Learn Docker -
Fundamentals
of Docker 18.x

Everything you need to know about containerizing your
applications and running them in production

L

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Learn Docker — Fundamentals of Docker 18.x

Everything you need to know about containerizing your applications and running
them in production

Gabriel N. Schenker

pythontesting

Packt)

BIRMINGHAM - MUMBAI

qg 6089740 21734177 IT http://t.cn/RDIAj5D

IL.earn Docker — Fundamentals of
Docker 18.x

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Ronn Kurien
Technical Editor: Swathy Mohan

Copy Editor: Safis Editing

Project Coordinator: Judie Jose
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Tom Scaria

Production Coordinator: Nilesh Mohite

First published: April 2018
Production reference: 1240418

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-702-7

www . packtpub.com

pythontesting

http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

pythontesting

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Contributors

pythontesting

About the author

Gabriel N. Schenker has more than 25 years of experience as an independent
consultant, architect, leader, trainer, mentor, and developer. Currently, Gabriel
works as Senior Curriculum Developer at Confluent after coming from a similar
position at Docker. Gabriel has a Ph.D. in Physics, and he is a Docker Captain, a
Certified Docker Associate, and an ASP Insider. When not working, Gabriel
enjoys time with his wonderful wife Veronicah and his children.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

About the reviewer

Peter McKee is a Software Architect and Senior Software Engineer at Docker,
Inc. He leads the technical team that delivers the Docker Success Center. He's
been leading and mentoring teams for more than 20 years. When not building
things with software, he spends his time with his wife and seven kids in beautiful
Austin, TX.

pythontesting

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Table of Contents

pythontesting

Title Page
Copyright and Credits

Learn Docker – Fundamentals of Docker 18.x
Packt Upsell

Why subscribe?

PacktPub.com
Contributors

About the author
About the reviewer

Packt is searching for authors like you
Preface

Who this book is for

What this book covers
To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch

Reviews
1. what Are containers and Why Should I Use Them?
Technical requirements
What are containers?
Why are containers important?
What's the benefit for me or for my company?

The Moby project
Docker products

Docker CE

Docker EE
The container ecosystem
Container architecture
Summary
Questions

Further reading

qg 6089740 21734177 IT http://t.cn/RDIAj5D

2. Setting up a Working Environment
Technical requirements
The Linux command shell

PowerShell for Windows
Using a package manager

Installing Homebrew on a Mac
Installing Chocolatey on Windows
Choosing a code editor

Docker Toolbox
Docker for Mac and Docker for Windows

Installing Docker for Mac
Installing Docker for Windows

Using docker-machine on Windows with Hyper-V
Minikube

Installing Minikube on Mac and Windows
Testing Minikube and kubectl

Summary

Questions

Further reading

pythontesting

3. Working with Containers
Technical requirements

Running the first container
Starting, stopping, and removing containers

Running a random quotes container
Listing containers
Stopping and starting containers
Removing containers

Inspecting containers

Exec into a running container

Attaching to a running container
Retrieving container logs

Logging drivers
Using a container-specific logging driver

Advanced topic – changing the default logging driver
Anatomy of containers

Architecture
Namespaces
Control groups (cgroups)

Union filesystem (UnionFS)
Container plumbing

Runc
Containerd
Summary
Questions

Further reading

qg 6089740 21734177

4. Creating and Managing Container Images
What are images?

The layered filesystem
The writable container layer
Copy-on-write

Graph drivers
Creating images

Interactive image creation
Using Dockerfiles

The FROM keyword
The RUN keyword

The COPY and ADD keywords

The WORKDIR keyword

The CMD and ENTRYPOINT keywords

A complex Dockerfile
Building an image

Multistep builds

Dockerfile best practices

Saving and loading images
Sharing or shipping images

Tagging an image

Image namespaces

Official images

Pushing images to a registry
Summary
Questions

Further reading

pythontesting

IT

http://t.cn/RDIAJS5D

5. Dpata Volumes and System Management

Technical requirements
Creating and mounting data volumes

Modifying the container layer
Creating volumes
Mounting a volume
Removing volumes
Sharing data between containers
Using host volumes
Defining volumes in images
Obtaining Docker system information

Listing resource consumption
Pruning unused resources

Pruning containers

Pruning images

Pruning volumes

Pruning networks

Pruning everything
Consuming Docker system events
Summary
Questions

Further reading

qg 6089740 21734177 IT http://t.cn/RDIAj5D

6. pistributed Application Architecture
What is a distributed application architecture?

Defining the terminology
Patterns and best practices

Loosely coupled components
Stateful versus stateless
Service discovery

Routing

Load balancing
Defensive programming

Retries
Logging
Error handling
Redundancy
Health checks

Circuit breaker pattern
Running in production

Logging
Tracing

Monitoring
Application updates

Rolling updates
Blue-green deployments
Canary releases
Irreversible data changes
Rollback

Summary

Questions

Further reading

pythontesting

7. Single-Host Networking
Technical requirements
The container network model
Network firewalling
The bridge network
The host network
The null network
Running in an existing network namespace
Port management
Summary
Questions

Further reading

qg 6089740 21734177 IT http://t.cn/RDIAj5D

8. Dpocker Compose
Technical requirements
Demystifying declarative versus imperative
Running a multi-service app
Scaling a service
Building and pushing an application
Summary
Questions

Further reading

pythontesting

9. Orchestrators

What are orchestrators and why do we need them?
The tasks of an orchestrator

Reconciling the desired state
Replicated and global services
Service discovery

Routing

Load balancing

Scaling

Self-healing

Zero downtime deployments

Affinity and location awareness
Security

Secure communication and cryptographic node identity
Secure networks and network policies

Role-based access control (RBAC)

Secrets

Content trust

Reverse uptime

Introspection
Overview of popular orchestrators

Kubernetes
Docker Swarm
Apache Mesos and Marathon
Amazon ECS
Microsoft ACS
Q;
Summary
Questions

Further reading

qg 6089740 21734177

10. Introduction to Docker Swarm

Architecture
Swarm nodes

Swarm managers

Swarm workers
O0;
Stacks, services, and tasks

Services
Task
Stack

Multi-host networking
Creating a Docker Swarm

Creating a local single node swarm
Creating a local swarm in VirtualBox or Hyper-V
Using Play with Docker (PWD) to generate a Swarm

Creating a Docker Swarm in the cloud
Deploying a first application

Creating a service
Inspecting the service and its tasks
Logs of a service
Reconciling the desired state
Deleting a service or a stack
Deploying a multi-service stack

The swarm routing mesh

Summary

Questions

Further reading

pythontesting

IT

http://t.cn/RDIAJS5D

11. zero powntime Deployments and Secrets

Technical requirements
Zero downtime deployment

Popular deployment strategies
Rolling updates

Health checks

Rollback

Blue–green deployments

Canary releases
Secrets

Creating secrets
Using a secret
Simulating secrets in a development environment
Secrets and legacy applications
Updating secrets
Summary
Questions

Further reading

qg 6089740 21734177 IT http://t.cn/RDIAj5D

12. 1Introduction to Kubernetes
Technical requirements
Architecture
Kubernetes master nodes
Cluster nodes
Introduction to Minikube

Kubernetes support in Docker for Desktop
Pods

Comparing Docker container and Kubernetes pod networking
Sharing the network namespace

Pod life cycle

Pod specification

Pods and volumes
Kubernetes ReplicaSet

ReplicaSet specification
Self-healing

Kubernetes deployment

Kubernetes service

Context-based routing

Comparing SwarmKit with Kubernetes

Summary

Questions

Further reading

pythontesting

13. Deploying, Updating, and Securing an Application with Kubernetes

Technical requirements
Deploying a first application

Deploying the web component
Deploying the database

Streamlining the deployment
Zero downtime deployments

Rolling updates

Blue–green deployment
Kubernetes secrets

Manually defining secrets

Creating secrets with kubectl

Using secrets in a pod

Secret values in environment variables
Summary
Questions

Further reading

qg 6089740 21734177 IT http://t.cn/RDIAj5D

14. Running a Containerized App in the Cloud

Technical requirements
Deploying our application into AWS ECS

Introduction to ECS

Creating a Fargate ECS cluster of AWS
Authoring a task definition

Running a task in ECS

Modifying the task definition

Adding the database component to the application
Deploying and using Docker EE on AWS

Provisioning the infrastructure

Installing Docker

Installing Docker UCP

Remote admin the UCP cluster

Deploying to Docker Swarm

Deploying to Kubernetes
A short peek into Azure’s container offerings
A short peek into Google’s container offerings
Summary
Questions

Further reading
Assessment

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

© 00 N O 0 b~ W N B

Chapter

[N
(o]

Chapter

=
=

Chapter

[IEY
N

Chapter
Chapter 13

Chapter 14
Other Books You May Enjoy

Leave a review - let other readers know what you think

pythontesting

Preface

Docker containers have revolutionized the software supply chain in small and
big enterprises. Never before has a new technology so rapidly penetrated the top
500 enterprises worldwide. Companies that embrace containers and containerize
their traditional mission-critical applications have reported savings of at least
50% in total maintenance costs and a reduction of 90% (or more) in deploying
new versions of those applications. Furthermore, they are benefiting from
increased security by using containers rather than running applications outside
containers.

This book starts from scratch, introducing you to Docker fundamentals and
setting up an environment to work with it. Then, we delve into concepts such as
Docker containers, Docker images, and Docker Compose. We will also cover the
concepts of deployment, orchestration, networking, and security. Furthermore,
we explain Docker functionalities on public clouds, such as AWS.

By the end of this book, you will have hands-on experience working with
Docker containers and orchestrators, such as SwarmKit and Kubernetes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Who this book is for

This book is targeted at system administrators, operations engineers, DevOps
engineers, and developers or stakeholders who are interested in getting started
with Docker from scratch. No prior experience with Docker containers is
required.

pythontesting

What this book covers

chapter 1, What Are Containers and Why Should I Use Them?, focuses on the
software supply chain and the friction within it. It then presents containers as a
means to reduce this friction and add enterprise-grade security on top of it. In
this chapter, we also look into how containers and the ecosystem around them
are assembled. We specifically point out the distinction between the upstream
OSS components (Moby) that form the building blocks of the downstream
products of Docker and other vendors.

chapter 2, Setting up a Working Environment, discusses in detail how to set up an
ideal environment for developers, DevOps engineers, and operators that can be
used when working with Docker containers.

chapter 3, Working with Containers, teaches how start, stop, and remove
containers. The chapter also teaches how to inspect containers to retrieve
additional metadata. Furthermore, it introduces how to run additional processes
and how to attach to the main process in an already running container. It also
shows how to retrieve logging information from a container that is produced by
the processes running inside it.

chapter 4, Creating and Managing Container Images, introduces the different
ways to create container images, which serve as templates for containers. It
introduces the inner structure of an image and how it is built.

chapter 5, Data Volumes and System Management, introduces data volumes that
can be used by stateful components running in containers. The chapter also
introduces system-level commands that are used to gather information about
Docker and the underlying OS, as well as commands to clean the system from
orphaned resources. Finally, it introduces the system events generated by the
Docker engine.

chapter 6, Distributed Application Architecture, introduces the concept of a
distributed application architecture and discusses the various patterns and best
practices that are required to run a distributed application successfully. Finally, it
discusses the additional requirements that need to be fulfilled to run such an

qg 6089740 21734177 IT http://t.cn/RDIAj5D

application in production.

chapter 7, Single-Host Networking, introduces the Docker container networking
model and its single-host implementation in the form of the bridge network. The
chapter introduces the concept of software-defined networks (SDNs) and how
they are used to secure containerized applications. Finally, it introduces how
container ports can be opened to the public and thus how to make containerized
components accessible from the outside world.

chapter 8, Docker Compose, introduces the concept of an application consisting of
multiple services, each running in a container, and how Docker Compose allows
us to easily build, run, and scale such an application using a declarative
approach.

chapter 9, Orchestrators, introduces the concept of orchestrators. It teaches why
orchestrators are needed and how they work. The chapter also provides an
overview of the most popular orchestrators and explores a few of their pros and
cons.

chapter 10, Introduction to Docker Swarm, introduces Docker's native
orchestrator called SwarmKit. It elaborates on all the concepts and objects
SwarmKit uses to deploy and run a distributed, resilient, robust, and highly
available application in a cluster on-premise, or in the cloud. The chapter also
introduces how SwarmKit ensures secure applications using SDNs to isolate
containers and secrets to protect sensitive information.

chapter 11, Zero Downtime Deployments and Secrets, teaches how to deploy
services or applications onto a Docker swarm with zero downtime and automatic
rollback capabilities. It also introduces secrets as a means to protect sensitive
information.

chapter 12, Introduction to Kubernetes, introduces the currently most popular
container orchestrator. It introduces the core Kubernetes objects that are used to
define and run a distributed, resilient, robust, and highly available application in
a cluster. Finally, it introduces Minikube as a way to locally deploy a Kubernetes
application and also the integration of Kubernetes with Docker for Mac and
Docker for Windows.

pythontesting

chapter 13, Deploying, Updating, and Securing an Application with
Kubernetes, teaches how to deploy, update, and scale applications into a
Kubernetes cluster. It also explains how zero-downtime deployments are
achieved to enable disruption free updates and rollbacks of mission-critical
applications. This chapter also introduces Kubernetes secrets as a means to
configure services and protect sensitive data.

chapter 14, Running a Containerized App in the Cloud, gives an overview over
some of the most popular ways of running containerized applications in the
cloud. We have a closer look to what the most popular cloud vendor, AWS,
offers in this regard. We include self-hosting and hosted solutions and discuss
their pros and cons. Offerings of other vendors, such as Microsoft Azure and
Google Cloud Engine, are also briefly discussed.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

To get the most out of this book

Ideally you have access to a laptop or personal computer with Windows 10
Professional or a recent version of Mac OS X installed. A computer with any
popular Linux OS installed works too. If you're on a Mac you should install
Docker for Mac and if you're on Windows then install Docker for Windows. You
can download them from here: https://www.docker.com/community-edition

If you are on an older version of Windows or are using Windows 10 Home
edition, then you should install Docker Toolbox. You can find the Docker
Toolbox here: https://docs.docker.com/toolbox/toolbox_install windows/

On the Mac, use the Terminal application, and on Windows, use a PowerShell
console to try out the commands you will be learning. You also need a recent
version of a browser such as Google Chrome, Safari or Internet Explorer. Of
course you will need internet access to download tools and container images that
we are going to use and explore in this book.

pythontesting

https://www.docker.com/community-edition
https://docs.docker.com/toolbox/toolbox_install_windows/

Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.con/fundame
ntalsofdocker/labs. If there's an update to the code, it will be updated on the
existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/fundamentalsofdocker/labs
https://github.com/PacktPublishing/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it from https://www.packtpub.com/sites/default/f

iles/downloads/LearnDockerFundamentalsofDocker18x_ColorImages.pdf.

pythontesting

https://www.packtpub.com/sites/default/files/downloads/LearnDockerFundamentalsofDocker18x_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "The content of each layer is mapped to a special
folder on the host system, which is usually a subfolder of /var/1ib/dockers."

A block of code is set as follows:

COPY . /app

COPY ./web /app/web

COPY sample.txt /data/my-sample.txt

ADD sample.tar /app/bin/

ADD http://example.com/sample.txt /data/

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

FROM python:2.7

RUN mkdir -p /app

WORKDIR /app

COPY ./requirements.txt /app/

RUN pip install -r requirements.txt
CMD ["python", "main.py"]

Any command-line input or output is written as follows:

$ mkdir ~/FundamentalsOfDocker
$ cd ~/FundamentalsOfDocker

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

pythontesting

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

What Are Containers and Why
Should I Use Them?

This first chapter of this book will introduce you to the world of containers and
their orchestration. The book starts from the beginning, assuming no prior
knowledge in the area of containers, and will give you a very practical
introduction into the topic.

In this chapter, we are focusing on the software supply chain and the friction
within it. We then present containers as a means to reduce this friction and add
enterprise-grade security on top of it. In this chapter, we also look into how
containers and the ecosystem around them are assembled. We specifically point
out the distinction between the upstream Operations Support System (OSS)
components, united under the code name Moby, that form the building blocks of
the downstream products of Docker and other vendors.

The chapter covers the following topics:

What are containers?

Why are containers important?

What's the benefit for me or for my company?
The Moby project

Docker products

The container ecosystem

Container architecture

After completing this module, you will be able to:

e Explain in a few simple sentences to an interested layman what containers
are, using an analogy such as physical containers

¢ Justify to an interested layman why containers are so important, using an
analogy such as physical containers versus traditional shipping, or
apartment homes versus single family homes, and so on

e Name at least four upstream open source components that are used by the
Docker products, such as Docker for Mac/Windows

pythontesting

¢ Identify at least three Docker products

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

This chapter is a theoretical introduction into the topic. Therefore, there are no
special technical requirements for this chapter.

pythontesting

What are containers?

A software container is a pretty abstract thing and thus it might help if we start
with an analogy that should be pretty familiar to most of the readers. The
analogy is a shipping container in the transportation industry. Throughout
history, people have been transporting goods from one location to another by
various means. Before the invention of the wheel, goods would most probably
have been transported in bags, baskets, or chests on the shoulders of the humans
themselves, or they might have used animals such as donkeys, camels, or
elephants to transport them.

With the invention of the wheel, transportation became a bit more efficient as
humans would built roads on which they could move their carts along. Many
more goods could be transported at a time. When we then introduced the first
steam-driven machines, and later gasoline driven engines, transportation became
even more powerful. We now transport huge amounts of goods in trains, ships,
and trucks. At the same time, the type of goods became more and more diverse,
and sometimes complex to handle.

In all these thousands of years, one thing did not change though, and that was the
necessity to unload the goods at the target location and maybe load them onto
another means of transportation. Take, for example, a farmer bringing a cart full
of apples to a central train station where the apples are then loaded onto a train,
together with all the apples from many other farmers. Or think of a winemaker
bringing his barrels of wine with a truck to the port where they are unloaded, and
then transferred to a ship that will transport the barrels overseas.

This unloading from one means of transportation and loading onto another
means of transportation was a really complex and tedious process. Every type of
good was packaged in its own way and thus had to be handled in its own way.
Also, loose goods risked being stolen by unethical workers, or goods could be
damaged in the process.

Then, there came the container, and it totally revolutionized the transportation
industry. The container is just a metallic box with standardized dimensions. The

qg 6089740 21734177 IT http://t.cn/RDIAj5D

length, width, and height of each container is the same. This is a very important
point. Without the world agreeing on a standard size, the whole container thing
would not have been as successful as it is now.

Now, with standardized containers, companies who want to have their goods
transported from A to B package those goods into these containers. Then, they
call a shipper which comes with a standardized means for transportation. This
can be a truck that can load a container or a train whose wagons can each
transport one or several containers. Finally, we have ships that are specialized in
transporting huge amounts of containers. The shippers never need to unpack and
repackage goods. For a shipper, a container is a black box and they are not
interested in what is in it nor should they care in most cases. It is just a big iron
box with standard dimensions. The packaging of goods into containers is now
fully delegated to the parties that want to have their goods shipped, and they
should know best on how to handle and package those goods.

Since all containers have the same standardized shape and dimensions, the
shippers can use standardized tools to handle containers, that is, cranes that
unload containers, say from a train or a truck, and load them onto a ship or vice
versa. One type of crane is enough to handle all the containers that come along
over time. Also, the means of transportation can be standardized, such as
container ships, trucks, and trains.

Because of all this standardization, all the processes in and around shipping
goods could also be standardized and thus made much more efficient than they
were before the age of containers.

I think by now you should have a good understanding of why shipping
containers are so important and why they revolutionized the whole transportation
industry. I chose this analogy purposefully, since the software containers that we
are going to introduce here fulfill the exact same role in the so-called software
supply chain as shipping containers do in the supply chain of physical goods.

In the old days, developers would develop a new application. Once that
application was completed in the eyes of the developers, they would hand this
application over to the operations engineers that were then supposed to install it
on the production servers and get it running. If the operations engineers were
lucky, they even got a somewhat accurate document with installation instructions

pythontesting

from the developers. So far so good, and life was easy.

But things got a bit out of hand when in an enterprise, there were many teams of
developers that created quite different types of applications, yet all needed to be
installed on the same production servers and kept running there. Usually, each
application has some external dependencies such as which framework it was
built on or what libraries it uses and so on. Sometimes, two applications would
use the same framework but in different versions that might or might not be
compatible between each other. Our operations engineer's life became much
harder over time. They had to be really creative on how they could load their
ship, which is of course their servers with different applications without breaking
something.

Installing a new version of a certain application was now a complex project on
its own and often needed months of planning and testing. In other words, there
was a lot of friction in the software supply chain. But these days, companies rely
more and more on software and the release cycles become shorter and shorter.
We cannot afford anymore to just have a new release maybe twice a year.
Applications need to be updated in a matter of weeks or days, or sometimes even
multiple times per day. Companies that do not comply risk going out of business
due to the lack of agility. So, what's the solution?

A first approach was to use virtual machines (VMs). Instead of running
multiple applications all on the same server, companies would package and run a
single application per VM. With it, the compatibility problems were gone and
life seemed good again. Unfortunately, the happiness didn't last for long. VMs
are pretty heavy beasts on their own since they all contain a full-blown OS such
as Linux or Windows Server and all that for just a single application. This is as if
in the transportation industry you would use a gigantic ship just to transport a
truck load of bananas. What a waste. That can never be profitable.

The ultimate solution to the problem was to provide something much more
lightweight than VMs but also able to perfectly encapsulate the goods it needed
to transport. Here, the goods are the actual application written by our developers
plus (and this is important) all the external dependencies of the application, such
as framework, libraries, configurations, and more. This holy grail of a software
packaging mechanism was the Docker container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Developers use Docker containers to package their applications, frameworks,
and libraries into them, and then they ship those containers to the testers or to the
operations engineers. For the testers and operations engineers, the container is
just a black box. It is a standardized black box, though. All containers, no matter
what application runs inside them, can be treated equally. The engineers know
that if any container runs on their servers, then any other containers should run
too. And this is actually true, apart from some edge cases which always exist.

Thus, Docker containers are a means to package applications and their
dependencies in a standardized way. Docker then coined the phrase—Build, ship
and run anywhere.

pythontesting

Why are containers important?

These days, the time between new releases of an application become shorter and
shorter, yet the software itself doesn't become any simpler. On the contrary,
software projects increase in complexity. Thus, we need a way to tame the beast
and simplify the software supply chain.

We also hear every day how much more cyber crimes are on the rise. Many well-
known companies are affected by security breaches. Highly sensitive customer
data gets stolen, such as social security numbers, credit card information, and
more. But not only customer data is compromised, sensitive company secrets are
also stolen.

Containers can help in many ways. First of all, Gartner has found in a recent
report that applications running in a container are more secure than their
counterparts not running in a container. Containers use Linux security primitives
such as Linux kernel namespaces to sandbox different applications running on
the same computers and control groups (cgroups), to avoid the noisy neighbor
problem where one bad application is using all available resources of a server
and starving all other applications.

Due to the fact that container images are immutable, it is easy to have them
scanned for known vulnerabilities and exposures, and in doing so, increase the
overall security of our applications.

Another way we can make our software supply chain more secure when using
containers is to use content trust. Content trust basically ensures that the author
of a container image is who they pretend to be and that the consumer of the
container image has a guarantee that the image has not been tampered with in
transit. The latter is known as a man-in-the-middle (MITM) attack.

All that I have just said is of course technically also possible without using
containers, but since containers introduce a globally accepted standard, it makes
it so much easier to implement those best practices and enforce them.

OK, but security is not the only reason why containers are important. There are

qg 6089740 21734177 IT http://t.cn/RDIAj5D

other reasons:

One of them is the fact that containers make it easy to simulate a production-like
environment, even on a developer's laptop. If we can containerize any
application, then we can also containerize, say, a database such as Oracle or MS
SQL Server. Now, everyone who has ever had to install an Oracle database on a
computer knows that this is not the easiest thing to do and it takes a lot of space
away on your computer. You wouldn't want to do that to your development
laptop just to test whether the application you developed really works end to end.
With containers at hand, I can run a full-blown relational database in a container
as easily as saying 1, 2, 3. And when I'm done with testing, I can just stop and
delete the container and the database is gone without leaving a trace on my
computer.

Since containers are very lean compared to VMs, it is not uncommon to have
many containers running at the same time on a developer's laptop without
overwhelming the laptop.

A third reason why containers are important is that operators can

finally concentrate on what they are really good at, provisioning infrastructure,
and running and monitoring applications in production. When the applications
they have to run on a production system are all containerized, then operators can
start to standardize their infrastructure. Every server becomes just another
Docker host. No special libraries of frameworks need to be installed on those
servers, just an OS and a container runtime such as Docker.

Also, the operators do not have to have any intimate knowledge about the
internals of the applications anymore since those applications run self-contained
in containers that ought to look like black boxes to the operations engineers,
similar to how the shipping containers look to the personnel in the transportation
industry.

pythontesting

What's the benefit for me or for my
company?

Somebody once said that today, every company of a certain size has to
acknowledge that they need to be a software company. Software runs all
businesses, period. As every company becomes a software company, there is a
need to establish a software supply chain. For the company to remain
competitive, their software supply chain has to be secure and efficient.
Efficiency can be achieved through thorough automation and standardization.
But in all three areas, security, automation, and standardization, containers have
shown to shine. Large and well-known enterprises have reported that when
containerizing existing legacy applications (many call them traditional
applications) and establishing a fully automated software supply chain based on
containers, they can reduce the cost used for maintenance of those mission-
critical applications by a factor of 50 to 60% and they can reduce the time
between new releases of these traditional applications by up to 90%.

That said, the adoption of container technology saves these companies a lot of
money, and at the same time it speeds up the development process and reduces
the time to market.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The Moby project

Originally, when the company Docker introduced Docker containers, everything
was open source. Docker didn't have any commercial products at this time. The
Docker engine which the company developed was a monolithic piece of
software. It contained many logical parts, such as the container runtime, a
network library, a RESTful API, a command-line interface, and much more.

Other vendors or projects such as Red Hat or Kubernetes were using the Docker
engine in their own products, but most of the time they were only using part of
its functionality. For example, Kubernetes did not use the Docker network
library of the Docker engine but provided its own way of networking. Red Hat in
turn did not update the Docker engine frequently and preferred to apply
unofficial patches to older versions of the Docker engine, yet they still called it
the Docker engine.

Out of all these reasons and many more, the idea emerged that Docker had to do
something to clearly separate the Docker open source part from the Docker
commercial part. Furthermore, the company wanted to prevent competitors from
using and abusing the name Docker for their own gains. This was the main
reason why the Moby project was born. It serves as the umbrella for most of the
open source components Docker developed and continues to develop. These
open source projects do not carry the name Docker in them anymore.

Part of the Moby project are components for image management, secret
management, configuration management, and networking and provisioning, to
name just a few. Also, part of the Moby project are special Moby tools that are,
for example, used to assemble components into runnable artifacts.

Some of the components that technically would belong to the Moby project have
been donated by Docker to the Cloud Native Computing Foundation (CNCF)
and thus do not appear in the list of components anymore. The most prominent
ones are containerd and runc which together form the container runtime.

pythontesting

Docker products

Docker currently separates its product lines into two segments. There is the
Community Edition (CE) which is closed source yet completely free, and then
there is the Enterprise Edition (EE) which is also a closed source and needs to
be licensed on a yearly basis. The enterprise products are backed by 24 x 7
support and are supported with bug fixes much longer than their CE
counterparts.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker CE

Part of the Docker community edition are products such as the Docker Toolbox,
Docker for Mac, and Docker for Windows. All these three products are mainly
targeting developers.

Docker for Mac and Docker for Windows are easy-to-install desktop
applications that can be used to build, debug, and test Dockerized applications or
services on a Mac or on Windows. Docker for Mac and Docker for Windows are
complete development environments which deeply integrated with their
respective hypervisor framework, networking, and filesystem. These tools are
the fastest and most reliable way to run Docker on a Mac or on Windows.

Under the umbrella of the CE, there are also two products that are more geared
towards operations engineers. Those products are Docker for Azure and Docker
for AWS.

For example, with Docker for Azure, which is a native Azure application, you
can set up Docker in a few clicks, optimized for and integrated to the underlying
Azure Infrastructure as a Service (IaaS) services. It helps operations engineers
to accelerate time to productivity in building and running Docker applications in
Azure.

Docker for AWS works very similar but for Amazon's cloud.

pythontesting

Docker EE

The Docker EE consists of the two products Universal Control Plane (UCP)
and Docker Trusted Registry (DTR) that both run on top of Docker Swarm.
Both are Swarm applications. Docker EE builds on top of the upstream
components of the Moby project and adds enterprise-grade features such as role-
based access control (RBAC), multi tenancy, mixed clusters of Docker Swarm
and Kubernetes, web-based UlI, and content trust, as well as image scanning on
top of it.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The container ecosystem

There has never been a new technology introduced in IT that penetrated the
landscape so quickly and so thoroughly than containers. Any company that
doesn't want to be left behind cannot ignore containers. This huge interest in
containers from all sectors of the industry has triggered a lot of innovation in this
sector. Numerous companies have specialized in containers and either provide
products that build on top of this technology or build tools that support it.

Initially, Docker didn't have a solution for container orchestration thus other
companies or projects, open source or not, tried to close this gap. The most
prominent one is Kubernetes which was initiated by Google and then later
donated to the CNCF. Other container orchestration products are Apache Mesos,
Rancher, Red Hat's Open Shift, Docker's own Swarm, and more.

More recently, the trend goes towards a service mesh. This is the new buzz word.
As we containerize more and more applications, and as we refactor those
applications into more microservice-oriented applications, we run into problems
that simple orchestration software cannot solve anymore in a reliable and
scalable way. Topics in this area are service discovery, monitoring, tracing, and
log aggregation. Many new projects have emerged in this area, the most popular
one at this time being Istio, which is also part of the CNCEF.

Many say that the next step in the evolution of software are functions, or more
precisely, Functions as a Service (FaaS). Some projects exist that provide
exactly this kind of service and are built on top of containers. One prominent
example is OpenFaaS.

We have only scratched the surface of the container ecosystem. All big IT
companies such as Google, Microsoft, Intel, Red Hat, IBM, and more are
working feverishly on containers and related technologies. The CNCEF that is
mainly about containers and related technologies, has so many registered
projects, that they do not all fit on a poster anymore. It's an exciting time to work
in this area. And in my humble opinion, this is only the beginning.

pythontesting

Container architecture

Now, let's discuss on a high level how a system that can run Docker containers is
designed. The following diagram illustrates what a computer on which Docker
has been installed looks like. By the way, a computer which has Docker installed
is often called a Docker host, because it can run or host Docker containers:

REST Interface

Docker engine

libcontainerd libnetwork graph plugins
containerd + runc

Namespaces Control Groups Layer Capabilities Other OS
pid, net,ipc, mnt, ufs cgroups Union Filesystem: Functionality

Overlay, AUFS,
Device Mapper, etc.

Linux Operating System

High-level architecture diagram of the Docker engine
In the preceding diagram, we see three essential parts:

¢ On the bottom, we have the Linux operating system
¢ In the middle dark gray, we have the container runtime
¢ On the top, we have the Docker engine

Containers are only possible due to the fact that the Linux OS provides some
primitives, such as namespaces, control groups, layer capabilities, and more
which are leveraged in a very specific way by the container runtime and the
Docker engine. Linux kernel namespaces such as process ID (pid)
namespaces or network (net) namespaces allow Docker to encapsulate or
sandbox processes that run inside the container. Control groups make sure that
containers cannot suffer from the noisy neighbor syndrome, where a single
application running in a container can consume most or all of the available
resources of the whole Docker host. Control groups allow Docker to limit the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

resources, such as CPU time or the amount of RAM that each container gets
maximally allocated.

The container runtime on a Docker host consists of containerd and runc. runc is the
low-level functionality of the container runtime and containerd, which is based on
runc, provides the higher-level functionality. Both are open source and have been
donated by Docker to the CNCF.

The container runtime is responsible for the whole life cycle of a container. It
pulls a container image (which is the template for a container) from a registry if
necessary, creates a container from that image, initializes and runs the container,
and eventually stops and removes the container from the system when asked.

The Docker engine provides additional functionality on top of the container
runtime, such as network libraries or support for plugins. It also provides a
REST interface over which all container operations can be automated. The
Docker command-line interface that we will use frequently in this book is one of
the consumers of this REST interface.

pythontesting

Summary

In this chapter, we looked at how containers can massively reduce the friction in
the software supply chain and on top of that, make the supply chain much more
secure.

In the upcoming chapter, we will familiarize ourselves with containers. We will
learn how to run, stop, and remove containers and otherwise manipulate them.
We will also have a pretty good overview over the anatomy of containers. For
the first time, we're really going to get our hands dirty and play with these
containers, so stay tuned.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

Please solve the following questions to assess your learning progress:

1. Which statements are correct (multiple answers are possible)?
1. A container is kind of a lightweight VM
A container only runs on a Linux host
A container can only run one process
The main process in a container always has PID 1
A container is one or more processes encapsulated by Linux
namespaces and restricted by cgroups
2. Explain to an interested layman in your own words, maybe using analogies,
what a container is.
3. Why are containers considered to be a game changer in I'T? Name three to
four reasons.
4. What does it mean when we claim: If a container runs on a given platform
then it runs anywhere...? Name two to three reasons why this is true.
5. True or False: Docker containers are only really useful for modern
greenfield applications based on microservices. Please justify your answer.
6. How much does a typical enterprise save when containerizing their legacy
applications?
1. 20%
2. 33%
3. 50%
4. 75%
7. Which two core concepts of Linux are containers based on?

ok

pythontesting

Further reading

Here is a list of links that lead to more detailed information regarding topics we
have discussed in this chapter:

Docker overview at https://docs.docker.com/engine/docker-overview/

The MOby project at https://mobyproject.org/

Docker products at https://www.docker.com/get-docker

Cloud Native Computing Foundation at nttps://www.cncf.io/

containerd — industry standard container runtime at https://containerd.io/

https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://www.docker.com/get-docker
https://www.cncf.io/
https://containerd.io/

qq 6089740

21734177 IT http://t.cn/RDIAj5D

Setting up a Working Environment

In the last chapter, we learned what Docker containers are and why they're
important. We learned what kinds of problem containers solve in a modern
software supply chain.

In this chapter, we are going to prepare our personal or working environment to
work efficiently and effectively with Docker. We will discuss in detail how to set
up an ideal environment for developers, DevOps, and operators that can be used
when working with Docker containers.

This chapter covers the following topics:

The Linux command shell

PowerShell for Windows

Using a package manager

Choosing a code editor

Docker Toolbox

Docker for Mac and Docker for Windows
Minikube

After completing this chapter, you will be able to do the following:

Use an editor on your laptop that is able to edit simple files such as a
Dockerfile or a docker-compose.yml file

Use a shell such as Bash on Mac and PowerShell on Windows to execute
Docker commands and other simple operations, such as navigating the
folder structure or creating a new folder

Install Docker for Mac or Docker for Windows on your computer
Execute simple Docker commands such as docker version OT docker container
run on your Docker for Mac or Docker for Windows

Successfully install Docker Toolbox on your computer

Use docker-machine t0 create a Docker host on VirtualBox

Configure your local Docker CLI to remote access a Docker host running in
VirtualBox

pythontesting

Technical requirements

For this chapter, you will need a laptop or a workstation with either macOS or
Windows, preferably Windows 10 Professional, installed. You should also have
free internet access to download applications and the permission to install those
applications on your laptop.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The Linux command shell

Docker containers were first developed on Linux for Linux. It is thus natural that
the primary command-line tool used to work with Docker, also called a shell, is a
Unix shell; remember, Linux derives from Unix. Most developers use the Bash
shell. On some lightweight Linux distributions, such as Alpine, Bash is not
installed and consequently one has to use the simpler Bourne shell, just called
sh. Whenever we are working in a Linux environment, such as inside a container
or on a Linux VM, we will use either /bin/bash or /bin/sh, depending on their
availability.

Although macOS X is not a Linux OS, Linux and OS X are both flavors of Unix
and thus support the same types of tools. Among those tools are the shells. So,
when working on a Mac, you will probably be using the Bash shell.

In this book, we expect from the readers a familiarity with the most basic
scripting commands in Bash, and PowerShell if you are working on Windows. If
you are an absolute beginner, then we strongly recommend that you familiarize
yourself with the following cheat sheets:

e Linux Command Line Cheat Sheet by Dave Child at nttp://bit.1y/2mTqra1
e PowerShell Basic Cheat Sheet at http://bit.1ly/2EPHxze

pythontesting

http://bit.ly/2mTQr8l
http://bit.ly/2EPHxze

PowerShell for Windows

On a Windows computer, laptop, or server, we have multiple command-line
tools available. The most familiar is the command shell. It has been available on
any Windows computer for decades. It is a very simple shell. For more advanced
scripting, Microsoft has developed PowerShell. PowerShell is very powerful and
very popular among engineers working on Windows. On Windows 10, finally,
we have the so-called Windows Subsystem for Linux, which allows us to use
any Linux tool, such as the Bash or Bourne shells. Apart from this, there also
exist other tools that install a Bash shell on Windows, for example, the Git Bash
shell. In this book, all commands will use Bash syntax. Most of the commands
also run in PowerShell.

Our recommendation for you is thus to either use PowerShell or any other Bash
tool to work with Docker on Windows.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using a package manager

The easiest way to install software on a Mac or Windows laptop is to use a good
package manager. On a Mac, most people use Homebrew and on
Windows, Chocolatey is a good choice.

pythontesting

Installing Homebrew on a Mac

Installing Homebrew on a Mac is easy; just follow the instructions at https://brew.
sh/.

The following is the command to install Homebrew:

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once the installation is finished, test whether Homebrew is working by entering
brew --version in the Terminal. You should see something like this:
$ brew --version

Homebrew 1.4.3
Homebrew/homebrew-core (git revision f4e35; last commit 2018-01-11)

Now, we are ready to use Homebrew to install tools and utilities. If we, for
example, want to install the Vi text editor, we can do so like this:

| $ brew install vim

This will then download and install the editor for you.

https://brew.sh/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Chocolatey on Windows

To install the Chocolatey package manager on Windows, please follow the
instructions at https://chocolatey.org/ Or just execute the following command in a
PowerShell Terminal that you have run as administrator:

PS> Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Once Chocolatey is installed, test it with the command choco without additional
parameters. You should see output similar to the following:

PS> choco
Chocolatey v0.10.3

To install an application such as the Vi editor, use the following command:

| PS> choco install -y vim

The -y parameter makes sure that the installation happens without asking for
reconfirmation. Please note that once Chocolatey has installed an application,
you need to open a new PowerShell window to use it.

pythontesting

https://chocolatey.org/

Choosing a code editor

Using a good code editor is essential to working productively with Docker. Of
course, which editor is the best is highly controversial and depends on your
personal preference. A lot of people use Vim, or others such as Emacs, Atom,
Sublime, or Visual Studio (VS) Code, to just name a few. If you have not yet
decided which editor is best suited for you, then I highly recommend that you try
VS Code. This is a free and lightweight editor, yet it is very powerful and is
available for Mac, Windows, and Linux. Give it a try. You can download VS
Code from https://code.visualstudio.com/download.

But if you already have a favorite code editor, then please continue using it. As
long as you can edit text files, you're good to go. If your editor supports syntax
highlighting for Dockerfiles and JSON and YAML files, then even better.

https://code.visualstudio.com/download

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Toolbox

Docker Toolbox has been available for developers for a few years. It precedes
the newer tools such as Docker for Mac and Docker for Windows. The toolbox
allows a user to work very elegantly with containers on any Mac or Windows
computer. Containers must run on a Linux host. Neither Windows or Mac can
run containers natively. Thus, we need to run a Linux VM on our laptop, where
we can then run our containers. Docker Toolbox installs VirtualBox on our
laptop, which is used to run the Linux VMs we need.

As a Windows user, you might already be aware that there exists so-called Windows
containers that run natively on Windows. And you are right. Recently, Microsoft has ported
the Docker engine to Windows and it is now possible to run Windows containers directly on a
Windows Server 2016 without the need for a VM. So, now we have two flavors of containers,
Linux containers and Windows containers. The former only run on Linux host and the latter
only run on a Windows Server. In this book, we are exclusively discussing Linux containers,
but most of the things we learn also apply to Windows containers.

Let's use docker-machine to set up our environment. Firstly, we list all Docker-ready
VMs we have currently defined on our system. If you have just installed Docker
Toolbox, you should see the following output:

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

default - virtualbox Running tcp://192.168.99.100:2376 v18.04.0-ce
2 |

List of all Docker-ready VMs

The IP address used might be different in your case, but it will be definitely in
the 192.168.0.0/24 range. We can also see that the VM has Docker version 1s.04.0-
ce installed.

If, for some reason, you don't have a default VM or you have accidentally
deleted it, you can create it using the following command:

|$ docker-machine create --driver virtualbox default

The output you should see looks as follows:

pythontesting

§ docker-naching create --driver virtualbox default

Running pre-create checks. .

(reating machine,.,

(default) Copytng /Users/gabriel/ . docker/machine/cache/boot2docker., 150 to /Users/gabriel/ docker/machine/
machinesy/default/boot2docker 150. .,

(defoult) Creating VirtualBox W...

(default) Creating SSH key...,

(defult) Starting the W...

(default) Check network to re-create 1f needed. .

(default) Waiting for an IP...

Haiting for maching to be running, this may take a few minutes. .
Detecting operating system of created tnstance. .

Hating for SSH to be avatlable,..

Detecting the provisioner,..

Provisioning with boot2docker. ..

(opying certs to the local nachine directory.. .

(opying certs to the renote machine, .

Setting Docker configuration on the renote doemon, .,

(hecking comnection to Docker..,

Docker 1 up and running!

To see how to connect your Docker (Lient to the Docker Engtne runntng on this virtual maching, run: docke
r-nachine env default

]

To see how to connect your Docker client to the Docker Engine running on this
virtual machine, run the following command:

Creating the VM called default in VirtualBox

qg 6089740 21734177 IT http://t.cn/RDIAj5D

|$ docker-machine env default

Once we have our VM called defauit ready, we can try to SSH into it:

|$ docker-machine ssh default

When executing the preceding command, we are greeted by a boot2docker
welcome message.

Type docker --version in the Command Prompt as follows:

docker@default:~$ docker --version
Docker version 17.12.1-ce, build 7390fc6

Now, let's try to run a container:

|docker@default:~$ docker run hello-world

This will produce the following output:

docker@default:~$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

ca4f61b1923c: Pull complete

Digest: sha256:97ce6fa4bbcdc@790cdab5fe7290b74cfebd9fadc9b8c38e979330d547d22cel
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

. The Docker client contacted the Docker daemon.

. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)

. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

docker@default:~$ ||

Running the Docker Hello World container

pythontesting

Docker for Mac and Docker for
Windows

If you are using a Mac or have Windows 10 Professional installed on your
laptop, then we strongly recommend that you install Docker for Mac or Docker
for Windows. These tools give you the best experience when working with
containers. Note, older versions of Windows or Windows 10 Home edition
cannot run Docker for Windows. Docker for Windows uses Hyper-V to run
containers transparently in a VM but Hyper-V is not available on older versions
of Windows nor is it available in the Home edition.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Docker for Mac

Navigate to the following link to download Docker for Mac at https://docs.docker-.

com/docker-for-mac/install/.

are going to use some newer features and Kubernetes, which at the time of writing are only

0 There is a stable version and a so-called edge version of the tool available. In this book, we
available in the edge version. Thus, please select this version.

To start the installation, click on the Get Docker for Mac (Edge) button and
follow the instructions.

Once you have successfully installed Docker for Mac, please open a Terminal.
Press command + spacebar to open Spotlight and type termina1, then hit Enter.
The Apple Terminal will open as follows:

@ @ 13y gabriel — gabriel@Anubis — ~ — -zsh — 80x24
Last _1_ogin: Sat Feb 3 12:49:33 on ttys@es

=5

Apple Terminal window

Type docker --version in the Command Prompt and hit Enter. If Docker for Mac is
correctly installed, you should get an output similar to the following:

$ docker --version
Docker version 18.02.0-ce-rc2, build f968a2c

To see whether you can run containers, enter the following command into the

pythontesting

https://docs.docker.com/docker-for-mac/install/

Terminal and hit Enter:

| $ docker run hello-world

If all goes well, your output should look something like the following:

$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

ca4f61b1923c: Pull complete

Digest: sha256:97ce6fad4bbcdc@790cdab5fe7290b74cfebd9fa@cOb8c38e979330d547d22¢cel
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

. The Docker client contacted the Docker daemon.

. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)

. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

s

Running the Hello World container on Docker for Mac

Congratulations, you are now ready to work with Docker containers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Docker for Windows

Note, you can only install Docker for Windows on Windows 10 Professional or
Windows Server 2016 since it requires Hyper-V, which is not available on older
Windows versions or on the Home edition of Windows 10. If you are using
Windows 10 Home or an older version of Windows, you will need to stick with
Docker Toolbox.

Navigate to the following link to download Docker for Windows at https://docs.d

ocker.com/docker-for-windows/install/.

are going to use some newer features and Kubernetes, which at the time of writing are only

0 There is a stable version and a so-called edge version of the tool available. In this book, we
available in the edge version. Thus, please select this version.

To start the installation, click on the Get Docker for Windows (Edge) button and
follow the instructions.

With Docker for Windows, you can develop, run, and test Linux containers and
Windows containers. In this book, though, we are only discussing Linux
containers.

Once you have successfully installed Docker for Windows, open a PowerShell
window and type docker --version in the Command Prompt. You should see
something like the following:

PS> docker --version
Docker version 18.04.0-ce, build 3d479co

pythontesting

https://docs.docker.com/docker-for-windows/install/

Using docker-machine on Windows
with Hyper-V

If you have Docker for Windows installed on your Windows laptop, then you
also have Hyper-V enabled. In this case, you can't use Docker Toolbox since it
uses VirtualBox, and Hyper-V and VirtualBox cannot coexist and run at the
same time. In this case, you can use docker-machine with the Hyper-V driver.

Open a PowerShell console as an administrator. Install docker-machine using
Chocolatey as follows:

| PS> choco install -y docker-machine

Create a VM called boot2docker in Hyper-V with the following command:

PS> docker-machine create --driver hyperv --hyperv-virtual-switch "My Internal Switch"
boot2docker

Note, you must run the preceding command in administrator mode or it will fail.

You should see the following output generated by the preceding command:

Running pre-create checks...

(boot2docker) Image cache directory does not exist, creating it at
C:\Users\Docker\.docker\machine\cache. ..

(boot2docker) No default Boot2Docker ISO found locally, downloading the latest
release...

(boot2docker) Latest release for github.com/boot2docker/boot2docker is v18.01.0-ce

Checking connection to Docker...

Docker is up and running!

To see how to connect your Docker Client to the Docker Engine running on this virtual
machine, run: C:\Program Files\Doc

ker\Docker\Resources\bin\docker-machine.exe env boot2docker

To see how to connect your Docker client to the Docker Engine running on this
virtual machine, run the following:

| C:\Program Files\Docker\Docker\Resources\bin\docker-machine.exe env boot2docker

Listing all VMs generated by docker-machine gives us the following output:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

PS C:\WINDOWS\system32> docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER
ERRORS
boot2docker - hyperv Running tcp://[...]:2376 v18.01.0-ce

Now, let's SSH into our boot2docker VM:

| PS> docker-machine ssh boot2docker
You should be greeted by the welcome screen.

We can test the VM by executing our docker version command, which is shown as
follows:

$ docker version

Client:

Version: 18.03.0-ce-rc4
API version: 1.37

Go version: gol.9.4

Git commit: fbedb97

Built: Thu Mar 15 @7:33:28 2018
0S/Arch: darwin/amdo4
Experimental: false
Orchestrator: swarm

Server:
Engine:
Version: 18.03.0-ce-rc4
API version: 1.37 (minimum version 1.12)
Go version: gol.9.4
Git commit: fbedb97
Built: Thu Mar 15 @7:42:29 2018
0S/Arch: Linux/amd64
Experimental: true

Version of the Docker client (CLI) and server

This is definitely a Linux VM, as we can see on the os/arch entry, and has Docker
18.03.0-ce-rc4 installed.

pythontesting

Minikube

If you cannot use Docker for Mac or Windows or, for some reason, you only
have access to an older version of the tool that does not yet support Kubernetes,
then it is a good idea to install Minikube. Minikube provisions a single-node
Kubernetes cluster on your workstation and is accessible through kubectl, which
is the command-line tool used to work with Kubernetes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Minikube on Mac and
Windows

To install Minikube for Mac or Windows, navigate to the following link at nttps:/

/kubernetes.io/docs/tasks/tools/install-minikube/.

Follow the instructions carefully. If you have the Docker Toolbox installed, then
you already have a hypervisor on your system since the Docker Toolbox installer
also installed VirtualBox. Otherwise, I recommend that you install VirtualBox
first.

If you have Docker for Mac or Windows installed, then you already have kubect1
installed with it, thus you can skip that step too. Otherwise, follow the
instructions on the site.

Finally, select the latest binary for Minikube for Mac or Windows and install it.
For Mac, the latest binary is called minikube-darwin-amde4 and for Windows it

1S minikube-windows-amd64.

pythontesting

https://kubernetes.io/docs/tasks/tools/install-minikube/

Testing Minikube and kubectl

Once Minikube is successfully installed on your workstation, open a Terminal
and test the installation. First, we need to start Minikube. Enter minikube start at
the command line. The output should look like the following:

Starting local Kubernetes v1,9.0 cluster. ..

Starting W...,

DowmLoading Minikube I30

1022008 / 14022008 [1 100,00k 0s
Getting W IP address. .,

Noving files into cluster,..

DownLoading Localkube binary

16241 M8 / 162,41 MB | 1 100,00k 0s
0B/65B |

058 /658 | 1 100,005 OsSetting up certs...
(omnecting to cluster. .

Setting up kubeconfig. .

Starting cluster comonents...

Kubectl 15 now configured to use the cluster,

Loadtng cached nages from config file.

]

Starting Minikube

Now, enter kubect1 version and hit Enter to see something like the following
screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

§ ubectl version

(Lient Version; version, Info{)

, GitTreaState:" clean", Builddo
{

wr“Mm”WGﬂWmm V0", GutComnt:"975c!2ectb4o65adbfeSB6radi%ed3tlicy
tes 200T-L2-L5T2L07: 38T, Collrston:"gol, 9.2", Comptler:"ac”, Plotform, "Gornin/andbd'}
Senver Verstons version, nfofgor,™, Namor:™, GutVerstons™vL,3.0", GrtCommits"925¢L27ac 4o adl%ted%hedflecls
(tTreeStote: " clear”, Butldbote:"2018-01-26719:04:387, Gollrston:"goL. 91", Comptler:gc", Plotrorm: "Tirux/ondd'

|

Determining the version of the Kubernetes client and server

If the preceding command fails, for example, by timing out, then it could be that
your kubect1 is not configured for the right context. kubect1 can be used to work
with many different Kubernetes clusters. Each cluster is called a context. To find
out which context kubect1 is currently configured for, use the following
command:

$ kubectl config current-context
minikube

The answer should be minikuve, as shown in the preceding output. If this is not the
case, USe kubectl config get-contexts to list all contexts that are defined on your
system and then set the current context to minikube as follows:

| $ kubectl config use-context minikube

The configuration for kubect1, where it stores the contexts, is normally found in
~/.kube/config, but this can be overridden by defining an environment variable
called kuseconrze. You might need to unset this variable if it is set on your
computer.

For more in-depth information about how to configure and use Kubernetes
contexts, consult the link at https://kubernetes.io/docs/concepts/configuration/organize-

cluster-access-kubeconfig/.

Assuming Minikube and kubect1 work as expected, we can now use kubectl to get
information about the Kubernetes cluster. Enter the following command:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready <none> 47d v1.9.0

pythontesting

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Evidently, we have a cluster of one node, which in my case has Kubernetes v1.9.0
installed on it.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we set up and configured our personal or working environment
so that we can productively work with Docker containers. This equally applies
for developers, DevOps, and operations engineers. In that context, we made sure
that we use a good editor, have Docker for Mac or Windows installed, and can
also use docker-machine to create VMs in VirtualBox or Hyper-V which we can use
to run and test containers.

In the next chapter, we're going to learn all the important facts about containers.
For example, we will explore how we can run, stop, list, and delete containers,
but more than that, we will also dive deep into the anatomy of containers.

pythontesting

Questions

On the basis of your reading of this chapter, please answer the following
questions:

1.
2.

o1

What is docker-machine used for? Name three to four scenarios.

True or false? With Docker for Windows, one can develop and run Linux
containers.

Why are good scripting skills (such as Bash or PowerShell) essential for a
productive use of containers?

Name three to four Linux distributions on which Docker is certified to run.
Name all the Windows versions on which you can run Windows containers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

Consider the following link for further reading:

e Run Docker on Hyper-V with Docker Machine at http://bit.1ly/2HGMPiT

pythontesting

http://bit.ly/2HGMPiI

Working with Containers

In the previous chapter, you learned how to optimally prepare your working
environment for the productive and frictionless use of Docker. In this chapter, we
are going to get our hands dirty and learn everything that is important to work
with containers. Here are the topics we're going to cover in this chapter:

Running the first container

Starting, stopping, and removing containers
Inspecting containers

Exec into a running container

Attaching to a running container
Retrieving container logs

Anatomy of containers

After finishing this chapter you will be able to do the following things:

Run, stop, and delete a container based on an existing image, such as
NGINX, busybox, or alpine

List all containers on the system

Inspect the metadata of a running or stopped container

Retrieve the logs produced by an application running inside a container
Run a process such as /bin/sh in an already-running container.

Attach a Terminal to an already-running container

Explain in your own words to an interested layman the underpinnings of a
container

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

For this chapter, you should have installed Docker for Mac or Docker for
Windows. If you are on an older version of Windows or are using Windows 10
Home Edition, then you should have Docker Toolbox installed and ready to use.
On macOS, use the Terminal application, and on Windows, a PowerShell
console to try out the commands you will be learning.

pythontesting

Running the first container

Before we start, we want to make sure that Docker is installed correctly on your
system and ready to accept your commands. Open a new Terminal window and
type in the following command:

| $ docker -v

If everything works correctly, you should see the version of Docker installed on
your laptop output in the Terminal. At the time of writing, it looks like this:

|Docker version 17.12.0-ce-rc2, build f9cde63

If this doesn't work, then something with your installation is not right. Please
make sure that you have followed the instructions in the previous chapter on
how to install Docker for Mac or Docker for Windows on your system.

So, you're ready to see some action. Please type the following command into
your Terminal window and hit return:

| $ docker container run alpine echo "Hello World"

When you run the preceding command the first time, you should see an output in
your Terminal window similar to this:

Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
2fdfelcd78c2: Pull complete

Digest: sha256:ccha511b...

Status: Downloaded newer image for alpine:latest
Hello World

Now that was easy! Let's try to run the very same command again:

| $ docker container run alpine echo "Hello World"

The second, third, or nth time you run the preceding command, you should see
only this output in your Terminal:

| Hello World

Try to reason about why the first time you run a command you see a different

qg 6089740 21734177 IT http://t.cn/RDIAj5D

output than all the subsequent times. But don't worry if you can't figure it out, we
will explain the reasons in detail in the following sections of the chapter.

pythontesting

Starting, stopping, and removing
containers

You have successfully run a container in the previous section. Now we want to
investigate in detail what exactly happened and why. Let's look again at the
command we used:

| $ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word
docker. This is the name of the Docker command-line interface (CLI), which we
are using to interact with the Docker engine that is responsible to run containers.
Next, we have the word container, which indicates the context we are working
with. As we want to run a container, our context is the word container. Next is the
actual command we want to execute in the given context, which is run.

Let me recap—so far, we have docker container run, which means, Hey Docker, we
want to run a containetr....

Now we also need to tell Docker which container to run. In this case, this is the
so-called a1pine container. Finally, we need to define what kind of process or task
shall be executed inside the container when it is running. In our case, this is the
last part of the command, echo "Hello worid".

Maybe the following figure can help you to get a better approach to the whole
thing:

$ docker container run alpine echo "Hello World"

The tool: command process to run
Docker CLI inside container

context container image
Anatomy of the docker container run expression

Now that we have understood the various parts of a command to run a container,
let's try to run another container with a different process running inside it. Type

qg 6089740 21734177 IT http://t.cn/RDIAj5D

the following command into your Terminal:

| $ docker container run centos ping -c 5 127.0.0.1

You should see output in your Terminal window similar to the following:

Unable to find image 'centos:latest' locally

latest: Pulling from library/centos

85432449fdof: Pull complete

Digest: sha256:3b1a65e€9a05. ..

Status: Downloaded newer image for centos:latest

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127. 1: icmp_seq=1 ttl=64 time=0.022 ms
64 bytes from 127. : icmp_seq=2 ttl=64 time=0.019 ms
64 bytes from 127. : icmp_seq=3 ttl=64 time=0.029 ms
64 bytes from 127. : icmp_seq=4 ttl=64 time=0.030 ms
64 bytes from 127. : icmp_seq=5 ttl=64 time=0.029 ms

loR-R-N-X-)
o R-R-X-X-)
BRRR

--- 127.0.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4103ms
rtt min/avg/max/mdev = 0.021/0.027/0.029/0.003 ms

What changed is that, this time, the container image we're using is centos and the
process we're executing inside the centos container is ping -c 5 127.0.0.1, which
pings the loopback address for five times until it stops.

Let's analyze the output in detail:

e The first line is as follows:

| Unable to find image 'centos:latest' locally

This tells us that Docker didn't find an image named centos:1atest in the
local cache of the system. So, Docker knows that it has to pull the image
from some registry where container images are stored. By default, your
Docker environment is configured such as that images are pulled from
the Docker Hub at docker.io. This is expressed by the second line, as
follows:

| latest: Pulling from library/centos

e The next three lines of output are as follows:

85432449fdof: Pull complete
Digest: sha256:3bla65e9a05. ..
Status: Downloaded newer image for centos:latest

This tells us that Docker has successfully pulled the image centos:1atest

pythontesting

from the Docker Hub.

All the subsequent lines of the output are generated by the process we ran inside
the container, which is the ping tool in this case. If you have been attentive so
far, then you might have noticed the keyword 1atest occurring a few times. Each
image has a version (also called a tag), and if we don't specify a version
explicitly, then Docker automatically assumes it as latest.

If we run the preceding container again on our system, the first five lines of the
output will be missing since, this time, Docker will find the container image
cached locally and thus won't have to download it first. Try it out and verify
what I just told.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running a random quotes container

For the subsequent sections of this chapter, we need a container that runs
continuously in the background and produces some interesting output. That's
why, we have chosen an algorithm that produces random quotes. The API that
produces those free random quotes can be found at nttps://talaikis.com/random_quote

s_api/.

Now the goal is to have a process running inside a container that produces a new
random quote every five seconds and outputs the quote to STDOUT. The
following script will do exactly that:

while :

do
wget -qO- https://talaikis.com/api/quotes/random
printf 'n'
sleep 5

done

Try it in a Terminal window. Stop the script by pressing Ctrl+ C. The output
should look similar to this:
{"quote":"Martha Stewart is extremely talented. Her designs are picture perfect. Our

philosophy is life is messy, and rather than being afraid of those messes we design
products that work the way we live.","author":"Kathy Ireland", "cat":"design"}

{"quote":"We can reach our potential, but to do so, we must reach within ourselves. We
must summon the strength, the will, and the faith to move forward - to be bold - to
invest in our future.","author":"John Hoeven",6 "cat":"faith"}

Each response is a JSON-formatted string with the quote, its author, and its
category.

Now, let's run this in an aipine container as a daemon in the background. For this,
we need to compact the preceding script into a one-liner and execute it using the
/bin/sh -c "..." syntax. Our Docker expression will look as follows :

$ docker container run -d --name quotes alpine \

/bin/sh -c "while :; do wget -qO- https://talaikis.com/api/quotes/random; printf
'\n'; sleep 5; done"

In the preceding expression, we have used two new command-line parameters, -d
and --name. The -d tells Docker to run the process running in the container as a

pythontesting

https://talaikis.com/random_quotes_api/

Linux daemon. The --name parameter in turn can be used to give the container an
explicit name. In the preceding sample, the name we chose is quotes.

If we don't specify an explicit container name when we run a container, then
Docker will automatically assign the container a random but unique name. This
name will be composed of the name of a famous scientist and and adjective.
Such names could be boring_borg OF angry_goldberg. Quite humorous our Docker
engineers, isn't it?

One important takeaway is that the container name has to be unique on the
system. Let's make sure that the quotes container is up and running:

| $ docker container 1s -1

This should give us something like this:

$ docker container 1s -1
CONTAINER ID IMAGE COMMAND CREATED STATUS

bceSedbda7ce dalpine "/bin/sh -c 'while :." 41 seconds ago Up 16 seconds
s 1l

Listing the last run container

The important part of the preceding output is the status column, which in this
case is up 16 seconds. That is, the container has been up and running for
16 seconds now.

Don't worry if the last Docker command is not yet familiar to you, we will come
back to it in the next section.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Listing containers

As we continue to run containers over time, we get a lot of them in our system.
To find out what is currently-running on our host, we can use the container 1ist
command as follows:

| $ docker container 1s

This will list all currently-running containers. Such a list might look similar to
this:

$ docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
31d719b2f439 nginx:alpine "nginx -g 'daemon of.." 35 seconds ago Up 3@ seconds 80/tcp cranky_curie

27b96de7@b58 alpine:latest "ping 127.06.0.1" 23 hours ago Up 23 hours c2
35b8dd512ach alpine:latest "/bin/sh" 23 hours ago Up 23 hours el
s 1

List of all containers running on the system

By default, Docker outputs seven columns with the following meanings:

Column | Description
Soncainer | The unique ID of the container. It is a SHA-256.
Image The name of the container image from which this container is
instantiated.
The command that is used to run the main process in the
Command .
container.
Created The date and time when the container was created.

pythontesting

The status of the container (created, restarting, running,
removing, paused, exited, or dead).

Status

Ports The list of container ports that have been mapped to the host.

The name assigned to this container (multiple names are
possible).

Names

If we want to list not only the currently running containers but all containers that
are defined on our system, then we can use the command-line parameter -a or --
a11 as follows:

|$ docker container ls -a
This will list containers in any state, such as created, running, OI exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the
parameter -q:

| $ docker container 1s -q

You might wonder where this is useful. I show you a command where it is very
helpful right here:

| $ docker container rm -f $(docker container 1ls -a -q)

Lean back and take a deep breath. Then, try to find out what the preceding
command does. Don't read any further until you find the answer or give up.

Right: the preceding command deletes all containers that are currently defined
on the system, including the stopped ones. The rn command stands for remove,
and it will be explained further down.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

In the previous section, we used the parameter -1 in the list command. Try to use
Docker help to find out what the -1 parameter stands for. You can invoke help for
the list command as follows:

| $ docker container 1s -h

pythontesting

Stopping and starting containers

Sometimes, we want to (temporarily) stop a running container. Let's try this out
with the quotes container we used previously. Run the container again with this
command:

$ docker container run -d --name quotes alpine \

/bin/sh -c "while :; do wget -qO- https://talaikis.com/api/quotes/random; printf
'\n'; sleep 5; done"

Now, if we want to stop this container then we can do so by issuing this
command:

| $ docker container stop quotes

When you try to stop the quotes container, you will probably note that it takes a
while until this command is executed. To be precise, it takes about 10 seconds.
Why is this the case?

Docker sends a Linux sieterm signal to the main process running inside the
container. If the process doesn't react to this signal and terminate itself, Docker
waits for 10 seconds and then sends siekiL, which will kill the process forcefully
and terminate the container.

In the preceding command, we have used the name of the container to specify
which container we want to stop. But we could also have used the container ID
instead.

How do we get the ID of a container? There are several ways of doing so. The
manual approach is to list all running containers and find the one that we're
looking for in the list. From there, we copy its ID. A more automated way is to
use some shell scripting and environment variables. If, for example, we want to
get the ID of the quotes container, we can use this expression:

| $ export CONTAINER_ID = $(docker container 1ls | grep quotes | awk '{print $1}')

Now, instead of using the container name, we can use the variable
$CONTAINER_ID IN OUTr expression:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

| $ docker container stop $CONTAINER_ID
Once we have stopped the container, its status change to exited.

If a container is stopped, it can be started again using the docker container start
command. Let's do this with our quotes container. It is good to have it running
again, as we'll need it in the subsequent sections of this chapter:

| $ docker container start quotes

pythontesting

Removing containers

When we run the docker container 1s -a command, we can see quite a few
containers that are in status exited. If we don't need these containers anymore,
then it is a good thing to remove them from memory, otherwise they
unnecessarily occupy precious resources. The command to remove a container
is:

|$ docker container rm <container ID>

Another command to remove a container is:

| $ docker container rm <container name>
Try to remove one of your exited containers using its ID.

Sometimes, removing a container will not work as it is still running. If we want
to force a removal, no matter what the condition of the container currently is, we
can use the command-line parameter -f or --force.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Inspecting containers

Containers are runtime instances of an image and have a lot of associated data
that characterizes their behavior. To get more information about a specific
container, we can use the inspect command. As usual, we have to provide either
the container ID or name to identify the container of which we want to obtain the
data. So, let's inspect our sample container:

| $ docker container inspect quotes

The response is a big JSON object full of details. It looks similar to this:

[

"Id": "cbc1c68c87...",
"Created": "2017-12-30T11:55:51.2232711822",
"Path": "/bin/sh",
IIArgSII: [
"-C",
"while :; do wget -qO- https://talaikis.com/api/quotes/random; printf
'\n'; sleep 5; done"
1
"State": {
"Status": "running",
"Running": true,

}
"Image": "sha256:e21c333399€0...",

"Mounts": [],

"Config": {
"Hostname": "c5c1c68c87dd",
"Domainname": ""

s

"NetworkSettings": {
llBridgell: Illl,

"SandboxID": "2fd6c43b6fe5...",

The output has been shortened for readability.

Please take a moment to analyze what you got. You should see information such
as:

pythontesting

e The ID of the container
e The creation date and time of the container
e From which image the container is built and so on

Many sections of the output, such as mounts Or networksettings don't make much
sense right now, but we will certainly discuss those in the upcoming chapters of
the book. The data you're seeing here is also named the metadata of a container.
We will be using the inspect command quite often in the remainder of the book as
a source of information.

Sometimes, we need just a tiny bit of the overall information, and to achieve
this, we can either use the grep tool or a filter. The former method does not
always result in the expected answer, so let's look into the latter approach:

| $ docker container inspect -f "{{json .State}}" quotes | jq

The -f or --filter parameter is used to define the filter. The filter expression itself
uses the Go template syntax. In this example, we only want to see the state part
of the whole output in the JSON format.

To nicely format the output, we pipe the result into the jq tool:

{

"Status": "running",

"Running": true,

"Paused": false,

"Restarting": false,

"OOMKilled": false,

"Dead": false,

"pid": 6759,

"ExitCode": 0,

llErrorll: IIII'

"StartedAt": "2017-12-31T10:31:51.893299997Z",
"FinishedAt": "0001-01-01T00:00:00Z"

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Exec into a running container

Sometimes, we want to run another process inside an already-running container.
A typical reason could be to try to debug a misbehaving container. How can we
do this? First, we need to know either the ID or the name of the container, and
then we can define which process we want to run and how we want it to run.
Once again, we use our currently-running quotes container and we run a shell
interactively inside it with the following command:

| $ docker container exec -i -t quotes /bin/sh

The flag -i signifies that we want to run the additional process interactively, and
-t tells Docker that we want it to provide us with a TTY (a terminal emulator)
for the command. Finally, the process we run is /bin/sh.

If we execute the preceding command in our Terminal, then we will be presented
with a new prompt. We're now in a shell inside the quotes container. We can
easily prove that by, for example, executing the ps command, which will list all
running processes in the context:

|# / ps

The result should look somewhat similar to this:

/ # ps
PID USER TIME COMMAND
1 root 0:00 /bin/sh -c while :; do wget -gO- https://talaikis.com/api

85 root 0:00 /bin/sh
110 root 0:00 sleep 5
111 root 0:00 ps

List of Processes running inside the quotes Container

We can clearly see that the process with p1o 1 is the command that we have
defined to run inside the quotes container. The process with p1p 1 is also named
the main process.

Leave the container by entering exit at the prompt. We cannot only execute
additional processes interactive in a container. Please consider the following
command:

pythontesting

| $ docker container exec quotes ps

The output evidently looks very similar to the preceding output:

$ docker container exec quotes ps
PID USER TIME COMMAND
1 root 0:00 /bin/sh -c while :; do wget -q0- https://talaikis.com/api

520 root 0:00 sleep 5
521 root 0:00 ps

s 1

List of Processes running inside the quotes Container

We can even run processes as daemon using the flag -d¢ and define environment
variables using the -e flag variables as follows:

$ docker container exec -it \
-e MY_VAR="Hello World" \
quotes /bin/sh

/ echo $MY_VAR

Hello World

/ exit

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Attaching to a running container

We can use the attach command to attach our Terminal's standard input, output,
and error (or any combination of the three) to a running container using the ID or
name of the container. Let's do this for our quotes container:

| $ docker container attach quotes

In this case, we will see every five seconds or so a new quote appearing in the
output.

To quit the container without stopping or killing it, we can press the key
combination Ctrl+P Ctrl+Q. This detaches us from the container while leaving it
running in the background. On the other hand, if we want to detach and stop the
container at the same time, we can just press Ctrl+C.

Let's run another container, this time an Nginx web server:

|$ docker run -d --name nginx -p 8080:80 nginx:alpine

Here, we run the Alpine version of Nginx as a daemon in a container named
nginx. The -p sese:se command-line parameter opens port sese on the host for
access to the Nginx web server running inside the container. Don't worry about
the syntax here as we will explain this feature in more detail in the chapter

7, Single-Host Networking.

Let's see whether we can access Nginx, using the cur1 tool and running this
command:

|$ curl -4 localhost:8080

If all works correctly, you should be greeted by the welcome page of Nginx:

<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {

width: 35em;

margin: O auto;

font-family: Tahoma, Verdana, Arial, sans-serif;

pythontesting

</style>

</head>

<body>

<hi>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Now, let's attach our Terminal to the nginx container to observe what's happening:

| $ docker container attach nginx

Once you are attached to the container, you first will not see anything. But now
open another Terminal, and in this new Terminal window, repeat the cur1
command a few times, for example, using the following script:

|$ for n in {1..10}; do curl -4 localhost:8080; done

You should see the logging output of Nginx, which looks similar to this:

172.17.0.1 - - [06/Jan/2018:12:20:00 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.54.0"
172.17.0.1 - - [06/Jan/2018:12:20:03 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.54.0"
172.17.0.1 - - [06/Jan/2018:12:20:05 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.54.0"

Quit the container by pressing Ctrl+C. This will detach your Terminal and, at the
same time, stop the nginx container.

To clean up, remove the nginx container with the following command:

| $ docker container rm nginx

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Retrieving container logs

It is a best practice for any good application to generate some logging
information that developers and operators alike can use to find out what the
application is doing at a given time, and whether there are any problems to help
pinpoint the root cause of the issue.

When running inside a container, the application should preferably output the log
items to STDOUT and STDERR and not into a file. If the logging output is
directed to STDOUT and STDERR, then Docker can collect this information
and keep it ready for consumption by a user or any other external system.

To access the logs of a given container, we can use the docker container logs
command. If, for example, we want to retrieve the logs of our quotes container,
we can use the following expression:

| $ docker container logs quotes

This will retrieve the whole log produced by the application from the very
beginning of its existence.

Stop, wait a second—this is not quite true, what I just said. By default, Docker uses the so-
called json-rile logging driver. This driver stores the logging information in a file. And if there
is a file rolling policy defined, then docker container logs only retrieves what is in the current
active log file and not what is in previous, rolled files that might still be available on the host.

If we want to only get a few of the latest entries, we can use the -t or --tai1
parameter, as follows:

| $ docker container logs --tail 5 quotes

This will retrieve only the last five items the process running inside the container
produced.

Sometimes, we want to follow the log that is produced by a container. This is
possible when using the parameter - or --fo11ow. The following expression will
output the last five log items and then follow the log as it is produced by the
containerized process:

pythontesting

| $ docker container logs --tail 5 --follow quotes

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Logging drivers

Docker includes multiple logging mechanisms to help us get information from
running containers. These mechanisms are named logging drivers. Which
logging driver is used can be configured at the Docker daemon level. The default
logging driver is json-file. Some of the drivers that are currently supported
natively are:

Driver | Description

none No log output for the specific container is produced.
json- This is the default driver. The logging information is stored in files,
file formatted as JSON.

If the journals daemon is running on the host machine, we can use

journald . . .
this driver. It forwards logging to the journaid daemon.

If the sys1og daemon is running on the host machine, we can
syslog configure this driver, which will forward the log messages to the
syslog daemon.

When using this driver, log messages are written to a Graylog
gelf Extended Log Format (GELF) endpoint. Popular examples of
such endpoints are Graylog and Logstash.

pythontesting

fluentd | Assuming that the fiventd daemon is installed on the host system,

this driver writes log messages to it.

If you change the logging driver, please be aware that the docker container 10gs command is
only available for the json-rile and journaid drivers.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using a container-specific logging
driver

We have seen that the logging driver can be set globally in the Docker daemon
configuration file. But we can also define the logging driver on a container by
container basis. In the following example, we are running a busybox container and
use the --1og-driver parameter to configure the none logging driver:

$ docker container run --name test -it \

--log-driver none \
busybox sh -c 'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1
Hello 2
Hello 3

Now, let's try to get the logs of the preceding container:

| $ docker container logs test

The output is as follows:

| Error response from daemon: configured logging driver does not support reading

This is to be expected, since the none driver does not produce any logging output.
Let's clean up and remove the test container:

|$ docker container rm test

pythontesting

Advanced topic — changing the
default logging driver

Let's change the default logging driver of a Linux host. The easiest way to do
this is on a real Linux host. For this purpose, we're going to use Vagrant with an
Ubuntu image:

$ vagrant init bento/ubuntu-17.04
$ vagrant up
$ vagrant ssh

Once inside the Ubuntu VM, we want to edit the Docker daemon configuration
file. Navigate to the folder /etc/docker and run vi as follows:

|$ vi daemon.json

Enter the following content:

{
"Log-driver": "json-log",
"log-opts": {
"max-size": "16m",
"max-file": 3
}
}

Save and exit Vi by first pressing Esc and then typing :w:q and finally hitting the
ENTER key.

The preceding definition tells the Docker daemon to use the json-10g driver with a
maximum log file size of 10 MB before it is rolled, and the maximum number of
log files that can be present on the system is s before the oldest file gets purged.

Now we have to send a s1chup signal to the Docker daemon so that it picks up the
changes in the configuration file:

|$ sudo kill -SIGHUP $(pidof dockerd)

Note that the preceding command only reloads the config file and does not
restart the daemon.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Anatomy of containers

Many individuals wrongly compare containers to VMs. However, this is a
questionable comparison. Containers are not just lightweight VMs. OK then,
what is the correct description of a container?

Containers are specially encapsulated and secured processes running on the host
system.

Containers leverage a lot of features and primitives available in the Linux OS.
The most important ones are namespaces and cgroups. All processes running in
containers share the same Linux kernel of the underlying host operating system.
This is fundamentally different compared with VMs, as each VM contains its
own full-blown operating system.

The startup times of a typical container can be measured in milliseconds, while a
VM normally needs several seconds to minutes to startup. VMs are meant to be
long-living. It is a primary goal of each operations engineer to maximize the
uptime of their VMs. Contrary to that, containers are meant to be ephemeral.
They come and go in a quick cadence.

Let's first get a high-level overview of the architecture that enables us to run
containers.

pythontesting

Architecture

Here, we have an architectural diagram on how this all fits together:

REST Interface

Docker engine
libcontainerd libnetwork graph plugins

containerd + runc

Control Groups Namespaces Layer Capabilities Other OS

cgroups Pid, net, ipc, mnt, ufs Union Filesystem: Functionality
AUFS, Overlay. btrfs,
vfs, zfs*, DeviceMapper

Operating System

High level architecture of Docker

On the lower part of the the preceding figure, we have the Linux operating
system with its cgroups, namespaces, and layer capabilities as well as other
functionality that we do not need to explicitly mention here. Then, there is an
intermediary layer composed of containerd and runc. On top of all that now sits
the Docker engine. The Docker engine offers a RESTful interface to the outside
world that can be accessed by any tool, such as the Docker CLI, Docker for Mac,
and Docker for Windows or Kubernetes to just name a few.

Let's now describe the main building blocks in a bit more detail.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Namespaces

Linux namespaces had been around for years before they were leveraged by
Docker for their containers. A namespace is an abstraction of global resources
such as filesystems, network access, process tree (also named PID namespace)
or the system group IDs, and user IDs. A Linux system is initialized with a
single instance of each namespace type. After initialization, additional
namespaces can be created or joined.

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel version
3.8, user namespaces were introduced and with it, namespaces were ready to be
used by containers.

If we wrap a running process, say, in a filesystem namespace, then this process
has the illusion that it owns its own complete filesystem. This of course is not
true; it is only a virtual FS. From the perspective of the host, the contained
process gets a shielded subsection of the overall FS. It is like a filesystem in a
filesystem:

e ™
FS namespace 1 Host FS
)
. (o= Process A o—
A » '
e Pua

e
Local FS I T

W

FS namespace 2 -

»
& |
. (= , Process B
=
L 2P
NS o

Local FS

W

\ ' J

The same applies for all the other global resources for which namespaces exist.
The user ID namespace is another example. Having a user namespace, we can

pythontesting

now define a user jdoe many times on the system as long at it is living in its own
namespace.

The PID namespace is what keeps processes in one container from seeing or
interacting with processes in another container. A process might have the
apparent PID 1 inside a container, but if we examine it from the host system, it
would have an ordinary PID, say 334:

/sbin/init

Parent PID Namespace

docker-containerd-shim @ docker-containerd-shim

Containers
’

x’J\\
lusr/bin/java (334, 1) @ redis-server
S o
Child PID Namespace 1 Child PID Namespace 2

Process tree on a Docker host

In a given namespace, we can run one to many processes. That is important
when we talk about containers, and we have experienced that already when we
executed another process in an already-running container.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Control groups (cgroups)

Linux cgroups are used to limit, manage, and isolate resource usage of
collections of processes running on a system. Resources are CPU time, system
memory, network bandwidth, or combinations of these resources, and so on.

Engineers at Google have originally implemented this feature starting in 2006.
The cgroups functionality was merged into the Linux kernel mainline in kernel
version 2.6.24, which was released in January 2008.

Using cgroups, administrators can limit the resources that containers can
consume. With this, one can avoid, for example, the classical noisy neighbor
problem, where a rogue process running in a container consumes all CPU time
or reserves massive amounts of RAM and, as such, starves all the other
processes running on the host, whether they're containerized or not.

pythontesting

Union filesystem (UnionFS)

The UnionFS forms the backbone of what is known as container images. We will
discuss container images in detail in the next chapter. At this time, we want to
just understand a bit better what a UnionFS is and how it works. UnionFS is
mainly used on Linux and allows files and directories of distinct filesystems to
be overlaid and with it form a single coherent file system. In this context, the
individual filesystems are called branches. Contents of directories that have the
same path within the merged branches will be seen together in a single merged
directory, within the new, virtual filesystem. When merging branches, the
priority between the branches is specified. In that way, when two branches
contain the same file, the one with the higher priority is seen in the final FS.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Container plumbing

The basement on top of which the Docker engine is built; we can also call it the
container plumbing and is formed by the two component—runc and
containerd.

Originally, Docker was built in a monolithic way and contained all the
functionality necessary to run containers. Over time, this became too rigid and
Docker started to break out parts of the functionality into their own components.
Two important components are runc and containerd.

pythontesting

Runc

Runc is a lightweight, portable container runtime. It provides full support for
Linux namespaces as well as native support for all security features available on
Linux, such as SELinux, AppArmor, seccomp, and cgroups.

Runc is a tool for spawning and running containers according to the Open
Container Initiative (OCI) specification. It is a formally specified
configuration format, governed by the Open Container Project (OCP) under
the auspices of the Linux Foundation.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Containerd

Runc is a low-level implementation of a container runtime; containerd builds on
top of it, and adds higher-level features, such as image transfer and storage,
container execution, and supervision, as well as network and storage
attachments. With this, it manages the complete life cycle of containers.
Containerd is the reference implementation of the OCI specifications and is by
far the most popular and widely-used container runtime.

Containerd has been donated to and accepted by the CNCF in 2017. There exist
alternative implementations of the OCI specification. Some of them are rkt by
CoreQOS, CRI-O by RedHat, and LXD by Linux Containers. However,
containerd at this time is by far the most popular container runtime and is the
default runtime of Kubernetes 1.8 or later and the Docker platform.

pythontesting

Summary

In this chapter, you learned how to work with containers that are based on
existing images. We showed how to run, stop, start, and remove a container.
Then, we inspected the metadata of a container, extracted the logs of it, and
learned how to run an arbitrary process in an already-running container. Last but
not least, we dug a bit deeper and investigated how containers work and what
features of the underlying Linux operating system they leverage.

In the next chapter, you're going to learn what container images are and how we
can build and share our own custom images. We're also discussing the best
practices commonly used when building custom images, such as minimizing
their size and leveraging the image cache. Stay tuned!

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

To assess your learning progress please answer the following questions:

1. What are the states of a container?
2. Which command helps us to find out what is currently running on our host?
3. Which command is used to list the IDs of all containers?

pythontesting

Further reading

The following articles give you some more information related to the topics we
discussed in this chapter:

Docker container at http://dockr.ly/2iLBV2I

Getting started with containers at http://dockr.ly/2gmxKws

Isolate containers with a user namespace at nttp://dockr . ly/2gnyKdf
Limit container's resources at http://dockr.ly/2wgN5Nn

http://dockr.ly/2iLBV2I
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmyKdf
http://dockr.ly/2wqN5Nn

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating and Managing Container
Images

In the previous chapter, we learned what containers are and how to run, stop,
remove, list, and inspect them. We extracted the logging information of some
containers, ran other processes inside an already running container, and finally
we dived deep into the anatomy of containers. Whenever we ran a container, we
created it using a container image. In this chapter, we will be familiarizing
ourselves with these container images. We will learn in detail what they are, how
to create them, and how to distribute them.

This chapter will cover the following topics:

e What images are?
e (Creating images
e Sharing or shipping images

After completing this chapter, you will be able to do the following:

e Name three of the most important characteristics of a container image

e Create a custom image by interactively changing the container layer and
committing it

e Author a simple Dockerfile using keywords such as rrom, copv, run, cmp, and
ENTRYPOINT tO generate a custom image

e Export an existing image using docker image save and import it into another
Docker host USng docker image load

e Write a two-step Dockerfile that minimizes the size of the resulting image
by only including the resulting artifacts (binaries) in the final image

pythontesting

What are images?

In Linux, everything is a file. The whole operating system is basically a
filesystem with files and folders stored on the local disk. This is an important
fact to remember when looking at what container images are. As we will see, an
image is basically a big tarball containing a filesystem. More specifically, it
contains a layered filesystem.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The layered filesystem

Container images are templates from which containers are created. These images
are not just one monolithic block, but are composed of many layers. The first
layer in the image is also called the base layer:

)
[Layer 2]
]

[Layer 1 = Base Layer

The image as a stack of layers

Each individual layer contains files and folders. Each layer only contains the
changes to the filesystem with respect to the underlying layers. Docker uses a
union filesystem—as discussed in chapter 3, Working with Containers—to create
a virtual filesystem out of the set of layers. A storage driver handles the details
regarding the way these layers interact with each other. Different storage drivers
are available that have advantages and disadvantages in different situations.

The layers of a container image are all immutable. Immutable means that once
generated, the layer cannot ever be changed. The only possible operation
affecting the layer is the physical deletion of it. This immutability of layers is
important because it opens up a tremendous amount of opportunities, as we will
see.

In the following image, we can see what a custom image for a web application
using Nginx as a web server could look like:

| 3. Add static files 8|
I'Q“yaegrg e [2. Add Nginx 8
| 1. Alpine Linux 8

A sample custom image based on Alpine and Nginx

pythontesting

Our base layer here consists of the Alpine Linux distribution. Then, on top of
that, we have a layer where Nginx is added on top of Alpine. Finally, the third
layer contains all the files that make up the web application, such as HTML,
CSS, and JavaScript files.

As has been said previously, each image starts with a base image. Typically, this
base image is one of the official images found on Docker Hub, such as a Linux
distro, Alpine, Ubuntu, or CentOS. However, it is also possible to create an
image from scratch.

Docker Hub is a public registry for container images. It is a central hub ideally suited for
sharing public container images.

Each layer only contains the delta of changes in regard to the previous set of
layers. The content of each layer is mapped to a special folder on the host
system, which is usually a subfolder of /var/1ib/docker/.

Since layers are immutable, they can be cached without ever becoming stale.
This is a big advantage, as we will see.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The writable container layer

As we have discussed, a container image is made of a stack of immutable or
read-only layers. When the Docker engine creates a container from such an
image, it adds a writable container layer on top of this stack of immutable layers.
Our stack now looks as follows:

: Container Layer r/w' :
. (3.Addstatiofiles 8]
. | 2. Add Nginx 8| |
[1. Alpine Linux 8 !
I Containeri

The writable container layer

The container layer is marked as read/write. Another advantage of the
immutability of image layers is that they can be shared among many containers
created from this image. All that is needed is a thin, writable container layer for
each container:

Container 1 Container 2 Container 3 Container n
" “Thin RMW layer ' & Thin RAWlayer ' i Thin RAW layer " “Thin RIW layer

(3. Add static files 8) i

(2. Add Nginx 8| !

[1. Alpine Linux ﬂ] '
Image

Multiple containers sharing the same image layers

This technique, of course, results in a tremendous reduction of resources that are
consumed. Furthermore, this helps to decrease the loading time of a container
since only a thin container layer has to be created once the image layers have
been loaded into memory, which only happens for the first container.

pythontesting

Copy-on-write

Docker uses the copy-on-write technique when dealing with images. Copy-on-
write is a strategy of sharing and copying files for maximum efficiency. If a layer
uses a file or folder that is available in one of the low-lying layers, then it just
uses it. If, on the other hand, a layer wants to modify, say, a file from a low-lying
layer, then it first copies this file up to the target layer and then modifies it. In the
following figure, we can see a glimpse of what this means:

Add Static Files

(R/O) File 4 copy on write:
—0

Add Dependencies . 2

(RIO) File 2 File 3

Base Layer : :

(R/O) File 1 File 2

Copy-on-write

The second layer wants to modify File 2, which is present in the base layer.
Thus, it copied it up and then modified it. Now, let's say that we're sitting in the
top layer of the preceding figure. This layer will use File 1 from the base layer
and File 2 and File 3 from the second layer.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Graph drivers

Graph drivers are what enable the union filesystem. Graph drivers are also called
storage drivers and are used when dealing with the layered container images. A
graph driver consolidates the multiple image layers into a root filesystem for the
mount namespace of the container. Or, put differently, the driver controls how
images and containers are stored and managed on the Docker host.

Docker supports several different graph drivers using a pluggable architecture.
The preferred driver is overlay2 followed by overlay.

pythontesting

Creating images

There are three ways to create a new container image on your system. The first
one is by interactively building a container that contains all the additions and
changes one desires and then committing those changes into a new image. The
second and most important way is to use a Dockerfile to describe what's in the
new image and then build this image using that Dockerfile as a manifest. Finally,
the third way of creating an image is by importing it into the system from a
tarball.

Now, let's look at these three ways in detail.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Interactive image creation

The first way we can create a custom image is by interactively building a
container. That is, we start with a base image that we want to use as a template
and run a container of it interactively. Let's say that this is the a1pine image. The
command to run the container would then be as follows:

| $ docker container run -it --name sample alpine /bin/sh

By default, the alpine container does not have the ping tool installed. Let's
assume we want to create a new custom image that has ping installed. Inside the
container, we can then run the following command:

|/ # apk update && apk add iputils

This uses the Alpine package manager apk to install the iputiis library, of which
ping is a part. The output of the preceding command should look as follows:

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
v3.7.0-50-gc8da5122a4 [http://dl-cdn.alpinelinux.org/alpine/v3.7/main]
v3.7.0-49-g06d6ae04c3 [http://dl-cdn.alpinelinux.org/alpine/v3.7/community]

OK: 9046 distinct packages available

(1/2) Installing libcap (2.25-r1)

(2/2) Installing iputils (20121221-r8)

Executing busybox-1.27.2-r6.trigger

OK: 4 MiB in 13 packages

Now, we can indeed use ping, as the following snippet shows:

/ # ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 tt1l=64 time=0.028 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.044 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.049 ms

nC

--- 127.0.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2108ms
rtt min/avg/max/mdev = 0.028/0.040/0.049/0.010 ms

Once we have finished our customization, we can quit the container by typing
exit at the prompt. If we now list all containers with docker container 1s -a, we can
see that our sample container has a status of exited, but still exists on the system:

$ docker container 1ls -a | grep sample

pythontesting

| eff7c92a1b98 alpine "/bin/sh" 2 minutes ago Exited (0) ...

If we want to see what has changed in our container in relation to the base
image, we can use the docker container diff command as follows:

| $ docker container diff sample

The output should present a list of all modifications done on the filesystem of the
container:

/bin

/bin/ping

/bin/ping6
/bin/traceroute6
/etc/apk

/etc/apk/world
/1ib/apk/db
/1lib/apk/db/installed
/1ib/apk/db/lock
/1lib/apk/db/scripts.tar
/1lib/apk/db/triggers
/root
/root/.ash_history
/usr/1ib
/usr/1lib/libcap.so0.2
/usr/1lib/libcap.so0.2.25
/usr/sbin
/usr/sbhin/arping
/usr/sbhin/capsh
/usr/sbin/clockdiff
/usr/sbhin/getcap
/usr/sbhin/getpcaps
/usr/sbhin/ipg
/usr/sbin/rarpd
/usr/sbin/rdisc
/usr/sbhin/setcap
/usr/sbin/tftpd
/usr/sbin/tracepath
/usr/sbin/tracepath6
/var/cache/apk
/var/cache/apk/APKINDEX.5022a8a2.tar.gz
/var/cache/apk/APKINDEX.70c88391.tar.gz
/var/cache/misc

O>>O0>>>>>>>>>>>200>22>20>200000000>2000

In the preceding list, » stands for added, and c for changed. If we had any deleted
files, then those would be prefixed with o.

We can now use the docker container comnit command to persist our modifications
and create a new image from them:

$ docker container commit sample my-alpine
sha256:44bca4141130ee8702e8e8efdlbeb3cf4fe5aadh62a0c69a6995afd49c2e7419

With the preceding command, we have specified that the new image shall be

qg 6089740 21734177 IT http://t.cn/RDIAj5D

called my-a1pine. The output generated by the preceding command corresponds to
the ID of the newly generated image. We can verify this by listing all images on
our system, as follows:

| $ docker image 1ls

We can see this image ID (shortened) as follows:
REPOSITORY TAG IMAGE ID CREATED SIZE

my-alpine latest 44bca4141130 About a minute ago 5.64MB

We can see that the image named my-alpine, has the expected ID of 44bcas141130
and automatically got a tag 1atest assigned. This happens since we did not
explicitly define a tag ourselves. In this case, Docker always defaults to the tag
latest.

If we want to see how our custom image has been built, we can use the nhistory
command as follows:

| $ docker image history my-alpine

This will print the list of layers our image consists of:

IMAGE CREATED CREATED BY SIZE COMMENT
44bhca4141130 3 minutes ago /bin/sh 1.5MB

€21c333399¢e0 6 weeks ago /bin/sh -c #... 0B

<missing> 6 weeks ago /bin/sh -c #... 4.14MB

The first layer in the preceding list is the one that we just created by adding the
iputils package.

pythontesting

Using Dockerfiles

Manually creating custom images as shown in the previous section of this
chapter is very helpful when doing exploration, creating prototypes, or making
feasibility studies. But it has a serious drawback: it is a manual process and thus
is not repeatable or scalable. It is also as error-prone as any task executed
manually by humans. There must be a better way.

This is where the so-called Dockerfile comes into play. The Dockerfile is a text
file that is usually literally called Dockerfile. It contains instructions on how to
build a custom container image. It is a declarative way of building images.

Declarative versus imperative:

In computer science, in general and with Docker specifically, one often uses a declarative way
0 of defining a task. One describes the expected outcome and lets the system figure out how to

achieve this goal, rather than giving step-by-step instructions to the system on how to achieve

this desired outcome. The latter is the imperative approach.

Let's look at a sample Dockerfile:

FROM python:2.7

RUN mkdir -p /app

WORKDIR /app

COPY ./requirements.txt /app/

RUN pip install -r requirements.txt
CMD ["python", "main.py"]

This is a Dockerfile as it is used to containerize a Python 2.7 application. As we
can see, the file has six lines, each starting with a keyword such as rrom, run, OF
copv. It is a convention to write the keywords in all caps, but that is not a must.

Each line of the Dockerfile results in a layer in the resulting image. In the
following image, the image is drawn upside down compared to the previous
illustrations in this chapter, showing an image as a stack of layers. Here, the base
layer is shown on top. Don't let yourself be confused by this. In reality, the base
layer is always the lowest layer in the stack:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

@ FROM python:2.7 [Layer 1 - Base Layer ﬁ]
@ RUN mkdir -p /app [Layer 2 ﬁ]
(;) WORKDIR /app I[Layers &];
@ COPY ./requirements.txt /app/ [Layer 4 ﬁ]
(5)| RUN pip install -r requirements.txt [Layer 5 ﬁ]
(6)| cMp ["python", "main.py"] [Layer 6 &]

: Image :

Dockerfile
The relation of Dockerfile and layers in an image

Now let's look at the individual keywords in more detail.

pythontesting

The FROM keyword

Every Dockerfile starts with the rrov keyword. With it, we define which base
image we want to start building our custom image from. If we want to build
starting with CentOS 7, for example, we would have the following line in the
Dockerfile:

| FROM centos:7

On Docker Hub, there are curated or official images for all major Linux distros,
as well as for all important development frameworks or languages, such as
Python, Node JS, Ruby, Go, and many more. Depending on our need, we should
select the most appropriate base image.

For example, if I want to containerize a Python 2.7 application, I might want to
select the relevant official python:2.7 image.

If we really want to start from scratch, we can also use the following statement:

| FROM scratch

This is useful in the context of building super minimal images that only, for
example, contain a single binary, the actual statically linked executable, such as
Hello-world. The scratch image is literally an empty base image.

FrRoM scratch iS @ no-op in the Dockerfile, and as such does not generate a layer in
the resulting container image.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The RUN keyword

The next important keyword is run. The argument for run is any valid Linux
command, such as the following:

|RUN yum install -y wget

The preceding command is using the CentOS package manager yun to install the
wget package into the running container. This assumes that our base image is
CentOS or RHEL. If we had Ubuntu as our base image, then the command
would look similar to the following:

|RUN apt-get update && apt-get install -y wget

It would look like this because Ubuntu uses apt-get as a package manager.
Similarly, we could define a line with run like this:

| RUN mkdir -p /app && cd /app

We could also do this:

|RUN tar -xJC /usr/src/python --strip-components=1 -f python.tar.xz

Here, the former creates a /app folder in the container and navigates to it, and the
latter untars a file to a given location. It is completely fine, and even
recommended, for you to format a Linux command using more than

one physical line, such as this:

RUN apt-get update \

&& apt-get install -y --no-install-recommends \
ca-certificates \
libexpatl \
libffi6 \
libgdbm3 \
libreadline7 \
libsqlite3-0 \
libssl1i.1 \

&& rm -rf /var/lib/apt/lists/*

If we use more than one line, we need to put a backslash (\) at the end of the
lines to indicate to the shell that the command continues on the next line.

pythontesting

Try to find out what the preceding command does.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The COPY and ADD keywords

The cory and aoo keywords are very important since, in the end, we want to add
some content to an existing base image to make it a custom image. Most of the
time, these are a few source files of, say, a web application or a few binaries of a
compiled application.

These two keywords are used to copy files and folders from the host into the
image that we're building. The two keywords are very similar, with the exception
that the aoo keyword also lets us copy and unpack TAR files, as well as provide a
URL as a source for the files and folders to copy.

Let's look at a few examples of how these two keywords can be used:

COPY . /app

COPY ./web /app/web

COPY sample.txt /data/my-sample.txt

ADD sample.tar /app/bin/

ADD http://example.com/sample.txt /data/

In the preceding lines of code:

e The first line copies all files and folders from the current directory
recursively to the /app folder inside the container image

e The second line copies everything in the web subfolder to the target
fOlder,/app/web

e The third line copies a single file, sampie.txt, into the target folder, /data, and
at the same time, renames it tO my-sample.txt

e The fourth statement unpacks the sampie.tar file into the target
fOlder,/app/bin

o Finally, the last statement copies the remote file, sample.txt, into the target
file, /data

Wildcards are allowed in the source path. For example, the following statement
copies all files starting with samp1e to the mydir folder inside the image:

| COPY ./sample* /mydir/

From a security perspective, it is important to know that by default, all files and

pythontesting

folders inside the image will have a user ID (UID) and a group ID (GID) of e.
The good thing is that for both aoo and cory, we can change the ownership that the
files will have inside the image using the optional --chown flag, as follows:

| ADD --chown=11:22 ./data/files* /app/data/

The preceding statement will copy all files starting with the name web and put
them into the /app/data folder in the image, and at the same time assign user 11
and group 22 to these files.

Instead of numbers, one could also use names for the user and group, but then
these entities would have to be already defined in the root filesystem of the
image at /etc/passwd and /etc/group I‘ESPECﬁVEIY, otherwise the build of the image
would fail.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The WORKDIR keyword

The workoir keyword defines the working directory or context that is used when a
container is run from our custom image. So, if I want to set the context to the
sapp/bin folder inside the image, my expression in the Dockerfile would have to
look as follows:

| WORKDIR /app/bin

All activity that happens inside the image after the preceding line will use this
directory as the working directory. It is very important to note that the following
two snippets from a Dockerfile are not the same:

RUN cd /app/bin
RUN touch sample.txt

Compare the preceding code with the following code:

WORKDIR /app/bin
RUN touch sample.txt

The former will create the file in the root of the image filesystem, while the latter
will create the file at the expected location in the /app/bin folder. Only the workp1r
keyword sets the context across the layers of the image. The ¢« command alone
is not persisted across layers.

pythontesting

The CMD and ENTRYPOINT
keywords

The cvp and entrvrornt keywords are special. While all other keywords defined for
a Dockerfile are executed at the time the image is built by the Docker builder,
these two are actually definitions of what will happen when a container is started
from the image we define. When the container runtime starts a container, it
needs to know what the process or application will be that has to run inside this
container. That is exactly what cvo and entrvroint are used for—to tell Docker
what the start process is and how to start that process.

Now, the differences between cvp and entryproint are subtle, and honestly most
users don't fully understand them or use them in the intended way. Luckily, in
most cases, this is not a problem and the container will run anyway; it's just the
handling of it that is not as straightforward as it could be.

To better understand how to use the two keywords, let's analyze what a typical
Linux command or expression looks like—for example, let's take the ping utility
as an example, as follows:

|$ ping 8.8.8.8 -c 3
In the preceding expression, ping is the command and s.s.s.s -c 3 are the
parameters to this command. Let's look at another expression:

|$ wget -0 - http://example.com/downloads/script.sh

Again, in the preceding expression, wget is the command and -o -
http://example.com/downloads/script.sh dI'€ the parameters.

Now that we have dealt with this, we can get back to cvp and entrYPoINT. ENTRYPOINT
is used to define the command of the expression while cvo is used to define the
parameters for the command. Thus, a Dockerfile using aipine as the base image
and defining ping as the process to run in the container could look as follows:

FROM alpine:latest
ENTRYPOINT ["ping"]

qg 6089740 21734177 IT http://t.cn/RDIAj5D

|CMD ["8-8-8-8", "_C“/ ||3||]

For both entryrornt and cwp, the values are formatted as a JSON array of strings,
where the individual items correspond to the tokens of the expression that are
separated by whitespace. This the preferred way of defining cvo and entrypont. It
is also called the exec form.

Alternatively, one can also use what's called the shell form, for example:

|CMD command paraml param2

We can now build an image from the preceding Dockerfile, as follows:

| $ docker image build -t pinger .

Then, we can run a container from the pinger image we just created:

$ docker container run --rm -it pinger

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: seq=0 ttl=37 time=19.298 ms

64 bytes from 8.8.8.8: seq=1 ttl=37 time=27.890 ms
8.8:

8.
64 bytes from 8.8. seq=2 ttl=37 time=30.702 ms

The beauty of this is that I can now override the cvo part that I have defined in
the Dockerfile (remember, it was ["s.s.s8.8", "-c", "3"]) when I create a new
container by adding the new values at the end of the docker container run
expression:

| $ docker container run --rm -it pinger -w 5 127.0.0.1
This will now cause the container to ping the loopback for s seconds.

If we want to override what's defined in the entrypoznt in the Dockerfile, we need
to use the --entrypoint parameter in the docker container run EXPTESSiOIl. Let's say we
want to execute a shell in the container instead of the ping command. We could
do so by using the following command:

| $ docker container run --rm -it --entrypoint /bin/sh pinger
We will then find ourselves inside the container. Type exit to leave the container.

As I already mentioned, we do not necessarily have to follow best practices and
define the command through entryroint and the parameters through cwo, but we
can instead enter the whole expression as a value of cwo and it will work:

pythontesting

FROM alpine:latest
CMD wget -0 - http://www.google.com

Here, I have even used the shell form to define the cvo. But what does really
happen in this situation where entryroint is undefined? If you leave entrypoInt
undefined, then it will have the default value of /bin/sh -c, and whatever is the
value of cvp will be passed as a string to the shell command. The preceding
definition would thereby result in entering following process to run inside the
container:

| /bin/sh -c "wget -0 - http://www.google.com"

Consequently, /bin/sh is the main process running inside the container, and it will
start a new child process to run the wget utility.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

A complex Dockerfile

We have discussed the most important keywords commonly used in Dockerfiles.
Let's look at a realistic and somewhat complex example of a Dockerfile. The
interested reader might note that it looks very similar to the first Dockerfile that
we presented in this chapter. Here is the content:

FROM node:9.4

RUN mkdir -p /app
WORKDIR /app

COPY package.json /app/
RUN npm install

COPY . /app

ENTRYPOINT ["npm"]

CMD ["start"]

OK, so what is happening here? Evidently, this is a Dockerfile that is used to
build an image for a Node.js application; we can deduce this from the fact that
the base image node:9.4 is used. Then the second line is an instruction to create a
sapp folder in the filesystem of the image. The third line defines the working
directory or context in the image to be this new /app folder. Then, on line four,
We COPY a package. json file into the /app folder inside the image. After this, on line
five, we execute the npm insta11 command inside the container; remember, our
context is the /app folder and thus, npm will find the package. json file there that we
copied on line four.

After all Node.js dependencies are installed, we copy the rest of the application
files from the current folder of the host into the /app folder of the image.

Finally, on the last two lines, we define what the startup command shall be when
a container is run from this image. In our case, it is npn start, which will start the
Node application.

pythontesting

Building an image

In your nome directory, create a rundamentalsofoocker folder and navigate to it:

$ mkdir ~/FundamentalsOfDocker
$ cd ~/FundamentalsOfDocker

In the preceding folder, create a samp1e1 subfolder and navigate to it:

| $ mkdir samplel && cd samplel

Use your favorite editor to create a file called pockerrile inside this sample folder
with the following content:

FROM centos:7
RUN yum install -y wget

Save the file and exit your editor.

Back in the Terminal, we can now build a new container image using the
preceding Dockerfile as a manifest or construction plan:

| $ docker image build -t my-centos .

Please note that there is a period at the end of the preceding command. This
command means that the Docker builder is creating a new image called my-centos
using the Dockerfile that is present in the current directory. Here, the period at
the end of the command stands for current directory. We could also write the
preceding command as follows, with the same result:

| $ docker image build -t my-centos -f Dockerfile .

But we can omit the -r parameter, since the builder assumes that the Dockerfile
is literally called pockerfiie. We only ever need the -r parameter if our Dockerfile
has a different name or is not located in the current directory.

The preceding command gives us this (shortened) output:

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM centos:7

7: Pulling from library/centos

af4b0a2388c6: Pull complete

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Digest: sha256:2671f7a3eea36ce43609e9fe7435ade83094291055f1c96d9d1d1d7cOb986a5d
Status: Downloaded newer image for centos:7

---> ff426288ea90

Step 2/2 : RUN yum install -y wget

---> Running in bb726903820c

Loaded plugins: fastestmirror, ovl

Determining fastest mirrors

* base: mirror.dal10.us.leaseweb.net

* extras: repos-tx.psychz.net

* updates: pubmirrors.dal.corespace.com

Resolving Dependencies

--> Running transaction check

---> Package wget.x86_64 0:1.14-15.el17 4.1 will be installed

Installed:

wget.x86_64 0:1.14-15.el7_4.1

Complete!

Removing intermediate container bb726903820c
---> bc070cc81b87

Successfully built bc070cc81b87

Successfully tagged my-centos:latest

Let's analyze this output:

¢ First, we have the following line:

| Sending build context to Docker daemon 2.048kB

The first thing the builder does is package the files in the current build
context, excluding the files and folder mentioned in the .dockerignore file,
if present, and sends the resulting .tar file to the Docker daemon.

e Next, we have the following lines:

Step 1/2 : FROM centos:7

7: Pulling from library/centos
af4b0a2388c6: Pull complete

Digest: sha256:2671f7a...

Status: Downloaded newer image for centos:7
---> ff426288ea90

The first line tells us which step of the Dockerfile the builder is currently
executing. Here, we only have two statements in the Dockerfile, and we
are on step 1 of 2. We can also see what the content of that section is.
Here is the declaration of the base image, on top of which we want to
build our custom image. What the builder then does is pull this image
from Docker Hub if it is not already available in the local cache. The last
line of the preceding snippet indicates which ID the just-built layer gets
assigned by the builder.

pythontesting

e Now, follows the next step. I have shortened it even more than the
preceding one to concentrate on the essential part:

Step 2/2 : RUN yum install -y wget
---> Running in bb726903820c

Removing intermediate container bb726903820c
---> bcO70cc81b87

Here, again, the first line indicates to us that we are in step 2 of 2. It also
shows us the respective entry from the Dockerfile. On line two, we can
see Running in bb726903820c, Which tells us that the builder has created a
container with 1o bb726903820c inside, which it executes the run command.
We have omitted the output of the yun install -y wget command in the
snippet since it is not important in this section. When the command is
finished, the builder stops the container, commits it to a new layer, and
then removes the container. The new layer has 1o bce7eccsibsz, in this
particular case.

e At the very end of the output, we encounter the following two lines:

Successfully built bc0©70cc81b87
Successfully tagged my-centos:latest

This tells us that the resulting custom image has been given the ID
bco7occsibs7, and has been tagged with the name my-centos:1atest.

So, how does the builder work, exactly? It starts with the base image. From this
base image, once downloaded into the local cache, it creates a container and runs
the first statement of the Dockerfile inside this container. Then, it stops the
container and persists the changes made in the container into a new image layer.
The builder then creates a new container from the base image and the new layer,
and runs the second statement inside this new container. Once again, the result is
committed to a new layer. This process is repeated until the very last statement
in the Dockerfile is encountered. After having committed the last layer of the
new image, the builder creates an ID for this image and tags the image with the
name we provided in the build command:

qq 6089740

21734177

Step

®

®

pythontesting

Builder Container

Pull base Image

Container Layer

Command

rw! | RUN mkdir -p /app

[Layer 1 - Base Layer

Container Layer

r/w i | WORKDIR /app

[Layer 2

[Layer 1 - Base Layer

Container Layer

.
.
.

r/wi CMD ["python", "main.py"]

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1 - Base Layer

The image build process visualized

Resulting Image

[Layer 1 - Base Layer B]
Layer 2 a8
Layer 1 - Base Layer &
Layer 3 a8
Layer 2 a8
Layer 1 - Base Layer &

.

L]

.
Layer 7]
Layer 6 a8
Layer 5 a8
Layer 4]
Layer 3 [}
Layer 2 a8
Layer 1 - Base Layer @&

Final Image

IT

http://t.cn/RDIAJS5D

Multistep builds

To demonstrate why a Dockerfile with multiple build steps is useful, let's make
an example Dockerfile. Let's take a ve11o wor1d application written in C. Here is
the code found inside the he11o.c file:

#include <stdio.h>

int main (void)

{
printf ("Hello, world!\n");
return 0;

}

Now, we want to containerize this application and write this Dockerfile:

FROM alpine:3.7

RUN apk update &&

apk add --update alpine-sdk

RUN mkdir /app

WORKDIR /app

COPY . /app

RUN mkdir bin

RUN gcc -Wall hello.c -o bin/hello
CMD /app/bin/hello

Now, let's build this image:

| $ docker image build -t hello-world .

This gives us a fairly long output, since the builder has to install the Alpine
SDK, which, among other tools, contains the C++ compiler we need to build the
application.

Once the build is done we can list the image and see its size shown as follows:

$ docker image 1ls | grep hello-world
hello-world latest e9b. .. 2 minutes ago 176MB

With a size of 176 MB, the resulting image is way too big. In the end, it is just a
Hello world application. The reason for it being so big is that the image not only
contains the vel1o worid binary, but also all the tools to compile and link the
application from the source code. But this is really not desirable when running
the application, say, in production. Ideally, we only want to have the resulting
binary in the image and not a whole SDK.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

It is precisely for this reason that we should define Dockerfiles as multistage. We
have some stages that are used to build the final artifacts and then a final stage
where we use the minimal necessary base image and copy the artifacts into it.
This results in very small images. Have a look at this revised Dockerfile:

FROM alpine:3.7 AS build
RUN apk update && \
apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
RUN gcc hello.c -o bin/hello

FROM alpine:3.7
COPY --from=build /app/bin/hello /app/hello
CMD /app/hello

Here, we have a first stage with an alias build that is used to compile the
application, and then the second stage uses the same base image aipine:3.7, but
does not install the SDK, and only copies the binary from the build stage, using
the --from parameter, into this final image.

Let's build the image again as follows:

| $ docker image build -t hello-world-small .

When we compare the sizes of the images, we get the following output:

$ docker image 1ls | grep hello-world
hello-world-small latest fo98... 20 seconds ago 4.16MB
hello-world latest 469. .. 10 minutes ago 176MB

We have been able to reduce the size from 176 MB down to 4 MB. This is
reduction in size by a factor of 40. A smaller image size has many advantages,
such as a smaller attack surface area for hackers, reduced memory and disk
consumption, faster startup times of the corresponding containers, and a
reduction of the bandwidth needed to download the image from a registry, such
as Docker Hub.

pythontesting

Dockerfile best practices

There are a few recommended best practices to consider when authoring a
Dockerfile, which are as follows:

e First and foremost, we need to consider that containers are meant to be
ephemeral. By ephemeral, we mean that a container can be stopped and
destroyed and a new one built and put in place with an absolute minimum
of setup and configuration. That means that we should try hard to keep the
time that is needed to initialize the application running inside the container
at a minimum, as well as the time needed to terminate or clean up the
application.

e The next best practice tells us that we should order the individual
commands in the Dockerfile so that we leverage caching as much as
possible. Building a layer of an image can take a considerable amount of
time, sometimes many seconds or even minutes. While developing an
application, we will have to build the container image for our application
multiple times. We want to keep the build times at a minimum.

When we're rebuilding a previously built image, the only layers that are
rebuilt are the ones that have changed, but if one layer needs to be
rebuilt, all subsequent layers also need to be rebuilt. This is very
important to remember. Consider the following example:

FROM node:9.4

RUN mkdir -p /app

WORKIR /app

COPY . /app

RUN npm install
CMD ["npm", "start"]

In this example, the npn instal1 command on line five of the Dockerfile
usually takes the longest. A classical Node.js application has many
external dependencies, and those are all downloaded and installed in this
step. This can take minutes until it is done. Therefore, we want to avoid
running npm install each time we rebuild the image, but a developer
changes their source code all the time during development of the
application. That means that line four, the result of the cory command,

qg 6089740 21734177 IT http://t.cn/RDIAj5D

changes all the time and this layer has to be rebuilt each time. But as we
discussed previously, that also means that all subsequent layers have to
be rebuilt, which in this case includes the npm instai1 command. To avoid
this, we can slightly modify the Dockerfile and have the following:

FROM node:9.4

RUN mkdir -p /app

WORKIR /app

COPY package.json /app/

RUN npm install

COPY . /app
CMD ["npm", "start"]

What we have done here is that, on line four, we only copy the single file
that the npm insta11 command needs as a source, which is the package.json
file. This file rarely changes in a typical development process. As a
consequence, the npm instal1 command also has to be executed only when
the package.json file changes. All the remaining, frequently changed
content is added to the image after the npm insta11 command.

o A further best practice is to keep the number of layers that make up your
image relatively small. The more layers an image has, the more the graph
driver needs to work to consolidate the layers into a single root filesystem
for the corresponding container. Of course, this takes time, and thus the
fewer layers an image has, the faster the startup time for the container can
be.

But how can we keep our number of layers low? Remember that in a
Dockerfile, each line that starts with a keyword, such as FROM, COPY,
or RUN, creates a new layer. The easiest way to reduce the number of
layers is to combine multiple individual ruv commands into a single one
—for example, say that we had the following in a Dockerfile:

RUN apt-get install -y ca-certificates

RUN apt-get update
RUN rm -rf /var/lib/apt/lists/*

We could combine these into a single concatenated expression, as
follows:

&& apt-get install -y ca-certificates \

RUN apt-get update \
&& rm -rf /var/lib/apt/lists/*

pythontesting

The former will generate three layers in the resulting image, while the
latter only creates a single layer.

The next three best practices all result in smaller images. Why is this important?
Smaller images reduce the time and bandwidth needed to download the image
from a registry. They also reduce the amount of disk space needed to store a
copy locally on the Docker host and the memory needed to load the image.
Finally, smaller images also means a smaller attack surface for hackers. Here are
the best practices mentioned:

o The first best practice that helps to reduce the image size is to use a
.dockerignore file. We want to avoid copying unnecessary files and folders
into an image to keep it as lean as possible. A .dockerignore file works in
exactly the same way as a .gitignore file, for those who are familiar with Git.
In a .dockerignore file, we can configure patterns to exclude certain files or
folders from being included in the context when building the image.

e The next best practice is to avoid installing unnecessary packages into the
filesystem of the image. Once again, this is to keep the image as lean as
possible.

e Last but not least, it is recommended that you use multistage builds so that
the resulting image is as small as possible and only contains the absolute
minimum needed to run your application or application service.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Saving and loading images

The third way to create a new container image is by importing or loading it from
a file. A container image is nothing more than a tarball. To demonstrate this, we
can use the docker image save command to export an existing image to a tarball:

| $ docker image save -o ./backup/my-alpine.tar my-alpine

The preceding command takes our my-alpine image that we previously built and
exports it into a ./backup/my-alpine.tar file.

If, on the other hand, we have an existing tarball and want to import it as an
image into our system, we can use the docker image 1oad command as follows:

| $ docker image load -i ./backup/my-alpine.tar

pythontesting

Sharing or shipping images

To be able to ship our custom image to other environments, we need to first give
it a globally unique name. This action is often called tagging an image. We then
need to publish the image to a central location from which other interested or
entitled parties can pull it. These central locations are called image registries.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Tagging an image

Each image has a so-called tag. A tag is often used to version images, but it has
a broader reach than just being a version number. If we do not explicitly specify
a tag when working with images, then Docker automatically assumes we're
referring to the latest tag. This is relevant when pulling an image from Docker
Hub, for example:

| $ docker image pull alpine

The preceding command will pull the aipine:1atest image from the Hub. If we
want to explicitly specify a tag, we do so like this:

| $ docker image pull alpine:3.5

This will now pull the aipine image that has been tagged with s.s.

pythontesting

Image namespaces

So far, you have been pulling various images and haven't worried so much about
where those images originated from. Your Docker environment is configured so
that, by default, all images are pulled from Docker Hub. We also only pulled so-
called official images from the Docker Hub, such as aipine Or busybox.

Now it is time to widen our horizon a bit and learn about how images are
namespaced. The most generic way to define an image is by its fully qualified
name, which looks as follows:

| <registry URL>/<User or Org>/<name>:<tag>
Let's look at this in a bit more detail:

® <registry UrL>: This is the URL to the registry from which we want to pull
the image. By default, this is docker.io. More generally, this could be

https://registry.acme.com.

Other than Docker Hub, there are quite a few public registries out there
that you could pull images from. The following is a list of some of them,
in no particular order:

® Google at https://cloud.google.com/container-registry
e Amazon AWS at https://aws.amazon.com/ecr/
e Microsoft Azure at https://azure.microsoft.com/en-us/services/container-reg
istry/
e Red Hat at https://access.redhat.com/containers/
o Artifactory at nhttps://jfrog.com/integration/artifactory-docker-registry/
® <user or org>: This is the private Docker ID of either an individual or an
organization defined on Docker Hub, or any other registry for that matter,
such as microsoft OT oracle.
e <name>: This is the name of the image that is often also called a repository.
® <tag>: This is the tag of the image.

Let's look at an example:

| https://registry.acme.com/engineering/web-app:1.0

https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/
https://jfrog.com/integration/artifactory-docker-registry/

qg 6089740 21734177

IT

Here, we have an image, web-app, that is tagged with version 1.e and belongs to
the engineering organization on the private registry at https://registry.acme.com.

Now, there are some special conventions:

e [f we omit the registry URL, then Docker Hub is automatically taken
o If we omit the tag, then 1atest is taken
e Ifitis an official image on Docker Hub, then no user or organization

namespace is needed

A few samples in tabular form are as follows:

http://t.cn/RDIAJS5D

Image

Description

alpine

Official a1pine image on Docker Hub with
the 1atest tag.

ubuntu:16.04

Official ubuntu image on Docker Hub with
the 16.04 tag or version.

microsoft/nanoserver

nanoserver image of Microsoft on Docker Hub with
the 1atest tag.

acme/web-api:12.0

web-api image version 12.e associated with the
acme org. The image is on Docker Hub.

gcr.io/gnschenker/sample-
app:1.1

sample-app image with the 1.1 tag belonging to an
individual with the gnschenker ID on Google's
container registry.

pythontesting

Official images

In the preceding table, we mentioned official image a few times. This needs an
explanation. Images are stored in repositories on the Docker Hub registry.
Official repositories are a set of repositories that are hosted on Docker Hub and
are curated by individuals or organizations that are also responsible for the
software that is packaged inside the image. Let's look at an example of what that
means. There is an official organization behind the Ubuntu Linux distro. This
team also provides official versions of Docker images that contain their Ubuntu
distros.

Official images are meant to provide essential base OS repositories, images for
popular programming language runtimes, frequently used data storage, and other
important services.

Docker sponsors a team whose task it is to review and publish all those curated
images in public repositories on Docker Hub. Furthermore, Docker scans all
official images for vulnerabilities.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pushing images to a registry

Creating custom images is all well and good, but at some point, we want to
actually share or ship our images to a target environment, such as a test, QA, or
production system. For this, we typically use a container registry. One of the
most popular and public registries out there is Docker Hub. It is configured as a
default registry in your Docker environment, and it is the registry from which we
have pulled all our images so far.

On a registry, one can usually create personal or organizational accounts. For
example, my personal account at Docker Hub is gnschenker. Personal accounts are
good for personal use. If we want to use the registry professionally, then we
probably want to create an organizational account, such as acme, on Docker Hub.
The advantage of the latter is that organizations can have multiple teams. Teams
can have differing permissions.

To be able to push an image to my personal account on Docker Hub, I need to
tag it accordingly. Let's say I want to push the latest version of aipine to my
account and give it a tag of 1.e. I can do this in the following way:

| $ docker image tag alpine:latest gnschenker/alpine:1.0

Now, to be able to push the image, I have to log in to my account:

| $ docker login -u gnschenker -p <my secret password>

After a successful login, I can then push the image:

| $ docker image push gnschenker/alpine:1.0

I will see something similar to this in the terminal:

The push refers to repository [docker.io/gnschenker/alpine]
04a094fe844e: Mounted from library/alpine
1.0: digest: sha256:5ch@4fce... size: 528

For each image that we push to Docker Hub, we automatically create a
repository. A repository can be private or public. Everyone can pull an image
from a public repository. From a private repository, one can only pull an image if

pythontesting

one is logged in to the registry and has the necessary permissions configured.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we have discussed in detail what container images are and how
we can build and ship them. As we have seen, there are three different ways that
an image can be created—either manually, automatically, or by importing a
tarball into the system. We also learned some of the best practices commonly
used when building custom images.

In the next chapter, we're going to introduce Docker volumes that can be used to
persist the state of a container, and we will also introduce some helpful system
commands that can be used to inspect the Docker host more deeply, work with
events generated by the Docker daemon, and clean up unused resources.

pythontesting

Questions

Please try to answer the following questions to assess your learning progress:

1. How will you create a Dockerfile that inherits from Ubuntu version 17.04,
and that installs ping and runs ping when a container starts. The default
address to ping will be 127.0.0.1.

2. How will you create a new container image that uses alpine:1atest and
installs cur1. Name the new image my-alpine:1.o.

3. Create a Dockerfile that uses multiple steps to create an image of a Hello
world app of minimal size, written in C or Go.

4. Name three essential characteristics of a Docker container image.

You want to push an image named foo:1.6 t0 your jdoe personal account on

Docker Hub. Which of the following is the right solution?

1. $ docker container push foo0:1.0

2.

i

&

docker image tag foo:1.0 jdoe/foo0:1.0
docker image push jdoe/fo00:1.0

3. docker login -u jdoe -p <your password>
docker image tag foo0:1.0 jdoe/foo0:1.0
docker image push jdoe/fo00:1.0

docker login -u jdoe -p <your password>
docker container tag foo:1.0 jdoe/fo0:1.0

docker container push jdoe/fo00:1.0

docker login -u jdoe -p <your password>

:b
R - B - A R - I - R - R O

docker image push fo00:1.0 jdoe/fo0:1.0

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

The following list of references gives you some material that dives more deeply
into the topic of authoring and building container images:

Best practices for writing Dockerfiles at http://dockr.1y/22widio
USil’lg multistage builds at nttp://dockr.1y/2ewcuy3

About Storage drivers at nttp://dockr.ly/1Tuwndc

Graphdriver plugins at nttp://dockr.1ly/2eIvcab

User-guided caching in Docker for MAC at http://dockr . 1y/2xKafpf

pythontesting

http://dockr.ly/22WiJiO
http://dockr.ly/2ewcUY3
http://dockr.ly/1TuWndC
http://dockr.ly/2eIVCab
http://dockr.ly/2xKafPf

Data Volumes and System
Management

In the last chapter, we learned how to build and share our own container images.
Particular focus was put on how to build images that are as small as possible by
only containing artifacts that are really needed by the containerized application.

In this chapter, we are going to learn how we can work with stateful containers,
that is containers that consume and produce data. We will also learn how to keep
our Docker environment clean and free from unused resources. Last but not
least, we will be looking into the stream of events that a Docker engine is
producing.

Here is a list of the topics we're going to discuss:

Creating and mounting data volumes

Sharing data between containers

Using host volumes

Defining volumes in images

Obtaining exhaustive Docker system information
Listing resource consumption

Pruning unused resources

Consuming Docker system events

After working through this chapter, you will be able to:

Create, delete, and list data volumes

Mount an existing data volume into a container

Create durable data from within a container using a data volume

Share data between multiple containers using data volumes

Mount any host folder into a container using data volumes

Define the access mode (read/write or read-only) for a container when
accessing data in a data volume

e List the amount of space consumed by Docker resources on a given host,
such as images, containers, and volumes

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e Free your system from unused Docker resources, such as containers,
images, and volumes
e Display Docker system events in a console in real time

pythontesting

Technical requirements

For this chapter, you need either Docker Toolbox installed on your machine or
access to a Linux VM running Docker on your laptop or in the cloud. There is no
code accompanying this chapter.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating and mounting data volumes

All meaningful applications consume or produce data. Yet containers are
preferably meant to be stateless. How are we going to deal with this? One way is
to use Docker volumes. Volumes allow containers to consume, produce, and
modify state. Volumes have a life cycle that goes beyond the life cycle of
containers. When a container that uses a volume dies, the volume continues to
exist. This is great for the durability of state.

pythontesting

Modifying the container layer

Before we dive into volumes, let's first discuss what's happening if an
application in a container changes something in the filesystem of the container.
In this case, the changes are all happening in the writable container layer. Let's
quickly demonstrate this by running a container and execute a script in it that is
creating a new file:

$ docker container run --name demo \
alpine /bin/sh -c¢ 'echo "This is a test" > sample.txt'

The preceding command creates a container named demo and inside this container
creates a file called samp1e.txt with the content this is a test. The container exits
after this but remains in memory available for us to do our investigations. Let's
use the diff command to find out what has changed in the container's filesystem
in relation to the filesystem of the image:

|$ docker container diff demo

The output should look like this:

|A /sample.txt

Evidently a new file, A, has been added to the filesystem of the container as
expected. Since all layers that stem from the underlying image (a1pine in this
case) are immutable, the change could only happen in the writeable container
layer.

If we now remove the container from memory, its container layer will also be
removed and with it all the changes will be irreversibly deleted. If we need our
changes to persist even beyond the lifetime of the container, this is not a
solution. Luckily, we have better options in the form of Docker volumes. Let's
get to know them.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating volumes

Since, at this time, when using Docker for Mac or Windows containers are not
running natively on OS X or Windows but rather in a (hidden) VM created by
Docker for Mac and Windows, it is best we use docker-machine to create and use an
explicit VM running Docker. At this point, we assume that you have Docker
Toolbox installed on your system. If not, then please go back to chapter 2, Setting
up a Working Environment, where we provide detailed instructions on how to
install Toolbox.

Use docker-machine to list all VMs currently running in VirtualBox:

| $ docker-machine 1s

If you do not have a VM called node-1 listed then create one:

|$ docker-machine create --driver virtualbox node-1

If you have a VM called node-1 but it is not running then please start it:

|$ docker-machine start node-1

Now that everything is ready, SSH into this VM called node-1:

|$ docker-machine ssh node-1

You should be greeted by a boot2docker welcome image .

To create a new data volume, we can use the docker volume create command. This
will create a named volume which can then be mounted into a container and be
used for persistent data access or storage. The following command creates a
volume, my-data using the default volume driver:

| $ docker volume create my-data

The default volume driver is the so-called local driver which stores the data
locally in the host filesystem. The easiest way to find out where the data is stored
on the host is by using the inspect command on the volume we just created. The
actual location can differ from system to system and so, this is the safest way to

pythontesting

find the target folder:

$ docker volume inspect my-data
[
{

"CreatedAt": "2018-01-28T21:55:412",
"Driver": "local",
"Labels": {3},
"Mountpoint": "/mnt/sdal/var/lib/docker/volumes/my-data/_data",
"Name": "my-data",
"Options": {},
"Scope": "local"

The host folder can be found in the output under mountpoint. In our case, when
using docker-machine with a LinuxKit-based VM running in VirtualBox, the folder
is /mnt/sdal/var/lib/docker/volumes/my-data/_data.

The target folder often is a protected folder and we thus might need to use sudo to
navigate to this folder and execute any operations in it. In our case, we do not
need to use sudo:

|$ cd /mnt/sdail/var/lib/docker/volumes/my-data/_data
If you are using Docker for Mac to create a volume on your laptop and then do a docker volume
inspect on the volume you just created, the mountpoint is Shown as svar/1ib/docker/volumes/my-
data/_data. But you will discover that there is no such folder on the Mac. The reason is that the
path is in relation to the hidden VM that Docker for Mac uses to run containers. At this time,
containers cannot run natively on OS X. The same applies to volumes created with Docker for
Windows.

There are other volume drivers available from third parties in the form of
plugins. We can use the --driver parameter in the create command to select a
different volume driver. Other volume drivers use different types of storage
systems to back a volume, such as cloud storage, NFS drives, software-defined
storage and more.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Mounting a volume

Once we have created a named volume, we can mount it into a container. For
this, we can use the -v parameter in the docker container run command:

$ docker container run --name test -it \
-v my-data:/data alpine /bin/sh

The preceding command mounts the my-data volume to the /data folder inside the
container. Inside the container, we can now create files in the /data folder and
then exit:

cd /data

echo "Some data" > data.txt

echo "Some more data" > data2.txt
exit

HHHH
NNN N

If we navigate to the host folder that contains the volume data and list its
content, we should see the two files we just created inside the container:

$ cd /mnt/sdal/var/lib/docker/volumes/my-data/_data
$ 1s -1

total 8

-rw-r--r-- 1 root root 10 Jan 28 22:23 data.txt
-rw-r--r-- 1 root root 15 Jan 28 22:23 data2.txt

We can even try to output the content of say, the second file:

|$ cat data2.txt

Let's try to create a file in this folder from the host and then use the volume with
another container:

|$ echo "This file we create on the host" > host-data.txt

Now, let's delete the test container and run another one based on CentOS. This
time we are even mounting our volume to a different container folder, /app/data:

$ docker container rm test

$ docker container run --name test2 -it \
-v my-data:/app/data \
Centos:7 /bin/bash

Once inside the CentOS container, we can navigate to the folder /app/data where

pythontesting

we have mounted the volume to and list its content;

/ cd /app/data
#/ 1s -1

As expected, we should see these three files:

-rw-r--r-- 1 root root 10 Jan 28 22:23 data.txt
-rw-r--r-- 1 root root 15 Jan 28 22:23 data2.txt
-rw-r--r-- 1 root root 32 Jan 28 22:31 host-data.txt

This is the definitive proof that data in a Docker volume persists beyond the
lifetime of a container, and also that volumes can be reused by other, even
different containers from the one that used it first.

It is important to note that the folder inside the container to which we mount a
Docker volume is excluded from the union filesystem. That is, each change
inside this folder and any of its subfolders will not be part of the container layer,
but persisted in the backing storage provided by the volume driver. This fact is
really important since the container layer is deleted when the corresponding
container is stopped and removed from the system.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Removing volumes

Volumes can be removed using the docker volume rm command. It is important to
remember that removing a volume destroys the containing data irreversibly and
thus is to be considered a dangerous command. Docker helps us a bit in this
regard as it does not allow us to delete a volume that is still in use by a container.
Always make sure before you remove or delete a volume that you either have a
backup of its data or you really don't need this data anymore.

The following command deletes our my-data volume that we created earlier:

| $ docker volume rm my-data

After executing the preceding command, double-check that the folder on the host
has been deleted.

To remove all running containers to clean up the system, run the following
command:

| $ docker container rm -f $(docker container 1ls -aq)

pythontesting

Sharing data between containers

Containers are like sandboxes for the applications running inside them. This is
mostly beneficial and wanted in order to protect applications running in different
containers from each other. That also means that the whole filesystem visible to
an application running inside a container is private to this application and no
other application running in a different container can interfere with it.

At times though, we want to share data between containers. Say an application
running in container A produces some data that will be consumed by another
application running in container B. How can we achieve this? Well I'm sure
you've already guessed it—we can use Docker volumes for this purpose. We can
create a volume and mount it to container A as well as to container B. In this
way, both applications A and B have access to the same data.

Now, as always when multiple applications or processes concurrently access
data, we have to be very careful to avoid inconsistencies. To avoid concurrency
problems, such as race conditions, we ideally have only one application or
process that is creating or modifying data, while all other processes concurrently
accessing this data only read it. We can enforce a process running in a container
to only be able to read the data in a volume by mounting this volume as read
only. Have a look at the following command:

$ docker container run -it --name writer \

-v shared-data:/data \
alpine /bin/sh

Here we create a container called writer which has a volume, shared-data, mounted
in default read/write mode. Try to create a file inside this container:

|# / echo "I can create a file" > /data/sample.txt

It should succeed. Exit this container and then execute the following command:

$ docker container run -it --name reader \
-v shared-data:/app/data:ro \
ubuntu:17.04 /bin/bash

And we have a container called reader that has the same volume mounted as

qg 6089740 21734177 IT http://t.cn/RDIAj5D

read-only (ro). Firstly, make sure you can see the file created in the first
container:

$ 1s -1 /app/data
total 4
-rw-r--r-- 1 root root 20 Jan 28 22:55 sample.txt

And then try to create a file:

|# / echo "Try to break read/only" > /app/data/data.txt

It will fail with the following message:

| bash: /app/data/data.txt: Read-only file system

Let's exit the container by typing exit at the Command Prompt. Back on the host,
let's clean up all containers and volumes:

$ docker container rm -f $(docker container 1ls -aq)
$ docker volume rm $(docker volume 1ls -q)

Once this is done, exit the docker-machine VM by also typing exit at the Command
Prompt. You should be back on your Docker for Mac or Windows. Use docker -
machine tO StOp the VM:

| $ docker-machine stop node-1

pythontesting

Using host volumes

In certain scenarios, such as when developing new containerized applications or
when a containerized application needs to consume data from a certain folder
produced, say, by a legacy application, it is very useful to use volumes that
mount a specific host folder. Let's look at the following example:

$ docker container run --rm -it \

-v $(pwd)/src:/app/src \
alpine:latest /bin/sh

The preceding expression interactively starts an alpine container with a shell and
mounts the subfolder src of the current directory into the container at /app/src. We
need to use s(pwd) (or 'pwd' for that matter) which is the current directory, as when
working with volumes we always need to use absolute paths.

Developers use these techniques all the time when they are working on their
application that runs in a container, and want to make sure that the container
always contains the latest changes they make to the code, without the need to
rebuild the image and rerun the container after each change.

Let's make a sample to demonstrate how that works. Let's say we want to create
a simple static website using Nginx as our web server. First, let's create a new
folder on the host where we will put our web assets, such as HTML, CSS, and
JavaScript files and navigate to it:

$ mkdir ~/my-web
$ cd ~/my-web

Then we create a simple web page like this:

|$ echo "<hi1>Personal Website</h1>" > index.html

Now, we add a Dockerfile which will contain the instructions on how to build
the image containing our sample website. Add a file called Dockerfile to the
folder with this content:

FROM nginx:alpine
COPY . /usr/share/nginx/html

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The Dockerfile starts with the latest Alpine version of Nginx and then copies all
files from the current host directory into the containers

folder, /usr/share/nginx/ntmi. This is where Nginx expects web assets to be located.
Now let's build the image with the following command:

| $ docker image build -t my-website:1.0 .

And finally, we run a container from this image. We will run the container in
detached mode:
$ docker container run -d \

-p 8080:80 --name my-site\
my-website:1.0

Note the -p sese:se parameter. We haven't discussed this yet but we will do it in
detail in chapter 7, Single-Host Networking. At the moment, just know that this
maps the container port se on which Nginx is listening for incoming requests to
port sese of your laptop where you can then access the application. Now, open a
browser tab and navigate to http://localhost:8686/index.html and you should see
your website which currently consists only of a title, personal website.

Now, edit the file index.htm1 in your favorite editor to look like this:

<hi>Personal Website</h1>
<p>This is some text</p>

And save it. Then refresh the browser. OK, that didn't work. The browser still
displays the previous version of the index.ntm1 which consists only of the title. So
let's stop and remove the current container, then rebuild the image, and rerun the
container:

$ docker container rm -f my-site

$ docker image build -t my-website:1.0 .

$ docker container run -d \

-p 8080:80 --name my-site\
my-website:1.0

This time when you refresh the browser the new content should be shown. Well,
it worked, but there is way too much friction involved. Imagine you have to do
this each and every time that you make a simple change in your website. That's
not sustainable.

Now is the time to use host-mounted volumes. Once again, remove the current

pythontesting

container and rerun it with the volume mount:

$ docker container rm -f my-site

$ docker container run -d \
-v $(pwd):/usr/share/nginx/html \
-p 8080:80 --name my-site\
my-website:1.0

Now, append some more content to the index.ntm1 and save it. Then refresh your
browser. You should see the changes. And this is exactly what we wanted to
achieve; we also call this an edit-and-continue experience. You can make as
many changes in your web files and always immediately see the result in the
browser without having to rebuild the image and restart the container containing
your website.

It is important to note that the updates are now propagated bi-directionally. If
you make changes on the host they will be propagated to the container and vice
versa. Also important is the fact that when you mount the current folder into the
container target folder, /usr/share/nginx/htm1, the content that is already there is
replaced by the content of the host folder.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Defining volumes in images

If we go for a moment back to what we have learned about containers in chapter
3, Working with Containers, then we have this: the filesystem of each container
when started is made up of the immutable layers of the underlying image plus a
writable container layer specific to this very container. All changes that the
processes running inside the container make to the filesystem will be persisted in
this container layer. Once the container is stopped and removed from the system,
the corresponding container layer is deleted from the system and irreversibly
lost.

Some applications, such as databases running in containers, need to persist their
data beyond the lifetime of the container. In this case they can use volumes. To
make things a bit more explicit let's look at a concrete sample. MongoDB is a
popular open source document database. Many developers use MongoDB as a
storage service for their applications. The maintainers of MongoDB have created
an image and published it on Docker Hub which can be used to run an instance
of the database in a container. This database will be producing data that needs to
be persisted long term. But the MongoDB maintainers do not know who uses
this image and how it is used. So they have no influence over the docker container
run command with which the users of the database will start this container. How
can they now define volumes?

Luckily, there is a way of defining volumes in the Dockerfile. The keyword to
do so is voLume and we can either add the absolute path to a single folder or a
comma-separated list of paths. These paths represent folders of the container's
filesystem. Let's look at a few samples of such volume definitions:

VOLUME /app/data

VOLUME /app/data, /app/profiles, /app/config
VOLUME ["/app/data", "/app/profiles", "/app/config"]

The first line defines a single volume to be mounted at /app/data. The second line
defines three volumes as a comma-separated list and the last one defines the
same as the second line, but this time the value is formatted as a JSON array.

When a container is started, Docker automatically creates a volume and mounts

pythontesting

it to the corresponding target folder of the container for each path defined in the
Dockerfile. Since each volume is created automatically by Docker, it will have
an SHA-256 as ID.

At container runtime, the folders defined as volumes in the Dockerfile are
excluded from the union filesystem and thus any changes in those folders do not
change the container layer but are persisted to the respective volume. It is now
the responsibility of the operations engineers to make sure that the backing
storage of the volumes is properly backed up.

We can use the docker image inspect command to get information about the
volumes defined in the Dockerfile. Let's see what MongoDB gives us. First, we
pull the image with the following command:

| $ docker image pull mongo:3.7

Then we inspect this image and use the --format parameter to only extract the
essential part from the massive amount of data:
$ docker image inspect \

--format="'{{json .ContainerConfig.Volumes}}' \
mongo:3.7 | jq

Which will return the following result:

{
"/data/configdb": {},
"/data/db": {3}

}

Evidently, the Dockerfile for MongoDB defines two volumes at /data/configdb and
/data/db.

Now, let's run an instance of MongoDB as follows:

| $ docker run --name my-mongo -d mongo:3.7

We can now use the docker container inspect command to get information about the
volumes that have been created, among other things. Use this command to just
get the volume information:

| $ docker inspect --format '{{json .Mounts}}' my-mongo | jq

qg 6089740 21734177

The expression should output something like this:

[
{

"Type": "volume",

"Name": "b9ea0158b5...",

"Source": "/var/lib/docker/volumes/b9ea®158b.../_data",
"Destination": "/data/configdb",

"Driver": "local",

llModell: II||,

"RW": true,

"Propagation": ""

"Type": "volume",

"Name": "5becf84bile...",

"Source": "/var/lib/docker/volumes/5becf84bi1.../_data",
"Destination": "/data/db",

"Driver": "local",

llModell: II||,

"RW": true,

"Propagation": ""

Note that the values of the name and source fields have been trimmed for

http://t.cn/RDIAJS5D

readability. The source field gives us the path to the host directory where the data

produced by the MongoDB inside the container will be stored.

pythontesting

Obtaining Docker system information

Whenever we need to troubleshoot our system, the commands presented in this
section are essential. They provide us with a lot about the Docker engine
installed on the host and about the host operating system. Let's first introduce the
docker version command. It provides abundant information about the Docker
client and server that your current configuration is using. If you enter the
command in the CLI, you should see something similar to this:

$ docker version

Client:
Version:

API version:
Go version:
Git commit:
Built: Tue Apr
0S/Arch:
Experimental:
Orchestrator:

Server:
Engine:
Version:
API version:
Go version:
Git commit:
Built:
0S/Arch:
Experimental:

s il

18.04.0-ce

1.37

gol.9.4

3d479¢c0

10 18:13:16 2018
darwin/amd64
true

swarm

18.04.0-ce

1.37 (minimum version 1.12)
gol.9.4

3d479c0

Tue Apr 10 18:23:05 2018
linux/amd64

true

Version Information about Docker

In my case, I can see that on both client and server, I am using version 1s.04.0-ce-
rc2 of the Docker engine. I can also see that my orchestrator is Swarm and more.

Now to clarify what the client and what the server is, let's look at the following

diagram:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Your laptop Remote Server

Moby VM

/ (LinuxKit} E E C1 C2|| C3 Cn
Docker : i

0S

| . /
E Hypervisor \‘S docker run ... ' E OS

CLI accessing different Docker Hosts

You can see that the client is the little CLI through which we send Docker
commands to the remote API of the Docker host. The Docker host is the
container runtime which hosts the containers and might run on the same machine
as the CLI, or it might run on a remote server, on-premise or in the cloud. We
can use the CLI to manage different servers. We do this by setting a bunch of
environment variables such as pocker_HosT, bocker_TLs_verIry, and pocker_cerT_paTH. If
these environment variables are not set on your working machine and you're
using Docker for Mac or Windows then that means that you are using the Docker
engine that runs on your machine.

The next important command is the docker system info command. This command
provides information about what mode the Docker engine is operating in (swarm
mode or not), what storage driver is used for the union filesystem, what version
of the Linux kernel we have on our host, and much more. Please have a careful
look at the output generated by your system when running the command.
Analyze what kind of information is shown:

pythontesting

Containers:
Running: @
Paused: @

18.04.0-ce
overlay?2
extfs

Native Qverlay Diff: true
ing Driver: json-file
Cgroup Driver:
Plugins:
! local
bridge host ipvlan macvlan null overlay
g: awslogs fluentd gcplogs gelf journald json-file logentries splunk
Swarm: inactive
Runtime ru
Default Runtir runc
Init Binary: docker-init
containerd version: 773c489c¢9c1b21u6d78b5c538cd3954
runc version: 81fb7c994640722ac585Fa%ca54897
init versio
rity Options:
ccomp
Profile: default
Kernel Version: 4.9.87-linuxkit-aufs
Operating System: Docker for Mac

Total Memory: 1.952GiB
Name: 1inuxki poBReR1
ID: WVSX:CY7N:LHIP:SW]2:T55W:PSQM:MEYU:MM3V :550H:RALF:5ZDN;
Docker Root Dir: .
Debug Mode (client): false
Debug Mode (server): true
File Descript
Goroutines:
5 em Tin
EventsLi
gateway.docker.internal:31:
. gateway.docker.internal:3
Registry: https://index.docker.io/v1l/
Labe
rimental: tr

Live Restore Ena
Output of the Command docker system info

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Listing resource consumption

Over time, a Docker host can accumulate quite a bit of resources such as images,
containers, and volumes in memory and on disk. As in every good household,
we should keep our environment clean and free unused resources to reclaim
space. Otherwise, there will come the moment when Docker does not allow us to
add any more new resources, meaning actions such as pulling an image can fail
due to lack of available space on disk or in memory.

The Docker CLI provides a handy little systen command that lists how much
resources currently are used on our system and how much of this space can
possibly be reclaimed. The command is:

| $ docker system df

If you execute this command on your system, you should see an output similar to
this:

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 21 9 1.103GB 845.3MB (76%)
Containers 14 11 9.144kB 4.4kB (48%)
Local Volumes 14 14 340.3MB 0B (0%)

Build Cache oB 0B

The last line in the output, the suild cache, is only displayed on newer versions of
Docker. This information has been added recently. The preceding output is
explained as follows:

¢ In my case, the output tells me that on my system I am currently having 21
images locally cached of which ¢ are in active use. An image is considered
to be in active use if currently at least one running or stopped container is
based on it. These images occupy 1.1 GB disk space. Close to sas MB can
technically be reclaimed since the corresponding images are not currently
used.

e Further, I have 11 running containers on my system and three stopped ones
for a total of 14 containers. I can reclaim the space occupied by the stopped
containers which is 4.4 ks in my case.

e [also have 14 active volumes on my host that together consume about 340
MB of disk space. Since all volumes are in use, I cannot reclaim any space

pythontesting

at this time.
e Finally, my suild cache is currently empty and thus of course I cannot
reclaim any space there too.

If I want even more detailed information about the resource consumption on my
system, I can run the same command in verbose mode using the -v flag:

| $ docker system df -v

This will give me a detailed list of all images, containers, and volumes with their
respective size. A possible output could look like this:

) TAG IMAGE ID siz SHARED SIZE UNIQUE 51ZE CONTAINERS
fundamental c] 1.0 f 845 i 7
fundamental ck 2.0
: z.0
latest
latest

fundamentalscfdocke
fundamentalsofdocker/chd8-db
node 9.6-alpine
alpin latest
i cp-enterprise-kafka 4.0.0
latest

a
1
a
5
it
1.0

cala-sbt
Containers space usage:
CONTAINER ID IMAGE 5
af c4 nginx:dlpine " 8" & f U d hial easley
2 ruby:alpine 0 5.7 5 he r o i 3 ago riere

Local Volumes space usage:

LINKS

Verbose output of the system resources consumed by Docker

This verbose output should give us enough detailed information to make an
informed decision as to whether or not we need to start cleaning up our system,
and which parts we might need to clean up.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pruning unused resources

Once we have concluded that some clean up is needed Docker provides us with
so-called pruning commands. For each resource, such as images, containers,
volumes, and networks there exists a prune command.

pythontesting

Pruning containers

In this section we want to regain unused system resources by pruning containers.
Let's start with this command:

| $ docker container prune

The preceding command will remove all containers from the system that are not
in running status. Docker will ask for confirmation before deleting the containers
that are currently in exited O created Status. If you want to skip this confirmation
step you can use the - (or --force) flag:

| $ docker container prune -f

Under certain circumstances, we might want to remove all containers from our
system, even the running ones. We cannot use the prune command for this.
Instead we should use a command, such as the following combined expression:

| $ docker container rm -f $(docker container 1ls -aq)

Please be careful with the preceding command. It removes all containers without
warning, even the running ones! Please, before you proceed look at the
preceding command again in detail and try to explain what exactly happens and
why.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pruning images

Next in line are images. If we want to free all space occupied by unused image
layers we can use the following command:

| $ docker image prune

After we reconfirm to Docker that we indeed want to free space occupied by
unused image layers, those get removed. Now I have to specify what we mean
when talking about unused image layers. As you recall from the previous
chapter, an image is made up of a stack of immutable layers. Now, when we are
building a custom image multiple times, each time making some changes in, say,
the source code of the application for which we're building the image, then we
are recreating layers and previous versions of the same layer become orphaned.
Why is this the case? The reason is that layers are immutable, as discussed in
detail in the previous chapter. Thus, when something in the source that is used to
build a layer is changed, the very layer has to be rebuilt and the previous version
will be abandoned.

On a system where we often build images, the number of orphaned image layers
can increase substantially over time. All these orphaned layers are removed with
the preceding prune command.

Similar to the prune command for containers, we can avoid Docker asking us for
a confirmation by using the force flag:

| $ docker image prune -f

There is an even more radical version of the image prune command. Sometimes
we do not just want to remove orphaned image layers but all images that are not
currently in use on our system. For this, we can use the -a (or --a11) flag:

| $ docker image prune --force --all

After execution of the preceding command, only images that are currently used
by one or more containers will remain in our local image cache.

pythontesting

Pruning volumes

Docker volumes are used to allow for persistent access of data by containers.
This data can be important and thus the commands discussed in this section
should be applied with special care.

If you know that you want to reclaim space occupied by volumes and with it
irreversibly destroy the underlying data, you can use the following command:

| $ docker volume prune

This command will remove all volumes that are not currently in use by at least
one container.

the data associated with the volumes before you delete them except when you're sure that the

0 This is a destructive command and cannot be undone. You should always create a backup of
data has no further value.

To avoid system corruption or malfunctioning applications, Docker does not
allow you to remove volumes that are currently in use by at least one container.
This applies even to the situation where a volume is used by a stopped container.
You always have to remove the containers that use a volume first.

A useful flag when pruning volumes is the -r or --riiter flag which allows us to
specify the set of volumes which we're considering for pruning. Look at the
following command:

| $ docker volume prune --filter 'label=demo'

This will only apply the command to volumes that have a 1abe1 with the demo
value. The filtering flag format is key=vaiue. If there is more than one filter
needed, then we can use multiple flags:

| $ docker volume prune --filter 'label=demo' --filter 'label=test'

The filter flag can also be used when pruning other resources such as containers
and images.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pruning networks

The last resource that can be pruned are networks. We will discuss networks in
detail in chapter 7, Single-Host Networking. To remove all unused networks, we
use the following command:

| $ docker network prune

This will remove the networks on which currently no container or service is
attached. Please don't worry about networks too much at this time. We will come
back to them and all this will make much more sense to you.

pythontesting

Pruning everything

If we just want to prune everything at once without having to enter multiple
commands, we can use the following command:

| $ docker system prune

The Docker CLI will ask us for a confirmation and then remove all unused
containers, images, volumes, and networks in one go and in the right order.

Once again, to avoid Docker asking us for a confirmation, we can just use the
force flag with the command.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Consuming Docker system events

The Docker engine, when creating, running, stopping, and removing containers
and other resources such as volumes or networks, produces a log of events.
These events can be consumed by external systems, such as some infrastructure
services that use them to make informed decisions. An example of such a service
could be a tool that creates an inventory of all containers that are currently
running on the system.

We can hook ourselves into this stream of system events and output them, for
example in a terminal, by using the following command:

| $ docker system events

This command is a blocking command. Thus, when you execute it in your
terminal session the according session is blocked. Therefore, we recommend that
you always open an extra window when you want to use this command.

Assuming we have executed the preceding command in an extra terminal
window, we can now test it and run a container like this:

| $ docker container run --rm alpine echo "Hello World"

The output produced should look like this:

2018-01-28T15:08:57.318341118-06:00 container create
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ecf3 (image=alpine,
name=confident_hopper)

2018-01-28T15:08:57.320934314-06:00 container attach
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ecf3 (image=alpine,
name=confident_hopper)

2018-01-28T15:08:57.354869473-06:00 network connect
c8fd270el1a776c5851c9fale79927141alelbe228880c0aaced4d0daebccd190f
(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ectf3,
name=bridge, type=bridge)

2018-01-28T15:08:57.818494970-06:00 container start
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ecf3 (image=alpine,
name=confident_hopper)

2018-01-28T15:08:57.998941548-06:00 container die
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ecf3 (exitCode=0,
image=alpine, name=confident_hopper)

pythontesting

2018-01-28T15:08:58.304784993-06:00 network disconnect
c8fd270e1a776c5851c9fale79927141alelbe228880cOaaced4d0daebccd190f
(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3,
name=bridge, type=bridge)

2018-01-28T15:08:58.412513530-06:00 container destroy
8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ah5024acf166c6ecf3 (image=alpine,
name=confident_hopper)

In this output, we can follow the exact life cycle of the container. The container
is created, started, and then destroyed. If the output generated by this command
is not to your liking you can always change it by using the --format parameter.
The value of the format has to be written using the Go template syntax. The
following sample outputs the type, image, and action of the event:

$ docker system events --format 'Type={{.Type}} Image={{.Actor.Attributes.image}}
Action={{.Action}}'

If we run the exact same container run command as before, the output generated
now looks like this:

Type=container Image=alpine Action=create
Type=container Image=alpine Action=attach
Type=network Image=<no value> Action=connect
Type=container Image=alpine Action=start
Type=container Image=alpine Action=die
Type=network Image=<no value> Action=disconnect

Type=container Image=alpine Action=destroy

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we have introduced Docker volumes that can be used to persist
states produced by containers and make it durable. We can also use volumes to
provide containers with data originating from various sources. We have learned
how to create, mount and use volumes. We have learned various techniques of
defining volumes such as by name, by mounting a host directory, or by defining
volumes in a container image.

In this chapter, we have also discussed various system-level commands that
either provide us with abundant information to troubleshoot a system, or to
manage and prune resources used by Docker. Lastly, we have learned how we
can visualize and potentially consume the event stream generated by the
container runtime.

In the next chapter, we are going to get an introduction into the fundamentals of
container orchestration. There we're going to discuss what's needed when we
have to manage and run not just one or a few containers but potentially hundreds
of them on many nodes in a cluster. We will see that there are a lot of challenges
to solve. This is where orchestration engines come into play.

pythontesting

Questions

Please try to answer the following questions to assess your learning progress:

1.

How will you create a named data volume with a name, for example my-
products, using the default driver?

How will you run a container using the image aipine and mount the volume
my-products in read-only mode into the /data container folder?

How will you locate the folder which is associated with the volume my-
products and navigate to it? Also, how will you create a file, sampie.txt with
some content?

How will you run another aipine container to which you mount the my-
products volume to the /app-data folder, in read/write mode? Inside this
container, navigate to the /app-data folder and create a heiio.txt file with
some content.

How will you mount a host volume, for example ~/my-project, into a
container?

How will you remove all unused volumes from your system?

How will you determine the exact version of the Linux kernel and of
Docker running on your system?

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

The following articles provide more in-depth information:

Use volumes at http://dockr.ly/2EUjTml

Manage data in Docker at nttp://dockr.1ly/2EnBpzD

Docker volumes on PWD at http://bit.1ly/2sjIDj
Containers—clean up your house at nttp://bit.1y/2bvrcen
Docker system events at http://dockr.ly/2B1Zmxy

pythontesting

http://dockr.ly/2EUjTml
http://dockr.ly/2EhBpzD
http://bit.ly/2sjIfDj
http://bit.ly/2bVrCBn
http://dockr.ly/2BlZmXY

Distributed Application Architecture

In the previous chapter, we learned how we can use Docker volumes to persist
created or modified state, as well as share data between applications running in
containers. We also learned how to work with events generated by the Docker
daemon and clean up unused resources.

In this chapter, we introduce the concept of a distributed application architecture
and discuss the various patterns and best practices that are required to run a
distributed application successfully. Finally, we will discuss the additional
requirements that need to be fulfilled to run such an application in production.

In this chapter, we will cover the following topics:

e What is a distributed application architecture?
e Patterns and best practices
¢ Running in production

After finishing this chapter, you will be able to do the following:

e Name at least four characteristics of a distributed application architecture
e Name at least four patterns that need to be implemented for a production-
ready distributed application

qg 6089740 21734177 IT http://t.cn/RDIAj5D

What is a distributed application
architecture?

In this section, we are going to explain in detail what we mean when we talk
about a distributed application architecture. First, we need to make sure that all
words or acronyms we use have a meaning and that we are all talking the same
language.

pythontesting

Defining the terminology

In this and the subsequent chapters, we will talk a lot about concepts that might
not be familiar to everyone. To make sure we all talk the same language,

let's briefly introduce and describe the most important of these concepts or
words:

VM Acronym for virtual machine. This is a virtual computer.

Individual server used to run applications. This can be a physical
server, often called bare metal, or a VM. A node can be a

Node mainframe, supercomputer, standard business server, or even a
Raspberry Pi. Nodes can be computers in a company's own data
center or in the cloud. Normally, a node is part of a cluster.

Group of nodes connected by a network used to run distributed

Cluster L
applications.

Physical and software-defined communication paths between
Network | individual nodes of a cluster and programs running on those
nodes.

Channel on which an application such a web server listens for

Port) .
incoming requests.

This, unfortunately, is a very overloaded term and its real
meaning depends on the context in which it is used. If we use the
term service in the context of an application such as an
application service, then it usually means that this is a piece of
software that implements a limited set of functionality which is
then used by other parts of the application. As we progress
through this book, other types of services that have a slightly
different definition will be discussed.

Service

Naively said, a distributed application architecture is the opposite of a
monolithic application architecture, but it's not unreasonable to look at this

qg 6089740 21734177 IT http://t.cn/RDIAj5D

monolithic architecture first. Traditionally, most business applications have been
written in such a way that the result can be seen as one single, tightly coupled
program that runs on a named server somewhere in a data center. All its code is
compiled into a single binary or a few very tightly coupled binaries that need to
be co-located when running the application. The fact that the server, or more
general host, on which the application is running has a well-defined name or
static IP address is also important in this context. Let's look at the following
diagram to illustrate this type of application architecture a bit more clearly:

Incoming
request

Load Balancer

Application: pet-shop

Database

Server: blue-box-12a
IP: 172.52.13.44

Monolithic application architecture

In the preceding figure, we see a server named blue-box-12a with an IP address
of 172.52.13.44 running an application called pet-shop, which is a monolith
consisting of a main module and a few tightly coupled libraries.

Now, let's look at the following figure:

pythontesting

1 Incoming

request

Load Balancer

node-1cef-...

node-2af9-...

pet-;pi/ pel-;apj p\e;web
pet-wes pet-crm
node-4567-... node-ba98-... node-1b2c-...
pet-inventory pet-invoices Pez;;g;ﬁ‘
pet-invoices Pe;‘;;gg;d'

node-ebac-...

Clusteri

Distributed application architecture

Here, all of a sudden, we don't have only a single named server anymore, but we
have a lot of them and they don't have human-friendly names, but rather some
unique IDs that can be something like a universal unique identifier (UUID).
The pet shop application, all of a sudden, also does not consist of a single
monolithic block anymore but rather of a plethora of interacting yet loosely
coupled services such as pet-api, pet-web, and pet-inventory. Furthermore,
each service runs in multiple instances in this cluster of servers or hosts.

You might be wondering why we are discussing this in a book about Docker
containers, and you are right to ask. While all the topics we're going to
investigate apply equally to a world where containers do not (yet) exist, it is
important to realize that containers and container orchestration engines help to
address all the problems in a much more efficient and straightforward way. Most
of the problems that used to be very hard to solve in a distributed application
architecture become quite simple in a containerized world.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Patterns and best practices

A distributed application architecture has many compelling benefits, but it has
also one very significant drawback compared to a monolithic application
architecture - the former is way more complex. To tame this complexity, the
industry has come up with some important best practices and patterns. In the
following sections, we are going to look into some of the most important ones in
more detail.

pythontesting

Loosely coupled components

The best way to address a complex subject has always been to divide it into
smaller sub problems that are more manageable. As an example, it would be
insanely complex to build a house in one single step. It is much easier to build
the house up from simple parts that are then combined into the final result.

The same also applies to software development. It is much easier to develop a
very complex application if we divide this application into smaller components
that interoperate and together make up the overall application. Now, it is much
easier to develop these components individually if they are only loosely coupled
to each other. What this means is that component A makes no assumptions about
the inner workings of, say, components B and C, but is only interested in how it
can communicate with those two components across a well-defined interface. If
each component has a well-defined and simple public interface through which
communication with the other components in the system and the outside world
happens, then this enables us to develop each component individually, without
implicit dependencies to other components. During the development process,
other components in the system can be replaced by stubs or mocks to allow us to
test our component.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Stateful versus stateless

Every meaningful business application creates, modifies, or uses data. Data is
also called state. An application service that creates or modifies persistent data is
called a stateful component. Typical stateful components are database services or
services that create files. On the other hand, application components that do not
create or modify persistent data are called stateless components.

In a distributed application architecture, stateless components are much simpler
to handle than stateful components. Stateless components can be easily scaled up
and scaled down. They can also be quickly and painlessly torn down and
restarted on a completely different node of the cluster—all this because they
have no persistent data associated with them.

Given that fact, it is helpful to design a system in a way that most of the
application services are stateless. It is best to push all the stateful components to
the boundary of the application and limit their number. Managing stateful
components is hard.

pythontesting

Service discovery

As we build applications that consist of many individual components or services
that communicate with each other, we need a mechanism that allows the
individual components to find each other in the cluster. Finding each other
usually means that one needs to know on which node the target component is
running and on which port it is listening for communication. Most often, nodes
are identified by an IP address and a port, which is just a number in a well-
defined range.

Technically, we could tell Service A, which wants to communicate with a
target, Service B, what the IP address and port of the target are. This could
happen, for example, through an entry in a configuration file:

port: 3000
@ { - ‘

IP: 72.10.0.13

Components are hardwired

While this might work very well in the context of a monolithic application that
runs on one or only a few well-known and curated servers, it totally falls apart in
a distributed application architecture. First of all, in this scenario, we have many
components, and keeping track of them manually becomes a nightmare. It is
definitely not scalable. Furthermore, Service A typically should or will never
know on which node of the cluster the other components run. Their location may
not even be stable as component B could be moved from node X to another node
Y, due to various reasons external to the application. Thus, we need another way
in which Service A can locate Service B, or any other service for that matter.
What is most commonly used is an external authority that is aware of the
topology of the system at any given time. This external authority or service
knows all the nodes and their IP addresses that currently pertain to the cluster; it
knows all services that are running and where they are running. Often, this kind

qg 6089740 21734177 IT http://t.cn/RDIAj5D

of service is called a DNS service, where DNS stands for Domain Name
System. As we will see, Docker has a DNS service implemented as part of the
underlying engine. Kubernetes also uses a DNS service to facilitate
communication between components running in the cluster:

port: 3000
Service A Service B
@ access
IP:72.10.0.13
.t
908,} %
DNS
Service

Components consult an external locator service

In the preceding figure, we see how Service A wants to communicate with
Service B. But it can't do this directly; it has to first query the external authority,
a registry service, here called a DNS Service, about the whereabouts of Service
B. The registry service will answer with the requested information and hand out
the IP address and port number with which Service A can reach Service B.
Service A then uses this information and establishes communication with
Service B. Of course, this is a naive picture of what's really happening on a low
level, but it is a good picture to understand the architectural pattern of service
discovery.

pythontesting

Routing

Routing is the mechanism of sending packets of data from a source component
to a target component. Routing is categorized into different types. One uses the
so-called OSI model (see reference in the Further reading section of this
chapter) to distinguish between different types of routing. In the context of
containers and container orchestration, routing at layers 2, 3, 4, and 7 is relevant.
We will dive into more detail about routing in the subsequent chapters. Here,
let's just say that layer 2 routing is the most low-level type of routing, which
connects a MAC address to a MAC address, while layer 7 routing, which is also
called application-level routing, is the most high-level one. The latter is, for
example, used to route requests having a target identifier that is a URL such as
example.com/pets tO the appropriate target component in our system.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Load balancing

Load balancing is used whenever Service A requests a service from Service B,
but the latter is running in more than one instance, as shown in the following

figure:
—- Load Balancer Service B2
-
-

.

If we have multiple instances of a service such as Service B running in our
system, we want to make sure that every, of those instances gets an equal amount
of workload assigned to it. This task is a generic one, which means that we don't
want the caller to have to do the load balancing, but rather an external service
that intercepts the call and takes over the part of deciding to which of the target
service instances to forward the call. This external service is called a load
balancer. Load balancers can use different algorithms to decide how to
distribute the incoming calls to the target service instances. The most common
algorithm used is called round robin. This algorithm just assigns requests in a
repetitive way, starting with instance 1 then 2 until instance n. After the last
instance has been served, the load balancer starts over with instance number 1.

Request of Service A load balanced to Service B

pythontesting

Defensive programming

When developing a service for a distributed application, it is important to
remember that this service is not going to be standalone, but is dependent on
other application services or even on external services provided by third parties,
such as credit card validation services or stock information services, to just name
two. All these other services are external to the service we are developing. We
have no control over their correctness or their availability at any given time.
Thus, when coding, we always need to assume the worst and hope for the best.
Assuming the worst means that we have to deal with potential failures

explicitly.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Retries

When there is a possibility that an external service might be temporarily
unavailable or not responsive enough, then the following procedure can be used.
When the call to the other service fails or times out, the calling code should be
structured in such a way that the same call is repeated after a short wait time. If
the call fails again, the wait should be a bit longer before the next trial. The calls
should be repeated up until a maximum number of times, each time increasing
the wait time. After that, the service should give up and provide a degraded
service, which could mean to return some stale cached data or no data at all,
depending on the situation.

pythontesting

Logging

Important operations in a service should always be logged. Logging information
needs to be categorized to be of a real value. A common list of categories is
debug, info, warning, error, and fatal. Logging information should be collected
by a central log aggregation service and not be stored on an individual node of
the cluster. Aggregated logs are easy to parse and filter for relevant information.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Error handling

As mentioned earlier, each application service in a distributed application is
dependent on other services. As developers, we should always expect the worst
and have appropriate error handling in place. One of the most important best
practices is to fail fast. Code the service in such a way that unrecoverable errors
are discovered as early as possible and, if such an error is detected, have the
service fail immediately. But don't forget to log meaningful information to
STDERR or STDOUT, which can be used by developers or system

operators later to track malfunctions of the system. Also, return a helpful error to
the caller, indicating as precisely as possible why the call failed.

One sample of fail fast is to always check the input values provided by the caller.
Are the values in the expected ranges and complete? If not, then do not try to
continue processing, but immediately abort the operation.

pythontesting

Redundancy

A mission-critical system has to be available all the time, around the clock, 365
days a year. Downtime is not acceptable, since it might result in a huge loss of
opportunities or reputation for the company. In a highly distributed application,
the likelihood of a failure of at least one of the many involved components is
non-neglectable. One can say that the question is not whether a component will
fail, but rather when a failure will occur.

To avoid downtime when one of the many components in the system fails, each
individual part of the system needs to be redundant. This includes the application
components as well as all infrastructure parts. What that means is that if we, say,
have a payment service as part of our application, then we need to run this
service redundantly. The easiest way to do that is to run multiple instances of this
very service on different nodes of our cluster. The same applies, say, for an edge
router or a load balancer. We cannot afford for this to ever go down. Thus the
router or load balancer must be redundant.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Health checks

We have mentioned various times that in a distributed application architecture,
with its many parts, failure of an individual component is highly likely and it is
only a matter of time until it happens. For that reason, we run every single
component of the system redundantly. Proxy services then load balance the
traffic across the individual instances of a service.

But now there is another problem. How does the proxy or router know whether a
certain service instance is available or not? It could have crashed or it could be
unresponsive. To solve this problem, one uses so-called health checks. The
proxy, or some other system service on behalf of the proxy, periodically polls all
the service instances and checks their health. The questions are basically Are you
still there? Are you healthy? The answer of each service is either Yes or No, or
the health check times out if the instance is not responsive anymore.

If the component answers with No or a timeout occurs, then the system kills the
corresponding instance and spins up a new instance in its place. If all this
happens in a fully automated way, then we say that we have an auto-healing
system in place.

pythontesting

Circuit breaker pattern

A circuit breaker is a mechanism that is used to avoid a distributed application
going down due to a cascading failure of many essential components. Circuit
breakers help to avoid one failing component tearing down other dependent
services in a domino effect. Like circuit breakers in an electrical system, which
protect a house from burning down due to the failure of

a malfunctioning plugged-in appliance by interrupting the power line, circuit
breakers in a distributed application interrupt the connection from Service A to
Service B if the latter is not responding or is malfunctioning.

This can be achieved by wrapping a protected service call in a circuit breaker
object. This object monitors for failures. Once the number of failures reaches a
certain threshold, the circuit breaker trips. All subsequent calls to the circuit
breaker will return with an error, without the protected call being made at all:

‘ Service A Circuit Breaker

e

1 I

H

L |_:_|

1

T H . !
! : connection
i ! problem i
L L 1
o 1

L 1

LA H timeout b

v timeout ' !
! = ;
s i i
1 1

1 I

H

oA T e 7

- imeou I

T timeout . E
i — trip !
1 1 1
i 1 1
1 1

L] I

1

A L] =

LA H i

circuit open ! !

1 1

1 1

1 1]

Circuit breaker pattern

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running in production

To successfully run a distributed application in production, we need to consider a
few more aspects beyond the best practices and patterns presented in the
preceding sections. One specific area that comes to mind is introspection and
monitoring. Let's go through the most important aspects in detail.

pythontesting

Logging

Once a distributed application is in production, it is not possible to debug it. But
how can we then find out what exactly is the root cause of a malfunction of the
application that has been reported by a user? The solution to this problem is to
produce abundant and meaningful logging information. Developers need to
instrument their application services in such a way that they output helpful
information, such as when an error happens or a potentially unexpected or
unwanted situation is encountered. Often, this information is output to STDOUT
and STDERR, from where it is then collected by system daemons that write the
information to local files or forward it to a central log aggregation service.

If there is sufficient information in the logs, developers can use those logs to
track down the root cause of errors in the system that have been reported.

In a distributed application architecture, with its many components, logging is
even more important than in a monolithic application. The paths of execution of
a single request through all the components of the application can be very
complex. Also, remember that the components are distributed across a cluster of
nodes. Thus, it makes sense to log everything of importance and to each log
entry add things such as the exact time when it happened, the component in
which it happened, and the node on which the component ran, to name just a
few. Furthermore, the logging information should be aggregated in a central
location so that it is readily available for developers and system operators to
analyze.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Tracing

Tracing is used to find out how an individual request is funneled through a
distributed application and how much time is spent overall for the request and in
every individual component. This information, if collected, can be used as one of
the sources for dashboards that show the behavior and health of the system.

pythontesting

Monitoring

Operators like to have dashboards showing live key metrics of the system, which
show them the overall health of the application in one glance. These metrics can
be non-functional metrics such as memory and CPU usage, number of crashes of
a system or application component, health of a node, and so on, as well as
functional and thus application-specific metrics such as the number of checkouts
in an ordering system or the number of items out of stock in an inventory
service.

Most often, the base data used to aggregate the numbers that are used for a
dashboard are extracted from logging information. This can either be system
logs, which will mostly be used for non-functional metrics, and application-level
logs, for functional metrics.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Application updates

One of the competitive advantages for a company is to be able to react in a
timely manner to changing market situations. Part of this is to be able to quickly
adjust an application to fulfill new and changed needs or to add new
functionality. The faster we can update our applications, the better. Many
companies these days roll out new or changed features multiple times per day.

Since application updates are so frequent, these updates have to be non-
disruptive. We cannot allow the system to go down for maintenance when
upgrading. It all has to happen seamlessly and transparently.

pythontesting

Rolling updates

One way of updating an application or an application service is to use rolling
updates. The assumption here is that the particular piece of software that has to
be updated runs in multiple instances. Only then can we use this type of update.

What happens is that the system stops one instance of the current service and
replaces it with an instance of the new service. As soon as the new instance is
ready, it will be served traffic. Usually, the new instance is monitored for some
time to see whether or not it works as expected and, if it does, the next instance
of the current service is taken down and replaced by a new instance. This pattern
is repeated until all service instances have been replaced.

Since there are always a few instances running at any given time, current or new,
the application is operational all the time. No downtime is needed.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Blue-green deployments

In blue-green deployments, the current version of the application service, called
blue, handles all the application traffic. We then install the new version of the
application service, called green, on the production system. The new service is
not yet wired with the rest of the application.

Once green is installed, one can execute smoke tests against this new service
and, if those succeed, the router can be configured to funnel all traffic that
previously went to blue to the new service, green. The behavior of green is then
observed closely and, if all success criteria are met, blue can be
decommissioned. But if, for some reason, green shows some unexpected or
unwanted behavior, the router can be reconfigured to return all traffic to blue.
Green can then be removed and fixed, and a new blue-green deployment can be
executed with the corrected version:

Service A
version 1.0

Router Serylce 5
version 1.0

Blue-green deployment

pythontesting

Canary releases

Canary releases are releases where we have the current version of the application
service and the new version installed on the system in parallel. As such, they
resemble blue-green deployments. At first, all traffic is still routed through the
current version. We then configure a router so that it funnels a small percentage,
say 1%, of the overall traffic to the new version of the application service. The
behavior of the new service is then monitored closely to find out whether or not
it works as expected. If all the criteria for success are met, then the router is
configured to funnel more traffic, say 5% this time, through the new service.
Again, the behavior of the new service is closely monitored and, if it is
successful, more and more traffic is routed to it until we reach 100%. Once all
traffic is routed to the new service and it has been stable for some time, the old
version of the service can be decommissioned.

Why do we call this a canary release? It is named after the coal miners who
would use canary birds as an early warning system in the mines. Canary birds
are particularly sensitive to toxic gas and if such a canary bird died, the miners
knew they had to abandon the mine immediately.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Irreversible data changes

If part of our update process is to execute an irreversible change in our state,
such as an irreversible schema change in a backing relational database, then we
need to address this with special care. It is possible to execute such changes
without downtime if one uses the right approach. It is important to recognize
that, in such a situation, one cannot deploy the code changes that require the new
data structure in the data store at the same time as the changes to the data.
Rather, the whole update has to be separated into three distinct steps. In the first
step, one rolls out a backward-compatible schema and data change. If this is
successful, then one rolls out the new code in the second step. Again, if that is
successful, one cleans up the schema in the third step and removes the
backwards-compatibility:

@)

Service A Service A __lfi?f_ Service A Service A
version 1.0 version 1.0 version 1.1 version 1.1

uses @ uses

‘ cleanup ‘ i

e R -
Database Database Database Database
version 1.0 version 1.1 version 1.1 version 1.2

Rolling out an irreversible data or schema change

pythontesting

Rollback

If we have frequent updates to our application services that run in production,
sooner or later there will be a problem with one of those updates. Maybe a
developer, while fixing a bug, introduced a new one, which was not caught by all
the automated, and maybe manual, tests, so the application is misbehaving and it
is imperative that we roll back the service to the previous good version. In this
regard, a rollback is a recovery from a disaster.

Again, in a distributed application architecture, it is not a question of whether a
rollback will ever be needed, but rather when a rollback will have to occur. Thus
we need to absolutely be sure that we can always roll back to a previous version
of any service that makes up our application. Rollbacks cannot be an
afterthought but have to be a tested and proven part of our deployment process.

If we are using blue-green deployments to update our services, then rollbacks
should be fairly simple. All we need to do is switch the router from the new
green version of the service back to the previous blue version.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we learned what a distributed application architecture is and what
patterns and best practices are helpful or needed to successfully run a distributed
application. Lastly, we discussed what is needed in addition to run such an
application in production.

In the next chapter, we will dive into networking limited to a single host. We're
going to discuss in detail how containers living on the same host can
communicate with each other and how external clients can access containerized
applications if necessary.

pythontesting

Questions

Please answer the following questions to assess your understanding of this
chapter's content.

1.

W

When and why does every part in a distributed application architecture have
to be redundant? Explain in a few short sentences.

Why do we need DNS services? Explain in 3 to 5 sentences.

What is a circuit breaker and why is it needed?

What are some important differences between a monolithic application and
a distributed or multi-service application?

What is a blue-green deployment?

qg 6089740 21734177

Further reading

The following articles provide more in-depth information:

e CircuitBreaker at http://bit.1ly/iNUisgW
e The OSI model explained at http://bit.1ly/1uccvmt
e BlueGreenDeployment at nttp://bit.1y/2r2IxNJ

pythontesting

IT

http://t.cn/RDIAJS5D

https://bit.ly/2pBENyP
https://bit.ly/2BIRpJY
http://bit.ly/2r2IxNJ

Single-Host Networking

In the last chapter, we learned about the most important architectural patterns
and best practices that are used when dealing with a distributed application
architecture.

In this chapter, we will introduce the Docker container networking model and its
single-host implementation in the form of the bridge network. This chapter also
introduces the concept of software-defined networks and how they are used to
secure containerized applications. Finally, it demonstrates how container ports
can be opened to the public and thus make containerized components accessible

to the outside world.

This chapter will contain the following topics:

The container network model

Network firewalling

The bridge network

The host network

The null network

Running in an existing network namespace
Port management

After completing this module, you will be able to do the following:

Draft the container networking model—along with all the essential
components onto a whiteboard

Create and delete a custom bridge network

Run a container attached to a custom bridge network

Inspect a bridge network

Isolate containers from each other by running them on different bridge
networks

Publish a container port to a host port of your choice

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

For this chapter, the only thing you will need is a Docker host that is able to run
Linux containers. You can use your laptop with either Docker for Mac or
Windows or Docker Toolbox installed.

pythontesting

The container network model

So far, we have worked with single containers. But in reality, a containerized
business application consists of several containers that need to collaborate to
achieve a goal. Therefore, we need a way for individual containers to
communicate with each other. This is achieved by establishing pathways that we
can use to send data packets back and forth between containers. These pathways
are called networks. Docker has defined a very simple networking model, the
so-called container network model (CNM), to specify the requirements that
any software that implements a container network has to fulfill. The following is
a graphical representation of the CNM:

Network Sandboxes

Endpoints

Network 1 Network 2

The Docker container network model

The CNM has three elements—sandbox, endpoint, and network:

e Sandbox: The sandbox perfectly isolates a container from the outside
world. No inbound network connection is allowed into the sandboxed
container. Yet, it is very unlikely that a container will be of any value in a
system if absolutely no communication with it is possible. To work around
this, we have element number two, which is the endpoint.

e Endpoint: An endpoint is a controlled gateway from the outside world into
the network's sandbox that shields the container. The endpoint connects the
network sandbox (but not the container) to the third element of the model,
which is the network.

e Network: The network is the pathway that transports the data packets of an
instance of communication from endpoint to endpoint, or ultimately from
container to container.

It is important to note that a network sandbox can have zero to many endpoints,
or, said differently, each container living in a network sandbox can

qg 6089740 21734177 IT http://t.cn/RDIAj5D

either be attached to no network at all or it can be attached to multiple different
networks at the same time. In the preceding image, the middle of the three
network sandboxes is attached to both networks 1 and 2 through a respective
endpoint.

This networking model is very generic and does not specify where the individual
containers that communicate with each other run over a network. All containers
could, for example, run on one and the same host (local) or they could be
distributed across a cluster of hosts (global).

Of course, the CNM is just a model describing how networking works among
containers. To be able to use networking with our containers, we need real
implementations of the CNM. For both local and global scope, we have multiple
implementations of the CNM. In the following table, we give a short overview
of the existing implementations and their main characteristics. The list is in no
particular order:

Network Company Scope | Description

Simple network based on Linux
Bridge Docker Local | bridges allowing networking on a
single host

Configures multiple layer 2 (that is,
Macvlan Docker Local | MAC) addresses on a single
physical host interface

Multinode-capable container
Overlay Docker Global | network based on Virtual
Extensible LAN (VXLan)

Simple, resilient, multihost Docker

Weave Net | Weaveworks | Global :
networking

Contiv

pythontesting

Open source container networking
Plugin

Network ‘ Cisco ‘ Global

All network types not directly provided by Docker can be added to a Docker
host as a plugin.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Network firewalling

Docker has always had the mantra of security first. This philosophy had a direct
influence on how networking in a single and multihost Docker environment was
designed and implemented. Software-defined networks are easy and cheap to
create, yet they perfectly firewall containers that are attached to this network
from other non-attached containers, and from the outside world. All containers
that belong to the same network can freely communicate with each other, while
others have no means to do so:

Network: front Network: back

Docker networks

In the preceding image, we have two networks called front and back. Attached
to the front network, we have containers c1 and c2, and attached to the back
network, we have containers ¢3 and c4. c1 and c2 can freely communicate with
each other, as can ¢3 and c4. But c1 and c2 have no way to communicate with
either ¢3 or c4, and vice versa.

Now what about the situation where we have an application consisting of three
services, webAPI, productCatalog, and database? We want webAPI to be able
to communicate with productCatalog, but not with the database, and we

want productCatalog to be able to communicate with the database service. We
can solve this situation by placing webAPI and the database on different
networks and attach productCatalog to both of these networks, as shown in the
following image:

pythontesting

webAPI productCatalo database

Network: front Network: back
Container attached to multiple networks

Since creating SDNSs is cheap, and each network provides added security by
isolating resources from unauthorized access, it is highly recommended that you
design and run applications so that they use multiple networks and run only
services on the same network that absolutely need to communicate with each
other. In the preceding example, there is absolutely no need for the web API
component to ever communicate directly with the database service, so we have
put them on different networks. If the worst-case scenario happens and a hacker
compromises the web API, they have no ability to access the database from there
without first also hacking the product catalog service.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The bridge network

The Docker bridge network is the first implementation of the container network
model that we're going to look at in detail. This network implementation is based
on the Linux bridge. When the Docker daemon runs for the first time, it creates a
Linux bridge and calls it dockere. This is the default behavior, and can be changed
by changing the configuration. Docker then creates a network with this Linux
bridge and calls the network bridge. All the containers that we create on a
Docker host and that we do not explicitly bind to another network leads to
Docker automatically attaching to this bridge network.

To verify that we indeed have a network called bridge of type bridge defined on
our host, we can list all networks on the host with the following command:

| $ docker network 1s

This should provide an output similar to the following:

$ docker network 1s
NETWORK ID NAME DRIVER
928c8ce47bf2 bridge bridge

bdb36adcf70c host host
af82006f2f2d none null
] |

Listing of all Docker networks available by default

In your case, the IDs will be different, but the rest of the output should look the
same. We do indeed have a first network called bridge using the driver bridge. The
scope being 10ca1 just means that this type of network is restricted to a single host
and cannot span across multiple hosts. In a later chapter, we will also discuss
other types of networks that have a global scope, meaning they can span whole
clusters of hosts.

Now, let's look a little bit deeper into what this bridge network is all about. For
this, we are going to use the Docker inspect command:

| $ docker network inspect bridge

When executed, this outputs a big chunk of detailed information about the

pythontesting

network in question. This information should look like the following:

"default”,
null,
|

" "teye” ,

Output generated when inspecting the Docker bridge network

We have already seen the 1o, name, priver, and scope values when we listed all the
networks, so that is nothing new. But let's have a look at the IP address
management (IPAM) block. IPAM is software that is used to track IP addresses
that are used on a computer. The important part in the 1pam block is the config
node with its values for subnet and cateway. The subnet for the bridge network is
defined by default as 172.17.0.0/16. This means that all containers attached to this
network will get an IP address assigned by Docker that is taken from the given
range, which is 172.17.0.2 t0 172.17.255.255. The 172.17.0.1 address is reserved for
the router of this network whose role in this type of network is taken by the
Linux bridge. One can expect that the very first container that will be attached to
this network by Docker will get the 172.17.0.2 address. All subsequent containers
will get a higher number; the following image illustrates this fact:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

ethO m docker0 [container
10.10.20.216 w 172.17.01 [172.17.0.2
Host eth0 routing table linux bridge veth connection
The bridge network

In the preceding image, we can see the network namespace of the host, which
includes the host's ethe endpoint, which is typically a NIC if the Docker host runs
on bare metal or a virtual NIC if the Docker host is a VM. All traffic to the host
comes through ethe. The Linux bridge is responsible for the routing of the
network traffic between the host's network and the subnet of the bridge network.

By default, only traffic from the egress is allowed, and all ingress is blocked.
What this means is that while containerized applications can reach the internet,
they cannot be reached by any outside traffic. Each container attached to the
network gets its own virtual ethernet (veth) connection with the bridge. This is
illustrated in the following image:

eth0
10.13.34.23

Host

docker0 Linux
172.17.01 brldge

_J

| wvetho | - __| vethl .
iT17247.02] 7 72702
cl c2

Network Namespaces

Details of the bridge network

The preceding image shows us the world from the perspective of the host. We
will explore how the situation looks from within a container later on in this
section.

We are not limited to just the bridge network, as Docker allows us to define our
own custom bridge networks. This is not just a feature that is nice to have, but it

pythontesting

is a recommended best practice to not run all containers on the same network,
but to use additional bridge networks to further isolate containers that have no
need to communicate with each other. To create a custom bridge network called
sample-net, use the following command:

| $ docker network create --driver bridge sample-net

If we do this, we can then inspect what subnet Docker has created for this new
custom network as follows:

| $ docker network inspect sample-net | grep Subnet

This returns the following value:

| "Subnet": "172.18.0.0/16",

Evidently, Docker has just assigned the next free block of IP addresses to our
new custom bridge network. If, for some reason, we want to specify our own
subnet range when creating a network, we can do so by using the --subnet
parameter:

| $ docker network create --driver bridge --subnet "10.1.0.0/16" test-net

To avoid conflicts due to duplicate IP addresses, make sure you avoid creating
networks with overlapping subnets.

Now that we have discussed what a bridge network is and how one can create a
custom bridge network, we want to understand how we can attach containers to
these networks. First, let's interactively run an Alpine container without
specifying the network to be attached:

| $ docker container run --name c1 -it --rm alpine:latest /bin/sh

In another Terminal window, let's inspect the c1 container:

| $ docker container inspect ci1

In the vast output, let's concentrate for a moment on the part that provides
network-related information. It can be found under the networksettings node. I
have it listed in the following output:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Ja
"NetworkSettings": {
"Bridge": "",
"SandboxID": "ae53496fba49de3d0a4727105cc@799b7fbd30746d76700238cb47c611f3ebb8",
"HairpinMode": false,
"LinkLocalIPvbAddress™: "",
"LinkLocalIPv6PrefixLen": @,
"Ports": {3},
"SandboxKey": "/var/run/docker/netns/ae53496fbad9",
"SecondaryIPAddresses": null,
"SecondaryIPvbAddresses™: null,
"EndpointID": "c@63a725d166e867b5769a80d1477¢c88d07618860655a3033a97478e55713",
"Gateway": "172.17.0.1",
"GlobalIPv6Address™: "",
"GlobalIPv6PrefixLen™: @,
"IPAddress": "172.17.0.4",
"IPPrefixLen": 16,
"IPvoGateway": ""
"MacAddress": "02:42:ac:11:00:04",
"Networks"
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "026e653c2504e464748b4cedb25cce69d29bc82a52105a2592012b796663e635" ,
"Endpoint "cPb3a725d1febe867b5769a80d1477cc88d07618860655Fa3033a97478e55713"
"Gateway" 17.0.47,
"IPAddres
"IPPrefixLe
"IPv6Gateway": "
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": @,
"MacAddress": "02:42:ac:11:00:04",
"DriverOpts": null

Network settings section of the container metadata

In the preceding output, we can see that the container is indeed attached to the
bridge Network since the networkip is equal to ezeees. .., which we can see from the
preceding code is the ID of the bridge network. We can also see that the container
got the IP address of 172.17.0.4 assigned as expected and that the gateway is at
172.17.0.1. Please note that the container also had a macaddress associated with it.
This is important as the Linux bridge uses the Mac address for routing.

So far, we have approached this from the outside of the container's network
namespace. Now, let's see how the situation looks when we're not only inside the
container, but inside the container's network namespace. Inside the

c1 container, let's use the ip tool to inspect what's going on. Run the ip addr
command and observe the output that is generated as follows:

pythontesting

/ # ip addr
1: lo: <LOOPBACK,UP,LONER_UP> mtu 65536 qdisc noqueue state UNKNOWN glen 1
link/loopback 0@:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_Lft forever preferred_lft forever
: tunl®@NONE: <NOARP> mtu 1480 qdisc noop state DOWN glen 1
link/ipip ©.0.0.0 brd 0.0.0.0

: ip6tnl@ENONE: <NOARP> mtu 1452 qdisc noop state DOWN glen 1

link/tunnel6 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 brd 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
: ethB@if20: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue state UP

link/ether 02:42:0c:11:00:04 brd ff:ff:ff:ff.ff.ff

inet 172.17.0.4/16 brd 172.17.255.255 scope global eth@
valid_Lft forever preferred_lft forever
|

Container namespace as seen by the IP tool

The interesting part of the preceding output is the number 19, the ethe endpoint.
The vetne endpoint that the Linux bridge created outside of the container
namespace is mapped to ethe inside the container. Docker always maps the first
endpoint of a container network namespace to ethe, as seen from inside the
namespace. If the network namespace is attached to an additional network, then
that endpoint will be mapped to eth1, and so on.

Since at this point we're not really interested in any endpoint other than ethe, we
could have used a more specific variant of the command, which would have
given us the following:

/ # ip addr show etho

195: eth0@if196: <BROADCAST,MULTICAST,UP, LOWER_UP,M-DOWN> mtu 1500 gdisc noqueue state

e link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff

inet 172.17.0.2/16 brd 172.17.255.255 scope global etho
valid_1ft forever preferred_1lft forever

In the output, we can also see what MAC address (e2:42:ac:11:00:02) and what IP
(172.17.0.2) have been associated with this container network namespace by
Docker.

We can also get some information about how requests are routed by using the ip
route command:
/ # ip route

default via 172.17.0.1 dev etho
172.17.0.0/16 dev etho scope link src 172.17.0.2

This output tells us that all traffic to the gateway at 172.17.0.1 is routed through
the ethe device.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Now, let's run another container called c2 on the same network:

| $ docker container run --name c2 -d alpine:latest ping 127.0.0.1

The c2 container will also be attached to the bridge network, since we have not
specified any other network. Its IP address will be the next free one from the
subnet, which is 172.17.0.3, as we can readily test:

$ docker container inspect --format "{{.NetworkSettings.IPAddress}}" c2
172.17.0.3

Now, we have two containers attached to the bridge network. We can try to
inspect this network once again to find a list of all containers attached to it in the
output.:

| $ docker network inspect bridge

The information is found under the containers node:

"ConfigOnly": false,
"Containers": {
"27b96de70b58cd918d35¢c235a7¢c180f56f71df58cf4cec50b8f0103dd529b95f": {

"Name": "c2"
"Endpoint "8883649774c5c4c53063da02598c8d03fe7ee427145b348b1d170331213€9¢ca",
"MacAddress :42:ac:11:00:03",
"IPv4Address": "172.17.0.3/16",
"IPv6Address": ""

"35b8dd512acb985647833e1cc52625e129¢15e903fd8a0@c@ab247932bc910166": {
"Name": "cl1",
"EndpointID": "28269a09cc630135ab287052fa69c72f28c57a10bd5e7523¢c451bf2d@976fd1b5",
"MacAddress": "@2:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",
"IPvbAddress": ""

}
1,
"Options": {

The containers section of the output of docker network inspect bridge

Once again, we have shortened the output to the essentials for readability.

Now, let's create two additional containers, ¢z and c4, and attach them to the test-
net. For this, we use the --network parameter:

$ docker container run --name c3 -d --network test-net \
alpine:latest ping 127.0.0.1

$ docker container run --name c4 -d --network test-net \
alpine:latest ping 127.0.0.1

Let's inspect network test-net and confirm that the containers cs and c4 are indeed
attached to it:

| $ docker network inspect test-net

pythontesting

This will give us the following output for the containers section:

"Containers": {
"134295caa6012df5dc7d541436954af 1a5264c6f69d5b8012e88f9c12faf40f1": {
"Name"; "c3",
"EndpointID": "5693cd9329437a9%ececld27f439887bb0258837b9342a1c32204fa4571298457",
"MacAddress": "02:42:0a:01:00:02",
"IPv4Address": "10.1.0.2/16",
"IPvbAddress": ""

}
"40277d33ebfb74f@Qd31be272d2d74cbfec4bl7666e44d88e26cfe83b0a790cc": {
"Name": "c4",
"EndpointID": "ale9ecafebdcf816261883c171434273d9973832d43255b5a0a224b@81853eddf",
"MacAddress": "02:42:0a:01:00:03",
"IPv4Address": "10.1.0.3/16",
"IPv6Address": ""

Containers section of the command docker network inspect test-net

The next question we're going to ask ourselves is whether the two c3 and
ca containers can freely communicate with each other. To demonstrate that this is
indeed the case, we can exec into the container cs:

|$ docker container exec -it c¢3 /bin/sh

Once inside the container, we can try to ping container c4 by name and by IP
address:

/ # ping c4

PING c4 (10.1.0.3): 56 data bytes

64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.192 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.148 ms

The following is the result of the ping using the IP address of the container ca:

/ # ping 10.1.0.3

PING 10.1.0.3 (10.1.0.3): 56 data bytes

64 bytes from 10.1.0.3: seq=0 ttl=64 time=0.200 ms
64 bytes from 10.1.0.3: seq=1 ttl=64 time=0.172 ms

The answer in both cases confirms to us that the communication between
containers attached to the same network is working as expected. The fact that we
can even use the name of the container we want to connect to shows us that the
name resolution provided by the Docker DNS service works inside this network.

Now we want to make sure that the bridge and the test-net networks are
firewalled from each other. To demonstrate this, we can try to ping the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

c2 container from the cs container, either by its name or by its IP address:

/ # ping c2
ping: bad address 'c2'

The following is the result of the ping using the IP address of the target container
c2 instead:

/ # ping 172.17.0.3

PING 172.17.0.3 (172.17.0.3): 56 data bytes

nC

--- 172.17.0.3 ping statistics ---
43 packets transmitted, 0 packets received, 100% packet loss

The preceding command remained hanging and I had to terminate the command
with Ctrl+C. From the answer to pinging c2, we can also see that the name
resolution does not work across networks. This is the expected behavior.
Networks provide an extra layer of isolation, and thus security, to containers.

Earlier, we learned that a container can be attached to multiple networks. Let's
attach a cs container to the sample-net and test-net networks at the same time:

$ docker container run --name c5 -d \
--network sample-net \
--network test-net \
alpine:latest ping 127.0.0.1

We can then test that cs5 is reachable from the c2 container similar to when we
tested the same for containers c4 and c2. The result will show that the
connection indeed works.

If we want to remove an existing network, we can use the docker network rm
command, but note that one cannot accidentally delete a network that has
containers attached to it:

$ docker network rm test-net
Error response from daemon: network test-net id 863192... has active endpoints

Before we continue, let's clean up and remove all containers:

| $ docker container rm -f $(docker container 1ls -aq)

Then we remove the two custom networks that we created:

$ docker network rm sample-net
$ docker network rm test-net

pythontesting

The host network

There exist occasions where we want to run a container in the network
namespace of the host. This can be necessary when we need to run some
software in a container that is used to analyze or debug the host network's traffic.
But keep in mind that these are very specific scenarios. When running business
software in containers, there is no good reason to ever run the respective
containers attached to the host's network. For security reasons, it is strongly
recommended that you do not run any such container attached to the host
network on a production or production-like environment.

That said, how can we run a container inside the network namespace of the
host? Simply by attaching the container to the host network:

| $ docker container run --rm -it --network host alpine:latest /bin/sh

If we now use the ip tool to analyze the network namespace from within the
container, we will see that we get exactly the same picture as we would if we
were running the ip tool directly on the host. For example, if I inspect the
ethe device on my host, I get this:

/ # ip addr show etho
2: ethO: <BROADCAST,MULTICAST,UP,LOWER _UP> mtu 1500 qdisc pfifo_fast state UP gqlen 1000
link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:ff
inet 192.168.65.3/24 brd 192.168.65.255 scope global eth0
valid_1ft forever preferred_1lft forever
inet6 fe80::c90b:4219:ddbd:92bf/64 scope link
valid_1ft forever preferred_1lft forever

Here, I find that 192.168.65.3 is the IP address that the host has been assigned and
that the MAC address shown here also corresponds to that of the host.

We can also inspect the routes to get the following (shortened):

/ # 1ip route

default via 192.168.65.1 dev eth0® src 192.168.65.3 metric 202
10.1.0.0/16 dev cni@ scope link src 10.1.0.1

127.0.0.0/8 dev lo scope host

172.17.0.0/16 dev docker® scope link src 172.17.0.1

192.168.65.0/24 dev etho scope link src 192.168.65.3 metric 202

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Before I let you go on to the next section of this chapter, I want to once more
point out that the use of the nost network is dangerous and needs to be avoided if
possible.

pythontesting

The null network

Sometimes, we need to run a few application services or jobs that do not need
any network connection at all to execute the task. It is strongly advised that you
run those applications in a container that is attached to the none network. This
container will be completely isolated, and thus safe from any outside access.
Let's run such a container:

| $ docker container run --rm -it --network none alpine:latest /bin/sh

Once inside the container, we can verify that there is no ethe network endpoint
available:

/ # ip addr show etho
ip: can't find device 'etho'

There is also no routing information available, as we can demonstrate by using
the following command:

|/ # ip route

This returns nothing.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running in an existing network
namespace

Normally, Docker creates a new network namespace for each container we run.
The network namespace of the container corresponds to the sandbox of the
container network model we described earlier on. As we attach the container to a
network, we define an endpoint that connects the container network namespace
with the actual network. This way, we have one container per network
namespace.

Docker provides an additional way to define the network namespace in which a
container runs. When creating a new container, we can specify that it should be
attached to or maybe we should say included in the network namespace of an
existing container. With this technique, we can run multiple containers in a
single network namespace:

Network Namespaces

--

Network 1 Network 2

Multiple containers running in a single network namespace

In the preceding image, we can see that in the leftmost network namespace, we
have two containers. The two containers, since they share the same namespace,
can communicate on localhost with each other. The network namespace (and not
the individual containers) is then attached to Network 1.

This is useful when we want to debug the network of an existing container
without running additional processes inside that container. We can just attach a
special utility container to the network namespace of the container to inspect.
This feature is also used by Kubernetes when it creates a pod. We will hear more
about Kubernetes and pods in subsequent chapters of this book.

pythontesting

Now, let's demonstrate how this works. First, we create a new bridge network:

| $ docker network create --driver bridge test-net

Next, we run a container attached to this network:

| $ docker container run --name web -d --network test-net nginx:alpine

Finally, we run another container and attach it to the network of our web
container:

| $ docker container run -it --rm --network container:web alpine:latest /bin/sh

Specifically, note how we define the network: --network container:web. This tells
Docker that our new container shall use the same network namespace as the
container called web.

Since the new container is in the same network namespace as the web container
running Nginx, we're now able to access Nginx on localhost! We can prove this
by using the wget tool, which is part of the Alpine container, to connect to Nginx.
We should see the following:

/ # wget -qO0 - localhost

<!DOCTYPE html>

<html>

<head>
<title>Welcome to nginx!</title>

</html>

Note that we have shortened the output for readability. Please also note that there
is an important difference between running two containers attached to the same
network and two containers running in the same network namespace. In both
cases, the containers can freely communicate with each other, but in the latter
case, the communication happens over localhost.

To clean up the container and network we can use the following command:

$ docker container rm --force web
$ docker network rm test-net

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Port management

Now that we know how we can isolate or firewall containers from each other by
placing them on different networks, and that we can have a container attached to
more than one network, we have one problem that remains unsolved. How can
we expose an application service to the outside world? Imagine a container
running a web server hosting our webAPI from before. We want customers from
the internet to be able to access this API. We have designed it to be a publicly
accessible API. To achieve this, we have to, figuratively speaking, open a gate in
our firewall through which we can funnel external traffic to our API. For
security reasons, we don't just want to open the doors wide, but to have only a
single controlled gate through which traffic flows.

We can create such a gate by mapping a container port to an available port on the
host. We're also calling this container port to publish a port. Remember, the
container has its own virtual network stack, as does the host. Therefore,
container ports and host ports exist completely independently, and by default
have nothing in common at all. But we can now wire a container port with a free
host port and funnel external traffic through this link, as illustrated in the
following image:

8080 8081 Host Ports

eth0
Host 10.13.34.23

Container Ports
3000 80

ci c2 c3 cn

Mapping container ports to host ports

But now it is time to demonstrate how one can actually map a container port to a
host port. This is done when creating a container. We have different ways of
doing so:

pythontesting

e First, we can let Docker decide which host port our container port shall be
mapped to. Docker will then select one of the free host ports in the range of
32xxx. This automatic mapping is done by using the - parameter:

$ docker container run --name web -P -d nginx:alpine

The preceding command runs an Nginx server in a container. Nginx is
listening at port se inside the container. With the -r parameter, we're
telling Docker to map all the exposed container ports to a free port in the
32xxx range. We can find out which host port Docker is using by using
the docker container port command:

$ docker container port web
80/tcp -> 0.0.0.0:32768

The Nginx container only exposes port se, and we can see that it has been
mapped to the host port s27es. If we open a new browser window and
navigate to localhost:3276s8, we should see the following screenshot:

C Y [Welcome to nginx! X

c I

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

The welcome page of Nginx

¢ An alternative way to find out which host port Docker is using for our
container is to inspect it. The host port is part of the networksettings node:

$ docker container inspect web | grep HostPort
32768

¢ Finally, the third way of getting this information is to list the container:

$ docker container 1ls
CONTAINER ID IMAGE v PORTS NAMES
56e46a14b6f7 nginx:alpine ... 0.0.0.0:32768->80/tcp web

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Please note that in the preceding output, the /tcp part tells us that the port
has been opened for communication with the TCP protocol, but not for
the UDP protocol. TCP is the default, and if we want to specify that we
want to open the port for UDP, then we have to specify this explicitly.
The o.0.0.0 in the mapping tells us that traffic from any host IP address
can now reach the container port se of the web container.

Sometimes, we want to map a container port to a very specific host port. We can
do this by using the parameter-p (or --publish). Let's look at how this is done with
the following command:

| $ docker container run --name web2 -p 8080:80 -d nginx:alpine

The value of the -p parameter is in the form of <nhost port>:<container ports.
Therefore, in the preceding case, we map container port se to host port sese. Once
the web2 container runs, we can test it in the browser by navigating to
localhost:gese, and we should be greeted by the same Nginx welcome page that
we saw in the previous example that dealt with automatic port mapping.

When using the UDP protocol for communication over a certain port, then the
publish parameter will look like -p 3000:4321/udp. Note that if we want to allow
communication with both TCP and UDP protocols over the same port, then we
have to map each protocol separately.

pythontesting

Summary

In this chapter, we have learned about how containers running on a single host
can communicate with each other. First, we looked at the CNM that defines the
requirements of a container network and then we looked at several
implementations of the CNM, such as the bridge network. We then looked at
how the bridge network functions in detail and also what kind of information
Docker provides us with about the networks and the containers attached to those
networks. We also learned about adopting two different perspectives, from both
outside and inside the container.

In the next chapter, we're going to introduce Docker Compose. We will learn
about creating an application that consists of multiple services, each running in a
container, and how Docker Compose allows us to easily build, run, and scale
such an application using a declarative approach.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

To assess your skills, please try to answer the following questions:

1. Name the three core elements of the container network model (CNM).
2. How will you create a custom bridge network called for example, frontend?
3. How will you run two nginx:alpine containers attached to the frontend
network.

4. For the frontend network, get the following:

1. IPs of all attached containers.

2. The subnet associated with the network.
What is the purpose of the host network?
6. Name one or two scenarios where the use of the host network is
appropriate.
What is the purpose of the none network?
8. In what scenarios should the none network be used?

i

>

pythontesting

Further reading

Here are some articles that describe the topics presented in this chapter in more
detail:

Docker networking overview at nttp://dockr.1y/2sx6zQn
Container networking at nttp://dockr.ly/2HIfQKn

What is a Bridge at nttps://bit.1y/2Hyc30d

Use bridge networks at http://dockr.1ly/28BNxjRr

Use Macvlan networks at http://dockr.1ly/2ETjy2x
Networking using the host network at nttp://dockr.1y/2F4a159

http://dockr.ly/2sXGzQn
http://dockr.ly/2HJfQKn
https://bit.ly/2HyC3Od
http://dockr.ly/2BNxjRr
http://dockr.ly/2ETjy2x
http://dockr.ly/2F4aI59

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Docker Compose

In the previous chapter, we learned a lot about how container networking works
on a single Docker host. We introduced the Container Network Model (CNM),
which forms the basis of all networking between Docker containers, and then we
dove deep into different implementations of the CNM, specifically the bridge
network.

This chapter introduces the concept of an application consisting of multiple
services, each running in a container, and how Docker Compose allows us to
easily build, run, and scale such an application using a declarative approach.

The chapter covers the following topics:

Demystifying declarative versus imperative
Running a multi-service application
Scaling a service

Building and pushing an application

After completing this chapter, the reader will be able to do the following:

e Explain in a few short sentences the main differences between an
imperative and declarative approach for defining and running an application

e Describe in their own words the difference between a container and a
Docker Compose service

e Author a Docker Compose YAML file for a simple multi-service
application

e Build, push, deploy, and tear down a simple multi-service application using
Docker Compose

e Use Docker Compose to scale an application service up and down

pythontesting

Technical requirements

The code accompanying this chapter can be found at nttps://github.com/fundamentals

ofdocker/labs/tree/master/ches.

https://github.com/fundamentalsofdocker/labs/tree/master/ch08

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Demystifying declarative versus
imperative

Docker Compose is a tool provided by Docker that is mainly used where one
needs to run and orchestrate containers running on a single Docker host. This
includes but is not limited to development, continuous integration (CI),
automated testing, and manual QA.

Docker Compose uses files formatted in YAML as input. By default, Docker
Compose expects these files to be called docker-compose.ym1, but other names are
possible. The content of a docker-compose.ym1 is said to be a declarative way of
describing and running a containerized application potentially consisting of more
than a single container.

So, what is the meaning of declarative?

First of all, declarative is the antonym of imperative. Well, that doesn't help
much. Now that I have introduced another definition, I need to explain both of
them:

e Imperative: It's a way in which we can solve problems by specifying the
exact procedure which has to be followed by the system.

If I tell a system such as the Docker daemon imperatively how to run an
application then that means that I have to describe step by step what the
system has to do and how it has to react if some unexpected situation
occurs. I have to be very explicit and precise in my instructions. I need to
cover all edge cases and how they need to be treated.

¢ Declarative: It's a way in which we can solve problems without requiring
the programmer to specify an exact procedure to be followed.

A declarative approach means that I tell the Docker engine what my
desired state for an application is and it has to figure out on its own how
to achieve this desired state and how to reconcile it if the system deviates

pythontesting

from it.

Docker clearly recommends the declarative approach when dealing with
containerized applications. Consequently, the Docker Compose tool uses this
approach.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running a multi-service app

In most cases, applications do not consist of only one monolithic block, but
rather of several application services that work together. When using Docker
containers, each application service runs in its own container. When we want to
run such a multi-service application, we can of course start all the participating
containers with the well-known docker container run command. But this is
inefficient at best. With the Docker Compose tool, we are given a way to define
the application in a declarative way in a file that uses the YAML format.

Let's have a look at the content of a simple docker-compose.ym1 file:

version: "3.5"
services:
web:
image: fundamentalsofdocker/ch08-web:1.0
ports:
- 3000:3000
db:
image: fundamentalsofdocker/ch08-db:1.0
volumes:
- pets-data:/var/lib/postgresqgl/data

volumes:
pets-data:

The lines in the file are explained as follows:

e version: In this line, we specify the version of the Docker Compose format
we want to use. At the time of writing, this is version 3.5.

e services: In this section, we specify the services that make up our application
in the services block. In our sample, we have two application services and
we call them web and db:

e web: The web service is USiIlg the image fundamentalsofdocker/ch08-web:1.0
from the Docker Hub and is publishing container port seee to the host
port, also zeeo.

e do: The db service, on the other hand, is using the
image fundamentalsofdocker/ch08-db:1.0, which is a customized
PostgreSQL database. We are mounting a volume called pets-data into
the container of the db service.

® volumes: The volumes used by any of the services have to be declared in this

pythontesting

section. In our sample, this is the last section of the file. The first time the

application is run, a volume called pets-data will be created by Docker and
then, in subsequent runs, if the volume is still there, it will be reused. This
could be important when the application, for some reason, crashes and has
to be restarted. Then, the previous data is still around and ready to be used
by the restarted database service.

Navigate to the subfolder ches of the 1abs folder and start the application using
Docker Compose:

| $ docker-compose up

If we enter the preceding command, then the tool will assume that there must be
a file in the current directory called docker-compose.ym1 and it will use that one to
run. In our case, this is indeed the case and the application will start. We should
see the output as follows:

$ docker-compose up

Creating network "ch@8_default" with the default driver

Creating volume "ch@8_pets-data" with default driver

Pulling web (fundamentalsofdocker/ch@8-web:1.0)...

1.0: Pulling from fundamentalsofdocker/ch@8-web

605celbd3f31: Pull complete

d9c1bb40879c: Pull complete

d610e8516793: Pull complete

bf3a86e46185: Pull complete

f082b7c3a97c: Pull complete

188ade417c9f: Pull complete

ad8771290e5e: Pull complete

Digest: sha256:d7978627352813340e89bbf700ecb39bece12873956e5b77dc5e6431e9126a8
Status: Downloaded newer image for fundamentalsofdocker/ch@8-web:1.0
Pulling db (fundamentalsofdocker/ch@8-db:1.0)...

1.0: Pulling from fundamentalsofdocker/ch@8-db

f£3a5c916c92: Pull complete

a503b44elced: Pull complete

211706713093: Pull complete

8df57d533e71: Pull complete

7858f71c@2fb: Pull complete

55a8ef17ba59: Pull complete

3fb44f23d323: Pull complete

65cad41156b3: Pull complete

5492a5bead70: Pull complete

ac3385cd756f: Pull complete

Digest: sha256:eb5364a418bf7072de3e992517cad4ce8c55725alcdfcd18elc@4eazec2a7356
Status: Downloaded newer image for fundamentalsofdocker/ch@8-db:1.0
Creating ch@8_db_1 ... done

Creating ch@8_web_1 ... dor

Attaching to ch@8_db_1, ch@8_web_1

Running the sample application, part 1

qg 6089740 21734177 IT http://t.cn/RDIAj5D

done
| server started
Listening at ©.9.0.0:3000
CREATE DATABASE

CREATE ROLE

| /usr/local/bin/docker-entrypoint.sh: running /docker-entrypoint-initdb.d/init-db.sgl
| CREATE TABLE
ALTER TABLE
ALTER ROLE
INSERT @ 1
INSERT @
INSERT @
INSERT @
INSERT @
INSERT @
INSERT
INSERT @
INSERT @
INSERT @
INSERT @

INSERT @

e e e e b el el e e

| waiting for server to shut down.,..,2018-03-21 12:52:49.709 UTC [34] LOG: received fast shutdown
request
db_1 | 2018-03-21 12:52:40.711 UTC [34] LOG: aborting any active transactions
db_1 2018-03-21 12:52:4Q.712 UTC [34] LOG: worker process: logical replication launcher (PID 41) exi
exit code 1
2018-03-21 12:52:40.712 UTC [36] LOG: shutting down
| 2018-03-21 12:52:40.737 UTC [34] LOG: database system is shut down
done
server stopped

| PostgreSQL init process complete; ready for start up.

2018-@3-21 12:52:49.817 UTC [1] LOG: 1listenming on IPv4 address "9.0.2.Q", port 5432
2018-03-21 12:52:40.817 UTC [1] LOG: 1listening /6 al 5 :", port 5432
2018-03-21 12:52:4@.871 UTC [1] LOG: Tlistening on Unix socket "/var/run/postgresql/.s.PGSQL.543

:49.832 UTC [49] LOG: database system was shut down ot 2018-83-21 12:52:40 UTC
:52:49.835 UTC [1] LOG: database system is ready to accept connections

Running the sample application, part 2
The preceding output is explained as follows:

¢ In the first part of the output, we can see how Docker Compose pulls the
two images that constitute our application. This is followed by the creation
of a network ches_default and a volume ches_pets-data, followed by the two
containers chos_web_1 and ches_db_1, one for each service, web and db. All the
names are automatically prefixed by Docker Compose with the name of the
parent directory, which in this case is called ches.

o After that, we see the logs produced by the two containers. Each line of the
output is conveniently prefixed with the name of the service, and each
service's output is in a different color. Here, the lion's share is produced by

pythontesting

the database and only one line is from the web service.

We can now open a browser tab and navigate to 1ocalhost:3eee/pet. We should be
greeted by a nice cat image and some additional information about the container
it came from, as shown in the following screenshot:

Courtesy: Buzzfeed

Delivered to you by container d21e9f3f6995

The sample application in the browser

Refresh the browser a few times to see other cat images. The application selects
the current image randomly from a set of 12 images whose URLs are stored in
the database.

As the application is running in interactive mode and thus the Terminal where
we ran Docker Compose is blocked, we can cancel the application by pressing
Ctrl+C. If we do so, we will see the following:

AcGracefully stopping... (press Ctrl+C again to force)

Stopping ch08 _web_1 ... done
Stopping che8_db_1 ... done

We will notice that the database service stops immediately while the web service
takes about 10 seconds to do so. The reason for this being that the database
service listens to and reacts to the sicrerm signal sent by Docker while the web
service doesn't, and thus Docker kills it after 10 seconds.

If we run the application again, the output will be much shorter:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker-compose up
Creating network "ch@8_default" with the default driver
Creating ch@8_web_1 ... done
Creating ch@8_db_1 ... done
Attaching to ch@8_web_1, ch@8_db_1
2018-03-02 01:25:35.874 UTC [1] LOG: 1listening on IPv4 address "0.0.0.0", port 5432

2018-03-02 01:25:35.875 UTC [1] LOG: Tlistening on IPv6 address "::", port 5432

2018-03-02 01:25:35.877 UTC [1] LOG: Tlistening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"
2018-03-02 91:25:35.890 UTC [19] LOG: database system was shut down at 2018-03-02 @1:25:23 UTC
2018-03-02 ©01:25:35.894 UTC [1] LOG: database system is ready to accept connections

Listening at 2.0.0.0:3000

Output of docker-compose up

This time, we didn't have to download the images and the database didn't have to
initialize from scratch, but it was just reusing the data that was already present in
the volume pets-data from the previous run.

We can also run the application in the background. All containers will run as
daemons. For this, we just need to use the -d¢ parameter, as shown in the
following code:

| $ docker-compose up -d

Docker Compose offers us many more commands than just up. We can use it to
list all services that are part of the application:

$ docker-compose ps
Command

ch@8_db_1 docker-entrypoint.sh postgres Up 5432/tcp
ch@8_web_1 /bin/sh -c node src/server.js Up 0.0.0.0:3000->3000/tcp

i |

Output of docker-compose ps

This command is similar to docker container 1s, with the only difference being that
it only lists containers that are part of the application.

To stop and clean up the application, we use the docker-compose down command:

$ docker-compose down

Stopping ch08 _web_1 ... done
Stopping che8_db_1 ... done
Removing ch08 web_1 ... done
Removing che8_db_1 ... done

Removing network che8_default

If we also want to remove the volume for the database, then we can use the
following command:

| $ docker volume rm ch@8_pets-data

pythontesting

Why is there a chos prefix in the name of the volume? In the docker-compose.ym1 file,
we have called the volume to use pets-data. But as we have already mentioned,
Docker Compose prefixes all names with the name of the parent folder of the
docker-compose.yml file plus an underscore. In this case, the parent folder is called

choes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Scaling a service

Now, let's, for a moment, assume that our sample application has been live on
the web and become very successful. Loads of people want to see our cute
animal images. So now we're facing a problem since our application has started
to slow down. To counteract this problem, we want to run multiple instances of
the web service. With Docker Compose, this is readily done.

Running more instances is also called scaling up. We can use this tool to scale
our web Service up to, say, three instances:

| $ docker-compose up --scale web=3

If we do this, we are in for a surprise. The output will look similar to the
following screenshot:

$ docker-compose up --scale web=3

WARNING: The "web" service specifies a port on the host. If multiple containers for this
service are created on a single host, the port will clash.

Starting ch@8_web_3 ...

Starting ch@8_web_3 ...

ERROR: for ch@8_web_3 Cannot start service web: driver failed programming external conne
ctivity on endpoint ch@8_web_3 (534216cc36e0284b775e48c6450e25ff21fe90ff6d7b8b9716f421cb9

8560351): Bind for 0.0.0.0:3000 failed: port is already allocated

ERROR: for web Cannot start service web: driver failed programming external connectivity
on endpoint ch@8_web_3 (534216cc36e0284b775e48c6450e25ff21fe90ff6d7b8b9716421cb98560351
): Bind for 0.0.0.0:3000 failed: port is already allocated

: Encountered errors while bringing up the project.

s

Output of docker-compose --scale

The second and third instances of the web service fail to start. The error message
tells us why: we cannot use the same host port more than once. When instances 2
and 3 try to start, Docker realizes that port sec0 is already taken by the first
instance. What can we do? Well, we can just let Docker decide which host port
to use for each instance.

If, in the ports section of the compose file, we only specify the container port and
leave out the host port, then Docker automatically selects an ephemeral port.
Let's do exactly this:

1. First, let's tear down the application:

pythontesting

$ docker-compose down

Then, we IIlOdlfy the docker-compose.ym1 file to look as follows:

version: "3.5"
services:
web:
image: fundamentalsofdocker/ch08-web:1.0
ports:
- 3000
db:
image: fundamentalsofdocker/ch08-db:1.0
volumes:
- pets-data:/var/lib/postgresql/data

volumes:

pets-data:

Now, we can start the application again and scale it up immediately after
that:

$ docker-compose up -d
$ docker-compose scale web=3

Starting ch08_web_1 ... done
Creating ch08_web_2 ... done
Creating ch08_web_3 ... done

If we now do a docker-compose ps, we should see the following screenshot:

$ docker-compose ps

Command
docker-entrypoint.sh postgres
ch@8_web_1 /bin/sh -c node src/server.js
ch@8_web_2 /bin/sh -c node src/server.js
ch@8_web_3 /bin/sh -c node src/server.js
s 1

Output of docker-compose ps

As we can see, each service has been associated to a different host port. We
can try to see whether they work, for example, using cur1. Let's test the third
instance, chos_web_3:

$ curl -4 localhost:32770
Pets Demo Application

The answer, pets pemo Application, tells us that, indeed, our application is
still working as expected. Try it out for the other two instances to be sure.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Building and pushing an application

We can also use the docker-compose build command to just build the images of an
application defined in the underlying compose file. But to make this work, we'll
have to add the build information to the docker-compose file. In the folder, we have
a file, docker-compose.dev.ym1, which has those instructions already added:

version: "3.5"
services:
web:
build: web
image: fundamentalsofdocker/ch08-web:1.0
ports:
- 3000:3000
db:
build: database
image: fundamentalsofdocker/ch08-db:1.0
volumes:
- pets-data:/var/lib/postgresqgl/data

volumes:
pets-data:

Please note the bui1d key for each service. The value of that key indicates the
context or folder where Docker is expecting to find the Dockerfile to build the
corresponding image.

Let's use that file now:

| $ docker-compose -f docker-compose.dev.yml build

The -t parameter will tell the Docker Compose application which compose file
to use.

To push all images to Docker Hub, we can use docker-compose push. We need to be
logged in to Docker Hub so that this succeeds, otherwise we get an
authentication error while pushing. Thus, in my case, I do the following:

| $ docker login -u fundamentalsofdocker -p <password>

Assuming the login succeeds, I can then push the following code:

| $ docker-compose -f docker-compose.dev.yml push

pythontesting

The preceding command pushes the two images to the account
fundamentalsofdocker ON Docker Hub. You can find these two images at the URL: nt

tps://hub.docker.com/u/fundamentalsofdocker/.

https://hub.docker.com/u/fundamentalsofdocker/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we introduced the tool docker-compose. This tool is mostly used to
run and scale multi-service applications on a single Docker host. Typically,
developers and CI servers work with single hosts and those two are the main
users of Docker Compose. The tool is using YAML files as input that contain the
description of the application in a declarative way.

The tool can also be used to build and push images among many other helpful
tasks. The code accompanying this chapter can be found in 1abs/ches.

In the next chapter, we are going to introduce orchestrators. An orchestrator is
an infrastructure software that is used to run and manage containerized
applications in a cluster and it makes sure that these applications are in their
desired state at all the time.

pythontesting

Questions

To assess your learning progress please answer the following questions:

1. How will you use docker-compose to run an application in daemon mode?
2. How will you use docker-compose to display the details of the running service?
3. How will you scale up a particular web service to say, three instances?

qg 6089740 21734177 IT

Further reading

The following links provide additional information on the topics discussed in
this chapter:

e The official YAML website at http: //www.yaml.org/
e Docker Compose documentation at http://dockr.1ly/1FL2VQ6
e Compose file version 3 reference at nttp://dockr.1ly/2iHUpex

pythontesting

http://t.cn/RDIAJS5D

http://www.yaml.org/
http://dockr.ly/1FL2VQ6
http://dockr.ly/2iHUpeX

Orchestrators

In the previous chapter, we introduced Docker Compose, a tool that allows us to
work with multi-service applications that are defined in a declarative way on a
single Docker host.

This chapter introduces the concept of orchestrators. It teaches why orchestrators
are needed and how they work conceptually. This chapter will also provide an
overview of the most popular orchestrators and names a few of their pros and
cons.

In this chapter, we will cover the following topics:

e What are orchestrators and why do we need them?
e The tasks of an orchestrator
e Overview of popular orchestrators

After finishing this chapter you will be able to:

e Name three to four tasks an orchestrator is responsible for

e List two to three of the most popular orchestrators

e Explain to an interested layman in your own words and with appropriate
analogies why we need container orchestrators

qg 6089740 21734177 IT http://t.cn/RDIAj5D

What are orchestrators and why do
we need them?

In chapter 6, Distributed Application Architecture, we learned which patterns and
best practices are commonly used to successfully build, ship, and run a highly
distributed application. Now, if our highly distributed application is
containerized, then we're facing the exact same problems or challenges that a
non-containerized distributed application faces. Some of these challenges are
those discussed in chapter 6, Distributed Application Architecture, service
discovery, load balancing, scaling, and so on.

Similar to what Docker did with containers—standardizing the packaging and
shipping of software with the introduction of containers—we would like to have
some tool or infrastructure software that handles all or most of the challenges
mentioned. This software turns out to be what we call orchestrators or, as we
also call them, orchestration engines.

If what I just said doesn't make much sense to you yet, then let's look at it from a
different angle. Take an artist who plays an instrument. They can play wonderful
music to an audience all on their own, just the artist and their instrument. But
now take an orchestra of musicians. Put them all in a room, give them the notes
of a symphony, ask them to play it, and leave the room. Without any director,
this group of very talented musicians would not be able to play this piece in
harmony; it would more or less sound like a cacophony. Only if the orchestra has
a conductor who orchestrates the group of musicians will the resulting music of
the orchestra be enjoyable to our ears:

pythontesting

A container orchestrator is like the conductor of an orchestra

Instead of musicians, we now have containers, and instead of different
instruments, we have containers that have different requirements to the container
hosts to run. And instead of the music being played in varying tempi, we have
containers that communicate with each other in particular ways and have to scale
up and scale down. In this regard, a container orchestrator has very much the
same role as a conductor in an orchestra. It makes sure that the containers and
other resources in a cluster play together in harmony.

I hope you can now see more clearly what a container orchestrator is and why
we need one. Assuming that you confirm this question, we can now ask
ourselves how the orchestrator is going to achieve the expected outcome, namely
to make sure all the containers in the cluster play with each other in harmony.
Well, the answer is, the orchestrator has to execute very specific tasks, similar to
the way in which the conductor of an orchestra also has a set of tasks they
execute in order to tame and at the same time elevate the orchestra.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

The tasks of an orchestrator

So, what are the tasks that we expect an orchestrator worth its money to execute
for us? Let's look at them in detail. The following list shows the most important
tasks that, at the time of writing, enterprise users typically expect from their
orchestrator.

pythontesting

Reconciling the desired state

When using an orchestrator, one tells it in a declarative way how one wants it to
run a given application or application service. We learned what declarative
versus imperative means in chapter 8, Docker Compose. Part of this declarative
way of describing the application service we want to run is elements such as
which container image to use, how many instances to run of this service, which
ports to open, and more. This declaration of the properties of our application
service is what we call the desired state.

So, when we now tell the orchestrator the first time to create such a new
application service based on the declaration, then the orchestrator makes sure to
schedule as many containers in the cluster as requested. If the container image is
not yet available on the target nodes of the cluster where the containers are
supposed to run, then the scheduler makes sure they're downloaded from the
image registry first. Next, the containers are started with all the settings, such as
networks to which to attach, or ports to expose. The orchestrator works as hard
as it can to exactly match in reality in the cluster what it got in our declaration.

Once our service is up and running as requested, that is, it is running in the
desired state, then the orchestrator continues to monitor it. Each time the
orchestrator discovers a discrepancy between the actual state of the service and
its desired state, it again tries its best to reconcile the desired state.

What could such a discrepancy between the actual and desired states of an
application service be? Well, let's say one of the replicas of the service, that is,
one of the containers, crashes due to, say, a bug, then the orchestrator will
discover that the actual state differs from the desired state in the number of
replicas: there is one replica missing. The orchestrator will immediately schedule
a new instance to another cluster node, which replaces the crashed instance.
Another discrepancy could be that there are too many instances of the
application service running, if the service has been scaled down. In this case, the
orchestrator will just randomly kill as many instances as needed to achieve parity
between the actual and the desired number of instances. Another discrepancy
could be when the orchestrator discovers that there is an instance of the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

application service running a wrong (maybe old) version of the underlying
container image. By now, you should get the picture, right?

Thus, instead of us actively monitoring our application's services running in the
cluster and correcting any deviation from the desired state, we delegate this
tedious task to the orchestrator. This works very well, if we use a declarative and
not an imperative way of describing the desired state of our application

services.

pythontesting

Replicated and global services

There are two quite different types of services that we might want to run in a
cluster managed by an orchestrator. They are replicated and global services. A
replicated service is a service which is required to run in a specific number of
instances, say 10. A global service, in turn, is a service that is required to have an
instance running on every single worker node of the cluster. I have used the term
worker node here. In a cluster managed by an orchestrator, we typically have
two types of nodes, managers and workers. A manager node is usually
exclusively used by the orchestrator to manage the cluster and does not run any
other workload. Worker nodes, in turn, run the actual applications.

So, the orchestrator makes sure that, for a global service, an instance of it is
running on every single worker node, no matter how many there are. We do not
need to care about the number of instances, but only that on each node it is
guaranteed to run a single instance of the service.

Once again, we can fully rely on the orchestrator to take care of this feat. In a
replicated service, we will always be guaranteed to find the exact desired
number of instances, while for a global service, we can be assured that on every
worker node, there will always run exactly one instance of the service. The
orchestrator will always work as hard as it can to guarantee this desired state.

0 In Kubernetes, a global service is also called a daemon set.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Service discovery

When we describe an application service in a declarative way, we

are never supposed to tell the orchestrator on which cluster nodes the different
instances of the service have to run. We leave it up to the orchestrator to decide
which nodes best fit this task.

It is, of course, technically possible to instruct the orchestrator to use very
deterministic placement rules, but this would be an anti-pattern and is not
recommended at all.

So, if we now assume that the orchestration engine has complete and free will as
to where to place individual instances of the application service and,
furthermore, that instances can crash and be rescheduled by the orchestrator to
different nodes, then we will realize that it is a futile task for us to keep track of
where the individual instances are running at any given time. Even better, we
shouldn't even try to know this since it is not important.

OK, you might say, but what about if I have two services, A and B, and Service
A relies on Service B; shouldn't any given instance of Service A know where it
can find an instance of Service B?

There I have to say loudly and clearly—no, it shouldn't. This kind of knowledge
is not desirable in a highly distributed and scalable application. Rather, we
should rely on the orchestrator to provide us the information we need to reach
other service instances we depend on. It is a bit like in the old days of telephony,
when we could not directly call our friends but had to call the phone company's
central office, where some operator would then route us to the correct
destination. In our case, the orchestrator plays the role of the operator, routing a
request coming from an instance of Service A to an available instance of Service
B. This whole process is called service discovery.

pythontesting

Routing

We have learned so far that in a distributed application, we have many
interacting services. When Service A interacts with Service B, it happens
through the exchange of data packets. These data packets need to somehow be
funneled from Service A to Service B. This process of funneling the data packets
from a source to a destination is also called routing. As authors or operators of
an application, we do expect the orchestrator to take over this task of routing. As
we will see in later chapters, routing can happen on different levels. It is like in
real life. Suppose you're working in a big company in one of their office
buildings. Now, you have a document that needs to be forwarded to another
employee of the company. The internal post service will pick up the document
from your outbox and take it to the post office located in the same building. If
the target person works in the same building, the document can then be directly
forwarded to that person. If, on the other hand, the person works in another
building of the same block, the document will be forwarded to the post office in
that target building, from where it is then distributed to the receiver through the
internal post service. Thirdly, if the document is targeted at an employee
working in another branch of the company located in a different city or even
country, then the document is forwarded to an external postal service such as
UPS, which will transport it to the target location, from where, once again, the
internal post service takes over and delivers it to the recipient.

Similar things happen when routing data packets between application services
running in containers. The source and target containers can be located on the
same cluster node, which corresponds to the situation where both employees
work in the same building. The target container can be running on a different
cluster node, which corresponds to the situation where the two employees work
in different buildings of the same block. Finally, the third situation is when a
data packet comes from outside of the cluster and has to be routed to the target
container running inside the cluster.

All these situations and more have to be handled by the orchestrator.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Load balancing

In a highly available distributed application, all components have to be
redundant. That means that every application service has to be run in multiple
instances so that if one instance fails, the service as a whole is still operational.

To make sure that all instances of a service are actually doing work and not just
sitting around idle, one has to make sure that the requests for service are
distributed equally to all the instances. This process of distributing workload
among service instances is called load balancing. Various algorithms exist for
how the workload can be distributed. Usually, a load balancer works using the
so-called round robin algorithm, which makes sure that the workload is
distributed equally to the instances using a cyclic algorithm.

Once again, we expect the orchestrator to take care of load balancing requests
from one service to another or from external sources to internal services.

pythontesting

Scaling

When running our containerized, distributed application in a cluster managed by
an orchestrator, we also want an easy way to handle expected or unexpected
increases in workload. To handle an increased workload, we usually just
schedule additional instances of a service that is experiencing this increased
load. Load balancers will then automatically be configured to distribute the
workload over more available target instances.

But in real-life scenarios, the workload varies over time. If we look at a shopping
site such as Amazon, it might have a high load during peak hours in the evening,
when everyone is at home and shopping online; it may experience extreme loads
during special days such as Black Friday; and it may experience very little traffic
early in the morning. Thus, services need to not just be able to scale up, but also
to scale down when the workload goes down.

We also expect orchestrators to distribute the instances of a service in a
meaningful way when scaling up or down. It would not be wise to schedule all
instances of the service on the same cluster node, since if that node goes down,
the whole service goes down. The scheduler of the orchestrator, which is
responsible for the placement of the containers, needs to also consider not
placing all instances into the same rack of computers, since if the power supply
of the rack fails, again the whole service is affected. Furthermore, service
instances of critical services should even be distributed across data centers to
avoid outages. All these decisions and many more are the responsibility of the
orchestrator.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Self-healing

These days, orchestrators are very sophisticated and can do a lot for us to
maintain a healthy system. Orchestrators monitor all containers running in the
cluster and they automatically replace crashed or unresponsive ones with new
instances. Orchestrators monitor the health of cluster nodes and take them out of
the scheduler loop if a node becomes unhealthy or is down. A workload that was
located on those nodes is automatically rescheduled to different available nodes.

All these activities where the orchestrator monitors the current state and
automatically repairs the damage or reconciles the desired state lead to a so-
called self-healing system. We do not, in most cases, have to actively engage
and repair damage. The orchestrator will do this for us automatically.

But there are a few situations that the orchestrator cannot handle without our
help. Imagine a situation where we have a service instance running in a
container. The container is up and running and, from the outside, looks perfectly
healthy. But the application inside is in an unhealthy state. The application did
not crash, it just is not able to work as designed anymore. How could the
orchestrator possibly know about this without us giving it a hint? It can't! Being
in an unhealthy or invalid state means something completely different for each
application service. In other words, the health status is service dependent. Only
the authors of the service or its operators know what health means in the context
of a service.

Now, orchestrators define seams or probes, over which an application service
can communicate to the orchestrator in what state it is. Two fundamental types
of probe exist:

e The service can tell the orchestrator that it is healthy or not
e The service can tell the orchestrator that it is ready or temporarily
unavailable

How the service determines either of the preceding answers is totally up to the
service. The orchestrator only defines how it is going to ask, for example,
through an HTTP GET request, or what type of answers it is expecting, for

pythontesting

example, OK or NOT OK.

If our services implement logic to answer the preceding health or availability
questions, then we have a truly self-healing system, since the orchestrator can
kill unhealthy service instances and replace them with new healthy ones, and it
can take service instances that are temporarily unavailable out of the load
balancer's round robin.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Z.ero downtime deployments

These days, it gets harder and harder to justify a complete downtime for a
mission-critical application that needs to be updated. Not only does that mean
missed opportunities, but it can also result in a damaged reputation for the
company. Customers using the application are just not ready to accept such an
inconvenience anymore and will turn away quickly. Furthermore, our release
cycles get shorter and shorter. Where, in the past, we would have one or two new
releases per year, these days, a lot of companies update their applications
multiple times a week or even multiple times per day.

The solution to that problem is to come up with a zero downtime application
update strategy. The orchestrator needs to be able to update individual
application services batch-wise. This is also called rolling updates. At any given
time, only one or a few of the total number of instances of a given service are
taken down and replaced by the new version of the service. Only if the new
instances are operational and do not produce any unexpected errors or show any
misbehavior will the next batch of instances be updated. This is repeated until all
instances are replaced with their new version. If, for some reason, the update
fails, we expect the orchestrator to automatically roll the updated instances back
to their previous version.

Other possible zero downtime deployments are so-called canary releases and
blue-green deployments. In both cases, the new version of a service is installed
in parallel with the current, active version. But initially, the new version is only
accessible internally. Operations can then run smoke tests against the new
version and when the new version seems to be running just fine, then, in the case
of blue-green deployment, the router is switched from the current blue to the
new green version. For some time, the new green version of the service is
closely monitored and, if everything is fine, the old blue version can be
decommissioned. If, on the other hand, the new green version does not work as
expected, then it is only a matter of setting the router back to the old blue version
to achieve a complete rollback.

In the case of a canary release, the router is configured in such a way that it

pythontesting

funnels a tiny percentage, say 1%, of the overall traffic through the new version
of the service, while 99% of the traffic is still routed through the old version. The
behavior of the new version is closely monitored and compared to the behavior
of the old version. If everything looks good, then the percentage of the traffic
funneled through the new service is slightly increased. This process is repeated
until 100% of the traffic is routed through the new service. If the new service has
run for a while and everything looks good, then the old service can be
decommissioned.

Most orchestrators support at least the rolling update type of zero downtime
deployment out of the box. Blue-green and canary releases are often quite easy
to implement.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Affinity and location awareness

Sometimes, certain application services require the availability of dedicated
hardware on the nodes they run on. For example I/O-bound services require
cluster nodes with an attached high-performance solid-state drive (SSD), or
some services require an Accelerated Processing Unit (APU). Orchestrators
allow us to define node affinities per application service. The orchestrator will
then make sure that its scheduler only schedules containers on cluster nodes that
fulfill the required criteria.

Defining an affinity to a particular node should be avoided; this would introduce
a single point of failure and thus compromise high availability. Always define a
set of multiple cluster nodes as the target for an application service.

Some orchestration engines also support what is called location awareness or
geo-awareness. What this means is that one can request the orchestrator to
equally distribute instances of a service over a set of different locations. One
could, for example, define a label datacenter with the possible values west, center,
and east and apply the label to all cluster nodes with the value that corresponds
to the geographical region in which the respective node is located. Then, one
instructs the orchestrator to use this label for geo-awareness of a certain
application service. In this case, if one requests nine replicas of the service, the
orchestrator would make sure that three instances are deployed to nodes in each
of the three data centers, west, center, and east.

Geo-awareness can even be defined hierarchically; for example, one can have a
data center as the top-level discriminator, followed by the availability zone and
then the server rack.

Geo-awareness or location awareness is used to decrease the probability of
outages due to power supply failures or data center outages. If the application
instances are distributed across server racks, availability zones, or even data
centers, it is extremely unlikely that everything goes down at once. One region
will always be available.

pythontesting

Security

These days, security in IT is a very hot topic. Cyberwarfare is at an all-time high.
Most high-profile companies have been victims of hacker attacks, with very
costly consequences. One of the worst nightmares of each chief information
officer (CIO) or chief technology officer (CTO) is to wake up in the morning
and hear in the news that their company has become a victim of a hacker attack
and that sensitive information has been stolen or compromised.

To counter most of these security threats, we need to establish a secure software
supply chain and enforce security defense in depth. Let's look at some of the
tasks one can expect from an enterprise-grade orchestrator.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Secure communication and
cryptographic node identity

First and foremost, we want to make sure that our cluster managed by the
orchestrator is secure. Only trusted nodes can join the cluster. Each node that
joins the cluster gets a cryptographic node identity, and all communication
between the nodes must be encrypted. For this, nodes can use mutual transport
layer security (MTLS). To authenticate nodes of the cluster with each other,
certificates are used. These certificates are automatically rotated periodically or
on request to protect the system in case a certificate is leaked.

The communication that happens in a cluster can be separated into three types.
One talks about communication planes. There are management, control, and
data planes:

e The management plane is used by the cluster managers or masters to, for
example, schedule service instances, execute health checks, or create and
modify any other resources in the cluster, such as data volumes, secrets, or
networks.

e The control plane is used to exchange important state information between
all nodes of the cluster. This kind of information is, for example, used to
update the local IP tables on clusters which are used for routing purposes.

e The data plane is where the application services communicate with each
other and exchange data.

Normally, orchestrators mainly care about securing the management and control
plane. Securing the data plane is left to the user, yet the orchestrator may
facilitate this task.

pythontesting

Secure networks and network policies

When running application services, not every service needs to communicate with
every other service in the cluster. Thus, we want the ability to sandbox services
from each other and only run those services in the same networking sandbox that
absolutely need to communicate with each other. All other services and all
network traffic coming from outside of the cluster should have no possibility of
accessing the sandboxed services.

There are at least two ways in which this network-based sandboxing can happen.
We can either use a software-defined network (SDN) to group application
services or we can have one flat network and use network policies to control
who does and does not have access to a particular service or group of services.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Role-based access control (RBAC)

One of the most important tasks, next to security, an orchestrator must fulfill to
make it enterprise ready is to provide role-based access to the cluster and its
resources. RBAC defines how subjects, users, or groups of users of the system,
organized into teams and so on, can access and manipulate the system. It makes
sure that unauthorized personnel cannot do any harm to the system nor see any
resources available in the system they're not supposed to know of or see.

A typical enterprise might have user groups such as Development, QA, and Prod, and each of
those groups can have one to many users associated with it. John Doe, the developer, is a
member of the Development group and, as such, can access resources dedicated to the
development team, but he cannot access, for example, the resources of the Prod team, of
which Ann Harbor is a member. She, in turn, cannot interfere with the Development team's
resources.

One way of implementing RBAC is through the definition of grants. A grant is
an association between a subject, a role, and a resource collection. Here, a role is
comprised of a set of access permissions to a resource. Such permissions can be
to create, stop, remove, list, or view containers; to deploy a new application
service; to list cluster nodes or view the details of a cluster node; and many
more.

A resource collection is a group of logically related resources of the cluster,
such as application services, secrets, data volumes, or containers.

pythontesting

Secrets

In our daily life, we have loads of secrets. Secrets are information that is not
meant to be publicly known, such as the username and password combination
you use to access your online bank account, or the code to your cell phone or
your locker at the gym.

When writing software, we often need to use secrets, too. For example, we need
some certificate to authenticate our application service with some external
service we want to access, or we need a token to authenticate and authorize our
service when accessing some other API. In the past, developers, for
convenience, have just hardcoded those values or put them in clear text in some
external configuration files. There, this very sensitive information has been
accessible to a broad audience that in reality should never have had the
opportunity to see those secrets.

Luckily, these days, orchestrators offer what's called secrets to deal with such
sensitive information in a highly secure way. Secrets can be created by
authorized or trusted personnel. The values of those secrets are then encrypted
and stored in the highly available cluster state database. The secrets, since they
are encrypted, are now secure at rest. Once a secret is requested by an authorized
application service, the secret is only forwarded to the cluster nodes that actually
run an instance of that particular service, and the secret value is never stored on
the node but mounted into the container in a tmpfs RAM-based volume. Only
inside the respective container is the secret value available in clear text.

We already mentioned that the secrets are secure at rest. Once they are requested
by a service, the cluster manager or master decrypts the secret and sends it over
the wire to the target nodes. So, what about the secrets being secure in transit?
Well, we learned earlier that the cluster nodes use MTLS for their
communication, thus the secret, although transmitted in clear text, is still secure
since data packets will be encrypted by MTLS. Thus, secrets are secure at rest
and in transit. Only services that are authorized to use secrets will ever have
access to those secret values.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Content trust

For added security, we want to make sure that only trusted images run in our
production cluster. Some orchestrators allow us to configure a cluster so that it
can only ever run signed images. Content trust and signing images is all about
making sure that the authors of the image are the ones that we expect them to be,
namely our trusted developers or, even better, our trusted CI server. Furthermore,
with content trust, we want to guarantee that the image we get is fresh and not an
old and maybe vulnerable image. And finally, we want to make sure that the
image cannot be compromised by malicious hackers in transit. The latter is often
called a man-in-the-middle (MITM) attack.

By signing images at the source and validating the signature at the target, we can
guarantee that the images we want to run are not compromised.

pythontesting

Reverse uptime

The last point I want to discuss in the context of security is reverse uptime. What
do we mean by that? Imagine that you have configured and secured a production
cluster. On this cluster, you're running a few mission-critical applications of your
company. Now, a hacker has managed to find a security hole in one your
software stacks and has gained root access to one of your cluster nodes. That
alone is already bad enough but, even worse, this hacker could now mask their
presence on this node they are root on the machine, after all, and then use it as a
base to attack further nodes of your cluster.

this system. It is the highest level of access that someone can have. In Windows, the equivalent

0 Root access in Linux or any Unix-type operating system means that one can do anything on
role is that of an Administrator.

But what if we leverage the fact that containers are ephemeral and cluster nodes
are quickly provisioned, usually in a matter of minutes if fully automated? We
just kill each cluster node after a certain uptime of, say, 1 day. The orchestrator is
instructed to drain the node and then exclude it from the cluster. Once the node is
out of the cluster, it is torn down and replaced by a freshly provisioned node.

That way, the hacker has lost their base and the problem has been eliminated.
This concept is not yet broadly available, though, but to me it seems to be a huge
step towards increased security and, as far as I have discussed it with engineers
working in this area, it is not difficult to implement.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introspection

So far, we have discussed a lot of tasks that the orchestrator is responsible for
and that it can execute in a completely autonomous way. But there is also the
need for human operators to be able to see and analyze what's currently running
on the cluster and in what state or health the individual applications are. For all
this, we need the possibility of introspection. The orchestrator needs to surface
crucial information in a way that is easily consumable and understandable.

The orchestrator should collect system metrics from all the cluster nodes and
make it accessible to the operators. Metrics include CPU, memory and disk
usage, network bandwidth consumption, and more. The information should be
easily available on a node-per-node basis, as well in an aggregated form.

We also want the orchestrator to give us access to logs produced by service
instances or containers. Even more, the orchestrator should provide us exec
access to each and every container if we have the correct authorization to do so.
With exec access to containers, one can then debug misbehaving containers.

In highly distributed applications, where each request to the application goes
through numerous services until it is completely handled, tracing requests is
really important task. Ideally, the orchestrator supports us in implementing a
tracing strategy or gives us some good guidelines to follow.

Finally, human operators can best monitor a system when working with a
graphical representation of all the collected metrics and logging and tracing
information. Here, we are speaking about dashboards. Every decent orchestrator
should offer at least some basic dashboard with a graphical representation of the
most critical system parameters.

But human operators are not all that concerned about introspection. We also need
to be able to connect external systems with the orchestrator to consume this
information. There needs to be an API available, over which external systems
can access data such as cluster state, metrics, and logs and use this information
to make automated decisions, such as creating pager or phone alerts, sending
out emails, or triggering an alarm siren if some thresholds are exceeded by the

pythontesting

system.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Overview of popular orchestrators

At the time of writing, there are many orchestration engines out there and in use.
But there are a few clear winners. The number one spot is clearly held by
Kubernetes, which reigns supreme. A distant second is Docker's own SwarmKit,
followed by others such as Apache Mesos, AWS Elastic Container Service
(ECS), or Microsoft Azure Container Service (ACS).

pythontesting

Kubernetes

Kubernetes was originally designed by Google and later donated to the Cloud
Native Computing Foundation (CNCF). Kubernetes was modeled after
Google's proprietary Borg system, which has been running containers on
supermassive scale for years. Kubernetes was Google's attempt to go back to the
drawing board and completely start over and design a system that incorporates
all the lessons learned with Borg.

Contrary to Borg, which is proprietary technology, Kubernetes was open sourced
early on. This was a very wise choice by Google, since it attracted a huge
number of contributors from outside of the company and, over only a couple of
years, an even more massive ecosystem evolved around Kubernetes. One can
rightfully say that Kubernetes is the darling of the community in the container
orchestration space. No other orchestrator has been able to produce so much
hype and attract so many talented people willing to contribute in a meaningful
way to the success of the project as a contributor or an early adopter.

In that regard, Kubernetes in the container orchestration space to me looks very
much like what Linux has become in the server operating system space. Linux
has become the de facto standard of server operating systems. All relevant
companies, such as Microsoft, IBM, Amazon, RedHat, and even Docker, have
embraced Kubernetes.

And there is one thing that cannot be denied: Kubernetes was designed from the
very beginning for massive scalability. After all, it was designed with Google
Borg in mind.

One negative aspect that one could voice against Kubernetes is that it is complex
to set up and manage, at least at the time of writing. There is a significant hurdle
to overcome for newcomers. The first step is steep. But once one has worked
with this orchestrator for a while, it all makes sense. The overall design is
carefully thought through and executed very well.

In the newest release of Kubernetes, 1.10, whose general availability (GA) was
in March 2018, most of the initial shortcomings compared to other orchestrators

qg 6089740 21734177 IT http://t.cn/RDIAj5D

such as Docker Swarm have been eliminated. For example, security and
confidentiality is now not only an afterthought, but an integral part of the
system.

New features are implemented at a tremendous speed. New releases are
happening every 3 months or so, more precisely, about every 100 days. Most of
the new features are demand-driven, that is, companies using Kubernetes to
orchestrate their mission-critical applications can voice their needs. This makes
Kubernetes enterprise ready. It would be wrong to assume that this orchestrator
is only for start-ups and not for risk-averse enterprises. The contrary is the case.
On what do I base this claim? Well, my claim is justified by the fact that
companies such as Microsoft, Docker, and RedHat, whose clients are mostly big
enterprises, have fully embraced Kubernetes and provide enterprise-grade
support for it if it is used and integrated into their enterprise offerings.

Kubernetes supports both Linux and Windows containers.

pythontesting

Docker Swarm

It is well-known that Docker popularized and commoditized software containers.
Docker did not invent containers, but standardized them and made them broadly
available, not least by offering the free image registry Docker Hub. Initially,
Docker focused mainly on the developer and the development life cycle. But
companies that started to use and love containers soon also wanted to use
containers, not just during development or testing of new applications, but also
to run those applications in production.

Initially, Docker had nothing to offer in that space, so other companies jumped
into that vacuum and offered help to the users. But it didn't take long and Docker
recognized that there was a huge demand for a simple yet powerful orchestrator.
Docker's first attempt was a product called classic Swarm. It was a standalone
product that enabled users to create a cluster of Docker host machines that could
be used to run and scale their containerized applications in a highly available and
self-healing way.

The setup of a classic Docker Swarm, though, was hard. A lot of complicated
manual steps were involved. Customers loved the product but struggled with its
complexity. So Docker decided it could do better. It went back to the drawing
board and came up with SwarmKit. SwarmKit was introduced at DockerCon
2016 in Seattle and was an integral part of the newest version of the Docker
engine. Yes, you got that right, SwarmKit was and still is to this day an integral
part of the Docker engine. Thus, if you install a Docker host, you automatically
have SwarmKit available with it.

SwarmKit was designed with simplicity and security in mind. The mantra was
and still is that it has to be almost trivial to set up a swarm, and the swarm has to
be highly secure out of the box. Docker Swarm operates on the assumption of
least privilege.

Installing a complete, highly available Docker Swarm is literally as simple as
starting with a docker swarm init on the first node in the cluster, which becomes the
so-called leader, and then a docker swarm join <join-token> on all other nodes. The

qg 6089740 21734177 IT http://t.cn/RDIAj5D

join-token is generated by the leader during initialization. The whole process
takes less that 5 minutes on a Swarm with up to 10 nodes. If it is automated, it
takes even less time.

As I already mentioned, security was top on the list of must-haves when Docker
designed and developed SwarmKit. Containers provide security by relying on
Linux kernel namespaces and cgroups as well as Linux syscall whitelisting
(seccomp) and the support of Linux capabilities and the Linux security module
(LSM). Now, on top of that, SwarmKit adds MTLS and secrets that are
encrypted at rest and in transit. Furthermore, Swarm defines the so-called
container network model (CNM), which allows for SDNs that provide
sandboxing for application services running on the swarm.

Docker SwarmKit supports both Linux and Windows containers.

pythontesting

Apache Mesos and Marathon

Apache Mesos is an open source project and was originally designed to make a
cluster of servers or nodes look like one single big server from the outside.
Mesos is software that makes the management of computer clusters simple.
Users of Mesos should not have to care about individual servers, but just assume
they have a gigantic pool of resources to their disposal, which corresponds to the
aggregate of all the resources of all the nodes in the cluster.

Mesos, in IT terms, is already pretty old, at least compared to the other
orchestrators. It was first publicly presented in 2009. But at that time, of course,
it wasn't designed to run containers since Docker didn't even exist yet. Similar to
what Docker does with containers, Mesos uses Linux cgroups to isolate
resources such as CPU, memory, or disk I/O for individual applications or
services.

Mesos is really the underlying infrastructure for other interesting services built
on top of it. From the perspective of containers specifically, Marathon is
important. Marathon is a container orchestrator running on top of Mesos which
is able to scale to thousands of nodes.

Marathon supports multiple container runtimes, such as Docker or its own
Mesos containers. It supports not only stateless but also stateful application
services, for example, databases such as PostgreSQL or MongoDB. Similar to
Kubernetes and Docker SwarmKit, it supports many of the features described
earlier in this chapter, such as high availability, health checks, service discovery,
load balancing, and location awareness, to just name some of the most important
ones.

Although Mesos and, to a certain extent, Marathon are rather mature projects,
their reach is relatively limited. It seems to be most popular in the area of big
data, that is, to run data crunching services such as Spark or Hadoop.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Amazon ECS

If you are looking for a simple orchestrator and have already heavily bought into
the AWS ecosystem, then Amazon's ECS might be the right choice for you. It is

important to point out one very important limitation of ECS: if you buy into this

container orchestrator, then you lock yourself into AWS. You will not be able to

easily port an application running on ECS to another platform or cloud.

Amazon promotes its ECS service as a highly scalable, fast container
management service that makes it easy to run, stop, and manage Docker
containers on a cluster. Next to running containers, ECS gives direct access to
many other AWS services from the application services running inside the
containers. This tight and seamless integration with many popular AWS services
is what makes ECS compelling for users who are looking for an easy way to get
their containerized applications up and running in a robust and highly scalable
environment. Amazon also provides its own private image registry.

With AWS ECS, you can use Fargate to have it fully manage the underlying
infrastructure so that you can concentrate exclusively on deploying containerized
applications and do not have to care about how to create and manage a cluster of
nodes. ECS supports both Linux and Windows containers.

In summary, ECS is simple to use, highly scalable, and well-integrated with
other popular AWS services, but it is not as powerful as, say, Kubernetes or
Docker SwarmKit and it is only available on Amazon AWS.

pythontesting

Microsoft ACS

Similar to what we said about ECS, we can claim the same for Microsoft's ACS.
It is a simple container orchestration service that makes sense if you are already
heavily invested in the Azure ecosystem. I should say the same as I have pointed
out for Amazon ECS: if you buy into ACS, then you lock yourself in to the
offerings of Microsoft. It will not be easy to move your containerized
applications from ACS to any other platform or cloud.

ACS is Microsoft's container service, which supports multiple orchestrators such
as Kubernetes, Docker Swarm, and Mesos DC/OS. With Kubernetes becoming
more and more popular, the focus of Microsoft has clearly shifted to that
orchestrator. Microsoft has even rebranded its service and called it Azure
Kubernetes Service (AKS) to put the focus on Kubernetes.

AKS manages, for you, a hosted Kubernetes or Docker Swarm or DC/OS
environment in Azure, so you can concentrate on the applications you want to
deploy and don't have to care about configuring infrastructure. Microsoft, in its
own words, claims the following:

AKS makes it quick and easy to deploy and manage containerized applications without container
orchestration expertise. It also eliminates the burden of ongoing operations and maintenance by
provisioning, upgrading, and scaling resources on demand, without taking your applications offline.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

This chapter demonstrated why orchestrators are needed in the first place and
how they conceptually work. It pointed out which orchestrators are the most
prominent ones at the time of writing and discussed the main commonalities and
differences between the various orchestrators.

The next chapter will introduce Docker’s native orchestrator, called SwarmKit. It
will elaborate on all the concepts and objects SwarmKit uses to deploy and run a
distributed, resilient, robust, and highly available application in a cluster on-
premises or in the cloud.

pythontesting

Questions

Answer the following questions to assess your learning progress:

1. Why do we need an orchestrator? Name two to three reasons.
2. Name three to four typical responsibilities of an orchestrator.

3. Name at least two container orchestrators, as well as the main sponsor
behind them.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

The following links provide some deeper insight to orchestration-related topics:

Kubernetes - production-grade orchestration at https://kubernetes.io/
Docker Swarm Mode overview at https://docs.docker.com/engine/swarm/
Mesosphere - container orchestration services at http://bit.1y/2GMpko3
Containers and orchestration explained at nttp://bit.1y/20FoQgx

pythontesting

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://bit.ly/2GMpko3
https://bit.ly/2npjrEl

Introduction to Docker Swarm

In the last chapter, we introduced orchestrators. Like a conductor in an orchestra,
an orchestrator makes sure that all our containerized application services play
together nicely and contribute harmoniously to a common goal. Such
orchestrators have quite a few responsibilities, which we have discussed in
detail. Finally, we have provided a short overview of the most important
container orchestrators on the market.

This chapter introduces Docker's native orchestrator, SwarmKit. It elaborates on
all the concepts and objects SwarmKit uses to deploy and run a distributed,
resilient, robust, and highly available application in a cluster on-premise or in the
cloud. The chapter also introduces how SwarmKit ensures secure applications by
using a software defined network (SDN) to isolate containers. Additionally,
this chapter demonstrates how to install a highly available Docker Swarm in the
cloud. It introduces the routing mesh which provides layer-4 routing and load
balancing. Finally, it demonstrates how to deploy a first application consisting of
multiple services onto the swarm.

These are the topics we are going to discuss in this chapter:

Architecture

Swarm nodes

Stacks, services, and tasks
Multi-host networking
Creating a Docker Swarm
Deploying a first application
The swarm routing mesh

After completing this chapter, you will be able to:

e Sketch the essential parts of a highly available Docker Swarm on a
whiteboard

e Explain in two or three simple sentences to an interested layman what a
(swarm) service is

e Create a highly available Docker Swarm in AWS consisting of three

qg 6089740 21734177 IT http://t.cn/RDIAj5D

manager and two worker nodes

Successfully deploy a replicated service such as Nginx on a Docker Swarm
Scale up and down a running Docker Swarm service

Retrieve the aggregated log of a replicated Docker Swarm service

Write a simple stack file for a sample application consisting of at least two
interacting services

e Deploy a stack into a Docker Swarm

pythontesting

Architecture

The architecture of a Docker Swarm from a 30,000-foot view consists of two
main parts—a raft consensus group of an odd number of manager nodes, and a
group of worker nodes that communicate with each other over a gossip network,
also called the control plane. The following figure illustrates this architecture:

'Raft Consensus Group

' raft store raft store raft store
(. | (. | (. |
- - -
e s N N

| i H

‘ manager manager manager

follower leader follower

worker worker worker | eee [worker worker

R T N N R

| gossip network (control plane) | E

l worker

High-level architecture of a Docker Swarm

The manager nodes manage the swarm whilst the worker nodes execute the
applications deployed into the swarm. Each manager has a complete copy of the
full state of the swarm in its local raft store. Managers communicate with each
other in a synchronous way and the raft stores are always in sync.

The workers, on the other hand, communicate with each other asynchronously
for scalability reasons. There can be hundreds if not thousands of worker nodes
in a swarm. Now that we have a high-level overview of what a Docker Swarm
is, let's describe all the individual elements of a Docker Swarm in more detail.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Swarm nodes

A swarm is a collection of nodes. We can classify a node as a physical computer
or virtual machine (VM). Physical computers these days are often referred to as
bare metal. People say we're running on bare metal to distinguish from running
ona VM.

When we install Docker on such a node, we call this node a Docker host. The
following figure illustrates a bit better what a node and what a Docker host is:

[Docker] [Docker]

: . v[Linux OS]: '[Linux OS] '
E Docker ' E ' ~ :
; :[Hypervisor]:
{ Linux OS 1' { Linux OS

Server T server

Bare metal and VM type Docker Swarm nodes

To become a member of a Docker Swarm, a node must also be a Docker host. A
node in a Docker Swarm can have one of two roles. It can be a manager or it can
be a worker. Manager nodes do what their name implies; they manage the
swarm. The worker nodes in turn execute application workload.

Technically, a manager node can also be a worker node and thus run application
workload, although that is not recommended, especially if the swarm is a
production system running mission critical applications.

pythontesting

Swarm managers

Each Docker Swarm needs to have at least one manager node. For high
availability reasons we should have more than one manager node in a swarm.
This is especially true for production or production-like environments. If we
have more than one manager node then these nodes work together using the Raft
consensus protocol. The Raft consensus protocol is a standard protocol that is
often used when multiple entities need to work together and always need to
agree with each other as to which activity to execute next.

To work well, the Raft consensus protocol asks for an odd number of members
in what is called the consensus group. Thus we should always have 1, 3, 5, 7,
and so on manager nodes. In such a consensus group there is always a leader. In
the case of Docker Swarm, the first node that starts the swarm initially becomes
the leader. If the leader goes away then the remaining manager nodes elect a new
leader. The other nodes in the consensus group are called followers.

Now let's assume that we shut down the current leader node for maintenance
reasons. The remaining manager nodes will elect a new leader. When the
previous leader node comes back online he will now become a follower. The
new leader remains the leader.

All the members of the consensus group communicate in a synchronous way
with each other. Whenever the consensus group needs to make a decision, the
leader asks all followers for agreement. If a majority of the manager nodes give
a positive answer then the leader executes the task. That means if we have three
manager nodes then at least one of the followers has to agree with the leader. If
we have five manager nodes then at least two followers have to agree.

Since all manager follower nodes have to communicate synchronously with the
leader node to make a decision in the cluster, the decision-making process gets
slower and slower the more manager nodes we have forming the consensus
group. The recommendation of Docker is to use one manager for development,
demo, or test environments. Use three manager nodes in small to medium size
swarms, and use five managers in large to extra large swarms. To use more than

qg 6089740 21734177 IT http://t.cn/RDIAj5D

five managers in a swarm is hardly ever justified.

Manager nodes are not only responsible for managing the swarm but also for
maintaining the state of the swarm. What do we mean by that? When we talk
about the state of the swarm we mean all the information about it—for example,
how many nodes are in the swarm, what are the properties of each node, such as
name or IP address. We also mean what containers are running on which node in
the swarm and more. What, on the other hand, is not included in the state of the
swarm is data produced by the application services running in containers on the
swarm. This is called application data and is definitely not part of the state that is
managed by the manager nodes:

A swarm manager consensus group

All the swarm state is stored in a high performance key-value store (kv-store) on
each manager node. That's right, each manager node stores a complete replica of
the whole swarm state. This redundancy makes the swarm highly available. If a
manager node goes down, the remaining managers all have the complete state at
hand.

If a new manager joins the consensus group then it synchronizes the swarm state
with the existing members of the group until it has a complete replica. This
replication is usually pretty fast in typical swarms but can take a while if the
swarm is big and many applications are running on it.

pythontesting

Swarm workers

As we mentioned earlier, a swarm worker node is meant to host and run
containers that contain the actual application services we're interested in running
on our cluster. They are the workhorses of the swarm. In theory, a manager node
can also be a worker. But, as we already said, this is not recommended on a
production system. On a production system we should let managers be
managers.

Worker nodes communicate with each other over the so-called control plane.
They use the gossip protocol for their communication. This communication is
asynchronous, which means that at any given time not all worker nodes must be
in perfect sync.

Now you might ask—what information do worker nodes exchange? It is mostly
information that is needed for service discovery and routing, that is, information
about which containers are running on with nodes and more:

e worker
worker
-

/ ossi
/ \

'

worker
worker -

-
-
-
-
.
-

Worker nodes communicating with each other

qg 6089740 21734177 IT http://t.cn/RDIAj5D

In the preceding figure, you can see how workers communicate with each other.
To make sure the gossiping scales well in a large swarm, each worker node only
synchronizes its own state with three random neighbors. For those who are
familiar with the Big-O notation, that means that the synchronization of the
worker nodes using the gossip protocol scales with O(0).

Worker nodes are kind of passive. They never actively do something other than
run the workloads that they get assigned by the manager nodes. The worker
makes sure, though, that it runs these workloads to the best of its capabilities.
Further down in this chapter we will get to know more about exactly what
workloads the worker nodes are assigned by the manager nodes.

pythontesting

Stacks, services, and tasks

When using a Docker Swarm versus a single Docker host, there is a paradigm
change. Instead of talking of individual containers that run processes, we are
abstracting away to services that represent a set of replicas of each process, and
like through become highly available. We also do not speak anymore of
individual Docker hosts with well known names and IP addresses to which we
deploy containers; we'll now be referring to clusters of hosts to which we deploy
services. We don't care about an individual host or node anymore. We don't give
it a meaningful name; each node rather becomes a number to us. We also don't
care about individual containers and where they are deployed anymore—we just
care about having a desired state defined through a service. We can try to depict
that as shown in the following figure:

Containers Servers

payments E]

Instead of deploying individual containers to well known servers like the
preceding one, where we deploy container web to server alpha with IP address
52.120.12.1, and container payments to server beta with IP 52.121.24.33, we switch
to this new paradigm of services and swarms (or, more generally, clusters):

alpha
[— lelele] IP: 52.120.12.1

[SE IP: 52.121.24.33

] beta

Containers are deployed to well known servers

services Swarm
-------- web 5 sl "
38 e
@E]@ . [E= [_ °°°] ==
S 1 -— 000 [
2= e ==
...... Il‘ — 000 :'
@ .“invenfory ‘.“ — 000] S— [——ooo]"‘:
E a8 = = :
:_________./"‘.
Sy

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Services are deployed to swarms

In the preceding figure, we see that a service web and a service inventory are
both deployed to a swarm that consists of many nodes. Each of the services has a
certain number of replicas; six for web and five for inventory. We don't really
care on which node the replicas will run, we only care that the requested number
of replicas is always running on whatever nodes the swarm scheduler decides to
put them on.

pythontesting

Services

A swarm service is an abstract thing. It is a description of the desired state of an
application or application service that we want to run in a swarm. The swarm
service is like a manifest describing such things as the:

e Name of the service

Image from which to create the containers

Number of replicas to run

Network(s) that the containers of the service are attached to
Ports that should be mapped

Having this service manifest the swarm manager, then, makes sure that the
described desired state is always reconciled if ever the actual state should deviate
from it. So, if for example one instance of the service crashes, then the scheduler
on the swarm manager schedules a new instance of the service on a node with
free resources so that the desired state is reestablished.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Task

We have learned that a service corresponds to a description of the desired state in
which an application service should be at all times. Part of that description was
the number of replicas the service should be running. Each replica is represented
by a task. In this regard, a swarm service contains a collection of tasks. On
Docker Swarm, a task is the atomic unit of deployment. Each task of a service is
deployed by the swarm scheduler to a worker node. The task contains all the
necessary information that the worker node needs to run a container based off
the image, which is part of the service description. Between a task and a
container there is a one-to-one relation. The container is the instance that runs on
the worker node, while the task is the description of this container as a part of a
swarm service.

pythontesting

Stack

Now that we have a good idea about what a swarm service is and what tasks are,
we can introduce the stack. A stack is used to describe a collection of swarm
services that are related, most probably because they are part of the same
application. In that sense, we could also say that a stack describes an application
that consists of one to many services that we want to run on the swarm.

Typically, we describe a stack declaratively in a text file that is formatted using
YAML and that uses the same syntax as the already-known Docker compose file.
This leads to the situation where people sometimes say that a stack is described
by a docker-compose file. A better wording would be—a stack is described in a
stack file that uses similar syntax to a docker -compose file.

Let's try to illustrate the relationship between stack, services, and tasks in the
following figure and connect it with the typical content of a stack file:

qg 6089740 21734177

Stack

1T http://t.cn/RDIAJS5D

Service

Task

Image

version: "3.5"
services:
web:
image: example/web:1.0
deploy:
replicas: 4

payments:
image: example/payments

inventory:
image: example/inventory

Diagram showing the relationship between stack, services and tasks

In the preceding figure, we see on the right-hand side a declarative description of
a sample stack. The stack consists of three services called web, payments, and
inventory. We also see that the service web uses the image example/web:1.0
and has four replicas.

On the left-hand side of the figure, we see that the stack embraces the three

services mentioned. Each service in turn contains a collection of tasks, as many
as there are replicas. In the case of the service web we have a collection of four
tasks. Each task contains the name of the image from which it will instantiate a

container once the task is scheduled on a swarm node.

pythontesting

Multi-host networking

In chapter 7, Single-Host Networking, we discussed how containers communicate
on a single Docker host. Now, we have a swarm that consists of a cluster of
nodes or Docker hosts. Containers that are located on different nodes need to be
able to communicate with each other. There are many techniques that can help
one achieve this goal. Docker has chosen to implement an overlay network
driver for Docker Swarm. This overlay network allows containers attached to the
same overlay network to discover each other and freely communicate with each
other. The following is a schema for how an overlay network works:

IP:10.3.0.2 E] : - E] IP:10.3.0.5

: overlay network ;
VTEP .l - VTEP :
@ :4789/udp |E VXLAN Tunnel I|'-—- 4789/udp 4—»@ .

IP: 172.10.0.15 ‘ ‘ IP:172.10.0.16

underlay network

Overlay network

We have two nodes or Docker hosts with the IP addresses 172.16.0.15 and
172.10.0.16. The values we have chosen for the IP addresses are not important;
what is important is that both hosts have a distinct IP address and are connected
by a physical network (a network cable), which is called the underlay network.

On the node on the left-hand side we have a container running with the IP
address 10.3.0.2 and on the node on the right-hand side another container with the
IP address 10.3.0.5. Now, the former container wants to communicate with the
latter. How can this happen? In chapter 7, Single-Host Networking, we saw how
this works when both containers are located on the same node; by using a Linux
bridge. But Linux bridges only operate locally and cannot span across nodes. So,
we need another mechanism. Linux VXLAN comes to the rescue. VXLAN has
been available on Linux since way before containers were a thing.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

When the left-hand container sends a data packet, the bridge realises that the
target of the packet is not on this host. Now, each node participating in an
overlay network gets a so-called VXLAN Tunnel Endpoint (VTEP) object,
which intercepts the packet (the packet at that moment is an OSI layer 2 data
packet), wraps it with a header containing the target IP address of the host that
runs the target container (this makes it now an OSI layer 3 data packet), and
sends it over the VXLAN tunnel. The VTEP on the other side of the tunnel
unpacks the data packet and forwards it to the local bridge, which in turn
forwards it to the target container.

The overlay driver is included in the SwarmKit and is in most cases the
recommended network driver for Docker Swarm. There are other multi-node-
capable network drivers available from third-parties that can be installed as
plugins to each participating Docker host. Certified network plugins are
available from the Docker store.

pythontesting

Creating a Docker Swarm

Creating a Docker Swarm is almost trivial. It is so easy that it seems unreal if
one knows what an orchestrator is all about. But it is true, Docker has done a
fantastic job in making swarms simple and elegant to use. At the same time,
Docker Swarm has been proven in use by large enterprises to be very robust and
scalable.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating a local single node swarm

So, enough fancying, let's demonstrate how one can create a swarm. In its most
simple form, a fully functioning Docker Swarm consists only of a single node. If
you're using Docker for Mac or Windows, or even if you're using Docker
Toolbox, then your personal computer or laptop is such a node. Thus, we can
start right there and demonstrate some of the most important features of a
swarm.

Let's initialize a swarm. On the command-line, just enter the following
command:

| $ docker swarm init

And after an incredibly short time you should see something like the following
screenshot:

§ docker swarm init
Swarm initialized: current node (mc@7c43kp8v8d4ofnlSi9skb2) is now a manager

To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-1-lynzcy7z2tze@zhrbw7h855biywspmg9mjewknnShwgbgl@bSm-7h98rotedfisS723ftkitsblivt 192.168.65.3:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

Output of the docker swarm init command

Our computer is now a swarm node. Its role is that of a manager and it is the
leader (of the managers, which makes sense since there is only one manager at
this time). Although it took only a very short time to finish the docker swarm init,
the command did a lot of things during that time, some of them are:

e [t created a root certificate authority (CA)
o [t created a key-value store that is used to store the state of the whole
swarm

Now, in the preceding output, we can see a command that can be used to join
other nodes to the swarm that we just created. The command is as follows:

| $ docker swarm join --token <join-token> <IP address>:2377

Here:

pythontesting

® <join-token> is a token generated by the swarm leader at the time the swarm
was initialized
® <1p address> is the IP address of the leader

Although our cluster remains simple, as it consists of only one member, we can
still ask the Docker CLI to list all the nodes of the swarm. This will look similar
to the following screenshot:

§ docker node s

Listing the nodes of the Docker Swarm

In this output we first see the ID that was given to the node. The star (+) that
follows the ID indicates that this is the node on which the docker node 1s was
executed; basically, saying that this is the active node. Then we have the
(human-readable) name of the node, its status, availability, and manager status.
As mentioned earlier, this very first node of the swarm automatically became the
leader, which is indicated in the preceding screenshot. Lastly, we see which
version of the Docker engine we're using.

To get even more information about a node we can use the docker node inspect
command, as shown in the following screenshot:

qg 6089740 21734177 IT

$ docker node inspect mc@7c43kp8v8d4ofnl5i9skb2
C
{
"ID": "mc@7c43kp8v8d4ofnl5i9skb2",
"Version": {
"Index": 9
}’
"CreatedAt": "2018-03-06T01:48:57.62500232Z",
"UpdatedAt": "2018-03-06T01:48:58.235847341Z",
"Spec": {
"Labels": {},
"Role": "manager",
"Availability": "active"

1

"Description”: {

"Hostname": "1linuxkit-025000000001",
"Platform": {
"Architecture": "x86_64",
"0S": "linux"
I
"Resources": {
"NanoCPUs": 4000000000,
"MemoryBytes": 2095788032
LE
"Engine": {
"EngineVersion": "18.03.0-ce-rcl",
"Plugins": [
{
"Type": "Log",
"Name": "awslogs"

L]
Truncated output of the command docker node inspect

http://t.cn/RDIAJS5D

There is a lot of information generated by this command, so we only present a

truncated version of the output. This output can be useful, for example, when

one needs to troubleshoot a misbehaving cluster node.

pythontesting

Creating a local swarm in VirtualBox
or Hyper-V

Sometimes a single node swarm is not enough, but we don't have or don't want
to use an account to create a swarm in the cloud. In this case, we can create a
local swarm in either VirtualBox or Hyper-V. Creating the swarm in VirtualBox
is slightly easier than creating it in Hyper-V, but if you're using Windows 10 and
have Docker for Windows running then you cannot use VirtualBox at the same
time. The two hypervisors are mutually exclusive.

Let's assume we have VirtualBox and docker-machine installed on our laptop. We
can then use docker-machine to list all Docker hosts that are currently defined and
may be running in VirtualBox:

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
default - virtualbox Stopped Unknown

In my case, I have one VM called defau1t defined, which is currently stopped. I
can easily start the VM by iSSUng the docker-machine start default command. This
command takes a while and will result in the following (shortened) output:

$ docker-machine start default

Starting "default"...

(default) Check network to re-create if needed...

(default) waiting for an IP...

Machine "default" was started.

Waiting for SSH to be available...

Detecting the provisioner...

Started machines may have new IP addresses. You may need to re-run the “docker-machine
env" command.

Now, if I list my VMs again I should see the following screenshot:

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

default - virtualbox Running tcp://192.168.99.100:2376 v17.12.1-ce

s

List of all VMs running in VirtualBox

If we do not have a VM called defauit yet, we can easily create one using the
create command:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

|docker-machine create --driver virtualbox default

This results in the following output:

$ docker-machine create --driver virtualbox default

Running pre-create checks...

Creating machine...

(default) Copying /Users/gabriel/.docker/machine/cache/boot2docker.iso to /Users/gabriel/.docker/i
(default) Creating VirtualBox WM...

(default) Creating SSH key. ..

(default) Starting the WM...

(default) Check network to re-create if needed...

(default) Waiting for an IP...

Waiting for machine to be running, this may take a few minutes...

Detecting operating system of created instance...

Waiting for SSH to be available...

Detecting the provisioner...

Provisioning with boot2docker. ..

Copying certs to the local machine directory...

Copying certs to the remote machine. ..

Setting Docker configuration on the remote daemon...

Checking connection to Docker...

Docker is up and running!

To see how to connect your Docker Client to the Docker Engine running on this virtual machine, ru

s

Output of docker-machine create

We can see in the preceding output how docker-machine creates the VM from an
ISO image, defines SSH keys and certificates, and copies them to the VM and to
the local ~/.docker/machine directory, where we will use it later when we want to
remotely access this VM through the Docker CLI. It also provisions an IP
address for the new VM.

We're using the docker-machine create command with the parameter --driver
virtualbox. Docker machine can also work with other drivers such as Hyper-V,
AWS, Azure, DigitalOcean, and many more. Please see the documentation of
docker-machine for more information. By default, a new VM gets 1 GB of
memory associated, which is enough to use this VM as a node for a development
or test swarm.

Now let's create five VMs for a five-node swarm. We can use a bit of scripting to
reduce the manual work:
$ for NODE in “seq 1 5°; do

docker-machine create --driver virtualbox "node-${NODE}"
done

Docker machine will now create five VMs with the names node-1 t0 node-5. This
might take a few moments, so this is a good time to get yourself a hot cup of tea.
After the VMs are created we can list them:

pythontesting

$ docker-machine 1s

NAME ACTIVE DRIVER STATE URL DOCKER ERRORS
default virtualbox Running tcp://192. 100:2376 vl7.12,

node-1 virtualbox Running tcp://192. 101:2376 v17.12,

node-2 virtualbox Running tcp://192. 102:2376 v17.12.

node-3 virtualbox Running tcp://192. 103:2376 V712,
node-4 virtualbox Running tcp://192. 104:2376 VA7 12,
node-5 virtualbox Running tcp://192. 105:2376 vl7.12.

sl

List of all VMs we need for the swarm

Now we're ready to build a swarm. Technically, we could SSH into the first VM
node-1 and initialize a swarm and then SSH into all the other VMs and join them
to the swarm leader. But this is not efficient. Let's again use a script that does all
the hard work:

get IP of Swarm leader
export IP=$(docker-machine ip node-1)
init the Swarm
docker-machine ssh node-1 docker swarm init --advertise-addr $IP
Get the Swarm join-token
export JOIN_TOKEN=$(docker-machine ssh node-1 \
docker swarm join-token worker -q)

AHEALHHHR

Now that we have the join token and the IP address of the swarm leader, we can
ask the other nodes to join the swarm as follows:
$ for NODE in “seq 2 5°; do
NODE_NAME="node-${NODE}"
docker-machine ssh $NODE_NAME docker swarm join \

--token $JOIN_TOKEN $IP:2377
done

To make the swarm highly available we can now promote, for example, node-2
and node-3 to become managers:

$ docker-machine ssh node-1 docker node promote node-2 node-3
Node node-2 promoted to a manager in the swarm.
Node node-3 promoted to a manager in the swarm.

Finally, we can list all the nodes of the swarm:

|$ docker-machine ssh node-1 docker node 1s
We should see the following screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker-machine ssh node-1 docker node ls

1D HOSTNAME STATUS AVAILABILITY MANAGER STATUS
kgv]j8@vupkwOucdkxw853dejt * node-1 Ready Active Leader
mZbelliye6szjgsSnghfpcmzv node-2 Ready Active Reachable
1j0yjtlrd7mzr4jgqSmn9fwyky node-3 Ready Active Reachable

ys3cg84plfubkrz4pskebhcg? node-4 Ready Active
esmdbefplk769rel 3q2tebz8b node-5 Ready Active

i1

List of all the nodes of the Docker Swarm on VirtualBox

This is the proof that we have just created a highly available Docker Swarm
locally on our laptop or workstation. Let's pull all our code snippets together and
make the whole thing a bit more robust. The script will look as follows:

alias dm="docker-machine"
for NODE in “seq 1 5°; do
NODE_NAME=node-${NODE}
dm rm --force $NODE_NAME
dm create --driver virtualbox $NODE_NAME
done
alias dms="docker-machine ssh"
export IP=$(docker-machine ip node-1)
dms node-1 docker swarm init --advertise-addr $IP;
export JOIN_TOKEN=$(dms node-1 docker swarm join-token worker -q);
for NODE in “seq 2 5°; do
NODE_NAME="node-${NODE}"
dms $NODE_NAME docker swarm join --token $JOIN_TOKEN $IP:2377
done;
dms node-1 docker node promote node-2 node-3

The preceding script first deletes (if present) and then recreates five VMs called
node-1 tO node-5, and then initializes a Swarm on node-1. After that, the remaining
four VMs are added to the swarm, and finally, node-2 and node-3 are promoted to
manager status to make the swarm highly available. The whole script will take
less than 5 minutes to execute and can be repeated as many times as desired. The
complete script can be found in the repository, in the subfolder docker-swarm; it is
called create-swarm.sh

It is a highly recommended best practice to always script and thus automate
operations.

pythontesting

Using Play with Docker (PWD) to
generate a Swarm

To experiment with Docker Swarm without having to install or configure
anything locally on our computer, we can use PWD. PWD is a website that can
be accessed with a browser and which offers us the ability to create a Docker
Swarm consisting of up to five nodes. It is definitely a playground, as the name
implies, and the time for which we can use it is limited to four hours per session.
We can open as many sessions as we want, but each session automatically ends
after four hours. Other than that, it is a fully functional Docker environment that
is ideal for tinkering with Docker or to demonstrate some features.

Let's access the site now. In your browser, navigate to the website nttps://1abs.pla
y-with-docker.com. You will be presented a welcome and login screen. Use your
Docker ID to log in. After successfully logging in you will be presented with a
screen that looks like the following screenshot:

https://labs.play-with-docker.com

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

Addnstances toyour playground.

CLOSE SESSION Sessions and all thelrinstances are deleted after 03:59:25 hours,

hstaes | 8

#ADD NEW NSTANCE

Play with Docker window

As we can see immediately, there is a big timer counting down from four hours.
That's how much time we have left to play in this session. Furthermore, we see
an + ADD NEW INSTANCE link. Click it to create a new Docker host. When
you do that, your screen should look like the following screenshot:

pythontesting

3:54:55 baevmI8o_baevor4prd2000ckovmg

CLOSE SESSION. e
Memory CPU
1.90% (76.17MiB / 3.906GiB) 0.19%

Instances |\ O

SSH

ssh ip172-18-0-30-baevmli806i4000e7vr00@direct.labs.pl: FD

+ ADD NEW INSTANCE

D = EDITOR
e
192.168.0.53 ; WARNING!!!! #
node # This is a sandbox environment. Using personal credentials #
is HIGHLY! discouraged. Any conseguences of doing so are
fl

completely the user's responsibilites.

#
The PWD team.
; ##########i##
[nodel /1%

PWD with one new node

On the left-hand side we see the newly-created node with its IP address
(192.168.0.53) and its name (node1). On the right-hand side, we have some
additional information about this new node in the upper half of the screen and a
terminal in the lower half. Yes, this terminal is used to execute commands on this
node that we just created. This node has the Docker CLI installed, and thus we
can execute all the familiar Docker commands on it such as docker version. Try it
out.

But now we want to create a Docker Swarm. Execute the following command in
the terminal in your browser:

|$ docker swarm init --advertise-addr=etho

The output generated by the preceding command corresponds to what we
already know from our previous trials with the one-node cluster on our
workstation and the local cluster using VirtualBox or Hyper-V. The important
information, once again, is the join command that we want to use to join
additional nodes to the cluster we just created.

You might have noted that this time we specified the parameter --advertise-addr in
the swarm init command. Why is that necessary here? The reason is that the
nodes generated by PWD have more than one IP address associated with them.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

One can easily verify that by executing the command ip a on the node. This
command will show us that there are indeed two endpoints, ethe and eth1, present.
We thus have to specify explicitly to the new to-be-swarm manager which one
we want to use. In our case, it iSs ethe.

Create four additional nodes in PWD by clicking four times on the + ADD NEW
INSTANCE link. The new nodes will be called node2, node3, node4, and nodes and
will all be listed on the left-hand side. If you click on one of the nodes on the
left-hand side, then the right-hand side shows the details of the respective node
and a terminal window for that node.

Select each node (2 to 5) and execute the docker swarm join command that you
have copied from the leader node (node1) in the respective terminal:

pythontesting

haevmi8o_baf00s006i4000¢ fvm0

[P
192.168.0.1

Instances Menoy 0
0.92% (36.64M8 3 90661B) 0.40%

S5H

+ ADD NEW INSTANCE 5o 1 72:18::3% baemiBo 4000e7w00@cirect sk ﬁj
19168053 b ome
& el

B
192168052 ! WARNING! 111 :

L # This 1s a sandbox environment. Using personal credentials #

1o HIGHLY! discouraged. Any consequences of doing so are
10168051 # completely the user's responsibilites. #
node3 # #

The PWD tean. :
00 S T R R
skl [node3 /)9 docker swarm join --token SHMTKN-1-67c5%yj4dbavmyndndbz?

63rpram7udack7527cybuntokhis-36ubstajbllyd754atentylly 192,168.0.5

VAL
192166043 This node joined a swarm as a worker,

n0gkS (node /) |

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Joining a node to the swarm in PWD

Once you have joined all four nodes to the swarm, switch back to node1 and list
all nodes, which, unsurprisingly, results in this:

model /1§ docker node s

1) AVATLABILITY NAVAGER STATUS
micondnkf936sxadkyley ‘ : Active

ed luxuorjn6 Skqvagsoel node i Actlve

bt 164k Ly avEschrra Active
n0izvz2y)bdgbndngh gkalt Active
rkakk)90 ducSySndayhki2f Active
el /)|

List of all the nodes of the swarm in PWD

Still on node1, we can now promote, say, node2 and nodes, to make the swarm
highly available:
$ docker node promote node2 node3

Node node2 promoted to a manager in the swarm.
Node node3 promoted to a manager in the swarm.

With this, our swarm on PWD is ready to accept a workload. We have created a
highly available Docker Swarm with three manager nodes that form a Raft
consensus group and two worker nodes.

pythontesting

Creating a Docker Swarm in the
cloud

All the Docker Swarms we have created so far are wonderful to use in
development or to experiment or for demonstration purposes. If we want to
create a swarm that can be used as a production environment where we run our
mission critical applications, though, then we need to create a, I'm tempted to
say, real swarm in the cloud or on-premise. In this book, we are going to
demonstrate how to create a Docker Swarm in Amazon AWS.

One way to create a swarm is by using Docker machine (DM). DM has a driver
for Amazon AWS. If we have an account on AWS, we need the AWS access key
ID and the AWS secret access key. We can add those two values to a file called
~/.aws/configuration. It should look like the fOHOWiI’ng

[default]

aws_access_key_id = AKID1234567890
aws_secret_access_key = MY-SECRET-KEY

Every time we run docker-machine create, DM will look up those values in that file.
For more in-depth information on how to get an AWS account and how to obtain
the two secret keys, please consult this link: nttp://dockr.1y/2FFe1yT.

Once we have an AWS account in place and have stored the access keys in the
configuration file, we can start building our swarm. The necessary code looks
exactly the same as the one we used to create a swarm on our local machine in
VirtualBox. Let's start with the first node:

$ docker-machine create --driver amazonec2 \
--amazonec2-region us-east-1 aws-node-1

This will create an EC2 instance called aws-node-1 in the requested region (us-east-
1 in my case). The output of the preceding command looks like the following
screenshot:

http://dockr.ly/2FFelyT

qg 6089740 21734177 IT http://t.cn/RDIAj5D

M ~ docker-taching create -~0river onazonec? ons-hode-
Ruming pre-Create Checs.
(regting machie,.,
(a-noce-{) Lanchung Lnstance. .
M1mmmh 10 B8 i, 4L oy ke o miutes,,
Jetectig openating systen of created 1ntance, .,
Weting for S8 4 beavalhl
Jetecting the provis
%mtmulb Wﬂm
Installing Dcker...
Oying cents o the Locol machie clrectoy..,
pying Cers o e enote machue
tting Docker configurotion on the reote doenn,,
necking comection to Docker, .,
peker 15 up and rning!
To s o o comect your Docker Clien: to the Docke Enune rureing o 1S virtuel maching, un; docker-toching env ans-no-

i

It looks very similar to the output we already know from working with
VirtualBox. We can now configure our terminal for remote access to that EC2
instance:

il
(ot
il
[
)

Creating a swarm node on AWS with Docker machine

|$ eval $(docker-machine env aws-node-1)

This will configure the environment variables used by the Docker CLI
accordingly:

pythontesting

= ~ export | grep DOCKER
DOCKER_CERT_PATH=/Users/gabriel/.docker/machine/machines/aws-node-1
DOCKER_HOST=tcp://35.172.240.127:2376

DOCKER_MACHINE_NAME=aws-node-1
DOCKER_TLS_VERIFY=1

+ - |

Environment variables used by Docker to enable remote access to the AWS EC2 node

For security reasons, transport layer security (TLS) is used for the
communication between our CLI and the remote node. The certificates necessary
for that were copied by DM to the path we assigned to the environment variable

DOCKER_CERT_PATH.

All Docker commands that we now execute in our Terminal will be remotely
executed in Amazon AWS on our EC2 instance. Let's try to run Nginx on this
node:

| $ docker container run -d -p 8000:80 nginx:alpine

We can use docker container 1s to verify that the container is running. If so, then
let's test it using curi:

|$ curl -4 <IP address>:8000

Here, <1p address> is the public IP address of the AWS node; in my case it would
be 35.172.240.127. Sadly this doesn't work; the preceding command times out:

b=+ ~ curl -4 35.172.240.127:8000
curl: (7) Failed to connect to 35.172.240.127 port 8000: Operation timed out

S |

Accessing Nginx on the AWS node times out

The reason for this is that our node is part of an AWS security group (SG). By
default, access to objects inside this SG is denied. Thus, we have to find out to
which SG our instance belongs and configure access explicitly. For this, we
typically use the AWS console. Go to the EC2 dashboard and select instances on
the left-hand side. Locate the EC2 instance called aws-node-1 and select it. In the
details view, under Security groups, click on the link docker-machine as shown
in the following screenshot:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

s

) Senvices v Resource Groups v &

\W’

Heliston FIw Ll A Comnect Actions ¥
Events 4
Tegs) .‘ search : aWs-noe- de ter
Reports
B Name * InstancelD v Instance Type ~ Availabilty Zong *
Limts
B awsmded Hddd1eddaaziiited 2micro 5:6gst-1a
o INSTANCES
Launch Templates s P
ool Requests ety zone Usastf
Reserved Instancgs Securtygroups | dockermachingview inbound s
Dodicted Hogs Scheduled avents No scheduled svents
buntiyimages/him-SscdfUbuniu-Yanial-16,0c-
Scheduled Instances e g

amod-server-20170610.1 (amictéarbe
! IVAGES Pltom -
AMls Aol -

Locating the SG to which our swarm node belongs

pythontesting

This will lead us to the SG page with the SG docker-machine pre-selected. In the
details section under the tab Inbound, add a new rule for your IP address (the IP
address of workstation):

qq 6089740

21734177

Somvices v Aesturee Grougs v

1T http://t.cn/RDIAJS5D

(' e O ragot v v St

EC2 Desboa Cr Sty G [T LK
{

A |
Fiers @ \
T (| oD ot Add g (bl
Repors i

| Ve Groml * roup ame * WD " Degeption
Uiy

" L Ak il Do g
« [NSTANCES
sances

SeutyGug s f
Launh el
St e Do bbowd Oulend T
Resened lnslncas
Dedcated hoss Edt
Schedued e
" Tiee | Proocal | PortRenge | Souee | Deserpton |
« [VAGES
s Altafic il Al INERICA DersOne s
L ™) i

ABTIC BLOCK ST
’ Custom TCP R 0P il 00000

Vomes
Srapshl

Open access to SG for our computer

pythontesting

In the preceding screenshot, the IP address 7e.113.114.234 happens to be the one
assigned to my personal workstation. I have enabled all inbound traffic coming
from this IP address to the docker-machine SG. Note that in a production system
you should be very careful about which ports of the SG to open to the public.
Usually, it is ports se and 443 for HTTP and HTTPS access. Everything else is a
potential invitation to hackers.

You can get your own IP address through a service

ike https://www.whatismyip.com/. OW,i we execute te c.r1 command a ain, e
lik N f te th d th
greeting page of Nginx is returned.

Before we leave the SG we should add another rule to it. The swarm nodes need
to be able to freely communicate on ports 7946 and 47s9 through TCP and UDP
and on port 2377 through TCP. We could now add five rules with these
requirements where the source is the SG itself, or we just define a more crud rule
that allows all inbound traffic inside the SG (sg-c14fadbs in my case):

Tipe | Protoca | Port Range | Soure | Descrption |
Al Al Al T 4ZHR DEIONE 00688
Al Al Al S04 dckermachin) v svam commn,
M TGP 0 10000

Custom TGP Rul TGP 2T 00000

SG rule to enable intra-swarm communication

Now, let's continue with the creation of the remaining four nodes. Once again,
we can use a script to ease the process:

$ for NODE in "seq 2 5°; do
docker-machine create --driver amazonec2 \
--amazonec2-region us-east-1 aws-node-${NODE}
done

https://www.whatismyip.com/
https://www.whatismyip.com/

qg 6089740 21734177 IT http://t.cn/RDIAj5D

After the provisioning of the nodes is done we can list all nodes with DM. In my
case, I see this:

-» ~ docker-machine 1s

NAME ACTIVE DRIVER STATE URL DOCKER ERRORS
aws-node-1 * amazonec?Z Running tcp://35.172.240.127:2376 v18.02.0-ce
aws-node-2 amazonec?2 Running tcp://54.236.40.1:2376 Vv18.02.0-ce
aws-node-3 amazonec2 Running tcp://34.205.171.56:2376 Vv18.02.0-ce
aws-node-4 amazonec?2 Running tcp://34.239.93.22:2376 v18.02.0-ce

aws-node-5 amazonec2 Running tcp://52.205.26.218:2376 v18.02.0-ce
node-1 virtualbox Running tcp://192.168.99.100:2376 V17.12.1-ce
node-2 virtualbox Running tcp://192.168.99.101:2376 v17.12.1-ce
node-3 virtualbox Running tcp://192.168.99.102:2376 v17.12.1-ce
node-4 virtualbox Running tcp://192.168.99.10@3:2376 vi7.12.1-ce

virtualbox Running tcp://192.168.99.104:2376 v17.12.1-ce

List of all the nodes created by Docker Machine

In the preceding screenshot, we can see the five nodes that we originally created
in VirtualBox and the five new nodes that we have created in AWS. Apparently,
the nodes on AWS are using a new version of Docker; here the version is 1s.02.6-
ce. The IP addresses we see in the column urL are the public IP addresses of my
EC2 instances.

Due to the fact that our CLI is still configured for remote access to the node aws-
node-1, we can just run the swarm init command as follows:

| $ docker swarm init

We then need the join-token:

| $ export JOIN_TOKEN=$(docker swarm join-token -q worker)

The address of the leader with the following command:

$ export LEADER_ADDR=$(docker node inspect \
--format "{{.ManagerStatus.Addr}}" self)

With this information, we can now join the other four nodes to the swarm leader:

$ for NODE in “seq 2 5°; do
docker-machine ssh aws-node-${NODE} \
sudo docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

An alternative way to achieve the same without needing to SSH into the
individual nodes would be to reconfigure our client CLI every time we want to
access a different node:

pythontesting

$ for NODE in “seq 2 5°; do

eval $(docker-machine env aws-node-${NODE})

docker swarm join --token ${JOIN_TOKEN} ${LEADER_ADDR}
done

As a last step, we want to promote nodes 2 and 3 to manager:

$ eval $(docker-machine env node-1)
$ docker node promote aws-node-2 aws-node-3

We can then list all the swarm nodes, as shown in the following screenshot:

$ docker node 1s

D HOSTNAME STATUS AVAILABILITY MANAGER STATUS ENGINE VERSION
jcjv5idS4tp6laevnvijdgktle * aws-node-1 Ready Active Leader 18.04.0-ce
19y6iiyclv9023x86i5qfyh2a aws-node-2 Ready Active Reachable 18.04.0-ce
zetk7ntzqyf75mk8n39y2o72v aws-node-3 Ready Active Reachable 18.04.0-ce

h38drhf7fg50h2n4tclvc49ko aws-node-4 Ready Active 18.04.0-ce
ofbxw724dvu84dakd74s640cy aws-node-5 Ready Active 18.04.0-ce
s 1

List of all nodes of our swarm in the cloud

And thus do we have a highly available Docker Swarm running in the cloud. To
clean up the swarm in the cloud and avoid incurring unnecessary costs, we can
use the following command:

$ for NODE in “seq 1 5°; do

docker-machine rm -f aws-node-${NODE}
done

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deploying a first application

We have created a few Docker Swarms on various platforms. Once created, a
swarm behaves the same way on any platform. The way we deploy and update
applications on a swarm is not platform-dependent. It has been one of Docker's
main goals to avoid a vendor lock-in when using a swarm. Swarm-ready
applications can be effortlessly migrated from, say, a swarm running on-premise
to a cloud based swarm. It is even technically possible to run part of a swarm on-
premise and another part in the cloud. It works, yet one has of course to consider
possible side effects due to the higher latency between nodes in geographically
distant areas.

Now that we have a highly available Docker Swarm up and running, it is time to
run some workloads on it. I'm using a local swarm created with Docker
Machine. We'll start by first creating a single service. For this we need to SSH
into one of the manager nodes. I select node-1:

|$ docker-machine ssh node-1

pythontesting

Creating a service

A service can be either created as part of a stack, or directly using the Docker
CLI. Let's first look at a sample stack file that defines a single service:

version: "3.5"
services:
whoami:
image: training/whoami:latest
networks:
- test-net
ports:
- 81:8000
deploy:
replicas: 6
update_config:
parallelism: 2
delay: 10s
labels:
app: sample-app
environment: prod-south

networks:
test-net:
driver: overlay

In the preceding example we see what the desired state of a service
called whoanmi is:

It is based on the image training/whoami:latest

Containers of the service are attached to the network test-net

The container port soeco is published to port s1

It is running with six replicas (or tasks)

During a rolling update, the individual tasks are updated in batches of two,
with a delay of 10 seconds between each successful batch

e The service (and its tasks and containers) is assigned the two

labels app and environment, with the values samp1e-app and prod-

south respectively

There are many more settings that we could define for a service, but the
preceding ones are some of the more important ones. Most settings have
meaningful default values. If, for example, we do not specify the number of
replicas, then Docker defaults it to 1. The name and image of a service are of
course mandatory. Note that the name of the service must be unique in the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Swdrm.

To create the preceding service, we use the docker stack deploy command.
Assuming that the file in which the preceding content is stored is
called stack.yaml, we have:

| $ docker stack deploy -c stack.yaml sample-stack

Here, we have created a stack called samp1e-stack that consists of one
service, whoani. We can list all stacks on our swarm, whereupon we should get
this:

$ docker stack 1s

NAME SERVICES
sample-stack 1

If we list the services defined in our swarm, we get the following output:

$ docker service 1s
ID NAME MODE REPLICAS IMAGE PORTS
lgyymm2uzmry sample-stack_whoami replicated /6 training/whoami:latest *:81->800@/tcp

s 1

List of all services running in the swarm

In the output, we can see that currently we have only one service running, which
was to be expected. The service has an ID. The format of the ID, contrary, what
you have used so far for containers, networks, or volumes, is alphanumeric. We
can also see that the name of the service is a combination of the service name we
defined in the stack file and the name of the stack, which is used as a prefix. This
makes sense, since we want to be able to deploy multiple stacks (with different
names) using the same stack file into our swarm. To make sure that service
names are unique, Docker decided to combine service name and stack name.

In the third column we see the mode, which is repiicated. The number of replicas
is shown as e/6. This tells us that six out of the six requested replicas are running.
This corresponds to the desired state. In the output we also see the image that the
service uses and the port mappings of the service.

pythontesting

Inspecting the service and its tasks

In the preceding output, we cannot see the details of the s replicas that have been
created. To get some deeper insight into that, we can use the docker service

ps command. If we execute this command for our service, we will get the
following output:

Hickerode-L+ ocker senvice s smple-ack oo
I e Ui ' FSIRED 41 (IRREAT STATE
e sarple-stooobomt, L rtnung o atest oce-S | g 29 seconds agp
ming b;wonl\ 0
i

ﬂ
i
0!
Y

M w4 surple-stock o 2 Sreintng o afest e

k t
! i
wloe srple-Stack a3 cratng/iomn. Locest
¥ |< ’ t
t nin

) .

/

f
frnt
fumt
fimt
fm
i i

f
i
f
sople-stock st 4 Sheining o ntes
f
b

il [sn
e i sk
sple-stock o, oinin b o
Sl *adwonmﬁ g/ Lot ShOonds

Details of the whoami service

In the preceding output, we can see the list of six tasks that correspond to the
requested six replicas of our whoani service. In the nooe column, we can also see
the node to which each task has been deployed. The name of each task is a
combination of the service name plus an increasing index. Also note that, similar
to the service itself, each task gets an alphanumeric ID assigned.

In my case, apparently task 2, with the name samp1e-stack_whoami .2, has been
deployed to node-1, which is the leader of our swarm. Thus, I should find a
container running on this node. Let's see what we get if we list all containers
running on node-1:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

-1 cker e |
(NKDR DD it (00 -))

U)ot Yoy’ Tk Bty sopestuo eodlofely
s |

List of containers on node-1

As expected, we find a container running from the training/whoami:1latest image
with a name that is a combination of its parent task name and ID. We can try to
visualize the whole hierarchy of objects that we generated when deploying our
sample stack:

Stack

Service A
‘ Task 1’ Task 2’ oo ‘ Task n

L J
= & =)

Container 1 Container 2 Container n

Object hierarchy of a Docker Swarm stack

A stack can consist of one to many services. Each service has a collection of
tasks. Each task has a one-to-one association with a container. Stacks and
services are created and stored on the Swarm manager nodes. Tasks are then
scheduled to swarm worker nodes, where the worker node creates the
corresponding container. We can also get some more information about our
service by inspecting it. Execute the following command:

| $ docker service inspect sample-stack_whoami

This provides a wealth of information about all the relevant settings of the
service. This includes those we have explicitly defined in our stack.yam file, but
also those which we didn't specify and which therefore got their default values
assigned. We're not going to list the whole output here, as it is too long, but I
encourage the reader to inspect it on their own machine. We will discuss part of

pythontesting

the information in more detail in the The Swarm Routing Mesh section.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Logs of a service

In an earlier chapter we worked with the logs produced by a container. Here
we're concentrating on a service. Remember that, ultimately, a service with many
replicas has many containers running. Thus, we would expect that, if we ask the
service for its logs, that Docker returns an aggregate of all logs of those
containers belonging to the service. And indeed, that's what we get if we use

the docker service logs command:

docker@node-1:~% docker service logs sample-stack_whoami
sample-stack_whoami .2 .n21le7ktyvo4b@node-1 | Listening
sample-stack_whoami.1.mtvvungieacg@node-5

| Listening
sample-stack_whoami . 6.3hvu4qul@dzs@node-4 | Listening
sample-stack_whoami .4 . xymlohw68639@node-2 | Listening
sample-stack_whoami.3.lozzitfydlad@node-2 | Listening
sample-stack_whoami .5.yn8418fc83el@node-3 | Listening
docker@node-1:~$]

Logs of the whoami service

There is not much information in the logs at this point, but it is enough to discuss
what we get. The first part of each line in the log always contains the name of
the container combined with the node name from which the log entry originates.
Then, separated by the vertical bar (|), we get the actual log entry. So if we
would, say, ask for the logs of the first container in the list directly, we would
only get a single entry, and the value we would see in this case would be Listening

on :8000.

The aggregated IOgS that we get with the docker service logs command are not
sorted in any particular way. So, if correlation of events is happening in different
containers you should add information to your log output that makes this
correlation possible. Typically, this is a timestamp for each log entry. But this
has to be done at the source; for example, the application that produces a log
entry needs to also make sure a timestamp is added.

We can also query the logs of an individual task of the service by providing the
task ID instead of the service ID or name. So, querying the logs from task 2
gives us the following screenshot:

pythontesting

docker@node-1:~$ docker service logs n2le7ktyvo4b
sample-stack_whoami .2 .n21e7ktyvo4b@node-1 | Listening on :8000

docker@node-1:~$]

Logs of an individual task of the whoami service

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Reconciling the desired state

We have learned that a swarm service is a description or manifest of the desired
state that we want an application or application service to run in. Now, let's see
how Docker Swarm reconciles this desired state if we do something that causes
the actual state of the service to be different from the desired state. The easiest
way to do this is to forcibly kill one of the tasks or containers of the service.

Let's do this with the container that has been scheduled on node-1:

| $ docker container rm -f sample-stack_whoami.2.n21e7ktyvo4b2sufalkeaibzy

If we do that and then do a docker service ps right thereafter, we will see the
following output:

dolerode-1§ coken snvice ps Smple-tock
| Wi DGt : RED OTE CURKAT STTE HH(R

i
R

twngieneg sple-stokboml.l troimng oo Lobst Unring 7 hours g0
Gedl splesstacksboan . ming/woam Lotst HMHLHWJ
ekl solestocomed trmnghooom:lotest node- i Foiled 17 secons agp "tk meze iz (L37)'
17441 1230110 O 111 M 2 R rmrmmg T ug(

nrlobd sple-stacktoan 4 mmw%whw il R Ruming 7 hous o
el smple-stackofomS oo oo ofest node-3 Rumnng Running 1 hours o
Iwddldes coplestockoboan. 6 teomrgAoemlotest redet Ruing Rt 7 hours g
gt L

Docker Swarm reconciling the desired state after one task failed

We see that task 2 failed with exit code 137 and that the swarm immediately
reconciled the desired state by rescheduling the failed task on a node with free
resources. In this case, the scheduler selected the same node as the failed tasks,
but this is not always the case. So, without us intervening, the swarm completely
fixed the problem, and since the service is running in multiple replicas, at no
time was the service down.

Let's try another failure scenario. This time we're going to shut down an entire

pythontesting

node and are going to see how the swarm reacts. Let's take node-2 for this, as it
has two tasks (tasks 3 and 4) running on it. For this we need to open a new
terminal window and use Docker machine to stop node-2:

| $ docker-machine stop node-2

Back on node-1, we can now again run docker service ps to see what happened:

Oockerhade-:-§ docker semvice s sple-stack o

i)) NG

ey sle-stock o, rrmrm fibom: st

Bl sglesstockboam.d el lotst
H
|

(RRENT STAT HAR

Rimig 7 hours o

Roning 11 s g

il I nintes on "tsk: on2grg et ()
Ready 1 stcond ago
i
f
R
fmt
f

fost

tst
el sole-stack oo, m g ot otest o
sotfiaody ,mp\whww'munni h‘ulfmg, o atest e
lozithled . soplesstockabeon. 3 triningo st mirg 9 seconds g0
thost | ooy lwnd i
o sonle-stock oo 4 il Totst Sutdom tm
pllrelel somlesstocatem. g o et e Ruming

f st

Ruming

gt
Myveg? saple-stcconom.d roiniag o otes

ingikg min

MLAG/MG i
Ioqubes samle-stacamo trainng/hoan; otes ming

i

Swarm reschedules all tasks of a failed node

In the preceding screenshot, we can see that immediately task 3 was rescheduled
on node-1 Whilst task 4 was rescheduled on node-3. Even this more radical failure is
handled gracefully by Docker Swarm.

It is important to note though that if node-2 ever comes back online in the swarm,
the tasks that had previously been running on it will not automatically be
transferred back to it. But the node is now ready for a new workload.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deleting a service or a stack

If we want to remove a particular service from the swarm, we can use the docker
service rm command. If on the other hand we want to remove a stack from the
swarm, we analogously use the docker stack rm command. This command removes
all services that are part of the stack definition. In the case of the whoami service, it
was created by using a stack file and thus we're going to use the latter command:

docker@node-1:~$ docker stack rm sample-stack
Removing service sample-stack_whoami

Removing network sample-stack_test-net
docker@node-1:~$ ||

Removing a stack

The preceding command will make sure that all tasks of each service of the stack
are terminated, and the corresponding containers are stopped by first sending a
s1ecTerM, and then, if not successful, a s1ekzLL after 10 seconds of timeout.

It is important to note that the stopped containers are not removed from the
Docker host. Thus, it is advised to purge containers from time to time on worker
nodes to reclaim unused resources. Use docker container purge -f for this purpose.

pythontesting

Deploying a multi-service stack

In chapter 8, Docker Compose, we used an application consisting of two services
that were declaratively described in a Docker compose file. We can use this
compose file as a template to create a stack file that allows us to deploy the same
application into a swarm. The content of our stack file called pet-stack.yam1 looks
like this:

version: "3.5"
services:
web:
image: fundamentalsofdocker/ch08-web:1.0
networks:
- pets-net
ports:
- 3000:3000
deploy:
replicas: 3
db:
image: fundamentalsofdocker/ch08-db:1.0
networks:
- pets-net
volumes:
- pets-data:/var/lib/postgresql/data

volumes:
pets-data:

networks:
pets-net:
driver: overlay

We request that the service web has three replicas, and both services are attached
to the overlay network pets-net. We can deploy this application using the docker
stack deploy command:

docker@node-1:~$ docker stack deploy -c pet-stack.yaml pets
Creating network pets_pets-net
Creating service pets_db

Creating service pets_web
docker@node-1:~$ 4]

Deploy the pets stack

Docker creates the pets_pets-net overlay network and then the two services
pets_web and pets_db. We can then list all the tasks in the pets stack:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

dockeriode-1:-§ doker
I
)
1

I NE
findmentolsordocker/ch
Fndonentalsofdocker/ch
f f
findonentolsof

FLO ok g L Seconds o)
RmM@ e nin 0§ seconds ap
b0 e g seeon
e seeond

b ot
efgiiTip
05PL2fBESHR
nirezissviy

dikere L |

8
|

s@
A0 e | seconds oo

Undomentelsofdocker

i
/

i
mentalsordocker/ el

List of all the tasks in the pets stack

Finally, let's test the application using cur1. And, indeed, the application works as
expected:

docker@node-1:~$ curl localhost:3000/pet
<html>
<head>
<link rel="stylesheet" href="main.css">
</head>
<body>
<div class="container">
<h4>Cat Gif of the day</h4>
<img src="http:/ ;/ ;ak-hdl .buzzfed. comd#x2F ; static/ 2013-108#x2F ; enhanced&#:
<p><small>Courtesy: <a href="http://www.buzzfeed.com/copyranter/the-best-cat-gif-post-
<p>Delivered to you by container c9aa9dacd9b2<p>
</div>
</body>
</html>docker@node-1:~$ ||

Testing the pets application using curl

The container ID is in the output, where it says pelivered to you by

container c9aa9dacdob2. If you run the cur1 command multiple times, the ID should
cycle between three different values. These are the ID's of the three containers
(or replicas) that we have requested for the service web.

Once we're done, we can remove the stack with docker stack rm pets.

pythontesting

The swarm routing mesh

If you have been paying attention, then you might have noticed something
interesting in the last section. We had the pets application deployed and it
resulted in the fact that an instance of the service web was installed on the three
nodes node-3, node-4, and node-5. Yet, we were able to access the web service on
node-1 With 1ocaihost and we reached each container from there. How is that
possible? Well, this is due to the so-called swarm routing mesh. The routing
mesh makes sure that when we publish a port of a service, that port is then
published on all nodes of the swarm. Thus, network traffic that hits any node of
the swarm and requests to use the specific port, will be forwarded to one of the
service containers by routing the mesh. Let's look at the following figure to see
how that works:

IP: 172.10.0.15 IP:172.10.0.17 IP: 172.10.0.33
HOStC o 10203 i iHOStB b 10002 HoslA
task2.web 0o task1.web
— b — P VIP: 10.2.0.1
i Ll task1: 10.2.0.2
task2: 10.2.0.3

front-end Network (Overlay) |

ingress Network (Overlay)

create service --name web
—--replicas 2 '\
--network front-end \
-p 8080:80 nginx:alpine

Docker Swarm routing mesh

In this situation we have three nodes, called Host A to Host C, with the IP
addresses 172.10.0.15, 172.10.0.17, and 172.10.0.33. In the lower left-corner of the
figure, we see the command that created a service web with two replicas. The
corresponding tasks have been scheduled on Host B and Host C. Task 1 landed
on host B while task 2 landed on host C.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

When a service is created on Docker Swarm it automatically gets a virtual IP
(VIP) address assigned. This IP address is stable and reserved during the whole
life cycle of the service. Let's assume that in our case the VIP is 10.2.0.1.

If now a request for port sese coming from an external load balancer (LB) is
targeted at one of the nodes of our swarm, then this request is handled by the
Linux IP Virtual Server (IPVS) service on that node. This service makes a
lookup with the given port sese in the IP table and will find that this corresponds
to the VIP of service web. Now, since the VIP is not a real target, the IPVS
service will load balance the IP addresses of the tasks that are associated with
this service. In our case it picked task 2, with the IP address 10.2.0.3. Finally, the

ingress overlay network is used to forward the request to the target container on
host C.

It is important to note that it doesn't matter which swarm node the external

request is forwarded to by the external LB. The routing mesh will always handle
the request correctly and forward it to one of the tasks of the targeted service.

pythontesting

Summary

In this chapter, we have introduced Docker Swarm, which, next to Kubernetes, is
the second most popular orchestrator for containers. We have looked into the
architecture of a swarm, discussed all the types of resources running in a swarm,
such as services, tasks, and more, and we have created services in the swarm and
deployed an application that consists of multiple related services.

In the next chapter, we are going to explore how to deploy services or
applications onto a Docker Swarm with zero downtime and automatic rollback
capabilities. We are also going to introduce secrets as a means to protect
sensitive information.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

To assess your learning progress please answer the following questions:

1. How do you initialize a new Docker Swarm?
1. docker init swarm
2. docker swarm init --advertise-addr <IP address>
3. docker swarm join --token <join token>

2. You want to remove a worker node from a Docker Swarm. What steps are
necessary?

3. How do you create an overlay network called front-tier? Make the network
attachable.

4. How will you create a service called web from the nginx:aipine image with
five replicas, which exposes port 3000 on the ingress network and is
attached to the front-tier network?

5. How will you scale the web service down to three instances?

pythontesting

Further reading

Please consult the following link for more in-depth information about selected
topics:

e Amazon AWS EC2 example at http://dockr.ly/2FFelyT

http://dockr.ly/2FFelyT

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Z.ero Downtime Deployments and
Secrets

In the last chapter, we explored Docker Swarm and its resources in detail. We
learned how to build a highly available swarm locally, and in the cloud. Then,
we discussed swarm services and stacks in depth. Finally, we created services
and stacks in the swarm.

In this chapter, we will show you how we can update services and stacks running
in Docker Swarm without interrupting their availability. This is called zero
downtime deployment. We are also going to introduce swarm secrets as a
means to securely provide sensitive information to containers of a service using
those secrets.

The topics of this chapter are:

e Zero downtime deployment
e Secrets

After finishing this chapter, you will be able to:

e List two to three different deployment strategies commonly used to update a
service without downtime

Update a service in batches without causing a service interruption

Define a rollback strategy for a service that is used if an update fails

Use a secret with a service

Update the value of a secret without causing downtime

pythontesting

Technical requirements

The code files for this chapter can be found at the link https://github.com/fundamenta

lsofdocker/labs/tree/master/chiil.

https://github.com/fundamentalsofdocker/labs/tree/master/ch11

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Z.ero downtime deployment

One of the most important aspects of a mission-critical application that needs
frequent updates is the ability to do updates in a fashion that requires no outage
at all. We call this a zero downtime deployment. At all times, the application
which is updated is fully operational.

pythontesting

Popular deployment strategies

There are various ways how this can be achieved. Some of them are as follows:

e Rolling updates
e Blue-green deployments
e Canary releases

Docker Swarm supports rolling updates out of the box. The other two types of
deployments can be achieved with some extra effort from our side.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Rolling updates

In a mission-critical application, each application service has to run in multiple
replicas. Depending on the load, that can be as few as two to three instances and
as many as dozens, hundreds, or thousands of instances. At any given time, we
want to have a clear majority of all service instances running. So, if we have
three replicas, we want to have at least two of them up and running all the time.
If we have 100 replicas, we can content ourselves with a minimum of, say 90
replicas, that need to be available. We can then define a batch size of replicas
that we may take down to upgrade. In the first case, the batch size would be 1
and in the second case, it would be 10.

When we take replicas down, Docker Swarm will automatically take those
instances out of the load balancing pool and all traffic will be load balanced
across the remaining active instances. Those remaining instances will thus
experience a slight increase in traffic. In the following diagram, prior to the start
of the rolling update, if Task A3 wanted to access Service B, it could have been
load balanced to any of the three tasks of service B by SwarmKit. Once the
rolling update had started, SwarmKit took down Task B1 for updates.
Automatically, this task is then taken out of the pool of targets. So, if Task A3
now requests to connect to Service B, the load balancing will only select from
the remaining tasks B2 and B3. Thus, those two tasks might experience a higher
load temporarily:

pythontesting

down for

Task Bl update

IP: 10.12.0.2

! [Task A3] Task B2 |

! |1P: 10.12.0.3 !

i Task B3

i IP: 10.12.0.4 !

77777777 Service A ServiceB
VIP: 10.8.0.1 VIP: 10.12.0.1

Task B1 is taken down for update

The stopped instances are then replaced by an equivalent number of new
instances of the new version of the application service. Once the new instances
are up and running, we can have the swarm observe them for a given period of
time and make sure they’re healthy. If all is good, then we can continue by
taking down the next batch of instances and replacing them with instances of the
new version. This process is repeated until all instances of the application
service are replaced.

In the the following diagram, we see that Task B1 of Service B has been
updated to version 2. The container of Task B1 got a new IP address assigned,
and it got deployed to another worker node with free resources:

new version

Task Bl v2 ;
in place

IP: 10.12.0.5

Task B2
IP: 10.12.0.3

—

Task B3
IP: 10.12.0.4

Service A Service B

VIP: 10.8.0.1 VIP: 10.12.0.1
First batch updated in a rolling update

qg 6089740 21734177 IT http://t.cn/RDIAj5D

It is important to understand that when a task of a service is updated, it, in most
cases, gets deployed to a different worker node than the one it used to live on.
But that should be fine as long as the corresponding service is stateless. If we
have a stateful service that is location or node aware and we'd like to update it,
then we have to adjust our approach, but this is outside of the scope of this book.

Now, let’s look into how we can actually instruct the swarm to perform a rolling
update of an application service. When we declare a service in a stack file, we
can define multiple options that are relevant in this context. Let’s look at a
snippet of a typical stack file:

version: "3.5"
services:
web:
image: nginx:alpine
deploy:
replicas: 10
update_config:
parallelism: 2
delay: 10s

In this snippet, we see a section, update_config, with the properties parallelism and
delay. Parallelism defines the batch size of how many replicas are going to be
updated at a time during a rolling update. Delay defines how long Docker
Swarm is going to wait between the update of individual batches. In the
preceding case, we have 10 replicas that are updated in two instances at a time
and, between each successful update, Docker Swarm waits for 10 seconds.

Let’s test such a rolling update. We navigate to subfolder chi1 of our 1abs folder
and use the file stack.yam1 to create a web service configured for a rolling update.
The service uses the Alpine-based Nginx image with version 1.12-a1pine. We will
then later update the service to a newer version 1.13-alpine.

We will deploy this service to our swarm that we created locally in VirtualBox.
First, we make sure we have our Terminal window configured to access one of
the master nodes of our cluster. We can take the leader node-1:

|$ eval $(docker-machine env node-1)

Now, we can deploy the service using the stack file:

| $ docker stack deploy -c stack.yaml web

pythontesting

The output of the preceding command looks like this:

$ docker stack deploy -c stack.yaml web
Creating network web_default

Creating service web_web

s

Deployment of the stack called web

Once the service is deployed, we can monitor it using the following command:

| $ watch docker stack ps web

And we will see the following output:

Every 2.@s: docker stack ps web

i NAME IMAGE DESIRED STATE CURRENT STATE ERROR

ze29yvudjyyc web_web.1 nginx:1.12-alpine Running Running 3 minutes ago

ilcy5v4091d3 web_web .2 nginx:1.12-alpine Running Running 3 minutes ago

kzgylcub4a49 web_web.3 nginx:1.12-alpine Running Running 3 minutes ago
web_web .4 hginx:1.12-alpine Running Running 3 minutes ago

web_web .5 nginx:1,.12-alpine Running Running 3 minutes ago
SinvOmkxlpky web_web .6 nginx:1,12-alpine Running Running 3 minutes ago
iyjntpgyécwe web, of nginx:1.12-alpine Running Runming 3 minutes ago
g23@vierinry web. % nginx:1.12-alpine Running Running 3 minutes ago
nhejmZfyzwre nginx:1.12-alpine Running Running 3 minutes ago
iuub6iotedxm web_web.10 nginx:1.12-alpine Running Running 3 minutes ago

Service web of stack web running in swarm with 10 replicas
If you're working on a Mac, you need to make sure your watch tool is installed. Use this
command to do SO: brew install watch.

The previous command will continuously update the output and provide us with
a good overview on what’s happening during the rolling update.

Now, we need to open a second Terminal and also configure it for remote access
to a manager node of our swarm. Once we have done that, we can execute the
docker command that will update the image of the web service of the stack also
called web:

| $ docker service update --image nginx:1.13-alpine web_web

The preceding command leads to the following output, indicating the progress of
the rolling update:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

overall progress: 4 out of 10 tasks
1/1@: running

2/1@: running

3/1@: running

4/10: running

5/1@: preparing

6/10: preparing [
7/10:
8/10:
9/10:
10/10:

Screen showing progress of rolling update

The output indicates that the first two batches with each two tasks have been
successful and that the third batch is preparing.

In the first terminal window, where we're watching the stack, we should now see
how Docker Swarm updates the service batch by batch with an interval of 10
seconds. After the first batch, it should look like the following screenshot:

Every 2.0s: docker stack ps web

NAME IMAGE DESIRED STATE CURRENT STATE
nginx:1.12-alpine 0 2 Running Running 7 minutes ago
alpine ode-2 Running Running 7 minut
alpine node-1 Running Running 7 minut
alpine node-3 Running Running 7
alpine node-5 Running Running 7 minutes
alpine node-4 Running in minut
alpine node-1 Running i ing 7 minutes ago
alpine node-5 Running Running 7 seconds ago
alpine node-5 Shutdown Shutdown 8 seconds ago
alpine node-3 Running Running 9 seconds ago
nh6jmZ2fyzwre \ 5.9 gin: alpine node-3 Shutdown Shutdown 1@ seconds ago
1uub6iotedxm nginx:1.1Z2-a0lpine node-4 Running Running 7 minutes ago

Rolling update of a service in Docker Swarm

In the preceding screenshot, we can see that the first batch of the two tasks, s and
9, has been updated. Docker Swarm is waiting for 1e seconds to proceed with the
next batch.

It is interesting to note that in this particular case, SwarmKit deploys the new version of the
task to the same node as the previous version. This is accidental since we have five nodes

and two tasks on each node. SwarmKit always tries to balance the workload evenly across the
nodes. So, when SwarmKit takes down a task, then the corresponding node has less workload
than all the others and thus gets the new instance scheduled. Normally, you cannot expect to
find the new instance of a task on the same node. Just try it out yourself by deleting the stack
with docker stack rm web and changing the number of replicas to say, seven, and then redeploy
and update.

Once all the tasks are updated, the output of our watch docker stack ps
web command looks similar to the following screenshot:

pythontesting

Every 2.@s: docker stack ps web

D NAME IMAGE NODE DESIRED STATE
vO9yet3urtyf web_web.1 nginx:1,13-alpine node-2
z yC _ web_web.1 nginx:1.12-alpine

we! 2

db7im web_web .4 inx:1.13-alpine

e8yld _ web_web.4 12-alpine
web_web.5 inx 13-alpine o g Running about a minut)
_ web_web.5 gl ine ode-5 r Shutdown about a minute ago
web_web.© e O C Running abo
_ web_web.6 alpi nde- Shutdow
web_web.7 ginx ine ode U g Running 2

o web_web. 10 ine de- Running
iuuS6iotEdxm _ web_web.10 nginx:1.12-alpine node-4 Shutdown Shutdown 2 minutes ago

All tasks have been updated successfully

Please note that SwarmKit does not immediately remove the containers of the
previous versions of the tasks from the corresponding nodes. This makes sense
as we might want to, for example, retrieve the logs from those containers for
debugging purposes, or we might want to retrieve their metadata using docker
container inspect. SwarmKit keeps the four latest terminated task instances around
before it purges older ones to not clog the system with unused resources.

Once we're done, we can tear down the stack using the following command:

| $ docker stack rm web

Although using stack files to define and deploy applications is the recommended
best practice, we can also define the update behavior in a service create
statement. If we just want to deploy a single service, this might be the preferred
way. Let's look at such a create command:
$ docker service create --name web \
--replicas 10 \
--update-parallelism 2 \

--update-delay 16s \
nginx:alpine

This command defines the same desired state as the preceding stack file. We
want the service to run with 1e replicas and we want a rolling update to happen in
batches of 2 tasks at a time, with a 1e second interval between consecutive
batches.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Health checks

To make informed decisions, for example, during a rolling update of a swarm
service whether or not the just-installed batch of new service instances is running
OK or if a rollback is needed, the SwarmKit needs a way to know about the
overall health of the system. On its own, SwarmKit (and Docker) can collect
quite a bit of information. But there is a limit. Imagine a container containing an
application. The container, as seen from outside, can look absolutely healthy and
chuckle away just fine. But that doesn't necessarily mean that the application
running inside the container is also doing well. The application could, for
example, be in an infinite loop or be in a corrupt state, yet still running. But, as
long as the application runs, the container runs and from outside, everything
looks perfect.

Thus, SwarmKit provides a seam where we can provide it with some help. We,
the authors of the application services running inside the containers in the
swarm, know best whether or not our service is in a healthy state. SwarmKit
gives us the opportunity to define a command that is executed against our
application service to test its health. What exactly this command does is not
important to Swarm, the command just needs to return OK or NOT OK or time
out. The latter two situations, namely NOT OK or timeout, will tell SwarmKit
that the task it is investigating is potentially unhealthy. Here, I am writing
potentially on purpose and later, we will see why:

FROM alpine:3.6

HEALTHCHECK --interval=30s \
--timeout=10s
--retries=3
--start-period=60s
CMD curl -f http://localhost:3000/health || exit 1

In the preceding snippet from a Dockerfile, we see the keyword neaithcheck. It has
a few options or parameters and an actual command cvpo. Let's first discuss the
options:

e __interval defines the wait time between health checks. Thus, in our case the
orchestrator executes a check every se seconds.

pythontesting

e The --timeout parameter defines how long Docker should wait if the health
check does not respond until it times out with an error. In our sample, this is
10 seconds. Now, if one health check fails, the SwarmKit retries a couple of
times until it gives up and declares the corresponding task as unhealthy and
opens the door for Docker to kill this task and replace it by a new instance.

e The number of retries is defined with the parameter --retries. In the
preceding code, we want to have three retries.

e Next, we have the start period. Some containers need some time to start up
(not that this is a recommended pattern, but sometimes it is inevitable).
During this start up time, the service instance might not be able to respond
to health checks. With the start period, we can define how long the
SwarmKit should wait before it executes the very first health check and
thus give the application time to initialize. To define the start up time, we
use the --start-period parameter. In our case, we do the first check after se
seconds. How long this start period needs to be totally depends on the
application and its start up behavior. The recommendation is to start with a
relatively low value and if you have a lot of false positives and tasks that
are restarted many times, you might want to increase the time interval.

e Finally, we define the actual probing command on the last line with the cmo
keyword. In our case, we are defining a request to the /hea1th endpoint of
localhost at port seee as a probing command. This call is expected to have
three possible outcomes:

e The command succeeds
e The command fails
e The command times out

The latter two are treated the same way by SwarmKit. It is an indication to the
orchestrator that the corresponding task might be unhealthy. I did say might with
intent since SwarmKit does not immediately assume the worst case scenario but
assumes that this might just be a temporary fluke of the task and that it will
recover from it. This is the reason why we have a --retries parameter. There, we
can define how many times SwarmKit should retry before it can assume that the
task is indeed unhealthy, and consequently Kkill it and reschedule another instance
of this task on another free node to reconcile the desired state of the service.

Why can we use localhost in our probing command? This is a very good
question, and the reason is because SwarmKit, when probing a container running
in the swarm, executes this probing command inside the container (that is, it does

qg 6089740 21734177 IT http://t.cn/RDIAj5D

something like docker container exec <containerID> <probing Command>). ThUS, the
command executes in the same network namespace as the application running
inside the container. In the following diagram, we see the life cycle of a service
task from its beginning;:

task fails task recovers
start period @
O f---se-| |- >
time
start health health health
task check 1 check 3 check 5
@ health X health 0 health
check 2 check 4 check 6
1 1 2 1 1 1 ety
. counter

Service task with transient health failure

First, SwarmKit waits with probing until the start period is over. Then, we have a
first health check. Shortly thereafter, the task fails when probed. It fails two
consecutive times but then it recovers. Thus, health check number 4 is again
successful and SwarmKit leaves the task running.

Here, we, see a task that is permanently failing:

) task fails SIG_TERM
start period @
O | % | | K- % | |
ﬁ time
SIG_KILL
start health health
check 1 check 3
fask Q@ " X hedlth
check 2 check 4
)) > 3 © retry
. counter

Permanent failure of task

If the task does not recover and after having three retries (or as many as you

pythontesting

have defined), then SwarmKit first sends a sieterm to the container of the task,
and if that times out after 10 seconds, it sends a s1ckrLL signal.

We have just learned how we can define a health check for a service in the
Dockerfile of its image. But this is not the only way. We can also define the
health check in a stack file that we use to deploy our application into a Docker
Swarm. Here is a short snippet of what such a stack file would look like:

version: "3.5"
services:
web:
image: example/web:1.0
healthcheck:
test: ["cMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s

In this snippet, we see how the health check-related information is defined in the
stack file. First and foremost, it is important to realize that we have to define a
health check for every service individually. There is no health check on an
application or global level.

Similar to what we have defined previously in the Dockerfile, the command that
is used to execute the health check by the SwarmKit is cur1 -f
http://localhost:3000/health. We also have definitions for interval, timeout, retries,
and start_period. These latter four key-value pairs have the same meaning as the
corresponding parameters we used in the Dockerfile. If there are health check-
related settings defined in the image, then the ones defined in the stack file
override the ones from the Dockerfile.

Now, let's try to use a service that has a health check defined. In our 1ab folder,
we have a file called stack-heaith.yam1 with the following content:

version: "3.5"
services:

web:
image: nginx:alpine
healthcheck:
test: ["CMD", "wget", "-qO", "-", "http://localhost"]

interval: 5s
timeout: 2s
retries: 3
start_period: 15s

qg 6089740 21734177 IT http://t.cn/RDIAj5D

That we're going to deploy now:

| $ docker stack deploy -c stack-health.yaml myapp

We can find out where the single task got deployed to by using docker stack ps
myapp. On that particular node, we can list all containers to find the one of our
stack. In my example, the task had been deployed to node-3:

3 docker-machine ssh node-3 docker container 1s
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
93c598264c10 nginx:alpine "nginx -g 'daemon of." 22 seconds ago Up 21 seconds Chealthy) | 8@/tcp myapp_web .1, kkxlhze5xtgenk33ynwwyc83s

e |

Displaying the health status of a running task instance

The interesting thing in this screenshot is the status column. Docker, or more
precisely SwarmKit, has recognized that the service has a health check function
defined and is using it to determine the health of each task of the service.

pythontesting

Rollback

Sometimes, things don't go as expected. A last minute fix in an application
release inadvertently introduced a new bug, or the new version significantly
decreases the throughput of the component, and so on. In such cases, we need to
have a plan B which in most cases means the ability to roll back the update to
the previous good version.

As with the update, the rollback has to happen in a such a way that it does not
cause any outages of the application; it needs to cause zero downtime. In that
sense, a rollback can be looked at as a reverse update. We are installing a new
version, yet this new version is actually the previous version.

As with the update behavior, we can declare, either in our stack files or in the
Docker service create command, how the system should behave in case it needs
to execute a rollback. Here, we have the stack file that we used before, but this
time with some rollback-relevant attributes:

version: "3.5"
services:
web:
image: nginx:1.12-alpine
ports:
- 80:80
deploy:
replicas: 10
update_config:
parallelism: 2
delay: 10s

failure_action: rollback
monitor: 10s

healthcheck:
test: ["CMD", "wget", "-qO0", "-", "http://localhost"]
interval: 2s
timeout: 2s
retries: 3
start_period: 2s

In this stack file, which is available in our lab as stack-roliback.yam1, we have
defined the details about the rolling update, the health checks, and the behavior
during rollback. The health check is defined so that after an initial wait time of 2
seconds, the orchestrator starts to poll the service on nhttp://1ocalhost every 2

qg 6089740 21734177 IT http://t.cn/RDIAj5D

seconds and it retries s times before it considers a task as unhealthy. If we do the
math, then it takes at least 8 seconds until a task will be stopped if it is unhealthy
due to a bug. So, now under deploy, we have a new entry monitor. This entry
defines how long newly deployed tasks should be monitored for health as a
decision point whether or not to continue with the next batch in the rolling
update. Here, in this sample, we have given it 10 seconds. This is slightly more
than the 8 seconds we calculated it takes to discover that a defective service has
been deployed. So this is good.

We also have a new entry, failure_action, Which defines what the orchestrator will
do if it encounters a failure during the rolling update such as that the service is
unhealthy. By default, the action is just to stop the whole update process and
leave the system in an intermediate state. The system is not down since it is a
rolling update and at least some healthy instances of the service are still
operational, but some operations engineer better at taking a look and fixing the
problem.

In our case, we have defined the action to be ro11back. Thus, in case of failure,
SwarmKit will automatically revert all tasks that have been updated back to their
previous version.

pythontesting

Blue-green deployments

We have discussed in chapter 6, Distributed Application Architecture, what blue—
green deployments are, in an abstract way. It turns out that on Docker Swarm we
cannot really implement blue—green deployments for arbitrary services. The
service discovery and load balancing between two services running in Docker
Swarm are part of the swarm routing mesh and cannot be (easily) customized. If
Service A wants to call Service B, then Docker does it all implicitly. Docker,
given the name of the target service, will use the Docker DNS service to resolve
this name to a virtual IP (VIP) address. When the request is then targeted at the
VIP, the Linux IPVS service will do another lookup in the Linux kernel IP tables
with the VIP and load balances the request to one of the physical IP addresses of
the tasks of the service represented by the VIP, as shown in the following figure:

Nemel

DNS
VIPL R @
Worker 1 | Worker 2

Overlay
How service discovery and load balancing work in Docker Swarm

Unfortunately, there is no easy way to intercept this mechanism and replace it
with a custom behavior. But this would be needed to allow for a true blue—green
deployment of Service B, which is the target service in our example. As we will
see in chapter 13, Deploying, Updating, and Securing an Application with
Kubernetes, Kubernetes it is more flexible in this area.

That said, we can always deploy the public-facing services in a blue—green
fashion. We can use interlock 2 and its layer 7 routing mechanism to allow for a
true blue—green deployment.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Canary releases

Technically, rolling updates are a kind of canary release. But due to their lack of
seams, where you could plug customized logic into the system, rolling updates
are only a very limited version of canary releases.

True canary releases require us to have more fine-grained control about the
update process. Also, true canary releases do not take down the old version of
the service until 100% of the traffic has been funneled through the new version.
In that regard, they are treated like blue—green deployments.

In a canary release scenario, we want to not just use things such as health checks
as deciding factors whether or not to funnel more and more traffic through the
new version of the service, but we also want to consider external input in the
decision making, such as metrics collected and aggregated by a log aggregator or
tracing information. Examples that could be used as decision makers are the
conformance to service level agreements (SLAs), namely if the new version of
the service shows response times that are outside of the tolerance band. This can
happen if we add new functionality to an existing service, yet this new
functionality degrades the response time.

pythontesting

Secrets

Secrets are used to work with confidential data in a secure way. Swarm secrets
are secure at rest and in transit. That is, when a new secret is created on a
manager node, and it can only be created on a manager node, its value is
encrypted and stored in the raft consensus storage. This is why it is secure at
rest. If a service gets a secret assigned to it, then the manager reads the secret
from storage, decrypts it, and forwards it to all the containers who are instances
of the Swarm service that requests the secret. Since the node-to-node
communication in swarm is using mutual transport layer security (TLS), the
secret value, although decrypted, is still secure in transit. The manager forwards
the secret only to the worker nodes on which a service instance is running.
Secrets are then mounted as files into the target container. Each secret
corresponds to a file. The name of the secret will be the name of the file inside
the container, and the value of the secret is the content of the respective file.
Secrets are never stored on the filesystem of a worker node but are mounted
using tmprs into the container. By default, secrets are mounted into the container
at /run/secrets, but you can change that to any custom folder.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Creating secrets

First let's see how we can actually create a secret:

|$ echo "sample secret value" | docker secret create sample-secret -

This command creates a secret called sample-secret with the value sample secret
value. Please note the hyphen at the end of the docker secret create command. This
means that Docker expects the value of the secret from standard input. This is
exactly what we're dOiI’lg by piping the value, sample secret value into the create
command.

Alternatively, we can use a file as the source for the secret value:

| $ docker secret create other-secret ~/my-secrets/secret-value.txt

Here, the value of the secret with the name other-secret is read from a file, ~/my-
secrets/secret-value.txt. Once a secret has been created, there is no way to access
the value of it. We can, for example, list all our secrets and we will get the
following screenshot:

$ docker secret ls
ID NAME DRIVER CREATED UPDATED
axykb7msipitlg5so63ef@2it other-secret 28 seconds ago 28 seconds ago

punslop5SwrShi2lst5h3wjd64 sample-secret 3 minutes ago 3 minutes ago
sl

List of all secrets

In this list, we only see the ID and name of the secret plus some other metadata,
but the actual value of the secret is not visible. We can also use inspect on a
secret, for example, to get more information about the other-secret:

pythontesting

$ docker secret inspect other-secret
L
{
"ID": "axykb7msipitlg5so63ef@2it",
"Version": {
"Index": 135
1,
"CreatedAt": "2018-03-16TQ1:29:14,367872931Z",

"UpdatedAt": "2018-03-16TQ1:29:14,367872931Z",
"Spec": {

“"Name": "other-secret",

"Labels": {}

Inspecting a swarm secret

Even here, we do not get the value of the secret back. This is of course
intentional, a secret is a secret and thus needs to remain confidential. We can
assign labels to secrets if we want and we can even use a different driver to
encrypt and decrypt the secret, if we're not happy with what Docker delivers out
of the box.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using a secret

Secrets are used by services that run in the swarm. Usually, secrets are assigned
to a service at creation time. Thus, if we want to run a service called web and
assign it a secret, api-secret-key, the syntax would look like the following
command:
$ docker service create --name web \
--secret api-secret-key \

--publish 8000:8000 \
fundamentalsofdocker/whoami:latest

This command creates a service called web based on the image
fundamentalsofdocker/whoami:latest, publishes the container port seee tO port sece ON
all swarm nodes, and assigns it the secret, api-secret-key.

This will only work if the secret called api-secret-key is defined in the swarm,
otherwise an error will be generated with the text secret not found: api-secret-key.
Thus, let's create this secret now:

|$ echo "my secret key" | docker secret create api-secret-key -

And now, if we rerun the service create command, it will succeed:

$ docker service create --name web \

> --secret api-secret-key \

> --publish 8000:8000 \

-2 fundamentalsofdocker/whoami:latest
dzxxme8kmo@bglr2ufwrhcztm

overall progress: 1 out of 1 tasks
1/1: running
verify: Service converged

s

Creating a service with a secret

We can now do a docker service ps web tO find out on which node the sole service
instance has been deployed, and then exec into this container. In my case, the
instance has been deployed to node-3, thus I SSH into that node:

|$ docker-machine ssh node-3

And then I list all my containers on that node to find the one instance belonging

pythontesting

to my service and copy its container ID. We can then run the following
command to make sure that the secret is indeed available inside the container
under the expected filename containing the secret value in clear text:

| $ docker exec -it <container ID> cat /run/secrets/api-secret-key

Once again, in my case, this looks like this:

docker@node-1:~$ docker container exec -it d5133b@e3eb3 cat /run/secrets/api-secret-key
my secret key

docker@node-1:~$ ||

A secret as a container sees it

If, for some reason, the default location where Docker mounts the secrets inside
the container is not acceptable to you, you can define a custom location. In the
following command, we mount the secret to /app/my-secrets:
$ docker service create --name web \
--name web \
-p 8000:8000 \

--secret source=api-secret-key, target=/run/my-secrets/api-secret-key \
fundamentalsofdocker/whoami:latest

In this command, we are using the extended syntax to define a secret which
includes the destination folder.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Simulating secrets in a development
environment

When working in development, we usually don't have a local swarm on our
machine. But secrets only work in a swarm. So, what can we do? Well, luckily it
is really simple. Due to the fact that secrets are treated as files, we can easily
mount a volume that contains the secrets into the container to the expected
location, which by default is at /run/secrets.

Assume that we have a folder ./dev-secrets on our local workstation. For each
secret, we have a file called the same way as the secret name and with the un-
encrypted value of the secret as content of the file. For example, we can simulate
a secret called demo-secret with a secret value demo secret value by executing the
following command on our workstation:

|$ echo "demo secret value" > ./dev-secrets/sample-secret

We can then create a container that mounts this folder like this:

$ docker container run -d --name whoami \
-p 8000:8000 \
-v $(pwd)/dev-secrets:/run/secrets \
fundamentalsofdocker/whoami:latest

And the process running inside the container will not be able to distinguish these
mounted files from ones originating from a secret. So, for example, the demo-
secret iS available as file /run/secrets/demo-secret inside the container and has the
EXPECtEd value demo secret value.

To test this, we can exec a shell inside the preceding container:

|$ docker container exec -it whoami /bin/bash

And then navigate to the folder, /run/secrets and display the content of the file

demo-secret.

/# cd /run/secrets
/# cat demo-secret
demo secret value

pythontesting

Secrets and legacy applications

Sometimes, we want to containerize a legacy application that we cannot easily,
or do not want to, change. This legacy application might expect a secret value to
be available as an environment variable. How are we going to deal with this
now? Docker presents us with the secrets as files but the application is expecting
them in the form of environment variables.

In this situation, it is helpful to define a script that runs when the container is
started (a so-called entrypoint or start up script). This script will read the secret
value from the respective file and define an environment variable with the same
name as the file, assigning the new variable the value read from the file. In the
case of a secret called demo-secret whose value should be available in an
environment variable called pevo_secret, the necessary code snippet in this start
up script could look like this:

| export DEMO_SECRET="cat /run/secrets/demo-secret’

Similarly, if the legacy application expects the secret values to be present as an
entry in say, a YAML configuration file located in the /app/bin folder, and called
app.config whose relevant part looks like this:

secrets:
demo-secret: "<<demo-secret-value>>"
other-secret: "<<other-secret-value>>"
yet-another-secret: '"<<yet-another-secret-value>>"

Our initialization script now needs to read the secret value from the secret file
and replace the corresponding placeholder in the config file with the secret
value. For the demo-secret, this could look like this:

file=/app/bin/app.conf

demo_secret="cat /run/secret/demo-secret’
sed -1 "s/<<demo-secret-value>>/$demo_secret/g" "$file"

In this snippet, we're using the sed tool to replace a placeholder with a value in
place. We can use the same technique for the other two secrets in the config file.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

We put all the initialization logic into a file called entrypoint.sh, make this file
executable and, for example, add it to the root of the container's filesystem, and
then we define this file as entrypoInt in the Dockerfile, or we can override the
existing entryrornt Of an image in the docker container run command.

Let's make a sample. Assume that we have a legacy application running inside a
container defined by the image fundamentalsofdocker/whoami:1latest that expects a
secret db_password to be defined in a file, whoami.conf, in the application folder. We
can define a file, whoami.conf, on our local machine with this content:
database:
name: demo
db_password: "<<db_password_value>>"
others:

valil=123
val2="hello world"

The important part is line 3 of this snippet. It defines where the secret value has
to be put by the start up script. Let's add a file called entrypoint.sh to the local
folder with the following content:

file=/app/whoami.conf
db_pwd="cat /run/secret/db-password’
sed -1 "s/<<db_password_value>>/$db_pwd/g" "$file"

/app/http

The last line in this script stems from the fact that this is the start command used
in the original Dockerfile. Now, change the mode of this file to be executable:

| $ sudo chmod +x ./entrypoint.sh

Now, we define a Dockerfile which inherits from the image
fundamentalsofdocker/whoami:latest. Add a file called pockerfile to the current folder
with the following content:

FROM fundamentalsofdocker/whoami:latest
COPY ./whoami.conf /app/

COPY ./entrypoint.sh /

CMD ["/entrypoint.sh"]

Let's build the image from this Dockerfile:

| $ docker image build -t secrets-demo:1.0 .

Once the image is built, we can run a service from it. But before we can do that,

pythontesting

we need to define the secret in the swarm:

| $ echo "passwOrD123" | docker secret create demo-secret -

And now we can create the service that uses the following secret:

$ docker service create --name demo \
--secret demo-secret \
secrets-demo:1.0

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Updating secrets

At times, we need to update a secret in a running service, the reason being that
secrets could be leaked out to the public or be stolen by malicious people, such a
hackers. In this case, we need to change our confidential data since the moment
it has leaked to a non-trusted entity, it has to be considered as insecure.

The updating of secrets, like any other update, has to happen in a way which
requires zero downtime. SwarmKit supports us in this regard.

First, we create the new secret in the Swarm. It is recommended to use a
versioning strategy when doing so. In our example, we use a version as a postfix
of the secret name. We originally started with the secret named db-password and
now the new version of this secret is called db-password-v2:

| $ echo "newPassw@rD" | docker secret create db-password-v2 -

Assume that the original service that used the secret had been created like this:

$ docker service create --name web \
--publish 80:80
--secret db-password
nginx:alpine

The application running inside the container was able to access the secret at
/run/secrets/db-password. NOw, SwarmKit does not allow us to update an existing
secret in a running service, thus we have to first remove the now obsolete
version of the secret and then add the new one. Let's start with the removal with
the following command:

| $ docker service update --secret-rm db-password web

And then we can add the new secret with the following command:

$ docker service update \
--secret-add source=db-password-v2, target=db-password \
web

pythontesting

Summary

In this chapter, we learned how SwarmKit allows us to update services without
requiring downtime. We also discussed the current limits of SwarmKit in regards
to zero downtime deployments. In the second part of the chapter, we introduced
secrets as a means to provide confidential data to services in a highly secure way.

In the next chapter, we will introduce the currently most popular container
orchestrator, Kubernetes. We'll discuss the objects that are used to define and
run a distributed, resilient, robust, and highly available application in a
Kubernetes cluster. Furthermore, the chapter will familiarize us with MiniKube,
a tool used to locally deploy a Kubernetes application, and also demonstrate the
integration of Kubernetes with Docker for Mac and Docker for Windows.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

To assess your understanding of the topics discussed in this chapter, please
answer the following questions:

1. Explain to an interested layman in a few simple sentences what zero
downtime deployment means.
2. How does SwarmKit achieve zero downtime deployments?
3. Contrary to traditional (non-containerized) systems, why does a rollback in
Docker Swarm just work? Explain in a few short sentences.
4. Describe two to three characteristics of a Docker secret.
You need to roll out a new version of the inventory service. What does your
command look like? Here is some more information:
1. The new image is called acme/inventory:2.1.
2. We want to use a rolling update strategy with a batch size of two tasks.
3. We want the system to wait for one minute after each batch.

i

6. You need to update an existing service named inventory with a new password
that is provided through a Docker secret. The new secret is called
mysqL_passworp_v2. The code in the service expects the secret to be called
mysqL_passworp. What does the update command look like? (Note: we do not
want the code of the service to be changed!)

pythontesting

Further reading

Here are some links to external sources:

Apply rolling updates to a service at https://dockr.1y/2HfGj1D

Manage sensitive data with Docker secrets at nttps://dockr . 1y/2vUNbuH
Introducing Docker secrets management at nttps://dockr . ly/2k7zwzE
From env variables to Docker secrets at https://bit.1y/26Y3UUB

https://dockr.ly/2HfGjlD
https://dockr.ly/2vUNbuH
https://dockr.ly/2k7zwzE
https://bit.ly/2GY3UUB

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction to Kubernetes

In the previous chapter, we learned how SwarmKit uses rolling updates to
achieve zero downtime deployments. We were also introduced to Docker secrets,
which are used to share confidential data with an application service running in a
Docker Swarm.

In this chapter, we're going to introduce Kubernetes. Kubernetes is currently the
clear leader in the container orchestration space. We are starting with a high-
level overview of the architecture of a Kubernetes cluster and then we will
discuss the main objects used in Kubernetes to define and run containerized
applications.

The topics discussed in this chapter are:

Architecture

Kubernetes masters

Cluster nodes

Introduction to MiniKube

Kubernetes support in Docker for Mac and Docker for Windows
Pods

Kubernetes ReplicaSet

Kubernetes deployment

Kubernetes service

Context-based routing

Comparing SwarmKit with Kubernetes

After finishing this chapter, you will be able to:

Draft the high-level architecture of a Kubernetes cluster on a napkin
Explain three to four main characteristics of a Kubernetes pod

Describe the role of Kubernetes ReplicaSets in two to three short sentences
Explain the two to three main responsibilities of a Kubernetes service
Create a pod in Minikube

Configure Docker for Mac or Windows to use Kubernetes as orchestrator
Create a deployment in Docker for Mac or Windows

pythontesting

e Create a Kubernetes service to expose an application service internally (or
externally) to the cluster

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

The link to the code files can be found here at https://github.com/fundamentalsofdocke
r/labs/tree/master/chi2.

pythontesting

https://github.com/fundamentalsofdocker/labs/tree/master/ch12

Architecture

A Kubernetes cluster consists of a set of servers. These servers can be VMs or
physical servers. The latter are also called bare metal. Each member of the
cluster can have one of two roles. It is either a Kubernetes master or a (worker)
node. The former is used to manage the cluster while the latter will run
application workload. I have put the worker in parentheses since in Kubernetes
parlance you only talk about a node when talking about a server that runs
application workload. But in Docker parlance and in the Swarm, the equivalent
is a worker node. 1 think that the notion of a worker node better describes the
role of the server than a simple node.

In a cluster, you have a small and odd number of masters and as many worker
nodes as needed. Small clusters might only have a few worker nodes while more
realistic clusters might have dozens or even hundreds of worker nodes.
Technically, there is no limit on how many worker nodes a cluster can have; in
reality, you might experience a significant slowdown in some management
operations when dealing with thousands of nodes, though. All members of the
cluster need to be connected by a physical network, the so-called underlay
network.

Kubernetes defines one flat network for the whole cluster. Kubernetes does not
provide any networking implementation out of the box, but relies on plugins
from third parties. Kubernetes only defines the Container Network Interface
(CNI) and leaves the implementation to others. The CNI is pretty simple. It
basically states that each pod running in the cluster must be able to reach any
other pod also running in the cluster without any Network Address Translation
(NAT) happening in-between. The same must be true between cluster nodes and
pods, that is, applications or daemons running directly on a cluster node must be
able to reach each pod in the cluster and vice versa.

In the following diagram, I try to illustrate the high-level architecture of a
Kubernetes cluster:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Raft Consensus Group
Too | . Cluster
- |etcd (Beted) oo - State
External : -- :
Kibe | | Kibe | 44| Kibe | anagement
| Master | | Master Master " Plane

Follower Leader Follower
TR Consensus Group

mmmsmEmsmssssssssEssssssssssssssssssssssssssssfissssssssslsesssssssdessassssssasmsEEssEssaEEEEEEsEssEsEEEEEssaEm s,

| Kube || Kube fue || Kube | | Kube | | Kube |
i Node Node Node Node Node Node i

i 11 1 i

"\ /. Workload
External
Load Balancer

Ingress

Kube
Node

Kube
Node

Kube
Node

pythontesting

High-level architecture diagram of Kubernetes
The preceding diagram is explained as follows:

¢ On the top, in the middle we have a cluster of etcd nodes. etcd is a
distributed key-value store that, in a Kubernetes cluster, is used to store all
the state of the cluster. The number of etcd nodes has to be odd as mandated
by the Raft consensus protocol which they use to coordinate among
themselves. When we talk about the cluster state, we do not include data
that is produced or consumed by applications running in the cluster, but
rather we're talking about all the information on the topology of the cluster,
what services are running, network settings, secrets used, and more. That
said, this etcd cluster is really mission critical to the cluster and thus, we
should never run only one etcd server in a production environment or any
environment that needs to be highly available.

e We then have a cluster of Kubernetes master nodes that also form a
consensus group among themselves, similar to the etcd nodes. The number
of master nodes also has to be an odd number. We can run the cluster with a
single master but we should never do that in a production or mission-critical
system. There, we always should have at least three master nodes. Since the
master nodes are used to manage the whole cluster, we are also talking
about the management plane. The master nodes use the etcd cluster as their
backing store. It is a good practice to put a Load Balancer (LB) in front of
the master nodes with a well-known Fully Qualified Domain Name
(FQDN), such as https://admin.example.com. All tools that are used to manage
the Kubernetes cluster should access it through this LB rather than using the
public IP address of one of the master nodes. This is shown in the left upper
side of the preceding diagram.

e Towards the bottom of the diagram, we have a cluster of worker nodes. The
number of nodes can be as low as one and does not have an upper limit.
Kubernetes master and worker nodes communicate with each other. It is a
bidirectional form of communication which is different to the one we know
from Docker Swarm. In Docker Swarm, only the manager nodes
communicate with the worker nodes and never the other side around. All
ingress traffic accessing the applications running in the cluster should be
going through another load balancer. This is the application load balancer or
reverse proxy. We never want external traffic to directly access any of the
worker nodes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Now that we have an idea about the high-level architecture of a Kubernetes
cluster, let's dive a bit deeper and first look at the Kubernetes master and worker
nodes.

pythontesting

Kubernetes master nodes

Kubernetes master nodes are used to manage a Kubernetes cluster. The
following is a high-level diagram of such a master:

g 3 Cluster
| |
8 Store

E_@Scheduter "| |' @ Controller

API| Server {}

/‘b\ Linux

Kubernetes master

At the bottom of the preceding diagram, we have the Infrastructure, which can
be a VM on-premise or in the cloud or a server (often called bare metal), as well
as on-premise or in the cloud. Currently, Kubernetes masters only run on Linux.
Most popular Linux distributions such as RHEL, CentOS, and Ubuntu are
supported. On this Linux machine, we then have at least the following four
Kubernetes services running;:

e API server: This is the gateway to Kubernetes. All requests to list, create,
modify, or delete any resources in the cluster must go through this service.
It exposes a REST interface that tools such as kubect1 use to manage the
cluster and applications in the cluster.

e Controller: The controller, or more precisely the controller manager, is a
control loop that observes the state of the cluster through the API server and
makes changes, attempting to move the current or effective state towards
the desired state.

¢ Scheduler: The scheduler is a service that tries its best to schedule pods on
worker nodes considering various boundary conditions, such as resource
requirements, policies, quality of service requirements, and more.

e Cluster store: This is an instance of etcd which is used to store all
information about the state of the cluster.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

To be more precise, etcd, which is used as a cluster store, does not necessarily
have to be installed on the same node as the other Kubernetes services.
Sometimes, Kubernetes clusters are configured that use standalone clusters of
etcd servers, as shown in the architecture diagram in the previous section. But
which variant to use is an advanced management decision and is outside of the
scope of this book.

We need at least one master, but to achieve high availability, we need three or
more master nodes. This is very similar to what we have learned about the
manager nodes of a Docker Swarm. In this regard, a Kubernetes master is
equivalent to a Swarm manager node.

Kubernetes masters never run application workload. Their sole purpose is to
manage the cluster. Kubernetes masters build a Raft consensus group. The Raft
protocol is a standard protocol used in situations where a group of members need
to make decisions. It is used in many well-known software products such as
MongoDB, Docker SwarmKit, and Kubernetes. For a more thorough discussion
of the Raft protocol, see the link in the Further reading section.

As we have mentioned in the previous section, the state of the Kubernetes cluster
is stored in etcd. If the Kubernetes cluster is supposed to be highly available,
then etcd must also be configured in HA mode, which normally means that one
has at least three etcd instances running on different nodes.

Let's state once again that the whole cluster state is stored in etcd. This includes
all the information about all the cluster nodes, all the replica sets, deployments,
secrets, network policies, routing information, and so on. It is, therefore, crucial
that we have a robust backup strategy in place for this key-value store.

Now, let's look at the nodes that will be running the actual workload of the
cluster.

pythontesting

Cluster nodes

Cluster nodes are the nodes onto which Kubernetes schedules application
workload. They are the workhorses of the cluster. A Kubernetes cluster can have
a few, dozens, hundreds, or even thousands of cluster nodes. Kubernetes has
been built from the ground up for high scalability. Don't forget that Kubernetes
has been modeled after Google Borg, which has been running tens of thousands
of containers for years:

Node
® &
Container Network
. Kubelet Runtime Proxy |
{\ Linux

Kubernetes worker node

A worker node can run on a VM or on bare metal, on-premise, or in the cloud.
Originally, worker nodes could only be configured on Linux. But since version
1.10 of Kubernetes, worker nodes can also run on Windows Server 2010. It is
perfectly fine to have a mixed cluster with Linux and Windows worker nodes.

On each node, we have three services that need to run, which are described as
follows:

¢ Kubelet: This is the first and foremost service. Kubelet is what's called the
primary node agent. The kubelet service uses pod specifications to make
sure all of the containers of the corresponding pods are running and healthy.
Pod specifications are files written in YAML or JSON format and they
declaratively describe a pod. We will get to know what pods are in the next
section. PodSpecs are provided to Kubelet primarily through the API
server.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

¢ Container runtime: The second service that needs to be present on each
worker node is a container runtime. Kubernetes, by default, uses containerd
since version 1.9 as its container runtime. Previous to that, it would use the
Docker daemon. Other container runtimes such as rkt or CRI-O can be
used. The container runtime is responsible for managing and running the
individual containers of a pod.

e kube-proxy: Finally, there is the kube-proxy. It runs as a daemon and is a
simple network proxy and load balancer for all application services running
on that particular node.

Now that we have learned about the architecture of Kubernetes and the master
and worker nodes, it is time to introduce the tooling that we can use to develop
applications targeted at Kubernetes.

pythontesting

Introduction to Minikube

Minikube is a tool that creates a single node Kubernetes cluster in VirtualBox or
Hyper-V (other hypervisors are supported) ready to be used during development
of a containerized application. We have shown in chapter 2, Setting up a Working
Environment, how Minikube and with it the tool kubect1 can be installed on your
Mac or Windows laptop. As stated, Minikube is a single node Kubernetes cluster
and thus the node is, at the same time, a Kubernetes master as well as a worker
node.

Let's make sure that Minikube is running with the following command:

| $ minikube start

Once Minikube is ready, we can access its single node cluster using kubect1. And
we should see something similar to the following screenshot:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION

minikube Ready <none> 2d v1.9.0

s

Listing all nodes in Minikube

As mentioned before, we have a single node cluster with a node called minikube .
Don't get confused by the value <none> in the column roces; the node plays the
role of a worker and a master node at the same time.

Now, let's try to deploy a pod to this cluster. Don't worry about what a pod
exactly is at this time; we will dive into all the details about it further along in
this chapter. For the moment, just take it as is.

We can use the file sample-pod.yam1 in the subfolder ch12 of our 1abs folder to create
such a pod. It has the following content:

apiVersion: vi
kind: Pod
metadata:

name: nginx
spec:

containers:

- name: nginx

qg 6089740 21734177 IT http://t.cn/RDIAj5D

image: nginx:alpine
ports:

- containerPort: 80
- containerPort: 443

Let's use the Kubernetes CLI called kubect1 to deploy this pod:

$ kubectl create -f sample-pod.yaml
pod "nginx" created

If we now list all of the pods, we should see this:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 51s

To be able to access this pod, we need to create a service. Let's use the sampie-
service.yanl file, which has the following content:

apiVersion: vi
kind: Service
metadata:

name: nginx-service

spec:

type: LoadBalancer

ports:

- port: 8080
targetPort: 80
protocol: TCP
name: http

- port: 443
protocol: TCP
name: https

selector:
app: nginx

Again, don't worry about what exactly a service is at this time. We'll explain it
all in detail further down. Let's just create this service:

| $ kubectl create -f sample-service.yaml

Now we can use curl to access the service:

|$ curl -4 http://localhost

And we should be receiving the Nginx welcome page as an answer. Before you
continue, please remove the two objects you just created:

$ kubectl delete po/nginx
$ kubectl delete svc/nginx-service

pythontesting

Kubernetes support in Docker for
Desktop

Starting from version 1s.e1-ce, Docker for Mac and Docker for Windows have
started to support Kubernetes out of the box. Developers that want to deploy
their containerized applications to Kubernetes can use this orchestrator instead of
SwarmKit. Kubernetes support by default is turned off and has to be enabled in
the settings. The first time Kubernetes is enabled, Docker for Mac or Windows
will need a moment to download all components that are needed to create a
single node Kubernetes cluster. Contrary to Minikube, which is also a single
node cluster, the version provided by the Docker tools uses containerized
versions of all Kubernetes components:

Docker CLI Kubernetes CLI
Linuxkit VM e ——
kubeadm Kubernetes
etcd
(Swarm-Mode) Single Docker Engine
Host FS mounts hyperkit/hyperv vphkit

Kubernetes support in Docker for Mac and Windows

The preceding image gives a rough overview on how Kubernetes support has
been added to Docker for Mac and Windows. Docker for Mac uses hyperkit to
run a LinuxKit-based VM. Docker for Windows uses Hyper-V to achieve the
same. Inside the VM, the Docker engine is installed. Part of the engine is
SwarmKit, which enables Swarm Mode. Docker for Mac or Windows uses

the kubeadm tool to set up and configure Kubernetes in that VM. The following
three facts are worth mentioning: Kubernetes stores its cluster state in etcd, thus
we have etcd running on this VM. Then, we have all the services that make up
Kubernetes and finally, some services that support the deployment of Docker
stacks from the Docker CLI into Kubernetes. This service is not part of the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

official Kubernetes distribution, but is Docker specific.

All components of Kubernetes are running in containers in the LinuxKit-based
VM. These containers can be hidden through a setting in Docker for Mac or
Windows. See further down in the section for a complete list of Kubernetes
system containers running on your laptop, if you have Kubernetes support
enabled. To avoid repetition, from now on I will only talk about Docker for
Desktop instead of Docker for Mac and Docker for Windows. Everything that I
will be saying equally applies to both editions.

One big advantage of Docker for Desktop with Kubernetes enabled over
Minikube is that the former allows developers to use a single tool to build, test,
and run a containerized application targeted at Kubernetes. It is even possible to
deploy a multi-service application into Kubernetes using a Docker Compose file.

Now, let's get our hands dirty. First we, have to enable Kubernetes. On the Mac,
click on the Docker icon in the menu bar and select Preferences. In the dialog
box that opens, select Kubernetes, as shown in the following screenshot:

@ Kubernetes
@’ ~ar o
.- & o
General File Sharing Disk Advanced Proxies Daemon Kubernetes Reset

Enable Kubernetes

Docker is running

Enabling Kubernetes in Docker for Mac

Then, select the Enable Kubernetes checkbox. Also, tick the other

checkbox Show system containers (advanced). Then, click the Apply button.
You will be warned that the installation and configuration of Kubernetes takes a
few minutes:

pythontesting

The initial Kubernetes cluster installation takes a

& few minutes and requires an Internet connection.

Install the Kubernetes cluster now?

Install Cancel

Warning that installation and configuration of Kubernetes takes a while

Click Install to start the installation. Now it's time that you take a break and
enjoy a nice cup of tea.

Once the installation is finished (which Docker notifies us, by showing a green
status icon in the settings dialog), we can test it. Since we now have two
Kubernetes clusters running on our laptop, Minikube and Docker for Mac, we
need to configure kubect1 to access the latter one. First, let's list all contexts that
we have:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
docker-for-desktop docker-for-desktop-cluster docker-for-desktop

minikube minikube minikube

*
s

List of contexts for kubectl

Here, we can see that on my laptop, I have the two contexts mentioned before.
Currently still, the Minikube context is active, visible by the asterisk in the
current column. We can switch to the docker-for-desktop context using the
following command:

$ kubectl config use-context docker-for-desktop
Switched to context "docker-for-desktop”.

s

Changing the context for the Kubernetes CLI

Now, we can use kubect1 to access the cluster that Docker for Mac just
created. We should see this:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION

docker-for-desktop Ready master 15m v1.9.2
s

The single node Kubernetes cluster created by Docker for Mac

OK, this looks very familiar. It is pretty much the same as what we saw when

http://t.cn/RDIAJS5D

IT

21734177

qq 6089740

working with Minikube. The version of Kubernetes that my Docker for Mac is

using is 1.9.2. We can also see that the node is a master node.

If we list all containers that are currently running on our Docker for Mac, we get
this list (note that I use the --format argument to only output the container 10 and

names Of the containers), as shown in the following screenshot:

pythontesting

Kubernetes system containers

In the list, we can identify all the now familiar components that make up
Kubernetes such as the:

API server

etcd

Kube proxy
DNS service
Kube controller
Kube scheduler

There are also containers that have the word compose in them. These are Docker-
specific services and are used to allow us to deploy Docker Compose
applications onto Kubernetes. Docker translates the Docker Compose syntax and
implicitly creates the necessary Kubernetes objects such as deployments, pods,
and services.

Normally, we don't want to clutter our list of containers with these system
containers. We can thus uncheck the checkbox Show system containers in the
settings for Kubernetes.

Now let's try to deploy a Docker Compose application to Kubernetes. Navigate
to the subfolder chi2 of our 1abs folder. We deploy the app as a stack using
the docker-compose.yaml file:

| $ docker stack deploy -c docker-compose.yml app

This is what we see:

$ docker stack deploy -c docker-compose.yml app
Stack app was created
Waiting for the stack to be stable and running...

- Service db has one container running
- Service web has one container running
Stack app is stable and running

Deploy stack to Kubernetes

We can test the application, for example, using cur1, and we will see that it is
running as expected:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ curl localhost:3000/pet
<html>
<head>
<link rel="stylesheet" href="main.css">
</head>
<body>
<div class="container">

<h4>Cat Gif of the day</h4>
<img src="http:8#x2F;8#x2F;ak-hdl.buzzfed.com@#x2F ; static8#x2F;2013-108#x2F;en
<p><small>Courtesy: <a href="http://www.buzzfeed.com/copyranter/the-best-cat-g
<p>Delivered to you by container web-5c5964c9b8-b5jq9<p>
</div>
</body>

s

Pets application running in Kubernetes on Docker for Mac

Now, you should be curious and wonder what exactly Docker did, when we

executed the docker stack deploy command. We can use kubectl to find out:

$ kubectl get all
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/web 1 1 il il om

NAME DESIRED CURRENT READY AGE
rs/web-5c5964c98 1 1 1 9m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/web 1 1 1 1 9m

NAME DESIRED CURRENT READY AGE
rs/web-5c5964c98 1 1 1 9m

NAME DESIRED CURRENT AGE
statefulsets/db 1 1 9m

NAME READY STATUS RESTARTS AGE
po/db-0 1/1 Running @ 9m
po/web-5c5%64c9b8-b5jq9 1/1 Running @ 9m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

svc/db ClusterIP None <none> 55555/TCP
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/1CP
svc/web ClusterIP None <none> 55555/TCP
svi/web—published LoadBalancer 10.111.43.147 localhost 3000:32590/TCP
$

Listing all Kubernetes objects created by docker stack deploy

Docker created a deployment for the web service and a stateful set for

the db service. It also automatically created Kubernetes services for web and db so
that they can be accessed inside the cluster. It also created the Kubernetes
service svc/web-published Which is used for external access.

This is pretty cool to say the least and tremendously decreases friction in the
development process for teams targeting Kubernetes as the orchestrator.

Before you continue, please remove the stack from the cluster:

| $ docker stack rm app

pythontesting

And also make sure you reset the context for kubect1 back to Minikube, as we will
be using Minikube for all our samples in this chapter:

| $ kubectl config use-context minikube

Now that we have had an introduction to the tools we can use to develop
applications that will eventually run in a Kubernetes cluster, it is time to learn
about all the important Kubernetes objects that are used to define and manage
such an application. We are starting with the pod.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pods

Contrary to what is possible in a Docker Swarm, you cannot run containers
directly in a Kubernetes cluster. In a Kubernetes cluster, you can only run pods.
Pods are the atomic unit of deployment in Kubernetes. A pod is an abstraction of
one or many co-located containers that share the same Kernel namespaces, such
as the network namespace. No equivalent exists in the Docker SwarmKit. The
fact that more than one container can be co-located and sharing the same
network namespace is a very powerful concept. The following diagram
illustrates two pods:

Pod 1 Pod 2
netns T netns T
main supporting
container container
80 :3000
| 10.0.12.3 10.0.12.5
10.0.12.3:80 10.0.12.3:3000

Kubernetes pods

In the preceding diagram, we have two pods, Pod 1 and Pod 2. The first pod
contains two containers, while the second one only contains a single container.
Each pod gets an IP address assigned by Kubernetes that is unique in the whole
Kubernetes cluster. In our case, these are the IP addresses 10.0.12.3 and 10.0.12.5.
Both are part of a private subnet managed by the Kubernetes network driver.

A pod can contain one to many containers. All those containers share the same
kernel namespaces, and in particular they share the network namespace. This is
marked by the dashed rectangle surrounding the containers. Since all containers
running in the same pod share the network namespace, each container needs to
make sure to use their own port since duplicate ports are not allowed in a single
network namespace. In this case, in Pod 1, the main container is using port se
while the supporting container is using port 3soce.

pythontesting

Requests from other pods or nodes can use the pod's IP address combined with
the corresponding port number to access the individual containers. For example,
you could access the application running in the main container of Pod 1
through 10.0.12.3:se.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Comparing Docker container and
Kubernetes pod networking

Now, let's compare Docker's container networking and the networking of a
Kubernetes pod. In the diagram here, we have the former on the left hand and
the latter on the right hand side:

ethD eth0
52.17.0.23) (52.17.0.23)
Host Host
dockerQ docker0
172.5.0.1 172.5.0.1
(_j % [pause Pod)
vethO vethi vethOQ
172.5.0.2 172.5.0.3 172.5.0.2
container 1 container 2 L container 1 container 2

Containers in Pod sharing network namespace

When a Docker container is created and no specific network is specified, then
the Docker engine creates a virtual ethernet (veth) endpoint. The first container
gets veth0 and the next one vethl, and so on. These virtual ethernet endpoints
are connected to the Linux bridge docker0 that Docker automatically creates
upon installation. Traffic is routed from the bridge docker0 to every connected
veth endpoint. Every container has its own network namespace. No two
containers use the same namespace. This is on purpose, to isolate applications
running inside the containers from each other.

For a Kubernetes pod, the situation is different. When creating a new pod,
Kubernetes first creates a so-called pause container whose only purpose is to
create and manage the namespaces that the pod will share with all containers.
Other than that, it does nothing useful, but is just sleeping. The pause container
is connected to the bridge docker0 through veth0. Any subsequent container
that will be part of the pod is using a special feature of the Docker engine that
allows it to reuse an existing network namespace. The syntax to do so looks like

pythontesting

this:

| $ docker container create --net container:pause ...

The important part is the --net argument, which uses as a value container:<container
name>. If we create a new container this way, then Docker does not create a new
veth endpoint, but the container uses the same one as the pause container.

Another important consequence of multiple containers sharing the same network
namespace is the way they communicate with each other. Let's consider the
following situation of a pod containing two containers, one listening at port se
and the other at port zeee:

Pod
main supporting
container container
:80 :3000
L T—> localhost 4—1

Containers in pods communicate via localhost

When two containers use the same Linux kernel network namespace, they can
communicate with each other through localhost, similar to when two processes
are running on the same host they can communicate with each other through
localhost too. This is illustrated in the preceding diagram. From the main
container, the containerized application inside it can reach out to the service
running inside the supporting container through http://1ocalhost :3eco.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Sharing the network namespace

After all this theory, you might be wondering how a pod is actually created by
Kubernetes. Kubernetes is only using what Docker provides. So, how does this
network namespace share work? First, Kubernetes creates the so-called pause
container as mentioned previously. This container has no other function than to
reserve the kernel namespaces for that pod and keep them alive, even if no other
container inside the pod is running. Let's simulate the creation of a pod, then. We
start by creating the pause container and take Nginx for this purpose:

| $ docker container run -d --name pause nginx:alpine

And now we add a second container called main, attaching it to the same network
namespace as the pause container:

$ docker container run --name main -dit \
--net container:pause \
alpine:latest /bin/sh

Since the pause and the sample container are both part of the same network
namespace, they can reach each other through 1ocainost. To show this, we first
have to exec into the main container:

|$ docker exec -it main /bin/sh

Now, we can test the connection to Nginx running in the pause container and
listening on port se. Here is what we get if we use the wget utility to do so:

pythontesting

/ # wget -q0 - localhost
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: @ auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<hl>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx. com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>
7/ # |

Two containers sharing the same network namespace

The output shows that we can indeed access Nginx on 1ocalnost. This is proof that
the two containers share the same namespace. If that is not enough, we can use
the ip tool to show ethe inside both containers and we will get the exact same
result, specifically, the same IP address which is one of the characteristics of a
pod, where all its containers share the same IP address:

/ # ip a show eth@
11: eth@@if12: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 150@ qdisc noqueue state UP
link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff

inet 172.17.0.2/16 brd 172.17.255.255 scope global eth@
valid_1ft forever preferred_lft forever

Displaying the properties of ethO with the ip tool

If we inspect the bridge network, we can only see that the pause container is listed.
The other container didn't get an entry in the containers list since it is reusing the
pause container's endpoint:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ docker network inspect bridge
C
i
"Mame": “bridge”,
"Id": “41909c08794041cabc3a9dZed3442612344F5310bd1cbfchbae5c5T25a05541" ,
"Created": “"2018-03-26T22:16:44.790966007Z",
“Scope”: “local”,
"Driver”: “"bridge”,
"EnableIPv6": false,
“IPAM": {
"Driver": “default",
"Options": null,
“Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"

]

¥,

“Internal”: false,

"Attachable": false,

“Ingress": false,

"ConfigFrom": {

“Metwork": "

¥,

"Canfialnly": false.

T R
"8965ecb5cadaldelf1d9c987b68e888c1115cTb4 f44ba3842953d29%azb%adeal™ 1 {

"Name": “"pause”,
"EndpointID”: “390fc@527f7cbb484d24b7886772db23bb500502fe34269f c30627 7earabf95e",
"MacAddress": "@Z:4Z2:ac:11:00:02",
"IPv4Address”: "172.17.0.2/16",
"IPvoAddress": ""
1

I,

"Options™: {
“com.docker.network.bridge.default_bridge": “true”,
"“com.docker.network.bridge.enable_icc": "true",
“com.docker.network.bridge.enable_ip_masquerade
“com.docker. network.bridge. host_binding_ipv4"
"com.docker.network.bridge.name
"com.docker.network.driver.mtu”:

},
"Labels": {}

Inspecting the Docker default bridge network

pythontesting

Pod life cycle

We have learned earlier in this book that containers have a life cycle. A container
is initialized, run, and ultimately exited. When a container exits, it can do this
gracefully with an exit code zero or it can terminate with an error, which is
equivalent to a nonzero exit code.

Similarly, a pod has a life cycle. Due to the fact that a pod can contain more than
one container, this life cycle is slightly more complicated than the one of a single
container. The life cycle of a pod is sketched in the following diagram:

Pod Pod Pod

pending running succeeded

o]

Pod

failed
Life cycle of Kubernetes pods

When a pod is created on a cluster node, it first enters into pending status. Once
all containers of the pod are up and running, the pod enters into running status.
The pod only enters into this state if all its containers run successfully. If the pod
is asked to terminate, it will request all its containers to terminate. If all
containers terminate with exit code zero, then the pod enters into succeeded
status. This is the happy path.

Now, let's look at some scenarios that lead to the pod being in failed state. There
are three possible scenarios:

e If, during the startup of the pod, at least one container is not able to run and
fails (that is it exits with a nonzero exit code), the pod enters from
the pending state into the failed state

o If the pod is in running status and one of the containers suddenly crashes or
exits with a nonzero exit code then the pod transitions from

qg 6089740 21734177 IT http://t.cn/RDIAj5D

the running state into the failed state
e If the pod is asked to terminate and during the shutdown at least one of the

containers exits with a nonzero exit code, then the pod also enters into
the failed state

pythontesting

Pod specification

When creating a pod in a Kubernetes cluster, we can use either an imperative or
a declarative approach. We have discussed the difference of the two approaches
earlier in this book, but to rephrase the important aspect, using a declarative
approach signifies that we write a manifest which describes the end state we
want to achieve. We leave the details of the how to the orchestrator. The end
state that we want to achieve is also called the desired state. In general, the
declarative approach is strongly preferred in all of the established orchestrators,
and Kubernetes is no exception.

Thus, in this chapter, we will exclusively concentrate on the declarative
approach. Manifests or specifications for a pod can be written

using either YAML or JSON format. In this chapter, we will concentrate on
YAML since it is easier to read for us humans. Let's look at a sample
specification. Here is the content of the pod.yami file that can be found in

the ch12 subfolder of our 1abs folder:

apiVersion: vi
kind: Pod
metadata:
name: web-pod
spec:
containers:
- name: web
image: nginx:alpine
ports:
- containerPort: 80

Each specification in Kubernetes starts with the version information. Pods have
been around for quite some time and thus the API version is v1. The second line
specifies the type of Kubernetes object or resource we want to define. Obviously,
in this case, we want to specify a pod. Next follows a block with metadata. At a
bare minimum, we need to give the pod a name. Here, we call it web-pod. The next
block that follows is the spec block, which contains the specification of the pod.
The most important part (and the only one in this simple sample) is the list of all
containers that are part of this pod. We only have one container here, but
multiple containers are possible. The name we choose for our container is web
and the container image is nginx:alpine. Finally, we define the list of ports the

qg 6089740 21734177 IT http://t.cn/RDIAj5D

container is exposing.

Once we have authored such a specification, we can apply it to the cluster using
the Kubernetes CLI kubect1. In a Terminal, navigate to the chi2 subfolder and
execute the following command:

| $ kubectl create -f pod.yaml

Which will respond with pod "web-pod" created. We can then list all pods in the
cluster with kubectl get pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
web-pod 1/1 Running 0 2m

As expected, we have one of one pods in running status. The pod is called web-
pod, as defined. We can get more detailed information about the running pod by
using the describe command:

$ kubectl describe pod/web-pod
Name: web-pod
Nomespace: default
Node: minikube/192.168.99.105
Start Time: Sun, 25 Mar 2018 22:47:49 -0500
Labels: <none>
Annotations: <none>
Staotus: Running
IP: 172.17.0.3
Containers:
web:
Container ID: le r://e8784dfcle3fcfldedbfblabl1508176799b6024b96d2447126e1db5dd5e 2201
Image: x:alpine
Image ID: [r-pullable://nginx@sha256:17c47@4e19allcd47545fa3¢c17e6903fc88672021F 7907 f212d6663bafeabs57
Port: 80/TCP
State: Running
Started: Sun, 25 Mar 2018 22:47:50 -0500
Ready: True
Restart Count: @
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-fhdsm (ro)
Conditions:
Type Status
Initialized True
Ready True
PodScheduled True
Volumes:
defaul t-token-Ffhdsm:
Type: ecret (a volume populated by a Secret)
SecretName: default-token-fhdsm
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: <nonex
Events:
Type { From Message

Normal heduled default-scheduler Successfully assigned web-pod to minikube

Normal ccessfulMountVolume kubelet, minikube MountVolume.SetUp succeeded for volume "default-token-fhdsm”
Normal Pulled kubelet, minikube Container image "nginx:alpine" already present on machine
Normal Created kubelet, minikube Created container

Normal Started 1 kubelet, minikube Started container

pythontesting

Describing a pod running in the cluster

Please note the notation pod/web-pod in the previous describe command. Other
variants are possible, for example, pods/web-pod OT po/web-pod. pod and po are aliases
of pods. The kubect1 tool defines many aliases to make our lives a bit easier.

The describe command gives us a plethora of valuable information about the pod,
not the least of which is the list of events that happened with this pod affected.
The list is shown at the end of the output.

The information in the containers section is very similar to what we find in a
docker container inspect output.

We also see a volumes section with some entry of type secret. We will discuss
Kubernetes secrets in the next chapter. Volumes, on the other hand, are discussed
next.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Pods and volumes

In the chapter about containers, we have learned about volumes and their
purpose to access and store persistent data. As containers can mount volumes,
pods can do so as well. In reality, it is really the containers inside the pod that
mount the volumes, but that is just a semantic detail. Let's first see how we can
define a volume in Kubernetes. Kubernetes supports a plethora of volume types
and we're not diving into too much detail about this. Let's just create a local
volume 1Inp11c1t1y by defining a Persistentvolumeclaim called my-data-claim.;

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: my-data-claim
spec:
accessModes:
- ReadwWriteOnce
resources:
requests:
storage: 2Gi

We have defined a claim that requests 2 GB of data. Let's create this claim:

|$ kubectl create -f volume-claim.yaml

We can list the claim USiIlg kubectl (pvc is the shortcut for PersistentVolumeClaim)Z

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

my-data-claim Bound pvc-aac3bbZc-3224-11e8-a07f-080027c10823 261 RWO standard 14m

] |

List of PersistentStorageClaim objects in the cluster

In the output, we can see that the claim has implicitly created a volume called
pvc-<1p>. We are now ready to use the volume created by the claim in a pod. Let's
use a modified version of the pod specification that we used previously. We can
find this updated specification in the pod-with-vo1.yam1 file in the chi2 folder. Let's
look at this specification in detail:

apiVersion: vi

kind: Pod

metadata:
name: web-pod

pythontesting

spec:
containers:
- name: web
image: nginx:alpine
ports:
- containerPort: 80
volumeMounts:
- name: my-data
mountPath: /data
volumes:
- name: my-data
persistentVolumeClaim:
claimName: my-data-claim

In the last four lines, in the block voiumes, we define the list of volumes we want
to use for this pod. The volumes that we list here can be used by any of the
containers of the pod. In our particular case, we only have one volume. We
define that we have a volume my-data that is a persistent volume claim whose
claim name is the one we just created before. Then in the container specification,
we have the voiumemounts block where we define the volume we want to use and
the (absolute) path inside the container where the volume will be mounted. In
our case, we mount the volume to the /data folder of the container filesystem.
Let's create this pod:

| $ kubectl create -f pod-with-vol.yaml

Then, we can exec into the container to double-check that the volume has
mounted by navigating to the /data folder, create a file there, and exit the
container:

$ kubectl exec -it web-pod -- /bin/sh

/ # cd /data

/data # echo "Hello world!" > sample.txt
/data # exit

If we are right, then the data in this container must persist beyond the life cycle
of the pod. Thus, let's delete the pod and then recreate it and exec into it to make
sure the data is still there. This is the result:

$ kubectl delete po/web-pod

pod "web-pod” deleted

$ kubectl create -f pod-with-vol.yaml
pod “web-pod” created

$ kubectl exec -it web-pod -- /bin/sh
/ # cat /data/sample.txt
Hello world!

.r'#l

Data stored in volume survives pod recreation

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Kubernetes ReplicaSet

A single pod in an environment with high availability requirements is
insufficient. What if the pod crashes? What if we need to update the application
running inside the pod but cannot afford any service interruption? These
questions and more can only indicate that pods alone are not enough and we
need a higher-level concept that can manage multiple instances of the same pod.
In Kubernetes, the ReplicaSet is used to define and manage such a collection of
identical pods that are running on different cluster nodes. Among other things, a
ReplicaSet defines which container images are used by the containers running
inside a pod and how many instances of the pod will run in the cluster. These
properties and the many others are called the desired state.

The ReplicaSet is responsible for reconciling the desired state at all times, if the
actual state ever deviates from it. Here is a Kubernetes ReplicaSet:

ReplicaSet rs-api
Pod Pod Pod
pod-api pod-api |***® pod-api
api api api

Kubernetes ReplicaSet

In the preceding diagram, we see such a ReplicaSet called rs-api, which governs
a number of pods. The pods are called pod-api. The ReplicaSet is responsible
for making sure that at any given time there are always the desired number of
pods running. If one of the pods crashes for whatever reason, the ReplicaSet
schedules a new pod on a node with free resources instead. If there are more
pods than the desired number, then the ReplicaSet kills the superfluous pods. We
can thus say that the ReplicaSet guarantees a self-healing and scalable set of
pods. There is no limit on how many pods a ReplicaSet can be comprised of.

pythontesting

ReplicaSet specification

Similar to what we have learned about pods, Kubernetes also allows us to either
imperatively or declaratively define and create a rep1icaset. Since the declarative
approach is by far the recommended one in most cases, we're going to
concentrate on this approach. Here is a sample specification for a Kubernetes
ReplicaSet.

apiVersion: apps/vi
kind: ReplicaSet
metadata:
name: rs-web
spec:
selector:
matchLabels:
app: web
replicas: 3
template:
metadata:
labels:
app: web
spec:
containers:
- name: nginx
image: nginx:alpine
ports:
- containerPort: 80

This looks an awful lot like the pod specification we introduced earlier. Let's
concentrate on the differences, then. First, on line 2, we have the kind which was
pod and is now repiicaset. Then, on lines 6-8, we have a selector which
determines the pods that will be part of the rep1icaset. In this case, it is all pods
that have a label app with the value web. Then, on line 9, we define how many
replicas of the pod we want to run; three, in this case. Finally, we have the
template section which first defines the metadata and then the spec which defines the
containers that run inside the pod. In our case, we have a single container using
the nginx:alpine image and exporting port se.

The really important elements are the number of replicas and the selector which
specifies the set of pods governed by the replicaset.

In our ch12 folder, we have a file called repiicaset.yam1 that contains the preceding
specification exactly. Let's use this file to create the repiicaset:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ kubectl create -f replicaset.yaml
replicaset "rs-web" created

If we list all the ReplicaSets in the cluster, we get this (rs is a shortcut for
replicaset)l
$ kubectl get rs

NAME DESIRED CURRENT READY AGE
rs-web 3 3 3 51s

In the preceding output, we can see that we have a single ReplicaSet called rs-web
whose desired state is three (pods). The current state also shows three pods and
all three pods are ready. We can also list all pods in the system and we get this:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
rs-web-6qzld 1/1 Running 0 4m
rs-web-frjam 1/1 Running © 4m
rs-web-zd2kt 1/1 Running 0 4m

Here, we see our three expected pods. The names of the pods are using the name
of the ReplicaSet with a unique ID appended for each pod. In the reaoy column,
we see how many containers are defined in the pod and how many of them are
ready. In our case, we have only a single container per pod and in each case, it is
ready. Thus, the overall status of the pod is running. We also see how many times
each pod had to be restarted. In our case, we did not have any restarts yet.

pythontesting

Self-healing

Now let's test the magic powers of the self-healing of the repiicaset by randomly
killing one of its pods and observing what's going to happen. Let's delete the first
pod from the previous list:

$ kubectl delete po/rs-web-6qzld
pod "rs-web-6qzld" deleted

And then, let's list all pods again. We expect to see only two pods, right? Wrong:

$ kubectl get pods
MAME READY STATUS RESTARTS AGE
rs-web-frijzm 1/1 Running @ 22h

rs-web-gécr? 1/1 Running @ 4ls
rs-web-zdZkt 1/1 Running @ 2zh
s

List of pods after having killed a pod of the ReplicaSet

OK, evidently the second pod in the list has been recreated as we can see from
the ase column. This is auto-healing in action. Let's see what we discover if we
describe the ReplicaSet:

$ kubectl describe rs/rs-web
MName : rs-web
Namespace: default
Selector: app=web
Labels: app=web
Annotations: <nones
Replicas: 3 current / 3 desired
Pods Status: 3 Running / @ Waiting / @ Succeeded / @ Failed
Pod Template:
Labels: app=web
Containers:
nginx:
Image: ngim¢:alpine
Port: 80/TCP
Environment: <nones>
Mounts: <nones
Volumes: <nones=
Everts:
Type Reason Age From Message

Normal SuccessfulCreate 4m replicaset-controller Created pod: rs-web-gbecr?
< W

Describe the ReplicaSet

And indeed, we find an entry under events that tells us that the repiicaset created

qg 6089740 21734177 IT http://t.cn/RDIAj5D

the new pOd rs-web-q6cr7.

pythontesting

Kubernetes deployment

Kubernetes takes the single responsibility principle very seriously. All
Kubernetes objects are designed to do one thing and one thing only. And they
are designed to do this one thing very well. In this regard, we have to understand
Kubernetes ReplicaSets and Deployments. The ReplicaSet, as we have learned,
is responsible for achieving and reconciling the desired state of an application
service. This means that the ReplicaSet manages a set of pods.

The Deployment augments a ReplicaSet by providing rolling update and
rollback functionality on top of it. In Docker Swarm, the swarm service would
incorporate the functionality of both the ReplicaSet and the Deployment. In this
regard, SwarmKit is much more monolithic than Kubernetes. The following
diagram shows the relationship of a Deployment to a ReplicaSet:

Pod]

In the preceding diagram, the ReplicaSet is defining and governing a set of
identical pods. The main characteristics of the ReplicaSet are that it is self-
healing, scalable, and always does its best to reconcile the desired state. The
Kubernetes deployment in turn adds rolling update and rollback functionality to
the plate. In this regard, a deployment is really a wrapper object to a ReplicaSet.

Deployment
Updates and Rollback

[ReplicaSet

Self-healing, scalable, desired state

Pod Pod

Kubernetes deployment

We will learn more about rolling updates and rollbacks in the next chapter of this
book.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Kubernetes service

The moment we start to work with applications consisting of more than one
application service, we have a need for service discovery. In the following
diagram, we illustrate this problem:

port 3000

o—
payments
52305
.“pa‘)‘men
e port 4000 ————————————
—— o0—
http://shipping:4000 ? . "
Web API > f shipping
Mt g
rd‘c"-’?hg. 5
Sl port 5000 ————————————
o— .
ordering

S —

Service discovery

In this diagram, we have a Web API service that needs access to three other
services—payments, shipping, and ordering. The Web API should at no time
have to care how and where to find those three services. In the API code, we just
want to use the name of the service we want to reach and its port number. A
sample would be the URL nttp://payments:3eee that is used to access an instance of
the payments service.

In Kubernetes, the payments application service is represented by a ReplicaSet
of pods. Due to the nature of highly distributed systems, we cannot assume that
pods have stable endpoints. A pod can come and go in a wimp. But that's a
problem if we need to access the corresponding application service from an
internal or external client. If we cannot rely on pod endpoints being stable, what
else can we do?

This is where Kubernetes services come into play. They are meant to provide
stable endpoints to ReplicaSets or Deployments, as shown here:

pythontesting

I Ingress

Service

IP: reliable
Port: reliable

Selector: app=web

Pod Pod Pod

Kubernetes service providing stable endpoints to clients

In the preceding diagram, in the center, we see such a Kubernetes service. It
provides a reliable cluster-wide IP address also called a virtual IP (VIP), as well
as a reliable port that's unique in the whole cluster. The pods that the Kubernetes
service is proxying are determined by the selector defined in the service
specification. Selectors are always based on labels. Every Kubernetes object can
have zero to many labels assigned. In our case, the selector is app=web, that is,
all pods that have a label called app with a value of web are proxied.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Context-based routing

Often, we want to configure context-based routing for our Kubernetes cluster.
Kubernetes offers us various ways to do so. The preferred and most scalable way
at this time is to use an IngressController for this job. The following diagram
tries to illustrate how this ingress controller works:

example.com/web @
Kube API Server
Ingress @ /
IngressController | I
: ngr
{ Service Hg tess |
Sidecar Name: api ost: example.com
® — | IP:5214.0.13 :I:::;{a;;i
H Port: 30044 Port: 3.0044
l NGIMX Selector: app=web
Pod Pod Pod
[N N]
app=web app=web app=web

Context-based routing using a Kubernetes ingress controller

In this diagram, we can see how context-based (or layer 7) routing works when
using an ingress controller, such as Nginx. Here, we have a deployment of an
application service called web. All the pods of this application service have a
label app=web. We then have a Kubernetes service called web that provides a
stable endpoint to those pods. The service has a (virtual) IP of 52.14.0.13 and
exposes port sees44. That is, if a request comes to any node of the Kubernetes
cluster for the name web and port 3ee44, then it is forwarded to this service. The
service then load balances the request to one of the pods.

So far so good, but how is an ingress request from a client to the URL
http[s]://example.com/web routed to our web service? First, we have to define the
routing from a context-based request to a corresponding <service name>/<port>
request. This is done through an Ingress object:

pythontesting

1. In the Ingress object, we define the host and path as the source and the
(service) name, and the port as the target. When this Ingress object is
created by the Kubernetes API server, then a process that runs as sidecar in
the IngressController picks this change up

2. Modifies the configuration file of the Nginx reverse proxy

3. By adding the new route, Nginx is then asked to reload its configuration
and thus will be able to correctly route any incoming requests
{0 http[s]://example.com/web.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Comparing SwarmKit with
Kubernetes

Now that we have learned a lot of details about the most important resources in
Kubernetes, it is helpful to compare the two orchestrators, SwarmKit and
Kubernetes, by matching the important resources. Here is the table:

SwarmKit | Kubernetes | Description

Set of servers/nodes managed by the respective

Swarm Cluster
orchestrator.
Cluster Single host (physical or virtual) which is a
Node
member member of the swarm/cluster.
Manager Node managing the swarm/cluster. This is the
Master
node control plane.
Worker Member of the swarm/cluster running
Node L
node application workload.

Instance of a container image running on a
Container Container** | node. In a Kubernetes cluster, we cannot run a
container.

Instance of a service (swarm) or ReplicaSet

pythontesting

Task

Pod

(Kubernetes) running on a node. A task
manages a single container while a Pod
contains one to many containers that are all
sharing the same network namespace.

Service

ReplicaSet

Defines and reconciles the desired state of an
application service consisting of multiple
instances.

Service

Deployment

A deployment is a ReplicaSet augmented with
rolling update and rollback capabilities.

Routing
Mesh

Service

The Swarm Routing Mesh provides L4 routing
and load balancing using IPVS. A Kubernetes
service is an abstraction which defines a logical
set of pods and a policy by which to access
them. It is a stable endpoint for a set of pods.

Stack

Stack **

Definition of an application consisting of
multiple (Swarm) services. While stacks are not
native to Kubernetes, Docker's tool Docker for
Mac or Windows, will translate them for
deployment onto a Kubernetes cluster.

Network

Network
policy

Swarm software-defined networks (SDNs) are
used to firewall containers. Kubernetes only
defines a single flat network. Every pod can
reach every other pod and or node, unless
network policies are explicitly defined to
constrain inter-pod communication.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we have learned the basics of Kubernetes. We had an overview of
its architecture and an introduction into the main resources used to define and
run applications in a Kubernetes cluster. We also introduced Minikube and
Kubernetes support in Docker for Mac and Windows.

In the next chapter, we're going to deploy an application into a Kubernetes
cluster. Then, we're going to be updating one of the services of this application
using a zero downtime strategy. Finally, we're going to instrument application
services running in Kubernetes with sensitive data using secrets. Stay tuned.

pythontesting

Questions

Please answer the following questions to assess your learning progress:

A=

o o

® N

Explain in a few short sentences what the role of a Kubernetes master is.
List the elements that need to be present on each Kubernetes (worker) node.
Yes or No: We cannot run individual containers in a Kubernetes cluster.
Explain the reason why containers of a pod can use 1ocalhost to
communicate with each other.

What is the purpose of the so-called pause container in a pod?

Bob tells you: Our application consists of three Docker images: web,
inventory, and db. Since we can run multiple containers in a Kubernetes pod,
we are going to deploy all the services of our application in a single pod.
List three to four reasons why this is a bad idea.

Explain in your own words why we need Kubernetes ReplicaSets.

Under which circumstances do we need Kubernetes deployments?

List at least three types of Kubernetes services and explain their purposes
and their differences.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

Here is a list of articles with more detailed information on various topics
discussed in this chapter:

e The Raft Consensus Algorithm at nhttps://raft.github.io/
e Docker Compose and Kubernetes with Docker for Desktop at nttps://dockr.1
y/2G8Iqb9

pythontesting

https://raft.github.io/
https://dockr.ly/2G8Iqb9

Deploying, Updating, and Securing
an Application with Kubernetes

In the last chapter, we learned about the basics of the container orchestrator,
Kubernetes. We got a high-level overview of the architecture of Kubernetes and
learned much about the important objects used by Kubernetes to define and
manage a containerized application.

In this chapter, we will learn how to deploy, update, and scale applications into a
Kubernetes cluster. We will also explain how zero downtime deployments are
achieved to enable disruption-free updates and rollbacks of mission critical
applications. Finally, in this chapter, we are introducing Kubernetes secrets as a
means to configure services with and protect sensitive data.

The chapter covers the following topics:

¢ Deploying a first application
e Zero-downtime deployments
e Kubernetes secrets

After working through this chapter, you will be able to:

e Deploy a multi-service application into a Kubernetes cluster

e Update an application service running in Kubernetes without causing
downtime

e Define secrets in a Kubernetes cluster

e Configure an application service to use Kubernetes secrets

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

In this chapter, we're going to use Minikube on our local computer. Please refer
to chapter 2, Setting up a Working Environment, for more information on how to
install and use Minikube.

The code for this chapter can be found in the chis subfolder of the 1abs folder.
Please make sure you have cloned the GitHub repository at https://github.com/fund
amentalsofdocker/labs, as described in chapter 2, Setting up a Working Environment.

In your Terminal, navigate to the folder 1abs/ch1s.

pythontesting

https://github.com/fundamentalsofdocker/labs

Deploying a first application

We will take our pets application, which we first introduced in chapter s, Docker
Compose, and deploy it into a Kubernetes cluster. Our cluster will be Minikube,
which, as you know, is a single-node cluster. But, from the perspective of a
deployment, it doesn't really matter how big the cluster is and where the cluster
is located—in the cloud, in your company's data center, or on your personal
workstation.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deploying the web component

Just as a reminder, our application consists of two application services, the
Node.js-based web component and the backing PostgreSQL database. In the
previous chapter, we learned that we need to define a Kubernetes peployment
object for each application service we want to deploy. Let's do this first for the
web component. As always in this book, we will choose the declarative way of
defining our objects. Here is the YAML defining a pepioyment object for the web
component:

I web-deployment.yaml X

ion: extensions/vlbetal
Deployment

Kubernetes deployment definition for the web component

The preceding deployment definition can be found in the web-depioyment.yami file in
the 1abs folder ch13. The lines of code are as follows:

e On line 4: We define the name for our peployment Object as web

e On line 6: We declare that we want to have one instance of the web
component running

¢ From line 8 to 10: We define which pods will be part of our deployment,
namely those which have the labels app and service with values, pets and web

pythontesting

respectively

¢ On line 11: In the template for the pods starting at line 11, we define that
each pod will have the two labels app and service applied

e From line 17: We define the single container that will be running in the
pod. The image for the container is our well-known fundamentalsofdocker/chos-
web:1.0 image and the name of the container will be web

e Ports: Finally, we declare that the container exposes port seee for TCP-type
traffic

Please make sure that you have set the context of kubect1 t0 minikube. See chapter 2, Setting up a
Working Environment, for details on how to do that.

We can deploy this pepioyment object using kubect1:

| $ kubectl create -f web-deployment.yaml

We can double-check that the deployment has been created again using our
Kubernetes CLI, and we should see the following output:

$ kubectl get all

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

deploy/web 1 1 1 1 5m

NAME DESIRED CURRENT READY AGE
rs/web-769b88f67 1 i) 1 Sm

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
deploy/web 1 al i 1 S5m

NAME DESIRED CURRENT READY AGE
rs/web-769b88f67 1 1 1 Sm

NAME READY STATUS RESTARTS AGE
1/1 Running @ S5m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
s

Listing all resources running in Minikube
At the time of writing, there seems to be a bug in Minikube or kuvect1 that displays certain
0 resources twice when using the command kubect1 get a11. You can just ignore the duplicate
output.

In the preceding output, we see that Kubernetes created three objects—the
deployment, a pertaining replicaset, and a single pod (remember we specified that
we want one replica only). The current state corresponds to the desired state for
all three objects, thus we are fine so far.

Now, the web service needs to be exposed to the public. For this, we need to
define a Kubernetes service object of type noderort. Here is the definition, which

qg 6089740 21734177 IT http://t.cn/RDIAj5D

can be found in the web-service.yam1 file in the 1abs folder chis:

I web-service.yaml X

Definition of the Service object for our web component
The preceding lines of codes are as follows:

¢ On line 4: We set the name of this service object to web.

¢ On line 6: We define the type of service object we're using. Since the web
component has to be accessible from outside of the cluster, this cannot be a
service Object of type ciusterzr but must be either of type nodeport or
LoadBalancer. We have discussed the various types of Kubernetes services in
the previous chapter and so will not go into further detail about this. In our
sample, we're using a nodeport type of service.

e On lines 8 and 9: We specify that we want to expose port seeo for access
through the TCP protocol. Kubernetes will map container port seee
automatically to a free host port in the range of 30,000 to 32,768. Which
port Kubernetes effectively chooses can be determined using the kubect1 get
service OF kubectl describe command for the service after it has been created.

e From line 10 to 12: We define the filter criteria for the pods for which this
service will be a stable endpoint. In this case, it is all pods that have the
labels app and service with values pets and web respectively.

Having this specification for a service object, we can create it using kubect1:

| $ kubectl create -f web-service.yaml

We can list all services to see the result of the preceding command:

pythontesting

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
kubernetes — ClusterIP 10.96.0.1 <ponex 443/TCP

web NodePort 10.103.113.40 <none> 3000:30125/TCP
> 1

The Service object created for the web component

In the output, we see that a service called web has been created. A unique ciusterzp
10.103.113.40 has been assigned to this service, and the container port see0 has
been published on port se125 on all cluster nodes.

If we want to test this deployment, we need to first find out what IP address
Minikube has, and then use this IP address to access our web service. The
following is the command that we can use to do this:

$ IP=$(minikube ip)

$ curl -4 $IP:30125/
Pets Demo Application

OK, the response is pets pemo Application, Which is what we expected. The web
service is up and running in the Kubernetes cluster. Next, we want to deploy the
database.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deploying the database

A database is a stateful component and has to be treated differently to stateless
components, such as our web component. We have discussed the difference
between stateful and stateless components in a distributed application
architecture in detail in chapter 6, Distributed Application Architecture, and chapte
r o, Orchestrators.

Kubernetes has defined a special type of repiicaset object for stateful
components. The object is called a statefuiset. Let's use this kind of object to
deploy our database. The definition can be found in the 1abs/ch13/db-stateful-
set.yaml file. The details are as follows:

I db-stateful-set.yaml X

n: apps/vl
StatefulSet

A StatefulSet for the DB component

OK, this looks a bit scary, but it is not. It is a bit longer than the definition of the
deployment for the web component due to the fact that we also need to define a

pythontesting

volume where the PostgreSQL database can store the data. The volume claim
definition is on lines 25 to 33. We want to create a volume with the name pets-
data and of a maximum size equal to 100 MB. On lines 22 to 24, we use this
volume and mount it into the container at /var/1ib/postgresql/data where
PostgreSQL expects it. On line 21, we also declare that PostgreSQL is listening
at port s432.

As always, we use kubect1 to deploy the statefulset:

| $ kubectl create -f db-stateful-set.yaml

If we now list all resources in the cluster we can see the additional objects
created:

$ kubectl get all

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

deploy/web 1 1 1 1

NAME DESIRED CURRENT READY AGE
rs/web-769b88f67 1 1 1 27m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
deploy/web 1] 1 i

NAME DESIRED CURRENT READY AGE
rs/web-769b88f67 1 1 1 27m

NAME DESTRED ___CLRRENT __AGF
statefulsets/db 1 1 49s

NAME READY STATUS RESTARTS AGE
po/db-0 1/1 Running @ 49s
PO/ Web-769b88T67-qdZXT 7T RUNATAG 0 Z7m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
svc/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
svc/web NodePort 10.103.113.40 <none> 3000:30125/TCP
s 1

The StatefulSet and its pod

We see that a statefulset and a pod have been created. For both, the current state
corresponds to the desired state and thus the system is healthy. But that doesn't
mean that the web component can access the database at this time. Service
discovery would not work so far. Remember that the weo component wants to
access the db service under the name db.

To make service discovery work inside the cluster, we have to define a
Kubernetes service object for the database component too. Since the database
should only ever be accessible from within the cluster, the type of service object
we need is ciusterzr. Here is the specification, which can be found in

the 1abs/ch13/db-service.yaml file:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

db-service.yaml %

; vl
: Service

: db
: ClusterIP

1 5432
: TCP

Hapets
: db

Definition of the Kubernetes Service object for the database

The database component will be represented by this service object and it will be
reachable by the name db, which is the name of the service, as defined on line 4.
The database component does not have to be publicly accessible, so we decided
to use a service object of type ciustertr. The selector on lines 10 to 12 defines that
this service represents a stable endpoint for all pods that have the according
labels dEﬁDEd, that iS, app: pets and service: db.

Let's deploy this service with the following command:

| $ kubectl create -f db-service.yaml

And we should now be ready to test the application. We can use the browser this
time to enjoy the funny cat images:

[NON JNIRY (Il 192.168.99.100:30125/pet @

=
]
+

Cat Gif of the day

Courtesy: Buzzfeed

Delivered to you by container web-769b88{67-qd2xf

pythontesting

Testing the pets application running in Kubernetes
192.168.99.100 iS the IP address of my Minikube. Verify your address using the command minikube
ip. The port number so125 is the number that Kubernetes automatically selected for my web
service object. Replace this number with the port that Kubernetes assigned to your service. Get
the number by using the command kubect1 get services.

Now we have successfully deployed the pets application to Minikube, which is a
single-node Kubernetes cluster. We had to define four artifacts to do so, which
are as follows:

® A peployment and a service object for the web component
® A statefulset and a service object for the database component

To remove the application from the cluster, we can use the following small
script:

kubectl delete svc/web
kubectl delete deploy/web
kubectl delete svc/db
kubectl delete statefulset/db

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Streamlining the deployment

So far, we have created four artifacts that needed to be deployed to the cluster.
And this is only a very simple application, consisting of two components.
Imagine having a much more complex application. It would quickly become a
maintenance nightmare. Luckily, we have several options as to how we can
simplify the deployment. The method that we are going to discuss here is the
possibility of defining all the components that make up an application in
Kubernetes in a single file.

Other solutions that lie outside of the scope of this book would include the use of
a package manager, such as Helm.

If we have an application consisting of many Kubernetes objects such as
peployment and service objects, then we can keep them all in one single file and
separate the individual object definitions by three dashes. For example, if we
wanted to have the deployment and the service definition for the web component
in a single file, this would look as follows:

apiVersion: extensions/vilbetal
kind: Deployment
metadata:
name: web
spec:
replicas: 1
selector:
matchLabels:
app: pets
service: web
template:
metadata:
labels:
app: pets
service: web
spec:
containers:
- image: fundamentalsofdocker/ch08-web:1.0
name: web
ports:
- containerPort: 3000
protocol: TCP

apiVersion: vi
kind: Service
metadata:

name: web
spec:

pythontesting

type: NodePort
ports:
- port: 3000
protocol: TCP
selector:
app: pets
service: web

We have collected all the four object definitions for the pets application in
the 1abs/chis/pets.yami file, and we can deploy the application in one go:

$ kubectl create -f pets.yaml

deployment "web" created
service "web" created

statefulset "db" created
service "db" created

2 |

Using a single script to deploy the pets application

Similarly, we have created a script, 1abs/ch13/remove-pets.sh, to remove all artifacts
of the pets application from the Kubernetes cluster:

$./remove-pets.sh
deployment "web" deleted
service "web" deleted

statefulset "db" deleted
service "db" deleted

s

Removing pets from the Kubernetes cluster

We have taken our pets application we introduced in chapter s, Docker
Compose, and defined all the Kubernetes objects that are necessary to deploy
this application into a Kubernetes cluster. In each step, we have made sure that
we got the expected result, and once all artifacts existed in the cluster, we have
shown the running application.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Z.ero downtime deployments

In a mission-critical environment, it is important that the application is always
up and running. These days we cannot afford any downtime anymore.
Kubernetes gives us various means of achieving this. An update of an
application in the cluster that causes no downtime is called a zero downtime
deployment. In this chapter, we will present two ways of achieving this. These
are as follows:

¢ Rolling updates
¢ Blue-green deployments

Let's start by discussing rolling updates.

pythontesting

Rolling updates

In the previous chapter, we learned that the Kubernetes pep1oyment object
distinguishes itself from the rep1icaset object in that it adds rolling updates and
rollbacks on top of the latter's functionality. Let's use our web component to
demonstrate this. Evidently, we will have to modify the manifest or description
of the deployment for the web component.

We will use the same deployment definition as in the previous section, with one
important difference—we will have five replicas of the web component running.
The following definition can also be found in the 1abs/ch13/web-deploy-rolling-
vil.yaml file:

apiVersion: extensions/vilbetal
kind: Deployment
metadata:
name: web
spec:
replicas: 5
selector:
matchLabels:
app: pets
service: web
template:
metadata:
labels:
app: pets
service: web
spec:
containers:
- image: fundamentalsofdocker/ch08-web:1.0
name: web
ports:
- containerPort: 3000
protocol: TCP

We can now create this deployment as usual and also, at the same time, the
service that makes our component accessible:

$ kubectl create -f web-deploy-rolling-vi.yaml
$ kubectl create -f web-service.yaml

Once we have deployed the pods and the service, we can test our web
component with the following command:

$ PORT=$(kubectl get svc/web -o yaml | grep nodePort | cut -d' ' -f5)
$ IP=$(minikube ip)

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ curl -4 ${IP}:${PORT}/
Pets Demo Application

As we can see, the application is up and running and returns us the expected
message, pets Demo Application.

Now our developers have created a new version, 2.0, of the weo component.
The code of the new version of the web component can be found

in the 1abs/chiz/web folder, and the only change is located on line 12 of the
file server.js.

app.set(‘views', _ dirname);

app.get('/',function(req, res){

res.status(200).send('Pets Demo Application v2\n');
17

Code change for version 2.0 of the web component

The developers have built the new image as follows:

| $ docker image build -t fundamentalsofdocker/chi3-web:2.0 web

And, subsequently, they pushed the image to Docker Hub:

| $ docker image push fundamentalsofdocker/ch13-web:2.0

We now want to update the image used by our pods that are part of the web
peployment Object. We can do this by using the set image command of kubect1:

$ kubectl set image deployment/web \
web=fundamentalsofdocker/chi3-web:2.0

If we then test the application again, we get the confirmation that the update has
indeed happened:

curl -4 ${IP}:${PORT}/
Pets Demo Application v2

Now, how do we know that there hasn't been any downtime during this update?
Did the update really happen in a rolling fashion? What does rolling update
mean at all? Let's investigate. First, we can get a confirmation from Kubernetes
that the deployment has indeed happened and was successful by using the ro11out
status command:

pythontesting

$ kubectl rollout status deploy/web
deployment "web" successfully rolled out

If we describe the deployment web With kubectl describe deploy/web , We get the
following list of events at the end of the output:

Events:
Type Reason Age From Message

Normal ScalingReplicaSet 12m deployment-controller up replica set web-769b88f€7 to 5
Normal ScalingReplicaSet 3m deployment-controller Scaled up replica set web-55cdf67cd to 1
Normal ScalingReplicaSet 3m deployment-controller Scaled down replica set web-769b88f67 to 4
Normal ScalingReplicaSet 3m deployment-controller Scaled up replica set web-55cdf67cd to 2

Normal ScalingReplicaSet 3m deployment-controller Scaled down replica set web-769b88f67 to 3
Normal ScalingReplicaSet 3m deployment-controller Scaled up replica set web-55cdf67cd to 3

Normal ScalingReplicaSet 3m deployment-controller Scaled down replica set web-769b88f67 to 2

Normal ScalingReplicaSet 3m deployment-controller Scaled up replica set web-55cdf67cd to 4

Normal ScalingReplicaSet 3m deployment-controller Scaled down replica set web-769b88f67 to 1

Normal ScalingReplicaSet 3m (x2 over 3m) deployment-controller (combined from similar events): Scaled down replica

set web-769b88f67 to @

List of events found in the output of the deployment description of the web component

The first event tells us that when we created the deployment, a replicaset web-
769bssfe7 with five replicas was created. Then we executed the update command
and the second event in the list tells us that this meant creating a new rep1icaset
called web-sscdfe7cd with, initially, one replica only. Thus, at that particular
moment there existed six pods on the system, the five initial pods, and one pod
with the new version. But since the desired state of the pep1oyment Object states
that we want five replicas only, Kubernetes now scales down the old rep1icaset to
four instances, which we see in the third event. Then, again, the new replicaset is
scaled up to two instances and, subsequently, the old rep1icaset scaled down to
three instances, and so on, until we have five new instances and all the old
instances have been decommissioned. Although, we cannot see any precise time
(other than three minutes) when that happened, the order of the events tells us
that the whole update happened in a rolling fashion.

During a short time period, some of the calls to the web service would have had
an answer from the old version of the component and some calls would have
received an answer from the new version of the component. But at no time
would the service have been down.

We can also list the recordset objects in the cluster and will get the confirmation
of what I said in the preceding section:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
web-55cdf67cd 5 5 5 27m

web-769b88F67 0 0 0 36m
g |

List all Recordset objects in the cluster

We see that the new recordset has five instances running and the old one has
been scaled down to zero instances. The reason why the old recordset object is
still lingering around is that Kubernetes provides us with the possibility of
rolling back the update and, in that case, will reuse the recordset.

To roll back the update of the image in case some undetected bug sneaked in to
the new code, we can use the roliout undo command:

$ kubectl rollout undo deploy/web

deployment "web"

$ curl -4 ${1IP}:${PORT}/
Pets Demo Application

I have also listed the test command using cur1 in the preceding snippet to verify
that the rollback indeed happened. If we list the recordsets, we see the following
output:

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
web-55cdf67cd 0@ (7] 0 36m

web-769b88f67 5 5 5 45m

|

Listing RecordSet objects after rollback

This confirms that the old recordset (web-769bssfe7) object has been reused and the
new one has been scaled down to zero instances.

Sometimes though we cannot, or do not want to, tolerate the mixed state of an
old version coexisting with new version. We want an all-or-nothing strategy.
This is where blue-green deployments come into play, which we will discuss
next.

pythontesting

Blue-green deployment

If we want to do a blue—green style deployment for our component web of the
pets application, then we can do so by using labels creatively. Let's first remind
ourselves how blue—green deployments work. Here is a rough step-by-step
instruction:

1. Deploy a first version of the component web as biue. We will label the pods
with a label color: biue to do so.

2. Deploy the Kubernetes service for these pods with the label, color: biue in
the selector section.

3. Now we can deploy version 2 of the web component, but this time the pods
have a label, color: green.

4. We can test the green version of the service that it works as expected.

Now we flip traffic from biue to green by updating the Kubernetes service for

the web component. We modify the selector to use the label color: green.

i

Let's define a pep1oyment object for version 1, blue:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

I web-deploy-blue.yaml X

n: extensions/vlbetal
Deployment

web-blue

: fundamentalsofdocker/ch@8-web:1.0
web

Specification of the deployment blue for the web component

The pTECEdiDg definition can be found in the 1abs/ch13/web-deploy-blue.yam1 file.
Please note line 4 where we define the name of the deployment as web-b1ue to
distinguish it from the upcoming deployment web-green. Also note that we have
added the label color: biue on lines 11 and 17. Everything else remains the same
as before.

Now we define the service object for the web component. It will be the same as we
used before with a minor change, as you will see in the following screenshot:

pythontesting

I web-svc-blue-green.yaml x

vl
Service

NodePort

Kubernetes service for the web component supporting blue—green deployments

The only difference to the definition of the service we used earlier in this chapter
is line 13, which adds the label coior: biue to the seiector. We can find the
preceding definition in the 1abs/ch13/web-svc-blue-green.yaml file.

We can then deploy the biuve version of the web component with the following
command:

$ kubectl create -f web-deploy-blue.yaml
$ kubectl create -f web-svc-blue-green.yaml

Once the service is up and running, we can determine its IP address and port
number and test it:

$ PORT=$(kubectl get svc/web -o yaml | grep nodePort | cut -d' ' -f5)

$ IP=$(minikube ip)

$ curl -4 ${1IP}:${PORT}/
Pets Demo Application

As expected, we get the response pets pemo Application.

Now we can deploy the green version of the web component. The definition of its
Deployment ObjECt can be found in the 1abs/ch13/web-deploy-green.yaml file and looks as
follows:

qg 6089740 21734177

! web-deploy-green.yaml X

ersion: extensions/vlbetal
Deployment

a:

service: web
color: green

rs:
fundamentalsofdocker/ch13-web:2.0
2: web

nerPort: 3000
tocol: TCP

Specification of the deployment green for the web component

The interesting lines are as follows:

e Line 4: With the name web-green to distinguish from web-bive and allow for

parallel install
e Lines 11 and 17: Having the color green
e Line 20: Now using version 2.e of the image

Now we're ready to deploy this green version of the service, and it should run

separate from the biue service:
| $ kubectl create -f web-deploy-green.yaml
We can make sure that both deployments coexist:

$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
web-blue 1 il 1 1 23h

web-green 1 1 1 1 3s
4 |

Displaying the list of Deployment objects running in the cluster

http://t.cn/RDIAJS5D

As expected, we have both biue and green running. We can verify that biue is still

the active service:

pythontesting

$ curl -4 ${1IP}:${PORT}/
Pets Demo Application

Now comes the interesting part. We can flip traffic from biue to green by editing
the existing service for the web component. So, execute the following command:

| $ kubectl edit svc/web

Change the value of the label co1or from biue to green. Then save and quit the
editor. The Kubernetes CLI will automatically update the service. When we now
query the web service again, we get this:

$ curl -4 ${IP}:${PORT}/
Pets Demo Application v2

This confirms that the traffic has indeed switched to the green version of the web
component (note the vz at the end of the response to the cur1 command).

If we realize that something went wrong with our green deployment and the new
version has a defect, we can easily switch back to the biue version by editing the
service web again and replacing the value of the label color from green back to
bive. This rollback is instantaneous and should always work. We can then
remove the buggy green deployment and fix the component. When we have
corrected the problem, we can deploy the green Version once again.

Once the green version of the component is running as expected and performing
well, we can decommission the biue version:

| $ kubectl delete deploy/web-blue

When we're ready to deploy a new version, 3.0, this one becomes the blue
version. We update the 1abs/ch13/web-deploy-blue.yanmi file accordingly and deploy
it. Then we flip the service web from green to biue, and so on.

We have successfully demonstrated, with our component web of the pets
application, how blue—green deployment can be achieved in a Kubernetes
cluster.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Kubernetes secrets

Sometimes, services that we want to run in the Kubernetes cluster have to use
confidential data such as passwords, secret API keys or certificates, to name just
a few. We want to make sure that this sensitive information can only ever be seen
by the authorized or dedicated service. All other services running in the cluster
should not have any access to this data.

For this reason, Kubernetes secrets have been introduced. A secret is a key-value
pair where the key is the unique name of the secret and the value is the actual
sensitive data. Secrets are stored in etcd. Kubernetes can be configured such that
secrets are encrypted at rest, that is, in etcd, and in transit, that is, when the
secrets are going over the wire from a master node to the worker nodes on which
the pods of the service using this secret are running.

pythontesting

Manually defining secrets

We can create a secret declaratively the same way we created any other object in
Kubernetes. Here is the YAML for such a secret:

apiVersion: vi
kind: Secret
metadata:
name: pets-secret
type: Opaque
data:
username: am9obi5kb2UK
password: cOVjcmVOLXBhc1N3MHJECg==

The preceding definition can be found in the 1abs/ch13/pets-secret.yam1 file. Now
you might wonder what the values are. Are these the real (unencrypted) values?
No, they are not. And they are also not really encrypted values but just basesa
encoded values. Thus they are not really secure, since base64-encoded values
can be easily reverted to clear text values. How did I get these values? That's
easy:

"

$ echo "john.doe" | basec4

am9obi5kb2UK
$ echo "sEcret-pasSworD" | baset4

cOVjcmVOLXBhcIN3MHIECg==
s 1

Creating base64-encoded values for the secret

We can then create the secret and describe it:

$ kubectl create -f pets-secret.yaml
secret "pets-secret" created

$ kubectl describe secrets/pets-secret
Name : pets-secret

Namespace: default

Labels: <none>

Annotations: <none>

Type: Opaque

Data

password: 16 bytes
username: 9 bytes

1 |

Creating and describing the Kubernetes secret

qg 6089740 21734177 IT http://t.cn/RDIAj5D

In the description of the secret, the values are hidden and only their length is
given. So maybe the secrets are safe now? No, not really. We can easily decode
this secret using the kubect1 get command:

$ kubectl get secrets/pets-secret -o yaml
apiVersion: vl
data:
password: c@VjcmVOLXBhcIN3MHIECg==
username: am9obiSkb2UK
kind: Secret
metadata:
creationTimestamp: 2018-03-31T20:36:05Z
name: pets-secret
namespace: default
resourceVersion: "154786"
selflink: /api/vl/namespaces/default/secrets/pets-secret
uid: 22d818bd-3523-11e8-a3cb-080027c10823
type: Opaque
$

Kubernetes secret decoded

As we can see in the preceding screenshot, we have our original secret values
back. And we can decode them:

$ echo "coVvjcmVOLXBhc1N3MHJECg==" | base64 --decode
sEcret-pasSwOrD

Thus, the consequences are that this method of creating a Kubernetes is not to be
used in any other environment than development, where we deal with non-
sensitive data. In all other environments, we need a better way to deal with
secrets.

pythontesting

Creating secrets with kubectl

A much safer way to define secrets is to use kubect1 . First, we create files
containing the base64-encoded secret values similar to what we did in the
preceding section, but this time we store the values in temporary files:

$ echo "sue-hunter" | base64 > username.txt
$ echo "123abc456def" | base64 > password.txt

Now we can use kubectl to create a secret from those files as follows:

$ kubectl create secret generic pets-secret-prod \
--from-file=./username.txt \
--from-file=./password. txt

secret "pets-secret-prod" created

The secret can then be used the same way as the manually-created secret.

Why is this method more secure than the other one you might ask? Well, first of
all, there is no YAML that defines a secret and is stored in some source code
version control system, such as GitHub, which many people have access to and
so can see and decode the secrets. Only the admin person that is authorized to
know the secrets ever sees their values and uses them to directly create the
secrets in the (production) cluster. The cluster itself is protected by role-based
access control so that no unauthorized people have access to it nor can they
possibly decode the secrets defined in the cluster.

But now, let's see how we can actually use the secrets that we have defined.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Using secrets in a pod

Let's say we want to create a peployment Object where the web component uses our
secret called pets-secret that we introduced in the preceding section. We use the
following command to create the secret in the cluster:

| $ kubectl create -f pets-secret.yaml

In the 1abs/ch13/web-deploy-secret.yaml file, we can find the definition of the
peployment Object. We had to add the part starting from line 23 to the original
definition of the pepioyment Object:

I web-deploy-secret.yaml x

: extensions/vlbetal

1 secrets
"/etc/secrets"

i secrets

Deployment object for web component with a secret

On lines 27 through 30 we define a volume called secrets from our secret pets-
secret. We then use this volume in the container, as described on lines 23 through

pythontesting

26. We mount the secrets in the container filesystem at /etc/secrets and we mount
the volume in read-only mode. Thus, the secret values will be available to the
container as files in said folder. The names of the files will correspond to the key
names, and the content of the files will be the values of the corresponding keys.
The values will be provided in unencrypted form to the application running
inside the container.

In our case, having the keys' username and password in the secret, we will find
two files, named username and password, in the /etc/secrets folder in the container
filesystem. The file username should contain the value john.doe, and the file password
the value secret-passworn. Here is the confirmation:

$ kubectl exec -it web-597b7f7749-87mq5 -- /bin/sh

/app # cd /etc/secrets/

/etc/secrets # 1s -1

total @

Lrwxrwxrwx 1 root root 15 Apr 2 01:26 password -> ..data/password

Lrwxrwxrwx 1 root root 15 Apr 2 01:26 username -> ..data/username
/etc/secrets # cat username && cat password

john.doe

sEcret-pasSworD

/etc/secrets # I

Confirming that secrets are available inside the container

On line 1 of the preceding output, we exec into the container where the web
component runs. Then, on lines 2 to 5, we list the files in the /etc/secrets folder,
and finally, on lines 6 to 8, we show the content of the two files which,
unsurprisingly, show the secret values in clear text.

Since any application written in any language can read simple files, this
mechanism of using secrets is very backwards compatible. Even an old Cobol
application can read clear text files from the filesystem.

Sometimes, though, applications expect secrets to be available in environment
variables. Let's look at what Kubernetes offers us in this case.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Secret values in environment
variables

Let's say our web component expects the username in the environment
variable, pers_usernave and the password in pets_passworo, then we can modify our
deployment YAML to look as follows:

I web-deploy-secret-env.yaml X

ion: extensions/vlbetal

PETS_USERNAME|

! pets-secret
username

! pets-secret
password

Deployment mapping secret values to environment variables

On lines 23 through 33, we define the two environment variables, pets_usernave
and pets_passworo, and map the corresponding key-value pair of the pets-secret to
them.

Note, we don't need a volume anymore but we directly map the individual keys

pythontesting

of our pets-secret into corresponding environment variables valid inside the
container. The following sequence of commands shows that the secret values are
indeed available inside the container in the respective environment variables:

$ kubectl exec -it web-694f958cd4-62g89 -- /bin/sh
/app # echo $PETS_USERNAME && echo $PETS_PASSWORD

john.doe

sEcret-pasSw@rD

/app #]

Secret values are mapped to environment variables

In this section, we have shown how to define secrets in a Kubernetes cluster and
how to use those secrets in containers running as part of the pods of a
deployment. We have shown two variants on how secrets can be mapped inside a
container, the first one using files and the second approach using environment
variables.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Summary

In this chapter, we have learned how to deploy an application into a Kubernetes
cluster and how to set up application-level routing for this application.
Furthermore, we have learned ways to update application services running in a
Kubernetes cluster without causing any downtime. Finally, we have used secrets
to provide sensitive information to application services running in the cluster.

In the next and final chapter, we are going to learn how to run a containerized
sample application in the cloud using different offerings provided by cloud
vendors, such as Microsoft Azure, Amazon AWS, and Google Cloud. Stay
tuned.

pythontesting

Questions

To assess your learning progress, please answer the following questions:

1.

You have an application consisting of two services, the first one being a
web API and the second one a DB, such as Mongo. You want to deploy this
application into a Kubernetes cluster. In a few short sentences, explain how
you proceed.

Describe in your own words in a few sentences the components you need to
establish layer 7 (or application level) routing for your application.

List the main steps needed to implement blue—green deployment for a
simple application service. Avoid going into too much detail.

Name three or four types of information that you would provide to an
application service through Kubernetes secrets.

Name the sources that Kubernetes accepts when creating a secret.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Further reading

Here are a few links that provide additional information on the topics discussed
in this chapter:

e Performing a rolling update at https://bit.1y/2020kEQ
e Blue—green deployment at https://bit.1ly/2r21xnJ
e Secrets in Kubernetes at https://bit.1ly/2cehmzF

pythontesting

https://bit.ly/2o2okEQ
https://bit.ly/2r2IxNJ
https://bit.ly/2C6hMZF

Running a Containerized App in the
Cloud

In the previous chapter, we learned how to deploy a multi-service application
into a Kubernetes cluster. We configured application-level routing for this
application and updated its services using a zero-downtime strategy. Finally, we
provided confidential data to the running services by using Kubernetes secrets.

In this chapter, we will give an overview of some of the most popular ways of
running containerized applications in the cloud. We will have a closer look at
what the most popular cloud vendor, AWS, offers in this regard. We will include
self-hosting and hosted solutions and discuss their pros and cons. Offerings of
other vendors, such as Microsoft Azure and Google Cloud Engine (GCE), will
also be briefly discussed.

Here are the topics we will be discussing in this chapter:

Deploying our application into AWS ECS
Deploying and using Docker EE on AWS

A short peek into Azure’s container offerings
A short peek into Google’s container offerings

After reading this chapter, you will be able to:

¢ Deploy a simple application into AWS ECS

e Create a Kubernetes cluster in AWS using Docker Enterprise Edition

e Deploy a simple application into a Docker Enterprise Edition cluster in
AWS

e Name hosted container offerings of Microsoft Azure and Google Cloud

e List two or three pros and cons for each of the cloud-based managed
offerings of Amazon, Microsoft, and Google

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Technical requirements

We are going to use Amazon AWS, Microsoft Azure, and Google Cloud in this
chapter. Thus it is necessary to have an account on each platform. If you do not
have an existing account, you can ask for a trial account for all of those cloud
providers. We also use the files in folder ch14 of our labs repository from GitHub
at https://github.com/fundamentalsofdocker/labs/tree/master/chid.

pythontesting

https://github.com/fundamentalsofdocker/labs/tree/master/ch14

Deploying our application into AWS
ECS

In this section, we are going to learn how to deploy our pets application to AWS
Elastic Container Service (ECS). Next to Kubernetes and Docker Swarm, ECS
is one of the most popular container platforms.

We are assuming that you are somewhat familiar with AWS and its core concepts, such as
security group (SG), virtual private cloud (VPC), and elastic compute cloud (EC2).

As a prerequisite, we need an account on AWS. If you do not yet have such an
account then please create a free trial account here at https://aws.amazon.com/free.
LOg in to your account USiIlg the link at https://console.aws.amazon.com. Navigate to
the ECS home page at https://console.aws.amazon.com/ecs/home.

https://aws.amazon.com/free
https://console.aws.amazon.com
https://console.aws.amazon.com/ecs/home
https://console.aws.amazon.com

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Introduction to ECS

AWS ECS has a somewhat unique way of defining resources. From a high-level
perspective, the resource types AWS use resemble a bit of a mixture of Docker
Swarm and Kubernetes resources. At the center to everything is the ECS cluster.
There are multiple ways of creating such a cluster. The two main ones are as
follows:

e Fargate: This is new and at the time of writing only available in the US
East region. Infrastructure such as EC2 instances are automatically
provisioned and managed by ECS.

e Manual: We provision and manage our own infrastructure, such as EC2
instances.

Once we have provisioned a cluster, we're ready to author task definitions. A
task definition can be compared to a Kubernetes pod. It is an abstraction of one
to many containers that are co-located and run in the same network namespace.
Thus, if I have two containers, web and db, where web needs to access the container
DB on port 34ss, it can do so through a localhost, that is http://127.6.0.1:3456.

A task is an instance of a task definition. When creating a task, we're actually
running containers in the cluster based on the settings in the task definition. We
can create multiple tasks from one and the same task definition.

In AWS ECS, there is also the concept of a service. A service is very similar to a
Docker Swarm service as it makes sure that the life cycle of a set of tasks is
orchestrated. Crashed tasks are rescheduled and more.

Unfortunately, if you're not familiar with how to do this then we have to refer you to the online

0 As always on AWS, we need to have an SG and a VPC with subnets defined ahead.
documentation of AWS since this topic lies outside the scope of this book.

pythontesting

Creating a Fargate ECS cluster of
AWS

Perform the following steps once you have created a security group and a VPC
with at least one subnet:

1. Navigate tO https://console.aws.amazon.com/ecs and click on Create Cluster
button.

2. Choose the Networking Only (Powered by AWS Fargate) template and then
click Next Step.

3. Enter the name of the cluster, for example, pets-ciuster, and leave the Create
VPC checkbox unchecked.

4. Click Create. The cluster will be created for you.

This might take a moment or so. Once done, you can click View Cluster button.

https://console.aws.amazon.com/ecs

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Authoring a task definition

We're starting with a simple task definition, which we then test and evolve until
we have our pets application up and running. Proceed with the following steps:

1. In the navigation pane, choose Task Definitions.

2. Then click the Create new Task Definition button.

3. Select FARGATE as the launch type compatibility and then click Next
Step.

4. Name the task definition pets-task-def.

5. Under the Task Size section, select 1 GB for task memory and 0.5 for task
CPU.

6. Next, click the Add container button. In the dialog box, enter web as the
name and nginx:alpine as the image. Under the Port mappings section, add
port so:

pythontesting

Add container

~ Standard
Container name* web (1]
Image* nginx:alpine i]
%
Custom image format: [registry-url]/[namespace]/[image]:[tag]
Memory Limits (MiB} Softlimit v | 728 o
© Add Hard limit
Define hard and/or soft memory limits in MiB for your container. Hard and soft
imits correspond to the ‘memory’ and ‘memoryReservation’ parameters,
respectively, i k definitions.
ECS recommends 300-500 MiB as a starting point for web applications.
Port mappings {i]

80 tcp ~ Q

© Add port mapping

Host port mappings are not valid when the network mode for a task definition is host or awsvpc. To specify diffe
and container port mappings, choose the Bridge network made.

Adding a container to the ECS task definition

7. Then click the Add. button. Now we're ready to actually run a task from this
task description in our pets cluster.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Running a task in ECS

Select the pets-task-def task definition and under Actions, select Run Task. In the
window, perform the following steps:

1. Select FARGATE as the launch type.

2. Under the Cluster VPC dropdown, select the VPC that you have prepared

beforehand.

Under the Subnets dropdown, select one of the subnets of your VPC.

4. Click the Edit button under the Security groups option and select your
security group that you have prepared.

5. Leave all the other fields with their default values:

w

Clusters + Run Task

Task Definitions Select the cluster to run your task definition on and the number of copies of that task to run. To ap|
F Advanced Options.

Repositories

Launchtype ® FARGATE EC2 o
Task Definition pets-task-def:1
Platform version = LATEST v Li]
Cluster pets-cluster ~
Number of tasks 1

Task Group [i]

VPC and security groups

VPC and security groups are configurable when your task definition uses the awsvpc network mod

Cluster VPC* | vpc-525dbag5 (172.31.0.0/16) [gns-fod v @

Subnets* [et-db2808 4 ol @
(172.31.69.32/28) | rich-morrow-1 - us-east
-la
assign ipvé on creation: Disabled
-
Security groups’ 5o pace0810 | Edit o
Auto-assign public =~ ENABLED - o

P

Running a task in our ECS cluster

6. Once done, click the Run Task button. It may take a minute or so to
provision and run this task. You can see the task in the cluster overview on
the Tasks tab:

pythontesting

Task Definitions

@ Stopped tasks successfully
Task Ids : [*38186a62-fab6-4454-bf87-d4ef1c481992"]

Amazon ECR Clusters > pets-cluster

Repositories

Cluster : pets-cluster

Get a detalled view of the resources on your cluster,

Status

Pending tasks count

Running tasks count

ACTIVE
0
Q Fargate, 0 EG2

2 Fargate, 0 EC2

Delete Cluster

Active service count 0 Fargate, 0 EC2

Draining service count 0 Fargate, 0 EG2

Services Tasks = ECSInstances

Desired task status: (FM) Stopped

Metrics = Scheduled Tasks

Stop Al

Launch type ALL - < 11 Pagesize 50

Task definit... Containeri... Last status Desirad sta... Platform ve...

d2b55013-1...

pets-task-defil -

RUNNING RUNNING family:pets-t... FARGATE

Our first task is running in the pets cluster

7. Click on the task (in the Tasks column) to navigate to the task details page.
There you will find the public IP address for this task. Copy the IP address
and paste it into a new browser tab and hit Enter. The welcome page of
Nginx should be displayed as follows:

e0e® < [im] 54.204.209.77 <

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Testing the first task running in our ECS pets cluster

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Modifying the task definition

Now that we have successfully run a first task in our ECS cluster, it is time to
modify the task definition to use our images of the pets application instead of the
NngX image. We will be llSiI'lg the image fundamentalsofdocker/ch14-web:1.0 in this
task definition ,the source code of which can be found in our code repository in
folder 1abs/ch14/ecs/web.

The steps to change the task definition are as follows:

1. Select the pets-task-def task definition and then select revision 1.

2. The Create new revision button will be enabled. Click it and in the
appearing page scroll down to the Container Definitions section. There you
should see our web container. Click it and modify the image and instead of
nginx:alpine add the value fundamentalsofdocker/ch14-web:1.0.

3. Click Update and then click Create. This will create a new revision 2 of our
task definition called pets-task-def:2.

4. Go back to the cluster and stop the current task. Then click Run new Task.

In the dialog, fill in the same information that you did when running the

first task but make sure that under Task Definition you select revision 2,

namely pets-task-def:2.

6. Click Run Task and wait until the task is provisioned and running. This may
take a while since ECS needs to download the image from Docker Hub.
Once the task is ready, navigate to its details and locate the public IP
address assigned to it.

i

Use the browser to verify you can reach our web component. If all went well, we
should see the following screenshot:

00O < 5l 18.233.102.17 ¢]

Pets Demo Application

The pets web component is running in our ECS pets cluster

Now our web component is running but we also need the database from which it
retrieves the nice cat images. So we need to create yet another revision of the
task definition, which will include our ¢b component.

pythontesting

Adding the database component to
the application

Let's modify the task definition and add a volume and the database container that
will use that container:

1. Select the pets-task-def task definition again and then select revision 2.

2. Click the Create new revision button. First we want to add a volume
definition. This volume will be used by the db container.

3. Scroll down to the Volumes section and click the Add velume link. Name
the volume pets-data and click Add.

4. In the Container Definitions section, click the Add container button. Define
the name of the container to be db and the image to
be fundamentalsofdocker/ch08-db:1.0.

5. Scroll down to the STORAGE AND LOGGING section and under Mount
points, select pets-data as Source volume and /var/1ib/postgresql/data as
Container path:

STORAGE AND LOGGING

Read only root file (i}
system

Mount points pets-data ¥

/var/lib/postgresql/data

© Add mount point

Mounting the volume pets-data to the db container

6. Click Add to complete this dialog and then click Create to create revision 3
of the task definition. This revision 3 contains the full definition of our pets
application. Let's find out whether it works, shall we?

qg 6089740 21734177 IT http://t.cn/RDIAJ5D

7. Navigate to the cluster details and make sure to stop the previous task.

8. Then click Run Task and enter the same values as before with the exception
of the task definition.

9. There, be sure to select pets-task-def:3.

Once the task is provisioned and running, we can locate its public IP address and
then in a browser navigate to nttp://<1p address>/pet, Where <ip address> is the
public IP of the task:

®0® < B} 52.91.14.57/pet &

Cat Gif of the day

Courtesy: Buzzfeed

Delivered to you by container f0dd8alc4495
The pets application running in AWS ECS

In conclusion, we have created a cluster in AWS and deployed our pets
application to it by defining an ECS task definition first and then running a task
from this task definition. Since we are using the Fargate version of ECS, we did
not have to worry about our own infrastructure, such as EC2 instances.

ECS makes it relatively easy to deploy and run a containerized application in the
cloud. When using the Fargate template, we don't even have to provision and
manage the infrastructure, as AWS will do that for us. Although this might be

pythontesting

appealing for many, it is also one of the biggest drawbacks of this offering.
AWS, out of understandable commercial interest, does everything to lock us into
their ecosystem. Once we have bought into ECS, it is highly unlikely that we
will ever be able to change the cloud provider or even just use a different
orchestration engine, such as Kubernetes.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Deploying and using Docker EE on
AWS

In this section, we're going to install Docker Universal Control Plane (UCP)
version 3.0. UCP is part of Docker's enterprise offering and supports the two
orchestration engines, Docker Swarm and Kubernetes. UCP can be installed in
the cloud or on-premise. Even hybrid clouds are possible with UCP.

To try this, you need a valid license for Docker EE or you can claim a free test
license on Docker Store.

pythontesting

Provisioning the infrastructure

Create an auto scaling group (ASG) in AWS using the Ubuntu 16.04 server
AMLI. Configure the ASG to contain three instances of size t2.xlarge. Here is the
result of this:

- Create Auto Scaling group .= Eig O

Filter: O, pets X 1 to 1 of 1 Auto Scaling Groups

[] Name ~ Launch Configuration / Instances -~ Desired Min Max Availability Zones Default Cooldown Health C
@ pets-group pet-asg 3 3 3 3 us-east-1e 300 300
Auto Scaling Group: pets-group _ []

Details Activity History Scaling Policies Instances Monitoring Notifications Tags Scheduled Actions Lifecycle Hooks

il v
Actions 0
Filter: Any Health Status ¥ Any Lifecycle State v Q Filter instances... X 1 to 3 of 3 Instances
Instance ID -« Lifecycle -~ Launch Configuration Name Availability Zone ~ Health Status ~ Protected from
i-0a4697b10a1180de3 InService pet-asg us-east-le Healthy
i-0b71beb770f665ed4a InService pet-asg us-east-1e Healthy
i~0c3d2741065073ed6 InService pet-asg us-east-1e Healthy

ASG on AWS ready for Docker EE

Once the ASG has been created, and before we continue, we need to open the
SG a bit (of which our ASG is part of) so that we can access it through SSH
from our laptop and also so that the VMs can communicate with each other.
Navigate to your SG and add two new inbound rules, shown here:

qg 6089740 21734177

Create Security Group -t ERS

1T http://t.cn/RDIAJS5D

Q@ O
(), ' Group ID : sg-945e9bdd Add filter (2] 1to1of1
) Name Group ID - Group Name VPC ID Description
[5g-945e9bdd pets-sg vpc-f3723f96 Pets Security Group
Security Group: sg-945e9bdd !
Description Inbound Outbound Tags
Edit
Type (i Protocol i Port Range (i Source i Description (i
All traffic All All 70.113.114.234/32
All traffic All All sg-845e9bdd (pets-sg)
SSH TCP 22 0.0.0.0/0

AWS Security Group settings

In the preceding screenshot:

e The first rule allows any traffic from my personal laptop (with IP address
70.113.114.234) t0 access any resource in the SG.

e The second rule allows any traffic inside the SG itself. These settings are
not meant to be used in a production-like environment as they are way too
permissive. But for this demo environment, they work well.

pythontesting

Installing Docker

SSH into all three instances and install Docker. Using the downloaded key, SSH
into the first machine:

|$ ssh -i pets.pem ubuntu@<IP address>
Here <1p address> is the public IP address of the VM we want to SSH into.

Now we can install Docker. For a detailed instruction, refer to nttps://dockr.1ly/2Hi
wrec. We have a script in the 1abs/chi4/aws folder called instai1-docker.sh that we can
use. First we need to clone the 1abs GitHub repository to the VM:

$ git clone https://github.com/fundamentalsofdocker/labs.git
$ cd labs/chi14/aws

Then run the script to install Docker:

|$./install-docker.sh

Once the script is finished, we can verify that Docker is indeed installed using
sudo docker version. Repeat the preceding code for the two other VMs.

the user ubuntu to the group docker. Thus exist the current SSH session and connect again. This

0 The sudo is only necessary until the next SSH session is opened to this VM since we have added
time sudo should not be needed in conjunction with docker.

https://dockr.ly/2HiWfBc

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Installing Docker UCP

We need to set a few environment variables, as follows:

$ export UCP_IP=<IP address>
$ export UCP_FQDN=<FQDN>
$ export UCP_VERSION=3.0.0-beta2

Here <1p address> and <rqon> are the public IP address and the public DNS name of
the AWS EC2 instance we're installing in UCP.

After that, we can use the following command to download all the images that
UCP needs:

$ docker run --rm docker/ucp:${UCP_VERSION} images --list \
| xargs -L 1 docker pull

Finally, we can install UCP:

ubuntu@ip-172-31-8-100:~$% docker container run --rm -it --name ucp \
-v /var/run/docker.sock:/var/run/docker.sock \
docker/ucp:${UCP_VERSION} install \
--admin-username admin \
--admin-password adminadmin \
--san ${UCP_IP} \
--san ${UCP_FQDN}
[0000] Verifying your system is compatible with UCP 3.0.0-beta2 (4f665c3)
[0000] Your engine version 18.03.0-ce, build 0520e24 (4.4.0-1052-aws) is compatible
[0000] All required images are present
[0000] Initializing a new swarm at 172.31.8.100
[0005] Establishing mutual Cluster Root CA with Swarm
[0008] Installing UCP with host address 172.31.8.100 - If this is incorrect, please sp|
[0008] Generating UCP Client Root CA
[0008] Deploying UCP Service
[0049] Installation completed on ip-172-31-8-100 (node jatipSocsvhighiilo55ho41v)
[0049] UCP Instance ID: 803f54eedvsdlc2wvfju@iv4?
[0049] UCP Server SSL: SHA-256 Fingerprint=51:E8:13:FF:5F:2C:89:CC:E8:53:46:5C:D9:2F:3
[0049] Login to UCP at https://172.31.8.100:443
[0049] Username: admin
[0049] Password: (your admin password)
ubuntu@ip-172-31-8-100:~$ |J

Installing UCP 3.0.0-beta2 on a VM in AWS

Now we can open a browser window and navigate to https://<1p address>. Log in
with your username, admin, and password, adminadmin. When asked for the license,
upload your license key or follow the link to procure a trial license.

Once logged in, on the left-hand side under the Shared Resources section, select

pythontesting

Nodes and then click on the Add Node button:

admin

Nodes LAST 15 r«ziﬁmu‘w ES :'

Dashboard

User Management

40%

Shared Resources

20%

Collections

Stacks

15:30 15:35 15:40

Containers 0 Max CPU Max Memory 7.63% Max Disk Usage

Images

Nodes

Kubernetes

Swarm

Status Name Type Role Address Engine 0S/Arch CPU Me
ip-172-31-8-10C mixed manager 72.31.8.100 18.03.0-ce 41\ linux/x8... 37.1% Z
Adding a new node to UCP

In the subsequent Add Node dialog box, make sure that the node type is Linux
and the node role, Worker is selected. Then copy the docker swarm join command
at the bottom of the dialog box. SSH into the other two VMs you created and run
this command to have the respective node join the Docker Swarm as a worker

node:

$|ssh -i pets.pem ubuntu@54,208,149,247
Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-1052-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu. com/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

30 packages can be updated.
@ updates are security updates.

¥* System restart required *

Last login: Sun Apr 8 20:58:32 2018 from 70.113.114.234

ubuntu@ip-172-31-6-57:~$ docker swarm join --token SWMTKN-1-4w858a6f37b8v4ozyxn@bxacjoxtcogizu@4dmosga
c3j5o0cna-9283blec9oaygu@3wmyzlekptb 172.31.8.100:2377

This node joined a swarm as a worker.

ubuntu@ip-172-31-6-57:~$ ||

Joining a node as a worker to the UCP cluster

Back in the web UI of UCP, you should see that we now have three nodes ready,
as shown here:

qg 6089740 21734177

Status Name Type Role Address Engine 0S/Arch
® ip-172-31-8-10C mixed manager 172.31.8.100 18.03.0-ce B linux/x8...
& ip-172-31-15-11 swarm worker 172.31.15.110 18.03.0-ce C\ linux/x8...
® ip-172-31-6-57 swarm worker 172.31.6.57 18.03.0-ce Qlinux/x8...

List of nodes in the UCP cluster

CPU

31.95%

3.5%

3.27%

Memory

7.71%

1.05%

1.07%

Disk

50.73%

31.36%

31.36%

1T http://t.cn/RDIAJS5D

Details

Healthy UCP ...
Healthy UCP ...

Healthy UCP ...

By default, worker nodes are configured so that they can only run the Docker
Swarm work load. This can be changed in the node details though. In this, three
settings are possible—Swarm only, Kubernetes only, or mixed workload. Let's
start with Docker Swarm as the orchestration engine and deploy our pets

application.

pythontesting

Remote admin the UCP cluster

To be able to manage our UCP cluster remotely from our laptop, we need to
create and download a so called client bundle from UCP. Proceed with the
following steps:

1. In the UCP web Ul, on the left-hand side under admin, select the My Profile
option

2. In the subsequent dialog, select the New Client Bundle option and then
Generate Client Bundle:

Profile

Client Bundles I
New Client Bundle ~
Default Collection
‘ Generate Client Bundle PUBLIC KEY

All Roles T
Add Existing Client Bundle

21:34:09 UTC
My Grants

Security

Generating and downloading a UCP client bundle

3. Locate the downloaded bundle on your disk and unzip it
4. In a new terminal window, navigate to that folder and source the env.sh file:

| $ source env.sh

You should get an output similar to this:

Cluster "ucp_34.232.53.86:6443_admin" set.
User "ucp_34.232.53.86:6443_admin" set.
Context "ucp_34.232.53.86:6443_admin" created.

Now we can verify that we can indeed remote access the UCP cluster by,
for example, listing all the nodes of the cluster:
$ docker node 1s

ID HOSTNAME AVAILABILITY MANAGER STATUS ENGINE VERSION
wougljiphzk4vmmbmltlqizkg ip-172-31-6-57 Active 18.03.0-ce

jatipSocsvhighiilo55ho4lv * ip-172-31-8-100@ Active Leader 18.03.0-ce
tlkaeww3idlte9@ko5zr8xkeu ip-172-31-15-110 Active 18.03.0-ce
s

Listing all the nodes of our remote UCP cluster

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Let's try to deploy the pets application as a stack using Docker Swarm as the
orchestration engine.

pythontesting

Deploying to Docker Swarm

In the Terminal, navigate to the 1abs/ch14/ucp folder and create the pets stack using
the file stack.ymi:
$ docker stack deploy -c stack.yml pets

Creating network pets_pets-net
Creating service pets_db

Creating service pets_web
sl
Deploying the pets stack into the UCP cluster

In the UCP web UI, we can verify that the stack has been created:

admin v 2 Stacks
® Dashboard

User Management

Type Name Services/Containers Networks
Shared Resources Swarm Services pets 2 1
Collections Basic Containers Docker Universal Control Plane 803f54eedvsdic2wyfjuO... 9 0
= Stacks
Containers 3
lmmamac i |

The pets stack listing in the UCP web Ul

To test the application, we can navigate to Services under the main
menu, Swarm. The list of services running in the cluster will be displayed as
follows:

qg 6089740 21734177

admin v
® Dashboard
User Management

Shared Resources

Kubernetes v
Swarm
B services i
Volumes 4
Networks 14
Secrets 0

2 Services

Status

® 1/

e

1T http://t.cn/RDIAJS5D

® pets web

Last updated & minutes ago

Inspect Resource v Configure

Name Image Mode Updated At Last Error
CONFIGURATION
pets_web fundamen... Replicated 6 minutes ago No errors
[[]
pets_db fundamen... Replicated 6 minutes ago No errors 0h54r4sbncy@wom0yaiwjx0lt
Name
pets web
Created

Today at 4:46 PM

Updated
Today at 4:46 PM

Update Status
Never Updated

Published Endpeints
http://34.232 53 86:3000

Collection

7
Details of the service web of the pets stack

In the preceding screenshot, we see our two services, web and db, of the pets stack.
If we click on the web service, its details get displayed on the right-hand side.
There we find an entry, Published Endpoints. Click on the link and our pets
application should be displayed in the browser.

When done, remove the stack from the console with:

| $ docker stack rm pets

Or alternatively, you can try to remove that stack from within the UCP web UL.

pythontesting

Deploying to Kubernetes

From the same Terminal that you used to remote access the UCP cluster to
deploy the pets application as a stack using Docker Swarm as the orchestration
engine, we can now try to deploy the pets application to the UCP cluster using
Kubernetes as the orchestration engine.

Make sure you're still in the 1abs/ch14/ucp folder. Use kubect1 to deploy the pets
application. First test that we can get all the nodes of the cluster with the
Kubernetes CLI:

$ kubectl get nodes
NAME STATUS ROLES VERSION
ip-172-31-15-110° Ready <none> v1.8.2-docker.128+56ab40b2f3e9b9

ip-172-31-6-57 Ready <none> v1.8.2-docker.128+56ab40b2f3e9b9
ip-172-31-8-100 Ready master v1.8.2-docker.128+56ab40b2f3e9b9
s

Getting all the nodes of the UCP cluster using the Kubernetes CLI

Apparently, my environment is configured correctly and kubect1 can indeed list
all the nodes in the UCP cluster. That means I can now deploy the pets
application using the definitions in file pets.yam1:

$ kubectl create -f pets.yaml

deployment "web" created
service "web" created

deployment "db" created
service "db" created
s 1
Creating the pets application in the UCP cluster using the Kubernetes CLI

We can list the objects created by using kubect1 get al1. In a browser, we can then
navigate to nttp://<Ip address>:<port> to access the pets application, where <1p
address> is the public IP address of one of the UCP cluster nodes and <port> is the
port published by the Kubernetes service web.

We have created a cluster of three VMs in an AWS ASG and have installed
Docker and UCP 3.0 on them. We then deployed our famous pets application
into the UCP cluster, once using Docker Swarm as the orchestration engine and
once Kubernetes.

Docker UCP is a platform agnostic container platform that offers a secure

qg 6089740 21734177 IT http://t.cn/RDIAj5D

enterprise grade software supply chain on any cloud and on-premise, on bare
metal, or on virtualized environments. It even offers the freedom of choice when
it comes to orchestration engines. The user can choose between Docker Swarm
and Kubernetes. It is even possible to run applications in both orchestrators in
the same cluster.

pythontesting

A short peek into Azure’s container
offerings

To play with Microsoft's container-related offerings in Azure, we need an
account on Azure. You can create a trial account or use an existing account. Get
your trial account here at nttps://azure.microsoft.com/en-us/free/.

Microsoft offers different container-related services on Azure. Probably the
easiest one to use is the Azure Container Instances, which promises the fastest
and simplest way to run a container in Azure, without having to provision any
virtual machines and without having to adopt a higher-level service. This service
is only really useful if you want to run a single container in a hosted
environment. The set up is quite easy. In the Azure portal (portal.azure.com), first
create a new resource group and then create an Azure container instance. You
only need to fill out a short form with properties such as the name of the
container, the image to use, and the port to open. The container can be made
available on a public or private IP address and will be automatically restarted if it
crashes. There is a decent management console available, for example, to
monitor resource consumption such as CPU and memory.

The second choice is Azure Container Service (ACS), which provides a way to
simplify the creation, configuration, and management of a cluster of virtual
machines that are preconfigured to run containerized applications. ACS uses
Docker images and provides a choice between the three orchestrators:
Kubernetes, Docker Swarm, or DC/OS (powered by Apache Mesos). Microsoft
claims that their service can be scaled to tens of thousands of containers. ACS is
free and one is only charged for the computing resources.

Let's try to create a hosted Docker Swarm with one manager and one worker
node, to which we will then deploy our pets demo application. First we need to
install the Azure CLI 2.0. We can use a Docker image for this:

|$ docker container run -it microsoft/azure-cli:latest

Once the container is running, we need to log in to our account:

https://azure.microsoft.com/en-us/free/
http://portal.azure.com

qg 6089740 21734177 IT

| bash-4.3# az login

You will be presented with the following message:

To sign in, use a web browser to open the page https://microsoft.com/devicelogin and
enter the code <code> to authenticate.

Follow the instructions and log in through the browser. Once you have
successfully authenticated to your Azure account, you can go back to your
Terminal and you should be logged in.

First, we create a new resource group named pets-rg:

9 Select the location that is closest to you. In my case, it is US East.

bash-4.3# az group create --name pets-rg --location eastus
{
"id": "/subscriptions/186760ad-9152-4499-b317-c9bff441fb9d/resourceGroups/pets-rg",
"location": "eastus",
"managedBy": null,
"name": "pets-rg",
"properties": {
"provisioningState": "Succeeded"

}’
"tags": null

x
bash-4.3# |

Creating a resource group in Azure

Then we create a new Azure Container Service, using Docker Swarm as the
orchestration engine. This may take a few minutes. Here is the result:

pythontesting

http://t.cn/RDIAJS5D

bash-4.3# az acs create -g pets-rg -n pets-cluster --orchestrator-type swarm --generate-ssh-keys
{
"id": "/subscriptions/186760Qad-9152-4499-b317-c9bff441fb9d/resourceGroups/pets-rg/providers/Microsq
111523325303.63794370404" ,
"name": "azureclil523325303.63794370404",
"properties": {
"additionalProperties”: {
"duration": "PT1@OM22.70714025",
"outputResources": [
{
"id": "/subscriptions/18676@ad-9152-4499-b317-c8bff441fb9d/resourceGroups/pets-rg/providery
tainerServices/pets-cluster”,
"resourceGroup”: "pets-rg"
}
1,
"templateHash": "14213326594306665848"

1,
"correlationId": "94aebdbd-b8d@-40fc-b492-e285ela364bb",
"debugSetting": null,

"dependencies": [],
"mode": "Incremental”,
"outputs": {
"agentFQDN": {
"type": "String",
"value": "pets-clust-pets-rg-18676@agent.eastus.cloudapp.azure.com"
1
"masterFQDN": {
"eype': "String®,
"value": "pets-clust-pets-rg-18676@mgmt.eastus.cloudapp.azure.com"”

Creating an Azure Container Service using Docker Swarm (shortened)

Once our Docker Swarm has been created in Azure, we can issue the following
command to retrieve the list of public IPs that we need to connect to the Swarm:

bash-4.3# az network public-ip list --resource-group pets-rg \
> --query "[*].{Name:name,IPAddress:ipAddress}" \
-0 table
IPAddress

swarm-agent-ip-pets-clust-pets-rg-18676@agent-CE7D8170 13.92.172.89
swarm-master-ip-pets-clust-pets-rg-18676@mgmt-CE7D8170 13.90.151.207
bash-4.3# ||

The first entry is the IP address of the Docker agent pool and the second one is
from the Docker Swarm master. With this information, we can create an SSH
tunnel into the master using its IP address. We need to do that directly from our
laptop and not within the Azure CLI container since the latter doesn't have the
Docker CLI installed. To be able to do so, we also need to copy the private key
from the certificate from within the Azure CLI container to our host. Open a new
Terminal window and list all the running containers to find the <container 10> of
the Azure CLI container and then run the following command to copy the key:

| $ docker cp <container ID>:/root/.ssh/id_rsa ~/.ssh/fob

qg 6089740 21734177 IT http://t.cn/RDIAj5D

And now in the same Terminal as the previous command, create the tunnel with
this command:

$ ssh -i ~/.ssh/fob -p 2200 -fNL 2375:localhost:2375 \
azureuser@<IPAddress>

Replace <1paddress> with the IP address of your Swarm master.

We will use this tunnel to manage Docker Swarm on Azure remotely. But to do
this, we need to also define the pocker_nost environment variable:

|$ export DOCKER_HOST=:2375

Yes, this is not an error. We define just the port and no hostname (due to the SSH
tunnel). Once we have done all that, we're ready to remotely manage our Docker
Swarm. Let's first run the docker info command:

pythontesting

$ docker info
Containers: 1
Running: 1
Paused: @
Stopped: @
Images: 1
Role: primary
Strategy: spread
Filters: health, port, dependency, affinity, constraint
Nodes: 3
swarm-agent-CE7D8170000000; 10.0.0.4:2375
L Status: Healthy
Containers: @
Reserved CPUs: @ / 2
Reserved Memory: @ B / 7.137 GiB
Labels: executiondriver=<not supported-, kernelversion=3.19.0-65-generic, operatingsystem=Ubuntu 14.@4.4 LTS, storagedriver=overlay
Error: (none)
UpdatedAt: 2018-04-07T20:25:56Z
arm-agent-CE7D8170000001: 10.0.0.5:2375
Status: Healthy
Containers: @
Reserved CPUs: @ / 2
Reserved Memory: @ B / 7.137 GiB
Labels: executiondriver=<not supported-, kernelversion=3.19.@-65-generic, operatingsystem=Ubuntu 14.04.4 LTS, storagedriver=overlay
Error: (none)
UpdatedAt: 2018-04-07120:26:227
swarm-agent-CE7D8170000002: 10.0.0.6:2375
L status: Healthy
L Containers: 1
t Reserved CPUs: @ / 2
L
L

S

L
L
L
L
L
L
Vi
L
15
L
L
L
8
L

Reserved Memory: @ B / 7.137 GiB
Labels: executiondriver=<not supported>, kernelversion=3.19.0-65-generic, cperatingsystem=Ubuntu 14.@4.4 LTS, storagedriver=overlay
Error: (none)
UpdatedAt: 2018-04-07T20:25:59Z

Plugins:

Volume:

Network:

Log:

Swarm:

Docker info executed remotely on Docker Swarm in Azure (shortened)

We see that we have a swarm with three worker nodes ready to accept workload.
The output also tells us that Azure is using the legacy Docker Swarm instead of
SwarmKit.

Let's try to deploy our pets application on this swarm. In your Terminal, navigate
to the 1abs/chi4/azure folder and deploy the app as described in the file docker-

compose.yml:

qg 6089740 21734177

$ docker-compose up

Creating network "azure_default" with the default driver
Creating volume "azure_pets-data" with default driver
Pulling web (fundamentalsofdocker/ch@8-web:1.0)...

swarm-agent-CE7D8170000001: Pulling fundamentalsofdocker/ch@8-web:1.0...
swarm-agent-CE7D8170000002: Pulling fundamentalsofdocker/ch@8-web:1.0...
swarm-agent-CE7D817000000@: Pulling fundamentalsofdocker/ch@8-web:1.0...

1T http://t.cn/RDIAJS5D

: downloaded
: downloaded
. downloaded

Pulling db (fundamentalsofdocker/ch@8-db:1.@)...

swarm-agent-CE7D817000000@: Pulling fundamentalsofdocker/ch@8-d

. downloaded

b:1.0...
swarm-agent-CE7D8170000001: Pulling fundamentalsofdocker/ch@8-db:1.@... : downloaded
b:1.0.

swarm-agent-CE7D8170000002: Pulling fundamentalsofdocker/ch@8-d

Creating
Creating
Attaching

vel
we

: downloaded
azure_db_1 ... done
azure_web_1 ...

to azure_web_1, azure_db_1

Listening at 0.0.0.0:3000

The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "en_US.utf8".
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/postgresql/data ... ok
creating subdirectories ... ok

selecting default max_connections ... 10@

selecting default shared_buffers ... 128MB

selecting dynamic shared memory implementation ... posix

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... sh: locale: not found

2018-04-07 20:34:10.714 UTC [27] WARNING: no usable system locales were found
ok

syncing data to disk ...

WARNING: enabling "trust" authentication for local connections

You can change this by editing pg_hba.conf or using the option -A, or

Running the pets application on Docker Swarm on Azure (shortened)

OK, now let's test the application. For that we need the public IP of the swarm
agent pool that we were retrieving earlier in this section. Open your browser at
<1p address>/pet and you should see the pets application:

pythont

esting

RS B [13.92.172.89/pet

= & (D 13.92.172.89/pet

Cat Gif of the day

[——

Courtesy: Buzzfeed

Delivered to you by container df564acb80aa

Pets application running on Docker Swarm in Azure

Once we're done playing with Docker Swarm on Azure, we should delete it so as
not to incur any unnecessary cost:

|$ az group delete --name pets-rg --yes --no-wait

We have shown in this section how to provision Docker Swarm in Azure using
the Azure CLI. We then have successfully deployed our pets application into that
swarm.

Azure has a few compelling offerings regarding the container workload and the
lock-in is not that evident as it is on AWS due to the fact that Azure does mainly
offer open source orchestration engines, such as Kubernetes, Docker Swarm,
DC/OS, or Rancher. Technically, we remain mobile if we initially run our
containerized applications in Azure and later decide to move to another cloud
provider. The cost should be limited.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

A short peek into Google’s container
offerings

Google is the inventor of Kubernetes and, to this date, the driving force behind
it. One would thus expect that Google has a compelling offering around hosted
Kubernetes. Let's have a peek into it. To continue, you need to either have an
existing account with Google Cloud or you can create a test account here at nttps
://console.cloud.google.com/freetrial. Proceed with the fOHOWiDg steps:

1. In the main menu, select Kubernetes Engine. The first time you do that, it
will take a few moments until the Kubernetes engine is initialized.

2. Once this is ready, we can create a cluster by clicking on CREATE
CLUSTER.

3. Name the cluster as pets-ciuster and leave all other settings in the Create a
Kubernetes Cluster form with their default values and click on Create.

It will again take a few moments to provision the cluster for us. Once the cluster
has been created, we can open the Cloud Shell. This should look similar to the
following screenshot:

Google Cloud Platform &= My First Project ~

@ Kubernetes clusters CREATE CLUSTER ! REFRESH @1 SHOW INFO PANEL
s Filter by label or name
™
Kubernetes clusters
'ﬁ Name ~ Location Cluster size Total cores Total memory Notifications Labels
E 0 pets-cluster us-centrall-a 3 3 vCPUs 11.25GB Connect ' W
1>
N electric-clone-200421 X < L2138 & - X

Welcome to Cloud Shell! Type "help" to get started.
schenker gabriel@electric-clone-200421:~%

First Kubernetes cluster ready and Cloud Shell open in GCE

pythontesting

https://console.cloud.google.com/freetrial

We can now clone our 1abs GitHub repository to this environment with the
following command:

$ git clone https://github.com/fundamentalsofdocker/labs
$ cd labs/chi14/gce

We should now find a pets.yami file in the current folder, which we can use to

deploy the pets application into our Kubernetes cluster. Have a look at the file:

|$ less pets.yaml

It has pretty much the same content as the same file we used in the previous
chapter. The two differences are:

e We use a service of type Loadsalancer (instead of nodeport) to publicly expose
the component web.

e We do not use volumes for the PostgreSQL database since configuring
StatefulSet correctly on GCE is a bit more involved than in Minikube. The
consequence of this is that our pets application will not persist the state if
the db pod crashes. How to use persistent volumes on GCE lies outside the
scope of this book.

Before we can continue, we need to first set up gcloud and kubect1 credentials:

$ gcloud container clusters get-credentials pets-cluster \
--zone us-centrall-a

Having done that, it's time to deploy the application:

| $ kubectl create -f pets.yaml

Once the objects have been created, we can observe the Loadsalancer service web
until it is assigned a public IP address:

| $ kubectl get svc/web --watch

This should look similar to the following screenshot:

schenker gabriel@electric-clone-200421:~/labs/chl4/gce$ kubectl get svc/web --watch
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S) AGE

web LoadBalancer 10.43.244.195 35.184.142.67 3000:32086/TCP 25m

Retrieving the public IP address of the service web

We can then use this IP address and navigate to http://<1p address>:3000/pet and we

qg 6089740 21734177 IT http://t.cn/RDIAj5D

should be greeted by the familiar cat image.

To clean up and delete all resources, run this script:

kubectl delete deploy/web
kubectl delete deploy/db
kubectl delete svc/web
kubectl delete svc/db

We have created a hosted Kubernetes cluster in GCE. We have then used the
Cloud Shell provided through the GCE portal to first clone our 1abs GitHub
repository and then the kubect1 tool to deploy the pets application into the
Kubernetes cluster.

When looking into a hosted Kubernetes solution, GCE is a compelling solution.
It makes it very easy to start and since Google is the main driving force behind

Kubernetes, we can rest assured that we will always be able to leverage the full
uncrippled functionality of Kubernetes.

pythontesting

Summary

In this final chapter of the book, you learned how to deploy a containerized
application into AWS ECS and got a quick introduction on how to install and use
Docker's UCP, which is part of the enterprise offering on AWS. Then you were
given a glimpse of what the current container-related cloud offerings of
Microsoft Azure and Google Cloud Engine are. On each one, we successfully
installed our pets application.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Questions

To assess your knowledge, please answer the following questions:

1. Give a high-level description of the tasks needed to provision and run
Docker UPC on AWS.

2. Name a handful of reasons when to use a hosted solution such as Azure
ACS or AWS ECS and when to use a (hosted) Docker Swarm or
Kubernetes-based offering.

pythontesting

Further reading

The following articles give you some more information related to the topics we
discussed in this chapter:

e Deploy Docker Enterprise Edition on Linux servers at nttps://dockr.ly/2vH5dp
N

¢ Getting Started with Amazon ECS using Fargate at nttps://anzn.to/2Hh7pcH

e Azure Container Service (AKS) at nttps://bit.1y/23g1x9d

e Google Kubernetes Engine at https://bit.1ly/218Mj3x

https://dockr.ly/2vH5dpN
https://amzn.to/2Hh7pcM
https://bit.ly/2JglX9d
https://bit.ly/2I8MjJx

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Assessment

pythontesting

Chapter 1

1. Correct answers are: 4, 5.

2. A Docker container is, to IT, what a shipping container is to the
transportation industry. It defines a standard on how to package goods. In
this case, goods are the application(s) developers write. The suppliers (in
this case, the developers) are responsible for packaging the goods into the
container and making sure everything fits as expected. Once the goods are
packaged into a container, it can be shipped. Since it is a standard container,
the shippers can standardize their means of transportation such as lorries,
trains, or ships. The shipper doesn't really care what's in a container. Also,
the loading and unloading process from one transportation means to another
(for example, train to ship) can be highly standardized. This massively
increases the efficiency of transportation. Analogous to this is an operations
engineer in IT who can take a software container built by a developer and
ship it to a production system and run it there in a highly standardized way,
without worrying about what's in the container. It will just work.

3. Some of the reasons why containers are game changers are:

e Containers are self-contained and thus if they run on one system, they
run anywhere where a container can run.

e Containers run on-premise and in the cloud, as well as in hybrid
environments. This is important for today's typical enterprises since it
allows a mostly smooth transition from on-premise to cloud.

e Container images are built or packaged by the people who know best —
the developers.

e Container images are immutable which is important for a good release
management.

e Containers are enablers of a secure software supply chain-based on
encapsulation (using Linux namespaces and cgroups), secrets, content
trust, and image vulnerability scanning.

4. A container runs anywhere where a container can run because:

e Containers are self-contained black boxes. They encapsulate not only
an application but all its dependencies, such as libraries and
frameworks, configuration data, certificates, and so on.

e Containers are based on widely accepted standards such as OCI.

qq 6089740

21734177 IT http://t.cn/RDIAj5D

e TODO: add more reasons.
False! Containers are useful for modern applications as well as to
containerize traditional applications. The benefit for an enterprise when
doing the latter is huge. Cost savings in the maintenance of legacy apps of
50% or more have been reported. The time between new releases of such
legacy applications could be reduced by up to 90%. These numbers have
been publicly reported by real enterprise customers.
50% or more.
Containers are based on Linux namespaces (network, process, user, and so
on) and cgroups (control groups).

pythontesting

Chapter 2

1. docker-machine can be used to do the fOHOWiI’ng

Create a VM configured as Docker host in different environments,
such as VirtualBox

SSH into a Docker host

Configure the local Docker CLI for access of a remote Docker host
List all hosts in a given environment

Remove or destroy existing hosts

2. True. Docker for Windows creates a Linux VM in Hyper-V, on which it
then runs Linux containers.

3. Container are optimally used in CI/CD, which is all about automation. Each
step, from building a container image, shipping the image, and finally
running containers from this image, is ideally scripted for maximum
productivity. With it, one achieves a repeatable and auditable process.

4. Ubuntu 17.4 or later, CentOS 7.x, Alpine 3.x, Debian, Suse Linux, RedHat
Linux, and so on.

5. Windows 10 Professional or Enterprise Edition, Windows Server 2016.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 3

1. The states of a container are as follows

e Created
e Running
e Exited

2. The following command helps us to find out what is currently running on
our host:

| $ docker container 1s

3. The following command is used to list down the IDs of all containers:

| $ docker container 1ls -q

pythontesting

Chapter 4

Here are possible answers to the questions:

1. Dockerfile:

FROM ubuntu:17.04

RUN apt-get update

RUN apt-get install -y ping
ENTRYPOINT ping

CMD 127.0.0.1

2. To achieve the result you can execute the following steps:

$ docker container run -it --name sample \
alpine:latest /bin/sh
/ # apk update && \
apk add -y curl && \
rm -rf /var/cache/apk/*
/ # exit
$ docker container commit sample my-alpine:1.0
$ docker container rm sample

3. As asample here is the He11o worid in C:
1. Create a file nhe110.c with this content:

#include <stdio.h>

int main()

{
printf("Hello, World!");
return 0;

}

2. Create a Dockerfile with this content:

FROM alpine:3.5 AS build
RUN apk update && \
apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY hello.c /app
RUN mkdir bin
RUN gcc -Wall hello.c -o bin/hello

FROM alpine:3.5
COPY --from=build /app/bin/hello /app/hello
CMD /app/hello

4. Some characteristics of a Docker image are:

qg 6089740 21734177 IT http://t.cn/RDIAj5D

e [t is immutable

e It is composed of immutable layers

e Each layer contains only what has changed (the delta) in regard to the

lower lying layers
e An image is a (big) tarball of files and folders
e an image is a template for containers
5. Option 3 is correct. First we need to make sure we're logged in and then we

tag the image and finally push it. Since it is an image we're using docker
image ... and not docker container ... (as in number 4)

pythontesting

Chapter 5

The easiest way to play with volumes is to use the Docker Toolbox as when

directly using Docker for Mac or Docker for Windows, then the volumes are
stored inside a (somewhat hidden) Linux VM that Docker for Mac/Win uses
transparently.

Thus, we suggest the following:

$ docker-machine create --driver virtualbox volume-test
$ docker-machine ssh volume-test

And now that you're inside a Linux VM called vo1ume-test, you can execute the
following exercises:

1. To create a named vo1ume run the following command:

| $ docker volume create my-products

2. Execute the following command:

$ docker container run -it --rm \
-v my-products:/data:ro \
alpine /bin/sh

3. To get the path on the host for the volume use, for example, this command:

| $ docker volume inspect my-products | grep Mountpoint

Which (if using docker-machine and VirtualBox) should result in:

"Mountpoint": "/mnt/sdal/var/lib/docker/volumes/my-products/_data"

Now execute the following command:

sudo su

cd /mnt/sdal/var/lib/docker/volumes/my-products/_data
echo "Hello world" > sample.txt

exit

LR

4. Execute the following command:

| $ docker run -it --rm -v my-products:/data:ro alpine /bin/sh

qq 6089740

21734177 IT

/ cd /data
/ cat sample.txt

In another terminal execute:

$ docker run -it --rm -v my-products:/app-data alpine /bin/sh
/ cd /app-data

/ echo "Hello other container" > hello.txt

/ exit

Execute a command such as this:

$ docker container run -it --rm \
-v $HOME/my-project:/app/data \
alpine /bin/sh

Exit both containers and then back on the host, execute this command:

$ docker volume prune

Run the following command:

$ docker system info | grep Version

Which should output something similar to this:

Server Version: 17.09.1-ce
Kernel Version: 4.4.104-boot2docker

If you have been using docker-machine to create and use a Linux VM in
VirtualBox, don't forget to clean up after you're done:

$ docker-machine rm volume-test

pythontesting

http://t.cn/RDIAJS5D

Chapter 6

1. In a system consisting of many parts, failure of at least one part is only a
matter of time. To avoid any downtime if such a situation occurs, one runs
multiple instances of each component. If one of the instances fails, there are
still others to serve the requests.

2. In a distributed application architecture, we have many moving parts. If
Service A needs access to an instance of Service B, then it cannot know
where to find such an instance. Instances can be on any random node of the
cluster and they can even come and go as the orchestration engine sees fit,
so we do not identify the target instance by, say, its IP address and port, but
rather by its name and port. A DNS service knows how to resolve a service
name into an IP address since it has all the information about all service
instances running in the cluster.

3. A circuit breaker is a mechanism that helps to avoid cascading failures in a
distributed application triggered by a single failing service. The circuit
breaker observes a request from one service to another and measures the
latency over time and the number of request failures or timeouts. If a certain
target instance causes too many failures, the calls to it are intercepted and
an error code is returned to the caller, instantly giving the target time to
recover if possible, and the caller, in turn, knows instantly that it either
should degrade its own service or try with another instance of the target
service.

4. A monolith is an application that consists of one single code base that is
highly coupled. If changes to the code are made, no matter how minimal,
the whole application has to be compiled, packaged, and redeployed. A
monolith is simple to deploy and monitor in production due to the fact that
it has very few moving parts. Monoliths are difficult to maintain and
extend. A distributed application consists of many loosely coupled services.
Each service originates from its own independent source code base.
Individual services can and often have independent life cycles. They can be
developed and revised independently. Distributed applications are more
difficult to manage and monitor.

5. One talks about a blue-green deployment when a currently running version
of a service, called blue, is replaced by a new release of the same service,

qq 6089740

21734177 IT http://t.cn/RDIAj5D

called green. The replacement happens without any downtime since while
the blue version is still running, the green version of the service is installed
on the system and, once ready, a simple change in the configuration of the
router that funnels traffic to the service is needed so that the traffic is now
all directed to green instead of blue.

pythontesting

Chapter 7

1. The three core elements are sandbox, endpoint, and network
2. Execute this command:

| $ docker network create --driver bridge frontend

3. Run this command:

$ docker container run -d --name ni1 \
--network frontend -p 8080:80 nginx:alpine

$ docker container run -d --name n2 \
--network frontend -p 8681:80 nginx:alpine

Test that both Nginx instances are up and running;:

$ curl -4 localhost:8080
$ curl -4 localhost:86081

You should be seeing the welcome page of Nginx in both cases.

4. To get the IPs of all attached containers, run:

| $ docker network inspect frontend | grep IPv4Address

You should see something similar to the following:

"IPv4Address": "172.18.0.2/16",
"IPv4Address": "172.18.0.3/16",

To get the subnet used by the network, use the following (for example):

$ docker network inspect frontend | grep subnet

You should receive something along the lines of the following (obtained
from the previous example):

| "Subnet": "172.18.0.0/16",

5. The nost network allows us to run a container in the networking namespace
of the host.

6. Only use this network for debugging purposes or when building a system-
level tool. Never use the nost network for an application container running

qg 6089740 21734177 IT http://t.cn/RDIAj5D

production!

7. The none network is basically saying that the container is not attached to any
network. It should be used for containers that do not need to communicate
with other containers and do not need to be accessed from outside.

8. The none network could e.g. be used for a batch process running in a
container that only needs access to local resources such as files which could
be accessed via a host mounted volume.

pythontesting

Chapter 8

1. The following code can be used to run the application in daemon mode.

| $ docker-compose up -d

2. Execute the following command to display the details of the running
service.

| $ docker-compose ps

This should result in the following output:

Name Command State Ports

mycontent_nginx_1 nginx -g daemon off; Up 0.0.0.0:3000->80/tcp

3. The following command can be used to scale up the web service:

| $ docker-compose up --scale web=3

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 9

Here are the sample answers to the questions of this chapter:

1. Here are some reasons why we need an orchestration engine:

e Containers are ephemeral and only an automated system (the
orchestrator) can handle this efficiently.

e For high availability reasons, we want to run multiple instances of
each container. The number of containers to manage quickly becomes
huge.

¢ To meet the demand of today’s internet, we need to quickly scale up
and down.

e Containers, contrary to VMs, are not treated as pets and fixed or
healed when they misbehave, but are treated as cattle. If one
misbehaves, we kill it and replace it with a new instance. The
orchestrator quickly terminates an unhealthy container and schedules a
new instance.

2. Here are some responsibilities of a container orchestration engine:

e Manages a set of nodes in a cluster

e Schedules workload to the nodes with sufficient free resources

e Monitors the health of nodes and workload

e Reconciles current state with desired state of applications and

components

Provides service discovery and routing

¢ Load balances requests

e Secures confident data by providing support for secrets

3. Here is an (incomplete) list of orchestrators, sorted by their popularity:
e Kubernetes by Google, donated to the CNCF
SwarmKit by Docker—that is, Operations Support System (OSS)
AWS ECS by Amazon
Azure AKS by Microsoft
Mesos by Apache—that is, OSS
Cattle by Rancher
Nomad by HashiCorp

pythontesting

Chapter 10

1. The correct answer is:

| $ docker swarm init [--advertise-addr <IP address>]

The --advertise-addr is optional and only needed if you the host have more
than one IP address.

2. On the worker node that you want to remove execute: $ docker swarm leave
On one of the master nodes execute the command $ docker node rm -f <node
ID>
where <node 10> is the ID of the worker node to remove.

3. The correct answer is:

$ docker network create \
--driver overlay \
--attachable \
front-tier

4. The correct answer is:

$ docker service create --name web \
--network front-tier \
--replicas 5 \
-p 3000:80 \
nginx:alpine

5. The correct answer is:

| $ docker service update --replicas 3 web

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 11

1. Zero downtime means that when updating a service, say from version 1 to
version 2, the application to which this service belongs remains up and
running all the time. At no time is the application interrupted or not
functional.

2. Docker SwarmKit uses rolling updates to achieve zero downtime. Every
service runs in multiple instances for high availability. When a rolling
update is happening, small batches of the overall set of service instances are
replaced by new versions. This happens while the majority of the service
instances are up and running to serve incoming requests.

3. Container images are immutable. That is, once created, they can never be
changed. When a containerized application or service needs to be updated,
a new container image is created. During a rolling update, the old container
image is replaced with the new container image. If a rollback is necessary,
then the new image is replaced with the old image. This can be looked at as
a reverse update. As long as we do not delete the old container image, we
can always return to this previous version by reusing it. Since, as we said
earlier, images are immutable, we are indeed returning to the previous state.

4. Docker secrets are encrypted at rest; they are stored encrypted in the raft
database. Secrets are also encrypted in transit since the node-to-node
communication is using mutual TLS.

5. The command would have to look like this:

$ docker service update --image acme/inventory:2.1 \
--update-parallelism 2 \
--update-delay 60s \
inventory

6. First, we need to remove the old secret:

| $ docker service update --secret-rm MYSQL_PASSWORD inventory

Then we add the new secret and make sure we use the extended format
where we can remap the name of the secret, that is, the external and

internal name of the secret do not have to match. The latter command
could look like this:

$ docker service update \

pythontesting

--secret-add source=MYSQL_PASSWORD_V2, target=MYSQL_PASSWORD \
inventory

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 12

1. The Kubernetes master is responsible for managing the cluster. All requests
to create objects, the scheduling of pods, the managing of repiicasets, and
more is happening on the master. The master does not run application
workload in a production or production-like cluster.

2. On each worker node, we have the kubelet, the proxy, and a container
runtime.

3. The answer is Yes. You cannot run standalone containers on a Kubernetes
cluster. Pods are the atomic unit of deployment in such a cluster.

4. All containers running inside a pod share the same Linux kernel network
namespace. Thus, all processes running inside those containers can
communicate with each other through 1ocainost in a similar way that
processes or applications directly running on the host can communicate
with each other thFOUgh localhost.

5. The pause container's sole role is to reserve the namespaces of the pod for
the containers that run in the pod.

6. This is a bad idea since all containers of a pod are co-located, which means
they run on the same cluster node. But the different component of the
application (that is, web, inventory, and db) usually have very different
requirements in regards to scalability or resource consumption.

The web component might need to be scaled up and down depending on the
traffic and the ¢b component in turn has special requirements on storage that
the others don't have. If we do run every component in its own pod, we are
much more flexible in this regard.

7. We need a mechanism to run multiple instances of a pod in a cluster and
make sure that the actual number of pods running always corresponds to the
desired number, even when individual pods crash or disappear due to
network partition or cluster node failures. The ReplicaSet is this mechanism
that provides scalability and self-healing to any application service.

8. We need deployment objects whenever we want to update an application
service in a Kubernetes cluster without causing downtime to the service.
Deployment objects add rolling update and rollback capabilities to
ReplicaSets.

9. Kubernetes service objects are used to make application services participate

pythontesting

in service discovery. They provide a stable endpoint to a set of pods
(normally governed by a ReplicaSet or a deployment). Kube services are
abstractions which define a logical set of pods and a policy on how to
access them. There are four types of Kube services:
e ClusterIP: Exposes the service on an IP address only accessible from
inside the cluster; this is a virtual IP (VIP)
e NodePort: Publishes a port in the range 30,000-32767 on every
cluster node
e LoadBalancer: This type exposes the application service externally
using a cloud provider’s load balancer such as ELB on AWS
e ExternalName: Used when you need to define a proxy for a cluster
external service such as a database

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 13

1. Assuming we have a Docker image in a registry for the two application
services, the web API and Mongo DB, we then need to do the following:
¢ Define a deployment for Mongo DB using a statefuiset; let's call this
deployment db-deployment. The statefuiset should have one replica
(replicating Mongo DB is a bit more involved and is outside of the
scope of this book).
¢ Define a Kubernetes service called db of type ciusterzr for the db-
deployment.
e Define a deployment for the web API; let's call it web-deployment. Let's
scale this service to three instances.
e Define a Kubernetes service called api of type NodePort for web-deployment.
o If we use secrets, then define those secrets directly in the cluster
USiIlg kubectl.
e Deploy the application using kubect1.

2. To implement layer 7 routing for an application, we ideally use
dl IngressController. The IngressController is a reverse Proxy such as NglI'IX
that has a sidecar listening on the Kubernetes Server API for relevant
changes and updating the reverse proxy's configuration and restarting it, if
such a change has been detected. We then need to define Ingress resources
in the cluster which define the routing, for example from a context-based
route such as https://example.com/pets {0 <a service name>/<port> pair such
as apiss2o01. The moment Kubernetes creates or changes this Ingress object,
the 1ngresscontroller's sidecar picks it up and updates the proxy's routing
configuration.
3. Assuming this is a cluster internal inventory service:
e When deploying version 1.0 we define a deployment called inventory-
deployment-blue and label the pOdS with a label color: biue.
e We deploy the Kubernetes service of type ciustertp called inventory for
the preceding deployment with the selector containing color: biue.
e When ready to deploy the new version of the payments service, we
first define a deployment for version 2.0 of the service and call
it inventory-deployment-green. We add a label coior: green tO the pOdS.
e We can now smoke test the "green" service and when everything is

pythontesting

OK, we can update the inventory service such as the selector

contains color: green.

4. Some type of information that is confidential and thus should be provided
to services through Kubernetes secrets include: passwords, certificates, API
key IDs, API key secrets or tokens.

5. Sources for secret values can be files or base64 encoded values.

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chapter 14

1. To install UCP in AWS:

1. Create a VPC with subnets and a security group.

2. Then provision a cluster of Linux VMs, possibly as part of an auto
scaling group. Many Linux distros are supported, such as CentOS,
RHEL, Ubuntu, and so on.

3. Next, install Docker on each VM.

4. Finally, select one VM on which to install UCP using
the docker/ucp image.

5. Once UCP is installed, join the other VMs to the cluster either as
worker nodes or manager nodes.

2. Cloud vendor-specific and proprietary solutions, such as ECS, have the
advantages of being tightly and seamlessly integrated with the other
services, such as logging, monitoring, or storage, provided by the cloud
vendor. Also, often one does not have to provision and manage the
infrastructure but this will be automatically done by the provider. On the
positive side, it is also noteworthy that to deploy a first containerized
application usually happens pretty quickly, meaning that the startup hurdles
are pretty low.

On the other hand, choosing a proprietary service such as ECS locks us into
the ecosystem of the respective cloud provider. Also, we have to live with
what they give us. In the case of Azure ACS, this meant that when choosing
Docker Swarm as the orchestration engine, we were given classic Docker
Swarm which is legacy and has long been replaced with SwarmKit by
Docker.

If we chose a hosted or self-managed solution based on the latest versions
of Docker Swarm or Kubernetes, we enjoy the latest and greatest features
of the respective orchestration engine.

pythontesting

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Elton Stoneman

Docker on
Windows

Docker on Windows
Elton Stoneman

ISBN: 978-1-78528-165-5

e Comprehend key Docker concepts: images, containers, registries, and
swarms

Run Docker on Windows 10, Windows Server 2016, and in the cloud
Deploy and monitor distributed solutions across multiple Docker containers
Run containers with high availability and fail-over with Docker Swarm
Master security in-depth with the Docker platform, making your apps more
secure

¢ Build a Continuous Deployment pipeline by running Jenkins in Docker

e Debug applications running in Docker containers using Visual Studio

¢ Plan the adoption of Docker in your own organization

Docker for
Serverless

Applications |
pplications

"l
Containeri; and orchestrating functions using OpenF aas,

C izing.
OpenWwhisk and Fn

L]

Docker for Serverless Applications

https://www.packtpub.com/virtualization-and-cloud/docker-windows
https://www.packtpub.com/virtualization-and-cloud/docker-serverless-applications

qg 6089740 21734177 IT http://t.cn/RDIAj5D

Chanwit Kaewkasi
ISBN: 978-1-78883-526-8

Learn what Serverless and FaaS applications are

Get acquainted with the architectures of three major serverless systems
Explore how Docker technologies can help develop Serverless applications
Create and maintain FaaS infrastructures

Set up Docker infrastructures to serve as on-premises FaaS infrastructures
Define functions for Serverless applications with Docker containers

pythontesting

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	Learn Docker – Fundamentals of Docker 18.x

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	What Are Containers and Why Should I Use Them?
	Technical requirements
	What are containers?
	Why are containers important?
	What's the benefit for me or for my company?
	The Moby project
	Docker products
	Docker CE
	Docker EE

	The container ecosystem
	Container architecture
	Summary
	Questions
	Further reading

	Setting up a Working Environment
	Technical requirements
	The Linux command shell
	PowerShell for Windows
	Using a package manager
	Installing Homebrew on a Mac
	Installing Chocolatey on Windows

	Choosing a code editor
	Docker Toolbox
	Docker for Mac and Docker for Windows
	Installing Docker for Mac
	Installing Docker for Windows
	Using docker-machine on Windows with Hyper-V

	Minikube
	Installing Minikube on Mac and Windows
	Testing Minikube and kubectl

	Summary
	Questions
	Further reading

	Working with Containers
	Technical requirements
	Running the first container
	Starting, stopping, and removing containers
	Running a random quotes container
	Listing containers
	Stopping and starting containers
	Removing containers

	Inspecting containers
	Exec into a running container
	Attaching to a running container
	Retrieving container logs
	Logging drivers
	Using a container-specific logging driver
	Advanced topic – changing the default logging driver

	Anatomy of containers
	Architecture
	Namespaces
	Control groups (cgroups)
	Union filesystem (UnionFS)
	Container plumbing
	Runc
	Containerd

	Summary
	Questions
	Further reading

	Creating and Managing Container Images
	What are images?
	The layered filesystem
	The writable container layer
	Copy-on-write
	Graph drivers

	Creating images
	Interactive image creation
	Using Dockerfiles
	The FROM keyword
	The RUN keyword
	The COPY and ADD keywords
	The WORKDIR keyword
	The CMD and ENTRYPOINT keywords
	A complex Dockerfile
	Building an image
	Multistep builds
	Dockerfile best practices

	Saving and loading images

	Sharing or shipping images
	Tagging an image
	Image namespaces
	Official images
	Pushing images to a registry

	Summary
	Questions
	Further reading

	Data Volumes and System Management
	Technical requirements
	Creating and mounting data volumes
	Modifying the container layer
	Creating volumes
	Mounting a volume
	Removing volumes

	Sharing data between containers
	Using host volumes
	Defining volumes in images
	Obtaining Docker system information
	Listing resource consumption
	Pruning unused resources
	Pruning containers
	Pruning images
	Pruning volumes
	Pruning networks
	Pruning everything

	Consuming Docker system events
	Summary
	Questions
	Further reading

	Distributed Application Architecture
	What is a distributed application architecture?
	Defining the terminology

	Patterns and best practices
	Loosely coupled components
	Stateful versus stateless
	Service discovery
	Routing
	Load balancing
	Defensive programming
	Retries
	Logging
	Error handling

	Redundancy
	Health checks
	Circuit breaker pattern

	Running in production
	Logging
	Tracing
	Monitoring
	Application updates
	Rolling updates
	Blue-green deployments
	Canary releases
	Irreversible data changes
	Rollback

	Summary
	Questions
	Further reading

	Single-Host Networking
	Technical requirements
	The container network model
	Network firewalling
	The bridge network
	The host network
	The null network
	Running in an existing network namespace
	Port management
	Summary
	Questions
	Further reading

	Docker Compose
	Technical requirements
	Demystifying declarative versus imperative
	Running a multi-service app
	Scaling a service
	Building and pushing an application
	Summary
	Questions
	Further reading

	Orchestrators
	What are orchestrators and why do we need them?
	The tasks of an orchestrator
	Reconciling the desired state
	Replicated and global services
	Service discovery
	Routing
	Load balancing
	Scaling
	Self-healing
	Zero downtime deployments
	Affinity and location awareness
	Security
	Secure communication and cryptographic node identity
	Secure networks and network policies
	Role-based access control (RBAC)
	Secrets
	Content trust
	Reverse uptime

	Introspection

	Overview of popular orchestrators
	Kubernetes
	Docker Swarm
	Apache Mesos and Marathon
	Amazon ECS
	Microsoft ACS

	Summary
	Questions
	Further reading

	Introduction to Docker Swarm
	Architecture
	Swarm nodes
	Swarm managers
	Swarm workers

	Stacks, services, and tasks
	Services
	Task
	Stack

	Multi-host networking
	Creating a Docker Swarm
	Creating a local single node swarm
	Creating a local swarm in VirtualBox or Hyper-V
	Using Play with Docker (PWD) to generate a Swarm
	Creating a Docker Swarm in the cloud

	Deploying a first application
	Creating a service
	Inspecting the service and its tasks
	Logs of a service
	Reconciling the desired state
	Deleting a service or a stack
	Deploying a multi-service stack

	The swarm routing mesh
	Summary
	Questions
	Further reading

	Zero Downtime Deployments and Secrets
	Technical requirements
	Zero downtime deployment
	Popular deployment strategies
	Rolling updates
	Health checks
	Rollback
	Blue–green deployments
	Canary releases

	Secrets
	Creating secrets
	Using a secret
	Simulating secrets in a development environment
	Secrets and legacy applications
	Updating secrets

	Summary
	Questions
	Further reading

	Introduction to Kubernetes
	Technical requirements
	Architecture
	Kubernetes master nodes
	Cluster nodes
	Introduction to Minikube
	Kubernetes support in Docker for Desktop
	Pods
	Comparing Docker container and Kubernetes pod networking
	Sharing the network namespace
	Pod life cycle
	Pod specification
	Pods and volumes

	Kubernetes ReplicaSet
	ReplicaSet specification
	Self-healing

	Kubernetes deployment
	Kubernetes service
	Context-based routing
	Comparing SwarmKit with Kubernetes
	Summary
	Questions
	Further reading

	Deploying, Updating, and Securing an Application with Kubernetes
	Technical requirements
	Deploying a first application
	Deploying the web component
	Deploying the database
	Streamlining the deployment

	Zero downtime deployments
	Rolling updates
	Blue–green deployment

	Kubernetes secrets
	Manually defining secrets
	Creating secrets with kubectl
	Using secrets in a pod
	Secret values in environment variables

	Summary
	Questions
	Further reading

	Running a Containerized App in the Cloud
	Technical requirements
	Deploying our application into AWS ECS
	Introduction to ECS
	Creating a Fargate ECS cluster of AWS
	Authoring a task definition
	Running a task in ECS
	Modifying the task definition
	Adding the database component to the application

	Deploying and using Docker EE on AWS
	Provisioning the infrastructure
	Installing Docker
	Installing Docker UCP
	Remote admin the UCP cluster
	Deploying to Docker Swarm
	Deploying to Kubernetes

	A short peek into Azure’s container offerings
	A short peek into Google’s container offerings
	Summary
	Questions
	Further reading

	Assessment
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

