

Learn	Docker	–	Fundamentals	of	Docker	18.x

	

	

Everything	you	need	to	know	about	containerizing	your	applications	and	running
them	in	production

	

	

	

	

	

	

	

Gabriel	N.	Schenker

	

	

	

	

	

	

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

	

	

BIRMINGHAM	-	MUMBAI

Learn	Docker	–	Fundamentals	of
Docker	18.x
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Gebin	George
Acquisition	Editor:	Shrilekha	Inani
Content	Development	Editor:	Ronn	Kurien
Technical	Editor:	Swathy	Mohan
Copy	Editor:	Safis	Editing
Project	Coordinator:	Judie	Jose
Proofreader:	Safis	Editing
Indexer:	Priyanka	Dhadke
Graphics:	Tom	Scaria
Production	Coordinator:	Nilesh	Mohite

First	published:	April	2018

Production	reference:	1240418

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-702-7

www.packtpub.com

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

About	the	author
Gabriel	N.	Schenker	has	more	than	25	years	of	experience	as	an	independent
consultant,	architect,	leader,	trainer,	mentor,	and	developer.	Currently,	Gabriel
works	as	Senior	Curriculum	Developer	at	Confluent	after	coming	from	a	similar
position	at	Docker.	Gabriel	has	a	Ph.D.	in	Physics,	and	he	is	a	Docker	Captain,	a
Certified	Docker	Associate,	and	an	ASP	Insider.	When	not	working,	Gabriel
enjoys	time	with	his	wonderful	wife	Veronicah	and	his	children.

	

	

About	the	reviewer
Peter	McKee	is	a	Software	Architect	and	Senior	Software	Engineer	at	Docker,
Inc.	He	leads	the	technical	team	that	delivers	the	Docker	Success	Center.	He's
been	leading	and	mentoring	teams	for	more	than	20	years.	When	not	building
things	with	software,	he	spends	his	time	with	his	wife	and	seven	kids	in	beautiful
Austin,	TX.

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Title	Page

Copyright	and	Credits

Learn	Docker	–	Fundamentals	of	Docker	18.x

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 What	Are	Containers	and	Why	Should	I	Use	Them?
Technical	requirements

What	are	containers?

Why	are	containers	important?

What's	the	benefit	for	me	or	for	my	company?

The	Moby	project

Docker	products

Docker	CE

Docker	EE

The	container	ecosystem

Container	architecture

Summary

Questions

Further	reading

2.	 Setting	up	a	Working	Environment
Technical	requirements

The	Linux	command	shell

PowerShell	for	Windows

Using	a	package	manager

Installing	Homebrew	on	a	Mac

Installing	Chocolatey	on	Windows

Choosing	a	code	editor

Docker	Toolbox

Docker	for	Mac	and	Docker	for	Windows

Installing	Docker	for	Mac

Installing	Docker	for	Windows

Using	docker-machine	on	Windows	with	Hyper-V

Minikube

Installing	Minikube	on	 Mac	and	Windows

Testing	Minikube	and	kubectl

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

3.	 Working	with	Containers
Technical	requirements

Running	the	first	container

Starting,	stopping,	and	removing	containers

Running	a	random	quotes	container

Listing	containers

Stopping	and	starting	containers

Removing	containers

Inspecting	containers

Exec	into	a	running	container

Attaching	to	a	running	container

Retrieving	container	logs

Logging	drivers

Using	a	container-specific	logging	driver

Advanced	topic	–	changing	the	default	logging	driver

Anatomy	of	containers

Architecture

Namespaces

Control	groups	(cgroups)

Union	filesystem	(UnionFS)

Container	plumbing

Runc

Containerd

Summary

Questions

Further	reading

4.	 Creating	and	Managing	Container	Images
What	are	images?

The	layered	filesystem

The	writable	container	layer

Copy-on-write

Graph	drivers

Creating	images

Interactive	image	creation

Using	Dockerfiles

The	FROM	keyword

The	RUN	keyword

The	COPY	and	ADD	keywords

The	WORKDIR	keyword

The	CMD	and	ENTRYPOINT	keywords

A	complex	Dockerfile

Building	an	image

Multistep	builds

Dockerfile	best	practices

Saving	and	loading	images

Sharing	or	shipping	images

Tagging	an	image

Image	namespaces

Official	images

Pushing	images	to	a	registry

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

5.	 Data	Volumes	and	System	Management
Technical	requirements

Creating	and	mounting	data	volumes

Modifying	the	container	layer

Creating	volumes

Mounting	a	volume

Removing	volumes

Sharing	data	between	containers

Using	host	volumes

Defining	volumes	in	images

Obtaining	Docker	system	information

Listing	resource	consumption

Pruning	unused	resources

Pruning	containers

Pruning	images

Pruning	volumes

Pruning	networks

Pruning	everything

Consuming	Docker	system	events

Summary

Questions

Further	reading

6.	 Distributed	Application	Architecture
What	is	a	distributed	application	architecture?

Defining	the	terminology

Patterns	and	best	practices

Loosely	coupled	components

Stateful	versus	stateless

Service	discovery

Routing

Load	balancing

Defensive	programming

Retries

Logging

Error	handling

Redundancy

Health	checks

Circuit	breaker	pattern

Running	in	production

Logging

Tracing

Monitoring

Application	updates

Rolling	updates

Blue-green	deployments

Canary	releases

Irreversible	data	changes

Rollback

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

7.	 Single-Host	Networking
Technical	requirements

The	container	network	model

Network	firewalling

The	bridge	network

The	host	network

The	null	network

Running	in	an	existing	network	namespace

Port	management

Summary

Questions

Further	reading

8.	 Docker	Compose
Technical	requirements

Demystifying	declarative	versus	imperative

Running	a	multi-service	app

Scaling	a	service

Building	and	pushing	an	application

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

9.	 Orchestrators
What	are	orchestrators	and	why	do	we	need	them?

The	tasks	of	an	orchestrator

Reconciling	the	desired	state

Replicated	and	global	services

Service	discovery

Routing

Load	balancing

Scaling

Self-healing

Zero	downtime	deployments

Affinity	and	location	awareness

Security

Secure	communication	and	cryptographic	node	identity

Secure	networks	and	network	policies

Role-based	access	control	(RBAC)

Secrets

Content	trust

Reverse	uptime

Introspection

Overview	of	popular	orchestrators

Kubernetes

Docker	Swarm

Apache	Mesos	and	Marathon

Amazon	ECS

Microsoft	ACS

Summary

Questions

Further	reading

10.	 Introduction	to	Docker	Swarm
Architecture

Swarm	nodes

Swarm	managers

Swarm	workers

Stacks,	services,	and	tasks

Services

Task

Stack

Multi-host	networking

Creating	a	Docker	Swarm

Creating	a	local	single	node	swarm

Creating	a	local	swarm	in	VirtualBox	or	Hyper-V

Using	Play	with	Docker	(PWD)	to	generate	a	Swarm

Creating	a	Docker	Swarm	in	the	cloud

Deploying	a	first	application

Creating	a	service

Inspecting	the	service	and	its	tasks

Logs	of	a	service

Reconciling	the	desired	state

Deleting	a	service	or	a	stack

Deploying	a	multi-service	stack

The	swarm	routing	mesh

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

11.	 Zero	Downtime	Deployments	and	Secrets
Technical	requirements

Zero	downtime	deployment

Popular	deployment	strategies

Rolling	updates

Health	checks

Rollback

Blue–green	deployments

Canary	releases

Secrets

Creating	secrets

Using	a	secret

Simulating	secrets	in	a	development	environment

Secrets	and	legacy	applications

Updating	secrets

Summary

Questions

Further	reading

12.	 Introduction	to	Kubernetes
Technical	requirements

Architecture

Kubernetes	master	nodes

Cluster	nodes

Introduction	to	Minikube

Kubernetes	support	in	Docker	for	Desktop

Pods

Comparing	Docker	container	and	Kubernetes	pod	networking

Sharing	the	network	namespace

Pod	life	cycle

Pod	specification

Pods	and	volumes

Kubernetes	ReplicaSet

ReplicaSet	specification

Self-healing

Kubernetes	deployment

Kubernetes	service

Context-based	routing

Comparing	SwarmKit	with	Kubernetes

Summary

Questions

Further	reading

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

13.	 Deploying,	Updating,	and	Securing	an	Application	with	Kubernetes
Technical	requirements

Deploying	a	first	application

Deploying	the	web	component

Deploying	the	database

Streamlining	the	deployment

Zero	downtime	deployments

Rolling	updates

Blue–green	deployment

Kubernetes	secrets

Manually	defining	secrets

Creating	secrets	with	kubectl

Using	secrets	in	a	pod

Secret	values	in	environment	variables

Summary

Questions

Further	reading

14.	 Running	a	Containerized	App	in	the	Cloud
Technical	requirements

Deploying	our	application	into	AWS	ECS

Introduction	to	ECS

Creating	a	Fargate	ECS	cluster	of	AWS

Authoring	a	task	definition

Running	a	task	in	ECS

Modifying	the	task	definition

Adding	the	database	component	to	the	application

Deploying	and	using	Docker	EE	on	AWS

Provisioning	the	infrastructure

Installing	Docker

Installing	Docker	UCP

Remote	admin	the	UCP	cluster

Deploying	to	Docker	Swarm

Deploying	to	Kubernetes

A	short	peek	into	Azure’s	container	offerings

A	short	peek	into	Google’s	container	offerings

Summary

Questions

Further	reading

Assessment

Chapter	1

Chapter	2

Chapter	3

Chapter	4

Chapter	5

Chapter	6

Chapter	7

Chapter	8

Chapter	9

Chapter	10

Chapter	11

Chapter	12

Chapter	13

Chapter	14

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Preface
Docker	containers	have	revolutionized	the	software	supply	chain	in	small	and
big	enterprises.	Never	before	has	a	new	technology	so	rapidly	penetrated	the	top
500	enterprises	worldwide.	Companies	that	embrace	containers	and	containerize
their	traditional	mission-critical	applications	have	reported	savings	of	at	least
50%	in	total	maintenance	costs	and	a	reduction	of	90%	(or	more)	in	deploying
new	versions	of	those	applications.	Furthermore,	they	are	benefiting	from
increased	security	by	using	containers	rather	than	running	applications	outside
containers.

This	book	starts	from	scratch,	introducing	you	to	Docker	fundamentals	and
setting	up	an	environment	to	work	with	it.	Then,	we	delve	into	concepts	such	as
Docker	containers,	Docker	images,	and	Docker	Compose.	We	will	also	cover	the
concepts	of	deployment,	orchestration,	networking,	and	security.	Furthermore,
we	explain	Docker	functionalities	on	public	clouds,	such	as	AWS.

By	the	end	of	this	book,	you	will	have	hands-on	experience	working	with
Docker	containers	and	orchestrators,	such	as	SwarmKit	and	Kubernetes.

Who	this	book	is	for
This	book	is	targeted	at	system	administrators,	operations	engineers,	DevOps
engineers,	and	developers	or	stakeholders	who	are	interested	in	getting	started
with	Docker	from	scratch.	No	prior	experience	with	Docker	containers	is
required.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

What	this	book	covers
Chapter	1,	What	Are	Containers	and	Why	Should	I	Use	Them?,	focuses	on	the
software	supply	chain	and	the	friction	within	it.	It	then	presents	containers	as	a
means	to	reduce	this	friction	and	add	enterprise-grade	security	on	top	of	it.	In
this	chapter,	we	also	look	into	how	containers	and	the	ecosystem	around	them
are	assembled.	We	specifically	point	out	the	distinction	between	the	upstream
OSS	components	(Moby)	that	form	the	building	blocks	of	the	downstream
products	of	Docker	and	other	vendors.

Chapter	2,	Setting	up	a	Working	Environment,	discusses	in	detail	how	to	set	up	an
ideal	environment	for	developers,	DevOps	engineers,	and	operators	that	can	be
used	when	working	with	Docker	containers.

Chapter	3,	Working	with	Containers,	teaches	how	start,	stop,	and	remove
containers.	The	chapter	also	teaches	how	to	inspect	containers	to	retrieve
additional	metadata.	Furthermore,	it	introduces	how	to	run	additional	processes
and	how	to	attach	to	the	main	process	in	an	already	running	container.	It	also
shows	how	to	retrieve	logging	information	from	a	container	that	is	produced	by
the	processes	running	inside	it.	

Chapter	4,	Creating	and	Managing	Container	Images,	introduces	the	different
ways	to	create	container	images,	which	serve	as	templates	for	containers.	It
introduces	the	inner	structure	of	an	image	and	how	it	is	built.

Chapter	5,	Data	Volumes	and	System	Management,	introduces	data	volumes	that
can	be	used	by	stateful	components	running	in	containers.	The	chapter	also
introduces	system-level	commands	that	are	used	to	gather	information	about
Docker	and	the	underlying	OS,	as	well	as	commands	to	clean	the	system	from
orphaned	resources.	Finally,	it	introduces	the	system	events	generated	by	the
Docker	engine.

Chapter	6,	Distributed	Application	Architecture,	introduces	the	concept	of	a
distributed	application	architecture	and	discusses	the	various	patterns	and	best
practices	that	are	required	to	run	a	distributed	application	successfully.	Finally,	it
discusses	the	additional	requirements	that	need	to	be	fulfilled	to	run	such	an

application	in	production.

Chapter	7,	Single-Host	Networking,	introduces	the	Docker	container	networking
model	and	its	single-host	implementation	in	the	form	of	the	bridge	network.	The
chapter	introduces	the	concept	of	software-defined	networks	(SDNs)	and	how
they	are	used	to	secure	containerized	applications.	Finally,	it	introduces	how
container	ports	can	be	opened	to	the	public	and	thus	how	to	make	containerized
components	accessible	from	the	outside	world.

Chapter	8,	Docker	Compose,	introduces	the	concept	of	an	application	consisting	of
multiple	services,	each	running	in	a	container,	and	how	Docker	Compose	allows
us	to	easily	build,	run,	and	scale	such	an	application	using	a	declarative
approach.

Chapter	9,	Orchestrators,	introduces	the	concept	of	orchestrators.	It	teaches	why
orchestrators	are	needed	and	how	they	work.	The	chapter	also	provides	an
overview	of	the	most	popular	orchestrators	and	explores	a	few	of	their	pros	and
cons.

Chapter	10,		Introduction	to	Docker	Swarm,	introduces	Docker's	native
orchestrator	called	SwarmKit.	It	elaborates	on	all	the	concepts	and	objects
SwarmKit	uses	to	deploy	and	run	a	distributed,	resilient,	robust,	and	highly
available	application	in	a	cluster	on-premise,	or	in	the	cloud.	The	chapter	also
introduces	how	SwarmKit	ensures	secure	applications	using	SDNs	to	isolate
containers	and	secrets	to	protect	sensitive	information.	

Chapter	11,	Zero	Downtime	Deployments	and	Secrets,	teaches	how	to	deploy
services	or	applications	onto	a	Docker	swarm	with	zero	downtime	and	automatic
rollback	capabilities.	It	also	introduces	secrets	as	a	means	to	protect	sensitive
information.

Chapter	12,	Introduction	to	Kubernetes,	introduces	the	currently	most	popular
container	orchestrator.	It	introduces	the	core	Kubernetes	objects	that	are	used	to
define	and	run	a	distributed,	resilient,	robust,	and	highly	available	application	in
a	cluster.	Finally,	it	introduces	Minikube	as	a	way	to	locally	deploy	a	Kubernetes
application	and	also	the	integration	of	Kubernetes	with	Docker	for	Mac	and
Docker	for	Windows.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	13,	Deploying,	Updating,	and	Securing	an	Application	with
Kubernetes,	teaches	how	to	deploy,	update,	and	scale	applications	into	a
Kubernetes	cluster.	It	also	explains	how	zero-downtime	deployments	are
achieved	to	enable	disruption	free	updates	and	rollbacks	of	mission-critical
applications.	This	chapter	also	introduces	Kubernetes	secrets	as	a	means	to
configure	services	and	protect	sensitive	data.

Chapter	14,	Running	a	Containerized	App	in	the	Cloud,	gives	an	overview	over
some	of	the	most	popular	ways	of	running	containerized	applications	in	the
cloud.	We	have	a	closer	look	to	what	the	most	popular	cloud	vendor,	AWS,
offers	in	this	regard.	We	include	self-hosting	and	hosted	solutions	and	discuss
their	pros	and	cons.	Offerings	of	other	vendors,	such	as	Microsoft	Azure	and
Google	Cloud	Engine,	are	also	briefly	discussed.

To	get	the	most	out	of	this	book
Ideally	you	have	access	to	a	laptop	or	personal	computer	with	Windows	10
Professional	or	a	recent	version	of	Mac	OS	X	installed.	A	computer	with	any
popular	Linux	OS	installed	works	too.	If	you're	on	a	Mac	you	should	install
Docker	for	Mac	and	if	you're	on	Windows	then	install	Docker	for	Windows.	You
can	download	them	from	here:	https://www.docker.com/community-edition

If	you	are	on	an	older	version	of	Windows	or	are	using	Windows	10	Home
edition,	then	you	should	install	Docker	Toolbox.	You	can	find	the	Docker
Toolbox	here:	https://docs.docker.com/toolbox/toolbox_install_windows/

On	the	Mac,	use	the	Terminal	application,	and	on	Windows,	use	a	PowerShell
console	to	try	out	the	commands	you	will	be	learning.	You	also	need	a	recent
version	of	a	browser	such	as	Google	Chrome,	Safari	or	Internet	Explorer.	Of
course	you	will	need	internet	access	to	download	tools	and	container	images	that
we	are	going	to	use	and	explore	in	this	book.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.docker.com/community-edition
https://docs.docker.com/toolbox/toolbox_install_windows/

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/fundame
ntalsofdocker/labs.	If	there's	an	update	to	the	code,	it	will	be	updated	on	the
existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/fundamentalsofdocker/labs
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	from	https://www.packtpub.com/sites/default/f
iles/downloads/LearnDockerFundamentalsofDocker18x_ColorImages.pdf.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://www.packtpub.com/sites/default/files/downloads/LearnDockerFundamentalsofDocker18x_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"The	content	of	each	layer	is	mapped	to	a	special
folder	on	the	host	system,	which	is	usually	a	subfolder	of	/var/lib/docker/."

A	block	of	code	is	set	as	follows:

COPY	.	/app

COPY	./web	/app/web

COPY	sample.txt	/data/my-sample.txt

ADD	sample.tar	/app/bin/

ADD	http://example.com/sample.txt	/data/

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

FROM	python:2.7

RUN	mkdir	-p	/app

WORKDIR	/app

COPY	./requirements.txt	/app/

RUN	pip	install	-r	requirements.txt

CMD	["python",	"main.py"]

Any	command-line	input	or	output	is	written	as	follows:

$	mkdir	~/FundamentalsOfDocker

$	cd	~/FundamentalsOfDocker

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

What	Are	Containers	and	Why
Should	I	Use	Them?
This	first	chapter	of	this	book	will	introduce	you	to	the	world	of	containers	and
their	orchestration.	The	book	starts	from	the	beginning,	assuming	no	prior
knowledge	in	the	area	of	containers,	and	will	give	you	a	very	practical
introduction	into	the	topic.

In	this	chapter,	we	are	focusing	on	the	software	supply	chain	and	the	friction
within	it.	We	then	present	containers	as	a	means	to	reduce	this	friction	and	add
enterprise-grade	security	on	top	of	it.	In	this	chapter,	we	also	look	into	how
containers	and	the	ecosystem	around	them	are	assembled.	We	specifically	point
out	the	distinction	between	the	upstream	Operations	Support	System	(OSS)
components,	united	under	the	code	name	Moby,	that	form	the	building	blocks	of
the	downstream	products	of	Docker	and	other	vendors.

The	chapter	covers	the	following	topics:

What	are	containers?
Why	are	containers	important?
What's	the	benefit	for	me	or	for	my	company?
The	Moby	project
Docker	products
The	container	ecosystem
Container	architecture	

After	completing	this	module,	you	will	be	able	to:

Explain	in	a	few	simple	sentences	to	an	interested	layman	what	containers
are,	using	an	analogy	such	as	physical	containers
Justify	to	an	interested	layman	why	containers	are	so	important,	using	an
analogy	such	as	physical	containers	versus	traditional	shipping,	or
apartment	homes	versus	single	family	homes,	and	so	on
Name	at	least	four	upstream	open	source	components	that	are	used	by	the
Docker	products,	such	as	Docker	for	Mac/Windows

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Identify	at	least	three	Docker	products

Technical	requirements
This	chapter	is	a	theoretical	introduction	into	the	topic.	Therefore,	there	are	no
special	technical	requirements	for	this	chapter.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

What	are	containers?
A	software	container	is	a	pretty	abstract	thing	and	thus	it	might	help	if	we	start
with	an	analogy	that	should	be	pretty	familiar	to	most	of	the	readers.	The
analogy	is	a	shipping	container	in	the	transportation	industry.	Throughout
history,	people	have	been	transporting	goods	from	one	location	to	another	by
various	means.	Before	the	invention	of	the	wheel,	goods	would	most	probably
have	been	transported	in	bags,	baskets,	or	chests	on	the	shoulders	of	the	humans
themselves,	or	they	might	have	used	animals	such	as	donkeys,	camels,	or
elephants	to	transport	them.

With	the	invention	of	the	wheel,	transportation	became	a	bit	more	efficient	as
humans	would	built	roads	on	which	they	could	move	their	carts	along.	Many
more	goods	could	be	transported	at	a	time.	When	we	then	introduced	the	first
steam-driven	machines,	and	later	gasoline	driven	engines,	transportation	became
even	more	powerful.	We	now	transport	huge	amounts	of	goods	in	trains,	ships,
and	trucks.	At	the	same	time,	the	type	of	goods	became	more	and	more	diverse,
and	sometimes	complex	to	handle.

In	all	these	thousands	of	years,	one	thing	did	not	change	though,	and	that	was	the
necessity	to	unload	the	goods	at	the	target	location	and	maybe	load	them	onto
another	means	of	transportation.	Take,	for	example,	a	farmer	bringing	a	cart	full
of	apples	to	a	central	train	station	where	the	apples	are	then	loaded	onto	a	train,
together	with	all	the	apples	from	many	other	farmers.	Or	think	of	a	winemaker
bringing	his	barrels	of	wine	with	a	truck	to	the	port	where	they	are	unloaded,	and
then	transferred	to	a	ship	that	will	transport	the	barrels	overseas.

This	unloading	from	one	means	of	transportation	and	loading	onto	another
means	of	transportation	was	a	really	complex	and	tedious	process.	Every	type	of
good	was	packaged	in	its	own	way	and	thus	had	to	be	handled	in	its	own	way.	
Also,	loose	goods	risked	being	stolen	by	unethical	workers,	or	goods	could	be
damaged	in	the	process.

Then,	there	came	the	container,	and	it	totally	revolutionized	the	transportation
industry.	The	container	is	just	a	metallic	box	with	standardized	dimensions.	The

length,	width,	and	height	of	each	container	is	the	same.	This	is	a	very	important
point.	Without	the	world	agreeing	on	a	standard	size,	the	whole	container	thing
would	not	have	been	as	successful	as	it	is	now.

Now,	with	standardized	containers,	companies	who	want	to	have	their	goods
transported	from	A	to	B	package	those	goods	into	these	containers.	Then,	they
call	a	shipper	which	comes	with	a	standardized	means	for	transportation.	This
can	be	a	truck	that	can	load	a	container	or	a	train	whose	wagons	can	each
transport	one	or	several	containers.	Finally,	we	have	ships	that	are	specialized	in
transporting	huge	amounts	of	containers.	The	shippers	never	need	to	unpack	and
repackage	goods.	For	a	shipper,	a	container	is	a	black	box	and	they	are	not
interested	in	what	is	in	it	nor	should	they	care	in	most	cases.	It	is	just	a	big	iron
box	with	standard	dimensions.	The	packaging	of	goods	into	containers	is	now
fully	delegated	to	the	parties	that	want	to	have	their	goods	shipped,	and	they
should	know	best	on	how	to	handle	and	package	those	goods.

Since	all	containers	have	the	same	standardized	shape	and	dimensions,	the
shippers	can	use	standardized	tools	to	handle	containers,	that	is,	cranes	that
unload	containers,	say	from	a	train	or	a	truck,	and	load	them	onto	a	ship	or	vice
versa.	One	type	of	crane	is	enough	to	handle	all	the	containers	that	come	along
over	time.	Also,	the	means	of	transportation	can	be	standardized,	such	as
container	ships,	trucks,	and	trains.

Because	of	all	this	standardization,	all	the	processes	in	and	around	shipping
goods	could	also	be	standardized	and	thus	made	much	more	efficient	than	they
were	before	the	age	of	containers.

I	think	by	now	you	should	have	a	good	understanding	of	why	shipping
containers	are	so	important	and	why	they	revolutionized	the	whole	transportation
industry.	I	chose	this	analogy	purposefully,	since	the	software	containers	that	we
are	going	to	introduce	here	fulfill	the	exact	same	role	in	the	so-called	software
supply	chain	as	shipping	containers	do	in	the	supply	chain	of	physical	goods.

In	the	old	days,	developers	would	develop	a	new	application.	Once	that
application	was	completed	in	the	eyes	of	the	developers,	they	would	hand	this
application	over	to	the	operations	engineers	that	were	then	supposed	to	install	it
on	the	production	servers	and	get	it	running.	If	the	operations	engineers	were
lucky,	they	even	got	a	somewhat	accurate	document	with	installation	instructions

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

from	the	developers.	So	far	so	good,	and	life	was	easy.

But	things	got	a	bit	out	of	hand	when	in	an	enterprise,	there	were	many	teams	of
developers	that	created	quite	different	types	of	applications,	yet	all	needed	to	be
installed	on	the	same	production	servers	and	kept	running	there.	Usually,	each
application	has	some	external	dependencies	such	as	which	framework	it	was
built	on	or	what	libraries	it	uses	and	so	on.	Sometimes,	two	applications	would
use	the	same	framework	but	in	different	versions	that	might	or	might	not	be
compatible	between	each	other.	Our	operations	engineer's	life	became	much
harder	over	time.	They	had	to	be	really	creative	on	how	they	could	load	their
ship,	which	is	of	course	their	servers	with	different	applications	without	breaking
something.

Installing	a	new	version	of	a	certain	application	was	now	a	complex	project	on
its	own	and	often	needed	months	of	planning	and	testing.	In	other	words,	there
was	a	lot	of	friction	in	the	software	supply	chain.	But	these	days,	companies	rely
more	and	more	on	software	and	the	release	cycles	become	shorter	and	shorter.
We	cannot	afford	anymore	to	just	have	a	new	release	maybe	twice	a	year.
Applications	need	to	be	updated	in	a	matter	of	weeks	or	days,	or	sometimes	even
multiple	times	per	day.	Companies	that	do	not	comply	risk	going	out	of	business
due	to	the	lack	of	agility.	So,	what's	the	solution?

A	first	approach	was	to	use	virtual	machines	(VMs).	Instead	of	running
multiple	applications	all	on	the	same	server,	companies	would	package	and	run	a
single	application	per	VM.	With	it,	the	compatibility	problems	were	gone	and
life	seemed	good	again.	Unfortunately,	the	happiness	didn't	last	for	long.	VMs
are	pretty	heavy	beasts	on	their	own	since	they	all	contain	a	full-blown	OS	such
as	Linux	or	Windows	Server	and	all	that	for	just	a	single	application.	This	is	as	if
in	the	transportation	industry	you	would	use	a	gigantic	ship	just	to	transport	a
truck	load	of	bananas.	What	a	waste.	That	can	never	be	profitable.

The	ultimate	solution	to	the	problem	was	to	provide	something	much	more
lightweight	than	VMs	but	also	able	to	perfectly	encapsulate	the	goods	it	needed
to	transport.	Here,	the	goods	are	the	actual	application	written	by	our	developers
plus	(and	this	is	important)	all	the	external	dependencies	of	the	application,	such
as	framework,	libraries,	configurations,	and	more.	This	holy	grail	of	a	software
packaging	mechanism	was	the	Docker	container.

Developers	use	Docker	containers	to	package	their	applications,	frameworks,
and	libraries	into	them,	and	then	they	ship	those	containers	to	the	testers	or	to	the
operations	engineers.	For	the	testers	and	operations	engineers,	the	container	is
just	a	black	box.	It	is	a	standardized	black	box,	though.	All	containers,	no	matter
what	application	runs	inside	them,	can	be	treated	equally.	The	engineers	know
that	if	any	container	runs	on	their	servers,	then	any	other	containers	should	run
too.	And	this	is	actually	true,	apart	from	some	edge	cases	which	always	exist.

Thus,	Docker	containers	are	a	means	to	package	applications	and	their
dependencies	in	a	standardized	way.	Docker	then	coined	the	phrase—Build,	ship
and	run	anywhere.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Why	are	containers	important?
These	days,	the	time	between	new	releases	of	an	application	become	shorter	and
shorter,	yet	the	software	itself	doesn't	become	any	simpler.	On	the	contrary,
software	projects	increase	in	complexity.	Thus,	we	need	a	way	to	tame	the	beast
and	simplify	the	software	supply	chain.

We	also	hear	every	day	how	much	more	cyber	crimes	are	on	the	rise.	Many	well-
known	companies	are	affected	by	security	breaches.	Highly	sensitive	customer
data	gets	stolen,	such	as	social	security	numbers,	credit	card	information,	and
more.	But	not	only	customer	data	is	compromised,	sensitive	company	secrets	are
also	stolen.

Containers	can	help	in	many	ways.	First	of	all,	Gartner	has	found	in	a	recent
report	that	applications	running	in	a	container	are	more	secure	than	their
counterparts	not	running	in	a	container.	Containers	use	Linux	security	primitives
such	as	Linux	kernel	namespaces	to	sandbox	different	applications	running	on
the	same	computers	and	control	groups	(cgroups),	to	avoid	the	noisy	neighbor
problem	where	one	bad	application	is	using	all	available	resources	of	a	server
and	starving	all	other	applications.

Due	to	the	fact	that	container	images	are	immutable,	it	is	easy	to	have	them
scanned	for	known	vulnerabilities	and	exposures,	and	in	doing	so,	increase	the
overall	security	of	our	applications.

Another	way	we	can	make	our	software	supply	chain	more	secure	when	using
containers	is	to	use	content	trust.	Content	trust	basically	ensures	that	the	author
of	a	container	image	is	who	they	pretend	to	be	and	that	the	consumer	of	the
container	image	has	a	guarantee	that	the	image	has	not	been	tampered	with	in
transit.	The	latter	is	known	as	a	man-in-the-middle	(MITM)	attack.

All	that	I	have	just	said	is	of	course	technically	also	possible	without	using
containers,	but	since	containers	introduce	a	globally	accepted	standard,	it	makes
it	so	much	easier	to	implement	those	best	practices	and	enforce	them.

OK,	but	security	is	not	the	only	reason	why	containers	are	important.	There	are

other	reasons:

One	of	them	is	the	fact	that	containers	make	it	easy	to	simulate	a	production-like
environment,	even	on	a	developer's	laptop.	If	we	can	containerize	any
application,	then	we	can	also	containerize,	say,	a	database	such	as	Oracle	or	MS
SQL	Server.	Now,	everyone	who	has	ever	had	to	install	an	Oracle	database	on	a
computer	knows	that	this	is	not	the	easiest	thing	to	do	and	it	takes	a	lot	of	space
away	on	your	computer.	You	wouldn't	want	to	do	that	to	your	development
laptop	just	to	test	whether	the	application	you	developed	really	works	end	to	end.
With	containers	at	hand,	I	can	run	a	full-blown	relational	database	in	a	container
as	easily	as	saying	1,	2,	3.	And	when	I'm	done	with	testing,	I	can	just	stop	and
delete	the	container	and	the	database	is	gone	without	leaving	a	trace	on	my
computer.

Since	containers	are	very	lean	compared	to	VMs,	it	is	not	uncommon	to	have
many	containers	running	at	the	same	time	on	a	developer's	laptop	without
overwhelming	the	laptop.

A	third	reason	why	containers	are	important	is	that	operators	can
finally	concentrate	on	what	they	are	really	good	at,	provisioning	infrastructure,
and	running	and	monitoring	applications	in	production.	When	the	applications
they	have	to	run	on	a	production	system	are	all	containerized,	then	operators	can
start	to	standardize	their	infrastructure.	Every	server	becomes	just	another
Docker	host.	No	special	libraries	of	frameworks	need	to	be	installed	on	those
servers,	just	an	OS	and	a	container	runtime	such	as	Docker.

Also,	the	operators	do	not	have	to	have	any	intimate	knowledge	about	the
internals	of	the	applications	anymore	since	those	applications	run	self-contained
in	containers	that	ought	to	look	like	black	boxes	to	the	operations	engineers,
similar	to	how	the	shipping	containers	look	to	the	personnel	in	the	transportation
industry.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

What's	the	benefit	for	me	or	for	my
company?
Somebody	once	said	that	today,	every	company	of	a	certain	size	has	to
acknowledge	that	they	need	to	be	a	software	company.	Software	runs	all
businesses,	period.	As	every	company	becomes	a	software	company,	there	is	a
need	to	establish	a	software	supply	chain.	For	the	company	to	remain
competitive,	their	software	supply	chain	has	to	be	secure	and	efficient.
Efficiency	can	be	achieved	through	thorough	automation	and	standardization.
But	in	all	three	areas,	security,	automation,	and	standardization,	containers	have
shown	to	shine.	Large	and	well-known	enterprises	have	reported	that	when
containerizing	existing	legacy	applications	(many	call	them	traditional
applications)	and	establishing	a	fully	automated	software	supply	chain	based	on
containers,	they	can	reduce	the	cost	used	for	maintenance	of	those	mission-
critical	applications	by	a	factor	of	50	to	60%	and	they	can	reduce	the	time
between	new	releases	of	these	traditional	applications	by	up	to	90%.

That	said,	the	adoption	of	container	technology	saves	these	companies	a	lot	of
money,	and	at	the	same	time	it	speeds	up	the	development	process	and	reduces
the	time	to	market.

The	Moby	project
Originally,	when	the	company	Docker	introduced	Docker	containers,	everything
was	open	source.	Docker	didn't	have	any	commercial	products	at	this	time.	The
Docker	engine	which	the	company	developed	was	a	monolithic	piece	of
software.	It	contained	many	logical	parts,	such	as	the	container	runtime,	a
network	library,	a	RESTful	API,	a	command-line	interface,	and	much	more.

Other	vendors	or	projects	such	as	Red	Hat	or	Kubernetes	were	using	the	Docker
engine	in	their	own	products,	but	most	of	the	time	they	were	only	using	part	of
its	functionality.	For	example,	Kubernetes	did	not	use	the	Docker	network
library	of	the	Docker	engine	but	provided	its	own	way	of	networking.	Red	Hat	in
turn	did	not	update	the	Docker	engine	frequently	and	preferred	to	apply
unofficial	patches	to	older	versions	of	the	Docker	engine,	yet	they	still	called	it
the	Docker	engine.

Out	of	all	these	reasons	and	many	more,	the	idea	emerged	that	Docker	had	to	do
something	to	clearly	separate	the	Docker	open	source	part	from	the	Docker
commercial	part.	Furthermore,	the	company	wanted	to	prevent	competitors	from
using	and	abusing	the	name	Docker	for	their	own	gains.	This	was	the	main
reason	why	the	Moby	project	was	born.	It	serves	as	the	umbrella	for	most	of	the
open	source	components	Docker	developed	and	continues	to	develop.	These
open	source	projects	do	not	carry	the	name	Docker	in	them	anymore.

Part	of	the	Moby	project	are	components	for	image	management,	secret
management,	configuration	management,	and	networking	and	provisioning,	to
name	just	a	few.	Also,	part	of	the	Moby	project	are	special	Moby	tools	that	are,
for	example,	used	to	assemble	components	into	runnable	artifacts.

Some	of	the	components	that	technically	would	belong	to	the	Moby	project	have
been	donated	by	Docker	to	the	Cloud	Native	Computing	Foundation	(CNCF)
and	thus	do	not	appear	in	the	list	of	components	anymore.	The	most	prominent
ones	are	containerd	and	runc	which	together	form	the	container	runtime.			

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	products
Docker	currently	separates	its	product	lines	into	two	segments.	There	is	the
Community	Edition	(CE)	which	is	closed	source	yet	completely	free,	and	then
there	is	the	Enterprise	Edition	(EE)	which	is	also	a	closed	source	and	needs	to
be	licensed	on	a	yearly	basis.	The	enterprise	products	are	backed	by	24	x	7
support	and	are	supported	with	bug	fixes	much	longer	than	their	CE
counterparts.

Docker	CE
Part	of	the	Docker	community	edition	are	products	such	as	the	Docker	Toolbox,
Docker	for	Mac,	and	Docker	for	Windows.	All	these	three	products	are	mainly
targeting	developers.	

Docker	for	Mac	and	Docker	for	Windows	are	easy-to-install	desktop
applications	that	can	be	used	to	build,	debug,	and	test	Dockerized	applications	or
services	on	a	Mac	or	on	Windows.	Docker	for	Mac	and	Docker	for	Windows	are
complete	development	environments	which	deeply	integrated	with	their
respective	hypervisor	framework,	networking,	and	filesystem.	These	tools	are
the	fastest	and	most	reliable	way	to	run	Docker	on	a	Mac	or	on	Windows.

Under	the	umbrella	of	the	CE,	there	are	also	two	products	that	are	more	geared
towards	operations	engineers.	Those	products	are	Docker	for	Azure	and	Docker
for	AWS.

For	example,	with	Docker	for	Azure,	which	is	a	native	Azure	application,	you
can	set	up	Docker	in	a	few	clicks,	optimized	for	and	integrated	to	the	underlying
Azure	Infrastructure	as	a	Service	(IaaS)	services.	It	helps	operations	engineers
to	accelerate	time	to	productivity	in	building	and	running	Docker	applications	in
Azure.

Docker	for	AWS	works	very	similar	but	for	Amazon's	cloud.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	EE
The	Docker	EE	consists	of	the	two	products	Universal	Control	Plane	(UCP)
and	Docker	Trusted	Registry	(DTR)	that	both	run	on	top	of	Docker	Swarm.
Both	are	Swarm	applications.	Docker	EE	builds	on	top	of	the	upstream
components	of	the	Moby	project	and	adds	enterprise-grade	features	such	as	role-
based	access	control	(RBAC),	multi	tenancy,	mixed	clusters	of	Docker	Swarm
and	Kubernetes,	web-based	UI,	and	content	trust,	as	well	as	image	scanning	on
top	of	it.

The	container	ecosystem
There	has	never	been	a	new	technology	introduced	in	IT	that	penetrated	the
landscape	so	quickly	and	so	thoroughly	than	containers.	Any	company	that
doesn't	want	to	be	left	behind	cannot	ignore	containers.	This	huge	interest	in
containers	from	all	sectors	of	the	industry	has	triggered	a	lot	of	innovation	in	this
sector.	Numerous	companies	have	specialized	in	containers	and	either	provide
products	that	build	on	top	of	this	technology	or	build	tools	that	support	it.

Initially,	Docker	didn't	have	a	solution	for	container	orchestration	thus	other
companies	or	projects,	open	source	or	not,	tried	to	close	this	gap.	The	most
prominent	one	is	Kubernetes	which	was	initiated	by	Google	and	then	later
donated	to	the	CNCF.	Other	container	orchestration	products	are	Apache	Mesos,
Rancher,	Red	Hat's	Open	Shift,	Docker's	own	Swarm,	and	more.	

More	recently,	the	trend	goes	towards	a	service	mesh.	This	is	the	new	buzz	word.
As	we	containerize	more	and	more	applications,	and	as	we	refactor	those
applications	into	more	microservice-oriented	applications,	we	run	into	problems
that	simple	orchestration	software	cannot	solve	anymore	in	a	reliable	and
scalable	way.	Topics	in	this	area	are	service	discovery,	monitoring,	tracing,	and
log	aggregation.	Many	new	projects	have	emerged	in	this	area,	the	most	popular
one	at	this	time	being	Istio,	which	is	also	part	of	the	CNCF.

Many	say	that	the	next	step	in	the	evolution	of	software	are	functions,	or	more
precisely,	Functions	as	a	Service	(FaaS).	Some	projects	exist	that	provide
exactly	this	kind	of	service	and	are	built	on	top	of	containers.	One	prominent
example	is	OpenFaaS.

We	have	only	scratched	the	surface	of	the	container	ecosystem.	All	big	IT
companies	such	as	Google,	Microsoft,	Intel,	Red	Hat,	IBM,	and	more	are
working	feverishly	on	containers	and	related	technologies.	The	CNCF	that	is
mainly	about	containers	and	related	technologies,	has	so	many	registered
projects,	that	they	do	not	all	fit	on	a	poster	anymore.	It's	an	exciting	time	to	work
in	this	area.	And	in	my	humble	opinion,	this	is	only	the	beginning.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Container	architecture
Now,	let's	discuss	on	a	high	level	how	a	system	that	can	run	Docker	containers	is
designed.	The	following	diagram	illustrates	what	a	computer	on	which	Docker
has	been	installed	looks	like.	By	the	way,	a	computer	which	has	Docker	installed
is	often	called	a	Docker	host,	because	it	can	run	or	host	Docker	containers:

High-level	architecture	diagram	of	the	Docker	engine

In	the	preceding	diagram,	we	see	three	essential	parts:

On	the	bottom,	we	have	the	Linux	operating	system
In	the	middle	dark	gray,	we	have	the	container	runtime
On	the	top,	we	have	the	Docker	engine

Containers	are	only	possible	due	to	the	fact	that	the	Linux	OS	provides	some
primitives,	such	as	namespaces,	control	groups,	layer	capabilities,	and	more
which	are	leveraged	in	a	very	specific	way	by	the	container	runtime	and	the
Docker	engine.	Linux	kernel	namespaces	such	as	process	ID	(pid)
namespaces	or	network	(net)	namespaces	allow	Docker	to	encapsulate	or
sandbox	processes	that	run	inside	the	container.	Control	groups	make	sure	that
containers	cannot	suffer	from	the	noisy	neighbor	syndrome,	where	a	single
application	running	in	a	container	can	consume	most	or	all	of	the	available
resources	of	the	whole	Docker	host.	Control	groups	allow	Docker	to	limit	the

resources,	such	as	CPU	time	or	the	amount	of	RAM	that	each	container	gets
maximally	allocated.

The	container	runtime	on	a	Docker	host	consists	of	containerd	and	runc.	runc	is	the
low-level	functionality	of	the	container	runtime	and	containerd,	which	is	based	on
runc,	provides	the	higher-level	functionality.	Both	are	open	source	and	have	been
donated	by	Docker	to	the	CNCF.

The	container	runtime	is	responsible	for	the	whole	life	cycle	of	a	container.	It
pulls	a	container	image	(which	is	the	template	for	a	container)	from	a	registry	if
necessary,	creates	a	container	from	that	image,	initializes	and	runs	the	container,
and	eventually	stops	and	removes	the	container	from	the	system	when	asked.	

The	Docker	engine	provides	additional	functionality	on	top	of	the	container
runtime,	such	as	network	libraries	or	support	for	plugins.	It	also	provides	a
REST	interface	over	which	all	container	operations	can	be	automated.	The
Docker	command-line	interface	that	we	will	use	frequently	in	this	book	is	one	of
the	consumers	of	this	REST	interface.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	chapter,	we	looked	at	how	containers	can	massively	reduce	the	friction	in
the	software	supply	chain	and	on	top	of	that,	make	the	supply	chain	much	more
secure.

In	the	upcoming	chapter,	we	will	familiarize	ourselves	with	containers.	We	will
learn	how	to	run,	stop,	and	remove	containers	and	otherwise	manipulate	them.
We	will	also	have	a	pretty	good	overview	over	the	anatomy	of	containers.	For
the	first	time,	we're	really	going	to	get	our	hands	dirty	and	play	with	these
containers,	so	stay	tuned.

Questions
Please	solve	the	following	questions	to	assess	your	learning	progress:

1.	 Which	statements	are	correct	(multiple	answers	are	possible)?
1.	 A	container	is	kind	of	a	lightweight	VM
2.	 A	container	only	runs	on	a	Linux	host
3.	 A	container	can	only	run	one	process
4.	 The	main	process	in	a	container	always	has	PID	1
5.	 A	container	is	one	or	more	processes	encapsulated	by	Linux

namespaces	and	restricted	by	cgroups
2.	 Explain	to	an	interested	layman	in	your	own	words,	maybe	using	analogies,

what	a	container	is.
3.	 Why	are	containers	considered	to	be	a	game	changer	in	IT?	Name	three	to

four	reasons.
4.	 What	does	it	mean	when	we	claim:	If	a	container	runs	on	a	given	platform
then	it	runs	anywhere...?	Name	two	to	three	reasons	why	this	is	true.

5.	 True	or	False:	Docker	containers	are	only	really	useful	for	modern
greenfield	applications	based	on	microservices.	Please	justify	your	answer.

6.	 How	much	does	a	typical	enterprise	save	when	containerizing	their	legacy
applications?
1.	 20%
2.	 33%
3.	 50%
4.	 75%

7.	 Which	two	core	concepts	of	Linux	are	containers	based	on?

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
Here	is	a	list	of	links	that	lead	to	more	detailed	information	regarding	topics	we
have	discussed	in	this	chapter:

Docker	overview	at	https://docs.docker.com/engine/docker-overview/
The	Moby	project	at	https://mobyproject.org/
Docker	products	at	https://www.docker.com/get-docker
Cloud	Native	Computing	Foundation	at	https://www.cncf.io/
containerd	–	industry	standard	container	runtime	at	https://containerd.io/

	

	

https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://www.docker.com/get-docker
https://www.cncf.io/
https://containerd.io/

Setting	up	a	Working	Environment
In	the	last	chapter,	we	learned	what	Docker	containers	are	and	why	they're
important.	We	learned	what	kinds	of	problem	containers	solve	in	a	modern
software	supply	chain.

In	this	chapter,	we	are	going	to	prepare	our	personal	or	working	environment	to
work	efficiently	and	effectively	with	Docker.	We	will	discuss	in	detail	how	to	set
up	an	ideal	environment	for	developers,	DevOps,	and	operators	that	can	be	used
when	working	with	Docker	containers.

This	chapter	covers	the	following	topics:

The	Linux	command	shell
PowerShell	for	Windows
Using	a	package	manager
Choosing	a	code	editor
Docker	Toolbox
Docker	for	Mac	and	Docker	for	Windows
Minikube

After	completing	this	chapter,	you	will	be	able	to	do	the	following:

Use	an	editor	on	your	laptop	that	is	able	to	edit	simple	files	such	as	a
Dockerfile	or	a	docker-compose.yml	file
Use	a	shell	such	as	Bash	on	Mac	and	PowerShell	on	Windows	to	execute
Docker	commands	and	other	simple	operations,	such	as	navigating	the
folder	structure	or	creating	a	new	folder
Install	Docker	for	Mac	or	Docker	for	Windows	on	your	computer
Execute	simple	Docker	commands	such	as	docker	version	or	docker	container
run	on	your	Docker	for	Mac	or	Docker	for	Windows
Successfully	install	Docker	Toolbox	on	your	computer
Use	docker-machine	to	create	a	Docker	host	on	VirtualBox
Configure	your	local	Docker	CLI	to	remote	access	a	Docker	host	running	in
VirtualBox

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Technical	requirements
For	this	chapter,	you	will	need	a	laptop	or	a	workstation	with	either	macOS	or
Windows,	preferably	Windows	10	Professional,	installed.	You	should	also	have
free	internet	access	to	download	applications	and	the	permission	to	install	those
applications	on	your	laptop.

The	Linux	command	shell
Docker	containers	were	first	developed	on	Linux	for	Linux.	It	is	thus	natural	that
the	primary	command-line	tool	used	to	work	with	Docker,	also	called	a	shell,	is	a
Unix	shell;	remember,	Linux	derives	from	Unix.	Most	developers	use	the	Bash
shell.	On	some	lightweight	Linux	distributions,	such	as	Alpine,	Bash	is	not
installed	and	consequently	one	has	to	use	the	simpler	Bourne	shell,	just	called
sh.	Whenever	we	are	working	in	a	Linux	environment,	such	as	inside	a	container
or	on	a	Linux	VM,	we	will	use	either	/bin/bash	or	/bin/sh,	depending	on	their
availability.

Although	macOS	X	is	not	a	Linux	OS,	Linux	and	OS	X	are	both	flavors	of	Unix
and	thus	support	the	same	types	of	tools.	Among	those	tools	are	the	shells.	So,
when	working	on	a	Mac,	you	will	probably	be	using	the	Bash	shell.

In	this	book,	we	expect	from	the	readers	a	familiarity	with	the	most	basic
scripting	commands	in	Bash,	and	PowerShell	if	you	are	working	on	Windows.	If
you	are	an	absolute	beginner,	then	we	strongly	recommend	that	you	familiarize
yourself	with	the	following	cheat	sheets:

Linux	Command	Line	Cheat	Sheet	by	Dave	Child	at	http://bit.ly/2mTQr8l
PowerShell	Basic	Cheat	Sheet	at	http://bit.ly/2EPHxze

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://bit.ly/2mTQr8l
http://bit.ly/2EPHxze

PowerShell	for	Windows
On	a	Windows	computer,	laptop,	or	server,	we	have	multiple	command-line
tools	available.	The	most	familiar	is	the	command	shell.	It	has	been	available	on
any	Windows	computer	for	decades.	It	is	a	very	simple	shell.	For	more	advanced
scripting,	Microsoft	has	developed	PowerShell.	PowerShell	is	very	powerful	and
very	popular	among	engineers	working	on	Windows.	On	Windows	10,	finally,
we	have	the	so-called	Windows	Subsystem	for	Linux,	which	allows	us	to	use
any	Linux	tool,	such	as	the	Bash	or	Bourne	shells.	Apart	from	this,	there	also
exist	other	tools	that	install	a	Bash	shell	on	Windows,	for	example,	the	Git	Bash
shell.	In	this	book,	all	commands	will	use	Bash	syntax.	Most	of	the	commands
also	run	in	PowerShell.

Our	recommendation	for	you	is	thus	to	either	use	PowerShell	or	any	other	Bash
tool	to	work	with	Docker	on	Windows.

Using	a	package	manager
The	easiest	way	to	install	software	on	a	Mac	or	Windows	laptop	is	to	use	a	good
package	manager.	On	a	Mac,	most	people	use	Homebrew	and	on
Windows,	Chocolatey	is	a	good	choice.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Installing	Homebrew	on	a	Mac
Installing	Homebrew	on	a	Mac	is	easy;	just	follow	the	instructions	at	https://brew.
sh/.

The	following	is	the	command	to	install	Homebrew:

/usr/bin/ruby	-e	"$(curl	-fsSL	

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once	the	installation	is	finished,	test	whether	Homebrew	is	working	by	entering
brew	--version	in	the	Terminal.	You	should	see	something	like	this:

$	brew	--version

Homebrew	1.4.3

Homebrew/homebrew-core	(git	revision	f4e35;	last	commit	2018-01-11)

Now,	we	are	ready	to	use	Homebrew	to	install	tools	and	utilities.	If	we,	for
example,	want	to	install	the	Vi	text	editor,	we	can	do	so	like	this:

$	brew	install	vim

This	will	then	download	and	install	the	editor	for	you.

https://brew.sh/

Installing	Chocolatey	on	Windows
To	install	the	Chocolatey	package	manager	on	Windows,	please	follow	the
instructions	at	https://chocolatey.org/	or	just	execute	the	following	command	in	a
PowerShell	Terminal	that	you	have	run	as	administrator:

PS>	Set-ExecutionPolicy	Bypass	-Scope	Process	-Force;	iex	((New-Object	

System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Once	Chocolatey	is	installed,	test	it	with	the	command	choco	without	additional
parameters.	You	should	see	output	similar	to	the	following:

PS>	choco

Chocolatey	v0.10.3

To	install	an	application	such	as	the	Vi	editor,	use	the	following	command:

PS>	choco	install	-y	vim

The	-y	parameter	makes	sure	that	the	installation	happens	without	asking	for
reconfirmation.	Please	note	that	once	Chocolatey	has	installed	an	application,
you	need	to	open	a	new	PowerShell	window	to	use	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://chocolatey.org/

Choosing	a	code	editor
Using	a	good	code	editor	is	essential	to	working	productively	with	Docker.	Of
course,	which	editor	is	the	best	is	highly	controversial	and	depends	on	your
personal	preference.	A	lot	of	people	use	Vim,	or	others	such	as	Emacs,	Atom,
Sublime,	or	Visual	Studio	(VS)	Code,	to	just	name	a	few.	If	you	have	not	yet
decided	which	editor	is	best	suited	for	you,	then	I	highly	recommend	that	you	try
VS	Code.	This	is	a	free	and	lightweight	editor,	yet	it	is	very	powerful	and	is
available	for	Mac,	Windows,	and	Linux.	Give	it	a	try.	You	can	download	VS
Code	from	https://code.visualstudio.com/download.

But	if	you	already	have	a	favorite	code	editor,	then	please	continue	using	it.	As
long	as	you	can	edit	text	files,	you're	good	to	go.	If	your	editor	supports	syntax
highlighting	for	Dockerfiles	and	JSON	and	YAML	files,	then	even	better.

https://code.visualstudio.com/download

Docker	Toolbox
Docker	Toolbox	has	been	available	for	developers	for	a	few	years.	It	precedes
the	newer	tools	such	as	Docker	for	Mac	and	Docker	for	Windows.	The	toolbox
allows	a	user	to	work	very	elegantly	with	containers	on	any	Mac	or	Windows
computer.	Containers	must	run	on	a	Linux	host.	Neither	Windows	or	Mac	can
run	containers	natively.	Thus,	we	need	to	run	a	Linux	VM	on	our	laptop,	where
we	can	then	run	our	containers.	Docker	Toolbox	installs	VirtualBox	on	our
laptop,	which	is	used	to	run	the	Linux	VMs	we	need.

As	a	Windows	user,	you	might	already	be	aware	that	there	exists	so-called	Windows
containers	that	run	natively	on	Windows.	And	you	are	right.	Recently,	Microsoft	has	ported
the	Docker	engine	to	Windows	and	it	is	now	possible	to	run	Windows	containers	directly	on	a
Windows	Server	2016	without	the	need	for	a	VM.	So,	now	we	have	two	flavors	of	containers,
Linux	containers	and	Windows	containers.	The	former	only	run	on	Linux	host	and	the	latter
only	run	on	a	Windows	Server.	In	this	book,	we	are	exclusively	discussing	Linux	containers,
but	most	of	the	things	we	learn	also	apply	to	Windows	containers.

Let's	use	docker-machine	to	set	up	our	environment.	Firstly,	we	list	all	Docker-ready
VMs	we	have	currently	defined	on	our	system.	If	you	have	just	installed	Docker
Toolbox,	you	should	see	the	following	output:

List	of	all	Docker-ready	VMs

The	IP	address	used	might	be	different	in	your	case,	but	it	will	be	definitely	in
the	192.168.0.0/24	range.	We	can	also	see	that	the	VM	has	Docker	version	18.04.0-
ce	installed.

If,	for	some	reason,	you	don't	have	a	default	VM	or	you	have	accidentally
deleted	it,	you	can	create	it	using	the	following	command:

$	docker-machine	create	--driver	virtualbox	default

The	output	you	should	see	looks	as	follows:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	the	VM	called	default	in	VirtualBox

To	see	how	to	connect	your	Docker	client	to	the	Docker	Engine	running	on	this
virtual	machine,	run	the	following	command:

$	docker-machine	env	default

Once	we	have	our	VM	called	default	ready,	we	can	try	to	SSH	into	it:

$	docker-machine	ssh	default

When	executing	the	preceding	command,	we	are	greeted	by	a	boot2docker
welcome	message.

Type	docker	--version	in	the	Command	Prompt	as	follows:

docker@default:~$	docker	--version

Docker	version	17.12.1-ce,	build	7390fc6

Now,	let's	try	to	run	a	container:

docker@default:~$	docker	run	hello-world

This	will	produce	the	following	output:

Running	the	Docker	Hello	World	container

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	for	Mac	and	Docker	for
Windows
If	you	are	using	a	Mac	or	have	Windows	10	Professional	installed	on	your
laptop,	then	we	strongly	recommend	that	you	install	Docker	for	Mac	or	Docker
for	Windows.	These	tools	give	you	the	best	experience	when	working	with
containers.	Note,	older	versions	of	Windows	or	Windows	10	Home	edition
cannot	run	Docker	for	Windows.	Docker	for	Windows	uses	Hyper-V	to	run
containers	transparently	in	a	VM	but	Hyper-V	is	not	available	on	older	versions
of	Windows	nor	is	it	available	in	the	Home	edition.

Installing	Docker	for	Mac
Navigate	to	the	following	link	to	download	Docker	for	Mac	at	https://docs.docker.
com/docker-for-mac/install/.

There	is	a	stable	version	and	a	so-called	edge	version	of	the	tool	available.	In	this	book,	we
are	going	to	use	some	newer	features	and	Kubernetes,	which	at	the	time	of	writing	are	only
available	in	the	edge	version.	Thus,	please	select	this	version.

To	start	the	installation,	click	on	the	Get	Docker	for	Mac	(Edge)	button	and
follow	the	instructions.

Once	you	have	successfully	installed	Docker	for	Mac,	please	open	a	Terminal.
Press	command	+	spacebar	to	open	Spotlight	and	type	terminal,	then	hit	Enter.
The	Apple	Terminal	will	open	as	follows:

Apple	Terminal	window

Type	docker	--version	in	the	Command	Prompt	and	hit	Enter.	If	Docker	for	Mac	is
correctly	installed,	you	should	get	an	output	similar	to	the	following:

$	docker	--version

Docker	version	18.02.0-ce-rc2,	build	f968a2c

To	see	whether	you	can	run	containers,	enter	the	following	command	into	the

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-mac/install/

Terminal	and	hit	Enter:

$	docker	run	hello-world

If	all	goes	well,	your	output	should	look	something	like	the	following:

Running	the	Hello	World	container	on	Docker	for	Mac

Congratulations,	you	are	now	ready	to	work	with	Docker	containers.

Installing	Docker	for	Windows
Note,	you	can	only	install	Docker	for	Windows	on	Windows	10	Professional	or
Windows	Server	2016	since	it	requires	Hyper-V,	which	is	not	available	on	older
Windows	versions	or	on	the	Home	edition	of	Windows	10.	If	you	are	using
Windows	10	Home	or	an	older	version	of	Windows,	you	will	need	to	stick	with
Docker	Toolbox.

Navigate	to	the	following	link	to	download	Docker	for	Windows	at	https://docs.d
ocker.com/docker-for-windows/install/.

There	is	a	stable	version	and	a	so-called	edge	version	of	the	tool	available.	In	this	book,	we
are	going	to	use	some	newer	features	and	Kubernetes,	which	at	the	time	of	writing	are	only
available	in	the	edge	version.	Thus,	please	select	this	version.

To	start	the	installation,	click	on	the	Get	Docker	for	Windows	(Edge)	button		and
follow	the	instructions.

With	Docker	for	Windows,	you	can	develop,	run,	and	test	Linux	containers	and
Windows	containers.	In	this	book,	though,	we	are	only	discussing	Linux
containers.

Once	you	have	successfully	installed	Docker	for	Windows,	open	a	PowerShell
window	and	type	docker	--version	in	the	Command	Prompt.	You	should	see
something	like	the	following:

PS>	docker	--version

Docker	version	18.04.0-ce,	build	3d479c0

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://docs.docker.com/docker-for-windows/install/

Using	docker-machine	on	Windows
with	Hyper-V
If	you	have	Docker	for	Windows	installed	on	your	Windows	laptop,	then	you
also	have	Hyper-V	enabled.	In	this	case,	you	can't	use	Docker	Toolbox	since	it
uses	VirtualBox,	and	Hyper-V	and	VirtualBox	cannot	coexist	and	run	at	the
same	time.	In	this	case,	you	can	use	docker-machine	with	the	Hyper-V	driver.

Open	a	PowerShell	console	as	an	administrator.	Install	docker-machine	using
Chocolatey	as	follows:

PS>	choco	install	-y	docker-machine

Create	a	VM	called	boot2docker	in	Hyper-V	with	the	following	command:

PS>	docker-machine	create	--driver	hyperv	--hyperv-virtual-switch	"My	Internal	Switch"	

boot2docker

Note,	you	must	run	the	preceding	command	in	administrator	mode	or	it	will	fail.

You	should	see	the	following	output	generated	by	the	preceding	command:

Running	pre-create	checks...

(boot2docker)	Image	cache	directory	does	not	exist,	creating	it	at	

C:\Users\Docker\.docker\machine\cache...

(boot2docker)	No	default	Boot2Docker	ISO	found	locally,	downloading	the	latest	

release...

(boot2docker)	Latest	release	for	github.com/boot2docker/boot2docker	is	v18.01.0-ce

....

....

Checking	connection	to	Docker...

Docker	is	up	and	running!

To	see	how	to	connect	your	Docker	Client	to	the	Docker	Engine	running	on	this	virtual	

machine,	run:	C:\Program	Files\Doc

ker\Docker\Resources\bin\docker-machine.exe	env	boot2docker

To	see	how	to	connect	your	Docker	client	to	the	Docker	Engine	running	on	this
virtual	machine,	run	the	following:

C:\Program	Files\Docker\Docker\Resources\bin\docker-machine.exe	env	boot2docker

Listing	all	VMs	generated	by	docker-machine	gives	us	the	following	output:

PS	C:\WINDOWS\system32>	docker-machine	ls

NAME										ACTIVE			DRIVER			STATE					URL															SWARM			DOCKER								

ERRORS

boot2docker			-								hyperv			Running			tcp://[...]:2376										v18.01.0-ce

Now,	let's	SSH	into	our	boot2docker	VM:

PS>	docker-machine	ssh	boot2docker

You	should	be	greeted	by	the	welcome	screen.

We	can	test	the	VM	by	executing	our	docker	version	command,	which	is	shown	as
follows:

Version	of	the	Docker	client	(CLI)	and	server

This	is	definitely	a	Linux	VM,	as	we	can	see	on	the	OS/Arch	entry,	and	has	Docker
18.03.0-ce-rc4	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Minikube
If	you	cannot	use	Docker	for	Mac	or	Windows	or,	for	some	reason,	you	only
have	access	to	an	older	version	of	the	tool	that	does	not	yet	support	Kubernetes,
then	it	is	a	good	idea	to	install	Minikube.	Minikube	provisions	a	single-node
Kubernetes	cluster	on	your	workstation	and	is	accessible	through	kubectl,	which
is	the	command-line	tool	used	to	work	with	Kubernetes.

Installing	Minikube	on		Mac	and
Windows
To	install	Minikube	for	Mac	or	Windows,	navigate	to	the	following	link	at	https:/
/kubernetes.io/docs/tasks/tools/install-minikube/.

Follow	the	instructions	carefully.	If	you	have	the	Docker	Toolbox	installed,	then
you	already	have	a	hypervisor	on	your	system	since	the	Docker	Toolbox	installer
also	installed	VirtualBox.	Otherwise,	I	recommend	that	you	install	VirtualBox
first.

If	you	have	Docker	for	Mac	or	Windows	installed,	then	you	already	have	kubectl
installed	with	it,	thus	you	can	skip	that	step	too.	Otherwise,	follow	the
instructions	on	the	site.

Finally,	select	the	latest	binary	for	Minikube	for	Mac	or	Windows	and	install	it.
For	Mac,	the	latest	binary	is	called	minikube-darwin-amd64	and	for	Windows	it
is	minikube-windows-amd64.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://kubernetes.io/docs/tasks/tools/install-minikube/

Testing	Minikube	and	kubectl
Once	Minikube	is	successfully	installed	on	your	workstation,	open	a	Terminal
and	test	the	installation.	First,	we	need	to	start	Minikube.	Enter	minikube	start	at
the	command	line.	The	output	should	look	like	the	following:

Starting	Minikube

Now,	enter	kubectl	version	and	hit	Enter	to	see	something	like	the	following
screenshot:

Determining	the	version	of	the	Kubernetes	client	and	server

If	the	preceding	command	fails,	for	example,	by	timing	out,	then	it	could	be	that
your	kubectl	is	not	configured	for	the	right	context.	kubectl	can	be	used	to	work
with	many	different	Kubernetes	clusters.	Each	cluster	is	called	a	context.	To	find
out	which	context	kubectl	is	currently	configured	for,	use	the	following
command:

$	kubectl	config	current-context

minikube

The	answer	should	be	minikube,	as	shown	in	the	preceding	output.	If	this	is	not	the
case,	use	kubectl	config	get-contexts	to	list	all	contexts	that	are	defined	on	your
system	and	then	set	the	current	context	to	minikube	as	follows:

$	kubectl	config	use-context	minikube

The	configuration	for	kubectl,	where	it	stores	the	contexts,	is	normally	found	in
~/.kube/config,	but	this	can	be	overridden	by	defining	an	environment	variable
called	KUBECONFIG.	You	might	need	to	unset	this	variable	if	it	is	set	on	your
computer.

For	more	in-depth	information	about	how	to	configure	and	use	Kubernetes
contexts,	consult	the	link	at	https://kubernetes.io/docs/concepts/configuration/organize-
cluster-access-kubeconfig/.

Assuming	Minikube	and	kubectl	work	as	expected,	we	can	now	use	kubectl	to	get
information	about	the	Kubernetes	cluster.	Enter	the	following	command:

$	kubectl	get	nodes

NAME							STATUS				ROLES					AGE							VERSION

minikube			Ready					<none>				47d							v1.9.0

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Evidently,	we	have	a	cluster	of	one	node,	which	in	my	case	has	Kubernetes	v1.9.0
installed	on	it.

Summary
In	this	chapter,	we	set	up	and	configured	our	personal	or	working	environment
so	that	we	can	productively	work	with	Docker	containers.	This	equally	applies
for	developers,	DevOps,	and	operations	engineers.	In	that	context,	we	made	sure
that	we	use	a	good	editor,	have	Docker	for	Mac	or	Windows	installed,	and	can
also	use	docker-machine	to	create	VMs	in	VirtualBox	or	Hyper-V	which	we	can	use
to	run	and	test	containers.

In	the	next	chapter,	we're	going	to	learn	all	the	important	facts	about	containers.
For	example,	we	will	explore	how	we	can	run,	stop,	list,	and	delete	containers,
but	more	than	that,	we	will	also	dive	deep	into	the	anatomy	of	containers.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
On	the	basis	of	your	reading	of	this	chapter,	please	answer	the	following
questions:

1.	 What	is	docker-machine	used	for?	Name	three	to	four	scenarios.
2.	 True	or	false?	With	Docker	for	Windows,	one	can	develop	and	run	Linux

containers.
3.	 Why	are	good	scripting	skills	(such	as	Bash	or	PowerShell)	essential	for	a

productive	use	of	containers?
4.	 Name	three	to	four	Linux	distributions	on	which	Docker	is	certified	to	run.
5.	 Name	all	the	Windows	versions	on	which	you	can	run	Windows	containers.

Further	reading
Consider	the	following	link	for	further	reading:

Run	Docker	on	Hyper-V	with	Docker	Machine	at	http://bit.ly/2HGMPiI

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://bit.ly/2HGMPiI

Working	with	Containers
In	the	previous	chapter,	you	learned	how	to	optimally	prepare	your	working
environment	for	the	productive	and	frictionless	use	of	Docker.	In	this	chapter,	we
are	going	to	get	our	hands	dirty	and	learn	everything	that	is	important	to	work
with	containers.	Here	are	the	topics	we're	going	to	cover	in	this	chapter:

Running	the	first	container
Starting,	stopping,	and	removing	containers
Inspecting	containers
Exec	into	a	running	container
Attaching	to	a	running	container
Retrieving	container	logs
Anatomy	of	containers

After	finishing	this	chapter	you	will	be	able	to	do	the	following	things:

Run,	stop,	and	delete	a	container	based	on	an	existing	image,	such	as
NGINX,	busybox,	or	alpine
List	all	containers	on	the	system
Inspect	the	metadata	of	a	running	or	stopped	container
Retrieve	the	logs	produced	by	an	application	running	inside	a	container
Run	a	process	such	as	/bin/sh	in	an	already-running	container.
Attach	a	Terminal	to	an	already-running	container
Explain	in	your	own	words	to	an	interested	layman	the	underpinnings	of	a
container

Technical	requirements
For	this	chapter,	you	should	have	installed	Docker	for	Mac	or	Docker	for
Windows.	If	you	are	on	an	older	version	of	Windows	or	are	using	Windows	10
Home	Edition,	then	you	should	have	Docker	Toolbox	installed	and	ready	to	use.
On	macOS,	use	the	Terminal	application,	and	on	Windows,	a	PowerShell
console	to	try	out	the	commands	you	will	be	learning.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Running	the	first	container
Before	we	start,	we	want	to	make	sure	that	Docker	is	installed	correctly	on	your
system	and	ready	to	accept	your	commands.	Open	a	new	Terminal	window	and
type	in	the	following	command:

$	docker	-v	

If	everything	works	correctly,	you	should	see	the	version	of	Docker	installed	on
your	laptop	output	in	the	Terminal.	At	the	time	of	writing,	it	looks	like	this:

Docker	version	17.12.0-ce-rc2,	build	f9cde63	

If	this	doesn't	work,	then	something	with	your	installation	is	not	right.	Please
make	sure	that	you	have	followed	the	instructions	in	the	previous	chapter	on
how	to	install	Docker	for	Mac	or	Docker	for	Windows	on	your	system.

So,	you're	ready	to	see	some	action.	Please	type	the	following	command	into
your	Terminal	window	and	hit	return:

$	docker	container	run	alpine	echo	"Hello	World"	

When	you	run	the	preceding	command	the	first	time,	you	should	see	an	output	in
your	Terminal	window	similar	to	this:

Unable	to	find	image	'alpine:latest'	locally

latest:	Pulling	from	library/alpine

2fdfe1cd78c2:	Pull	complete

Digest:	sha256:ccba511b...

Status:	Downloaded	newer	image	for	alpine:latest

Hello	World

Now	that	was	easy!	Let's	try	to	run	the	very	same	command	again:

$	docker	container	run	alpine	echo	"Hello	World"	

The	second,	third,	or	nth	time	you	run	the	preceding	command,	you	should	see
only	this	output	in	your	Terminal:

	Hello	World		

Try	to	reason	about	why	the	first	time	you	run	a	command	you	see	a	different

output	than	all	the	subsequent	times.	But	don't	worry	if	you	can't	figure	it	out,	we
will	explain	the	reasons	in	detail	in	the	following	sections	of	the	chapter.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Starting,	stopping,	and	removing
containers
You	have	successfully	run	a	container	in	the	previous	section.	Now	we	want	to
investigate	in	detail	what	exactly	happened	and	why.	Let's	look	again	at	the
command	we	used:

$	docker	container	run	alpine	echo	"Hello	World"	

This	command	contains	multiple	parts.	First	and	foremost,	we	have	the	word
docker.	This	is	the	name	of	the	Docker	command-line	interface	(CLI),	which	we
are	using	to	interact	with	the	Docker	engine	that	is	responsible	to	run	containers.
Next,	we	have	the	word	container,	which	indicates	the	context	we	are	working
with.	As	we	want	to	run	a	container,	our	context	is	the	word	container.	Next	is	the
actual	command	we	want	to	execute	in	the	given	context,	which	is	run.

Let	me	recap—so	far,	we	have	docker	container	run,	which	means,	Hey	Docker,	we
want	to	run	a	container....

Now	we	also	need	to	tell	Docker	which	container	to	run.	In	this	case,	this	is	the
so-called	alpine	container.	Finally,	we	need	to	define	what	kind	of	process	or	task
shall	be	executed	inside	the	container	when	it	is	running.	In	our	case,	this	is	the
last	part	of	the	command,	echo	"Hello	World".

Maybe	the	following	figure	can	help	you	to	get	a	better	approach	to	the	whole
thing:

Anatomy	of	the	docker	container	run	expression

Now	that	we	have	understood	the	various	parts	of	a	command	to	run	a	container,
let's	try	to	run	another	container	with	a	different	process	running	inside	it.	Type

the	following	command	into	your	Terminal:

$	docker	container	run	centos	ping	-c	5	127.0.0.1

You	should	see	output	in	your	Terminal	window	similar	to	the	following:

Unable	to	find	image	'centos:latest'	locally

latest:	Pulling	from	library/centos

85432449fd0f:	Pull	complete

Digest:	sha256:3b1a65e9a05...

Status:	Downloaded	newer	image	for	centos:latest

PING	127.0.0.1	(127.0.0.1)	56(84)	bytes	of	data.

64	bytes	from	127.0.0.1:	icmp_seq=1	ttl=64	time=0.022	ms

64	bytes	from	127.0.0.1:	icmp_seq=2	ttl=64	time=0.019	ms

64	bytes	from	127.0.0.1:	icmp_seq=3	ttl=64	time=0.029	ms

64	bytes	from	127.0.0.1:	icmp_seq=4	ttl=64	time=0.030	ms

64	bytes	from	127.0.0.1:	icmp_seq=5	ttl=64	time=0.029	ms

---	127.0.0.1	ping	statistics	---

5	packets	transmitted,	5	received,	0%	packet	loss,	time	4103ms

rtt	min/avg/max/mdev	=	0.021/0.027/0.029/0.003	ms	

What	changed	is	that,	this	time,	the	container	image	we're	using	is	centos	and	the
process	we're	executing	inside	the	centos	container	is	ping	-c	5	127.0.0.1,	which
pings	the	loopback	address	for	five	times	until	it	stops.

Let's	analyze	the	output	in	detail:

The	first	line	is	as	follows:

Unable	to	find	image	'centos:latest'	locally

This	tells	us	that	Docker	didn't	find	an	image	named	centos:latest	in	the
local	cache	of	the	system.	So,	Docker	knows	that	it	has	to	pull	the	image
from	some	registry	where	container	images	are	stored.	By	default,	your
Docker	environment	is	configured	such	as	that	images	are	pulled	from
the	Docker	Hub	at	docker.io.	This	is	expressed	by	the	second	line,	as
follows:

				latest:	Pulling	from	library/centos	

The	next	three	lines	of	output	are	as	follows:

				85432449fd0f:	Pull	complete

				Digest:	sha256:3b1a65e9a05...

				Status:	Downloaded	newer	image	for	centos:latest

This	tells	us	that	Docker	has	successfully	pulled	the	image	centos:latest

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

from	the	Docker	Hub.

All	the	subsequent	lines	of	the	output	are	generated	by	the	process	we	ran	inside
the	container,	which	is	the	ping	tool	in	this	case.	If	you	have	been	attentive	so
far,	then	you	might	have	noticed	the	keyword	latest	occurring	a	few	times.	Each
image	has	a	version	(also	called	a	tag),	and	if	we	don't	specify	a	version
explicitly,	then	Docker	automatically	assumes	it	as	latest.

If	we	run	the	preceding	container	again	on	our	system,	the	first	five	lines	of	the
output	will	be	missing	since,	this	time,	Docker	will	find	the	container	image
cached	locally	and	thus	won't	have	to	download	it	first.	Try	it	out	and	verify
what	I	just	told.

Running	a	random	quotes	container
For	the	subsequent	sections	of	this	chapter,	we	need	a	container	that	runs
continuously	in	the	background	and	produces	some	interesting	output.	That's
why,	we	have	chosen	an	algorithm	that	produces	random	quotes.	The	API	that
produces	those	free	random	quotes	can	be	found	at	https://talaikis.com/random_quote
s_api/.

Now	the	goal	is	to	have	a	process	running	inside	a	container	that	produces	a	new
random	quote	every	five	seconds	and	outputs	the	quote	to	STDOUT.	The
following	script	will	do	exactly	that:

while	:	

do	

				wget	-qO-	https://talaikis.com/api/quotes/random	

				printf	'n'	

				sleep	5	

done	

Try	it	in	a	Terminal	window.	Stop	the	script	by	pressing	Ctrl+	C.	The	output
should	look	similar	to	this:

{"quote":"Martha	Stewart	is	extremely	talented.	Her	designs	are	picture	perfect.	Our	

philosophy	is	life	is	messy,	and	rather	than	being	afraid	of	those	messes	we	design	

products	that	work	the	way	we	live.","author":"Kathy	Ireland","cat":"design"}

{"quote":"We	can	reach	our	potential,	but	to	do	so,	we	must	reach	within	ourselves.	We	

must	summon	the	strength,	the	will,	and	the	faith	to	move	forward	-	to	be	bold	-	to	

invest	in	our	future.","author":"John	Hoeven","cat":"faith"}

Each	response	is	a	JSON-formatted	string	with	the	quote,	its	author,	and	its
category.

Now,	let's	run	this	in	an	alpine	container	as	a	daemon	in	the	background.	For	this,
we	need	to	compact	the	preceding	script	into	a	one-liner	and	execute	it	using	the
/bin/sh	-c	"..."	syntax.	Our	Docker	expression	will	look	as	follows	:

$	docker	container	run	-d	--name	quotes	alpine	\

			/bin/sh	-c	"while	:;	do	wget	-qO-	https://talaikis.com/api/quotes/random;	printf	

'\n';	sleep	5;	done"

In	the	preceding	expression,	we	have	used	two	new	command-line	parameters,	-d
and	--name.	The	-d	tells	Docker	to	run	the	process	running	in	the	container	as	a

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://talaikis.com/random_quotes_api/

Linux	daemon.	The	--name	parameter	in	turn	can	be	used	to	give	the	container	an
explicit	name.	In	the	preceding	sample,	the	name	we	chose	is	quotes.

If	we	don't	specify	an	explicit	container	name	when	we	run	a	container,	then
Docker	will	automatically	assign	the	container	a	random	but	unique	name.	This
name	will	be	composed	of	the	name	of	a	famous	scientist	and	and	adjective.
Such	names	could	be	boring_borg	or	angry_goldberg.	Quite	humorous	our	Docker
engineers,	isn't	it?

One	important	takeaway	is	that	the	container	name	has	to	be	unique	on	the
system.	Let's	make	sure	that	the	quotes	container	is	up	and	running:

$	docker	container	ls	-l	

This	should	give	us	something	like	this:

Listing	the	last	run	container

The	important	part	of	the	preceding	output	is	the	STATUS	column,	which	in	this
case	is	Up	16	seconds.	That	is,	the	container	has	been	up	and	running	for
16	seconds	now.

Don't	worry	if	the	last	Docker	command	is	not	yet	familiar	to	you,	we	will	come
back	to	it	in	the	next	section.

Listing	containers
As	we	continue	to	run	containers	over	time,	we	get	a	lot	of	them	in	our	system.
To	find	out	what	is	currently-running	on	our	host,	we	can	use	the	container	list
command	as	follows:

$	docker	container	ls	

This	will	list	all	currently-running	containers.	Such	a	list	might	look	similar	to
this:

List	of	all	containers	running	on	the	system

By	default,	Docker	outputs	seven	columns		with	the	following	meanings:

Column Description

Container

ID The	unique	ID	of	the	container.	It	is	a	SHA-256.

Image
The	name	of	the	container	image	from	which	this	container	is
instantiated.

Command
The	command	that	is	used	to	run	the	main	process	in	the
container.

Created The	date	and	time	when	the	container	was	created.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Status
The	status	of	the	container	(created,	restarting,	running,
removing,	paused,	exited,	or	dead).

Ports The	list	of	container	ports	that	have	been	mapped	to	the	host.

Names
The	name	assigned	to	this	container	(multiple	names	are
possible).

	

If	we	want	to	list	not	only	the	currently	running	containers	but	all	containers	that
are	defined	on	our	system,	then	we	can	use	the	command-line	parameter	-a	or	--
all	as	follows:

$	docker	container	ls	-a	

This	will	list	containers	in	any	state,	such	as	created,	running,	or	exited.

Sometimes,	we	want	to	just	list	the	IDs	of	all	containers.	For	this,	we	have	the
parameter	-q:

$	docker	container	ls	-q	

You	might	wonder	where	this	is	useful.	I	show	you	a	command	where	it	is	very
helpful	right	here:

$	docker	container	rm	-f	$(docker	container	ls	-a	-q)

Lean	back	and	take	a	deep	breath.	Then,	try	to	find	out	what	the	preceding
command	does.	Don't	read	any	further	until	you	find	the	answer	or	give	up.

Right:	the	preceding	command	deletes	all	containers	that	are	currently	defined
on	the	system,	including	the	stopped	ones.	The	rm	command	stands	for	remove,
and	it	will	be	explained	further	down.

In	the	previous	section,	we	used	the	parameter	-l	in	the	list	command.	Try	to	use
Docker	help	to	find	out	what	the	-l	parameter	stands	for.	You	can	invoke	help	for
the	list	command	as	follows:

$	docker	container	ls	-h	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Stopping	and	starting	containers
Sometimes,	we	want	to	(temporarily)	stop	a	running	container.	Let's	try	this	out
with	the	quotes	container	we	used	previously.	Run	the	container	again	with	this
command:

$	docker	container	run	-d	--name	quotes	alpine	\

			/bin/sh	-c	"while	:;	do	wget	-qO-	https://talaikis.com/api/quotes/random;	printf	

'\n';	sleep	5;	done"

Now,	if	we	want	to	stop	this	container	then	we	can	do	so	by	issuing	this
command:

$	docker	container	stop	quotes	

When	you	try	to	stop	the	quotes	container,	you	will	probably	note	that	it	takes	a
while	until	this	command	is	executed.	To	be	precise,	it	takes	about	10	seconds.
Why	is	this	the	case?

Docker	sends	a	Linux	SIGTERM	signal	to	the	main	process	running	inside	the
container.	If	the	process	doesn't	react	to	this	signal	and	terminate	itself,	Docker
waits	for	10	seconds	and	then	sends	SIGKILL,	which	will	kill	the	process	forcefully
and	terminate	the	container.

In	the	preceding	command,	we	have	used	the	name	of	the	container	to	specify
which	container	we	want	to	stop.	But	we	could	also	have	used	the	container	ID
instead.

How	do	we	get	the	ID	of	a	container?	There	are	several	ways	of	doing	so.	The
manual	approach	is	to	list	all	running	containers	and	find	the	one	that	we're
looking	for	in	the	list.	From	there,	we	copy	its	ID.	A	more	automated	way	is	to
use	some	shell	scripting	and	environment	variables.	If,	for	example,	we	want	to
get	the	ID	of	the	quotes	container,	we	can	use	this	expression:

$	export	CONTAINER_ID	=	$(docker	container	ls	|	grep	quotes	|	awk	'{print	$1}')

Now,	instead	of	using	the	container	name,	we	can	use	the	variable
$CONTAINER_ID	in	our	expression:

$	docker	container	stop	$CONTAINER_ID	

Once	we	have	stopped	the	container,	its	status	change	to	Exited.

If	a	container	is	stopped,	it	can	be	started	again	using	the	docker	container	start
command.	Let's	do	this	with	our	quotes	container.	It	is	good	to	have	it	running
again,	as	we'll	need	it	in	the	subsequent	sections	of	this	chapter:

$	docker	container	start	quotes

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Removing	containers
When	we	run	the	docker	container	ls	-a	command,	we	can	see	quite	a	few
containers	that	are	in	status	Exited.	If	we	don't	need	these	containers	anymore,
then	it	is	a	good	thing	to	remove	them	from	memory,	otherwise	they
unnecessarily	occupy	precious	resources.	The	command	to	remove	a	container
is:

$	docker	container	rm	<container	ID>	

Another	command	to	remove	a	container	is:

$	docker	container	rm	<container	name>	

Try	to	remove	one	of	your	exited	containers	using	its	ID.

Sometimes,	removing	a	container	will	not	work	as	it	is	still	running.	If	we	want
to	force	a	removal,	no	matter	what	the	condition	of	the	container	currently	is,	we
can	use	the	command-line	parameter	-f	or	--force.

Inspecting	containers
Containers	are	runtime	instances	of	an	image	and	have	a	lot	of	associated	data
that	characterizes	their	behavior.	To	get	more	information	about	a	specific
container,	we	can	use	the	inspect	command.	As	usual,	we	have	to	provide	either
the	container	ID	or	name	to	identify	the	container	of	which	we	want	to	obtain	the
data.	So,	let's	inspect	our	sample	container:

$	docker	container	inspect	quotes	

The	response	is	a	big	JSON	object	full	of	details.	It	looks	similar	to	this:

				[

								{

												"Id":	"c5c1c68c87...",

												"Created":	"2017-12-30T11:55:51.223271182Z",

												"Path":	"/bin/sh",

												"Args":	[

																"-c",

																"while	:;	do	wget	-qO-	https://talaikis.com/api/quotes/random;	printf	

'\n';	sleep	5;	done"

],

												"State":	{

																"Status":	"running",

																"Running":	true,

																...

												},

												"Image":	"sha256:e21c333399e0...",

												...

												"Mounts":	[],

												"Config":	{

																"Hostname":	"c5c1c68c87dd",

																"Domainname":	"",

																...

												},

												"NetworkSettings":	{

																"Bridge":	"",

																"SandboxID":	"2fd6c43b6fe5...",

																...

												}

								}

]

		

The	output	has	been	shortened	for	readability.

Please	take	a	moment	to	analyze	what	you	got.	You	should	see	information	such
as:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	ID	of	the	container
The	creation	date	and	time	of	the	container
From	which	image	the	container	is	built	and	so	on

Many	sections	of	the	output,	such	as	Mounts	or	NetworkSettings	don't	make	much
sense	right	now,	but	we	will	certainly	discuss	those	in	the	upcoming	chapters	of
the	book.	The	data	you're	seeing	here	is	also	named	the	metadata	of	a	container.
We	will	be	using	the	inspect	command	quite	often	in	the	remainder	of	the	book	as
a	source	of	information.

Sometimes,	we	need	just	a	tiny	bit	of	the	overall	information,	and	to	achieve
this,	we	can	either	use	the	grep	tool	or	a	filter.	The	former	method	does	not
always	result	in	the	expected	answer,	so	let's	look	into	the	latter	approach:

$	docker	container	inspect	-f	"{{json	.State}}"	quotes	|	jq	

The	-f	or	--filter	parameter	is	used	to	define	the	filter.	The	filter	expression	itself
uses	the	Go	template	syntax.	In	this	example,	we	only	want	to	see	the	state	part
of	the	whole	output	in	the	JSON	format.

To	nicely	format	the	output,	we	pipe	the	result	into	the	jq	tool:

				{

						"Status":	"running",

						"Running":	true,

						"Paused":	false,

						"Restarting":	false,

						"OOMKilled":	false,

						"Dead":	false,

						"Pid":	6759,

						"ExitCode":	0,

						"Error":	"",

						"StartedAt":	"2017-12-31T10:31:51.893299997Z",

						"FinishedAt":	"0001-01-01T00:00:00Z"

				}

				

Exec	into	a	running	container
Sometimes,	we	want	to	run	another	process	inside	an	already-running	container.
A	typical	reason	could	be	to	try	to	debug	a	misbehaving	container.	How	can	we
do	this?	First,	we	need	to	know	either	the	ID	or	the	name	of	the	container,	and
then	we	can	define	which	process	we	want	to	run	and	how	we	want	it	to	run.
Once	again,	we	use	our	currently-running	quotes	container	and	we	run	a	shell
interactively	inside	it	with	the	following	command:

$	docker	container	exec	-i	-t	quotes	/bin/sh	

The	flag	-i	signifies	that	we	want	to	run	the	additional	process	interactively,	and
-t	tells	Docker	that	we	want	it	to	provide	us	with	a	TTY	(a	terminal	emulator)
for	the	command.	Finally,	the	process	we	run	is	/bin/sh.

If	we	execute	the	preceding	command	in	our	Terminal,	then	we	will	be	presented
with	a	new	prompt.	We're	now	in	a	shell	inside	the	quotes	container.	We	can
easily	prove	that	by,	for	example,	executing	the	ps	command,	which	will	list	all
running	processes	in	the	context:

#	/	ps

The	result	should	look	somewhat	similar	to	this:

List	of	Processes	running	inside	the	quotes	Container

We	can	clearly	see	that	the	process	with	PID	1	is	the	command	that	we	have
defined	to	run	inside	the	quotes	container.	The	process	with	PID	1	is	also	named
the	main	process.

Leave	the	container	by	entering	exit	at	the	prompt.	We	cannot	only	execute
additional	processes	interactive	in	a	container.	Please	consider	the	following
command:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker	container	exec	quotes	ps

The	output	evidently	looks	very	similar	to	the	preceding	output:

List	of	Processes	running	inside	the	quotes	Container

We	can	even	run	processes	as	daemon	using	the	flag	-d	and	define	environment
variables	using	the	-e	flag	variables	as	follows:

$	docker	container	exec	-it	\

				-e	MY_VAR="Hello	World"	\

				quotes	/bin/sh

#	/	echo	$MY_VAR

Hello	World

#	/	exit

Attaching	to	a	running	container
We	can	use	the	attach	command	to	attach	our	Terminal's	standard	input,	output,
and	error	(or	any	combination	of	the	three)	to	a	running	container	using	the	ID	or
name	of	the	container.	Let's	do	this	for	our	quotes	container:

$	docker	container	attach	quotes	

In	this	case,	we	will	see	every	five	seconds	or	so	a	new	quote	appearing	in	the
output.

To	quit	the	container	without	stopping	or	killing	it,	we	can	press	the	key
combination	Ctrl+P	Ctrl+Q.	This	detaches	us	from	the	container	while	leaving	it
running	in	the	background.	On	the	other	hand,	if	we	want	to	detach	and	stop	the
container	at	the	same	time,	we	can	just	press	Ctrl+C.

Let's	run	another	container,	this	time	an	Nginx	web	server:

$	docker	run	-d	--name	nginx	-p	8080:80	nginx:alpine	

Here,	we	run	the	Alpine	version	of	Nginx	as	a	daemon	in	a	container	named
nginx.	The	-p	8080:80	command-line	parameter	opens	port	8080	on	the	host	for
access	to	the	Nginx	web	server	running	inside	the	container.	Don't	worry	about
the	syntax	here	as	we	will	explain	this	feature	in	more	detail	in	the	Chapter
7,	Single-Host	Networking.

Let's	see	whether	we	can	access	Nginx,	using	the	curl	tool	and	running	this
command:

$	curl	-4	localhost:8080	

If	all	works	correctly,	you	should	be	greeted	by	the	welcome	page	of	Nginx:

<html>	

<head>	

<title>Welcome	to	nginx!</title>	

<style>	

				body	{	

								width:	35em;	

								margin:	0	auto;	

								font-family:	Tahoma,	Verdana,	Arial,	sans-serif;	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

				}	

</style>	

</head>	

<body>	

<h1>Welcome	to	nginx!</h1>	

<p>If	you	see	this	page,	the	nginx	web	server	is	successfully	installed	and	

working.	Further	configuration	is	required.</p>	

	

<p>For	online	documentation	and	support	please	refer	to	

nginx.org.
	

Commercial	support	is	available	at	

nginx.com.</p>	

	

<p>Thank	you	for	using	nginx.</p>	

</body>	

</html>	

Now,	let's	attach	our	Terminal	to	the	nginx	container	to	observe	what's	happening:

$	docker	container	attach	nginx	

Once	you	are	attached	to	the	container,	you	first	will	not	see	anything.	But	now
open	another	Terminal,	and	in	this	new	Terminal	window,	repeat	the	curl
command	a	few	times,	for	example,	using	the	following	script:

$	for	n	in	{1..10};	do	curl	-4	localhost:8080;	done		

You	should	see	the	logging	output	of	Nginx,	which	looks	similar	to	this:

172.17.0.1	-	-	[06/Jan/2018:12:20:00	+0000]	"GET	/	HTTP/1.1"	200	612	"-"	"curl/7.54.0"	

"-"

172.17.0.1	-	-	[06/Jan/2018:12:20:03	+0000]	"GET	/	HTTP/1.1"	200	612	"-"	"curl/7.54.0"	

"-"

172.17.0.1	-	-	[06/Jan/2018:12:20:05	+0000]	"GET	/	HTTP/1.1"	200	612	"-"	"curl/7.54.0"	

"-"

...

Quit	the	container	by	pressing	Ctrl+C.	This	will	detach	your	Terminal	and,	at	the
same	time,	stop	the	nginx	container.

To	clean	up,	remove	the	nginx	container	with	the	following	command:

$	docker	container	rm	nginx	

Retrieving	container	logs
It	is	a	best	practice	for	any	good	application	to	generate	some	logging
information	that	developers	and	operators	alike	can	use	to	find	out	what	the
application	is	doing	at	a	given	time,	and	whether	there	are	any	problems	to	help
pinpoint	the	root	cause	of	the	issue.

When	running	inside	a	container,	the	application	should	preferably	output	the	log
items	to	STDOUT	and	STDERR	and	not	into	a	file.	If	the	logging	output	is
directed	to	STDOUT	and	STDERR,	then	Docker	can	collect	this	information
and	keep	it	ready	for	consumption	by	a	user	or	any	other	external	system.

To	access	the	logs	of	a	given	container,	we	can	use	the	docker	container	logs
command.	If,	for	example,	we	want	to	retrieve	the	logs	of	our	quotes	container,
we	can	use	the	following	expression:

$	docker	container	logs	quotes		

This	will	retrieve	the	whole	log	produced	by	the	application	from	the	very
beginning	of	its	existence.

Stop,	wait	a	second—this	is	not	quite	true,	what	I	just	said.	By	default,	Docker	uses	the	so-
called	json-file	logging	driver.	This	driver	stores	the	logging	information	in	a	file.	And	if	there
is	a	file	rolling	policy	defined,	then	docker	container	logs	only	retrieves	what	is	in	the	current
active	log	file	and	not	what	is	in	previous,	rolled	files	that	might	still	be	available	on	the	host.

If	we	want	to	only	get	a	few	of	the	latest	entries,	we	can	use	the	-t	or	--tail
parameter,	as	follows:

$	docker	container	logs	--tail	5	quotes	

This	will	retrieve	only	the	last	five	items	the	process	running	inside	the	container
produced.

Sometimes,	we	want	to	follow	the	log	that	is	produced	by	a	container.	This	is
possible	when	using	the	parameter	-f	or	--follow.	The	following	expression	will
output	the	last	five	log	items	and	then	follow	the	log	as	it	is	produced	by	the
containerized	process:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker	container	logs	--tail	5	--follow	quotes	

Logging	drivers
Docker	includes	multiple	logging	mechanisms	to	help	us	get	information	from
running	containers.	These	mechanisms	are	named	logging	drivers.	Which
logging	driver	is	used	can	be	configured	at	the	Docker	daemon	level.	The	default
logging	driver	is	json-file.	Some	of	the	drivers	that	are	currently	supported
natively	are:

Driver Description

none No	log	output	for	the	specific	container	is	produced.

json-

file

This	is	the	default	driver.	The	logging	information	is	stored	in	files,
formatted	as	JSON.

journald
If	the	journals	daemon	is	running	on	the	host	machine,	we	can	use
this	driver.	It	forwards	logging	to	the	journald	daemon.

syslog

If	the	syslog	daemon	is	running	on	the	host	machine,	we	can
configure	this	driver,	which	will	forward	the	log	messages	to	the
syslog	daemon.

gelf

When	using	this	driver,	log	messages	are	written	to	a	Graylog
Extended	Log	Format	(GELF)	endpoint.	Popular	examples	of
such	endpoints	are	Graylog	and	Logstash.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

fluentd Assuming	that	the	fluentd	daemon	is	installed	on	the	host	system,
this	driver	writes	log	messages	to	it.

If	you	change	the	logging	driver,	please	be	aware	that	the	docker	container	logs	command	is
only	available	for	the	json-file	and	journald	drivers.

Using	a	container-specific	logging
driver
We	have	seen	that	the	logging	driver	can	be	set	globally	in	the	Docker	daemon
configuration	file.	But	we	can	also	define	the	logging	driver	on	a	container	by
container	basis.	In	the	following	example,	we	are	running	a	busybox	container	and
use	the	--log-driver	parameter	to	configure	the	none	logging	driver:

$	docker	container	run	--name	test	-it	\

				--log-driver	none	\

				busybox	sh	-c	'for	N	in	1	2	3;	do	echo	"Hello	$N";	done'

We	should	see	the	following:

Hello	1

Hello	2

Hello	3	

Now,	let's	try	to	get	the	logs	of	the	preceding	container:

$	docker	container	logs	test	

The	output	is	as	follows:

Error	response	from	daemon:	configured	logging	driver	does	not	support	reading

This	is	to	be	expected,	since	the	none	driver	does	not	produce	any	logging	output.
Let's	clean	up	and	remove	the	test	container:

$	docker	container	rm	test	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Advanced	topic	–	changing	the
default	logging	driver
Let's	change	the	default	logging	driver	of	a	Linux	host.	The	easiest	way	to	do
this	is	on	a	real	Linux	host.	For	this	purpose,	we're	going	to	use	Vagrant	with	an
Ubuntu	image:

$	vagrant	init	bento/ubuntu-17.04

$	vagrant	up

$	vagrant	ssh

Once	inside	the	Ubuntu	VM,	we	want	to	edit	the	Docker	daemon	configuration
file.	Navigate	to	the	folder	/etc/docker	and	run	vi	as	follows:

$	vi	daemon.json		

Enter	the	following	content:

{

		"Log-driver":	"json-log",

		"log-opts":	{

				"max-size":	"10m",

				"max-file":	3

		}

}

Save	and	exit	Vi	by	first	pressing	Esc	and	then	typing	:w:q		and	finally	hitting	the
ENTER	key.

The	preceding	definition	tells	the	Docker	daemon	to	use	the	json-log	driver	with	a
maximum	log	file	size	of	10	MB	before	it	is	rolled,	and	the	maximum	number	of
log	files	that	can	be	present	on	the	system	is	3	before	the	oldest	file	gets	purged.

Now	we	have	to	send	a	SIGHUP	signal	to	the	Docker	daemon	so	that	it	picks	up	the
changes	in	the	configuration	file:

$	sudo	kill	-SIGHUP	$(pidof	dockerd)	

Note	that	the	preceding	command	only	reloads	the	config	file	and	does	not
restart	the	daemon.

Anatomy	of	containers
Many	individuals	wrongly	compare	containers	to	VMs.	However,	this	is	a
questionable	comparison.	Containers	are	not	just	lightweight	VMs.	OK	then,
what	is	the	correct	description	of	a	container?

Containers	are	specially	encapsulated	and	secured	processes	running	on	the	host
system.

Containers	leverage	a	lot	of	features	and	primitives	available	in	the	Linux	OS.
The	most	important	ones	are	namespaces	and	cgroups.	All	processes	running	in
containers	share	the	same	Linux	kernel	of	the	underlying	host	operating	system.
This	is	fundamentally	different	compared	with	VMs,	as	each	VM	contains	its
own	full-blown	operating	system.

The	startup	times	of	a	typical	container	can	be	measured	in	milliseconds,	while	a
VM	normally	needs	several	seconds	to	minutes	to	startup.	VMs	are	meant	to	be
long-living.	It	is	a	primary	goal	of	each	operations	engineer	to	maximize	the
uptime	of	their	VMs.	Contrary	to	that,	containers	are	meant	to	be	ephemeral.
They	come	and	go	in	a	quick	cadence.

Let's	first	get	a	high-level	overview	of	the	architecture	that	enables	us	to	run
containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Architecture
Here,	we	have	an	architectural	diagram	on	how	this	all	fits	together:

High	level	architecture	of	Docker

On	the	lower	part	of	the	the	preceding	figure,	we	have	the	Linux	operating
system	with	its	cgroups,	namespaces,	and	layer	capabilities	as	well	as	other
functionality	that	we	do	not	need	to	explicitly	mention	here.	Then,	there	is	an
intermediary	layer	composed	of	containerd	and	runc.	On	top	of	all	that	now	sits
the	Docker	engine.	The	Docker	engine	offers	a	RESTful	interface	to	the	outside
world	that	can	be	accessed	by	any	tool,	such	as	the	Docker	CLI,	Docker	for	Mac,
and	Docker	for	Windows	or	Kubernetes	to	just	name	a	few.

Let's	now	describe	the	main	building	blocks	in	a	bit	more	detail.

Namespaces
Linux	namespaces	had	been	around	for	years	before	they	were	leveraged	by
Docker	for	their	containers.	A	namespace	is	an	abstraction	of	global	resources
such	as	filesystems,	network	access,	process	tree	(also	named	PID	namespace)
or	the	system	group	IDs,	and	user	IDs.	A	Linux	system	is	initialized	with	a
single	instance	of	each	namespace	type.	After	initialization,	additional
namespaces	can	be	created	or	joined.

The	Linux	namespaces	originated	in	2002	in	the	2.4.19	kernel.	In	kernel	version
3.8,	user	namespaces	were	introduced	and	with	it,	namespaces	were	ready	to	be
used	by	containers.

If	we	wrap	a	running	process,	say,	in	a	filesystem	namespace,	then	this	process
has	the	illusion	that	it	owns	its	own	complete	filesystem.	This	of	course	is	not
true;	it	is	only	a	virtual	FS.	From	the	perspective	of	the	host,	the	contained
process	gets	a	shielded	subsection	of	the	overall	FS.	It	is	like	a	filesystem	in	a
filesystem:

The	same	applies	for	all	the	other	global	resources	for	which	namespaces	exist.
The	user	ID	namespace	is	another	example.	Having	a	user	namespace,	we	can

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

now	define	a	user	jdoe	many	times	on	the	system	as	long	at	it	is	living	in	its	own
namespace.

The	PID	namespace	is	what	keeps	processes	in	one	container	from	seeing	or
interacting	with	processes	in	another	container.	A	process	might	have	the
apparent	PID	1	inside	a	container,	but	if	we	examine	it	from	the	host	system,	it
would	have	an	ordinary	PID,	say	334:

Process	tree	on	a	Docker	host

In	a	given	namespace,	we	can	run	one	to	many	processes.	That	is	important
when	we	talk	about	containers,	and	we	have	experienced	that	already	when	we
executed	another	process	in	an	already-running	container.

Control	groups	(cgroups)
Linux	cgroups	are	used	to	limit,	manage,	and	isolate	resource	usage	of
collections	of	processes	running	on	a	system.	Resources	are	CPU	time,	system
memory,	network	bandwidth,	or	combinations	of	these	resources,	and	so	on.

Engineers	at	Google	have	originally	implemented	this	feature	starting	in	2006.
The	cgroups	functionality	was	merged	into	the	Linux	kernel	mainline	in	kernel
version	2.6.24,	which	was	released	in	January	2008.

Using	cgroups,	administrators	can	limit	the	resources	that	containers	can
consume.	With	this,	one	can	avoid,	for	example,	the	classical	noisy	neighbor
problem,	where	a	rogue	process	running	in	a	container	consumes	all	CPU	time
or	reserves	massive	amounts	of	RAM	and,	as	such,	starves	all	the	other
processes	running	on	the	host,	whether	they're	containerized	or	not.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Union	filesystem	(UnionFS)
The	UnionFS	forms	the	backbone	of	what	is	known	as	container	images.	We	will
discuss	container	images	in	detail	in	the	next	chapter.	At	this	time,	we	want	to
just	understand	a	bit	better	what	a	UnionFS	is	and	how	it	works.	UnionFS	is
mainly	used	on	Linux	and	allows	files	and	directories	of	distinct	filesystems	to
be	overlaid	and	with	it	form	a	single	coherent	file	system.	In	this	context,	the
individual	filesystems	are	called	branches.	Contents	of	directories	that	have	the
same	path	within	the	merged	branches	will	be	seen	together	in	a	single	merged
directory,	within	the	new,	virtual	filesystem.	When	merging	branches,	the
priority	between	the	branches	is	specified.	In	that	way,	when	two	branches
contain	the	same	file,	the	one	with	the	higher	priority	is	seen	in	the	final	FS.

Container	plumbing
The	basement	on	top	of	which	the	Docker	engine	is	built;	we	can	also	call	it	the
container	plumbing	and	is	formed	by	the	two	component—runc	and
containerd.

Originally,	Docker	was	built	in	a	monolithic	way	and	contained	all	the
functionality	necessary	to	run	containers.	Over	time,	this	became	too	rigid	and
Docker	started	to	break	out	parts	of	the	functionality	into	their	own	components.
Two	important	components	are	runc	and	containerd.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Runc
Runc	is	a	lightweight,	portable	container	runtime.	It	provides	full	support	for
Linux	namespaces	as	well	as	native	support	for	all	security	features	available	on
Linux,	such	as	SELinux,	AppArmor,	seccomp,	and	cgroups.

Runc	is	a	tool	for	spawning	and	running	containers	according	to	the	Open
Container	Initiative	(OCI)	specification.	It	is	a	formally	specified
configuration	format,	governed	by	the	Open	Container	Project	(OCP)	under
the	auspices	of	the	Linux	Foundation.

Containerd
Runc	is	a	low-level	implementation	of	a	container	runtime;	containerd	builds	on
top	of	it,	and	adds	higher-level	features,	such	as	image	transfer	and	storage,
container	execution,	and	supervision,	as	well	as	network	and	storage
attachments.	With	this,	it	manages	the	complete	life	cycle	of	containers.
Containerd	is	the	reference	implementation	of	the	OCI	specifications	and	is	by
far	the	most	popular	and	widely-used	container	runtime.

Containerd	has	been	donated	to	and	accepted	by	the	CNCF	in	2017.	There	exist
alternative	implementations	of	the	OCI	specification.	Some	of	them	are	rkt	by
CoreOS,	CRI-O	by	RedHat,	and	LXD	by	Linux	Containers.	However,
containerd	at	this	time	is	by	far	the	most	popular	container	runtime	and	is	the
default	runtime	of	Kubernetes	1.8	or	later	and	the	Docker	platform.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	chapter,	you	learned	how	to	work	with	containers	that	are	based	on
existing	images.	We	showed	how	to	run,	stop,	start,	and	remove	a	container.
Then,	we	inspected	the	metadata	of	a	container,	extracted	the	logs	of	it,	and
learned	how	to	run	an	arbitrary	process	in	an	already-running	container.	Last	but
not	least,	we	dug	a	bit	deeper	and	investigated	how	containers	work	and	what
features	of	the	underlying	Linux	operating	system	they	leverage.

In	the	next	chapter,	you're	going	to	learn	what	container	images	are	and	how	we
can	build	and	share	our	own	custom	images.	We're	also	discussing	the	best
practices	commonly	used	when	building	custom	images,	such	as	minimizing
their	size	and	leveraging	the	image	cache.	Stay	tuned!

Questions
To	assess	your	learning	progress	please	answer	the	following	questions:

1.	 What	are	the	states	of	a	container?
2.	 Which	command	helps	us	to	find	out	what	is	currently	running	on	our	host?
3.	 Which	command	is	used	to	list	the	IDs	of	all	containers?

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
The	following	articles	give	you	some	more	information	related	to	the	topics	we
discussed	in	this	chapter:

Docker	container	at	http://dockr.ly/2iLBV2I
Getting	started	with	containers	at	http://dockr.ly/2gmxKWB
Isolate	containers	with	a	user	namespace	at	http://dockr.ly/2gmyKdf
Limit	container's	resources	at	http://dockr.ly/2wqN5Nn

http://dockr.ly/2iLBV2I
http://dockr.ly/2gmxKWB
http://dockr.ly/2gmyKdf
http://dockr.ly/2wqN5Nn

Creating	and	Managing	Container
Images
In	the	previous	chapter,	we	learned	what	containers	are	and	how	to	run,	stop,
remove,	list,	and	inspect	them.	We	extracted	the	logging	information	of	some
containers,	ran	other	processes	inside	an	already	running	container,	and	finally
we	dived	deep	into	the	anatomy	of	containers.	Whenever	we	ran	a	container,	we
created	it	using	a	container	image.	In	this	chapter,	we	will	be	familiarizing
ourselves	with	these	container	images.	We	will	learn	in	detail	what	they	are,	how
to	create	them,	and	how	to	distribute	them.

This	chapter	will	cover	the	following	topics:

What	images	are?
Creating	images
Sharing	or	shipping	images

After	completing	this	chapter,	you	will	be	able	to	do	the	following:

Name	three	of	the	most	important	characteristics	of	a	container	image
Create	a	custom	image	by	interactively	changing	the	container	layer	and
committing	it
Author	a	simple	Dockerfile	using	keywords	such	as	FROM,	COPY,	RUN,	CMD,	and
ENTRYPOINT	to	generate	a	custom	image
Export	an	existing	image	using	docker	image	save	and	import	it	into	another
Docker	host	using	docker	image	load
Write	a	two-step	Dockerfile	that	minimizes	the	size	of	the	resulting	image
by	only	including	the	resulting	artifacts	(binaries)	in	the	final	image

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

What	are	images?
In	Linux,	everything	is	a	file.	The	whole	operating	system	is	basically	a
filesystem	with	files	and	folders	stored	on	the	local	disk.	This	is	an	important
fact	to	remember	when	looking	at	what	container	images	are.	As	we	will	see,	an
image	is	basically	a	big	tarball	containing	a	filesystem.	More	specifically,	it
contains	a	layered	filesystem.

The	layered	filesystem
Container	images	are	templates	from	which	containers	are	created.	These	images
are	not	just	one	monolithic	block,	but	are	composed	of	many	layers.	The	first
layer	in	the	image	is	also	called	the	base	layer:

The	image	as	a	stack	of	layers

Each	individual	layer	contains	files	and	folders.	Each	layer	only	contains	the
changes	to	the	filesystem	with	respect	to	the	underlying	layers.	Docker	uses	a
union	filesystem—as	discussed	in	Chapter	3,	Working	with	Containers—to	create
a	virtual	filesystem	out	of	the	set	of	layers.	A	storage	driver	handles	the	details
regarding	the	way	these	layers	interact	with	each	other.	Different	storage	drivers
are	available	that	have	advantages	and	disadvantages	in	different	situations.

The	layers	of	a	container	image	are	all	immutable.	Immutable	means	that	once
generated,	the	layer	cannot	ever	be	changed.	The	only	possible	operation
affecting	the	layer	is	the	physical	deletion	of	it.	This	immutability	of	layers	is
important	because	it	opens	up	a	tremendous	amount	of	opportunities,	as	we	will
see.

In	the	following	image,	we	can	see	what	a	custom	image	for	a	web	application
using	Nginx	as	a	web	server	could	look	like:

A	sample	custom	image	based	on	Alpine	and	Nginx

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Our	base	layer	here	consists	of	the	Alpine	Linux	distribution.	Then,	on	top	of
that,	we	have	a	layer	where	Nginx	is	added	on	top	of	Alpine.	Finally,	the	third
layer	contains	all	the	files	that	make	up	the	web	application,	such	as	HTML,
CSS,	and	JavaScript	files.

As	has	been	said	previously,	each	image	starts	with	a	base	image.	Typically,	this
base	image	is	one	of	the	official	images	found	on	Docker	Hub,	such	as	a	Linux
distro,	Alpine,	Ubuntu,	or	CentOS.	However,	it	is	also	possible	to	create	an
image	from	scratch.

Docker	Hub	is	a	public	registry	for	container	images.	It	is	a	central	hub	ideally	suited	for
sharing	public	container	images.	

Each	layer	only	contains	the	delta	of	changes	in	regard	to	the	previous	set	of
layers.	The	content	of	each	layer	is	mapped	to	a	special	folder	on	the	host
system,	which	is	usually	a	subfolder	of	/var/lib/docker/.

Since	layers	are	immutable,	they	can	be	cached	without	ever	becoming	stale.
This	is	a	big	advantage,	as	we	will	see.

The	writable	container	layer
As	we	have	discussed,	a	container	image	is	made	of	a	stack	of	immutable	or
read-only	layers.	When	the	Docker	engine	creates	a	container	from	such	an
image,	it	adds	a	writable	container	layer	on	top	of	this	stack	of	immutable	layers.
Our	stack	now	looks	as	follows:

The	writable	container	layer

The	container	layer	is	marked	as	read/write.	Another	advantage	of	the
immutability	of	image	layers	is	that	they	can	be	shared	among	many	containers
created	from	this	image.	All	that	is	needed	is	a	thin,	writable	container	layer	for
each	container:

Multiple	containers	sharing	the	same	image	layers

This	technique,	of	course,	results	in	a	tremendous	reduction	of	resources	that	are
consumed.	Furthermore,	this	helps	to	decrease	the	loading	time	of	a	container
since	only	a	thin	container	layer	has	to	be	created	once	the	image	layers	have
been	loaded	into	memory,	which	only	happens	for	the	first	container.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Copy-on-write
Docker	uses	the	copy-on-write	technique	when	dealing	with	images.	Copy-on-
write	is	a	strategy	of	sharing	and	copying	files	for	maximum	efficiency.	If	a	layer
uses	a	file	or	folder	that	is	available	in	one	of	the	low-lying	layers,	then	it	just
uses	it.	If,	on	the	other	hand,	a	layer	wants	to	modify,	say,	a	file	from	a	low-lying
layer,	then	it	first	copies	this	file	up	to	the	target	layer	and	then	modifies	it.	In	the
following	figure,	we	can	see	a	glimpse	of	what	this	means:

Copy-on-write

The	second	layer	wants	to	modify	File	2,	which	is	present	in	the	base	layer.
Thus,	it	copied	it	up	and	then	modified	it.	Now,	let's	say	that	we're	sitting	in	the
top	layer	of	the	preceding	figure.	This	layer	will	use	File	1	from	the	base	layer
and	File	2	and	File	3	from	the	second	layer.

Graph	drivers
Graph	drivers	are	what	enable	the	union	filesystem.	Graph	drivers	are	also	called
storage	drivers	and	are	used	when	dealing	with	the	layered	container	images.	A
graph	driver	consolidates	the	multiple	image	layers	into	a	root	filesystem	for	the
mount	namespace	of	the	container.	Or,	put	differently,	the	driver	controls	how
images	and	containers	are	stored	and	managed	on	the	Docker	host.

Docker	supports	several	different	graph	drivers	using	a	pluggable	architecture.
The	preferred	driver	is	overlay2	followed	by	overlay.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	images
There	are	three	ways	to	create	a	new	container	image	on	your	system.	The	first
one	is	by	interactively	building	a	container	that	contains	all	the	additions	and
changes	one	desires	and	then	committing	those	changes	into	a	new	image.	The
second	and	most	important	way	is	to	use	a	Dockerfile	to	describe	what's	in	the
new	image	and	then	build	this	image	using	that	Dockerfile	as	a	manifest.	Finally,
the	third	way	of	creating	an	image	is	by	importing	it	into	the	system	from	a
tarball.

Now,	let's	look	at	these	three	ways	in	detail.

Interactive	image	creation
The	first	way	we	can	create	a	custom	image	is	by	interactively	building	a
container.	That	is,	we	start	with	a	base	image	that	we	want	to	use	as	a	template
and	run	a	container	of	it	interactively.	Let's	say	that	this	is	the	alpine	image.	The
command	to	run	the	container	would	then	be	as	follows:

$	docker	container	run	-it	--name	sample	alpine	/bin/sh

By	default,	the	alpine	container	does	not	have	the	ping	tool	installed.	Let's
assume	we	want	to	create	a	new	custom	image	that	has	ping	installed.	Inside	the
container,	we	can	then	run	the	following	command:

/	#	apk	update	&&	apk	add	iputils

This	uses	the	Alpine	package	manager	apk	to	install	the	iputils	library,	of	which
ping	is	a	part.	The	output	of	the	preceding	command	should	look	as	follows:

fetch	http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz

fetch	http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz

v3.7.0-50-gc8da5122a4	[http://dl-cdn.alpinelinux.org/alpine/v3.7/main]

v3.7.0-49-g06d6ae04c3	[http://dl-cdn.alpinelinux.org/alpine/v3.7/community]

OK:	9046	distinct	packages	available

(1/2)	Installing	libcap	(2.25-r1)

(2/2)	Installing	iputils	(20121221-r8)

Executing	busybox-1.27.2-r6.trigger

OK:	4	MiB	in	13	packages

Now,	we	can	indeed	use	ping,	as	the	following	snippet	shows:

/	#	ping	127.0.0.1

PING	127.0.0.1	(127.0.0.1)	56(84)	bytes	of	data.

64	bytes	from	127.0.0.1:	icmp_seq=1	ttl=64	time=0.028	ms

64	bytes	from	127.0.0.1:	icmp_seq=2	ttl=64	time=0.044	ms

64	bytes	from	127.0.0.1:	icmp_seq=3	ttl=64	time=0.049	ms

^C

---	127.0.0.1	ping	statistics	---

3	packets	transmitted,	3	received,	0%	packet	loss,	time	2108ms

rtt	min/avg/max/mdev	=	0.028/0.040/0.049/0.010	ms

Once	we	have	finished	our	customization,	we	can	quit	the	container	by	typing
exit	at	the	prompt.	If	we	now	list	all	containers	with	docker	container	ls	-a,	we	can
see	that	our	sample	container	has	a	status	of	Exited,	but	still	exists	on	the	system:

$	docker	container	ls	-a	|	grep	sample

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

eff7c92a1b98				alpine				"/bin/sh"				2	minutes	ago						Exited	(0)	...

If	we	want	to	see	what	has	changed	in	our	container	in	relation	to	the	base
image,	we	can	use	the	docker	container	diff	command	as	follows:

$	docker	container	diff	sample

The	output	should	present	a	list	of	all	modifications	done	on	the	filesystem	of	the
container:

C	/bin

C	/bin/ping

C	/bin/ping6

A	/bin/traceroute6

C	/etc/apk

C	/etc/apk/world

C	/lib/apk/db

C	/lib/apk/db/installed

C	/lib/apk/db/lock

C	/lib/apk/db/scripts.tar

C	/lib/apk/db/triggers

C	/root

A	/root/.ash_history

C	/usr/lib

A	/usr/lib/libcap.so.2

A	/usr/lib/libcap.so.2.25

C	/usr/sbin

C	/usr/sbin/arping

A	/usr/sbin/capsh

A	/usr/sbin/clockdiff

A	/usr/sbin/getcap

A	/usr/sbin/getpcaps

A	/usr/sbin/ipg

A	/usr/sbin/rarpd

A	/usr/sbin/rdisc

A	/usr/sbin/setcap

A	/usr/sbin/tftpd

A	/usr/sbin/tracepath

A	/usr/sbin/tracepath6

C	/var/cache/apk

A	/var/cache/apk/APKINDEX.5022a8a2.tar.gz

A	/var/cache/apk/APKINDEX.70c88391.tar.gz

C	/var/cache/misc

In	the	preceding	list,	A	stands	for	added,	and	C	for	changed.	If	we	had	any	deleted
files,	then	those	would	be	prefixed	with	D.

We	can	now	use	the	docker	container	commit	command	to	persist	our	modifications
and	create	a	new	image	from	them:

$	docker	container	commit	sample	my-alpine

sha256:44bca4141130ee8702e8e8efd1beb3cf4fe5aadb62a0c69a6995afd49c2e7419

With	the	preceding	command,	we	have	specified	that	the	new	image	shall	be

called	my-alpine.	The	output	generated	by	the	preceding	command	corresponds	to
the	ID	of	the	newly	generated	image.	We	can	verify	this	by	listing	all	images	on
our	system,	as	follows:

$	docker	image	ls

We	can	see	this	image	ID	(shortened)	as	follows:

REPOSITORY	TAG						IMAGE	ID								CREATED															SIZE

my-alpine		latest			44bca4141130				About	a	minute	ago				5.64MB

...

We	can	see	that	the	image		named	my-alpine,	has	the	expected	ID	of	44bca4141130
and	automatically	got	a	tag	latest	assigned.	This	happens	since	we	did	not
explicitly	define	a	tag	ourselves.	In	this	case,	Docker	always	defaults	to	the	tag
latest.

If	we	want	to	see	how	our	custom	image	has	been	built,	we	can	use	the	history
command	as	follows:

$	docker	image	history	my-alpine

This	will	print	the	list	of	layers	our	image	consists	of:

IMAGE												CREATED									CREATED	BY										SIZE							COMMENT

44bca4141130					3	minutes	ago			/bin/sh													1.5MB

e21c333399e0					6	weeks	ago					/bin/sh	-c	#...					0B

<missing>								6	weeks	ago					/bin/sh	-c	#...					4.14MB

The	first	layer	in	the	preceding	list	is	the	one	that	we	just	created	by	adding	the
iputils	package.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Using	Dockerfiles
Manually	creating	custom	images	as	shown	in	the	previous	section	of	this
chapter	is	very	helpful	when	doing	exploration,	creating	prototypes,	or	making
feasibility	studies.	But	it	has	a	serious	drawback:	it	is	a	manual	process	and	thus
is	not	repeatable	or	scalable.	It	is	also	as	error-prone	as	any	task	executed
manually	by	humans.	There	must	be	a	better	way.

This	is	where	the	so-called	Dockerfile	comes	into	play.	The	Dockerfile	is	a	text
file	that	is	usually	literally	called	Dockerfile.	It	contains	instructions	on	how	to
build	a	custom	container	image.	It	is	a	declarative	way	of	building	images.

Declarative	versus	imperative:
In	computer	science,	in	general	and	with	Docker	specifically,	one	often	uses	a	declarative	way
of	defining	a	task.	One	describes	the	expected	outcome	and	lets	the	system	figure	out	how	to
achieve	this	goal,	rather	than	giving	step-by-step	instructions	to	the	system	on	how	to	achieve
this	desired	outcome.	The	latter	is	the	imperative	approach.

Let's	look	at	a	sample	Dockerfile:

FROM	python:2.7

RUN	mkdir	-p	/app

WORKDIR	/app

COPY	./requirements.txt	/app/

RUN	pip	install	-r	requirements.txt

CMD	["python",	"main.py"]

This	is	a	Dockerfile	as	it	is	used	to	containerize	a	Python	2.7	application.	As	we
can	see,	the	file	has	six	lines,	each	starting	with	a	keyword	such	as	FROM,	RUN,	or
COPY.	It	is	a	convention	to	write	the	keywords	in	all	caps,	but	that	is	not	a	must.

Each	line	of	the	Dockerfile	results	in	a	layer	in	the	resulting	image.	In	the
following	image,	the	image	is	drawn	upside	down	compared	to	the	previous
illustrations	in	this	chapter,	showing	an	image	as	a	stack	of	layers.	Here,	the	base
layer	is	shown	on	top.	Don't	let	yourself	be	confused	by	this.	In	reality,	the	base
layer	is	always	the	lowest	layer	in	the	stack:

The	relation	of	Dockerfile	and	layers	in	an	image

Now	let's	look	at	the	individual	keywords	in	more	detail.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	FROM	keyword
Every	Dockerfile	starts	with	the	FROM	keyword.	With	it,	we	define	which	base
image	we	want	to	start	building	our	custom	image	from.	If	we	want	to	build
starting	with	CentOS	7,	for	example,	we	would	have	the	following	line	in	the
Dockerfile:

FROM	centos:7

On	Docker	Hub,	there	are	curated	or	official	images	for	all	major	Linux	distros,
as	well	as	for	all	important	development	frameworks	or	languages,	such	as
Python,	Node	JS,	Ruby,	Go,	and	many	more.	Depending	on	our	need,	we	should
select	the	most	appropriate	base	image.

For	example,	if	I	want	to	containerize	a	Python	2.7	application,	I	might	want	to
select	the	relevant	official	python:2.7	image.

If	we	really	want	to	start	from	scratch,	we	can	also	use	the	following	statement:

FROM	scratch

This	is	useful	in	the	context	of	building	super	minimal	images	that	only,	for
example,	contain	a	single	binary,	the	actual	statically	linked	executable,	such	as
Hello-World.	The	scratch	image	is	literally	an	empty	base	image.

FROM	scratch	is	a	no-op	in	the	Dockerfile,	and	as	such	does	not	generate	a	layer	in
the	resulting	container	image.

The	RUN	keyword
The	next	important	keyword	is	RUN.	The	argument	for	RUN	is	any	valid	Linux
command,	such	as	the	following:

RUN	yum	install	-y	wget

The	preceding	command	is	using	the	CentOS	package	manager	yum	to	install	the
wget	package	into	the	running	container.	This	assumes	that	our	base	image	is
CentOS	or	RHEL.	If	we	had	Ubuntu	as	our	base	image,	then	the	command
would	look	similar	to	the	following:

RUN	apt-get	update	&&	apt-get	install	-y	wget

It	would	look	like	this	because	Ubuntu	uses	apt-get	as	a	package	manager.
Similarly,	we	could	define	a	line	with	RUN	like	this:

RUN	mkdir	-p	/app	&&	cd	/app

We	could	also	do	this:

RUN	tar	-xJC	/usr/src/python	--strip-components=1	-f	python.tar.xz

Here,	the	former	creates	a	/app	folder	in	the	container	and	navigates	to	it,	and	the
latter	untars	a	file	to	a	given	location.	It	is	completely	fine,	and	even
recommended,	for	you	to	format	a	Linux	command	using	more	than
one	physical	line,	such	as	this:

RUN	apt-get	update	\

		&&	apt-get	install	-y	--no-install-recommends	\

				ca-certificates	\

				libexpat1	\

				libffi6	\

				libgdbm3	\

				libreadline7	\

				libsqlite3-0	\

				libssl1.1	\

		&&	rm	-rf	/var/lib/apt/lists/*

If	we	use	more	than	one	line,	we	need	to	put	a	backslash	(\)	at	the	end	of	the
lines	to	indicate	to	the	shell	that	the	command	continues	on	the	next	line.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Try	to	find	out	what	the	preceding	command	does.

The	COPY	and	ADD	keywords
The	COPY	and	ADD	keywords	are	very	important	since,	in	the	end,	we	want	to	add
some	content	to	an	existing	base	image	to	make	it	a	custom	image.	Most	of	the
time,	these	are	a	few	source	files	of,	say,	a	web	application	or	a	few	binaries	of	a
compiled	application.

These	two	keywords	are	used	to	copy	files	and	folders	from	the	host	into	the
image	that	we're	building.	The	two	keywords	are	very	similar,	with	the	exception
that	the	ADD	keyword	also	lets	us	copy	and	unpack	TAR	files,	as	well	as	provide	a
URL	as	a	source	for	the	files	and	folders	to	copy.

Let's	look	at	a	few	examples	of	how	these	two	keywords	can	be	used:

COPY	.	/app

COPY	./web	/app/web

COPY	sample.txt	/data/my-sample.txt

ADD	sample.tar	/app/bin/

ADD	http://example.com/sample.txt	/data/

In	the	preceding	lines	of	code:

The	first	line	copies	all	files	and	folders	from	the	current	directory
recursively	to	the	/app	folder	inside	the	container	image
The	second	line	copies	everything	in	the	web	subfolder	to	the	target
folder,	/app/web
The	third	line	copies	a	single	file,	sample.txt,	into	the	target	folder,	/data,	and
at	the	same	time,	renames	it	to	my-sample.txt
The	fourth	statement	unpacks	the	sample.tar	file	into	the	target
folder,	/app/bin
Finally,	the	last	statement	copies	the	remote	file,	sample.txt,	into	the	target
file,	/data

Wildcards	are	allowed	in	the	source	path.	For	example,	the	following	statement
copies	all	files	starting	with	sample	to	the	mydir	folder	inside	the	image:

COPY	./sample*	/mydir/

From	a	security	perspective,	it	is	important	to	know	that	by	default,	all	files	and

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

folders	inside	the	image	will	have	a	user	ID	(UID)	and	a	group	ID	(GID)	of	0.
The	good	thing	is	that	for	both	ADD	and	COPY,	we	can	change	the	ownership	that	the
files	will	have	inside	the	image	using	the	optional	--chown	flag,	as	follows:

ADD	--chown=11:22	./data/files*	/app/data/

The	preceding	statement	will	copy	all	files	starting	with	the	name	web	and	put
them	into	the	/app/data	folder	in	the	image,	and	at	the	same	time	assign	user	11
and	group	22	to	these	files.

Instead	of	numbers,	one	could	also	use	names	for	the	user	and	group,	but	then
these	entities	would	have	to	be	already	defined	in	the	root	filesystem	of	the
image	at	/etc/passwd	and	/etc/group	respectively,	otherwise	the	build	of	the	image
would	fail.

The	WORKDIR	keyword
The	WORKDIR	keyword	defines	the	working	directory	or	context	that	is	used	when	a
container	is	run	from	our	custom	image.	So,	if	I	want	to	set	the	context	to	the
/app/bin	folder	inside	the	image,	my	expression	in	the	Dockerfile	would	have	to
look	as	follows:

WORKDIR	/app/bin

All	activity	that	happens	inside	the	image	after	the	preceding	line	will	use	this
directory	as	the	working	directory.	It	is	very	important	to	note	that	the	following
two	snippets	from	a	Dockerfile	are	not	the	same:

RUN	cd	/app/bin

RUN	touch	sample.txt

Compare	the	preceding	code	with	the	following	code:

WORKDIR	/app/bin

RUN	touch	sample.txt

The	former	will	create	the	file	in	the	root	of	the	image	filesystem,	while	the	latter
will	create	the	file	at	the	expected	location	in	the	/app/bin	folder.	Only	the	WORKDIR
keyword	sets	the	context	across	the	layers	of	the	image.	The	cd	command	alone
is	not	persisted	across	layers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	CMD	and	ENTRYPOINT
keywords
The	CMD	and	ENTRYPOINT	keywords	are	special.	While	all	other	keywords	defined	for
a	Dockerfile	are	executed	at	the	time	the	image	is	built	by	the	Docker	builder,
these	two	are	actually	definitions	of	what	will	happen	when	a	container	is	started
from	the	image	we	define.	When	the	container	runtime	starts	a	container,	it
needs	to	know	what	the	process	or	application	will	be	that	has	to	run	inside	this
container.	That	is	exactly	what	CMD	and	ENTRYPOINT	are	used	for—to	tell	Docker
what	the	start	process	is	and	how	to	start	that	process.

Now,	the	differences	between	CMD	and	ENTRYPOINT	are	subtle,	and	honestly	most
users	don't	fully	understand	them	or	use	them	in	the	intended	way.	Luckily,	in
most	cases,	this	is	not	a	problem	and	the	container	will	run	anyway;	it's	just	the
handling	of	it	that	is	not	as	straightforward	as	it	could	be.

To	better	understand	how	to	use	the	two	keywords,	let's	analyze	what	a	typical
Linux	command	or	expression	looks	like—for	example,	let's	take	the	ping	utility
as	an	example,	as	follows:

$	ping	8.8.8.8	-c	3

In	the	preceding	expression,	ping	is	the	command	and	8.8.8.8	-c	3	are	the
parameters	to	this	command.	Let's	look	at	another	expression:

$	wget	-O	-	http://example.com/downloads/script.sh

Again,	in	the	preceding	expression,	wget	is	the	command	and	-O	-
http://example.com/downloads/script.sh	are	the	parameters.

Now	that	we	have	dealt	with	this,	we	can	get	back	to	CMD	and	ENTRYPOINT.	ENTRYPOINT
is	used	to	define	the	command	of	the	expression	while	CMD	is	used	to	define	the
parameters	for	the	command.	Thus,	a	Dockerfile	using	alpine	as	the	base	image
and	defining	ping	as	the	process	to	run	in	the	container	could	look	as	follows:

FROM	alpine:latest

ENTRYPOINT	["ping"]

CMD	["8.8.8.8",	"-c",	"3"]

For	both	ENTRYPOINT	and	CMD,	the	values	are	formatted	as	a	JSON	array	of	strings,
where	the	individual	items	correspond	to	the	tokens	of	the	expression	that	are
separated	by	whitespace.	This	the	preferred	way	of	defining	CMD	and	ENTRYPOINT.	It
is	also	called	the	exec	form.

Alternatively,	one	can	also	use	what's	called	the	shell	form,	for	example:

CMD	command	param1	param2

We	can	now	build	an	image	from	the	preceding	Dockerfile,	as	follows:

$	docker	image	build	-t	pinger	.

Then,	we	can	run	a	container	from	the	pinger	image	we	just	created:

$	docker	container	run	--rm	-it	pinger

PING	8.8.8.8	(8.8.8.8):	56	data	bytes

64	bytes	from	8.8.8.8:	seq=0	ttl=37	time=19.298	ms

64	bytes	from	8.8.8.8:	seq=1	ttl=37	time=27.890	ms

64	bytes	from	8.8.8.8:	seq=2	ttl=37	time=30.702	ms

The	beauty	of	this	is	that	I	can	now	override	the	CMD	part	that	I	have	defined	in
the	Dockerfile	(remember,	it	was	["8.8.8.8",	"-c",	"3"])	when	I	create	a	new
container	by	adding	the	new	values	at	the	end	of	the	docker	container	run
expression:

$	docker	container	run	--rm	-it	pinger	-w	5	127.0.0.1

This	will	now	cause	the	container	to	ping	the	loopback	for	5	seconds.

If	we	want	to	override	what's	defined	in	the	ENTRYPOINT	in	the	Dockerfile,	we	need
to	use	the	--entrypoint	parameter	in	the	docker	container	run	expression.	Let's	say	we
want	to	execute	a	shell	in	the	container	instead	of	the	ping	command.	We	could
do	so	by	using	the	following	command:

$	docker	container	run	--rm	-it	--entrypoint	/bin/sh	pinger

We	will	then	find	ourselves	inside	the	container.	Type	exit	to	leave	the	container.

As	I	already	mentioned,	we	do	not	necessarily	have	to	follow	best	practices	and
define	the	command	through	ENTRYPOINT	and	the	parameters	through	CMD,	but	we
can	instead	enter	the	whole	expression	as	a	value	of	CMD	and	it	will	work:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

FROM	alpine:latest

CMD	wget	-O	-	http://www.google.com

Here,	I	have	even	used	the	shell	form	to	define	the	CMD.	But	what	does	really
happen	in	this	situation	where	ENTRYPOINT	is	undefined?	If	you	leave	ENTRYPOINT
undefined,	then	it	will	have	the	default	value	of	/bin/sh	-c,	and	whatever	is	the
value	of	CMD	will	be	passed	as	a	string	to	the	shell	command.	The	preceding
definition	would	thereby	result	in	entering	following	process	to	run	inside	the
container:

/bin/sh	-c	"wget	-O	-	http://www.google.com"

Consequently,	/bin/sh	is	the	main	process	running	inside	the	container,	and	it	will
start	a	new	child	process	to	run	the	wget	utility.

A	complex	Dockerfile
We	have	discussed	the	most	important	keywords	commonly	used	in	Dockerfiles.
Let's	look	at	a	realistic	and	somewhat	complex	example	of	a	Dockerfile.	The
interested	reader	might	note	that	it	looks	very	similar	to	the	first	Dockerfile	that
we	presented	in	this	chapter.	Here	is	the	content:

FROM	node:9.4

RUN	mkdir	-p	/app

WORKDIR	/app

COPY	package.json	/app/

RUN	npm	install

COPY	.	/app

ENTRYPOINT	["npm"]

CMD	["start"]

OK,	so	what	is	happening	here?	Evidently,	this	is	a	Dockerfile	that	is	used	to
build	an	image	for	a	Node.js	application;	we	can	deduce	this	from	the	fact	that
the	base	image	node:9.4	is	used.	Then	the	second	line	is	an	instruction	to	create	a
/app	folder	in	the	filesystem	of	the	image.	The	third	line	defines	the	working
directory	or	context	in	the	image	to	be	this	new	/app	folder.	Then,	on	line	four,
we	copy	a	package.json	file	into	the	/app	folder	inside	the	image.	After	this,	on	line
five,	we	execute	the	npm	install	command	inside	the	container;	remember,	our
context	is	the	/app	folder	and	thus,	npm	will	find	the	package.json	file	there	that	we
copied	on	line	four.

After	all	Node.js	dependencies	are	installed,	we	copy	the	rest	of	the	application
files	from	the	current	folder	of	the	host	into	the	/app	folder	of	the	image.

Finally,	on	the	last	two	lines,	we	define	what	the	startup	command	shall	be	when
a	container	is	run	from	this	image.	In	our	case,	it	is	npm	start,	which	will	start	the
Node	application.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Building	an	image
In	your	home	directory,	create	a	FundamentalsOfDocker	folder	and	navigate	to	it:

$	mkdir	~/FundamentalsOfDocker

$	cd	~/FundamentalsOfDocker

In	the	preceding	folder,	create	a	sample1	subfolder	and	navigate	to	it:

$	mkdir	sample1	&&	cd	sample1

Use	your	favorite	editor	to	create	a	file	called	Dockerfile	inside	this	sample	folder
with	the	following	content:

FROM	centos:7

RUN	yum	install	-y	wget

Save	the	file	and	exit	your	editor.

Back	in	the	Terminal,	we	can	now	build	a	new	container	image	using	the
preceding	Dockerfile	as	a	manifest	or	construction	plan:

$	docker	image	build	-t	my-centos	.

Please	note	that	there	is	a	period	at	the	end	of	the	preceding	command.	This
command	means	that	the	Docker	builder	is	creating	a	new	image	called	my-centos
using	the	Dockerfile	that	is	present	in	the	current	directory.	Here,	the	period	at
the	end	of	the	command	stands	for	current	directory.	We	could	also	write	the
preceding	command	as	follows,	with	the	same	result:

$	docker	image	build	-t	my-centos	-f	Dockerfile	.

But	we	can	omit	the	-f	parameter,	since	the	builder	assumes	that	the	Dockerfile
is	literally	called	Dockerfile.	We	only	ever	need	the	-f	parameter	if	our	Dockerfile
has	a	different	name	or	is	not	located	in	the	current	directory.

The	preceding	command	gives	us	this	(shortened)	output:

Sending	build	context	to	Docker	daemon	2.048kB

Step	1/2	:	FROM	centos:7

7:	Pulling	from	library/centos

af4b0a2388c6:	Pull	complete

Digest:	sha256:2671f7a3eea36ce43609e9fe7435ade83094291055f1c96d9d1d1d7c0b986a5d

Status:	Downloaded	newer	image	for	centos:7

--->	ff426288ea90

Step	2/2	:	RUN	yum	install	-y	wget

--->	Running	in	bb726903820c

Loaded	plugins:	fastestmirror,	ovl

Determining	fastest	mirrors

*	base:	mirror.dal10.us.leaseweb.net

*	extras:	repos-tx.psychz.net

*	updates:	pubmirrors.dal.corespace.com

Resolving	Dependencies

-->	Running	transaction	check

--->	Package	wget.x86_64	0:1.14-15.el7_4.1	will	be	installed

...

Installed:

wget.x86_64	0:1.14-15.el7_4.1

Complete!

Removing	intermediate	container	bb726903820c

--->	bc070cc81b87

Successfully	built	bc070cc81b87

Successfully	tagged	my-centos:latest

Let's	analyze	this	output:

First,	we	have	the	following	line:

Sending	build	context	to	Docker	daemon	2.048kB

The	first	thing	the	builder	does	is	package	the	files	in	the	current	build
context,	excluding	the	files	and	folder	mentioned	in	the	.dockerignore	file,
if	present,	and	sends	the	resulting	.tar	file	to	the	Docker	daemon.

Next,	we	have	the	following	lines:

Step	1/2	:	FROM	centos:7

7:	Pulling	from	library/centos

af4b0a2388c6:	Pull	complete

Digest:	sha256:2671f7a...

Status:	Downloaded	newer	image	for	centos:7

--->	ff426288ea90

The	first	line	tells	us	which	step	of	the	Dockerfile	the	builder	is	currently
executing.	Here,	we	only	have	two	statements	in	the	Dockerfile,	and	we
are	on	step	1	of	2.	We	can	also	see	what	the	content	of	that	section	is.
Here	is	the	declaration	of	the	base	image,	on	top	of	which	we	want	to
build	our	custom	image.	What	the	builder	then	does	is	pull	this	image
from	Docker	Hub	if	it	is	not	already	available	in	the	local	cache.	The	last
line	of	the	preceding	snippet	indicates	which	ID	the	just-built	layer	gets
assigned	by	the	builder.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Now,	follows	the	next	step.	I	have	shortened	it	even	more	than	the
preceding	one	to	concentrate	on	the	essential	part:

Step	2/2	:	RUN	yum	install	-y	wget

--->	Running	in	bb726903820c

...

...

Removing	intermediate	container	bb726903820c

--->	bc070cc81b87

Here,	again,	the	first	line	indicates	to	us	that	we	are	in	step	2	of	2.	It	also
shows	us	the	respective	entry	from	the	Dockerfile.	On	line	two,	we	can
see	Running	in	bb726903820c,	which	tells	us	that	the	builder	has	created	a
container	with	ID	bb726903820c	inside,	which	it	executes	the	RUN	command.
We	have	omitted	the	output	of	the	yum	install	-y	wget	command	in	the
snippet	since	it	is	not	important	in	this	section.	When	the	command	is
finished,	the	builder	stops	the	container,	commits	it	to	a	new	layer,	and
then	removes	the	container.	The	new	layer	has	ID	bc070cc81b87,	in	this
particular	case.

At	the	very	end	of	the	output,	we	encounter	the	following	two	lines:

Successfully	built	bc070cc81b87

Successfully	tagged	my-centos:latest

This	tells	us	that	the	resulting	custom	image	has	been	given	the	ID
bc070cc81b87,	and	has	been	tagged	with	the	name	my-centos:latest.

So,	how	does	the	builder	work,	exactly?	It	starts	with	the	base	image.	From	this
base	image,	once	downloaded	into	the	local	cache,	it	creates	a	container	and	runs
the	first	statement	of	the	Dockerfile	inside	this	container.	Then,	it	stops	the
container	and	persists	the	changes	made	in	the	container	into	a	new	image	layer.
The	builder	then	creates	a	new	container	from	the	base	image	and	the	new	layer,
and	runs	the	second	statement	inside	this	new	container.	Once	again,	the	result	is
committed	to	a	new	layer.	This	process	is	repeated	until	the	very	last	statement
in	the	Dockerfile	is	encountered.	After	having	committed	the	last	layer	of	the
new	image,	the	builder	creates	an	ID	for	this	image	and	tags	the	image	with	the
name	we	provided	in	the	build	command:

The	image	build	process	visualized

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Multistep	builds
To	demonstrate	why	a	Dockerfile	with	multiple	build	steps	is	useful,	let's	make
an	example	Dockerfile.	Let's	take	a	Hello	World	application	written	in	C.	Here	is
the	code	found	inside	the	hello.c	file:

#include	<stdio.h>

int	main	(void)

{

		printf	("Hello,	world!\n");

		return	0;

}

Now,	we	want	to	containerize	this	application	and	write	this	Dockerfile:

FROM	alpine:3.7

RUN	apk	update	&&

apk	add	--update	alpine-sdk

RUN	mkdir	/app

WORKDIR	/app

COPY	.	/app

RUN	mkdir	bin

RUN	gcc	-Wall	hello.c	-o	bin/hello

CMD	/app/bin/hello

Now,	let's	build	this	image:

$	docker	image	build	-t	hello-world	.

This	gives	us	a	fairly	long	output,	since	the	builder	has	to	install	the	Alpine
SDK,	which,	among	other	tools,	contains	the	C++	compiler	we	need	to	build	the
application.

Once	the	build	is	done	we	can	list	the	image	and	see	its	size	shown	as	follows:

$	docker	image	ls	|	grep	hello-world

hello-world						latest						e9b...					2	minutes	ago					176MB

With	a	size	of	176	MB,	the	resulting	image	is	way	too	big.	In	the	end,	it	is	just	a
Hello	World	application.	The	reason	for	it	being	so	big	is	that	the	image	not	only
contains	the	Hello	World	binary,	but	also	all	the	tools	to	compile	and	link	the
application	from	the	source	code.	But	this	is	really	not	desirable	when	running
the	application,	say,	in	production.	Ideally,	we	only	want	to	have	the	resulting
binary	in	the	image	and	not	a	whole	SDK.

It	is	precisely	for	this	reason	that	we	should	define	Dockerfiles	as	multistage.	We
have	some	stages	that	are	used	to	build	the	final	artifacts	and	then	a	final	stage
where	we	use	the	minimal	necessary	base	image	and	copy	the	artifacts	into	it.
This	results	in	very	small	images.	Have	a	look	at	this	revised	Dockerfile:

FROM	alpine:3.7	AS	build

RUN	apk	update	&&	\

				apk	add	--update	alpine-sdk

RUN	mkdir	/app

WORKDIR	/app

COPY	.	/app

RUN	mkdir	bin

RUN	gcc	hello.c	-o	bin/hello

FROM	alpine:3.7

COPY	--from=build	/app/bin/hello	/app/hello

CMD	/app/hello

Here,	we	have	a	first	stage	with	an	alias	build	that	is	used	to	compile	the
application,	and	then	the	second	stage	uses	the	same	base	image	alpine:3.7,	but
does	not	install	the	SDK,	and	only	copies	the	binary	from	the	build	stage,	using
the	--from	parameter,	into	this	final	image.

Let's	build	the	image	again	as	follows:

$	docker	image	build	-t	hello-world-small	.

When	we	compare	the	sizes	of	the	images,	we	get	the	following	output:

$	docker	image	ls	|	grep	hello-world

hello-world-small			latest				f98...				20	seconds	ago					4.16MB

hello-world									latest				469...				10	minutes	ago					176MB

We	have	been	able	to	reduce	the	size	from	176	MB	down	to	4	MB.	This	is
reduction	in	size	by	a	factor	of	40.	A	smaller	image	size	has	many	advantages,
such	as	a	smaller	attack	surface	area	for	hackers,	reduced	memory	and	disk
consumption,	faster	startup	times	of	the	corresponding	containers,	and	a
reduction	of	the	bandwidth	needed	to	download	the	image	from	a	registry,	such
as	Docker	Hub.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Dockerfile	best	practices
There	are	a	few	recommended	best	practices	to	consider	when	authoring	a
Dockerfile,	which	are	as	follows:

First	and	foremost,	we	need	to	consider	that	containers	are	meant	to	be
ephemeral.	By	ephemeral,	we	mean	that	a	container	can	be	stopped	and
destroyed	and	a	new	one	built	and	put	in	place	with	an	absolute	minimum
of	setup	and	configuration.	That	means	that	we	should	try	hard	to	keep	the
time	that	is	needed	to	initialize	the	application	running	inside	the	container
at	a	minimum,	as	well	as	the	time	needed	to	terminate	or	clean	up	the
application.
The	next	best	practice	tells	us	that	we	should	order	the	individual
commands	in	the	Dockerfile	so	that	we	leverage	caching	as	much	as
possible.	Building	a	layer	of	an	image	can	take	a	considerable	amount	of
time,	sometimes	many	seconds	or	even	minutes.	While	developing	an
application,	we	will	have	to	build	the	container	image	for	our	application
multiple	times.	We	want	to	keep	the	build	times	at	a	minimum.

When	we're	rebuilding	a	previously	built	image,	the	only	layers	that	are
rebuilt	are	the	ones	that	have	changed,	but	if	one	layer	needs	to	be
rebuilt,	all	subsequent	layers	also	need	to	be	rebuilt.	This	is	very
important	to	remember.	Consider	the	following	example:

FROM	node:9.4

RUN	mkdir	-p	/app

WORKIR	/app

COPY	.	/app

RUN	npm	install

CMD	["npm",	"start"]

In	this	example,	the	npm	install	command	on	line	five	of	the	Dockerfile
usually	takes	the	longest.	A	classical	Node.js	application	has	many
external	dependencies,	and	those	are	all	downloaded	and	installed	in	this
step.	This	can	take	minutes	until	it	is	done.	Therefore,	we	want	to	avoid
running	npm	install	each	time	we	rebuild	the	image,	but	a	developer
changes	their	source	code	all	the	time	during	development	of	the
application.	That	means	that	line	four,	the	result	of	the	COPY	command,

changes	all	the	time	and	this	layer	has	to	be	rebuilt	each	time.	But	as	we
discussed	previously,	that	also	means	that	all	subsequent	layers	have	to
be	rebuilt,	which	in	this	case	includes	the	npm	install	command.	To	avoid
this,	we	can	slightly	modify	the	Dockerfile	and	have	the	following:

FROM	node:9.4

RUN	mkdir	-p	/app

WORKIR	/app

COPY	package.json	/app/

RUN	npm	install

COPY	.	/app

CMD	["npm",	"start"]

What	we	have	done	here	is	that,	on	line	four,	we	only	copy	the	single	file
that	the	npm	install	command	needs	as	a	source,	which	is	the	package.json
file.	This	file	rarely	changes	in	a	typical	development	process.	As	a
consequence,	the	npm	install	command	also	has	to	be	executed	only	when
the	package.json	file	changes.	All	the	remaining,	frequently	changed
content	is	added	to	the	image	after	the	npm	install	command.

A	further	best	practice	is	to	keep	the	number	of	layers	that	make	up	your
image	relatively	small.	The	more	layers	an	image	has,	the	more	the	graph
driver	needs	to	work	to	consolidate	the	layers	into	a	single	root	filesystem
for	the	corresponding	container.	Of	course,	this	takes	time,	and	thus	the
fewer	layers	an	image	has,	the	faster	the	startup	time	for	the	container	can
be.

But	how	can	we	keep	our	number	of	layers	low?	Remember	that	in	a
Dockerfile,	each	line	that	starts	with	a	keyword,	such	as	FROM,	COPY,
or	RUN,	creates	a	new	layer.	The	easiest	way	to	reduce	the	number	of
layers	is	to	combine	multiple	individual	RUN	commands	into	a	single	one
—for	example,	say	that	we	had	the	following	in	a	Dockerfile:

RUN	apt-get	update

RUN	apt-get	install	-y	ca-certificates

RUN	rm	-rf	/var/lib/apt/lists/*

We	could	combine	these	into	a	single	concatenated	expression,	as
follows:

RUN	apt-get	update	\

				&&	apt-get	install	-y	ca-certificates	\

				&&	rm	-rf	/var/lib/apt/lists/*

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	former	will	generate	three	layers	in	the	resulting	image,	while	the
latter	only	creates	a	single	layer.

The	next	three	best	practices	all	result	in	smaller	images.	Why	is	this	important?
Smaller	images	reduce	the	time	and	bandwidth	needed	to	download	the	image
from	a	registry.	They	also	reduce	the	amount	of	disk	space	needed	to	store	a
copy	locally	on	the	Docker	host	and	the	memory	needed	to	load	the	image.
Finally,	smaller	images	also	means	a	smaller	attack	surface	for	hackers.	Here	are
the	best	practices	mentioned:

The	first	best	practice	that	helps	to	reduce	the	image	size	is	to	use	a
.dockerignore	file.	We	want	to	avoid	copying	unnecessary	files	and	folders
into	an	image	to	keep	it	as	lean	as	possible.	A	.dockerignore	file	works	in
exactly	the	same	way	as	a	.gitignore	file,	for	those	who	are	familiar	with	Git.
In	a	.dockerignore	file,	we	can	configure	patterns	to	exclude	certain	files	or
folders	from	being	included	in	the	context	when	building	the	image.
The	next	best	practice	is	to	avoid	installing	unnecessary	packages	into	the
filesystem	of	the	image.	Once	again,	this	is	to	keep	the	image	as	lean	as
possible.
Last	but	not	least,	it	is	recommended	that	you	use	multistage	builds	so	that
the	resulting	image	is	as	small	as	possible	and	only	contains	the	absolute
minimum	needed	to	run	your	application	or	application	service.

Saving	and	loading	images
The	third	way	to	create	a	new	container	image	is	by	importing	or	loading	it	from
a	file.	A	container	image	is	nothing	more	than	a	tarball.	To	demonstrate	this,	we
can	use	the	docker	image	save	command	to	export	an	existing	image	to	a	tarball:

$	docker	image	save	-o	./backup/my-alpine.tar	my-alpine

The	preceding	command	takes	our	my-alpine	image	that	we	previously	built	and
exports	it	into	a	./backup/my-alpine.tar	file.

If,	on	the	other	hand,	we	have	an	existing	tarball	and	want	to	import	it	as	an
image	into	our	system,	we	can	use	the	docker	image	load	command	as	follows:

$	docker	image	load	-i	./backup/my-alpine.tar

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Sharing	or	shipping	images
To	be	able	to	ship	our	custom	image	to	other	environments,	we	need	to	first	give
it	a	globally	unique	name.	This	action	is	often	called	tagging	an	image.	We	then
need	to	publish	the	image	to	a	central	location	from	which	other	interested	or
entitled	parties	can	pull	it.	These	central	locations	are	called	image	registries.

Tagging	an	image
Each	image	has	a	so-called	tag.	A	tag	is	often	used	to	version	images,	but	it	has
a	broader	reach	than	just	being	a	version	number.	If	we	do	not	explicitly	specify
a	tag	when	working	with	images,	then	Docker	automatically	assumes	we're
referring	to	the	latest	tag.	This	is	relevant	when	pulling	an	image	from	Docker
Hub,	for	example:

$	docker	image	pull	alpine

The	preceding	command	will	pull	the	alpine:latest	image	from	the	Hub.	If	we
want	to	explicitly	specify	a	tag,	we	do	so	like	this:

$	docker	image	pull	alpine:3.5

This	will	now	pull	the	alpine	image	that	has	been	tagged	with	3.5.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Image	namespaces
So	far,	you	have	been	pulling	various	images	and	haven't	worried	so	much	about
where	those	images	originated	from.	Your	Docker	environment	is	configured	so
that,	by	default,	all	images	are	pulled	from	Docker	Hub.	We	also	only	pulled	so-
called	official	images	from	the	Docker	Hub,	such	as	alpine	or	busybox.

Now	it	is	time	to	widen	our	horizon	a	bit	and	learn	about	how	images	are
namespaced.	The	most	generic	way	to	define	an	image	is	by	its	fully	qualified
name,	which	looks	as	follows:

<registry	URL>/<User	or	Org>/<name>:<tag>

Let's	look	at	this	in	a	bit	more	detail:

	<registry	URL>:	This	is	the	URL	to	the	registry	from	which	we	want	to	pull
the	image.	By	default,	this	is	docker.io.	More	generally,	this	could	be
https://registry.acme.com.

Other	than	Docker	Hub,	there	are	quite	a	few	public	registries	out	there
that	you	could	pull	images	from.	The	following	is	a	list	of	some	of	them,
in	no	particular	order:

Google	at	https://cloud.google.com/container-registry
Amazon	AWS	at	https://aws.amazon.com/ecr/
Microsoft	Azure	at		https://azure.microsoft.com/en-us/services/container-reg
istry/

Red	Hat	at	https://access.redhat.com/containers/
Artifactory	at	https://jfrog.com/integration/artifactory-docker-registry/

<User	or	Org>:	This	is	the	private	Docker	ID	of	either	an	individual	or	an
organization	defined	on	Docker	Hub,	or	any	other	registry	for	that	matter,
such	as	microsoft	or	oracle.
<name>:	This	is	the	name	of	the	image	that	is	often	also	called	a	repository.
<tag>:	This	is	the	tag	of	the	image.

Let's	look	at	an	example:

https://registry.acme.com/engineering/web-app:1.0

https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/
https://jfrog.com/integration/artifactory-docker-registry/

Here,	we	have	an	image,	web-app,	that	is	tagged	with	version	1.0	and	belongs	to
the	engineering	organization	on	the	private	registry	at	https://registry.acme.com.

Now,	there	are	some	special	conventions:

	If	we	omit	the	registry	URL,	then	Docker	Hub	is	automatically	taken
If	we	omit	the	tag,	then	latest	is	taken
If	it	is	an	official	image	on	Docker	Hub,	then	no	user	or	organization
namespace	is	needed

A	few	samples	in	tabular	form	are	as	follows:

Image Description

alpine
Official	alpine	image	on	Docker	Hub	with
the	latest	tag.

ubuntu:16.04
Official	ubuntu	image	on	Docker	Hub	with
the	16.04	tag	or	version.

microsoft/nanoserver
nanoserver	image	of	Microsoft	on	Docker	Hub	with
the	latest	tag.

acme/web-api:12.0
web-api	image	version	12.0	associated	with	the
acme	org.	The	image	is	on	Docker	Hub.

gcr.io/gnschenker/sample-

app:1.1

sample-app	image	with	the	1.1	tag	belonging	to	an
individual	with	the	gnschenker	ID	on	Google's
container	registry.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Official	images
In	the	preceding	table,	we	mentioned	official	image	a	few	times.	This	needs	an
explanation.	Images	are	stored	in	repositories	on	the	Docker	Hub	registry.
Official	repositories	are	a	set	of	repositories	that	are	hosted	on	Docker	Hub	and
are	curated	by	individuals	or	organizations	that	are	also	responsible	for	the
software	that	is	packaged	inside	the	image.	Let's	look	at	an	example	of	what	that
means.	There	is	an	official	organization	behind	the	Ubuntu	Linux	distro.	This
team	also	provides	official	versions	of	Docker	images	that	contain	their	Ubuntu
distros.

Official	images	are	meant	to	provide	essential	base	OS	repositories,	images	for
popular	programming	language	runtimes,	frequently	used	data	storage,	and	other
important	services.

Docker	sponsors	a	team	whose	task	it	is	to	review	and	publish	all	those	curated
images	in	public	repositories	on	Docker	Hub.	Furthermore,	Docker	scans	all
official	images	for	vulnerabilities.

Pushing	images	to	a	registry
Creating	custom	images	is	all	well	and	good,	but	at	some	point,	we	want	to
actually	share	or	ship	our	images	to	a	target	environment,	such	as	a	test,	QA,	or
production	system.	For	this,	we	typically	use	a	container	registry.	One	of	the
most	popular	and	public	registries	out	there	is	Docker	Hub.	It	is	configured	as	a
default	registry	in	your	Docker	environment,	and	it	is	the	registry	from	which	we
have	pulled	all	our	images	so	far.

On	a	registry,	one	can	usually	create	personal	or	organizational	accounts.	For
example,	my	personal	account	at	Docker	Hub	is	gnschenker.	Personal	accounts	are
good	for	personal	use.	If	we	want	to	use	the	registry	professionally,	then	we
probably	want	to	create	an	organizational	account,	such	as	acme,	on	Docker	Hub.
The	advantage	of	the	latter	is	that	organizations	can	have	multiple	teams.	Teams
can	have	differing	permissions.

To	be	able	to	push	an	image	to	my	personal	account	on	Docker	Hub,	I	need	to
tag	it	accordingly.	Let's	say	I	want	to	push	the	latest	version	of	alpine	to	my
account	and	give	it	a	tag	of	1.0.	I	can	do	this	in	the	following	way:

$	docker	image	tag	alpine:latest	gnschenker/alpine:1.0

Now,	to	be	able	to	push	the	image,	I	have	to	log	in	to	my	account:

$	docker	login	-u	gnschenker	-p	<my	secret	password>

After	a	successful	login,	I	can	then	push	the	image:

$	docker	image	push	gnschenker/alpine:1.0

I	will	see	something	similar	to	this	in	the	terminal:

The	push	refers	to	repository	[docker.io/gnschenker/alpine]

04a094fe844e:	Mounted	from	library/alpine

1.0:	digest:	sha256:5cb04fce...	size:	528

For	each	image	that	we	push	to	Docker	Hub,	we	automatically	create	a
repository.	A	repository	can	be	private	or	public.	Everyone	can	pull	an	image
from	a	public	repository.	From	a	private	repository,	one	can	only	pull	an	image	if

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

one	is	logged	in	to	the	registry	and	has	the	necessary	permissions	configured.

Summary
In	this	chapter,	we	have	discussed	in	detail	what	container	images	are	and	how
we	can	build	and	ship	them.	As	we	have	seen,	there	are	three	different	ways	that
an	image	can	be	created—either	manually,	automatically,	or	by	importing	a
tarball	into	the	system.	We	also	learned	some	of	the	best	practices	commonly
used	when	building	custom	images.

In	the	next	chapter,	we're	going	to	introduce	Docker	volumes	that	can	be	used	to
persist	the	state	of	a	container,	and	we	will	also	introduce	some	helpful	system
commands	that	can	be	used	to	inspect	the	Docker	host	more	deeply,	work	with
events	generated	by	the	Docker	daemon,	and	clean	up	unused	resources.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
Please	try	to	answer	the	following	questions	to	assess	your	learning	progress:

1.	 How	will	you	create	a	Dockerfile	that	inherits	from	Ubuntu	version	17.04,
and	that	installs	ping	and	runs	ping	when	a	container	starts.	The	default
address	to	ping	will	be	127.0.0.1.

2.	 How	will	you	create	a	new	container	image	that	uses	alpine:latest	and
installs	curl.	Name	the	new	image	my-alpine:1.0.

3.	 Create	a	Dockerfile	that	uses	multiple	steps	to	create	an	image		of	a	Hello
World	app	of	minimal	size,	written	in	C	or	Go.

4.	 Name	three	essential	characteristics	of	a	Docker	container	image.
5.	 You	want	to	push	an	image	named	foo:1.0	to	your	jdoe	personal	account	on

Docker	Hub.	Which	of	the	following	is	the	right	solution?
1.	 $	docker	container	push	foo:1.0
2.	 $	docker	image	tag	foo:1.0	jdoe/foo:1.0

$	docker	image	push	jdoe/foo:1.0

3.	 $	docker	login	-u	jdoe	-p	<your	password>
$	docker	image	tag	foo:1.0	jdoe/foo:1.0

$	docker	image	push	jdoe/foo:1.0

4.	 $	docker	login	-u	jdoe	-p	<your	password>
$	docker	container	tag	foo:1.0	jdoe/foo:1.0

$	docker	container	push	jdoe/foo:1.0

5.	 $	docker	login	-u	jdoe	-p	<your	password>
$	docker	image	push	foo:1.0	jdoe/foo:1.0

Further	reading
The	following	list	of	references	gives	you	some	material	that	dives	more	deeply
into	the	topic	of	authoring	and	building	container	images:

Best	practices	for	writing	Dockerfiles	at	http://dockr.ly/22WiJiO
Using	multistage	builds	at	http://dockr.ly/2ewcUY3
About	Storage	drivers	at	http://dockr.ly/1TuWndC
Graphdriver	plugins	at		http://dockr.ly/2eIVCab
User-guided	caching	in	Docker	for	MAC	at	http://dockr.ly/2xKafPf

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://dockr.ly/22WiJiO
http://dockr.ly/2ewcUY3
http://dockr.ly/1TuWndC
http://dockr.ly/2eIVCab
http://dockr.ly/2xKafPf

Data	Volumes	and	System
Management
In	the	last	chapter,	we	learned	how	to	build	and	share	our	own	container	images.
Particular	focus	was	put	on	how	to	build	images	that	are	as	small	as	possible	by
only	containing	artifacts	that	are	really	needed	by	the	containerized	application.

In	this	chapter,	we	are	going	to	learn	how	we	can	work	with	stateful	containers,
that	is	containers	that	consume	and	produce	data.	We	will	also	learn	how	to	keep
our	Docker	environment	clean	and	free	from	unused	resources.	Last	but	not
least,	we	will	be	looking	into	the	stream	of	events	that	a	Docker	engine	is
producing.

Here	is	a	list	of	the	topics	we're	going	to	discuss:

Creating	and	mounting	data	volumes
Sharing	data	between	containers
Using	host	volumes
Defining	volumes	in	images
Obtaining	exhaustive	Docker	system	information
Listing	resource	consumption
Pruning	unused	resources
Consuming	Docker	system	events

After	working	through	this	chapter,	you	will	be	able	to:

Create,	delete,	and	list	data	volumes
Mount	an	existing	data	volume	into	a	container
Create	durable	data	from	within	a	container	using	a	data	volume
Share	data	between	multiple	containers	using	data	volumes
Mount	any	host	folder	into	a	container	using	data	volumes
Define	the	access	mode	(read/write	or	read-only)	for	a	container	when
accessing	data	in	a	data	volume
List	the	amount	of	space	consumed	by	Docker	resources	on	a	given	host,
such	as	images,	containers,	and	volumes

Free	your	system	from	unused	Docker	resources,	such	as	containers,
images,	and	volumes
Display	Docker	system	events	in	a	console	in	real	time

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Technical	requirements
For	this	chapter,	you	need	either	Docker	Toolbox	installed	on	your	machine	or
access	to	a	Linux	VM	running	Docker	on	your	laptop	or	in	the	cloud.	There	is	no
code	accompanying	this	chapter.

Creating	and	mounting	data	volumes
All	meaningful	applications	consume	or	produce	data.	Yet	containers	are
preferably	meant	to	be	stateless.	How	are	we	going	to	deal	with	this?	One	way	is
to	use	Docker	volumes.	Volumes	allow	containers	to	consume,	produce,	and
modify	state.	Volumes	have	a	life	cycle	that	goes	beyond	the	life	cycle	of
containers.	When	a	container	that	uses	a	volume	dies,	the	volume	continues	to
exist.	This	is	great	for	the	durability	of	state.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Modifying	the	container	layer
Before	we	dive	into	volumes,	let's	first	discuss	what's	happening	if	an
application	in	a	container	changes	something	in	the	filesystem	of	the	container.
In	this	case,	the	changes	are	all	happening	in	the	writable	container	layer.	Let's
quickly	demonstrate	this	by	running	a	container	and	execute	a	script	in	it	that	is
creating	a	new	file:

$	docker	container	run	--name	demo	\

				alpine	/bin/sh	-c	'echo	"This	is	a	test"	>	sample.txt'

The	preceding	command	creates	a	container	named	demo	and	inside	this	container
creates	a	file	called	sample.txt	with	the	content	This	is	a	test.	The	container	exits
after	this	but	remains	in	memory	available	for	us	to	do	our	investigations.	Let's
use	the	diff	command	to	find	out	what	has	changed	in	the	container's	filesystem
in	relation	to	the	filesystem	of	the	image:

$	docker	container	diff	demo

The	output	should	look	like	this:

A	/sample.txt

Evidently	a	new	file,	A,	has	been	added	to	the	filesystem	of	the	container	as
expected.	Since	all	layers	that	stem	from	the	underlying	image	(alpine	in	this
case)	are	immutable,	the	change	could	only	happen	in	the	writeable	container
layer.

If	we	now	remove	the	container	from	memory,	its	container	layer	will	also	be
removed	and	with	it	all	the	changes	will	be	irreversibly	deleted.	If	we	need	our
changes	to	persist	even	beyond	the	lifetime	of	the	container,	this	is	not	a
solution.	Luckily,	we	have	better	options	in	the	form	of	Docker	volumes.	Let's
get	to	know	them.

Creating	volumes
Since,	at	this	time,	when	using	Docker	for	Mac	or	Windows	containers	are	not
running	natively	on	OS	X	or	Windows	but	rather	in	a	(hidden)	VM	created	by
Docker	for	Mac	and	Windows,	it	is	best	we	use	docker-machine	to	create	and	use	an
explicit	VM	running	Docker.	At	this	point,	we	assume	that	you	have	Docker
Toolbox	installed	on	your	system.	If	not,	then	please	go	back	to	Chapter	2,	Setting
up	a	Working	Environment,	where	we	provide	detailed	instructions	on	how	to
install	Toolbox.

Use	docker-machine	to	list	all	VMs	currently	running	in	VirtualBox:

$	docker-machine	ls	

If	you	do	not	have	a	VM	called	node-1	listed	then	create	one:

$	docker-machine	create	--driver	virtualbox	node-1	

If	you	have	a	VM	called	node-1	but	it	is	not	running	then	please	start	it:

$	docker-machine	start	node-1

Now	that	everything	is	ready,	SSH	into	this	VM	called	node-1:

$	docker-machine	ssh	node-1

You	should	be	greeted	by	a	boot2docker	welcome	image	.

To	create	a	new	data	volume,	we	can	use	the	docker	volume	create	command.	This
will	create	a	named	volume	which	can	then	be	mounted	into	a	container	and	be
used	for	persistent	data	access	or	storage.	The	following	command	creates	a
volume,	my-data	using	the	default	volume	driver:

$	docker	volume	create	my-data	

The	default	volume	driver	is	the	so-called	local	driver	which	stores	the	data
locally	in	the	host	filesystem.	The	easiest	way	to	find	out	where	the	data	is	stored
on	the	host	is	by	using	the	inspect	command	on	the	volume	we	just	created.	The
actual	location	can	differ	from	system	to	system	and	so,	this	is	the	safest	way	to

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

find	the	target	folder:

	$	docker	volume	inspect	my-data	

[

				{	

								"CreatedAt":	"2018-01-28T21:55:41Z",	

								"Driver":	"local",	

								"Labels":	{},	

								"Mountpoint":	"/mnt/sda1/var/lib/docker/volumes/my-data/_data",	

								"Name":	"my-data",	

								"Options":	{},	

								"Scope":	"local"	

				}	

]	

The	host	folder	can	be	found	in	the	output	under	Mountpoint.	In	our	case,	when
using	docker-machine	with	a	LinuxKit-based	VM	running	in	VirtualBox,	the	folder
is	/mnt/sda1/var/lib/docker/volumes/my-data/_data.

The	target	folder	often	is	a	protected	folder	and	we	thus	might	need	to	use	sudo	to
navigate	to	this	folder	and	execute	any	operations	in	it.	In	our	case,	we	do	not
need	to	use	sudo:

$	cd	/mnt/sda1/var/lib/docker/volumes/my-data/_data

If	you	are	using	Docker	for	Mac	to	create	a	volume	on	your	laptop	and	then	do	a	docker	volume
inspect	on	the	volume	you	just	created,	the	Mountpoint	is	shown	as	/var/lib/docker/volumes/my-
data/_data.	But	you	will	discover	that	there	is	no	such	folder	on	the	Mac.	The	reason	is	that	the
path	is	in	relation	to	the	hidden	VM	that	Docker	for	Mac	uses	to	run	containers.	At	this	time,
containers	cannot	run	natively	on	OS	X.	The	same	applies	to	volumes	created	with	Docker	for
Windows.

There	are	other	volume	drivers	available	from	third	parties	in	the	form	of
plugins.	We	can	use	the	--driver	parameter	in	the	create	command	to	select	a
different	volume	driver.	Other	volume	drivers	use	different	types	of	storage
systems	to	back	a	volume,	such	as	cloud	storage,	NFS	drives,	software-defined
storage	and	more.

Mounting	a	volume
Once	we	have	created	a	named	volume,	we	can	mount	it	into	a	container.	For
this,	we	can	use	the	-v	parameter	in	the	docker	container	run	command:

$	docker	container	run	--name	test	-it	\

					-v	my-data:/data	alpine	/bin/sh

The	preceding	command	mounts	the		my-data	volume	to	the	/data	folder	inside	the
container.	Inside	the	container,	we	can	now	create	files	in	the	/data	folder	and
then	exit:

#	/	cd	/data	

#	/	echo	"Some	data"	>	data.txt	

#	/	echo	"Some	more	data"	>	data2.txt	

#	/	exit	

If	we	navigate	to	the	host	folder	that	contains	the	volume	data	and	list	its
content,	we	should	see	the	two	files	we	just	created	inside	the	container:

$	cd	/mnt/sda1/var/lib/docker/volumes/my-data/_data	

$	ls	-l	

total	8	

-rw-r--r--	1	root	root	10	Jan	28	22:23	data.txt

-rw-r--r--	1	root	root	15	Jan	28	22:23	data2.txt

We	can	even	try	to	output	the	content	of	say,	the	second	file:

$	cat	data2.txt

Let's	try	to	create	a	file	in	this	folder	from	the	host	and	then	use	the	volume	with
another	container:

$	echo	"This	file	we	create	on	the	host"	>	host-data.txt	

Now,	let's	delete	the	test	container	and	run	another	one	based	on	CentOS.	This
time	we	are	even	mounting	our	volume	to	a	different	container	folder,	/app/data:

$	docker	container	rm	test

$	docker	container	run	--name	test2	-it	\

				-v	my-data:/app/data	\

				Centos:7	/bin/bash	

Once	inside	the	CentOS	container,	we	can	navigate	to	the	folder	/app/data	where

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

we	have	mounted	the	volume	to	and	list	its	content:

#	/	cd	/app/data	

#	/	ls	-l	

As	expected,	we	should	see	these	three	files:

-rw-r--r--	1	root	root	10	Jan	28	22:23	data.txt

-rw-r--r--	1	root	root	15	Jan	28	22:23	data2.txt

-rw-r--r--	1	root	root	32	Jan	28	22:31	host-data.txt

This	is	the	definitive	proof	that	data	in	a	Docker	volume	persists	beyond	the
lifetime	of	a	container,	and	also	that	volumes	can	be	reused	by	other,	even
different	containers	from	the	one	that	used	it	first.

It	is	important	to	note	that	the	folder	inside	the	container	to	which	we	mount	a
Docker	volume	is	excluded	from	the	union	filesystem.	That	is,	each	change
inside	this	folder	and	any	of	its	subfolders	will	not	be	part	of	the	container	layer,
but	persisted	in	the	backing	storage	provided	by	the	volume	driver.	This	fact	is
really	important	since	the	container	layer	is	deleted	when	the	corresponding
container	is	stopped	and	removed	from	the	system.

Removing	volumes
Volumes	can	be	removed	using	the	docker	volume	rm	command.	It	is	important	to
remember	that	removing	a	volume	destroys	the	containing	data	irreversibly	and
thus	is	to	be	considered	a	dangerous	command.	Docker	helps	us	a	bit	in	this
regard	as	it	does	not	allow	us	to	delete	a	volume	that	is	still	in	use	by	a	container.
Always	make	sure	before	you	remove	or	delete	a	volume	that	you	either	have	a
backup	of	its	data	or	you	really	don't	need	this	data	anymore.

The	following	command	deletes	our	my-data	volume	that	we	created	earlier:

$	docker	volume	rm	my-data	

After	executing	the	preceding	command,	double-check	that	the	folder	on	the	host
has	been	deleted.

To	remove	all	running	containers	to	clean	up	the	system,	run	the	following
command:

$	docker	container	rm	-f	$(docker	container	ls	-aq)		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Sharing	data	between	containers
Containers	are	like	sandboxes	for	the	applications	running	inside	them.	This	is
mostly	beneficial	and	wanted	in	order	to	protect	applications	running	in	different
containers	from	each	other.	That	also	means	that	the	whole	filesystem	visible	to
an	application	running	inside	a	container	is	private	to	this	application	and	no
other	application	running	in	a	different	container	can	interfere	with	it.

At	times	though,	we	want	to	share	data	between	containers.	Say	an	application
running	in	container	A	produces	some	data	that	will	be	consumed	by	another
application	running	in	container	B.	How	can	we	achieve	this?	Well	I'm	sure
you've	already	guessed	it—we	can	use	Docker	volumes	for	this	purpose.	We	can
create	a	volume	and	mount	it	to	container	A	as	well	as	to	container	B.	In	this
way,	both	applications	A	and	B	have	access	to	the	same	data.

Now,	as	always	when	multiple	applications	or	processes	concurrently	access
data,	we	have	to	be	very	careful	to	avoid	inconsistencies.	To	avoid	concurrency
problems,	such	as	race	conditions,	we	ideally	have	only	one	application	or
process	that	is	creating	or	modifying	data,	while	all	other	processes	concurrently
accessing	this	data	only	read	it.	We	can	enforce	a	process	running	in	a	container
to	only	be	able	to	read	the	data	in	a	volume	by	mounting	this	volume	as	read
only.	Have	a	look	at	the	following	command:

$	docker	container	run	-it	--name	writer	\

				-v	shared-data:/data	\

				alpine	/bin/sh

Here	we	create	a	container	called	writer	which	has	a	volume,	shared-data,	mounted
in	default	read/write	mode.	Try	to	create	a	file	inside	this	container:

#	/	echo	"I	can	create	a	file"	>	/data/sample.txt	

It	should	succeed.	Exit	this	container	and	then	execute	the	following	command:

$	docker	container	run	-it	--name	reader	\

				-v	shared-data:/app/data:ro	\

				ubuntu:17.04	/bin/bash

And	we	have	a	container	called	reader	that	has	the	same	volume	mounted	as

read-only	(ro).	Firstly,	make	sure	you	can	see	the	file	created	in	the	first
container:

$	ls	-l	/app/data	

total	4

-rw-r--r--	1	root	root	20	Jan	28	22:55	sample.txt

And	then	try	to	create	a	file:

#	/	echo	"Try	to	break	read/only"	>	/app/data/data.txt

It	will	fail	with	the	following	message:

bash:	/app/data/data.txt:	Read-only	file	system

Let's	exit	the	container	by	typing	exit	at	the	Command	Prompt.	Back	on	the	host,
let's	clean	up	all	containers	and	volumes:

$	docker	container	rm	-f	$(docker	container	ls	-aq)	

$	docker	volume	rm	$(docker	volume	ls	-q)	

Once	this	is	done,	exit	the	docker-machine	VM	by	also	typing	exit	at	the	Command
Prompt.	You	should	be	back	on	your	Docker	for	Mac	or	Windows.	Use	docker-
machine	to	stop	the	VM:

$	docker-machine	stop	node-1	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Using	host	volumes
In	certain	scenarios,	such	as	when	developing	new	containerized	applications	or
when	a	containerized	application	needs	to	consume	data	from	a	certain	folder
produced,	say,	by	a	legacy	application,	it	is	very	useful	to	use	volumes	that
mount	a	specific	host	folder.	Let's	look	at	the	following	example:

$	docker	container	run	--rm	-it	\

				-v	$(pwd)/src:/app/src	\

				alpine:latest	/bin/sh

The	preceding	expression	interactively	starts	an	alpine	container	with	a	shell	and
mounts	the	subfolder	src	of	the	current	directory	into	the	container	at	/app/src.	We
need	to	use	$(pwd)	(or	'pwd'	for	that	matter)	which	is	the	current	directory,	as	when
working	with	volumes	we	always	need	to	use	absolute	paths.

Developers	use	these	techniques	all	the	time	when	they	are	working	on	their
application	that	runs	in	a	container,	and	want	to	make	sure	that	the	container
always	contains	the	latest	changes	they	make	to	the	code,	without	the	need	to
rebuild	the	image	and	rerun	the	container	after	each	change.

Let's	make	a	sample	to	demonstrate	how	that	works.	Let's	say	we	want	to	create
a	simple	static	website	using	Nginx	as	our	web	server.	First,	let's	create	a	new
folder	on	the	host	where	we	will	put	our	web	assets,	such	as	HTML,	CSS,	and
JavaScript	files	and	navigate	to	it:

$	mkdir	~/my-web	

$	cd	~/my-web	

Then	we	create	a	simple	web	page	like	this:

$	echo	"<h1>Personal	Website</h1>"	>	index.html		

Now,	we	add	a	Dockerfile	which	will	contain	the	instructions	on	how	to	build
the	image	containing	our	sample	website.	Add	a	file	called	Dockerfile	to	the
folder	with	this	content:

FROM	nginx:alpine

COPY	.	/usr/share/nginx/html

The	Dockerfile	starts	with	the	latest	Alpine	version	of	Nginx	and	then	copies	all
files	from	the	current	host	directory	into	the	containers
folder,	/usr/share/nginx/html.	This	is	where	Nginx	expects	web	assets	to	be	located.
Now	let's	build	the	image	with	the	following	command:

$	docker	image	build	-t	my-website:1.0	.	

And	finally,	we	run	a	container	from	this	image.	We	will	run	the	container	in
detached	mode:

$	docker	container	run	-d	\

			-p	8080:80	--name	my-site\

			my-website:1.0

Note	the	-p	8080:80	parameter.	We	haven't	discussed	this	yet	but	we	will	do	it	in
detail	in	Chapter	7,	Single-Host	Networking.	At	the	moment,	just	know	that	this
maps	the	container	port	80	on	which	Nginx	is	listening	for	incoming	requests	to
port	8080	of	your	laptop	where	you	can	then	access	the	application.	Now,	open	a
browser	tab	and	navigate	to	http://localhost:8080/index.html	and	you	should	see
your	website	which	currently	consists	only	of	a	title,	Personal	Website.

Now,	edit	the	file	index.html	in	your	favorite	editor	to	look	like	this:

<h1>Personal	Website</h1>	

<p>This	is	some	text</p>	

And	save	it.	Then	refresh	the	browser.	OK,	that	didn't	work.	The	browser	still
displays	the	previous	version	of	the	index.html	which	consists	only	of	the	title.	So
let's	stop	and	remove	the	current	container,	then	rebuild	the	image,	and	rerun	the
container:

$	docker	container	rm	-f	my-site

$	docker	image	build	-t	my-website:1.0	.

$	docker	container	run	-d	\

			-p	8080:80	--name	my-site\

			my-website:1.0

This	time	when	you	refresh	the	browser	the	new	content	should	be	shown.	Well,
it	worked,	but	there	is	way	too	much	friction	involved.	Imagine	you	have	to	do
this	each	and	every	time	that	you	make	a	simple	change	in	your	website.	That's
not	sustainable.

Now	is	the	time	to	use	host-mounted	volumes.	Once	again,	remove	the	current

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

container	and	rerun	it	with	the	volume	mount:

$	docker	container	rm	-f	my-site

$	docker	container	run	-d	\

			-v	$(pwd):/usr/share/nginx/html	\

			-p	8080:80	--name	my-site\

			my-website:1.0

Now,	append	some	more	content	to	the	index.html	and	save	it.	Then	refresh	your
browser.	You	should	see	the	changes.	And	this	is	exactly	what	we	wanted	to
achieve;	we	also	call	this	an	edit-and-continue	experience.	You	can	make	as
many	changes	in	your	web	files	and	always	immediately	see	the	result	in	the
browser	without	having	to	rebuild	the	image	and	restart	the	container	containing
your	website.

It	is	important	to	note	that	the	updates	are	now	propagated	bi-directionally.	If
you	make	changes	on	the	host	they	will	be	propagated	to	the	container	and	vice
versa.	Also	important	is	the	fact	that	when	you	mount	the	current	folder	into	the
container	target	folder,	/usr/share/nginx/html,	the	content	that	is	already	there	is
replaced	by	the	content	of	the	host	folder.

Defining	volumes	in	images
If	we	go	for	a	moment	back	to	what	we	have	learned	about	containers	in	Chapter
3,	Working	with	Containers,	then	we	have	this:	the	filesystem	of	each	container
when	started	is	made	up	of	the	immutable	layers	of	the	underlying	image	plus	a
writable	container	layer	specific	to	this	very	container.	All	changes	that	the
processes	running	inside	the	container	make	to	the	filesystem	will	be	persisted	in
this	container	layer.	Once	the	container	is	stopped	and	removed	from	the	system,
the	corresponding	container	layer	is	deleted	from	the	system	and	irreversibly
lost.

Some	applications,	such	as	databases	running	in	containers,	need	to	persist	their
data	beyond	the	lifetime	of	the	container.	In	this	case	they	can	use	volumes.	To
make	things	a	bit	more	explicit	let's	look	at	a	concrete	sample.	MongoDB	is	a
popular	open	source	document	database.	Many	developers	use	MongoDB	as	a
storage	service	for	their	applications.	The	maintainers	of	MongoDB	have	created
an	image	and	published	it	on	Docker	Hub	which	can	be	used	to	run	an	instance
of	the	database	in	a	container.	This	database	will	be	producing	data	that	needs	to
be	persisted	long	term.	But	the	MongoDB	maintainers	do	not	know	who	uses
this	image	and	how	it	is	used.	So	they	have	no	influence	over	the	docker	container
run	command	with	which	the	users	of	the	database	will	start	this	container.	How
can	they	now	define	volumes?

Luckily,		there	is	a	way	of	defining	volumes	in	the	Dockerfile.	The	keyword	to
do	so	is	VOLUME	and	we	can	either	add	the	absolute	path	to	a	single	folder	or	a
comma-separated	list	of	paths.	These	paths	represent	folders	of	the	container's
filesystem.	Let's	look	at	a	few	samples	of	such	volume	definitions:

VOLUME	/app/data	

VOLUME	/app/data,	/app/profiles,	/app/config	

VOLUME	["/app/data",	"/app/profiles",	"/app/config"]	

The	first	line	defines	a	single	volume	to	be	mounted	at	/app/data.	The	second	line
defines	three	volumes	as	a	comma-separated	list	and	the	last	one	defines	the
same	as	the	second	line,	but	this	time	the	value	is	formatted	as	a	JSON	array.

When	a	container	is	started,	Docker	automatically	creates	a	volume	and	mounts

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

it	to	the	corresponding	target	folder	of	the	container	for	each	path	defined	in	the
Dockerfile.	Since	each	volume	is	created	automatically	by	Docker,	it	will	have
an	SHA-256	as	ID.

At	container	runtime,	the	folders	defined	as	volumes	in	the	Dockerfile	are
excluded	from	the	union	filesystem	and	thus	any	changes	in	those	folders	do	not
change	the	container	layer	but	are	persisted	to	the	respective	volume.	It	is	now
the	responsibility	of	the	operations	engineers	to	make	sure	that	the	backing
storage	of	the	volumes	is	properly	backed	up.

We	can	use	the	docker	image	inspect	command	to	get	information	about	the
volumes	defined	in	the	Dockerfile.	Let's	see	what	MongoDB	gives	us.	First,	we
pull	the	image	with	the	following	command:

$	docker	image	pull	mongo:3.7	

Then	we	inspect	this	image	and	use	the	--format	parameter	to	only	extract	the
essential	part	from	the	massive	amount	of	data:

	$	docker	image	inspect	\

			--format='{{json	.ContainerConfig.Volumes}}'	\

				mongo:3.7	|	jq

Which	will	return	the	following	result:

{

"/data/configdb":	{},

"/data/db":	{}

}

Evidently,	the	Dockerfile	for	MongoDB	defines	two	volumes	at	/data/configdb	and
/data/db.

Now,	let's	run	an	instance	of	MongoDB	as	follows:

$	docker	run	--name	my-mongo	-d	mongo:3.7

We	can	now	use	the	docker	container	inspect	command	to	get	information	about	the
volumes	that	have	been	created,	among	other	things.	Use	this	command	to	just
get	the	volume	information:

$	docker	inspect	--format	'{{json	.Mounts}}'	my-mongo	|	jq

The	expression	should	output	something	like	this:

[

		{

				"Type":	"volume",

				"Name":	"b9ea0158b5...",

				"Source":	"/var/lib/docker/volumes/b9ea0158b.../_data",

				"Destination":	"/data/configdb",

				"Driver":	"local",

				"Mode":	"",

				"RW":	true,

				"Propagation":	""

		},

		{

				"Type":	"volume",

				"Name":	"5becf84b1e...",

				"Source":	"/var/lib/docker/volumes/5becf84b1.../_data",

				"Destination":	"/data/db",

				"Driver":	"local",

				"Mode":	"",

				"RW":	true,

				"Propagation":	""

		}

]

Note	that	the	values	of	the	Name	and	Source	fields	have	been	trimmed	for
readability.	The	Source	field	gives	us	the	path	to	the	host	directory	where	the	data
produced	by	the	MongoDB	inside	the	container	will	be	stored.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Obtaining	Docker	system	information
Whenever	we	need	to	troubleshoot	our	system,	the	commands	presented	in	this
section	are	essential.	They	provide	us	with	a	lot	about	the	Docker	engine
installed	on	the	host	and	about	the	host	operating	system.	Let's	first	introduce	the
docker	version	command.	It	provides	abundant	information	about	the	Docker
client	and	server	that	your	current	configuration	is	using.	If	you	enter	the
command	in	the	CLI,	you	should	see	something	similar	to	this:

Version	Information	about	Docker

In	my	case,	I	can	see	that	on	both	client	and	server,	I	am	using	version	18.04.0-ce-
rc2	of	the	Docker	engine.	I	can	also	see	that	my	orchestrator	is	Swarm	and	more.

Now	to	clarify	what	the	client	and	what	the	server	is,	let's	look	at	the	following
diagram:

CLI	accessing	different	Docker	Hosts

You	can	see	that	the	client	is	the	little	CLI	through	which	we	send	Docker
commands	to	the	remote	API	of	the	Docker	host.	The	Docker	host	is	the
container	runtime	which	hosts	the	containers	and	might	run	on	the	same	machine
as	the	CLI,	or	it	might	run	on	a	remote	server,	on-premise	or	in	the	cloud.	We
can	use	the	CLI	to	manage	different	servers.	We	do	this	by	setting	a	bunch	of
environment	variables	such	as	DOCKER_HOST,	DOCKER_TLS_VERIFY,	and	DOCKER_CERT_PATH.	If
these	environment	variables	are	not	set	on	your	working	machine	and	you're
using	Docker	for	Mac	or	Windows	then	that	means	that	you	are	using	the	Docker
engine	that	runs	on	your	machine.

The	next	important	command	is	the	docker	system	info	command.	This	command
provides	information	about	what	mode	the	Docker	engine	is	operating	in	(swarm
mode	or	not),	what	storage	driver	is	used	for	the	union	filesystem,	what	version
of	the	Linux	kernel	we	have	on	our	host,	and	much	more.	Please	have	a	careful
look	at	the	output	generated	by	your	system	when	running	the	command.
Analyze	what	kind	of	information	is	shown:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Output	of	the	Command	docker	system	info

Listing	resource	consumption
Over	time,	a	Docker	host	can	accumulate	quite	a	bit	of	resources	such	as	images,
containers,	and	volumes	in	memory	and	on	disk.	As	in	every	good	household,
we	should	keep	our	environment	clean	and	free	unused	resources	to	reclaim
space.	Otherwise,	there	will	come	the	moment	when	Docker	does	not	allow	us	to
add	any	more	new	resources,	meaning	actions	such	as	pulling	an	image	can	fail
due	to	lack	of	available	space	on	disk	or	in	memory.

The	Docker	CLI	provides	a	handy	little	system	command	that	lists	how	much
resources	currently	are	used	on	our	system	and	how	much	of	this	space	can
possibly	be	reclaimed.	The	command	is:

$	docker	system	df	

If	you	execute	this	command	on	your	system,	you	should	see	an	output	similar	to
this:

TYPE										TOTAL			ACTIVE			SIZE						RECLAIMABLE

Images								21						9								1.103GB			845.3MB	(76%)

Containers				14						11							9.144kB			4.4kB	(48%)

Local	Volumes	14						14							340.3MB			0B	(0%)

Build	Cache																				0B								0B

The	last	line	in	the	output,	the	Build	Cache,	is	only	displayed	on	newer	versions	of
Docker.	This	information	has	been	added	recently.	The	preceding	output	is
explained	as	follows:

In	my	case,	the	output	tells	me	that	on	my	system	I	am	currently	having	21
images	locally	cached	of	which	9	are	in	active	use.	An	image	is	considered
to	be	in	active	use	if	currently	at	least	one	running	or	stopped	container	is
based	on	it.	These	images	occupy	1.1	GB	disk	space.	Close	to	845	MB	can
technically	be	reclaimed	since	the	corresponding	images	are	not	currently
used.
Further,	I	have	11	running	containers	on	my	system	and	three	stopped	ones
for	a	total	of	14	containers.	I	can	reclaim	the	space	occupied	by	the	stopped
containers	which	is	4.4	kB	in	my	case.
I	also	have	14	active	volumes	on	my	host	that	together	consume	about	340
MB	of	disk	space.	Since	all	volumes	are	in	use,	I	cannot	reclaim	any	space

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

at	this	time.
Finally,	my	Build	Cache	is	currently	empty	and	thus	of	course	I	cannot
reclaim	any	space	there	too.

If	I	want	even	more	detailed	information	about	the	resource	consumption	on	my
system,	I	can	run	the	same	command	in	verbose	mode	using	the	-v	flag:

$	docker	system	df	-v	

This	will	give	me	a	detailed	list	of	all	images,	containers,	and	volumes	with	their
respective	size.	A	possible	output	could	look	like	this:

Verbose	output	of	the	system	resources	consumed	by	Docker

This	verbose	output	should	give	us	enough	detailed	information	to	make	an
informed	decision	as	to	whether	or	not	we	need	to	start	cleaning	up	our	system,
and	which	parts	we	might	need	to	clean	up.

Pruning	unused	resources
Once	we	have	concluded	that	some	clean	up	is	needed	Docker	provides	us	with
so-called	pruning	commands.	For	each	resource,	such	as	images,	containers,
volumes,	and	networks	there	exists	a	prune	command.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pruning	containers
In	this	section	we	want	to	regain	unused	system	resources	by	pruning	containers.
Let's	start	with	this	command:

$	docker	container	prune

The	preceding	command	will	remove	all	containers	from	the	system	that	are	not
in	running	status.	Docker	will	ask	for	confirmation	before	deleting	the	containers
that	are	currently	in		exited	or	created	status.	If	you	want	to	skip	this	confirmation
step	you	can	use	the	-f	(or	--force)	flag:

$	docker	container	prune	-f	

Under	certain	circumstances,	we	might	want	to	remove	all	containers	from	our
system,	even	the	running	ones.	We	cannot	use	the	prune	command	for	this.
Instead	we	should	use	a	command,	such	as	the	following	combined	expression:

$	docker	container	rm	-f	$(docker	container	ls	-aq)	

Please	be	careful	with	the	preceding	command.	It	removes	all	containers	without
warning,	even	the	running	ones!	Please,	before	you	proceed	look	at	the
preceding	command	again	in	detail	and	try	to	explain	what	exactly	happens	and
why.

Pruning	images
Next	in	line	are	images.	If	we	want	to	free	all	space	occupied	by	unused	image
layers	we	can	use	the	following	command:

$	docker	image	prune	

After	we	reconfirm	to	Docker	that	we	indeed	want	to	free	space	occupied	by
unused	image	layers,	those	get	removed.	Now	I	have	to	specify	what	we	mean
when	talking	about	unused	image	layers.	As	you	recall	from	the	previous
chapter,	an	image	is	made	up	of	a	stack	of	immutable	layers.	Now,	when	we	are
building	a	custom	image	multiple	times,	each	time	making	some	changes	in,	say,
the	source	code	of	the	application	for	which	we're	building	the	image,	then	we
are	recreating	layers	and	previous	versions	of	the	same	layer	become	orphaned.
Why	is	this	the	case?	The	reason	is	that	layers	are	immutable,	as	discussed	in
detail	in	the	previous	chapter.	Thus,	when	something	in	the	source	that	is	used	to
build	a	layer	is	changed,	the	very	layer	has	to	be	rebuilt	and	the	previous	version
will	be	abandoned.

On	a	system	where	we	often	build	images,	the	number	of	orphaned	image	layers
can	increase	substantially	over	time.	All	these	orphaned	layers	are	removed	with
the	preceding	prune	command.

Similar	to	the	prune	command	for	containers,	we	can	avoid	Docker	asking	us	for
a	confirmation	by	using	the	force	flag:

$	docker	image	prune	-f	

There	is	an	even	more	radical	version	of	the	image	prune	command.	Sometimes
we	do	not	just	want	to	remove	orphaned	image	layers	but	all	images	that	are	not
currently	in	use	on	our	system.	For	this,	we	can	use	the	-a	(or	--all)	flag:

$	docker	image	prune	--force	--all		

After	execution	of	the	preceding	command,	only	images	that	are	currently	used
by	one	or	more	containers	will	remain	in	our	local	image	cache.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pruning	volumes
Docker	volumes	are	used	to	allow	for	persistent	access	of	data	by	containers.
This	data	can	be	important	and	thus	the	commands	discussed	in	this	section
should	be	applied	with	special	care.

If	you	know	that	you	want	to	reclaim	space	occupied	by	volumes	and	with	it
irreversibly	destroy	the	underlying	data,	you	can	use	the	following	command:

$	docker	volume	prune	

This	command	will	remove	all	volumes	that	are	not	currently	in	use	by	at	least
one	container.

This	is	a	destructive	command	and	cannot	be	undone.	You	should	always	create	a	backup	of
the	data	associated	with	the	volumes	before	you	delete	them	except	when	you're	sure	that	the
data	has	no	further	value.

To	avoid	system	corruption	or	malfunctioning	applications,	Docker	does	not
allow	you	to	remove	volumes	that	are	currently	in	use	by	at	least	one	container.
This	applies	even	to	the	situation	where	a	volume	is	used	by	a	stopped	container.
You	always	have	to	remove	the	containers	that	use	a	volume	first.

A	useful	flag	when	pruning	volumes	is	the	-f	or	--filter	flag	which	allows	us	to
specify	the	set	of	volumes	which	we're	considering	for	pruning.	Look	at	the
following	command:

$	docker	volume	prune	--filter	'label=demo'	

This	will	only	apply	the	command	to	volumes	that	have	a	label	with	the		demo
value.	The	filtering	flag	format	is	key=value.	If	there	is	more	than	one	filter
needed,	then	we	can	use	multiple	flags:

$	docker	volume	prune	--filter	'label=demo'	--filter	'label=test'

The	filter	flag	can	also	be	used	when	pruning	other	resources	such	as	containers
and	images.

Pruning	networks
The	last	resource	that	can	be	pruned	are	networks.	We	will	discuss	networks	in
detail	in	Chapter	7,	Single-Host	Networking.	To	remove	all	unused	networks,	we
use	the	following	command:

$	docker	network	prune

This	will	remove	the	networks	on	which	currently	no	container	or	service	is
attached.	Please	don't	worry	about	networks	too	much	at	this	time.	We	will	come
back	to	them	and	all	this	will	make	much	more	sense	to	you.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pruning	everything
If	we	just	want	to	prune	everything	at	once	without	having	to	enter	multiple
commands,	we	can	use	the	following	command:

$	docker	system	prune

The	Docker	CLI	will	ask	us	for	a	confirmation	and	then	remove	all	unused
containers,	images,	volumes,	and	networks	in	one	go	and	in	the	right	order.

Once	again,	to	avoid	Docker	asking	us	for	a	confirmation,	we	can	just	use	the
force	flag	with	the	command.

Consuming	Docker	system	events
The	Docker	engine,	when	creating,	running,	stopping,	and	removing	containers
and	other	resources	such	as	volumes	or	networks,	produces	a	log	of	events.
These	events	can	be	consumed	by	external	systems,	such	as	some	infrastructure
services	that	use	them	to	make	informed	decisions.	An	example	of	such	a	service
could	be	a	tool	that	creates	an	inventory	of	all	containers	that	are	currently
running	on	the	system.

We	can	hook	ourselves	into	this	stream	of	system	events	and	output	them,	for
example	in	a	terminal,	by	using	the	following	command:

$	docker	system	events

This	command	is	a	blocking	command.	Thus,	when	you	execute	it	in	your
terminal	session	the	according	session	is	blocked.	Therefore,	we	recommend	that
you	always	open	an	extra	window	when	you	want	to	use	this	command.

Assuming	we	have	executed	the	preceding	command	in	an	extra	terminal
window,	we	can	now	test	it	and	run	a	container	like	this:

$	docker	container	run	--rm	alpine	echo	"Hello	World"

The	output	produced	should	look	like	this:

2018-01-28T15:08:57.318341118-06:00	container	create	

8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3	(image=alpine,	

name=confident_hopper)

2018-01-28T15:08:57.320934314-06:00	container	attach	

8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3	(image=alpine,	

name=confident_hopper)

2018-01-28T15:08:57.354869473-06:00	network	connect	

c8fd270e1a776c5851c9fa1e79927141a1e1be228880c0aace4d0daebccd190f	

(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3,	

name=bridge,	type=bridge)

2018-01-28T15:08:57.818494970-06:00	container	start	

8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3	(image=alpine,	

name=confident_hopper)

2018-01-28T15:08:57.998941548-06:00	container	die	

8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3	(exitCode=0,	

image=alpine,	name=confident_hopper)

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

2018-01-28T15:08:58.304784993-06:00	network	disconnect	

c8fd270e1a776c5851c9fa1e79927141a1e1be228880c0aace4d0daebccd190f	

(container=8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3,	

name=bridge,	type=bridge)

2018-01-28T15:08:58.412513530-06:00	container	destroy	

8e074342ef3b20cfa73d17e4ef7796d424aa8801661765ab5024acf166c6ecf3	(image=alpine,	

name=confident_hopper)

	

In	this	output,	we	can	follow	the	exact	life	cycle	of	the	container.	The	container
is	created,	started,	and	then	destroyed.	If	the	output	generated	by	this	command
is	not	to	your	liking	you	can	always	change	it	by	using	the	--format	parameter.
The	value	of	the	format	has	to	be	written	using	the	Go	template	syntax.	The
following	sample	outputs	the	type,	image,	and	action	of	the	event:

$	docker	system	events	--format	'Type={{.Type}}	Image={{.Actor.Attributes.image}}	

Action={{.Action}}'

If	we	run	the	exact	same	container	run	command	as	before,	the	output	generated
now	looks	like	this:

Type=container		Image=alpine					Action=create

Type=container		Image=alpine					Action=attach

Type=network				Image=<no	value>	Action=connect

Type=container		Image=alpine					Action=start

Type=container		Image=alpine					Action=die

Type=network				Image=<no	value>	Action=disconnect

Type=container		Image=alpine					Action=destroy

Summary
In	this	chapter,	we	have	introduced	Docker	volumes	that	can	be	used	to	persist
states	produced	by	containers	and	make	it	durable.	We	can	also	use	volumes	to
provide	containers	with	data	originating	from	various	sources.	We	have	learned
how	to	create,	mount	and	use	volumes.	We	have	learned	various	techniques	of
defining	volumes	such	as	by	name,	by	mounting	a	host	directory,	or	by	defining
volumes	in	a	container	image.

In	this	chapter,	we	have	also	discussed	various	system-level	commands	that
either	provide	us	with	abundant	information	to	troubleshoot	a	system,	or	to
manage	and	prune	resources	used	by	Docker.	Lastly,	we	have	learned	how	we
can	visualize	and	potentially	consume	the	event	stream	generated	by	the
container	runtime.

In	the	next	chapter,	we	are	going	to	get	an	introduction	into	the	fundamentals	of
container	orchestration.	There	we're	going	to	discuss	what's	needed	when	we
have	to	manage	and	run	not	just	one	or	a	few	containers	but	potentially	hundreds
of	them	on	many	nodes	in	a	cluster.	We	will	see	that	there	are	a	lot	of	challenges
to	solve.	This	is	where	orchestration	engines	come	into	play.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
Please	try	to	answer	the	following	questions	to	assess	your	learning	progress:

1.	 How	will	you	create	a	named	data	volume	with	a	name,	for	example	my-
products,	using	the	default	driver?

2.	 How	will	you	run	a	container	using	the	image	alpine	and	mount	the	volume
	my-products	in	read-only	mode	into	the	/data	container	folder?

3.	 How	will	you	locate	the	folder	which	is	associated	with	the	volume	my-
products	and	navigate	to	it?		Also,	how	will	you	create	a	file,	sample.txt	with
some	content?

4.	 How	will	you	run	another	alpine	container	to	which	you	mount	the	my-
products	volume	to	the	/app-data	folder,	in	read/write	mode?	Inside	this
container,	navigate	to	the	/app-data	folder	and	create	a	hello.txt	file	with
some	content.

5.	 How	will	you	mount	a	host	volume,	for	example	~/my-project,	into	a
container?

6.	 How	will	you	remove	all	unused	volumes	from	your	system?
7.	 How	will	you	determine	the	exact	version	of	the	Linux	kernel	and	of

Docker	running	on	your	system?

Further	reading
The	following	articles	provide	more	in-depth	information:

Use	volumes	at	http://dockr.ly/2EUjTml
Manage	data	in	Docker	at	http://dockr.ly/2EhBpzD
Docker	volumes	on	PWD	at	http://bit.ly/2sjIfDj
Containers—clean	up	your	house	at	http://bit.ly/2bVrCBn
Docker	system	events	at	http://dockr.ly/2BlZmXY

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://dockr.ly/2EUjTml
http://dockr.ly/2EhBpzD
http://bit.ly/2sjIfDj
http://bit.ly/2bVrCBn
http://dockr.ly/2BlZmXY

Distributed	Application	Architecture
In	the	previous	chapter,	we	learned	how	we	can	use	Docker	volumes	to	persist
created	or	modified	state,	as	well	as	share	data	between	applications	running	in
containers.	We	also	learned	how	to	work	with	events	generated	by	the	Docker
daemon	and	clean	up	unused	resources.

In	this	chapter,	we	introduce	the	concept	of	a	distributed	application	architecture
and	discuss	the	various	patterns	and	best	practices	that	are	required	to	run	a
distributed	application	successfully.	Finally,	we	will	discuss	the	additional
requirements	that	need	to	be	fulfilled	to	run	such	an	application	in	production.

In	this	chapter,	we	will	cover	the	following	topics:

What	is	a	distributed	application	architecture?
Patterns	and	best	practices
Running	in	production

After	finishing	this	chapter,	you	will	be	able	to	do	the	following:

Name	at	least	four	characteristics	of	a	distributed	application	architecture
Name	at	least	four	patterns	that	need	to	be	implemented	for	a	production-
ready	distributed	application

What	is	a	distributed	application
architecture?
In	this	section,	we	are	going	to	explain	in	detail	what	we	mean	when	we	talk
about	a	distributed	application	architecture.	First,	we	need	to	make	sure	that	all
words	or	acronyms	we	use	have	a	meaning	and	that	we	are	all	talking	the	same
language.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Defining	the	terminology
In	this	and	the	subsequent	chapters,	we	will	talk	a	lot	about	concepts	that	might
not	be	familiar	to	everyone.	To	make	sure	we	all	talk	the	same	language,
let's	briefly	introduce	and	describe	the	most	important	of	these	concepts	or
words:

VM Acronym	for	virtual	machine.	This	is	a	virtual	computer.

Node

Individual	server	used	to	run	applications.	This	can	be	a	physical
server,	often	called	bare	metal,	or	a	VM.	A	node	can	be	a
mainframe,	supercomputer,	standard	business	server,	or	even	a
Raspberry	Pi.	Nodes	can	be	computers	in	a	company's	own	data
center	or	in	the	cloud.	Normally,	a	node	is	part	of	a	cluster.

Cluster Group	of	nodes	connected	by	a	network	used	to	run	distributed
applications.

Network
Physical	and	software-defined	communication	paths	between
individual	nodes	of	a	cluster	and	programs	running	on	those
nodes.

Port Channel	on	which	an	application	such	a	web	server	listens	for
incoming	requests.

Service

This,	unfortunately,	is	a	very	overloaded	term	and	its	real
meaning	depends	on	the	context	in	which	it	is	used.	If	we	use	the
term	service	in	the	context	of	an	application	such	as	an
application	service,	then	it	usually	means	that	this	is	a	piece	of
software	that	implements	a	limited	set	of	functionality	which	is
then	used	by	other	parts	of	the	application.	As	we	progress
through	this	book,	other	types	of	services	that	have	a	slightly
different	definition	will	be	discussed.

Naively	said,	a	distributed	application	architecture	is	the	opposite	of	a
monolithic	application	architecture,	but	it's	not	unreasonable	to	look	at	this

monolithic	architecture	first.	Traditionally,	most	business	applications	have	been
written	in	such	a	way	that	the	result	can	be	seen	as	one	single,	tightly	coupled
program	that	runs	on	a	named	server	somewhere	in	a	data	center.	All	its	code	is
compiled	into	a	single	binary	or	a	few	very	tightly	coupled	binaries	that	need	to
be	co-located	when	running	the	application.	The	fact	that	the	server,	or	more
general	host,	on	which	the	application	is	running	has	a	well-defined	name	or
static	IP	address	is	also	important	in	this	context.	Let's	look	at	the	following
diagram	to	illustrate	this	type	of	application	architecture	a	bit	more	clearly:

Monolithic	application	architecture

In	the	preceding	figure,	we	see	a	server	named	blue-box-12a	with	an	IP	address
of	172.52.13.44	running	an	application	called	pet-shop,	which	is	a	monolith
consisting	of	a	main	module	and	a	few	tightly	coupled	libraries.

Now,	let's	look	at	the	following	figure:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Distributed	application	architecture

Here,	all	of	a	sudden,	we	don't	have	only	a	single	named	server	anymore,	but	we
have	a	lot	of	them	and	they	don't	have	human-friendly	names,	but	rather	some
unique	IDs	that	can	be	something	like	a	universal	unique	identifier	(UUID).
The	pet	shop	application,	all	of	a	sudden,	also	does	not	consist	of	a	single
monolithic	block	anymore	but	rather	of	a	plethora	of	interacting	yet	loosely
coupled	services	such	as	pet-api,	pet-web,	and	pet-inventory.	Furthermore,
each	service	runs	in	multiple	instances	in	this	cluster	of	servers	or	hosts.

You	might	be	wondering	why	we	are	discussing	this	in	a	book	about	Docker
containers,	and	you	are	right	to	ask.	While	all	the	topics	we're	going	to
investigate	apply	equally	to	a	world	where	containers	do	not	(yet)	exist,	it	is
important	to	realize	that	containers	and	container	orchestration	engines	help	to
address	all	the	problems	in	a	much	more	efficient	and	straightforward	way.	Most
of	the	problems	that	used	to	be	very	hard	to	solve	in	a	distributed	application
architecture	become	quite	simple	in	a	containerized	world.

Patterns	and	best	practices
A	distributed	application	architecture	has	many	compelling	benefits,	but	it	has
also	one	very	significant	drawback	compared	to	a	monolithic	application
architecture	-	the	former	is	way	more	complex.	To	tame	this	complexity,	the
industry	has	come	up	with	some	important	best	practices	and	patterns.	In	the
following	sections,	we	are	going	to	look	into	some	of	the	most	important	ones	in
more	detail.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Loosely	coupled	components
The	best	way	to	address	a	complex	subject	has	always	been	to	divide	it	into
smaller	sub	problems	that	are	more	manageable.	As	an	example,	it	would	be
insanely	complex	to	build	a	house	in	one	single	step.	It	is	much	easier	to	build
the	house	up	from	simple	parts	that	are	then	combined	into	the	final	result.

The	same	also	applies	to	software	development.	It	is	much	easier	to	develop	a
very	complex	application	if	we	divide	this	application	into	smaller	components
that	interoperate	and	together	make	up	the	overall	application.	Now,	it	is	much
easier	to	develop	these	components	individually	if	they	are	only	loosely	coupled
to	each	other.	What	this	means	is	that	component	A	makes	no	assumptions	about
the	inner	workings	of,	say,	components	B	and	C,		but	is	only	interested	in	how	it
can	communicate	with	those	two	components	across	a	well-defined	interface.	If
each	component	has	a	well-defined	and	simple	public	interface	through	which
communication	with	the	other	components	in	the	system	and	the	outside	world
happens,	then	this	enables	us	to	develop	each	component	individually,	without
implicit	dependencies	to	other	components.	During	the	development	process,
other	components	in	the	system	can	be	replaced	by	stubs	or	mocks	to	allow	us	to
test	our	component.	

Stateful	versus	stateless
Every	meaningful	business	application	creates,	modifies,	or	uses	data.	Data	is
also	called	state.	An	application	service	that	creates	or	modifies	persistent	data	is
called	a	stateful	component.	Typical	stateful	components	are	database	services	or
services	that	create	files.		On	the	other	hand,	application	components	that	do	not
create	or	modify	persistent	data	are	called	stateless	components.

In	a	distributed	application	architecture,	stateless	components	are	much	simpler
to	handle	than	stateful	components.	Stateless	components	can	be	easily	scaled	up
and	scaled	down.	They	can	also	be	quickly	and	painlessly	torn	down	and
restarted	on	a	completely	different	node	of	the	cluster—all	this	because	they
have	no	persistent	data	associated	with	them.

Given	that	fact,	it	is	helpful	to	design	a	system	in	a	way	that	most	of	the
application	services	are	stateless.	It	is	best	to	push	all	the	stateful	components	to
the	boundary	of	the	application	and	limit	their	number.	Managing	stateful
components	is	hard.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Service	discovery
As	we	build	applications	that	consist	of	many	individual	components	or	services
that	communicate	with	each	other,	we	need	a	mechanism	that	allows	the
individual	components	to	find	each	other	in	the	cluster.	Finding	each	other
usually	means	that	one	needs	to	know	on	which	node	the	target	component	is
running	and	on	which	port	it	is	listening	for	communication.	Most	often,	nodes
are	identified	by	an	IP	address	and	a	port,	which	is	just	a	number	in	a	well-
defined	range.

Technically,	we	could	tell	Service	A,	which	wants	to	communicate	with	a
target,	Service	B,	what	the	IP	address	and	port	of	the	target	are.	This	could
happen,	for	example,	through	an	entry	in	a	configuration	file:

Components	are	hardwired

While	this	might	work	very	well	in	the	context	of	a	monolithic	application	that
runs	on	one	or	only	a	few	well-known	and	curated	servers,	it	totally	falls	apart	in
a	distributed	application	architecture.	First	of	all,	in	this	scenario,	we	have	many
components,	and	keeping	track	of	them	manually	becomes	a	nightmare.	It	is
definitely	not	scalable.	Furthermore,	Service	A	typically	should	or	will	never
know	on	which	node	of	the	cluster	the	other	components	run.	Their	location	may
not	even	be	stable	as	component	B	could	be	moved	from	node	X	to	another	node
Y,	due	to	various	reasons	external	to	the	application.	Thus,	we	need	another	way
in	which	Service	A	can	locate	Service	B,	or	any	other	service	for	that	matter.
What	is	most	commonly	used	is	an	external	authority	that	is	aware	of	the
topology	of	the	system	at	any	given	time.	This	external	authority	or	service
knows	all	the	nodes	and	their	IP	addresses	that	currently	pertain	to	the	cluster;	it
knows	all	services	that	are	running	and	where	they	are	running.	Often,	this	kind

of	service	is	called	a	DNS	service,	where	DNS	stands	for	Domain	Name
System.	As	we	will	see,	Docker	has	a	DNS	service	implemented	as	part	of	the
underlying	engine.	Kubernetes	also	uses	a	DNS	service	to	facilitate
communication	between	components	running	in	the	cluster:

Components	consult	an	external	locator	service

In	the	preceding	figure,	we	see	how	Service	A	wants	to	communicate	with
Service	B.	But	it	can't	do	this	directly;	it	has	to	first	query	the	external	authority,
a	registry	service,	here	called	a	DNS	Service,	about	the	whereabouts	of	Service
B.	The	registry	service	will	answer	with	the	requested	information	and	hand	out
the	IP	address	and	port	number	with	which	Service	A	can	reach	Service	B.
Service	A	then	uses	this	information	and	establishes	communication	with
Service	B.	Of	course,	this	is	a	naive	picture	of	what's	really	happening	on	a	low
level,	but	it	is	a	good	picture	to	understand	the	architectural	pattern	of	service
discovery.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Routing
Routing	is	the	mechanism	of	sending	packets	of	data	from	a	source	component
to	a	target	component.	Routing	is	categorized	into	different	types.	One	uses	the
so-called	OSI	model	(see	reference	in	the	Further	reading	section	of	this
chapter)	to	distinguish	between	different	types	of	routing.	In	the	context	of
containers	and	container	orchestration,	routing	at	layers	2,	3,	4,	and	7	is	relevant.
We	will	dive	into	more	detail	about	routing	in	the	subsequent	chapters.	Here,
let's	just	say	that	layer	2	routing	is	the	most	low-level	type	of	routing,	which
connects	a	MAC	address	to	a	MAC	address,	while	layer	7	routing,	which	is	also
called	application-level	routing,	is	the	most	high-level	one.	The	latter	is,	for
example,	used	to	route	requests	having	a	target	identifier	that	is	a	URL	such	as
example.com/pets	to	the	appropriate	target	component	in	our	system.

Load	balancing
Load	balancing	is	used	whenever	Service	A	requests	a	service	from	Service	B,
but	the	latter	is	running	in	more	than	one	instance,	as	shown	in	the	following
figure:

Request	of	Service	A	load	balanced	to	Service	B	

If	we	have	multiple	instances	of	a	service	such	as	Service	B	running	in	our
system,	we	want	to	make	sure	that	every,	of	those	instances	gets	an	equal	amount
of	workload	assigned	to	it.	This	task	is	a	generic	one,	which	means	that	we	don't
want	the	caller	to	have	to	do	the	load	balancing,	but	rather	an	external	service
that	intercepts	the	call	and	takes	over	the	part	of	deciding	to	which	of	the	target
service	instances	to	forward	the	call.	This	external	service	is	called	a	load
balancer.	Load	balancers	can	use	different	algorithms	to	decide	how	to
distribute	the	incoming	calls	to	the	target	service	instances.	The	most	common
algorithm	used	is	called	round	robin.	This	algorithm	just	assigns	requests	in	a
repetitive	way,	starting	with	instance	1	then	2	until	instance	n.	After	the	last
instance	has	been	served,	the	load	balancer	starts	over	with	instance	number	1.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Defensive	programming
When	developing	a	service	for	a	distributed	application,	it	is	important	to
remember	that	this	service	is	not	going	to	be	standalone,	but	is	dependent	on
other	application	services	or	even	on	external	services	provided	by	third	parties,
such	as	credit	card	validation	services	or	stock	information	services,	to	just	name
two.	All	these	other	services	are	external	to	the	service	we	are	developing.	We
have	no	control	over	their	correctness	or	their	availability	at	any	given	time.
Thus,	when	coding,	we	always	need	to	assume	the	worst	and	hope	for	the	best.
Assuming	the	worst	means	that	we	have	to	deal	with	potential	failures
explicitly.	

Retries
When	there	is	a	possibility	that	an	external	service	might	be	temporarily
unavailable	or	not	responsive	enough,	then	the	following	procedure	can	be	used.
When	the	call	to	the	other	service	fails	or	times	out,	the	calling	code	should	be
structured	in	such	a	way	that	the	same	call	is	repeated	after	a	short	wait	time.	If
the	call	fails	again,	the	wait	should	be	a	bit	longer	before	the	next	trial.	The	calls
should	be	repeated	up	until	a	maximum	number	of	times,	each	time	increasing
the	wait	time.	After	that,	the	service	should	give	up	and	provide	a	degraded
service,	which	could	mean	to	return	some	stale	cached	data	or	no	data	at	all,
depending	on	the	situation.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Logging
Important	operations	in	a	service	should	always	be	logged.	Logging	information
needs	to	be	categorized	to	be	of	a	real	value.	A	common	list	of	categories	is
debug,	info,	warning,	error,	and	fatal.	Logging	information	should	be	collected
by	a	central	log	aggregation	service	and	not	be	stored	on	an	individual	node	of
the	cluster.	Aggregated	logs	are	easy	to	parse	and	filter	for	relevant	information.

Error	handling
As	mentioned	earlier,	each	application	service	in	a	distributed	application	is
dependent	on	other	services.	As	developers,	we	should	always	expect	the	worst
and	have	appropriate	error	handling	in	place.	One	of	the	most	important	best
practices	is	to	fail	fast.	Code	the	service	in	such	a	way	that	unrecoverable	errors
are	discovered	as	early	as	possible	and,	if	such	an	error	is	detected,	have	the
service	fail	immediately.	But	don't	forget	to	log	meaningful	information	to
STDERR	or	STDOUT,	which	can	be	used	by	developers	or	system
operators	later	to	track	malfunctions	of	the	system.	Also,	return	a	helpful	error	to
the	caller,	indicating	as	precisely	as	possible	why	the	call	failed.

One	sample	of	fail	fast	is	to	always	check	the	input	values	provided	by	the	caller.
Are	the	values	in	the	expected	ranges	and	complete?	If	not,	then	do	not	try	to
continue	processing,	but	immediately	abort	the	operation.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Redundancy
A	mission-critical	system	has	to	be	available	all	the	time,	around	the	clock,	365
days	a	year.	Downtime	is	not	acceptable,	since	it	might	result	in	a	huge	loss	of
opportunities	or	reputation	for	the	company.	In	a	highly	distributed	application,
the	likelihood	of	a	failure	of	at	least	one	of	the	many	involved	components	is
non-neglectable.		One	can	say	that	the	question	is	not	whether	a	component	will
fail,	but	rather	when	a	failure	will	occur.

To	avoid	downtime	when	one	of	the	many	components	in	the	system	fails,	each
individual	part	of	the	system	needs	to	be	redundant.	This	includes	the	application
components	as	well	as	all	infrastructure	parts.	What	that	means	is	that	if	we,	say,
have	a	payment	service	as	part	of	our	application,	then	we	need	to	run	this
service	redundantly.	The	easiest	way	to	do	that	is	to	run	multiple	instances	of	this
very	service	on	different	nodes	of	our	cluster.	The	same	applies,	say,	for	an	edge
router	or	a	load	balancer.	We	cannot	afford	for	this	to	ever	go	down.	Thus	the
router	or	load	balancer	must	be	redundant.

Health	checks
We	have	mentioned	various	times	that	in	a	distributed	application	architecture,
with	its	many	parts,	failure	of	an	individual	component	is	highly	likely	and	it	is
only	a	matter	of	time	until	it	happens.	For	that	reason,	we	run	every	single
component	of	the	system	redundantly.	Proxy	services	then	load	balance	the
traffic	across	the	individual	instances	of	a	service.

But	now	there	is	another	problem.	How	does	the	proxy	or	router	know	whether	a
certain	service	instance	is	available	or	not?	It	could	have	crashed	or	it	could	be
unresponsive.	To	solve	this	problem,	one	uses	so-called	health	checks.	The
proxy,	or	some	other	system	service	on	behalf	of	the	proxy,	periodically	polls	all
the	service	instances	and	checks	their	health.	The	questions	are	basically	Are	you
still	there?	Are	you	healthy?	The	answer	of	each	service	is	either	Yes	or	No,	or
the	health	check	times	out	if	the	instance	is	not	responsive	anymore.

If	the	component	answers	with	No	or	a	timeout	occurs,	then	the	system	kills	the
corresponding	instance	and	spins	up	a	new	instance	in	its	place.	If	all	this
happens	in	a	fully	automated	way,	then	we	say	that	we	have	an	auto-healing
system	in	place.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Circuit	breaker	pattern
A	circuit	breaker	is	a	mechanism	that	is	used	to	avoid	a	distributed	application
going	down	due	to	a	cascading	failure	of	many	essential	components.	Circuit
breakers	help	to	avoid	one	failing	component	tearing	down	other	dependent
services	in	a	domino	effect.	Like	circuit	breakers	in	an	electrical	system,	which
protect	a	house	from	burning	down	due	to	the	failure	of
a	malfunctioning	plugged-in	appliance	by	interrupting	the	power	line,	circuit
breakers	in	a	distributed	application	interrupt	the	connection	from	Service	A	to
Service	B	if	the	latter	is	not	responding	or	is	malfunctioning.	

This	can	be	achieved	by	wrapping	a	protected	service	call	in	a	circuit	breaker
object.	This	object	monitors	for	failures.	Once	the	number	of	failures	reaches	a
certain	threshold,	the	circuit	breaker	trips.	All	subsequent	calls	to	the	circuit
breaker	will	return	with	an	error,	without	the	protected	call	being	made	at	all:

Circuit	breaker	pattern

Running	in	production
To	successfully	run	a	distributed	application	in	production,	we	need	to	consider	a
few	more	aspects	beyond	the	best	practices	and	patterns	presented	in	the
preceding	sections.	One	specific	area	that	comes	to	mind	is	introspection	and
monitoring.	Let's	go	through	the	most	important	aspects	in	detail.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Logging
Once	a	distributed	application	is	in	production,	it	is	not	possible	to	debug	it.	But
how	can	we	then	find	out	what	exactly	is	the	root	cause	of	a	malfunction	of	the
application	that	has	been	reported	by	a	user?	The	solution	to	this	problem	is	to
produce	abundant	and	meaningful	logging	information.	Developers	need	to
instrument	their	application	services	in	such	a	way	that	they	output	helpful
information,	such	as	when	an	error	happens	or	a	potentially	unexpected	or
unwanted	situation	is	encountered.	Often,	this	information	is	output	to	STDOUT
and	STDERR,	from	where	it	is	then	collected	by	system	daemons	that	write	the
information	to	local	files	or	forward	it	to	a	central	log	aggregation	service.

If	there	is	sufficient	information	in	the	logs,	developers	can	use	those	logs	to
track	down	the	root	cause	of	errors	in	the	system	that	have	been	reported.

In	a	distributed	application	architecture,	with	its	many	components,	logging	is
even	more	important	than	in	a	monolithic	application.	The	paths	of	execution	of
a	single	request	through	all	the	components	of	the	application	can	be	very
complex.	Also,	remember	that	the	components	are	distributed	across	a	cluster	of
nodes.	Thus,	it	makes	sense	to	log	everything	of	importance	and	to	each	log
entry	add	things	such	as	the	exact	time	when	it	happened,	the	component	in
which	it	happened,	and	the	node	on	which	the	component	ran,	to	name	just	a
few.	Furthermore,	the	logging	information	should	be	aggregated	in	a	central
location	so	that	it	is	readily	available	for	developers	and	system	operators	to
analyze.

Tracing
Tracing	is	used	to	find	out	how	an	individual	request	is	funneled	through	a
distributed	application	and	how	much	time	is	spent	overall	for	the	request	and	in
every	individual	component.	This	information,	if	collected,	can	be	used	as	one	of
the	sources	for	dashboards	that	show	the	behavior	and	health	of	the	system.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Monitoring
Operators	like	to	have	dashboards	showing	live	key	metrics	of	the	system,	which
show	them	the	overall	health	of	the	application	in	one	glance.	These	metrics	can
be	non-functional	metrics	such	as	memory	and	CPU	usage,	number	of	crashes	of
a	system	or	application	component,	health	of	a	node,	and	so	on,	as	well	as
functional	and	thus	application-specific	metrics	such	as	the	number	of	checkouts
in	an	ordering	system	or	the	number	of	items	out	of	stock	in	an	inventory
service.

Most	often,	the	base	data	used	to	aggregate	the	numbers	that	are	used	for	a
dashboard	are	extracted	from	logging	information.	This	can	either	be	system
logs,	which	will	mostly	be	used	for	non-functional	metrics,	and	application-level
logs,	for	functional	metrics.

Application	updates
One	of	the	competitive	advantages	for	a	company	is	to	be	able	to	react	in	a
timely	manner	to	changing	market	situations.	Part	of	this	is	to	be	able	to	quickly
adjust	an	application	to	fulfill	new	and	changed	needs	or	to	add	new
functionality.	The	faster	we	can	update	our	applications,	the	better.	Many
companies	these	days	roll	out	new	or	changed	features	multiple	times	per	day.

Since	application	updates	are	so	frequent,	these	updates	have	to	be	non-
disruptive.	We	cannot	allow	the	system	to	go	down	for	maintenance	when
upgrading.	It	all	has	to	happen	seamlessly	and	transparently.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Rolling	updates
One	way	of	updating	an	application	or	an	application	service	is	to	use	rolling
updates.	The	assumption	here	is	that	the	particular	piece	of	software	that	has	to
be	updated	runs	in	multiple	instances.	Only	then	can	we	use	this	type	of	update.

What	happens	is	that	the	system	stops	one	instance	of	the	current	service	and
replaces	it	with	an	instance	of	the	new	service.	As	soon	as	the	new	instance	is
ready,	it	will	be	served	traffic.	Usually,	the	new	instance	is	monitored	for	some
time	to	see	whether	or	not	it	works	as	expected	and,	if	it	does,	the	next	instance
of	the	current	service	is	taken	down	and	replaced	by	a	new	instance.	This	pattern
is	repeated	until	all	service	instances	have	been	replaced.

Since	there	are	always	a	few	instances	running	at	any	given	time,	current	or	new,
the	application	is	operational	all	the	time.	No	downtime	is	needed.

Blue-green	deployments
In	blue-green	deployments,	the	current	version	of	the	application	service,	called
blue,	handles	all	the	application	traffic.	We	then	install	the	new	version	of	the
application	service,	called	green,	on	the	production	system.	The	new	service	is
not	yet	wired	with	the	rest	of	the	application.

Once	green	is	installed,	one	can	execute	smoke	tests	against	this	new	service
and,	if	those	succeed,	the	router	can	be	configured	to	funnel	all	traffic	that
previously	went	to	blue	to	the	new	service,	green.	The	behavior	of	green	is	then
observed	closely	and,	if	all	success	criteria	are	met,	blue	can	be
decommissioned.	But	if,	for	some	reason,	green	shows	some	unexpected	or
unwanted	behavior,	the	router	can	be	reconfigured	to	return	all	traffic	to	blue.
Green	can	then	be	removed	and	fixed,	and	a	new	blue-green	deployment	can	be
executed	with	the	corrected	version:

Blue-green	deployment

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Canary	releases
Canary	releases	are	releases	where	we	have	the	current	version	of	the	application
service	and	the	new	version	installed	on	the	system	in	parallel.	As	such,	they
resemble	blue-green	deployments.	At	first,	all	traffic	is	still	routed	through	the
current	version.	We	then	configure	a	router	so	that	it	funnels	a	small	percentage,
say	1%,	of	the	overall	traffic	to	the	new	version	of	the	application	service.	The
behavior	of	the	new	service	is	then	monitored	closely	to	find	out	whether	or	not
it	works	as	expected.	If	all	the	criteria	for	success	are	met,	then	the	router	is
configured	to	funnel	more	traffic,	say	5%	this	time,	through	the	new	service.
Again,	the	behavior	of	the	new	service	is	closely	monitored	and,	if	it	is
successful,	more	and	more	traffic	is	routed	to	it	until	we	reach	100%.	Once	all
traffic	is	routed	to	the	new	service	and	it	has	been	stable	for	some	time,	the	old
version	of	the	service	can	be	decommissioned.

Why	do	we	call	this	a	canary	release?	It	is	named	after	the	coal	miners	who
would	use	canary	birds	as	an	early	warning	system	in	the	mines.	Canary	birds
are	particularly	sensitive	to	toxic	gas	and	if	such	a	canary	bird	died,	the	miners
knew	they	had	to	abandon	the	mine	immediately.		

Irreversible	data	changes
If	part	of	our	update	process	is	to	execute	an	irreversible	change	in	our	state,
such	as	an	irreversible	schema	change	in	a	backing	relational	database,	then	we
need	to	address	this	with	special	care.	It	is	possible	to	execute	such	changes
without	downtime	if	one	uses	the	right	approach.	It	is	important	to	recognize
that,	in	such	a	situation,	one	cannot	deploy	the	code	changes	that	require	the	new
data	structure	in	the	data	store	at	the	same	time	as	the	changes	to	the	data.
Rather,	the	whole	update	has	to	be	separated	into	three	distinct	steps.	In	the	first
step,	one	rolls	out	a	backward-compatible	schema	and	data	change.	If	this	is
successful,	then	one	rolls	out	the	new	code	in	the	second	step.	Again,	if	that	is
successful,	one	cleans	up	the	schema	in	the	third	step	and	removes	the
backwards-compatibility:

Rolling	out	an	irreversible	data	or	schema	change

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Rollback
If	we	have	frequent	updates	to	our	application	services	that	run	in	production,
sooner	or	later	there	will	be	a	problem	with	one	of	those	updates.	Maybe	a
developer,	while	fixing	a	bug,	introduced	a	new	one,	which	was	not	caught	by	all
the	automated,	and	maybe	manual,	tests,	so	the	application	is	misbehaving	and	it
is	imperative	that	we	roll	back	the	service	to	the	previous	good	version.	In	this
regard,	a	rollback	is	a	recovery	from	a	disaster.

Again,	in	a	distributed	application	architecture,	it	is	not	a	question	of	whether	a
rollback	will	ever	be	needed,	but	rather	when	a	rollback	will	have	to	occur.	Thus
we	need	to	absolutely	be	sure	that	we	can	always	roll	back	to	a	previous	version
of	any	service	that	makes	up	our	application.	Rollbacks	cannot	be	an
afterthought	but	have	to	be	a	tested	and	proven	part	of	our	deployment	process.

If	we	are	using	blue-green	deployments	to	update	our	services,	then	rollbacks
should	be	fairly	simple.	All	we	need	to	do	is	switch	the	router	from	the	new
green	version	of	the	service	back	to	the	previous	blue	version.			

Summary
In	this	chapter,	we	learned	what	a	distributed	application	architecture	is	and	what
patterns	and	best	practices	are	helpful	or	needed	to	successfully	run	a	distributed
application.	Lastly,	we	discussed	what	is	needed	in	addition	to	run	such	an
application	in	production.

In	the	next	chapter,	we	will	dive	into	networking	limited	to	a	single	host.	We're
going	to	discuss	in	detail	how	containers	living	on	the	same	host	can
communicate	with	each	other	and	how	external	clients	can	access	containerized
applications	if	necessary.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
Please	answer	the	following	questions	to	assess	your	understanding	of	this
chapter's	content.

1.	 When	and	why	does	every	part	in	a	distributed	application	architecture	have
to	be	redundant?	Explain	in	a	few	short	sentences.

2.	 Why	do	we	need	DNS	services?	Explain	in	3	to	5	sentences.
3.	 What	is	a	circuit	breaker	and	why	is	it	needed?
4.	 What	are	some	important	differences	between	a	monolithic	application	and

a	distributed	or	multi-service	application?
5.	 What	is	a	blue-green	deployment?

Further	reading
The	following	articles	provide	more	in-depth	information:

CircuitBreaker	at	http://bit.ly/1NU1sgW
The	OSI	model	explained	at	http://bit.ly/1UCcvMt
BlueGreenDeployment	at	http://bit.ly/2r2IxNJ

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://bit.ly/2pBENyP
https://bit.ly/2BIRpJY
http://bit.ly/2r2IxNJ

Single-Host	Networking
In	the	last	chapter,	we	learned	about	the	most	important	architectural	patterns
and	best	practices	that	are	used	when	dealing	with	a	distributed	application
architecture.

In	this	chapter,	we	will	introduce	the	Docker	container	networking	model	and	its
single-host	implementation	in	the	form	of	the	bridge	network.	This	chapter	also
introduces	the	concept	of	software-defined	networks	and	how	they	are	used	to
secure	containerized	applications.	Finally,	it	demonstrates	how	container	ports
can	be	opened	to	the	public	and	thus	make	containerized	components	accessible
to	the	outside	world.

This	chapter	will	contain	the	following	topics:

The	container	network	model
Network	firewalling
The	bridge	network
The	host	network
The	null	network
Running	in	an	existing	network	namespace
Port	management

After	completing	this	module,	you	will	be	able	to	do	the	following:

Draft	the	container	networking	model—along	with	all	the	essential
components	onto	a	whiteboard
Create	and	delete	a	custom	bridge	network
Run	a	container	attached	to	a	custom	bridge	network
Inspect	a	bridge	network
Isolate	containers	from	each	other	by	running	them	on	different	bridge
networks
Publish	a	container	port	to	a	host	port	of	your	choice

Technical	requirements
For	this	chapter,	the	only	thing	you	will	need	is	a	Docker	host	that	is	able	to	run
Linux	containers.	You	can	use	your	laptop	with	either	Docker	for	Mac	or
Windows	or	Docker	Toolbox	installed.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	container	network	model
So	far,	we	have	worked	with	single	containers.	But	in	reality,	a	containerized
business	application	consists	of	several	containers	that	need	to	collaborate	to
achieve	a	goal.	Therefore,	we	need	a	way	for	individual	containers	to
communicate	with	each	other.	This	is	achieved	by	establishing	pathways	that	we
can	use	to	send	data	packets	back	and	forth	between	containers.	These	pathways
are	called	networks.	Docker	has	defined	a	very	simple	networking	model,	the
so-called	container	network	model	(CNM),	to	specify	the	requirements	that
any	software	that	implements	a	container	network	has	to	fulfill.	The	following	is
a	graphical	representation	of	the	CNM:

The	Docker	container	network	model

The	CNM	has	three	elements—sandbox,	endpoint,	and	network:

Sandbox:	The	sandbox	perfectly	isolates	a	container	from	the	outside
world.	No	inbound	network	connection	is	allowed	into	the	sandboxed
container.	Yet,	it	is	very	unlikely	that	a	container	will	be	of	any	value	in	a
system	if	absolutely	no	communication	with	it	is	possible.	To	work	around
this,	we	have	element	number	two,	which	is	the	endpoint.
Endpoint:	An	endpoint	is	a	controlled	gateway	from	the	outside	world	into
the	network's	sandbox	that	shields	the	container.	The	endpoint	connects	the
network	sandbox	(but	not	the	container)	to	the	third	element	of	the	model,
which	is	the	network.
Network:	The	network	is	the	pathway	that	transports	the	data	packets	of	an
instance	of	communication	from	endpoint	to	endpoint,	or	ultimately	from
container	to	container.

It	is	important	to	note	that	a	network	sandbox	can	have	zero	to	many	endpoints,
or,	said	differently,	each	container	living	in	a	network	sandbox	can

either	be	attached	to	no	network	at	all	or	it	can	be	attached	to	multiple	different
networks	at	the	same	time.	In	the	preceding	image,	the	middle	of	the	three
network	sandboxes	is	attached	to	both	networks	1	and	2	through	a	respective
endpoint.

This	networking	model	is	very	generic	and	does	not	specify	where	the	individual
containers	that	communicate	with	each	other	run	over	a	network.	All	containers
could,	for	example,	run	on	one	and	the	same	host	(local)	or	they	could	be
distributed	across	a	cluster	of	hosts	(global).

Of	course,	the	CNM	is	just	a	model	describing	how	networking	works	among
containers.	To	be	able	to	use	networking	with	our	containers,	we	need	real
implementations	of	the	CNM.	For	both	local	and	global	scope,	we	have	multiple
implementations	of	the	CNM.	In	the	following	table,	we	give	a	short	overview
of	the	existing	implementations	and	their	main	characteristics.	The	list	is	in	no
particular	order:

Network Company Scope Description

Bridge Docker Local
Simple	network	based	on	Linux
bridges	allowing	networking	on	a
single	host

Macvlan Docker Local
Configures	multiple	layer	2	(that	is,
MAC)	addresses	on	a	single
physical	host	interface

Overlay Docker Global
Multinode-capable	container
network	based	on	Virtual
Extensible	LAN	(VXLan)

Weave	Net Weaveworks Global Simple,	resilient,	multihost	Docker
networking

Contiv

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Network
Plugin

Cisco Global Open	source	container	networking

All	network	types	not	directly	provided	by	Docker	can	be	added	to	a	Docker
host	as	a	plugin.

Network	firewalling
Docker	has	always	had	the	mantra	of	security	first.	This	philosophy	had	a	direct
influence	on	how	networking	in	a	single	and	multihost	Docker	environment	was
designed	and	implemented.	Software-defined	networks	are	easy	and	cheap	to
create,	yet	they	perfectly	firewall	containers	that	are	attached	to	this	network
from	other	non-attached	containers,	and	from	the	outside	world.	All	containers
that	belong	to	the	same	network	can	freely	communicate	with	each	other,	while
others	have	no	means	to	do	so:

Docker	networks

In	the	preceding	image,	we	have	two	networks	called	front	and	back.	Attached
to	the	front	network,	we	have	containers	c1	and	c2,	and	attached	to	the	back
network,	we	have	containers	c3	and	c4.	c1	and	c2	can	freely	communicate	with
each	other,	as	can	c3	and	c4.	But	c1	and	c2	have	no	way	to	communicate	with
either	c3	or	c4,	and	vice	versa.

Now	what	about	the	situation	where	we	have	an	application	consisting	of	three
services,	webAPI,	productCatalog,	and	database?	We	want	webAPI	to	be	able
to	communicate	with	productCatalog,	but	not	with	the	database,	and	we
want	productCatalog	to	be	able	to	communicate	with	the	database	service.	We
can	solve	this	situation	by	placing	webAPI	and	the	database	on	different
networks	and	attach	productCatalog	to	both	of	these	networks,	as	shown	in	the
following	image:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Container	attached	to	multiple	networks

Since	creating	SDNs	is	cheap,	and	each	network	provides	added	security	by
isolating	resources	from	unauthorized	access,	it	is	highly	recommended	that	you
design	and	run	applications	so	that	they	use	multiple	networks	and	run	only
services	on	the	same	network	that	absolutely	need	to	communicate	with	each
other.	In	the	preceding	example,	there	is	absolutely	no	need	for	the	web	API
component	to	ever	communicate	directly	with	the	database	service,	so	we	have
put	them	on	different	networks.	If	the	worst-case	scenario	happens	and	a	hacker
compromises	the	web	API,	they	have	no	ability	to	access	the	database	from	there
without	first	also	hacking	the	product	catalog	service.

The	bridge	network
The	Docker	bridge	network	is	the	first	implementation	of	the	container	network
model	that	we're	going	to	look	at	in	detail.	This	network	implementation	is	based
on	the	Linux	bridge.	When	the	Docker	daemon	runs	for	the	first	time,	it	creates	a
Linux	bridge	and	calls	it	docker0.	This	is	the	default	behavior,	and	can	be	changed
by	changing	the	configuration.	Docker	then	creates	a	network	with	this	Linux
bridge	and	calls	the	network	bridge.	All	the	containers	that	we	create	on	a
Docker	host	and	that	we	do	not	explicitly	bind	to	another	network	leads	to
Docker	automatically	attaching	to	this	bridge	network.

To	verify	that	we	indeed	have	a	network	called	bridge	of	type	bridge	defined	on
our	host,	we	can	list	all	networks	on	the	host	with	the	following	command:

$	docker	network	ls

This	should	provide	an	output	similar	to	the	following:

Listing	of	all	Docker	networks	available	by	default

In	your	case,	the	IDs	will	be	different,	but	the	rest	of	the	output	should	look	the
same.	We	do	indeed	have	a	first	network	called	bridge	using	the	driver	bridge.	The
scope	being	local	just	means	that	this	type	of	network	is	restricted	to	a	single	host
and	cannot	span	across	multiple	hosts.	In	a	later	chapter,	we	will	also	discuss
other	types	of	networks	that	have	a	global	scope,	meaning	they	can	span	whole
clusters	of	hosts.

Now,	let's	look	a	little	bit	deeper	into	what	this	bridge	network	is	all	about.	For
this,	we	are	going	to	use	the	Docker	inspect	command:

$	docker	network	inspect	bridge

When	executed,	this	outputs	a	big	chunk	of	detailed	information	about	the

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

network	in	question.	This	information	should	look	like	the	following:

Output	generated	when	inspecting	the	Docker	bridge	network

We	have	already	seen	the	ID,	Name,	Driver,	and	Scope	values	when	we	listed	all	the
networks,	so	that	is	nothing	new.	But	let's	have	a	look	at	the	IP	address
management	(IPAM)	block.	IPAM	is	software	that	is	used	to	track	IP	addresses
that	are	used	on	a	computer.	The	important	part	in	the	IPAM	block	is	the	Config
node	with	its	values	for	Subnet	and	Gateway.	The	subnet	for	the	bridge	network	is
defined	by	default	as	172.17.0.0/16.	This	means	that	all	containers	attached	to	this
network	will	get	an	IP	address	assigned	by	Docker	that	is	taken	from	the	given
range,	which	is	172.17.0.2	to	172.17.255.255.	The	172.17.0.1	address	is	reserved	for
the	router	of	this	network	whose	role	in	this	type	of	network	is	taken	by	the
Linux	bridge.	One	can	expect	that	the	very	first	container	that	will	be	attached	to
this	network	by	Docker	will	get	the	172.17.0.2	address.	All	subsequent	containers
will	get	a	higher	number;	the	following	image	illustrates	this	fact:

The	bridge	network

In	the	preceding	image,	we	can	see	the	network	namespace	of	the	host,	which
includes	the	host's	eth0	endpoint,	which	is	typically	a	NIC	if	the	Docker	host	runs
on	bare	metal	or	a	virtual	NIC	if	the	Docker	host	is	a	VM.	All	traffic	to	the	host
comes	through	eth0.	The	Linux	bridge	is	responsible	for	the	routing	of	the
network	traffic	between	the	host's	network	and	the	subnet	of	the	bridge	network.

By	default,	only	traffic	from	the	egress		is	allowed,	and	all	ingress	is	blocked.
What	this	means	is	that	while	containerized	applications	can	reach	the	internet,
they	cannot	be	reached	by	any	outside	traffic.	Each	container	attached	to	the
network	gets	its	own	virtual	ethernet	(veth)	connection	with	the	bridge.	This	is
illustrated	in	the	following	image:

Details	of	the	bridge	network

The	preceding	image	shows	us	the	world	from	the	perspective	of	the	host.	We
will	explore	how	the	situation	looks	from	within	a	container	later	on	in	this
section.

We	are	not	limited	to	just	the	bridge	network,	as	Docker	allows	us	to	define	our
own	custom	bridge	networks.	This	is	not	just	a	feature	that	is	nice	to	have,	but	it

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

is	a	recommended	best	practice	to	not	run	all	containers	on	the	same	network,
but	to	use	additional	bridge	networks	to	further	isolate	containers	that	have	no
need	to	communicate	with	each	other.	To	create	a	custom	bridge	network	called
sample-net,	use	the	following	command:

$	docker	network	create	--driver	bridge	sample-net

	If	we	do	this,	we	can	then	inspect	what	subnet	Docker	has	created	for	this	new
custom	network	as	follows:

$	docker	network	inspect	sample-net	|	grep	Subnet

This	returns	the	following	value:

"Subnet":	"172.18.0.0/16",

Evidently,	Docker	has	just	assigned	the	next	free	block	of	IP	addresses	to	our
new	custom	bridge	network.	If,	for	some	reason,	we	want	to	specify	our	own
subnet	range	when	creating	a	network,	we	can	do	so	by	using	the	--subnet
parameter:

$	docker	network	create	--driver	bridge	--subnet	"10.1.0.0/16"	test-net

To	avoid	conflicts	due	to	duplicate	IP	addresses,	make	sure	you	avoid	creating
networks	with	overlapping	subnets.

Now	that	we	have	discussed	what	a	bridge	network	is	and	how	one	can	create	a
custom	bridge	network,	we	want	to	understand	how	we	can	attach	containers	to
these	networks.	First,	let's	interactively	run	an	Alpine	container	without
specifying	the	network	to	be	attached:

$	docker	container	run	--name	c1	-it	--rm	alpine:latest	/bin/sh

In	another	Terminal	window,	let's	inspect	the	c1	container:

$	docker	container	inspect	c1

In	the	vast	output,	let's	concentrate	for	a	moment	on	the	part	that	provides
network-related	information.	It	can	be	found	under	the	NetworkSettings	node.	I
have	it	listed	in	the	following	output:

Network	settings	section	of	the	container	metadata

In	the	preceding	output,	we	can	see	that	the	container	is	indeed	attached	to	the
bridge	network	since	the	NetworkID	is	equal	to	026e65...,	which	we	can	see	from	the
preceding	code	is	the	ID	of	the	bridge	network.	We	can	also	see	that	the	container
got	the	IP	address	of	172.17.0.4	assigned	as	expected	and	that	the	gateway	is	at
172.17.0.1.	Please	note	that	the	container	also	had	a	MacAddress	associated	with	it.
This	is	important	as	the	Linux	bridge	uses	the	Mac	address	for	routing.

So	far,	we	have	approached	this	from	the	outside	of	the	container's	network
namespace.	Now,	let's	see	how	the	situation	looks	when	we're	not	only	inside	the
container,	but	inside	the	container's	network	namespace.	Inside	the
c1	container,	let's	use	the	ip	tool	to	inspect	what's	going	on.	Run	the	ip	addr
command	and	observe	the	output	that	is	generated	as	follows:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Container	namespace	as	seen	by	the	IP	tool

The	interesting	part	of	the	preceding	output	is	the	number	19,	the	eth0	endpoint.
The	veth0	endpoint	that	the	Linux	bridge	created	outside	of	the	container
namespace	is	mapped	to	eth0	inside	the	container.	Docker	always	maps	the	first
endpoint	of	a	container	network	namespace	to	eth0,	as	seen	from	inside	the
namespace.	If	the	network	namespace	is	attached	to	an	additional	network,	then
that	endpoint	will	be	mapped	to	eth1,	and	so	on.

Since	at	this	point	we're	not	really	interested	in	any	endpoint	other	than	eth0,	we
could	have	used	a	more	specific	variant	of	the	command,	which	would	have
given	us	the	following:

/	#	ip	addr	show	eth0

195:	eth0@if196:	<BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN>	mtu	1500	qdisc	noqueue	state	

UP

				link/ether	02:42:ac:11:00:02	brd	ff:ff:ff:ff:ff:ff

				inet	172.17.0.2/16	brd	172.17.255.255	scope	global	eth0

							valid_lft	forever	preferred_lft	forever

In	the	output,	we	can	also	see	what	MAC	address	(02:42:ac:11:00:02)	and	what	IP
(172.17.0.2)	have	been	associated	with	this	container	network	namespace	by
Docker.

We	can	also	get	some	information	about	how	requests	are	routed	by	using	the	ip
route	command:

/	#	ip	route

default	via	172.17.0.1	dev	eth0

172.17.0.0/16	dev	eth0	scope	link	src	172.17.0.2

This	output	tells	us	that	all	traffic	to	the	gateway	at	172.17.0.1	is	routed	through
the	eth0	device.

Now,	let's	run	another	container	called		c2	on	the	same	network:

$	docker	container	run	--name	c2	-d	alpine:latest	ping	127.0.0.1

The	c2	container	will	also	be	attached	to	the	bridge	network,	since	we	have	not
specified	any	other	network.	Its	IP	address	will	be	the	next	free	one	from	the
subnet,	which	is	172.17.0.3,	as	we	can	readily	test:

$	docker	container	inspect	--format	"{{.NetworkSettings.IPAddress}}"	c2

172.17.0.3

Now,	we	have	two	containers	attached	to	the	bridge	network.	We	can	try	to
inspect	this	network	once	again	to	find	a	list	of	all	containers	attached	to	it	in	the
output.:

$	docker	network	inspect	bridge

The	information	is	found	under	the	Containers	node:

The	containers	section	of	the	output	of	docker	network	inspect	bridge

Once	again,	we	have	shortened	the	output	to	the	essentials	for	readability.

Now,	let's	create	two	additional	containers,	c3	and	c4,	and	attach	them	to	the	test-
net.	For	this,	we	use	the	--network	parameter:

$	docker	container	run	--name	c3	-d	--network	test-net	\

				alpine:latest	ping	127.0.0.1

$	docker	container	run	--name	c4	-d	--network	test-net	\

				alpine:latest	ping	127.0.0.1

Let's	inspect	network	test-net	and	confirm	that	the	containers	c3	and	c4	are	indeed
attached	to	it:

$	docker	network	inspect	test-net

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

This	will	give	us	the	following	output	for	the	Containers	section:

Containers	section	of	the	command	docker	network	inspect	test-net

The	next	question	we're	going	to	ask	ourselves	is	whether	the	two	c3	and
c4	containers	can	freely	communicate	with	each	other.	To	demonstrate	that	this	is
indeed	the	case,	we	can	exec	into	the	container	c3:

$	docker	container	exec	-it	c3	/bin/sh

Once	inside	the	container,	we	can	try	to	ping	container	c4	by	name	and	by	IP
address:

/	#	ping	c4

PING	c4	(10.1.0.3):	56	data	bytes

64	bytes	from	10.1.0.3:	seq=0	ttl=64	time=0.192	ms

64	bytes	from	10.1.0.3:	seq=1	ttl=64	time=0.148	ms

...

The	following	is	the	result	of	the	ping	using	the	IP	address	of	the	container	c4:

/	#	ping	10.1.0.3

PING	10.1.0.3	(10.1.0.3):	56	data	bytes

64	bytes	from	10.1.0.3:	seq=0	ttl=64	time=0.200	ms

64	bytes	from	10.1.0.3:	seq=1	ttl=64	time=0.172	ms

...

The	answer	in	both	cases	confirms	to	us	that	the	communication	between
containers	attached	to	the	same	network	is	working	as	expected.	The	fact	that	we
can	even	use	the	name	of	the	container	we	want	to	connect	to	shows	us	that	the
name	resolution	provided	by	the	Docker	DNS	service	works	inside	this	network.

Now	we	want	to	make	sure	that	the	bridge	and	the	test-net	networks	are
firewalled	from	each	other.	To	demonstrate	this,	we	can	try	to	ping	the

c2	container	from	the	c3	container,	either	by	its	name	or	by	its	IP	address:

/	#	ping	c2

ping:	bad	address	'c2'

The	following	is	the	result	of	the	ping	using	the	IP	address	of	the	target	container
c2	instead:

/	#	ping	172.17.0.3

PING	172.17.0.3	(172.17.0.3):	56	data	bytes	

^C

---	172.17.0.3	ping	statistics	---

43	packets	transmitted,	0	packets	received,	100%	packet	loss

The	preceding	command	remained	hanging	and	I	had	to	terminate	the	command
with	Ctrl+C.	From	the	answer	to	pinging	c2,	we	can	also	see	that	the	name
resolution	does	not	work	across	networks.	This	is	the	expected	behavior.
Networks	provide	an	extra	layer	of	isolation,	and	thus	security,	to	containers.

Earlier,	we	learned	that	a	container	can	be	attached	to	multiple	networks.	Let's
attach	a	c5	container	to	the	sample-net	and	test-net	networks	at	the	same	time:

$	docker	container	run	--name	c5	-d	\

				--network	sample-net	\

				--network	test-net	\

				alpine:latest	ping	127.0.0.1

We	can	then	test	that	c5	is	reachable	from	the	c2	container	similar	to	when	we
tested	the	same	for	containers	c4	and	c2.	The	result	will	show	that	the
connection	indeed	works.

If	we	want	to	remove	an	existing	network,	we	can	use	the	docker	network	rm
command,	but	note	that	one	cannot	accidentally	delete	a	network	that	has
containers	attached	to	it:

$	docker	network	rm	test-net

Error	response	from	daemon:	network	test-net	id	863192...	has	active	endpoints

Before	we	continue,	let's	clean	up	and	remove	all	containers:

$	docker	container	rm	-f	$(docker	container	ls	-aq)

Then	we	remove	the	two	custom	networks	that	we	created:

$	docker	network	rm	sample-net

$	docker	network	rm	test-net

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	host	network
There	exist	occasions	where	we	want	to	run	a	container	in	the	network
namespace	of	the	host.	This	can	be	necessary	when	we	need	to	run	some
software	in	a	container	that	is	used	to	analyze	or	debug	the	host	network's	traffic.
But	keep	in	mind	that	these	are	very	specific	scenarios.	When	running	business
software	in	containers,	there	is	no	good	reason	to	ever	run	the	respective
containers	attached	to	the	host's	network.	For	security	reasons,	it	is	strongly
recommended	that	you	do	not	run	any	such	container	attached	to	the	host
network	on	a	production	or	production-like	environment.

That	said,	how	can	we	run	a	container	inside	the	network	namespace	of	the
host?	Simply	by	attaching	the	container	to	the	host	network:

$	docker	container	run	--rm	-it	--network	host	alpine:latest	/bin/sh

If	we	now	use	the	ip	tool	to	analyze	the	network	namespace	from	within	the
container,	we	will	see	that	we	get	exactly	the	same	picture	as	we	would	if	we
were	running	the	ip	tool	directly	on	the	host.	For	example,	if	I	inspect	the
eth0	device	on	my	host,	I	get	this:

/	#	ip	addr	show	eth0

2:	eth0:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	UP	qlen	1000

				link/ether	02:50:00:00:00:01	brd	ff:ff:ff:ff:ff:ff

				inet	192.168.65.3/24	brd	192.168.65.255	scope	global	eth0

							valid_lft	forever	preferred_lft	forever

				inet6	fe80::c90b:4219:ddbd:92bf/64	scope	link

							valid_lft	forever	preferred_lft	forever

Here,	I	find	that	192.168.65.3	is	the	IP	address	that	the	host	has	been	assigned	and
that	the	MAC	address	shown	here	also	corresponds	to	that	of	the	host.

We	can	also	inspect	the	routes	to	get	the	following	(shortened):

/	#	ip	route

default	via	192.168.65.1	dev	eth0	src	192.168.65.3	metric	202

10.1.0.0/16	dev	cni0	scope	link	src	10.1.0.1

127.0.0.0/8	dev	lo	scope	host

172.17.0.0/16	dev	docker0	scope	link	src	172.17.0.1

...

192.168.65.0/24	dev	eth0	scope	link	src	192.168.65.3	metric	202

Before	I	let	you	go	on	to	the	next	section	of	this	chapter,	I	want	to	once	more
point	out	that	the	use	of	the	host	network	is	dangerous	and	needs	to	be	avoided	if
possible.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	null	network
Sometimes,	we	need	to	run	a	few	application	services	or	jobs	that	do	not	need
any	network	connection	at	all	to	execute	the	task.	It	is	strongly	advised	that	you
run	those	applications	in	a	container	that	is	attached	to	the	none	network.	This
container	will	be	completely	isolated,	and	thus	safe	from	any	outside	access.
Let's	run	such	a	container:

$	docker	container	run	--rm	-it	--network	none	alpine:latest	/bin/sh

Once	inside	the	container,	we	can	verify	that	there	is	no	eth0	network	endpoint
available:

/	#	ip	addr	show	eth0

ip:	can't	find	device	'eth0'

There	is	also	no	routing	information	available,	as	we	can	demonstrate	by	using
the	following	command:

/	#	ip	route

This	returns	nothing.

Running	in	an	existing	network
namespace
Normally,	Docker	creates	a	new	network	namespace	for	each	container	we	run.
The	network	namespace	of	the	container	corresponds	to	the	sandbox	of	the
container	network	model	we	described	earlier	on.	As	we	attach	the	container	to	a
network,	we	define	an	endpoint	that	connects	the	container	network	namespace
with	the	actual	network.	This	way,	we	have	one	container	per	network
namespace.

Docker	provides	an	additional	way	to	define	the	network	namespace	in	which	a
container	runs.	When	creating	a	new	container,	we	can	specify	that	it	should	be
attached	to	or	maybe	we	should	say	included	in	the	network	namespace	of	an
existing	container.	With	this	technique,	we	can	run	multiple	containers	in	a
single	network	namespace:

Multiple	containers	running	in	a	single	network	namespace

In	the	preceding	image,	we	can	see	that	in	the	leftmost	network	namespace,	we
have	two	containers.	The	two	containers,	since	they	share	the	same	namespace,
can	communicate	on	localhost	with	each	other.	The	network	namespace	(and	not
the	individual	containers)	is	then	attached	to	Network	1.

This	is	useful	when	we	want	to	debug	the	network	of	an	existing	container
without	running	additional	processes	inside	that	container.	We	can	just	attach	a
special	utility	container	to	the	network	namespace	of	the	container	to	inspect.
This	feature	is	also	used	by	Kubernetes	when	it	creates	a	pod.	We	will	hear	more
about	Kubernetes	and	pods	in	subsequent	chapters	of	this	book.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Now,	let's	demonstrate	how	this	works.	First,	we	create	a	new	bridge	network:

$	docker	network	create	--driver	bridge	test-net

Next,	we	run	a	container	attached	to	this	network:

$	docker	container	run	--name	web	-d	--network	test-net	nginx:alpine

Finally,	we	run	another	container	and	attach	it	to	the	network	of	our	web
container:

$	docker	container	run	-it	--rm	--network	container:web	alpine:latest	/bin/sh

Specifically,	note	how	we	define	the	network:	--network	container:web.	This	tells
Docker	that	our	new	container	shall	use	the	same	network	namespace	as	the
container	called	web.

Since	the	new	container	is	in	the	same	network	namespace	as	the	web	container
running	Nginx,	we're	now	able	to	access	Nginx	on	localhost!	We	can	prove	this
by	using	the	wget	tool,	which	is	part	of	the	Alpine	container,	to	connect	to	Nginx.
We	should	see	the	following:

/	#	wget	-qO	-	localhost

<!DOCTYPE	html>

<html>

<head>

<title>Welcome	to	nginx!</title>

...

</html>

Note	that	we	have	shortened	the	output	for	readability.	Please	also	note	that	there
is	an	important	difference	between	running	two	containers	attached	to	the	same
network	and	two	containers	running	in	the	same	network	namespace.	In	both
cases,	the	containers	can	freely	communicate	with	each	other,	but	in	the	latter
case,	the	communication	happens	over	localhost.

To	clean	up	the	container	and	network	we	can	use	the	following	command:

$	docker	container	rm	--force	web

$	docker	network	rm	test-net

Port	management
Now	that	we	know	how	we	can	isolate	or	firewall	containers	from	each	other	by
placing	them	on	different	networks,	and	that	we	can	have	a	container	attached	to
more	than	one	network,	we	have	one	problem	that	remains	unsolved.	How	can
we	expose	an	application	service	to	the	outside	world?	Imagine	a	container
running	a	web	server	hosting	our	webAPI	from	before.	We	want	customers	from
the	internet	to	be	able	to	access	this	API.	We	have	designed	it	to	be	a	publicly
accessible	API.	To	achieve	this,	we	have	to,	figuratively	speaking,	open	a	gate	in
our	firewall	through	which	we	can	funnel	external	traffic	to	our	API.	For
security	reasons,	we	don't	just	want	to	open	the	doors	wide,	but	to	have	only	a
single	controlled	gate	through	which	traffic	flows.	

We	can	create	such	a	gate	by	mapping	a	container	port	to	an	available	port	on	the
host.	We're	also	calling	this	container	port	to	publish	a	port.	Remember,	the
container	has	its	own	virtual	network	stack,	as	does	the	host.	Therefore,
container	ports	and	host	ports	exist	completely	independently,	and	by	default
have	nothing	in	common	at	all.	But	we	can	now	wire	a	container	port	with	a	free
host	port	and	funnel	external	traffic	through	this	link,	as	illustrated	in	the
following	image:

Mapping	container	ports	to	host	ports

But	now	it	is	time	to	demonstrate	how	one	can	actually	map	a	container	port	to	a
host	port.	This	is	done	when	creating	a	container.	We	have	different	ways	of
doing	so:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

First,	we	can	let	Docker	decide	which	host	port	our	container	port	shall	be
mapped	to.	Docker	will	then	select	one	of	the	free	host	ports	in	the	range	of
32xxx.	This	automatic	mapping	is	done	by	using	the	-P		parameter:

$	docker	container	run	--name	web	-P	-d	nginx:alpine

The	preceding	command	runs	an	Nginx	server	in	a	container.	Nginx	is
listening	at	port	80	inside	the	container.	With	the	-P	parameter,	we're
telling	Docker	to	map	all	the	exposed	container	ports	to	a	free	port	in	the
32xxx	range.	We	can	find	out	which	host	port	Docker	is	using	by	using
the	docker	container	port	command:

$	docker	container	port	web

80/tcp	->	0.0.0.0:32768

The	Nginx	container	only	exposes	port	80,	and	we	can	see	that	it	has	been
mapped	to	the	host	port	32768.	If	we	open	a	new	browser	window	and
navigate	to	localhost:32768,	we	should	see	the	following	screenshot:

The	welcome	page	of	Nginx

An	alternative	way	to	find	out	which	host	port	Docker	is	using	for	our
container	is	to	inspect	it.	The	host	port	is	part	of	the	NetworkSettings	node:

$	docker	container	inspect	web	|	grep	HostPort

32768

Finally,	the	third	way	of	getting	this	information	is	to	list	the	container:

$	docker	container	ls

CONTAINER	ID				IMAGE									...			PORTS																		NAMES

56e46a14b6f7				nginx:alpine		...			0.0.0.0:32768->80/tcp		web

Please	note	that	in	the	preceding	output,	the	/tcp	part	tells	us	that	the	port
has	been	opened	for	communication	with	the	TCP	protocol,	but	not	for
the	UDP	protocol.	TCP	is	the	default,	and	if	we	want	to	specify	that	we
want	to	open	the	port	for	UDP,	then	we	have	to	specify	this	explicitly.
The	0.0.0.0	in	the	mapping	tells	us	that	traffic	from	any	host	IP	address
can	now	reach	the	container	port	80	of	the	web	container.

Sometimes,	we	want	to	map	a	container	port	to	a	very	specific	host	port.	We	can
do	this	by	using	the		parameter-p	(or	--publish).	Let's	look	at	how	this	is	done	with
the	following	command:

$	docker	container	run	--name	web2	-p	8080:80	-d	nginx:alpine

The	value	of	the	-p	parameter	is	in	the	form	of	<host	port>:<container	port>.
Therefore,	in	the	preceding	case,	we	map	container	port	80	to	host	port	8080.	Once
the	web2	container	runs,	we	can	test	it	in	the	browser	by	navigating	to
localhost:8080,	and	we	should	be	greeted	by	the	same	Nginx	welcome	page	that
we	saw	in	the	previous	example	that	dealt	with	automatic	port	mapping.

When	using	the	UDP	protocol	for	communication	over	a	certain	port,	then	the
publish	parameter	will	look	like	-p	3000:4321/udp.	Note	that	if	we	want	to	allow
communication	with	both	TCP	and	UDP	protocols	over	the	same	port,	then	we
have	to	map	each	protocol	separately.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	chapter,	we	have	learned	about	how	containers	running	on	a	single	host
can	communicate	with	each	other.	First,	we	looked	at	the	CNM	that	defines	the
requirements	of	a	container	network	and	then	we	looked	at	several
implementations	of	the	CNM,	such	as	the	bridge	network.	We	then	looked	at
how	the	bridge	network	functions	in	detail	and	also	what	kind	of	information
Docker	provides	us	with	about	the	networks	and	the	containers	attached	to	those
networks.	We	also	learned	about	adopting	two	different	perspectives,	from	both
outside	and	inside	the	container.

In	the	next	chapter,	we're	going	to	introduce	Docker	Compose.	We	will	learn
about	creating	an	application	that	consists	of	multiple	services,	each	running	in	a
container,	and	how	Docker	Compose	allows	us	to	easily	build,	run,	and	scale
such	an	application	using	a	declarative	approach.

Questions
To	assess	your	skills,	please	try	to	answer	the	following	questions:

1.	 Name	the	three	core	elements	of	the	container	network	model	(CNM).
2.	 How	will	you	create	a	custom	bridge	network	called	for	example,	frontend?
3.	 How	will	you	run	two	nginx:alpine	containers	attached	to	the	frontend

network.
4.	 For	the	frontend	network,	get	the	following:

1.	 IPs	of	all	attached	containers.
2.	 The	subnet	associated	with	the	network.

5.	 What	is	the	purpose	of	the	host	network?
6.	 Name	one	or	two	scenarios	where	the	use	of	the	host	network	is

appropriate.
7.	 What	is	the	purpose	of	the	none	network?
8.	 In	what	scenarios	should	the	none	network	be	used?

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
Here	are	some	articles	that	describe	the	topics	presented	in	this	chapter	in	more
detail:

Docker	networking	overview	at	http://dockr.ly/2sXGzQn
Container	networking	at	http://dockr.ly/2HJfQKn
What	is	a	Bridge	at	https://bit.ly/2HyC3Od
Use	bridge	networks	at	http://dockr.ly/2BNxjRr
Use	Macvlan	networks	at	http://dockr.ly/2ETjy2x
Networking	using	the	host	network	at	http://dockr.ly/2F4aI59

http://dockr.ly/2sXGzQn
http://dockr.ly/2HJfQKn
https://bit.ly/2HyC3Od
http://dockr.ly/2BNxjRr
http://dockr.ly/2ETjy2x
http://dockr.ly/2F4aI59

Docker	Compose
In	the	previous	chapter,	we	learned	a	lot	about	how	container	networking	works
on	a	single	Docker	host.	We	introduced	the	Container	Network	Model	(CNM),
which	forms	the	basis	of	all	networking	between	Docker	containers,	and	then	we
dove	deep	into	different	implementations	of	the	CNM,	specifically	the	bridge
network.

This	chapter	introduces	the	concept	of	an	application	consisting	of	multiple
services,	each	running	in	a	container,	and	how	Docker	Compose	allows	us	to
easily	build,	run,	and	scale	such	an	application	using	a	declarative	approach.

The	chapter	covers	the	following	topics:

Demystifying	declarative	versus	imperative
Running	a	multi-service	application
Scaling	a	service
Building	and	pushing	an	application

After	completing	this	chapter,	the	reader	will	be	able	to	do	the	following:

Explain	in	a	few	short	sentences	the	main	differences	between	an
imperative	and	declarative	approach	for	defining	and	running	an	application
Describe	in	their	own	words	the	difference	between	a	container	and	a
Docker	Compose	service
Author	a	Docker	Compose	YAML	file	for	a	simple	multi-service
application
Build,	push,	deploy,	and	tear	down	a	simple	multi-service	application	using
Docker	Compose
Use	Docker	Compose	to	scale	an	application	service	up	and	down

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Technical	requirements
The	code	accompanying	this	chapter	can	be	found	at	https://github.com/fundamentals
ofdocker/labs/tree/master/ch08.

https://github.com/fundamentalsofdocker/labs/tree/master/ch08

Demystifying	declarative	versus
imperative
Docker	Compose	is	a	tool	provided	by	Docker	that	is	mainly	used	where	one
needs	to	run	and	orchestrate	containers	running	on	a	single	Docker	host.	This
includes	but	is	not	limited	to	development,	continuous	integration	(CI),
automated	testing,	and	manual	QA.

Docker	Compose	uses	files	formatted	in	YAML	as	input.	By	default,	Docker
Compose	expects	these	files	to	be	called	docker-compose.yml,	but	other	names	are
possible.	The	content	of	a	docker-compose.yml	is	said	to	be	a	declarative	way	of
describing	and	running	a	containerized	application	potentially	consisting	of	more
than	a	single	container.

So,	what	is	the	meaning	of	declarative?

First	of	all,	declarative	is	the	antonym	of	imperative.	Well,	that	doesn't	help
much.	Now	that	I	have	introduced	another	definition,	I	need	to	explain	both	of
them:

Imperative:	It's	a	way	in	which	we	can	solve	problems	by	specifying	the
exact	procedure	which	has	to	be	followed	by	the	system.

If	I	tell	a	system	such	as	the	Docker	daemon	imperatively	how	to	run	an
application	then	that	means	that	I	have	to	describe	step	by	step	what	the
system	has	to	do	and	how	it	has	to	react	if	some	unexpected	situation
occurs.	I	have	to	be	very	explicit	and	precise	in	my	instructions.	I	need	to
cover	all	edge	cases	and	how	they	need	to	be	treated.

Declarative:	It's	a	way	in	which	we	can	solve	problems	without	requiring
the	programmer	to	specify	an	exact	procedure	to	be	followed.

A	declarative	approach	means	that	I	tell	the	Docker	engine	what	my
desired	state	for	an	application	is	and	it	has	to	figure	out	on	its	own	how
to	achieve	this	desired	state	and	how	to	reconcile	it	if	the	system	deviates

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

from	it.

Docker	clearly	recommends	the	declarative	approach	when	dealing	with
containerized	applications.	Consequently,	the	Docker	Compose	tool	uses	this
approach.	

Running	a	multi-service	app
In	most	cases,	applications	do	not	consist	of	only	one	monolithic	block,	but
rather	of	several	application	services	that	work	together.	When	using	Docker
containers,	each	application	service	runs	in	its	own	container.	When	we	want	to
run	such	a	multi-service	application,	we	can	of	course	start	all	the	participating
containers	with	the	well-known	docker	container	run	command.	But	this	is
inefficient	at	best.	With	the	Docker	Compose	tool,	we	are	given	a	way	to	define
the	application	in	a	declarative	way	in	a	file	that	uses	the	YAML	format.

Let's	have	a	look	at	the	content	of	a	simple	docker-compose.yml	file:

version:	"3.5"

services:

		web:

				image:	fundamentalsofdocker/ch08-web:1.0

				ports:

						-	3000:3000

		db:

				image:	fundamentalsofdocker/ch08-db:1.0

				volumes:

						-	pets-data:/var/lib/postgresql/data

volumes:

		pets-data:

The	lines	in	the	file	are	explained	as	follows:

version:	In	this	line,	we	specify	the	version	of	the	Docker	Compose	format
we	want	to	use.	At	the	time	of	writing,	this	is	version	3.5.
services:	In	this	section,	we	specify	the	services	that	make	up	our	application
in	the	services	block.	In	our	sample,	we	have	two	application	services	and
we	call	them	web	and	db:

web:	The	web	service	is	using	the	image	fundamentalsofdocker/ch08-web:1.0
from	the	Docker	Hub	and	is	publishing	container	port	3000	to	the	host
port,	also	3000.
db:	The	db	service,	on	the	other	hand,	is	using	the
image		fundamentalsofdocker/ch08-db:1.0,	which	is	a	customized
PostgreSQL	database.	We	are	mounting	a	volume	called	pets-data	into
the	container	of	the	db	service.

volumes:	The	volumes	used	by	any	of	the	services	have	to	be	declared	in	this

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

section.	In	our	sample,	this	is	the	last	section	of	the	file.	The	first	time	the
application	is	run,	a	volume	called	pets-data	will	be	created	by	Docker	and
then,	in	subsequent	runs,	if	the	volume	is	still	there,	it	will	be	reused.	This
could	be	important	when	the	application,	for	some	reason,	crashes	and	has
to	be	restarted.	Then,	the	previous	data	is	still	around	and	ready	to	be	used
by	the	restarted	database	service.

Navigate	to	the	subfolder	ch08	of	the	labs	folder	and	start	the	application	using
Docker	Compose:

$	docker-compose	up

If	we	enter	the	preceding	command,	then	the	tool	will	assume	that	there	must	be
a	file	in	the	current	directory	called	docker-compose.yml	and	it	will	use	that	one	to
run.	In	our	case,	this	is	indeed	the	case	and	the	application	will	start.	We	should
see	the	output	as	follows:

Running	the	sample	application,	part	1

Running	the	sample	application,	part	2

The	preceding	output	is	explained	as	follows:

In	the	first	part	of	the	output,	we	can	see	how	Docker	Compose	pulls	the
two	images	that	constitute	our	application.	This	is	followed	by	the	creation
of	a	network	ch08_default	and	a	volume	ch08_pets-data,	followed	by	the	two
containers	ch08_web_1	and	ch08_db_1,	one	for	each	service,	web	and	db.	All	the
names	are	automatically	prefixed	by	Docker	Compose	with	the	name	of	the
parent	directory,	which	in	this	case	is	called	ch08.
After	that,	we	see	the	logs	produced	by	the	two	containers.	Each	line	of	the
output	is	conveniently	prefixed	with	the	name	of	the	service,	and	each
service's	output	is	in	a	different	color.	Here,	the	lion's	share	is	produced	by

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

the	database	and	only	one	line	is	from	the	web	service.

We	can	now	open	a	browser	tab	and	navigate	to	localhost:3000/pet.	We	should	be
greeted	by	a	nice	cat	image	and	some	additional	information	about	the	container
it	came	from,	as	shown	in	the	following	screenshot:

The	sample	application	in	the	browser

Refresh	the	browser	a	few	times	to	see	other	cat	images.	The	application	selects
the	current	image	randomly	from	a	set	of	12	images	whose	URLs	are	stored	in
the	database.

As	the	application	is	running	in	interactive	mode	and	thus	the	Terminal	where
we	ran	Docker	Compose	is	blocked,	we	can	cancel	the	application	by	pressing
Ctrl+C.	If	we	do	so,	we	will	see	the	following:

^CGracefully	stopping...	(press	Ctrl+C	again	to	force)

Stopping	ch08_web_1	...	done

Stopping	ch08_db_1	...	done

We	will	notice	that	the	database	service	stops	immediately	while	the	web	service
takes	about	10	seconds	to	do	so.	The	reason	for	this	being	that	the	database
service	listens	to	and	reacts	to	the	SIGTERM	signal	sent	by	Docker	while	the	web
service	doesn't,	and	thus	Docker	kills	it	after	10	seconds.

If	we	run	the	application	again,	the	output	will	be	much	shorter:

Output	of	docker-compose	up

This	time,	we	didn't	have	to	download	the	images	and	the	database	didn't	have	to
initialize	from	scratch,	but	it	was	just	reusing	the	data	that	was	already	present	in
the	volume	pets-data	from	the	previous	run.

We	can	also	run	the	application	in	the	background.	All	containers	will	run	as
daemons.	For	this,	we	just	need	to	use	the	-d	parameter,	as	shown	in	the
following	code:

$	docker-compose	up	-d

Docker	Compose	offers	us	many	more	commands	than	just	up.	We	can	use	it	to
list	all	services	that	are	part	of	the	application:

Output	of	docker-compose	ps

This	command	is	similar	to	docker	container	ls,	with	the	only	difference	being	that
it	only	lists	containers	that	are	part	of	the	application.

To	stop	and	clean	up	the	application,	we	use	the	docker-compose	down	command:

$	docker-compose	down

Stopping	ch08_web_1	...	done

Stopping	ch08_db_1	...	done

Removing	ch08_web_1	...	done

Removing	ch08_db_1	...	done

Removing	network	ch08_default

If	we	also	want	to	remove	the	volume	for	the	database,	then	we	can	use	the
following	command:

$	docker	volume	rm	ch08_pets-data

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Why	is	there	a	ch08	prefix	in	the	name	of	the	volume?	In	the	docker-compose.yml	file,
we	have	called	the	volume	to	use	pets-data.	But	as	we	have	already	mentioned,
Docker	Compose	prefixes	all	names	with	the	name	of	the	parent	folder	of	the
docker-compose.yml	file	plus	an	underscore.	In	this	case,	the	parent	folder	is	called
ch08.

Scaling	a	service
Now,	let's,	for	a	moment,	assume	that	our	sample	application	has	been	live	on
the	web	and	become	very	successful.	Loads	of	people	want	to	see	our	cute
animal	images.	So	now	we're	facing	a	problem	since	our	application	has	started
to	slow	down.	To	counteract	this	problem,	we	want	to	run	multiple	instances	of
the	web	service.	With	Docker	Compose,	this	is	readily	done.

Running	more	instances	is	also	called	scaling	up.	We	can	use	this	tool	to	scale
our	web	service	up	to,	say,	three	instances:

$	docker-compose	up	--scale	web=3

If	we	do	this,	we	are	in	for	a	surprise.	The	output	will	look	similar	to	the
following	screenshot:

Output	of	docker-compose	--scale

The	second	and	third	instances	of	the	web	service	fail	to	start.	The	error	message
tells	us	why:	we	cannot	use	the	same	host	port	more	than	once.	When	instances	2
and	3	try	to	start,	Docker	realizes	that	port	3000	is	already	taken	by	the	first
instance.	What	can	we	do?	Well,	we	can	just	let	Docker	decide	which	host	port
to	use	for	each	instance.

If,	in	the	ports	section	of	the	compose	file,	we	only	specify	the	container	port	and
leave	out	the	host	port,	then	Docker	automatically	selects	an	ephemeral	port.
Let's	do	exactly	this:

1.	 First,	let's	tear	down	the	application:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	docker-compose	down

2.	 Then,	we	modify	the	docker-compose.yml	file	to	look	as	follows:

version:	"3.5"

services:

		web:

				image:	fundamentalsofdocker/ch08-web:1.0

				ports:

						-	3000

		db:

				image:	fundamentalsofdocker/ch08-db:1.0

				volumes:

						-	pets-data:/var/lib/postgresql/data

volumes:

		pets-data:

3.	 Now,	we	can	start	the	application	again	and	scale	it	up	immediately	after
that:	

$	docker-compose	up	-d

$	docker-compose	scale	web=3

Starting	ch08_web_1	...	done

Creating	ch08_web_2	...	done

Creating	ch08_web_3	...	done

4.	 If	we	now	do	a	docker-compose	ps,	we	should	see	the	following	screenshot:

Output	of	docker-compose	ps

5.	 As	we	can	see,	each	service	has	been	associated	to	a	different	host	port.	We
can	try	to	see	whether	they	work,	for	example,	using	curl.	Let's	test	the	third
instance,	ch08_web_3:

$	curl	-4	localhost:32770

Pets	Demo	Application

The	answer,	Pets	Demo	Application,	tells	us	that,	indeed,	our	application	is
still	working	as	expected.	Try	it	out	for	the	other	two	instances	to	be	sure.

Building	and	pushing	an	application
We	can	also	use	the	docker-compose	build	command	to	just	build	the	images	of	an
application	defined	in	the	underlying	compose	file.	But	to	make	this	work,	we'll
have	to	add	the	build	information	to	the	docker-compose	file.	In	the	folder,	we	have
a	file,	docker-compose.dev.yml,	which	has	those	instructions	already	added:

version:	"3.5"

services:

		web:

				build:	web

				image:	fundamentalsofdocker/ch08-web:1.0

				ports:

						-	3000:3000

		db:

				build:	database

				image:	fundamentalsofdocker/ch08-db:1.0

				volumes:

						-	pets-data:/var/lib/postgresql/data

volumes:

		pets-data:

Please	note	the	build	key	for	each	service.	The	value	of	that	key	indicates	the
context	or	folder	where	Docker	is	expecting	to	find	the	Dockerfile	to	build	the
corresponding	image.

Let's	use	that	file	now:

$	docker-compose	-f	docker-compose.dev.yml	build

The	-f	parameter	will	tell	the	Docker	Compose	application	which	compose	file
to	use.

To	push	all	images	to	Docker	Hub,	we	can	use	docker-compose	push.	We	need	to	be
logged	in	to	Docker	Hub	so	that	this	succeeds,	otherwise	we	get	an
authentication	error	while	pushing.	Thus,	in	my	case,	I	do	the	following:

$	docker	login	-u	fundamentalsofdocker	-p	<password>

Assuming	the	login	succeeds,	I	can	then	push	the	following	code:

$	docker-compose	-f	docker-compose.dev.yml	push

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	preceding	command	pushes	the	two	images	to	the	account
fundamentalsofdocker	on	Docker	Hub.	You	can	find	these	two	images	at	the	URL:	ht
tps://hub.docker.com/u/fundamentalsofdocker/.

https://hub.docker.com/u/fundamentalsofdocker/

Summary
In	this	chapter,	we	introduced	the	tool	docker-compose.	This	tool	is	mostly	used	to
run	and	scale	multi-service	applications	on	a	single	Docker	host.	Typically,
developers	and	CI	servers	work	with	single	hosts	and	those	two	are	the	main
users	of	Docker	Compose.	The	tool	is	using	YAML	files	as	input	that	contain	the
description	of	the	application	in	a	declarative	way.

The	tool	can	also	be	used	to	build	and	push	images	among	many	other	helpful
tasks.	The	code	accompanying	this	chapter	can	be	found	in	labs/ch08.

In	the	next	chapter,	we	are	going	to	introduce	orchestrators.	An	orchestrator	is
an	infrastructure	software	that	is	used	to	run	and	manage	containerized
applications	in	a	cluster	and	it	makes	sure	that	these	applications	are	in	their
desired	state	at	all	the	time.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
To	assess	your	learning	progress	please	answer	the	following	questions:

1.	 How	will	you	use	docker-compose	to	run	an	application	in	daemon	mode?
2.	 How	will	you	use	docker-compose	to	display	the	details	of	the	running	service?
3.	 How	will	you	scale	up	a	particular	web	service	to	say,	three	instances?

Further	reading
The	following	links	provide	additional	information	on	the	topics	discussed	in
this	chapter:

The	official	YAML	website	at	http://www.yaml.org/
Docker	Compose	documentation	at	http://dockr.ly/1FL2VQ6
Compose	file	version	3	reference	at	http://dockr.ly/2iHUpeX

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

http://www.yaml.org/
http://dockr.ly/1FL2VQ6
http://dockr.ly/2iHUpeX

Orchestrators
In	the	previous	chapter,	we	introduced	Docker	Compose,	a	tool	that	allows	us	to
work	with	multi-service	applications	that	are	defined	in	a	declarative	way	on	a
single	Docker	host.

This	chapter	introduces	the	concept	of	orchestrators.	It	teaches	why	orchestrators
are	needed	and	how	they	work	conceptually.	This	chapter	will	also	provide	an
overview	of	the	most	popular	orchestrators	and	names	a	few	of	their	pros	and
cons.

In	this	chapter,	we	will	cover	the	following	topics:

What	are	orchestrators	and	why	do	we	need	them?
The	tasks	of	an	orchestrator
Overview	of	popular	orchestrators

After	finishing	this	chapter	you	will	be	able	to:

Name	three	to	four	tasks	an	orchestrator	is	responsible	for
List	two	to	three	of	the	most	popular	orchestrators
Explain	to	an	interested	layman	in	your	own	words	and	with	appropriate
analogies	why	we	need	container	orchestrators

What	are	orchestrators	and	why	do
we	need	them?
In	Chapter	6,	Distributed	Application	Architecture,	we	learned	which	patterns	and
best	practices	are	commonly	used	to	successfully	build,	ship,	and	run	a	highly
distributed	application.	Now,	if	our	highly	distributed	application	is
containerized,	then	we're	facing	the	exact	same	problems	or	challenges	that	a
non-containerized	distributed	application	faces.	Some	of	these	challenges	are
those	discussed	in	Chapter	6,	Distributed	Application	Architecture,	service
discovery,	load	balancing,	scaling,	and	so	on.

Similar	to	what	Docker	did	with	containers—standardizing	the	packaging	and
shipping	of	software	with	the	introduction	of	containers—we	would	like	to	have
some	tool	or	infrastructure	software	that	handles	all	or	most	of	the	challenges
mentioned.	This	software	turns	out	to	be	what	we	call	orchestrators	or,	as	we
also	call	them,	orchestration	engines.

If	what	I	just	said	doesn't	make	much	sense	to	you	yet,	then	let's	look	at	it	from	a
different	angle.	Take	an	artist	who	plays	an	instrument.	They	can	play	wonderful
music	to	an	audience	all	on	their	own,	just	the	artist	and	their	instrument.	But
now	take	an	orchestra	of	musicians.	Put	them	all	in	a	room,	give	them	the	notes
of	a	symphony,	ask	them	to	play	it,	and	leave	the	room.	Without	any	director,
this	group	of	very	talented	musicians	would	not	be	able	to	play	this	piece	in
harmony;	it	would	more	or	less	sound	like	a	cacophony.	Only	if	the	orchestra	has
a	conductor	who	orchestrates	the	group	of	musicians	will	the	resulting	music	of
the	orchestra	be	enjoyable	to	our	ears:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

A	container	orchestrator	is	like	the	conductor	of	an	orchestra

Instead	of	musicians,	we	now	have	containers,	and	instead	of	different
instruments,	we	have	containers	that	have	different	requirements	to	the	container
hosts	to	run.	And	instead	of	the	music	being	played	in	varying	tempi,	we	have
containers	that	communicate	with	each	other	in	particular	ways	and	have	to	scale
up	and	scale	down.	In	this	regard,	a	container	orchestrator	has	very	much	the
same	role	as	a	conductor	in	an	orchestra.	It	makes	sure	that	the	containers	and
other	resources	in	a	cluster	play	together	in	harmony.

I	hope	you	can	now	see	more	clearly	what	a	container	orchestrator	is	and	why
we	need	one.	Assuming	that	you	confirm	this	question,	we	can	now	ask
ourselves	how	the	orchestrator	is	going	to	achieve	the	expected	outcome,	namely
to	make	sure	all	the	containers	in	the	cluster	play	with	each	other	in	harmony.
Well,	the	answer	is,	the	orchestrator	has	to	execute	very	specific	tasks,	similar	to
the	way	in	which	the	conductor	of	an	orchestra	also	has	a	set	of	tasks	they
execute	in	order	to	tame	and	at	the	same	time	elevate	the	orchestra.		

The	tasks	of	an	orchestrator
So,	what	are	the	tasks	that	we	expect	an	orchestrator	worth	its	money	to	execute
for	us?	Let's	look	at	them	in	detail.	The	following	list	shows	the	most	important
tasks	that,	at	the	time	of	writing,	enterprise	users	typically	expect	from	their
orchestrator.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Reconciling	the	desired	state
When	using	an	orchestrator,	one	tells	it	in	a	declarative	way	how	one	wants	it	to
run	a	given	application	or	application	service.	We	learned	what	declarative
versus	imperative	means	in	Chapter	8,	Docker	Compose.	Part	of	this	declarative
way	of	describing	the	application	service	we	want	to	run	is	elements	such	as
which	container	image	to	use,	how	many	instances	to	run	of	this	service,	which
ports	to	open,	and	more.	This	declaration	of	the	properties	of	our	application
service	is	what	we	call	the	desired	state.

So,		when	we	now	tell	the	orchestrator	the	first	time	to	create	such	a	new
application	service	based	on	the	declaration,	then	the	orchestrator	makes	sure	to
schedule	as	many	containers	in	the	cluster	as	requested.	If	the	container	image	is
not	yet	available	on	the	target	nodes	of	the	cluster	where	the	containers	are
supposed	to	run,	then	the	scheduler	makes	sure	they're	downloaded	from	the
image	registry	first.	Next,	the	containers	are	started	with	all	the	settings,	such	as
networks	to	which	to	attach,	or	ports	to	expose.	The	orchestrator	works	as	hard
as	it	can	to	exactly	match	in	reality	in	the	cluster	what	it	got	in	our	declaration.

Once	our	service	is	up	and	running	as	requested,	that	is,	it	is	running	in	the
desired	state,	then	the	orchestrator	continues	to	monitor	it.	Each	time	the
orchestrator	discovers	a	discrepancy	between	the	actual	state	of	the	service	and
its	desired	state,	it	again	tries	its	best	to	reconcile	the	desired	state.

What	could	such	a	discrepancy	between	the	actual	and	desired	states	of	an
application	service	be?	Well,	let's	say	one	of	the	replicas	of	the	service,	that	is,
one	of	the	containers,	crashes	due	to,	say,	a	bug,	then	the	orchestrator	will
discover	that	the	actual	state	differs	from	the	desired	state	in	the	number	of
replicas:	there	is	one	replica	missing.	The	orchestrator	will	immediately	schedule
a	new	instance	to	another	cluster	node,	which	replaces	the	crashed	instance.
Another	discrepancy	could	be	that	there	are	too	many	instances	of	the
application	service	running,	if	the	service	has	been	scaled	down.	In	this	case,	the
orchestrator	will	just	randomly	kill	as	many	instances	as	needed	to	achieve	parity
between	the	actual	and	the	desired	number	of	instances.	Another	discrepancy
could	be	when	the	orchestrator	discovers	that	there	is	an	instance	of	the

application	service	running	a	wrong	(maybe	old)	version	of	the	underlying
container	image.	By	now,	you	should	get	the	picture,	right?

Thus,	instead	of	us	actively	monitoring	our	application's	services	running	in	the
cluster	and	correcting	any	deviation	from	the	desired	state,	we	delegate	this
tedious	task	to	the	orchestrator.	This	works	very	well,	if	we	use	a	declarative	and
not	an	imperative	way	of	describing	the	desired	state	of	our	application
services.		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Replicated	and	global	services
There	are	two	quite	different	types	of	services	that	we	might	want	to	run	in	a
cluster	managed	by	an	orchestrator.	They	are	replicated	and	global	services.	A
replicated	service	is	a	service	which	is	required	to	run	in	a	specific	number	of
instances,	say	10.	A	global	service,	in	turn,	is	a	service	that	is	required	to	have	an
instance	running	on	every	single	worker	node	of	the	cluster.	I	have	used	the	term
worker	node	here.	In	a	cluster	managed	by	an	orchestrator,	we	typically	have
two	types	of	nodes,	managers	and	workers.	A	manager	node	is	usually
exclusively	used	by	the	orchestrator	to	manage	the	cluster	and	does	not	run	any
other	workload.	Worker	nodes,	in	turn,	run	the	actual	applications.

So,	the	orchestrator	makes	sure	that,	for	a	global	service,	an	instance	of	it	is
running	on	every	single	worker	node,	no	matter	how	many	there	are.	We	do	not
need	to	care	about	the	number	of	instances,	but	only	that	on	each	node	it	is
guaranteed	to	run	a	single	instance	of	the	service.

Once	again,	we	can	fully	rely	on	the	orchestrator	to	take	care	of	this	feat.	In	a
replicated	service,	we	will	always	be	guaranteed	to	find	the	exact	desired
number	of	instances,	while	for	a	global	service,	we	can	be	assured	that	on	every
worker	node,	there	will	always	run	exactly	one	instance	of	the	service.	The
orchestrator	will	always	work	as	hard	as	it	can	to	guarantee	this	desired	state.

In	Kubernetes,	a	global	service	is	also	called	a	daemon	set.

Service	discovery
When	we	describe	an	application	service	in	a	declarative	way,	we
are	never	supposed	to	tell	the	orchestrator	on	which	cluster	nodes	the	different
instances	of	the	service	have	to	run.	We	leave	it	up	to	the	orchestrator	to	decide
which	nodes	best	fit	this	task.

It	is,	of	course,	technically	possible	to	instruct	the	orchestrator	to	use	very
deterministic	placement	rules,	but	this	would	be	an	anti-pattern	and	is	not
recommended	at	all.

So,	if	we	now	assume	that	the	orchestration	engine	has	complete	and	free	will	as
to	where	to	place	individual	instances	of	the	application	service	and,
furthermore,	that	instances	can	crash	and	be	rescheduled	by	the	orchestrator	to
different	nodes,	then	we	will	realize	that	it	is	a	futile	task	for	us	to	keep	track	of
where	the	individual	instances	are	running	at	any	given	time.	Even	better,	we
shouldn't	even	try	to	know	this	since	it	is	not	important.

OK,	you	might	say,	but	what	about	if	I	have	two	services,	A	and	B,	and	Service
A	relies	on	Service	B;	shouldn't	any	given	instance	of	Service	A	know	where	it
can	find	an	instance	of	Service	B?	

There	I	have	to	say	loudly	and	clearly—no,	it	shouldn't.	This	kind	of	knowledge
is	not	desirable	in	a	highly	distributed	and	scalable	application.	Rather,	we
should	rely	on	the	orchestrator	to	provide	us	the	information	we	need	to	reach
other	service	instances	we	depend	on.	It	is	a	bit	like	in	the	old	days	of	telephony,
when	we	could	not	directly	call	our	friends	but	had	to	call	the	phone	company's
central	office,	where	some	operator	would	then	route	us	to	the	correct
destination.	In	our	case,	the	orchestrator	plays	the	role	of	the	operator,	routing	a
request	coming	from	an	instance	of	Service	A	to	an	available	instance	of	Service
B.	This	whole	process	is	called	service	discovery.		

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Routing
We	have	learned	so	far	that	in	a	distributed	application,	we	have	many
interacting	services.	When	Service	A	interacts	with	Service	B,	it	happens
through	the	exchange	of	data	packets.	These	data	packets	need	to	somehow	be
funneled	from	Service	A	to	Service	B.	This	process	of	funneling	the	data	packets
from	a	source	to	a	destination	is	also	called	routing.	As	authors	or	operators	of
an	application,	we	do	expect	the	orchestrator	to	take	over	this	task	of	routing.	As
we	will	see	in	later	chapters,	routing	can	happen	on	different	levels.	It	is	like	in
real	life.	Suppose	you're	working	in	a	big	company	in	one	of	their	office
buildings.	Now,	you	have	a	document	that	needs	to	be	forwarded	to	another
employee	of	the	company.	The	internal	post	service	will	pick	up	the	document
from	your	outbox	and	take	it	to	the	post	office	located	in	the	same	building.	If
the	target	person	works	in	the	same	building,	the	document	can	then	be	directly
forwarded	to	that	person.	If,	on	the	other	hand,	the	person	works	in	another
building	of	the	same	block,	the	document	will	be	forwarded	to	the	post	office	in
that	target	building,	from	where	it	is	then	distributed	to	the	receiver	through	the
internal	post	service.	Thirdly,	if	the	document	is	targeted	at	an	employee
working	in	another	branch	of	the	company	located	in	a	different	city	or	even
country,	then	the	document	is	forwarded	to	an	external	postal	service	such	as
UPS,	which	will	transport	it	to	the	target	location,	from	where,	once	again,	the
internal	post	service	takes	over	and	delivers	it	to	the	recipient.

Similar	things	happen	when	routing	data	packets	between	application	services
running	in	containers.	The	source	and	target	containers	can	be	located	on	the
same	cluster	node,	which	corresponds	to	the	situation	where	both	employees
work	in	the	same	building.	The	target	container	can	be	running	on	a	different
cluster	node,	which	corresponds	to	the	situation	where	the	two	employees	work
in	different	buildings	of	the	same	block.	Finally,	the	third	situation	is	when	a
data	packet	comes	from	outside	of	the	cluster	and	has	to	be	routed	to	the	target
container	running	inside	the	cluster.	

All	these	situations	and	more	have	to	be	handled	by	the	orchestrator.

Load	balancing
In	a	highly	available	distributed	application,	all	components	have	to	be
redundant.	That	means	that	every	application	service	has	to	be	run	in	multiple
instances	so	that	if	one	instance	fails,	the	service	as	a	whole	is	still	operational.

To	make	sure	that	all	instances	of	a	service	are	actually	doing	work	and	not	just
sitting	around	idle,	one	has	to	make	sure	that	the	requests	for	service	are
distributed	equally	to	all	the	instances.	This	process	of	distributing	workload
among	service	instances	is	called	load	balancing.	Various	algorithms	exist	for
how	the	workload	can	be	distributed.	Usually,	a	load	balancer	works	using	the
so-called	round	robin	algorithm,	which	makes	sure	that	the	workload	is
distributed	equally	to	the	instances	using	a	cyclic	algorithm.

Once	again,	we	expect	the	orchestrator	to	take	care	of	load	balancing	requests
from	one	service	to	another	or	from	external	sources	to	internal	services.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Scaling
When	running	our	containerized,	distributed	application	in	a	cluster	managed	by
an	orchestrator,	we	also	want	an	easy	way	to	handle	expected	or	unexpected
increases	in	workload.	To	handle	an	increased	workload,	we	usually	just
schedule	additional	instances	of	a	service	that	is	experiencing	this	increased
load.	Load	balancers	will	then	automatically	be	configured	to	distribute	the
workload	over	more	available	target	instances.

But	in	real-life	scenarios,	the	workload	varies	over	time.	If	we	look	at	a	shopping
site	such	as	Amazon,	it	might	have	a	high	load	during	peak	hours	in	the	evening,
when	everyone	is	at	home	and	shopping	online;	it	may	experience	extreme	loads
during	special	days	such	as	Black	Friday;	and	it	may	experience	very	little	traffic
early	in	the	morning.	Thus,	services	need	to	not	just	be	able	to	scale	up,	but	also
to	scale	down	when	the	workload	goes	down.

We	also	expect	orchestrators	to	distribute	the	instances	of	a	service	in	a
meaningful	way	when	scaling	up	or	down.	It	would	not	be	wise	to	schedule	all
instances	of	the	service	on	the	same	cluster	node,	since	if	that	node	goes	down,
the	whole	service	goes	down.	The	scheduler	of	the	orchestrator,	which	is
responsible	for	the	placement	of	the	containers,	needs	to	also	consider	not
placing	all	instances	into	the	same	rack	of	computers,	since	if	the	power	supply
of	the	rack	fails,	again	the	whole	service	is	affected.	Furthermore,	service
instances	of	critical	services	should	even	be	distributed	across	data	centers	to
avoid	outages.	All	these	decisions	and	many	more	are	the	responsibility	of	the
orchestrator.

Self-healing
These	days,	orchestrators	are	very	sophisticated	and	can	do	a	lot	for	us	to
maintain	a	healthy	system.	Orchestrators	monitor	all	containers	running	in	the
cluster	and	they	automatically	replace	crashed	or	unresponsive	ones	with	new
instances.	Orchestrators	monitor	the	health	of	cluster	nodes	and	take	them	out	of
the	scheduler	loop	if	a	node	becomes	unhealthy	or	is	down.	A	workload	that	was
located	on	those	nodes	is	automatically	rescheduled	to	different	available	nodes.

All	these	activities	where	the	orchestrator	monitors	the	current	state	and
automatically	repairs	the	damage	or	reconciles	the	desired	state	lead	to	a	so-
called	self-healing	system.	We	do	not,	in	most	cases,	have	to	actively	engage
and	repair	damage.	The	orchestrator	will	do	this	for	us	automatically.

But	there	are	a	few	situations	that	the	orchestrator	cannot	handle	without	our
help.	Imagine	a	situation	where	we	have	a	service	instance	running	in	a
container.	The	container	is	up	and	running	and,	from	the	outside,	looks	perfectly
healthy.	But	the	application	inside	is	in	an	unhealthy	state.	The	application	did
not	crash,	it	just	is	not	able	to	work	as	designed	anymore.	How	could	the
orchestrator	possibly	know	about	this	without	us	giving	it	a	hint?	It	can't!	Being
in	an	unhealthy	or	invalid	state	means	something	completely	different	for	each
application	service.	In	other	words,	the	health	status	is	service	dependent.	Only
the	authors	of	the	service	or	its	operators	know	what	health	means	in	the	context
of	a	service.

Now,	orchestrators	define	seams	or	probes,	over	which	an	application	service
can	communicate	to	the	orchestrator	in	what	state	it	is.	Two	fundamental	types
of	probe	exist:

The	service	can	tell	the	orchestrator	that	it	is	healthy	or	not
The	service	can	tell	the	orchestrator	that	it	is	ready	or	temporarily
unavailable

How	the	service	determines	either	of	the	preceding	answers	is	totally	up	to	the
service.	The	orchestrator	only	defines	how	it	is	going	to	ask,	for	example,
through	an	HTTP	GET	request,	or	what	type	of	answers	it	is	expecting,	for

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

example,	OK	or	NOT	OK.

If	our	services	implement	logic	to	answer	the	preceding	health	or	availability
questions,	then	we	have	a	truly	self-healing	system,	since	the	orchestrator	can
kill	unhealthy	service	instances	and	replace	them	with	new	healthy	ones,	and	it
can	take	service	instances	that	are	temporarily	unavailable	out	of	the	load
balancer's	round	robin.

Zero	downtime	deployments
These	days,	it	gets	harder	and	harder	to	justify	a	complete	downtime	for	a
mission-critical	application	that	needs	to	be	updated.	Not	only	does	that	mean
missed	opportunities,	but	it	can	also	result	in	a	damaged	reputation	for	the
company.	Customers	using	the	application	are	just	not	ready	to	accept	such	an
inconvenience	anymore	and	will	turn	away	quickly.	Furthermore,	our	release
cycles	get	shorter	and	shorter.	Where,	in	the	past,	we	would	have	one	or	two	new
releases	per	year,	these	days,	a	lot	of	companies	update	their	applications
multiple	times	a	week	or	even	multiple	times	per	day.

The	solution	to	that	problem	is	to	come	up	with	a	zero	downtime	application
update	strategy.	The	orchestrator	needs	to	be	able	to	update	individual
application	services	batch-wise.	This	is	also	called	rolling	updates.	At	any	given
time,	only	one	or	a	few	of	the	total	number	of	instances	of	a	given	service	are
taken	down	and	replaced	by	the	new	version	of	the	service.	Only	if	the	new
instances	are	operational	and	do	not	produce	any	unexpected	errors	or	show	any
misbehavior	will	the	next	batch	of	instances	be	updated.	This	is	repeated	until	all
instances	are	replaced	with	their	new	version.	If,	for	some	reason,	the	update
fails,	we	expect	the	orchestrator	to	automatically	roll	the	updated	instances	back
to	their	previous	version.

Other	possible	zero	downtime	deployments	are	so-called	canary	releases	and
blue-green	deployments.	In	both	cases,	the	new	version	of	a	service	is	installed
in	parallel	with	the	current,	active	version.	But	initially,	the	new	version	is	only
accessible	internally.	Operations	can	then	run	smoke	tests	against	the	new
version	and	when	the	new	version	seems	to	be	running	just	fine,	then,	in	the	case
of	blue-green	deployment,	the	router	is	switched	from	the	current	blue	to	the
new	green	version.	For	some	time,	the	new	green	version	of	the	service	is
closely	monitored	and,	if	everything	is	fine,	the	old	blue	version	can	be
decommissioned.	If,	on	the	other	hand,	the	new	green	version	does	not	work	as
expected,	then	it	is	only	a	matter	of	setting	the	router	back	to	the	old	blue	version
to	achieve	a	complete	rollback.

In	the	case	of	a	canary	release,	the	router	is	configured	in	such	a	way	that	it

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

funnels	a	tiny	percentage,	say	1%,	of	the	overall	traffic	through	the	new	version
of	the	service,	while	99%	of	the	traffic	is	still	routed	through	the	old	version.	The
behavior	of	the	new	version	is	closely	monitored	and	compared	to	the	behavior
of	the	old	version.	If	everything	looks	good,	then	the	percentage	of	the	traffic
funneled	through	the	new	service	is	slightly	increased.	This	process	is	repeated
until	100%	of	the	traffic	is	routed	through	the	new	service.	If	the	new	service	has
run	for	a	while	and	everything	looks	good,	then	the	old	service	can	be
decommissioned.

Most	orchestrators	support	at	least	the	rolling	update	type	of	zero	downtime
deployment	out	of	the	box.	Blue-green	and	canary	releases	are	often	quite	easy
to	implement.

Affinity	and	location	awareness
Sometimes,	certain	application	services	require	the	availability	of	dedicated
hardware	on	the	nodes	they	run	on.	For	example	I/O-bound	services	require
cluster	nodes	with	an	attached	high-performance	solid-state	drive	(SSD),	or
some	services	require	an	Accelerated	Processing	Unit	(APU).	Orchestrators
allow	us	to	define	node	affinities	per	application	service.	The	orchestrator	will
then	make	sure	that	its	scheduler	only	schedules	containers	on	cluster	nodes	that
fulfill	the	required	criteria.

Defining	an	affinity	to	a	particular	node	should	be	avoided;	this	would	introduce
a	single	point	of	failure	and	thus	compromise	high	availability.	Always	define	a
set	of	multiple	cluster	nodes	as	the	target	for	an	application	service.

Some	orchestration	engines	also	support	what	is	called	location	awareness	or
geo-awareness.	What	this	means	is	that	one	can	request	the	orchestrator	to
equally	distribute	instances	of	a	service	over	a	set	of	different	locations.	One
could,	for	example,	define	a	label	datacenter	with	the	possible	values	west,	center,
and	east	and	apply	the	label	to	all	cluster	nodes	with	the	value	that	corresponds
to	the	geographical	region	in	which	the	respective	node	is	located.	Then,	one
instructs	the	orchestrator	to	use	this	label	for	geo-awareness	of	a	certain
application	service.	In	this	case,	if	one	requests	nine	replicas	of	the	service,	the
orchestrator	would	make	sure	that	three	instances	are	deployed	to	nodes	in	each
of	the	three	data	centers,	west,	center,	and	east.

Geo-awareness	can	even	be	defined	hierarchically;	for	example,	one	can	have	a
data	center	as	the	top-level	discriminator,	followed	by	the	availability	zone	and
then	the	server	rack.

Geo-awareness	or	location	awareness	is	used	to	decrease	the	probability	of
outages	due	to	power	supply	failures	or	data	center	outages.	If	the	application
instances	are	distributed	across	server	racks,	availability	zones,	or	even	data
centers,	it	is	extremely	unlikely	that	everything	goes	down	at	once.	One	region
will	always	be	available.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Security
These	days,	security	in	IT	is	a	very	hot	topic.	Cyberwarfare	is	at	an	all-time	high.
Most	high-profile	companies	have	been	victims	of	hacker	attacks,	with	very
costly	consequences.	One	of	the	worst	nightmares	of	each	chief	information
officer	(CIO)	or	chief	technology	officer	(CTO)	is	to	wake	up	in	the	morning
and	hear	in	the	news	that	their	company	has	become	a	victim	of	a	hacker	attack
and	that	sensitive	information	has	been	stolen	or	compromised.

To	counter	most	of	these	security	threats,	we	need	to	establish	a	secure	software
supply	chain	and	enforce	security	defense	in	depth.	Let's	look	at	some	of	the
tasks	one	can	expect	from	an	enterprise-grade	orchestrator.

Secure	communication	and
cryptographic	node	identity
First	and	foremost,	we	want	to	make	sure	that	our	cluster	managed	by	the
orchestrator	is	secure.	Only	trusted	nodes	can	join	the	cluster.	Each	node	that
joins	the	cluster	gets	a	cryptographic	node	identity,	and	all	communication
between	the	nodes	must	be	encrypted.	For	this,	nodes	can	use	mutual	transport
layer	security	(MTLS).	To	authenticate	nodes	of	the	cluster	with	each	other,
certificates	are	used.	These	certificates	are	automatically	rotated	periodically	or
on	request	to	protect	the	system	in	case	a	certificate	is	leaked.

The	communication	that	happens	in	a	cluster	can	be	separated	into	three	types.
One	talks	about	communication	planes.	There	are	management,	control,	and
data	planes:

The	management	plane	is	used	by	the	cluster	managers	or	masters	to,	for
example,	schedule	service	instances,	execute	health	checks,	or	create	and
modify	any	other	resources	in	the	cluster,	such	as	data	volumes,	secrets,	or
networks.
The	control	plane	is	used	to	exchange	important	state	information	between
all	nodes	of	the	cluster.	This	kind	of	information	is,	for	example,	used	to
update	the	local	IP	tables	on	clusters	which	are	used	for	routing	purposes.
The	data	plane	is	where	the	application	services	communicate	with	each
other	and	exchange	data.

Normally,	orchestrators	mainly	care	about	securing	the	management	and	control
plane.	Securing	the	data	plane	is	left	to	the	user,	yet	the	orchestrator	may
facilitate	this	task.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Secure	networks	and	network	policies
When	running	application	services,	not	every	service	needs	to	communicate	with
every	other	service	in	the	cluster.	Thus,	we	want	the	ability	to	sandbox	services
from	each	other	and	only	run	those	services	in	the	same	networking	sandbox	that
absolutely	need	to	communicate	with	each	other.	All	other	services	and	all
network	traffic	coming	from	outside	of	the	cluster	should	have	no	possibility	of
accessing	the	sandboxed	services.

There	are	at	least	two	ways	in	which	this	network-based	sandboxing	can	happen.
We	can	either	use	a	software-defined	network	(SDN)	to	group	application
services	or	we	can	have	one	flat	network	and	use	network	policies	to	control
who	does	and	does	not	have	access	to	a	particular	service	or	group	of	services.	

Role-based	access	control	(RBAC)
One	of	the	most	important	tasks,	next	to	security,	an	orchestrator	must	fulfill	to
make	it	enterprise	ready	is	to	provide	role-based	access	to	the	cluster	and	its
resources.	RBAC	defines	how	subjects,	users,	or	groups	of	users	of	the	system,
organized	into	teams	and	so	on,	can	access	and	manipulate	the	system.	It	makes
sure	that	unauthorized	personnel	cannot	do	any	harm	to	the	system	nor	see	any
resources	available	in	the	system	they're	not	supposed	to	know	of	or	see.

A	typical	enterprise	might	have	user	groups	such	as	Development,	QA,	and	Prod,	and	each	of
those	groups	can	have	one	to	many	users	associated	with	it.	John	Doe,	the	developer,	is	a
member	of	the	Development	group	and,	as	such,	can	access	resources	dedicated	to	the
development	team,	but	he	cannot	access,	for	example,	the	resources	of	the	Prod	team,	of
which	Ann	Harbor	is	a	member.	She,	in	turn,	cannot	interfere	with	the	Development	team's
resources.

One	way	of	implementing	RBAC	is	through	the	definition	of	grants.	A	grant	is
an	association	between	a	subject,	a	role,	and	a	resource	collection.	Here,	a	role	is
comprised	of	a	set	of	access	permissions	to	a	resource.	Such	permissions	can	be
to	create,	stop,	remove,	list,	or	view	containers;	to	deploy	a	new	application
service;	to	list	cluster	nodes	or	view	the	details	of	a	cluster	node;	and	many
more.	

	A	resource	collection	is	a	group	of	logically	related	resources	of	the	cluster,
such	as	application	services,	secrets,	data	volumes,	or	containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Secrets
In	our	daily	life,	we	have	loads	of	secrets.	Secrets	are	information	that	is	not
meant	to	be	publicly	known,	such	as	the	username	and	password	combination
you	use	to	access	your	online	bank	account,	or	the	code	to	your	cell	phone	or
your	locker	at	the	gym.

When	writing	software,	we	often	need	to	use	secrets,	too.	For	example,	we	need
some	certificate	to	authenticate	our	application	service	with	some	external
service	we	want	to	access,	or	we	need	a	token	to	authenticate	and	authorize	our
service	when	accessing	some	other	API.	In	the	past,	developers,	for
convenience,	have	just	hardcoded	those	values	or	put	them	in	clear	text	in	some
external	configuration	files.	There,	this	very	sensitive	information	has	been
accessible	to	a	broad	audience	that	in	reality	should	never	have	had	the
opportunity	to	see	those	secrets.

Luckily,	these	days,	orchestrators	offer	what's	called	secrets	to	deal	with	such
sensitive	information	in	a	highly	secure	way.	Secrets	can	be	created	by
authorized	or	trusted	personnel.	The	values	of	those	secrets	are	then	encrypted
and	stored	in	the	highly	available	cluster	state	database.	The	secrets,	since	they
are	encrypted,	are	now	secure	at	rest.	Once	a	secret	is	requested	by	an	authorized
application	service,	the	secret	is	only	forwarded	to	the	cluster	nodes	that	actually
run	an	instance	of	that	particular	service,	and	the	secret	value	is	never	stored	on
the	node	but	mounted	into	the	container	in	a	tmpfs	RAM-based	volume.	Only
inside	the	respective	container	is	the	secret	value	available	in	clear	text.

We	already	mentioned	that	the	secrets	are	secure	at	rest.	Once	they	are	requested
by	a	service,	the	cluster	manager	or	master	decrypts	the	secret	and	sends	it	over
the	wire	to	the	target	nodes.	So,	what	about	the	secrets	being	secure	in	transit?
Well,	we	learned	earlier	that	the	cluster	nodes	use	MTLS	for	their
communication,	thus	the	secret,	although	transmitted	in	clear	text,	is	still	secure
since	data	packets	will	be	encrypted	by	MTLS.	Thus,	secrets	are	secure	at	rest
and	in	transit.	Only	services	that	are	authorized	to	use	secrets	will	ever	have
access	to	those	secret	values.

Content	trust
For	added	security,	we	want	to	make	sure	that	only	trusted	images	run	in	our
production	cluster.	Some	orchestrators	allow	us	to	configure	a	cluster	so	that	it
can	only	ever	run	signed	images.	Content	trust	and	signing	images	is	all	about
making	sure	that	the	authors	of	the	image	are	the	ones	that	we	expect	them	to	be,
namely	our	trusted	developers	or,	even	better,	our	trusted	CI	server.	Furthermore,
with	content	trust,	we	want	to	guarantee	that	the	image	we	get	is	fresh	and	not	an
old	and	maybe	vulnerable	image.	And	finally,	we	want	to	make	sure	that	the
image	cannot	be	compromised	by	malicious	hackers	in	transit.	The	latter	is	often
called	a	man-in-the-middle	(MITM)	attack.

By	signing	images	at	the	source	and	validating	the	signature	at	the	target,	we	can
guarantee	that	the	images	we	want	to	run	are	not	compromised.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Reverse	uptime
The	last	point	I	want	to	discuss	in	the	context	of	security	is	reverse	uptime.	What
do	we	mean	by	that?	Imagine	that	you	have	configured	and	secured	a	production
cluster.	On	this	cluster,	you're	running	a	few	mission-critical	applications	of	your
company.	Now,	a	hacker	has	managed	to	find	a	security	hole	in	one	your
software	stacks	and	has	gained	root	access	to	one	of	your	cluster	nodes.	That
alone	is	already	bad	enough	but,	even	worse,	this	hacker	could	now	mask	their
presence	on	this	node	they	are	root	on	the	machine,	after	all,	and	then	use	it	as	a
base	to	attack	further	nodes	of	your	cluster.

Root	access	in	Linux	or	any	Unix-type	operating	system	means	that	one	can	do	anything	on
this	system.	It	is	the	highest	level	of	access	that	someone	can	have.	In	Windows,	the	equivalent
role	is	that	of	an	Administrator.

But	what	if	we	leverage	the	fact	that	containers	are	ephemeral	and	cluster	nodes
are	quickly	provisioned,	usually	in	a	matter	of	minutes	if	fully	automated?	We
just	kill	each	cluster	node	after	a	certain	uptime	of,	say,	1	day.	The	orchestrator	is
instructed	to	drain	the	node	and	then	exclude	it	from	the	cluster.	Once	the	node	is
out	of	the	cluster,	it	is	torn	down	and	replaced	by	a	freshly	provisioned	node.

That	way,	the	hacker	has	lost	their	base	and	the	problem	has	been	eliminated.
This	concept	is	not	yet	broadly	available,	though,	but	to	me	it	seems	to	be	a	huge
step	towards	increased	security	and,	as	far	as	I	have	discussed	it	with	engineers
working	in	this	area,	it	is	not	difficult	to	implement.

Introspection
So	far,	we	have	discussed	a	lot	of	tasks	that	the	orchestrator	is	responsible	for
and	that	it	can	execute	in	a	completely	autonomous	way.	But	there	is	also	the
need	for	human	operators	to	be	able	to	see	and	analyze	what's	currently	running
on	the	cluster	and	in	what	state	or	health	the	individual	applications	are.	For	all
this,	we	need	the	possibility	of	introspection.	The	orchestrator	needs	to	surface
crucial	information	in	a	way	that	is	easily	consumable	and	understandable.

The	orchestrator	should	collect	system	metrics	from	all	the	cluster	nodes	and
make	it	accessible	to	the	operators.	Metrics	include	CPU,	memory	and	disk
usage,	network	bandwidth	consumption,	and	more.	The	information	should	be
easily	available	on	a	node-per-node	basis,	as	well	in	an	aggregated	form.

We	also	want	the	orchestrator	to	give	us	access	to	logs	produced	by	service
instances	or	containers.	Even	more,	the	orchestrator	should	provide	us	exec
access	to	each	and	every	container	if	we	have	the	correct	authorization	to	do	so.
With	exec	access	to	containers,	one	can	then	debug	misbehaving	containers.

In	highly	distributed	applications,	where	each	request	to	the	application	goes
through	numerous	services	until	it	is	completely	handled,	tracing	requests	is
really	important	task.	Ideally,	the	orchestrator	supports	us	in	implementing	a
tracing	strategy	or	gives	us	some	good	guidelines	to	follow.

Finally,	human	operators	can	best	monitor	a	system	when	working	with	a
graphical	representation	of	all	the	collected	metrics	and	logging	and	tracing
information.	Here,	we	are	speaking	about	dashboards.	Every	decent	orchestrator
should	offer	at	least	some	basic	dashboard	with	a	graphical	representation	of	the
most	critical	system	parameters.

But	human	operators	are	not	all	that	concerned	about	introspection.	We	also	need
to	be	able	to	connect	external	systems	with	the	orchestrator	to	consume	this
information.	There	needs	to	be	an	API	available,	over	which	external	systems
can	access	data	such	as	cluster	state,	metrics,	and	logs	and	use	this	information
to		make	automated	decisions,	such	as	creating	pager	or	phone	alerts,	sending
out	emails,	or	triggering	an	alarm	siren	if	some	thresholds	are	exceeded	by	the

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

system.

Overview	of	popular	orchestrators
At	the	time	of	writing,	there	are	many	orchestration	engines	out	there	and	in	use.
But	there	are	a	few	clear	winners.	The	number	one	spot	is	clearly	held	by
Kubernetes,	which	reigns	supreme.	A	distant	second	is	Docker's	own	SwarmKit,
followed	by	others	such	as	Apache	Mesos,	AWS	Elastic	Container	Service
(ECS),	or	Microsoft	Azure	Container	Service	(ACS).

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes
Kubernetes	was	originally	designed	by	Google	and	later	donated	to	the	Cloud
Native	Computing	Foundation	(CNCF).	Kubernetes	was	modeled	after
Google's	proprietary	Borg	system,	which	has	been	running	containers	on
supermassive	scale	for	years.	Kubernetes	was	Google's	attempt	to	go	back	to	the
drawing	board	and	completely	start	over	and	design	a	system	that	incorporates
all	the	lessons	learned	with	Borg.

Contrary	to	Borg,	which	is	proprietary	technology,	Kubernetes	was	open	sourced
early	on.	This	was	a	very	wise	choice	by	Google,	since	it	attracted	a	huge
number	of	contributors	from	outside	of	the	company	and,	over	only	a	couple	of
years,	an	even	more	massive	ecosystem	evolved	around	Kubernetes.	One	can
rightfully	say	that	Kubernetes	is	the	darling	of	the	community	in	the	container
orchestration	space.	No	other	orchestrator	has	been	able	to	produce	so	much
hype	and	attract	so	many	talented	people	willing	to	contribute	in	a	meaningful
way	to	the	success	of	the	project	as	a	contributor	or	an	early	adopter.

In	that	regard,	Kubernetes	in	the	container	orchestration	space	to	me	looks	very
much	like	what	Linux	has	become	in	the	server	operating	system	space.	Linux
has	become	the	de	facto	standard	of	server	operating	systems.	All	relevant
companies,	such	as	Microsoft,	IBM,	Amazon,	RedHat,	and	even	Docker,	have
embraced	Kubernetes.

And	there	is	one	thing	that	cannot	be	denied:	Kubernetes	was	designed	from	the
very	beginning	for	massive	scalability.	After	all,	it	was	designed	with	Google
Borg	in	mind.

One	negative	aspect	that	one	could	voice	against	Kubernetes	is	that	it	is	complex
to	set	up	and	manage,	at	least	at	the	time	of	writing.	There	is	a	significant	hurdle
to	overcome	for	newcomers.	The	first	step	is	steep.	But	once	one	has	worked
with	this	orchestrator	for	a	while,	it	all	makes	sense.	The	overall	design	is
carefully	thought	through	and	executed	very	well.

In	the	newest	release	of	Kubernetes,	1.10,	whose	general	availability	(GA)	was
in	March	2018,	most	of	the	initial	shortcomings		compared	to	other	orchestrators

such	as	Docker	Swarm	have	been	eliminated.	For	example,	security	and
confidentiality	is	now	not	only	an	afterthought,	but	an	integral	part	of	the
system.

New	features	are	implemented	at	a	tremendous	speed.	New	releases	are
happening	every	3	months	or	so,	more	precisely,	about	every	100	days.	Most	of
the	new	features	are	demand-driven,	that	is,	companies	using	Kubernetes	to
orchestrate	their	mission-critical	applications	can	voice	their	needs.	This	makes
Kubernetes	enterprise	ready.	It	would	be	wrong	to	assume	that	this	orchestrator
is	only	for	start-ups	and	not	for	risk-averse	enterprises.	The	contrary	is	the	case.
On	what	do	I	base	this	claim?	Well,	my	claim	is	justified	by	the	fact	that
companies	such	as	Microsoft,	Docker,	and	RedHat,	whose	clients	are	mostly	big
enterprises,	have	fully	embraced	Kubernetes	and	provide	enterprise-grade
support	for	it	if	it	is	used	and	integrated	into	their	enterprise	offerings.

Kubernetes	supports	both	Linux	and	Windows	containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	Swarm
It	is	well-known	that	Docker	popularized	and	commoditized	software	containers.
Docker	did	not	invent	containers,	but	standardized	them	and	made	them	broadly
available,	not	least	by	offering	the	free	image	registry	Docker	Hub.	Initially,
Docker	focused	mainly	on	the	developer	and	the	development	life	cycle.	But
companies	that	started	to	use	and	love	containers	soon	also	wanted	to	use
containers,	not	just	during	development	or	testing	of	new	applications,	but	also
to	run	those	applications	in	production.

Initially,	Docker	had	nothing	to	offer	in	that	space,	so	other	companies	jumped
into	that	vacuum	and	offered	help	to	the	users.	But	it	didn't	take	long	and	Docker
recognized	that	there	was	a	huge	demand	for	a	simple	yet	powerful	orchestrator.
Docker's	first	attempt	was	a	product	called	classic	Swarm.	It	was	a	standalone
product	that	enabled	users	to	create	a	cluster	of	Docker	host	machines	that	could
be	used	to	run	and	scale	their	containerized	applications	in	a	highly	available	and
self-healing	way.

The	setup	of	a	classic	Docker	Swarm,	though,	was	hard.	A	lot	of	complicated
manual	steps	were	involved.	Customers	loved	the	product	but	struggled	with	its
complexity.	So	Docker	decided	it	could	do	better.	It	went	back	to	the	drawing
board	and	came	up	with	SwarmKit.	SwarmKit	was	introduced	at	DockerCon
2016	in	Seattle	and	was	an	integral	part	of	the	newest	version	of	the	Docker
engine.	Yes,	you	got	that	right,	SwarmKit	was	and	still	is	to	this	day	an	integral
part	of	the	Docker	engine.	Thus,	if	you	install	a	Docker	host,	you	automatically
have	SwarmKit	available	with	it.

SwarmKit	was	designed	with	simplicity	and	security	in	mind.	The	mantra	was
and	still	is	that	it	has	to	be	almost	trivial	to	set	up	a	swarm,	and	the	swarm	has	to
be	highly	secure	out	of	the	box.	Docker	Swarm	operates	on	the	assumption	of
least	privilege.

Installing	a	complete,	highly	available	Docker	Swarm	is	literally	as	simple	as
starting	with	a	docker	swarm	init	on	the	first	node	in	the	cluster,	which	becomes	the
so-called	leader,	and	then	a	docker	swarm	join	<join-token>	on	all	other	nodes.	The

join-token	is	generated	by	the	leader	during	initialization.	The	whole	process
takes	less	that	5	minutes	on	a	Swarm	with	up	to	10	nodes.	If	it	is	automated,	it
takes	even	less	time.

As	I	already	mentioned,	security	was	top	on	the	list	of	must-haves	when	Docker
designed	and	developed	SwarmKit.	Containers	provide	security	by	relying	on
Linux	kernel	namespaces	and	cgroups	as	well	as	Linux	syscall	whitelisting
(seccomp)	and	the	support	of	Linux	capabilities	and	the	Linux	security	module
(LSM).	Now,	on	top	of	that,	SwarmKit	adds		MTLS	and	secrets	that	are
encrypted	at	rest	and	in	transit.	Furthermore,	Swarm	defines	the	so-called
container	network	model	(CNM),	which	allows	for	SDNs	that	provide
sandboxing	for	application	services	running	on	the	swarm.

Docker	SwarmKit	supports	both	Linux	and	Windows	containers.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Apache	Mesos	and	Marathon
Apache	Mesos	is	an	open	source	project	and	was	originally	designed	to	make	a
cluster	of	servers	or	nodes	look	like	one	single	big	server	from	the	outside.
Mesos	is	software	that	makes	the	management	of	computer	clusters	simple.
Users	of	Mesos	should	not	have	to	care	about	individual	servers,	but	just	assume
they	have	a	gigantic	pool	of	resources	to	their	disposal,	which	corresponds	to	the
aggregate	of	all	the	resources	of	all	the	nodes	in	the	cluster.

Mesos,	in	IT	terms,	is	already	pretty	old,	at	least	compared	to	the	other
orchestrators.	It	was	first	publicly	presented	in	2009.	But	at	that	time,	of	course,
it	wasn't	designed	to	run	containers	since	Docker	didn't	even	exist	yet.	Similar	to
what	Docker	does	with	containers,	Mesos	uses	Linux	cgroups	to	isolate
resources	such	as	CPU,	memory,	or	disk	I/O	for	individual	applications	or
services.

Mesos	is	really	the	underlying	infrastructure	for	other	interesting	services	built
on	top	of	it.	From	the	perspective	of	containers	specifically,	Marathon	is
important.	Marathon	is	a	container	orchestrator	running	on	top	of	Mesos	which
is	able	to	scale	to	thousands	of	nodes.

Marathon	supports	multiple	container	runtimes,	such	as	Docker	or	its	own
Mesos	containers.	It	supports	not	only	stateless	but	also	stateful	application
services,	for	example,	databases	such	as	PostgreSQL	or	MongoDB.	Similar	to
Kubernetes	and	Docker	SwarmKit,	it	supports	many	of	the	features	described
earlier	in	this	chapter,	such	as	high	availability,	health	checks,	service	discovery,
load	balancing,	and	location	awareness,	to	just	name	some	of	the	most	important
ones.

Although	Mesos	and,	to	a	certain	extent,	Marathon	are	rather	mature	projects,
their	reach	is	relatively	limited.	It	seems	to	be	most	popular	in	the	area	of	big
data,	that	is,	to	run	data	crunching	services	such	as	Spark	or	Hadoop.

Amazon	ECS
If	you	are	looking	for	a	simple	orchestrator	and	have	already	heavily	bought	into
the	AWS	ecosystem,	then	Amazon's	ECS	might	be	the	right	choice	for	you.	It	is
important	to	point	out	one	very	important	limitation	of	ECS:	if	you	buy	into	this
container	orchestrator,	then	you	lock	yourself	into	AWS.	You	will	not	be	able	to
easily	port	an	application	running	on	ECS	to	another	platform	or	cloud.	

Amazon	promotes	its	ECS	service	as	a	highly	scalable,	fast	container
management	service	that	makes	it	easy	to	run,	stop,	and	manage	Docker
containers	on	a	cluster.	Next	to	running	containers,	ECS	gives	direct	access	to
many	other	AWS	services	from	the	application	services	running	inside	the
containers.	This	tight	and	seamless	integration	with	many	popular	AWS	services
is	what	makes	ECS	compelling	for	users	who	are	looking	for	an	easy	way	to	get
their	containerized	applications	up	and	running	in	a	robust	and	highly	scalable
environment.	Amazon	also	provides	its	own	private	image	registry.

With	AWS	ECS,	you	can	use	Fargate	to	have	it	fully	manage	the	underlying
infrastructure	so	that	you	can	concentrate	exclusively	on	deploying	containerized
applications	and	do	not	have	to	care	about	how	to	create	and	manage	a	cluster	of
nodes.	ECS	supports	both	Linux	and	Windows	containers.

In	summary,	ECS	is	simple	to	use,	highly	scalable,	and	well-integrated	with
other	popular	AWS	services,	but	it	is	not	as	powerful	as,	say,	Kubernetes	or
Docker	SwarmKit	and	it	is	only	available	on	Amazon	AWS.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Microsoft	ACS	
Similar	to	what	we	said	about	ECS,	we	can	claim	the	same	for	Microsoft's	ACS.
It	is	a	simple	container	orchestration	service	that	makes	sense	if	you	are	already
heavily	invested	in	the	Azure	ecosystem.	I	should	say	the	same	as	I	have	pointed
out	for	Amazon	ECS:	if	you	buy	into	ACS,	then	you	lock	yourself	in	to	the
offerings	of	Microsoft.	It	will	not	be	easy	to	move	your	containerized
applications	from	ACS	to	any	other	platform	or	cloud.

ACS	is	Microsoft's	container	service,	which	supports	multiple	orchestrators	such
as	Kubernetes,	Docker	Swarm,	and	Mesos	DC/OS.		With	Kubernetes	becoming
more	and	more	popular,	the	focus	of	Microsoft	has	clearly	shifted	to	that
orchestrator.	Microsoft	has	even	rebranded	its	service	and	called	it	Azure
Kubernetes	Service	(AKS)	to	put	the	focus	on	Kubernetes.

AKS	manages,	for	you,	a	hosted	Kubernetes	or	Docker	Swarm	or	DC/OS
environment	in	Azure,	so	you	can	concentrate	on	the	applications	you	want	to
deploy	and	don't	have	to	care	about	configuring	infrastructure.	Microsoft,	in	its
own	words,	claims	the	following:

AKS	makes	it	quick	and	easy	to	deploy	and	manage	containerized	applications	without	container
orchestration	expertise.	It	also	eliminates	the	burden	of	ongoing	operations	and	maintenance	by
provisioning,	upgrading,	and	scaling	resources	on	demand,	without	taking	your	applications	offline.

Summary
This	chapter	demonstrated	why	orchestrators	are	needed	in	the	first	place	and
how	they	conceptually	work.	It	pointed	out	which	orchestrators	are	the	most
prominent	ones	at	the	time	of	writing	and	discussed	the	main	commonalities	and
differences	between	the	various	orchestrators.

The	next	chapter	will	introduce	Docker’s	native	orchestrator,	called	SwarmKit.	It
will	elaborate	on	all	the	concepts	and	objects	SwarmKit	uses	to	deploy	and	run	a
distributed,	resilient,	robust,	and	highly	available	application	in	a	cluster	on-
premises	or	in	the	cloud.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
Answer	the	following	questions	to	assess	your	learning	progress:

1.	 Why	do	we	need	an	orchestrator?	Name	two	to	three	reasons.
2.	 Name	three	to	four	typical	responsibilities	of	an	orchestrator.
3.	 Name	at	least	two	container	orchestrators,	as	well	as	the	main	sponsor

behind	them.

Further	reading
The	following	links	provide	some	deeper	insight	to	orchestration-related	topics:

Kubernetes	-	production-grade	orchestration	at	https://kubernetes.io/
Docker	Swarm	Mode	overview	at	https://docs.docker.com/engine/swarm/
Mesosphere	-	container	orchestration	services	at	http://bit.ly/2GMpko3
Containers	and	orchestration	explained	at	http://bit.ly/2DFoQgx

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://bit.ly/2GMpko3
https://bit.ly/2npjrEl

Introduction	to	Docker	Swarm
In	the	last	chapter,	we	introduced	orchestrators.	Like	a	conductor	in	an	orchestra,
an	orchestrator	makes	sure	that	all	our	containerized	application	services	play
together	nicely	and	contribute	harmoniously	to	a	common	goal.	Such
orchestrators	have	quite	a	few	responsibilities,	which	we	have	discussed	in
detail.	Finally,	we	have	provided	a	short	overview	of	the	most	important
container	orchestrators	on	the	market.

This	chapter	introduces	Docker's	native	orchestrator,	SwarmKit.	It	elaborates	on
all	the	concepts	and	objects	SwarmKit	uses	to	deploy	and	run	a	distributed,
resilient,	robust,	and	highly	available	application	in	a	cluster	on-premise	or	in	the
cloud.	The	chapter	also	introduces	how	SwarmKit	ensures	secure	applications	by
using	a	software	defined	network	(SDN)	to	isolate	containers.	Additionally,
this	chapter	demonstrates	how	to	install	a	highly	available	Docker	Swarm	in	the
cloud.	It	introduces	the	routing	mesh	which	provides	layer-4	routing	and	load
balancing.	Finally,	it	demonstrates	how	to	deploy	a	first	application	consisting	of
multiple	services	onto	the	swarm.

These	are	the	topics	we	are	going	to	discuss	in	this	chapter:

Architecture
Swarm	nodes
Stacks,	services,	and	tasks
Multi-host	networking
Creating	a	Docker	Swarm
Deploying	a	first	application
The	swarm	routing	mesh

After	completing	this	chapter,	you	will	be	able	to:

Sketch	the	essential	parts	of	a	highly	available	Docker	Swarm	on	a
whiteboard
Explain	in	two	or	three	simple	sentences	to	an	interested	layman	what	a
(swarm)	service	is
Create	a	highly	available	Docker	Swarm	in	AWS	consisting	of	three

manager	and	two	worker	nodes
Successfully	deploy	a	replicated	service	such	as	Nginx	on	a	Docker	Swarm
Scale	up	and	down	a	running	Docker	Swarm	service
Retrieve	the	aggregated	log	of	a	replicated	Docker	Swarm	service
Write	a	simple	stack	file	for	a	sample	application	consisting	of	at	least	two
interacting	services
Deploy	a	stack	into	a	Docker	Swarm

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Architecture
The	architecture	of	a	Docker	Swarm	from	a	30,000-foot	view	consists	of	two
main	parts—a	raft	consensus	group	of	an	odd	number	of	manager	nodes,	and	a
group	of	worker	nodes	that	communicate	with	each	other	over	a	gossip	network,
also	called	the	control	plane.	The	following	figure	illustrates	this	architecture:

High-level	architecture	of	a	Docker	Swarm

The	manager	nodes	manage	the	swarm	whilst	the	worker	nodes	execute	the
applications	deployed	into	the	swarm.	Each	manager	has	a	complete	copy	of	the
full	state	of	the	swarm	in	its	local	raft	store.	Managers	communicate	with	each
other	in	a	synchronous	way	and	the	raft	stores	are	always	in	sync.

The	workers,	on	the	other	hand,	communicate	with	each	other	asynchronously
for	scalability	reasons.	There	can	be	hundreds	if	not	thousands	of	worker	nodes
in	a	swarm.	Now	that	we	have	a	high-level	overview	of	what	a	Docker	Swarm
is,	let's	describe	all	the	individual	elements	of	a	Docker	Swarm	in	more	detail.

Swarm	nodes
A	swarm	is	a	collection	of	nodes.	We	can	classify	a	node	as	a	physical	computer
or	virtual	machine	(VM).	Physical	computers	these	days	are	often	referred	to	as
bare	metal.	People	say	we're	running	on	bare	metal	to	distinguish	from	running
on	a	VM.

When	we	install	Docker	on	such	a	node,	we	call	this	node	a	Docker	host.	The
following	figure	illustrates	a	bit	better	what	a	node	and	what	a	Docker	host	is:

Bare	metal	and	VM	type	Docker	Swarm	nodes

To	become	a	member	of	a	Docker	Swarm,	a	node	must	also	be	a	Docker	host.	A
node	in	a	Docker	Swarm	can	have	one	of	two	roles.	It	can	be	a	manager	or	it	can
be	a	worker.	Manager	nodes	do	what	their	name	implies;	they	manage	the
swarm.	The	worker	nodes	in	turn	execute	application	workload.

Technically,	a	manager	node	can	also	be	a	worker	node	and	thus	run	application
workload,	although	that	is	not	recommended,	especially	if	the	swarm	is	a
production	system	running	mission	critical	applications.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Swarm	managers
Each	Docker	Swarm	needs	to	have	at	least	one	manager	node.	For	high
availability	reasons	we	should	have	more	than	one	manager	node	in	a	swarm.
This	is	especially	true	for	production	or	production-like	environments.	If	we
have	more	than	one	manager	node	then	these	nodes	work	together	using	the	Raft
consensus	protocol.	The	Raft	consensus	protocol	is	a	standard	protocol	that	is
often	used	when	multiple	entities	need	to	work	together	and	always	need	to
agree	with	each	other	as	to	which	activity	to	execute	next.

To	work	well,	the	Raft	consensus	protocol	asks	for	an	odd	number	of	members
in	what	is	called	the	consensus	group.	Thus	we	should	always	have	1,	3,	5,	7,
and	so	on	manager	nodes.	In	such	a	consensus	group	there	is	always	a	leader.	In
the	case	of	Docker	Swarm,	the	first	node	that	starts	the	swarm	initially	becomes
the	leader.	If	the	leader	goes	away	then	the	remaining	manager	nodes	elect	a	new
leader.	The	other	nodes	in	the	consensus	group	are	called	followers.

Now	let's	assume	that	we	shut	down	the	current	leader	node	for	maintenance
reasons.	The	remaining	manager	nodes	will	elect	a	new	leader.	When	the
previous	leader	node	comes	back	online	he	will	now	become	a	follower.	The
new	leader	remains	the	leader.

All	the	members	of	the	consensus	group	communicate	in	a	synchronous	way
with	each	other.	Whenever	the	consensus	group	needs	to	make	a	decision,	the
leader	asks	all	followers	for	agreement.	If	a	majority	of	the	manager	nodes	give
a	positive	answer	then	the	leader	executes	the	task.	That	means	if	we	have	three
manager	nodes	then	at	least	one	of	the	followers	has	to	agree	with	the	leader.	If
we	have	five	manager	nodes	then	at	least	two	followers	have	to	agree.

Since	all	manager	follower	nodes	have	to	communicate	synchronously	with	the
leader	node	to	make	a	decision	in	the	cluster,	the	decision-making	process	gets
slower	and	slower	the	more	manager	nodes	we	have	forming	the	consensus
group.	The	recommendation	of	Docker	is	to	use	one	manager	for	development,
demo,	or	test	environments.	Use	three	manager	nodes	in	small	to	medium	size
swarms,	and	use	five	managers	in	large	to	extra	large	swarms.	To	use	more	than

five	managers	in	a	swarm	is	hardly	ever	justified.

Manager	nodes	are	not	only	responsible	for	managing	the	swarm	but	also	for
maintaining	the	state	of	the	swarm.	What	do	we	mean	by	that?	When	we	talk
about	the	state	of	the	swarm	we	mean	all	the	information	about	it—for	example,
how	many	nodes	are	in	the	swarm,	what	are	the	properties	of	each	node,	such	as
name	or	IP	address.	We	also	mean	what	containers	are	running	on	which	node	in
the	swarm	and	more.	What,	on	the	other	hand,	is	not	included	in	the	state	of	the
swarm	is	data	produced	by	the	application	services	running	in	containers	on	the
swarm.	This	is	called	application	data	and	is	definitely	not	part	of	the	state	that	is
managed	by	the	manager	nodes:

A	swarm	manager	consensus	group

All	the	swarm	state	is	stored	in	a	high	performance	key-value	store	(kv-store)	on
each	manager	node.	That's	right,	each	manager	node	stores	a	complete	replica	of
the	whole	swarm	state.	This	redundancy	makes	the	swarm	highly	available.	If	a
manager	node	goes	down,	the	remaining	managers	all	have	the	complete	state	at
hand.

If	a	new	manager	joins	the	consensus	group	then	it	synchronizes	the	swarm	state
with	the	existing	members	of	the	group	until	it	has	a	complete	replica.	This
replication	is	usually	pretty	fast	in	typical	swarms	but	can	take	a	while	if	the
swarm	is	big	and	many	applications	are	running	on	it.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Swarm	workers		
As	we	mentioned	earlier,	a	swarm	worker	node	is	meant	to	host	and	run
containers	that	contain	the	actual	application	services	we're	interested	in	running
on	our	cluster.	They	are	the	workhorses	of	the	swarm.	In	theory,	a	manager	node
can	also	be	a	worker.	But,	as	we	already	said,	this	is	not	recommended	on	a
production	system.	On	a	production	system	we	should	let	managers	be
managers.

Worker	nodes	communicate	with	each	other	over	the	so-called	control	plane.
They	use	the	gossip	protocol	for	their	communication.	This	communication	is
asynchronous,	which	means	that	at	any	given	time	not	all	worker	nodes	must	be
in	perfect	sync.	

Now	you	might	ask—what	information	do	worker	nodes	exchange?	It	is	mostly
information	that	is	needed	for	service	discovery	and	routing,	that	is,	information
about	which	containers	are	running	on	with	nodes	and	more:

Worker	nodes	communicating	with	each	other

In	the	preceding	figure,	you	can	see	how	workers	communicate	with	each	other.
To	make	sure	the	gossiping	scales	well	in	a	large	swarm,	each	worker	node	only
synchronizes	its	own	state	with	three	random	neighbors.	For	those	who	are
familiar	with	the	Big-O	notation,	that	means	that	the	synchronization	of	the
worker	nodes	using	the	gossip	protocol	scales	with	O(0).

Worker	nodes	are	kind	of	passive.	They	never	actively	do	something	other	than
run	the	workloads	that	they	get	assigned	by	the	manager	nodes.	The	worker
makes	sure,	though,	that	it	runs	these	workloads	to	the	best	of	its	capabilities.
Further	down	in	this	chapter	we	will	get	to	know	more	about	exactly	what
workloads	the	worker	nodes	are	assigned	by	the	manager	nodes.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Stacks,	services,	and	tasks
When	using	a	Docker	Swarm	versus	a	single	Docker	host,	there	is	a	paradigm
change.	Instead	of	talking	of	individual	containers	that	run	processes,	we	are
abstracting	away	to	services	that	represent	a	set	of	replicas	of	each	process,	and
like	through	become	highly	available.	We	also	do	not	speak	anymore	of
individual	Docker	hosts	with	well	known	names	and	IP	addresses	to	which	we
deploy	containers;	we'll	now	be	referring	to	clusters	of	hosts	to	which	we	deploy
services.	We	don't	care	about	an	individual	host	or	node	anymore.	We	don't	give
it	a	meaningful	name;	each	node	rather	becomes	a	number	to	us.	We	also	don't
care	about	individual	containers	and	where	they	are	deployed	anymore—we	just
care	about	having	a	desired	state	defined	through	a	service.	We	can	try	to	depict
that	as	shown	in	the	following	figure:

Containers	are	deployed	to	well	known	servers

Instead	of	deploying	individual	containers	to	well	known	servers	like	the
preceding	one,	where	we	deploy	container	web	to	server	alpha	with	IP	address
52.120.12.1,	and	container	payments	to	server	beta	with	IP	52.121.24.33,	we	switch
to	this	new	paradigm	of	services	and	swarms	(or,	more	generally,	clusters):

Services	are	deployed	to	swarms

In	the	preceding	figure,	we	see	that	a	service	web	and	a	service	inventory	are
both	deployed	to	a	swarm	that	consists	of	many	nodes.	Each	of	the	services	has	a
certain	number	of	replicas;	six	for	web	and	five	for	inventory.	We	don't	really
care	on	which	node	the	replicas	will	run,	we	only	care	that	the	requested	number
of	replicas	is	always	running	on	whatever	nodes	the	swarm	scheduler	decides	to
put	them	on.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Services
A	swarm	service	is	an	abstract	thing.	It	is	a	description	of	the	desired	state	of	an
application	or	application	service	that	we	want	to	run	in	a	swarm.	The	swarm
service	is	like	a	manifest	describing	such	things	as	the:

Name	of	the	service
Image	from	which	to	create	the	containers
Number	of	replicas	to	run
Network(s)	that	the	containers	of	the	service	are	attached	to
Ports	that	should	be	mapped

Having	this	service	manifest	the	swarm	manager,	then,	makes	sure	that	the
described	desired	state	is	always	reconciled	if	ever	the	actual	state	should	deviate
from	it.	So,	if	for	example	one	instance	of	the	service	crashes,	then	the	scheduler
on	the	swarm	manager	schedules	a	new	instance	of	the	service	on	a	node	with
free	resources	so	that	the	desired	state	is	reestablished.

Task
We	have	learned	that	a	service	corresponds	to	a	description	of	the	desired	state	in
which	an	application	service	should	be	at	all	times.	Part	of	that	description	was
the	number	of	replicas	the	service	should	be	running.	Each	replica	is	represented
by	a	task.	In	this	regard,	a	swarm	service	contains	a	collection	of	tasks.	On
Docker	Swarm,	a	task	is	the	atomic	unit	of	deployment.	Each	task	of	a	service	is
deployed	by	the	swarm	scheduler	to	a	worker	node.	The	task	contains	all	the
necessary	information	that	the	worker	node	needs	to	run	a	container	based	off
the	image,	which	is	part	of	the	service	description.	Between	a	task	and	a
container	there	is	a	one-to-one	relation.	The	container	is	the	instance	that	runs	on
the	worker	node,	while	the	task	is	the	description	of	this	container	as	a	part	of	a
swarm	service.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Stack
Now	that	we	have	a	good	idea	about	what	a	swarm	service	is	and	what	tasks	are,
we	can	introduce	the	stack.	A	stack	is	used	to	describe	a	collection	of	swarm
services	that	are	related,	most	probably	because	they	are	part	of	the	same
application.	In	that	sense,	we	could	also	say	that	a	stack	describes	an	application
that	consists	of	one	to	many	services	that	we	want	to	run	on	the	swarm.

Typically,	we	describe	a	stack	declaratively	in	a	text	file	that	is	formatted	using
YAML	and	that	uses	the	same	syntax	as	the	already-known	Docker	compose	file.
This	leads	to	the	situation	where	people	sometimes	say	that	a	stack	is	described
by	a	docker-compose	file.	A	better	wording	would	be—a	stack	is	described	in	a
stack	file	that	uses	similar	syntax	to	a	docker-compose	file.

Let's	try	to	illustrate	the	relationship	between	stack,	services,	and	tasks	in	the
following	figure	and	connect	it	with	the	typical	content	of	a	stack	file:

Diagram	showing	the	relationship	between	stack,	services	and	tasks

In	the	preceding	figure,	we	see	on	the	right-hand	side	a	declarative	description	of
a	sample	stack.	The	stack	consists	of	three	services	called	web,	payments,	and
inventory.	We	also	see	that	the	service	web	uses	the	image	example/web:1.0
and	has	four	replicas.

On	the	left-hand	side	of	the	figure,	we	see	that	the	stack	embraces	the	three
services	mentioned.	Each	service	in	turn	contains	a	collection	of	tasks,	as	many
as	there	are	replicas.	In	the	case	of	the	service	web	we	have	a	collection	of	four
tasks.	Each	task	contains	the	name	of	the	image	from	which	it	will	instantiate	a
container	once	the	task	is	scheduled	on	a	swarm	node.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Multi-host	networking
In	Chapter	7,	Single-Host	Networking,	we	discussed	how	containers	communicate
on	a	single	Docker	host.	Now,	we	have	a	swarm	that	consists	of	a	cluster	of
nodes	or	Docker	hosts.	Containers	that	are	located	on	different	nodes	need	to	be
able	to	communicate	with	each	other.	There	are	many	techniques	that	can	help
one	achieve	this	goal.	Docker	has	chosen	to	implement	an	overlay	network
driver	for	Docker	Swarm.	This	overlay	network	allows	containers	attached	to	the
same	overlay	network	to	discover	each	other	and	freely	communicate	with	each
other.	The	following	is	a	schema	for	how	an	overlay	network	works:

Overlay	network

We	have	two	nodes	or	Docker	hosts	with	the	IP	addresses	172.10.0.15	and
172.10.0.16.	The	values	we	have	chosen	for	the	IP	addresses	are	not	important;
what	is	important	is	that	both	hosts	have	a	distinct	IP	address	and	are	connected
by	a	physical	network	(a	network	cable),	which	is	called	the	underlay	network.

On	the	node	on	the	left-hand	side	we	have	a	container	running	with	the	IP
address	10.3.0.2	and	on	the	node	on	the	right-hand	side	another	container	with	the
IP	address	10.3.0.5.	Now,	the	former	container	wants	to	communicate	with	the
latter.	How	can	this	happen?	In	Chapter	7,	Single-Host	Networking,	we	saw	how
this	works	when	both	containers	are	located	on	the	same	node;	by	using	a	Linux
bridge.	But	Linux	bridges	only	operate	locally	and	cannot	span	across	nodes.	So,
we	need	another	mechanism.	Linux	VXLAN	comes	to	the	rescue.	VXLAN	has
been	available	on	Linux	since	way	before	containers	were	a	thing.

When	the	left-hand	container	sends	a	data	packet,	the	bridge	realises	that	the
target	of	the	packet	is	not	on	this	host.	Now,	each	node	participating	in	an
overlay	network	gets	a	so-called	VXLAN	Tunnel	Endpoint	(VTEP)	object,
which	intercepts	the	packet	(the	packet	at	that	moment	is	an	OSI	layer	2	data
packet),	wraps	it	with	a	header	containing	the	target	IP	address	of	the	host	that
runs	the	target	container	(this	makes	it	now	an	OSI	layer	3	data	packet),	and
sends	it	over	the	VXLAN	tunnel.	The	VTEP	on	the	other	side	of	the	tunnel
unpacks	the	data	packet	and	forwards	it	to	the	local	bridge,	which	in	turn
forwards	it	to	the	target	container.

The	overlay	driver	is	included	in	the	SwarmKit	and	is	in	most	cases	the
recommended	network	driver	for	Docker	Swarm.	There	are	other	multi-node-
capable	network	drivers	available	from	third-parties	that	can	be	installed	as
plugins	to	each	participating	Docker	host.	Certified	network	plugins	are
available	from	the	Docker	store.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	a	Docker	Swarm
Creating	a	Docker	Swarm	is	almost	trivial.	It	is	so	easy	that	it	seems	unreal	if
one	knows	what	an	orchestrator	is	all	about.	But	it	is	true,	Docker	has	done	a
fantastic	job	in	making	swarms	simple	and	elegant	to	use.	At	the	same	time,
Docker	Swarm	has	been	proven	in	use	by	large	enterprises	to	be	very	robust	and
scalable.

Creating	a	local	single	node	swarm
So,	enough	fancying,	let's	demonstrate	how	one	can	create	a	swarm.	In	its	most
simple	form,	a	fully	functioning	Docker	Swarm	consists	only	of	a	single	node.	If
you're	using	Docker	for	Mac	or	Windows,	or	even	if	you're	using	Docker
Toolbox,	then	your	personal	computer	or	laptop	is	such	a	node.	Thus,	we	can
start	right	there	and	demonstrate	some	of	the	most	important	features	of	a
swarm.

Let's	initialize	a	swarm.	On	the	command-line,	just	enter	the	following
command:

$	docker	swarm	init

And	after	an	incredibly	short	time	you	should	see	something	like	the	following
screenshot:

Output	of	the	docker	swarm	init	command

Our	computer	is	now	a	swarm	node.	Its	role	is	that	of	a	manager	and	it	is	the
leader	(of	the	managers,	which	makes	sense	since	there	is	only	one	manager	at
this	time).	Although	it	took	only	a	very	short	time	to	finish	the	docker	swarm	init,
the	command	did	a	lot	of	things	during	that	time,	some	of	them	are:

It	created	a	root	certificate	authority	(CA)
It	created	a	key-value	store	that	is	used	to	store	the	state	of	the	whole
swarm

Now,	in	the	preceding	output,	we	can	see	a	command	that	can	be	used	to	join
other	nodes	to	the	swarm	that	we	just	created.	The	command	is	as	follows:

$	docker	swarm	join	--token	<join-token>	<IP	address>:2377

Here:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

<join-token>	is	a	token	generated	by	the	swarm	leader	at	the	time	the	swarm
was	initialized
	<IP	address>	is	the	IP	address	of	the	leader

Although	our	cluster	remains	simple,	as	it	consists	of	only	one	member,	we	can
still	ask	the	Docker	CLI	to	list	all	the	nodes	of	the	swarm.	This	will	look	similar
to	the	following	screenshot:	

Listing	the	nodes	of	the	Docker	Swarm

In	this	output	we	first	see	the	ID	that	was	given	to	the	node.	The	star	(*)	that
follows	the	ID	indicates	that	this	is	the	node	on	which	the	docker	node	ls	was
executed;	basically,	saying	that	this	is	the	active	node.	Then	we	have	the
(human-readable)	name	of	the	node,	its	status,	availability,	and	manager	status.
As	mentioned	earlier,	this	very	first	node	of	the	swarm	automatically	became	the
leader,	which	is	indicated	in	the	preceding	screenshot.	Lastly,	we	see	which
version	of	the	Docker	engine	we're	using.

To	get	even	more	information	about	a	node	we	can	use	the	docker	node	inspect
command,	as	shown	in	the	following	screenshot:

Truncated	output	of	the	command	docker	node	inspect

There	is	a	lot	of	information	generated	by	this	command,	so	we	only	present	a
truncated	version	of	the	output.	This	output	can	be	useful,	for	example,	when
one	needs	to	troubleshoot	a	misbehaving	cluster	node.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	a	local	swarm	in	VirtualBox
or	Hyper-V
Sometimes	a	single	node	swarm	is	not	enough,	but	we	don't	have	or	don't	want
to	use	an	account	to	create	a	swarm	in	the	cloud.	In	this	case,	we	can	create	a
local	swarm	in	either	VirtualBox	or	Hyper-V.	Creating	the	swarm	in	VirtualBox
is	slightly	easier	than	creating	it	in	Hyper-V,	but	if	you're	using	Windows	10	and
have	Docker	for	Windows	running	then	you	cannot	use	VirtualBox	at	the	same
time.	The	two	hypervisors	are	mutually	exclusive.

Let's	assume	we	have	VirtualBox	and	docker-machine	installed	on	our	laptop.	We
can	then	use	docker-machine	to	list	all	Docker	hosts	that	are	currently	defined	and
may	be	running	in	VirtualBox:

$	docker-machine	ls

NAME						ACTIVE			DRIVER							STATE						URL				SWARM			DOCKER				ERRORS

default			-								virtualbox			Stopped																			Unknown

In	my	case,	I	have	one	VM	called	default	defined,	which	is	currently	stopped.	I
can	easily	start	the	VM	by	issuing	the	docker-machine	start	default	command.	This
command	takes	a	while	and	will	result	in	the	following	(shortened)	output:

$	docker-machine	start	default

Starting	"default"...

(default)	Check	network	to	re-create	if	needed...

(default)	Waiting	for	an	IP...

Machine	"default"	was	started.

Waiting	for	SSH	to	be	available...

Detecting	the	provisioner...

Started	machines	may	have	new	IP	addresses.	You	may	need	to	re-run	the	`docker-machine	

env`	command.

Now,	if	I	list	my	VMs	again	I	should	see	the	following	screenshot:

List	of	all	VMs	running	in	VirtualBox

If	we	do	not	have	a	VM	called	default	yet,	we	can	easily	create	one	using	the
create	command:

docker-machine	create	--driver	virtualbox	default

This	results	in	the	following	output:

Output	of	docker-machine	create

We	can	see	in	the	preceding	output	how	docker-machine	creates	the	VM	from	an
ISO	image,	defines	SSH	keys	and	certificates,	and	copies	them	to	the	VM	and	to
the	local	~/.docker/machine	directory,	where	we	will	use	it	later	when	we	want	to
remotely	access	this	VM	through	the	Docker	CLI.	It	also	provisions	an	IP
address	for	the	new	VM.

We're	using	the	docker-machine	create	command	with	the	parameter	--driver
virtualbox.	Docker	machine	can	also	work	with	other	drivers	such	as	Hyper-V,
AWS,	Azure,	DigitalOcean,	and	many	more.	Please	see	the	documentation	of
docker-machine	for	more	information.	By	default,	a	new	VM	gets	1	GB	of
memory	associated,	which	is	enough	to	use	this	VM	as	a	node	for	a	development
or	test	swarm.

Now	let's	create	five	VMs	for	a	five-node	swarm.	We	can	use	a	bit	of	scripting	to
reduce	the	manual	work:

$	for	NODE	in	`seq	1	5`;	do

		docker-machine	create	--driver	virtualbox	"node-${NODE}"

done

Docker	machine	will	now	create	five	VMs	with	the	names	node-1	to	node-5.	This
might	take	a	few	moments,	so	this	is	a	good	time	to	get	yourself	a	hot	cup	of	tea.
After	the	VMs	are	created	we	can	list	them:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

List	of	all	VMs	we	need	for	the	swarm

Now	we're	ready	to	build	a	swarm.	Technically,	we	could	SSH	into	the	first	VM
node-1	and	initialize	a	swarm	and	then	SSH	into	all	the	other	VMs	and	join	them
to	the	swarm	leader.	But	this	is	not	efficient.	Let's	again	use	a	script	that	does	all
the	hard	work:

#	get	IP	of	Swarm	leader

$	export	IP=$(docker-machine	ip	node-1)

#	init	the	Swarm

$	docker-machine	ssh	node-1	docker	swarm	init	--advertise-addr	$IP

#	Get	the	Swarm	join-token

$	export	JOIN_TOKEN=$(docker-machine	ssh	node-1	\

				docker	swarm	join-token	worker	-q)

Now	that	we	have	the	join	token	and	the	IP	address	of	the	swarm	leader,	we	can
ask	the	other	nodes	to	join	the	swarm	as	follows:

$	for	NODE	in	`seq	2	5`;	do

		NODE_NAME="node-${NODE}"

		docker-machine	ssh	$NODE_NAME	docker	swarm	join	\

								--token	$JOIN_TOKEN	$IP:2377

done

To	make	the	swarm	highly	available	we	can	now	promote,	for	example,	node-2
and	node-3	to	become	managers:

$	docker-machine	ssh	node-1	docker	node	promote	node-2	node-3

Node	node-2	promoted	to	a	manager	in	the	swarm.

Node	node-3	promoted	to	a	manager	in	the	swarm.

Finally,	we	can	list	all	the	nodes	of	the	swarm:

$	docker-machine	ssh	node-1	docker	node	ls

We	should	see	the	following	screenshot:

List	of	all	the	nodes	of	the	Docker	Swarm	on	VirtualBox

This	is	the	proof	that	we	have	just	created	a	highly	available	Docker	Swarm
locally	on	our	laptop	or	workstation.	Let's	pull	all	our	code	snippets	together	and
make	the	whole	thing	a	bit	more	robust.	The	script	will	look	as	follows:

alias	dm="docker-machine"

for	NODE	in	`seq	1	5`;	do

		NODE_NAME=node-${NODE}

		dm	rm	--force	$NODE_NAME

		dm	create	--driver	virtualbox	$NODE_NAME

done

alias	dms="docker-machine	ssh"

export	IP=$(docker-machine	ip	node-1)

dms	node-1	docker	swarm	init	--advertise-addr	$IP;

export	JOIN_TOKEN=$(dms	node-1	docker	swarm	join-token	worker	-q);

for	NODE	in	`seq	2	5`;	do

		NODE_NAME="node-${NODE}"

		dms	$NODE_NAME	docker	swarm	join	--token	$JOIN_TOKEN	$IP:2377

done;

dms	node-1	docker	node	promote	node-2	node-3

The	preceding	script	first	deletes	(if	present)	and	then	recreates	five	VMs	called
node-1	to	node-5,	and	then	initializes	a	Swarm	on	node-1.	After	that,	the	remaining
four	VMs	are	added	to	the	swarm,	and	finally,	node-2	and	node-3	are	promoted	to
manager	status	to	make	the	swarm	highly	available.	The	whole	script	will	take
less	than	5	minutes	to	execute	and	can	be	repeated	as	many	times	as	desired.	The
complete	script	can	be	found	in	the	repository,	in	the	subfolder	docker-swarm;	it	is
called	create-swarm.sh	

It	is	a	highly	recommended	best	practice	to	always	script	and	thus	automate
operations.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Using	Play	with	Docker	(PWD)	to
generate	a	Swarm
To	experiment	with	Docker	Swarm	without	having	to	install	or	configure
anything	locally	on	our	computer,	we	can	use	PWD.	PWD	is	a	website	that	can
be	accessed	with	a	browser	and	which	offers	us	the	ability	to	create	a	Docker
Swarm	consisting	of	up	to	five	nodes.	It	is	definitely	a	playground,	as	the	name
implies,	and	the	time	for	which	we	can	use	it	is	limited	to	four	hours	per	session.
We	can	open	as	many	sessions	as	we	want,	but	each	session	automatically	ends
after	four	hours.	Other	than	that,	it	is	a	fully	functional	Docker	environment	that
is	ideal	for	tinkering	with	Docker	or	to	demonstrate	some	features.

Let's	access	the	site	now.	In	your	browser,	navigate	to	the	website	https://labs.pla
y-with-docker.com.	You	will	be	presented	a	welcome	and	login	screen.	Use	your
Docker	ID	to	log	in.	After	successfully	logging	in	you	will	be	presented	with	a
screen	that	looks	like	the	following	screenshot:

https://labs.play-with-docker.com

Play	with	Docker	window

As	we	can	see	immediately,	there	is	a	big	timer	counting	down	from	four	hours.
That's	how	much	time	we	have	left	to	play	in	this	session.	Furthermore,	we	see
an	+	ADD	NEW	INSTANCE	link.	Click	it	to	create	a	new	Docker	host.	When
you	do	that,	your	screen	should	look	like	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

PWD	with	one	new	node

On	the	left-hand	side	we	see	the	newly-created	node	with	its	IP	address
(192.168.0.53)	and	its	name	(node1).	On	the	right-hand	side,	we	have	some
additional	information	about	this	new	node	in	the	upper	half	of	the	screen	and	a
terminal	in	the	lower	half.	Yes,	this	terminal	is	used	to	execute	commands	on	this
node	that	we	just	created.	This	node	has	the	Docker	CLI	installed,	and	thus	we
can	execute	all	the	familiar	Docker	commands	on	it	such	as	docker	version.	Try	it
out.

But	now	we	want	to	create	a	Docker	Swarm.	Execute	the	following	command	in
the	terminal	in	your	browser:

$	docker	swarm	init	--advertise-addr=eth0

The	output	generated	by	the	preceding	command	corresponds	to	what	we
already	know	from	our	previous	trials	with	the	one-node	cluster	on	our
workstation	and	the	local	cluster	using	VirtualBox	or	Hyper-V.	The	important
information,	once	again,	is	the	join	command	that	we	want	to	use	to	join
additional	nodes	to	the	cluster	we	just	created.

You	might	have	noted	that	this	time	we	specified	the	parameter	--advertise-addr	in
the	swarm	init	command.	Why	is	that	necessary	here?	The	reason	is	that	the
nodes	generated	by	PWD	have	more	than	one	IP	address	associated	with	them.

One	can	easily	verify	that	by	executing	the	command	ip	a	on	the	node.	This
command	will	show	us	that	there	are	indeed	two	endpoints,	eth0	and	eth1,	present.
We	thus	have	to	specify	explicitly	to	the	new	to-be-swarm	manager	which	one
we	want	to	use.	In	our	case,	it	is	eth0.

Create	four	additional	nodes	in	PWD	by	clicking	four	times	on	the	+	ADD	NEW
INSTANCE	link.	The	new	nodes	will	be	called	node2,	node3,	node4,	and	node5	and
will	all	be	listed	on	the	left-hand	side.	If	you	click	on	one	of	the	nodes	on	the
left-hand	side,	then	the	right-hand	side	shows	the	details	of	the	respective	node
and	a	terminal	window	for	that	node.

Select	each	node	(2	to	5)	and	execute	the	docker	swarm	join	command	that	you
have	copied	from	the	leader	node	(node1)	in	the	respective	terminal:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Joining	a	node	to	the	swarm	in	PWD

	

Once	you	have	joined	all	four	nodes	to	the	swarm,	switch	back	to	node1	and	list
all	nodes,	which,	unsurprisingly,	results	in	this:

List	of	all	the	nodes	of	the	swarm	in	PWD

Still	on	node1,	we	can	now	promote,	say,	node2	and	node3,	to	make	the	swarm
highly	available:

$	docker	node	promote	node2	node3

Node	node2	promoted	to	a	manager	in	the	swarm.

Node	node3	promoted	to	a	manager	in	the	swarm.

With	this,	our	swarm	on	PWD	is	ready	to	accept	a	workload.	We	have	created	a
highly	available	Docker	Swarm	with	three	manager	nodes	that	form	a	Raft
consensus	group	and	two	worker	nodes.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	a	Docker	Swarm	in	the
cloud
All	the	Docker	Swarms	we	have	created	so	far	are	wonderful	to	use	in
development	or	to	experiment	or	for	demonstration	purposes.	If	we	want	to
create	a	swarm	that	can	be	used	as	a	production	environment	where	we	run	our
mission	critical	applications,	though,	then	we	need	to	create	a,	I'm	tempted	to
say,	real	swarm	in	the	cloud	or	on-premise.	In	this	book,	we	are	going	to
demonstrate	how	to	create	a	Docker	Swarm	in	Amazon	AWS.

One	way	to	create	a	swarm	is	by	using	Docker	machine	(DM).	DM	has	a	driver
for	Amazon	AWS.	If	we	have	an	account	on	AWS,	we	need	the	AWS	access	key
ID	and	the	AWS	secret	access	key.	We	can	add	those	two	values	to	a	file	called
~/.aws/configuration.	It	should	look	like	the	following:

[default]

aws_access_key_id	=	AKID1234567890

aws_secret_access_key	=	MY-SECRET-KEY

Every	time	we	run	docker-machine	create,	DM	will	look	up	those	values	in	that	file.
For	more	in-depth	information	on	how	to	get	an	AWS	account	and	how	to	obtain
the	two	secret	keys,	please	consult	this	link:	http://dockr.ly/2FFelyT.

Once	we	have	an	AWS	account	in	place	and	have	stored	the	access	keys	in	the
configuration	file,	we	can	start	building	our	swarm.	The	necessary	code	looks
exactly	the	same	as	the	one	we	used	to	create	a	swarm	on	our	local	machine	in
VirtualBox.	Let's	start	with	the	first	node:

$	docker-machine	create	--driver	amazonec2	\

				--amazonec2-region	us-east-1	aws-node-1

This	will	create	an	EC2	instance	called	aws-node-1	in	the	requested	region	(us-east-
1	in	my	case).	The	output	of	the	preceding	command	looks	like	the	following
screenshot:

http://dockr.ly/2FFelyT

Creating	a	swarm	node	on	AWS	with	Docker	machine

It	looks	very	similar	to	the	output	we	already	know	from	working	with
VirtualBox.	We	can	now	configure	our	terminal	for	remote	access	to	that	EC2
instance:

$	eval	$(docker-machine	env	aws-node-1)

This	will	configure	the	environment	variables	used	by	the	Docker	CLI
accordingly:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Environment	variables	used	by	Docker	to	enable	remote	access	to	the	AWS	EC2	node

For	security	reasons,	transport	layer	security	(TLS)	is	used	for	the
communication	between	our	CLI	and	the	remote	node.	The	certificates	necessary
for	that	were	copied	by	DM	to	the	path	we	assigned	to	the	environment	variable
DOCKER_CERT_PATH.

All	Docker	commands	that	we	now	execute	in	our	Terminal	will	be	remotely
executed	in	Amazon	AWS	on	our	EC2	instance.	Let's	try	to	run	Nginx	on	this
node:

$	docker	container	run	-d	-p	8000:80	nginx:alpine

We	can	use	docker	container	ls	to	verify	that	the	container	is	running.	If	so,	then
let's	test	it	using	curl:

$	curl	-4	<IP	address>:8000

Here,	<IP	address>	is	the	public	IP	address	of	the	AWS	node;	in	my	case	it	would
be	35.172.240.127.	Sadly	this	doesn't	work;	the	preceding	command	times	out:

Accessing	Nginx	on	the	AWS	node	times	out

The	reason	for	this	is	that	our	node	is	part	of	an	AWS	security	group	(SG).	By
default,	access	to	objects	inside	this	SG	is	denied.	Thus,	we	have	to	find	out	to
which	SG	our	instance	belongs	and	configure	access	explicitly.	For	this,	we
typically	use	the	AWS	console.	Go	to	the	EC2	dashboard	and	select	instances	on
the	left-hand	side.	Locate	the	EC2	instance	called	aws-node-1	and	select	it.	In	the
details	view,	under	Security	groups,	click	on	the	link	docker-machine	as	shown
in	the	following	screenshot:

Locating	the	SG	to	which	our	swarm	node	belongs

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

This	will	lead	us	to	the	SG	page	with	the	SG	docker-machine	pre-selected.	In	the
details	section	under	the	tab	Inbound,	add	a	new	rule	for	your	IP	address	(the	IP

address	of	workstation):

Open	access	to	SG	for	our	computer

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

In	the	preceding	screenshot,	the	IP	address	70.113.114.234	happens	to	be	the	one
assigned	to	my	personal	workstation.	I	have	enabled	all	inbound	traffic	coming
from	this	IP	address	to	the	docker-machine	SG.	Note	that	in	a	production	system
you	should	be	very	careful	about	which	ports	of	the	SG	to	open	to	the	public.
Usually,	it	is	ports	80	and	443	for	HTTP	and	HTTPS	access.	Everything	else	is	a
potential	invitation	to	hackers.

You	can	get	your	own	IP	address	through	a	service
like	https://www.whatismyip.com/.	Now,	if	we	execute	the	curl	command	again,	the
greeting	page	of	Nginx	is	returned.

Before	we	leave	the	SG	we	should	add	another	rule	to	it.	The	swarm	nodes	need
to	be	able	to	freely	communicate	on	ports	7946	and	4789	through	TCP	and	UDP
and	on	port	2377	through	TCP.	We	could	now	add	five	rules	with	these
requirements	where	the	source	is	the	SG	itself,	or	we	just	define	a	more	crud	rule
that	allows	all	inbound	traffic	inside	the	SG	(sg-c14f4db3	in	my	case):

	SG	rule	to	enable	intra-swarm	communication

Now,	let's	continue	with	the	creation	of	the	remaining	four	nodes.	Once	again,
we	can	use	a	script	to	ease	the	process:

$	for	NODE	in	`seq	2	5`;	do

				docker-machine	create	--driver	amazonec2	\

								--amazonec2-region	us-east-1	aws-node-${NODE}

done

https://www.whatismyip.com/
https://www.whatismyip.com/

After	the	provisioning	of	the	nodes	is	done	we	can	list	all	nodes	with	DM.	In	my
case,	I	see	this:

List	of	all	the	nodes	created	by	Docker	Machine

In	the	preceding	screenshot,	we	can	see	the	five	nodes	that	we	originally	created
in	VirtualBox	and	the	five	new	nodes	that	we	have	created	in	AWS.	Apparently,
the	nodes	on	AWS	are	using	a	new	version	of	Docker;	here	the	version	is	18.02.0-
ce.	The	IP	addresses	we	see	in	the	column	URL	are	the	public	IP	addresses	of	my
EC2	instances.

Due	to	the	fact	that	our	CLI	is	still	configured	for	remote	access	to	the	node	aws-
node-1,	we	can	just	run	the	swarm	init	command	as	follows:

$	docker	swarm	init

We	then	need	the	join-token:

$	export	JOIN_TOKEN=$(docker	swarm	join-token	-q	worker)

The	address	of	the	leader	with	the	following	command:

$	export	LEADER_ADDR=$(docker	node	inspect	\

				--format	"{{.ManagerStatus.Addr}}"	self)

With	this	information,	we	can	now	join	the	other	four	nodes	to	the	swarm	leader:

$	for	NODE	in	`seq	2	5`;	do

		docker-machine	ssh	aws-node-${NODE}	\

				sudo	docker	swarm	join	--token	${JOIN_TOKEN}	${LEADER_ADDR}

done

An	alternative	way	to	achieve	the	same	without	needing	to	SSH	into	the
individual	nodes	would	be	to	reconfigure	our	client	CLI	every	time	we	want	to
access	a	different	node:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	for	NODE	in	`seq	2	5`;	do

		eval	$(docker-machine	env	aws-node-${NODE})

		docker	swarm	join	--token	${JOIN_TOKEN}	${LEADER_ADDR}

done

As	a	last	step,	we	want	to	promote	nodes	2	and	3	to	manager:

$	eval	$(docker-machine	env	node-1)

$	docker	node	promote	aws-node-2	aws-node-3

We	can	then	list	all	the	swarm	nodes,	as	shown	in	the	following	screenshot:

List	of	all	nodes	of	our	swarm	in	the	cloud

And	thus	do	we	have	a	highly	available	Docker	Swarm	running	in	the	cloud.	To
clean	up	the	swarm	in	the	cloud	and	avoid	incurring	unnecessary	costs,	we	can
use	the	following	command:

$	for	NODE	in	`seq	1	5`;	do

		docker-machine	rm	-f	aws-node-${NODE}

done

Deploying	a	first	application
We	have	created	a	few	Docker	Swarms	on	various	platforms.	Once	created,	a
swarm	behaves	the	same	way	on	any	platform.	The	way	we	deploy	and	update
applications	on	a	swarm	is	not	platform-dependent.	It	has	been	one	of	Docker's
main	goals	to	avoid	a	vendor	lock-in	when	using	a	swarm.	Swarm-ready
applications	can	be	effortlessly	migrated	from,	say,	a	swarm	running	on-premise
to	a	cloud	based	swarm.	It	is	even	technically	possible	to	run	part	of	a	swarm	on-
premise	and	another	part	in	the	cloud.	It	works,	yet	one	has	of	course	to	consider
possible	side	effects	due	to	the	higher	latency	between	nodes	in	geographically
distant	areas.

Now	that	we	have	a	highly	available	Docker	Swarm	up	and	running,	it	is	time	to
run	some	workloads	on	it.	I'm	using	a	local	swarm	created	with	Docker
Machine.	We'll	start	by	first	creating	a	single	service.	For	this	we	need	to	SSH
into	one	of	the	manager	nodes.	I	select	node-1:

$	docker-machine	ssh	node-1

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	a	service
A	service	can	be	either	created	as	part	of	a	stack,	or	directly	using	the	Docker
CLI.	Let's	first	look	at	a	sample	stack	file	that	defines	a	single	service:

version:	"3.5"

services:

		whoami:

				image:	training/whoami:latest

				networks:

						-	test-net

				ports:

						-	81:8000

				deploy:

						replicas:	6

						update_config:

								parallelism:	2

								delay:	10s

						labels:

								app:	sample-app

								environment:	prod-south

networks:

		test-net:

				driver:	overlay

In	the	preceding	example	we	see	what	the	desired	state	of	a	service
called	whoami	is:

It	is	based	on	the	image	training/whoami:latest
Containers	of	the	service	are	attached	to	the	network	test-net
The	container	port	8000	is	published	to	port	81
It	is	running	with	six	replicas	(or	tasks)
During	a	rolling	update,	the	individual	tasks	are	updated	in	batches	of	two,
with	a	delay	of	10	seconds	between	each	successful	batch
The	service	(and	its	tasks	and	containers)	is	assigned	the	two
labels	app	and	environment,	with	the	values	sample-app	and	prod-
south	respectively

There	are	many	more	settings	that	we	could	define	for	a	service,	but	the
preceding	ones	are	some	of	the	more	important	ones.	Most	settings	have
meaningful	default	values.	If,	for	example,	we	do	not	specify	the	number	of
replicas,	then	Docker	defaults	it	to	1.	The	name	and	image	of	a	service	are	of
course	mandatory.	Note	that	the	name	of	the	service	must	be	unique	in	the

swarm.

To	create	the	preceding	service,	we	use	the	docker	stack	deploy	command.
Assuming	that	the	file	in	which	the	preceding	content	is	stored	is
called	stack.yaml,	we	have:

$	docker	stack	deploy	-c	stack.yaml	sample-stack

Here,	we	have	created	a	stack	called	sample-stack	that	consists	of	one
service,	whoami.	We	can	list	all	stacks	on	our	swarm,	whereupon	we	should	get
this:

$	docker	stack	ls

NAME													SERVICES

sample-stack					1

If	we	list	the	services	defined	in	our	swarm,	we	get	the	following	output:

List	of	all	services	running	in	the	swarm

In	the	output,	we	can	see	that	currently	we	have	only	one	service	running,	which
was	to	be	expected.	The	service	has	an	ID.	The	format	of	the	ID,	contrary,	what
you	have	used	so	far	for	containers,	networks,	or	volumes,	is	alphanumeric.	We
can	also	see	that	the	name	of	the	service	is	a	combination	of	the	service	name	we
defined	in	the	stack	file	and	the	name	of	the	stack,	which	is	used	as	a	prefix.	This
makes	sense,	since	we	want	to	be	able	to	deploy	multiple	stacks	(with	different
names)	using	the	same	stack	file	into	our	swarm.	To	make	sure	that	service
names	are	unique,	Docker	decided	to	combine	service	name	and	stack	name.

In	the	third	column	we	see	the	mode,	which	is	replicated.		The	number	of	replicas
is	shown	as	6/6.	This	tells	us	that	six	out	of	the	six	requested	replicas	are	running.
This	corresponds	to	the	desired	state.	In	the	output	we	also	see	the	image	that	the
service	uses	and	the	port	mappings	of	the	service.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Inspecting	the	service	and	its	tasks
In	the	preceding	output,	we	cannot	see	the	details	of	the	6	replicas	that	have	been
created.	To	get	some	deeper	insight	into	that,	we	can	use	the	docker	service
ps	command.	If	we	execute	this	command	for	our	service,	we	will	get	the
following	output:

Details	of	the	whoami	service	

In	the	preceding	output,	we	can	see	the	list	of	six	tasks	that	correspond	to	the
requested	six	replicas	of	our	whoami	service.	In	the	NODE	column,	we	can	also	see
the	node	to	which	each	task	has	been	deployed.	The	name	of	each	task	is	a
combination	of	the	service	name	plus	an	increasing	index.	Also	note	that,	similar
to	the	service	itself,	each	task	gets	an	alphanumeric	ID	assigned.

In	my	case,	apparently	task	2,	with	the	name	sample-stack_whoami.2,	has	been
deployed	to	node-1,	which	is	the	leader	of	our	swarm.	Thus,	I	should	find	a
container	running	on	this	node.	Let's	see	what	we	get	if	we	list	all	containers
running	on	node-1:

List	of	containers	on	node-1

As	expected,	we	find	a	container	running	from	the	training/whoami:latest	image
with	a	name	that	is	a	combination	of	its	parent	task	name	and	ID.	We	can	try	to
visualize	the	whole	hierarchy	of	objects	that	we	generated	when	deploying	our
sample	stack:

Object	hierarchy	of	a	Docker	Swarm	stack

A	stack	can	consist	of	one	to	many	services.	Each	service	has	a	collection	of
tasks.	Each	task	has	a	one-to-one	association	with	a	container.	Stacks	and
services	are	created	and	stored	on	the	Swarm	manager	nodes.	Tasks	are	then
scheduled	to	swarm	worker	nodes,	where	the	worker	node	creates	the
corresponding	container.	We	can	also	get	some	more	information	about	our
service	by	inspecting	it.	Execute	the	following	command:

$	docker	service	inspect	sample-stack_whoami

This	provides	a	wealth	of	information	about	all	the	relevant	settings	of	the
service.	This	includes	those	we	have	explicitly	defined	in	our	stack.yaml	file,	but
also	those	which	we	didn't	specify	and	which	therefore	got	their	default	values
assigned.	We're	not	going	to	list	the	whole	output	here,	as	it	is	too	long,	but	I
encourage	the	reader	to	inspect	it	on	their	own	machine.	We	will	discuss	part	of

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

the	information	in	more	detail	in	the	The	Swarm	Routing	Mesh	section.

Logs	of	a	service
In	an	earlier	chapter	we	worked	with	the	logs	produced	by	a	container.	Here
we're	concentrating	on	a	service.	Remember	that,	ultimately,	a	service	with	many
replicas	has	many	containers	running.	Thus,	we	would	expect	that,	if	we	ask	the
service	for	its	logs,	that	Docker	returns	an	aggregate	of	all	logs	of	those
containers	belonging	to	the	service.	And	indeed,	that's	what	we	get	if	we	use
the	docker	service	logs	command:

Logs	of	the	whoami	service

There	is	not	much	information	in	the	logs	at	this	point,	but	it	is	enough	to	discuss
what	we	get.	The	first	part	of	each	line	in	the	log	always	contains	the	name	of
the	container	combined	with	the	node	name	from	which	the	log	entry	originates.
Then,	separated	by	the	vertical	bar	(|),	we	get	the	actual	log	entry.	So	if	we
would,	say,	ask	for	the	logs	of	the	first	container	in	the	list	directly,	we	would
only	get	a	single	entry,	and	the	value	we	would	see	in	this	case	would	be	Listening
on	:8000.	

The	aggregated	logs	that	we	get	with	the	docker	service	logs	command	are	not
sorted	in	any	particular	way.	So,	if	correlation	of	events	is	happening	in	different
containers	you	should	add	information	to	your	log	output	that	makes	this
correlation	possible.	Typically,	this	is	a	timestamp	for	each	log	entry.	But	this
has	to	be	done	at	the	source;	for	example,	the	application	that	produces	a	log
entry	needs	to	also	make	sure	a	timestamp	is	added.

We	can	also	query	the	logs	of	an	individual	task	of	the	service	by	providing	the
task	ID	instead	of	the	service	ID	or	name.	So,	querying	the	logs	from	task	2
gives	us	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Logs	of	an	individual	task	of	the	whoami	service

Reconciling	the	desired	state
We	have	learned	that	a	swarm	service	is	a	description	or	manifest	of	the	desired
state	that	we	want	an	application	or	application	service	to	run	in.	Now,	let's	see
how	Docker	Swarm	reconciles	this	desired	state	if	we	do	something	that	causes
the	actual	state	of	the	service	to	be	different	from	the	desired	state.	The	easiest
way	to	do	this	is	to	forcibly	kill	one	of	the	tasks	or	containers	of	the	service.

Let's	do	this	with	the	container	that	has	been	scheduled	on	node-1:

$	docker	container	rm	-f	sample-stack_whoami.2.n21e7ktyvo4b2sufalk0aibzy

If	we	do	that	and	then	do	a	docker	service	ps	right	thereafter,	we	will	see	the
following	output:

Docker	Swarm	reconciling	the	desired	state	after	one	task	failed

We	see	that	task	2	failed	with	exit	code	137	and	that	the	swarm	immediately
reconciled	the	desired	state	by	rescheduling	the	failed	task	on	a	node	with	free
resources.	In	this	case,	the	scheduler	selected	the	same	node	as	the	failed	tasks,
but	this	is	not	always	the	case.	So,	without	us	intervening,	the	swarm	completely
fixed	the	problem,	and	since	the	service	is	running	in	multiple	replicas,	at	no
time	was	the	service	down.

Let's	try	another	failure	scenario.	This	time	we're	going	to	shut	down	an	entire

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

node	and	are	going	to	see	how	the	swarm	reacts.	Let's	take	node-2	for	this,	as	it
has	two	tasks	(tasks	3	and	4)	running	on	it.	For	this	we	need	to	open	a	new
terminal	window	and	use	Docker	machine	to	stop	node-2:

$	docker-machine	stop	node-2

Back	on	node-1,	we	can	now	again	run	docker	service	ps	to	see	what	happened:

Swarm	reschedules	all	tasks	of	a	failed	node

In	the	preceding	screenshot,	we	can	see	that	immediately	task	3	was	rescheduled
on	node-1	whilst	task	4	was	rescheduled	on	node-3.	Even	this	more	radical	failure	is
handled	gracefully	by	Docker	Swarm.	

It	is	important	to	note	though	that	if	node-2	ever	comes	back	online	in	the	swarm,
the	tasks	that	had	previously	been	running	on	it	will	not	automatically	be
transferred	back	to	it.	But	the	node	is	now	ready	for	a	new	workload.

Deleting	a	service	or	a	stack
If	we	want	to	remove	a	particular	service	from	the	swarm,	we	can	use	the	docker
service	rm	command.	If	on	the	other	hand	we	want	to	remove	a	stack	from	the
swarm,	we	analogously	use	the	docker	stack	rm	command.	This	command	removes
all	services	that	are	part	of	the	stack	definition.	In	the	case	of	the	whoami	service,	it
was	created	by	using	a	stack	file	and	thus	we're	going	to	use	the	latter	command:

Removing	a	stack

The	preceding	command	will	make	sure	that	all	tasks	of	each	service	of	the	stack
are	terminated,	and	the	corresponding	containers	are	stopped	by	first	sending	a
SIGTERM,	and	then,	if	not	successful,	a	SIGKILL	after	10	seconds	of	timeout.

It	is	important	to	note	that	the	stopped	containers	are	not	removed	from	the
Docker	host.	Thus,	it	is	advised	to	purge	containers	from	time	to	time	on	worker
nodes	to	reclaim	unused	resources.	Use	docker	container	purge	-f	for	this	purpose.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Deploying	a	multi-service	stack
In	Chapter	8,	Docker	Compose,	we	used	an	application	consisting	of	two	services
that	were	declaratively	described	in	a	Docker	compose	file.	We	can	use	this
compose	file	as	a	template	to	create	a	stack	file	that	allows	us	to	deploy	the	same
application	into	a	swarm.	The	content	of	our	stack	file	called	pet-stack.yaml	looks
like	this:

version:	"3.5"

services:

		web:

				image:	fundamentalsofdocker/ch08-web:1.0

				networks:

						-	pets-net

				ports:

						-	3000:3000

				deploy:

						replicas:	3

		db:

				image:	fundamentalsofdocker/ch08-db:1.0

				networks:

						-	pets-net

				volumes:

						-	pets-data:/var/lib/postgresql/data

volumes:

		pets-data:

networks:

		pets-net:

				driver:	overlay

We	request	that	the	service	web	has	three	replicas,	and	both	services	are	attached
to	the	overlay	network	pets-net.	We	can	deploy	this	application	using	the	docker
stack	deploy	command:

Deploy	the	pets	stack

Docker	creates	the	pets_pets-net	overlay	network	and	then	the	two	services
pets_web	and	pets_db.	We	can	then	list	all	the	tasks	in	the	pets	stack:

List	of	all	the	tasks	in	the	pets	stack

Finally,	let's	test	the	application	using	curl.	And,	indeed,	the	application	works	as
expected:

Testing	the	pets	application	using	curl

The	container	ID	is	in	the	output,	where	it	says	Delivered	to	you	by
container	c9aa9dacd9b2.	If	you	run	the	curl	command	multiple	times,	the	ID	should
cycle	between	three	different	values.	These	are	the	ID's	of	the	three	containers
(or	replicas)	that	we	have	requested	for	the	service	web.

Once	we're	done,	we	can	remove	the	stack	with	docker	stack	rm	pets.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	swarm	routing	mesh
If	you	have	been	paying	attention,	then	you	might	have	noticed	something
interesting	in	the	last	section.	We	had	the	pets	application	deployed	and	it
resulted	in	the	fact	that	an	instance	of	the	service	web	was	installed	on	the	three
nodes	node-3,	node-4,	and	node-5.	Yet,	we	were	able	to	access	the	web	service	on
node-1	with	localhost	and	we	reached	each	container	from	there.	How	is	that
possible?	Well,	this	is	due	to	the	so-called	swarm	routing	mesh.	The	routing
mesh	makes	sure	that	when	we	publish	a	port	of	a	service,	that	port	is	then
published	on	all	nodes	of	the	swarm.	Thus,	network	traffic	that	hits	any	node	of
the	swarm	and	requests	to	use	the	specific	port,	will	be	forwarded	to	one	of	the
service	containers	by	routing	the	mesh.	Let's	look	at	the	following	figure	to	see
how	that	works:

Docker	Swarm	routing	mesh

In	this	situation	we	have	three	nodes,	called	Host	A	to	Host	C,	with	the	IP
addresses	172.10.0.15,	172.10.0.17,	and	172.10.0.33.	In	the	lower	left-corner	of	the
figure,	we	see	the	command	that	created	a	service	web	with	two	replicas.	The
corresponding	tasks	have	been	scheduled	on	Host	B	and	Host	C.	Task	1	landed
on	host	B	while	task	2	landed	on	host	C.

When	a	service	is	created	on	Docker	Swarm	it	automatically	gets	a	virtual	IP
(VIP)	address	assigned.	This	IP	address	is	stable	and	reserved	during	the	whole
life	cycle	of	the	service.	Let's	assume	that	in	our	case	the	VIP	is	10.2.0.1.

If	now	a	request	for	port	8080	coming	from	an	external	load	balancer	(LB)	is
targeted	at	one	of	the	nodes	of	our	swarm,	then	this	request	is	handled	by	the
Linux	IP	Virtual	Server	(IPVS)	service	on	that	node.	This	service	makes	a
lookup	with	the	given	port	8080	in	the	IP	table	and	will	find	that	this	corresponds
to	the	VIP	of	service	web.	Now,	since	the	VIP	is	not	a	real	target,	the	IPVS
service	will	load	balance	the	IP	addresses	of	the	tasks	that	are	associated	with
this	service.	In	our	case	it	picked	task	2,	with	the	IP	address	10.2.0.3.	Finally,	the
ingress	overlay	network	is	used	to	forward	the	request	to	the	target	container	on
host	C.

It	is	important	to	note	that	it	doesn't	matter	which	swarm	node	the	external
request	is	forwarded	to	by	the	external	LB.	The	routing	mesh	will	always	handle
the	request	correctly	and	forward	it	to	one	of	the	tasks	of	the	targeted	service.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	chapter,	we	have	introduced	Docker	Swarm,	which,	next	to	Kubernetes,	is
the	second	most	popular	orchestrator	for	containers.	We	have	looked	into	the
architecture	of	a	swarm,	discussed	all	the	types	of	resources	running	in	a	swarm,
such	as	services,	tasks,	and	more,	and	we	have	created	services	in	the	swarm	and
deployed	an	application	that	consists	of	multiple	related	services.

In	the	next	chapter,	we	are	going	to	explore	how	to	deploy	services	or
applications	onto	a	Docker	Swarm	with	zero	downtime	and	automatic	rollback
capabilities.	We	are	also	going	to	introduce	secrets	as	a	means	to	protect
sensitive	information.

Questions
To	assess	your	learning	progress	please	answer	the	following	questions:

1.	 How	do	you	initialize	a	new	Docker	Swarm?
1.	 docker	init	swarm
2.	 docker	swarm	init	--advertise-addr	<IP	address>
3.	 docker	swarm	join	--token	<join	token>

2.	 You	want	to	remove	a	worker	node	from	a	Docker	Swarm.	What	steps	are
necessary?

3.	 How	do	you	create	an	overlay	network	called	front-tier?	Make	the	network
attachable.

4.	 How	will	you	create	a	service	called	web	from	the	nginx:alpine	image	with
five	replicas,	which	exposes	port	3000	on	the	ingress	network	and	is
attached	to	the	front-tier	network?

5.	 How	will	you	scale	the	web	service	down	to	three	instances?

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
Please	consult	the	following	link	for	more	in-depth	information	about	selected
topics:

Amazon	AWS	EC2	example	at	http://dockr.ly/2FFelyT

http://dockr.ly/2FFelyT

Zero	Downtime	Deployments	and
Secrets
In	the	last	chapter,	we	explored	Docker	Swarm	and	its	resources	in	detail.	We
learned	how	to	build	a	highly	available	swarm	locally,	and	in	the	cloud.	Then,
we	discussed	swarm	services	and	stacks	in	depth.	Finally,	we	created	services
and	stacks	in	the	swarm.

In	this	chapter,	we	will	show	you	how	we	can	update	services	and	stacks	running
in	Docker	Swarm	without	interrupting	their	availability.	This	is	called	zero
downtime	deployment.	We	are	also	going	to	introduce	swarm	secrets	as	a
means	to	securely	provide	sensitive	information	to	containers	of	a	service	using
those	secrets.

The	topics	of	this	chapter	are:

Zero	downtime	deployment
Secrets

After	finishing	this	chapter,	you	will	be	able	to:

List	two	to	three	different	deployment	strategies	commonly	used	to	update	a
service	without	downtime
Update	a	service	in	batches	without	causing	a	service	interruption
Define	a	rollback	strategy	for	a	service	that	is	used	if	an	update	fails
Use	a	secret	with	a	service
Update	the	value	of	a	secret	without	causing	downtime

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Technical	requirements
The	code	files	for	this	chapter	can	be	found	at	the	link	https://github.com/fundamenta
lsofdocker/labs/tree/master/ch11.

https://github.com/fundamentalsofdocker/labs/tree/master/ch11

Zero	downtime	deployment
One	of	the	most	important	aspects	of	a	mission-critical	application	that	needs
frequent	updates	is	the	ability	to	do	updates	in	a	fashion	that	requires	no	outage
at	all.	We	call	this	a	zero	downtime	deployment.	At	all	times,	the	application
which	is	updated	is	fully	operational.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Popular	deployment	strategies
There	are	various	ways	how	this	can	be	achieved.	Some	of	them	are	as	follows:

Rolling	updates
Blue-green	deployments
Canary	releases

Docker	Swarm	supports	rolling	updates	out	of	the	box.	The	other	two	types	of
deployments	can	be	achieved	with	some	extra	effort	from	our	side.

Rolling	updates
In	a	mission-critical	application,	each	application	service	has	to	run	in	multiple
replicas.	Depending	on	the	load,	that	can	be	as	few	as	two	to	three	instances	and
as	many	as	dozens,	hundreds,	or	thousands	of	instances.	At	any	given	time,	we
want	to	have	a	clear	majority	of	all	service	instances	running.	So,	if	we	have
three	replicas,	we	want	to	have	at	least	two	of	them	up	and	running	all	the	time.
If	we	have	100	replicas,	we	can	content	ourselves	with	a	minimum	of,	say	90
replicas,	that	need	to	be	available.	We	can	then	define	a	batch	size	of	replicas
that	we	may	take	down	to	upgrade.	In	the	first	case,	the	batch	size	would	be	1
and	in	the	second	case,	it	would	be	10.

When	we	take	replicas	down,	Docker	Swarm	will	automatically	take	those
instances	out	of	the	load	balancing	pool	and	all	traffic	will	be	load	balanced
across	the	remaining	active	instances.	Those	remaining	instances	will	thus
experience	a	slight	increase	in	traffic.	In	the	following	diagram,	prior	to	the	start
of	the	rolling	update,	if	Task	A3	wanted	to	access	Service	B,	it	could	have	been
load	balanced	to	any	of	the	three	tasks	of	service	B	by	SwarmKit.	Once	the
rolling	update	had	started,	SwarmKit	took	down	Task	B1	for	updates.
Automatically,	this	task	is	then	taken	out	of	the	pool	of	targets.	So,	if	Task	A3
now	requests	to	connect	to	Service	B,	the	load	balancing	will	only	select	from
the	remaining	tasks	B2	and	B3.	Thus,	those	two	tasks	might	experience	a	higher
load	temporarily:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Task	B1	is	taken	down	for	update

The	stopped	instances	are	then	replaced	by	an	equivalent	number	of	new
instances	of	the	new	version	of	the	application	service.	Once	the	new	instances
are	up	and	running,	we	can	have	the	swarm	observe	them	for	a	given	period	of
time	and	make	sure	they’re	healthy.	If	all	is	good,	then	we	can	continue	by
taking	down	the	next	batch	of	instances	and	replacing	them	with	instances	of	the
new	version.	This	process	is	repeated	until	all	instances	of	the	application
service	are	replaced.

In	the	the	following	diagram,	we	see	that	Task	B1	of	Service	B	has	been
updated	to	version	2.	The	container	of	Task	B1	got	a	new	IP	address	assigned,
and	it	got	deployed	to	another	worker	node	with	free	resources:

First	batch	updated	in	a	rolling	update

It	is	important	to	understand	that	when	a	task	of	a	service	is	updated,	it,	in	most
cases,	gets	deployed	to	a	different	worker	node	than	the	one	it	used	to	live	on.
But	that	should	be	fine	as	long	as	the	corresponding	service	is	stateless.	If	we
have	a	stateful	service	that	is	location	or	node	aware	and	we'd	like	to	update	it,
then	we	have	to	adjust	our	approach,	but	this	is	outside	of	the	scope	of	this	book.

Now,	let’s	look	into	how	we	can	actually	instruct	the	swarm	to	perform	a	rolling
update	of	an	application	service.	When	we	declare	a	service	in	a	stack	file,	we
can	define	multiple	options	that	are	relevant	in	this	context.	Let’s	look	at	a
snippet	of	a	typical	stack	file:

version:	"3.5"

services:

	web:

			image:	nginx:alpine

			deploy:

					replicas:	10

					update_config:

							parallelism:	2

							delay:	10s

...

In	this	snippet,	we	see	a	section,	update_config,	with	the	properties	parallelism	and
delay.	Parallelism	defines	the	batch	size	of	how	many	replicas	are	going	to	be
updated	at	a	time	during	a	rolling	update.	Delay	defines	how	long	Docker
Swarm	is	going	to	wait	between	the	update	of	individual	batches.	In	the
preceding	case,	we	have	10	replicas	that	are	updated	in	two	instances	at	a	time
and,	between	each	successful	update,	Docker	Swarm	waits	for	10	seconds.

Let’s	test	such	a	rolling	update.	We	navigate	to	subfolder	ch11	of	our	labs	folder
and	use	the	file	stack.yaml	to	create	a	web	service	configured	for	a	rolling	update.
The	service	uses	the	Alpine-based	Nginx	image	with	version	1.12-alpine.	We	will
then	later	update	the	service	to	a	newer	version	1.13-alpine.

We	will	deploy	this	service	to	our	swarm	that	we	created	locally	in	VirtualBox.
First,	we	make	sure	we	have	our	Terminal	window	configured	to	access	one	of
the	master	nodes	of	our	cluster.	We	can	take	the	leader	node-1:

$	eval	$(docker-machine	env	node-1)

Now,	we	can	deploy	the	service	using	the	stack	file:

$	docker	stack	deploy	-c	stack.yaml	web

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	output	of	the	preceding	command	looks	like	this:

Deployment	of	the	stack	called	web

Once	the	service	is	deployed,	we	can	monitor	it	using	the	following	command:

$	watch	docker	stack	ps	web

And	we	will	see	the	following	output:

Service	web	of	stack	web	running	in	swarm	with	10	replicas
	If	you're	working	on	a	Mac,	you	need	to	make	sure	your	watch	tool	is	installed.	Use	this
command	to	do	so:	brew	install	watch.

The	previous	command	will	continuously	update	the	output	and	provide	us	with
a	good	overview	on	what’s	happening	during	the	rolling	update.		

Now,	we	need	to	open	a	second	Terminal	and	also	configure	it	for	remote	access
to	a	manager	node	of	our	swarm.	Once	we	have	done	that,	we	can	execute	the
docker	command	that	will	update	the	image	of	the	web	service	of	the	stack	also
called	web:

$	docker	service	update	--image	nginx:1.13-alpine	web_web

The	preceding	command	leads	to	the	following	output,	indicating	the	progress	of
the	rolling	update:

Screen	showing	progress	of	rolling	update

The	output	indicates	that	the	first	two	batches	with	each	two	tasks	have	been
successful	and	that	the	third	batch	is	preparing.

In	the	first	terminal	window,	where	we're	watching	the	stack,	we	should	now	see
how	Docker	Swarm	updates	the	service	batch	by	batch	with	an	interval	of	10
seconds.	After	the	first	batch,	it	should	look	like	the	following	screenshot:

Rolling	update	of	a	service	in	Docker	Swarm

In	the	preceding	screenshot,	we	can	see	that	the	first	batch	of	the	two	tasks,	8	and
9,	has	been	updated.	Docker	Swarm	is	waiting	for	10	seconds	to	proceed	with	the
next	batch.	

It	is	interesting	to	note	that	in	this	particular	case,	SwarmKit	deploys	the	new	version	of	the
task	to	the	same	node	as	the	previous	version.	This	is	accidental	since	we	have	five	nodes
and	two	tasks	on	each	node.	SwarmKit	always	tries	to	balance	the	workload	evenly	across	the
nodes.	So,	when	SwarmKit	takes	down	a	task,	then	the	corresponding	node	has	less	workload
than	all	the	others	and	thus	gets	the	new	instance	scheduled.	Normally,	you	cannot	expect	to
find	the	new	instance	of	a	task	on	the	same	node.	Just	try	it	out	yourself	by	deleting	the	stack
with	docker	stack	rm	web	and	changing	the	number	of	replicas	to	say,	seven,	and	then	redeploy
and	update.	

Once	all	the	tasks	are	updated,	the	output	of	our	watch	docker	stack	ps
web	command	looks	similar	to	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

All	tasks	have	been	updated	successfully

Please	note	that	SwarmKit	does	not	immediately	remove	the	containers	of	the
previous	versions	of	the	tasks	from	the	corresponding	nodes.	This	makes	sense
as	we	might	want	to,	for	example,	retrieve	the	logs	from	those	containers	for
debugging	purposes,	or	we	might	want	to	retrieve	their	metadata	using	docker
container	inspect.	SwarmKit	keeps	the	four	latest	terminated	task	instances	around
before	it	purges	older	ones	to	not	clog	the	system	with	unused	resources.	

Once	we're	done,	we	can	tear	down	the	stack	using	the	following	command:

$	docker	stack	rm	web

Although	using	stack	files	to	define	and	deploy	applications	is	the	recommended
best	practice,	we	can	also	define	the	update	behavior	in	a	service	create
statement.	If	we	just	want	to	deploy	a	single	service,	this	might	be	the	preferred
way.	Let's	look	at	such	a	create	command:

$	docker	service	create	--name	web	\

				--replicas	10	\

				--update-parallelism	2	\

				--update-delay	10s	\

				nginx:alpine

This	command	defines	the	same	desired	state	as	the	preceding	stack	file.	We
want	the	service	to	run	with	10	replicas	and	we	want	a	rolling	update	to	happen	in
batches	of	2	tasks	at	a	time,	with	a	10	second	interval	between	consecutive
batches.

Health	checks
To	make	informed	decisions,	for	example,	during	a	rolling	update	of	a	swarm
service	whether	or	not	the	just-installed	batch	of	new	service	instances	is	running
OK	or	if	a	rollback	is	needed,	the	SwarmKit	needs	a	way	to	know	about	the
overall	health	of	the	system.	On	its	own,	SwarmKit	(and	Docker)	can	collect
quite	a	bit	of	information.	But	there	is	a	limit.	Imagine	a	container	containing	an
application.	The	container,	as	seen	from	outside,	can	look	absolutely	healthy	and
chuckle	away	just	fine.	But	that	doesn't	necessarily	mean	that	the	application
running	inside	the	container	is	also	doing	well.	The	application	could,	for
example,	be	in	an	infinite	loop	or	be	in	a	corrupt	state,	yet	still	running.	But,	as
long	as	the	application	runs,	the	container	runs	and	from	outside,	everything
looks	perfect.

Thus,	SwarmKit	provides	a	seam	where	we	can	provide	it	with	some	help.	We,
the	authors	of	the	application	services	running	inside	the	containers	in	the
swarm,	know	best	whether	or	not	our	service	is	in	a	healthy	state.	SwarmKit
gives	us	the	opportunity	to	define	a	command	that	is	executed	against	our
application	service	to	test	its	health.	What	exactly	this	command	does	is	not
important	to	Swarm,	the	command	just	needs	to	return	OK	or	NOT	OK	or	time
out.	The	latter	two	situations,	namely	NOT	OK	or	timeout,	will	tell	SwarmKit
that	the	task	it	is	investigating	is	potentially	unhealthy.	Here,	I	am	writing
potentially	on	purpose	and	later,	we	will	see	why:

FROM	alpine:3.6

...

HEALTHCHECK	--interval=30s	\

				--timeout=10s

				--retries=3

				--start-period=60s

				CMD	curl	-f	http://localhost:3000/health	||	exit	1

...

In	the	preceding	snippet	from	a	Dockerfile,	we	see	the	keyword	HEALTHCHECK.	It	has
a	few	options	or	parameters	and	an	actual	command	CMD.	Let's	first	discuss	the
options:

--interval	defines	the	wait	time	between	health	checks.	Thus,	in	our	case	the
orchestrator	executes	a	check	every	30	seconds.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	--timeout	parameter	defines	how	long	Docker	should	wait	if	the	health
check	does	not	respond	until	it	times	out	with	an	error.	In	our	sample,	this	is
10	seconds.	Now,	if	one	health	check	fails,	the	SwarmKit	retries	a	couple	of
times	until	it	gives	up	and	declares	the	corresponding	task	as	unhealthy	and
opens	the	door	for	Docker	to	kill	this	task	and	replace	it	by	a	new	instance.
The	number	of	retries	is	defined	with	the	parameter	--retries.	In	the
preceding	code,	we	want	to	have	three	retries.
Next,	we	have	the	start	period.	Some	containers	need	some	time	to	start	up
(not	that	this	is	a	recommended	pattern,	but	sometimes	it	is	inevitable).
During	this	start	up	time,	the	service	instance	might	not	be	able	to	respond
to	health	checks.	With	the	start	period,	we	can	define	how	long	the
SwarmKit	should	wait	before	it	executes	the	very	first	health	check	and
thus	give	the	application	time	to	initialize.	To	define	the	start	up	time,	we
use	the	--start-period	parameter.	In	our	case,	we	do	the	first	check	after	60
seconds.	How	long	this	start	period	needs	to	be	totally	depends	on	the
application	and	its	start	up	behavior.	The	recommendation	is	to	start	with	a
relatively	low	value	and	if	you	have	a	lot	of	false	positives	and	tasks	that
are	restarted	many	times,	you	might	want	to	increase	the	time	interval.
Finally,	we	define	the	actual	probing	command	on	the	last	line	with	the	CMD
keyword.	In	our	case,	we	are	defining	a	request	to	the	/health	endpoint	of
localhost	at	port	3000	as	a	probing	command.	This	call	is	expected	to	have
three	possible	outcomes:

The	command	succeeds	
The	command	fails
The	command	times	out

The	latter	two	are	treated	the	same	way	by	SwarmKit.	It	is	an	indication	to	the
orchestrator	that	the	corresponding	task	might	be	unhealthy.	I	did	say	might	with
intent	since	SwarmKit	does	not	immediately	assume	the	worst	case	scenario	but
assumes	that	this	might	just	be	a	temporary	fluke	of	the	task	and	that	it	will
recover	from	it.	This	is	the	reason	why	we	have	a	--retries	parameter.	There,	we
can	define	how	many	times	SwarmKit	should	retry	before	it	can	assume	that	the
task	is	indeed	unhealthy,	and	consequently	kill	it	and	reschedule	another	instance
of	this	task	on	another	free	node	to	reconcile	the	desired	state	of	the	service.

Why	can	we	use	localhost	in	our	probing	command?	This	is	a	very	good
question,	and	the	reason	is	because	SwarmKit,	when	probing	a	container	running
in	the	swarm,	executes	this	probing	command	inside	the	container	(that	is,	it	does

something	like	docker	container	exec	<containerID>	<probing	command>).	Thus,	the
command	executes	in	the	same	network	namespace	as	the	application	running
inside	the	container.	In	the	following	diagram,	we	see	the	life	cycle	of	a	service
task	from	its	beginning:

Service	task	with	transient	health	failure

First,	SwarmKit	waits	with	probing	until	the	start	period	is	over.	Then,	we	have	a
first	health	check.	Shortly	thereafter,	the	task	fails	when	probed.	It	fails	two
consecutive	times	but	then	it	recovers.	Thus,	health	check	number	4	is	again
successful	and	SwarmKit	leaves	the	task	running.

Here,	we,	see	a	task	that	is	permanently	failing:

Permanent	failure	of	task

If	the	task	does	not	recover	and	after	having	three	retries	(or	as	many	as	you

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

have	defined),	then	SwarmKit	first	sends	a	SIGTERM	to	the	container	of	the	task,
and	if	that	times	out	after	10	seconds,	it	sends	a	SIGKILL	signal.

We	have	just	learned	how	we	can	define	a	health	check	for	a	service	in	the
Dockerfile	of	its	image.	But	this	is	not	the	only	way.	We	can	also	define	the
health	check	in	a	stack	file	that	we	use	to	deploy	our	application	into	a	Docker
Swarm.	Here	is	a	short	snippet	of	what	such	a	stack	file	would	look	like:

version:	"3.5"

services:

		web:

				image:	example/web:1.0

				healthcheck:

						test:	["CMD",	"curl",	"-f",	"http://localhost:3000/health"]

						interval:	30s

						timeout:	10s

						retries:	3

						start_period:	60s

...

In	this	snippet,	we	see	how	the	health	check-related	information	is	defined	in	the
stack	file.	First	and	foremost,	it	is	important	to	realize	that	we	have	to	define	a
health	check	for	every	service	individually.	There	is	no	health	check	on	an
application	or	global	level.

Similar	to	what	we	have	defined	previously	in	the	Dockerfile,	the	command	that
is	used	to	execute	the	health	check	by	the	SwarmKit	is	curl	-f
http://localhost:3000/health.	We	also	have	definitions	for	interval,	timeout,	retries,
and	start_period.		These	latter	four	key-value	pairs	have	the	same	meaning	as	the
corresponding	parameters	we	used	in	the	Dockerfile.	If	there	are	health	check-
related	settings	defined	in	the	image,	then	the	ones	defined	in	the	stack	file
override	the	ones	from	the	Dockerfile.

Now,	let's	try	to	use	a	service	that	has	a	health	check	defined.	In	our	lab	folder,
we	have	a	file	called	stack-health.yaml	with	the	following	content:

version:	"3.5"

services:

		web:

				image:	nginx:alpine

				healthcheck:

						test:	["CMD",	"wget",	"-qO",	"-",	"http://localhost"]

						interval:	5s

						timeout:	2s

						retries:	3

						start_period:	15s

That	we're	going	to	deploy	now:

$	docker	stack	deploy	-c	stack-health.yaml	myapp

We	can	find	out	where	the	single	task	got	deployed	to	by	using	docker	stack	ps
myapp.	On	that	particular	node,	we	can	list	all	containers	to	find	the	one	of	our
stack.	In	my	example,	the	task	had	been	deployed	to	node-3:

Displaying	the	health	status	of	a	running	task	instance

The	interesting	thing	in	this	screenshot	is	the	STATUS	column.	Docker,	or	more
precisely	SwarmKit,	has	recognized	that	the	service	has	a	health	check	function
defined	and	is	using	it	to	determine	the	health	of	each	task	of	the	service.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Rollback
Sometimes,	things	don't	go	as	expected.	A	last	minute	fix	in	an	application
release	inadvertently	introduced	a	new	bug,	or	the	new	version	significantly
decreases	the	throughput	of	the	component,	and	so	on.	In	such	cases,	we	need	to
have	a	plan	B	which	in	most	cases	means	the	ability	to	roll	back	the	update	to
the	previous	good	version.

As	with	the	update,	the	rollback	has	to	happen	in	a	such	a	way	that	it	does	not
cause	any	outages	of	the	application;	it	needs	to	cause	zero	downtime.	In	that
sense,	a	rollback	can	be	looked	at	as	a	reverse	update.	We	are	installing	a	new
version,	yet	this	new	version	is	actually	the	previous	version.

As	with	the	update	behavior,	we	can	declare,	either	in	our	stack	files	or	in	the
Docker	service	create	command,	how	the	system	should	behave	in	case	it	needs
to	execute	a	rollback.	Here,	we	have	the	stack	file	that	we	used	before,	but	this
time	with	some	rollback-relevant	attributes:

version:	"3.5"

services:

		web:

				image:	nginx:1.12-alpine

				ports:

						-	80:80

				deploy:

						replicas:	10

						update_config:

								parallelism:	2

								delay:	10s

								failure_action:	rollback

								monitor:	10s

				healthcheck:

						test:	["CMD",	"wget",	"-qO",	"-",	"http://localhost"]

						interval:	2s

						timeout:	2s

						retries:	3

						start_period:	2s

In	this	stack	file,	which	is	available	in	our	lab	as	stack-rollback.yaml,	we	have
defined	the	details	about	the	rolling	update,	the	health	checks,	and	the	behavior
during	rollback.	The	health	check	is	defined	so	that	after	an	initial	wait	time	of	2
seconds,	the	orchestrator	starts	to	poll	the	service	on	http://localhost	every	2

seconds	and	it	retries	3	times	before	it	considers	a	task	as	unhealthy.	If	we	do	the
math,	then	it	takes	at	least	8	seconds	until	a	task	will	be	stopped	if	it	is	unhealthy
due	to	a	bug.	So,	now	under	deploy,	we	have	a	new	entry	monitor.	This	entry
defines	how	long	newly	deployed	tasks	should	be	monitored	for	health	as	a
decision	point	whether	or	not	to	continue	with	the	next	batch	in	the	rolling
update.	Here,	in	this	sample,	we	have	given	it	10	seconds.	This	is	slightly	more
than	the	8	seconds	we	calculated	it	takes	to	discover	that	a	defective	service	has
been	deployed.	So	this	is	good.

We	also	have	a	new	entry,	failure_action,	which	defines	what	the	orchestrator	will
do	if	it	encounters	a	failure	during	the	rolling	update	such	as	that	the	service	is
unhealthy.	By	default,	the	action	is	just	to	stop	the	whole	update	process	and
leave	the	system	in	an	intermediate	state.	The	system	is	not	down	since	it	is	a
rolling	update	and	at	least	some	healthy	instances	of	the	service	are	still
operational,	but	some	operations	engineer	better	at	taking	a	look	and	fixing	the
problem.

In	our	case,	we	have	defined	the	action	to	be	rollback.	Thus,	in	case	of	failure,
SwarmKit	will	automatically	revert	all	tasks	that	have	been	updated	back	to	their
previous	version.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Blue–green	deployments
We	have	discussed	in	Chapter	6,	Distributed	Application	Architecture,	what	blue–
green	deployments	are,	in	an	abstract	way.	It	turns	out	that	on	Docker	Swarm	we
cannot	really	implement	blue–green	deployments	for	arbitrary	services.	The
service	discovery	and	load	balancing	between	two	services	running	in	Docker
Swarm	are	part	of	the	swarm	routing	mesh	and	cannot	be	(easily)	customized.	If
Service	A	wants	to	call	Service	B,	then	Docker	does	it	all	implicitly.	Docker,
given	the	name	of	the	target	service,	will	use	the	Docker	DNS	service	to	resolve
this	name	to	a	virtual	IP	(VIP)	address.	When	the	request	is	then	targeted	at	the
VIP,	the	Linux	IPVS	service	will	do	another	lookup	in	the	Linux	kernel	IP	tables
with	the	VIP	and	load	balances	the	request	to	one	of	the	physical	IP	addresses	of
the	tasks	of	the	service	represented	by	the	VIP,	as	shown	in	the	following	figure:

How	service	discovery	and	load	balancing	work	in	Docker	Swarm

Unfortunately,	there	is	no	easy	way	to	intercept	this	mechanism	and	replace	it
with	a	custom	behavior.	But	this	would	be	needed	to	allow	for	a	true	blue–green
deployment	of	Service	B,	which	is	the	target	service	in	our	example.	As	we	will
see	in	Chapter	13,	Deploying,	Updating,	and	Securing	an	Application	with
Kubernetes,	Kubernetes	it	is	more	flexible	in	this	area.		

That	said,	we	can	always	deploy	the	public-facing	services	in	a	blue–green
fashion.	We	can	use	interlock	2	and	its	layer	7	routing	mechanism	to	allow	for	a
true	blue–green	deployment.

Canary	releases
Technically,	rolling	updates	are	a	kind	of	canary	release.	But	due	to	their	lack	of
seams,	where	you	could	plug	customized	logic	into	the	system,	rolling	updates
are	only	a	very	limited	version	of	canary	releases.

True	canary	releases	require	us	to	have	more	fine-grained	control	about	the
update	process.	Also,	true	canary	releases	do	not	take	down	the	old	version	of
the	service	until	100%	of	the	traffic	has	been	funneled	through	the	new	version.
In	that	regard,	they	are	treated	like	blue–green	deployments.

In	a	canary	release	scenario,	we	want	to	not	just	use	things	such	as	health	checks
as	deciding	factors	whether	or	not	to	funnel	more	and	more	traffic	through	the
new	version	of	the	service,	but	we	also	want	to	consider	external	input	in	the
decision	making,	such	as	metrics	collected	and	aggregated	by	a	log	aggregator	or
tracing	information.	Examples	that	could	be	used	as	decision	makers	are	the
conformance	to	service	level	agreements	(SLAs),	namely	if	the	new	version	of
the	service	shows	response	times	that	are	outside	of	the	tolerance	band.	This	can
happen	if	we	add	new	functionality	to	an	existing	service,	yet	this	new
functionality	degrades	the	response	time.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Secrets
Secrets	are	used	to	work	with	confidential	data	in	a	secure	way.	Swarm	secrets
are	secure	at	rest	and	in	transit.	That	is,	when	a	new	secret	is	created	on	a
manager	node,	and	it	can	only	be	created	on	a	manager	node,	its	value	is
encrypted	and	stored	in	the	raft	consensus	storage.	This	is	why	it	is	secure	at
rest.	If	a	service	gets	a	secret	assigned	to	it,	then	the	manager	reads	the	secret
from	storage,	decrypts	it,	and	forwards	it	to	all	the	containers	who	are	instances
of	the	Swarm	service	that	requests	the	secret.	Since	the	node-to-node
communication	in	swarm	is	using	mutual	transport	layer	security	(TLS),	the
secret	value,	although	decrypted,	is	still	secure	in	transit.	The	manager	forwards
the	secret	only	to	the	worker	nodes	on	which	a	service	instance	is	running.
Secrets	are	then	mounted	as	files	into	the	target	container.	Each	secret
corresponds	to	a	file.	The	name	of	the	secret	will	be	the	name	of	the	file	inside
the	container,	and	the	value	of	the	secret	is	the	content	of	the	respective	file.
Secrets	are	never	stored	on	the	filesystem	of	a	worker	node	but	are	mounted
using	tmpFS	into	the	container.	By	default,	secrets	are	mounted	into	the	container
at	/run/secrets,	but	you	can	change	that	to	any	custom	folder.

Creating	secrets
First	let's	see	how	we	can	actually	create	a	secret:

$	echo	"sample	secret	value"	|	docker	secret	create	sample-secret	-	

This	command	creates	a	secret	called	sample-secret	with	the	value	sample	secret
value.	Please	note	the	hyphen	at	the	end	of	the	docker	secret	create	command.	This
means	that	Docker	expects	the	value	of	the	secret	from	standard	input.	This	is
exactly	what	we're	doing	by	piping	the	value,	sample	secret	value	into	the	create
command.

Alternatively,	we	can	use	a	file	as	the	source	for	the	secret	value:

$	docker	secret	create	other-secret	~/my-secrets/secret-value.txt

Here,	the	value	of	the	secret	with	the	name	other-secret	is	read	from	a	file,	~/my-
secrets/secret-value.txt.	Once	a	secret	has	been	created,	there	is	no	way	to	access
the	value	of	it.	We	can,	for	example,	list	all	our	secrets	and	we	will	get	the
following	screenshot:

List	of	all	secrets

In	this	list,	we	only	see	the	ID	and	name	of	the	secret	plus	some	other	metadata,
but	the	actual	value	of	the	secret	is	not	visible.	We	can	also	use	inspect	on	a
secret,	for	example,	to	get	more	information	about	the	other-secret:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Inspecting	a	swarm	secret

Even	here,	we	do	not	get	the	value	of	the	secret	back.	This	is	of	course
intentional,	a	secret	is	a	secret	and	thus	needs	to	remain	confidential.	We	can
assign	labels	to	secrets	if	we	want	and	we	can	even	use	a	different	driver	to
encrypt	and	decrypt	the	secret,	if	we're	not	happy	with	what	Docker	delivers	out
of	the	box.

Using	a	secret
Secrets	are	used	by	services	that	run	in	the	swarm.	Usually,	secrets	are	assigned
to	a	service	at	creation	time.	Thus,	if	we	want	to	run	a	service	called	web	and
assign	it	a	secret,	api-secret-key,	the	syntax	would	look	like	the	following
command:

$	docker	service	create	--name	web	\

				--secret	api-secret-key	\

				--publish	8000:8000	\

				fundamentalsofdocker/whoami:latest

This	command	creates	a	service	called	web	based	on	the	image
fundamentalsofdocker/whoami:latest,	publishes	the	container	port	8000	to	port	8000	on
all	swarm	nodes,	and	assigns	it	the	secret,	api-secret-key.	

This	will	only	work	if	the	secret	called	api-secret-key	is	defined	in	the	swarm,
otherwise	an	error	will	be	generated	with	the	text	secret	not	found:	api-secret-key.
Thus,	let's	create	this	secret	now:

$	echo	"my	secret	key"	|	docker	secret	create	api-secret-key	-

And	now,	if	we	rerun	the	service	create	command,	it	will	succeed:

Creating	a	service	with	a	secret

We	can	now	do	a	docker	service	ps	web	to	find	out	on	which	node	the	sole	service
instance	has	been	deployed,	and	then	exec	into	this	container.	In	my	case,	the
instance	has	been	deployed	to	node-3,	thus	I	SSH	into	that	node:

$	docker-machine	ssh	node-3

And	then	I	list	all	my	containers	on	that	node	to	find	the	one	instance	belonging

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

to	my	service	and	copy	its	container	ID.	We	can	then	run	the	following
command	to	make	sure	that	the	secret	is	indeed	available	inside	the	container
under	the	expected	filename	containing	the	secret	value	in	clear	text:

$	docker	exec	-it	<container	ID>	cat	/run/secrets/api-secret-key

Once	again,	in	my	case,	this	looks	like	this:

A	secret	as	a	container	sees	it

If,	for	some	reason,	the	default	location	where	Docker	mounts	the	secrets	inside
the	container	is	not	acceptable	to	you,	you	can	define	a	custom	location.	In	the
following	command,	we	mount	the	secret	to	/app/my-secrets:

$	docker	service	create	--name	web	\

				--name	web	\

				-p	8000:8000	\

				--secret	source=api-secret-key,target=/run/my-secrets/api-secret-key	\

				fundamentalsofdocker/whoami:latest

In	this	command,	we	are	using	the	extended	syntax	to	define	a	secret	which
includes	the	destination	folder.

Simulating	secrets	in	a	development
environment
When	working	in	development,	we	usually	don't	have	a	local	swarm	on	our
machine.	But	secrets	only	work	in	a	swarm.	So,	what	can	we	do?	Well,	luckily	it
is	really	simple.	Due	to	the	fact	that	secrets	are	treated	as	files,	we	can	easily
mount	a	volume	that	contains	the	secrets	into	the	container	to	the	expected
location,	which	by	default	is	at	/run/secrets.

Assume	that	we	have	a	folder	./dev-secrets	on	our	local	workstation.	For	each
secret,	we	have	a	file	called	the	same	way	as	the	secret	name	and	with	the	un-
encrypted	value	of	the	secret	as	content	of	the	file.	For	example,	we	can	simulate
a	secret	called	demo-secret	with	a	secret	value	demo	secret	value	by	executing	the
following	command	on	our	workstation:

$	echo	"demo	secret	value"	>	./dev-secrets/sample-secret

We	can	then	create	a	container	that	mounts	this	folder	like	this:

$	docker	container	run	-d	--name	whoami	\

				-p	8000:8000	\

				-v	$(pwd)/dev-secrets:/run/secrets	\

				fundamentalsofdocker/whoami:latest

And	the	process	running	inside	the	container	will	not	be	able	to	distinguish	these
mounted	files	from	ones	originating	from	a	secret.	So,	for	example,	the	demo-
secret	is	available	as	file	/run/secrets/demo-secret	inside	the	container	and	has	the
expected	value	demo	secret	value.

To	test	this,	we	can	exec	a	shell	inside	the	preceding	container:

$	docker	container	exec	-it	whoami	/bin/bash

And	then	navigate	to	the	folder,	/run/secrets	and	display	the	content	of	the	file
demo-secret:

/#	cd	/run/secrets

/#	cat	demo-secret

demo	secret	value

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Secrets	and	legacy	applications
Sometimes,	we	want	to	containerize	a	legacy	application	that	we	cannot	easily,
or	do	not	want	to,	change.	This	legacy	application	might	expect	a	secret	value	to
be	available	as	an	environment	variable.	How	are	we	going	to	deal	with	this
now?	Docker	presents	us	with	the	secrets	as	files	but	the	application	is	expecting
them	in	the	form	of	environment	variables.

In	this	situation,	it	is	helpful	to	define	a	script	that	runs	when	the	container	is
started	(a	so-called	entrypoint	or	start	up	script).	This	script	will	read	the	secret
value	from	the	respective	file	and	define	an	environment	variable	with	the	same
name	as	the	file,	assigning	the	new	variable	the	value	read	from	the	file.	In	the
case	of	a	secret	called	demo-secret	whose	value	should	be	available	in	an
environment	variable	called	DEMO_SECRET,	the	necessary	code	snippet	in	this	start
up	script	could	look	like	this:

export	DEMO_SECRET=`cat	/run/secrets/demo-secret`

Similarly,	if	the	legacy	application	expects	the	secret	values	to	be	present	as	an
entry	in	say,	a	YAML	configuration	file	located	in	the	/app/bin	folder,	and	called
app.config	whose	relevant	part	looks	like	this:

...

secrets:

		demo-secret:	"<<demo-secret-value>>"

		other-secret:	"<<other-secret-value>>"

		yet-another-secret:	"<<yet-another-secret-value>>"

...

Our	initialization	script	now	needs	to	read	the	secret	value	from	the	secret	file
and	replace	the	corresponding	placeholder	in	the	config	file	with	the	secret
value.	For	the	demo-secret,	this	could	look	like	this:

file=/app/bin/app.conf

demo_secret=`cat	/run/secret/demo-secret`

sed	-i	"s/<<demo-secret-value>>/$demo_secret/g"	"$file"

In	this	snippet,	we're	using	the	sed	tool	to	replace	a	placeholder	with	a	value	in
place.	We	can	use	the	same	technique	for	the	other	two	secrets	in	the	config	file.

We	put	all	the	initialization	logic	into	a	file	called	entrypoint.sh,	make	this	file
executable	and,	for	example,	add	it	to	the	root	of	the	container's	filesystem,	and
then	we	define	this	file	as	ENTRYPOINT	in	the	Dockerfile,	or	we	can	override	the
existing	ENTRYPOINT	of	an	image	in	the	docker	container	run	command.

Let's	make	a	sample.	Assume	that	we	have	a	legacy	application	running	inside	a
container	defined	by	the	image	fundamentalsofdocker/whoami:latest	that	expects	a
secret	db_password	to	be	defined	in	a	file,	whoami.conf,	in	the	application	folder.	We
can	define	a	file,	whoami.conf,	on	our	local	machine	with	this	content:

database:

		name:	demo

		db_password:	"<<db_password_value>>"

others:

		val1=123

		val2="hello	world"

The	important	part	is	line	3	of	this	snippet.	It	defines	where	the	secret	value	has
to	be	put	by	the	start	up	script.	Let's	add	a	file	called	entrypoint.sh	to	the	local
folder	with	the	following	content:

file=/app/whoami.conf

db_pwd=`cat	/run/secret/db-password`

sed	-i	"s/<<db_password_value>>/$db_pwd/g"	"$file"

/app/http

The	last	line	in	this	script	stems	from	the	fact	that	this	is	the	start	command	used
in	the	original	Dockerfile.	Now,	change	the	mode	of	this	file	to	be	executable:

$	sudo	chmod	+x	./entrypoint.sh

Now,	we	define	a	Dockerfile	which	inherits	from	the	image
fundamentalsofdocker/whoami:latest.	Add	a	file	called	Dockerfile	to	the	current	folder
with	the	following	content:

FROM	fundamentalsofdocker/whoami:latest

COPY	./whoami.conf	/app/

COPY	./entrypoint.sh	/

CMD	["/entrypoint.sh"]

Let's	build	the	image	from	this	Dockerfile:

$	docker	image	build	-t	secrets-demo:1.0	.

Once	the	image	is	built,	we	can	run	a	service	from	it.	But	before	we	can	do	that,

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

we	need	to	define	the	secret	in	the	swarm:

$	echo	"passw0rD123"	|	docker	secret	create	demo-secret	-

And	now	we	can	create	the	service	that	uses	the	following	secret:

$	docker	service	create	--name	demo	\

				--secret	demo-secret	\

				secrets-demo:1.0

Updating	secrets
At	times,	we	need	to	update	a	secret	in	a	running	service,	the	reason	being	that
secrets	could	be	leaked	out	to	the	public	or	be	stolen	by	malicious	people,	such	a
hackers.	In	this	case,	we	need	to	change	our	confidential	data	since	the	moment
it	has	leaked	to	a	non-trusted	entity,	it	has	to	be	considered	as	insecure.

The	updating	of	secrets,	like	any	other	update,	has	to	happen	in	a	way	which
requires	zero	downtime.	SwarmKit	supports	us	in	this	regard.

First,	we	create	the	new	secret	in	the	Swarm.	It	is	recommended	to	use	a
versioning	strategy	when	doing	so.	In	our	example,	we	use	a	version	as	a	postfix
of	the	secret	name.	We	originally	started	with	the	secret	named	db-password	and
now	the	new	version	of	this	secret	is	called	db-password-v2:

$	echo	"newPassw0rD"	|	docker	secret	create	db-password-v2	-

Assume	that	the	original	service	that	used	the	secret	had	been	created	like	this:

$	docker	service	create	--name	web	\

				--publish	80:80

				--secret	db-password

				nginx:alpine

The	application	running	inside	the	container	was	able	to	access	the	secret	at
/run/secrets/db-password.	Now,	SwarmKit	does	not	allow	us	to	update	an	existing
secret	in	a	running	service,	thus	we	have	to	first	remove	the	now	obsolete
version	of	the	secret	and	then	add	the	new	one.	Let's	start	with	the	removal	with
the	following	command:

$	docker	service	update	--secret-rm	db-password	web

And	then	we	can	add	the	new	secret	with	the	following	command:

$	docker	service	update	\

				--secret-add	source=db-password-v2,	target=db-password	\

				web

	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	chapter,	we	learned	how	SwarmKit	allows	us	to	update	services	without
requiring	downtime.	We	also	discussed	the	current	limits	of	SwarmKit	in	regards
to	zero	downtime	deployments.	In	the	second	part	of	the	chapter,	we	introduced
secrets	as	a	means	to	provide	confidential	data	to	services	in	a	highly	secure	way.

In	the	next	chapter,	we	will	introduce	the	currently	most	popular	container
orchestrator,	Kubernetes.		We'll	discuss	the	objects	that	are	used	to	define	and
run	a	distributed,	resilient,	robust,	and	highly	available	application	in	a
Kubernetes	cluster.	Furthermore,	the	chapter	will	familiarize	us	with	MiniKube,
a	tool	used	to	locally	deploy	a	Kubernetes	application,	and	also	demonstrate	the
integration	of	Kubernetes	with	Docker	for	Mac	and	Docker	for	Windows.

Questions
To	assess	your	understanding	of	the	topics	discussed	in	this	chapter,	please
answer	the	following	questions:

1.	 Explain	to	an	interested	layman	in	a	few	simple	sentences	what	zero
downtime	deployment	means.

2.	 How	does	SwarmKit	achieve	zero	downtime	deployments?
3.	 Contrary	to	traditional	(non-containerized)	systems,	why	does	a	rollback	in

Docker	Swarm	just	work?	Explain	in	a	few	short	sentences.
4.	 Describe	two	to	three	characteristics	of	a	Docker	secret.
5.	 You	need	to	roll	out	a	new	version	of	the	inventory	service.	What	does	your

command	look	like?		Here	is	some	more	information:
1.	 The	new	image	is	called	acme/inventory:2.1.
2.	 We	want	to	use	a	rolling	update	strategy	with	a	batch	size	of	two	tasks.
3.	 We	want	the	system	to	wait	for	one	minute	after	each	batch.

6.	 You	need	to	update	an	existing	service	named	inventory	with	a	new	password
that	is	provided	through	a	Docker	secret.	The	new	secret	is	called
MYSQL_PASSWORD_V2.	The	code	in	the	service	expects	the	secret	to	be	called
MYSQL_PASSWORD.	What	does	the	update	command	look	like?	(Note:	we	do	not
want	the	code	of	the	service	to	be	changed!)

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
Here	are	some	links	to	external	sources:

Apply	rolling	updates	to	a	service	at	https://dockr.ly/2HfGjlD
Manage	sensitive	data	with	Docker	secrets	at	https://dockr.ly/2vUNbuH
Introducing	Docker	secrets	management	at	https://dockr.ly/2k7zwzE
From	env	variables	to	Docker	secrets	at	https://bit.ly/2GY3UUB

https://dockr.ly/2HfGjlD
https://dockr.ly/2vUNbuH
https://dockr.ly/2k7zwzE
https://bit.ly/2GY3UUB

Introduction	to	Kubernetes
In	the	previous	chapter,	we	learned	how	SwarmKit	uses	rolling	updates	to
achieve	zero	downtime	deployments.	We	were	also	introduced	to	Docker	secrets,
which	are	used	to	share	confidential	data	with	an	application	service	running	in	a
Docker	Swarm.

In	this	chapter,	we're	going	to	introduce	Kubernetes.	Kubernetes	is	currently	the
clear	leader	in	the	container	orchestration	space.	We	are	starting	with	a	high-
level	overview	of	the	architecture	of	a	Kubernetes	cluster	and	then	we	will
discuss	the	main	objects	used	in	Kubernetes	to	define	and	run	containerized
applications.

The	topics	discussed	in	this	chapter	are:

Architecture
Kubernetes	masters
Cluster	nodes
Introduction	to	MiniKube
Kubernetes	support	in	Docker	for	Mac	and	Docker	for	Windows
Pods
Kubernetes	ReplicaSet
Kubernetes	deployment
Kubernetes	service
Context-based	routing
Comparing	SwarmKit	with	Kubernetes

After	finishing	this	chapter,	you	will	be	able	to:

Draft	the	high-level	architecture	of	a	Kubernetes	cluster	on	a	napkin
Explain	three	to	four	main	characteristics	of	a	Kubernetes	pod
Describe	the	role	of	Kubernetes	ReplicaSets	in	two	to	three	short	sentences
Explain	the	two	to	three	main	responsibilities	of	a	Kubernetes	service
Create	a	pod	in	Minikube
Configure	Docker	for	Mac	or	Windows	to	use	Kubernetes	as	orchestrator
Create	a	deployment	in	Docker	for	Mac	or	Windows

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Create	a	Kubernetes	service	to	expose	an	application	service	internally	(or
externally)	to	the	cluster

Technical	requirements
The	link	to	the	code	files	can	be	found	here	at	https://github.com/fundamentalsofdocke
r/labs/tree/master/ch12.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/fundamentalsofdocker/labs/tree/master/ch12

Architecture
A	Kubernetes	cluster	consists	of	a	set	of	servers.	These	servers	can	be	VMs	or
physical	servers.	The	latter	are	also	called	bare	metal.	Each	member	of	the
cluster	can	have	one	of	two	roles.	It	is	either	a	Kubernetes	master	or	a	(worker)
node.	The	former	is	used	to	manage	the	cluster	while	the	latter	will	run
application	workload.	I	have	put	the	worker	in	parentheses	since	in	Kubernetes
parlance	you	only	talk	about	a	node	when	talking	about	a	server	that	runs
application	workload.	But	in	Docker	parlance	and	in	the	Swarm,	the	equivalent
is	a	worker	node.	I	think	that	the	notion	of	a	worker	node	better	describes	the
role	of	the	server	than	a	simple	node.

In	a	cluster,	you	have	a	small	and	odd	number	of	masters	and	as	many	worker
nodes	as	needed.	Small	clusters	might	only	have	a	few	worker	nodes	while	more
realistic	clusters	might	have	dozens	or	even	hundreds	of	worker	nodes.
Technically,	there	is	no	limit	on	how	many	worker	nodes	a	cluster	can	have;	in
reality,	you	might	experience	a	significant	slowdown	in	some	management
operations	when	dealing	with	thousands	of	nodes,	though.	All	members	of	the
cluster	need	to	be	connected	by	a	physical	network,	the	so-called	underlay
network.

Kubernetes	defines	one	flat	network	for	the	whole	cluster.	Kubernetes	does	not
provide	any	networking	implementation	out	of	the	box,	but	relies	on	plugins
from	third	parties.	Kubernetes	only	defines	the	Container	Network	Interface
(CNI)	and	leaves	the	implementation	to	others.	The	CNI	is	pretty	simple.	It
basically	states	that	each	pod	running	in	the	cluster	must	be	able	to	reach	any
other	pod	also	running	in	the	cluster	without	any	Network	Address	Translation
(NAT)	happening	in-between.	The	same	must	be	true	between	cluster	nodes	and
pods,	that	is,	applications	or	daemons	running	directly	on		a	cluster	node	must	be
able	to	reach	each	pod	in	the	cluster	and	vice	versa.

In	the	following	diagram,	I	try	to	illustrate	the	high-level	architecture	of	a
Kubernetes	cluster:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

High-level	architecture	diagram	of	Kubernetes

The	preceding	diagram	is	explained	as	follows:

On	the	top,	in	the	middle	we	have	a	cluster	of	etcd	nodes.	etcd	is	a
distributed	key-value	store	that,	in	a	Kubernetes	cluster,	is	used	to	store	all
the	state	of	the	cluster.	The	number	of	etcd	nodes	has	to	be	odd	as	mandated
by	the	Raft	consensus	protocol	which	they	use	to	coordinate	among
themselves.	When	we	talk	about	the	cluster	state,	we	do	not	include	data
that	is	produced	or	consumed	by	applications	running	in	the	cluster,	but
rather	we're	talking	about	all	the	information	on	the	topology	of	the	cluster,
what	services	are	running,	network	settings,	secrets	used,	and	more.	That
said,	this	etcd	cluster	is	really	mission	critical	to	the	cluster	and	thus,	we
should	never	run	only	one	etcd	server	in	a	production	environment	or	any
environment	that	needs	to	be	highly	available.
We	then	have	a	cluster	of	Kubernetes	master	nodes	that	also	form	a
consensus	group	among	themselves,	similar	to	the	etcd	nodes.	The	number
of	master	nodes	also	has	to	be	an	odd	number.	We	can	run	the	cluster	with	a
single	master	but	we	should	never	do	that	in	a	production	or	mission-critical
system.	There,	we	always	should	have	at	least	three	master	nodes.	Since	the
master	nodes	are	used	to	manage	the	whole	cluster,	we	are	also	talking
about	the	management	plane.		The	master	nodes	use	the	etcd	cluster	as	their
backing	store.	It	is	a	good	practice	to	put	a	Load	Balancer	(LB)	in	front	of
the	master	nodes	with	a	well-known	Fully	Qualified	Domain	Name
(FQDN),	such	as	https://admin.example.com.	All	tools	that	are	used	to	manage
the	Kubernetes	cluster	should	access	it	through	this	LB	rather	than	using	the
public	IP	address	of	one	of	the	master	nodes.	This	is	shown	in	the	left	upper
side	of	the	preceding	diagram.
Towards	the	bottom	of	the	diagram,	we	have	a	cluster	of	worker	nodes.	The
number	of	nodes	can	be	as	low	as	one	and	does	not	have	an	upper	limit.
Kubernetes	master	and	worker	nodes	communicate	with	each	other.	It	is	a
bidirectional	form	of	communication	which	is	different	to	the	one	we	know
from	Docker	Swarm.	In	Docker	Swarm,	only	the	manager	nodes
communicate	with	the	worker	nodes	and	never	the	other	side	around.	All
ingress	traffic	accessing	the	applications	running	in	the	cluster	should	be
going	through	another	load	balancer.	This	is	the	application	load	balancer	or
reverse	proxy.	We	never	want	external	traffic	to	directly	access	any	of	the
worker	nodes.

Now	that	we	have	an	idea	about	the	high-level	architecture	of	a	Kubernetes
cluster,	let's	dive	a	bit	deeper	and	first	look	at	the	Kubernetes	master	and	worker
nodes.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	master	nodes
Kubernetes	master	nodes	are	used	to	manage	a	Kubernetes	cluster.	The
following	is	a	high-level	diagram	of	such	a	master:

Kubernetes	master

At	the	bottom	of	the	preceding	diagram,	we	have	the	Infrastructure,	which	can
be	a	VM	on-premise	or	in	the	cloud	or	a	server	(often	called	bare	metal),	as	well
as	on-premise	or	in	the	cloud.	Currently,	Kubernetes	masters	only	run	on	Linux.
Most	popular	Linux	distributions	such	as	RHEL,	CentOS,	and	Ubuntu	are
supported.	On	this	Linux	machine,	we	then	have	at	least	the	following	four
Kubernetes	services	running:

API	server:	This	is	the	gateway	to	Kubernetes.	All	requests	to	list,	create,
modify,	or	delete	any	resources	in	the	cluster	must	go	through	this	service.
It	exposes	a	REST	interface	that	tools	such	as	kubectl	use	to	manage	the
cluster	and	applications	in	the	cluster.
Controller:	The	controller,	or	more	precisely	the	controller	manager,	is	a
control	loop	that	observes	the	state	of	the	cluster	through	the	API	server	and
makes	changes,	attempting	to	move	the	current	or	effective	state	towards
the	desired	state.	
Scheduler:	The	scheduler	is	a	service	that	tries	its	best	to	schedule	pods	on
worker	nodes	considering	various	boundary	conditions,	such	as	resource
requirements,	policies,	quality	of	service	requirements,	and	more.
Cluster	store:	This	is	an	instance	of	etcd	which	is	used	to	store	all
information	about	the	state	of	the	cluster.

To	be	more	precise,	etcd,	which	is	used	as	a	cluster	store,	does	not	necessarily
have	to	be	installed	on	the	same	node	as	the	other	Kubernetes	services.
Sometimes,	Kubernetes	clusters	are	configured	that	use	standalone	clusters	of
etcd	servers,	as	shown	in	the	architecture	diagram	in	the	previous	section.	But
which	variant	to	use	is	an	advanced	management	decision	and	is	outside	of	the
scope	of	this	book.

We	need	at	least	one	master,	but	to	achieve	high	availability,	we	need	three	or
more	master	nodes.	This	is	very	similar	to	what	we	have	learned	about	the
manager	nodes	of	a	Docker	Swarm.		In	this	regard,	a	Kubernetes	master	is
equivalent	to	a	Swarm	manager	node.

Kubernetes	masters	never	run	application	workload.	Their	sole	purpose	is	to
manage	the	cluster.	Kubernetes	masters	build	a	Raft	consensus	group.	The	Raft
protocol	is	a	standard	protocol	used	in	situations	where	a	group	of	members	need
to	make	decisions.	It	is	used	in	many	well-known	software	products	such	as
MongoDB,	Docker	SwarmKit,	and	Kubernetes.	For	a	more	thorough	discussion
of	the	Raft	protocol,	see	the	link	in	the	Further	reading	section.

As	we	have	mentioned	in	the	previous	section,	the	state	of	the	Kubernetes	cluster
is	stored	in	etcd.	If	the	Kubernetes	cluster	is	supposed	to	be	highly	available,
then	etcd	must	also	be	configured	in	HA	mode,	which	normally	means	that	one
has	at	least	three	etcd	instances	running	on	different	nodes.

Let's	state	once	again	that	the	whole	cluster	state	is	stored	in	etcd.	This	includes
all	the	information	about	all	the	cluster	nodes,	all	the	replica	sets,	deployments,
secrets,	network	policies,	routing	information,	and	so	on.	It	is,	therefore,	crucial
that	we	have	a	robust	backup	strategy	in	place	for	this	key-value	store.

Now,	let's	look	at	the	nodes	that	will	be	running	the	actual	workload	of	the
cluster.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Cluster	nodes
Cluster	nodes	are	the	nodes	onto	which	Kubernetes	schedules	application
workload.	They	are	the	workhorses	of	the	cluster.	A	Kubernetes	cluster	can	have
a	few,	dozens,	hundreds,	or	even	thousands	of	cluster	nodes.	Kubernetes	has
been	built	from	the	ground	up	for	high	scalability.	Don't	forget	that	Kubernetes
has	been	modeled	after	Google	Borg,	which	has	been	running	tens	of	thousands
of	containers	for	years:

Kubernetes	worker	node

A	worker	node	can	run	on	a	VM	or	on	bare	metal,	on-premise,	or	in	the	cloud.
Originally,	worker	nodes	could	only	be	configured	on	Linux.	But	since	version
1.10	of	Kubernetes,	worker	nodes	can	also	run	on	Windows	Server	2010.	It	is
perfectly	fine	to	have	a	mixed	cluster	with	Linux	and	Windows	worker	nodes.

On	each	node,	we	have	three	services	that	need	to	run,	which	are	described	as
follows:

Kubelet:	This	is	the	first	and	foremost	service.	Kubelet	is	what's	called	the
primary	node	agent.	The	kubelet	service	uses	pod	specifications	to	make
sure	all	of	the	containers	of	the	corresponding	pods	are	running	and	healthy.
Pod	specifications	are	files	written	in	YAML	or	JSON	format	and	they
declaratively	describe	a	pod.	We	will	get	to	know	what	pods	are	in	the	next
section.	PodSpecs	are	provided	to	Kubelet	primarily	through	the	API
server.	

Container	runtime:	The	second	service	that	needs	to	be	present	on	each
worker	node	is	a	container	runtime.	Kubernetes,	by	default,	uses	containerd
since	version	1.9	as	its	container	runtime.	Previous	to	that,	it	would	use	the
Docker	daemon.	Other	container	runtimes	such	as	rkt	or	CRI-O	can	be
used.	The	container	runtime	is	responsible	for	managing	and	running	the
individual	containers	of	a	pod.
kube-proxy:	Finally,	there	is	the	kube-proxy.	It	runs	as	a	daemon	and	is	a
simple	network	proxy	and	load	balancer	for	all	application	services	running
on	that	particular	node.

Now	that	we	have	learned	about	the	architecture	of	Kubernetes	and	the	master
and	worker	nodes,	it	is	time	to	introduce	the	tooling	that	we	can	use	to	develop
applications	targeted	at	Kubernetes.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Introduction	to	Minikube
Minikube	is	a	tool	that	creates	a	single	node	Kubernetes	cluster	in	VirtualBox	or
Hyper-V	(other	hypervisors	are	supported)	ready	to	be	used	during	development
of	a	containerized	application.	We	have	shown	in	Chapter	2,	Setting	up	a	Working
Environment,	how	Minikube	and	with	it	the	tool		kubectl	can	be	installed	on	your
Mac	or	Windows	laptop.	As	stated,	Minikube	is	a	single	node	Kubernetes	cluster
and	thus	the	node	is,	at	the	same	time,	a	Kubernetes	master	as	well	as	a	worker
node.

Let's	make	sure	that	Minikube	is	running	with	the	following	command:

$	minikube	start

Once	Minikube	is	ready,	we	can	access	its	single	node	cluster	using	kubectl.	And
we	should	see	something	similar	to	the	following	screenshot:

Listing	all	nodes	in	Minikube

As	mentioned	before,	we	have	a	single	node	cluster	with	a	node	called	minikube	.
Don't	get	confused	by	the	value	<none>	in	the	column	ROLES;	the	node		plays	the
role	of	a	worker	and	a	master	node	at	the	same	time.

Now,	let's	try	to	deploy	a	pod	to	this	cluster.	Don't	worry	about	what	a	pod
exactly	is	at	this	time;	we	will	dive	into	all	the	details	about	it	further	along	in
this	chapter.	For	the	moment,	just	take	it	as	is.

We	can	use	the	file	sample-pod.yaml	in	the	subfolder	ch12	of	our	labs	folder		to	create
such	a	pod.	It	has	the	following	content:

apiVersion:	v1

kind:	Pod

metadata:

		name:	nginx

spec:

		containers:

		-	name:	nginx

				image:	nginx:alpine

				ports:

				-	containerPort:	80

				-	containerPort:	443

Let's	use	the	Kubernetes	CLI	called	kubectl	to	deploy	this	pod:

$	kubectl	create	-f	sample-pod.yaml

pod	"nginx"	created

If	we	now	list	all	of	the	pods,	we	should	see	this:

$	kubectl	get	pods

NAME				READY			STATUS				RESTARTS			AGE

nginx			1/1					Running			0										51s

To	be	able	to	access	this	pod,	we	need	to	create	a	service.	Let's	use	the	sample-
service.yaml	file,	which	has	the	following	content:

apiVersion:	v1

kind:	Service

metadata:

		name:	nginx-service

spec:

		type:	LoadBalancer

		ports:

		-	port:	8080

				targetPort:	80

				protocol:	TCP

				name:	http

		-	port:	443

				protocol:	TCP

				name:	https

		selector:

				app:	nginx

Again,	don't	worry	about	what	exactly	a	service	is	at	this	time.	We'll	explain	it
all	in	detail	further	down.	Let's	just	create	this	service:

$	kubectl	create	-f	sample-service.yaml

Now	we	can	use	curl	to	access	the	service:

$	curl	-4	http://localhost

And	we	should	be	receiving	the	Nginx	welcome	page	as	an	answer.	Before	you
continue,	please	remove	the	two	objects	you	just	created:

$	kubectl	delete	po/nginx

$	kubectl	delete	svc/nginx-service

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	support	in	Docker	for
Desktop
Starting	from	version	18.01-ce,	Docker	for	Mac	and	Docker	for	Windows	have
started	to	support	Kubernetes	out	of	the	box.	Developers	that	want	to	deploy
their	containerized	applications	to	Kubernetes	can	use	this	orchestrator	instead	of
SwarmKit.	Kubernetes	support	by	default	is	turned	off	and	has	to	be	enabled	in
the	settings.	The	first	time	Kubernetes	is	enabled,	Docker	for	Mac	or	Windows
will	need	a	moment	to	download	all	components	that	are	needed	to	create	a
single	node	Kubernetes	cluster.	Contrary	to	Minikube,	which	is	also	a	single
node	cluster,	the	version	provided	by	the	Docker	tools	uses	containerized
versions	of	all	Kubernetes	components:

Kubernetes	support	in	Docker	for	Mac	and	Windows

The	preceding	image	gives	a	rough	overview	on	how	Kubernetes	support	has
been	added	to	Docker	for	Mac	and	Windows.	Docker	for	Mac	uses	hyperkit	to
run	a	LinuxKit-based	VM.	Docker	for	Windows	uses	Hyper-V	to	achieve	the
same.	Inside	the	VM,	the	Docker	engine	is	installed.	Part	of	the	engine	is
SwarmKit,	which	enables	Swarm	Mode.	Docker	for	Mac	or	Windows	uses
the	kubeadm	tool	to	set	up	and	configure	Kubernetes	in	that	VM.	The	following
three	facts	are	worth	mentioning:	Kubernetes	stores	its	cluster	state	in	etcd,	thus
we	have	etcd	running	on	this	VM.	Then,	we	have	all	the	services	that	make	up
Kubernetes	and	finally,	some	services	that	support	the	deployment	of	Docker
stacks	from	the	Docker	CLI	into	Kubernetes.	This	service	is	not	part	of	the

official	Kubernetes	distribution,	but	is	Docker	specific.

All	components	of	Kubernetes	are	running	in	containers	in	the	LinuxKit-based
VM.	These	containers	can	be	hidden	through	a	setting	in	Docker	for	Mac	or
Windows.	See	further	down	in	the	section	for	a	complete	list	of	Kubernetes
system	containers	running	on	your	laptop,	if	you	have	Kubernetes	support
enabled.	To	avoid	repetition,	from	now	on	I	will	only	talk	about	Docker	for
Desktop	instead	of	Docker	for	Mac	and	Docker	for	Windows.	Everything	that	I
will	be	saying	equally	applies	to	both	editions.

One	big	advantage	of	Docker	for	Desktop	with	Kubernetes	enabled	over
Minikube	is	that	the	former	allows	developers	to	use	a	single	tool	to	build,	test,
and	run	a	containerized	application	targeted	at	Kubernetes.	It	is	even	possible	to
deploy	a	multi-service	application	into	Kubernetes	using	a	Docker	Compose	file.

Now,	let's	get	our	hands	dirty.	First	we,	have	to	enable	Kubernetes.	On	the	Mac,
click	on	the	Docker	icon	in	the	menu	bar	and	select	Preferences.	In	the	dialog
box	that	opens,	select	Kubernetes,	as	shown	in	the	following	screenshot:	

Enabling	Kubernetes	in	Docker	for	Mac

Then,	select	the	Enable	Kubernetes	checkbox.	Also,	tick	the	other
checkbox	Show	system	containers	(advanced).	Then,	click	the	Apply	button.
You	will	be	warned	that	the	installation	and	configuration	of	Kubernetes	takes	a
few	minutes:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Warning	that	installation	and	configuration	of	Kubernetes	takes	a	while

Click	Install	to	start	the	installation.	Now	it's	time	that	you	take	a	break	and
enjoy	a	nice	cup	of	tea.

Once	the	installation	is	finished	(which	Docker	notifies	us,	by	showing	a	green
status	icon	in	the	settings	dialog),	we	can	test	it.	Since	we	now	have	two
Kubernetes	clusters	running	on	our	laptop,	Minikube	and	Docker	for	Mac,	we
need	to	configure	kubectl	to	access	the	latter	one.	First,	let's	list	all	contexts	that
we	have:

List	of	contexts	for	kubectl

Here,	we	can	see	that	on	my	laptop,	I	have	the	two	contexts	mentioned	before.
Currently	still,	the	Minikube	context	is	active,	visible	by	the	asterisk	in	the
CURRENT	column.	We	can	switch	to	the	docker-for-desktop	context	using	the
following	command:

Changing	the	context	for	the	Kubernetes	CLI

Now,	we	can	use	kubectl	to	access	the	cluster	that	Docker	for	Mac	just
created.	We	should	see	this:

The	single	node	Kubernetes	cluster	created	by	Docker	for	Mac

OK,	this	looks	very	familiar.	It	is	pretty	much	the	same	as	what	we	saw	when

working	with	Minikube.	The	version	of	Kubernetes	that	my	Docker	for	Mac	is
using	is	1.9.2.	We	can	also	see	that	the	node	is	a	master	node.

If	we	list	all	containers	that	are	currently	running	on	our	Docker	for	Mac,	we	get
this	list	(note	that	I	use	the	--format	argument	to	only	output	the	Container	ID	and
Names	of	the	containers),	as	shown	in	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	system	containers

In	the	list,	we	can	identify	all	the	now	familiar	components	that	make	up
Kubernetes	such	as	the:

API	server
etcd
Kube	proxy
DNS	service
Kube	controller
Kube	scheduler

There	are	also	containers	that	have	the	word	compose	in	them.	These	are	Docker-
specific	services	and	are	used	to	allow	us	to	deploy	Docker	Compose
applications	onto	Kubernetes.	Docker	translates	the	Docker	Compose	syntax	and
implicitly	creates	the	necessary	Kubernetes	objects	such	as	deployments,	pods,
and	services.

Normally,	we	don't	want	to	clutter	our	list	of	containers	with	these	system
containers.	We	can	thus	uncheck	the	checkbox	Show	system	containers	in	the
settings	for	Kubernetes.

Now	let's	try	to	deploy	a	Docker	Compose	application	to	Kubernetes.	Navigate
to	the	subfolder	ch12	of	our	labs	folder.		We	deploy	the	app	as	a	stack	using
the	docker-compose.yaml	file:

$	docker	stack	deploy	-c	docker-compose.yml	app

This	is	what	we	see:

Deploy	stack	to	Kubernetes

We	can	test	the	application,	for	example,	using	curl,	and	we	will	see	that	it	is
running	as	expected:

Pets	application	running	in	Kubernetes	on	Docker	for	Mac

Now,	you	should	be	curious	and	wonder	what	exactly	Docker	did,	when	we
executed	the	docker	stack	deploy	command.	We	can	use	kubectl	to	find	out:

Listing	all	Kubernetes	objects	created	by	docker	stack	deploy

Docker	created	a	deployment	for	the	web	service	and	a	stateful	set	for
the	db	service.	It	also	automatically	created	Kubernetes	services	for	web	and	db	so
that	they	can	be	accessed	inside	the	cluster.	It	also	created	the	Kubernetes
service	svc/web-published	which	is	used	for	external	access.

This	is	pretty	cool	to	say	the	least	and	tremendously	decreases	friction	in	the
development	process	for	teams	targeting	Kubernetes	as	the	orchestrator.

Before	you	continue,	please	remove	the	stack	from	the	cluster:

$	docker	stack	rm	app

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

And	also	make	sure	you	reset	the	context	for	kubectl	back	to	Minikube,	as	we	will
be	using	Minikube	for	all	our	samples	in	this	chapter:

$	kubectl	config	use-context	minikube

Now	that	we	have	had	an	introduction	to	the	tools	we	can	use	to	develop
applications	that	will	eventually	run	in	a	Kubernetes	cluster,	it	is	time	to	learn
about	all	the	important	Kubernetes	objects	that	are	used	to	define	and	manage
such	an	application.	We	are	starting	with	the	pod.

Pods
Contrary	to	what	is	possible	in	a	Docker	Swarm,	you	cannot	run	containers
directly	in	a	Kubernetes	cluster.	In	a	Kubernetes	cluster,	you	can	only	run	pods.
Pods	are	the	atomic	unit	of	deployment	in	Kubernetes.	A	pod	is	an	abstraction	of
one	or	many	co-located	containers	that	share	the	same	Kernel	namespaces,	such
as	the	network	namespace.	No	equivalent	exists	in	the	Docker	SwarmKit.	The
fact	that	more	than	one	container	can	be	co-located	and	sharing	the	same
network	namespace	is	a	very	powerful	concept.	The	following	diagram
illustrates	two	pods:

Kubernetes	pods

In	the	preceding	diagram,	we	have	two	pods,	Pod	1	and	Pod	2.	The	first	pod
contains	two	containers,	while	the	second	one	only	contains	a	single	container.
Each	pod	gets	an	IP	address	assigned	by	Kubernetes	that	is	unique	in	the	whole
Kubernetes	cluster.	In	our	case,	these	are	the	IP	addresses	10.0.12.3	and	10.0.12.5.
Both	are	part	of	a	private	subnet	managed	by	the	Kubernetes	network	driver.

A	pod	can	contain	one	to	many	containers.	All	those	containers	share	the	same
kernel	namespaces,	and	in	particular	they	share	the	network	namespace.	This	is
marked	by	the	dashed	rectangle	surrounding	the	containers.	Since	all	containers
running	in	the	same	pod	share	the	network	namespace,	each	container	needs	to
make	sure	to	use	their	own	port	since	duplicate	ports	are	not	allowed	in	a	single
network	namespace.	In	this	case,	in	Pod	1,	the	main	container	is	using	port	80
while	the	supporting	container	is	using	port	3000.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Requests	from	other	pods	or	nodes	can	use	the	pod's	IP	address	combined	with
the	corresponding	port	number	to	access	the	individual	containers.	For	example,
you	could	access	the	application	running	in	the	main	container	of	Pod	1
through	10.0.12.3:80.

Comparing	Docker	container	and
Kubernetes	pod	networking
Now,	let's	compare	Docker's	container	networking	and	the	networking	of	a
Kubernetes	pod.	In	the	diagram	here,	we	have	the	former	on	the	left	hand	and
the	latter	on	the	right	hand	side:

Containers	in	Pod	sharing	network	namespace

When	a	Docker	container	is	created	and	no	specific	network	is	specified,	then
the	Docker	engine	creates	a	virtual	ethernet	(veth)	endpoint.	The	first	container
gets	veth0	and	the	next	one	veth1,	and	so	on.	These	virtual	ethernet	endpoints
are	connected	to	the	Linux	bridge	docker0	that	Docker	automatically	creates
upon	installation.	Traffic	is	routed	from	the	bridge	docker0	to	every	connected
veth	endpoint.	Every	container	has	its	own	network	namespace.	No	two
containers	use	the	same	namespace.	This	is	on	purpose,	to	isolate	applications
running	inside	the	containers	from	each	other.

For	a	Kubernetes	pod,	the	situation	is	different.	When	creating	a	new	pod,
Kubernetes	first	creates	a	so-called	pause	container	whose	only	purpose	is	to
create	and	manage	the	namespaces	that	the	pod	will	share	with	all	containers.
Other	than	that,	it	does	nothing	useful,	but	is	just	sleeping.	The	pause	container
is	connected	to	the	bridge	docker0	through	veth0.	Any	subsequent	container
that	will	be	part	of	the	pod	is	using	a	special	feature	of	the	Docker	engine	that
allows	it	to	reuse	an	existing	network	namespace.	The	syntax	to	do	so	looks	like

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

this:

$	docker	container	create	--net	container:pause	...	

The	important	part	is	the	--net	argument,	which	uses	as	a	value	container:<container
name>.	If	we	create	a	new	container	this	way,	then	Docker	does	not	create	a	new
veth	endpoint,	but	the	container	uses	the	same	one	as	the	pause	container.

Another	important	consequence	of	multiple	containers	sharing	the	same	network
namespace	is	the	way	they	communicate	with	each	other.	Let's	consider	the
following	situation	of	a	pod	containing	two	containers,	one	listening	at	port	80
and	the	other	at	port	3000:

Containers	in	pods	communicate	via	localhost

When	two	containers	use	the	same	Linux	kernel	network	namespace,	they	can
communicate	with	each	other	through	localhost,	similar	to	when	two	processes
are	running	on	the	same	host	they	can	communicate	with	each	other	through
localhost	too.	This	is	illustrated	in	the	preceding	diagram.	From	the	main
container,	the	containerized	application	inside	it	can	reach	out	to	the	service
running	inside	the	supporting	container	through	http://localhost:3000.

Sharing	the	network	namespace
After	all	this	theory,	you	might	be	wondering	how	a	pod	is	actually	created	by
Kubernetes.	Kubernetes	is	only	using	what	Docker	provides.	So,	how	does	this
network	namespace	share	work?	First,	Kubernetes	creates	the	so-called	pause
container	as	mentioned	previously.	This	container	has	no	other	function	than	to
reserve	the	kernel	namespaces	for	that	pod	and	keep	them	alive,	even	if	no	other
container	inside	the	pod	is	running.	Let's	simulate	the	creation	of	a	pod,	then.	We
start	by	creating	the	pause	container	and	take	Nginx	for	this	purpose:

$	docker	container	run	-d	--name	pause	nginx:alpine

And	now	we	add	a	second	container	called	main,	attaching	it	to	the	same	network
namespace	as	the	pause	container:

$	docker	container	run	--name	main	-dit	\

				--net	container:pause	\

				alpine:latest	/bin/sh

Since	the	pause	and	the	sample	container	are	both	part	of	the	same	network
namespace,	they	can	reach	each	other	through	localhost.	To	show	this,	we	first
have	to	exec	into	the	main	container:

$	docker	exec	-it	main	/bin/sh

Now,	we	can	test	the	connection	to	Nginx	running	in	the	pause	container	and
listening	on	port	80.	Here	is	what	we	get	if	we	use	the	wget	utility	to	do	so:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Two	containers	sharing	the	same	network	namespace

The	output	shows	that	we	can	indeed	access	Nginx	on	localhost.	This	is	proof	that
the	two	containers	share	the	same	namespace.	If	that	is	not	enough,	we	can	use
the	ip	tool	to	show	eth0	inside	both	containers	and	we	will	get	the	exact	same
result,	specifically,	the	same	IP	address	which	is	one	of	the	characteristics	of	a
pod,	where	all	its	containers	share	the	same	IP	address:

Displaying	the	properties	of	eth0	with	the	ip	tool

If	we	inspect	the	bridge	network,	we	can	only	see	that	the	pause	container	is	listed.
The	other	container	didn't	get	an	entry	in	the	Containers	list	since	it	is	reusing	the
pause	container's	endpoint:

Inspecting	the	Docker	default	bridge	network

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pod	life	cycle
We	have	learned	earlier	in	this	book	that	containers	have	a	life	cycle.	A	container
is	initialized,	run,	and	ultimately	exited.	When	a	container	exits,	it	can	do	this
gracefully	with	an	exit	code	zero	or	it	can	terminate	with	an	error,	which	is
equivalent	to	a	nonzero	exit	code.

Similarly,	a	pod	has	a	life	cycle.	Due	to	the	fact	that	a	pod	can	contain	more	than
one	container,	this	life	cycle	is	slightly	more	complicated	than	the	one	of	a	single
container.		The	life	cycle	of	a	pod	is	sketched	in	the	following	diagram:

Life	cycle	of	Kubernetes	pods

When	a	pod	is	created	on	a	cluster	node,	it	first	enters	into	pending	status.	Once
all	containers	of	the	pod	are	up	and	running,	the	pod	enters	into	running	status.
The	pod	only	enters	into	this	state	if	all	its	containers	run	successfully.	If	the	pod
is	asked	to	terminate,	it	will	request	all	its	containers	to	terminate.	If	all
containers	terminate	with	exit	code	zero,	then	the	pod	enters	into		succeeded
status.	This	is	the	happy	path.

Now,	let's	look	at	some	scenarios	that	lead	to	the	pod	being	in	failed	state.	There
are	three	possible	scenarios:

If,	during	the	startup	of	the	pod,	at	least	one	container	is	not	able	to	run	and
fails	(that	is	it	exits	with	a	nonzero	exit	code),	the	pod	enters	from
the	pending	state	into	the	failed	state
If	the	pod	is	in	running	status	and	one	of	the	containers	suddenly	crashes	or
exits	with	a	nonzero	exit	code	then	the	pod	transitions	from

the	running	state	into	the	failed	state
If	the	pod	is	asked	to	terminate	and	during	the	shutdown	at	least	one	of	the
containers	exits	with	a	nonzero	exit	code,	then	the	pod	also	enters	into
the	failed	state

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pod	specification
When	creating	a	pod	in	a	Kubernetes	cluster,	we	can	use	either	an	imperative	or
a	declarative	approach.	We	have	discussed	the	difference	of	the	two	approaches
earlier	in	this	book,	but	to	rephrase	the	important	aspect,	using	a	declarative
approach	signifies	that	we	write	a	manifest	which	describes	the	end	state	we
want	to	achieve.	We	leave	the	details	of	the	how	to	the	orchestrator.	The	end
state	that	we	want	to	achieve	is	also	called	the	desired	state.	In	general,	the
declarative	approach	is	strongly	preferred	in	all	of	the	established	orchestrators,
and	Kubernetes	is	no	exception.

Thus,	in	this	chapter,	we	will	exclusively	concentrate	on	the	declarative
approach.	Manifests	or	specifications	for	a	pod	can	be	written
using	either	YAML	or	JSON	format.	In	this	chapter,	we	will	concentrate	on
YAML	since	it	is	easier	to	read	for	us	humans.	Let's	look	at	a	sample
specification.	Here	is	the	content	of	the	pod.yaml	file	that	can	be	found	in
the	ch12	subfolder	of	our	labs	folder:

apiVersion:	v1

kind:	Pod

metadata:

		name:	web-pod

spec:

		containers:

		-	name:	web

				image:	nginx:alpine

				ports:

				-	containerPort:	80

Each	specification	in	Kubernetes	starts	with	the	version	information.	Pods	have
been	around	for	quite	some	time	and	thus	the	API	version	is	v1.	The	second	line
specifies	the	type	of	Kubernetes	object	or	resource	we	want	to	define.	Obviously,
in	this	case,	we	want	to	specify	a	pod.	Next	follows	a	block	with	metadata.	At	a
bare	minimum,	we	need	to	give	the	pod	a	name.	Here,	we	call	it	web-pod.	The	next
block	that	follows	is	the	spec	block,	which	contains	the	specification	of	the	pod.
The	most	important	part	(and	the	only	one	in	this	simple	sample)	is	the	list	of	all
containers	that	are	part	of	this	pod.	We	only	have	one	container	here,	but
multiple	containers	are	possible.	The	name	we	choose	for	our	container	is	web
and	the	container	image	is	nginx:alpine.	Finally,	we	define	the	list	of	ports	the

container	is	exposing.

Once	we	have	authored	such	a	specification,	we	can	apply	it	to	the	cluster	using
the	Kubernetes	CLI	kubectl.	In	a	Terminal,	navigate	to	the	ch12	subfolder	and
execute	the	following	command:

$	kubectl	create	-f	pod.yaml

Which	will	respond	with	pod	"web-pod"	created.	We	can	then	list	all	pods	in	the
cluster	with	kubectl	get	pods:

$	kubectl	get	pods

NAME						READY			STATUS				RESTARTS			AGE

web-pod			1/1					Running			0										2m

As	expected,	we	have	one	of	one	pods	in	running	status.	The	pod	is	called	web-
pod,	as	defined.	We	can	get	more	detailed	information	about	the	running	pod	by
using	the	describe	command:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Describing	a	pod	running	in	the	cluster

Please	note	the	notation	pod/web-pod	in	the	previous	describe	command.	Other
variants	are	possible,	for	example,	pods/web-pod	or	po/web-pod.	pod	and	po	are	aliases
of	pods.	The	kubectl	tool	defines	many	aliases	to	make	our	lives	a	bit	easier.

The	describe	command	gives	us	a	plethora	of	valuable	information	about	the	pod,
not	the	least	of	which	is	the	list	of	events	that	happened	with	this	pod	affected.
The	list	is	shown	at	the	end	of	the	output.

The	information	in	the		Containers	section	is	very	similar	to	what	we	find	in	a
docker	container	inspect	output.

We	also	see	a	Volumes	section	with	some	entry	of	type	Secret.	We	will	discuss
Kubernetes	secrets	in	the	next	chapter.	Volumes,	on	the	other	hand,	are	discussed
next.

Pods	and	volumes
In	the	chapter	about	containers,	we	have	learned	about	volumes	and	their
purpose	to	access	and	store	persistent	data.	As	containers	can	mount	volumes,
pods	can	do	so	as	well.	In	reality,	it	is	really	the	containers	inside	the	pod	that
mount	the	volumes,	but	that	is	just	a	semantic	detail.	Let's	first	see	how	we	can
define	a	volume	in	Kubernetes.	Kubernetes	supports	a	plethora	of	volume	types
and	we're	not	diving	into	too	much	detail	about	this.	Let's	just	create	a	local
volume	implicitly	by	defining	a	PersistentVolumeClaim	called	my-data-claim:

apiVersion:	v1

kind:	PersistentVolumeClaim

metadata:

		name:	my-data-claim

spec:

		accessModes:

				-	ReadWriteOnce

		resources:

				requests:

						storage:	2Gi

We	have	defined	a	claim	that	requests	2	GB	of	data.	Let's	create	this	claim:

$	kubectl	create	-f	volume-claim.yaml

We	can	list	the	claim	using	kubectl	(pvc	is	the	shortcut	for	PersistentVolumeClaim):

List	of	PersistentStorageClaim	objects	in	the	cluster

In	the	output,	we	can	see	that	the	claim	has	implicitly	created	a	volume	called
pvc-<ID>.	We	are	now	ready	to	use	the	volume	created	by	the	claim	in	a	pod.	Let's
use	a	modified	version	of	the	pod	specification	that	we	used	previously.	We	can
find	this	updated	specification	in	the	pod-with-vol.yaml		file	in	the	ch12	folder.	Let's
look	at	this	specification	in	detail:

apiVersion:	v1

kind:	Pod

metadata:

		name:	web-pod

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

spec:

		containers:

		-	name:	web

				image:	nginx:alpine

				ports:

				-	containerPort:	80

				volumeMounts:

				-	name:	my-data

						mountPath:	/data

		volumes:

		-	name:	my-data

				persistentVolumeClaim:

						claimName:	my-data-claim

In	the	last	four	lines,	in	the	block	volumes,	we	define	the	list	of	volumes	we	want
to	use	for	this	pod.	The	volumes	that	we	list	here	can	be	used	by	any	of	the
containers	of	the	pod.	In	our	particular	case,	we	only	have	one	volume.	We
define	that	we	have	a	volume	my-data	that	is	a	persistent	volume	claim	whose
claim	name	is	the	one	we	just	created	before.	Then	in	the	container	specification,
we	have	the	volumeMounts	block	where	we	define	the	volume	we	want	to	use	and
the	(absolute)	path	inside	the	container	where	the	volume	will	be	mounted.	In
our	case,	we	mount	the	volume	to	the	/data	folder	of	the	container	filesystem.
Let's	create	this	pod:

$	kubectl	create	-f	pod-with-vol.yaml

Then,	we	can	exec	into	the	container	to	double-check	that	the	volume	has
mounted	by	navigating	to	the	/data	folder,	create	a	file	there,	and	exit	the
container:

$	kubectl	exec	-it	web-pod	--	/bin/sh

/	#	cd	/data

/data	#	echo	"Hello	world!"	>	sample.txt

/data	#	exit

If	we	are	right,	then	the	data	in	this	container	must	persist	beyond	the	life	cycle
of	the	pod.	Thus,	let's	delete	the	pod	and	then	recreate	it	and	exec	into	it	to	make
sure	the	data	is	still	there.	This	is	the	result:

Data	stored	in	volume	survives	pod	recreation

Kubernetes	ReplicaSet
A	single	pod	in	an	environment	with	high	availability	requirements	is
insufficient.	What	if	the	pod	crashes?	What	if	we	need	to	update	the	application
running	inside	the	pod	but	cannot	afford	any	service	interruption?	These
questions	and	more	can	only	indicate	that	pods	alone	are	not	enough	and	we
need	a	higher-level	concept	that	can	manage	multiple	instances	of	the	same	pod.
In	Kubernetes,	the	ReplicaSet	is	used	to	define	and	manage	such	a	collection	of
identical	pods	that	are	running	on	different	cluster	nodes.	Among	other	things,	a
ReplicaSet	defines	which	container	images	are	used	by	the	containers	running
inside	a	pod	and	how	many	instances	of	the	pod	will	run	in	the	cluster.	These
properties	and	the	many	others	are	called	the	desired	state.	

The	ReplicaSet	is	responsible	for	reconciling	the	desired	state	at	all	times,	if	the
actual	state	ever	deviates	from	it.	Here	is	a	Kubernetes	ReplicaSet:

Kubernetes	ReplicaSet

In	the	preceding	diagram,	we	see	such	a	ReplicaSet	called	rs-api,	which	governs
a	number	of	pods.	The	pods	are	called	pod-api.	The	ReplicaSet	is	responsible
for	making	sure	that	at	any	given	time	there	are	always	the	desired	number	of
pods	running.	If	one	of	the	pods	crashes	for	whatever	reason,	the	ReplicaSet
schedules	a	new	pod	on	a	node	with	free	resources	instead.	If	there	are	more
pods	than	the	desired	number,	then	the	ReplicaSet	kills	the	superfluous	pods.	We
can	thus	say	that	the	ReplicaSet	guarantees	a	self-healing	and	scalable	set	of
pods.	There	is	no	limit	on	how	many	pods	a	ReplicaSet	can	be	comprised	of.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

ReplicaSet	specification
Similar	to	what	we	have	learned	about	pods,	Kubernetes	also	allows	us	to	either
imperatively	or	declaratively	define	and	create	a	ReplicaSet.	Since	the	declarative
approach	is	by	far	the	recommended	one	in	most	cases,	we're	going	to
concentrate	on	this	approach.	Here	is	a	sample	specification	for	a	Kubernetes
ReplicaSet:

apiVersion:	apps/v1

kind:	ReplicaSet

metadata:

		name:	rs-web

spec:

		selector:

				matchLabels:

						app:	web

		replicas:	3

		template:	

				metadata:

						labels:

								app:	web

				spec:

						containers:

						-	name:	nginx

								image:	nginx:alpine

								ports:

								-	containerPort:	80

This	looks	an	awful	lot	like	the	pod	specification	we	introduced	earlier.	Let's
concentrate	on	the	differences,	then.	First,	on	line	2,	we	have	the	kind	which	was
Pod	and	is	now	ReplicaSet.	Then,	on	lines	6–8,	we	have	a	selector	which
determines	the	pods	that	will	be	part	of	the	ReplicaSet.	In	this	case,	it	is	all	pods
that	have	a	label	app	with	the	value	web.	Then,	on	line	9,	we	define	how	many
replicas	of	the	pod	we	want	to	run;	three,	in	this	case.	Finally,	we	have	the
template	section	which	first	defines	the	metadata	and	then	the	spec	which	defines	the
containers	that	run	inside	the	pod.	In	our	case,	we	have	a	single	container	using
the	nginx:alpine	image	and	exporting	port	80.

The	really	important	elements	are	the	number	of	replicas	and	the	selector	which
specifies	the	set	of	pods	governed	by	the	ReplicaSet.

In	our		ch12	folder,	we	have	a	file	called	replicaset.yaml	that	contains	the	preceding
specification	exactly.	Let's	use	this	file	to	create	the	ReplicaSet:

$	kubectl	create	-f	replicaset.yaml

replicaset	"rs-web"	created

If	we	list	all	the	ReplicaSets	in	the	cluster,	we	get	this	(rs	is	a	shortcut	for
replicaset):

$	kubectl	get	rs

NAME					DESIRED			CURRENT			READY			AGE

rs-web			3									3									3							51s

In	the	preceding	output,	we	can	see	that	we	have	a	single	ReplicaSet	called	rs-web
whose	desired	state	is	three	(pods).	The	current	state	also	shows	three	pods	and
all	three	pods	are	ready.	We	can	also	list	all	pods	in	the	system	and	we	get	this:

$	kubectl	get	pods

NAME											READY			STATUS				RESTARTS			AGE

rs-web-6qzld			1/1					Running			0										4m

rs-web-frj2m			1/1					Running			0										4m

rs-web-zd2kt			1/1					Running			0										4m

Here,	we	see	our	three	expected	pods.	The	names	of	the	pods	are	using	the	name
of	the	ReplicaSet	with	a	unique	ID	appended	for	each	pod.	In	the	READY	column,
we	see	how	many	containers	are	defined	in	the	pod	and	how	many	of	them	are
ready.	In	our	case,	we	have	only	a	single	container	per	pod	and	in	each	case,	it	is
ready.	Thus,	the	overall	status	of	the	pod	is	Running.	We	also	see	how	many	times
each	pod	had	to	be	restarted.	In	our	case,	we	did	not	have	any	restarts	yet.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Self-healing
Now	let's	test	the	magic	powers	of	the	self-healing	of	the	ReplicaSet	by	randomly
killing	one	of	its	pods	and	observing	what's	going	to	happen.	Let's	delete	the	first
pod	from	the	previous	list:

$	kubectl	delete	po/rs-web-6qzld

pod	"rs-web-6qzld"	deleted

And	then,	let's	list	all	pods	again.	We	expect	to	see	only	two	pods,	right?	Wrong:

List	of	pods	after	having	killed	a	pod	of	the	ReplicaSet

OK,	evidently	the	second	pod	in	the	list	has	been	recreated	as	we	can	see	from
the	AGE	column.	This	is	auto-healing	in	action.	Let's	see	what	we	discover	if	we
describe	the	ReplicaSet:

Describe	the	ReplicaSet

And	indeed,	we	find	an	entry	under	Events	that	tells	us	that	the	ReplicaSet	created

the	new	pod	rs-web-q6cr7.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	deployment
Kubernetes	takes	the	single	responsibility	principle	very	seriously.	All
Kubernetes	objects	are	designed	to	do	one	thing	and	one	thing	only.	And	they
are	designed	to	do	this	one	thing	very	well.	In	this	regard,	we	have	to	understand
Kubernetes	ReplicaSets	and	Deployments.	The	ReplicaSet,	as	we	have	learned,
is	responsible	for	achieving	and	reconciling	the	desired	state	of	an	application
service.	This	means	that	the	ReplicaSet	manages	a	set	of	pods.

The	Deployment	augments	a	ReplicaSet	by	providing	rolling	update	and
rollback	functionality	on	top	of	it.	In	Docker	Swarm,	the	swarm	service	would
incorporate	the	functionality	of	both	the	ReplicaSet	and	the	Deployment.	In	this
regard,	SwarmKit	is	much	more	monolithic	than	Kubernetes.	The	following
diagram	shows	the	relationship	of	a	Deployment	to	a	ReplicaSet:

Kubernetes	deployment

In	the	preceding	diagram,	the	ReplicaSet	is	defining	and	governing	a	set	of
identical	pods.	The	main	characteristics	of	the	ReplicaSet	are	that	it	is	self-
healing,	scalable,	and	always	does	its	best	to	reconcile	the	desired	state.	The
Kubernetes	deployment	in	turn	adds	rolling	update	and	rollback	functionality	to
the	plate.	In	this	regard,	a	deployment	is	really	a	wrapper	object	to	a	ReplicaSet.

We	will	learn	more	about	rolling	updates	and	rollbacks	in	the	next	chapter	of	this
book.

Kubernetes	service
The	moment	we	start	to	work	with	applications	consisting	of	more	than	one
application	service,	we	have	a	need	for	service	discovery.	In	the	following
diagram,	we	illustrate	this	problem:

Service	discovery

In	this	diagram,	we	have	a	Web	API	service	that	needs	access	to	three	other
services—payments,	shipping,	and	ordering.	The	Web	API	should	at	no	time
have	to	care	how	and	where	to	find	those	three	services.	In	the	API	code,	we	just
want	to	use	the	name	of	the	service	we	want	to	reach	and	its	port	number.	A
sample	would	be	the	URL	http://payments:3000	that	is	used	to	access	an	instance	of
the	payments	service.	

In	Kubernetes,	the	payments	application	service	is	represented	by	a	ReplicaSet
of	pods.	Due	to	the	nature	of	highly	distributed	systems,	we	cannot	assume	that
pods	have	stable	endpoints.	A	pod	can	come	and	go	in	a	wimp.	But	that's	a
problem	if	we	need	to	access	the	corresponding	application	service	from	an
internal	or	external	client.	If	we	cannot	rely	on	pod	endpoints	being	stable,	what
else	can	we	do?

This	is	where	Kubernetes	services	come	into	play.	They	are	meant	to	provide
stable	endpoints	to	ReplicaSets	or	Deployments,	as	shown	here:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	service	providing	stable	endpoints	to	clients

In	the	preceding	diagram,	in	the	center,	we	see	such	a	Kubernetes	service.	It
provides	a	reliable	cluster-wide	IP	address	also	called	a	virtual	IP	(VIP),	as	well
as	a	reliable	port	that's	unique	in	the	whole	cluster.	The	pods	that	the	Kubernetes
service	is	proxying	are	determined	by	the	selector	defined	in	the	service
specification.	Selectors	are	always	based	on	labels.	Every	Kubernetes	object	can
have	zero	to	many	labels	assigned.	In	our	case,	the	selector	is	app=web,	that	is,
all	pods	that	have	a	label	called	app	with	a	value	of	web	are	proxied.

Context-based	routing
Often,	we	want	to	configure	context-based	routing	for	our	Kubernetes	cluster.
Kubernetes	offers	us	various	ways	to	do	so.	The	preferred	and	most	scalable	way
at	this	time	is	to	use	an	IngressController	for	this	job.	The	following	diagram
tries	to	illustrate	how	this	ingress	controller	works:

	Context-based	routing	using	a	Kubernetes	ingress	controller

In	this	diagram,	we	can	see	how	context-based	(or	layer	7)	routing	works	when
using	an	ingress	controller,	such	as	Nginx.	Here,	we	have	a	deployment	of	an
application	service	called	web.	All	the	pods	of	this	application	service	have	a
label	app=web.	We	then	have	a	Kubernetes	service	called	web	that	provides	a
stable	endpoint	to	those	pods.	The	service	has	a	(virtual)	IP	of	52.14.0.13	and
exposes	port	30044.	That	is,	if	a	request	comes	to	any	node	of	the	Kubernetes
cluster	for	the	name	web	and	port	30044,	then	it	is	forwarded	to	this	service.	The
service	then	load	balances	the	request	to	one	of	the	pods.	

So	far	so	good,	but	how	is	an	ingress	request	from	a	client	to	the	URL
http[s]://example.com/web	routed	to	our	web	service?	First,	we	have	to	define	the
routing	from	a	context-based	request	to	a	corresponding	<service	name>/<port>
request.	This	is	done	through	an	Ingress	object:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

1.	 In	the	Ingress	object,	we	define	the	host	and	path	as	the	source	and	the
(service)	name,	and	the	port	as	the	target.	When	this	Ingress	object	is
created	by	the	Kubernetes	API	server,	then	a	process	that	runs	as	sidecar	in
the	IngressController	picks	this	change	up

2.	 Modifies	the	configuration	file	of	the	Nginx	reverse	proxy
3.	 By	adding	the	new	route,	Nginx	is	then	asked	to	reload	its	configuration

and	thus	will	be	able	to	correctly	route	any	incoming	requests
to	http[s]://example.com/web.

Comparing	SwarmKit	with
Kubernetes
Now	that	we	have	learned	a	lot	of	details	about	the	most	important	resources	in
Kubernetes,	it	is	helpful	to	compare	the	two	orchestrators,	SwarmKit	and
Kubernetes,	by	matching	the	important	resources.	Here	is	the	table:

SwarmKit Kubernetes Description

Swarm Cluster Set	of	servers/nodes	managed	by	the	respective
orchestrator.

Node Cluster
member

Single	host	(physical	or	virtual)	which	is	a
member	of	the	swarm/cluster.

Manager
node Master Node	managing	the	swarm/cluster.	This	is	the

control	plane.

Worker
node Node Member	of	the	swarm/cluster	running

application	workload.

Container Container**
Instance	of	a	container	image	running	on	a
node.	In	a	Kubernetes	cluster,	we	cannot	run	a
container.

Instance	of	a	service	(swarm)	or	ReplicaSet

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Task Pod
(Kubernetes)	running	on	a	node.	A	task
manages	a	single	container	while	a	Pod
contains	one	to	many	containers	that	are	all
sharing	the	same	network	namespace.

Service ReplicaSet
Defines	and	reconciles	the	desired	state	of	an
application	service	consisting	of	multiple
instances.

Service Deployment A	deployment	is	a	ReplicaSet	augmented	with
rolling	update	and	rollback	capabilities.

Routing
Mesh Service

The	Swarm	Routing	Mesh	provides	L4	routing
and	load	balancing	using	IPVS.	A	Kubernetes
service	is	an	abstraction	which	defines	a	logical
set	of	pods	and	a	policy	by	which	to	access
them.	It	is	a	stable	endpoint	for	a	set	of	pods.

Stack Stack	**

Definition	of	an	application	consisting	of
multiple	(Swarm)	services.	While	stacks	are	not
native	to	Kubernetes,	Docker's	tool	Docker	for
Mac	or	Windows,	will	translate	them	for
deployment	onto	a	Kubernetes	cluster.

Network Network
policy

Swarm	software-defined	networks	(SDNs)	are
used	to	firewall	containers.	Kubernetes	only
defines	a	single	flat	network.	Every	pod	can
reach	every	other	pod	and	or	node,	unless
network	policies	are	explicitly	defined	to
constrain	inter-pod	communication.

Summary
In	this	chapter,	we	have	learned	the	basics	of	Kubernetes.	We	had	an	overview	of
its	architecture	and	an	introduction	into	the	main	resources	used	to	define	and
run	applications	in	a	Kubernetes	cluster.	We	also	introduced	Minikube	and
Kubernetes	support	in	Docker	for	Mac	and	Windows.

In	the	next	chapter,	we're	going	to	deploy	an	application	into	a	Kubernetes
cluster.	Then,	we're	going	to	be	updating	one	of	the	services	of	this	application
using	a	zero	downtime	strategy.	Finally,	we're	going	to	instrument	application
services	running	in	Kubernetes	with	sensitive	data	using	secrets.	Stay	tuned.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
Please	answer	the	following	questions	to	assess	your	learning	progress:

1.	 Explain	in	a	few	short	sentences	what	the	role	of	a	Kubernetes	master	is.
2.	 List	the	elements	that	need	to	be	present	on	each	Kubernetes	(worker)	node.
3.	 Yes	or	No:	We	cannot	run	individual	containers	in	a	Kubernetes	cluster.	
4.	 Explain	the	reason	why	containers	of	a	pod	can	use	localhost	to

communicate	with	each	other.
5.	 What	is	the	purpose	of	the	so-called	pause	container	in	a	pod?
6.	 Bob	tells	you:	Our	application	consists	of	three	Docker	images:	web,

inventory,	and	db.	Since	we	can	run	multiple	containers	in	a	Kubernetes	pod,
we	are	going	to	deploy	all	the	services	of	our	application	in	a	single	pod.
List	three	to	four	reasons	why	this	is	a	bad	idea.

7.	 Explain	in	your	own	words	why	we	need	Kubernetes	ReplicaSets.
8.	 Under	which	circumstances	do	we	need	Kubernetes	deployments?
9.	 List	at	least	three	types	of	Kubernetes	services	and	explain	their	purposes

and	their	differences.

Further	reading
Here	is	a	list	of	articles	with	more	detailed	information	on	various	topics
discussed	in	this	chapter:

The	Raft	Consensus	Algorithm	at	https://raft.github.io/
Docker	Compose	and	Kubernetes	with	Docker	for	Desktop	at	https://dockr.l
y/2G8Iqb9

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://raft.github.io/
https://dockr.ly/2G8Iqb9

Deploying,	Updating,	and	Securing
an	Application	with	Kubernetes
In	the	last	chapter,	we	learned	about	the	basics	of	the	container	orchestrator,
Kubernetes.	We	got	a	high-level	overview	of	the	architecture	of	Kubernetes	and
learned	much	about	the	important	objects	used	by	Kubernetes	to	define	and
manage	a	containerized	application.	

In	this	chapter,	we	will	learn	how	to	deploy,	update,	and	scale	applications	into	a
Kubernetes	cluster.	We	will	also	explain	how	zero	downtime	deployments	are
achieved	to	enable	disruption-free	updates	and	rollbacks	of	mission	critical
applications.	Finally,	in	this	chapter,	we	are	introducing	Kubernetes	secrets	as	a
means	to	configure	services	with	and	protect	sensitive	data.

The	chapter	covers	the	following	topics:

Deploying	a	first	application
Zero-downtime	deployments
Kubernetes	secrets

After	working	through	this	chapter,	you	will	be	able	to:

Deploy	a	multi-service	application	into	a	Kubernetes	cluster
Update	an	application	service	running	in	Kubernetes	without	causing
downtime
Define	secrets	in	a	Kubernetes	cluster
Configure	an	application	service	to	use	Kubernetes	secrets	

Technical	requirements
In	this	chapter,	we're	going	to	use	Minikube	on	our	local	computer.	Please	refer
to	Chapter	2,	Setting	up	a	Working	Environment,	for	more	information	on	how	to
install	and	use	Minikube.

The	code	for	this	chapter	can	be	found	in	the	ch13	subfolder	of	the	labs	folder.
Please	make	sure	you	have	cloned	the	GitHub	repository	at	https://github.com/fund
amentalsofdocker/labs,	as	described	in	Chapter	2,	Setting	up	a	Working	Environment.

In	your	Terminal,	navigate	to	the	folder	labs/ch13.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/fundamentalsofdocker/labs

Deploying	a	first	application
We	will	take	our	pets	application,	which	we	first	introduced	in	Chapter	8,	Docker
Compose,	and	deploy	it	into	a	Kubernetes	cluster.	Our	cluster	will	be	Minikube,
which,	as	you	know,	is	a	single-node	cluster.	But,	from	the	perspective	of	a
deployment,	it	doesn't	really	matter	how	big	the	cluster	is	and	where	the	cluster
is	located—in	the	cloud,	in	your	company's	data	center,	or	on	your	personal
workstation.

Deploying	the	web	component
Just	as	a	reminder,	our	application	consists	of	two	application	services,	the
Node.js-based	web	component	and	the	backing	PostgreSQL	database.	In	the
previous	chapter,	we	learned	that	we	need	to	define	a	Kubernetes	Deployment
object	for	each	application	service	we	want	to	deploy.	Let's	do	this	first	for	the
web	component.	As	always	in	this	book,	we	will	choose	the	declarative	way	of
defining	our	objects.	Here	is	the	YAML	defining	a	Deployment	object	for	the	web
component:

Kubernetes	deployment	definition	for	the	web	component	

The	preceding	deployment	definition	can	be	found	in	the	web-deployment.yaml	file	in
the	labs	folder	ch13.		The	lines	of	code	are	as	follows:

On	line	4:		We	define	the	name	for	our	Deployment	object	as	web
On	line	6:		We	declare	that	we	want	to	have	one	instance	of	the	web
component	running
From	line	8	to	10:	We	define	which	pods	will	be	part	of	our	deployment,
namely	those	which	have	the	labels	app	and	service	with	values,	pets	and	web

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

respectively
On	line	11:	In	the	template	for	the	pods	starting	at	line	11,	we	define	that
each	pod	will	have	the	two	labels	app	and	service	applied
From	line	17:	We	define	the	single	container	that	will	be	running	in	the
pod.	The	image	for	the	container	is	our	well-known	fundamentalsofdocker/ch08-
web:1.0	image	and	the	name	of	the	container	will	be	web
Ports:	Finally,	we	declare	that	the	container	exposes	port	3000	for	TCP-type
traffic

Please	make	sure	that	you	have	set	the	context	of	kubectl	to	Minikube.	See	Chapter	2,	Setting	up	a
Working	Environment,	for	details	on	how	to	do	that.

We	can	deploy	this	Deployment	object	using	kubectl:

$	kubectl	create	-f	web-deployment.yaml

We	can	double-check	that	the	deployment	has	been	created	again	using	our
Kubernetes	CLI,	and	we	should	see	the	following	output:

Listing	all	resources	running	in	Minikube
At	the	time	of	writing,	there	seems	to	be	a	bug	in	Minikube	or	kubectl	that	displays	certain
resources	twice	when	using	the	command	kubectl	get	all.	You	can	just	ignore	the	duplicate
output.

In	the	preceding	output,	we	see	that	Kubernetes	created	three	objects—the
deployment,	a	pertaining	ReplicaSet,	and	a	single	pod	(remember	we	specified	that
we	want	one	replica	only).	The	current	state	corresponds	to	the	desired	state	for
all	three	objects,	thus	we	are	fine	so	far.

Now,	the	web	service	needs	to	be	exposed	to	the	public.	For	this,	we	need	to
define	a	Kubernetes	Service	object	of	type	NodePort.	Here	is	the	definition,	which

can	be	found	in	the		web-service.yaml	file	in	the	labs	folder	ch13:

Definition	of	the	Service	object	for	our	web	component

The	preceding	lines	of	codes	are	as	follows:

On	line	4:	We	set	the	name	of	this	Service	object	to	web.
On	line	6:	We	define	the	type	of	Service	object	we're	using.	Since	the	web
component	has	to	be	accessible	from	outside	of	the	cluster,	this	cannot	be	a
Service	object	of	type	ClusterIP	but	must	be	either	of	type	NodePort	or
LoadBalancer.	We	have	discussed	the	various	types	of	Kubernetes	services	in
the	previous	chapter	and	so	will	not	go	into	further	detail	about	this.	In	our
sample,	we're	using	a	NodePort	type	of	service.
On	lines	8	and	9:	We	specify	that	we	want	to	expose	port	3000	for	access
through	the	TCP	protocol.	Kubernetes	will	map	container	port	3000
automatically	to	a	free	host	port	in	the	range	of	30,000	to	32,768.	Which
port	Kubernetes	effectively	chooses	can	be	determined	using	the	kubectl	get
service	or	kubectl	describe	command	for	the	service	after	it	has	been	created.	
From	line	10	to	12:	We	define	the	filter	criteria	for	the	pods	for	which	this
service	will	be	a	stable	endpoint.	In	this	case,	it	is	all	pods	that	have	the
labels	app	and	service	with	values	pets	and	web	respectively.

Having	this	specification	for	a	Service	object,	we	can	create	it	using	kubectl:

$	kubectl	create	-f	web-service.yaml

We	can	list	all	services	to	see	the	result	of	the	preceding	command:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

The	Service	object	created	for	the	web	component

In	the	output,	we	see	that	a	service	called	web	has	been	created.	A	unique	clusterIP
10.103.113.40	has	been	assigned	to	this	service,	and	the	container	port	3000	has
been	published	on	port	30125	on	all	cluster	nodes.

If	we	want	to	test	this	deployment,	we	need	to	first	find	out	what	IP	address
Minikube	has,	and	then	use	this	IP	address	to	access	our	web	service.	The
following	is	the	command	that	we	can	use	to	do	this:

$	IP=$(minikube	ip)

$	curl	-4	$IP:30125/

Pets	Demo	Application

OK,	the	response	is	Pets	Demo	Application,	which	is	what	we	expected.	The	web
service	is	up	and	running	in	the	Kubernetes	cluster.	Next,	we	want	to	deploy	the
database.

Deploying	the	database
A	database	is	a	stateful	component	and	has	to	be	treated	differently	to	stateless
components,	such	as	our	web	component.	We	have	discussed	the	difference
between	stateful	and	stateless	components	in	a	distributed	application
architecture	in	detail	in	Chapter	6,	Distributed	Application	Architecture,	and	Chapte
r	9,	Orchestrators.

Kubernetes	has	defined	a	special	type	of	ReplicaSet	object	for	stateful
components.	The	object	is	called	a	StatefulSet.	Let's	use	this	kind	of	object	to
deploy	our	database.	The	definition	can	be	found	in	the	labs/ch13/db-stateful-
set.yaml	file.	The	details	are	as	follows:

A	StatefulSet	for	the	DB	component

OK,	this	looks	a	bit	scary,	but	it	is	not.	It	is	a	bit	longer	than	the	definition	of	the
deployment	for	the	web	component	due	to	the	fact	that	we	also	need	to	define	a

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

volume	where	the	PostgreSQL	database	can	store	the	data.	The	volume	claim
definition	is	on	lines	25	to	33.	We	want	to	create	a	volume	with	the	name	pets-
data	and	of	a	maximum	size	equal	to	100	MB.	On	lines	22	to	24,	we	use	this
volume	and	mount	it	into	the	container	at	/var/lib/postgresql/data	where
PostgreSQL	expects	it.	On	line	21,	we	also	declare	that	PostgreSQL	is	listening
at	port	5432.

As	always,	we	use	kubectl	to	deploy	the	StatefulSet:

$	kubectl	create	-f	db-stateful-set.yaml

If	we	now	list	all	resources	in	the	cluster	we	can	see	the	additional	objects
created:

The	StatefulSet	and	its	pod

We	see	that	a	StatefulSet	and	a	pod	have	been	created.	For	both,	the	current	state
corresponds	to	the	desired	state	and	thus	the	system	is	healthy.	But	that	doesn't
mean	that	the	web	component	can	access	the	database	at	this	time.	Service
discovery	would	not	work	so	far.	Remember	that	the	web	component	wants	to
access	the	db	service	under	the	name	db.

To	make	service	discovery	work	inside	the	cluster,	we	have	to	define	a
Kubernetes	Service	object	for	the	database	component	too.	Since	the	database
should	only	ever	be	accessible	from	within	the	cluster,	the	type	of	Service	object
we	need	is	ClusterIP.	Here	is	the	specification,	which	can	be	found	in
the	labs/ch13/db-service.yaml	file:

Definition	of	the	Kubernetes	Service	object	for	the	database

The	database	component	will	be	represented	by	this	Service	object	and	it	will	be
reachable	by	the	name	db,	which	is	the	name	of	the	service,	as	defined	on	line	4.
The	database	component	does	not	have	to	be	publicly	accessible,	so	we	decided
to	use	a	Service	object	of	type	ClusterIP.	The	selector	on	lines	10	to	12	defines	that
this	service	represents	a	stable	endpoint	for	all	pods	that	have	the	according
labels	defined,	that	is,	app:	pets	and	service:	db.

Let's	deploy	this	service	with	the	following	command:

$	kubectl	create	-f	db-service.yaml

And	we	should	now	be	ready	to	test	the	application.	We	can	use	the	browser	this
time	to	enjoy	the	funny	cat	images:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Testing	the	pets	application	running	in	Kubernetes
192.168.99.100	is	the	IP	address	of	my	Minikube.	Verify	your	address	using	the	command	minikube
ip.	The	port	number	30125	is	the	number	that	Kubernetes	automatically	selected	for	my	web
Service	object.	Replace	this	number	with	the	port	that	Kubernetes	assigned	to	your	service.	Get
the	number	by	using	the	command	kubectl	get	services.

Now	we	have	successfully	deployed	the	pets	application	to	Minikube,	which	is	a
single-node	Kubernetes	cluster.	We	had	to	define	four	artifacts	to	do	so,	which
are	as	follows:

A	Deployment	and	a	Service	object	for	the	web	component	
A	StatefulSet	and	a	Service	object	for	the	database	component

To	remove	the	application	from	the	cluster,	we	can	use	the	following	small
script:

kubectl	delete	svc/web

kubectl	delete	deploy/web

kubectl	delete	svc/db

kubectl	delete	statefulset/db

Streamlining	the	deployment
So	far,	we	have	created	four	artifacts	that	needed	to	be	deployed	to	the	cluster.
And	this	is	only	a	very	simple	application,	consisting	of	two	components.
Imagine	having	a	much	more	complex	application.	It	would	quickly	become	a
maintenance	nightmare.	Luckily,	we	have	several	options	as	to	how	we	can
simplify	the	deployment.	The	method	that	we	are	going	to	discuss	here	is	the
possibility	of	defining	all	the	components	that	make	up	an	application	in
Kubernetes	in	a	single	file.

Other	solutions	that	lie	outside	of	the	scope	of	this	book	would	include	the	use	of
a	package	manager,	such	as	Helm.

If	we	have	an	application	consisting	of	many	Kubernetes	objects	such	as
Deployment	and	Service	objects,	then	we	can	keep	them	all	in	one	single	file	and
separate	the	individual	object	definitions	by	three	dashes.	For	example,	if	we
wanted	to	have	the	deployment	and	the	service	definition	for	the	web	component
in	a	single	file,	this	would	look	as	follows:

apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		name:	web

spec:

		replicas:	1

		selector:

				matchLabels:

						app:	pets

						service:	web

		template:

				metadata:

						labels:

								app:	pets

								service:	web

				spec:

						containers:

						-	image:	fundamentalsofdocker/ch08-web:1.0

								name:	web

								ports:

								-	containerPort:	3000

										protocol:	TCP

apiVersion:	v1

kind:	Service

metadata:

		name:	web

spec:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

		type:	NodePort

		ports:

		-	port:	3000

				protocol:	TCP

		selector:

				app:	pets

				service:	web

We	have	collected	all	the	four	object	definitions	for	the	pets	application	in
the	labs/ch13/pets.yaml	file,	and	we	can	deploy	the	application	in	one	go:

Using	a	single	script	to	deploy	the	pets	application

Similarly,	we	have	created	a	script,	labs/ch13/remove-pets.sh,	to	remove	all	artifacts
of	the	pets	application	from	the	Kubernetes	cluster:

Removing	pets	from	the	Kubernetes	cluster

We	have	taken	our	pets	application	we	introduced	in	Chapter	8,	Docker
Compose,	and	defined	all	the	Kubernetes	objects	that	are	necessary	to	deploy
this	application	into	a	Kubernetes	cluster.	In	each	step,	we	have	made	sure	that
we	got	the	expected	result,	and	once	all	artifacts	existed	in	the	cluster,	we	have
shown	the	running	application.	

Zero	downtime	deployments
In	a	mission-critical	environment,	it	is	important	that	the	application	is	always
up	and	running.	These	days	we	cannot	afford	any	downtime	anymore.
Kubernetes	gives	us	various	means	of	achieving	this.	An	update	of	an
application	in	the	cluster	that	causes	no	downtime	is	called	a	zero	downtime
deployment.	In	this	chapter,	we	will	present	two	ways	of	achieving	this.	These
are	as	follows:

Rolling	updates
Blue-green	deployments

Let's	start	by	discussing	rolling	updates.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Rolling	updates
In	the	previous	chapter,	we	learned	that	the	Kubernetes	Deployment	object
distinguishes	itself	from	the	ReplicaSet	object	in	that	it	adds	rolling	updates	and
rollbacks	on	top	of	the	latter's	functionality.	Let's	use	our	web	component	to
demonstrate	this.	Evidently,	we	will		have	to	modify	the	manifest	or	description
of	the	deployment	for	the	web	component.

We	will	use	the	same	deployment	definition	as	in	the	previous	section,	with	one
important	difference—we	will	have	five	replicas	of	the	web	component	running.
The	following	definition	can	also	be	found	in	the	labs/ch13/web-deploy-rolling-
v1.yaml	file:

apiVersion:	extensions/v1beta1

kind:	Deployment

metadata:

		name:	web

spec:

		replicas:	5

		selector:

				matchLabels:

						app:	pets

						service:	web

		template:

				metadata:

						labels:

								app:	pets

								service:	web

				spec:

						containers:

						-	image:	fundamentalsofdocker/ch08-web:1.0

								name:	web

								ports:

								-	containerPort:	3000

										protocol:	TCP

We	can	now	create	this	deployment	as	usual	and	also,	at	the	same	time,	the
service	that	makes	our	component	accessible:

$	kubectl	create	-f	web-deploy-rolling-v1.yaml

$	kubectl	create	-f	web-service.yaml

Once	we	have	deployed	the	pods	and	the	service,	we	can	test	our	web
component	with	the	following	command:

$	PORT=$(kubectl	get	svc/web	-o	yaml	|	grep	nodePort	|	cut	-d'	'	-f5)

$	IP=$(minikube	ip)

$	curl	-4	${IP}:${PORT}/

Pets	Demo	Application

As	we	can	see,	the	application	is	up	and	running	and	returns	us	the	expected
message,	Pets	Demo	Application.

Now	our	developers	have	created	a	new	version,	2.0,	of	the	web	component.
The	code	of	the	new	version	of	the	web	component	can	be	found
in	the		labs/ch13/web		folder,	and	the	only	change	is	located	on	line	12	of	the
file	server.js:

Code	change	for	version	2.0	of	the	web	component

The	developers	have	built	the	new	image	as	follows:

$	docker	image	build	-t	fundamentalsofdocker/ch13-web:2.0	web

And,	subsequently,	they	pushed	the	image	to	Docker	Hub:

$	docker	image	push	fundamentalsofdocker/ch13-web:2.0

We	now	want	to	update	the	image	used	by	our	pods	that	are	part	of	the	web
Deployment	object.	We	can	do	this	by	using	the	set	image	command	of	kubectl:

$	kubectl	set	image	deployment/web	\

				web=fundamentalsofdocker/ch13-web:2.0

If	we	then	test	the	application	again,	we	get	the	confirmation	that	the	update	has
indeed	happened:

curl	-4	${IP}:${PORT}/

Pets	Demo	Application	v2

Now,	how	do	we	know	that	there	hasn't	been	any	downtime	during	this	update?
Did	the	update	really	happen	in	a	rolling	fashion?	What	does	rolling	update
mean	at	all?	Let's	investigate.	First,	we	can	get	a	confirmation	from	Kubernetes
that	the	deployment	has	indeed	happened	and	was	successful	by	using	the	rollout
status	command:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	kubectl	rollout	status	deploy/web

deployment	"web"	successfully	rolled	out

If	we	describe	the	deployment	web	with	kubectl	describe	deploy/web	,	we	get	the
following	list	of	events	at	the	end	of	the	output:

		List	of	events	found	in	the	output	of	the	deployment	description	of	the	web	component

The	first	event	tells	us	that	when	we	created	the	deployment,	a	ReplicaSet	web-
769b88f67	with	five	replicas	was	created.	Then	we	executed	the	update	command
and	the	second	event	in	the	list	tells	us	that	this	meant	creating	a	new	ReplicaSet
called	web-55cdf67cd	with,	initially,	one	replica	only.	Thus,	at	that	particular
moment	there	existed	six	pods	on	the	system,	the	five	initial	pods,	and	one	pod
with	the	new	version.	But	since	the	desired	state	of	the	Deployment	object	states
that	we	want	five	replicas	only,	Kubernetes	now	scales	down	the	old	ReplicaSet	to
four	instances,	which	we	see	in	the	third	event.	Then,	again,	the	new	ReplicaSet	is
scaled	up	to	two	instances	and,	subsequently,	the	old	ReplicaSet	scaled	down	to
three	instances,	and	so	on,	until	we	have	five	new	instances	and	all	the	old
instances	have	been	decommissioned.	Although,	we	cannot	see	any	precise	time
(other	than	three	minutes)	when	that	happened,	the	order	of	the	events	tells	us
that	the	whole	update	happened	in	a	rolling	fashion.

During	a	short	time	period,	some	of	the	calls	to	the	web	service	would	have	had
an	answer	from	the	old	version	of	the	component	and	some	calls	would	have
received	an	answer	from	the	new	version	of	the	component.	But	at	no	time
would	the	service	have	been	down.

We	can	also	list	the	Recordset	objects	in	the	cluster	and	will	get	the	confirmation
of	what	I	said	in	the	preceding	section:

List	all	Recordset	objects	in	the	cluster

We	see	that	the	new	recordset	has	five	instances	running	and	the	old	one	has
been	scaled	down	to	zero	instances.	The	reason	why	the	old	Recordset	object	is
still	lingering	around	is	that	Kubernetes	provides	us	with	the	possibility	of
rolling	back	the	update	and,	in	that	case,	will	reuse	the	Recordset.

To	roll	back	the	update	of	the	image	in	case	some	undetected	bug	sneaked	in	to
the	new	code,	we	can	use	the	rollout	undo	command:	

$	kubectl	rollout	undo	deploy/web

deployment	"web"

$	curl	-4	${IP}:${PORT}/

Pets	Demo	Application

I	have	also	listed	the	test	command	using	curl	in	the	preceding	snippet	to	verify
that	the	rollback	indeed	happened.	If	we	list	the	recordsets,	we	see	the	following
output:

Listing	RecordSet	objects	after	rollback

This	confirms	that	the	old	RecordSet	(web-769b88f67)	object	has	been	reused	and	the
new	one	has	been	scaled	down	to	zero	instances.

Sometimes	though	we	cannot,	or	do	not	want	to,	tolerate	the	mixed	state	of	an
old	version	coexisting	with	new	version.	We	want	an	all-or-nothing	strategy.
This	is	where	blue-green	deployments	come	into	play,	which	we	will	discuss
next.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Blue–green	deployment
If	we	want	to	do	a	blue–green	style	deployment	for	our	component	web	of	the
pets	application,	then	we	can	do	so	by	using	labels	creatively.	Let's	first	remind
ourselves	how	blue–green	deployments	work.	Here	is	a	rough	step-by-step
instruction:

1.	 Deploy	a	first	version	of	the	component	web	as	blue.	We	will	label	the	pods
with	a	label	color:	blue	to	do	so.

2.	 Deploy	the	Kubernetes	service	for	these	pods	with	the	label,	color:	blue	in
the	selector	section.

3.	 Now	we	can	deploy	version	2	of	the	web	component,	but	this	time	the	pods
have	a	label,	color:	green.

4.	 We	can	test	the	green	version	of	the	service	that	it	works	as	expected.
5.	 Now	we	flip	traffic	from	blue	to	green	by	updating	the	Kubernetes	service	for

the	web	component.	We	modify	the	selector	to	use	the	label	color:	green.

Let's	define	a	Deployment	object	for	version	1,	blue:

Specification	of	the	deployment	blue	for	the	web	component

The	preceding	definition	can	be	found	in	the	labs/ch13/web-deploy-blue.yaml	file.
Please	note	line	4	where	we	define	the	name	of	the	deployment	as	web-blue	to
distinguish	it	from	the	upcoming	deployment	web-green.	Also	note	that	we	have
added	the	label	color:	blue	on	lines	11	and	17.	Everything	else	remains	the	same
as	before.

Now	we	define	the	Service	object	for	the	web	component.	It	will	be	the	same	as	we
used	before	with	a	minor	change,	as	you	will	see	in	the	following	screenshot:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Kubernetes	service	for	the	web	component	supporting	blue–green	deployments

The	only	difference	to	the	definition	of	the	service	we	used	earlier	in	this	chapter
is	line	13,	which	adds	the	label	color:	blue	to	the	selector.	We	can	find	the
preceding	definition	in	the	labs/ch13/web-svc-blue-green.yaml	file.

We	can	then	deploy	the	blue	version	of	the	web	component	with	the	following
command:

$	kubectl	create	-f	web-deploy-blue.yaml

$	kubectl	create	-f	web-svc-blue-green.yaml

Once	the	service	is	up	and	running,	we	can	determine	its	IP	address	and	port
number	and	test	it:

$	PORT=$(kubectl	get	svc/web	-o	yaml	|	grep	nodePort	|	cut	-d'	'	-f5)

$	IP=$(minikube	ip)

$	curl	-4	${IP}:${PORT}/

Pets	Demo	Application

As	expected,	we	get	the	response	Pets	Demo	Application.

Now	we	can	deploy	the	green	version	of	the	web	component.	The	definition	of	its
Deployment	object	can	be	found	in	the	labs/ch13/web-deploy-green.yaml	file	and	looks	as
follows:

Specification	of	the	deployment	green	for	the	web	component

The	interesting	lines	are	as	follows:

Line	4:	With	the	name	web-green	to	distinguish	from	web-blue	and	allow	for
parallel	install
Lines	11	and	17:	Having	the	color	green
Line	20:	Now	using	version	2.0	of	the	image

Now	we're	ready	to	deploy	this	green	version	of	the	service,	and	it	should	run
separate	from	the	blue	service:

$	kubectl	create	-f	web-deploy-green.yaml

We	can	make	sure	that	both	deployments	coexist:

Displaying	the	list	of	Deployment	objects	running	in	the	cluster

As	expected,	we	have	both	blue	and	green	running.	We	can	verify	that	blue	is	still
the	active	service:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

$	curl	-4	${IP}:${PORT}/

Pets	Demo	Application

Now	comes	the	interesting	part.	We	can	flip	traffic	from	blue	to	green	by	editing
the	existing	service	for	the	web	component.	So,	execute	the	following	command:

$	kubectl	edit	svc/web

Change	the	value	of	the	label	color	from	blue	to	green.	Then	save	and	quit	the
editor.	The	Kubernetes	CLI	will	automatically	update	the	service.	When	we	now
query	the	web	service	again,	we	get	this:

$	curl	-4	${IP}:${PORT}/

Pets	Demo	Application	v2

This	confirms	that	the	traffic	has	indeed	switched	to	the	green	version	of	the	web
component	(note	the	v2	at	the	end	of	the	response	to	the	curl	command).

If	we	realize	that	something	went	wrong	with	our	green	deployment	and	the	new
version	has	a	defect,	we	can	easily	switch	back	to	the	blue	version	by	editing	the
service	web	again	and	replacing	the	value	of	the	label	color	from	green	back	to
blue.		This	rollback	is	instantaneous	and	should	always	work.	We	can	then
remove	the	buggy	green	deployment	and	fix	the	component.	When	we	have
corrected	the	problem,	we	can	deploy	the	green	version	once	again.

Once	the	green	version	of	the	component	is	running	as	expected	and	performing
well,	we	can	decommission	the	blue	version:

$	kubectl	delete	deploy/web-blue

When	we're	ready	to	deploy	a	new	version,	3.0,	this	one	becomes	the	blue
version.	We	update	the			labs/ch13/web-deploy-blue.yaml	file	accordingly	and	deploy
it.	Then	we	flip	the	service	web	from	green	to	blue,	and	so	on.

We	have	successfully	demonstrated,	with	our	component	web	of	the	pets
application,	how	blue–green	deployment	can	be	achieved	in	a	Kubernetes
cluster.

Kubernetes	secrets
Sometimes,	services	that	we	want	to	run	in	the	Kubernetes	cluster	have	to	use
confidential	data	such	as	passwords,	secret	API	keys	or	certificates,	to	name	just
a	few.	We	want	to	make	sure	that	this	sensitive	information	can	only	ever	be	seen
by	the	authorized	or	dedicated	service.	All	other	services	running	in	the	cluster
should	not	have	any	access	to	this	data.

For	this	reason,	Kubernetes	secrets	have	been	introduced.	A	secret	is	a	key-value
pair	where	the	key	is	the	unique	name	of	the	secret	and	the	value	is	the	actual
sensitive	data.	Secrets	are	stored	in	etcd.	Kubernetes	can	be	configured	such	that
secrets	are	encrypted	at	rest,	that	is,	in	etcd,	and	in	transit,	that	is,	when	the
secrets	are	going	over	the	wire	from	a	master	node	to	the	worker	nodes	on	which
the	pods	of	the	service	using	this	secret	are	running.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Manually	defining	secrets
We	can	create	a	secret	declaratively	the	same	way	we	created	any	other	object	in
Kubernetes.	Here	is	the	YAML	for	such	a	secret:

apiVersion:	v1

kind:	Secret

metadata:

		name:	pets-secret

type:	Opaque

data:

		username:	am9obi5kb2UK

		password:	c0VjcmV0LXBhc1N3MHJECg==

The	preceding	definition	can	be	found	in	the	labs/ch13/pets-secret.yaml	file.	Now
you	might	wonder	what	the	values	are.	Are	these	the	real	(unencrypted)	values?
No,	they	are	not.	And	they	are	also	not	really	encrypted	values	but	just	base64
encoded	values.	Thus	they	are	not	really	secure,	since		base64-encoded	values
can	be	easily	reverted	to	clear	text	values.	How	did	I	get	these	values?	That's
easy:

Creating	base64-encoded	values	for	the	secret

We	can	then	create	the	secret	and	describe	it:

Creating	and	describing	the	Kubernetes	secret

In	the	description	of	the	secret,	the	values	are	hidden	and	only	their	length	is
given.	So	maybe	the	secrets	are	safe	now?	No,	not	really.	We	can	easily	decode
this	secret	using	the	kubectl	get	command:

Kubernetes	secret	decoded

As	we	can	see	in	the	preceding	screenshot,	we	have	our	original	secret	values
back.	And	we	can	decode	them:

$	echo	"c0VjcmV0LXBhc1N3MHJECg=="	|	base64	--decode

sEcret-pasSw0rD

Thus,	the	consequences	are	that	this	method	of	creating	a	Kubernetes	is	not	to	be
used	in	any	other	environment	than	development,	where	we	deal	with	non-
sensitive	data.	In	all	other	environments,	we	need	a	better	way	to	deal	with
secrets.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	secrets	with	kubectl
A	much	safer	way	to	define	secrets	is	to	use	kubectl	.	First,	we	create	files
containing	the	base64-encoded	secret	values	similar	to	what	we	did	in	the
preceding	section,	but	this	time	we	store	the	values	in	temporary	files:

$	echo	"sue-hunter"	|	base64	>	username.txt

$	echo	"123abc456def"	|	base64	>	password.txt

Now	we	can	use	kubectl	to	create	a	secret	from	those	files	as	follows:

$	kubectl	create	secret	generic	pets-secret-prod	\

				--from-file=./username.txt	\

				--from-file=./password.txt

secret	"pets-secret-prod"	created

	The	secret	can	then	be	used	the	same	way	as	the	manually-created	secret.

Why	is	this	method	more	secure	than	the	other	one	you	might	ask?	Well,	first	of
all,	there	is	no	YAML	that	defines	a	secret	and	is	stored	in	some	source	code
version	control	system,	such	as	GitHub,	which	many	people	have	access	to	and
so	can	see	and	decode	the	secrets.	Only	the	admin	person	that	is	authorized	to
know	the	secrets	ever	sees	their	values	and	uses	them	to	directly	create	the
secrets	in	the	(production)	cluster.	The	cluster	itself	is	protected	by	role-based
access	control	so	that	no	unauthorized	people	have	access	to	it	nor	can	they
possibly	decode	the	secrets	defined	in	the	cluster.

But	now,	let's	see	how	we	can	actually	use	the	secrets	that	we	have	defined.

Using	secrets	in	a	pod
Let's	say	we	want	to	create	a	Deployment	object	where	the	web	component	uses	our
secret	called	pets-secret		that	we	introduced	in	the	preceding	section.	We	use	the
following	command	to	create	the	secret	in	the	cluster:

$	kubectl	create	-f	pets-secret.yaml

In	the		labs/ch13/web-deploy-secret.yaml	file,	we	can	find	the	definition	of	the
Deployment	object.	We	had	to	add	the	part	starting	from	line	23	to	the	original
definition	of	the	Deployment	object:

Deployment	object	for	web	component	with	a	secret

On	lines	27	through	30	we	define	a	volume	called	secrets	from	our	secret	pets-
secret.	We	then	use	this	volume	in	the	container,	as	described	on	lines	23	through

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

26.	We	mount	the	secrets	in	the	container	filesystem	at	/etc/secrets	and	we	mount
the	volume	in	read-only	mode.	Thus,	the	secret	values	will	be	available	to	the
container	as	files	in	said	folder.	The	names	of	the	files	will	correspond	to	the	key
names,	and	the	content	of	the	files	will	be	the	values	of	the	corresponding	keys.
The	values	will	be	provided	in	unencrypted	form	to	the	application	running
inside	the	container.

In	our	case,	having	the	keys'	username	and	password	in	the	secret,	we	will	find
two	files,	named	username	and	password,	in	the	/etc/secrets	folder	in	the	container
filesystem.	The	file	username	should	contain	the	value	john.doe,	and	the	file	password
the	value	sEcret-pasSw0rD.	Here	is	the	confirmation:

Confirming	that	secrets	are	available	inside	the	container

On	line	1	of	the	preceding	output,	we	exec	into	the	container	where	the	web
component	runs.	Then,	on	lines	2	to	5,	we	list	the	files	in	the	/etc/secrets	folder,
and	finally,	on	lines	6	to	8,	we	show	the	content	of	the	two	files	which,
unsurprisingly,	show	the	secret	values	in	clear	text.

Since	any	application	written	in	any	language	can	read	simple	files,	this
mechanism	of	using	secrets	is	very	backwards	compatible.	Even	an	old	Cobol
application	can	read	clear	text	files	from	the	filesystem.

Sometimes,	though,	applications	expect	secrets	to	be	available	in	environment
variables.	Let's	look	at	what	Kubernetes	offers	us	in	this	case.

Secret	values	in	environment
variables
Let's	say	our	web	component	expects	the	username	in	the	environment
variable,	PETS_USERNAME	and	the	password	in	PETS_PASSWORD,	then	we	can	modify	our
deployment	YAML	to	look	as	follows:

Deployment	mapping	secret	values	to	environment	variables

On	lines	23	through	33,	we	define	the	two	environment	variables,	PETS_USERNAME
and	PETS_PASSWORD,	and	map	the	corresponding	key-value	pair	of	the	pets-secret	to
them.

Note,	we	don't	need	a	volume	anymore	but	we	directly	map	the	individual	keys

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

of	our	pets-secret	into	corresponding	environment	variables	valid	inside	the
container.	The	following	sequence	of	commands	shows	that	the	secret	values	are
indeed	available	inside	the	container	in	the	respective	environment	variables:

Secret	values	are	mapped	to	environment	variables

In	this	section,	we	have	shown	how	to	define	secrets	in	a	Kubernetes	cluster	and
how	to	use	those	secrets	in	containers	running	as	part	of	the	pods	of	a
deployment.	We	have	shown	two	variants	on	how	secrets	can	be	mapped	inside	a
container,	the	first	one	using	files	and	the	second	approach	using	environment
variables.

Summary
In	this	chapter,	we	have	learned	how	to	deploy	an	application	into	a	Kubernetes
cluster	and	how	to	set	up	application-level	routing	for	this	application.
Furthermore,	we	have	learned	ways	to	update	application	services	running	in	a
Kubernetes	cluster	without	causing	any	downtime.	Finally,	we	have	used	secrets
to	provide	sensitive	information	to	application	services	running	in	the	cluster.

In	the	next	and	final	chapter,	we	are	going	to	learn	how	to	run	a	containerized
sample	application	in	the	cloud	using	different	offerings	provided	by	cloud
vendors,	such	as	Microsoft	Azure,	Amazon	AWS,	and	Google	Cloud.	Stay
tuned.	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Questions
To	assess	your	learning	progress,	please	answer	the	following	questions:

1.	 You	have	an	application	consisting	of	two	services,	the	first	one	being	a
web	API	and	the	second	one	a	DB,	such	as	Mongo.	You	want	to	deploy	this
application	into	a	Kubernetes	cluster.	In	a	few	short	sentences,	explain	how
you	proceed.

2.	 Describe	in	your	own	words	in	a	few	sentences	the	components	you	need	to
establish	layer	7	(or	application	level)	routing	for	your	application.	

3.	 List	the	main	steps	needed	to	implement	blue–green	deployment	for	a
simple	application	service.	Avoid	going	into	too	much	detail.

4.	 Name	three	or	four	types	of	information	that	you	would	provide	to	an
application	service	through	Kubernetes	secrets.

5.	 Name	the	sources	that	Kubernetes	accepts	when	creating	a	secret.

Further	reading
Here	are	a	few	links	that	provide	additional	information	on	the	topics	discussed
in	this	chapter:

Performing	a	rolling	update	at	https://bit.ly/2o2okEQ
Blue–green	deployment	at	https://bit.ly/2r2IxNJ	
Secrets	in	Kubernetes	at	https://bit.ly/2C6hMZF

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://bit.ly/2o2okEQ
https://bit.ly/2r2IxNJ
https://bit.ly/2C6hMZF

Running	a	Containerized	App	in	the
Cloud
In	the	previous	chapter,	we	learned	how	to	deploy	a	multi-service	application
into	a	Kubernetes	cluster.	We	configured	application-level	routing	for	this
application	and	updated	its	services	using	a	zero-downtime	strategy.	Finally,	we
provided	confidential	data	to	the	running	services	by	using	Kubernetes	secrets.

In	this	chapter,	we	will	give	an	overview	of	some	of	the	most	popular	ways	of
running	containerized	applications	in	the	cloud.	We	will	have	a	closer	look	at
what	the	most	popular	cloud	vendor,	AWS,	offers	in	this	regard.	We	will	include
self-hosting	and	hosted	solutions	and	discuss	their	pros	and	cons.	Offerings	of
other	vendors,	such	as	Microsoft	Azure	and	Google	Cloud	Engine	(GCE),	will
also	be	briefly	discussed.

Here	are	the	topics	we	will	be	discussing	in	this	chapter:

Deploying	our	application	into	AWS	ECS
Deploying	and	using	Docker	EE	on	AWS
A	short	peek	into	Azure’s	container	offerings
A	short	peek	into	Google’s	container	offerings

After	reading	this	chapter,	you	will	be	able	to:

Deploy	a	simple	application	into	AWS	ECS
Create	a	Kubernetes	cluster	in	AWS	using	Docker	Enterprise	Edition
Deploy	a	simple	application	into	a	Docker	Enterprise	Edition	cluster	in
AWS
Name	hosted	container	offerings	of	Microsoft	Azure	and	Google	Cloud
List	two	or	three	pros	and	cons	for	each	of	the	cloud-based	managed
offerings	of	Amazon,	Microsoft,	and	Google

Technical	requirements
We	are	going	to	use	Amazon	AWS,	Microsoft	Azure,	and	Google	Cloud	in	this
chapter.	Thus	it	is	necessary	to	have	an	account	on	each	platform.	If	you	do	not
have	an	existing	account,	you	can	ask	for	a	trial	account	for	all	of	those	cloud
providers.	We	also	use	the	files	in	folder	ch14	of	our	labs	repository	from	GitHub
at		https://github.com/fundamentalsofdocker/labs/tree/master/ch14.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://github.com/fundamentalsofdocker/labs/tree/master/ch14

Deploying	our	application	into	AWS
ECS
In	this	section,	we	are	going	to	learn	how	to	deploy	our	pets	application	to	AWS
Elastic	Container	Service	(ECS).	Next	to	Kubernetes	and	Docker	Swarm,	ECS
is	one	of	the	most	popular	container	platforms.

We	are	assuming	that	you	are	somewhat	familiar	with	AWS	and	its	core	concepts,	such	as
security	group	(SG),	virtual	private	cloud	(VPC),	and	elastic	compute	cloud	(EC2).

As	a	prerequisite,	we	need	an	account	on	AWS.	If	you	do	not	yet	have	such	an
account	then	please	create	a	free	trial	account	here	at	https://aws.amazon.com/free.
Log	in	to	your	account	using	the	link	at	https://console.aws.amazon.com.	Navigate	to
the	ECS	home	page	at	https://console.aws.amazon.com/ecs/home.

https://aws.amazon.com/free
https://console.aws.amazon.com
https://console.aws.amazon.com/ecs/home
https://console.aws.amazon.com

Introduction	to	ECS
AWS	ECS	has	a	somewhat	unique	way	of	defining	resources.	From	a	high-level
perspective,	the	resource	types	AWS	use	resemble	a	bit	of	a	mixture	of	Docker
Swarm	and	Kubernetes	resources.	At	the	center	to	everything	is	the	ECS	cluster.
There	are	multiple	ways	of	creating	such	a	cluster.	The	two	main	ones	are	as
follows:

Fargate:	This	is	new	and	at	the	time	of	writing	only	available	in	the	US
East	region.	Infrastructure	such	as	EC2	instances	are	automatically
provisioned	and	managed	by	ECS.
Manual:	We	provision	and	manage	our	own	infrastructure,	such	as	EC2
instances.

Once	we	have	provisioned	a	cluster,	we're	ready	to	author	task	definitions.	A
task	definition	can	be	compared	to	a	Kubernetes	pod.	It	is	an	abstraction	of	one
to	many	containers	that	are	co-located	and	run	in	the	same	network	namespace.
Thus,	if	I	have	two	containers,	web	and	db,	where	web	needs	to	access	the	container
DB	on	port	3456,	it	can	do	so	through	a	localhost,	that	is	http://127.0.0.1:3456.

A	task	is	an	instance	of	a	task	definition.	When	creating	a	task,	we're	actually
running	containers	in	the	cluster	based	on	the	settings	in	the	task	definition.	We
can	create	multiple	tasks	from	one	and	the	same	task	definition.

In	AWS	ECS,	there	is	also	the	concept	of	a	service.	A	service	is	very	similar	to	a
Docker	Swarm	service	as	it	makes	sure	that	the	life	cycle	of	a	set	of	tasks	is
orchestrated.	Crashed	tasks	are	rescheduled	and	more.

As	always	on	AWS,	we	need	to	have	an	SG	and	a	VPC	with	subnets	defined	ahead.
Unfortunately,	if	you're	not	familiar	with	how	to	do	this	then	we	have	to	refer	you	to	the	online
documentation	of	AWS	since	this	topic	lies	outside	the	scope	of	this	book.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	a	Fargate	ECS	cluster	of
AWS
Perform	the	following	steps	once	you	have	created	a	security	group	and	a	VPC
with	at	least	one	subnet:

1.	 Navigate	to	https://console.aws.amazon.com/ecs	and	click	on	Create	Cluster
button.

2.	 Choose	the	Networking	Only	(Powered	by	AWS	Fargate)	template	and	then
click	Next	Step.

3.	 Enter	the	name	of	the	cluster,	for	example,	pets-cluster,	and	leave	the	Create
VPC	checkbox	unchecked.

4.	 Click	Create.	The	cluster	will	be	created	for	you.

This	might	take	a	moment	or	so.	Once	done,	you	can	click	View	Cluster	button.

https://console.aws.amazon.com/ecs

Authoring	a	task	definition
We're	starting	with	a	simple	task	definition,	which	we	then	test	and	evolve	until
we	have	our	pets	application	up	and	running.	Proceed	with	the	following	steps:

1.	 In	the	navigation	pane,	choose	Task	Definitions.

	

2.	 Then	click	the	Create	new	Task	Definition	button.
3.	 Select	FARGATE	as	the	launch	type	compatibility	and	then	click	Next

Step.	
4.	 Name	the	task	definition	pets-task-def.
5.	 Under	the	Task	Size	section,	select	1	GB	for	task	memory	and	0.5	for	task

CPU.
6.	 Next,	click	the	Add	container	button.	In	the	dialog	box,	enter	web	as	the

name	and	nginx:alpine	as	the	image.	Under	the	Port	mappings	section,	add
port	80:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Adding	a	container	to	the	ECS	task	definition

7.	 Then	click	the	Add.	button.	Now	we're	ready	to	actually	run	a	task	from	this
task	description	in	our	pets	cluster.

Running	a	task	in	ECS
Select	the	pets-task-def	task	definition	and	under	Actions,	select	Run	Task.	In	the
window,	perform	the	following	steps:

1.	 Select	FARGATE	as	the	launch	type.
2.	 Under	the	Cluster	VPC	dropdown,	select	the	VPC	that	you	have	prepared

beforehand.
3.	 Under	the	Subnets	dropdown,	select	one	of	the	subnets	of	your	VPC.
4.	 Click	the	Edit	button	under	the	Security	groups	option	and	select	your

security	group	that	you	have	prepared.
5.	 Leave	all	the	other	fields	with	their	default	values:

Running	a	task	in	our	ECS	cluster

6.	 Once	done,	click	the	Run	Task	button.	It	may	take	a	minute	or	so	to
provision	and	run	this	task.	You	can	see	the	task	in	the	cluster	overview	on
the	Tasks	tab:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Our	first	task	is	running	in	the	pets	cluster

7.	 Click	on	the	task	(in	the	Tasks	column)	to	navigate	to	the	task	details	page.
There	you	will	find	the	public	IP	address	for	this	task.	Copy	the	IP	address
and	paste	it	into	a	new	browser	tab	and	hit	Enter.	The	welcome	page	of
Nginx	should	be	displayed	as	follows:

Testing	the	first	task	running	in	our	ECS	pets	cluster

Modifying	the	task	definition
Now	that	we	have	successfully	run	a	first	task	in	our	ECS	cluster,	it	is	time	to
modify	the	task	definition	to	use	our	images	of	the	pets	application	instead	of	the
Nginx	image.	We	will	be	using	the	image	fundamentalsofdocker/ch14-web:1.0	in	this
task	definition	,the	source	code	of	which	can	be	found	in	our	code	repository	in
folder	labs/ch14/ecs/web.

The	steps	to	change	the	task	definition	are	as	follows:

1.	 Select	the	pets-task-def	task	definition	and	then	select	revision	1.
2.	 The	Create	new	revision	button	will	be	enabled.	Click	it	and	in	the

appearing	page	scroll	down	to	the	Container	Definitions	section.	There	you
should	see	our	web	container.	Click	it	and	modify	the	image	and	instead	of
nginx:alpine	add	the	value	fundamentalsofdocker/ch14-web:1.0.

3.	 Click	Update	and	then	click	Create.	This	will	create	a	new	revision	2	of	our
task	definition	called	pets-task-def:2.

4.	 Go	back	to	the	cluster	and	stop	the	current	task.	Then	click	Run	new	Task.
5.	 In	the	dialog,	fill	in	the	same	information	that	you	did	when	running	the

first	task	but	make	sure	that	under	Task	Definition	you	select	revision	2,
namely	pets-task-def:2.

6.	 Click	Run	Task	and	wait	until	the	task	is	provisioned	and	running.	This	may
take	a	while	since	ECS	needs	to	download	the	image	from	Docker	Hub.
Once	the	task	is	ready,	navigate	to	its	details	and	locate	the	public	IP
address	assigned	to	it.

Use	the	browser	to	verify	you	can	reach	our	web	component.	If	all	went	well,	we
should	see	the	following	screenshot:

The	pets	web	component	is	running	in	our	ECS	pets	cluster

Now	our	web	component	is	running	but	we	also	need	the	database	from	which	it
retrieves	the	nice	cat	images.	So	we	need	to	create	yet	another	revision	of	the
task	definition,	which	will	include	our	db	component.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Adding	the	database	component	to
the	application
Let's	modify	the	task	definition	and	add	a	volume	and	the	database	container	that
will	use	that	container:

1.	 Select	the	pets-task-def	task	definition	again	and	then	select	revision	2.
2.	 Click	the	Create	new	revision	button.	First	we	want	to	add	a	volume

definition.	This	volume	will	be	used	by	the	db	container.
3.	 Scroll	down	to	the	Volumes	section	and	click	the	Add	volume	link.	Name

the	volume	pets-data	and	click	Add.
4.	 In	the	Container	Definitions	section,	click	the	Add	container	button.	Define

the	name	of	the	container	to	be	db	and	the	image	to
be	fundamentalsofdocker/ch08-db:1.0.

5.	 Scroll	down	to	the	STORAGE	AND	LOGGING	section	and	under	Mount
points,	select	pets-data	as	Source	volume	and	/var/lib/postgresql/data	as
Container	path:

Mounting	the	volume	pets-data	to	the	db	container

6.	 Click	Add	to	complete	this	dialog	and	then	click	Create	to	create	revision	3
of	the	task	definition.	This	revision	3	contains	the	full	definition	of	our	pets
application.	Let's	find	out	whether	it	works,	shall	we?

	

7.	 Navigate	to	the	cluster	details	and	make	sure	to	stop	the	previous	task.
8.	 Then	click	Run	Task	and	enter	the	same	values	as	before	with	the	exception

of	the	task	definition.
9.	 There,	be	sure	to	select	pets-task-def:3.

Once	the	task	is	provisioned	and	running,	we	can	locate	its	public	IP	address	and
then	in	a	browser	navigate	to	http://<IP	address>/pet,	where	<IP	address>	is	the
public	IP	of	the	task:

The	pets	application	running	in	AWS	ECS

In	conclusion,	we	have	created	a	cluster	in	AWS	and	deployed	our	pets
application	to	it	by	defining	an	ECS	task	definition	first	and	then	running	a	task
from	this	task	definition.	Since	we	are	using	the	Fargate	version	of	ECS,	we	did
not	have	to	worry	about	our	own	infrastructure,	such	as	EC2	instances.

ECS	makes	it	relatively	easy	to	deploy	and	run	a	containerized	application	in	the
cloud.	When	using	the	Fargate	template,	we	don't	even	have	to	provision	and
manage	the	infrastructure,	as	AWS	will	do	that	for	us.	Although	this	might	be

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

appealing	for	many,	it	is	also	one	of	the	biggest	drawbacks	of	this	offering.
AWS,	out	of	understandable	commercial	interest,	does	everything	to	lock	us	into
their	ecosystem.	Once	we	have	bought	into	ECS,	it	is	highly	unlikely	that	we
will	ever	be	able	to	change	the	cloud	provider	or	even	just	use	a	different
orchestration	engine,	such	as	Kubernetes.

Deploying	and	using	Docker	EE	on
AWS
In	this	section,	we're	going	to	install	Docker	Universal	Control	Plane	(UCP)
version	3.0.	UCP	is	part	of	Docker's	enterprise	offering	and	supports	the	two
orchestration	engines,	Docker	Swarm	and	Kubernetes.	UCP	can	be	installed	in
the	cloud	or	on-premise.	Even	hybrid	clouds	are	possible	with	UCP.

To	try	this,	you	need	a	valid	license	for	Docker	EE	or	you	can	claim	a	free	test
license	on	Docker	Store.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Provisioning	the	infrastructure
Create	an	auto	scaling	group	(ASG)	in	AWS	using	the	Ubuntu	16.04	server
AMI.	Configure	the	ASG	to	contain	three	instances	of	size	t2.xlarge.	Here	is	the
result	of	this:

ASG	on	AWS	ready	for	Docker	EE

Once	the	ASG	has	been	created,	and	before	we	continue,	we	need	to	open	the
SG	a	bit	(of	which	our	ASG	is	part	of)	so	that	we	can	access	it	through	SSH
from	our	laptop	and	also	so	that	the	VMs	can	communicate	with	each	other.
Navigate	to	your	SG	and	add	two	new	inbound	rules,	shown	here:

AWS	Security	Group	settings

In	the	preceding	screenshot:

The	first	rule	allows	any	traffic	from	my	personal	laptop	(with	IP	address
70.113.114.234)	to	access	any	resource	in	the	SG.
The	second	rule	allows	any	traffic	inside	the	SG	itself.	These	settings	are
not	meant	to	be	used	in	a	production-like	environment	as	they	are	way	too
permissive.	But	for	this	demo	environment,	they	work	well.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Installing	Docker
SSH	into	all	three	instances	and	install	Docker.	Using	the	downloaded	key,	SSH
into	the	first	machine:

$	ssh	-i	pets.pem	ubuntu@<IP	address>

Here	<IP	address>	is	the	public	IP	address	of	the	VM	we	want	to	SSH	into.	

Now	we	can	install	Docker.	For	a	detailed	instruction,	refer	to	https://dockr.ly/2Hi
WfBc.	We	have	a	script	in	the	labs/ch14/aws	folder	called	install-docker.sh	that	we	can
use.	First	we	need	to	clone	the	labs	GitHub	repository	to	the	VM:

$	git	clone	https://github.com/fundamentalsofdocker/labs.git

$	cd	labs/ch14/aws

Then	run	the	script	to	install	Docker:

$./install-docker.sh

Once	the	script	is	finished,	we	can	verify	that	Docker	is	indeed	installed	using
sudo	docker	version.	Repeat	the	preceding	code	for	the	two	other	VMs.

The	sudo	is	only	necessary	until	the	next	SSH	session	is	opened	to	this	VM	since	we	have	added
the	user	ubuntu	to	the	group	docker.	Thus	exist	the	current	SSH	session	and	connect	again.	This
time	sudo	should	not	be	needed	in	conjunction	with	docker.

https://dockr.ly/2HiWfBc

Installing	Docker	UCP
We	need	to	set	a	few	environment	variables,	as	follows:

$	export	UCP_IP=<IP	address>

$	export	UCP_FQDN=<FQDN>

$	export	UCP_VERSION=3.0.0-beta2

Here	<IP	address>	and	<FQDN>	are	the	public	IP	address	and	the	public	DNS	name	of
the	AWS	EC2	instance	we're	installing	in	UCP.

After	that,	we	can	use	the	following	command	to	download	all	the	images	that
UCP	needs:

$	docker	run	--rm	docker/ucp:${UCP_VERSION}	images	--list	\

				|	xargs	-L	1	docker	pull

Finally,	we	can	install	UCP:

Installing	UCP	3.0.0-beta2	on	a	VM	in	AWS

Now	we	can	open	a	browser	window	and	navigate	to	https://<IP	address>.	Log	in
with	your	username,	admin,	and	password,	adminadmin.	When	asked	for	the	license,
upload	your	license	key	or	follow	the	link	to	procure	a	trial	license.

Once	logged	in,	on	the	left-hand	side	under	the	Shared	Resources	section,	select

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Nodes	and	then	click	on	the	Add	Node	button:

Adding	a	new	node	to	UCP

In	the	subsequent	Add	Node	dialog	box,	make	sure	that	the	node	type	is	Linux
and	the	node	role,	Worker	is	selected.	Then	copy	the	docker	swarm	join	command
at	the	bottom	of	the	dialog	box.	SSH	into	the	other	two	VMs	you	created	and	run
this	command	to	have	the	respective	node	join	the	Docker	Swarm	as	a	worker
node:

Joining	a	node	as	a	worker	to	the	UCP	cluster

Back	in	the	web	UI	of	UCP,	you	should	see	that	we	now	have	three	nodes	ready,
as	shown	here:

List	of	nodes	in	the	UCP	cluster

By	default,	worker	nodes	are	configured	so	that	they	can	only	run	the	Docker
Swarm	work	load.	This	can	be	changed	in	the	node	details	though.	In	this,	three
settings	are	possible—Swarm	only,	Kubernetes	only,	or	mixed	workload.	Let's
start	with	Docker	Swarm	as	the	orchestration	engine	and	deploy	our	pets
application.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Remote	admin	the	UCP	cluster
To	be	able	to	manage	our	UCP	cluster	remotely	from	our	laptop,	we	need	to
create	and	download	a	so	called	client	bundle	from	UCP.	Proceed	with	the
following	steps:

1.	 In	the	UCP	web	UI,	on	the	left-hand	side	under	admin,	select	the	My	Profile
option

2.	 In	the	subsequent	dialog,	select	the	New	Client	Bundle	option	and	then
Generate	Client	Bundle:

Generating	and	downloading	a	UCP	client	bundle

3.	 Locate	the	downloaded	bundle	on	your	disk	and	unzip	it
4.	 In	a	new	terminal	window,	navigate	to	that	folder	and	source	the	env.sh	file:

$	source	env.sh

You	should	get	an	output	similar	to	this:

Cluster	"ucp_34.232.53.86:6443_admin"	set.

User	"ucp_34.232.53.86:6443_admin"	set.

Context	"ucp_34.232.53.86:6443_admin"	created.

Now	we	can	verify	that	we	can	indeed	remote	access	the	UCP	cluster	by,
for	example,	listing	all	the	nodes	of	the	cluster:

Listing	all	the	nodes	of	our	remote	UCP	cluster

Let's	try	to	deploy	the	pets	application	as	a	stack	using	Docker	Swarm	as	the
orchestration	engine.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Deploying	to	Docker	Swarm
In	the	Terminal,	navigate	to	the	labs/ch14/ucp	folder	and	create	the	pets	stack	using
the	file	stack.yml:

Deploying	the	pets	stack	into	the	UCP	cluster

In	the	UCP	web	UI,	we	can	verify	that	the	stack	has	been	created:

The	pets	stack	listing	in	the	UCP	web	UI

To	test	the	application,	we	can	navigate	to	Services	under	the	main
menu,	Swarm.	The	list	of	services	running	in	the	cluster	will	be	displayed	as
follows:

Details	of	the	service	web	of	the	pets	stack

In	the	preceding	screenshot,	we	see	our	two	services,	web	and	db,	of	the	pets	stack.
If	we	click	on	the	web	service,	its	details	get	displayed	on	the	right-hand	side.
There	we	find	an	entry,	Published	Endpoints.	Click	on	the	link	and	our	pets
application	should	be	displayed	in	the	browser.

When	done,	remove	the	stack	from	the	console	with:

$	docker	stack	rm	pets

Or	alternatively,	you	can	try	to	remove	that	stack	from	within	the	UCP	web	UI.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Deploying	to	Kubernetes
From	the	same	Terminal	that	you	used	to	remote	access	the	UCP	cluster	to
deploy	the	pets	application	as	a	stack	using	Docker	Swarm	as	the	orchestration
engine,	we	can	now	try	to	deploy	the	pets	application	to	the	UCP	cluster	using
Kubernetes	as	the	orchestration	engine.

Make	sure	you're	still	in	the	labs/ch14/ucp	folder.	Use	kubectl	to	deploy	the	pets
application.	First	test	that	we	can	get	all	the	nodes	of	the	cluster	with	the
Kubernetes	CLI:

Getting	all	the	nodes	of	the	UCP	cluster	using	the	Kubernetes	CLI

Apparently,	my	environment	is	configured	correctly	and	kubectl	can	indeed	list
all	the	nodes	in	the	UCP	cluster.	That	means	I	can	now	deploy	the	pets
application	using	the	definitions	in	file	pets.yaml:

Creating	the	pets	application	in	the	UCP	cluster	using	the	Kubernetes	CLI

We	can	list	the	objects	created	by	using	kubectl	get	all.	In	a	browser,	we	can	then
navigate	to	http://<IP	address>:<port>	to	access	the	pets	application,	where	<IP
address>	is	the	public	IP	address	of	one	of	the	UCP	cluster	nodes	and	<port>	is	the
port	published	by	the	Kubernetes	service	web.	

We	have	created	a	cluster	of	three	VMs	in	an	AWS	ASG	and	have	installed
Docker	and	UCP	3.0	on	them.	We	then	deployed	our	famous	pets	application
into	the	UCP	cluster,	once	using	Docker	Swarm	as	the	orchestration	engine	and
once	Kubernetes.	

Docker	UCP	is	a	platform	agnostic	container	platform	that	offers	a	secure

enterprise	grade	software	supply	chain	on	any	cloud	and	on-premise,	on	bare
metal,	or	on	virtualized	environments.	It	even	offers	the	freedom	of	choice	when
it	comes	to	orchestration	engines.	The	user	can	choose	between	Docker	Swarm
and	Kubernetes.	It	is	even	possible	to	run	applications	in	both	orchestrators	in
the	same	cluster.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

A	short	peek	into	Azure’s	container
offerings
To	play	with	Microsoft's	container-related	offerings	in	Azure,	we	need	an
account	on	Azure.	You	can	create	a	trial	account	or	use	an	existing	account.	Get
your	trial	account	here	at	https://azure.microsoft.com/en-us/free/.

Microsoft	offers	different	container-related	services	on	Azure.	Probably	the
easiest	one	to	use	is	the	Azure	Container	Instances,	which	promises	the	fastest
and	simplest	way	to	run	a	container	in	Azure,	without	having	to	provision	any
virtual	machines	and	without	having	to	adopt	a	higher-level	service.	This	service
is	only	really	useful	if	you	want	to	run	a	single	container	in	a	hosted
environment.	The	set	up	is	quite	easy.	In	the	Azure	portal	(portal.azure.com),	first
create	a	new	resource	group	and	then	create	an	Azure	container	instance.	You
only	need	to	fill	out	a	short	form	with	properties	such	as	the	name	of	the
container,	the	image	to	use,	and	the	port	to	open.	The	container	can	be	made
available	on	a	public	or	private	IP	address	and	will	be	automatically	restarted	if	it
crashes.	There	is	a	decent	management	console	available,	for	example,	to
monitor	resource	consumption	such	as	CPU	and	memory.

The	second	choice	is	Azure	Container	Service	(ACS),	which	provides	a	way	to
simplify	the	creation,	configuration,	and	management	of	a	cluster	of	virtual
machines	that	are	preconfigured	to	run	containerized	applications.	ACS	uses
Docker	images	and	provides	a	choice	between	the	three	orchestrators:
Kubernetes,	Docker	Swarm,	or	DC/OS	(powered	by	Apache	Mesos).	Microsoft
claims	that	their	service	can	be	scaled	to	tens	of	thousands	of	containers.	ACS	is
free	and	one	is	only	charged	for	the	computing	resources.

Let's	try	to	create	a	hosted	Docker	Swarm	with	one	manager	and	one	worker
node,	to	which	we	will	then	deploy	our	pets	demo	application.	First	we	need	to
install	the	Azure	CLI	2.0.	We	can	use	a	Docker	image	for	this:

$	docker	container	run	-it	microsoft/azure-cli:latest

Once	the	container	is	running,	we	need	to	log	in	to	our	account:

https://azure.microsoft.com/en-us/free/
http://portal.azure.com

bash-4.3#	az	login

You	will	be	presented	with	the	following	message:

To	sign	in,	use	a	web	browser	to	open	the	page	https://microsoft.com/devicelogin	and	

enter	the	code	<code>	to	authenticate.

Follow	the	instructions	and	log	in	through	the	browser.	Once	you	have
successfully	authenticated	to	your	Azure	account,	you	can	go	back	to	your
Terminal	and	you	should	be	logged	in.

First,	we	create	a	new	resource	group	named	pets-rg:

	Select	the	location	that	is	closest	to	you.	In	my	case,	it	is	US	East.

Creating	a	resource	group	in	Azure

Then	we	create	a	new	Azure	Container	Service,	using	Docker	Swarm	as	the
orchestration	engine.	This	may	take	a	few	minutes.	Here	is	the	result:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Creating	an	Azure	Container	Service	using	Docker	Swarm	(shortened)

Once	our	Docker	Swarm	has	been	created	in	Azure,	we	can	issue	the	following
command	to	retrieve	the	list	of	public	IPs	that	we	need	to	connect	to	the	Swarm:

The	first	entry	is	the	IP	address	of	the	Docker	agent	pool	and	the	second	one	is
from	the	Docker	Swarm	master.	With	this	information,	we	can	create	an	SSH
tunnel	into	the	master	using	its	IP	address.	We	need	to	do	that	directly	from	our
laptop	and	not	within	the	Azure	CLI	container	since	the	latter	doesn't	have	the
Docker	CLI	installed.	To	be	able	to	do	so,	we	also	need	to	copy	the	private	key
from	the	certificate	from	within	the	Azure	CLI	container	to	our	host.	Open	a	new
Terminal	window	and	list	all	the	running	containers	to	find	the	<container	ID>	of
the	Azure	CLI	container	and	then	run	the	following	command	to	copy	the	key:

$	docker	cp	<container	ID>:/root/.ssh/id_rsa	~/.ssh/fob

And	now	in	the	same	Terminal	as	the	previous	command,	create	the	tunnel	with
this	command:

$	ssh	-i	~/.ssh/fob	-p	2200	-fNL	2375:localhost:2375	\

				azureuser@<IPAddress>

Replace	<IPAddress>	with	the	IP	address	of	your	Swarm	master.

We	will	use	this	tunnel	to	manage	Docker	Swarm	on	Azure	remotely.	But	to	do
this,	we	need	to	also	define	the	DOCKER_HOST	environment	variable:

$	export	DOCKER_HOST=:2375

Yes,	this	is	not	an	error.	We	define	just	the	port	and	no	hostname	(due	to	the	SSH
tunnel).	Once	we	have	done	all	that,	we're	ready	to	remotely	manage	our	Docker
Swarm.	Let's	first	run	the	docker	info	command:	

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Docker	info	executed	remotely	on	Docker	Swarm	in	Azure	(shortened)

We	see	that	we	have	a	swarm	with	three	worker	nodes	ready	to	accept	workload.
The	output	also	tells	us	that	Azure	is	using	the	legacy	Docker	Swarm	instead	of
SwarmKit.

Let's	try	to	deploy	our	pets	application	on	this	swarm.	In	your	Terminal,	navigate
to	the	labs/ch14/azure	folder	and	deploy	the	app	as	described	in	the	file	docker-
compose.yml:

Running	the	pets	application	on	Docker	Swarm	on	Azure	(shortened)

OK,	now	let's	test	the	application.	For	that	we	need	the	public	IP	of	the	swarm
agent	pool	that	we	were	retrieving	earlier	in	this	section.	Open	your	browser	at
<IP	address>/pet	and	you	should	see	the	pets	application:

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Pets	application	running	on	Docker	Swarm	in	Azure

Once	we're	done	playing	with	Docker	Swarm	on	Azure,	we	should	delete	it	so	as
not	to	incur	any	unnecessary	cost:

$	az	group	delete	--name	pets-rg	--yes	--no-wait

We	have	shown	in	this	section	how	to	provision	Docker	Swarm	in	Azure	using
the	Azure	CLI.	We	then	have	successfully	deployed	our	pets	application	into	that
swarm.

Azure	has	a	few	compelling	offerings	regarding	the	container	workload	and	the
lock-in	is	not	that	evident	as	it	is	on	AWS	due	to	the	fact	that	Azure	does	mainly
offer	open	source	orchestration	engines,	such	as	Kubernetes,	Docker	Swarm,
DC/OS,	or	Rancher.	Technically,	we	remain	mobile	if	we	initially	run	our
containerized	applications	in	Azure	and	later	decide	to	move	to	another	cloud
provider.	The	cost	should	be	limited.

A	short	peek	into	Google’s	container
offerings
Google	is	the	inventor	of	Kubernetes	and,	to	this	date,	the	driving	force	behind
it.	One	would	thus	expect	that	Google	has	a	compelling	offering	around	hosted
Kubernetes.	Let's	have	a	peek	into	it.	To	continue,	you	need	to	either	have	an
existing	account	with	Google	Cloud	or	you	can	create	a	test	account	here	at	https
://console.cloud.google.com/freetrial.	Proceed	with	the	following	steps:

1.	 In	the	main	menu,	select	Kubernetes	Engine.	The	first	time	you	do	that,	it
will	take	a	few	moments	until	the	Kubernetes	engine	is	initialized.

2.	 Once	this	is	ready,	we	can	create	a	cluster	by	clicking	on	CREATE
CLUSTER.

3.	 Name	the	cluster	as	pets-cluster	and	leave	all	other	settings	in	the	Create	a
Kubernetes	Cluster	form	with	their	default	values	and	click	on	Create.

It	will	again	take	a	few	moments	to	provision	the	cluster	for	us.	Once	the	cluster
has	been	created,	we	can	open	the	Cloud	Shell.	This	should	look	similar	to	the
following	screenshot:

First	Kubernetes	cluster	ready	and	Cloud	Shell	open	in	GCE

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

https://console.cloud.google.com/freetrial

We	can	now	clone	our	labs	GitHub	repository	to	this	environment	with	the
following	command:

$	git	clone	https://github.com/fundamentalsofdocker/labs

$	cd	labs/ch14/gce

We	should	now	find	a	pets.yaml	file	in	the	current	folder,	which	we	can	use	to
deploy	the	pets	application	into	our	Kubernetes	cluster.	Have	a	look	at	the	file:

$	less	pets.yaml

It	has	pretty	much	the	same	content	as	the	same	file	we	used	in	the	previous
chapter.	The	two	differences	are:

We	use	a	service	of	type	LoadBalancer	(instead	of	NodePort)	to	publicly	expose
the	component	web.	
We	do	not	use	volumes	for	the	PostgreSQL	database	since	configuring
StatefulSet	correctly	on	GCE	is	a	bit	more	involved	than	in	Minikube.	The
consequence	of	this	is	that	our	pets	application	will	not	persist	the	state	if
the	db	pod	crashes.	How	to	use	persistent	volumes	on	GCE	lies	outside	the
scope	of	this	book.

Before	we	can	continue,	we	need	to	first	set	up	gcloud	and	kubectl	credentials:

$	gcloud	container	clusters	get-credentials	pets-cluster	\

				--zone	us-central1-a

Having	done	that,	it's	time	to	deploy	the	application:

$	kubectl	create	-f	pets.yaml

Once	the	objects	have	been	created,	we	can	observe	the	LoadBalancer	service	web
until	it	is	assigned	a	public	IP	address:

$	kubectl	get	svc/web	--watch

This	should	look	similar	to	the	following	screenshot:

Retrieving	the	public	IP	address	of	the	service	web

We	can	then	use	this	IP	address	and	navigate	to	http://<IP	address>:3000/pet	and	we

should	be	greeted	by	the	familiar	cat	image.

To	clean	up	and	delete	all	resources,	run	this	script:

kubectl	delete	deploy/web

kubectl	delete	deploy/db

kubectl	delete	svc/web

kubectl	delete	svc/db

We	have	created	a	hosted	Kubernetes	cluster	in	GCE.	We	have	then	used	the
Cloud	Shell	provided	through	the	GCE	portal	to	first	clone	our	labs	GitHub
repository	and	then	the	kubectl	tool	to	deploy	the	pets	application	into	the
Kubernetes	cluster.	

When	looking	into	a	hosted	Kubernetes	solution,	GCE	is	a	compelling	solution.
It	makes	it	very	easy	to	start	and	since	Google	is	the	main	driving	force	behind
Kubernetes,	we	can	rest	assured	that	we	will	always	be	able	to	leverage	the	full
uncrippled	functionality	of	Kubernetes.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Summary
In	this	final	chapter	of	the	book,	you	learned	how	to	deploy	a	containerized
application	into	AWS	ECS	and	got	a	quick	introduction	on	how	to	install	and	use
Docker's	UCP,	which	is	part	of	the	enterprise	offering	on	AWS.	Then	you	were
given	a	glimpse	of	what	the	current	container-related	cloud	offerings	of
Microsoft	Azure	and	Google	Cloud	Engine	are.	On	each	one,	we	successfully
installed	our	pets	application.

Questions
To	assess	your	knowledge,	please	answer	the	following	questions:

1.	 Give	a	high-level	description	of	the	tasks	needed	to	provision	and	run
Docker	UPC	on	AWS.

2.	 Name	a	handful	of	reasons	when	to	use	a	hosted	solution	such	as	Azure
ACS	or	AWS	ECS	and	when	to	use	a	(hosted)	Docker	Swarm	or
Kubernetes-based	offering.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Further	reading
The	following	articles	give	you	some	more	information	related	to	the	topics	we
discussed	in	this	chapter:

Deploy	Docker	Enterprise	Edition	on	Linux	servers	at	https://dockr.ly/2vH5dp
N

Getting	Started	with	Amazon	ECS	using	Fargate	at	https://amzn.to/2Hh7pcM
Azure	Container	Service	(AKS)	at	https://bit.ly/2JglX9d
Google	Kubernetes	Engine	at	https://bit.ly/2I8MjJx

https://dockr.ly/2vH5dpN
https://amzn.to/2Hh7pcM
https://bit.ly/2JglX9d
https://bit.ly/2I8MjJx

Assessment

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	1
1.	 Correct	answers	are:	4,	5.
2.	 A	Docker	container	is,	to	IT,	what	a	shipping	container	is	to	the

transportation	industry.	It	defines	a	standard	on	how	to	package	goods.	In
this	case,	goods	are	the	application(s)	developers	write.	The	suppliers	(in
this	case,	the	developers)	are	responsible	for	packaging	the	goods	into	the
container	and	making	sure	everything	fits	as	expected.	Once	the	goods	are
packaged	into	a	container,	it	can	be	shipped.	Since	it	is	a	standard	container,
the	shippers	can	standardize	their	means	of	transportation	such	as	lorries,
trains,	or	ships.	The	shipper	doesn't	really	care	what's	in	a	container.	Also,
the	loading	and	unloading	process	from	one	transportation	means	to	another
(for	example,	train	to	ship)	can	be	highly	standardized.	This	massively
increases	the	efficiency	of	transportation.	Analogous	to	this	is	an	operations
engineer	in	IT	who	can	take	a	software	container	built	by	a	developer	and
ship	it	to	a	production	system	and	run	it	there	in	a	highly	standardized	way,
without	worrying	about	what's	in	the	container.	It	will	just	work.

3.	 Some	of	the	reasons	why	containers	are	game	changers	are:
Containers	are	self-contained	and	thus	if	they	run	on	one	system,	they
run	anywhere	where	a	container	can	run.
Containers	run	on-premise	and	in	the	cloud,	as	well	as	in	hybrid
environments.	This	is	important	for	today's	typical	enterprises	since	it
allows	a	mostly	smooth	transition	from	on-premise	to	cloud.
Container	images	are	built	or	packaged	by	the	people	who	know	best	–
the	developers.
Container	images	are	immutable	which	is	important	for	a	good	release
management.
Containers	are	enablers	of	a	secure	software	supply	chain-based	on
encapsulation	(using	Linux	namespaces	and	cgroups),	secrets,	content
trust,	and	image	vulnerability	scanning.

4.	 A	container	runs	anywhere	where	a	container	can	run	because:
Containers	are	self-contained	black	boxes.	They	encapsulate	not	only
an	application	but	all	its	dependencies,	such	as	libraries	and
frameworks,	configuration	data,	certificates,	and	so	on.
Containers	are	based	on	widely	accepted	standards	such	as	OCI.

TODO:	add	more	reasons.
5.	 False!	Containers	are	useful	for	modern	applications	as	well	as	to

containerize	traditional	applications.	The	benefit	for	an	enterprise	when
doing	the	latter	is	huge.	Cost	savings	in	the	maintenance	of	legacy	apps	of
50%	or	more	have	been	reported.	The	time	between	new	releases	of	such
legacy	applications	could	be	reduced	by	up	to	90%.	These	numbers	have
been	publicly	reported	by	real	enterprise	customers.

6.	 50%	or	more.
7.	 Containers	are	based	on	Linux	namespaces	(network,	process,	user,	and	so

on)	and	cgroups	(control	groups).

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	2
1.	 docker-machine	can	be	used	to	do	the	following:

Create	a	VM	configured	as	Docker	host	in	different	environments,
such	as	VirtualBox
SSH	into	a	Docker	host
Configure	the	local	Docker	CLI	for	access	of	a	remote	Docker	host
List	all	hosts	in	a	given	environment
Remove	or	destroy	existing	hosts

2.	 True.	Docker	for	Windows	creates	a	Linux	VM	in	Hyper-V,	on	which	it
then	runs	Linux	containers.

3.	 Container	are	optimally	used	in	CI/CD,	which	is	all	about	automation.	Each
step,	from	building	a	container	image,	shipping	the	image,	and	finally
running	containers	from	this	image,	is	ideally	scripted	for	maximum
productivity.	With	it,	one	achieves	a	repeatable	and	auditable	process.	

4.	 Ubuntu	17.4	or	later,	CentOS	7.x,	Alpine	3.x,	Debian,	Suse	Linux,	RedHat
Linux,	and	so	on.

5.	 Windows	10	Professional	or	Enterprise	Edition,	Windows	Server	2016.

Chapter	3
1.	 The	states	of	a	container	are	as	follows

Created
Running
Exited

2.	 The	following	command	helps	us	to	find	out	what	is	currently	running	on
our	host:

$	docker	container	ls

3.	 The	following	command	is	used	to	list	down	the	IDs	of	all	containers:

$	docker	container	ls	-q

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	4
Here	are	possible	answers	to	the	questions:

1.	 Dockerfile:

FROM	ubuntu:17.04

RUN	apt-get	update

RUN	apt-get	install	-y	ping

ENTRYPOINT	ping

CMD	127.0.0.1

2.	 To	achieve	the	result	you	can	execute	the	following	steps:

$	docker	container	run	-it	--name	sample	\

				alpine:latest	/bin/sh

/	#	apk	update	&&	\

				apk	add	-y	curl	&&	\

				rm	-rf	/var/cache/apk/*

/	#	exit

$	docker	container	commit	sample	my-alpine:1.0

$	docker	container	rm	sample

3.	 As	a	sample	here	is	the	Hello	World	in	C:
1.	 Create	a	file	hello.c	with	this	content:

#include	<stdio.h>

int	main()

{

			printf("Hello,	World!");

			return	0;

}

2.	 Create	a	Dockerfile	with	this	content:

FROM	alpine:3.5	AS	build

RUN	apk	update	&&	\

				apk	add	--update	alpine-sdk

RUN	mkdir	/app

WORKDIR	/app

COPY	hello.c	/app

RUN	mkdir	bin

RUN	gcc	-Wall	hello.c	-o	bin/hello	

FROM	alpine:3.5

COPY	--from=build	/app/bin/hello	/app/hello

CMD	/app/hello

4.	 Some	characteristics	of	a	Docker	image	are:

It	is	immutable
It	is	composed	of	immutable	layers
Each	layer	contains	only	what	has	changed	(the	delta)	in	regard	to	the
lower	lying	layers
An	image	is	a	(big)	tarball	of	files	and	folders
an	image	is	a	template	for	containers

5.	 Option	3	is	correct.	First	we	need	to	make	sure	we're	logged	in	and	then	we
tag	the	image	and	finally	push	it.	Since	it	is	an	image	we're	using	docker
image	...	and	not	docker	container	...	(as	in	number	4).

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	5
The	easiest	way	to	play	with	volumes	is	to	use	the	Docker	Toolbox	as	when
directly	using	Docker	for	Mac	or	Docker	for	Windows,	then	the	volumes	are
stored	inside	a	(somewhat	hidden)	Linux	VM	that	Docker	for	Mac/Win	uses
transparently.

Thus,	we	suggest	the	following:

$	docker-machine	create	--driver	virtualbox	volume-test

$	docker-machine	ssh	volume-test

And	now	that	you're	inside	a	Linux	VM	called	volume-test,	you	can	execute	the
following	exercises:

1.	 To	create	a	named	volume	run	the	following	command:

	$	docker	volume	create	my-products

2.	 Execute	the	following	command:

$	docker	container	run	-it	--rm	\

				-v	my-products:/data:ro	\

				alpine	/bin/sh

3.	 To	get	the	path	on	the	host	for	the	volume	use,	for	example,	this	command:

$	docker	volume	inspect	my-products	|	grep	Mountpoint

Which	(if	using	docker-machine	and	VirtualBox)	should	result	in:

"Mountpoint":	"/mnt/sda1/var/lib/docker/volumes/my-products/_data"

Now	execute	the	following	command:

$	sudo	su

$	cd	/mnt/sda1/var/lib/docker/volumes/my-products/_data

$	echo	"Hello	world"	>	sample.txt

$	exit

4.	 Execute	the	following	command:

$	docker	run	-it	--rm	-v	my-products:/data:ro	alpine	/bin/sh

#	/	cd	/data

#	/	cat	sample.txt

In	another	terminal	execute:

	$	docker	run	-it	--rm	-v	my-products:/app-data	alpine	/bin/sh

	#	/	cd	/app-data

	#	/	echo	"Hello	other	container"	>	hello.txt

	#	/	exit

5.	 Execute	a	command	such	as	this:

$	docker	container	run	-it	--rm	\

				-v	$HOME/my-project:/app/data	\

				alpine	/bin/sh

6.	 Exit	both	containers	and	then	back	on	the	host,	execute	this	command:

$	docker	volume	prune

7.	 Run	the	following	command:

$	docker	system	info	|	grep	Version

Which	should	output	something	similar	to	this:

Server	Version:	17.09.1-ce

Kernel	Version:	4.4.104-boot2docker

If	you	have	been	using	docker-machine	to	create	and	use	a	Linux	VM	in
VirtualBox,	don't	forget	to	clean	up	after	you're	done:

$	docker-machine	rm	volume-test

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	6
1.	 In	a	system	consisting	of	many	parts,	failure	of	at	least	one	part	is	only	a

matter	of	time.	To	avoid	any	downtime	if	such	a	situation	occurs,	one	runs
multiple	instances	of	each	component.	If	one	of	the	instances	fails,	there	are
still	others	to	serve	the	requests.

2.	 In	a	distributed	application	architecture,	we	have	many	moving	parts.	If
Service	A	needs	access	to	an	instance	of	Service	B,	then	it	cannot	know
where	to	find	such	an	instance.	Instances	can	be	on	any	random	node	of	the
cluster	and	they	can	even	come	and	go	as	the	orchestration	engine	sees	fit,
so	we	do	not	identify	the	target	instance	by,	say,	its	IP	address	and	port,	but
rather	by	its	name	and	port.	A	DNS	service	knows	how	to	resolve	a	service
name	into	an	IP	address	since	it	has	all	the	information	about	all	service
instances	running	in	the	cluster.

3.	 A	circuit	breaker	is	a	mechanism	that	helps	to	avoid	cascading	failures	in	a
distributed	application	triggered	by	a	single	failing	service.	The	circuit
breaker	observes	a	request	from	one	service	to	another	and	measures	the
latency	over	time	and	the	number	of	request	failures	or	timeouts.	If	a	certain
target	instance	causes	too	many	failures,	the	calls	to	it	are	intercepted	and
an	error	code	is	returned	to	the	caller,	instantly	giving	the	target	time	to
recover	if	possible,	and	the	caller,	in	turn,	knows	instantly	that	it	either
should	degrade	its	own	service	or	try	with	another	instance	of	the	target
service.

4.	 A	monolith	is	an	application	that	consists	of	one	single	code	base	that	is
highly	coupled.	If	changes	to	the	code	are	made,	no	matter	how	minimal,
the	whole	application	has	to	be	compiled,	packaged,	and	redeployed.	A
monolith	is	simple	to	deploy	and	monitor	in	production	due	to	the	fact	that
it	has	very	few	moving	parts.	Monoliths	are	difficult	to	maintain	and
extend.	A	distributed	application	consists	of	many	loosely	coupled	services.
Each	service	originates	from	its	own	independent	source	code	base.
Individual	services	can	and	often	have	independent	life	cycles.	They	can	be
developed	and	revised	independently.	Distributed	applications	are	more
difficult	to	manage	and	monitor.

5.	 One	talks	about	a	blue-green	deployment	when	a	currently	running	version
of	a	service,	called	blue,	is	replaced	by	a	new	release	of	the	same	service,

called	green.	The	replacement	happens	without	any	downtime	since	while
the	blue	version	is	still	running,	the	green	version	of	the	service	is	installed
on	the	system	and,	once	ready,	a	simple	change	in	the	configuration	of	the
router	that	funnels	traffic	to	the	service	is	needed	so	that	the	traffic	is	now
all	directed	to	green	instead	of	blue.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	7
1.	 The	three	core	elements	are	sandbox,	endpoint,	and	network
2.	 Execute	this	command:

$	docker	network	create	--driver	bridge	frontend

3.	 Run	this	command:

$	docker	container	run	-d	--name	n1	\

				--network	frontend	-p	8080:80	nginx:alpine

$	docker	container	run	-d	--name	n2	\

				--network	frontend	-p	8081:80	nginx:alpine

Test	that	both	Nginx	instances	are	up	and	running:

$	curl	-4	localhost:8080

$	curl	-4	localhost:8081

You	should	be	seeing	the	welcome	page	of	Nginx	in	both	cases.

4.	 To	get	the	IPs	of	all	attached	containers,	run:

$	docker	network	inspect	frontend	|	grep	IPv4Address

You	should	see	something	similar	to	the	following:

"IPv4Address":	"172.18.0.2/16",

"IPv4Address":	"172.18.0.3/16",

To	get	the	subnet	used	by	the	network,	use	the	following	(for	example):

$	docker	network	inspect	frontend	|	grep	subnet

You	should	receive	something	along	the	lines	of	the	following	(obtained
from	the	previous	example):

"Subnet":	"172.18.0.0/16",

5.	 The	host	network	allows	us	to	run	a	container	in	the	networking	namespace
of	the	host.

6.	 Only	use	this	network	for	debugging	purposes	or	when	building	a	system-
level	tool.	Never	use	the	host	network	for	an	application	container	running

production!
7.	 The	none	network	is	basically	saying	that	the	container	is	not	attached	to	any

network.	It	should	be	used	for	containers	that	do	not	need	to	communicate
with	other	containers	and	do	not	need	to	be	accessed	from	outside.

8.	 The	none	network	could	e.g.	be	used	for	a	batch	process	running	in	a
container	that	only	needs	access	to	local	resources	such	as	files	which	could
be	accessed	via	a	host	mounted	volume.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	8
1.	 The	following	code	can	be	used	to	run	the	application	in	daemon	mode.

$	docker-compose	up	-d

2.	 Execute	the	following	command	to	display	the	details	of	the	running
service.

$	docker-compose	ps

This	should	result	in	the	following	output:

Name													Command														State		Ports

mycontent_nginx_1	nginx	-g	daemon	off;	Up					0.0.0.0:3000->80/tcp

3.	 The	following	command	can	be	used	to	scale	up	the	web	service:

$	docker-compose	up	--scale	web=3

Chapter	9
Here	are	the	sample	answers	to	the	questions	of	this	chapter:

1.	 Here	are	some	reasons	why	we	need	an	orchestration	engine:
Containers	are	ephemeral	and	only	an	automated	system	(the
orchestrator)	can	handle	this	efficiently.
For	high	availability	reasons,	we	want	to	run	multiple	instances	of
each	container.	The	number	of	containers	to	manage	quickly	becomes
huge.
To	meet	the	demand	of	today’s	internet,	we	need	to	quickly	scale	up
and	down.
Containers,	contrary	to	VMs,	are	not	treated	as	pets	and	fixed	or
healed	when	they	misbehave,	but	are	treated	as	cattle.	If	one
misbehaves,	we	kill	it	and	replace	it	with	a	new	instance.	The
orchestrator	quickly	terminates	an	unhealthy	container	and	schedules	a
new	instance.

2.	 Here	are	some	responsibilities	of	a	container	orchestration	engine:
Manages	a	set	of	nodes	in	a	cluster
Schedules	workload	to	the	nodes	with	sufficient	free	resources
Monitors	the	health	of	nodes	and	workload
Reconciles	current	state	with	desired	state	of	applications	and
components
Provides	service	discovery	and	routing
Load	balances	requests
Secures	confident	data	by	providing	support	for	secrets

3.	 Here	is	an	(incomplete)	list	of	orchestrators,	sorted	by	their	popularity:
Kubernetes	by	Google,	donated	to	the	CNCF
SwarmKit	by	Docker—that	is,	Operations	Support	System	(OSS)
AWS	ECS	by	Amazon
Azure	AKS	by	Microsoft
Mesos	by	Apache—that	is,	OSS
Cattle	by	Rancher
Nomad	by	HashiCorp

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Chapter	10
1.	 The	correct	answer	is:

$	docker	swarm	init	[--advertise-addr	<IP	address>]

The	--advertise-addr	is	optional	and	only	needed	if	you	the	host	have	more
than	one	IP	address.

2.	 On	the	worker	node	that	you	want	to	remove	execute:	$	docker	swarm	leave
On	one	of	the	master	nodes	execute	the	command	$	docker	node	rm	-f	<node
ID>

where	<node	ID>	is	the	ID	of	the	worker	node	to	remove.
3.	 The	correct	answer	is:

$	docker	network	create	\

				--driver	overlay	\

				--attachable	\

				front-tier

4.	 The	correct	answer	is:

$	docker	service	create	--name	web	\

			--network	front-tier	\

			--replicas	5	\

			-p	3000:80	\

			nginx:alpine

5.	 The	correct	answer	is:

$	docker	service	update	--replicas	3	web

Chapter	11
1.	 Zero	downtime	means	that	when	updating	a	service,	say	from	version	1	to

version	2,	the	application	to	which	this	service	belongs	remains	up	and
running	all	the	time.	At	no	time	is	the	application	interrupted	or	not
functional.

2.	 Docker	SwarmKit	uses	rolling	updates	to	achieve	zero	downtime.	Every
service	runs	in	multiple	instances	for	high	availability.	When	a	rolling
update	is	happening,	small	batches	of	the	overall	set	of	service	instances	are
replaced	by	new	versions.	This	happens	while	the	majority	of	the	service
instances	are	up	and	running	to	serve	incoming	requests.

3.	 Container	images	are	immutable.	That	is,	once	created,	they	can	never	be
changed.	When	a	containerized	application	or	service	needs	to	be	updated,
a	new	container	image	is	created.	During	a	rolling	update,	the	old	container
image	is	replaced	with	the	new	container	image.	If	a	rollback	is	necessary,
then	the	new	image	is	replaced	with	the	old	image.	This	can	be	looked	at	as
a	reverse	update.	As	long	as	we	do	not	delete	the	old	container	image,	we
can	always	return	to	this	previous	version	by	reusing	it.	Since,	as	we	said
earlier,	images	are	immutable,	we	are	indeed	returning	to	the	previous	state.

4.	 Docker	secrets	are	encrypted	at	rest;	they	are	stored	encrypted	in	the	raft
database.	Secrets	are	also	encrypted	in	transit	since	the	node-to-node
communication	is	using	mutual	TLS.

5.	 The	command	would	have	to	look	like	this:

$	docker	service	update	--image	acme/inventory:2.1	\

				--update-parallelism	2	\

				--update-delay	60s	\

				inventory

6.	 First,	we	need	to	remove	the	old	secret:

$	docker	service	update	--secret-rm	MYSQL_PASSWORD	inventory

Then	we	add	the	new	secret	and	make	sure	we	use	the	extended	format
where	we	can	remap	the	name	of	the	secret,	that	is,	the	external	and
internal	name	of	the	secret	do	not	have	to	match.	The	latter	command
could	look	like	this:

$	docker	service	update	\

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

				--secret-add	source=MYSQL_PASSWORD_V2,target=MYSQL_PASSWORD	\

				inventory

Chapter	12
1.	 The	Kubernetes	master	is	responsible	for	managing	the	cluster.	All	requests

to	create	objects,	the	scheduling	of	pods,	the	managing	of	ReplicaSets,	and
more	is	happening	on	the	master.	The	master	does	not	run	application
workload	in	a	production	or	production-like	cluster.

2.	 On	each	worker	node,	we	have	the	kubelet,	the	proxy,	and	a	container
runtime.

3.	 The	answer	is	Yes.	You	cannot	run	standalone	containers	on	a	Kubernetes
cluster.	Pods	are	the	atomic	unit	of	deployment	in	such	a	cluster.

4.	 All	containers	running	inside	a	pod	share	the	same	Linux	kernel	network
namespace.	Thus,	all	processes	running	inside	those	containers	can
communicate	with	each	other	through	localhost	in	a	similar	way	that
processes	or	applications	directly	running	on	the	host	can	communicate
with	each	other	through	localhost.

5.	 The	pause	container's	sole	role	is	to	reserve	the	namespaces	of	the	pod	for
the	containers	that	run	in	the	pod.

6.	 This	is	a	bad	idea	since	all	containers	of	a	pod	are	co-located,	which	means
they	run	on	the	same	cluster	node.	But	the	different	component	of	the
application	(that	is,	web,	inventory,	and	db)	usually	have	very	different
requirements	in	regards	to	scalability	or	resource	consumption.
The	web	component	might	need	to	be	scaled	up	and	down	depending	on	the
traffic	and	the	db	component	in	turn	has	special	requirements	on	storage	that
the	others	don't	have.	If	we	do	run	every	component	in	its	own	pod,	we	are
much	more	flexible	in	this	regard.	

7.	 We	need	a	mechanism	to	run	multiple	instances	of	a	pod	in	a	cluster	and
make	sure	that	the	actual	number	of	pods	running	always	corresponds	to	the
desired	number,	even	when	individual	pods	crash	or	disappear	due	to
network	partition	or	cluster	node	failures.	The	ReplicaSet	is	this	mechanism
that	provides	scalability	and	self-healing	to	any	application	service.	

8.	 We	need	deployment	objects	whenever	we	want	to	update	an	application
service	in	a	Kubernetes	cluster	without	causing	downtime	to	the	service.
Deployment	objects	add	rolling	update	and	rollback	capabilities	to
ReplicaSets.

9.	 Kubernetes	service	objects	are	used	to	make	application	services	participate

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

in	service	discovery.	They	provide	a	stable	endpoint	to	a	set	of	pods
(normally	governed	by	a	ReplicaSet	or	a	deployment).	Kube	services	are
abstractions	which	define	a	logical	set	of	pods	and	a	policy	on	how	to
access	them.	There	are	four	types	of	Kube	services:

ClusterIP:	Exposes	the	service	on	an	IP	address	only	accessible	from
inside	the	cluster;	this	is	a	virtual	IP	(VIP)
NodePort:	Publishes	a	port	in	the	range	30,000–32767	on	every
cluster	node
LoadBalancer:	This	type	exposes	the	application	service	externally
using	a	cloud	provider’s	load	balancer	such	as	ELB	on	AWS
ExternalName:	Used	when	you	need	to	define	a	proxy	for	a	cluster
external	service	such	as	a	database

Chapter	13
1.	 Assuming	we	have	a	Docker	image	in	a	registry	for	the	two	application

services,	the	web	API	and	Mongo	DB,	we	then	need	to	do	the	following:
Define	a	deployment	for	Mongo	DB	using	a		StatefulSet;	let's	call	this
deployment	db-deployment.	The	StatefulSet	should	have	one	replica
(replicating	Mongo	DB	is	a	bit	more	involved	and	is	outside	of	the
scope	of	this	book).
Define	a	Kubernetes	service	called	db	of	type	ClusterIP	for	the	db-
deployment.

Define	a	deployment	for	the	web	API;	let's	call	it	web-deployment.	Let's
scale	this	service	to	three	instances.
Define	a	Kubernetes	service	called	api	of	type	NodePort	for	web-deployment.
If	we	use	secrets,	then	define	those	secrets	directly	in	the	cluster
using	kubectl.
Deploy	the	application	using	kubectl.

2.	 To	implement	layer	7	routing	for	an	application,	we	ideally	use
an	IngressController.	The	IngressController	is	a	reverse	proxy	such	as	Nginx
that	has	a	sidecar	listening	on	the	Kubernetes	Server	API	for	relevant
changes	and	updating	the	reverse	proxy's	configuration	and	restarting	it,	if
such	a	change	has	been	detected.	We	then	need	to	define	Ingress	resources
in	the	cluster	which	define	the	routing,	for	example	from	a	context-based
route	such	as		https://example.com/pets		to	<a	service	name>/<port>	pair	such
as		api/32001.	The	moment	Kubernetes	creates	or	changes	this	Ingress	object,
the	IngressController's	sidecar	picks	it	up	and	updates	the	proxy's	routing
configuration.

3.	 Assuming	this	is	a	cluster	internal	inventory	service:
When	deploying	version	1.0	we	define	a	deployment	called	inventory-
deployment-blue	and	label	the	pods	with	a	label	color:	blue.
We	deploy	the	Kubernetes	service	of	type	ClusterIP	called	inventory	for
the	preceding	deployment	with	the	selector	containing	color:	blue.
When	ready	to	deploy	the	new	version	of	the	payments	service,	we
first	define	a	deployment	for	version	2.0	of	the	service	and	call
it	inventory-deployment-green.	We	add	a	label	color:	green	to	the	pods.	
We	can	now	smoke	test	the	"green"	service	and	when	everything	is

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

OK,	we	can	update	the	inventory	service	such	as	the	selector
contains	color:	green.

4.	 Some	type	of	information	that	is	confidential	and	thus	should	be	provided
to	services	through	Kubernetes	secrets	include:	passwords,	certificates,	API
key	IDs,	API	key	secrets	or	tokens.

5.	 Sources	for	secret	values	can	be	files	or	base64	encoded	values.

Chapter	14
1.	 To	install	UCP	in	AWS:

1.	 Create	a	VPC	with	subnets	and	a	security	group.
2.	 Then	provision	a	cluster	of	Linux	VMs,	possibly	as	part	of	an	auto

scaling	group.	Many	Linux	distros	are	supported,	such	as	CentOS,
RHEL,	Ubuntu,	and	so	on.

3.	 Next,	install	Docker	on	each	VM.
4.	 Finally,	select	one	VM	on	which	to	install	UCP	using

the	docker/ucp	image.
5.	 Once	UCP	is	installed,	join	the	other	VMs	to	the	cluster	either	as

worker	nodes	or	manager	nodes.
2.	 Cloud	vendor-specific	and	proprietary	solutions,	such	as	ECS,	have	the

advantages	of	being	tightly	and	seamlessly	integrated	with	the	other
services,	such	as	logging,	monitoring,	or	storage,	provided	by	the	cloud
vendor.	Also,	often	one	does	not	have	to	provision	and	manage	the
infrastructure	but	this	will	be	automatically	done	by	the	provider.	On	the
positive	side,	it	is	also	noteworthy	that	to	deploy	a	first	containerized
application	usually	happens	pretty	quickly,	meaning	that	the	startup	hurdles
are	pretty	low.
On	the	other	hand,	choosing	a	proprietary	service	such	as	ECS	locks	us	into
the	ecosystem	of	the	respective	cloud	provider.	Also,	we	have	to	live	with
what	they	give	us.	In	the	case	of	Azure	ACS,	this	meant	that	when	choosing
Docker	Swarm	as	the	orchestration	engine,	we	were	given	classic	Docker
Swarm	which	is	legacy	and	has	long	been	replaced	with	SwarmKit	by
Docker.	
If	we	chose	a	hosted	or	self-managed	solution	based	on	the	latest	versions
of	Docker	Swarm	or	Kubernetes,		we	enjoy	the	latest	and	greatest	features
of	the	respective	orchestration	engine.

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Docker	on	Windows
Elton	Stoneman

ISBN:	978-1-78528-165-5

Comprehend	key	Docker	concepts:	images,	containers,	registries,	and
swarms
Run	Docker	on	Windows	10,	Windows	Server	2016,	and	in	the	cloud
Deploy	and	monitor	distributed	solutions	across	multiple	Docker	containers
Run	containers	with	high	availability	and	fail-over	with	Docker	Swarm
Master	security	in-depth	with	the	Docker	platform,	making	your	apps	more
secure
Build	a	Continuous	Deployment	pipeline	by	running	Jenkins	in	Docker
Debug	applications	running	in	Docker	containers	using	Visual	Studio
Plan	the	adoption	of	Docker	in	your	own	organization

Docker	for	Serverless	Applications

https://www.packtpub.com/virtualization-and-cloud/docker-windows
https://www.packtpub.com/virtualization-and-cloud/docker-serverless-applications

Chanwit	Kaewkasi

ISBN:	978-1-78883-526-8

Learn	what	Serverless	and	FaaS	applications	are
Get	acquainted	with	the	architectures	of	three	major	serverless	systems
Explore	how	Docker	technologies	can	help	develop	Serverless	applications
Create	and	maintain	FaaS	infrastructures
Set	up	Docker	infrastructures	to	serve	as	on-premises	FaaS	infrastructures
Define	functions	for	Serverless	applications	with	Docker	containers

书籍下载qq群6089740 钉钉群21734177 IT书籍 http://t.cn/RDIAj5D

电子书寻找看手相 钉钉或微信pythontesting

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Learn Docker – Fundamentals of Docker 18.x

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	What Are Containers and Why Should I Use Them?
	Technical requirements
	What are containers?
	Why are containers important?
	What's the benefit for me or for my company?
	The Moby project
	Docker products
	Docker CE
	Docker EE

	The container ecosystem
	Container architecture
	Summary
	Questions
	Further reading

	Setting up a Working Environment
	Technical requirements
	The Linux command shell
	PowerShell for Windows
	Using a package manager
	Installing Homebrew on a Mac
	Installing Chocolatey on Windows

	Choosing a code editor
	Docker Toolbox
	Docker for Mac and Docker for Windows
	Installing Docker for Mac
	Installing Docker for Windows
	Using docker-machine on Windows with Hyper-V

	Minikube
	Installing Minikube on Mac and Windows
	Testing Minikube and kubectl

	Summary
	Questions
	Further reading

	Working with Containers
	Technical requirements
	Running the first container
	Starting, stopping, and removing containers
	Running a random quotes container
	Listing containers
	Stopping and starting containers
	Removing containers

	Inspecting containers
	Exec into a running container
	Attaching to a running container
	Retrieving container logs
	Logging drivers
	Using a container-specific logging driver
	Advanced topic – changing the default logging driver

	Anatomy of containers
	Architecture
	Namespaces
	Control groups (cgroups)
	Union filesystem (UnionFS)
	Container plumbing
	Runc
	Containerd

	Summary
	Questions
	Further reading

	Creating and Managing Container Images
	What are images?
	The layered filesystem
	The writable container layer
	Copy-on-write
	Graph drivers

	Creating images
	Interactive image creation
	Using Dockerfiles
	The FROM keyword
	The RUN keyword
	The COPY and ADD keywords
	The WORKDIR keyword
	The CMD and ENTRYPOINT keywords
	A complex Dockerfile
	Building an image
	Multistep builds
	Dockerfile best practices

	Saving and loading images

	Sharing or shipping images
	Tagging an image
	Image namespaces
	Official images
	Pushing images to a registry

	Summary
	Questions
	Further reading

	Data Volumes and System Management
	Technical requirements
	Creating and mounting data volumes
	Modifying the container layer
	Creating volumes
	Mounting a volume
	Removing volumes

	Sharing data between containers
	Using host volumes
	Defining volumes in images
	Obtaining Docker system information
	Listing resource consumption
	Pruning unused resources
	Pruning containers
	Pruning images
	Pruning volumes
	Pruning networks
	Pruning everything

	Consuming Docker system events
	Summary
	Questions
	Further reading

	Distributed Application Architecture
	What is a distributed application architecture?
	Defining the terminology

	Patterns and best practices
	Loosely coupled components
	Stateful versus stateless
	Service discovery
	Routing
	Load balancing
	Defensive programming
	Retries
	Logging
	Error handling

	Redundancy
	Health checks
	Circuit breaker pattern

	Running in production
	Logging
	Tracing
	Monitoring
	Application updates
	Rolling updates
	Blue-green deployments
	Canary releases
	Irreversible data changes
	Rollback

	Summary
	Questions
	Further reading

	Single-Host Networking
	Technical requirements
	The container network model
	Network firewalling
	The bridge network
	The host network
	The null network
	Running in an existing network namespace
	Port management
	Summary
	Questions
	Further reading

	Docker Compose
	Technical requirements
	Demystifying declarative versus imperative
	Running a multi-service app
	Scaling a service
	Building and pushing an application
	Summary
	Questions
	Further reading

	Orchestrators
	What are orchestrators and why do we need them?
	The tasks of an orchestrator
	Reconciling the desired state
	Replicated and global services
	Service discovery
	Routing
	Load balancing
	Scaling
	Self-healing
	Zero downtime deployments
	Affinity and location awareness
	Security
	Secure communication and cryptographic node identity
	Secure networks and network policies
	Role-based access control (RBAC)
	Secrets
	Content trust
	Reverse uptime

	Introspection

	Overview of popular orchestrators
	Kubernetes
	Docker Swarm
	Apache Mesos and Marathon
	Amazon ECS
	Microsoft ACS

	Summary
	Questions
	Further reading

	Introduction to Docker Swarm
	Architecture
	Swarm nodes
	Swarm managers
	Swarm workers

	Stacks, services, and tasks
	Services
	Task
	Stack

	Multi-host networking
	Creating a Docker Swarm
	Creating a local single node swarm
	Creating a local swarm in VirtualBox or Hyper-V
	Using Play with Docker (PWD) to generate a Swarm
	Creating a Docker Swarm in the cloud

	Deploying a first application
	Creating a service
	Inspecting the service and its tasks
	Logs of a service
	Reconciling the desired state
	Deleting a service or a stack
	Deploying a multi-service stack

	The swarm routing mesh
	Summary
	Questions
	Further reading

	Zero Downtime Deployments and Secrets
	Technical requirements
	Zero downtime deployment
	Popular deployment strategies
	Rolling updates
	Health checks
	Rollback
	Blue–green deployments
	Canary releases

	Secrets
	Creating secrets
	Using a secret
	Simulating secrets in a development environment
	Secrets and legacy applications
	Updating secrets

	Summary
	Questions
	Further reading

	Introduction to Kubernetes
	Technical requirements
	Architecture
	Kubernetes master nodes
	Cluster nodes
	Introduction to Minikube
	Kubernetes support in Docker for Desktop
	Pods
	Comparing Docker container and Kubernetes pod networking
	Sharing the network namespace
	Pod life cycle
	Pod specification
	Pods and volumes

	Kubernetes ReplicaSet
	ReplicaSet specification
	Self-healing

	Kubernetes deployment
	Kubernetes service
	Context-based routing
	Comparing SwarmKit with Kubernetes
	Summary
	Questions
	Further reading

	Deploying, Updating, and Securing an Application with Kubernetes
	Technical requirements
	Deploying a first application
	Deploying the web component
	Deploying the database
	Streamlining the deployment

	Zero downtime deployments
	Rolling updates
	Blue–green deployment

	Kubernetes secrets
	Manually defining secrets
	Creating secrets with kubectl
	Using secrets in a pod
	Secret values in environment variables

	Summary
	Questions
	Further reading

	Running a Containerized App in the Cloud
	Technical requirements
	Deploying our application into AWS ECS
	Introduction to ECS
	Creating a Fargate ECS cluster of AWS
	Authoring a task definition
	Running a task in ECS
	Modifying the task definition
	Adding the database component to the application

	Deploying and using Docker EE on AWS
	Provisioning the infrastructure
	Installing Docker
	Installing Docker UCP
	Remote admin the UCP cluster
	Deploying to Docker Swarm
	Deploying to Kubernetes

	A short peek into Azure’s container offerings
	A short peek into Google’s container offerings
	Summary
	Questions
	Further reading

	Assessment
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

