
used. We demonstrated scaling a cluster. We also used a Docker container to log in to SQL*Plus and create a 
database table. In the next chapter we shall discuss using MongoDB with Kubernetes.     

  Figure 6-33.    Exiting the Interactive Shell       

 

 



                         PART III 

  NoSQL Database         



167© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_7

    CHAPTER 7   

 Using MongoDB Database           

  MongoDB   is a flexible schema model NoSQL data store, the most commonly used NoSQL data store. 
MongoDB is based on the BSON (binary JSON) storage model. Documents are stored in collections. Being a 
schema-free data store, no two documents need to be alike in terms of the fields in a BSON document. In a 
large scale cluster several instances of MongoDB could be running and several issues could arise.

   -MongoDB instances scheduling  

  -Scaling the MongoDB Cluster  

  -Load Balancing  

  -Providing MongoDB as a Service    

 While Docker has made it feasible to provide Container as a Service (CaaS) it does not provide by itself 
any of the features listed previously. In this chapter we discuss using Kubernetes container cluster manager 
to manage and orchestrate a cluster of Docker containers running MongoDB. This chapter has the following 
sections.

   Setting the Environment  

  Creating a MongoDB Cluster Declaratively  

  Creating a MongoDB Cluster Imperatively    

     Setting the Environment 
 The following software is required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image for MongoDB (latest version)    

 Install the required software on an Amazon EC2 instance running Ubuntu 14; the same AMI is used 
as in the other chapters. SSH Login to the Ubuntu instance using the Public IP Address, which would be 
different for different users. 

    ssh -i "docker.pem" ubuntu@52.91.190.195    



CHAPTER 7 ■ USING MONGODB DATABASE

168

 The  Ubuntu instance   gets logged into as shown in Figure  7-1 .  

 The procedure to install is discussed in chapter   1    . To verify that Docker is running run the following 
command. 

    sudo service docker start    

  Docker   should be listed as running as shown in Figure  7-2 .  

  Figure 7-1.    Logging into Ubuntu Instance on Amazon EC2       

  Figure 7-2.    Starting Docker       

 List the Pods with the following command. 

    kubectl get pods    

 

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 7 ■ USING MONGODB DATABASE

169

 And list the nodes with the following command. 

    kubectl get nodes    

 The  Kubernetes Pod   gets listed and the node also gets listed as shown in Figure  7-3 .  

 To list the services run the following command. 

    kubectl get services    

 The “kubernetes” service gets listed as shown in Figure  7-4 .   

     Creating a MongoDB Cluster Declaratively 
 In the following subsections we shall create a Kubernetes service and replication controller for a MongoDB 
cluster. We shall scale the cluster and also demonstrate features such as using a volume and a host port. 
We shall create a MongoDB collection and add documents to the collection in a Mongo shell running in a 
Docker container tty (interactive terminal or shell).    

      Creating a Service 
 Create a service definition file  mongo-service-yaml . Add the following (Table  7-1 ) field mappings in the 
definition file.     

  Figure 7-3.    Listing Kubernetes Pod and the single Node       

  Figure 7-4.    Listing the Kubernetes Service       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

170

 Copy the following listing to the  mongo-service.yaml . 

    apiVersion: v1 
 kind: Service 
 metadata: 
   labels: 
     name: mongo 
   name: mongo 
 spec: 
   ports: 
     - port: 27017 
       targetPort: 27017 
   selector: 
     name: mongo    

 The vi editor could be used to create the  mongo-service.yaml  file and saved using the :wq command as 
shown in Figure  7-5 .  

   Table 7-1.    Service Definition File mongo-service-yaml File Fields   

 Field  Value  Description 

 apiVersion  v1  The API version. 

 kind  Service  Specifies the definition file to be a service. 

 metadata  The service metadata. 

 metadata- > labels  name: mongo 

 metadata- > name  mongo  A label mapping. A label may be added multiple times and 
does not generate an error and has no additional significance. 

 spec  The service specification. 

 spec- > ports  The port/s on which the service is exposed. 

 spec- > ports- > port  27017  The port on which the service is hosted. 

 spec- > ports- > targetPort  27017  The port that an incoming port is mapped to. The targetPort 
field is optional and defaults to the same value as the port 
field. The targetPort could be useful if the service is to evolve 
without breaking clients’ settings. For example, the targetPort 
could be set to a string port name of a back-end Pod, which 
stays fixed. And the actual port number the back-end Pod 
exposes could be varied without affecting the clients’ settings. 

 selector  name: mongo  The service selector used to select Pods. Pods with label 
expression the same as the selector are managed by the 
service. 



CHAPTER 7 ■ USING MONGODB DATABASE

171

 The default service type is  ClusterIp , which uses a cluster-internal IP only. The type could be set to 
 LoadBalancer  as shown in Figure  7-6  to also expose the service on each of the nodes in the cluster and also 
requests the cloud provider to provision a load balancer.  

  Figure 7-5.    Service Definition File in vi Editor       

 



CHAPTER 7 ■ USING MONGODB DATABASE

172

 To create the service from the definition file run the following command. 

    kubectl create -f mongo-service.yaml    

 List the services with the following command. 

    kubectl get services    

 The  mongo  service gets listed as shown in Figure  7-7 .   

  Figure 7-6.    Setting the Service Type       

 



CHAPTER 7 ■ USING MONGODB DATABASE

173

      Creating a Replication Controller 
 In this section we shall create a replication  controller  . Create a definition file  mongo-rc.yaml . Add the 
following (Table  7-2 ) field mappings to the definition file.  

  Figure 7-7.    Creating the Service from the Definition File        

   Table 7-2.    Replication Controller Definition File Fields   

 Field  Value  Description 

 apiVersion  v1  The API version. 

 kind  ReplicationController  Specifies the definition file to be 
for a replication controller. 

 metadata  Specifies the metadata for the 
replication controller. 

 metadata - > labels  name: mongo  The labels mapping for the 
replication controller. 

 metadata - > name  mongo-rc  The replication controller name. 

 spec  The replication controller 
specification. 

 spec- > replicas  2  The number of replicas to keep 
at all times. 

 spec- > template  The template for a Pod. 

 spec- > template- > metadata  The metadata for the Pod. 

 spec- > template- > metadata- > labels  The Pod labels. The labels 
are used by the replication 
controller and service to select 
Pods to manage. The selector 
in a replication controller and a 
service must match a Pod label 
for the replication controller and 
Service to managed the Pod. 

 spec- > template- > metadata- > labels- > name  mongo  A Pod label. 

 spec- > template- > spec  The specification for the Pod. 

(continued)

 



CHAPTER 7 ■ USING MONGODB DATABASE

174

 Each of the Pod, Service, and Replication Controllers are defined in a separate YAML mapping file. 
The  mongo-rc.yaml  is listed. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   labels: 
     name: mongo 
   name: mongo-rc 
 spec: 
   replicas: 2 
   template: 
     metadata: 
       labels: 
         name: mongo 
     spec: 
       containers: 
         - 
           image: mongo 
           name: mongo 
           ports: 
             - 
               containerPort: 27017 
               name: mongo    

Table 7-2. (continued)

 Field  Value  Description 

 spec- > template- > spec- > containers  The containers in a Pod. 
Multiple containers could 
be specified but we have 
configured only one container. 

 spec- > template- > spec- > containers - > image  mongo  The container for “mongo” 
Docker image. 

 spec- > template- > spec- > containers - > name  mongo  The container name. 

 spec- > template- > spec- > containers - > ports  The container ports to reserve. 

 spec- > template- > spec- > containers 
- > ports- > name 

 mongo  The port name. 

 spec- > template- > spec- > containers - > ports 
- > containerPort 

 27017  The container port number. 



CHAPTER 7 ■ USING MONGODB DATABASE

175

 The  mongo-rc.yaml  file may be edited in a vi editor and saved with :wq as shown in Figure  7-8 .  

 To create a replication controller from the definition file, run the following command. 

    kubectl create -f mongo-rc.yaml    

 The  mongo-rc  replication controller gets created as shown in Figure  7-9 .  

 Run the following command to list the replication containers. 

    kubectl get rc    

  Figure 7-8.    Replication Controller Definition File       

  Figure 7-9.    Creating the Replication Controller       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

176

 The  mongo-rc  replication controller gets listed as shown in Figure  7-10 .   

     Creating a Volume 
 Kubernetes supports  volumes  . A   volume    is a directory in a Pod that is accessible to containers in the Pod that 
provide a volume mount for the volume. Volumes persist as long as the Pod containing the volumes exists. 
Volumes are useful for the following purposes.   

   -Persist data across container crash. When a container that mounts a volume 
crashes, the data in the volume is not deleted as the volume is not on the 
container but is on the Pod.  

  -Data in a volume may be shared by multiple containers that mount the volume.    

 A volume in a Pod is specified with the spec- > volume field. A container mounts a volume with the 
 spec.containers.volumeMounts  field. Several types of volumes are supported, some of which are discussed 
in Table  7-3 .  

 Next, we shall add a volume of type  emptyDir  to the replication controller definition file  mongo-rc.yaml . 
A modified version of  mongo-rc.yaml  is listed. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   labels: 
     name: mongo 
   name: mongo-rc 

  Figure 7-10.    Creating and isting Replication Controllers        

   Table 7-3.     Types of    Volumes      

 Volume Type  Description 

 emptyDir  An empty directory in the Pod that could be used to keep some files used 
by one or more containers. An empty directory could also be used for 
checkpointing. 

 hostPath  Mounts a directory from the host node into the Pod. 

 gcePersistentDisk  Mounts a Google Compute Engine Persistent disk into a Pod. 

 awsElasticBlockStore  Mounts an Amazon Web Services EBS volume into a Pod. 

 gitRepo  Mounts a git repo into the pod. 

 flocker  Mounts a Flocker dataset into a pod. 

 nfs  Mounts a Network File System into a Pod. 

 



CHAPTER 7 ■ USING MONGODB DATABASE

177

 spec: 
   replicas: 2 
   template: 
     metadata: 
       labels: 
         name: mongo 
     spec: 
       containers: 
         - 
           image: mongo 
           name: mongo 
           ports: 
             - 
               containerPort: 27017 
               name: mongo 
           volumeMounts: 
             - 
               mountPath: /mongo/data/db 
               name: mongo-storage 
       volumes: 
         - 
           emptyDir: {} 
           name: mongo-storage    

 The preceding definition file includes the following volume  configuration   for a volume named 
 mongo-storage  of type  emptyDir . 

          volumes: 
         - 
           emptyDir: {} 
           name: mongo-storage    

 The volume exists in the Pod and individual containers in the Pod may mount the volume using field 
 spec->containers->volumeMounts . The modified  mongo-rc.yaml  includes the following volume mount for 
the  mongo  container. 

    volumeMounts: 
             - 
               mountPath: /mongo/data/db 
               name: mongo-storage    

 The preceding configuration adds a volume mount for the  mongo-storage  volume at mount path 
or directory path  /mongo/data/db  in the container. Within a container the volume may be accessed at 
 /mongo/data/db . For example, in an interactive terminal for a container change directory (cd) to the 
 /mongo/data/db  directory. 

    cd /mongo/data/db    

 List the files and directories in the in the  /mongo/data/db  directory. 

    ls -l    



CHAPTER 7 ■ USING MONGODB DATABASE

178

 The directory is  empty   as it is supposed to be initially as shown in Figure  7-11 .  

 The volume should not be confused with the data directory for the MongoDB server. The data directory 
is created at  /data/db  by default and is created in each Docker container running a MongoDB server 
instance. The  /mongo/data/db  is common to all Docker containers while the  /data/db  exists in each 
Docker container.  

     Listing the Logs 
 After having started a replication controller, list the Pods with the following command.    

    kubectl get pods    

 The two Pods get listed as shown in Figure  7-12 .  

 The logs for a Pod, for example, the  mongo-rc-4t43s  Pod, may be listed with the following command. 

    kubectl logs mongo-rc-4t43s    

  Figure 7-11.    Empty Directory       

  Figure 7-12.    Listing the Pods       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

179

 The Pod logs show the MongoDB server starting as shown in Figure  7-13 .  

  Figure 7-13.    Listing the Pod Logs       

 



CHAPTER 7 ■ USING MONGODB DATABASE

180

     Starting the Interactive Shell for Docker Container 
 In this section we shall start an  interactive   terminal or bash shell for MongoDB server for which we need the 
container id of a Docker container running a MongoDB server. List the Docker containers. 

    sudo docker ps    

  Figure 7-14.    MongoDB Running on Port 27017       

 When the MongoDB server gets started, the message “waiting for connections on port 27017” gets 
output as shown in Figure  7-14 .   

 



CHAPTER 7 ■ USING MONGODB DATABASE

181

 Because the “mongo” Docker image is based on the “debian” Docker image as speciifed in the FROM 
instruction, we are able to start a bash shell to interact with the MongoDB server running in a Docker 
container based on the “mongo” image. Start an interactive bash shell using the following command. 

    sudo docker exec -it 00c829e0a89d bash    

 An interactive shell gets started as shown in Figure  7-16 .   

  Figure 7-15.    Copying Docker Container ID       

  Figure 7-16.    Starting an Interactive Shell       

 Copy the container id for a container with image as “mongo” as shown in Figure  7-15 .  

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

182

     Starting a Mongo Shell 
 Start the  Mongo shell   with the following command. 

    mongo    

 Mongo shell gets started as shown in Figure  7-17 .   

     Creating a Database 
 List the  databases   with the following command from the Mongo shell. 

    show dbs    

 A database gets created implicitly when a database is used or set. For example, set the database to use 
as  mongodb , which is not listed with  show dbs  and does not exist yet. 

    use mongodb    

 But, setting the database to use as  mongodb  does not create the database  mongodb  till the database is 
used. Run the following command to list the databases. 

    show dbs    

  Figure 7-17.    Mongo Shell       

 



CHAPTER 7 ■ USING MONGODB DATABASE

183

 The  mongodb  database does not get listed as shown in Figure  7-19 . To create the  mongodb  database, 
invoke some operation on the database such as create a collection called  catalog  with the following 
command. 

    db.createCollection("catalog")    

 Subsequently list the databases again. 

    show dbs    

 The  mongodb  database gets listed as shown in Figure  7-18 . To list the collections run the following 
command.  

    show collections    

 The  catalog  collection gets listed.  

     Creating a Collection 
 The   catalog  collection   was created using the  db.createCollection  method in the previous section. As 
another example, create a capped collection called  catalog_capped  using the following command: a capped 
collection is a fixed size collection that supports high throughput operations to add and get documents 
based on insertion order. 

    db.createCollection("catalog_capped", {capped: true, autoIndexId: true, size: 64 * 1024, 
max: 1000} )    

 A  capped collection   gets added as shown in Figure  7-19 . Initially the collection is empty. Get the 
documents in the  catalog  collection with the following command.  

    db.catalog.count()    

 The document count is listed as 0 as we have not yet added any documents.  

  Figure 7-18.    Creating and Listing a MongoDB Database       

 



CHAPTER 7 ■ USING MONGODB DATABASE

184

     Adding Documents 
 In this section we shall  add documents   to the catalog collection. Specify the JSON for the documents to be 
added. The  _id  field is required in each document stored in MongoDB. The  _id  field may be added explicitly 
as in the  doc2  document. If not provided in the document JSON the  _id  is generated automatically. 

    doc1 = {"catalogId" : "catalog1", "journal" : 'Oracle Magazine', "publisher" : 
'Oracle Publishing', "edition" : 'November December 2013',"title" : 'Engineering as a 
Service',"author" : 'David A. Kelly'} 
 doc2 = {"_id": ObjectId("507f191e810c19729de860ea"), "catalogId" : "catalog1", "journal" 
: 'Oracle Magazine', "publisher" : 'Oracle Publishing', "edition" : 'November December 
2013',"title" : 'Engineering as a Service',"author" : 'David A. Kelly'};    

 The doc1 and doc2 are shown in Figure  7-20 .  

  Figure 7-19.    Creating a Capped Collection       

 



CHAPTER 7 ■ USING MONGODB DATABASE

185

 To add the documents to the  catalog  collection run the following command. 

    db.catalog.insert([doc1, doc2], { writeConcern: { w: "majority", wtimeout: 5000 }, 
ordered:true })    

 As indicated by the  nInserted  field in the JSON result in Figure  7-21  documents get added.   

  Figure 7-20.    Documents doc1 and doc2       

 



CHAPTER 7 ■ USING MONGODB DATABASE

186

      Finding Documents 
 To query the catalog invoke the  find()   method  . To list all documents in the  catalog  collection run the 
following command. 

    db.catalog.find()    

 The two documents added get listed as shown in Figure  7-22 . For one of the documents the  _id  field is 
generated automatically.   

     Finding a Single Document 
 To find a single document from the  catalog  collection run the following command to invoke the  findOne()  
method. 

    db.catalog.findOne()    

  Figure 7-21.    Adding Documents       

  Figure 7-22.    Finding Documents       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

187

 A single document gets listed as shown in Figure  7-23 .   

  Figure 7-23.    Finding a Single Document       

  Figure 7-24.    Finding Selected Fields in a Document       

     Finding Specific Fields in a Single Document 
 To get only specific fields,  edition, title , and  author , for example, from a single document run the 
following command. 

    db.catalog.findOne(
      { }, 
 { edition: 1, title: 1, author: 1 } 
 )    

 Only the specific fields in a single document get listed as shown in Figure  7-24 . The  _id  field always 
gets listed.    

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

188

     Dropping a Collection 
 To  drop   the  catalog  collection run the following command. 

    db.catalog.drop()    

 Subsequently list the collections with the following command. 

    show collections    

 The  catalog  collection does not get listed and only the  catalog_capped  collection gets listed as shown 
in Figure  7-25 .   

     Exiting Mongo Shell and Interactive Shell 
 To  exit   the Mongo shell run the following command. 

    exit    

 To exit the interactive terminal run the following command. 

    exit    

 The Mongo shell and the interactive terminal get exited as shown in Figure  7-26 .   

     Scaling the Cluster 
 To scale the Mongo cluster run the  kubectl scale  command. For example, the following command scales 
the cluster to 4 replicas. 

    kubectl scale rc mongo --replicas=4    

  Figure 7-25.    Dropping the catalog Collection       

  Figure 7-26.    Exiting the Shells       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

189

 An output of “scaled” as shown in Figure  7-27  scales the cluster to 4 replicas.  

 List the Pods after scaling. 

    kubectl get pods    

 The four Pods get listed. Initially some of the Pods could be listed as not in READY (1/1) state. Run the 
preceding command multiple times to list all pods running and ready as shown in Figure  7-28 .   

     Deleting the Replication Controller 
 To  delete   a replication controller  mongo-rc  run the following command. 

    kubectl delete replicationcontroller mongo-rc    

 All the Pods managed by the replication controller also get deleted. Subsequently run the following 
command to list the Pods. 

    kubectl get pods    

  Figure 7-27.     Scaling   a Replication Controller       

  Figure 7-28.    Listing the Pods after Scaling       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

190

 The  mongo  Pods do not get listed as shown in Figure  7-29 .   

     Deleting the Service 
 To delete the service called  mongo  run the following command.    

    kubectl delete service mongo    

 The  mongo  service does not get listed as shown in Figure  7-30 .   

      Using a Host Port 
 The container specification within a Pod has the provision to configure a host port. A  host port   is a container 
port mapping to the host implying that the specified host port gets reserved for a single container The 
 hostPort  field should be used for a single machine container. Multiple containers of the type in which the 
 hostPort  is specified cannot be started because the host port can be reserved only by a single container. 
Other Pods that do not specify a  hostPort  field could be run, however, on the same machine on which a 
container with  hostPort  field mapping is running. As a variation of the replication controller we used earlier 
add a  hostPort  field in the spec- > containers- > ports field. The modified  mongo-rc.yaml  is listed. 

    --- 
 apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   labels: 
     name: mongo 
   name: mongo-rc 
 spec: 
   replicas: 2 
   template: 
     metadata: 

  Figure 7-29.    Deleting a Replication Controller       

  Figure 7-30.    Deleting the mongo Service       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

191

       labels: 
         name: mongo 
     spec: 
       containers: 
         - 
           image: mongo 
           name: mongo 
           ports: 
             - 
               containerPort: 27017 
               hostPort: 27017 
               name: mongo    

 Run the following command to create a replication controller. 

    kubectl create -f mongo-rc.yaml    

 List the replication controllers with the following command. 

    kubectl get rc    

 The  mongo-rc  replication controller gets created and listed as shown in Figure  7-31 .  

 List the Pods with the following command. 

    kubectl get pods    

 Only one of the two replicas is listed as Running and READY (1/1). Even if the preceding command is 
run multiple times, only one replica is listed as running as shown in Figure  7-32 .  

  Figure 7-31.    Creating a Replication Controller from a Definition File       

 



CHAPTER 7 ■ USING MONGODB DATABASE

192

 Scale the MongoDB cluster to 4 replicas with the following command. 

    kubectl scale rc mongo --replicas=4    

 Though the output from the command is “Scaled” and 4 Pods get created but only one Pod is in 
READY (1/1) state at any particular time as shown in Figure  7-33 .  

  Figure 7-32.    Listing the Pods after creating a Replication Controller       

 



CHAPTER 7 ■ USING MONGODB DATABASE

193

 Even if the single running Pod is stopped only one new Pod gets started. To demonstrate, stop the single 
running Pod. 

    kubectl stop pod mongo-rc-laqpl    

 The Pod gets removed but a replacement Pod gets created to maintain the replication level of 1 as 
shown in Figure  7-34 .  

  Figure 7-33.    Scaling the Replication Controller to 4 Replicas       

  Figure 7-34.    Another Pod gets created when the single running Pod is stopped       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

194

 List the Pods again after a few seconds and only one Pod gets listed as shown in Figure  7-35 .  

 Using the  hostPort  field is not recommended unless a single container machine is to be used or only a 
single container is required to be mapped to the host port.    

     Creating a MongoDB Cluster Imperatively 
 In the following subsections we shall create a Kubernetes replication controller and service for a MongoDB 
 cluster   on the command line using kubectl. 

     Creating a Replication Controller 
 To create a replication  controller   for the Docker image “mongo” with 2 replicas and port 27017 run the 
following command. 

    kubectl run mongo --image=mongo --replicas=2 --port=27017    

 The replication controller gets created as shown in Figure  7-36 .  

 List the Pods with the following command. 

    kubectl get rc    

  Figure 7-36.    Creating a Replication Controller Imperatively       

  Figure 7-35.    Only a single Pod is Running and Ready       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

195

 The  mongo -rc gets listed as shown in Figure  7-37 .   

     Listing the Pods 
 List the  Pods   with the following command. 

    kubectl get pods    

 The two Pods started for MongoDB get listed as shown in Figure  7-38 . Initially the Pods could be listed 
as not running.  

 Run the following preceding multiple times if required to list the Pods as running as shown in Figure  7-39 .   

  Figure 7-37.    Listing the Replication Controllers       

  Figure 7-38.    Listing the Pods with some of the pods not Running yet       

  Figure 7-39.    Listing all the Pods as Running       

 

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

196

     Listing the Logs 
 List the  logs   for a Pod with the following command. The  mongo-56850  is the Pod name. 

    kubectl logs mongo-56850    

 The Pod logs get listed as shown in Figure  7-40 .  

 MongoDB is listed as started as shown in Figure  7-41 . Output on commands run on the server also 
get output.   

  Figure 7-40.    Listing Pod Logs       

 



CHAPTER 7 ■ USING MONGODB DATABASE

197

     Creating a Service 
 To create a  service   for the  mongo  replication controller run the following command to expose a service on 
port 27017 of type  LoadBalancer , which was discussed earlier. 

    kubectl expose rc mongo --port=27017 --type=LoadBalancer    

  Figure 7-41.    Listing MongoDB Server as running and waiting for connections on port 27017       

 



CHAPTER 7 ■ USING MONGODB DATABASE

198

 The  mongo  service gets created as shown in Figure  7-42 .  

 List the services with the following command. 

    kubectl get services    

 The  mongo  service is listed as running in Figure  7-43 .  

 An interactive terminal and a Mongo shell may get started to create a MongoDB database and collection 
to add and query documents in the collection as discussed when creating a MongoDB cluster declaratively.  

     Scaling the Cluster 
 To scale the cluster to 4 replicas, for example, run the following command. 

    kubectl scale rc mongo --replicas=4    

 An output of “scaled” indicates that the cluster has been scaled as shown in Figure  7-44 .  

 Subsequently get the Pods. 

    kubectl get pods    

  Figure 7-42.    Creating a Service Imperatively       

  Figure 7-43.    Listing the Services including the mongo Service       

  Figure 7-44.     Scaling   the Cluster created Imperatively       

 

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

199

 Four pods get listed as shown in Figure  7-45 . Initially some of the Pods could be shown as not running 
or ready.  

 To describe the  mongo  service run the following command. 

    kubectl describe svc mongo    

 The service description includes the service label, selector in addition to the service endpoints, one for 
each of the four pods as shown in Figure  7-46 .   

  Figure 7-45.    Listing Pods after Scaling       

  Figure 7-46.    Describing the Service mongo after Scaling       

 

 



CHAPTER 7 ■ USING MONGODB DATABASE

200

     Deleting the Service and Replication Controller 
 The  mongo  service and the  mongo  replication controller may be  deleted   with the following commands. 

    kubectl delete service mongo 
 kubectl delete rc mongo    

 The “mongo” service and the “mongo” replication controller get deleted as shown in Figure  7-47 . 
Deleting one does not delete the other; the decoupling of the replication controller from the service is a 
feature suitable to evolve one without having to modify the other.    

     Summary 
 In this chapter we used the Kubernetes cluster manager to create and orchestrate a MongoDB cluster. We 
created a replication controller and a service both imperatively and declaratively. We also demonstrated 
scaling a cluster. We introduced two other features of Kubernetes replication controllers: volumes and 
host port. This chapter is about using Kubernetes with MongoDB and the emphasis is less on MongoDB; 
but if MongoDB is to be explored in more detail, refer to the Apress book  Pro MongoDB Development  
(   http://www.apress.com/9781484215999?gtmf=s     ). In the next chapter we shall discuss another NoSQL 
database, Apache Cassandra.     

  Figure 7-47.    Deleting the Service and the Replication Controller       

 

http://www.apress.com/9781484215999?gtmf=s


201© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_8

    CHAPTER 8   

 Using Apache Cassandra Database           

 Apache Cassandra is an open source wide column data store. Cassandra is a scalable, reliable, fault-tolerant, 
and highly available NoSQL database. Cassandra is based on a  flexible schema data model   in which data is 
stored in rows in a table (also called column family) with a primary key identifying a row. The primary key 
could be a single column or multiple column (compound) row key. A relational database also stores data in 
table rows, but what makes Cassandra different is that the table rows do not have to follow a fixed schema. 
Each row in a table could have different columns or some of the columns could be the same as other rows. 
Each row does not have to include all the columns or any column data at all. In this regard Cassandra 
provides a  dynamic column specification  . A keyspace is a namespace container for the data stored in 
Cassandra. In this chapter we shall discuss using Kubernetes cluster manager with Apache Cassandra. 
This chapter has the following sections.

   Setting the Environment  

  Creating a Cassandra Cluster Declaratively  

  Creating a Cassandra Cluster Imperatively    

     Setting the Environment 
 The following software is required for this chapter.

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image for Apache Cassandra (latest version)    

 Install the software on an  Amazon EC2 instance   created from Ubuntu Server 14.04 LTS (HVM), SSD 
Volume Type - ami-d05e75b8 AMI as explained in chapter   1    . SSH Login to the Ubuntu instance using the 
Public IP Address of the Amazon EC2 instance. 

    ssh -i "docker.pem" ubuntu@52.23.160.7    

 Start the Docker engine and verify its status. 

    sudo service docker start 
 sudo service docker status    

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

202

  The  Docker engine   should be running as shown in Figure  8-1 .  

 List the services.  

     kubectl   get services    

 The “ kubernetes  ” service should be listed as shown in Figure  8-2 .  

 List the Pods and the nodes with the following commands. 

    kubectl get pods 
 kubectl get nodes    

 Initially the only pod running is the Kubernetes pod as shown in Figure  8-3 .  

 A Cassandra cluster may be created and managed both declaratively and imperatively, and we shall 
discuss both the options.  

  Figure 8-1.    Starting Docker       

  Figure 8-2.    Listing the “kubernetes” Service       

  Figure 8-3.    Listing the Pod and Node for Kubernetes       

 

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

203

     Creating a Cassandra Cluster Declaratively 
 In the following subsections we have discussed creating a Cassandra cluster using definition files based on 
the YAML format. First, create a service to represent a Cassandra cluster. A service is the external interface 
for a cluster of Pods, Apache Cassandra pods in the context of this chapter. 

      Creating a  Service   
 Create a service definition file called  cassandra-service.yaml . Add the fields discussed in Table  8-1 .  

 The  cassandra-service.yaml  is listed below. Use the YAML Lint (   http://www.yamllint.com/     ) to 
validate the syntax. 

    apiVersion: v1 
 kind: Service 
 metadata: 
   name: cassandra 
   labels: 
     app: cassandra 

   Table 8-1.    Fields in the Service Definition File   

 Field  Description  Value 

 apiVersion  API Version.  v1 

 kind  Kind of the definition file.  Service 

 metadata  Metadata of the service. 

 metadata - > name  Service name. Required field.  cassandra 

 metadata - > labels  Service labels. A label could be any key- > value pair. A service 
label is set as app:cassandra. 

 app:cassandra 

 spec  The service specification. 

 spec - > labels  The spec labels. A label could be any key- > value pair. The service 
label is set as app:Cassandra. 

 app:cassandra 

 spec - > selector  Service selector. Used to select Pods to manage. Pods with a label 
the same as the selector expression are selected or managed by 
the service. The selector expression could be any key:value pair. 
Or, multiple requirements or expressions could be specified 
using a ‘,’. The app:cassandra setting translates to service selector 
app = cassandra. 

 app:cassandra 

 spec - > ports  The service ports. The ports field is required. 

 spec - > ports - > port  A single service port at which the service is exposed for access by 
external clients. 

 9042 

 spec - > type  The service type.  LoadBalancer 

http://www.yamllint.com/


CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

204

 spec: 
   labels: 
     app: cassandra 
   selector: 
     app: cassandra 
   ports: 
     - 
       port: 9042 
   type: LoadBalancer    

 The  cassandra-service.yaml  file may be created in a vi editor and saved using the :wq command as 
shown in Figure  8-4 .  

  Figure 8-4.    Service Definition File in vi Editor       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

205

 To create a service run the following command. 

    kubectl create -f cassandra-service.yaml    

 Subsequently list the services. 

    kubectl get services    

 The  cassandra  service gets listed as shown in Figure  8-5 .  

 Describe the  cassandra  service with the following command. 

    kubectl describe svc cassandra    

 The service name, namespace, labels, selector, type, IP, Port, NodePort and endpoints get listed as 
shown in Figure  8-6 . No service endpoint is listed initially because a Pod has not been created yet.    

  Figure 8-5.    Creating and listing a Service for Apache Cassandra       

  Figure 8-6.    Describing the Service for Apache Cassandra       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

206

      Creating a Replication Controller 
 Next, we shall create a replication  controller   for Cassandra. A replication controller defines the configuration 
for the containers and their respective Docker images in the Pod. Create a definition file  cassandra-rc.yaml  
and add the following (Table  8-2 ) fields.  

   Table 8-2.    Fields in the Replication Controller Definition File   

 Field  Description  Value 

 apiVersion  The API Version.  v1 

 kind  Kind of definition file.  ReplicationController 

 metadata  Replication controller metadata. 

 metadata - > labels  Replication controller labels. The key:value pair 
app:cassandra is set as a label on the replication 
controller. 

 app:cassandra 

 spec  The replication controller specification. 

 spec - > replicas  The number of replicas.  1 

 spec- > selector  The selector expression for the replication controller. 
Must be the same as one of the labels in the spec 
- > template - > metadata - > labels field. Required 
field but not required to be set explicitly and defaults 
to the labels in spec - > template - > metadata 
- > labels field. If multiple requirements are set in 
the selector multiple labels in the Pod template 
labels must match. For example if the  selector  is 
 app=cassandra,name=cassandra  the Pod template 
labels spec - > template - > metadata - > labels must 
include both of these labels. 

 spec - > template  The Pod template. Required field. 

 spec - > template 
- > metadata 

 Template metadata. 

 spec - > template 
- > metadata - > labels 

 Template labels. The key:value pair app:cassandra is 
set as a label on the Pod. A label must be set on the 
template. The label setting translates to Pod label 
app=cassandra. 

 app:cassandra 

 spec - > template - > spec  The container specification. 

 spec - > template - > spec 
- > containers 

 The containers in the Pod. 

 spec - > template - > spec 
- > containers - > image 

 The Docker image for a container.  cassandra 

 spec - > template - > spec 
- > containers - > name 

 The container name.  cassandra 

 spec - > template - > spec 
- > containers - > ports 

 The container ports. 

(continued)



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

207

 The  cassandra-rc.yaml  is listed. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   name: cassandra-rc 
   labels: 
     app: cassandra 
 spec: 
   replicas: 1 
   template: 
     metadata: 
       labels: 
         app: cassandra 
     spec: 
       containers: 
         - 
         image: cassandra 
         name: cassandra 
         ports: 
           - 
             containerPort: 9042 
             name: cql 
           - 
             containerPort: 9160 
             name: thrift    

 The  cassandra-rc.yaml  field may be created in a vi editor and saved with the :wq command as shown 
in Figure  8-7 .  

 Field  Description  Value 

 spec - > template - > spec 
- > containers - > ports 
- > containerPort 

 The container port for CQL command shell.  9042 

 spec - > template - > spec 
- > containers - > ports 
- > name 

 The port name.  cql 

 spec - > template - > spec 
- > containers - > ports 
- > containerPort 

 The container port for thrift clients.  9160 

 spec - > template - > spec 
- > containers - > ports 
- > name 

 The port name.  thrift 

Table 8-2. (continued)



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

208

 Create a replication controller with the following command. 

    kubectl create -f cassandra-rc.yaml    

 Subsequently list the replication controllers. 

    kubectl get rc    

 The  cassandra-rc  replication controller gets created and listed as shown in Figure  8-8 .  

  Figure 8-7.    Replication Controller Definition File in vi Editor       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

209

 List the Pods created by the replication controller. 

    kubectl get pods    

 As the number of replicas is set to 1 in the replication controller definition file, one Pod gets created 
and is listed in Figure  8-9 . The preceding command may have to be run multiple times to list the Pod as 
running and ready. Alternatively run the command for the first time after a few seconds of having created the 
replication controller; by a minute all Pods should have started.  

 Describe the Cassandra service. 

    kubectl describe svc cassandra    

 An endpoint gets listed for the Pod as shown in Figure  8-10 . When the service description was listed 
before creating a replication controller, no endpoint got listed.  

  Figure 8-8.    Creating a Replication Controller from Definition File       

  Figure 8-9.    Listing Pod/s for Apache Cassandra       

  Figure 8-10.    Describing the Service after creating the Replication Controller       

 

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

210

 In the preceding example we created a replication controller with the number of replicas set as 1. 
The replication controller does not have to create a replica to start with. To demonstrate we shall create 
the replication controller again, but with a different replicas setting. Delete the replication controller 
previously created. 

    kubectl delete rc cassandra-rc    

 Modify the  cassandra-rc.yaml  to set replicas field to 0 as shown in Figure  8-11 .  

 Create the replication controller again with the modified definition file. 

    kubectl create -f cassandra-rc.yaml    

  Figure 8-11.    Setting Replicas to 0       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

211

 Subsequently list the replicas. 

    kubectl get rc    

 The  cassandra-rc  replication controller gets created and gets listed as shown in Figure  8-12 .  

 List the Pods. 

    kubectl get pods    

 Because the replicas field is set to 0 the REPLICAS get listed as 0 as shown in Figure  8-13 .    

      Scaling the Database 
 Starting with the replication controller with 0 replicas created we  shall   scale up the cluster to a single replica. 
Run the following command to scale the Pod cluster to 1 replica. 

    kubectl scale rc cassandra-rc --replicas=1    

 Subsequently list the Pods. 

    kubectl get pods    

 The output from the preceding commands is shown in Figure  8-14 . A “scaled” output indicates that the 
cluster has been scaled. The single Pod could take a while (a few seconds) to get started and become ready.  

  Figure 8-12.    Creating the Replication Controller with Modified Definition File       

  Figure 8-13.    With Replicas as 0 no Pod gets created       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

212

 Describe the  cassandra  service again. 

    kubectl describe svc cassandra    

 A single endpoint should get listed for the Pod added as shown in Figure  8-15 .    

      Describing the Pod 
 To describe the  Pod   run the following command. 

    kubectl describe pod cassandra-rc-tou4u    

 Detailed information about the Pod such as name, namespace, image, node, labels, status, IP address, 
and events gets output as shown in Figure  8-16 . The Pod label is  app=cassandra  as specified in the 
replication controller definition file.    

  Figure 8-14.    Scaling the Replication Controller to 1 Pod       

  Figure 8-15.    Describing the Service after Scaling the Cluster       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

213

     Starting an Interactive Shell 
  As the “cassandra” Docker image inherits from the “debian” Docker image an interactive bash shell may be 
used to access a Docker container based on the cassandra image. To start an  interactive   bash shell to access 
the Cassandra server running in a Docker container, we need to obtain the container id. List the running 
containers. 

    sudo docker ps    

 All the running containers get listed as shown in Figure  8-17 . Copy the container id for the container for 
the  cassandra  image.  

  Figure 8-16.    Describing the single Pod       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

214

 Using the container id start an interactive bash shell. 

    sudo docker exec -it e8fc5e8ddff57 bash    

 An interactive shell gets started as shown in Figure  8-18 .    

  Figure 8-17.    Listing the Docker Containers       

  Figure 8-18.    Starting the Interactive Shell       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

215

     Starting the  CQL Shell   
  Cassandra Query Language (CQL)   is the query language for Apache Cassandra. In the following sections we 
shall run CQL commands to create a keyspace and a table. Start the CQL Shell with the following command. 

    cqlsh    

 CQL Shell 5.0.1 gets started as shown in Figure  8-19 .   

      Creating a Keyspace 
 Next, create a keyspace called  CatalogKeyspace   using the replication class as SimpleStrategy and replication 
factor as 3. 

    CREATE KEYSPACE CatalogKeyspace 
             WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};    

 A keyspace gets created as shown in Figure  8-20 .   

     Altering a Keyspace 
 A keyspace may be altered with the ALTER KEYSPACE command. Run the following command to alter the 
keyspace setting replication factor to 1. 

    ALTER KEYSPACE CatalogKeyspace 
           WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 1};    

 Keyspace gets altered as shown in Figure  8-21 .   

  Figure 8-21.    Altering a Keyspace       

  Figure 8-19.    Starting the cqlsh Shell       

  Figure 8-20.    Creating a Keyspace       

 

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

216

     Using a Keyspace 
 To use the  CatalogKeyspace  keyspace run the following command. 

    use CatalogKeyspace;    

 Keyspace  CatalogKeyspace  gets set as shown in Figure  8-22 .    

      Creating a  Table   
 A table is also called a column family. Both  CREATE TABLE  and  CREATE COLUMN FAMILY  clauses may be used 
to create a table (column family). Create a table called  catalog  using the following CQL statement. 

    CREATE TABLE catalog(catalog_id text,journal text,publisher text,edition text,title 
text,author text,PRIMARY KEY (catalog_id)) WITH compaction = { 'class' : 
'LeveledCompactionStrategy' };    

 Add two rows of data to the table using the following CQL statements. 

    INSERT INTO catalog (catalog_id, journal, publisher, edition,title,author) VALUES 
('catalog1','Oracle Magazine', 'Oracle Publishing', 'November-December 2013', 'Engineering 
as a Service','David A. Kelly') IF NOT EXISTS; 
 INSERT INTO catalog (catalog_id, journal, publisher, edition,title,author) VALUES 
('catalog2','Oracle Magazine', 'Oracle Publishing', 'November-December 2013', 
'Quintessential and Collaborative','Tom Haunert') IF NOT EXISTS;    

 Output from the preceding commands is shown in Figure  8-23 . A Cassandra table gets created and two 
rows of data get added.  

  Figure 8-22.    Setting a Keyspace to be used       

  Figure 8-23.    Creating an Apache Cassandra Table       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

217

 Run the following  CQL   query statement to select data from the  catalog  table. 

    SELECT * FROM catalog;    

 The two rows of data added gets listed as shown in Figure  8-24 .   

     Deleting from a Table 
 To delete row/s of data run a  DELETE  CQL statement. The primary key column value cannot be deleted with 
 DELETE . Delete the other column values for the row with  catalog_id  as ‘catalog’ with the following CQL 
statement. 

    DELETE journal, publisher, edition, title, author from catalog WHERE catalog_id='catalog1';    

 Subsequently run the following CQL query to select data from the  catalog  table. 

    SELECT * FROM catalog;    

 As shown in Figure  8-25  only one complete row of data gets output. The other row lists only the 
 catalog_id  column value, and all the other column values are  null .   

  Figure 8-24.    Querying an Apache Cassandra Table        

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

218

      Truncating a Table 
 Truncating a  table   implies removing all table data including primary key column values. Run the following 
 TRUNCATE  CQL statement to remove all rows. 

    TRUNCATE catalog;    

 Subsequently run the CQL query statement again. 

    SELECT * from catalog;    

 No rows get listed as shown in Figure  8-26 ; not even null values are listed after running a  TRUNCATE  
statement.    

     Dropping a Table and Keyspace 
 To drop a table run the CQL statement with the   DROP TABLE  clause  . The  IF EXISTS  clause drops the table if it 
exists but does not return an error if the table does not exist. 

    DROP TABLE IF EXISTS catalog;    

  Figure 8-25.    Querying Table after deleting  Data   from a Row       

  Figure 8-26.    Querying a Table after Truncating a Table       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

219

 Drop the   CatalogKeyspace    keyspace using the  DROP KEYSPACE  clause statement. The  IF EXISTS  clause 
drops the keyspace if it exists but does not return an error if the keyspace does not exist. 

    DROP KEYSPACE IF EXISTS CatalogKeyspace;    

 To verify that the keyspace  CatalogKeyspace  has been removed, run the following statement. 

    use CatalogKeyspace;    

 As the  CatalogKeyspace  keyspace does not exist an error gets generated as shown in Figure  8-27 .   

      Creating a Volume 
 In chapter   7     we introduced  volumes  , how they are mounted into a Pod using volume mounts, and how they 
are accessed within a container. We introduced various types of volumes and demonstrated the  emptyDir  
type of volume. In this section we shall use another type of volume, the  hostPath  volume. The  hostPath  
volume mounts a directory from the host into the Pod. All containers in the Pod and all Pods based on a Pod 
template using a  hostPath  type of volume may access the directory on the host. As a modification of the 
replication controller used earlier, we shall add a volume of type  hostPath  to the  cassandra-rc.yaml  file. 
For example, if the host directory  /cassandra/data  is to be mounted in a Pod add the following volume in 
the spec- > template field. 

    volumes: 
   - 
     hostPath: 
       path: /cassandra/data 
      name: cassandra-storage     

 The volume is mounted in the Pod using the same fields as a  emptyDir  volume. The modified 
 cassandra-rc.yaml  is listed. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata: 
   name: cassandra-rc 
   labels: 
     app: cassandra 

  Figure 8-27.    Dropping a Table       

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_7


CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

220

 spec: 
   replicas: 1 
   template: 
     metadata: 
       labels: 
         app: cassandra 
     spec: 
       containers: 
         - 
         image: cassandra 
         name: cassandra 
         ports: 
           - 
             containerPort: 9042 
             name: cql 
           - 
             containerPort: 9160 
             name: thrift 
         volumeMounts: 
           - 
             mountPath: /cassandra/data 
             name: cassandra-storage 
       volumes: 
         - 
           hostPath: 
             path: /cassandra/data 
           name: cassandra-storage    

 The  cassandra-rc.yaml  definition file may be edited in vi editor and saved with the :wq command as 
shown in Figure  8-28 . It is recommended to add quotes in field values.  



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

221

 The host directory that is mounted into a Pod has to pre-exist. Create the  /cassandra/data  directory 
and set its permissions to global (777). 

    sudo mkdir –p /cassandra/data 
 sudo chmod –R 777 /cassandra/data    

 The output from the preceding commands is shown in Figure  8-29 . The  /cassandra/data  directory 
gets created.  

  Figure 8-28.    Replication Controller Definition File with a Volume of type hostPath       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

222

 Change directory (cd) to the  /cassandra/data  directory on the host. 

    cd /cassandra/data    

 List the files and directories in the  /cassandra/data  directory. 

    ls –l    

 Initially the  /cassandra/data  is empty as shown in Figure  8-30 . Add a sample file,  cassandra.txt , to 
the directory with the vi editor. Subsequently list the directory files and directories again.  

    vi cassandra.txt 
 ls –l    

 As shown in Figure  8-30  the  cassandra.txt  file gets listed. What the  hostPath  volume does is to make 
the  /cassandra/data  directory available to all containers in the Pod. 

 Create a replication controller as discussed for the definition file used previously. One Pod should get 
created. List the Docker containers. 

    sudo docker ps    

 Copy the container id for the Docker container for image “cassandra” as shown in Figure  8-31 .  

  Figure 8-30.    Adding a file in the hostPath Volume Directory       

  Figure 8-29.    Creating the Directory for the Volume       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

223

 Using the container id start an interactive shell. 

    sudo docker exec -it 11a4b26d9a09 bash    

 The interactive shell gets started as shown in Figure  8-32 .  

  Figure 8-31.    Listing the Docker Containers       

  Figure 8-32.    Starting an Interactive Shell       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

224

 Change directory (cd) to the  /cassandra/data  directory and list the files in the directory. 

    cd /cassandra/data 
 ls –l    

 As shown in Figure  8-33  the cassandra.txt file gets listed. The /cassandra/data directory exists on the 
host but is accessible from a container.  

 Similarly volumes of other types could be created. Following is the  volumeMounts  and  volumes fields  
settings for a AWS Volume. The  volumeID  field has the format  aws://zone/volume  id. 

        volumeMounts: 
         - 
           mountPath: /aws-ebs 
           name: aws-volume 
   volumes: 
       - 
         name: aws-volume 
         awsElasticBlockStore: 
               volumeID: aws://us-east-ib/vol-428ba3ae 
               fsType: ext4    

 A more complete  cassandra-rc.yaml  file is shown in Figure  8-34 .     

  Figure 8-33.    Accessing the Volume in a Docker Container       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

225

     Creating a Cassandra Cluster Imperatively 
 If the default settings for most of the fields are to be used, creating a replication controller imperatively is the 
better option. 

      Creating a Replication Controller 
 To create a replication  controller   on the command line use the  kubectl run  command. For a replication 
controller based on the Docker image “cassandra” run the following command in which replication 
controller name is “cassandra” and port is 9042. The replicas is set to 1, also the default value. 

    kubectl run cassandra --image=cassandra --replicas=1 --port=9042    

  Figure 8-34.    Volume of type awsElasticBlockStore in a Replication Controller Definition File       

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

226

 Subsequently list the replication controllers. 

    kubectl get rc    

 The “cassandra” replication controller gets created and get listed as shown in Figure  8-35 .  

 To list the Pods run the following command. 

    kubectl get pods    

 The single Pod created gets listed as shown in Figure  8-36 .  

 To describe the replication controller run the following command. 

    kubectl describe rc cassandra    

 The replication controller’s name, namespace, image, selector, labels, replicas, pod status, and events 
get listed as shown in Figure  8-37 . The selector defaults to “run=cassandra” for the  cassandra  replication 
controller.    

  Figure 8-35.    Creating a Replication Controller Imperatively       

  Figure 8-36.    Listing the single Pod       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

227

  Figure 8-37.    Describing the Replication Controller       

  Figure 8-38.    Creating a Service for Apache Cassandra Imperatively       

     Creating a Service 
 To expose the replication controller  cassandra  as a  service  , run the  kubectl expose  command. The port is 
required to be specified and is set to 9042 for the service. 

    kubectl expose rc cassandra --port=9042 --type=LoadBalancer    

 The  cassandra  service gets created as shown in Figure  8-38 .  

 Describe the service with the following command. 

    kubectl describe service cassandra    

 As shown in Figure  8-39  the service name, namespace, labels, selector, type, IP, Port, NodePort, and 
Endpoint get listed. The service selector run=cassandra must be the same as the label on the Pod to manage.   

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

228

  Figure 8-39.    Describing the Service       

  Figure 8-40.    Scaling Down the Database Cluster to 0 Replicas       

  Figure 8-41.    Listing the Pods after Scaling Down       

      Scaling the Database 
 To  scale   the cluster, run the  kubectl scale  command. An important reason, to scale the Cassandra 
replication controller is to run more Cassandra nodes and have them join the cluster, and we demonstrated 
scaling up a cluster. But it is not always necessary to scale up a cluster. A cluster may also be scaled down. To 
scale down the cluster to 0 replicas run the following command. 

    kubectl scale rc cassandra --replicas=0    

 A output of “scaled” in Figure  8-40  indicates that the cluster has been scaled down.  

 List the Pods. 

    kubectl get pods    

 No pod gets listed as shown in Figure  8-41 .  

 

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

229

 List the services with the following command. 

    kubectl get services    

 Scaling the cluster to 0 replicas would leave no Pod for the service to manage but the service is still 
running as shown in Figure  8-42 .  

 But the service does not have any endpoint associated with it as shown with the  kubectl describe  
command in Figure  8-43 .    

     Deleting the Replication Controller and Service 
 To delete the replication  controller   “cassandra” run the following command. 

    kubectl delete rc cassandra    

 Subsequently list the replication controllers. 

    kubectl get rc    

  Figure 8-42.    Listing the Services after Scaling Down       

  Figure 8-43.    Describing the Service after Scaling Down       

 

 



CHAPTER 8 ■ USING APACHE CASSANDRA DATABASE

230

 To delete the service “cassandra” run the following command. 

    kubectl delete service cassandra    

 Subsequently list the services. 

    kubectl get services    

 The output from the preceding commands is shown in Figure  8-44 . The replication controller and 
service get deleted and do not get listed.    

     Summary 
 In this chapter we used Kubernetes to create an Apache Cassandra cluster. We used both the declarative and 
imperative approaches. We introduced the volumes in the previous chapter and in this chapter we discussed 
using two other types of volumes: hostPath and AWS Volume. We scaled the cluster not only up but also 
down. We demonstrated that a replication controller does not require a Pod to be running and could specify 
0 replicas. In the next chapter we shall discuss using Kubernetes cluster manager with another NoSQL 
database, Couchbase.     

  Figure 8-44.    Deleting the Replication Controller and the  Service         

 



231© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_9

    CHAPTER 9 

 Using Couchbase           

  Couchbase   is a distributed NoSQL database based on the JSON data model. Couchbase is faster than 
MongoDB and Apache Cassandra. Couchbase offers some features not available in MongoDB and 
Cassandra such as a Graphical User Interface (GUI), the Couchbase Web Console. Couchbase also provides 
command-line tools such as  couchbase-cli ,  cbbackup ,  cbrestore , and  cbtransfer . Couchbase, being a 
distributed database, could benefit from the cluster management provided by Kubernetes cluster manager, 
which is what we shall discuss in this chapter. This chapter has the following sections.

   Setting the Environment  

  Creating a Couchbase Cluster Declaratively  

  Creating a Couchbase Cluster Imperatively    

     Setting the Environment 
 We have used an Ubuntu instance on Amazon EC2 created using the same AMI as used in the other 
chapters, the Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-d05e75b8. If an instance created 
from the AMI already exists the same may be used. The following software is required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image for Couchbase (latest version)    

 First, we need to log in to the Ubuntu instance. Obtain the Public IP Address of the Ubuntu instance 
from the Amazon EC2 instance console as shown in Figure  9-1 .  



CHAPTER 9 ■ USING COUCHBASE

232

 Use the Public IP Address log in to the Ubuntu instance. 

    ssh -i "docker.pem" ubuntu@54.172.55.212  

     The Ubuntu instance gets logged into as shown in Figure  9-2 .  

  Figure 9-1.    Getting  Public IP Address         

 



CHAPTER 9 ■ USING COUCHBASE

233

 Start the Docker Engine and verify its status. 

    sudo service docker start  
  sudo service docker status  

      Docker engine   should be listed as running as shown in Figure  9-3 .  

  Figure 9-2.    Logging into  Ubuntu Instance   on Amazon EC2       

  Figure 9-3.    Starting Docker Engine       

 List the running services. 

    kubectl get services  

 

 



CHAPTER 9 ■ USING COUCHBASE

234

     The  kubernetes service   should be listed as running as shown in Figure  9-4 .  

  Figure 9-5.    Listing the Single Node       

  Figure 9-4.    Listing the “kubernetes” Service       

 List the nodes. 

    kubectl get nodes  

     The node should be listed with STATUS “Ready” as shown in Figure  9-5 .   

     Creating a Couchbase  Cluster Declaratively   
 In the following subsections we shall create a Couchbase Pod, a replication controller, and a service all using 
definition files. 

      Creating a Pod 
 A  Pod   definition file is used to create a single Pod. A Pod could have 0 or more container configurations. 
Create a definition file  couchbase.yaml . Add the following (Table  9-1 ) fields to the definition file.  

 

 



CHAPTER 9 ■ USING COUCHBASE

235

 The  couchbase.yaml  definition file is listed. 

    apiVersion: v1  
  kind: Pod  
  metadata:  
    labels:   
      app: couchbaseApp  
    name: couchbase  
  spec:   
    containers:  
      -   
        image: couchbase  
        name: couchbase  
        ports:   
          -   
            containerPort: 8091  

   Table 9-1.    Pod Definition File Fields   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  Pod 

 metadata  The Pod metadata. 

 metadata - > labels  The Pod labels. A service selector makes use of 
the labels to select the Pods to manage. 

 app: couchbaseApp 

 metadata - > name  The Pod name.  couchbase 

 spec  The Pod specification. 

 spec - > containers  The containers in the Pod. 

 spec - > containers - > image  A container image. For Couchbase server the 
image is “couchbase.” 

 couchbase 

 spec - > containers - > name  The container name.  couchbase 

 spec - > containers - > ports  The container ports. 

 spec - > containers - > ports 
- > containerPort 

 A container port for Couchbase server.  8091 



CHAPTER 9 ■ USING COUCHBASE

236

     The  couchbase.yaml  file could be created in the vi editor and saved with the :wq command as shown in 
Figure  9-6 .  

  Figure 9-6.    Pod Definition file couchbase.yaml in vi Editor       

 



CHAPTER 9 ■ USING COUCHBASE

237

  Figure 9-7.    Creating a Pod from the Definition File       

  Figure 9-8.    Listing the couchbase Pod       

 Run the following command to create a Pod from the definition file.  

    kubectl create -f couchbase.yaml      

 A Pod gets created as indicated by the “pods/couchbase” output in Figure  9-7 .  

 Subsequently list the Pods. 

    kubectl get pods  

     A Pod called “couchbase” gets listed as shown in Figure  9-7 . Initially the STATUS could be different from 
“Running” and the READY column could be not ready; 1/1 is ready state and 0/1 is not ready. 

 Run the following command again after a few more seconds. 

    kubectl get pods  

     The  couchbase  Pod is listed as “Running” and READY- > 1/1 as shown in Figure  9-8 .    

      Creating a Service 
 In this section we shall create a service using a  service   definition file. Create a  couchbase-service.yaml  file 
and add the following (Table  9-2 ) fields to the file.  

 

 



CHAPTER 9 ■ USING COUCHBASE

238

 The  couchbase-service.yaml  is listed. 

    apiVersion: v1  
  kind: Service  
  metadata:   
    labels:   
      app: couchbaseApp  
    name: couchbase  
  spec:   
    ports:   
      -   
        port: 8091  
        targetPort: 8091  
    selector:   
      app: couchbaseApp  
    type: LoadBalancer  

   Table 9-2.    Service Definition File couchbase-service.yaml   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  Service 

 metadata  The service metadata. 

 metadata - > labels  The service labels.  app: couchbaseApp 

 metadata - > name  The service name.  couchbase 

 spec  The service specification. 

 spec - > ports  The ports exposed by the service. 

 spec - > ports - > port  A port exposed by the service.  8091 

 spec - > ports 
- > targetPort 

 The target port for the service, which could be a port 
number or the name of a port on the backend. The target 
port setting adds flexibility as the port number could be 
modified while the port name is kept fixed. 

 8091 

 spec - > selector  The Pod selector, which could be one or more label 
key:value expressions/labels. All of the key:value 
expressions in a selector must match with a Pod’s labels 
for the Pod to be selected by the service. A Pod could have 
additional labels but must include labels in the selector 
to be selected by the service. Service routes traffic to the 
Pods with label/s matching the selector expression/s. 
Only a single selector expression is used in the example 
service definition file. If the selector is empty all Pods 
are selected. The app: couchbaseApp setting defaults to 
selector app = couchbaseApp. 

 app: couchbaseApp 

 spec - > selector - > type  The service type.  LoadBalancer 



CHAPTER 9 ■ USING COUCHBASE

239

  Figure 9-9.    Listing the couchbase Service       

     Create a service from the definition file with the following command. 

    kubectl create -f couchbase-service.yaml  

     Subsequently list the running services. 

    kubectl get services  

     An output of “services/couchbase” as shown in Figure  9-9  indicates that the  couchbase  service has been 
created. The “couchbase” service gets listed, also shown in Figure  9-9 .  

 List the service endpoints with the following command. 

    kubectl get endpoints  

     The service endpoint for the  couchbase  service gets listed as shown in Figure  9-10 .   

  Figure 9-10.    Listing the Endpoints        

      Creating a Replication Controller 
 In this section we shall create a replication  controller   using a definition file. Create a  couchbase-rc.yaml  file 
and add the following (Table  9-3 ) fields to the file.  

 

 



CHAPTER 9 ■ USING COUCHBASE

240

   Table 9-3.    Definition File for Replication Controller   

 Field  Description  Value  Required Field 
(includes default 
settings) 

 apiVersion  v1  yes 

 kind  The kind of definition file.  ReplicationController  yes 

 metadata  The replication controller metadata.  yes 

 metadata - > labels  The replication controller labels.  app: couchbaseApp  no 

 metadata - > name  The replication controller name.  couchbase  yes 

 spec  The replication controller 
specification. 

 yes 

 spec - > replicas  The number of Pod replicas. 
Defaults to 1 replica. 

 2  yes 

 spec - > selector  One or more key:value expressions 
for selecting the Pods to manage. 
Pods that include label/s with the 
same expression/s as the selector 
expression/s are managed by the 
replication controller. A Pod could 
include additional labels but must 
include the ones in the selector 
to be managed by the replication 
controller. The selector defaults to 
the spec - > template - > metadata 
- > labels key:value expression/s 
if not specified. A setting of app: 
couchbaseApp translates to selector 
app = couchbaseApp. 

 app: couchbaseApp  yes 

 spec - > template  The Pod template.  yes 

 spec - > template - > metadata  The Pod template metadata.  yes 

 spec - > template - > 
metadata - > labels 

 The Pod template labels.  app: couchbaseApp  yes 

 spec - > template - > spec  The Pod template specification.  yes 

 spec - > template - > spec - > 
containers 

 The containers configuration for 
the Pod template. 

 yes 

 spec - > template - > 
spec - > containers - > image 

 The Docker image.  couchbase  yes 

 spec - > template - > 
spec - > containers - > name 

 The container name.  couchbase  yes 

 spec - > template - > 
spec - > containers - > ports 

 The container ports.  no 

 spec - > template - > 
spec - > containers - > 
ports - > containerPort 

 A container port.  8091  no 



CHAPTER 9 ■ USING COUCHBASE

241

 The  couchbase-rc.yaml  is listed. 

    apiVersion: v1  
  kind: ReplicationController  
  metadata:   
    labels:   
      app: couchbaseApp  
    name: couchbase  
  spec:   
    replicas: 2  
    selector:   
      app: couchbaseApp  
    template:   
      metadata:   
        labels:   
          app: couchbaseApp  
      spec:   
        containers:   
          -   
            image: couchbase  
            name: couchbase  
            ports:   
            -   
              containerPort: 8091  

     The  couchbase-rc.yaml  may be created in vi editor as shown in Figure  9-11 .  



CHAPTER 9 ■ USING COUCHBASE

242

 Create the replication controller with the following command. 

    kubectl create -f couchbase-rc.yaml  

     Subsequently, list the replication controllers. 

    kubectl get rc  

  Figure 9-11.    Replication Controller Definition File couchbase-rc.yaml in vi Editor       

 



CHAPTER 9 ■ USING COUCHBASE

243

     An output of “replicationcontrollers/couchbase” as shown in Figure  9-12  indicates that the “couchbase” 
replication controller has been created. The “couchbase” replication controller gets listed with the second 
command. The REPLICAS is listed as 2, but it does not imply that the replication controller created two new 
replicas. The replication controller manages Pods based on selector expression matching a Pod label. If 
some other Pod with the matching label is already running it is counted toward the replicas setting.   

  Figure 9-12.    Creating and listing a Replication Controller from the Definition File        

     Listing the Pods 
 To list the  Pods   run the following command. 

    kubectl get pods  

     Two Pods get listed as shown in Figure  9-13 , and one of the Pods is the Pod created earlier using 
a Pod definition file. The label in the Pod definition file was app: “couchbaseApp,” which is also the 
selector expression for the replication controller. The expression app: “couchbaseApp” translates to 
app= couchbaseApp. As a result only one new Pod gets created when the replication controller with replicas 
set to 2 is created.   

  Figure 9-13.    Listing the Pods for Couchbase Server       

     Listing the Logs 
 To list the  logs   for a Pod run the  kubectl logs  command. The pod name may be copied from the preceding 
listing of Pods. 

    kubectl logs couchbase-0hglx  

     The output is shown in Figure  9-14 . The output indicates that the WEB UI is available at 
 http://<ip>:8091 .   

  Figure 9-14.    Listing Pod Logs       

 

 

 



CHAPTER 9 ■ USING COUCHBASE

244

     Describing the Service 
 To describe the   couchbase  service   run the following command. 

    kubectl describe svc couchbase  

     The service name, namespace, labels, selector, type, IP, Port, NodePort, and endpoints get listed as 
shown in Figure  9-15 . The  selector  is listed as  app=couchbaseApp .   

  Figure 9-15.    Describing the Service for Couchbase       

     Listing the Endpoints 
 List the  endpoints   again. 

    kubectl get endpoints  

     When the endpoints were listed earlier only one endpoint was listed because only one Pod was running. 
With two Pods running two endpoints get listed as shown in Figure  9-16 .   

  Figure 9-16.    Listing the Endpoints for Couchbase       

     Setting Port Forwarding 
 When we listed the logs for a Couchbase Pod the URL to invoke the web console was listed as 
   http://<ip>:8091     . The  < ip  > is the service endpoint of the Pod. The previous section listed two service 
endpoints. Invoking either of these on a host browser, for example,    http://172.17.0.2:8091      would open 
the web console. An Amazon EC2 Ubuntu instance does not install a web browser by default. Alternatively, 
we shall set port forwarding to a local machine and open the web console from a browser on a local machine, 

 

 

http://hyperlink/
http://172.17.0.2:8091/


CHAPTER 9 ■ USING COUCHBASE

245

which is required to have a browser available. To set port forwarding we need to know the Public DNS of the 
Amazon EC2 instance running Kubernetes. The Public DNS may be obtained from the Amazon EC2 console 
as shown in Figure  9-17 .  

  Figure 9-17.    Obtaining the Public DNS       

 The ports to forward to on the local machine must be open and not already bound. As an example, 
bind one of the endpoints to port 8093 on  localhost  and the other to port 8094 on the  localhost  with the 
following commands. 

    ssh -i "docker.pem" -f -nNT -L 8093:172.17.0.3:8091 ubuntu@ec2-54-172-55-212.compute-1.
amazonaws.com  
  ssh -i "docker.pem" -f -nNT -L 8094:172.17.0.2:8091 ubuntu@ec2-54-172-55-212.compute-1.
amazonaws.com  

     The  port forwarding   from the service endpoints to  localhost  ports gets set as shown in Figure  9-18 .   

  Figure 9-18.    Setting Port Forwarding to localhost:8093 and localhost:8094       

 

 



CHAPTER 9 ■ USING COUCHBASE

246

     Logging into Couchbase Web Console 
 Two ports are available on the local machine to open the Couchbase  web console  , 8093 and 8094. 
Either or both of these could be used to open a Couchbase web console. For example, open the URL 
   http://localhost:8093      in a web browser. The Couchbase Console gets opened as shown in Figure  9-19 . 
Click on Setup to set up the Couchbase server.   

  Figure 9-19.    Setting Up Couchbase Server       

 

http://localhost:8093/


CHAPTER 9 ■ USING COUCHBASE

247

     Configuring Couchbase Server 
 In this section we shall configure the  Couchbase server  , which is not directly related to using Kubernetes 
but is discussed for completeness. When the Setup button is clicked the CONFIGURE SERVER window gets 
displayed as shown in Figure  9-20 .  

  Figure 9-20.    Configuring Server Disk Storage, Hostname       

 



CHAPTER 9 ■ USING COUCHBASE

248

 Keep the default settings and scroll down to select Start a new cluster. The RAM settings may have to be 
reduced if sufficient RAM is not available. Click on Next as shown in Figure  9-21 .  

  Figure 9-21.    Starting New Cluster       

 



CHAPTER 9 ■ USING COUCHBASE

249

 Some sample buckets get listed but a sample bucket is not required to be selected. Click on Next as 
shown in Figure  9-22 .  

  Figure 9-22.    Sample Buckets are not required to be selected       

 



CHAPTER 9 ■ USING COUCHBASE

250

 The Create Default Bucket settings include the Bucket Type, which should be Couchbase as shown in 
Figure  9-23 . Replicas should be enabled with the “Enable” check box.  

  Figure 9-23.    Configuring Default Bucket       

 



CHAPTER 9 ■ USING COUCHBASE

251

 Scroll down to enable the Flush mode with the “Enable” check box. Click on Next as shown in Figure  9-24 .  

  Figure 9-24.    Enabling Flush Mode and completing Server Configuration       

 



CHAPTER 9 ■ USING COUCHBASE

252

 Next, accept the terms and conditions as shown in Figure  9-25  and click on Next.  

  Figure 9-25.    Accepting Terms and Conditions       

 



CHAPTER 9 ■ USING COUCHBASE

253

 To secure the server specify a Password and specify the same password in the Verify Password field as 
shown in Figure  9-26 .  

  Figure 9-26.    Securing the Server with Username and Password       

 



CHAPTER 9 ■ USING COUCHBASE

254

 The Couchbase server gets configured. Select the Server Nodes tab and the Server Node Name is listed 
as shown in Figure  9-27 . The Server Node Name is one of the service endpoints.   

  Figure 9-27.    Server Node Name is the same as a Service Endpoint       

 



CHAPTER 9 ■ USING COUCHBASE

255

     Adding Documents 
 Next, we shall add some documents to the Couchbase server. Select the Data Buckets tab as shown in 
Figure  9-28 .  

  Figure 9-28.    Selecting  Data Buckets Tab         

 



CHAPTER 9 ■ USING COUCHBASE

256

 The default bucket gets listed as shown in Figure  9-29 . Click on Documents.  

  Figure 9-29.    Clicking on Documents Button for the default Bucket       

 



CHAPTER 9 ■ USING COUCHBASE

257

 Initially the “default” bucket is empty as shown in Figure  9-30 .  

  Figure 9-30.    Initially no Documents are present in the default Data Bucket       

 



CHAPTER 9 ■ USING COUCHBASE

258

 Click on Create Document to add a document as shown in Figure  9-31 .  

  Figure 9-31.    Clicking on Create Document       

 



CHAPTER 9 ■ USING COUCHBASE

259

 In the Create Document dialog specify a Document Id and click on Create as shown in Figure  9-32 .  

  Figure 9-32.    Specifying Document ID       

 



CHAPTER 9 ■ USING COUCHBASE

260

 Copy and paste the following JSON document into the  catalog1  document. 

    {  
    "journal": "Oracle Magazine",  
    "publisher": "Oracle Publishing",  
    "edition": "November-December 2013",  
    "title": "Quintessential and Collaborative",  
    "author": "Tom Haunert"  
  }  

     Click on Save to update the  catalog1  document as shown in Figure  9-34 .  

 A new JSON document with  default fields   gets added as shown in Figure  9-33 .  

  Figure 9-33.    The catalog1 Document gets created with Default Fields       

 



CHAPTER 9 ■ USING COUCHBASE

261

 The  catalog1  document gets saved and gets listed when the Documents link for the “default” bucket is 
selected as shown in Figure  9-35 .  

  Figure 9-34.    Saving a  JSON Document         

  Figure 9-35.    The catalog1 Document in default Bucket       

 

 



CHAPTER 9 ■ USING COUCHBASE

262

 Similarly add another document with Document ID as  catalog2  and copy and paste the following 
listing to the document. 

    {  
  "journal": “Oracle Magazine”,  
  "publisher": "Oracle Publishing",  
  "edition": "November December 2013",  
  "title": "Engineering as a Service",  
  "author": "David A. Kelly",  
  }  

     The   catalog2  document   is shown in Figure  9-36 .  

  Figure 9-36.    Adding another Document catalog2       

 



CHAPTER 9 ■ USING COUCHBASE

263

 The Documents link for the “default” bucket links the two documents added as shown in Figure  9-37 .   

  Figure 9-37.    Listing the two Documents in the default Bucket       

 



CHAPTER 9 ■ USING COUCHBASE

264

     Starting an Interactive Shell 
 Next, we shall start and interactive bash  shell   to access Couchbase server from the command line. Obtain 
the container id for one of the Docker containers based on the Docker image “couchbase” as shown in 
Figure  9-38 .  

  Figure 9-38.    Obtaining the Container Id       

 Using the container id, start an interactive shell. 

    sudo docker exec -it e1b2fe2f24bd bash  

 



CHAPTER 9 ■ USING COUCHBASE

265

  Figure 9-39.    Starting an Interactive Shell       

     An interactive shell gets started as shown in Figure  9-39 .   

     Using the cbtransfer Tool 
 From the interactive shell command-line tools may be run to access the Couchbase server. As an example 
run the   cbtransfer  tool  , which is used to transfer data between clusters and to/from files, to output the 
documents in the default bucket at server    http://172.17.0.3:8091      to  stdout . 

    cbtransfer http://172.17.0.3:8091/ stdout:  

     The two documents added from the web console get output as shown in Figure  9-40 .  

  Figure 9-40.    Using the cbtransfer Tool       

 In the next section we shall create a Couchbase cluster imperatively using Kubernetes on the command 
line. As we shall be using the same replication controller name and service name, delete the replication 
controller “couchbase” and also delete the service called “couchbase.” 

    kubectl delete rc couchbase  
  kubectl delete svc couchbase  

 

 

http://172.17.0.3:8091/


CHAPTER 9 ■ USING COUCHBASE

266

           Creating a Couchbase  Cluster Imperatively   
 In the following subsections we shall create a Couchbase cluster on the command line. 

     Creating a Replication Controller 
 Create a replication  controller   called “couchbase” using the Docker image “couchbase” with two replicas 
and container port as 8091 with the following command. 

    kubectl run couchbase --image=couchbase --replicas=2 --port=8091  

     The replication controller gets created as shown in Figure  9-41 . The default selector is “run=couchbase,” 
which implies that pods with the label “run=couchbase” shall be managed by the replication controller. 
The Pod labels get set to “run=couchbase”.  

  Figure 9-41.    Creating a Replication Controller Imperatively       

 List the replication controllers with the following command. 

    kubectl get rc  

     The  couchbase  replication controller gets listed as shown in Figure  9-42 .   

  Figure 9-42.    Listing the Replication Controllers       

     Listing the Pods 
 To list the  Pods   run the following command. 

    kubectl get pods  

     The two pods get listed as shown in Figure  9-43 .  

 

 



CHAPTER 9 ■ USING COUCHBASE

267

  Figure 9-43.    Listing the Pods       

 To describe any particular Pod run the  kubectl describe  pod command, for example, the Pod 
 couchbase-rd44o  is described with the following command. 

    kubectl describe pod couchbase-rd44o  

     The Pod detail gets output as shown in Figure  9-44 . The Pod label is listed as  run=couchbase .   

  Figure 9-44.    Describing a Pod       

 

 



CHAPTER 9 ■ USING COUCHBASE

268

     Creating a Service 
 To create a  service   from the replication controller exposed at port 8091, run the following command, which 
also specified the service type. 

    kubectl expose rc couchbase --port=8091 --type=LoadBalancer  

     Subsequently list the services. 

    kubectl get services  

     The  couchbase  service gets created and listed as shown in Figure  9-45 .  

  Figure 9-45.    Creating a Service for Couchbase Imperatively       

 To describe the  couchbase  service run the following command. 

    kubectl describe svc couchbase  

     The service name, namespace, labels, selector, type, Ip, port, node port, and endpoints get listed as 
shown in Figure  9-46 . Two endpoints are listed because the service manages two pods.   

 



CHAPTER 9 ■ USING COUCHBASE

269

  Figure 9-46.    Describing a Service       

     Scaling the Cluster 
 A Couchbase cluster may be scaled up or down using the Kubernetes cluster manager. For example, to scale 
down the replication controller called “couchbase” to 1 replica, run the following  kubectl scale  command.    

    kubectl scale rc couchbase --replicas=1  

     An output of “scaled” indicates that the rc has been scaled. But the “scaled” output does not always 
imply that the scaled number of replicas are running and ready. Run the following command to list the Pods. 

    kubectl get pods  

     A single Couchbase Pod gets listed as shown in Figure  9-47 .  

  Figure 9-47.    Scaling Down the Couchbase Cluster to a Single Pod       

 Run the following command to list the replication controllers and the  couchbase  rc is listed with 
replicas as 1 as shown in Figure  9-48 .  

    kubectl get rc  

     To scale the rc back to 2 Pods run the following command. 

    kubectl scale rc couchbase --replicas=2  

 

 



CHAPTER 9 ■ USING COUCHBASE

270

     Subsequently list the Pods. 

    kubectl get pods  

     Initially the new Pod to be added could be not running or not ready but after a few seconds two Pods get 
listed as running and ready as shown in Figure  9-48 .  

  Figure 9-48.    Scaling Up the Couchbase Cluster       

     Keeping the Replication Level 
 The main purpose of a replication  controller   is to keep the number of replicas to the configured level. With 
2 replicas configured in the  couchbase  rc the number of Pods is maintained at 2. As an example, delete one 
of the Pods. 

    kubectl delete pod couchbase-4z3hx  

     One pod gets deleted, but it takes the total number of pods to 1, which is below the number of 
configured replicas. As a result the replication controller starts a new replica. Subsequently list the pods. 

    kubectl get pods  

     Initially the new Pod could be not running and/or not ready but after a few seconds two pods are 
running and ready as shown in Figure  9-49 .  

 



CHAPTER 9 ■ USING COUCHBASE

271

  Figure 9-49.    Running the kubectl get pods Command Multiple Times until all Pods are Running and Ready       

 Describe the  couchbase  service. 

    kubectl describe svc couchbase  

 



CHAPTER 9 ■ USING COUCHBASE

272

     Two endpoints get listed as shown in Figure  9-50 .   

  Figure 9-50.    Describing the couchbase Service       

     Setting Port Forwarding 
 Set  port forwarding   of a service endpoint to a  localhost  port, for example, port 8095, as discussed earlier. 

    ssh -i "docker.pem" -f -nNT -L 8095:172.17.0.2:8091 ubuntu@ec2-52-91-80-177.compute-1.
amazonaws.com  

     The preceding command does not generate any output as shown in Figure  9-51 .   

  Figure 9-51.    Setting Port Forwarding       

     Logging in to Couchbase Admin Console 
 Login to the Couchbase  Web Console   using the forwarded port on  localhost . 

    http://localhost:8095/index.html  

     The Couchbase Web Console gets displayed as shown in Figure  9-52 .    

 

 



CHAPTER 9 ■ USING COUCHBASE

273

  Figure 9-52.    Displaying the Couchbase Console       

     Summary 
 In this chapter we used Kubernetes cluster manager to create a Couchbase cluster. We discussed both the 
declarative and imperative approaches. The declarative approach makes use of definition files and the 
imperative approach makes use of command-line configuration parameters. We demonstrated accessing 
the Couchbase Web Console from a localhost browser using port forwarding. We also used the cbtransfer 
tool in an interactive shell for a Docker container running Couchbase server. Docker image “couchbase” is 
used to create a Couchbase server. In the next chapter we shall discuss using Kubernetes cluster manager for 
an Apache Hadoop cluster.     

 



          PART IV 

  Apache Hadoop Ecosystem 

        



277© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_10

    CHAPTER 10 

 Using Apache Hadoop Ecosystem           

  Apache Hadoop   has evolved to be the de facto framework for processing large quantities of data. Apache 
Hadoop ecosystem consists of a several projects including Apache Hive and Apache HBase. The Docker 
image “svds/cdh” is based on the latest CDH release and includes all the main frameworks in the Apache 
Hadoop ecosystem. All the frameworks such as Apache Hadoop, Apache Hive, and Apache HBase are 
installed in the same Docker image as a result facilitating development of applications that make use of 
multiple frameworks from the Apache Hadoop ecosystem. In this chapter we shall discuss using Kubernetes 
cluster manager to manage a cluster of Pods based on the svds/cdh image.

   Setting the Environment  

  Creating an Apache Hadoop Cluster Declaratively  

  Creating an Apache Hadoop Cluster Imperatively    

      Setting the Environment 
 The following software is required to be installed for this chapter, which is the same as the software used in 
other chapters except for the Docker image.   

   -Docker Engine (latest version)  

  -Kubernetes Cluster Manager (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image svds/cdh (latest version)    

 Install the software as discussed in   chapter 1     on an Ubuntu instance on Amazon EC2. SSH Login to the 
Ubuntu instance. 

    ssh -i "docker.pem" ubuntu@54.86.45.173  

     Start the Docker engine with the following command. 

    sudo service docker start  

     Subsequently run the following command to verify the status of Docker. 

    sudo service docker status  

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

278

     As shown in Figure  10-1 , Docker should be listed as “running.”  

  Figure 10-1.    Starting Docker       

  Figure 10-2.    Listing the “kubernetes” Service       

  Figure 10-3.    Listing the Pod and Node for Kubernetes       

 List the services with the following command. 

    kubectl get services  

     The  kubernetes  service should be listed as running as shown in Figure  10-2 .  

 List the Pods with the following command. 

    kubectl get pods  

     List the nodes with the following command. 

    kubectl get nodes  

     The only Pod that gets listed is for Kubernetes as shown in Figure  10-3 . The node 127.0.0.1 also gets listed.    

      Creating an Apache Hadoop Cluster Declaratively 
 In the following subsections we shall create a Kubernetes service and a Kubernetes replication controller 
declaratively using definition files. A service is the external interface for Pods and routes client requests to one of 
the Pods. A replication controller manages the replication level of the Pods and maintains the number of replicas 
to the specified value in the definition file. The replication controller is also used to scale the cluster of Pods.    

 

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

279

     Creating a Service 
 To run a  service   for the CDH Pods create a service definition file  cdh-service.yaml  and add the following 
(Table  10-1 ) fields to the definition file.  

   Table 10-1.    Service Definition File Fields   

 Field  Description  Value  Required Field 
(including defaults) 

 apiVersion  v1  yes 

 kind  The kind of definition file.  Service  yes 

 metadata  The service metadata.  yes 

 metadata - > labels  The service labels.  app: cdh  no 

 metadata - > name  The service name.  cdh  yes 

 spec  The service specification.  yes 

 spec - > ports  The ports exposed by the service.  yes 

 spec - > ports - > port  A port exposed by the service. The 
50010 port is for the DataNode. 

 50010 

 spec - > ports - > port  Another port exposed by the service. 
The 8020 port is for the NameNode. 

 8020 

 spec - > selector  The Pod selector. Service routes traffic 
to the Pods with a label matching the 
selector expression. 

 app: cdh  yes 

 spec - > selector - > type  The service type.  LoadBalancer  no 

 The service definition file  cdh-service.yaml  is listed: 

    apiVersion: v1  
  kind: Service  
  metadata:   
    labels:   
      app: cdh  
    name: cdh  
  spec:   
    ports:   
      -   
        port: 50010  
      -   
        port: 8020  
    selector:   
      app: cdh  
    type: LoadBalancer  



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

280

  Figure 10-4.    Service Definition File in vi Editor       

 Create a service from the definition file with the following command. 

    kubectl create -f cdh-service.yaml  

     Subsequently list the services. 

    kubectl get services  

     An output of “services/cdh” from the first command indicates that the service has been created as 
shown in Figure  10-5 . The second command lists the service called “cdh.” The service selector is listed as 
app = cdh in the SELECTOR column.    

     The service definition file may be created and saved in the vi editor as shown in Figure  10-4 .  

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

281

  Figure 10-5.    Creating a Service from a Definition File       

     Creating a Replication Controller 
 In this section we shall create a replication  controller   using a definition file. Create a cdh-rc.yaml file and 
add the following (Table  10-2 ) fields to the file.  

   Table 10-2.    Replication Controller Definition File Fields   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  ReplicationController 

 metadata  The replication controller metadata. 

 metadata - > labels  The replication controller labels.  app: cdh 

 metadata - > name  The replication controller name.  cdh-rc 

 spec  The replication controller specification. 

 spec - > replicas  The number of Pod replicas.  2 

 spec - > selector  Selector key:value expression/s for 
selecting the Pods to manage. Pods 
with label/s the same as the selector 
expression/s are managed by the 
replication controller. For a single selector 
expression the selector expression must be 
the same as a spec - > template - > 
metadata - > labels label. The selector 
defaults to the spec - > template - > 
metadata - > labels if not specified. 

 Not set. Defaults to the 
same value as the key:value 
pairs in spec - > template - > 
metadata - > labels. 

 spec - > template  The Pod template. 

 spec - > template- > metadata  The Pod template metadata. 

 spec 
- > template- > metadata- > labels 

 The Pod template labels.  app: cdh 
 name: cdh 

 spec - > template - > spec  The Pod template specification 

(continued)

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

282

 The definition file for the replication controller,  cdh-rc.yaml , is listed. 

    apiVersion: v1  
  kind: ReplicationController  
  metadata:   
    labels:   
      app: cdh  
    name: cdh-rc  
  spec:   
    replicas: 2  
    template:   
      metadata:   
        labels:   
        app: cdh  
        name: cdh  
      spec:   
        containers:   
        image: svds/cdh  
        name: cdh  

     Run the following command to create a replication controller from the definition file. 

    kubectl create -f cdh-rc.yaml  

     List the replication controllers. 

    kubectl get rc  

     The first command outputs “replicationcontrollers/cdh,” which implies that an rc has been created 
successfully. The second command lists the replication controllers. The replication controller “cdh” gets 
listed as shown in Figure  10-6 . The  SELECTOR  was not specified in the replication controller file and is 
listed as the same two key:value pairs,  app=cdh,name=cdh , as the template labels. A Pod managed by the 
replication controller must include both of these labels, and may include additional labels. The number of 
replicas is set to 2.   

 Field  Description  Value 

 spec - > template 
- > spec- > containers 

 The containers configuration for the 
Pod template 

 spec - > template 
- > spec- > containers - > image 

 The Docker image  svds/cdh 

 spec - > template - > spec - > 
containers - > name 

 The container name  cdh 

Table 10-2. (continuted)



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

283

     Listing the Pods 
 To list the  Pods   run the following command. 

    kubectl get pods  

     Two Pods get listed as shown in Figure  10-7 . Initially the Pods could be listed as not running or/and 
not ready. A not ready pod is indicated by the 0/1 value in the READY column, which implies that 0 of 1 
containers in the Pod are rready.  

  Figure 10-6.    Creating a Replication Controller from a Definition File       

  Figure 10-7.    Listing the Pods for CDH, created but not Ready       

 Run the same command again to list the Pods. 

    kubectl get pods  

     The two Pods should get listed as STATUS- > Running and READY- > 1/1 as shown in Figure  10-8 .   

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

284

     Listing Logs 
 To list the  logs   for a particular Pod, for example, the cdh-612pr Pod, run the following command. 

    kubectl logs cdh-612pr  

     The output from the command lists the logs, which indicate that the Hadoop datanode, namenode, 
secondarynamenode, resourcemanager, and nodemanager have been started as shown in Figure  10-9 .  

  Figure 10-8.    Listing the Pods as Ready       

  Figure 10-9.    Listing Pod Logs       

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

285

 Other components such as HBase are also started.  

     Scaling a Cluster 
 Initially the CDH cluster has 2 replicas. To scale the replicas to 4 run the following command.    

    kubectl scale rc cdh --replicas=4  

     Subsequently list the Pods in the cluster. 

    kubectl get pods  

     After scaling up the cluster 4 Pods get listed instead of the 2 listed initially. Some of the Pods could be 
listed as not running or not ready. Run the preceding command after a few seconds periodically, and all the 
pods should get started as shown in Figure  10-10 .   

  Figure 10-10.    Scaling the Pod Cluster       

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

286

     Starting an Interactive Shell 
 As the “svds/cdh” Docker image is based on the Linux “ubuntu” Docker image an interactive bash shell may 
be started to access Docker containers based on the svds/cdh Docker image. To start an  interactive   bash 
shell for the cdh software we need to obtain the container id for a Docker container running the “cdh” image 
as shown in Figure  10-11 .  

  Figure 10-11.    Copying the Docker Container Id       

 Subsequently start the interactive shell using the container id. 

    sudo docker exec -it f1efdb5937c6 bash  

     The interactive shell gets started as shown in Figure  10-12 .   

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

287

     Running a MapReduce Application 
 In this section we shall run an example  MapReduce application      in the interactive shell. The  hdfs  command 
is used to run a MapReduce application. Invoke the  hdfs  command in the interactive shell. 

    hdfs  

     The command usage should get displayed as shown in Figure  10-13 .  

  Figure 10-13.    Command Usage for  hdfs Command         

  Figure 10-12.    Starting an Interactive Shell       

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

288

 To change user to “hdfs” run the following command. 

    su –l hdfs  

     The user becomes “hdfs” as shown in Figure  10-14 .  

  Figure 10-15.    Creating the Input Directory       

  Figure 10-14.    Setting User as hdfs       

 Next, we shall run a  wordcount  application. We shall get input from the  /input  directory files and 
output in the  /output  directory. Create the  /input  directory and set its permissions to global (777). 

    hdfs dfs -mkdir /input  
  hdfs dfs -chmod -R 777 /input  

     The  /input  directory gets created and its permissions get set to global as shown in Figure  10-15 .     

 Create an input file  input.1.txt  in the vi editor. 

    sudo vi input1.txt  

     Add the following text to input1.txt. 

    Hello World Application for Apache Hadoop  
  Hello World and Hello Apache Hadoop  

     The  input1.txt  is shown in the  vi editor   in Figure  10-16 .  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

289

 Put the  input1.txt  in the HDFS directory  /input  with the following command, which should be run with 
 sudo –u hdfs  if run as  root  user. If the user is already set to “hdfs” omit the “sudo –u hdfs” from the command. 

    sudo -u hdfs hdfs dfs -put input1.txt /input  

     The  input1.txt  file gets added to the  /input  directory and no output is generated from the command 
as shown in Figure  10-17 .  

  Figure 10-16.    Creating an Input Text File       

  Figure 10-17.    Putting the Input Text File in HDFS       

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

290

 Similarly create another file input2.txt. 

    sudo vi input2.txt  

     Add the following text to input2.txt. 

    Hello World  
  Hello Apache Hadoop  

     Save the  input2.txt  with the : wq command   in the vi editor as shown in Figure  10-18 .  

  Figure 10-18.    Creating another Text File input2.txt       

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

291

 Put the  input2.txt  into the  /input  directory. 

    sudo -u hdfs hdfs dfs -put input2.txt /input  

     The  input2.txt  also gets added to the  /input  directory as shown in Figure  10-19 .  

  Figure 10-19.    Putting the input2.txt File into HDFS       

 The files in the  /input  directory in the HDFS may be listed with the following command. 

     hdfs dfs -ls /input  

     The two files added  input1.txt  and  input2.txt  get listed as shown in Figure  10-20 .  

  Figure 10-20.    Listing the Files in HDFS       

 Next, run the  wordcount  example application with the following command in which the jar file 
containing the example application is specified with the jar parameter and the  /input  and  /output  
directories are set as the last two command parameters for the input directory and the output directory 
respectively. 

    sudo -u hdfs hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples-2.6.0-
cdh5.4.7.jar wordcount /input /output  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

292

 The MapReduce job completes to run the   wordcount  application  . The output from the  wordcount  
MapReduce job, not the word count result, is shown in Figure  10-22 .  

  Figure 10-21.    Starting a YARN Application for Word Count Example       

     A MapReduce job gets started as shown in Figure  10-21 .  

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

293

 A more detailed output from the MapReduce application is listed: 

    root@cdh-6l2pr:/# sudo -u hdfs hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-
examples-2.6.0-cdh5.4.7.jar wordcount /input /output  
  15/12/21 16:39:52 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032  
  15/12/21 16:39:53 INFO input.FileInputFormat: Total input paths to process : 2  
  15/12/21 16:39:53 INFO mapreduce.JobSubmitter: number of splits:2  
  15/12/21 16:39:53 INFO mapreduce.JobSubmitter: Submitting tokens for job: 
job_1450714825612_0002  
  15/12/21 16:39:53 INFO impl.YarnClientImpl: Submitted application 
application_1450714825612_0002  
  15/12/21 16:39:53 INFO mapreduce.Job: The url to track the job: http://cdh-6l2pr:8088/proxy/
application_1450714825612_0002/  
  15/12/21 16:39:53 INFO mapreduce.Job: Running job: job_1450714825612_0002  

  Figure 10-22.    Output from the MapReduce Job       

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

294

  15/12/21 16:39:59 INFO mapreduce.Job: Job job_1450714825612_0002 running in uber mode : 
false  
  15/12/21 16:39:59 INFO mapreduce.Job: map 0 % reduce 0 %  
  15/12/21 16:40:04 INFO mapreduce.Job: map 100 % reduce 0 %  
  15/12/21 16:40:10 INFO mapreduce.Job: map 100 % reduce 100 %  
  15/12/21 16:40:10 INFO mapreduce.Job: Job job_1450714825612_0002 completed successfully  
  15/12/21 16:40:10 INFO mapreduce.Job: Counters: 49  
         File System Counters  
             FILE: Number of bytes read=144  
             FILE: Number of bytes written=332672  
             FILE: Number of read operations=0  
             FILE: Number of large read operations=0  
             FILE: Number of write operations=0  
             HDFS: Number of bytes read=317  
             HDFS: Number of bytes written=60  
             HDFS: Number of read operations=9  
             HDFS: Number of large read operations=0  
             HDFS: Number of write operations=2  
         Job Counters   
             Launched map tasks=2  
             Launched reduce tasks=1  
             Data-local map tasks=2  
             Total time spent by all maps in occupied slots (ms)=4939  
             Total time spent by all reduces in occupied slots (ms)=2615  
             Total time spent by all map tasks (ms)=4939  
             Total time spent by all reduce tasks (ms)=2615  
             Total vcore-seconds taken by all map tasks=4939  
             Total vcore-seconds taken by all reduce tasks=2615  
             Total megabyte-seconds taken by all map tasks=5057536  
             Total megabyte-seconds taken by all reduce tasks=2677760  
         Map-Reduce Framework  
             Map input records=5  
             Map output records=17  
             Map output bytes=178  
             Map output materialized bytes=150  
             Input split bytes=206  
             Combine input records=17  
             Combine output records=11  
             Reduce input groups=7  
             Reduce shuffle bytes=150  
             Reduce input records=11  
             Reduce output records=7  
             Spilled Records=22  
             Shuffled Maps =2  
             Failed Shuffles=0  
             Merged Map outputs=2  
             GC time elapsed (ms)=158  
             CPU time spent (ms)=2880  
             Physical memory (bytes) snapshot=1148145664  
             Virtual memory (bytes) snapshot=5006991360  
             Total committed heap usage (bytes)=2472542208  



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

295

         Shuffle Errors  
             BAD_ID=0  
             CONNECTION=0  
             IO_ERROR=0  
             WRONG_LENGTH=0  
             WRONG_MAP=0  
             WRONG_REDUCE=0  
         File Input Format Counters   
             Bytes Read=111  
         File Output Format Counters   
             Bytes Written=60  
  root@cdh-6l2pr:/#   

     Subsequently, list the files in the  /output  directory. 

    bin/hdfs dfs -ls /output  

     Two files get listed:  _SUCCESS  and  part-r-00000  as shown in Figure  10-23 . The  _SUCCESS  file is to 
indicate that the MapReduce command completed successfully and the  part-r-00000  command contains 
the result of the word count.  

  Figure 10-24.    The Word Count for the Input Files       

  Figure 10-23.    Listing the Files generated by the MapReduce Job       

 To list the result of the  wordcount application   run the following command. 

    hdfs dfs -cat /output/part-r-00000  

     The word count for each of the words in the input gets listed as shown in Figure  10-24 .    

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

296

      Running Hive 
  Apache Hive   is a data warehouse framework for storing, managing, and querying large data sets in HDFS. 
As mentioned before all/most of the components of CDH get installed when the  svds/cdh  image is run. In 
this section we shall test the Apache Hive framework. The Hive configuration directory is in the Hive  conf  
directory, in the  /etc/hive  directory. Change directory (cd) to the  /etc/hive  directory. 

    cd /etc/hive  

     The  conf  directory gets listed as shown in Figure  10-25 .  

  Figure 10-26.    Listing the Hive Metastore Directory       

  Figure 10-25.    Listing the Files and Directories in the Hive Root Directory       

 The Hive metastore is kept in the  /var/lib/hive  directory. Cd to the  /var/lib/hive  directory. 

    cd /var/lib/hive  

     The  metastore  directory gets listed as shown in Figure  10-26 .  

 The Hive home directory is  /usr/lib/hive . Cd to the  /usr/lib/hive  directory. Subsequently list the 
files and directories. 

    cd /usr/lib/hive  
  ls –l  

     The  bin ,  conf,  and  lib  directories for Apache Hive get listed as shown in Figure  10-27 . The  bin  
directory contains the executables, the  conf  directory the configuration files, and the  lib  directory the 
jar files.  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

297

 All the environment variables are preconfigured. Run the following command to start the Beeline CLI. 

    beeline  

     Beeline version 1.1.0-cdh5.4.7 gets started as shown in Figure  10-28 .  

  Figure 10-27.    The Hive Home Directory       

  Figure 10-28.    Starting Beeline CLI       

 Initially no connection to the Apache Hive server is available. To demonstrate, run the following 
commands to set the database as default and show the tables. 

    use default;  
  show tables;  

     The message “No current connection” is displayed as shown in Figure  10-29 .  

  Figure 10-29.    No Current Connection       

 Connect with Hive2 server using the default settings for the driver, username, and password as 
indicated by the three empty “”. 

    !connect jdbc:hive2://localhost:10000/default "" "" ""  

 

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

298

     Apache Hive2 server gets connected to using the Apache Hive JDBC driver as shown in Figure  10-30 .  

  Figure 10-30.    Connecting with Hive Server       

 Run the commands to set the database to default and show the tables. 

    use default;  
  show tables;  

     The database connected to is already default, and the first command essentially is redundant but 
what is to be noted is the error generated earlier is not generated. The second command lists the table 
and because initially the default database does not have any tables, none get listed. The output from the 
preceding commands is shown in Figure  10-31 .  

  Figure 10-31.    Setting the database to Use and the listing to the Hive Tables       

  Figure 10-32.    Setting Permissions on the Hive Warehouse Directory       

 Before creating a Hive table we need to set the permissions for the  /user/hive/warehouse  directory to 
global (777). 

    sudo –u hdfs hdfs dfs –chmod –R 777 /user/hive/warehouse  

     Permissions for the Hive warehouse directory get set as shown in Figure  10-32 .  

 Create a table called  wlslog  with the following HiveQL command. 

    CREATE TABLE wlslog(time_stamp STRING,category STRING,type STRING,servername STRING,code 
STRING,msg STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';  

     The  wlslog  table gets created in the default database as shown in Figure  10-33 .  

 

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

299

 Describe the wlslog table with the following command. 

    desc wlslog;  

     The table columns (name and data type) get listed as shown in Figure  10-34 .  

  Figure 10-33.    Creating a Hive Table called wlslog       

  Figure 10-34.    Describing the Hive Table wlslog       

 Add 7 rows of data to the  wlslog  table. 

    INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:16-PM-PDT','Notice','WebLogicServer',
'AdminServer,BEA-000365','Server state changed to STANDBY');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:17-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to STARTING');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:18-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to ADMIN');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:19-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to RESUMING');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:20-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000331','Started WebLogic AdminServer');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:21-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to RUNNING');  
  INSERT INTO TABLE wlslog VALUES ('Apr-8-2014-7:06:22-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000360','Server started in RUNNING mode');  

     A MapReduce job runs for each  INSERT  statement to add the data to Hive table  wlslog  as shown in 
Figure  10-35 .  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

300

 Subsequently query the  wlslog  table. 

    select * from wlslog;  

     The 7 rows of data added get listed as shown in Figure  10-36 .  

  Figure 10-35.    Adding Data to Hive Table wlslog       

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

301

 To quit the Beeline CLI run the following command. 

    !q  

     As shown in Figure  10-37  the Hive Beeline CLI gets exited. The interactive shell command prompt gets 
displayed.  

  Figure 10-36.    Querying the Hive Table       

  Figure 10-37.    Exiting the Beeline CLI       

 From the interactive shell any of the frameworks in CDH may be run. Next, we shall run Apache HBase.   

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

302

      Running HBase 
  Apache HBase   is the Apache Hadoop database, which also stores data in HDFS by default. To start the HBase 
shell run the following command from a bash shell for a Docker container based on the svds/cdh Docker image. 

    hbase shell  

     HBase shell gets started as shown in Figure  10-38 .  

  Figure 10-38.    Starting HBase Shell       

 Create a table called ‘wlslog’ with column family ‘log’. 
    create 'wlslog' , 'log'  

     The  wlslog  table gets created as shown in Figure  10-39 .  

  Figure 10-39.    Creating a HBase Table       

 Put 7 rows of data into the  wlslog  table. 

    put 'wlslog', 'log1', 'log:time_stamp', 'Apr-8-2014-7:06:16-PM-PDT'  
  put 'wlslog', 'log1', 'log:category', 'Notice'  
  put 'wlslog', 'log1', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log1', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log1', 'log:code', 'BEA-000365'  
  put 'wlslog', 'log1', 'log:msg', 'Server state changed to STANDBY'  

    put 'wlslog', 'log2', 'log:time_stamp', 'Apr-8-2014-7:06:17-PM-PDT'  
  put 'wlslog', 'log2', 'log:category', 'Notice'  
  put 'wlslog', 'log2', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log2', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log2', 'log:code', 'BEA-000365'  
  put 'wlslog', 'log2', 'log:msg', 'Server state changed to STARTING'  
  put 'wlslog', 'log3', 'log:time_stamp', 'Apr-8-2014-7:06:18-PM-PDT'  
  put 'wlslog', 'log3', 'log:category', 'Notice'  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

303

  put 'wlslog', 'log3', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log3', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log3', 'log:code', 'BEA-000365'  
  put 'wlslog', 'log3', 'log:msg', 'Server state changed to ADMIN'  
  put 'wlslog', 'log4', 'log:time_stamp', 'Apr-8-2014-7:06:19-PM-PDT'  
  put 'wlslog', 'log4', 'log:category', 'Notice'  
  put 'wlslog', 'log4', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log4', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log4', 'log:code', 'BEA-000365'  
  put 'wlslog', 'log4', 'log:msg', 'Server state changed to RESUMING'  
  put 'wlslog', 'log5', 'log:time_stamp', 'Apr-8-2014-7:06:20-PM-PDT'  
  put 'wlslog', 'log5', 'log:category', 'Notice'  
  put 'wlslog', 'log5', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log5', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log5', 'log:code', 'BEA-000331'  
  put 'wlslog', 'log5', 'log:msg', 'Started Weblogic AdminServer'  
  put 'wlslog', 'log6', 'log:time_stamp', 'Apr-8-2014-7:06:21-PM-PDT'  
  put 'wlslog', 'log6', 'log:category', 'Notice'  
  put 'wlslog', 'log6', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log6', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log6', 'log:code', 'BEA-000365'  
  put 'wlslog', 'log6', 'log:msg', 'Server state changed to RUNNING'  
  put 'wlslog', 'log7', 'log:time_stamp', 'Apr-8-2014-7:06:22-PM-PDT'  
  put 'wlslog', 'log7', 'log:category', 'Notice'  
  put 'wlslog', 'log7', 'log:type', 'WeblogicServer'  
  put 'wlslog', 'log7', 'log:servername', 'AdminServer'  
  put 'wlslog', 'log7', 'log:code', 'BEA-000360'  
  put 'wlslog', 'log7', 'log:msg', 'Server started in RUNNING mode'  



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

304

 To list the tables run the following command. 

    list  

     The  wlslog  table gets listed as shown in Figure  10-41 .  

  Figure 10-40.    Putting Data into HBase Table       

     The output from the put commands is shown in Figure  10-40 .  

  Figure 10-41.    Listing HBase Tables       

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

305

 To get the data in row with row key ‘log1’ run the following command. 

    get 'wlslog', 'log1'  

     A single row of data gets listed as shown in Figure  10-42 .  

  Figure 10-42.    Getting a Single Row of Data       

  Figure 10-43.    Getting a Single Column Value in a Row       

 Get the data in a single column, the  log.msg  column from row with row key  log7 . A column is specified 
with column family:column format. 

    get 'wlslog', 'log7', {COLUMNS=>['log:msg']}  

     The single column data gets output as shown in Figure  10-43 .  

 Scan the  wlslog  table with the  scan  command. 

    scan 'wlslog'  

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

306

     The scan command is shown in Figure  10-44 .  

  Figure 10-44.    Scanning a HBase Table       

 All the data from the  wlslog  table gets listed as shown in Figure  10-45 .    

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

307

     Deleting the Replication Controller and Service 
 In the next section we shall create a cluster for the  svds/cdh  image imperatively on the command line. 
Delete the replication controller and the service created declaratively. 

    kubectl delete rc cdh  
  kubectl delete service cdh  

          Creating an Apache Hadoop Cluster Imperatively 
 In the following subsections we shall create a CDH cluster from the  svds/cdh  Docker image on the 
command line. First, we shall create a replication controller.    

     Creating a Replication Controller 
 Run the following command to create a replication controller called  cdh  with 2 replicas.    

    kubectl run cdh --image=svds/cdh --replicas=2   

  Figure 10-45.    The scan Command outputs 7 Rows of Data       

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

308

     The  cdh  controller gets created as shown in Figure  10-46 . The selector is set to  run=cdh  by default.  

  Figure 10-46.    Creating a Replication Controller Imperatively       

 List the replication controllers. 

    kubectl get rc  

     The  cdh  replication controller gets listed as shown in Figure  10-47 .   

  Figure 10-47.    Getting the Replication Controller       

  Figure 10-48.    Listing the Pods with some Pod/s not READY yet       

     Listing the Pods 
 To list the Pods in the cluster run the following command.    

    kubectl get pods  

     The two Pods get listed. Initially some or all of the Pods could be not “Running” or not in the READY 
state 1/1 as shown in Figure  10-48 .  

 Run the preceding command again after a few seconds. 

    kubectl get pods  

     All the pods should be listed with STATUS “Running” and READY state 1/1 as shown in Figure  10-49 .   

  Figure 10-49.    Listing all Pods as Running and Ready       

 

 

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

309

     Scaling a Cluster 
 To scale the cluster to 4 replicas run the following command.    

    kubectl scale rc cdh --replicas=4  

     Subsequently list the Pods. 

    kubectl get pods  

     An output of “scaled” from the first command indicates that the cluster got scaled. The second 
command lists 4 Pods instead of the 2 created initially as shown in Figure  10-50 . The second command may 
have to be run multiple times to list all Pods with STATUS “Running” and READY state 1/1.   

  Figure 10-50.    Scaling the CDH Cluster       

     Creating a Service 
 A service exposes the Pods managed by the replication controller at service endpoints, which are just 
host:port settings at which external clients may invoke the application. Run the following command to 
create a service.    

    kubectl expose rc cdh --type=LoadBalancer  

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

310

     Subsequently list the services. 

    kubectl get services  

     The “cdh” service gets listed with default settings for SELECTOR and PORT as shown in Figure  10-51 . 
The default service selector is  run=cdh , which has the default format run =<servicename>. The default port is 
8020.   

  Figure 10-51.    Creating a Service       

  Figure 10-52.    Starting an Interactive Shell       

     Starting an Interactive Shell 
 The interactive shell may be started just as for a CDH cluster started declaratively. Copy the container id for 
a Docker container running the CDH image and run the following command, which includes the container 
id, to start an interactive bash shell.    

    sudo docker exec -it 42f2d8f40f17 bash  

     The interactive shell gets started as shown in Figure  10-52 .  

 Run the  hdfs  command. 

    hdfs  

     The  hdfs  command usage gets output as shown in Figure  10-53 .    

 

 



CHAPTER 10 ■ USING APACHE HADOOP ECOSYSTEM

311

  Figure 10-53.    Command Usage for hdfs Command       

     Summary 
 In this chapter we used the Kubernetes cluster manager to create a cluster of Pods based on the Docker 
image  svds/cdh . We used both the declarative and imperative approaches to create the cluster. We scaled 
the cluster using the kubectl scale command. We also demonstrated using some of the Apache Hadoop 
frameworks packaged in the  cdh  image. We ran a MapReduce  wordcount  example application. We also ran 
the Apache Hive and Apache HBase tools. In the next chapter we shall discuss using Kubernetes with the 
indexing and storage framework Apache Solr.     

 



313© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_11

    CHAPTER 11 

 Using Apache Solr           

  Apache Solr   is an Apache Lucene-based enterprise search platform providing features such as full-text 
search, near real-time indexing, and database integration. Apache Solr runs as a full-text search server 
within a servlet container, the default being Jetty, which is included with the Solr installation. In this chapter 
we shall discuss using Kubernetes cluster manager with Apache Solr. We shall be using only the declarative 
approach, which makes use of definition files, for creating and managing a Solr cluster. This chapter has the 
following sections.

   Setting the Environment  

  Creating a Service  

  Listing Service Endpoints  

  Describing the Service  

  Creating a Replication Controller  

  Listing the Pods  

  Describing a Pod  

  Listing the Logs  

  Starting an Interactive Shell  

  Creating a Solr Core  

  Adding Documents  

  Accessing Solr on Command Line with a REST Client  

  Setting Port Forwarding  

  Accessing Solr in Admin Console  

  Scaling the Cluster    



CHAPTER 11 ■ USING APACHE SOLR

314

     Setting the Environment 
 The following software is required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image for Apache Solr (latest version)    

 We have used the same Amazon EC2 instance AMI as in the other chapters. SSH login to the Ubuntu 
instance from a local machine. 

    ssh -i "docker.pem" ubuntu@54.152.82.142    

 Install the required software as discussed in chapter   1    . Start Docker and verify its status. 

    sudo service docker start 
 sudo service docker status    

 As shown in Figure  11-1  Docker should be running.  

 List the services. 

    kubectl get services    

 As shown in Figure  11-2  Kubernetes service should be running.  

 To list the nodes run the following command. 

    kubectl get nodes    

  Figure 11-1.    Starting Docker and Verifying Status       

  Figure 11-2.    Listing the “kubernetes” Service       

 

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 11 ■ USING APACHE SOLR

315

 The 127.0.0.1 node gets listed as shown in Figure  11-3 .  

 List the endpoints with the following command. 

    kubectl get endpoints    

 Initially only the endpoint for kubernetes is listed as shown in Figure  11-4 .   

      Creating a Service 
 Create a definition file  solr-service.yaml  and add the following (Table  11-1 ) fields to the definition file.     

  Figure 11-3.    Listing a Single Node       

  Figure 11-4.    Listing “kubernetes” Endpoint       

   Table 11-1.    Service Definition File for Apache Solr   

  Field    Description    Value  

 apiVersion  v1 

 kind  The kind of definition file.  Service 

 metadata  The service metadata. 

 metadata - > labels  The service labels. Not required.  app: solrApp 

 metadata - > name  The service name. Required.  solr-service 

 spec  The service specification. 

 spec - > ports  The ports exposed by the service. 

 spec - > ports- > port  A port exposed by the service.  8983 

 spec - > ports- > targetPort  The target port.  8983 

 spec - > selector  The Pod selector. Service routes traffic to the Pods 
with a label matching the selector expression. 

 app: solrApp 

 

 



CHAPTER 11 ■ USING APACHE SOLR

316

 The  solr-service.yaml  is listed. 

    apiVersion: v1 
 kind: Service 
 metadata:  
   labels:  
     app: solrApp 
   name: solr-service 
 spec:  
   ports:  
     -  
       port: 8983 
       targetPort: 8983
    selector: 
     app: solrApp    

 The  solr-service.yaml  may be edited in the vi editor and saved with :wq as shown in Figure  11-5 .  

  Figure 11-5.    Service Definition File in vi Editor       

 



CHAPTER 11 ■ USING APACHE SOLR

317

 Create a service from the definition file with the following command. 

    kubectl create -f solr-service.yaml      

 Subsequently list the services. 

    kubectl get services    

 An output of “services/solr-service” as shown in Figure  11-6  indicates that the service has been created. 
Subsequently the  solr-service  gets listed. The service has label  app=solrApp  and selector  app=solrApp .    

     Listing Service Endpoints 
 To list the endpoints run the following command.    

    kubectl get endpoints    

 As the  solr-service  is not managing any Pods initially, no endpoint gets listed as shown in Figure  11-7 .   

  Figure 11-6.    Creating a Service from Definition File       

  Figure 11-7.    Listing the Endpoint for the Solr Service       

     Describing the Service 
 To describe the  solr-service  run the following command.    

    kubectl describe service solr-service    

 The service name, namespace, labels, selector, type, IP, Port, endpoints, and events get listed as shown 
in Figure  11-8 .   

 

 



CHAPTER 11 ■ USING APACHE SOLR

318

      Creating a Replication Controller 
 Create a definition file  solr-rc.yaml  for the replication controller and add the following (Table  11-2 ) fields 
to the definition file.     

  Figure 11-8.    Describing the Apache Solr Service       

   Table 11-2.    Replication Controller Definition File Fields   

  Field    Description    Value  

 apiVersion  v1 

 kind  The kind of definition file.  Replication Controller 

 metadata  The replication controller metadata. 

 metadata - > labels  The replication controller labels.  app: solrApp 

 metadata - > name  The replication controller name.  solr-rc 

 spec  The replication controller specification. 

 spec - > replicas  The number of Pod replicas.  2 

 spec - > selector  A key: value expression for selecting 
the Pods to manage. Pods with a label 
the same as the selector expression 
are managed by the replication 
controller. For a single label/
selector expression Pod/Replication 
Controller combination the selector 
expression must be the same as the 
spec- > template- > metadata- > labels 
expression. The selector defaults to the 
spec- > template- > metadata- > labels 
not specified. The app: solrApp setting 
translates to app=solrApp. 

 app: solrApp 

 spec - > template  The Pod template. 

 spec - > template - > metadata  The Pod template metadata. 

(continued)

 



CHAPTER 11 ■ USING APACHE SOLR

319

 The  solr-rc.yaml  is listed. 

    apiVersion: v1 
 kind: ReplicationController 
 metadata:  
   labels:  
     app: solrApp 
   name: solr-rc 
 spec:  
   replicas: 2 
   selector:  
     app: solrApp 
   template:  
     metadata:  
       labels:  
         app: solrApp 
     spec:  
       containers:  
         -  
           image: solr 
           name: solr 
           ports:  
             -  
               containerPort: 8983 
               name: solrApp    

 The  solr-rc.yaml  definition file may be created and saved in vi editor as shown in Figure  11-9 .  

  Field    Description    Value  

 spec - > template- > metadata- > labels  The Pod template labels.  app: solrApp 

 spec - > template - > spec  The Pod template specification. 

 spec - > template - > spec - > containers  The containers configuration for the Pod 
template. 

 spec - > template - > spec - > containers 
- > image 

 The Docker image.  solr 

 spec - > template - > spec - > containers 
- > name 

 The container name.  solr 

 spec - > template - > spec - > containers 
- > ports 

 Container ports. 

 spec - > template - > spec - > containers 
- > ports - > containerPort 

 Container port for Solr server.  8983 

 spec - > template - > spec - > containers 
- > ports - > name 

 Solr port name.  solrApp 

Table 11-2. (continued)



CHAPTER 11 ■ USING APACHE SOLR

320

 Run the following command to create a replication controller from the definition file. 

    kubectl create -f solr-rc.yaml      

 The  solr-rc  replication controller gets created as shown in Figure  11-10 . Subsequently list the 
replication controllers.  

    kubectl get rc    

 The  solr-rc  replication controller gets listed as shown in Figure  11-10 .   

  Figure 11-9.    Replication Controller Definition File in vi Editor       

  Figure 11-10.    Creating a Replication Controller from Definition File       

 

 



CHAPTER 11 ■ USING APACHE SOLR

321

     Listing the Pods 
 List the Pods with the following command.    

    kubectl get pods    

 The two Pods created by the replication controller get listed as shown in Figure  11-11 . Initially some of 
the Pods could be not running and not ready.  

 Run the same command again after a few seconds to list the Pods again. 

    kubectl get pods    

 The Pods should get listed with STATUS “Running” and READY state 1/1 as shown in Figure  11-12 .  

 To describe the  solr-service  run the following command. 

    kubectl describe svc solr-service    

 The service description gets listed as shown in Figure  11-13 . The service endpoints for the two Pods are 
also listed. A service is accessed at its endpoints. When described previously, before creating the replication 
controller, no service endpoints got listed as shown in Figure  11-8 .  

  Figure 11-11.    Listing the Pods, all of them not yet Ready       

  Figure 11-12.    Listing the Pods as Ready       

 

 



CHAPTER 11 ■ USING APACHE SOLR

322

 The endpoints may also be listed separately. 

    kubectl get endpoints     

 The endpoints get listed as shown in Figure  11-14 .   

     Describing a Replication Controller 
 To describe the replication controller  solr-rc  run the following command.    

    kubectl describe rc solr-rc    

 The replication controller description gets listed as shown in Figure  11-15 .   

  Figure 11-13.    Describing the Solr Service including the Service Endpoints       

  Figure 11-14.    Listing the Endpoints for Solr Service       

 

 



CHAPTER 11 ■ USING APACHE SOLR

323

     Listing the Logs 
 To list the logs for a particular command run the  kubectl logs  command. For example, logs for the 
 solr-rc-s82ip  Pod are listed with the following command.    

    kubectl logs solr-rc-s82ip    

 In the log output the Solr server is starting as shown in Figure  11-16 .  

  Figure 11-15.    Describing the Replication Controller       

 



CHAPTER 11 ■ USING APACHE SOLR

324

 After the server has started the output “Server Started” gets output as shown in Figure  11-17 .   

  Figure 11-16.    Listing Logs for the Pod       

 



CHAPTER 11 ■ USING APACHE SOLR

325

      Starting an Interactive Shell 
 As the “solr” Docker image inherits from the “java:openjdk-8-jre” Docker image, which further inherits from 
the “buildpack-deps:jessie-curl” image, which inherits from Docker image “debian” for Linux an interactive 
bash shell may be started to access a Docker container based on the “solr” Docker image. To access the Solr 
software we need to start an interactive bash shell for a Docker container running Solr. Obtain the container 
if for a Docker container running Solr with the following command.    

    sudo docker ps    

 The Docker containers get listed as shown in Figure  11-18 .  

  Figure 11-17.    Listing the Solr Server as started       

 



CHAPTER 11 ■ USING APACHE SOLR

326

 Copy the container if and start an interactive shell. 

    sudo docker exec -it 2d4d7d02c05f bash    

 The interactive shell gets started as shown in Figure  11-19 . To list the status of the Solr server run the 
following command.  

    bin/solr status    

  Figure 11-18.    Listing the Docker Container for Apache Solr       

 



CHAPTER 11 ■ USING APACHE SOLR

327

 One Solr node is found as shown in Figure  11-19 . 

 Solr 5.x introduce  configsets . The configsets directory consists of example configurations that may be 
used as a base to create new Solr cores or collections. The configsets replace the  collection1  example core 
configuration in Solr 4.x. Cd (change directory) to the  configsets  directory. 

    cd /opt/solr/server/solr/configsets    

 List the files and directories in the  configsets  directory. 

    ls –l    

 Three example configurations get listed as shown in Figure  11-20 .  

 When we create a Solr core later in the chapter we shall be using the basic_configs configuration. 
List the files in the  //configsets/ basic_configs/conf  directory. 

    cd conf 
 ls –l    

  Figure 11-19.    Listing the Solr Status in an Interactive Shell for the Docker Container       

  Figure 11-20.    Listing the Example Configurations       

 

 



CHAPTER 11 ■ USING APACHE SOLR

328

 The configuration files for  basic_configs  example get listed and include the  schema.xml  and 
solrconfig.xml as shown in Figure  11-21 .    

     Creating a Solr Core 
 A new Solr core may also be created from the command line. The  solr create  command is used to create a 
new core or a collection. As an example, create a core called  wlslog  with the  solr create_core  command. 
Use the configset  basic_configs  with the  –d  option. The default config set used if none is specified (with the  –d  
option) is  data_driven_schema_configs . Cd to the  /opt/solr  directory and run the following command.    

    bin/solr create_core -c wlslog -d /opt/solr/server/solr/configsets/basic_configs    

 A Solr core called  wlslog  gets created as shown in Figure  11-22 .   

  Figure 11-21.    Listing the Configuration Files in the basic_configs Example Configuration       

  Figure 11-22.    Creating a Solr Core called wlslog       

 

 



CHAPTER 11 ■ USING APACHE SOLR

329

      Indexing Documents 
 Apache Solr provides the  post  tool for indexing documents from the command line. The  post  tool supports 
different input file formats such as XML, CSV and JSON. We shall index an XML format document Save the 
following XML document to the  wlslog.xml  file.    

    <add> 
 <doc> 
 <field name="id">wlslog1</field> 
   <field name="time_stamp_s">Apr-8-2014-7:06:16-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field> 
   <field name="servername_s">AdminServer</field> 
   <field name="code_s">BEA-000365</field> 
   <field name="msg_s">Server state changed to STANDBY</field>   

 </doc>   

 <doc> 
 <field name="id">wlslog2</field>   

   <field name="time_stamp_s">Apr-8-2014-7:06:17-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field>   

   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000365</field> 
   <field name="msg_s">Server state changed to STARTING</field>   

 </doc>   

 <doc> 
 <field name="id">wlslog3</field>   

   <field name="time_stamp_s">Apr-8-2014-7:06:18-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field>   

   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000365</field>  
  <field name="msg_s">Server state changed to ADMIN</field> 
 </doc> 
 <doc> 
 <field name="id">wlslog4</field> 
   <field name="time_stamp_s">Apr-8-2014-7:06:19-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field> 



CHAPTER 11 ■ USING APACHE SOLR

330

   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000365</field> 
   <field name="msg_s">Server state changed to RESUMING</field>   

 </doc>   

 <doc> 
 <field name="id">wlslog5</field>   

   <field name="time_stamp_s">Apr-8-2014-7:06:20-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field> 
   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000331</field> 
   <field name="msg_s">Started WebLogic AdminServer</field> 
 </doc> 
 <doc> 
 <field name="id">wlslog6</field>   

   <field name="time_stamp_s">Apr-8-2014-7:06:21-PM-PDT</field> 
    <field name="category_s">Notice</field>  
   <field name="type_s">WebLogicServer</field> 
   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000365</field> 
   <field name="msg_s">Server state changed to RUNNING</field> 
 </doc> 
 <doc> 
 <field name="id">wlslog7</field> 
   <field name="time_stamp_s">Apr-8-2014-7:06:22-PM-PDT</field> 
   <field name="category_s">Notice</field> 
   <field name="type_s">WebLogicServer</field> 
   <field name="servername_s">AdminServer</field> 
   <field name="code">BEA-000360</field> 
   <field name="msg_s">Server started in RUNNING mode</field> 
 </doc> 
 </add>    

 The  wlslog.xml  file may be created in the vi editor and saved with the :wq command as shown in 
Figure  11-23 .  



CHAPTER 11 ■ USING APACHE SOLR

331

 Cd to the  /opt/solr  directory and run the post tool to add the documents in the  wlslog.xml  file to 
Solr server. 

    bin/post -c wlslog ./wlslog.xml    

  Figure 11-23.    The wlslog.xml File       

 



CHAPTER 11 ■ USING APACHE SOLR

332

 One file gets indexed as shown in Figure  11-24 .    

      Accessing Solr on Command Line with a REST Client 
 Solr request handler commands such as  /update ,  /select  may be run using a REST client such as curl and 
wget. In this section we shall use the curl tool to run some of the  /select  request handler commands. 
For example, query all documents using the following curl command.    

    curl http://localhost:8983/solr/wlslog/select?q=*%3A*&wt=json&indent=true     

 The curl command is shown in Figure  11-25 .  

  Figure 11-24.    Posting the wlslog.xml File to the Solr Index       

 



CHAPTER 11 ■ USING APACHE SOLR

333

 The 7 documents added get listed as shown in Figure  11-26 .  

  Figure 11-25.    Using curl to send a Request to Solr Server with Request Handler /select       

 



CHAPTER 11 ■ USING APACHE SOLR

334

 As another example run the  /select  request handler to query for the document with id  wlslog7 . 

    curl http://localhost:8983/solr/wlslog/select?q=id:wlslog7&wt=json&indent=true    

 The document for id  wlslog7  gets listed as shown in Figure  11-27 .  

  Figure 11-26.    Listing the Documents returned by the /select Request Handler       

 



CHAPTER 11 ■ USING APACHE SOLR

335

 Documents may be deleted with the  post  tool. For example, delete a document with id  wlslog1  using 
the following command. 

    bin/post -c wlslog -d "<delete><id>wlslog1</id></delete>"    

 The document with id  wlslog1  gets deleted as shown in Figure  11-28 .  

 Subsequently run the following curl command to list the documents in the  wlslog  index. 

    curl http://localhost:8983/solr/wlslog/select?q=*%3A*&wt=json&indent=true    

 The document with id  wlslog1  does not get listed as shown in Figure  11-29 .  

  Figure 11-27.    Querying for a Single Document with id wlslog7 using /select Request Handler and curl       

  Figure 11-28.    Deleting a Document using post Tool       

 

 



CHAPTER 11 ■ USING APACHE SOLR

336

 The  /update  request handler may be used to delete documents as in the following curl command, 
which deletes all documents in the  wlslog  core. 

    curl http://localhost:8983/solr/wlslog/update --data '<delete><query>*:*</query></delete>' 
-H 'Content-type:text/xml; charset=utf-8'    

  Figure 11-29.    Querying after Deleting a Document       

 



CHAPTER 11 ■ USING APACHE SOLR

337

 If auto commit has not been configured the following curl command must be run to commit the 
changes. 

    curl http://localhost:8983/solr/wlslog/update --data '<commit/>' -H 'Content-type:text/xml; 
charset=utf-8'    

 Subsequently run the curl command to invoke the  /select  request handler. 

    curl http://localhost:8983/solr/wlslog/select?q=*%3A*&wt=json&indent=true    

 No document gets listed as all have been deleted as shown in Figure  11-30 .    

     Setting Port Forwarding 
 If we were running Kubernetes on a local machine we could have opened the Solr Admin Console with url 
   http://localhost:8983      but because we are using Amazon EC2 instance we need to set port forwarding 
on a local machine with a web browser from localhost:8983 to 172.17.0.2:8983. Set port forwarding from 
 localhost  port 8983 with the following command run from a local machine.    

    ssh -i key-pair-file -f -nNT -L 8983:172.17.0.2:8983 ubuntu@ec2-54-152-82-142.compute-1.
amazonaws.com    

  Figure 11-30.    Deleting all Documents in Solr Index with /update       

 

http://localhost:8983/


CHAPTER 11 ■ USING APACHE SOLR

338

 The preceding command forwards the  localhost:8983 URL to endpoint 172.17.0.2:8983  as shown 
in Figure  11-31 .   

     Accessing Solr in Admin Console 
 After port forwarding the Solr  Admin Console   may be accessed from the local machine using the url 
   http://localhost:8983      as shown in Figure  11-32 . Select the  wlslog  core in the Core Selector as shown in 
Figure  11-32 .  

 Select the Documents tab and set Document Type as XML for the  /update  Request handler as shown in 
Figure  11-33 . Copy and paste the XML document wlslog.xml listed earlier in the Document (s) field and click 
on Submit Document.  

  Figure 11-31.    Setting Port Forwarding to localhost       

  Figure 11-32.    Displaying the Solr Admin Console       

 

 

http://localhost:8983/


CHAPTER 11 ■ USING APACHE SOLR

339

 An output of “success” as shown in Figure  11-34  indicates that the documents got indexed.  

  Figure 11-33.    Adding Document to the wlslog Core       

  Figure 11-34.    Response from adding Documents       

 

 



CHAPTER 11 ■ USING APACHE SOLR

340

 Next, we shall query the  wlslog  index. Select the Query tab as shown in Figure  11-35 .  

  Figure 11-35.    Selecting the Query Tab       

 With the Request Handler as  /select  the query is “*:*” by default as shown in Figure  11-36 .  

 



CHAPTER 11 ■ USING APACHE SOLR

341

 Click on Execute Query as shown in Figure  11-37 .  

  Figure 11-36.    Using the Request Handler /select to Query Solr index wlslog       

  Figure 11-37.    Submitting a Query to select all Documents in the wlslog Index       

 

 



CHAPTER 11 ■ USING APACHE SOLR

342

 Because we have not set auto commit the documents added have not yet been indexed. As a result no 
document gets listed as shown in Figure  11-38 .  

 We need to reload the core for the added documents to get indexed. Alternatively we could restart the 
Solr server but reloading the core is a quicker option. Select Core Admin and click on Reload as shown in 
Figure  11-39 .  

  Figure 11-38.    Response from the Query       

 



CHAPTER 11 ■ USING APACHE SOLR

343

 Run the query again and as shown in Figure  11-40  the 7 documents added get listed.  

  Figure 11-40.    Query Response with 7 Documents       

  Figure 11-39.    Reloading the Core       

 

 



CHAPTER 11 ■ USING APACHE SOLR

344

 The  _version_  field has been added to each document automatically by the Solr server as shown in 
Figure  11-41 .   

     Scaling the Cluster 
 To  scale   the Solr pod cluster run the  kubectl scale  command. For example, to scale to 4 Pods set 
replicas as 4. 

    kubectl scale rc solr-rc --replicas=4    

 An output of “scaled” indicates that the Solr cluster has been scaled. Subsequently run the following 
command to list the Pods. 

    kubectl get pods    

 The number of Pods listed is 4 instead of the 2 to start with as shown in Figure  11-42 . Some of the Pods 
could be not running or not ready initially.   

  Figure 11-41.    The _version_ Field is added to each Document stored in Solr Index Automatically by the 
Solr Server       

 



CHAPTER 11 ■ USING APACHE SOLR

345

     Summary 
 Apache Solr is an indexing and search engine that makes use of the local filesystem to store data. In this 
chapter we used Docker image “solr” with Kubernetes cluster manage to create and manage a cluster of Solr 
instances. We demonstrated accessing a Solr instance from an interactive shell for a Docker container and 
also using the Admin Console. In the next chapter we shall use Kubernetes with Apache Kafka.     

  Figure 11-42.    Scaling the Apache Solr Cluster to 4 Pods       

 



347© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_12

    CHAPTER 12 

 Using Apache Kafka           

  Apache Kafka   is publish-subscribe, high throughput, distributed messaging system. A single broker in Kafka 
could handle 100s MB (Terabytes)/sec of reads & writes from multiple clients. Messages are replicated 
across the cluster and persisted to disk. Kafka could be used for stream processing, web site activity tracking, 
metrics collection, and monitoring and log aggregation. 

 The main components of Kafka architecture are Producer, Broker, Topic, and Consumer. Kafka keeps 
feeds of messages in topics. Producers send (or write) messages to topics and Consumers consume 
(or read) messages from topics. Messages are byte arrays of data and could be in any format with String, 
JSON, and Avro being the most common. Messages are retained for a specified amount of time. A Zookeeper 
coordinates the Kafka cluster. In a single producer–consumer architecture, a single Producer sends messages 
to a Topic and a single Consumer consumes messages from the topic. 

 Kafka is similar to Flume in that it streams messages, but Kafka is designed for a different purpose. 
While Flume is designed to stream messages to a sink such as HDFS or HBase, Kafka is designed for 
messages to be consumed by multiple applications. 

 In this chapter we shall discuss using Kubernetes cluster manager with Apache Kafka.

   Setting the Environment  

  Modifying the Docker Image  

  Creating a Service  

  Creating a Replication Controller  

  Listing the Pods  

  Describing a Pod  

  Starting an Interactive Shell  

  Starting the Kafka Server  

  Creating a Topic  

  Starting a Kafka Producer  

  Starting a Kafka Consumer  

  Producing and Consuming Messages  

  Scaling the Cluster  

  Deleting Replication Controller and Service    



CHAPTER 12 ■ USING APACHE KAFKA

348

     Setting the Environment 
 We have used an Amazon EC2 instance created from AMI Ubuntu Server 14.04 LTS (HVM), SSD Volume 
Type - ami-d05e75b8. The following software is required for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes Cluster Manager (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image dockerkafka/kafka (latest version)    

 We have used the Docker image  dockerkafka/kafka  in this chapter. The default settings of the 
 dockerkafka/kafka  image Dockerfile are not suitable for orchestration with Kubernetes. In the next section 
we have modified and rebuilt the default Docker image. First, connect with the Ubuntu instance using the 
Public IP Address for the Amazon EC2 instance. 

    ssh -i "docker.pem" ubuntu@54.146.140.160    

 The Ubuntu instance gets connected to as shown in Figure  12-1 .  

 Install the required software as discussed in chapter   1    . Start the Docker service and find its status. 

    sudo service docker start 
 sudo service docker status    

  Figure 12-1.    Connecting to an Ubuntu Instance on Amazon EC2       

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 12 ■ USING APACHE KAFKA

349

 Docker should be listed as running as shown in Figure  12-2 .  

 List the Kubernetes services. 

    kubectl get services    

 The “kubernetes” service should be listed as shown in Figure  12-3 .   

      Modifying the Docker Image 
 The procedure to start Apache Kafka involves the following sequence.   

    1.    Start Zookeeper Server  

    2.    Start Apache Kafka Server     

 The Apache Kafka Server has a dependency on Zookeeper server and as a result requires the 
Zookeeper server to be running before the Kafka server may be started. The Kafka server makes use of the 
 server.properties  configuration file when started. The default settings in the  server.properties  file are 
not suitable for the Kafka server to start based on a  Zookeeper server   running at  localhost:2181 . We need 
to modify the connect url for Zookeeper in the  server.properties  file. 

 In this section we shall download the  dockerkafka/kafka  image, modify the  server.properties  and 
rebuild the Docker image. Download the source code for the  dockerkafka/kafka  image with the following 
command. 

    git clone https://github.com/DockerKafka/kafka-docker.git    

 The source code for the  dockerkafka/kafka  image gets downloaded as shown in Figure  12-4 .  

  Figure 12-2.    Starting Docker       

  Figure 12-3.    Listing the “kubernetes” Service       

 

 



CHAPTER 12 ■ USING APACHE KAFKA

350

 Change directory (cd) to the  kafka-docker  directory and list the files/directories. 

    cd kafka-docker 
 ls –l    

 The files/directories in the Docker image get listed as shown in Figure  12-5 .  

 We need to modify the settings in the  server.properties  file, which is in the  image/conf  directory. 
Cd to the  image/conf  directory and list the directory’s file/directories. 

    cd image/conf 
 ls –l    

 The  server.properties  file gets listed as shown in Figure  12-6 .  

  Figure 12-4.    Downloading the kafka-docker Docker Image Source Code       

  Figure 12-5.    Listing the Dockerfile and Image Directory for the kafka-source Docker Image       

  Figure 12-6.    Listing the Configuration Files for the Docker Image       

 

 

 



CHAPTER 12 ■ USING APACHE KAFKA

351

 Open the  server.properties  file in a vi editor. 

    sudo vi server.properties    

 The  server.properties  file is shown in Figure  12-7 . Uncomment the line with the  host.name=localhost  
setting.  

 As shown in Figure  12-8  the default setting for the  zookeeper.connect  is  zookeeper:2181 .  

  Figure 12-7.    Uncommenting the host.name Property       

 



CHAPTER 12 ■ USING APACHE KAFKA

352

 Modify the  zookeeper.connect  setting to  localhost:2181  as shown in Figure  12-9 . Save the modified 
file with :wq. We need to modify the setting because no such host as “zookeeper” exists by default.  

  Figure 12-8.    The default setting for the zookeeper.connect Property       

 



CHAPTER 12 ■ USING APACHE KAFKA

353

 Subsequently cd back to the root directory for the Docker image, the  kafka-docker  directory, and run 
the following command to rebuild the Docker image. 

    sudo docker build -t dockerkafka/kafka:v2.    

 The output from the command is shown in Figure  12-10 .  

  Figure 12-9.    Setting zookeeper.connect to localhost: 2181       

 



CHAPTER 12 ■ USING APACHE KAFKA

354

  Figure 12-10.    Rebuilding the Docker Image for Kafka       

 



CHAPTER 12 ■ USING APACHE KAFKA

355

 Docker image gets rebuilt as shown in Figure  12-11 .  

 The Docker image we shall use subsequently is not  dockerkafka/kafka  but is  dockerkafka/kafka:v2 .   

     Creating a Service 
 Create a service definition file called  kafka-service.yaml  and add the following (Table  12-1 ) fields to 
the file.     

  Figure 12-11.    Completing the Rebuild of the Docker Image       

 



CHAPTER 12 ■ USING APACHE KAFKA

356

 The  kafka-service.yaml  is listed. 

    apiVersion: v1 
 kind: Service 
 metadata:  
   labels:  
     app: kafkaApp 
   name: kafka 
 spec:  
   ports:  
     -  
       port: 9092 
       targetPort: 9092 
     -  
       port: 2181 
       targetPort: 2181 
   selector:  
     app: kafkaApp 
   type: LoadBalancer    

 The  kafka-service.yaml  may be created in vi editor and saved with :wq as shown in Figure  12-12 .  

   Table 12-1.    The Fields in the Service Definition File   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  Service 

 metadata  The service metadata. 

 metadata - > labels  The service labels. Not required.  app: kafkaApp 

 metadata - > name  The service name. Required.  kafka 

 spec  The service specification. 

 spec - > ports  The ports exposed by the service. 

 spec - > ports- > port  A port exposed by the service. The 9092 port is used for the 
Kafka server. 

 port: 9092 
 targetPort: 9092 

 spec - > ports- > port  Another port exposed by the service. The 2181 port is for the 
Zookeeper. 

 port: 2181 
 targetPort: 2181 

 spec - > selector  The Pod selector. Service routes traffic to the Pods with label 
matching the selector expression. 

 app: kafkaApp 

 spec 
- > selector- > type 

 The service type.  LoadBalancer 



CHAPTER 12 ■ USING APACHE KAFKA

357

 Create the service from the definition file. 

    kubectl create -f kafka-service.yaml     

 Subsequently list the services. 

    kubectl get services    

 The “kafka” service gets listed as shown in Figure  12-13 . The service selector is app = kafkaApp.   

  Figure 12-12.    Service Definition File in vi Editor       

 



CHAPTER 12 ■ USING APACHE KAFKA

358

     Creating a Replication Controller 
 Create a definition file called  kafka-rc.yaml  for the replication controller and add the following (Table  12-2 ) 
fields.     

   Table 12-2.    Fields in the Replication Controller Definition File   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  ReplicationController 

 metadata  The replication controller metadata. 

 metadata - > labels  The replication controller labels.  app: kafkaApp 
 name: kafka-rc 

 spec  The replication controller specification. 

 spec - > replicas  The number of Pod replicas.  2 

 spec - > selector  A key:value expression for selecting the Pods 
to manage. Pods with a label the same as the 
selector expression are managed by the replication 
controller. The selector expression must be the 
same as the spec- > template- > metadata- > labels 
expression. The selector defaults to the 
spec- > template- > metadata- > labels key:value 
expression if not specified. 

 app: kafkaApp 

 spec - > template  The Pod template. 

 spec - > template- > metadata  The Pod template metadata. 

 spec - > template - > metadata 
- > labels 

 The Pod template labels.  app: kafkaApp 

 spec - > template - > spec  The Pod template specification. 

 spec - > template - > spec 
- > containers 

 The containers configuration for the Pod template. 

  Figure 12-13.    Creating a Service from the Definition File       

(continued)

 



CHAPTER 12 ■ USING APACHE KAFKA

359

 The  kafka-rc.yaml  is listed. 

    ---  
 apiVersion: v1 
 kind: ReplicationController 
 metadata:  
   labels:  
     app: kafkaApp 
   name: kafka-rc 
 spec:  
   replicas: 1 
   selector:  
     app: kafkaApp 
   template:  
     metadata:  
       labels:  
         app: kafkaApp 
     spec:  
       containers:  
         -  
           command:  
             - zookeeper-server-start.sh 
             - /opt/kafka_2.10-0.8.2.1/config/zookeeper.properties 
           image: "dockerkafka/kafka:v2" 
           name: zookeeper 
           ports:  
             -  
               containerPort: 2181    

 Field  Description  Value 

 spec - > template - > spec 
- > containers - > command 

 The command/s to run for the Docker image. 
The default command in the Dockerfile is CMD 
[“kafka-server-start.sh”, “/opt/kafka_2.10-0.8.2.1/
config/server.properties”]. The default command 
starts the Kakfa server, but we want the Zookeeper 
server before the Kafka server as the Kafka server 
won’t start unless the Zookeeper server is running. 
The modified command starts only the Zookeeper 
server. We shall start the Kafka server separately. 

 - zookeeper-server-
start.sh 
 - /opt/
kafka_2.10-0.8.2.1/
config/zookeeper.
properties 

 spec - > template - > spec 
- > containers - > image 

 The Docker image.  dockerkafka/kafka:v2 

 spec - > template - > spec 
- > containers - > name 

 The container name.  zookeeper 

 ports  Specifies the container port/s.  containerPort: 2181 

Table 12-2. (continued)



CHAPTER 12 ■ USING APACHE KAFKA

360

 The  kafka-rc.yaml  file may be created and saved in the vi editor as shown in Figure  12-14 .  

 Create the replication controller from the definition file. 

    kubectl create -f kafka-rc.yaml      

 Subsequently list the replication controllers. 

    kubectl get rc    

 The replication controller gets created and listed as shown in Figure  12-15 .  

  Figure 12-14.    Replication Controller Definition File in vi Editor       

 



CHAPTER 12 ■ USING APACHE KAFKA

361

 To describe the  kafka-rc  run the following command. 

    kubectl describe rc kafka-rc    

 The replication controller description gets listed as shown in Figure  12-16 .   

     Listing the Pods 
 To list the Pods run the following command.    

    kubectl get pods    

 The Pods get listed as shown in Figure  12-17 .   

  Figure 12-15.    Creating the Replication Controller from the Definition File       

  Figure 12-16.    Describing the Replication Controller       

  Figure 12-17.    Listing the pods for Kafka       

 

 

 



CHAPTER 12 ■ USING APACHE KAFKA

362

     Describing a Pod 
 Only a single Pod is created because the “replicas” setting in the definition file  kafka-rc.yaml  is 1. To describe 
the Pod run the following command.    

    kubectl describe pod kafka-rc-k8as1    

 The pod description gets listed as shown in Figure  12-18 . The Pod label  app=kafkaApp  is the same as the 
service selector and the replication controller selector which makes the Pod manageable by the service and 
the replication controller.  

 When the Pod is created and started, the Zookeeper server gets started as the command for the 
modified Docker image is to start the Zookeeper server. Next we shall start the Kafka server from an 
interactive shell for the Docker container for the modified Docker image.  

  Figure 12-18.    Describing a pod for Kafka       

 



CHAPTER 12 ■ USING APACHE KAFKA

363

     Starting an Interactive Shell 
 To be able to start an interactive bash shell to access the Kafka software installed we need to know the 
container id for the Docker container running the modified Docker image. List the Docker containers with 
the following command.    

    sudo docker ps    

 The Docker containers get listed as shown in Figure  12-19 .  

  Figure 12-19.    Obtaining the Docker Container Id       

 



CHAPTER 12 ■ USING APACHE KAFKA

364

 Copy the container id and start the interactive bash shell. 

    sudo docker exec -it 939ae2cb4f86 bash    

 The interactive shell gets started as shown in Figure  12-20 .   

     Starting the Kafka Server 
 The configuration properties for Kafka server are set in the  config/server.properties  file, which we 
modified when we rebuilt the Docker image. As the Zookeeper is already running, start the Kafka server with 
the following command.    

    kafka-server-start.sh /opt/kafka_2.10-0.8.2.1/config/server.properties    

 The preceding command is shown in Figure  12-21 .  

  Figure 12-20.    Starting the Interactive TTY for the Docker Container       

 



CHAPTER 12 ■ USING APACHE KAFKA

365

 Kafka server gets started as shown in Figure  12-22 .   

  Figure 12-21.    Starting the Kafka Server       

 



CHAPTER 12 ■ USING APACHE KAFKA

366

     Creating a Topic 
 Next, create a topic called ‘kafka-on-kubernetes’ with the following command. Set the number of partitions 
to 1 and replication factor to 1. The Zookeeper is set to  localhost:2181 .    

    kafka-topics.sh --create --topic kafka-on-kubernetes --zookeeper localhost:2181 
--replication-factor 1 --partitions 1    

 As shown in Figure  12-23  the  kafka-on-kubernetes  topic gets created.   

  Figure 12-22.    Kafka Server started at localhost:9092       

 



CHAPTER 12 ■ USING APACHE KAFKA

367

     Starting a Kafka Producer 
 A Kafka producer is used to produce messages. After starting the ZooKeeper and the Kafka server, start 
the Kafka producer. Specify the topic with the  –topic  option as ‘kafka-on-kubernetes’. The  --broker-list  
specifies the Kafka server as  localhost:9092 , which are the settings configured in  server.properties  file.    

    kafka-console-producer.sh --topic kafka-on-kubernetes --broker-list localhost:9092    

 As shown in Figure  12-24  the Kafka producer gets started.   

     Starting a Kafka Consumer 
 A Kafka consumer consumes messages. Start the Kafka consumer with the following command. Specify 
the topic with the  –topic  option as ‘kafka-on-kubernetes’. The  --zookeeper  specifies the Zookeeper server 
as  localhost:2181 , which are the settings configured in  server.properties  file. The  --from-beginning  
option specifies that messages from the beginning are to be consumed, not just the messages consumed 
after the consumer was started.    

    kafka-console-consumer.sh --topic kafka-on-kubernetes --from-beginning --zookeeper 
localhost:2181    

 As shown in Figure  12-25  the Kafka producer gets started.   

     Producing and Consuming Messages 
 Having started the Producer and the Consumer, we shall produce message/s at the Producer and consume 
message/s at the Consumer. At the Producer add a message, for example, “Message from Kafka Producer” as 
shown in Figure  12-26  and click on Enter button. The message gets sent.     

  Figure 12-24.    Starting a Kafka Producer       

  Figure 12-25.    Starting a Kafka Consumer       

  Figure 12-23.    Creating a Kafka Topic       

 

 

 



CHAPTER 12 ■ USING APACHE KAFKA

368

 At the Consumer the message gets consumed as shown in Figure  12-27 .  

 Send more messages at the Producer as shown in Figure  12-28 .  

 And the messages get consumed at the Consumer as shown in Figure  12-29 .   

     Scaling the Cluster 
 To scale the cluster to 4 Pods from 1 Pod run the following command.    

    kubectl scale rc kafka-rc --replicas=4    

  Figure 12-28.    Producing More Messages at the Kafka Producer       

  Figure 12-29.    Consuming More Messages at the Kafka Consumer       

  Figure 12-27.    Consuming a Message at the Kafka Consumer       

  Figure 12-26.    Producing a Message at the Kafka Producer       

 

 

 

 



CHAPTER 12 ■ USING APACHE KAFKA

369

 Subsequently list the Pods. 

    kubectl get pods    

 An output of “scaled” indicates that the cluster has been scaled as shown in Figure  12-30 . Subsequently 
the Pods get listed, also shown in Figure  12-30 .  

 When the number of Pods are increased to 4, the service endpoints also increase to 4. Describe the 
service  kafka . 

    kubectl describe svc kafka    

 As shown in Figure  12-31 , 4 endpoints are listed for each of the two services, one for Zookeeper server 
and the other for the Kafka server.   

  Figure 12-30.    Scaling the Kafka Cluster       

 



CHAPTER 12 ■ USING APACHE KAFKA

370

     Deleting Replication Controller and Service 
 To delete the replication controller and service run the following commands.    

    kubectl delete rc kafka-rc 
 kubectl delete service kafka    

 As shown in Figure  12-32  the replication controller and service get deleted.   

  Figure 12-32.    Deleting the Kafka Replication Controller and Service       

  Figure 12-31.    Describing the Kafka Service with 4 Endpoints       

 

 



CHAPTER 12 ■ USING APACHE KAFKA

371

     Summary 
 Apache Kafka is a producer–consumer-based messaging system. In this chapter we discussed managing 
a Kafka cluster with Kubernetes. Managing the Kafka is different from some of the other applications as 
two servers have to be started: the Zookeeper server and the Kafka server. And the Kafka server has a 
dependency on the Zookeeper server, which implies that the Zookeeper must be started before the Kafka 
server. We needed to modify the default image  dockerkafka/kafka  for the zookeeper connect url. In the 
replication controller definition file we used a custom command to run the modified Docker image to 
start the Zookeeper server, the default settings in the Docker image being to start the Kafka server. All the 
applications we have run as yet were based on a single container Pod. In the next chapter we shall develop a 
multi-container Pod.     



          PART V 

  Multi Containers and Nodes         



375© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_13

    CHAPTER 13 

 Creating a Multi-Container Pod           

 A  Pod   is the atomic unit of an application managed by Kubernetes. A Pod has a single filesystem and IP 
Address; the containers in the Pod share the filesystem and networking IP. A Pod could consist of one or more 
containers. A Pod is defined in a definition file for a Pod or a replication controller using the specification 
for a Pod (   http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_podspec     ). A 
single container within a Pod is specified using the container specification (   http://kubernetes.io/v1.1/
docs/api-reference/v1/definitions.html#_v1_container     ). In all of the applications discussed as yet, 
in preceding chapters, a single container Pod was used. In this chapter we shall develop a multi-container 
Pod. We have used the  tutum/hello-world  and  postgres  Docker images for the multi-container Pod. Each 
of these images have been used in a single container Pods in preceding chapters. This chapter will cover the 
following topics.

   How to Find Number of Containers in a Pod?  

  Type of applications Using a Multi-Container Pod  

  Setting the Environment  

  Creating a Service  

  Describing a Service  

  Creating a Replication Container  

  Listing the Pods  

  Listing the Docker Containers  

  Describing the Service after Creating Replication Controller  

  Invoking the Hello World Application on Command Line  

  Starting the Interactive Shell  

  Starting PostgreSQL Shell  

  Setting Port Forwarding  

  Opening the Hello World Application in a Browser  

  Scaling the Cluster

   Describing the Service after Scaling  

  Describing a Pod  

  Setting Port Forwarding  

http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_podspec
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_container
http://kubernetes.io/v1.1/docs/api-reference/v1/definitions.html#_v1_container


CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

376

  Opening the Hello World Applications in a Browser  

  Invoking the Hello World Application from Command Line  

  Deleting the Replication Controller  

  Deleting the Service       

     How to find Number of Containers in a Pod? 
 As discussed previously the Pods may be listed with the following command. 

    kubectl get pods    

 The Kubernetes  Pod    k8s-master-127.0.0.1  Pod has 3/3 in the READY column as shown in Figure  13-1 . 
The 3/3 indicates that the Pod has 3 containers and all three containers are ready. The n/n in the READY 
column for any Pod indicates the number of containers ready out of the total number of containers. All the 
containers are running on a single node as indicated by the subsequent listing of nodes.   

     Types of Applications Using a Multi-Container Pod 
 Various types of  applications   could make use of a multi-container Pod. Some of the examples are as follows:

   -An Apache Sqoop application makes use of a CDH Docker image-based 
container and a MySQL database Docker image-based container for bulk 
transferring data from MySQL database into HDFS.  

  -An Apache Flume application makes use of a CDH Docker image-based 
container and a Kafka-based container for streaming data from a Kafka source 
into HDFS.  

  -An Apache Solr application makes use of a Oracle Database-based container 
and the Solr container for data import from Oracle Database into Solr.  

  -An Apache Hive application makes use a CDH container and a MongoDB 
container to create a Hive table using the MongoDB storage handler.  

  -An Apache Solr container and a CDH container are required to store Solr data in 
HDFS instead of the local filesystem.     

  Figure 13-1.    Listing the Pods and the Number of Containers in the Pods       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

377

     Setting the Environment 
 We have used an Amazon EC2 instance created from AMI Ubuntu Server 14.04 LTS (HVM), SSD Volume 
Type - ami-d05e75b8 to install the following required software.   

   -Docker Engine (latest version)  

  -Kubernetes (version 1.01)  

  -Kubectl (version 1.01)  

  -Docker image tutum/hello-world (latest version)  

  -Docker image postgres (latest version)    

 Install Docker, Kubernetes, and Kubectl as discussed in chapter 1. To log in to the Ubuntu instance the 
Public IP Adress may be obtained from the Amazon EC2 console as shown in Figure  13-2 .  

 SSH Login to the Ubuntu instance. 

    ssh -i "docker.pem" ubuntu@52.90.62.35    

 After having installed Docker start Docker and verify its status. 

    sudo service docker start 
 sudo service docker status    

  Figure 13-2.    Obtaining the Public IP Address       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

378

 Docker should be listed as being “running” as shown in Figure  13-3 .   

     Creating a Service 
 Create a service definition file  hello-postgres-service.yaml  to configure the service ports. We shall 
be configuring two service ports, one for the  hello-world  application and the other for the  postgres  
application. The fields in the service definition file are discussed in Table  13-1 .     

  Figure 13-3.    Starting Docker       

   Table 13-1.    Fields in the Service Definition File   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  Service 

 metadata  The service metadata. 

 metadata - > labels  The service labels. The setting translates to label 
 app = MultiContainerApp 

 app: MultiContainerApp 

 metadata - > name  The service name.  hello-postgres 

 spec  The service specification. 

 spec - > ports  The ports exposed by the service. Two ports are 
exposed, one for the hello-world application and 
the other for the postgres application. 

 name: hello-world 
 port: 8080 
 name: postgres 
 port: 5432 

 spec - > selector  The Pod selector. Service routes traffic to the Pods 
with label matching the selector expression. The 
setting translates to selector 
 app = MultiContainerApp 

 app: MultiContainerApp 

 spec - > selector - > type  The service type.  LoadBalancer 

 The  hello-postgres-service.yaml  is listed: 

    apiVersion: v1 
 kind: Service 
 metadata:  
   labels:  
     app: MultiContainerApp 
   name: hello-postgres 

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

379

 spec:  
   ports:  
     -  
       name: hello-world 
       port: 8080 
     -  
       name: postgres 
       port: 5432 
   selector:  
     app: MultiContainerApp 
   type: LoadBalancer    

 Create a service from the definition file. 

    kubectl create -f hello-postgres-service.yaml     

 Subsequently list the services. 

    kubectl get services    

 The  hello-postgres  service gets created and listed as shown in Figure  13-4 .   

     Describing a Service  
 The  hello-postgres  service may be described with the following command.    

    kubectl describe service hello-postgres    

 The service description includes the name, namespace, labels, selector, type, IP, ports, and endpoints as 
shown in Figure  13-5 . Initially the service is not managing any pods and as a result no endpoints are listed.   

  Figure 13-4.    Creating a Service from the Definition File       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

380

     Creating a Replication Container 
 Create a definition file  hello-postgres-rc.yaml  for a replication controller. Add the following (Table  13-2 ) 
fields to the definition file.     

   Table 13-2.    Fields in the Replication Controller Definition File   

 Field  Description  Value 

 apiVersion  v1 

 kind  The kind of definition file.  ReplicationController 

 metadata  The replication controller metadata. 

 metadata - > labels  The replication controller labels.  app: "MultiContainerApp" 

 metadata - > name  The replication controller name.  "hello-postgres" 

 spec  The replication controller specification. 

 spec - > replicas  The number of Pod replicas.  1 

 spec - > selector  A key:value expression for selecting the 
Pods to manage. Pods with a label the same 
as the selector expression is managed by 
the replication controller. The selector 
expression must be the same as the 
spec - > template - > metadata - > labels 
expression. The selector defaults to the spec 
- > template - > metadata - > labels key: value 
expression if not specified. 

 app: "MultiContainerApp" 

  Figure 13-5.    Describing the Service       

(continued)

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

381

 The  hello-postgres-rc.yaml  is listed: 

    apiVersion: v1 
 kind: ReplicationController 
 metadata:  
   labels:  
     app: "MultiContainerApp" 
   name: "hello-postgres" 
 spec:  
   replicas: 1 
   selector:  
     app: "MultiContainerApp" 
   template:  
     metadata:  
       labels:  
         app: "MultiContainerApp" 

 Field  Description  Value 

 spec - > template  The Pod template. 

 spec - > template- > metadata  The Pod template metadata. 

 spec - > template - > metadata 
- > labels 

 The Pod template labels. The selector if not 
specified defaults to this setting. The service 
selector must be the same as one of the Pod 
template labels for the service to represent 
the Pod. The service selector does not 
default to the same value as the label and 
we already set the service selector to app: 
MultiContainerApp. 

 app: “MultiContainerApp” 

 spec - > template - > spec  The Pod template specification. 

 spec - > template - > spec 
- > containers 

 The containers configuration for the Pod 
template. 

 spec - > template - > spec 
- > containers - > image 

 The Docker image for the hello-world 
container. 

 tutum/hello-world 

 spec - > template - > spec 
- > containers - > name 

 The container name for the hello-world 
container. 

 hello-world 

 ports  Specifies the container port for the hello-
world container. 

 containerPort: 8080 

 spec - > template - > spec 
- > containers - > image 

 The Docker image for the postgres container.  postgres 

 spec - > template - > spec 
- > containers - > name 

 The container name for the postgres 
container. 

 postgres 

 ports  Container port for postgres container.  containerPort: 5432 

Table 13-2. (continued)



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

382

     spec:  
       containers:  
         -  
           image: "tutum/hello-world" 
           name: "hello-world" 
           ports:  
             -  
               containerPort: 8080 
         -  
           image: "postgres" 
           name: "postgres" 
           ports:  
             -  
               containerPort: 5432    

 Create a replication controller from the definition file. 

    kubectl create -f hello-postgres-rc.yaml    

 Subsequently list the replication controllers. 

    kubectl get rc    

 As shown in Figure  13-6  the  hello-postgres  replication controller gets created and listed.   

     Listing the Pods 
 To list the Pods run the following command.    

    kubectl get pods    

 As  replicas  field is set to 1 in the replication controller only one Pod gets created as shown in 
Figure  13-7 . The READY column lists 0/2, which indicates that 0 or none of the two containers in the pod are 
ready. Initially the container could be listed as not running and creating. Run the preceding command after 
a few seconds and the Pod STATUS should be “Running” and the READY state should be 2/2, implying that 2 
of 2 containers are running.   

  Figure 13-6.    Creating a Replication Controller from the Definition File       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

383

     Listing the Docker Containers 
 To list the Docker containers started, run the following command.    

    sudo docker ps    

 Two of the listed containers, the container based on the  postgres  image and the container based on 
the  tutum/hello-world  image, as shown in Figure  13-8 , are started with the replication controller 
 hello-postgres .   

  Figure 13-7.    Listing the Pods       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

384

     Describing the Service after Creating Replication Controller 
 Before we had created the replication controller the service  hello-postgres  was not associated with any 
endpoints. After creating the replication controller and the Pod/s, run the following command again to 
describe the service again.    

    kubectl describe service hello-postgres    

 An endpoint is listed for each of the ports exposed by the service as shown in Figure  13-9 .   

  Figure 13-8.    Listing the Docker Containers       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

385

     Invoking the Hello World Application on Command Line 
 Invoke the service endpoint  172.17.0.2  using curl as follows.    

    curl 172.17.0.2    

 The HTML generated by the application gets output as shown in Figure  13-10 .   

  Figure 13-9.    Describing the Service       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

386

     Starting the Interactive Shell 
 To start an interactive shell for the software installed, either of the Docker containers, listed previously in 
Figure  13-8 , for the multi-container Pod may be used. Both the containers access the same filesystem and IP. 
Use the following command to start an  interactive shell.   

    sudo docker exec -it 2e351a609b5b bash    

 An interactive shell gets started as shown in Figure  13-11 .   

  Figure 13-10.    Invoking an Endpoint for the Service       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

387

     Starting PostgreSQL Shell 
 To start the  PostgreSQL command   shell called  psql  run the following command in the interactive shell. 

    psql postgres    

 The  psql  gets started and the  postgres  command prompt gets displayed as shown in Figure  13-12 .  

 PostgreSQL with Kubernetes is discussed in chapter 5.  

     Setting Port Forwarding 
 We had earlier invoked the service endpoint to output the HTML generated using curl on the command line, 
but HTML is best displayed in a browser. As an Amazon EC2 instance does not provide a browser by default, 
we need to set port forwarding to a local machine to be able to access the service endpoint in a browser. Set 
the  port forwarding   for  172.17.0.2:80  to  localhost:80  with the following command. 

    ssh -i "docker.pem" -f -nNT -L 80:172.17.0.2:80 ubuntu@ec2-52-90-62-35.compute-1.amazonaws.com    

 The port forwarding to  localhost  gets set as shown in Figure  13-13 .  

 The Public DNS for the Amazon EC2 instance may be obtained from the Amazon EC2 console as shown 
in Figure  13-14 .   

  Figure 13-12.    Starting psql Shell       

  Figure 13-13.    Setting Port Forwarding       

  Figure 13-11.    Starting an Interactive Shell       

 

 

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

388

     Opening the Hello World Application in a Browser 
 Having set port forwarding the application may be opened in a browser on a local machine with url 
 http://localhost  as shown in Figure  13-15 . In addition to the hostname the two ports at which the 
 HELLO_POSTGRES  is listening at get listed.   

  Figure 13-14.    Obtaining Public DNS       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

389

     Scaling the Cluster 
 To  scale   the cluster to 3 replicas or Pods run the following command. 

    kubectl scale rc hello-postgres --replicas=3    

 Subsequently list the Pods. 

    kubectl get pods    

 Three Pods get listed as shown in Figure  13-16 . Some of the Pods could be not running or not ready 
initially. Run the preceding command again after a few seconds to list all the Pods with STATUS as 
“Running” and READY state as 2/2.  

  Figure 13-15.    Invoking the Service  Endpoint   in a Browser       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

390

 A Pod may be described using the  kubectl describe  pod command. For example, describe the 
 hello-postgres-jliem  pod with the following command. 

    kubectl describe pod hello-postgres-jliem    

 As shown in Figure  13-17  the Pod description gets listed.  

  Figure 13-16.     Scaling   the Cluster to 3 Replicas       

  Figure 13-17.    Describing a Pod       

 

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

391

     Listing the Docker Containers 
 As each Pod consists of two containers, scaling up the cluster to 3 Pods or replicas starts four new containers, 
2 containers for each of the two new Pods. After scaling up the cluster run the following command to list the 
running  Docker containers   again using the default output format. 

    sudo docker ps    

 A total of 3 containers based on the  postgres  image and 3 containers based on the  tutum/hello-world  
image get listed as shown in Figure  13-18 .   

  Figure 13-18.    Listing the Docker Containers       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

392

     Describing the Service after Scaling 
 Describe the  service   again after scaling up the cluster. 

    kubectl describe service hello-postgres    

 Each of the ports exposed by the service is associated with three endpoints because 3 Pods are running 
as shown in Figure  13-19 .   

     Setting Port Forwarding 
 To be able to open the application in a browser we need to set port forwarding to locahost. Set the port 
forwarding to ports not previously bound. The  localhost:80  beind address is already sued up in the port 
forwarding of the single Pod created earlier. To set  port forwarding  for the two new Pods use ports 81 and 82 
on localhost. 

    ssh -i "docker.pem" -f -nNT -L 81:172.17.0.3:80 ubuntu@ec2-52-90-62-35.compute-1.amazonaws.com 
 ssh -i "docker.pem" -f -nNT -L 82:172.17.0.4:80 ubuntu@ec2-52-90-62-35.compute-1.amazonaws.com    

 The preceding commands do not generate any output but the ports get forwarded to the  localhost  as 
shown in Figure  13-20 .   

  Figure 13-19.    Describing the Service including the Service Endpoints       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

393

     Opening the Hello World Application in a Browser 
 The application may be opened in a  browser   at each of the forwarded ports; for example, open a browser at 
 http://localhost:81 . The application HTML gets displayed as shown in Figure  13-21 . The  HELLO_POSTGRES  
service is listening at two ports 8020 and 5432.  

 Similarly open the other service endpoint in a browser with url  http://localhost:82 . Different 
hostnames listening on the same port are forwarded to different ports on the  localhost . The service 
endpoint HTML gets output as shown in Figure  13-22 .   

  Figure 13-20.    Setting Port Forwarding       

  Figure 13-21.    Invoking a Service Endpoint in a Browser       

 

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

394

     Invoking the Hello World Application from Command Line 
 As for a single container Pod, each of the two new service endpoints may be invoked on the  command line  . 
For example, invoke the  172.17.0.3  endpoint with the following curl command. 

    curl 172.17.0.3    

 The HTML for the service endpoint gets output as shown in Figure  13-23 .  

  Figure 13-22.    Invoking another Service Endpoint in a Browser       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

395

 Invoke the  172.17.0.4  endpoint with the following curl command. 

     curl 172.17.0.4    

 The HTML for the service endpoint gets output as shown in Figure  13-24 .   

  Figure 13-23.    Invoking a Service Endpoint with curl       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

396

     Deleting the Replication Controller 
 To delete the   hello-postgres    replication controller run the following command. 

    kubectl delete rc hello-postgres    

 Subsequently list the Pods with the following command. 

    kubectl get pods    

 The Pods for the  hello-postgres  replication controller are not listed as shown in Figure  13-25 .   

  Figure 13-24.    Invoking another Service Endpoint with curl       

 



CHAPTER 13 ■ CREATING A MULTI-CONTAINER POD

397

     Deleting the Service 
 To delete the  service   hello-postgres  run the following command. 

    kubectl delete service hello-postgres    

 Subsequently run the following command to list the services. 

    kubectl get services    

 The  hello-postgres  service is not listed as shown in Figure  13-26 .    

     Summary 
 In this chapter we discussed using multiple containers in a Pod. We discussed the use case for a multi-container 
Pod and used the  tutum/hello-world  and  postgres  Docker images to create a multi-container Pod. A 
multi-container pod starts multiple Docker containers for each Pod even though the Pod is the atomic unit. 
The multiple containers in a Pod share the same IP address and filesystem. When a multi-container Pod is 
scaled, multiple containers are started for each of the new Pods. In the next chapter we shall discuss installing 
Kubernetes on a multi-node cluster.     

  Figure 13-25.    Deleting the Replication Controller       

  Figure 13-26.    Deleting the Service       

 

 



399© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2_14

    CHAPTER 14 

 Installing Kubernetes on 
a Multi-Node Cluster           

 In all of the preceding chapters in the book we have used a single-node cluster. For most small scale 
applications a single-node cluster should suffice. But, for relatively large scale, distributed applications a 
 multi-node cluster   is a more suitable option. In this chapter we shall install Kubernetes on a multi-node 
(2 nodes) cluster. This chapter has the following sections.

   Components of a Multi-Node Cluster  

  Setting the Environment  

  Installing the Master Node

   Setting Up Flanneld and etcd  

  Starting the Kubernetes on Master Node  

  Running the Service Proxy     

  Testing the Master Node  

  Adding a Worker Node

   Exporting the Master IP  

  Setting Up Flanneld and etcd  

  Starting Up Kubernetes on Worker Node  

  Running the Service Proxy     

  Testing the Kubernetes Cluster  

  Running an Application on the Cluster  

  Exposing the Application as a Service  

  Testing the Application in a Browser  

  Scaling the Application    



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

400

     Components of a Multi-Node Cluster 
 A multi-node cluster consists of the following main and ancillary  components.  

   -Kubernetes Master Node  

  -Kubernetes Worker Node/s  

  -Etcd  

  -Flannel  

  -Service Proxy  

  -Kubectl    

 etcd, kubernetes master, and service proxy were discussed in chapter   1    . etcd as introduced in chapter   1     
is a distributed, key-value store used by the Kubernetes cluster manager. We have installed etcd on the 
same node as the Kubernetes master but in a production environment etcd would typically be installed as 
separate cluster installed on nodes different than the Kubernetes master node. A commit to an etcd cluster 
is based on replication to a majority (quorum) of available nodes with provision for failure of one or more 
nodes. While the majority of a 1-node cluster is 1, the majority of a 3-node cluster is 2, majority of a 4-node 
cluster is 3, majority of a 5-node cluster is 3. A etcd cluster would typically have an odd number (>2) of 
nodes with tolerance for failure. For example, a 5-node etcd cluster could loose up to 2 nodes resulting in 
a 3-node cluster in which the majority is still determinable. A 3-node cluster has a failure tolerance for one 
more node. A 2-node etcd cluster does not have any failure tolerance and the majority of a 2-node cluster is 
considered as 2. The recommended etcd cluster size in production is 3,5, or 7. 

 Flannel is a network fabric for containers. Flannel provides a subnet to each host that is used by 
containers at runtime. Actually, Flannel runs an agent called flanneld on each host that allocates subnets. 
Flannel sets up and manages the network that interconnects all the Docker containers created by 
Kubernetes. Flannel is etcd backed and uses etcd to store the network configuration, allocated subnets, and 
auxiliary data such as the IP Address of the host.  

     Setting the Environment 
 We have used Amazon EC2 instances created from Ubuntu Server 14-04 LTS (HVM), SSD Volume Type - 
ami-d05e75b8 AMI for this chapter. The following software is required to be installed for this chapter.   

   -Docker Engine (latest version)  

  -Kubernetes on Master Node (version 1.01)  

  -Kubernetes on Worker Node (version 1.01)  

  -Kubectl (version 1.01)    

 Because we are creating a multi-node cluster we need to create multiple Amazon EC2 instances. For a 
two-node cluster create two Amazon EC2 instances – KubernetesMaster and KubernetesWorker – as shown 
in Figure  14-1 .  

http://dx.doi.org/10.1007/978-1-4842-1907-2_1
http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

401

 SSH Login to each node separately. The Public IP Address for the Master Node may be obtained from 
the Amazon EC2 console as shown in Figure  14-2 .  

  Figure 14-1.    Creating two Ubuntu Instances for Kubernetes Master and Worker Nodes       

  Figure 14-2.    Obtaining the Public IP Address for a Ubuntu Instance       

 Log in to the Ubuntu instance for the Master node. 

    ssh -i "docker.pem" ubuntu@52.91.243.99    

 Similarly, obtain the Public IP Address for the Ubuntu instance for the Worker node and log in to the 
Ubuntu instance for the Worker node. 

    ssh -i "docker.pem" ubuntu@52.23.236.15    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

402

 Install Docker and Kubectl on each node as discussed in chapter   1    . Do not install Kubernetes just as 
chapter   1     because a multi-node configuration for Kubernetes is different than a single-node configuration. 

 Start the Docker Engine and verify its status. 

    sudo service docker start 
 sudo service docker status    

 Docker engine should be listed as “running” as shown in Figure  14-3 .   

  Figure 14-3.    Starting Docker       

     Installing the Master Node 
 The Master node hosts the API server and assigns work to worker node/s. We need to run two Docker 
daemons, a main Docker instance and a bootstrap Docker instance. The main Docker instance is used by 
the Kubernetes and the bootstrap Docker instance is used by flannel, an etcd. The flannel daemon sets up 
and manages the network that interconnects all the Docker containers created by Kubernetes.    

     Setting Up Flanneld and etcd  
 Setting Up Flanneld and etcd involves setting up a bootstrap instance for Docker, starting etcd for flannel 
and the API server, and setting up flannel on the master node. 

   Setting up Bootstrap Instance of Docker 
 Flannel, which sets up networking between Docker containers; and etcd on which flannel relies, run inside 
Docker containers themselves. A separate  bootstrap Docker   is used because flannel is used for networking 
between Docker containers created by Kubernetes; and running flannel and Kubernetes in the same Docker 
engine could be problematic and is not recommended. Create a separate bootstrap instance of Docker for 
flannel and etcd. 

    sudo sh -c 'docker daemon -H unix:///var/run/docker-bootstrap.sock -p /var/run/docker-
bootstrap.pid --iptables=false --ip-masq=false --bridge=none --graph=/var/lib/docker-
bootstrap 2> /var/log/docker-bootstrap.log 1> /dev/null &'    

 

http://dx.doi.org/10.1007/978-1-4842-1907-2_1
http://dx.doi.org/10.1007/978-1-4842-1907-2_1


CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

403

 The bootstrap Docker daemon gets started and the output from the preceding command is shown in 
Figure  14-4 .  

  Figure 14-4.    Starting the Bootstrap Daemon on the Master Node       

  Figure 14-5.    Setting up etcd on the Master Node       

 The ‘–d’ option is completely removed in Docker 1.10 and replaced with ‘daemon’. If using the Docker version 
prior to Docker 1.10, for example Docker 1.9.1, replace 'daemon’ with '-d' in the preceding command to run the 
command as follows: 

  sudo sh -c 'docker -d -H unix:///var/run/docker-bootstrap.sock -p /var/run/docker-bootstrap.
pid --iptables=false --ip-masq=false --bridge=none --graph=/var/lib/docker-bootstrap 2> /

var/log/docker- bootstrap.log 1> /dev/null &'  

   Setting Up etcd 
 Set up  etcd   for the flannel and the API server with the following command. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock run --net=host -d gcr.io/google_
containers/etcd:2.0.12 /usr/local/bin/etcd --addr=127.0.0.1:4001 --bind-addr=0.0.0.0:4001 
--data-dir=/var/etcd/data    

 The container for etcd gets downloaded and etcd gets installed as shown in Figure  14-5 .  

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

404

 Set up a Classless Inter-Domain Routing (CIDR), which is an IP Addressing scheme that reduces the 
size of routing tables and makes more addresses available, range for flannel. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock run --net=host gcr.io/google_
containers/etcd:2.0.12 etcdctl set /coreos.com/network/config '{ "Network": "10.1.0.0/16" }'    

 The preceding command does not generate any output as shown in Figure  14-6 .   

  Figure 14-7.    Stopping Docker Temporarily       

  Figure 14-6.    Setting Up CIDR on the Master Node       

   Setting Up Flannel 
 By default Docker does provide a networking between containers and Pods but the networking provided by 
 Flannel   is much more simplified. We shall be using Flannel for networking. First, we need to stop Docker. 

    sudo service docker stop    

 Docker gets stopped as shown in Figure  14-7 .  

 Run flannel with the following command. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock run -d --net=host --privileged -v /dev/
net:/dev/net quay.io/coreos/flannel:0.5.0    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

405

 Flannel gets installed as shown in Figure  14-8 .  

  Figure 14-8.    Installing Flannel       

  Figure 14-9.    Obtaining the Hash Generated by Flannel       

 Flannel generates a hash as shown in Figure  14-9 . Copy the Hash.  

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

406

 Make a note of the  FLANNEL_SUBNET  and  FLANNEL_MTU  values as we shall need these to edit the Docker 
configuration. Open the Docker configuration file in a vi editor. 

    sudo vi /etc/default/docker    

 The default settings in the docker configuration file are shown in Figure  14-11 .  

 Copy and paste the hash into the following command, and run the command to obtain the subnet settings. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock exec <really-long-hash-from-above-here> 
cat /run/flannel/subnet.env    

 The subnet settings get listed as shown in Figure  14-10 .  

  Figure 14-10.    Listing the Subnet Settings       

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

407

 To the  DOCKER_OPTS  setting append the following parameters whose values are obtained from the 
output in Figure  14-10 . 

    --bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}    

  Figure 14-11.    Docker Configuration File Default Settings       

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

408

 The modified docker configuration file is shown in Figure  14-12 .  

  Figure 14-12.    Modified Docker Configuration File       

 As mentioned before Docker provides its own networking with a Docker bridge called  docker0 . As we 
won’t be using the default Docker bridge remove the default Docker bridge. For the brctl binaries first install 
the bridge-utils package. 

    sudo /sbin/ifconfig docker0 down 
 sudo apt-get install bridge-utils 
 sudo brctl delbr docker0    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

409

 The output from installing the bridge-utils package and removing the docker0 bridge is shown in 
Figure  14-13 .  

  Figure 14-14.    Restarting Docker       

  Figure 14-13.    Removing docker0 bridge       

 Restart Docker. 

    sudo service docker start    

 Docker gets restarted as shown in Figure  14-14 .    

     Starting the Kubernetes Master 
 Setting up flannel networking is the main difference between setting up a single-node cluster and a 
multi-node cluster. Start the  Kubernetes master   with the same command as used for a single-node cluster. 

    sudo docker run \ 
   --volume=/:/rootfs:ro \ 
   --volume=/sys:/sys:ro \ 
   --volume=/dev:/dev \ 
   --volume=/var/lib/docker/:/var/lib/docker:rw \ 
   --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \ 

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

410

   --volume=/var/run:/var/run:rw \ 
   --net=host \ 
   --privileged=true \ 
   --pid=host \  
   -d \ 
   gcr.io/google_containers/hyperkube:v1.0.1 /hyperkube kubelet --api-servers=
http://localhost:8080 --v=2 --address=0.0.0.0 --enable-server --hostname-override=127.0.0.1 --config=/
etc/kubernetes/manifests-multi --cluster-dns=10.0.0.10 --cluster-domain=cluster.local    

 The preceding command is run from the Master Node as shown in Figure  14-15 .  

  Figure 14-15.    Starting Kubernetes on the Master Node       

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

411

 Kubernetes gets installed on the master node as shown in Figure  14-16 .   

  Figure 14-16.    Kubernetes Started on Master Node       

     Running the Service Proxy 
 Run the  service proxy   also using the same command as used for a single-node cluster. 

    sudo docker run -d --net=host --privileged gcr.io/google_containers/hyperkube:v1.0.1 /
hyperkube proxy --master=http://127.0.0.1:8080 --v=2    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

412

 Service proxy gets installed as shown in Figure  14-17 .    

  Figure 14-17.    Starting Service proxy on Master Node       

  Figure 14-18.    Listing the Nodes, only the Master Node to start with       

     Testing the One-Node Cluster 
 To  test   the master node run the following command, which lists the nodes in the cluster. 

    kubectl get nodes    

 The single node gets listed as shown in Figure  14-18 .   

     Adding a Worker Node 
 Setting up a  worker node      is very similar to setting up the master node. Next, we shall set up a worker node. 
SSH login to the Ubuntu instance for the worker node. 

     Exporting the Master IP 
 First, we need to set the environment variable   MASTER_IP   . Obtain the Public IP Address for the Ubuntu 
instance running the master node as shown in Figure  14-19 .  

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

413

 Export the environment variable  MASTER_IP  using the Public IP Address. 

    export MASTER_IP=52.91.243.99    

 Echo the  MASTER_IP  environment variable. 

    echo $MASTER_IP    

 The output from the preceding command is shown in Figure  14-20 .   

  Figure 14-19.    Obtaining the Master Node’s IP Address       

  Figure 14-20.    Exporting the MASTER_IP Environment Variable on a Worker Node       

     Setting Up Flanneld 
 Start a bootstrap Docker daemon just for the  flannel   networking. 

    sudo sh -c 'docker daemon -H unix:///var/run/docker-bootstrap.sock -p /var/run/docker-
bootstrap.pid --iptables=false --ip-masq=false --bridge=none --graph=/var/lib/docker-
bootstrap 2> /var/log/docker-bootstrap.log 1> /dev/null &'    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

414

 Bootstrap Docker gets set up as shown in Figure  14-21 .  

  Figure 14-21.    Starting Bootstrap Docker on the Worker Node       

 The ‘–d’ option is completely removed in Docker 1.10 and replaced with ‘daemon’. If using the Docker version 
prior to Docker 1.10, for example Docker 1.9.1, replace 'daemon’ with '-d' in the preceding command to run the 
command as follows: 

  sudo sh -c 'docker -d -H unix:///var/run/docker-bootstrap.sock -p /var/run/docker-bootstrap.
pid --iptables=false --ip-masq=false --bridge=none --graph=/var/lib/docker-bootstrap 2> /

var/log/docker- bootstrap.log 1> /dev/null &' 

 To install Flannel, first we need to stop the Docker engine. 

    sudo service docker stop    

 Docker engine gets stopped as shown in Figure  14-22 .  

  Figure 14-22.    Stopping Docker Temporarily on the Worker Node       

 Next, install flannel on the worker node. The same etcd that is running on the master is used for 
the flanneld on the worker node. The etcd instance includes the Master’s Ip using the  MASTER_IP  
environment variable. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock run -d --net=host --privileged 
-v /dev/net:/dev/net quay.io/coreos/flannel:0.5.0 /opt/bin/flanneld --etcd-
endpoints=http://${MASTER_IP}:4001    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

415

 Flannel gets set up on the worker node as shown in Figure  14-23 .  

  Figure 14-23.    Installing Flannel on the Worker Node       

 Copy the hash generated by the preceding command as shown in Figure  14-24 .  

  Figure 14-24.    Obtaining the Hash geenrated by Flannel       

 Using the hash value in the following command obtain the subnet settings from flannel. 

    sudo docker -H unix:///var/run/docker-bootstrap.sock exec <really-long-hash-from-above-here> 
cat /run/flannel/subnet.env    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

416

 The subnet settings get output as shown in Figure  14-25 .  

  Figure 14-25.    Listing the Subnet Settings on the Worker Node       

 Using the subnet settings we need to edit the Docker configuration file. Open the Docker configuration 
file in the vi editor. 

    sudo /etc/default/docker    

 Append the following parameters to the  DOCKER_OPTS  setting. Substitute the values for  FLANNEL_SUBNET  
and  FLANNEL_MTU  as obtained from Figure  14-25 . 

    --bip=${FLANNEL_SUBNET} --mtu=${FLANNEL_MTU}    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

417

 The modified Docker configuration file is shown in Figure  14-26 .  

  Figure 14-26.    Modified Docker Configuration File       

 Shut down and remove the existing Docker bridge  docker0 , which is used by default by Docker for 
networking between containers and Pods. The bridge-utils package is needed to be installed as it is not 
available by default on an Ubuntu instance on Amazon EC2. 

    sudo /sbin/ifconfig docker0 down 
 sudo apt-get install bridge-utils 
 sudo brctl delbr docker0    

 Restart Docker. 

    sudo service docker start    

 The Docker engine gets started as shown in Figure  14-27 .   

  Figure 14-27.    Restarting Docker       

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

418

     Starting Up Kubernetes on Worker Node 
 Start up Kubernetes on the  worker node   with the same command as used in the Master node with the 
difference that instead of setting the  --api-servers  to  http://localhost:8080  set the --api-servers to the 
   http://${MASTER_IP}:8080     . 

    sudo docker run \ 
   --volume=/:/rootfs:ro \ 
   --volume=/sys:/sys:ro \ 
   --volume=/dev:/dev \ 
   --volume=/var/lib/docker/:/var/lib/docker:rw \ 
   --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \ 
   --volume=/var/run:/var/run:rw \ 
   --net=host \ 
   --privileged=true \ 
   --pid=host \  
   -d \ 
   gcr.io/google_containers/hyperkube:v1.0.1 /hyperkube kubelet --api-
servers=http://${MASTER_IP}:8080 --v=2 --address=0.0.0.0 --enable-server --hostname-
override=$(hostname -i) --cluster-dns=10.0.0.10 --cluster-domain=cluster.local    

 The preceding command is to be run on the worker node as shown in Figure  14-28 .   

  Figure 14-28.    Starting Kubernetes on the Worker Node       

 

http://hyperlink/


CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

419

     Running the Service Proxy 
 The  service proxy   on the worker node is also run with the same command as for the master node 
except that the Master’s Ip parameter  -- master=    http://127.0.0.1:8080      should be replaced with 
 --master=http://${MASTER_IP}:8080 . 

    sudo docker run -d --net=host --privileged gcr.io/google_containers/hyperkube:v1.0.1 /
hyperkube proxy --master=http://${MASTER_IP}:8080 --v=2    

 The service proxy gets started as shown in Figure  14-29 .    

  Figure 14-29.    Starting Service Proxy on the Worker Node       

     Testing the Kubernetes Cluster 
 From the Master node, not the  worker node   that was being configured in the preceding commands, list the 
nodes in the cluster. 

    kubectl get nodes    

 Two nodes get listed as shown in Figure  14-30 : the master node and the worker node.  

  Figure 14-30.    Listing a Two-Node Cluster       

 Add more nodes as required using the same procedure as discussed in this section Adding a Worker Node.  

     Running an Application on the Cluster 
 To test the cluster run an application on the command line using kubectl. As an example, run the Docker 
image “nginx” with the following command.    

    kubectl -s http://localhost:8080 run nginx --image=nginx --port=80    

 Subsequently list the Pods. 

    kubectl get pods    

 

 

http://127.0.0.1:8080/


CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

420

  Figure 14-31.    Installing an Application on the Cluster       

  Figure 14-32.    Creating a Service       

 The nginx application container is created and the nginx replication controller is created with default of 
1 replicas as shown in Figure  14-31 . One pod gets listed, also shown in Figure  14-31 . Initially the Pod could 
be listed as Pending status. Run the preceding command after a few seconds to list the Pod as running and 
ready. To find on which instance/s (node/s) in the cluster the Pod/s is/are running on, run the command.  

    kubectl get pods -o wide.     

      Exposing the Application as a Service 
 To expose the replication controller nginx as a service run the following command.    

    kubectl expose rc nginx --port=80    

 The nginx service gets created as shown in Figure  14-32 .  

 List the services with the following command. 

    kubectl get services    

 To be able to invoke the service obtain the first cluster Ip with the following command as shown in 
Figure  14-33 .  

    kubectl get svc nginx --template={{.spec.clusterIP}}    

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

421

  Figure 14-33.    Invoking a Web Server with Curl       

 The HTML returned from the nginx application is output as shown in Figure  14-34 .    

 Invoke the web server using the cluster Ip returned, 10.0.0.99. 

    curl 10.0.0.99    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

422

      Testing the Application in a Browser 
 To invoke the service endpoint in a browser, set port forwarding from  10.0.0.99:80  endpoint to 
 localhost:80 .    

    ssh -i docker.pem -f -nNT -L 80:10.0.0.99:80 ubuntu@ec2-52-91-243-99.compute-1.amazonaws.com    

 Port forwarding gets set as shown in Figure  14-35 .  

  Figure 14-35.    Setting Port Forwarding       

  Figure 14-34.    The HTML generated by the Application       

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

423

 Invoke the nginx application in a local browser with url  http://localhost  as shown in Figure  14-36 .    

  Figure 14-36.    Invoking a Service Endpoint in a Browser       

      Scaling the Application 
  Scaling   is a common usage pattern of Replication Controller. The nginx replication controller may be scaled 
with the  kubectl scale  command. As an example, scale to 3 replicas. 

    kubectl scale rc nginx --replicas=3    

 Subsequently list the Pods. 

    kubectl get pods    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

424

  Figure 14-37.    Listing the Pods       

 Describe the service with the following command. 

    kubectl describe svc nginx    

 Three service endpoints get listed as shown in Figure  14-38 .  

  Figure 14-38.    Describing the Service       

 To be able to invoke each of the service endpoints in a browser on a local machine, set the port forwarding. 

    ssh -i docker.pem -f -nNT -L 8081:10.1.34.2:80 ubuntu@ec2-52-91-243-99.compute-1.amazonaws.com 
 ssh -i docker.pem -f -nNT -L 8082:10.1.35.2:80 ubuntu@ec2-52-91-243-99.compute-1.amazonaws.com 
 ssh -i docker.pem -f -nNT -L 8083:10.1.35.3:80 ubuntu@ec2-52-91-243-99.compute-1.amazonaws.com    

 An output of “scaled” indicates that the replication controller has been scaled. Three Pods get listed as 
shown in Figure  14-37 .  

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

425

 Port forwarding gets set as shown in Figure  14-39 .  

  Figure 14-39.    Setting port Forwarding for the additional Service Endpoints       

  Figure 14-40.    Invoking a Service Endpoint in a Browser       

 The service endpoints may be invoked in a local browser. For example the url  http://localhost:8081  
invokes one of the service endpoints as shown in Figure  14-40 .  

 

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

426

 Similarly, the url  http://localhost:8082  invokes another service endpoint as shown in Figure  14-41 .  

  Figure 14-41.    Invoking another Service Endpoint in a Browser       

 Similarly, the url  http://localhost:8083  invokes the third service endpoint as shown in Figure  14-42 .    

 



CHAPTER 14 ■ INSTALLING KUBERNETES ON A MULTI-NODE CLUSTER 

427

     Summary 
 In this chapter we installed Kubernetes on a multi-node cluster. The multi-node configuration makes 
use of flannel for networking instead of the default networking provided by Docker. First, we installed 
Kubernetes on the master node. Using the Master’s Ip Address we installed Kubernetes on a worker node, 
as a result creating a two-node cluster. As many worker nodes as required may be added using the same 
procedure. We created an application using the nginx Docker image and invoked the application on the 
command line using curl, and in a local browser using port forwarding. We also scaled the application. 
In a single-node cluster an application runs on the master node itself. In a multi-node cluster an application 
runs on both the worker nodes and the master node. This chapter concludes the book on Kubernetes 
Microservices with Docker.     

  Figure 14-42.    Invoking a Third Service Endpoint in a Browser       

 



429© Deepak Vohra 2016 
D. Vohra, Kubernetes Microservices with Docker, DOI 10.1007/978-1-4842-1907-2

   A, B 
  Apache Cassandra 

 Amazon EC2 instance , 201  
 cluster declaratively 

 CatalogKeyspace , 215, 219  
 CQL shell , 215  
 data deletion , 218  
 DROP TABLE clause , 218  
 interactive shell , 213  
 Pod , 212  
 replication controller creation , 206  
 scaling database , 211  
 service creation , 203  
 table creation , 216  
 truncate table , 218  
 volume creation , 219  

 cluster imperatively 
 replication controller creation , 225  
 replication controller deletion , 229  
 scaling database , 228  
 service creation , 227  
 service deletion , 230  

 Docker engine , 202  
 dynamic column 

specifi cation , 201  
 fl exible schema 

data model , 201  
 kubectl , 202  
 Kubernetes , 202   

  Apache Hadoop , 277  
 cluster declaratively , 278  

 interactive shell , 286  
 logs list , 284  
 MapReduceapplication    

(see  MapReduce application )  
 Pods list , 283  
 replication controller creation , 281  
 scaling , 285  
 service creation , 279  

 cluster imperatively , 307  
 interactive shell , 310  
 Pods list , 308  
 replication controller creation , 307  
 scaling , 309  
 service creation , 309  

 environment settings , 277   
  Apache HBase , 302   
  Apache Hive , 296   
  Apache Kafka , 347  

 confi guration properties , 364  
 consumer , 367  
 docker image, modifi cation , 349  
 environment settings , 348  
 interactive shell , 363  
 messages , 367  
 pod describing , 362  
 pods list , 361  
 producer , 367  
 replication controller creation , 358  
 replication controller deletion , 370  
 scaling , 368  
 service creation , 355  
 topic creation , 366   

  Apache Solr , 313  
 Admin Console , 338  
 core creation , 328  
 environment settings , 314  
 indexing documents , 329  
 interactive shell , 325  
 logs list , 323  
 pods list , 321  
 port forwarding , 337  
 replication controller creation , 318  
 replication controller describing , 322  
 scaling , 344  
 service creation , 315  
 service describing , 317  
 service endpoints , 317  
 using REST client , 332    

            Index 



■ INDEX

430

   C, D 
  Cassandra Query Language (CQL) , 215, 217   
  cbtransfer tool , 265   
  Couchbase , 231  

 cluster declaratively , 234  
 catalog2 document , 262  
 Data Buckets Tab , 255  
 default fi elds , 260  
 endpoints , 244  
 interactive shell , 264  
 JSON document , 261  
 logs list , 243  
 Pod , 234, 243  
 port forwarding , 245  
 replication controller creation , 239  
 server confi guration , 247  
 service creation , 237  
 service describing , 244  
 web console , 246  

 cluster imperatively , 266  
 Pods list , 266  
 port forwarding , 272  
 replication controller creation , 266  
 replication controller deletion , 270  
 scaling , 269  
 service creation , 268  
 web console , 272  

 environment settings , 231  
 Docker engine , 233  
 Kubernetes service , 234  
 Public IP Address , 232  
 Ubuntu instance , 233   

  Custom command 
 Args fi elds , 80  
 CMD instruction , 78–79  
 ENTRYPOINT entry , 78  
 environment setting , 77–78    

   E, F, G, H, I, J 
  Environment variables 

 Args mapping , 92  
 command mapping , 84, 89  
 defi nition , 80  
 Docker image , 83  
 ENTRYPOINT , 84    

   K, L 
  Kubernetes 

 application creation 
 cluster , 40  
 hello-world application , 48, 68  
 label , 41  

 namespace , 41  
 nodes , 39  
 Pod , 40, 46, 58  
 replication controller , 40, 43, 53, 64  
 scaling , 52, 70  
 selector , 41  
 service , 40, 45, 53, 61  
 volume , 41  

 benefi ts , 42  
 Docker 

 adding gpg key , 6  
 apt package index , 8  
 apt sources , 6  
 containers , 30–32  
 Default Package Confi guration , 12  
 docker.list fi le , 6  
 engine installation , 14–15  
 linux-image-extra package , 10  
 lxc-docker and 

lxc-docker-virtual-package , 8–9  
 message prompt , 11, 13  
 package manager , 10  
 repository verifi cation , 9  
 sudo apt-get update , 13  
 Ubuntu distribution , 7  

 environment setting , 4, 42  
 etcd , 24–25  
 installation 

 /boot directory , 16–17  
 command-line parameters , 19  
 components , 15  
 CONFIG_MEMCG_

SWAP_ENABLED setting , 19  
 directory creation , 16  
 Docker engine , 16  
 GRUB_CMDLINE_LINUX , 20–21  
 grub confi guration fi le , 22  
 kernel confi guration , 16–18  
 service proxy , 15  
 settings, updation , 22–23  
 testing , 38  
 Ubuntu Amazon EC2 instance , 22  

 JSON 
 curl command , 75  
 defi nition , 70  
 hello-rc.json fi le , 73  
 hello-world replication controller , 73–74  
 hello-world-service.json fi le , 70–72  
 HTML output , 76  
 replication controller defi nition fi le , 72  

 kubectl , 35  
 Kubernetes master , 28  
 local machine solutions , 3  
 nodes , 36  
 service proxy , 29, 35    



■ INDEX

431

   M, N 
  MapReduce application , 287  

 hdfs command , 287  
 input directory , 288  
 vi editor , 288  
 wordcount application , 292, 295  
 wq command , 290   

  Master node 
 bootstrap Docker , 402  
 etcd set up , 403  
 Flannel set up , 404  
 Kubernetes , 409, 411  
 testing , 412   

  MongoDB database , 167  
 cluster declaratively , 169  

 adding documents , 184  
 capped collection , 183  
 catalog collection , 183  
 database creation , 182  
 Docker , 168  
 drop command , 188  
 exit command , 188  
 fi nding documents , 186  
 host port , 190  
 interactive shell , 180  
 Kubernetes Pod , 169  
 logs list , 178  
 Mongo shell , 182  
 replication controller creation , 173  
 replication controller deletion , 189  
 scaling , 189  
 service defi nition fi le , 169  
 service deletion , 190  
 Ubuntu instance , 168  
 volume    (see  Volume )  

 cluster imperatively , 194  
 logs list , 196  
 Pods , 195  
 replication controller creation , 194  
 replication controller deletion , 200  
 scaling , 198  
 service creation , 197  

 environment settings , 167   
  Multi-node cluster , 399  

 components , 400  
 environment settings , 400  
 execution , 419  
 exposing , 420  
 masternode    (see  Master node )  
 scaling , 423  

 testing , 422  
 workernode    (see  Worker node )   

  MySQL database 
 database table , 110  
 environment setting , 98  
 interactive shell , 107, 111  
 logs , 104–106  
 MySQL CLI , 110–111  
 Pods , 104  
 replication controller , 103, 114  
 scaling , 113  
 service , 99, 106–107    

   O 
  Oracle database , 141  

 environment settings , 141  
 instance declaratively , 148  

 database connection , 160  
 exit command , 163  
 interactive shell , 159  
 Pod creation , 148  
 replication controller creation , 153  
 replication level , 156  
 scaling , 158  
 service creation , 150  
 table creation , 162  
 user creation , 161  

 instance imperatively , 142  
 logs list , 144  
 replication controller creation , 143  
 replication controller deletion , 147  
 scaling , 147  
 service creation , 145  
 service deletion , 147    

   P, Q, R 
  Pod 

 application types , 376  
 docker containers , 383  
 environment settings , 377  
 Hello world application 

 browser , 389  
 command line , 385  

 interactive shell , 386  
 lists , 382  
 number of containers , 376  
 overview , 375  
 port forwarding , 387  
 PostgreSQL command , 387  



■ INDEX

432

 replication controller creation , 380  
 scaling    (see  Scaling )  
 service creation , 378  
 service describing , 379, 384   

  PostgreSQL database , 115  
 cluster declaratively , 117  

 interactive shell , 123  
 logs list , 128  
 Pods , 123  
 psql CLI Shell , 125–126  
 replication controller creation , 119  
 replication controller deletion , 130  
 scaling , 127  
 service creation , 117  
 stop command , 131  
 table creation , 125  

 cluster imperatively , 131  
 Docker containers , 134  
 Pods , 132  
 psql shell , 135  
 replication controller creation , 132  
 replication 

controller deletion , 138  
 scaling , 137  
 service creation , 133  
 stop command , 139  
 table creation , 134  

 environment settings , 115  
 Docker engine , 116  
 Kubernetes service , 117  
 Ubuntu instance , 116    

   S, T, U 
  Scaling 

 Docker containers , 391  
 Hello world application 

 browser , 393  
 command line , 394  

 replication controller deletion , 396  
 service describing , 392  
 3 replicas , 390    

   V 
  Volume 

 confi guration , 177  
 defi nition , 176  
 empty directory , 178  
 types , 176  
 usages , 176    

   W, X, Y 
  Worker node , 412  

 fl annel set up , 413  
 Kubernetes , 418  
 MASTER_IP , 412  
 service proxy , 419  
 testing , 419    

   Z 
  Zookeeper server , 349          

Pod (cont.)


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Part I: Getting Started
	Chapter 1: Installing Kubernetes Using Docker
	Setting the Environment
	Installing Docker
	Installing Kubernetes
	Starting etcd
	Starting Kubernetes Master
	Starting Service Proxy
	Listing the Kubernetes Docker Containers
	Installing kubectl
	Listing Services
	Listing Nodes
	Testing the Kubernetes Installation
	Summary

	Chapter 2: Hello Kubernetes
	Overview
	What Is a Node?
	What Is a Cluster?
	What Is a Pod?
	What Is a Service?
	What Is a Replication Controller?
	What Is a Label?
	What Is a Selector?
	What Is a Name?
	What Is a Namespace?
	What Is a Volume?
	Why Kubernetes?

	Setting the Environment
	Creating an Application Imperatively
	Creating a Service
	Describing a Pod
	Invoking the Hello-World Application
	Scaling the Application
	Deleting a Replication Controller
	Deleting a Service

	Creating an Application Declaratively
	Creating a Pod Definition
	Creating a Service Definition
	Creating a Replication Controller Definition
	Invoking the Hello-World Application
	Scaling the Application

	Using JSON for the Resource Definitions
	Summary

	Chapter 3: Using Custom Commands and Environment Variables
	Setting the Environment
	The ENTRYPOINT and CMD Instructions
	The Command and Args Fields in a Pod Definition
	Environment Variables
	Using the Default ENTRYPOINT and CMD from a Docker Image
	Overriding Both the ENTRYPOINT and CMD
	Specifying both the Executable and the Parameters in the Command Mapping
	Specifying Both the Executable and the Parameters in the Args Mapping
	Summary


	Part II: Relational Databases
	Chapter 4: Using MySQL Database
	Setting the Environment
	Creating a Service
	Creating a Replication Controller
	Listing the Pods
	Listing Logs
	Describing the Service
	Starting an Interactive Shell
	Starting the MySQL CLI
	Creating a Database Table
	Exiting the MySQL CLI and Interactive Shell
	Scaling the Replicas
	Deleting the Replication Controller
	Summary

	Chapter 5: Using PostgreSQL Database
	Setting the Environment
	Creating a PostgreSQL Cluster Declaratively
	Creating a Service
	Creating a Replication Controller
	Getting the Pods
	Starting an Interactive Command Shell
	Starting the PostgreSQL SQL Terminal
	Creating a Database Table
	Exiting the Interactive Command Shell
	Scaling the PostgreSQL Cluster
	Listing the Logs
	Deleting the Replication Controller
	Stopping the Service

	Creating a PostgreSQL Cluster Imperatively
	Creating a Replication Controller
	Getting the Pods
	Creating a Service
	Creating a Database Table
	Scaling the PostgreSQL Cluster
	Deleting the Replication Controller
	Stopping the Service

	Summary

	Chapter 6: Using Oracle Database
	Setting the Environment
	Creating an Oracle Database Instance Imperatively
	Listing Logs
	Creating a Service
	Scaling the Database
	Deleting the Replication Controller and Service

	Creating an Oracle Database Instance Declaratively
	Creating a Pod
	Creating a Service
	Creating a Replication Controller
	Keeping the Replication Level
	Scaling the Database
	Starting the Interactive Shell
	Connecting to Database
	Creating a User
	Creating a Database Table
	Exiting the Interactive Shell

	Summary


	Part III: NoSQL Database
	Chapter 7: Using MongoDB Database
	Setting the Environment
	Creating a MongoDB Cluster Declaratively
	Creating a Service
	Creating a Replication Controller
	Creating a Volume
	Listing the Logs
	Starting the Interactive Shell for Docker Container
	Starting a Mongo Shell
	Creating a Database
	Creating a Collection
	Adding Documents
	Finding Documents
	Finding a Single Document
	Finding Specific Fields in a Single Document
	Dropping a Collection
	Exiting Mongo Shell and Interactive Shell
	Scaling the Cluster
	Deleting the Replication Controller
	Deleting the Service
	Using a Host Port

	Creating a MongoDB Cluster Imperatively
	Creating a Replication Controller
	Listing the Pods
	Listing the Logs
	Creating a Service
	Scaling the Cluster
	Deleting the Service and Replication Controller

	Summary

	Chapter 8: Using Apache Cassandra Database
	Setting the Environment
	Creating a Cassandra Cluster Declaratively
	Creating a Service
	Creating a Replication Controller
	Scaling the Database
	Describing the Pod
	Starting an Interactive Shell
	Starting the CQL Shell
	Creating a Keyspace
	Altering a Keyspace
	Using a Keyspace
	Creating a Table
	Deleting from a Table
	Truncating a Table
	Dropping a Table and Keyspace
	Creating a Volume

	Creating a Cassandra Cluster Imperatively
	Creating a Replication Controller
	Creating a Service
	Scaling the Database
	Deleting the Replication Controller and Service

	Summary

	Chapter 9: Using Couchbase
	Setting the Environment
	Creating a Couchbase Cluster Declaratively
	Creating a Pod
	Creating a Service
	Creating a Replication Controller
	Listing the Pods
	Listing the Logs
	Describing the Service
	Listing the Endpoints
	Setting Port Forwarding
	Logging into Couchbase Web Console
	Configuring Couchbase Server
	Adding Documents
	Starting an Interactive Shell
	Using the cbtransfer Tool

	Creating a Couchbase Cluster Imperatively
	Creating a Replication Controller
	Listing the Pods
	Creating a Service
	Scaling the Cluster
	Keeping the Replication Level
	Setting Port Forwarding
	Logging in to Couchbase Admin Console

	Summary


	Part IV: Apache Hadoop Ecosystem
	Chapter 10: Using Apache Hadoop Ecosystem
	Setting the Environment
	Creating an Apache Hadoop Cluster Declaratively
	Creating a Service
	Creating a Replication Controller
	Listing the Pods
	Listing Logs
	Scaling a Cluster
	Starting an Interactive Shell
	Running a MapReduce Application

	Running Hive
	Running HBase
	Deleting the Replication Controller and Service
	Creating an Apache Hadoop Cluster Imperatively
	Creating a Replication Controller
	Listing the Pods
	Scaling a Cluster
	Creating a Service
	Starting an Interactive Shell

	Summary

	Chapter 11: Using Apache Solr
	Setting the Environment
	Creating a Service
	Listing Service Endpoints
	Describing the Service
	Creating a Replication Controller
	Listing the Pods
	Describing a Replication Controller
	Listing the Logs
	Starting an Interactive Shell
	Creating a Solr Core
	Indexing Documents
	Accessing Solr on Command Line with a REST Client
	Setting Port Forwarding
	Accessing Solr in Admin Console
	Scaling the Cluster
	Summary

	Chapter 12: Using Apache Kafka
	Setting the Environment
	Modifying the Docker Image
	Creating a Service
	Creating a Replication Controller
	Listing the Pods
	Describing a Pod
	Starting an Interactive Shell
	Starting the Kafka Server
	Creating a Topic
	Starting a Kafka Producer
	Starting a Kafka Consumer
	Producing and Consuming Messages
	Scaling the Cluster
	Deleting Replication Controller and Service
	Summary


	Part V: Multi Containers and Nodes
	Chapter 13: Creating a Multi-Container Pod
	How to find Number of Containers in a Pod?
	Types of Applications Using a Multi-Container Pod
	Setting the Environment
	Creating a Service
	Describing a Service
	Creating a Replication Container
	Listing the Pods
	Listing the Docker Containers
	Describing the Service after Creating Replication Controller
	Invoking the Hello World Application on Command Line
	Starting the Interactive Shell
	Starting PostgreSQL Shell
	Setting Port Forwarding
	Opening the Hello World Application in a Browser
	Scaling the Cluster
	Listing the Docker Containers
	Describing the Service after Scaling
	Setting Port Forwarding
	Opening the Hello World Application in a Browser
	Invoking the Hello World Application from Command Line
	Deleting the Replication Controller
	Deleting the Service

	Summary

	Chapter 14: Installing Kubernetes on a Multi-Node Cluster
	Components of a Multi-Node Cluster
	Setting the Environment
	Installing the Master Node
	Setting Up Flanneld and etcd
	Setting up Bootstrap Instance of Docker
	Setting Up etcd
	Setting Up Flannel

	Starting the Kubernetes Master
	Running the Service Proxy

	Testing the One-Node Cluster
	Adding a Worker Node
	Exporting the Master IP
	Setting Up Flanneld
	Starting Up Kubernetes on Worker Node
	Running the Service Proxy

	Testing the Kubernetes Cluster
	Running an Application on the Cluster
	Exposing the Application as a Service
	Testing the Application in a Browser
	Scaling the Application
	Summary


	Index

