i

ey

Mastering CoreOS

Create production CoreQOS clusters and master the art
of deploying Container-based microservices

Mastering CoreOS

Create production CoreOS clusters and master the art
of deploying Container-based microservices

Sreenivas Makam

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering CoreOS

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016
Production reference: 1190216

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-812-8

www . packtpub.com

www.packtpub.com

Credits

Author
Sreenivas Makam

Reviewers
Francisco Fernandez Castario

Neependra Khare

Commissioning Editor
Kunal Parikh

Acquisition Editor
Vinay Argekar

Content Development Editor
Rashmi Suvarna

Technical Editor
Bharat Patil

Copy Editor
Tasneem Fatehi

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Author

Sreenivas Makam is currently working as a senior engineering manager at Cisco
Systems, Bangalore. He has a masters in electrical engineering and around 18 years
of experience in the networking industry. He has worked in both start-ups and big
established companies. His interests include SDN, NFV, Network Automation,
DevOps, and cloud technologies, and he likes to try out and follow open source
projects in these areas. His blog can be found at https://sreeninet.wordpress.
com/ and his hacky code at https://github.com/smakam.

Sreenivas is part of the Docker bloggers forum and his blog articles have been
published in Docker weekly newsletters. He has done the technical reviewing for
Mastering Ansible, Packt Publishing and Ansible Networking Report, O'Reilly Publisher.
He has also given presentations at Docker meetup in Bangalore. Sreenivas has one
approved patent.

https://sreeninet.wordpress.com/
https://sreeninet.wordpress.com/
https://github.com/smakam

Acknowledgments

I'have been very fortunate to always have good people around me and I would like
to thank God for that. I would like to thank my parents for all the sacrifices they
made while raising me and my sister and for providing the best possible support.
Next, I would like to thank my wife, Lakshmi (Lucky), who has been my best friend
for the last 13 years. I feel fortunate to have her as my wife as she is better qualified
than me in almost everything. My daughter, Sasha, has been the spark in my life and
I enjoy all the little interactions with her. I would like to thank my wife and daughter
for being patient in dealing with my occasional tantrums. Lastly, I would like to
thank my sister, brother-in-law, and niece for being there for me always.

I would like to thank my current company, Cisco, for allowing me to spend time on
the book. I would also like to thank my Cisco managers and colleagues who have
been very supportive to me in this effort.

I would like to thank my wife and my niece, Pallavi, for reviewing some of the
chapters. My wife and daughter also helped out by drawing a rough draft of some
of the pictures used in the book.

I would like to thank my editors and reviewers for guiding and correcting me
throughout the book's preparation.

These acknowledgements would not be complete without thanking the folks at
CoreOS and Docker for the amazing technology that they have developed, which
allowed me to write about it. Lastly, a big thanks to the open source community for
making software easily accessible to everyone.

About the Reviewers

Francisco Fernandez Castafio works at GrapheneDB, one of the biggest graph
database cloud providers, as a site reliability engineer. He has previously worked

in a few start-ups in software tools to social networks. His interests are distributed
systems, functional programming, databases, mathematics, and machine learning.

Neependra Khare is the author of Docker Cookbook, Packt Publishing (attps://
www.packtpub.com/virtualization-and-cloud/docker-cookbook), and has
been co-organizing a Docker meetup group in Bangalore for more than a year now
(http://www.meetup.com/Docker-Bangalore). He has more than 11 years of IT
experience, and has earlier worked as a system administrator, support engineer,
file system developer, and performance engineer. Currently, he is freelancing for
Container technologies such as Docker, Kubernetes, Project Atomic, and CoreOS.
You can visit his website at http://neependra.net/ and follow him on Twitter.
His Twitter handle is @neependra. ss.

https://www.packtpub.com/virtualization-and-cloud/docker-cookbook
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook
http://www.meetup.com/Docker-Bangalore
http://neependra.net/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

I@ PACKT! 5"

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface Xi
Chapter 1: CoreOS Overview 1
Distributed application development 2
Components of distributed application development 2
Advantages and disadvantages 3
A minimalist Container-optimized OS 4
Containers 5
Technology 5
Advantages S
An overview of Docker architecture 6
Advantages of Docker 7
CoreOS 8
Properties 8
Advantages 9
Supported platforms 9
CoreOS components 10
Kernel 10
Systemd 10
Etcd 16
Fleet 19
Flannel 23

Rkt 26
The CoreOS cluster architecture 26
The development cluster 27

The production cluster 27
Docker versus Rkt 28
History 28
APPC versus OCI 28
The current status 29
Differences between Docker and Rkt 30

[il

Table of Contents

A workflow for distributed application development with Docker

and CoreOS 31
Summary 32
References 32
Further reading and tutorials 32
Chapter 2: Setting up the CoreOS Lab 33
Cloud-config 34
The CoreOS cloud-config file format 34
The main sections of cloud-config 34
A sample CoreQOS cloud-config 35
The cloud-config validator 37
A hosted validator 38
The cloudinit validator 39
Executing cloud-config 40
The CoreOS cluster with Vagrant 40
Steps to start the Vagrant environment 41
Important files to be modified 41
Vagrantfile 41
User-data 41
Config.rb 42
Vagrant — a three-node cluster with dynamic discovery 42
Generating a discovery token 42
Steps for cluster creation 42
Vagrant — a three-node cluster with static discovery 44
Vagrant — a production cluster with three master nodes
and three worker nodes 46
A CoreOS cluster with AWS 48
AWS — a three-node cluster using Cloudformation 48
AWS — a three-node cluster using AWS CLI 49
A CoreOS cluster with GCE 51
GCE - a three-node cluster using GCE CLI 51
CoreOS installation on Bare Metal 52
Basic debugging 54
journalctl 54
systemctl 54
Cloud-config 55
Logging from one CoreOS node to another 56
Important files and directories 56
Common mistakes and possible solutions 57
Summary 57
References 58
Further reading and tutorials 58

Lii]

Table of Contents

Chapter 3: CoreOS Autoupdate 59
The CoreOS release cycle 59
The partition table on CoreOS 61
CoreOS automatic update 63
Update and reboot services 64

Update-engine.service 64
Debugging update-engine.service 65
Locksmithd.service 65
Locksmith strategy 65
Groups 66
Locksmithctl 67
Debugging locksmithd.service 67
Setting update options 67
Using cloud-config 68
Manual configuration 68
Update examples 69
Updating within the same release channel 69
Updating from one release channel to another 71
CoreUpdate 72
Vagrant CoreOS update 72
Summary 73
References 73
Further reading and tutorials 73

Chapter 4: CoreOS Primary Services — Etcd, Systemd, and Fleet 75

Etcd 75
Versions 76
Installation 76

Standalone installation 77
Accessing etcd 78
REST 78
Etcdctl 79
Etcd configuration 79
Etcd operations 80
Etcd tuning 82
Etcd proxy 83
Adding and removing nodes from a cluster 85
Node migration and backup 86
Etcd security 88
Certificate authority — etcd-ca 88
Installing etcd-ca 88
Etcd secure client-to-server communication using a server certificate 89

Etcd secure client-to-server communication using server certificate and client certificate 90

A secure cloud-config

91

[iii]

Table of Contents

Authentication 92
Etcd debugging 94
Systemd 95
Unit types 95
Unit specifiers 96
Unit templates 98
Drop-in units 101
Default cloud-config drop-in units 101
Cloud-config custom drop-in units 102
Runtime drop-in unit — specific parameters 102
Runtime drop-in unit — full service 104
Network units 105
Fleet 107
Installation 107
Accessing Fleet 107
Local fleetctl 107
Remote fleetctl 107
Remote fleetctl with an SSH tunnel 108
Remote HTTP 108
Using etcd security 109
Templates, scheduling, and HA 110
Debugging 113
Service discovery 113
Simple etcd-based discovery 113
Sidekick discovery 115
ELB service discovery 118
Summary 120
References 120
Further reading and tutorials 121
Chapter 5: CoreOS Networking and Flannel Internals 123
Container networking basics 123
Flannel 124
Manual installation 124
Installation using flanneld.service 125
Control path 126
Data path 127
Flannel as a CNI plugin 129
Setting up a three-node Vagrant CoreOS cluster with Flannel
and Docker 130
Setting up a three-node CoreOS cluster with Flannel and RKT 131
An AWS cluster using Flannel 133
An AWS cluster using VXLAN networking 134
An AWS cluster using AWS-VPC 134

[iv]

Table of Contents

A GCE cluster using Flannel 137
GCE cluster using VXLAN networking 137

A GCE cluster using GCE networking 138
Experimental multitenant networking 140
Experimental client-server networking 141
Setting up client-server Flannel networking 142
Docker networking 144
Docker experimental networking 145

A multinetwork use case 146
The Docker overlay driver 147
The external networking calico plugin 149
The Docker 1.9 update 150
Other Container networking technologies 151
Weave networking 151
Calico networking 154
Setting up Calico with CoreOS 154
Kubernetes networking 156
Summary 157
References 158
Further reading and tutorials 158
Chapter 6: CoreOS Storage Management 159
Storage concepts 160
The CoreOS filesystem 160
Mounting the AWS EBS volume 161
Mounting NFS storage 163
Setting up NFS server 164
Setting up the CoreOS node as a client for the NFS 165
The container filesystem 166
Storage drivers 166
Docker and the Union filesystem 168
Container data 169
Docker volumes 169
Container volume 170
Volumes with the host mount directory 170

A data-only container 171
Removing volumes 172
The Docker Volume plugin 173
Flocker 174
GlusterFS 183
Ceph 189
NFS 189
Container data persistence using NFS 189

[v]

Table of Contents

The Docker 1.9 update 192
Summary 193
References 193
Further reading and tutorials 194
Chapter 7: Container Integration with CoreOS — Docker and Rkt 195
Container standards 196
App container specification 196
The Container image format 196
APPC tools 199
Open Container Initiative 202
Libnetwork 203

CNI 204
The relationship between Libnetwork and CNI 206
Cloud Native Computing Foundation 206
Docker 206
The Docker daemon and an external connection 206
Dockerfile 207
The Docker Image repository 208
Creating your own Docker registry 209
Continuous integration 210
The Docker content trust 212
Pushing secure image 214
Pulling secure image 214
Pulling same image with no security 215
Container debugging 215
Logs 215
Login inside Container 215
Container properties 216
Container processes 216
The Container's CPU and memory usage 216
Rkt 216
Basic commands 218
Fetch image 218

List images 218
Run image 218

List pods 219
Garbage collection 219
Delete image 220
Export image 220

The nginx container with volume mounting and port forwarding 220
Pod status 221
Rkt image signing 221
Rkt with systemd 223
Rkt with Flannel 224
Summary 227

[vil

Table of Contents

References 228
Further reading and tutorials 228
Chapter 8: Container Orchestration 229
Modern application deployment 229
Container Orchestration 231
Kubernetes 231
Concepts of Kubernetes 231
Kubernetes architecture 234
Kubernetes installation 235

An example of a Kubernetes application 239
Kubernetes with Rkt 243
Kubernetes 1.1 update 244
Docker Swarm 244
The Docker Swarm installation 245

An example of Docker Swarm 247
Mesos 248
Comparing Kubernetes, Docker Swarm, and Mesos 248
Application definition 250
Docker-compose 250

A single-node application 251

A multinode application 252
Packaged Container Orchestration solutions 253
The AWS Container service 254
Installing ECS and an example 254
Google Container Engine 256
Installing GCE and an example 256
CoreOS Tectonic 258
Summary 260
References 260
Further reading and tutorials 261
Chapter 9: OpenStack Integration with Containers and CoreOS 263
An overview of OpenStack 263
CoreOS on OpenStack 264
Get OpenStack Kilo running in Devstack 265
Setting up keys and a security group 266
Setting up external network access 266
Download the CoreOS image and upload to Glance 267
Updating the user data to be used for CoreOS 267
OpenStack and Containers 270
The Nova Docker driver 270
Installing the Nova Driver 271
Installing Docker 271
Install the Nova Docker plugin 271

[vii]

Table of Contents

The Devstack installation 272
The Heat Docker plugin 274
Installing the Heat plugin 274
Magnum 276
The Magnum architecture 276
Installing Magnum 278
Container networking using OpenStack Kuryr 279
OpenStack Neutron 279
Containers and networking 280
OpenStack Kuryr 280
The current state and roadmap of Kuryr 282
Summary 283
References 283
Further reading and tutorials 284
Chapter 10: CoreOS and Containers — Troubleshooting
and Debugging 285
CoreOS Toolbox 286
Other CoreOS debugging tools 287
Container monitoring 287
Sysdig 288
Examples of Sysdig 290
Csysdig 291
The Sysdig cloud 293
Kubernetes integration 295
Cadvisor 295
The Docker remote API 298
Container logging 300
Docker logging drivers 301
The JSON-file driver 301
The Syslog driver 302
The journald driver 302
Logentries 303
Exporting CoreOS journal logs 304
Container logs 306
Summary 309
References 309
Further reading and tutorials 310
Chapter 11: CoreOS and Containers — Production
Considerations 31
CoreOS cluster design considerations 31
The update strategy 312
Cluster considerations 312

[viii]

Table of Contents

Distributed infrastructure design considerations

Service discovery
Service discovery using Registrator and Consul
Dynamic load balancing

Deployment patterns
The Sidecar pattern
The Ambassador pattern
The Adapter pattern
Rolling updates with the Canary pattern

Containers and PaaS
Stateful and Stateless Containers
Security
Secure the external daemons
SELinux
Container image signing
Deployment and automation
Continuous Integration and Continuous Delivery

Ansible integration with CoreOS and Docker
Using Ansible to manage CoreOS
Using Ansible to manage Docker Containers
Ansible as a Container
Using Ansible to install Docker

The CoreOS roadmap
Ignition
DEX
Clair
The Docker roadmap
Tutum
UcpP
Nautilus
Microservices infrastructure
Platform choices
Solution providers
Summary
References
Further reading and tutorials

Index

312

313
313
316

317
318
318
319
319

323
324
324
324
325
325
325
325

327
328
330
333
333

335
335
336
336
337
338
338
338
338
338
339
340
341
342

343

[ix]

Preface

Public cloud providers such as Amazon and Google have revolutionized cloud
technologies and made it easier to consume for end users. The goal of CoreOS has
been to create a secure and reliable cluster OS and make it easier to develop distributed
applications using Containers. CoreOS's philosophy has been to keep the kernel

to a bare minimum while keeping it secure, reliable, and updated. Everything on

top of the kernel runs as Containers, except a few critical services. Containers have
revolutionized application development as well as application deployment. Even
though Containers existed for a long time, Docker revolutionized the Container
technology by making it easier to consume and distribute Containers.

By making critical components of their technologies open source, CoreOS has
created a major following in the CoreOS community as well as the general Linux
and cloud communities. With Tectonic, CoreOS has combined all its open source
technologies along with Kubernetes into one commercial offering. Cluster OS,
Containers, and distributed application deployment are all pretty new and there is a
lot of development happening in these areas. CoreOS is at a sweet spot, and this will
encourage you to understand more about it.

This book will cover CoreOS internals and the technologies surrounding the
deployment of Container-based microservices in a CoreOS cluster.

This book starts off with an overview of CoreOS and distributed application
development and the related technologies around it. You will initially learn about
installing CoreOS in different environments and using the CoreOS automatic update
service. Next, critical CoreOS services to manage and interconnect services are
covered along with networking and storage considerations. After this, the Container
ecosystem, including Docker and Rkt, are covered along with Container orchestration.
This book also covers how popular orchestration solutions such as OpenStack, the
AWS Container service, and the Google Container engine integrate with CoreOS and
Docker. Lastly, the book covers troubleshooting and production considerations for
Containers, CoreOS, and distributed application development and deployment.

[xi]

Preface

What this book covers

Chapter 1, CoreOS Overview, provides you with an overview of microservices,
distributed application development concepts, a comparison of the Container
OSes available in the market today, the basics of Containers, Docker and CoreOS.

Chapter 2, Setting up the CoreOS Lab, covers how to set up a CoreOS development
environment in Vagrant, Amazon AWS, Google GCE, and Baremetal.

Chapter 3, CoreOS Autoupdate, covers the CoreOS release cycle, CoreOS automatic
updates, and options to manage CoreOS updates in a cluster.

Chapter 4, CoreOS Primary Services — Etcd, Systemd, and Fleet, discusses the internals of
CoreOS critical services — Etcd, Systemd, and Fleet. For each of the services, we will
cover their installation, configuration, and application.

Chapter 5, CoreOS Networking and Flannel Internals, covers the basics of Container
networking with a focus on how CoreOS does Container networking with Flannel.
Docker networking and other related container networking technologies are also
covered in this chapter.

Chapter 6, CoreOS Storage Management, tells us about the CoreOS base filesystem and
partition table, the Container filesystem, and Container data volumes. Container data
persistence using GlusterFS and Flocker are dealt with in detail.

Chapter 7, Container Integration with CoreOS - Docker and Rkt, focuses on the Container
standards, advanced Docker topics, and the basics of Rkt Container runtime. The
focus will be on how Docker and Rkt integrate with CoreOS.

Chapter 8, Container Orchestration, dives into the internals of Kubernetes, Docker, and
Swarm, and also compares the available orchestration solutions in the market. It also
covers commercial solutions such as the AWS Container service, Google Container
engine, and Tectonic.

Chapter 9, OpenStack Integration with Containers and CoreOS, provides you with an
overview of OpenStack and OpenStack integration with Containers and CoreOS.
Details of OpenStack Magnum and Kuryr projects will also be covered.

Chapter 10, CoreOS and Containers — Troubleshooting and Debugging, covers the CoreOS
Toolbox, Docker remote API, and logging. Container monitoring tools such as Sysdig
and Cadvisor and Container logging tools such as Logentries will also be covered
with practical examples.

Chapter 11, CoreOS and Containers — Production Considerations, discusses CoreOS and
Container production considerations such as Service discovery, deployment patterns,
CI/CD, automation, and security. It also covers the CoreOS and Docker roadmap.

[xii]

Preface

What you need for this book

A local machine: Linux, Windows, or Mac.

* Virtualization software: Vagrant and Virtualbox to run VMs in the local
machine.

* Cloud accounts: Google cloud and AWS accounts to run VMs in the cloud.

* Open source software: CoreOS, Kubernetes, Docker, Weave, Calico, Flocker,
GlusterFS, OpenStack, Sysdig, cadvisor, Ansible, and LogEntries. These open
source software are used in specific chapters.

Who this book is for

If you are looking to deploy a CoreOS cluster or you already have a CoreOS cluster
that you want to manage for better performance, security, and scale, this book is
perfect for you. This book gives enough technical input for developers to deploy
distributed applications using Containers and for administrators who want to
manage the distributed CoreOS infrastructure. To follow the hands-on stuff, you
need to have Google and AWS cloud accounts and also be able to run CoreOS VMs
in your machine.

A basic understanding of public and private clouds, Containers, Docker, Linux,
and CoreOS is required.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The Service type is the most common type and is used to define a service with its
dependencies."

A block of code is set as follows:

ExecStart=/usr/bin/docker run --name hello busybox /bin/sh -c "while
true; do echo Hello World; sleep 1; done"

ExecStop=/usr/bin/docker stop hello
[X-Fleet]
Global=true

[xiii]

Preface

Any command-line input or output is written as follows:

core@core-01 /etc/systemd/system/multi-user.target.wants $ 1ls -1la

lrwxrwxrwx 1 root root 34 Aug 12 13:25 hellol.service -> /etc/systemd/
system/hellol.service

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To do this,
we need to go to each instance in the AWS console and select Networking | change
source/dest check | disable."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xiv]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xv]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

CoreOS Overview

CoreOS is a Container-optimized Linux-based operating system to deploy a
distributed application across a cluster of nodes. Along with providing a secure
operating system, CoreOS provides services such as etcd and fleet that simplify
the Container-based distributed application deployment. This chapter will provide
you with an overview of Microservices and distributed application development
concepts along with the basics of CoreOS, Containers, and Docker. Microservices
is a software application development style where applications are composed of
small, independent services talking to each other with APIs. After going through
the chapter, you will be able to appreciate the role of CoreOS and Containers in the
Microservices architecture.

The following topics will be covered in this chapter:

* Distributed application development —an overview and components

* Comparison of currently available minimalist Container-optimized OSes
* Containers —technology and advantages

* Docker—architecture and advantages

* CoreOS—architecture and components

* An overview of CoreOS components —systemd, etcd, fleet, flannel,
and rkt

e Docker versus Rkt

* A workflow for distributed application development with Docker, Rkt,
and CoreOS

[11]

CoreOS Quverview

Distributed application development

Distributed application development involves designing and coding a microservice-
based application rather than creating a monolithic application. Each standalone
service in the microservice-based application can be created as a Container.
Distributed applications existed even before Containers were available. Containers
provide the additional benefit of isolation and portability to each individual service
in the distributed application. The following diagram shows you an example of a
microservice-based application spanning multiple hosts:

Microservices Architecture

Host 1 Host 2

Interconnected
Microservices

oL D 0

s

Host 3

Components of distributed application
development

The following are the primary components of distributed application development.
This assumes that individual services of the distributed application are created
as Containers:

* Applications or microservices.

* Cloud infrastructure — public (AWS, GCE, and Digital Ocean) or private.

¢ Base OS—CoreOS, Atomic, Rancher OS, and others.

* Distributed data store and service discovery —etcd, consul, and Zookeeper.

[2]

Chapter 1

Load balancer — NGINX and HAProxy.
Container runtime — Docker, Rkt, and LXC.
Container orchestration — Fleet, Kubernetes, Mesos, and Docker Swarm.

Storage —local or distributed storage. Some examples are GlusterFS and
Ceph for cluster storage and AWS EBS for cloud storage. Flocker's upcoming
storage driver plugin promises to work across different storage mechanisms.

Networking — using cloud-based networking such as AWS VPC, CoreOS
Flannel, or Docker networking.

Miscellaneous — Container monitoring (cadvisor, Sysdig, and Newrelic)
and Logging (Spout and Logentries).

An update strategy to update microservices, such as a rolling upgrade.

Advantages and disadvantages

The following are some advantages of distributed application development:

Application developers of each microservice can work independently. If
necessary, different microservices can even have their own programming
language.

Application component reuse becomes high. Different unrelated projects can
use the same microservice.

Each individual service can be horizontally scaled. CPU and memory usage
for each microservice can be tuned appropriately.

Infrastructure can be treated like cattle rather than a pet, and it is not
necessary to differentiate between each individual infrastructure component.

Applications can be deployed in-house or on a public, private, or
hybrid cloud.

The following are some problems associated with the microservices approach:

The number of microservices to manage can become huge and this makes it
complex to manage the application.

Debugging can become difficult.

Maintaining integrity and consistency is difficult so services must be
designed to handle failures.

Tools are constantly changing, so there is a need to stay updated with current
technologies.

[31]

CoreOS Quverview

A minimalist Container-optimized OS

This is a new OS category for developing distributed applications that has become
popular in recent years. Traditional Linux-based OSes were bulky for Container
deployment and did not natively provide the services that Containers need. The
following are some common characteristics of a Container-optimized OS:

* The OS needs to be bare-minimal and fast to bootup

* It should have an automated update strategy

* Application development should be done using Containers

* Redundancy and clustering should be built-in
The following table captures the comparison of features of four common

Container-optimized OSes. Other OSes such as VMWare Photon and Mesos
DCOS have not been included.

Feature CoreOS Rancher OS Atomic Ubuntu snappy

Company CoreOS Rancher Labs Red Hat Canonical

Containers Docker and Rkt | Docker Docker Snappy packages

and Docker

Maturity First release in | First release in early | First release First release in
2013, relatively |2015, pretty new in early 2015, early 2015, pretty
mature pretty new new

Service Systemd and System docker Systemd Systemd and

management |Fleet manages system Upstart

services and user
docker manages
user containers

Tools Etcd, fleet, and Rancher has Flannel and Ubuntu tools
flannel tools for service other RedHat
discovery, load tools

balancing, dns,
storage, and

networking
Orchestration |Kubernetes and |Rancher's own Kubernetes. Kubernetes
Tectonic orchestrationand | Atomic app, and any other
Kubernetes and Nulecule orchestration tool
also used
Update Automatic, Automatic Automatic, uses | Automatic
uses A and B rpm-os-tree

partitions

[4]

Chapter 1

Feature CoreOS Rancher OS Atomic Ubuntu snappy
Registry Docker hub and | Docker hub Docker hub Docker hub
Quay
Debugging Toolbox Rancher's own tools | RedHat tools Ubuntu debug
and external tools tools
Security SELinux can be | There is a plan to SELinux AppArmor
turned on add SELinux and enabled security profile
AppArmor support | by default, can be used
additional
security

Containers

Containers do virtualization at the OS level while VMs do virtualization at the
hardware level. Containers in a single host share the same kernel. As Containers
are lightweight, hundreds of containers can run on a single host. In a microservices-
based design, the approach taken is to split a single application into multiple small
independent components and run each component as a Container. LXC, Docker,
and Rkt are examples of Container runtime implementations.

Technology

The following are the two critical Linux kernel technologies that are used in
Containers:

* Namespaces: They virtualize processes, networks, filesystems, users,

and so on
* cgroups: They limit the usage of the CPU, memory, and I/O per group
of processes
Advantages

The following are some significant advantages of Containers:

e Each container is isolated from other Containers. There is no issue of shared
package management, shared libraries, and so on.

* Compared to a VM, Containers have smaller footprints and are faster
to load and run.

* They provide an efficient usage of computing power.

* They can work seamlessly across dev, test, and production. This makes
Containers DevOps-friendly.

[51]

CoreOS Quverview

An overview of Docker architecture

Docker is a Container runtime implementation. Even though Containers were
available for quite a long time, Docker revolutionized Container technology by
making it easier to use. The following image shows you the main components of
Docker (the Docker engine, Docker CLI, Docker REST, and Docker hub) and
how they interact with each other:

Docker Architecture
Docker
cul
\ Docker Engine
1
Host 1 2 \
Docker
hub
Docker Engine /
1
Host 2 2
Docker
REST
Interface

Following are some details on the Docker architecture:

* The Docker daemon runs in every host where Docker is installed and started.

* Docker uses Linux kernel container facilities such as namespaces and
cgroups through the libcontainer library.

* The Docker client can run in the host machine or externally and it
communicates with the Docker daemon using the REST interface.
There is also a CLI interface that the Docker client provides.

* The Docker hub is the repository for Docker images. Both private and public
images can be hosted in the Docker hub repository.

[6]

Chapter 1

Dockerfile is used to create container images. The following is a sample
Dockerfile that is used to create a Container that starts the Apache web
service exposing port 80 to the outside world:

FROM ubuntu:14.04
MAINTAINER Sreenivas Makam <smxxxx@yahoo.com>

RUN apt-get update

Install apache2
RUN apt-get install -y apache2

EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

The Docker platform as of release 1.9 includes orchestration tools such as
Swarm, Compose, Kitematic, and Machine as well as native networking and
storage solutions. Docker follows a batteries-included pluggable approach
for orchestration, storage, and networking where a native Docker solution
can be swapped with vendor plugins. For example, Weave can be used as
an external networking plugin, Flocker can be used as an external storage
plugin, and Kubernetes can be used as an external orchestration plugin.
These external plugins can replace the native Docker solutions.

Advantages of Docker

The following are some significant advantages of Docker:

Docker has revolutionized Container packaging and tools around
Containers and this has helped both application developers and
infrastructure administrators

It is easier to deploy and upgrade individual containers
It is more suitable for the microservices architecture

It works great across all Linux distributions as long as the kernel version
is greater than or equal to 3.10

The Union filesystem makes it faster to download and keep different
versions of container images

Container management tools such as Dockerfile, Docker engine CLI,
Machine, Compose, and Swarm make it easy to manage containers

Docker provides an easy way to share Container images using public
and private registry services

[71

CoreOS Quverview

CoreOS

CoreOS belongs to the minimalist Container-optimized OS category. CoreOS is the first
OS in this category and many new OSes have appeared recently in the same category.
CoreOS's mission is to improve the security and reliability of the Internet. CoreOS is a
pioneer in this space and its first alpha release was in July 2013. A lot of developments
have happened in the past two years in the area of networking, distributed storage,
container runtime, authentication, and security. CoreOS is used by PaaS providers
(such as Dokku and Deis), Web application development companies, and many
enterprise and service providers developing distributed applications.

Properties
The following are some of the key CoreOS properties:

* The kernel is very small and fast to bootup.

* The base OS and all services are open sourced. Services can also be used
standalone in non-CoreOS systems.

* No package management is provided by the OS. Libraries and packages are
part of the application developed using Containers.

* Itenables secure, large server clusters that can be used for distributed
application development.

* Itis based on principles from the Google Chrome OS.

* Container runtime, SSH, and kernel are the primary components.

* Every process is managed by systemd.

* Etcd, fleet, and flannel are all controller units running on top of the kernel.
* It supports both Docker and Rkt Container runtime.

* Automatic updates are provided with A and B partitions.

* The Quay registry service can be used to store public and private
Container images.

* CoreOS release channels (stable, beta, and alpha) are used to control the
release cycle.

e Commercial products include the Coreupdate service (part of the
commercially managed and enterprise CoreOS), Quay enterprise,
and Tectonic (CoreOS + Kubernetes).

* It currently runs on x86 processors.

[8]

Chapter 1

Advantages

The following are some significant advantages of CoreOS:

The kernel auto-update feature protects the kernel from security
vulnerabilities.

The CoreOS memory footprint is very small.

The management of CoreOS machines is done at the cluster level rather
than at an individual machine level.

It provides service-level (using systemd) and node-level (using fleet)
redundancy.

Quay provides you with a private and public Container repository.
The repository can be used for both Docker and Rkt containers.

Fleet is used for basic service orchestration and Kubernetes is used for
application service orchestration.

It is supported by all major cloud providers such as AWS, GCE, Azure,
and DigitalOcean.

Majority of CoreOS components are open sourced and the customer can
choose the combination of tools that is necessary for their specific application.

Supported platforms

The following are the official and community-supported CoreOS platforms. This is
not an exhaustive list.

For exhaustive list of CoreOS supported platforms, please refer to
e this link (https://coreos.com/os/docs/latest/).

The platforms that are officially supported are as follows:

Cloud platforms such as AWS, GCE, Microsoft Azure, DigitalOcean,
and OpenStack

Bare metal with PXE
Vagrant

The platforms that are community-supported are as follows:

CloudStack
VMware

[o]

https://coreos.com/os/docs/latest/

CoreOS Quverview

CoreOS components

The following are the CoreOS core components and CoreOS ecosystem. The ecosystem
can become pretty large if automation, management, and monitoring tools are
included. These have not been included here.

* Core components: Kernel, systemd, etcd, fleet, flannel, and rkt

* CoreOS ecosystem: Docker and Kubernetes

The following image shows you the different layers in the CoreOS architecture:

Core0S Architecture

Docker Rkt
container container

Etcd, Fleet, Flannel, Docker, Rkt

Systemd

CoreOS kernel

Kernel

CoreOS uses the latest Linux kernel in its distribution. The following screenshot
shows the Linux kernel version running in the CoreOS stable release 766.3.0:

Systemd

Systemd is an init system used by CoreOS to start, stop, and manage processes.
SysVinit is one of the oldest init systems. The following are some of the common
init systems used in the Unix world:

* Systemd: CoreOS and RedHat
* Upstart: Ubuntu
* Supervisord: The Python world

[10]

Chapter 1

The following are some of the common functionality performed by an init system:

It is the first process to start
It controls the ordering and execution of all the user processes
It takes care of restarting processes if they die or hang

It takes care of process ownership and resources

The following are some specifics of systemd:

Every process in systemd runs in one cgroup and this includes forked
processes. If the systemd service is killed, all the processes associated with
the service, including forked processes, are killed. This also provides you
with a nice way to control resource usage. If we run a Container in systemd,
we can control the resource usage even if the container contains multiple
processes. Additionally, systemd takes care of restarting containers that die if
we specify the restart option in systemd.

Systemd units are run and controlled on a single machine.
These are some systemd unit types —service, socket, device, and mount.

The service type is the most common type and is used to define a service
with its dependencies. The socket type is used to expose services to the
external world. For example, docker. service exposes external connectivity
to the Docker engine through docker. socket. Sockets can also be used to
export logs to external machines.

The systemct1 CLI can be used to control Systemd units.

Systemd units
The following are some important systemd units in a CoreOS system.

Etcd2.service
The following is an example etcd2 . service unit file:

CoreOS Quverview

The following are some details about the etcd2 service unit file:

All units have the [Unit] and [Install] sections. There is a type-specific
section such as [Service] for service units.

The conflicts option notifies that either etcd or etcd2 can run,
but not both.

The Environment option specifies the environment variables to be used by
etcd2. The $m unit specifier allows the machine ID to be taken automatically
based on where the service is running.

The Execstart option specifies the executable to be run.

The rRestart option specifies whether the service can be restarted. The
Restartsec option specifies the time interval after which the service should
be restarted.

LimitNoFILE specifies the file count limit.

The wantedBy option in the Install section specifies the group to which this
service belongs. The grouping mechanism allows systemd to start up groups
of processes at the same time.

Fleet.service
The following is an example of the fleet.service unit file:

In the preceding unit file, we can see two dependencies for fleet.service. etcd.
Service and etcd2. service are specified as dependencies as Fleet depends on them
to communicate between fleet agents in different nodes. The f1leet . socket socket unit
is also specified as a dependency as it is used by external clients to talk to Fleet.

[12]

Chapter 1

Docker.service
The Docker service consists of the following components:

* Docker.service: This starts the Docker daemon

* Docker.socket: This allows communication with the Docker daemon from
the CoreOS node

* Docker-tcp.socket: This allows communication with the Docker daemon
from external hosts with port 2375 as the listening port

The following docker . service unit file starts the Docker daemon:

Downloading the example code

Ny You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this b

[13]

http://www.packtpub.com

CoreOS Quverview

The following docker-tcp. socket unit file sets up a listening socket for remote
client communication:

The docker ps command uses docker. socket and docker -H
tcp://127.0.0.1:2375 ps uses docker-tcp.socket unit to communicate
with the Docker daemon running in the local system.

The procedure to start a simple systemd service

Let's start a simple hellol.service unit that runs a Docker busybox container,
as shown in the following image:

The following are the steps to start hellol.service:

1. Copy hellol.service assudo to /etc/systemd/system.

2. Enable the service:

sudo systemctl enable /etc/systemd/system/hellol.service

3. Starthellol.service:

sudo systemctl start hellol.service

[14]

Chapter 1

This creates the following link:

core@core-01 /etc/systemd/system/multi-user.target.wants $ 1ls -1la

lrwxrwxrwx 1 root root 34 Aug 12 13:25 hellol.service -> /etc/systemd/
system/hellol.service

Now, we can see the status of hellol.service:

In the preceding output, we can see that the service is in the active state. At the end,
we can also see stdout where the echo output is logged.

Let's look at the running Docker containers:

. When starting Docker Containers with systemd, it is necessary to avoid
using the -d option as it prevents the Container process to be monitored
/" by systemd. More details can be found at https://coreos.com/os/
docs/latest/getting-started-with-docker.html.

Demonstrating systemd HA
In the hellol.service created, we specified two options:

Restart=always
RestartSec=30s

This means that the service should be restarted after 30 seconds in case the service
exits for some reason.

[15]

https://coreos.com/os/docs/latest/getting-started-with-docker.html
https://coreos.com/os/docs/latest/getting-started-with-docker.html

CoreOS Quverview

Let's stop the Docker hellol container:

Service gets restarted automatically after 30 seconds, as shown in the following
screenshot:

The following screenshot shows you that the hellol container is running
again. From the Container status output, we can see that the container is up
only for a minute:

We can also confirm the service restarted from the systemd logs associated with that
service. In the following output, we can see that the service exited and restarted after
30 seconds:

ervice: Main process exited, code=exited, status

Etcd

Etcd is a distributed key-value store used by all machines in the CoreOS cluster to
read/write and exchange data. Etcd uses the Raft consensus algorithm (https://
raft.github.io/) to maintain a highly available cluster. Etcd is used to share
configuration and monitoring data across CoreOS machines and for doing

service discovery. All other CoreOS services such as Fleet and Flannel use etcd

as a distributed database. Etcd can also be used as a standalone outside CoreOS.
In fact, many complex distributed application projects such as Kubernetes and
Cloudfoundry use etcd for their distributed key-value store. The etcdct1 utility
is the CLI frontend for etcd.

[16]

https://raft.github.io/
https://raft.github.io/

Chapter 1

The following are two sample use cases of etcd.

* Service discovery: Service discovery can be used to communicate service
connectivity details across containers. Let's take an example WordPress
application with a WordPress application container and MySQL database
container. If one of the machines has a database container and wants to
communicate its service IP address and port number, it can use etcd to write
the relevant key and data; the WordPress container in another host can use
the key value to write to the appropriate database.

* Configuration sharing: The Fleet master talks to Fleet agents using etcd to
decide which node in the cluster will execute the Fleet service unit.

Etcd discovery

The members in the cluster discover themselves using either a static approach or
dynamic approach. In the static approach, we need to mention the IP addresses of all
the neighbors statically in every node of the cluster. In the dynamic approach, we use
the discovery token approach where we get a distributed token from a central etcd
server and use this in all members of the cluster so that the members can discover
each other.

Get a distributed token as follows:

curl https://discovery.etcd.io/new?size=<size>

The following is an example of getting a discovery token for a cluster size of three:

The discovery token feature is hosted by CoreOS and is implemented as an etcd
cluster as well.

Cluster size

It is preferable to have an odd-sized etcd cluster as it gives a better failure tolerance.
The following table shows the majority count and failure tolerance for common
cluster sizes up to five. With a cluster size of two, we cannot determine majority.

Cluster size Majority Failure tolerance
1 1 0
3 2 1
4 3 1
5 3 2

[17]

CoreOS Quverview

The Majority count tells us the number of nodes that is necessary to have a working
cluster, and failure tolerance tells us the number of nodes that can fail and still keep
the cluster operational.

Etcd cluster details
The following screenshot shows the Etcd member list in a 3 node CoreOS cluster:

We can see that there are three members that are part of the etcd cluster with
their machine ID, machine name, IP address, and port numbers used for etcd
server-to-server and client-to-server communication.

The following output shows you the etcd cluster health:

Here, we can see that all three members of the etcd cluster are healthy.

The following output shows you etcd statistics with the cluster leader:

We can see that the member ID matches with the leader ID, 41419684c778c117.

The following output shows you etcd statistics with the cluster member:

Simple set and get operations using etcd

In the following example, we will set the /messagel key to the Book1 value and then
later retrieve the value of the /messagel key:

Chapter 1

Fleet

Fleet is a cluster manager/scheduler that controls service creation at the cluster level.
Like systemd being the init system for a node, Fleet serves as the init system for a
cluster. Fleet uses etcd for internode communication.

The Fleet architecture
The following image shows you the components of the Fleet architecture:

Host 1

Fleet
Architecture

Systemd
Fleet Agent

Fleet Engine

Systemd

Systemd

A A
Fleet Agent Fleet Agent

4\
Fleet Engine Fleet Engine

Host 2 Host 3

* Fleet uses master, slave model with Fleet Engine playing master role and
Fleet agent playing slave role. Fleet engine is responsible for scheduling
Fleet units and Fleet agent is responsible for executing the units as well
as reporting the status back to the Fleet engine.

* One master engine is elected among the CoreOS cluster using etcd.

* When the user starts a Fleet service, each agent bids for that service. Fleet
uses a very simple least-1loaded scheduling algorithm to schedule the unit
to the appropriate node. Fleet units also consist of metadata that is useful
to control where the unit runs with respect to the node property as well as
based on other services running on that particular node.

* The Fleet agent processes the unit and gives it to systemd for execution.

* If any node dies, a new Fleet engine is elected and the scheduled units in that
node are rescheduled to a new node. Systemd provides HA at the node level;
Fleet provides HA at the cluster level.

[19]

CoreOS Quverview

Considering that CoreOS and Google are working closely on the Kubernetes project,
a common question that comes up is the role of Fleet if Kubernetes is going to

do container orchestration. Fleet is typically used for the orchestration of critical
system services using systemd while Kubernetes is used for application container
orchestration. Kubernetes is composed of multiple services such as the kubelet
server, API server, scheduler, and replication controller and they all run as Fleet
units. For smaller deployments, Fleet can also be used for application orchestration.

A Fleet scheduling example

The following is a three-node CoreOS cluster with some metadata present for
each node:

A global unit example
A global unit executes the same service unit on all the nodes in the cluster.

The following is a sample helloglobal.service:

[Unit]

Description=My Service

After=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill hello
ExecStartPre=-/usr/bin/docker rm hello

ExecStartPre=/usr/bin/docker pull busybox

ExecStart=/usr/bin/docker run --name hello busybox /bin/sh -c "while
true; do echo Hello World; sleep 1; done"

ExecStop=/usr/bin/docker stop hello
[X-Fleet]
Global=true

Let's execute the unit as follows:

[20]

Chapter 1

We can see that the same service is started on all three nodes:

Scheduling based on metadata
Let's say that we have a three-node CoreOS cluster with the following metadata:

* Nodel (compute=web, rack=rack1)
* Node2 (compute=web, rack=rack?2)
* Node3 (compute=db, rack=rack3)

We have used the compute metadata to identity the type of machine as web or db.
We have used the rack metadata to identify the rack number. Fleet metadata for a
node can be specified in the Fleet section of the cloud-config.

Let's start a web service and database service with each having its corresponding
metadata and see where they get scheduled.

This is the web service:

[Unit]

Description=Apache web server service
After=etcd.service
After=docker.service

[Service]

TimeoutStartSec=0

KillMode=none

EnvironmentFile=/etc/environment

ExecStartPre=-/usr/bin/docker kill nginx
ExecStartPre=-/usr/bin/docker rm nginx
ExecStartPre=/usr/bin/docker pull nginx
ExecStart=/usr/bin/docker run --name nginx -p ${COREOS_ PUBLIC
IPV4}:8080:80 nginx

ExecStop=/usr/bin/docker stop nginx

[X-Fleet]
MachineMetadata=compute=web

[21]

CoreOS Quverview

This is the database service:

[Unit]

Description=Redis DB service
After=etcd.service
After=docker.service

[Service]

TimeoutStartSec=0

KillMode=none

EnvironmentFile=/etc/environment
ExecStartPre=-/usr/bin/docker kill redis
ExecStartPre=-/usr/bin/docker rm redis
ExecStartPre=/usr/bin/docker pull redis
ExecStart=/usr/bin/docker run --name redis redis
ExecStop=/usr/bin/docker stop redis

[X-Fleet]
MachineMetadata=compute=db

Let's start the services using Fleet:

As we can see, nginxweb. service got started on Nodel and nginxdb. service got
started on Node3. This is because Nodel and Node2 were of the web type and Node3
was of the db type.

Fleet HA

When any of the nodes has an issue and does not respond, Fleet automatically takes
care of scheduling the service units to the next appropriate machine.

From the preceding example, let's reboot Node1, which has nginxweb.service.
The service gets scheduled to Node2 and not to Node3 because Node2 has the
web metadata:

[22]

Chapter 1

In the preceding output, we can see that nginxweb. service is rescheduled to Node2
and that Node1 is not visible in the Fleet cluster.

Flannel

Flannel uses an Overlay network to allow Containers across different hosts to talk
to each other. Flannel is not part of the base CoreOS image. This is done to keep the
CoreOS image size minimal. When Flannel is started, the flannel container image

is retrieved from the Container image repository. The Docker daemon is typically
started after the Flannel service so that containers can get the IP address assigned
by Flannel. This represents a chicken-and-egg problem as Docker is necessary to
download the Flannel image. The CoreOS team has solved this problem by running
a master Docker service whose only purpose is to download the Flannel container.

The following image shows you how Flannel agents in each node communicate
using eted:

Flannel
CoreOS 1

Flannel
Agent

Flannel
Agent

Flannel
Agent

Core0S 3

Core0S 2

[23]

CoreOS Quverview

The following are some Flannel internals:

¢ Flannel runs without a central server and uses etcd for communication
between the nodes.

* As part of starting Flannel, we need to supply a configuration file that
contains the IP subnet to be used for the cluster as well as the backend
protocol method (such as UDP and VXLAN). The following is a sample
configuration that specifies the subnet range and backend protocol as UDP:

{
"Network": "l1©.0.©.9/8",
"SubnetlLen": 2@,
"SubnetMin": "10.1@.0.0",
"SubnetMax": "10.99.0.0",
"Backend": {
"Type": "udp",
"Port": 789@
b
by

* Eachnode in the cluster requests an IP address range for containers created
in that host and registers this IP range with etcd.

* Asevery node in the cluster knows the IP address range allocated for
every other node, it knows how to reach containers created on any node
in the cluster.

* When containers are created, containers get an IP address in the range
allocated to the node.

* When Containers need to talk across hosts, Flannel does the encapsulation
based on the backend encapsulation protocol chosen. Flannel, in the
destination node, de-encapsulates the packet and hands it over to the
Container.

* By not using port-based mapping to talk across containers, Flannel simplifies
Container-to-Container communication.

[24]

Chapter 1

The following image shows the data path for Container-to-Container communication
using Flannel:

HOST 1 HOST 2

Flannel Bridge Flannel Bridge
UDP or VXLAN encap

Docker Bridge Docker Bridge

A Flannel service unit

The following is an example of a flannel service unit where we set the IP range for
the flannel network as 10.1.0.0/16:

In a three-node etcd cluster, the following is a sample output that shows the
Container IP address range picked by each node. Each node requests an IP range
with a 24-bit mask. 10.1.19.0/24 is picked by node A, 10.1.3.0/24 is picked by
node B, and 10.1.62.0/24 is picked by node C:

[25]

CoreOS Quverview

Rkt

Rkt is the Container runtime developed by CoreOS. Rkt does not have a daemon

and is managed by systemd. Rkt uses the Application Container image (ACI) image
format, which is according to the APPC specification (https://github.com/appc/
spec). Rkt's execution is split into three stages. This approach was taken so that some
of the stages can be replaced by a different implementation if needed. Following are
details on the three stages of Rkt execution:

Stage 0:

This is the first stage of Container execution. This stage does image discovery,
retrieval and sets up filesystem for stages 1 and 2.

Stage 1:

This stage sets up the execution environment for containers like Container
namespace, cgroups using the filesystem setup by stage 0.

Stage 2:

This stage executes the Container using execution environment setup by stage 1
and filesystem setup by stage 0.

As of release 0.10.0, Rkt is still under active development and is not ready
for production.

The CoreOS cluster architecture

Nodes in the CoreOS cluster are used to run critical CoreOS services such as etcd,
fleet, Docker, systemd, flannel, and journald as well as application containers. It is
important to avoid using the same host to run critical services as well as application
containers so that there is no resource contention for critical services. This kind of
scheduling can be achieved using the Fleet metadata to separate the core machines
and worker machines. The following are two cluster approaches.

[26]

https://github.com/appc/spec
https://github.com/appc/spec

Chapter 1

The development cluster

The following image shows a development cluster with three CoreOS nodes:

Development cluster

To try out CoreOS and etcd, we can start with a single-node cluster. With this
approach, there is no need to have dynamic discovery of cluster members. Once this
works fine, we can expand the cluster size to three or five to achieve redundancy.
The static or dynamic discovery approach can be used to discover CoreOS members.
As CoreOS critical services and application containers run in the same cluster, there
could be resource contention in this approach.

The production cluster

The following image shows a production cluster with a three-node master cluster
and five-node worker cluster:

Production cluster

Master cluster Worker cluster

Core0S

nodes

We can have a three or five-node master cluster to run critical CoreOS services

and then have a dynamic worker cluster to run application Containers. The master
cluster will run etcd, fleet, and other critical services. In worker nodes, etcd will be

set up to proxy to master nodes so that worker nodes can use master nodes for etcd
communication. Fleet, in worker nodes, will also be set up to use etcd in master nodes.

[27]

CoreOS Quverview

Docker versus Rkt

As this is a controversial topic, I will try to give a neutral stand here.

History
CoreOS team started the Rkt project because of the following reasons:
* Container interoperability issue needed to be addressed since Docker
runtime was not fully following the Container manifest specification

* Getting Docker to run under systemd had some issues because of Docker
running as the daemon

* Container image discovery and image signing required improvements

* Security model for Containers needed to be improved

APPC versus OCI

APPC (https://github.com/appc/spec) and OCI (https://github.com/
opencontainers/specs) define Container standards.

The APPC specification is primarily driven by CoreOS along with a few other
community members. The APPC specification defines the following;:

* Image format: Packaging and signing
e Runtime: How to execute the Container

* Naming and Sharing: Automatic discovery

APPC is implemented by Rkt, Kurma, Jetpack, and others.

[28]

https://github.com/appc/spec
https://github.com/opencontainers/specs
https://github.com/opencontainers/specs

Chapter 1

OCI (https://www.opencontainers.org/) is an open container initiative project
started in April 2015 and has members from all major companies including Docker
and CoreOS. Runc is an implementation of OCI. The following image shows you
how APPC, OCI, Docker, and Rkt are related:

Container Specification

APPC OCl

Container Runtime

Rkt, Kurma,
Jetpack RUNC
Core0S Docker

Container platform

The current status

Based on the latest developments, there is consensus among the community to
having a common container specification called the Open Container Specification.
Anyone can develop a Container runtime based on this specification. This will
allow Container images to be interoperable. Docker, Rkt, and Odin are examples
of Container runtime.

The original APPC container specification proposed by CoreOS covers four
different elements of container management— packaging, signing, naming (sharing
the container with others), and runtime. As per the latest CoreOS blog update
(https://coreos.com/blog/making-sense-of-standards.html), APPC and OCI
will intersect only on runtime and APPC will continue to focus on image format,
signing, and distribution. Runc is an implementation of OCI and Docker uses Runc.

[29]

https://www.opencontainers.org/
https://coreos.com/blog/making-sense-of-standards.html

CoreOS Quverview

Differences between Docker and Rkt

Following are some differences between Docker and Rkt Container runtimes:

* Docker uses LibContainer APIs to access the Linux kernel Container
functionality while Rkt uses the Systemd-nspawn API to access the Linux
kernel Container functionality. The following image illustrates this:

Core0S

Docker RKt

y \
Libcontainer ~ Systemd-nspawn

Linux namespaces,
Cgroups, Netlink

* Docker requires a daemon to manage Container images, remote APIs,
and Container processes. Rkt is daemonless and Container resources are
managed by systemd. This makes Rkt integrate better with init systems
such as systemd and upstart.

* Docker has a complete platform to manage containers such as Machine,
Compose, and Swarm. CoreOS will use some of its own tools such as
Flannel for the Networking and combines it with tools such as Kubernetes
for Orchestration.

* Docker is pretty mature and production-ready as compared to Rkt. As of
the Rkt release 0.10.0, Rkt is not yet ready for production.

* For the Container image registry, Docker has the Docker hub and Rkt has
Quay. Quay also has Docker images.

CoreOS is planning to support both Docker and Rkt and users will have a choice
to use the corresponding Container runtime for their applications.

[30]

Chapter 1

A workflow for distributed application
development with Docker and CoreOS

The following is a typical workflow to develop microservices using Docker
and CoreOS:

Select applications that need to be containerized. This could be greenfield or
legacy applications. For legacy applications, reverse engineering might be
required to split the monolithic application and containerize the individual
components.

Create a Dockerfile for each microservice. The Dockerfile defines how to
create the Container image from the base image. Dockerfile itself could be
source-controlled.

Split the stateless and stateful pieces of the application. For stateful
applications, a storage strategy needs to be decided.

Microservices need to talk to each other and some of the services should be
reachable externally. Assuming that basic network connectivity between
services is available, services can talk to each other either statically by defining
a service name to IP address and port number mapping or by using service
discovery where services can dynamically discover and talk to each other.

Docker container images need to be stored in a private or public repository
so that they can be shared among development, QA, and production teams.

The application can be deployed in a private or public cloud. An appropriate
infrastructure has to be selected based on the business need.

Select the CoreOS cluster size and cluster architecture. It's better to make
infrastructure dynamically scalable.

Write CoreOS unit files for basic services such as etcd, fleet, and flannel.
Finalize a storage strategy —local versus distributed versus cloud.

For orchestration of smaller applications, fleet can be used. For complex
applications, the Kubernetes kind of Orchestration solution will be necessary.

For production clusters, appropriate monitoring, logging, and upgrading
strategies also need to be worked out.

[31]

CoreOS Quverview

Summary

In this chapter, we covered the basics of CoreOS, Containers, and Docker and

how they help in distributed application development and deployment. These
technologies are under active development and will revolutionize and create a new
software development and distribution model. We will explore each individual topic
in detail in the following chapters. In the next chapter, we will cover how to set up
the CoreOS development environment in Vagrant as well as in a public cloud.

References

APPC specification: https://github.com/appc/spec/blob/master/SPEC.
md

* OCI specification: https://github.com/opencontainers/specs
¢ CoreOS documentation: https://coreos.com/docs/

* Docker documentation: https://docs.docker.com/

Further reading and tutorials

A blog on the minimalist operating system: https://blog.docker.
com/2015/02/the-new-minimalist-operating-systems/ and
https://blog.codeship.com/container-os-comparison/

e Container basics: http://www.slideshare.net/jpetazzo/anatomy-of-a-
container-namespaces-cgroups-some-filesystem-magic-linuxcon

* Anintroduction to Docker: https://www.youtube.com/
watch?v=Q5POuUMHXW-0

* Mesos overview: https://www.youtube.com/watch?v=gVGZHzRjvoO0

* The CoreOS presentation: http://www.slideshare.net/RichardLister/
core-os

* DigitalOcean CoreOS tutorials: https://www.digitalocean. com/
community/tags/coreos?type=tutorials

e Microservices' characteristics: http://martinfowler.com/articles/
microservices.html

¢ The Docker daemon issue: http://www.ibuildthecloud.com/
blog/2014/12/03/is-docker-fundamentally-flawed/ and
https://github.com/ibuildthecloud/systemd-docker

[32]

https://github.com/appc/spec/blob/master/SPEC.md
https://github.com/appc/spec/blob/master/SPEC.md
https://github.com/opencontainers/specs
https://coreos.com/docs/
https://docs.docker.com/
https://blog.docker.com/2015/02/the-new-minimalist-operating-systems/
https://blog.docker.com/2015/02/the-new-minimalist-operating-systems/
https://blog.codeship.com/container-os-comparison/
http://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
http://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://www.youtube.com/watch?v=Q5POuMHxW-0
https://www.youtube.com/watch?v=Q5POuMHxW-0
https://www.youtube.com/watch?v=gVGZHzRjvo0
http://www.slideshare.net/RichardLister/core-os
http://www.slideshare.net/RichardLister/core-os
https://www.digitalocean.com/community/tags/coreos?type=tutorials
https://www.digitalocean.com/community/tags/coreos?type=tutorials
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.ibuildthecloud.com/blog/2014/12/03/is-docker-fundamentally-flawed/
http://www.ibuildthecloud.com/blog/2014/12/03/is-docker-fundamentally-flawed/
https://github.com/ibuildthecloud/systemd-docker

Setting up the CoreOS Lab

CoreOS can be deployed in Bare Metal, VMs, or a cloud provider such as Amazon
AWS or Google GCE. In this chapter, we will cover how to set up the CoreOS
development environment in Vagrant, Amazon AWS, Google GCE, and Bare Metal.
This development environment will be used in all the chapters going forward.

The following topics will be covered in this chapter:

Cloud-config for CoreOS

CoreOS with Vagrant

CoreOS with Amazon AWS

CoreOS with Google GCE

The CoreOS installation on Bare Metal.
The basic debugging of the CoreOS cluster

Different CoreOS deployment options are covered here because of the following
reasons:

Vagrant with Virtualbox is useful for users who don't have a cloud account.

For some users, using a local machine might not be possible as VMs occupy
a lot of resources, and using a cloud-based VM is the best choice in this case.
As AWS and GCE are the most popular cloud providers, I chose these two.

Bare metal installation would be preferable for traditional in-house
data centers.

In this book's examples, I have used one of the three approaches (Vagrant,
AWS, and GCE) based on the simplicity of one of the approaches, better
integration with one of the three approaches, or because of issues with a
particular approach.

[33]

Setting up the CoreOS Lab

Cloud-config

Cloud-config is a declarative configuration file format that is used by many Linux
distributions to describe the initial server configuration. The cloud-init program
takes care of parsing cloud-config during server initialization and configures
the server appropriately. The cloud-config file provides you with a default
configuration for the CoreOS node.

The CoreOS cloud-config file format

The coreos-cloudinit program takes care of the default configuration of the
CoreOS node during bootup using the cloud-config file. The cloud-config file
describes the configuration in the YAML format (http://www.yaml.org/). CoreOS
cloud-config follows the cloud-config specification with some CoreOS-specific
options. The link, https://coreos.com/os/docs/latest/cloud-config.html
covers the details of CoreOS cloud-config.

The main sections of cloud-config
The following are the main sections in the CoreOS cloud-config YAML file:

* CoreOS:
° Etcd2: config parameters for etcd2
° Fleet: config parameters for Fleet
° Flannel: config parameters for Flannel

° Locksmith: config parameters for Locksmith

° Update: config parameters for automatic updates

° Units: Systemd units that need to be started

* ssh_authorized_keys: Public keys for the core user
* hostname: Hostname for the CoreOS system

* users: Additional user account and group details

* write_ files: Creates files with specified user data

* manage etc_hosts: Specifies the contents of /etc/hosts

[34]

http://www.yaml.org/
https://coreos.com/os/docs/latest/cloud-config.html

Chapter 2

A sample CoreOS cloud-config

The following is a sample cloud-config file for a single node CoreOS cluster:

#cloud-config
coreos:
etcd2:
Static cluster
name: etcdserver
initial-cluster-token: etcd-cluster-1
initial-cluster: etcdserver=http://$private ipv4:2380
initial-cluster-state: new
advertise-client-urls: http://$Spublic ipv4:2379
initial-advertise-peer-urls: http://S$private ipv4:2380
listen on both the official ports and the legacy ports
legacy ports can be omitted if your application doesn't depend
on them
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://S$private ipv4:2380,http://Sprivate
ipv4:7001
fleet:
public-ip: $public ipv4
metadata: "role=services"
flannel:
interface: $public ipv4
update:
reboot-strategy: "etcd-lock"
units:
To use etcd2, comment out the above service and uncomment these
Note: this requires a release that contains etcd2
- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: flanneld.service

drop-ins:
- name: 50-network-config.conf
content: |
[Service]
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "Network": "10.1.0.0/16" }'

command: start
- name: docker-tcp.socket
command: start

[35]

Setting up the CoreOS Lab

enable: true

content: |
[Unit]
Description=Docker Socket for the API
[Socket]
ListenStream=2375
Service=docker.service
BindIPv60Only=both
[Installl]
WantedBy=sockets.target

write files:

- path: "/etc/motd"
permissions: "0644"
owner: "root"
content: |
--- My CoreOS Cluster ---

The following are some notes on the preceding cloud-config:

The etcd2 section specifies the configuration parameters for the etcdz2 service.
In this case, we specify parameters needed to start etcd on the CoreOS node.
The public_ipv4 and private ipv4 environment variables are substituted
with the CoreOS node's IP address. As there is only one node, we use the static
cluster definition approach rather than using a discovery token. Based on the
specified parameters, the 20-cloudinit.conf Drop-In Unit gets created in /
run/systemd/system/etcd2.service.d with the following environment
variables:

[Service]
Environment:"ETCD_ADVERTISE_CLIENT_URLS:http://172.17.8.101:2379"

Environment="ETCD INITIAL ADVERTISE PEER
URLS=http://172.17.8.101:2380"

Environment="ETCD_ INITIAL CLUSTER=etcdserver=ht
tp://172.17.8.101:2380"

Environment="ETCD_ INITIAL CLUSTER_STATE=new"
Environment="ETCD_ INITIAL CLUSTER_TOKEN=etcd-cluster-1"

Environment="ETCD LISTEN CLIENT URLS=http://0.0.0.0:2379,ht
tp://0.0.0.0:4001"

Environment="ETCD LISTEN PEER URLS=http://172.17.8.101:2380,ht
tp://172.17.8.101:7001"

Environment="ETCD NAME=etcdserver"

[36]

Chapter 2

* The fleet section specifies the configuration parameters for the fleet
service, including any metadata for the node. The 20-cloudinit.conf
Drop-In Unit gets created in /run/systemd/system/fleet.service.d
with the following environment variables:

[Service]
Environment="FLEET METADATA=role=services"
Environment="FLEET PUBLIC IP=172.17.8.101"

* The update section specifies the update strategy for the CoreOS node.
This gets updated in the node as /etc/coreos/update. conf:

GROUP=alpha
REBOOT_STRATEGY=etcd-lock

e The units section starts etcd2, fleet, and flannel. For flannel, we have
a drop-in unit to update the subnet to be used for containers created with the
Flannel network service. The 50-network-config. conf Drop-in unit gets
created in /etc/systemd/system/flanneld.service.d:

[Service]

ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/config '{
"Network": "10.1.0.0/16" }'

* The docker-tcp.socket unit in the units section is a new systemd unit,
and we specified the service content that allows for the docker daemon to
be exposed through port 2375. The unit will be created in /etc/systemd/
system.

* Thewrite_files section can be used to create any static files. An example
could be a hello text when a user logs in, which we can do with /etc/motd.
The hello message would look as follows:

Last login: Tue Sep 15 14:15:04 2015 from 10.0.2.2
--- My CoreOS Cluster ---
core@corell ~ $

The cloud-config validator

Cloud-config uses the YAML syntax. YAML is a human-readable data serialization
format and uses indents and spaces for alignment. It is better to validate the cloud-
config YAML configuration files before using them. There are two options to
validate the CoreOS cloud-config.

[37]

Setting up the CoreOS Lab

A hosted validator

Use this CoreOS-provided link (https://coreos.com/validate/) to validate
cloud-config.

Here is an example of a valid and invalid cloud-config and the results using
the validator.

Valid cloud-config

As we can see in the following screenshot, the validator says that the following
cloud-configis valid:

Enter Cloud-Config: Validation Results:
#cloud-config Your cloud-config is valid
coreos:

etcd2:

specify the initial size of your cluster with ?size=X
discovery: https://discovery.etcd.io/<token>
multi-region and multi-cloud deployments need to use $publ
advertise-client-urls: http://$private_ipv4:2379,http://$pri
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://$private_ipv4:2380,http://$private_
units:

- name: etcd2.service

command: start
- name: fleet.service

command: start

Invalid cloud-config

Here, we can see that the validator has specified that - is missing in line 14. YAML
uses spaces for the delimiting, so we need to make sure that the number of spaces
is exact:

Enter Cloud-Config: Validation Results:
#cloud-config X Line 13: did not find expected '-' indicator.
coreos:
etcd2: incorrect type for "" (want struct).

specify the initial size of your cluster with ?size=X
discovery: https://discovery.etcd.io/<token>
multi-region and multi-cloud deployments need to use $publ
advertise-client-urls: http://$private_ipv4:2379,http://$pri:
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://$private_ipv4:2380,http://$private_
units:

- name: etcd2.service

13 command: start
name: fleet.service

command: start

[38]

https://coreos.com/validate/

Chapter 2

The cloudinit validator

We can use the coreos-cloudinit --validate option available in CoreOS to
validate the cloud-config. Let's look at the following sample cloud-config:

Now, let's try the same cloud-config with errors. Here, we have | missing in the
content line:

Setting up the CoreOS Lab

We see the following errors when we validate:

Executing cloud-config

There are two cloud-config files that are run as part of the CoreOS bootup:

* System cloud-config

* User cloud-config

System cloud-config is given by the provider (such as Vagrant or AWS) and is
embedded as part of the CoreOS provider image. Different providers such as Vagrant,
AWS, and GCE have their cloud-config present in /usr/share/oem/cloud-
config.yaml. This cloud-config is responsible for setting up the provider-specific
configurations, such as networking, SSH keys, mount options, and so on. The coreos-
cloudinit program first executes system cloud-config and then user cloud-config.

Depending on the provider, user cloud-config can be supplied using either
config-drive or an internal user data service. Config-drive is a universal way

to provide cloud-config by mounting a read-only partition that contains
cloud-config to the host machine. Rackspace uses config-drive to get user
cloud-config, and AWS uses its internal user data service to fetch the user data
and doesn't rely on config-drive. In the Vagrant scenario, Vagrantfile takes care of
copying the cloud-config to the CoreOS VM.

The CoreOS cluster with Vagrant

Vagrant can be installed in Windows or Linux. The following is my development
environment for the Vagrant CoreOS:

* Windows 7: I use mysysgit (https://git-for-windows.github.io/) to get
a Linux-like shell for Windows

* Vagrant1.7.2: https://www.vagrantup.com/downloads.html

e Virtualbox 4.3.28: https://www.virtualbox.org/wiki/Downloads

For a few of the examples in the book, I have used Vagrant to run CoreOS inside a
Linux VM running on top of Windows laptop with Virtualbox.

[40]

https://git-for-windows.github.io/
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

Chapter 2

Steps to start the Vagrant environment

1. Check out the coreos-vagrant code base:

git clone https://github.com/coreos/coreos-vagrant.git

2. Copy the sample user-data and config.rb files in the coreos-vagrant
directory:

cd coreos-vagrant
mv user-data.sample user-data

mv config.rb.sample config.rb

3. Editvagrantfile, user-data, and config.rb based on your need.

Start the CoreOS cluster:

Vagrant up

5. SSH to the individual node:

Vagrant ssh core-<id>

Important files to be modified

The following are important files to be modified along with commonly needed
modifications.

Vagrantfile

Vagrant sets up the VM environment based on the configuration defined in
vagrantfile. The following are certain relevant functionalities in the CoreOS context:

* The version of CoreOS software to be used is specified using update channel.
The version can be specified as stable, beta, and alpha. More details on
CoreOS software versions are covered in Chapter 3, CoreOS Autoupdate.

* CPU and memory for the VM and ports to be exposed from the VM.
* SSH key management.

User-data

The user-data file is essentially the cloud-config file that specifies the discovery
token, environment variables, and list of units to be started by default. Vagrant
copies the cloud-config file to /var/lib/coreos-vagrant/vagrantfile-user-
data inside the VM. The coreos-cloudinit reads vagrantfile-user-data on
every boot and uses it to create the machine's user data file.

[41]

Setting up the CoreOS Lab

Config.rb

The config.rb file specifies the count of CoreOS nodes. This file also provides
you with an option to automatically generate a discovery token. Some options
here overlap with the vagrantfile like image version.

Vagrant — a three-node cluster with dynamic
discovery

Here, we will create a three-node CoreOS cluster with etcd2 and fleet running on each
node and nodes discovering each other dynamically.

Generating a discovery token

When we start a multinode CoreOS cluster, there needs to be a bootstrapping
mechanism to discover the cluster members. For this, we generate a token specifying
the number of initial nodes in the cluster as an argument. Each node needs to be
started with this discovery token. Etcd will use the discovery token to put all the
nodes with the same discovery token as part of the initial cluster. CoreOS runs the
service to provide the discovery token from its central servers.

There are two approaches to generate a discovery token:
From the browser: https://discovery.etcd.io/new?size=3
[Jﬁngcurkcurl https://discovery.etcd.io/new?size=3

The following is a curl example with a generated discovery token. This token needs
to be copied to user-data:

Steps for cluster creation

The following is a cloud-config user data with the updated discovery token
that we generated in the preceding section along with the necessary environment
variables and service units. All three nodes will use this cloud-config:

#cloud-config
coreos:
etcd2:

#generate a new token for each unique cluster from https://
discovery.etcd.io/new

[42]

Chapter 2

discovery: https://discovery.etcd.io/9a6b7af06c8a677b4e5f76ae9ce0
dadc

multi-region and multi-cloud deployments need to use $public_
ipv4

advertise-client-urls: http://Spublic ipv4:2379

initial-advertise-peer-urls: http://$private_ipv4:2380

listen on both the official ports and the legacy ports

legacy ports can be omitted if your application doesn't depend
on them

listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001

fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:
Note: this requires a release that contains etcd2
- name: etcd2.service
command: start
- name: fleet.service
command: start

We need to update num_instances to 3 in config. rb and then perform
vagrant up.

To verify the basic cluster operation, we can check the following output, where we
should see the cluster members.

The following etcdctl member output shows the three cluster members:

The following fleet member output shows the three cluster members:

[43]

Setting up the CoreOS Lab

Vagrant — a three-node cluster with static
discovery

Here, we will create a three-node CoreOS cluster and use a static approach to
mention its cluster neighbors. In the dynamic discovery approach, we need to use
a discovery token to discover the cluster members. Static discovery can be used for
scenarios where access to the token server is not available to cluster members, and
the cluster member IP addresses are known in advance.

Perform the following steps:

1.

First, we need to create three separate instances of the CoreOS Vagrant
environment by performing git clone separately for each node.

The config.rb file must be updated for each node with num_instances set
to one.

Vagrantfile should be updated for each node so that IP addresses are
statically assigned as 172.17.8.101 for core-01,172.17.8.102 for core-
02,and 172.17.8.103 for core-03. IP addresses should be updated based
on your environment.

The cloud-config user data for the first node is as follows:

#cloud-config

coreos:

etcd2:

name: core-01

initial-advertise-peer-urls: http://172.17.8.101:2380
listen-peer-urls: http://172.17.8.101:2380

listen-client-urls: http://172.17.8.101:2379,http://127.0.0.1:2379
advertise-client-urls: http://172.17.8.101:2379
initial-cluster-token: etcd-cluster-1

initial-cluster: core-0l=http://172.17.8.101:2380,core-

02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380

initial-cluster-state: new

fleet:

public-ip: $public_ipv4

flannel:

interface: $public_ipv4

units:

- name: etcd2.service
command: start

- name: fleet.service
command: start

[44]

Chapter 2

The cloud-config user data for the second node is as follows:

#cloud-config
coreos:
etcd2:

name: core-02
initial-advertise-peer-urls: http://172.17.8.102:2380
listen-peer-urls: http://172.17.8.102:2380
listen-client-urls: http://172.17.8.102:2379,http://127.0.0.1:2379
advertise-client-urls: http://172.17.8.102:2379
initial-cluster-token: etcd-cluster-1

initial-cluster: core-0l=http://172.17.8.101:2380,core-
02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380

initial-cluster-state: new
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

The cloud-config user data for the third node is as follows:

#cloud-config
coreos:
etcd2:
name: core-03
initial-advertise-peer-urls: http://172.17.8.103:2380
listen-peer-urls: http://172.17.8.103:2380
listen-client-urls: http://172.17.8.103:2379,http://127.0.0.1:2379
advertise-client-urls: http://172.17.8.103:2379
initial-cluster-token: etcd-cluster-1
initial-cluster: core-0l=http://172.17.8.101:2380,core-
02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380
initial-cluster-state: new
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:

[45]

Setting up the CoreOS Lab

- name: etcd2.service
command: start

- name: fleet.service
command: start

We need to perform vagrant up separately for each of the nodes. We should see
the cluster member list updated in both the etcdctl member list and fleetctl
list-machines outputs.

Vagrant — a production cluster with three
master nodes and three worker nodes

In Chapter 1, CoreOS Overview, we covered the CoreOS cluster architecture. A
production cluster has one set of nodes (called master) to run critical services, and
another set of nodes (called worker) to run application services. In this example, we
create three master nodes running etcd and other critical services and another three
worker nodes. Etcd in the worker nodes will proxy to the master nodes. Worker nodes
will be used for user-created services while master nodes will be used for system
services. This avoids resource contention. The following are the steps needed for

this creation:

* Create a Vagrant three-node cluster for the master and a three-node cluster
for the worker.

* Update Vagrantfile to use non-conflicting IP address ranges between the
master and worker nodes.

* Use the dynamic discovery token approach to create a token for the
three-node clusters and update the cloud-config user data for both the
master and worker nodes to the same token. We have specified the token
size as 3 as worker nodes don't run etcd.

The following is the user data for the master cluster:

#cloud-config
coreos:
etcd2:

discovery: https://discovery.etcd.io/
d49bac8527395e2a7346e694124c8222

advertise-client-urls: http://Spublic ipv4:2379

initial-advertise-peer-urls: http://$private_ipv4:2380

listen on both the official ports and the legacy ports

listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001

[46]

Chapter 2

fleet:
metadata: "role=master"
public-ip: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

The following is the user data for the worker cluster. The discovery token needs to be
the same for the master and worker clusters:

#cloud-config
coreos:
etcd2:

discovery: https://discovery.etcd.io/
d49bac8527395e2a7346e694124c8222

advertise-client-urls: http://Spublic ipv4:2379
initial-advertise-peer-urls: http://$private_ipv4:2380
listen on both the official ports and the legacy ports
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
fleet:
metadata: "role=worker"
public-ip: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

The only difference between the master and worker user data is in the metadata used
for fleet. In this example, we used role as master for the master cluster and role as
worker for the worker cluster.

Let's look at the etcdct1 member list and fleet machine list. The following output
will be the same across all the nodes in the master and worker cluster.

The etcdctl member output is as follows:

[47]

Setting up the CoreOS Lab

The fleet member output is as follows:

The following is the journalctl -u etcd2.service output on worker nodes that
show worker nodes proxying to master nodes:

A CoreOS cluster with AWS

Amazon AWS provides you with a public cloud service. CoreOS can be run on the
VMs provided by AWS. The following are some prerequisites for this setup:

You need an account in AWS. AWS provides you with a one-year trial
account for free.

Create and download a key pair. The key pair is needed to SSH to the nodes.

The AWS interface can be accessed through the AWS console, which is a GUI
interface, or by AWS CLI. AWS CLI (http://aws.amazon.com/cli/) can be
installed in either Windows or Linux.

The following are two approaches of creating a CoreOS cluster with AWS.

AWS - a three-node cluster using
Cloudformation

Cloudformation is an AWS orchestration tool to manage a collection of AWS

resources that include compute, storage, and networking. The link, https://
s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-hvm. template,
has the template file for the CoreOS cluster. The following are some of the key
sections in the template:

* The AMI image ID to be used based on the region
* The EC2 Instance type

[48]

http://aws.amazon.com/cli/
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-hvm.template
https://s3.amazonaws.com/coreos.com/dist/aws/coreos-stable-hvm.template

Chapter 2

* The security group configuration

* The CoreOS cluster size including the minimum and maximum size
to autoscale

* The initial cloud-config to be used

For the following example, I modified the template to use t2.micro instead of

m3 . medium for the instance size. The following CLI can be used to create a three-node
CoreOS cluster using cloudformation. The discovery token in the below command
needs to be updated with the generated token for your case:

aws cloudformation create-stack \
--stack-name coreos-test \
--template-body file://mycoreos-stable-hvm.template \
--capabilities CAPABILITY IAM \
--tags Key=Name, Value=CoreOS \
--parameters \ ParameterKey=DiscoveryURL, ParameterValue="htt
ps://discovery.etcd.i0/925755234ab82clef7bcfbbacdd8c088" \
ParameterKey=KeyPair, ParameterValue="keyname"

The following is the output of the successful stack using aws cloudformation
list-stacks:

"StackSummaries": [

"StackId": "arn:aws:cloudformation:us-west-2:173760706945:stack/coreos-test/d5c35b10-5d43-11e5-af9e-50fa5e75180a",
"StackName":

"CreationTime": "2015-09-17T13:56:03.534Z",

"StackStatus": "CREATE_COMPLETE",

"TemplateDescription": "Core0S on EC2: http://coreos.com/docs/running-coreos/cloud-providers/ec2/"

After the preceding step, we can see that members are getting discovered successfully
by both etcd and fleet.

AWS - a three-node cluster using AWS CLI

The following are some prerequisites to create a CoreOS cluster in AWS using
AWS CLI:

1. Create a token for a three-node cluster from the discovery token service.

2. Set up a security group exposing the ports ssh, icmp, 2379, and 2380. 2379
and 2380 are needed for the etcd2 client-to-server and server-to-server
communication.

3. Determine the AMI image ID using this link (https://coreos.com/os/
docs/latest/booting-on-ec2.html) based on your AWS Zone and update
channel. The latest image IDs for different AWS Zones get automatically
updated in this link.

[49]

https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-ec2.html

Setting up the CoreOS Lab

The following CLI will create the three-node cluster:

aws ec2 run-instances --image-id ami-85ada4b5 --count 3 --instance-type
t2.micro --key-name "yourkey" --security-groups "coreos-test" --user-data
file://cloud-config.yaml

Here, the ami-85ada4bs image ID is from the stable update channel. The coreos-
test security group has the necessary ports that need to be exposed outside.

The following is the cloud-config that I used:

#cloud-config
coreos:
etcd2:
specify the initial size of your cluster with ?size=X

discovery: https://discovery.etcd.io/47460367c9bl5edffeb49de30c
ab9354

advertise-client-urls: http://Sprivate ipv4:2379,http://S$private
ipv4:4001
initial-advertise-peer-urls: http://$private ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://S$private_
ipv4:7001
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

The following output shows the etcd member list and fleet member list with three
nodes in the cluster:

core@ip-172-31-38-139 ~ $ etcdctl member list

315e6f582d93971c: name=63e51b3dd585486d905feB8e64de5e462 peerURLs: ://172.31.38.139:2380 clientURLs=http://172.31.38.139:2379,http://172.31.38.139:4001
[44228d6d8f faf3ff: name=2e6e21c139114d5c90c061c5617c8eef peerURLs: 1//172.31.38.138:2380 clientURLs=http://172.31.38.138:2379,http://172.31.38.138:4001
831e27eeed6546ad: name=d29432a15745407388444d585a5c554a peerURLs=http://172.31.38.137:2380 clientURLs=http://172.31.38.137:2379,http://172.31.38.137:4001
core@ip-172-31-38-139 ~ § fleetctl list-machines

IP METADATA
172.31.38.138
172.31.38.139
172.31.38.137

The same example can be tried from the AWS Console, where we can specify the
options from the GUIL

[50]

Chapter 2

A CoreOS cluster with GCE

Google's GCE is another public cloud provider like Amazon AWS. CoreOS can
be run on the VMs provided by GCE. The following are some prerequisites for
this setup:

* You need a GCE account. GCE provides you with a free trial account for
60 days.

* GCE resources can be accessed using gcloud SDK or GCE GUI Console. SDK
can be downloaded from https://cloud.google.com/sdk/.

* A base project in GCE needs to be created under which all the resources reside.

* A security token needs to be created, which is used for SSH access.

GCE - a three-node cluster using GCE CLI

The following are some prerequisites to create a CoreOS cluster in GCE:

* Create a token for a three-node cluster from a discovery token service.

* Set up a security group exposing the ports ssh, icmp, 2379, and 2380. 2379
and 2380 are needed for the etcd2 client-to-server and server-to-server
communication.

e Thelink, https://coreos.com/os/docs/latest /booting-on-google-
compute-engine.html, gets automatically updated with the latest GCE
CoreOS releases from the stable, beta, and alpha channels. We need to pick
the appropriate image that is needed.

The following CLI can be used to create a three-node CoreOS GCE cluster from the
stable release:

gcloud compute instances create corel core2 core3 --image https://
www.googleapis.com/compute/vl/projects/coreos-cloud/global/images/
coreos-stable-717-3-0-v20150710 --zone us-centrall-a --machine-type nl-
standard-1 --metadata-from-file user-data=cloud-config.yaml

The following is the cloud-config.yaml file that's used:

#cloud-config
coreos:
etcd2:
specify the initial size of your cluster with ?size=X

discovery: https://discovery.etcd.i0/46ad006905£767331a36bb2as4dbd
e3f5

[51]

https://cloud.google.com/sdk/
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html

Setting up the CoreOS Lab

advertise-client-urls: http://Sprivate ipv4:2379,http://$private
ipv4:4001
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

We can SSH to any of the nodes using gcloud compute ssh <nodeids.

The following output shows you that the cluster is created successfully and members
are seen from both etcd and fleet:

core@corel ~ $ etcdctl member list

14ac808c38008fb7: name=8caB8be@4b8640573195e733c402cccad peerURLs=http://10.240.82.102:2380 clientURLs=http://10.240.82.102:2379,http://10.240.82.102:4001
600a6adb8487263a: name=e93455e373efb5ccb8d3d7b0702b6e58 peerURLs=http://10.240.250.187:2380 clientURLs=http://10.2460.250.187:2379,http://10.240.250.187:4001
6221bd73940e0ca3: name=b17227b7a289e98226caa0d232c61158 peerURLs=http://10.240.42.201:2380 clientURLs=http://10.240.42.201:2379,http://10.240.42.201:4001

core@corel ~ $ fleetctl list-machines
IMACHINE IP METADATA
8ca8be04. . . 10.240.82.102

b17227b7. .. 10.240.42.201

[e93455e3. . . 10.240.250.187 -

The CoreOS cluster can also be created using the GCE Console GUI interface.

CoreOS installation on Bare Metal
There are two approaches to install CoreOS on Bare Metal:

* CoreOS ISO image

* PXE or IPXE boot

The steps below covers the approach to install CoreOS on Bare Metal using
an ISO image.

I installed using a CoreOS ISO image on the Virtualbox CD drive. The procedure
should be the same if we burn the ISO image on CD and then install on Bare Metal.

The following is summary of the steps:

1. Download the required ISO image based on stable, beta, and alpha versions
from https://coreos.com/os/docs/latest/booting-with-iso.html.

2. Start a new Linux machine in Virtualbox with the required CPU, memory,
and network settings, and mount the ISO image on the IDE drive.

[52]

https://coreos.com/os/docs/latest/booting-with-iso.html

Chapter 2

Create an SSH key to log in to the CoreOS node using ssh-keygen.

Start the Linux machine and then use the CoreOS script to install CoreOS on
the hard disk with the necessary cloud-config. The cloud-config used here
is similar to cloud-config is used in previous sections, SSH key needs to be
manually updated.

5. Remove the CD drive from Virtualbox and reboot. This will load the CoreOS
image from the hard disk.

I have used the stable ISO image version 766.4.0.

The following screenshot shows you the initial storage mounting on Virtualbox with
the ISO image on the IDE drive:

@ Storage

Controller: IDE

IDE Secondary Master: [CD/DVD] coreos_production_iso_image.iso (190.00 MB)
Controller: SATA

SATA Port 0: coreosdev.vdi (Normal, 12.00 GB)

The easiest way to get cloud-config is by wget. When we boot from the CD, we
cannot cut and paste as there is no Windows manager. The easiest way to get cloud-
config to the node is by having cloud-config in a hosting location and fetch it using
wget. The SSH key needs to be updated appropriately.

wget https://github.com/smakam/coreos/raw/master/single-node-cloudconfig.
yml

The installation of CoreOS to the hard disk can be done using the CoreOS-provided
script:

sudo coreos-install -d /dev/sda -C stable -c ~/cloud-config.yaml

After successful installation, we can shut down the node and remove the IDE drive

so that the bootup can happen from the hard disk. The following screenshot shows
you the storage selection in Virtualbox to boot using the hard disk:

@ Storage

Controller: IDE
IDE Secondary Master: [CD/DVD] Empty
Controller: SATA
SATA Port 0: coreosdev.vdi (Normal, 12.00 GB)

[53]

Setting up the CoreOS Lab

After the node is booted up, we can SSH to the node as we have already set up the
SSH key. The following output shows you the CoreOS version on Bare Metal:

core@ip-172-31-26-79 ~ § fleetctl ssh b5ce6ddfe76243789dd742d5f18fd052 cat /etc/machine-id

b5ce6ddfe76243789dd742d5f18fde52

Basic debugging

The following are some basic debugging tools and approaches to debug issues in the
CoreOS cluster.

journalctl

Systemd-Journal takes care of logging all the kernel and systemd services.
Journal log files from all the services are stored in a centralized location in /var/
log/journal. The logs are stored in the binary format, and this keeps it easy to
manipulate to different formats.

Here are some common examples that shows how to use Journalctl:

* Journalctl: This lists the combined journal log from all the sources.
* Journalctl -u etcd2.service: This lists the logs from etcd2 . service.

* Journalctl -u etcd2.service -f: This lists the logs from etcd2. service
like tail -f format.

* Journalctl -u etcd2.service -n 100: This lists the logs of the last
100 lines.

* Journalctl -u etcd2.service -no-pager: This lists the logs with no
pagination, which is useful for search.

* Journalctl -p err -n 100: This lists all 100 errors by filtering the logs.

* journalctl -u etcd2.service --since today: This lists today's logs of
etcd2.service.

* journalctl -u etcd2.service -o json-pretty: This lists the logs of
etcd2. service in JSON-formatted output.

systemctl

The systemctl utility can be used for basic monitoring and troubleshooting of
the systemd units.

[54]

Chapter 2

The following example shows you the status of the systemdunit docker.service:

We can stop and restart services in case there are issues with a particular service.

The following command will restart docker.service:

sudo systemctl restart docker.service

When a service file is changed or environment variables are changed, we need to
execute the following command to reload configuration before restarting the service
for the changes to take effect:

sudo systemctl daemon-reload

The following command is useful to see the units that have failed:

Systemctl --failed

Cloud-config

Earlier, we looked at how the cloud-config YAML file can be prevalidated. In case
there are runtime errors, we can check it with journalctl -b EXE=/usr/bin/
coreos-cloudinit.

If we make changes to the cloud-config user data after the initial node setup,
we can perform the following steps to activate the new configuration:

* Perform vagrant reload --provision to getthe new configuration.

¢ The new cloud-config user data will be in /var/1ib/coreos-vagrant as
vagrantfile-user-data. Perform sudo coreos-cloudinit --from-file
vagrantfile-user-data to update the new configuration.

[55]

Setting up the CoreOS Lab

Logging from one CoreOS node to another

Sometimes, it is useful to SSH to other nodes from one of the CoreOS nodes in the
cluster. The following set of commands can be used to forward the SSH agent that
we can use to SSH from other nodes. More information on SSH agent forwarding

can be found at http://rabexc.org/posts/using-ssh-agent.

eval “ssh-agent”
ssh-add <key> (Key is the private key)
ssh -i <key> core@<ip> -A (key is the private key)

After this, we can either SSH to the machine ID or a specific Fleet unit, as shown in
the following screenshot:

core@ip-172-31-26-79 ~ $ fleetctl ssh b5ce6ddfe76243789dd742d5f18fde52 cat /etc/machine-id

b5ce6ddfe76243789dd742d5f18fd052

Note: SSH agent forwarding is not secure and should be used only
e— to debug.

Important files and directories

Knowing these files and directories helps with debugging the issues:

* systemd unit file location - /usr/lib64/systemd/system.
e Network unit files - /usr/1ib64/systemd/network.

* User-written unit files and drop-ins to change the default parameters - /
etc/systemd/system. Drop-ins for specific configuration changes can be
done using the configuration file under the specific service directory. For
example, to modify the fleet configuration, create the fleet.service.d
directory and put the configuration file in this directory.

e User-written network unit files - /etc/systemd/network.

* Runtime environment variables and drop-in configuration of individual
components such as etcd and fleet - /run/systemd/system/.

* The vagrantfile user data containing the cloud-config user data used with
Vagrant - /var/lib/coreos-vagrant.

* The systemd-journaldlogs - /var/log/journal.

* cloud-config.yaml associated with providers such as Vagrant, AWS, and
GCE- /usr/share/oem. (CoreOS first executes this cloud-config and then
executes the user-provided cloud-config.)

[56]

http://rabexc.org/posts/using-ssh-agent

Chapter 2

Release channel and update strategy - /etc/coreos/update.conf.

The public and private I’ address (COREOS_PUBLIC_IPV4 and COREOS_
PRIVATE I PV4) - /etc/environment.

The machine ID for the particular CoreOS node - /etc/machine-id.

The flannel network configuration - /run/flannel/.

Common mistakes and possible solutions

For CoreOS on the cloud provider, there is a need to open up ports 2379 and
2380 on the VM. 2379 is used for etcd client-to-server communication, and
2380 is used for etcd server-to-server communication.

A discovery token needs to be generated every time for each cluster and
cannot be shared. When a stale discovery token is shared, members will not
be able to join the etcd cluster.

Running multiple CoreOS clusters with Vagrant simultaneously can cause
issues because of overlapping IP ranges. Care should be taken so that
common parameters such as the IP address are not shared across clusters.

Cloud-config YAML files need to be properly indented. It is better to use
the cloud-config validator to check for issues.

When using discovery token, CoreOS node needs to have Internet access to
access the token service.

When creating a discovery token, you need to use the size based on the count
of members and all members need to be part of the bootstrap. If all members
are not present, the cluster will not be formed. Members can be added or
removed later.

Summary

In this chapter, we covered the basics of CoreOS cloud-config and how to set up the
CoreOS development environment with Vagrant, Amazon AWS, Google GCE, and
Bare Metal. We also covered some basic debugging steps for commonly encountered
issues. As described in this chapter, it is easy to install CoreOS in the local data center
or Cloud environments. It is better to try out deployment in a development cluster
before moving to production environments. In the next chapter, we will cover how
the CoreOS automatic update works.

[57]

Setting up the CoreOS Lab

References

‘Vagrantunﬂaﬂahon,https //coreos.com/os/docs/latest/booting-on-
vagrant .html

e AWS installation: https://coreos.com/os/docs/latest/booting-on-
ec2.html

* GCE installation: https://coreos.com/os/docs/latest/booting-on-
google-compute-engine.html

* Bare Metal installation: https://coreos.com/os/docs/latest/
installing-to-disk.html

e CoreOS CloudInit: https://github.com/coreos/coreos-cloudinit

Further reading and tutorials

Introduction to the cloud-config format: https://www.digitalocean.com/
community/tutorials/an-introduction-to-cloud-config-scripting

¢ CoreOS with AWS Cloudformation: http://blog.michaelhamrah.
com/2015/03/managing-coreos-clusters-on-aws-with-
cloudformation/

e The CoreOS bare-metal installation: http://stevieholdway.tumblr.
com/post/90167512059/coreos-bare-metal-iso-install-tutorial
and http://linuxconfig.org/how-to-perform-a-bare-metal-
installation-of-coreos-linux

* Using journalctl to view systemd logs: https://www.digitalocean.
com/community/tutorials/how-to-use-journalctl-to-view-and-
manipulate-systemd-logs

[58]

https://coreos.com/os/docs/latest/booting-on-vagrant.html
https://coreos.com/os/docs/latest/booting-on-vagrant.html
https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html
https://coreos.com/os/docs/latest/installing-to-disk.html
https://coreos.com/os/docs/latest/installing-to-disk.html
https://github.com/coreos/coreos-cloudinit
https://www.digitalocean.com/community/tutorials/an-introduction-to-cloud-config-scripting
https://www.digitalocean.com/community/tutorials/an-introduction-to-cloud-config-scripting
http://blog.michaelhamrah.com/2015/03/managing-coreos-clusters-on-aws-with-cloudformation/
http://blog.michaelhamrah.com/2015/03/managing-coreos-clusters-on-aws-with-cloudformation/
http://blog.michaelhamrah.com/2015/03/managing-coreos-clusters-on-aws-with-cloudformation/
http://stevieholdway.tumblr.com/post/90167512059/coreos-bare-metal-iso-install-tutorial
http://stevieholdway.tumblr.com/post/90167512059/coreos-bare-metal-iso-install-tutorial
http://linuxconfig.org/how-to-perform-a-bare-metal-installation-of-coreos-linux
http://linuxconfig.org/how-to-perform-a-bare-metal-installation-of-coreos-linux
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs

CoreOS Autoupdate

One of the missions of CoreOS is to keep the operating system as secure as possible.
One way to achieve this is to keep the OS up to date with the latest patches. The
CoreOS automatic update scheme provides you with a secure, reliable, and robust
mechanism that provides pushed updates. CoreOS provides enough controls to the
user to control the update based on their environment.

This chapter will cover the following topics:

* The CoreOS release cycle

* The partition scheme used in CoreOS

* The CoreOS automatic update infrastructure
* The configuration of the CoreOS update

* The CoreUpdate commercial service from CoreOS

All examples from this chapter will use CoreOS in the AWS environment.
There is a section on Vagrant CoreOS update where Vagrant-specific CoreOS
updates are mentioned.

The CoreOS release cycle

Alpha, Beta, and Stable are release channels within CoreOS. CoreOS releases progress
through each channel in this order: Alpha->Beta->Stable. An Alpha channel is a
development channel. An Alpha release in the Alpha channel gets promoted to

the Beta channel after reaching defined quality level and becomes a Beta release.

A Beta release in the Beta channel gets promoted to the Stable channel when it gets

to production quality and becomes a Stable release. All releases get started as Alpha,
but the promotion to Beta and Stable happens on the basis of testing.

[59]

CoreOS Autoupdate

The CoreOS release page reflects the latest Alpha, Beta, and Stable releases
(https://coreos.com/releases/). The following are the latest releases as of
August 19, 2015:

b 766.3.0 Beta 766.4.0 Alpha 8
le channel should be used by The Beta channel consists of promoted Alpha The Alpha channel closely tracks curre
on clusters. Versions of CoreOS are releases. Mix a few beta machines into your development work and is released freq
sted within the Beta and Alpha production clusters to catch any bugs specific The newest versions of s an
before being promoted. to your hardware or configuration. will be available for testing.

4.1.6 4.1.7 4.2.0

1.7.1 1.7.1 1.8.2

The major version number (for example, 766 in 766.3.0) is the number of days from
July 13, 2013, which was the CoreOS epoch.

As CoreOS is composed of multiple system components such as etcd, fleet, flannel,
Docker, and RKT, every release will have a particular version of the system
components based on the stability of individual components. For example, the
following are the versions of the critical system components as of CoreOS version
808.0.0:

808.0.0 September 17,2015 420 1.8.2 0.4.9,2.1.2 0.11.5

The following command can be used to check the CoreOS version in the node.
The node here is running image 723 .3 .0, which was a stable release at that point:

[60]

https://coreos.com/releases/

Chapter 3

The following command can be used to check the CoreOS Linux kernel version:

The following are versions of critical system components in CoreOS release 723.3.0:

core@ip-172-31-39-192 ~ $§ etcd2 --version
etcd Version: 2.1.2

Git SHA: ff8dlec

Go Version: gol.4.2

Go 0S/Arch: linux/amd64
core@ip-172-31-39-192 ~ $ fleet --version
fleetd version 0.10.2
core@ip-172-31-39-192 ~ $ docker --version
Docker version 1.7.1, build 2c2c52b-dirty
core@ip-172-31-39- ~ § rkt version

rkt version 0.7.0

appc version 0.6.1

The partition table on CoreOS

The partition table shows you the disk partitions maintained by the OS. The
following image shows you a partition table in one of the CoreOS cluster nodes
using the sudo cgpt show /dev/xvda command:

core@ip-172-31-23-160 ~ $ sudo cgpt show /dev/xvda
start size part contents

1

1

32
262144

266240 4096

270336 2097152

2367488 2097152

4464640 262144

4726784 131072

4857856

11919327

16777183
16777215

Hybrid MBR

Pri GPT header

Pri GPT table

Label: "EFI-SYSTEM"

Type: EFI System Partition

UUID: FACA3A6B-9E78-4F26-9255-5C88636A0B04
Attr: Legacy BIOS Bootable

Label: "BIOS-BOOT"

Type: BIOS Boot Partition

UUID: EDA64B1B-ASBE-4F8C-89B0-55D2CC32845C
Label: "USR-A"

Type: Alias for coreos-rootfs

UUID: 7130C94A-213A-4E5A-8E26-6CCE9662F132
Attr: priority=1 tries=0 successful=1
Label: "USR-B"

Type: Alias for coreos-rootfs

UUID: E®3DD35C-7C2D-4A47-B3FE-27F15780A57C
Attr: priority=0 tries=0 successful=0
Label: "OEM"

Type: Alias for linux-data

UUID: E2096628-41E8-4ACB-A15E-45C1FFOD9132
Label: "OEM-CONFIG"

Type: Core0S reserved

UUID: 2F78D549-025E-4412-B46A-A879EC644531
Label: "ROOT"

Type: Core0OS auto-resize

UUID: 7D1BODC8-00E2-40B6-8AFA-A15956FC2913
Sec GPT table

Sec GPT header

[61]

CoreOS Autoupdate

The following screenshot shows the df -k output in the same node:

core@ip-172-31-23-160 ~ $ df -k
i 1K-blocks Used Available Use% Mounted on
497168 [¢] 497168 0% /[dev
510100 [¢] 510100 0% /dev/shm
510100 256 509844 1% /run
510100 0 510100 0% /sys/fs/cgroup

5706380 20000 5410052 1% /

1007760 354076 601668 38% [usr

510100 0 510100 0% /tmp

510100 0 510100 0% /media

110576 _ 60 101344 1% [usr/share/oem

The following are some notes on the preceding two outputs:

There are nine partitions in total. The key partitions are USR-A, USR-B, OEM,
and ROOT.

System files are in the USR partition, user files are in the ROOT partition, and
provider-related files are in the OEM partition.

The USR partition is mounted as read-only, and the ROOT partition is mounted
as read-write.

The rROOT partition gets mounted as /, the USR-A or USR-B partition gets
mounted in /usr, and the OEM partition gets mounted in /usr/share/ocem.

There are two /usr partitions, USR-A and USR-B. By default, the system
comes up with the Usr-a partition. When the CoreOS update is done, the
root partition is downloaded to USR-B and, using persistent flags such

as priority, tries, and successful, the CoreOS bootloader selects the
appropriate USR partition on bootup. In the preceding example, the USR-A
partition has priority set to 1 and the Usr-B partition has priority set to o,
and the CoreOS bootloader picks USR-A.

I did a manual update of OS and the following output shows the active partition
being USR-B with priority for USrR-B being higher. The manual update of the CoreOS
system can be done using the command specified in the following Update examples
section. The /usr directory is now pointing to /dev/xvda4, which is USR-B, and it
was earlier pointing to /dev/xvda3, which was USR-A:

[62]

Chapter 3

core@ip-172-31-39-190 ~ $ sudo cgpt show /dev/xvda
size part contents
1 Hybrid MBR
1 Pri GPT header
32 Pri GPT table
262144 Label: "EFI-SYSTEM"
Type: EFI System Partition
UUID: FACA3A6B-9E78-4F26-
Attr: Legacy BIOS Bootable
266240 4096 Label: "BIOS-BOOT"
Type: BIOS Boot Partition
UUID: EDA64B1B-A9BE-4F8C-89B0-55D2CC32845C
270336 2097152 Label: "USR-A"
Type: Alias for coreos-rootfs
UUID: 7130C94A-213A-4E5A-8E26-6CCES662F132
Attr: priority=1 tries=0 successful=1
2367488 2097152 Label: "USR-B"
Type: Alias for coreos-rootfs
UUID: EO3DD35C-7C2D-4A47-B3FE-27F15780A57C
Attr: priority=2 tries=0 successful=l
4464640 262144 Label: "OEM"
Type: Alias for linux-data
UUID: E2096628-41E8-4ACB-A15E-45C1FFOD9132
4726784 131072 Label: "OEM-CONFIG"
Type: Core0S reserved
UUID: 2F78D549-025E-4412-B46A-A879EC644531
4857856 11919327 Label: "ROOT"
Type: Core0S auto-resize
UUID: 7D1BODC8-00E2-40B6-8AFA-A15956FC2913
16777183 32 Sec GPT table
16777215 1 Sec GPT header
core@ip-172-31-39-190 ~ $ df -k
Filesystem 1K-blocks Used Available Use% Mounted on
496552 [¢] 496552 0% /dev
509796 [¢] 509796 0% /dev/shm
509796 260 509536 1% /run
509796 0 509796 0% /sys/fs/cgroup
5706380 20880 5409172 1% /
1007760 398616 557128 42% [usr
130798 58258 72540 45% /boot
509796 [¢] 509796 0% /media
509796 [¢] 509796 0% /tmp
/dev/xvda6 110576 _ 60 101344 1% /usr/share/oem

CoreOS automatic update

CoreOS relies on the automatic update mechanism to keep the OS up to date.
The following are some aspects of the CoreOS update:

* The CoreOS update mechanism is based on Google's open source Omaha
protocol (https://code.google.com/p/omaha/) that is used in the
Chrome browser.

* Either CoreOS public servers or private servers can be used as an image
repository.

* The dual partition scheme is used where an update is done to the secondary
partition while the primary partition is not touched. On reboot, there is a
binary swap from the primary to the secondary partition. This keeps the
update scheme robust. If there are issues with the new image, CoreOS
automatically rolls back to the working image in the other partition.

* Images are signed and verified on each update.

[63]

https://code.google.com/p/omaha/

CoreOS Autoupdate

The following screenshot shows you the steps for the automatic update:

CoreQS Systemn @ Check for update

@ Check for lock

Update-
Engine
Service

Locksmith

eted Service

Y

@ Lock available

A

Partition Partition
A B

Update and reboot services

There are two critical services controlling update and reboot in CoreOS. They are
update-engine.service and locksmithd.service.

Update-engine.service

Update-engine.service takes care of periodically checking for updates from the
appropriate release channel specified. A default check for update is done 10 minutes
after reboot or at one-hour intervals.

The following output shows you the status of update-engine.service:

core@ip-172-31-23-160 ~ $ systemctl status update-engine.service
@ update-engine.service - Update Engine
Loaded: loaded (/usr/lib64/systemd/system/update-engine.service; disabled; vendor preset: disabled)
Active: active (running) since Sat 2015-09-19 06:46:19 UTC; 13min ago
Main PID: 477 (update_engine)

Memory: 7.3M
CPU: 88ms
CGroup: /system.slice/update-engine.service
L477 Jusr/sbinfupdate _engine -foreground -logtostderr

The release channel is specified in /etc/coreos/update.cont. In the following
node, the release channel is selected as stable. The release channel is derived from
cloud-config:

core@ip-172-31-23-160 ~ $ cat /etc/coreos/update.conf

GROUP=stable

[64]

Chapter 3

Update-engine.service takes care of updating the appropriate partition, USR-A or
USR-B. The currently used partition is not touched.

The following command can be executed to trigger a manual update:

update engine client -check for update

Debugging update-engine.service

Logs for the update service can be checked using journalctl -u update-engine.
service. From the logs, we can identify the Omaha protocol request and response,
and debugging can be done using error codes in the response.

Locksmithd.service

Locksmithd. service takes care of rebooting the CoreOS node using the selected
reboot strategy. Locksmithd.service runs as a daemon.

The following output shows you the status of locksmithd.service:

core@ip-172-31-23-160 ~ § systemctl status locksmithd.service

@ locksmithd.service - Cluster reboot manager
Loaded: loaded (/usr/1lib64/systemd/system/locksmithd.service; disabled; vendor preset: disabled)
Active: active (running) since Sat 2015-09-19 06:46:20 UTC; 29min ago

Main PID: 507 (locksmithd)

Memory: 6.2M (limit: 32.0M)
CPU: 18ms
CGroup: /system.slice/locksmithd.service
L 5e7 Jusr/lib/locksmith/locksmithd

Locksmith strategy

The following are the four configurable strategies for the CoreOS node reboot after a
new image update.

The etcd-lock scheme

In this scheme, the reboot is done after first taking a lock from etcd. In a multinode
cluster, this works out really well as it prevents all the nodes from rebooting at the
same time and maintains cluster integrity. We can control the number of nodes that
can reboot together using the lock count mechanism. The lock max count specifies the
number of nodes that can acquire a lock simultaneously. In a three-node cluster, we
need to limit the lock max count to 1, but in a five-node cluster, we can keep the lock
max count up to 2, which allows a maximum of two nodes to acquire lock and reboot
simultaneously.

[65]

CoreOS Autoupdate

The following example shows you how the available lock count varies when we do
the locking and unlocking operation:

core@ip-172-31-23-160 /etc/locksmithd § locksmithctl status
Available: 1

Max: 1

core@ip-172-31-23-160 /etc/locksmithd § locksmithctl lock
core@ip-172-31-23-160 /etc/locksmithd § locksmithctl status
Available: 0

2a3dc076d4784e64ad09c928825¢0810

core@ip-172-31-23-160 /etc/locksmithd § locksmithctl unlock
core@ip-172-31-23-160 /etc/locksmithd § locksmithctl status
Available: 1

Reboot

In this scheme, the node is rebooted immediately without taking a lock from the
cluster. This is useful in scenarios where the upgrade is manually controlled by the
administrator.

Best-effort

In this scheme, it is first checked whether etcd is running. If etcd is running, the
etcd lock is acquired and then the rebooting is done. Otherwise, reboot is done
immediately. This is a variation of the etcd-lock scheme mentioned before.

Off

This causes locksmithd to exit and do nothing. This option should not be chosen
unless the administrator wants to control the upgrades with great precision.

Groups

Locksmith groups were introduced in locksmithd version 0.3.1. With groups, we

can group a set of CoreOS nodes and locking will be applicable to this group. For
example, let's say that we have a five-node cluster and two nodes are running load
balancers. If we set the lock-max-count to 2, it is possible that both the nodes running
load balancers can reboot at the same time and we can lose that service during this
period. To avoid this issue, we can set a different lock max count for the default
group and the 1b group.

[66]

Chapter 3

In the example shown in following screenshot, we have set the lock count of 2 for the
default group and lock count of 1 for the 1b group. Groups can be defined as part

of starting the locksmithd service. To put a CoreOS node in a locksmith group,
we need to start locksmithd with the - -group option or set the LOCKSMITHD GROUP
environment variable and restart the locksmithd service:

core@ip-172-31-33-2 /etc/coreos $ locksmithctl status

--group=1lb status

core@ip-172-31-33-2 Jetc/coreos $ locksmithctl set-max 2
0ld-Max: 1

Max: 2

core@ip-172-31-33-2 /etc/coreos $ locksmithctl status

--group=1lb status
core@ip-172-31-33-2 /etc/coreos $ locksmithctl lock

core@ip-172-31-33-2 /etc/coreos $ locksmithctl status

d83a37e66ecf47e7baa340106d3a7b83
core@ip-172-31-33-2 [etc/coreos $ locksmithctl --group=lb status

Locksmithctl

Locksmithctl is a frontend CLI to control locksmith. Using this, we can get the status
of locksmith service, lock and unlock groups, set the 1ock max count, and so on.

Debugging locksmithd.service

Logs for this service can be checked with journalctl -u locksmithd.service.

Setting update options

CoreOS update options can be set using either cloud-config or by changing
configuration files manually. Using cloud-config, update options are configured as
part of the node configuration after reboot. With the manual approach, we need to
start the appropriate update services for changes to take effect. The manual approach
is used mainly to debug.

[67]

CoreOS Autoupdate

Using cloud-config

The following is a sample cloud-config with the release channel group set to
stable and the locksmith reboot strategy set to etcd-1lock. (The default server
used is https://public.update.core-os.net/, so this is not specified here.)

#cloud-config
coreos:
etcd2:
specify the initial size of your cluster with ?size=X
discovery: https://discovery.etcd.io/
eb32al1397bd087£84e65ab802b6aa2f7

advertise-client-urls: http://Sprivate ipv4:2379,http://S$private_
ipv4:4001

initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001

update:
reboot-strategy: "etcd-lock"
group: "stable"
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

After starting the cluster using the preceding cloud-config, we can check
whether /etc/coreos/update. conf is updated with the correct parameters:

core@ip-172-31-23-162 ~ $ cat /etc/coreos/update.conf
GROUP=stable

REBOOT_STRATEGY=etcd-lock
core@ip-172-31-23-162 ~ $ sudo systemctl restart locksmithd.service

Manual configuration

The default reboot strategy is best-effort. In the following node, the reboot
strategy is not specified, so it is using best-effort:

core@ip-172-31-23-162 ~ $ cat /etc/coreos/update.conf

GROUP=stable

[68]

https://public.update.core-os.net/

Chapter 3

Let's change the reboot strategy to reboot in /etc/coreos/update.conf. We need
to restart locksmithd.service:

core@ip-172-31-34-115 /etc/coreos $ cat update.conf
GROUP=stable

REBOOT_STRATEGY=reboot
core@ip-172-31-34-115 [etc/coreos $ sudo systemctl restart locksmithd.service

As shown in the following logs, the reboot strategy is taking effect:

core@ip-172-31-34-115 /etc/coreos $ journalctl -u locksmithd.service -n 5 --no-pager

-- Logs begin at Sat 2015-09-19 10:15:38 UTC, end at Sat 2015-09-19 10:47:30 UTC. --

Sep 19 10:46:50 ip-172-31-34-115.us-west-2.compute.internal systemd[1]: Stopping Cluster reboot manager...

Sep 19 10 0 ip-172-31-34-115.us-west-2.compute.internal locksmithd[580]: Received interrupt/termination signal - shutting down.

Sep 19 10 0 1p-172-31-34-115.us-west-2.compute.internal systemd[1]: Started Cluster reboot manager.

Sep 19 10:46:50 ip-172-31-34-115.us-west-2.compute.internal systemd[1]: Starting Cluster reboot manager...

Sep 19 10:46:50 ip-l72-31-34-115.us-&est-z.compute.'Ln\:erna'l. locksmithd[925]: locksmithd starting currentOperation="UPDATE_STATUS_IDLE" strategy="reboot"

Update examples

We can do updates within the same release channel or across release channels. If we
do updates in the same release channel, the node gets updated to the latest version in
that release channel. If we do updates across release channels, the node gets updated
to the latest version in the new release channel.

Updating within the same release channel

Let's look at the initial version and reboot strategy. The node is running stable
version 723.3.0 as shown in the following screenshot:

core@ip-172-31-34-117 ~ § cat /etc/os-release

VERSION=723.3.0
VERSION_ID=723.3.0
BUILD_ID=
PRETTY_NAME="Core0S 723.3.0"

ANSI_COLOR="1;32"

HOME_URL="https://coreos.com/"
BUG_REPORT_URL="https://github.com/coreos/bugs/issues"
core@ip-172-31-34-117 ~ $§ cat /etc/coreos/update.conf
GROUP=stable

REBOOT_STRATEGY=etcd-lock _

Looking at the CoreOS releases page, the latest STABLE release is 766.3.0. If we do an
update on the STABLE channel, the node should get updated to 766.3.0.

Let's trigger the update manually with the following command:

update engine client -check for update

[69]

CoreOS Autoupdate

If we don't trigger the update manually, update-engine will still do the update
based on its periodic checks.

The following logs from update-engine.service show the Omaha request to the
CoreOS public imaging server:

Sep 20 03:47:48 ip-172-31-34-117.us-west-2.compute. internal update_engine[580]: [0920/034748:INFO:update_check_scheduler.cc(82)] Next update check in 49mi7s
est-2.compute.internal update_engine[580]: [6920/643236:INFO:dbus_service.cc(57)] Attempting interactive update
est-2.compute. internal update_engine[580]: [0920/643236:INFO:update_attempter.cc(256)] New update check requested

36 ip-172-31-34-117.us-west-2.compute. internal update_engine[580]: [6920/0643236:INFO:omaha_request_params.cc(60)] Current group set to stable

36 ip-172-31-34-117.us-west-2.compute. internal update_engine[580]: [0920/643236:INFO:update_attempter.cc(475)] Already updated boot flags. Skipping.

-31-34-117.us-West-2. compute. internal update_engine[580]: [0920/043236:INFO:update_attempter.cc(658)] Scheduling an action processor start
-117.us-west-2.conpute. internal update_engine[580]: [0920/643236:INFO:action_processor.cc(36)] ActionProcessor::StartProcessing: OmahaRequestAction
-117.us-West-2.compute. internal update_engine[580]: [6920/043236:INFO:omaha_request_action.cc(257)] Posting an Omaha request to https://public.update.cor

: [0920/843236: INFO:omaha_request_action.cc(258)] Request: <?xml version="1.0" encoding="UTF-8"?>
: <request protocol="3.0" version="Core0SUpdateEngine-0.1 updaterversion="Core0SUpdateEngine-0.1.0

Sep 20 04:32:36 ip-172-31-34-117.us-west-2.compute.internal update_engine[580]: <os version="Chateau" platform="Core0S" sp="723.3.0_x86_64"></0os>

The following logs from update-engine show the Omaha response from the CoreOS
public server giving the image with version 766.3.0:

2:36 ip-172-31-34-117.us-west-2.compute. internal update_engine[580]: <response protocol="3.0" server="update.core-os.net">
36 ip-172-31-34-117.us-west-2.compute.internal update_engine[580]: <daystart elapsed_secon laystart>
36 ip-172-31-34-117.us-west-2.compute. internal update_engine[580]: <app appid="e96281a6-d1af-4bde-9aba-97b76e56dc57" status="ok">
36 ip-172- -117.us-west-2.compute.internal update_engine[580]: <updatecheck status: 1
-117.us-west-2. compute. internal update_engine[580]: <urls>
36 ip-172-31-34-117.us-west-2.compute. internal update_engine[588]: <url codebase="https: //commondatastorage.googleapis.con/update-storage. core-os.net/and64-usr/766.3.0/

:36 ip-172-31-34-117.us-west-2. conpute. internal update_engine[580]: </urls>

After the update is successful, the following message appears on the node from
locksmithd.service, indicating that the node will be updated with the new image.
The new image is updated to the non-active USR partition:

Broadcast message from locksmithd at 2015-09-20 04:40:41.819947382 +0000 UTC:
System reboot in 5 minutes!

The following is the node version after reboot. We can see that the version is
upgraded successfully to 766.3.0:

core@ip-172-31-34-117 ~ $ cat /etc/os-release
NAME=CoreQS

ID=coreos

VERSION=766.3.0

VERSION_ID=766.3.0

BUILD_ID=

PRETTY_NAME="Core0S 766.3.0"

IANSI_COLOR="1;32"

HOME_URL="https://coreos.com/"
BUG_REPORT_URL="https://github.com/coreos/bugs/issues"

[70]

Chapter 3

Updating from one release channel to another

We can switch release channels by updating /etc/coreos/update. cont. These are
the steps:

* Update the release channel group from stable to alpha, as shown in the
following screenshots:

core@ip-172-31-34-117 ~ $ cat /etc/coreos/update.conf
GROUP=alpha

REBOOT_STRATEGY=etcd-lock _

¢ Restart update-engine.service:

sudo systemctl restart update-engine

* The update-engine service will check for an update after 10 minutes.
We can force the update with the following command:

update engine client -check for update

The following log shows you that the version 808.0.0 image is being fetched now:

The following is the version after the node is rebooted. We can see that the image is
upgraded to the latest alpha release 808.0. 0:

core@ip-172-31-34-117 ~ $ cat fetc/os-release
NAME=Core0S

ID=coreos

VERSION=808.0.0

\VERSION_ID=808.0.0

BUILD ID=

PRETTY_NAME="Core0S 808.0.0"

ANSI_COLOR="1;32"

HOME_URL="https: //coreos.com/"
BUG_REPORT_URL="https://github.com/coreos/bugs/issues"

[71]

CoreOS Autoupdate

CoreUpdate

CoreUpdate is a commercial service provided by CoreOS to manage the customer
updates of CoreOS clusters. The following are some of the features provided by the
CoreUpdate service:

* The GUI dashboard provides you with a summary and detailed view of all
the updates.

* Custom image servers will be provided on a per customer basis.

* Server groups can be created so that updates can be done in groups and rate
limiting can be done on a per group basis.

e An HTTP APl is provided so that CoreUpdate can be integrated with existing
DevOps systems available with the customer.

* Images can be hosted on public servers or customer's local servers. This is
useful from a security perspective so that customers don't have to worry
about opening up their firewall.

* Updateservicectl is provided as a frontend CLIL

Vagrant CoreOS update

If the Vagrant box is already downloaded, the new CoreOS version will be updated
only if the box is updated.

Even though we change the version in Vagrantfile from stable to alpha to beta, the
new CoreOS version does not get updated on vagrant reload --provision.Only
when we perform vagrant destroy and restart, the new version gets loaded. We can
directly trigger an update from the CoreOS node using update-engine, and it works
irrespective of the VBOX version.

We get the following message when Vagrant CoreOS is not up to date:

[72]

Chapter 3

To update the Vagrant box version, we can perform vagrant box update as shown
in the following screenshot:

r 'virtualbox' from version

The vagrant reload command or vagrant reload --provision command do not
help to update the CoreOS version. We need to destroy and recreate the cluster to get
the latest version.

Summary

In this chapter, we covered different aspects of the CoreOS update, including

the CoreOS release cycle, services controlling the CoreOS update, and options
available to customers to control their cluster's update strategy. The CoreOS update
mechanism is simple, unique, and robust, and it takes care of the biggest concern
in the cloud, which is security. In the next chapter, we will cover details on critical
CoreOS services —systemd, etcd, and fleet.

References
CoreOS releases: https://coreos.com/releases/
* CoreOS update philosophy: https://coreos.com/using-coreos/updates/
* CoreUpdate service: https://coreos.com/products/coreupdate/
* Locksmith GitHub page: https://github.com/coreos/locksmith

* Update strategies: https://coreos.com/os/docs/latest/update-
strategies.html

Further reading and tutorials

The anatomy of a CoreOS update: https://www.youtube.com/
watch?v=JeICd9XyXfY

* The Omaha update protocol: https://github.com/google/omaha and
https://coreos.com/docs/coreupdate/custom-apps/coreupdate-
protocol/

[73]

https://coreos.com/releases/
https://coreos.com/using-coreos/updates/
https://coreos.com/products/coreupdate/
https://github.com/coreos/locksmith
https://coreos.com/os/docs/latest/update-strategies.html
https://coreos.com/os/docs/latest/update-strategies.html
https://www.youtube.com/watch?v=JeICd9XyXfY
https://www.youtube.com/watch?v=JeICd9XyXfY
https://github.com/google/omaha
https://coreos.com/docs/coreupdate/custom-apps/coreupdate-protocol/
https://coreos.com/docs/coreupdate/custom-apps/coreupdate-protocol/

CoreOS Primary Services —
Etcd, Systemd, and Fleet

This chapter will cover the internals of CoreOS' critical services —Etcd, Systemd,

and Fleet. For each of the services, we will cover installation, configuration, and their
applications. CoreOS ships with Etcd, Systemd, and Fleet by default. They can also
be installed as standalone components in any Linux system. The following topics
will be covered in this chapter:

* Etcd —installation, access methods, configuration options, use cases, tuning,
cluster management, security, authentication, and debugging
* Systemd —unit types, specifiers, templates, and special units

* Fleet—installation, access methods, templates, scheduling, HA,
and debugging

* Service discovery options using Etcd and Fleet

Etcd

Etcd is a distributed key-value store used by all the machines in the CoreOS cluster
to read/ write and exchange data. An overview of etcd is provided in Chapter 1,
CoreOS Overview. This section will cover the internals of etcd.

[75]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Versions

Etcd is under continuous development, and frequent releases are done to add
enhancements as well as fix bugs. The following are some major updates from
recent etcd releases:

Version 2.0 is the first stable release and was released in January 2015.
Pre-version 2.0 is available as etcd and post-version 2.0 is available as
etcd2 in CoreOS nodes.

Version 2.0 added IANA-assigned ports 2379 for client-to-server
communication and 2380 for server-to-server communication. Previously,
port 4001 was used for client-to-server communication and port 7001 was
used for server-to-server communication.

Version 2.1 introduced authentication and metrics collection features and
these are in experimental mode.

The latest release as of September 2015 is 2.2.0.

An experimental v3 API (some examples are multikey reads, range reads,
and binary keys) is available now as a preview and will be available officially
in version 2.3.0 scheduled at the end of October 2015.

All examples in this chapter are based on etcd version 2.1.0 and above.

Installation

CoreOS ships with etcd. Both the etcd and etcd?2 versions are available in the base
CoreOS image. The following are the etcd versions available in the CoreOS alpha
image 779.0.0:

[76]

Chapter 4

Standalone installation

Etcd can also be installed on any Linux machine. The following is the installation
command tried out on Ubuntu 14.04 to install etcd version 2.2:

curl -L https://github.com/coreos/etcd/releases/download/v2.2.0/etcd-
v2.2.0-linux-amd64.tar.gz -o etcd-v2.2.0-linux-amdé64.tar.gz

tar xzvf etcd-v2.2.0-linux-amd64.tar.gz

The following example shows you how to try out etcd in the standalone mode.
To start the server run the following command:

etcd -name etcdtest

Now, check whether we can connect to the etcd server using some basic commands:
etcdctl cluster-health

The following screenshot is the output of the preceding command:

smakam14@junglel:~$ etcdctl cluster-health
cluster is healthy

member ce2a822cea3@bfca is healthy
smakam14@junglel:~$ etcdctl member list
ce2aB22cea30bfca: name=etcdtest peerURLs=http://localhost:2380,http://localhost:7001 clientURLs=http://localhost:2379,http://localhost:4001

The following is an example of a simple set and get operation using the curl
interface:

curl -L -X PUT http://127.0.0.1:2379/v2/keys/message -d value="hello"
curl -L http://127.0.0.1:2379/v2/keys/message

The following screenshot is the output of the preceding command:

smakami4@junglel:~$ curl -L -X PUT http://127.0.0.1:2379/v2/keys/message -d value="hello"

{"action":"set","node":{"key":" /message","value":"hello", "modifiedIndex":4,"createdIndex":4}}

smakam14@junglel:~$ curl -L http://127.0.0.1:2379/v2/keys/message

n,n non

:'get”,

n,n

{"action node":{"key":" /message","value":"hello", "modifiedIndex":4,"createdIndex":4}}

[77]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Accessing etcd

Etcd can be accessed using either etcdctl CLI or REST API. This applies to both
the standalone etcd as well as etcd in CoreOS. The following figure shows you
the different ways to access etcd:

etcdctl Curl

http/https http/https

REST

The etcd database can be accessed and modified through the REST API. The etcd
database can be accessed either locally or remotely using this approach.

The following example shows the curl method to access the CoreOS node to get all
the keys:

curl -L http://localhost:2379/v2/keys/?recursive=true

The following screenshot is the output of the preceding command:

The following example shows the curl method to access the remote CoreOS node to
get all the keys:

curl -L http://172.17.8.101:2379/v2/keys/?recursive=true
The following screenshot is the output of the preceding command:

smakam14@junglel:~$ curl -L http://172.17.8.101:2379/v2/keys/?recursive=true
{"action":"get","node":{"dir":true,"nodes" :[{"key":" /coreos.com","dir":true,"nodes" :[{"key": " /coreos.com/updateengine","dir":true, "nodes" :[{"key"

" /coreos .com/updateengine/rebootlock”,"dir":true,"nodes" : [{"key":"/coreos.com/updateengine/rebootlock/semaphore”,"value":"{\"semaphore\":1,\"max\]
:1,\"holders\":[]1}", "modifiedIndex":3964,"createdIndex":5}], "modifiedIndex":5,"createdIndex":5}], "modifiedIndex":5,"createdIndex":5}], "modifiedIn
ex":5,"createdIndex":5}11}

[78]

Chapter 4

Etcdctl

Etcdctl is a CLI wrapper on top of the REST interface. Etcdctl can be used for local
or remote access.

The following example shows etcdctl method to access the CoreOS node to get
all the keys:

etcdectl 1s / --recursive

The following screenshot is the output of the preceding command:

The following example shows etcdctl method to access the remote CoreOS node to
get all the keys:

etcdctl --peers=http://172.17.8.101:2379 1ls / --recursive
The following screenshot is the output of the preceding command:

smakam14@junglel:~$ etcdctl --peers=http://172.17.8.101:2379 1ls / --recursive
/coreos. com

/coreos.com/updateengine
/coreos.com/updateengine/rebootlock
/coreos.com/updateengine/rebootlock/semaphore

Etcd configuration

Etcd configuration parameters can be used to modify the etcd member property or
cluster-wide property. Etcd options can be set either in the command line or using
environment variables. The command line will override the environment variables.
The following are the broad categories and their critical configuration parameters/
environment variables:

¢ Member: Name, data-dir, and heartbeat interval

* (luster: Discovery token and initial cluster nodes

* Proxy: Proxy on/off and proxy intervals

* Security: Certificate and key

* Logging: Enable/disable logging and logging levels

* Experimental

[79]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following is an etcd invocation example, where we use some of the preceding
configuration parameters:

etcd -name infra0 -data-dir infra0 --cacert=~/.etcd-ca/ca.crt -cert-
file=/home/smakaml4/infra0.crt -key-file=/home/smakaml4/infra0.key.
insecure -advertise-client-urls=https://192.168.56.104:2379 -listen-
client-urls=https://192.168.56.104:2379

Etcd environment variables can also be specified in cloud-config. The following
is a cloud-config example to specify etcd environment variables:

etcd2:

#igenerate a new token for each unique cluster from
https://discovery.etcd.io/new

discovery: https://discovery.etcd.io/
d93c8c02eedadddd3cfl14828£f9becOlc

multi-region and multi-cloud deployments need to use $public_
ipv4

advertise-client-urls: http://spublic ipv4:2379

initial-advertise-peer-urls: http://$private ipv4:2380

listen on both the official ports and the legacy ports

listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

listen-peer-urls: http://Sprivate ipv4:2380,http://S$private_
ipv4:7001

Etcd2 environment variables from cloud-config are stored in the following directory:
/run/systemd/system/etcd2.service.d.

The etcd2 service needs to be restarted if the environment variables are changed.

A complete list of configuration parameters and environment variables for etcd can
be found at https://coreos.com/etcd/docs/latest/configuration.html.

Etcd operations

The following are some examples of major operations that can be done using etcd:

* Set, get, and delete operations of a key-value pair

* Set a key with timeout where the key expires automatically
* Set a key based on the atomic condition check

* Hidden keys

* Watching and waiting for key changes

* Creating in-order keys

[80]

https://coreos.com/etcd/docs/latest/configuration.html

Chapter 4

Using these operations, etcd can be used for a variety of distributed application use
cases. The following is an example TTL use case where we check for the liveliness
of the Apache service and update service details such as the IP address and port
number in etcd, which other applications can use to determine if the service is
running or not. If the Apache service dies, the etcd key-value pair will be deleted
after 30 seconds in this case:

Test whether service is accessible and then register useful
information like IP address, port

ExecStart=/bin/bash -c '\
while true; do \
curl -f ${COREOS_PUBLIC IPV4}:%i; \

if [$? -eq 0]1; then \
etcdctl set /services/apachet/${COREOS PUBLIC IPV4} \'{"host":
"$H", "ipv4 addr": ${COREOS_ PUBLIC IPV4}, "port": %i}\' --ttl 30; \
£i; \
sleep 20; \
done'

We can find statistics about the etcd node as well as the key-related operations.

The following output shows the etcd node statistics:

curl http://127.0.0.1:2379/v2/stats/self | jq

The following screenshot is the output of the preceding command:

[81]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following output shows the etcd key statistics:

curl http://127.0.0.1:2379/v2/stats/store | jq .

The following screenshot is the output of the preceding command:

Etcd tuning

The following are some etcd parameters that can be tuned to achieve optimum
cluster performance based on the operating environment:

Cluster size: A bigger cluster size provides you with better redundancy.
The disadvantage with big cluster sizes is that updates can take a long
time. In Chapter 1, CoreOS Overview, we saw the failure tolerance limit
with different cluster sizes.

Heartbeat interval: This is the time interval at which the master node sends

a heartbeat message to its followers. The default heartbeat interval is 100 ms.
It is necessary to choose a heartbeat interval based on the average round-

trip time taken for the ping between nodes. If the nodes are geographically
distributed, then the round-trip time will be longer. The suggested heartbeat
interval is 0.5-1.5 x the average round-trip time. If we choose a small heartbeat
interval, the overhead will be a higher number of packets. If we choose a
large heartbeat interval, it will take a longer time to detect leader failure. The
heartbeat interval can be set using the heartbeat-interval parameter in the
etcd command line or the ETCD HEARTBEAT INTERVAL environment variable.

[82]

Chapter 4

* Election timeout: When the follower nodes fail to get a heartbeat message
for the election timeout value, they become the leader node. The default
election timeout is 1,000 ms. The suggested value for election timeout is
10 times the heartbeat interval. Keeping the election timeout too low
can cause false leader election. The election timeout can be set using the
election-timeout parameter in the etcd command line or the
ETCD ELECTION TIMEOUT environment variable.

Etcd proxy

An etcd proxy is used when worker nodes want to use the master node or master
cluster to provide etcd service. In this case, all etcd requests from the worker node
are proxied to the master node and the master node replies to the worker node.

Let's say that we have a working three-node master cluster as follows:

The following example shows the cloud-config for the fourth node that is
a worker node and acting as a proxy. Here, the master cluster members are
mentioned statically:

#cloud-config
coreos:
etcd2:
proxy: on
listen-client-urls: http://localhost:2379
initial-cluster: etcdserver=http://172.17.8.101:2380,
http://172.17.8.102:2380, http://172.17.8.103:2380
fleet:
etcd_servers: "http://localhost:2379"
public-ip: $public_ ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

In the preceding Etcd configuration section, we have turned on the proxy and pointed
to the etcd_server cluster. The fourth node needs to be started with the preceding
cloud-config.

[83]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following example shows the cloud-config for the fourth node that is acting
as a proxy and using a discovery token. We need to use the same discovery token
as we did for the three-node cluster:

#cloud-config
coreos:
etcd2:
proxy: on
use the same discovery token as for master, these nodes will
proxy to master
discovery: <your tokens
listen on both the official ports and the legacy ports
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
fleet:
etcd servers: "http://localhost:2379"
public-ip: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start

The following is the etcd member output in the new node. As we can see, the etcd
cluster is composed of only three nodes and the new node is proxying to the master
etcd cluster:

The following is the Fleet machine's output in the new node. As we can see, there are
four nodes and this includes the fourth worker node and the three-node etcd cluster:

[84]

Chapter 4

Adding and removing nodes from a cluster

There will be scenarios where we need to add and remove nodes from a working
etcd cluster. This section illustrates how to add and remove nodes in a working
etcd cluster.

Let's say that we have a three-node working cluster and we want to add a fourth
node to the cluster. The following command can be executed in one of the three
working nodes to add the fourth node detail:

The following cloud-config can be used to start the new fourth node:

#cloud-config
coreos:
etcd2:
name: core-04
initial_cluster: "core-0l=http://172.17.8.101:2380,core-

02=http://172.17.8.102:2380,core-03=http://172.17.8.103:2380, core-
04=http://172.17.8.104:2380"

initial cluster state: existing

advertise-client-urls: http://spublic ipv4:2379
initial-advertise-peer-urls: http://$private ipv4:2380

listen on both the official ports and the legacy ports

legacy ports can be omitted if your application doesn't depend
on them

listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001

listen-peer-urls: http://Sprivate ipv4:2380,http://S$private_
ipv4:7001

fleet:
public-ip: $public ipv4
units:
Note: this requires a release that contains etcd2
- name: etcd2.service
command: start
- name: fleet.service
command: start

[85]

CoreOS Primary Services — Etcd, Systemd, and Fleet

From the following output, we can see that the new member has been successfully
added:

The following command can be used to remove the fourth number that we
added before:

Let's check the member list and cluster health now. We can see that the three nodes
are part of the cluster and that the fourth node has been removed:

Node migration and backup

Node migration is necessary to handle failure of the node and cluster and also
to replicate the cluster to a different location.

To take a backup of the etcd database, we can perform the following:

Sudo etcdctl backup --data-dir=/var/lib/etcd2 --backup-dir=/tmp/etcd2

[86]

Chapter 4

This approach allows us to reuse the backed-up etcd data in another cluster. In this
approach, nodeid and clusterid are overwritten in the backup directory to prevent
unintentional addition of a new node to the old cluster.

To preserve the node ID and cluster ID, we have to manually make a copy, and the
copy can be used to restart the service.

The following are the steps to move the etcd2 data directory:

1. Stop the service:

2. Make a copy of the /var/lib/etcd2 etcd data directory in /tmp/etcd2_
backup:

There are two approaches to handle the migration:

¢ Add a new member and remove the old member. We can use etcdctl
member add and etcdctl member remove.

* Make a copy of the etcd database, move it to the new node, and update it.

With the first approach, the new member has a different identity. With the second
approach, we can have the new node retain the same old identity. With the first
approach, there is no need to stop the etcd service, while we need to stop the etcd
service before taking the backup in the second approach.

[87]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Etcd security

A secure etcd is needed to ensure that the client-to-server communication and
server-to-server communication are secure. The following figure shows you the
different components involved in providing etcd security. Certificate authority is
used to provide and verify certificates for the etcd client-to-server and server-to-server
communication:

Certificate
Authority

Certificate authority — etcd-ca

Certificate authority is a trusted source that issues certificates to a trusted server.
Other than using standard certificate authorities (CA), etcd allows for a custom CA.
Etcd-ca (https://github.com/coreos/etcd-ca)is a GO application that can be
used as a CA for testing purposes. Recently, etcd has migrated to CFSSL
(https://github.com/cloudflare/cfssl) as the official tool for certificates.

Installing etcd-ca
I installed etcd-ca in my Linux VM running Ubuntu 14.04 using the following steps:

git clone https://github.com/coreos/etcd-ca
cd eted-ca
./build

Note: The GO application needs to be installed before the
s etcd-ca installation.

[88]

https://github.com/coreos/etcd-ca
https://github.com/cloudflare/cfssl

Chapter 4

Following three steps are needed to setup etcd-ca:

1. Creating a CA using etcd-ca.
2. Creating server keys.
3. Creating client keys.
The following command, etcd-ca init, is used to create a CA. This is a one-time
procedure. The following screenshot shows you the output when creating a CA:
smakaml4@junglel:~S etcd-ca init

Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Created ca/key
Created ca/crt

The following commands can be used to create a server certificate:

etcd-ca new-cert -ip 172.17.8.101 core-01
etcd-ca sign core-01
etcd-ca chain core-01

etcd-ca export --insecure core-01 | tar xvf -

In the preceding command, 172.17.8.101 is the CoreOS node IP and core-01 is the
node name. These steps will create core-01.crt and core-01.key.insecure.

The following commands can be used to create a client certificate:

etcd-ca new-cert -ip 192.168.56.104 client
etcd-ca sign client
etcd-ca chain client

etcd-ca export --insecure client | tar xvf -

In the preceding command, 192.168.56.104 is the client node IP. These steps will
create client .crt and client.key.insecure.

Etcd secure client-to-server communication using
a server certificate

A server certificate is used by the client to ensure the server's identity. The following
command starts the etcd server using a server certificate and the key that was
generated in the previous section:

etcd2 -name core-01 --cert-file=/home/core/core-0l.crt --key-file=/home/
core/core-0l.key --advertise-client-urls=https://172.17.8.101:2379
--listen-client-urls=https://172.17.8.101:2379

[89]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following is an example to set a key and retrieve it using a secure mechanism:

curl --cacert /home/smakaml4/.etcd-ca/ca.crt https://172.17.8.101:2379/
v2/keys/foo -XPUT -d value=bar -v

curl --cacert /home/smakaml4/.etcd-ca/ca.crt https://172.17.8.101:2379/
v2/keys/foo

The following example uses etcdctl to do the key retrieval:

etcdctl --ca-file /home/smakaml4/.etcd-ca/ca.crt --peers
https://172.17.8.101:2379 get /foo

Etcd secure client-to-server communication using
server certificate and client certificate

In the previous example, only the server had a certificate. In this example, we
will generate a client certificate so that the server can verify the client's identity.
The following command starts the etcd server using a server certificate and key
and enabling client authentication. The server certificate and keys are the same as
generated in the previous section:

etcd2 -name core-01 --data-dir=core-01 -client-cert-auth -trusted-ca-
file=/home/core/ca.crt -cert-file=/home/core/key.crt -key-file=/home/
core/key.key -advertise-client-urls https://172.17.8.101:2379 -listen-
client-urls https://172.17.8.101:2379

The following is an example to set a key and retrieve it using a secure client and
server mechanism. The client certificate and key are the same as generated in the
previous section:

curl --cacert /home/smakaml4/.etcd-ca/ca.crt --cert /home/
smakaml4/client.crt --key /home/smakaml4/client.key.insecure -L
https://172.17.8.101:2379/v2/keys/foo -XPUT -d value=bar -v

curl --cacert /home/smakaml4/.etcd-ca/ca.crt --cert /home/
smakaml4/client.crt --key /home/smakaml4/client.key.insecure
https://172.17.8.101:2379/v2/keys/foo

The following example uses etcdctl to do the key retrieval:

etcdctl --ca-file /home/smakaml4/.etcd-ca/ca.crt --cert-file /home/
smakaml4/client.crt --key-file /home/smakaml4/client.key.insecure --peers
https://172.17.8.101:2379 get /foo

[90]

Chapter 4

A secure cloud-config

The following is a sample cloud-config that sets up the etcd security environment
variables as well as the necessary certificate and keys:

cloud-config
write files:

- path: /run/systemd/system/etcd2.service.d/30-configuration.conf

permissions: 0644

content: |
[Service]
Environment=ETCD NAME=core-01
Environment=ETCD VERBOSE=1
Encryption
Environment=ETCD CLIENT CERT AUTH=1
Environment=ETCD_TRUSTED CA FILE=/home/core/ca.crt
Environment=ETCD_CERT FILE=/home/core/server.crt
Environment=ETCD_KEY FILE=/home/core/server.key

- path: /home/core/ca.crt
permissions: 0644
content: |

- path: /home/core/server.crt
permissions: 0644
content: |

- path: /home/core/server.key
permissions: 0644
content: |

coreos:

etcd2:
Static cluster
initial-cluster-token: etcd-cluster-1
initial-cluster: core-0l=http://$private ipv4:2380
initial-cluster-state: new

[91]

CoreOS Primary Services — Etcd, Systemd, and Fleet

advertise-client-urls: http://Spublic ipv4:2379
initial-advertise-peer-urls: http://$private_ipv4:2380
listen on both the official ports and the legacy ports

legacy ports can be omitted if your application doesn't depend
on them

listen-client-urls: http://Spublic ipv4:2379

listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001

units:
- name: etcd2.service
command: start

Authentication

Before the introduction of the authentication feature, there were no restrictions

on access to the etcd database. The authentication feature was introduced as an
experimental feature in etcd 2.1.0 and allows access to a specific set of keys based on
the username and password.

There are two entities associated with authentication:

* Users: Users can be created with a username and password. Before enabling
the authentication feature, a root user needs to be created. The root user has
substantially more privileges/permissions to add users and roles and assign
role permissions.

* Roles: Roles can be used to restrict access to a specific key or directory that
holds multiple keys. Roles are assigned to users, and manipulations of the
keys can be done based on the username.

To get started with authentication, we need to first create a root user and then enable
authentication.

Create a root user first, as shown in the following screenshot:

Enable authentication as follows:

[92]

Chapter 4

The following example illustrates the etcd authentication.

Let's create a sample keyset, user, and role:

1.
2.
3.
4.
5.

Create /dirl/keyl and /dir2/key2 keys.

Create a role_dirl role that has access to /dir1/* only.
Create a role_dir2 role that has access to /dir2/* only.
Create user1 and grant the role_dir1 role.

Create user2 and grant the role_dir2 role.

At this point, user1 will be able to access /dir1/+* only and user2 will be able to
access /dir2/* only.

The following is a breakdown of the steps:

Create /dirl/keyl and /dir2/key2 keys:

[93]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Create user1 and grant the role_diri role:

Now, we can verify that user1 has access only to /dir1l/keyl. As shown in the
following screenshot, user1 is not able to access /dir2/key1:

Etcd debugging

Etcd log files can be checked using the following command:

Journalctl -u etcd2.service

Default logging is set to INFO. For more elaborate logging, we can set ETCD_DEBUG=1
in the environment file or use the -debug command-line option.

[94]

Chapter 4

Sometimes, it's useful to check the curl command associated with the etcdctl
CLI command. This can be achieved using the - -debug option. The following
is an example:

Systemd

An overview of Systemd was provided in Chapter 1, CoreOS Overview. Systemd is the
init system used by CoreOS and is always on by default. In this section, we will walk
through some of the Systemd internals.

Unit types

Units describe a particular task along with its dependencies and the execution order.
Some units are started on the CoreOS system by default. CoreOS users can also start
their own units. System-started units are at /usr/1ib64/systemd/system and user-
started units are at /etc/systemd/system.

The following are some of the common unit types:

* Service unit: This is used to start a particular daemon or process. Examples
are sshd.service and docker.service. The sshd. service unit starts the
SSH service, and docker. service starts the docker daemon.

* Socket unit: This is used for local IPC or network communication.
Examples are systemd-journald.socket and docker.socket. Thereis a
corresponding service associated with a socket that manages the socket. For
example, docker.service manages docker.socket. In docker.service,
docker. socket is mentioned as a dependency. Docker . socket provides
remote connectivity to the docker engine.

* Target unit: This is used mainly to group related units so that they can be
started together. All user-created services are in multi-user.target.

[95]

CoreOS Primary Services — Etcd, Systemd, and Fleet

* Mount unit: This is used to mount disks to the filesystem. Examples are
tmp.mount and usr-share-oem.mount. The following is a relevant section
of usr-share-oem.mount that mounts /usr/share/oem:

* Timer unit: These are units that are started periodically based on the interval
specified. Examples are update-engine-stub.timer and logrotate.timer.
The following is a relevant section of update-engine-stub.timer, where
update-engine-stub.service is invoked every 41 minutes to check for
CoreOS updates:

Unit specifiers

When writing systemd units, it is useful to access system environment variables such
as hostname, username, IP address, and so on so that we can avoid hardcoding and
use the same systemd unit across systems. For this, systemd provides you with unit
specifiers, which are shortcuts to get to the system environment.

The following are some common unit specifiers:

e H: Hostname
¢ sm: Machine ID

e su: Username

A complete list of unit specifiers is specified at http: //www. freedesktop.org/
software/systemd/man/systemd.unit.html#Specifiers.

[96]

http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers
http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Specifiers

Chapter 4

The following service example illustrates the usage of unit specifiers. In this example,
we are setting the key-value pair associated with different specifiers in etcd in
ExecStartPre. In ExecStartPost, we are getting the key-value and then cleaning

up in the end:

[Unit]
Description=My Service

[Service]

KillMode=none

ExecStartPre=/usr/bin/etcdctl set hostname %H ; /usr/bin/etcdctl set
machinename %m ; /usr/bin/etcdctl set bootid %$b ; /usr/bin/etcdctl set
unitname %n ; /usr/bin/etcdctl set username 3%u

ExecStart=/bin/echo hello, set done, will echo and remove
ExecStartPost=/usr/bin/etcdctl get hostname ; /usr/bin/etcdctl get
machinename ; /usr/bin/etcdctl get bootid ; /usr/bin/etcdctl get
unitname ; /usr/bin/etcdctl get username ;
ExecStartPost=/usr/bin/etcdctl rm hostname ; /usr/bin/etcdctl rm
machinename ; /usr/bin/etcdctl rm bootid ; /usr/bin/etcdctl rm
unitname ; /usr/bin/etcdctl rm username ;

[Install]
WantedBy=multi-user.target

To execute this service, it is necessary to execute all the following operations
with sudo:

1. Create the unitspec.service filein /etc/systemd/system with the
preceding content.
Enable the service with systemctl enable unitspec.service.
Start the service with systemctl start unitspec.service.

If we change the service after this, we need to execute command systemctl
daemon-reload before starting the service.

[97]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following are the journalctl logs associated with the service where we can see
the key being set and retrieved and the corresponding unit specifier value:

journalctl -u unitspec.service

Unit templates
Systemd units can be created as a template, and the same template unit can be used

to instantiate multiple units based on the invocation of templates.

Templates are created as unitnamee.service. The invocation of templates can be
done using unitname@instanceid.service. In the unit file, the unit name can be
accessed with $p and instanceid can be accessed using %i.

The following is an example template file, unitspece.service:

[Unit]
Description=My Service

[Service]

ExecStartPre=/usr/bin/etcdctl set instance%i %i ; /usr/bin/etcdctl set
prefix $p

ExecStart=/bin/echo Demonstrate systemd template

[Install]
WantedBy=multi-user.target

To execute this service, it is necessary to execute all the following operations
with sudo:

1. Create the unitspec@.service filein /etc/systemd/system

2. Enable the service with systemctl enable unitspece@.service.

[98]

Chapter 4

3. Start multiple services with systemctl start unitspecel.service and
systemctl start unitspec@2.service

If we look at the etcd content, we can see that the instance value gets updated
based on the %i argument supplied in the unit name and creates the instancel
and instance2 keys:

The following example gives a more practical example of instantiated units. It uses a
template nginx service, nginxe. service, where the port number
of the web service is passed dynamically:

[Unit]

Description=Apache web server service
After=etcd.service
After=docker.service

[Service]

TimeoutStartSec=0

Restart=always

EnvironmentFile=/etc/environment

ExecStartPre=-/usr/bin/docker kill nginx%i
ExecStartPre=-/usr/bin/docker rm nginx%i
ExecStartPre=/usr/bin/docker pull nginx
ExecStart=/usr/bin/docker run --name nginx%i -p ${COREOS_PUBLIC
IPV4}:%i:80 nginx

ExecStop=/usr/bin/docker stop nginx%i

[Install]
WantedBy=multi-user.target

[99]

CoreOS Primary Services — Etcd, Systemd, and Fleet

There are two service options used in the preceding code:

* Timeoutstartsec: This specifies the time taken to start the service, and
if the service is not started by this time, it gets killed. The none parameter
disables this option and is useful when downloading big containers.

* Restart: This controls the restartability of the service. Here we have
specified always to restart the service in case there is a failure associated
with this service.

Let's create two instances of this service using the following commands:

Sudo systemctl enable nginx@.service
Sudo systemctl start nginx@8080.service

Sudo systemctl start nginx@8081l.service

This creates two docker containers with nginx service; the first one exposing port
8080 and the second one exposing port 8081.

Let's look at docker ps:

Let's look at the status of the two units. As we can see in the following screenshot,
the units are in an active (running) state:

[100]

Chapter 4

Drop-in units
Drop-in units are useful to change system unit properties at runtime. There are four
ways of creating drop-in units.

Default cloud-config drop-in units

Parameters specified in the cloud-config user data will automatically be configured
as drop-in units. For example, let's look at the etcd2.service cloud-config:

As we can see in the preceding output, the default drop-in unit is 20-cloudinit.conf.

20-cloudinit.conf will contain the parameters specified in etcd2 cloud-config
as environment variables, as shown in the following screenshot:

[101]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Cloud-config custom drop-in units

We can specify the drop-in unit as part of the cloud-config. The following is an
example of the fleet.service drop-in unit, where we change the default Restart
parameter from Always to No:

When we use this cloud-config, the norestart.conf drop-in file gets automatically
created as can be seen from the fleet .service status:

This configuration change will keep fleet.service non-restartable.

Runtime drop-in unit — specific parameters

We can change specific properties of the service using the drop-in configuration
file. The following is the service section of fleet . service, which shows the
default parameters:

This specifies that the service needs to be started in 10 seconds in case the service
dies because of some error. Let's check whether the restart works by killing the
Fleet service.

[102]

Chapter 4

We can kill the service as follows:

Sudo kill -9 <fleet pid>

The following is a log showing the Fleet service restarting in 10 seconds, which is
due to Restartsec specified in the service configuration:

fleet.service: cess exited, code=killed, status=9/KILL

To prove the runtime drop-in configuration change, let's create a configuration file
where we disable the restart for the Fleet service.

Create norestart.conf under /etc/systemd.system/system/fleet.service.d:

Now, let's restart the systemd configuration:

Sudo systemd daemon-reload

Let's check the status of fleet .service now:

We can see that other than 20-cloudinit .conf, we also have a norestart.conf
drop-in unit.

[103]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Now, if we kill the Fleet service, it does not get restarted as the restart option has
been disabled by the restart.conf drop-in unit. Fleet.service stays in a failed
state, as shown in the following screenshot:

Runtime drop-in unit — full service

In this approach, we can replace the complete system service using our own service.
Let's change the restart option by creating this fleet.service filein /etc/systemd/
system:

[Unit]
Description=fleet daemon

After=etcd.service
After=etcd2.service

Wants=fleet.socket
After=fleet.socket

[Service]
ExecStart=/usr/bin/fleetd
Restart=no

[Install]
WantedBy=multi-user.target

We can start the fleet .service as follows:

Sudo systemctl start fleet.service

Let's see the status of fleet.service:

[104]

Chapter 4

From the preceding output, we can see that fleet.service is picked up from /etc/
systemd/system.

If we compare this option (a drop-in unit with a complete service change) with the
previous option (a drop-in unit with a specific parameter change), the previous
option gives the flexibility to change specific parameters and not touch the original
set. This makes it easier to handle upgrades when new versions of the service allow
additional options.

Network units

The systemd-networkd service manages networks. System-configured networks

are specified in /usr/1ib64/systemd/network and user-configured networks are
specified in /etcd/systemd/network. The following is a sample Vagrant configured
systemd-network file to configure the eth1 IP address:

The ifconfig output associated with eth1 shows the IP address that Vagrant
configured, as shown in the following screenshot:

As an example, let's try to change the eth1 IP address. There are three steps:

1. Stop systemd-networkd.service.

2. Flush the IP address.
3. Setanew IP address.

Let's create a service file to flush the eth1 IP address and another network file
specifying the new IP address for ethi.

[105]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Create a service file to flush the eth1 IP address as follows. We need to place this
in /etc/systemd/system/down-ethl.service

[Unit]
Description=ethl flush

[Servicel]

Type=oneshot

ExecStart=/usr/bin/ip link set ethl down
ExecStart=/usr/bin/ip addr flush dev ethl

[Install]
WantedBy=multi-user.target

The following is the network file to specify the eth1 new address. We need to place
thisin /etc/systemd/network/40-ethl.network:

[Match]
Name=ethl

[Network]
Address=172.17.8.110/24
Gateway=172.17.8.1

The steps to change the IP address are as follows:

1. Stop the system-networkd service by sudo systemctl stop systemd-
networkd.service.
Flush the eth1 IP address by sudo systemctl start down-ethl.service.
Start systemd-networkd.service by sudo systemctl start systemd-

networkd.service.

If we look at the ifconfig output now, we should see the new IP address
172.17.8.110:

b o]

[106]

Chapter 4

Fleet

Fleet is a cluster manager/scheduler that controls service creation at the CoreOS
cluster level. We can think of Fleet as Systemd for the cluster. For an overview of
Fleet, refer to Chapter 1, CoreOS Overview. Fleet is used mainly for the orchestration
of critical system services, while other orchestration solutions such as Kubernetes are
used for application service orchestration. Fleet is not under active development and
is mostly under the maintenance mode.

Installation

Fleet is installed and started by default in CoreOS. The following is the Fleet version
in the CoreQOS stable 766.3.0 release:

Fleet can also be installed in a standalone Linux machine. Fleet releases can be found
at https://github.com/coreos/fleet/releases

Accessing Fleet

The following are different approaches to access Fleet.

Local fleetctl

The fleetctl command is present in each CoreOS node and can be used to control
Fleet services.

Remote fleetctl

The fleetctl command can be used to access non-local CoreOS nodes by specifying
an endpoint argument. The following is an example:

Fleetctl --endpoint=http://172.17.8.101:2379 list-machines

smakam14@junglel:~$ fleetctl --endpoint=http://172.17.8.101:2379 Llist-machines
MACHINE IP METADATA
12d3efe3... 172.17.8.103

172.17.8.101
172.17.8.102

[107]

https://github.com/coreos/fleet/releases

CoreOS Primary Services — Etcd, Systemd, and Fleet

Remote fleetctl with an SSH tunnel

The previous example did not use any authentication. To make access to fleetctl
secure, we can use the SSH authentication scheme. It is necessary to add the CoreOS
node private key to the local SSH authentication agent for this mode. For a Vagrant
CoreOS cluster, the private key is stored in ~/.vagrant .d/insecure_private_key.
For an AWS CoreOS cluster, the private key can be downloaded as part of the initial
key creation.

To add a private key to the authentication agent:

eval “ssh-agent -s”

ssh-add <private key>

smakam14@junglel:~$ eval ‘ssh-agent -s'
Agent pid 3292

Identity added: /home/smakaml4/.ssh/vagrant_coreos_private key (/home/smakami4/.ssh/vagrant_coreos_
rivate key)

smakam14@junglel:~$ ssh-add ~/.ssh/vagrant_coreos_private key 4

Now, we can use fleetct] to use a secure SSH to access the CoreQOS cluster:

Fleetctl --tunnel=http://172.17.8.101 list-unit-files

smakam14@junglel:~$ fleetctl --tunnel=172.17.8.101 list-unit-files

UNIT HASH DSTATE STATE TARGET
hello.service 0d1c468 launched launched 12d30fe3.../172.17.8.103

Remote HTTP

Remote HTTP Fleet API access is disabled by default.

To enable remote access, create a . socket file to expose the Fleet API port. The
following is an example Fleet configuration file to expose port 49153 for external
APT access:

[108]

Chapter 4

It is necessary to restart the systemd, fleet.socket, and fleet.service after
creating the remote API configuration file for it to take effect:

Sudo systemctl daemon-reload
Sudo systemctl restart fleet.socket

Sudo systemctl restart fleet.service

Now, we can access the remote API. The following is an example using fleetctl

and curl:

Fleetctl --endpoint=http://172.17.8.101:49153 list-units

smakam14@junglel:~$ fleetctl --endpoint=http://172.17.8.101:49153 list-units
UNIT MACHINE ACTIVE SUB

hello.service 949a5786.../172.17.8.102 active running

The following output shows you the unit list using the Fleet HTTP API. The
following curl output is truncated to show partial output:

Curl -s http://172.17.8.101:49153/fleet/v1/units | jq .

smakam14@junglel:~$ curl -s http://172.17.8.101:49153/fleet/v1/units | jq .

"units": [
{
"options": [

{

"value":

"secti

"value":
"section":
"name":

Using etcd security

We can also use the secure etcd approach to access Fleet. Setting up a secure etcd is
covered in the section on Etcd security. The following example shows the fleetctl

command with a server certificate:

fleetctl --debug --ca-file ca.crt --endpoint=https://172.17.8.101:2379
list-machines

[109]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Templates, scheduling, and HA

Fleet supports unit specifiers and templates similar to systemd. A unit specifier
provides you with shortcuts within a service file, and templates provide reusable
service files. The earlier section on systemd covered details on unit specifiers and
templates. Chapter 1, CoreOS Overview covered the basics of Fleet scheduling and HA.

Fleet metadata for a node can be specified in the Fleet section of cloud-config. The
following example sets the Fleet node metadata for role as web. Metadata can be
used in Fleet service files to control scheduling;:

metadata: "role=services"

Fleet uses a pretty simple scheduling algorithm, and X-fleet options are used to
specify constraints while scheduling the service. The following are the available
X-fleet options:

* MachineMetaData: Service gets scheduled based on matching metadata.

* MachineId: Service gets scheduled based on the specified MachineId.

* MachineOf: Service gets scheduled based on other services running in the
same node. This can be used to schedule tightly coupled services in the
same node.

* conflict: This option can be used to avoid scheduling conflicting services
in the same node.

* Global: The same service gets scheduled in all the nodes of the cluster.
The following example uses unit specifiers and templates and illustrates Fleet
scheduling and HA. The following are some details of the application:

* An application consists of a WordPress container and MySQL container

* The WordPress container uses the database from the MySQL container and
is linked using Docker container linking

* Linking across containers is done using the - - 1ink option, and it works only
if both containers are on the same host

* Fleet's template feature will be used to launch multiple services using
a single WordPress and MySQL template, and Fleet's X-fleet constraint
feature will be used to launch the related containers on the same host

¢ When one of the nodes in the cluster dies, Fleet's HA mechanism will
take care of rescheduling the failed units, and we will see it working
in this example

[110]

Chapter 4

The MySQL template service is as follows:

[Unit]
Description=app-mysql

[Service]

Restart=always

RestartSec=5

ExecStartPre=-/usr/bin/docker kill mysqgl%i
ExecStartPre=-/usr/bin/docker rm mysqgl%i
ExecStartPre=/usr/bin/docker pull mysqgl
ExecStart=/usr/bin/docker run --name mysgl%$i -e MYSQL ROOT
PASSWORD=mysqgl mysqgl

ExecStop=/usr/bin/docker stop mysqgl%i

The WordPress template service is as follows:

[Unit]
Description=wordpress

[Servicel]

Restart=always

RestartSec=15

ExecStartPre=-/usr/bin/docker kill wordpress%i
ExecStartPre=-/usr/bin/docker rm wordpress%i
ExecStartPre=/usr/bin/docker pull wordpress

ExecStart=/usr/bin/docker run --name wordpress%i --link mysqgl%i:mysql
wordpress

ExecStop=/usr/bin/docker stop wordpress%i

[X-Fleet]
MachineOf=mysgl@%i.service

The following are some notes on the service:

* We have used %1 as an instance specifier

* WordPress has an X-fleet constraint to schedule the corresponding MySQL
container in the same node

The first step is to submit the services:

[111]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The next step is to load each instance of the service:

Let's check whether all the services are running. As can be seen in the following
screenshot, we have three instances of the WordPress application and the associated
MySQL database:

(VT T T T ¢ 1

To demonstrate HA, let's kill CoreOS nodez2. This can be done by shutting down
the node.

As we can see, there are only two nodes in the cluster now:

From the following new service output, we can see that the services running on the
old node2 have been moved to node3 now as node?2 is not available:

Chapter 4

Debugging
The status of the Fleet service can be checked using fleetctl status. The following
is an example:

Logs of the Fleet service can be checked using fleetctl journal. The following is
an example:

For debugging and to get the REST API corresponding to the fleetctl command,
we can use the - -debug option as follows:

Service discovery

Microservices are dynamic, and it is important for services to discover other services
dynamically to find the IP address, port number, and metadata about the services.
There are multiple schemes available to discover services, and in this section, we will
cover a few schemes using etcd and Fleet for service discovery. In the later chapters
of the book, we will cover advanced service discovery options.

Simple etcd-based discovery

The following figure shows you the simplest possible service discovery mechanism,
where a service updates etcd with service-related details that other services can

access from etcd:

[113]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following is an example Apache service, apacheupdateetcde. service, that
updates the hostname and port number in etcd when the service is started:

[Unit]

Description=My Advanced Service
After=etcd2.service
After=docker.service

[Servicel]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill apache%i
ExecStartPre=-/usr/bin/docker rm apache%i
ExecStartPre=/usr/bin/docker pull coreos/apache

ExecStart=/usr/bin/docker run --name apache%i -p %1:80 coreos/apache /
usr/sbin/apache2ctl -D FOREGROUND

ExecStartPost=/usr/bin/etcdctl set /domains/example.com/%H:%i running
ExecStop=/usr/bin/docker stop apache%i
ExecStopPost=/usr/bin/etcdctl rm /domains/example.com/%H:%1i

[X-Fleet]
Don't schedule on the same machine as other Apache instances
X-Conflicts=apache*@*.service

Let's start the service and create two instances:

Now, we can verify that etcd gets updated with the service details of the
two services:

[114]

Chapter 4

Sidekick discovery

In the preceding scheme, there is no way to know if the service is alive and running
after it has been started. The following figure shows you a slightly advanced service
discovery scheme where a sidekick service updates etcd with the details of

the service:

Service

Side kick @

The purpose of the Side kick container is to monitor the main service and update
etcd only if the Service is active. It is important to run the Side kick container in
the same node as the main service that Side kick is monitoring.

The following is a Sidekick example using the Apache service and a sidekick for
the Apache service.

Following is the Apache . service unit file:

[Unit]
Description=Apache web server service on port %i

Requirements

Requires=etcd2.service
Requires=docker.service
Requires=apachet-discovery@%i.service

Dependency ordering
After=etcd2.service
After=docker.service
Before=apachet-discovery@%i.service

[Service]

Let processes take awhile to start up (for first run Docker
containers)

TimeoutStartSec=0

Change killmode from "control-group" to "none" to let Docker remove
work correctly.
KillMode=none

[115]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Get CoreOS environmental variables
EnvironmentFile=/etc/environment

Pre-start and Start

Directives with "=-" are allowed to fail without consequence
ExecStartPre=-/usr/bin/docker kill apachet.%i
ExecStartPre=-/usr/bin/docker rm apachet.%i
ExecStartPre=/usr/bin/docker pull coreos/apache

ExecStart=/usr/bin/docker run --name apachet.%i -p ${COREOS_ PUBLIC_
IPV4}:%i:80 coreos/apache /usr/sbin/apache2ctl -D FOREGROUND

Stop
ExecStop=/usr/bin/docker stop apachet.%i

Following is the Apache sidekick service unit file:

[Unit]
Description=Apache Sidekick

Requirements
Requires=etcd2.service
Requires=apachet@%i.service

Dependency ordering and binding
After=etcd2.service
After=apachet@%i.service
BindsTo=apachet@%i.service

[Service]

Get CoreOS environmental variables
EnvironmentFile=/etc/environment

Start

Test whether service is accessible and then register useful
information
ExecStart=/bin/bash -c '\
while true; do \
curl -f ${COREOS PUBLIC IPV4}:%i; \
if [$? -eq 0 1; then \
etcdctl set /services/apachet/${COREOS PUBLIC IPV4} \'{"host":
"$H", "ipv4 addr": ${COREOS PUBLIC IPV4}, "port": %i}\' --ttl 30; \
else \
etcdctl rm /services/apachet/${COREOS PUBLIC IPV4}; \

[116]

Chapter 4

fi; \
sleep 20; \
done'
Stop

ExecStop=/usr/bin/etcdctl rm /services/apachet/${COREOS PUBLIC IPV4}

[X-Fleet]
Schedule on the same machine as the associated Apache service
X-ConditionMachineOf=apachet@%i.service

The preceding Side kick container service does a periodic ping to the main service
and updates the etcd output. If the main service is not reachable, the service-related
details are removed from etcd.

Let's start two instances of the service:

Let's see the etcd output. As shown in the following screenshot, etcd reflects the two
nodes where Apache is running:

To demonstrate the sidekick service, let's stop the docker container and check
whether the sidekick service updates etcd in order to remove the appropriate service:

[117]

CoreOS Primary Services — Etcd, Systemd, and Fleet

Let's check the status of the units. As can be seen below, apachet@2.service has
failed and the associated sidekick service apachet -discovery@2.service is inactive.

From the following output, we can see that the apachet@2 . service details are
removed from etcd:

ELB service discovery

This is a variation of the Sidekick discovery in which, instead of Sidekick updating
etcd, Sidekick updates the IP address to the load balancer and the load balancer
redirects the web query to the active nodes. In this example, we will use the AWS
Elastic load balancer and CoreOS elb-presence container available in the Quay
repository. The elb-presence container takes care of checking the health of the nginx
container and updates AWS ELB with the container's IP address.

The following figure shows you a high-level architecture of this approach:

Service
\\

N N
N

A4

External
Request

N

.
\V2 e

Senice >’

[118]

Chapter 4

The first step is to create ELB in AWS, as shown in the following screenshot. Here we
have used AWS CLI to create ELB, test1b:

smakam14@junglel:~$ aws elb create-load-balancer --load-balancer-name testlb --listeners "Protocol=H
TTP,LoadBalancerPort=80,InstanceProtocol=HTTP,InstancePort=80" --availability-zones us-west-2a

"DNSName": "testlb-1322271991.us-west-2.elb.amazonaws.com"

We need to use test1b created in the preceding screenshot in the Sidekick service.

Following is the nginx. service unit file:

[Unit]
Description=nginx

[Service]

ExecStartPre=-/usr/bin/docker kill nginx-%i
ExecStartPre=-/usr/bin/docker rm nginx-%i
ExecStart=/usr/bin/docker run --rm --name nginx-%i -p 80:80 nginx
ExecStop=/usr/bin/docker stop nginx-%i

[X-Fleet]
Conflicts=nginxe*.service

Following is the nginx sidekick service that updates AWS ELB based on the health of

nginx.service:

[Unit]
Description=nginx presence service
BindsTo=nginx@%i.service

[Service]
ExecStartPre=-/usr/bin/docker kill nginx-presence-%i

ExecStartPre=-/usr/bin/docker rm nginx-presence-%i

ExecStart=/usr/bin/docker run --rm --name nginx-presence-%i -e AWS
ACCESS_KEY=<key> -e AWS SECRET KEY=<secretkey> -e AWS REGION=us-west-2
-e ELB NAME=testlb quay.io/coreos/elb-presence
ExecStop=/usr/bin/docker stop nginx-presence-%i

[X-Fleet]
MachineOf=nginx@%i.service

[119]

CoreOS Primary Services — Etcd, Systemd, and Fleet

The following is the Fleet status after creating two instances of the service:

core@ip-172-31-26-79 ~ $§ fleetctl list-units
UNIT MACHINE ACTIVE SUB
nginx-presence@l.service 10c@balc.../172.31.26.78 active running

nginx-presence@2.service 5df46109.../172.31.26.79 active running
nginx@l.service 10cObalc.../172.31.26.78 active running
nginx@2.service 5df46109.../172.31.26.79 active running

As we can see in the following screenshot, AWS ELB has both the instances
registered, and it will load-balance between these two instances:

smakam14@junglel:~$ aws elb describe-load-balancers | grep -A 10 Instances

[

"Instanceld": "i-63d287a5"
}!

"Instanceld": "i-64d287a2"

At this point, if we stop any instance of the nginx service, the Sidekick service will
take care of removing this instance from ELB.

Summary

In this chapter, we covered the internals of Etcd, Systemd, and Fleet with sufficient
hands-on examples, which will allow you to get comfortable with configuring and
using these services. By keeping the development of the critical services open source,
CoreOS has encouraged the usage of these services outside CoreOS as well. We also
covered the basic service discovery options using Etcd, Systemd, and Fleet. In the
next chapter, we will cover container networking and Flannel.

References
e Etcd docs: https://coreos.com/etcd/docs/latest/
e Fleet docs: https://coreos.com/fleet/docs/latest/
* Systemd docs: http://www.freedesktop.org/wiki/Software/systemd/

* Fleet service discovery: https://coreos.com/fleet/docs/latest/
examples/service-discovery.html

e FEtcd-ca: https://github.com/coreos/etcd-ca

* Etcd security: https://github.com/coreos/etcd/blob/master/
Documentation/security.md

[120]

https://coreos.com/etcd/docs/latest/
https://coreos.com/fleet/docs/latest/
http://www.freedesktop.org/wiki/Software/systemd/
https://coreos.com/fleet/docs/latest/examples/service-discovery.html
https://coreos.com/fleet/docs/latest/examples/service-discovery.html
https://github.com/coreos/etcd-ca
https://github.com/coreos/etcd/blob/master/Documentation/security.md
https://github.com/coreos/etcd/blob/master/Documentation/security.md

Chapter 4

Further reading and tutorials

Etcd security and authentication: http://thepracticalsysadmin.com/
etcd-2-1-1-encryption-and-authentication/

e Etcd administration: https://github.com/coreos/etcd/blob/master/
Documentation/admin guide.md

* Why systemd: http://blog.jorgenschaefer.de/2014/07/why-systemd.
html

* Comparing init systems: http://centos-vn.blogspot.in/2014/06/
daemon-showdown-upstart-vs-runit-vs.html

* Systemd talk by the Systemd creator: https://www.youtube.com/
watch?v=VIPonFvPlAs

* Service discovery overview: http://www.gomicro.services/
articles/service-discovery-overviewand http://progrium.com/
blog/2014/07/29/understanding-modern-service-discovery-with-
docker/

* Highly available Docker services using CoreOS and Consul: http://
blog.xebia.com/2015/03/24/a-high-available-docker-container-
platform-using-coreos-and-consul/ and http://blog.xebia.
com/2015/04/23/how-to-deploy-high-available-persistent-docker-
services-using-coreos-and-consul/

[121]

http://thepracticalsysadmin.com/etcd-2-1-1-encryption-and-authentication/
http://thepracticalsysadmin.com/etcd-2-1-1-encryption-and-authentication/
https://github.com/coreos/etcd/blob/master/Documentation/admin_guide.md
https://github.com/coreos/etcd/blob/master/Documentation/admin_guide.md
http://blog.jorgenschaefer.de/2014/07/why-systemd.html
http://blog.jorgenschaefer.de/2014/07/why-systemd.html
http://centos-vn.blogspot.in/2014/06/daemon-showdown-upstart-vs-runit-vs.html
http://centos-vn.blogspot.in/2014/06/daemon-showdown-upstart-vs-runit-vs.html
https://www.youtube.com/watch?v=VIPonFvPlAs
https://www.youtube.com/watch?v=VIPonFvPlAs
http://www.gomicro.services/articles/service-discovery-overview
http://www.gomicro.services/articles/service-discovery-overview
http://progrium.com/blog/2014/07/29/understanding-modern-service-discovery-with-docker/
http://progrium.com/blog/2014/07/29/understanding-modern-service-discovery-with-docker/
http://progrium.com/blog/2014/07/29/understanding-modern-service-discovery-with-docker/
http://blog.xebia.com/2015/03/24/a-high-available-docker-container-platform-using-coreos-and-consul/
http://blog.xebia.com/2015/03/24/a-high-available-docker-container-platform-using-coreos-and-consul/
http://blog.xebia.com/2015/03/24/a-high-available-docker-container-platform-using-coreos-and-consul/
http://blog.xebia.com/2015/04/23/how-to-deploy-high-available-persistent-docker-services-using-coreos-and-consul/
http://blog.xebia.com/2015/04/23/how-to-deploy-high-available-persistent-docker-services-using-coreos-and-consul/
http://blog.xebia.com/2015/04/23/how-to-deploy-high-available-persistent-docker-services-using-coreos-and-consul/

CoreOS Networking and
Flannel Internals

Microservices increased the need to have lots of containers and also connectivity
between containers across hosts. It is necessary to have a robust Container
networking scheme to achieve this goal. This chapter will cover the basics of
Container networking with a focus on how CoreOS does Container networking with
Flannel. Docker networking and other related container networking technologies
will also be covered. The following topics will be covered in this chapter:

Container networking basics

Flannel internals

A CoreOS Flannel cluster using Vagrant, AWS, and GCE
Docker networking and experimental Docker networking
Docker networking using Weave and Calico

Kubernetes networking

Container networking basics

The following are the reasons why we need Container networking:

Containers need to talk to the external world.

Containers should be reachable from the external world so that the
external world can use the services that Containers provide.

Containers need to talk to the host machine. An example can be
sharing volumes.

[123]

CoreOS Networking and Flannel Internals

* There should be inter-container connectivity in the same host and across
hosts. An example is a WordPress container in one host talking to a MySQL
container in another host.

Multiple solutions are currently available to interconnect Containers. These solutions
are pretty new and actively under development. Docker, until release 1.8, did not
have a native solution to interconnect Containers across hosts. Docker release 1.9
introduced a Libnetwork-based solution to interconnect containers across hosts as
well as perform service discovery. CoreOS is using Flannel for container networking
in CoreOS clusters. There are projects such as Weave and Calico that are developing
Container networking solutions, and they plan to be a networking container plugin
for any Container runtime such as Docker or Rkt.

Flannel

Flannel is an open source project that provides a Container networking solution

for CoreOS clusters. Flannel can also be used for non-CoreOS clusters. Kubernetes
uses Flannel to set up networking between the Kubernetes pods. Flannel allocates

a separate subnet for every host where a Container runs, and the Containers in this
host get allocated an individual IP address from the host subnet. An overlay network
is set up between each host that allows Containers on different hosts to talk to each
other. In Chapter 1, CoreOS Overview we provided an overview of the Flannel control
and data path. This section will delve into the Flannel internals.

Manual installation

Flannel can be installed manually or using the systemd unit, flanneld.service.
The following command will install Flannel in the CoreOS node using a container
to build the flannel binary. The flanneld Flannel binary will be available in /home/
core/flannel/bin after executing the following commands:

git clone https://github.com/coreos/flannel.git

docker run -v /home/core/flannel:/opt/flannel -i -t google/golang /bin/
bash -c "cd /opt/flannel && ./build"

The following is the Flannel version after we build flannel in our CoreOS node:

[124]

Chapter 5

Installation using flanneld.service

Flannel is not installed by default in CoreOS. This is done to keep the CoreOS image
size to a minimum. Docker requires flannel to configure the network and flannel
requires Docker to download the flannel container. To avoid this chicken-and-egg
problem, early-docker.service is started by default in CoreOS, whose primary
purpose is to download the flannel container and start it. A regular docker.service
starts the Docker daemon with the flannel network.

The following figure shows you the sequence in flanneld. service, where the early
Docker daemon starts the flannel container, which, in turn starts docker.service
with the subnet created by flannel:

Early
docker.service

Flannel
container &
service

Early
docker daemon

Docker daemon
with
flannel subnet
(docker.service)

The following is the relevant section of f1anneld.service that downloads the
flannel container from the Quay repository:

[125]

CoreOS Networking and Flannel Internals

The following output shows the early docker's running containers. Early-docker will
manage Flannel only:

The following is the relevant section of f1anneld.service that updates the docker
options to use the subnet created by flannel:

The following is the content of flannel docker_opts.env—in my case —after
flannel was started. The address, 10.1.60.1/24, is chosen by this CoreOS node
for its containers:

Docker will be started as part of docker. service, as shown in the following
screenshot, with the preceding environment file:

Control path

There is no central controller in flannel, and it uses etcd for internode communication.
Each node in the CoreOS cluster runs a flannel agent and they communicate with each
other using etcd.

As part of starting the Flannel service, we specify the Flannel subnet that can be
used by the individual nodes in the network. This subnet is registered with etcd so
that every CoreOS node in the cluster can see it. Each node in the network picks a
particular subnet range and registers atomically with etcd.

[126]

Chapter 5

The following is the relevant section of cloud-config that starts flanneld.service
along with specifying the configuration for Flannel. Here, we have specified the subnet
to be used for flannel as 10.1.0.0/16 along with the encapsulation type as vxlan:

The preceding configuration will create the following etcd key as seen in the node.
This shows that 10.1.0.0/16 is allocated for flannel to be used across the CoreOS
cluster and that the encapsulation type is vxlan:

Once each node gets a subnet, containers started in this node will get an IP address
from the IP address pool allocated to the node. The following is the etcd subnet
allocation per node. As we can see, all the subnets are in the 10.1.0.0/16 range
that was configured earlier with etcd and with a 24-bit mask. The subnet length
per host can also be controlled as a flannel configuration option:

Let's look at i fconfig of the Flannel interface created in this node. The IP address is
in the address range of 10.1.0.0/16:

Data path

Flannel uses the Linux bridge to encapsulate the packets using an overlay protocol
specified in the Flannel configuration. This allows for connectivity between
containers in the same host as well as across hosts.

[127]

CoreOS Networking and Flannel Internals

The following are the major backends currently supported by Flannel and specified
in the JSON configuration file. The JSON configuration file can be specified in the
Flannel section of cloud-config:

UDP: In UDP encapsulation, packets from containers are encapsulated in
UDP with the default port number 8285. We can change the port number
if needed.

VXLAN: From an encapsulation overhead perspective, VXLAN is
efficient when compared to UDP. By default, port 8472 is used for
VXLAN encapsulation. If we want to use an IANA-allocated VXLAN
port, we need to specify the port field as 4789.

AWS-VPC: This is applicable to using Flannel in the AWS VPC cloud.
Instead of encapsulating the packets using an overlay, this approach uses
a VPC route table to communicate across containers. AWS limits each VPC
route table entry to 50, so this can become a problem with bigger clusters.

The following is an example of specifying the AWS type in the flannel configuration:

GCE: This is applicable to using Flannel in the GCE cloud. Instead of
encapsulating the packets using an overlay, this approach uses the GCE route
table to communicate across containers. GCE limits each VPC route table
entry to 100, so this can become a problem with bigger clusters.

The following is an example of specifying the GCE type in the Flannel configuration:

Let's create containers in two different hosts with a VXLAN encapsulation and check
whether the connectivity is fine. The following example uses a Vagrant CoreOS
cluster with the Flannel service enabled.

Configuration in Host1:

Let's start a busybox container:

[128]

Chapter 5

Let's check the IP address allotted to the container. This IP address comes from the IP
pool allocated to this CoreOS node by the flannel agent. 10.1.19.0/24 was allocated
to host1 and this container got the 10.1.19.2 address:

Configuration in Host2:

Let's start a busybox container:

Let's check the IP address allotted to this container. This IP address comes from
the IP pool allocated to this CoreOS node by the flannel agent. 10.1.1.0/24 was
allocated to host2 and this container got the 10.1.1.2 address:

The following output shows you the ping being successful between container 1
and container 2. This ping packet is travelling across the two CoreOS nodes and
is encapsulated using VXLAN:

Flannel as a CNI plugin

As explained in Chapter 1, CoreOS Overview, APPC defines a Container specification
that any Container runtime can use. For Container networking, APPC defines

a Container Network Interface (CNI) specification. With CNI, the Container
networking functionality can be implemented as a plugin. CNI expects plugins to
support APIs with a set of parameters and the implementation is left to the plugin.
The plugin implements APIs like adding a container to a network and removing
container from the network with a defined parameter list.

[129]

CoreOS Networking and Flannel Internals

This allows the implementation of network plugins by different vendors and also

the reuse of plugins across different Container runtimes. The following figure shows
the relationship between the RKT container runtime, CNI layer, and Plugin like
Flannel. The IPAM Plugin is used to allocate an IP address to the containers and this
is nested inside the initial networking plugin:

RKT

CNI
Plugin like IPAM
Flannel Plugin

Setting up a three-node Vagrant CoreOS
cluster with Flannel and Docker

The following example sets up a three-node Vagrant CoreOS cluster with the etcd,
fleet, and flannel services turned on by default. In this example, vxlan is used
for encapsulation. The following is the cloud-config used for this:

#cloud-config
coreos:
etcd2:
discovery: <update thiss>
advertise-client-urls: http://Spublic ipv4:2379
initial-advertise-peer-urls: http://$private_ ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service

[130]

Chapter 5

command: start
- name: flanneld.service

drop-ins:
- name: 50-network-config.conf
content: |
[Service]
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "Network": "10.1.0.0/16", "Backend": {"Type": "vxlan"}}"'

command: start
The following are the steps for this:

1. Clone the CoreOS Vagrant repository.

2. Change the instance count to three in config. rb.

3. Update the discovery token in the cloud-config user data.
4

Perform vagrant up to start the cluster.

For more details on the steps, refer to Chapter 2, Setting up the CoreOS Lab. We can
test the container connectivity by starting busybox containers in both the hosts and
checking that the ping is working between the two Containers.

Setting up a three-node CoreOS cluster with
Flannel and RKT

Here, we will set up a three-node CoreOS cluster with RKT containers using the
Flannel CNI networking plugin to set up the networking. This example will allow
RKT containers across hosts to communicate with each other.

The following is the cloud-config used:

#cloud-config
coreos:
etcd2:
discovery: <update tokens
advertise-client-urls: http://Spublic ipv4:2379
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:

[131]

CoreOS Networking and Flannel Internals

- name: etcd2.service
command: start

- name: fleet.service
command: start

- name: flanneld.service

drop-ins:
- name: 50-network-config.conf
content: |
[Servicel
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "network": "10.1.0.0/16" }'

command: start
Rkt configuration
write files:
- path: "/etc/rkt/net.d/10-containernet.conf"
permissions: "0644"
owner: "root"
content: |

{

"name": "containernet",
"type": "flannel"

}

The /etc/rkt/net.d/10-containernet.conf file sets up the CNI plugin type as
Flannel and RKT containers use this.

The following are the steps for this:

1. Clone the CoreOS Vagrant repository.

2. Change the instance count to three in config. rb.

3. Update the discovery token in the cloud-config user data.
4

Perform vagrant up to start the cluster.

Let's start a busybox container in node1:

[132]

Chapter 5

The ifconfig output in busybox nodel is as follows:

Note: Docker . service should not be started with RKT containers
. as the Docker bridge uses the same address that is allocated to Flannel
for Docker container communication. Active work is going on to
S support running both Docker and RKT containers using Flannel.
Some discussion on this topic can be found at https://groups.
google.com/forum/#!topic/coreos-user/Kl7ejtcRxbc.

An AWS cluster using Flannel

Flannel can be used to provide Container networking between CoreOS nodes in

the AWS cloud. In the following two examples, we will create a three-node CoreOS
cluster in AWS using Flannel with VXLAN and Flannel with AWS VPC networking.
These examples are based on the procedure described at https://coreos.com/
blog/introducing-flannel-0.5.0-with-aws-and-gce/.

[133]

https://groups.google.com/forum/#!topic/coreos-user/Kl7ejtcRxbc
https://groups.google.com/forum/#!topic/coreos-user/Kl7ejtcRxbc
https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/
https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/

CoreOS Networking and Flannel Internals

An AWS cluster using VXLAN networking

The following are the prerequisities for this:

1. Create a token for the three-node cluster from the discovery token service.

2. Set up a security group exposing the ports ssh, icmp, 2379, 2380, and 8472.
8472 is used for VXLAN encapsulation.

3. Determine the AMI image ID using this link (https://coreos.com/os/
docs/latest/booting-on-ec2.html) based on your AWS Zone, and update
the channel based on your AWS zone and update channel. For the following
example, we will use ami-150c1425, which is the latest 815 alpha image.

Create cloud-config-flannel-vxlan.yaml with the same content used for the
Vagrant CoreOS cluster with Flannel and Docker, as specified in the previous section.

Use the following AWS CLI to start the three-node cluster:

aws ec2 run-instances --image-id ami-85ada4b5 --count 3 --instance-type
t2.micro --key-name "yourkey" --security-groups "coreos " --user-data

We can test connectivity across containers using two busybox containers in two
CoreOS nodes as specified in the previous sections.

An AWS cluster using AWS-VPC

AWS VPC provides you with an option to create custom networking for the instances
created in AWS. With AWS VPC, we can create subnets and route tables and configure
custom IP addresses for the instances.

Flannel supports the encapsulation type, aws-vpc. When using this option, Flannel
updates the VPC route table to route between instances by creating a custom route
table per VPC based on the container IP addresses allocated to the individual node.
From a data path perspective, there is no encapsulation such as UDP or VXLAN
that's used. Instead, AWS VPC takes care of routing the packets to the appropriate
instance using the route table configured by Flannel.

The following are the steps to create the cluster:

1. Create a discovery token for the three-node cluster.
2. Set up a security group exposing the ports ssh, icmp, 2379, and 2380.

3. Determine the AMI image ID using this link (https://coreos.com/os/
docs/latest/booting-on-ec2.html). For the following example, we will
use ami-150c1425, which is the latest 815 alpha image.

[134]

https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-ec2.html
https://coreos.com/os/docs/latest/booting-on-ec2.html

Chapter 5

Create a VPC using the VPC wizard with a single public subnet. The
following diagram shows you the VPC created from the AWS console:

smakam14@junglel:~/coreos$ aws ec2 describe-vpcs --vpc-id vpc-410c4824

"Vpcs"

{

[

"VpcId": "vpc-410c4824",
"InstanceTenancy": "default",
"State": "available",
"DhcpOptionsId”: "dopt-b7f516d2",
"CidrBlock": "10.0.0.0/16",
"IsDefault": false

Create an IAM policy, demo-policy, from the AWS console. This policy
allows the instance to modify routing tables:

{

}

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",

"Action": [
"ec2:CreateRoute",
"ec2:DeleteRoute",
"ec2:ReplaceRoute"

1,

"Resource": [
MW n
]
"Effect": "Allow",
"Action": [

"ec2:DescribeRouteTables",
"ec2:DesgscribelInstancesg"
1,

"Resource": "*"

Create an IAM role, demo-role, and associate demo-policy created in
the preceding code with this role.

[135]

CoreOS Networking and Flannel Internals

7. Create cloud-config-flannel-aws.yaml with the following content.
We will use the type as aws-vpc, as shown in the following code:

Cloud-config-flannel-aws.yaml:
#cloud-config
coreos:
etcd2:
discovery: <your tokens
advertise-client-urls: http://sprivate
ipv4:2379,http://S$private ipv4:4001
initial-advertise-peer-urls: http://$private ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: flanneld.service
drop-ins:
- name: 50-network-config.conf
content: |

[Servicel]

ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "Network": "10.1.0.0/16" , "Backend": {"Type": "aws -
vpc"}}

command: start

Create a three-node CoreOS cluster with a security group, IAM role, vpcid/
subnetid, security group, and cloud-config file as follows:

aws ec2 run-instances --image-id ami-150cl425 --subnet subnet-a58fc5c0
--associate-public-ip-address --iam-instance-profile Name=demo-role
--count 3 --security-group-ids sg-£22cb296 --instance-type t2.micro
--key-name "smakam-oregon" --user-data file://cloud-config-flannel-aws.
yaml

Note: It is necessary to disable the source and destination checks to
» allow traffic from containers as the IP address for the containers is
%&,‘ allocated by flannel and not by AWS. To do this, we need to go to
g each instance in the AWS console and select Networking | change
source/dest check | disable.

[136]

Chapter 5

Looking at the etcdctl output in one of the CoreOS nodes, we can see the following
subnets allocated to each node of the three-node cluster.

/coreos. com/network/subnets/10.1.47.0-24

/coreos.com/network/subnets/10.1.12.0-24
/coreos.com/network/subnets/10.1.14.0-24

Flannel will go ahead and update the VPC route table to route the preceding subnets
based on the instance ID on which the subnets are present. If we check the VPC route
table, we can see the following routes, which match the networks created by Flannel:

Destination = Target Status = Propagated
10.0.0.0/16 local Active No
0.0.0.0/0 igw-3d0d8058 Active No

10.1.12.0/24 eni-32356954 / i-8¢fe1948 Active No

10.1.14.0/24 eni-35356953 / i-8ffe194b Active No

10.1.47.0/24 eni-33356955/ i-8dfe1949 Active No

At this point, we can test connectivity across containers using two busybox containers
in two CoreOS nodes, as specified in the previous sections.

A GCE cluster using Flannel

Flannel can be used to provide Container networking between CoreOS nodes in
the GCE cloud. In the following two examples, we will create a three-node CoreOS
cluster using Flannel with VXLAN and Flannel with GCE networking. These
examples are based on the procedure described at https://coreos.com/blog/
introducing-flannel-0.5.0-with-aws-and-gce/.

GCE cluster using VXLAN networking

The following are the prerequisities for this:

1. Create a token for the three-node cluster from the discovery token service.

2. Set up a security group exposing the ports ssh, icmp, 2379, 2380, and 8472.
8472 is used for VXLAN encapsulation.

3. Determine the AMI image ID using this link (https://coreos.com/os/
docs/latest/booting-on-google-compute-engine.html). We will use
alpha image 815 for the following example.

[137]

https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/
https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html
https://coreos.com/os/docs/latest/booting-on-google-compute-engine.html

CoreOS Networking and Flannel Internals

Create cloud-config-flannel-vxlan.yaml with the same content that was
used for the Vagrant CoreOS cluster with Flannel and Docker specified in the
previous section.

The following command can be used to set up a three-node CoreOS cluster in GCE
with Flannel and VXLAN encapsulation:

gcloud compute instances create corel core2 core3 --image https://www.
googleapis.com/compute/vl/projects/coreos-cloud/global/images/coreos-
alpha-815-0-0-v20150924 --zone us-centrall-a --machine-type nl-standard-1
--tags coreos --metadata-from-file user-data=cloud-config-flannel-vxlan.
yaml

A ping test across containers in different hosts can be done to verify that the Flannel
control and data path is working fine.

A GCE cluster using GCE networking

Similar to AWS VPC, the Google cloud also has its cloud networking service that
provides you with the capability to create custom subnets, routes, and IP addresses.

The following are the steps to create a three-node CoreOS cluster using flannel and
GCE networking:

1. Create a token for the three-node cluster from the discovery token service.

2. Create a custom network, customnet, with firewall rules allowing TCP ports
2379 and 2380. The following is the custom network that I created with
subnet 10.10.0.0/16:

smakam14@junglel:~/coreos$ gcloud compute networks list

NAME IPV4_RANGE GATEWAY_IPV4
customnet 10.10.0.0/16 10.10.0.1

3. Create cloud-config-flannel-gce.yaml with the following content.
Use the Flannel type as gce:

#cloud-config
coreos:
etcd2:
discovery: <yourtokens
advertise-client-urls: http://sSprivate
ipv4:2379,http://Sprivate ipv4:4001
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380
units:

[138]

Chapter 5

- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: flanneld.service
drop-ins:
- name: 50-network-config.conf

content: |
[Servicel]
ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "Network": "10.1.0.0/16" , "Backend": {"Type": "gce"}}'

command: start

4. Create three CoreOS instances with a customnet network, IP forwarding
turned on, and scope for the instance to modify the route table:

gcloud compute instances create corel core2 core3 --image https://
www.googleapis.com/compute/vl/projects/coreos-cloud/global/images/
coreos-alpha-815-0-0-v20150924 --zone us-centrall-a --machine-
type nl-standard-1 --network customnet --can-ip-forward --scopes
compute-rw --metadata-from-file user-data=cloud-config-flannel-
gce.yaml

The following are the Flannel networks for containers created by each node:

/coreos.com/network/subnets/10.1.5.0-24
/coreos.com/network/subnets/10.1.73.0-24

/coreos.com/network/subnets/10.1.38.0-24

Let's look at the routing table in GCE. As shown by the following output, Flannel has
updated the GCE route table for the container networks:

smakam14@junglel:~/coreos$ gcloud compute routes list --sort-by NETWORK
NAME NETWORK DEST_RANGE NEXT_HOP PRIORITY
default-route-66230db66eaf4fac customnet 10.10.0.0/16 1000

default-route-8ea9d62bedff0845 customnet 0.0.0.0/0 default-internet-gateway 1000
flannel-10-1-38-0-24 customnet 10.1.38.0/24 us-centrall-a/instances/corel 1000
flannel-10-1-5-0-24 customnet 10.1.5.0/24 us-centrall-a/instances/core2 1000
flannel-10-1-73-0-24 customnet 10.1.73.0/24 us-centrall-a/instances/core3 1000

At this point, we should have Container connectivity across nodes.

[139]

CoreOS Networking and Flannel Internals

Experimental multitenant networking

By default, Flannel creates a single network, and all the nodes can communicate with
each other over the single network. This poses a security risk when there are multiple
tenants using the same network. One approach to achieve multitenant networking is
using multiple instances of flannel managing each tenant. This can get cumbersome to
set up. As of version 0.5.3, Flannel has introduced multinetworking in the experimental
mode, where a single Flannel daemon can manage multinetworks with isolation.
When there are multiple tenants using the cluster, a multinetwork mode would help

in isolating each tenant's traffic.

The following are the steps for this:

1. Create subnet configurations for multiple tenants. This can be done by
reserving a subnet pool in etcd. The following example sets up three
networks, blue, green, and red, each having a different subnet:

etcdctl set /coreos.com/network/blue/config '{ "Network":
"10.1.0.0/16", "Backend": { "Type": "vxlan", "VNI": 1 } }°'

etcdctl set /coreos.com/network/green/config '{ "Network":
"10.2.0.0/16", "Backend": { "Type": "vxlan", "VNI": 2 } }°'

etcdctl set /coreos.com/network/red/config '{ "Network":
"10.3.0.0/16", "Backend": { "Type": "vxlan", "VNI": 3 } }°'

2. Start the Flannel agent with the networks that this Flannel agent needs to
be part of. This will take care of reserving the IP pool per node per network.
In this example, we have started the flannel agent to be part of all three
networks, blue, green, and red:

sudo flanneld --networks=blue,green,red &

Flannel picked three subnet ranges for the three networks, as shown in the following
screenshot. 10.1.87.0/24 is allocated for the blue network, 10.2.4.0/24 is allocated
for the green network, and 10.3.93.0/24 is allocated for the red network:

[140]

Chapter 5

Under /run/flannel, multiple networks can be seen, as follows:

Now, we can start the Docker or Rkt container with the appropriate tenant network
created. At this point, there is no automatic integration of flanneld.service with
multinetworks; this has to be done manually.

The following link is a related Google discussion on this topic:

https://groups.google.com/forum/#!topic/coreos-user/EIF-yGNWkL4

Experimental client-server networking

In the default Flannel mode, there is a flannel agent in each node, and the backend
data is maintained in etcd. This keeps Flannel stateless. In this mode, there is a
requirement for each Flannel node to run etcd. Flannel client-server mode is useful
in the following scenarios:

* Only the master node runs etcd and Worker nodes need not run etcd.
This is useful from both the performance and security perspectives.

* When using other backends such as AWS with flannel, it's necessary to store
the AWS key, and when using the client-server model, the key can be present
in the master node only; this is again important from a security perspective.

Flannel client-server feature is currently in experimental mode as of Flannel
version 0.5.3.

[141]

https://groups.google.com/forum/#!topic/coreos-user/EIF-yGNWkL4

CoreOS Networking and Flannel Internals

The following figure describes the interconnection between different components for
the Flannel client-server networking:

l

Flannel
server

Flannel
client

Flannel
client

If necessary, we can use secure (HTTPS) means of communication both from the
flanneld server to the etcd as well as between the flanneld client and server.

Setting up client-server Flannel networking

Let's start with a three-node CoreOS cluster without Flannel running on any node.
Start the f£1anneld server and client in nodel and client in node2 and node3.

Start flannel server as shown in the following screenshot:

Start flannel client as shown in the following screenshot:

It is necessary to specify the interface with eth1 as an argument as etho is used as
the NAT interface and is common across all nodes, ethl is unique across nodes:

[142]

Chapter 5

After starting the client in node2 and node3, let's look at the etcd output in node1
showing the three subnets acquired by three CoreOS nodes:

To start docker. service manually, we first need to create f1annel docker_opts.env
as follows:

/usr/bin/docker run --net=host --rm -v /run:/run \
quay.io/coreos/flannel:0.5.3 \

/opt/bin/mk-docker-opts.sh -d /run/flannel docker opts.env -i

The following image is the created flannel docker_opts.env:

Now, we can start docker . service, which uses environment variables in
flannel docker opts.env.

Start docker.service:

sudo systemctl start docker.service

As we can see, the docker bridge gets the IP address in the range allocated to this node:

This feature is currently experimental. There are plans to add a server failover
feature in future.

[143]

CoreOS Networking and Flannel Internals

Docker networking

The following is the Docker networking model to interconnect containers in a
single host:

c1

Namespace nl

wo EthO

Host machine (Global Namespace)

Vethl Veth2

Linux bridge

Each Container resides in its own networking namespace and uses a Linux bridge on
the host machine to talk to each other. More details on Docker networking options
can be found at https://docs.docker.com/engine/userguide/networking/
dockernetworks/. The following are the networking options available as of Docker
release 1.9:

--net=bridge: This is the default option that Docker provides, where
containers connect to the Linux docker bridge using a veth pair.

--net=host: In this option, there is no new network namespace created
for the container, and the container shares the same network namespace
as the host machine.

--net= (the container name or ID):In this option, the new container
shares the same network namespace as the specified container in the

net option. (For example: sudo docker run -ti -name=ubuntu2 -
net=container:ubuntul ubuntu:14.04 /bin/bash. Here, the ubuntu2
container shares the same network namespace as the ubuntul container.)

- -net=none: In this option, the container does not get allocated a new network
namespace. Only the loopback interface is created in this case. This option is
useful in scenarios where we want to create our own networking options for
the container or where there is no need for connectivity.

--net=overlay: This option was added in Docker release 1.9 to support
overlay networking that allows Containers across hosts to be able to talk
to each other.

[144]

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/

Chapter 5

Docker experimental networking

As of Docker release 1.8, Docker did not have a native solution to connect Containers
across hosts. With the Docker experimental release, we can connect Containers
across hosts using the Docker native solution as well as external networking plugins
to connect Containers across hosts.

The following figure illustrates this:

Native drivers Remote drivers
(Null, Bridge, Overlay) (Plugins like weave, Calico)

The following are some notes on the Docker libnetwork solution:

Docker runtime was previously integrated with the networking module
and there was no way to separate them. Libnetwork is the new networking
library that provides the networking functionality and is separated from
Core Docker. Docker 1.7 release has already included the libnetwork and
is backward-compatible from the end user's perspective.

Drivers implement the APIs provided by libnetwork. Docker is leaning
towards a plugin approach for major functionalities such as Networking,
Storage, and Orchestration where Docker provides a native solution that

can be substituted with technologies from other vendors as long as they
implement the APIs provided by the common library. In this case, Bridge
and Overlay are the native Docker networking drivers and remote drivers
can be implemented by a third party. There are already many remote drivers
available, such as Weave and Calico.

Docker experimental networking has the following concepts:

The Docker container attaches to the network using the endpoint or service.

Multiple endpoints share a network. In other words, only endpoints located
in the same network can talk to each other.

When creating the network, the network driver can be mentioned. This can
be a Docker-provided driver, such as Overlay, or an external driver, such as
Weave and Calico.

[145]

CoreOS Networking and Flannel Internals

* Libnetwork provides service discovery, where Containers can discover other
endpoints in the same network. There is a plan in the future to make service
discovery a plugin. Services can talk to each other using the service name
rather than the IP address. Currently, Consul is used for service discovery;
this might change later.

* Shared storage such as etcd or consul is used to determine the nodes that
are part of the same cluster.

A multinetwork use case

With the latest Docker networking enhancements, Containers can be part of multiple
networks and only Containers in the same network can talk to each other. To illustrate
these concepts, let's take a look at the following example:

1. Set up two nginx containers and one HAProxy Container in the backend
network, be.
Add the HAProxy Container in the frontend network, fe, as well.

Connect to the HAProxy Container using the busybox Container in the
frontend network, fe. As the busybox Container is in the fe network
and nginx Containers are in the be network, they cannot talk to each
other directly.

4. The Haproxy Container will load balance the web connection between
the two nginx backend Containers.

The following are the command details:

Create the fe and be networks:

docker network create be

docker network create fe

Create two nginx containers in the be network:

docker run --name nginxl --net be -v ~/haproxy/nginxl.html:/usr/share/
nginx/html/index.html -d nginx
docker run --name nginx2 --net be -v ~/haproxy/nginx2.html:/usr/share/
nginx/html/index.html -d nginx
Create haproxy in the be network:

docker run -d --name haproxy --net be -v ~/haproxy/haproxy.cfg:/usr/
local/etc/haproxy/haproxy.cfg haproxy

[146]

Chapter 5

Attach haproxy to the fe network:

docker network connect fe haproxy

Create a busybox container in the fe network accessing the haproxy web page:
docker run -it --rm --net fe busybox wget -qgO- haproxy/index.html

If we try running the busybox container multiple times, it will switch between
nginx1l and nginx2 web server outputs.

The Docker overlay driver

The following example shows you how to do multihost container connectivity using
the Docker experimental overlay driver. I have used a Ubuntu VM for the following
example and not CoreOS because the experimental docker overlay driver needs a
new kernel release, which is not yet available in CoreOS.

The following figure illustrates the use case that is being tried in this example:

Host "dev1" Host "dev2"
Container 1 Container 2
Endpoint Endpoint
"svel" "svc2"

OVERLAY DRIVER

NETWORK "dev"

The following is a summary of the steps:

* Create two hosts with experimental Docker installed.

* Install Consul on both the hosts with one of the hosts acting as the
consul server. Consul is needed to store common data that is used
for inter-container communication.

* Start Docker with Consul as the key store mechanism on both hosts.

* Create containers with different endpoints on both hosts sharing the
same network.

[147]

CoreOS Networking and Flannel Internals

The first step is to create 2 host machines with experimental Docker installed.

The following set of commands creates two Docker hosts using docker-machine.
We have used docker-machine with a custom ISO image for experimental Docker:

docker-machine create -d virtualbox --virtualbox-boot2docker-url=http://
sirile.github.io/files/boot2docker-1.9.iso devl
docker-machine create -d virtualbox --virtualbox-boot2docker-url=http://
sirile.github.io/files/boot2docker-1.9.iso dev2

Install Consul on both nodes. The following command shows you how to download
and install consul:

curl -OL https://dl.bintray.com/mitchellh/consul/0.5.2 linux amd64.zip
unzip 0.5.2 linux amd64.zip
sudo mv consul /usr/local/bin/

Start the consul server and docker daemon with the consul keystore in node1:

The following set of commands starts the consul server and Docker daemon with the
consul agent in node1:
Docker-machine ssh devl

consul agent -server -bootstrap -data-dir /tmp/consul
-bind=192.168.99.100 &

sudo docker -d --kv-store=consul:localhost:8500 --label=com.docker.
network.driver.overlay.bind interface=ethl

Start the consul agent and Docker daemon with the consul keystore in node2:

The following set of commands starts the consul agent and Docker daemon with the
consul agent in node2:

Docker-machine ssh dev2
consul agent -data-dir /tmp/consul -bind 192.168.99.101 &
consul join 192.168.99.100 &

sudo docker -d --kv-store=consul:localhost:8500 --label=com.docker.
network.driver.overlay.bind interface=ethl --label=com.docker.network.
driver.overlay.neighbor ip=192.168.99.100

Start the container with the svc1 service, dev network, and overlay driver in node1:
docker run -i -t --publish-service=svcl.dev.overlay busybox
Start the container with the svc2 service, dev network, and overlay driver in node2:

docker run -i -t --publish-service=svc2.dev.overlay busybox

[148]

Chapter 5

As we can see, we are able to ping svcl and sve2 from nodel successfully:

/ # ping -cl svcl.dev
PING svcl.dev (172.21.0.1): 56 data bytes
64 bytes from 172.21.0.1: seq=0 ttl=64 time=0.045 ms

--- svcl.dev ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.045/0.045/0.045 ms

/ # ping -c1 svc2.dev

PING svc2.dev (172.21.0.2): 56 data bytes

64 bytes from 172.21.0.2: seq=0 ttl=64 time=17.607 ms

--- svc2.dev ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 17.607/17.607/17.607 ms

Note: The overlay driver needs the Linux kernel
A version 3.16 or higher.

The external networking calico plugin

In this example, we will illustrate how to do Container networking using Calico

as a plugin to the Docker libnetwork. This support was available originally in
experimental networking and later in the Docker 1.9 release. More details about

the Calico networking approach are mentioned in the following Calico networking
section. This example is based on https://github.com/projectcalico/calico-
containers/blob/master/docs/calico-with-docker/docker-network-plugin/
README . md. To set up a CoreOS Vagrant cluster for Calico, we can use the procedure
in https://github.com/projectcalico/calico-containers/blob/master/
docs/calico-with-docker/VagrantCoreOS.md.

After setting up a Vagrant CoreOS cluster, we can see the two nodes of the CoreOS
cluster. We should make sure that etcd is running successfully, as shown in the
following output:

The following are the steps to get Calico working with Docker as a networking plugin:

Start Calico in both nodes with the libnetwork option:

sudo calicoctl node --libnetwork

[149]

https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/docker-network-plugin/README.md
https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/docker-network-plugin/README.md
https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/docker-network-plugin/README.md
https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/VagrantCoreOS.md
https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/VagrantCoreOS.md

CoreOS Networking and Flannel Internals

We should see the following Docker containers in both nodes:

Create the net1 network with Calico driver:

docker network create --driver=calico --subnet=192.168.0.0/24 netl

This gets replicated to all the nodes in the cluster. The following is the network list
in node2:

¢ Create container 1 in node1 with the net1 network:

docker run --net netl --name workload-A -tid busybox

¢ (Create container 2 in node2 with the net1 network:

docker run --net netl --name workload-B -tid busybox

Now, we can ping the two containers as follows:

The Docker 1.9 update

Docker 1.9 got released at the end of October 2015 that transitioned the experimental
networking into production. There could be minor modifications necessary to the
Docker networking examples in this chapter, which were tried with the Docker 1.8
experimental networking version.

[150]

Chapter 5

With Docker 1.9, multihost networking is integrated with Docker Swarm and
Compose. This allows us to orchestrate a multicontainer application spread between
multiple hosts with a single command and the multi-host Container networking will
be handled automatically.

Other Container networking technologies

Weave and Calico are open source projects, and they develop Container networking
technologies for Docker. Kubernetes is a Container orchestration open source project
and it has specific networking requirements and implementations for Containers.
There are also other projects such as Cisco Contiv (https://github.com/contiv/
netplugin) that is targeted at Container networking. Container technologies like
Weave, Calico and Contiv have plans to integrate with Rkt Container runtime in

the future.

Weave networking

Weaveworks has developed a solution to provide Container networking.
The following are some details of their solution:

* Weave creates a Weave bridge as well as a Weave router in the host machine.

e The Weave router establishes both TCP and UDP connections across
hosts to other Weave routers. A TCP connection is used for discovery-
and protocol-related exchange. UDP is used for data encapsulation.
Encryption can be done if necessary.

* The Weave bridge is configured to sniff the packets that need to be sent
across hosts and redirected to the Weave router. For local switching,
the Weave router is not used.

* Weave's Weavenet product provides you with container connectivity.
They also have Weavescope that provides container visibility and
Weaverun that provides service discovery and load balancing.

* Weave is also available as a Docker plugin integrated with the Docker
release 1.9.

[151]

https://github.com/contiv/netplugin
https://github.com/contiv/netplugin

CoreOS Networking and Flannel Internals

The following figure illustrates the solution from Weave:

router Weav|

Weave bridge Weave bridge

To run Weave on CoreOS, I used cloud-config from https://github.com/
lukebond/coreos-vagrant -weave. In the following example, we will create
containers in two CoreOS nodes and use Weave to communicate with each other.
In this example, we have not used the Docker Weave plugin but used environment
variables to communicate between Docker and Weave.

The following are the steps to create a Weave cluster:
1. Clone the repository (git clone https://github.com/lukebond/coreos-
vagrant-weave.git).
Change the number of instances in config.rb to 3.
Get a new discovery token for node count 3 and update it in the user data.
Perform vagrant up to start the cluster.

The cloud-config file takes care of downloading Weave agents in each node and
starting them.

The following section of the service file downloads the Weave container:

[152]

https://github.com/lukebond/coreos-vagrant-weave
https://github.com/lukebond/coreos-vagrant-weave

Chapter 5

On each of the nodes, we can see the following Weave containers started:

Before starting application containers, we need to set the environment variables
so that Weave can intercept Docker commands and create their own networking,.
As part of starting Weave in Weave. service, environment variables have already
been set up. The following command in the node shows this:

Now, we can successfully ping between the two containers. As part of Docker 1.9,
Weave is available as a Docker networking plugin and this makes configuration

much easier.

[153]

CoreOS Networking and Flannel Internals

Calico networking

Calico provides you with a Container networking solution for Docker similar to
Weave. The following are some details of Calico's implementation:

Calico provides container networking directly at L3 without using
overlay technologies

Calico uses BGP for route distribution

There are two components of Calico: BIRD, which is used for route
distribution and FELIX, which is an agent in each node that does
discovery and routing

Calico is also available as a Docker networking plugin integrated with
Docker release 1.9

The following figure illustrates the Calico data path:

Host1 .-~ I . 1 . Host2
(X X)
& BGP S
Calico router Calico router

Setting up Calico with CoreOS

I followed the procedure at https://github.com/projectcalico/calico-
containers/blob/master/docs/calico-with-docker/VagrantCoreOS.md
to set up a two-node CoreOS cluster.

The first step is checking out the repository:

git clone https://github.com/projectcalico/calico-docker.git

There are three approaches described by Calico for Docker networking:

Powerstrip: Calico uses an HTTP proxy to listen to Docker calls and
set up networking.

Default networking: Docker Containers are set up with no networking.
Using Calico, network endpoints are added and networking is set up.

Libnetwork: Calico is integrated with Docker libnetwork as of Docker
release 1.9. This will be the long-term solution.

[154]

https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/VagrantCoreOS.md
https://github.com/projectcalico/calico-containers/blob/master/docs/calico-with-docker/VagrantCoreOS.md

Chapter 5

In the following example, we have used the default networking approach to set up
Container connectivity using Calico.

The following are the steps needed to set up the default networking option
with Calico:

Start calicoctl in all the nodes.

Start the containers with the --no-net option.

Attach the calico network specifying the IP address to each container.

Ll

Create a policy profile. Profiles set up the policy that allows containers
to talk to each other.

5. Attach profiles to the container.

The following commands set up a container in nodel and node2 and establish a
policy that allows containers to talk to each other.

Execute the following commands on node1:

docker run --net=none --name workload-A -tid busybox
sudo calicoctl container add workload-A 192.168.0.1
calicoctl profile add PROF A B

calicoctl container workload-A profile append PROF A B

This starts the docker container, attaches the calico endpoint, and applies the profile
to allow Container connectivity.

Execute the following commands on node2:

docker run --net=none --name workload-B -tid busybox
sudo calicoctl container add workload-B 192.168.0.2

calicoctl container workload-B profile append PROF A B

This starts the docker container, attaches the calico endpoint, and applies the same
profile as in the preceding commands to allow Container connectivity.

Now, we can test intercontainer connectivity:

CoreOS Networking and Flannel Internals

Kubernetes networking

Kubernetes is a Container orchestration service. Kubernetes is an open source
project that's primarily driven by Google. We will discuss about Kubernetes in the
next chapter on Container orchestration. In this chapter, we will cover some of the
Kubernetes networking basics.

The following are some details as to how Kubernetes does the networking
of containers:

Kubernetes has a concept called Pods, which is a collection of closely-tied
containers. For example, a service and its logging service can be a single pod.
Another example of a pod could be a service and sidekick service that checks
the health of the main service. A single pod with its associated containers is
always scheduled on one machine.

Each pod gets an IP address. All containers within a pod share the same
IP address.

Containers within a pod share the same network namespace. For containers
within a pod to communicate, they can use a regular process-based
communication.

Pods can communicate with each other using a cloud networking VPC-based
approach or container networking solution such as Flannel, Weave, or Calico.

As pods are ephemeral, Kubernetes has a unit called service. Each service has
an associated virtual IP address and proxy agent running on the nodes' load
balancers and directs traffic to the right pod.

[156]

Chapter 5

The following is an illustration of how Pods and Containers are related and how
they communicate:

POD1(IP1)

Cloud networking / Flannel /
Weave / Calico

POD2(IP2)

C1 C
C3

POD3(IP3)

C1 C
C3

Summary

In this chapter, we covered different Container networking technologies with a
focus on Container networking in CoreOS. There are many companies trying to
solve this Container networking problem. CNI and Flannel have become the default
for CoreOS and Libnetwork has become the default for Docker. Having standards
and pluggable networking architecture is good for the industry as this allows
interoperability. Container networking is still in the early stages, and it will take
some time for the technologies to mature in this area. In the next chapter, we will
discuss about CoreOS storage management.

[157]

CoreOS Networking and Flannel Internals

References

Flannel docs: https://coreos.com/flannel/docs/latest/
* Flannel GitHub page: https://github.com/coreos/flannel
* (NI spec: https://github.com/appc/cni/blob/master/SPEC.md

e Flannel with AWS and GCE: https://coreos.com/blog/introducing-
flannel-0.5.0-with-aws-and-gce/

e Weaveworks: https://github.com/weaveworks/weave
e Libnetwork: https://github.com/docker/libnetwork

* Docker experimental: https://github.com/docker/docker/tree/master/
experimental

e (alico: https://github.com/projectcalico/calico-docker

e Kubernetes: http://kubernetes.io/

Further reading and tutorials

The Flannel CoreOS Fest presentation: https://www.youtube.com/
watch?v=_HYeSaGtEYw

* The Calico and Weave presentation: https://giantswarm.io/
events/2015-04-20-docker-coreos/

. CorﬁhIHEQﬂughlzhttps://github.com/contiv/netplugin

* Kubernetes networking: https://github.com/kubernetes/kubernetes/
blob/release-1.1/docs/admin/networking.md

[158]

https://coreos.com/flannel/docs/latest/
https://github.com/coreos/flannel
https://github.com/appc/cni/blob/master/SPEC.md
https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/
https://coreos.com/blog/introducing-flannel-0.5.0-with-aws-and-gce/
https://github.com/weaveworks/weave
https://github.com/docker/libnetwork
https://github.com/docker/docker/tree/master/experimental
https://github.com/docker/docker/tree/master/experimental
https://github.com/projectcalico/calico-docker
http://kubernetes.io/
https://www.youtube.com/watch?v=_HYeSaGtEYw
https://www.youtube.com/watch?v=_HYeSaGtEYw
https://giantswarm.io/events/2015-04-20-docker-coreos/
https://giantswarm.io/events/2015-04-20-docker-coreos/
https://github.com/contiv/netplugin
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/admin/networking.md
https://github.com/kubernetes/kubernetes/blob/release-1.1/docs/admin/networking.md

CoreOS Storage
Management

Storage is a critical component of distributed infrastructure. The initial focus

of Container technology was on Stateless Containers with Storage managed by
traditional technologies such as NAS and SAN. Stateless Containers are typically
web applications such as NGINX and Node.js where there is no need to persist data.
In recent times, there has been a focus on Stateful Containers and there are many
new technologies being developed to achieve Stateful Containers. Stateful Containers
are databases such as SQL and redis that need data to be persisted. CoreOS and
Docker integrates well with different Storage technologies and there is active work
going on to fill the gaps in this area.

Following three aspects of CoreOS storage will be covered in this chapter:

* The CoreOS base filesystem and partition table

* The Container filesystem, which is composed of the Union filesystem
and Copy-on-write (CoW) storage driver

* The Container data volumes for shared data persistence, which can be local,
distributed, or shared external storage
The following topics will be covered in this chapter:
* The CoreOS filesystem and mounting AWS EBS and NFS storage to the
CoreOS filesystem

* The Docker Container filesystem for storing Container images which
includes both storage drivers and the Union filesystem.

[159]

CoreOS Storage Management

¢ Docker data volumes

* Container data persistence using Flocker, GlusterFS and Ceph

Storage concepts

The following are some storage terms along with their basic definitions that we will
use in this chapter and beyond:

* Local storage: This is Storage attached to the localhost. An example is a local
hard disk with ZFS.

* Network storage: This is a common storage accessed through a network.
This can either be SAN or a cluster storage such as Ceph and GlusterFS.

* Cloud storage: This is Storage provided by a cloud provider such as AWS
EBS, OpenStack Cinder, and Google cloud storage.

* Block storage: This requires low latency and is typically used for an
OS-related filesystem. Some examples are AWS EBS and OpenStack Cinder.

* Object storage: This is used for immutable storage items where latency is not
a big concern. Some examples are AWS S3 and OpenStack Swift.

* NFS: This is a distributed filesystem. This can be run on top of any cluster
storage.

The CoreOS filesystem

We covered the details of the CoreOS partition table in Chapter 3, CoreOS Autoupdate.
The following screenshot shows the default partitioning in the AWS CoreOS cluster:

core@ip-172-31-46-220 ~ $ df -k
i 1K-blocks Used Available Use% Mounted on
497168 [¢] 497168 0% /dev
510100 [¢] 510100 0% /[dev/shm
510100 260 509840 1% /run
510100 0 510100 0% /sys/fs/cgroup

5706380 19972 5410080 1% [/

1007760 354076 601668 38% /[usr

510100 510100 0% /media

510100 5101060 0% /tmp

110576 _ 60 101344 1% /[usr/share/oem

By default, CoreOS uses root partitioning for the Container filesystem. In the
preceding table, /dev/xvda9 will be used to store Container images.

[160]

Chapter 6

Following output shows Docker using Ext4 filesystem with Overlay storage driver in
a CoreOS node running in AWS:

core@ip-172-31-46-220 ~ $ docker info
Containers: 0

Images: O
Storage Driver: overlay
Backing Filesystem: extfs

To get extra storage, external storage can be mounted in CoreOS.

Mounting the AWS EBS volume

Amazon Elastic Block Store (EBS) provides you with persistent block-level storage
volumes to be used with Amazon EC2 instances in the AWS cloud. The following
example shows you how to add an extra EBS volume to the CoreOS node running
in AWS and use it for the Container filesystem.

Rename the following cloud-config as cloud-config-mntdocker.yml:

#cloud-config
coreos:
etcd2:
name: etcdserver
initial-cluster: etcdserver=http://$Sprivate ipv4:2380
advertise-client-urls: http://Sprivate ipv4:2379,http://$private
ipv4:4001
initial-advertise-peer-urls: http://$private ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: format-ephemeral.service
command: start
content: |
[Unit]
Description=Formats the ephemeral drive
After=dev-xvdf.device
Requires=dev-xvdf.device
[Servicel
Type=oneshot
RemainAfterExit=yes

[161]

CoreOS Storage Management

ExecStart=/usr/sbin/wipefs -f /dev/xvdf
ExecStart=/usr/sbin/mkfs.btrfs -f /dev/xvdf
- name: var-lib-docker.mount

command: start

content: |
[Unit]
Description=Mount ephemeral to /var/lib/docker
Requires=format-ephemeral.service
After=format-ephemeral.service
Before=docker.service
[Mount]
What=/dev/xvdf
Where=/var/lib/docker
Type=btrfs

Following are some details on the preceding cloud-config unit file:

* The Format-ephemeral service takes care of formatting the filesystem
asbtrfs

* The Mount service takes care of mounting the new volume in /var/1ib/
docker before docker.service is started

We can start the CoreOS node with the preceding cloud-config with extra EBS
volume using the following commands:

aws ec2 run-instances --image-id ami-85ada4b5 --count 1 --instance-

type t2.micro --key-name "smakam-oregon" --security-groups "coreos-test"
--user-data file://cloud-config-mntdocker.yaml --block-device-mappings
"[{\"DeviceName\":\"/dev/sdf\",\"Ebs\":{\"DeleteOnTermination\": false, \"V
olumeSize\":8, \"VolumeType\":\"gp2\"}}1"

The preceding command creates a single-node CoreOS cluster with one extra
volume of 8 GB. The new volume is mounted as /var/1ib/docker with the btrfs
filesystem. The /dev/sdf directory gets mounted in the CoreOS system as /dev/
xvdf, so the mount file uses /dev/xvdf.

[162]

Chapter 6

The following is the partition table in the node with the preceding cloud-config:

core@ip-172-31-46-214 ~ $ df -k
Filesystem 1K-blocks Used Available Use% Mounted on
devtmpfs 497168 0 497168 0% /dev
tmpfs 510100 0 510100 0% /dev/shm
tmpfs 510100 324 509776 1% /run
510100 0 510100 0% /sys/fs/cgroup

5706380 20816 5409236 1% /

1007760 354076 601668 38% [fusr

510100 (0] 510160 0% /tmp

510160 (0] 510100 0% /media

110576 60 101344 1% [usr/share/oem
8388608 180316 7382820 3% /var/lib/docker

As we can see, there is a new 8 GB partition where /var/lib/docker is mounted.

The following output shows you that the docker filesystem is using the btrfs
storage driver as we requested:

core@ip-172-31-46-214 ~ $ docker info
Containers: 1

Images: 12
Storage Driver: btrfs
Build Version: Btrfs v3.17.1

Mounting NFS storage

We can mount a volume on a CoreOS node using NFS. NFS allows a shared storage
mechanism where all CoreOS nodes in the cluster can see the same data. This
approach can be used for Container data persistence when Containers are moved
across nodes. In the following example, we run the NFS server in a Linux server and
mount this volume in a CoreOS node running in the Vagrant environment.

The following are the steps to set up NFS mounting on the CoreOS node:

1. Start the NFS server and export directories that are to be shared.

2. Set up the CoreOS cloud-config to start rpc-statd.service. Mount
services also need to be started in the cloud-config to mount the necessary
NFS directories to local directories.

[163]

CoreOS Storage Management

Setting up NFS server

Start the NFS server. I had set up my Ubuntu 14.04 machine as an NFS server.
The following are the steps that I performed to set up the NFS server:

1. Install the NFS server:

sudo apt-get install nfs-kernel-server

2. Create an NFS directory with the appropriate owner:
sudo mkdir /var/nfs

sudo chown core /var/nfs (I have created a core user)

3. Export the NFs directory to the necessary nodes. In my case, 172.17.8. [101-
103] are the IP addresses of the CoreOS cluster. Create /etc/exports with
the following commands:

/var/nfs 172.17.8.101 (rw,sync,no_root squash,no subtree check)
/var/nfs 172.17.8.102 (rw,sync,no_root squash,no subtree check)
/var/nfs 172.17.8.103 (rw, sync,no_root squash,no subtree check)

4. Start the NFS server:
sudo exportfs -a

sudo service nfs-kernel-server start

Note: NFS is pretty sensitive to UserID (UID) and Group ID (GID)
checks, and write access from the client machine won't work unless this
» is properly set up. It is necessary for the UID and GID of the client user
%j%\ to match with the UID and GID of the directory setup in the server.
g Another option is to set the no_root squash option (as in the preceding
example) so that the root user from the client can make modifications as
the UserID in the server.

As shown in the following command, we can see the directory exported after making
the necessary configuration:

smakam14@junglel:~$ showmount -e 172.17.8.110
Export list for 172.17.8.110:

/var/nfs 172.17.8.111,172.17.8.103,172.17.8.102,172.17.8.101

[164]

Chapter 6

Setting up the CoreOS node as a client for the NFS

The following cloud-config can be used to mount remote /var/nfs in /mnt/data
in all the nodes of the CoreOS cluster:

#cloud-config

write-files:

- path: /etc/conf.d/nfs
permissions: '0644'
content: |

OPTS_RPC_MOUNTD=""

coreos:
etcd2:
discovery: <yourtokens
advertise-client-urls: http://Spublic ipv4:2379
initial-advertise-peer-urls: http://$private_ipv4:2380
listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://Sprivate_
ipv4:7001
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: rpc-statd.service
command: start
enable: true
- name: mnt-data.mount
command: start
content: |
[Mount]
What=172.17.8.110:/var/nfs
Where=/mnt/data
Type=nfs
Options=vers=3, sec=sys,noauto

In the preceding config, cloud-config, rpc-statd.service is necessary for the
NFS client service and mnt -data.mount is necessary to mount the NFS volume in the
/mnt/data local directory.

[165]

CoreOS Storage Management

The following output is in one of the CoreOS nodes that have done the NFS mount.
As we can see, the NFS mount is successful:

After this step, any CoreOS nodes in the cluster can read and write from /mnt/data.

The container filesystem

Containers use the CoW filesystem to store Container images. The following are
some characteristics of the CoW filesystem:

* Multiple users/processes can share the same data as if they have their own
copy of the data.

» If data is changed by any one process or user, a new copy of the data is made
for this process/user only at that point.

* Multiple running containers share the same set of files till changes are made
to the files. This makes starting the containers really fast.

These characteristics allow the Container filesystem operations to be really fast.
Docker supports multiple storage drivers that are capable of CoW. Each OS chooses
a default storage driver. Docker provides you with an option to change the storage
driver. To change the storage driver, we need to specify the storage driver in /etc/
default/docker and restart the Docker daemon:

DOCKER OPTS="--storage-driver=<driver>"

The major supported storage drivers are aufs, devicemapper, btrfs, and overlay.
We need to make sure that the storage driver is supported by the OS on which
Docker is installed before changing the Storage driver.

Storage drivers

The storage driver is responsible for managing the filesystem. The following table
captures the differences between major storage drivers supported by Docker:

[166]

Chapter 6

Property AUFS Device BTRTS OverlayFS ZFS
mapper
File/block File-based Block-based | File-based File-based File-
based
Linux kernel | Not in the Present in Present in Present in the | Notin
support main kernel the main the main main kernel > | the main
kernel kernel 3.18 kernel
oS Ubuntu Red Hat Red Hat Solaris
default
Performance | Notsuitable | First write Updating a Better than Takes up
to write big slow lot of small AUFS a lot of
files; useful files can memory
for PaaS cause low
scenarios performance

A storage driver needs to be chosen based on the type of workload, the need
for availability in the main Linux kernel, and the comfort level with a particular
storage driver.

The following output shows the default AUFS storage driver used by Docker
running on the Ubuntu system:

root@junglel:~# docker info
Containers: 3

Images: 167

Storage Driver: aufs

Root Dir: /fvar/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 173

Dirperml Supported: true

The following output shows Docker using the Overlay driver in the CoreOS node.
CoreOS was using btrfs sometime back. Due to btrfs stability issues, they moved
to the Overlay driver recently.

[167]

CoreOS Storage Management

The /var/1ib/docker directory is where the container metadata and volume data is
stored. The following important information is stored here:

* Containers: The container metadata

* Volumes: The host volumes

* Storage drivers such as aufs and device mapper: These will contain diffs

and layers

The following screenshot shows the directory output in the Ubuntu system
running Docker:

root@sreeubuntul4-VirtualBox1: /var/lib/docker/0.0# 1s

aufs containers graph 1init Llinkgraph.db network repositories-aufs tmp trust volumes

Docker and the Union filesystem

Docker images make use of the Union filesystem to create an image composed of
multiple layers. The Union filesystem makes use of the CoW techniques. Each layer
is like a snapshot of the image with a particular change. The following example
shows you the image layers of an Ubuntu docker image:

smakam14@junglel:~/docker /apache$ docker history ubuntu:14.04
CREATED CREATED BY SIZE
3 months ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B

3 months ago /bin/sh -c sed -1 's/#\s*\(deb.*universe\)$/ 1.895 kB
3 months ago /bin/sh -c echo '#!/bin/sh' > [usr/sbin/polic 194.5 kB
33e4dde6b9cf 3 months ago /bin/sh -c #(nop) ADD file:c8f078961a543cdefa 188.2 MB

Each layer shows the operations done on the base layer to get this new layer.

To illustrate the layering, let's take this base Ubuntu image and create a new
container image using the following Dockerfile:
FROM ubuntu:14.04

MAINTAINER Sreenivas Makam <smxxxx@yahoo.com>

Install apache2

RUN apt-get install -y apache2

EXPOSE 80
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

[168]

Chapter 6

Build a new Docker image:

docker build -t="smakam/apachetest"
Let's look at the layers of this new screenshot:

smakam14@junglel:~/docker/apache$ docker history smakam/apachetest
IMAGE CREATED CREATED BY COMMENT
6e072b7a6bb5 About an hour ago /bin/sh -c #(nop) CMD ["-D" "FOREGROUND"]
ffc71f2a556¢ About an hour ago /bin/sh -c #(nop) ENTRYPOINT &{["/usr/sbin/ap
317aef41c6e0 About an hour ago /bin/sh -c #(nop) EXPOSE 80/tcp
About an hour ago /bin/sh -c apt-get install -y apache2
About an hour ago /bin/sh -c #(nop) MAINTAINER Sreenivas Makam

3 months ago /bin/sh -c #(nop) CMD ["/bin/bash"]
29460ac93442 3 months ago /bin/sh -c sed -i 's/Mt\s*\(deb.*universe\)$/
b670fbec7ecd 3 months ago /bin/sh -c echo '#!/bin/sh' > Jusr/sbin/polic
83e4dde6bocf 3 months ago /bin/sh -c #(nop) ADD file:c8f078961a543cdefa

The first four layers are the ones created from the Dockerfile, and the last four layers
are part of the Ubuntu 14.04 base image. In case you have the Ubuntu 14.04 image

in your system and try to download smakam/apachetest, only the first four layers
would be downloaded as the other layers will already be present in the host machine
and can be reused. This layer reuse mechanism allows a faster download of Docker
images from the Docker hub as well as efficient storage of Docker images in the
Container filesystem.

Container data

Container data is not part of the Container filesystem and is stored in the host
filesystem where Container runs. Container data can be used to store data that needs
to be manipulated frequently, such as a database. Container data typically needs to
be shared between multiple Containers.

Docker volumes

Changes made in the container are stored as part of the Union filesystem. If we want
to save some data outside the scope of the container, volumes can be used. Volumes
are stored as part of the host filesystem and it gets mounted in the Container.

When container changes are committed, volumes are not committed as they reside
outside the Container filesystem. Volumes can be used to share the source code with
the host filesystem, maintain persistent data like a database, share data between
containers, and function as a scratch pad for the container. Volumes give better
performance over the Union filesystem for applications such as databases where we
need to do frequent read and write operations. Using volumes does not guarantee
Container data persistence. Using data-only Containers is an approach to maintain
the persistence and share data across Containers. There are other approaches such as
using shared and distributed storage to persist Container data across hosts.

[169]

CoreOS Storage Management

Container volume

The following example starts the Redis container with the /data volume:

docker run -d --name redis -v /data redis

If we run Docker to inspect Redis, we can get details about the volumes mounted by
this container, as can be seen in the following screenshot:

The source directory is the directory in the host machine and Destination is the
directory in the Container.

Volumes with the host mount directory

The following is an example of code sharing with the mounting host directory
using Volume:

docker run -d --name nginxpersist -v /home/core/local:/usr/share/nginx/
html -p ${COREOS PUBLIC IPV4}:8080:80 nginx

If we perform docker inspect nginxpersist, we can see both the host directory
and the container mount directory:

In the host machine, code development can be done in the /home/core/local
location, and any code change in the host machine automatically reflects in
the container.

As the host directory can vary across hosts, this makes Containers unportable
and Dockerfile does not support the host mount option.

[170]

Chapter 6

A data-only container

Docker has support for a data-only container that is pretty powerful. Multiple
containers can inherit the volume from a data-only container. The advantage with a
data-only container over regular host-based volume mounting is that we don't have
to worry about host file permissions. Another advantage is a data-only container can
be moved across hosts, and some of the recent Docker volume plugins take care of
moving the volume data when the container moves across hosts.

The following example shows you how volumes can be persisted when containers
die and restart.

Let's create a volume container, redisvolume, for redis and use this volume in the
redis1 container. The hellocounter container counts the number of web hits and
uses the redis container for counter-persistence:

docker run -d --name redisvolume -v /data redis
docker run -d --name redisl --volumes-from redisvolume redis

docker run -d --name hellol --link redisl:redis -p 5000:5000 smakam/
hellocounter python app.py

Let's see the running containers:

smakaml14@junglel:~$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

8619b22603692 smakam/hellocounter "python app.py" 2 minutes ago Up 2 minutes
0.0.0.0:5000->5000/tcp hellol

2f0957d505a7 redis "/entrypoint.sh redi 2 minutes ago Up 2 minutes
6379/tcp redisl

313f@eal42d8 redis "/entrypoint.sh redi 2 minutes ago Up 2 minutes
6379/tcp redisvolume

Let's access the hellocounter container multiple times using curl, as shown in the
following image:

smakam14@junglel:~$ curl localhost:500€

Hello World! I have been seen 5 times.s

Now, let's stop this container and restart another container using the following
commands. The new redis container, redis2, still uses the same redisvolume
container:

docker stop redisl hellol
docker rm redisl hellol
docker run -d --name redis2 --volumes-from redisvolume redis

docker run -d --name hello2 --link redis2:redis -p 5001:5000 smakam/
hellocounter python app.py

[171]

CoreOS Storage Management

If we try to access the hellocounter container using port 5001, we will see that the
counter starts from 6 as the previous value 5 is persisted in the database even though
we have stopped that container and restarted a new redis container:

smakam14@junglel:~$ curl localhost:56001

Hello World! I have been seen 6 times.s

A data-only container can also be used to share data between containers. An example
use case could be a web container writing a log file and a log processing container
processing the log file and exporting it to a central server. Both the web and log
containers can mount the same volume with one container writing to the volume and
another reading from the volume.

To back up the redisvolume container data that we created, we can use the
following command:

docker run --volumes-from redisvolume -v $(pwd):/backup ubuntu tar cvf /
backup/backup.tar /data

This will take /data from redisvolume and back up the content to backup. tar in
the current host directory using an Ubuntu container to do the backup.

Removing volumes

As part of removing a container, if we use the docker rm -v option, the volume
will be automatically deleted. If we forget to use the -v option, volumes will be left
dangling. This has the disadvantage that the space allocated in the host machine for
the volume will be unused and not removed.

Docker until release 1.7 does not yet have a native solution to handle dangling
volumes. There are some experimental containers available to clean up dangling
volumes. I use this test Container, martin/docker-cleanup-volumes, to clean up
my dangling volumes. First, we can determine the dangling volumes using the
dry-run option. The following is an example that shows four dangling volumes
and one volume that is in use:

[172]

Chapter 6

If we remove the dry-run option, dangling volumes will be deleted, as shown in the
following image:

The Docker Volume plugin

Like the Network plugin for Docker, the Volume plugin extends storage functionality
for Docker containers. Volume plugins provide advanced storage functionality such as
volume persistence across nodes. The following figure shows you the volume plugin
architecture where the Volume driver exposes a standard set of APIs, which plugins
can implement. GlusterFS, Flocker, Ceph, and a few other companies provide Docker
volume plugins. Unlike the Docker networking plugin, Docker does not have a native
volume plugin and relies on plugins from external vendors:

Docker Engine

!

Volume Driver

[

Plugins

Gluster
Ceph
Flocker

[173]

CoreOS Storage Management

Flocker

Docker data volumes are tied to a single node where the Container is created.
When Containers are moved across nodes, data volumes don't get moved. Flocker
addresses this issue of moving the data volumes along with the Container. The
following figure shows you all the important blocks in the Flocker architecture:

User

’ Docker, CLI, Orchestrator ‘

Docker User Docker
daemon daemon
Flocker
Flock_er control Flock_er
plugin senvice plugin
Volume Volume
Flocker Agent F ¥ Flocker Agent

Local / shared storage
EBS, ZFS

The following are some internals of the Flocker implementation:

The Flocker agent runs in each node and takes care of talking to the Docker
daemon and the Flocker control service.

The Flocker control service takes care of managing the volumes as well as the
Flocker cluster.

Currently supported backend storage includes Amazon AWS EBS, Rackspace
block storage, and EMC ScalelO. Local storage using ZFS is available on an
experimental basis.

Both the REST API and Flocker CLI are used to manage volumes as well as
Docker containers.

Docker can manage volumes using Flocker as a data volume plugin.

[174]

Chapter 6

* The Flocker plugin will take care of managing data volumes, which includes
migrating the volume associated with the Container when the Container
moves across hosts.

* Flocker will use the Container networking technology to talk across
hosts — this can be native Docker networking or Docker networking
plugins such as Weave.

In the next three examples, we will illustrate how Flocker achieves Container data
persistence in different environments.

Flocker volume migration using AWS EBS as a backend

This example will illustrate data persistence using AWS EBS as a storage backend.
In this example, we will create three Linux nodes in the AWS cloud. One node will
serve as the Flocker master running the control service and the other two nodes will
run Flocker agents running the containers and mounting the EBS storage. Using
these nodes, we will create a stateful Container and demonstrate Container data
persistence on Container migration. The example will use a hellocounter container
with the redis container backend and illustrates data persistence when the redis
counter is moved across hosts. The following figure shows you how the master and
agents are tied to the EBS backend:

Flocker Master

Flocker Flocker
Agent Agent

EBS Storage

I followed the procedure mentioned on the Flocker web page —https://docs.
clusterhg.com/en/1.4.0/labs/installer.html —for this example.

The following are the summary of steps to setup Flocker volume migration using
AWS EBS:

1. It's necessary to have an AWS account to create VMs running Docker
containers and Flocker services.

2. For the execution of frontend Flocker commands, we need a Linux host.
In my case, it's a Ubuntu 14.04 VM.

3. [Install Flocker frontend tools on the Linux host using Flocker scripts.

[175]

https://docs.clusterhq.com/en/1.4.0/labs/installer.html
https://docs.clusterhq.com/en/1.4.0/labs/installer.html

CoreOS Storage Management

4. Install the Flocker control service on the control node and Flocker agents on
the slave nodes using Flocker scripts.

5. At this point, we can create containers on slave nodes with a data volume
and migrate containers keeping the volume persistent.

The following are the relevant outputs after installing the Flocker frontend tools and
Flocker control service and agents.

This is the version of the Flocker frontend tools:

smakam14@junglel:~/aws1$ uft-flocker-ca --version

11.4.0

The Flocker node list shows the two AWS nodes that will run Flocker agents:

smakam14@junglel:~/clusters/test$ uft-flocker-volumes list-nodes
SERVER ADDRESS

69d25ff3 10.0.206.63
a6a4b5b9 10.0.115.120

The following output shows you the Flocker volume list. Initially, there are no
volumes:

smakam14@junglel:~/clusters/test$ uft-flocker-volumes list
DATASET SIZE METADATA STATUS SERVER

Let's look at the main processes in the master node. We can see the control service
running in the following screenshot:

root@ip-10-0-132-11:~# ps -eaf|grep flocker

root 29703 1 1 16:51 ? 00:00:04 /opt/ /bin/python /usr/sbin/
tcp:4523 -a tcp:4524 --logfile=/var/log/ / -control.log

Let's look at the main processes in the slave node. Here, we can see the Flocker
agents and the Flocker docker plugin running:

root@ip-10-0-206-63:~# ps -eaf|grep flocker
root 29764 1 1 16:517? 00:00:08 /opt/ /bin/python /usr/sbin/ -dataset-ag
ent --logfile=/var/log/ / -dataset-agent.log

root 29782 1 1 16:517? 00:00:07 /opt/ /bin/python /usr/sbin/ -container-
agent --logfile=/var/log/ / -container-agent.log

root 30374 1 0 16:52 ? 00:00:04 /usr/bin/python /[usr/bin/twistd -noy /opt/ /i
b/python2.7/site-packages/ dockerplugin/ dockerplugin.tac

[176]

Chapter 6

Let's create a hellocounter container with the redis container backend on a particular
slave node, update the counter in the database, and then move the container to
demonstrate that the data volume gets persisted as the container is moved.

Let's first set up some shortcuts:

NODE1="52.10.201.177" (this public ip address corresponds to the private
address shown in flocker list-nodes output)

NODE2="52.25.14.152"

KEY="keylocation "

Let's start the hellocontainer and redis containers on node1l:
ssh -i $KEY root@$NODEl docker run -d -v demo:/data --volume-
driver=flocker --name=redis redis:latest

ssh -i $KEY root@$NODEl docker run -d -e USE_REDIS HOST=redis --link
redis:redis -p 80:5000 --name=hellocounter smakam/hellocounter

Let's look at the volumes created and attached at this point. 100 GB EBS volume is
attached to slave node1 at this point:

smakam14@junglel:~/clusters/test$ uft-flocker-volumes list
DATASET SIZE METADATA STATUS SERVER

31a3f409-b4c4-491d-b6ce-15b998881346 100.00G name=demo attached & 69d25ff3 (10.0.206.63)

From the following output, we can see the two containers running in node1:

root@ip-10-0-206-63:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

3577d661eff8 smakam/hellocounter "/bin/sh -c 'python a" About a minute ago Up About a

inute 0.0.0.0:80->5000/tcp hellocounter

38b86d2c6ded redis:latest "fentrypoint.sh redis" 5 minutes ago Up 4 minute
6379/tcp redis

Let's create some entries in the database now. The counter value is currently at 6,
as shown in the following screenshot:

smakam14@junglel:~/aws1$ curl 54.149.227.108

Hello World! I have been seen 6 times.smakam]

Now, let's remove the containers in NODE1 and create the hellocounter and redis
containers in NODE2:

ssh -i $KEY root@$NODEl1l docker stop hellocounter
ssh -i $KEY root@$NODEl1l docker stop redis

[177]

CoreOS Storage Management

ssh -i $KEY root@$NODEl docker rm -f hellocounter
ssh -i $KEY root@$NODEl docker rm -f redis

ssh -i $KEY root@$NODE2 docker run -d -v demo:/data --volume-
driver=flocker --name=redis redis:latest

ssh -i $KEY root@$NODE2 docker run -d -e USE REDIS HOST=redis --link
redis:redis -p 80:5000 --name=hellocounter smakam/hellocounter

As we can see, the volume has migrated to the second slave node:

smakam14@junglel:~/clusters/test$ uft-flocker-volumes list

DATASET SIZE METADATA STATUS SERVER
31a3f409-b4c4-491d-b6ce-15b998881346 100.00G name=demo attached ¥ a6a4b5b9 (10.0.115.120)

Let's look at the containers in node2:

root@ip-10-0-115-120:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

12b311b26b34 smakam/hellocounter "/bin/sh -c 'python a" 13 seconds ago

s 0.0.0.0:80->5000/tcp hellocounter

1a72c9aadice redis:latest "/entrypoint.sh redis" About a minute ago

inute 6379/tcp redis

Now, let's check whether the data is persistent:

smakam14@junglel:~/aws1$ curl 52.10.64.125

Hello World! I have been seen 7 times.smak

As we can see from the preceding output, the counter value starts from the previous
count of 6 and is incremented to 7, which shows that the redis database is persistent
when the redis container is moved across the nodes.

Flocker volume migration using the ZFS backend

This example will illustrate data persistence using ZFS as a storage backend and
Vagrant Ubuntu cluster. ZFS is an open source filesystem that focuses on data
integrity, replication, and performance. I followed the procedure at https://
docs.clusterhg.com/en/1.4.0/using/tutorial/vagrant-setup.html to set
up a two-node Vagrant Ubuntu Flocker cluster and at https://docs.clusterhq.
com/en/1.4.0/using/tutorial/volumes.html to try out the sample application
that allows container migration with the associated volume migration. The sample
application uses the MongoDB container for data storage and illustrates data
persistence.

[178]

https://docs.clusterhq.com/en/1.4.0/using/tutorial/vagrant-setup.html
https://docs.clusterhq.com/en/1.4.0/using/tutorial/vagrant-setup.html
https://docs.clusterhq.com/en/1.4.0/using/tutorial/volumes.html
https://docs.clusterhq.com/en/1.4.0/using/tutorial/volumes.html

Chapter 6

The following are the summary of steps to setup Flocker volume migration using
ZFS backend:

1. Install Flocker client tools and the mongodb client in the client machine.
In my case, this is a Ubuntu 14.04 VM.

2. Create a two-node Vagrant Ubuntu cluster. As part of the cluster setup,
Flocker services are started in each of the nodes and this includes control
and agent services.

3. Start the flocker-deploy script starting the mongodb container on node1l.
Start the mongodb client and write some entries in node1.

Start the flocker-deploy script moving the mongodb container from node1
to node2.

6. Start the mongbdb client to node2 and check whether the data is retained.
After starting the two-node Vagrant cluster, let's check the relevant Flocker services.

Node1l has both the Flocker control and agent services running, as shown in the
following screenshot:

[vagrant@nodel ~]$ ps -eaf|grep flocker
root 763 1 3 14:57 ? 00:00:34 /opt/ /bin/python /usr/sbin/ -control -p systemd:INET:0 -a system
d:INET:1 --journald

root 766 1 5 14:57 ? 00:00:51 /opt/ /bin/python /usr/sbin/ -dataset-agent --journald
root 2176 1 9 14:59 ? 00:01:17 /opt/ /bin/python /usr/sbin/ -container-agent --journald

Node2 has only the Flocker agent service running and is being managed by Node1,
as shown in the following screenshot:
[vagrant@node2 ~1$ ps -eaf|grep flocker

root 768 1 5 15:08 ? 00:01:47 Jopt/ /bin/python /usr/sbin/ -dataset-agent
root 2194 1 7 15:10 ? 00:02:24 /opt/ /bin/python /usr/sbin/ -container-agen

Let's look at the Flocker node list; this shows the two nodes:

sreeni@ubuntu:~/flocker-tutorial$ flocker-volumes --control-service=172.16.255.250 list-nodes
SERVER ADDRESS

430e9391 172.16.255.251

43a06d55 172.16.255.250

Let's deploy the mongodb container on node1 as follows:

[179]

CoreOS Storage Management

Let's look at the volume list. As we can see, the volume is attached to node1:

sreeni@ubuntu:~/flocker-tutorial$ flocker-volumes --control-service=172.16.255.250 list
DATASET SIZE METADATA STATUS S
ERVER

e83b21be-2d1a-4bd5-bee3-43dfaf25f6e8 <no quota> name=mongodb-volume-example attached ¥ 43a
06d55 (172.16.255.250)

The following output shows you the container in node1:

[vagrant@nodel ~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES

9691d892a67c clusterhq/mongodb:latest "/bin/sh -c '/home/mo" 4 minutes ago Up 4 minutes
->27017/tcp flocker - -mongodb-volume-example

Let's add some data to mongodb:

> use example;
switched to db example
> db.records.insert({"the data": "it moves"})

Now, let's redeploy the container to node2:

sreeni@ubuntu:~/flocker-tutorials flocker-deploy 172.16.255.250 volume-deployment-moved.yml volume

-application.yml

Let's look at the volume output. As we can see, the volume is moved to node2:

sreeni@ubuntu:~/flocker-tutorial$ flocker-volumes --control-service=172.16.255.250 list
DATASET SIZE METADATA STATUS SERVER

e83b21be-2d1a-4bd5-bee3-43dfa025f6e8 <no quota> name=mongodb-volume-example attached ¢/ 430e9391 (172.16.255.251)

As we can see from the following output, the mongodb content, the data, is
preserved:

> db.records.find({})

{ "_1d" : ObjectId("5621002d77f1111f74cbc2d8"), "the data" : "it moves" }

Flocker on CoreOS with an AWS EBS backend

Flocker has recently integrated with CoreOS on an experimental basis with the AWS
EBS backend storage. I followed the procedures at https:/ /github.com/ clusterhq/
flocker-coreos and https://clusterhg.com/2015/09/01/flocker-runs-on-
coreos/ for this example. I had some issues with getting version 1.4.0 of the Flocker
tools to work with CoreOS nodes. The 1.3.0 version of tools (https://docs.
clusterhg.com/en/1.3.0/labs/installer.html) worked fine.

[180]

https://clusterhq.com/2015/09/01/flocker-runs-on-coreos/
https://clusterhq.com/2015/09/01/flocker-runs-on-coreos/
https://docs.clusterhq.com/en/1.3.0/labs/installer.html
https://docs.clusterhq.com/en/1.3.0/labs/installer.html

Chapter 6

In this example, we have illustrated Container data persistence on the CoreOS cluster
with Docker using the Flocker plugin.

The following are the summary of steps to setup Flocker volume migration on
CoreOS cluster running on AWS:

1. Create a CoreOS cluster using AWS Cloudformation with the template
specified by Flocker along with a newly created discovery token.

Create cluster.yml with the node IP and access details.

Start the Flocker script to configure the CoreOS nodes with the Flocker
control service as well as Flocker agents. Flocker scripts also take care of
replacing the default Docker binary in the CoreOS node with the Docker
binary that supports the volume plugin.

4. Check that Container migration is working fine with data persistence.

I used the following Cloudformation script to create a CoreOS cluster using the
template file from Flocker:

aws cloudformation create-stack --stack-name coreos-

testl --template-body file://coreos-stable-flocker-hvm.template
--capabilities CAPABILITY IAM --tags Key=Name,Value=CoreOS
--parameters ParameterKey=DiscoveryURL, ParameterValue="your token"
ParameterKey=KeyPair,ParameterValue="your keypair"

The following are the details of the CoreOS cluster that has three nodes:

~ # fleetctl list-machines
IP METADATA
172.31.35.199 =

172.31.35.201
172.31.35.200

The following are the old and new Docker versions installed. Docker version 1.8.3
supports the Volume plugin:

docker --version
Docker version 1.6.2, build 7c8fca2-dirty

[root/bin/docker --version
Docker version 1. .3,_build fabf5c7

The following is the CoreOS version in the node:

~ # cat [etc/os-release
NAME=Core0S

ID=coreos
VERSION=723.3.0

[181]

CoreOS Storage Management

The following output shows the Flocker node list with three CoreOS nodes running
Flocker:

sreeni@ubuntu:~/clusters/test$ flocker-volumes list-nodes
SERVER ADDRESS
74a07fel 172.31.35.200

ale31ce®@ 172.31.35.199
4952522a 172.31.35.201

I tried the same hellocounter example as mentioned in the previous section, and
the volume moved automatically across the nodes. The following output shows the
volume initially attached to node1 and later moved to node2 as part of the Container
move.

This is the volume attached to node1:

sreeni@ubuntu:~/clusters/testS flocker-volumes list
DATASET SIZE METADATA STATUS SERVER
394c178f-bcc6-4afc-9ac3-9be27d22feb5 100.00G name=demo attached « 4952522a (172.31.35.201)

This is the volume attached to node2:

sreeni@ubuntu:~/clusters/test$ flocker-volumes list
DATASET SIZE METADATA STATUS SERVER

894c178f-bcc6-4afc-9ac3-9b027d22feb5 100.00G name=demo attached ¥ 74a@7fel (172.31.35.200)

According to the Flocker documentation, they have a plan to support the ZFS
backend on CoreOS at some point, to allow us to use local storage instead of AWS
EBS. It's still not certain if CoreOS will support ZFS natively.

Flocker recent additions
Flocker added the following functionality recently, as of November 2015:
* The Flocker volume hub (https://clusterhq.com/volumehub/) manages
all Flocker volumes from a central location.

* Flocker dvol (https://clusterhq.com/dvol/) provides you with a Git-like
functionality for data volumes. This can help manage databases such as a
codebase.

[182]

https://clusterhq.com/volumehub/
https://clusterhq.com/dvol/

Chapter 6

GlusterFS

GlusterFS is a distributed filesystem where the storage is distributed across multiple
nodes and presented as a single unit. GlusterFS is an open source project and works
on any kind of storage hardware. Red Hat has acquired Gluster, which started
GlusterFS. The following are some properties of GlusterFS:

Multiple servers with their associated storage are joined to a GlusterFS
cluster using the peering relationship.

GlusterFS can work on top of the commodity storage as well as SAN.

By avoiding a central metadata server and using a distributed hashing
algorithm, GlusterFS clusters are scalable and can expand into very large
clusters.

Bricks are the smallest component of storage from the GlusterFS perspective.
A brick consists of mount points created from a storage disk with a base
filesystem. Bricks are tied to a single server. A single server can have
multiple bricks.

Volumes are composed of multiple bricks. Volumes are mounted to the client
device as a mount directory.

Major volume types are distributed, replicated, and striped. A distributed
volume type allows the distributing of files across multiple bricks. A
replicated volume type allows multiple replicas of the file, which is useful
from a redundancy perspective. A striped volume type allows the splitting of
a large file into multiple smaller files and distributing them across the bricks.

GlusterFS supports multiple access methods to access the GlusterFS volume,
and this includes native FUSE-based access, SMB, NFS, and REST.

[183]

CoreOS Storage Management

The following figure shows you the different layers of GlusterFS:

User

¢ NFS, FUSE, SMB, REST

Volume

’ Volume 1 ‘ ’ Volume 2 ‘
\

[v |

2N

’Brick 1‘ ’Brick 2‘ ’Brick 3‘ ’Brick 4‘

[Vint] [Wint]
Senv

erl Server 2

Storage

oo o o oo

Setting up a GlusterFS cluster

In the following example, I have set up a two-node GlusterFS 3.5 cluster with each
server running a Ubuntu 14.04 VM. I have used the GlusterFS server node as the
GlusterFS client as well.

The following is a summary of steps to setup a GlusterFS cluster:

1.

Install the GlusterFS server on both the nodes and the client software on one
of the nodes in the cluster.

GlusterFS nodes must be able to talk to each other. We can either set up DNS
or use a static /etc/hosts approach for the nodes to talk to each other.

Turn off firewalls, if needed, for the servers to be able to talk to each other.
Set up GlusterFS server peering.

Create bricks.

[184]

Chapter 6

6. Create volumes on top of the created bricks.

7. In the client machine, mount the volumes to mountpoint and start using
GlusterFS.

The following commands need to be executed in each server. This will install the
GlusterFS server component. This needs to be executed on both the nodes:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:gluster/glusterfs-3.5
sudo apt-get update

sudo apt-get install glusterfs-server

The following command will install the GlusterFS client. This is necessary only
in nodel:

sudo apt-get install glusterfs-client

Set up /etc/hosts to allow nodes to talk to each other:

192.168.56.102 glusterl
192.168.56.101 gluster2

Disable the firewall:

sudo iptables -I INPUT -p all -s 192.168.56.102 -j ACCEPT
sudo iptables -I INPUT -p all -s 192.168.56.101 -j ACCEPT

Create the replicated volume and start it:
sudo gluster volume create volumel replica 2 transport tcp glusterl:/

gluster-storage gluster2:/gluster-storage force (/gluster-storage is the
brick in each node)

sudo gluster volume start volumel

Set up a server probe in each node. The following command is for Node1:
sudo gluster peer probe gluster2

The following command is for Node2:

sudo gluster peer probe glusterl

Do a client mount of the GlusterFS volume. This is needed in Node1:

sudo mkdir /storage-pool

sudo mount -t glusterfs gluster2:/volumel /storage-pool

[185]

CoreOS Storage Management

Now, let's look at the status of the GlusterFS cluster and created volume in Node1:

smakaml4@sreeubuntul4-VirtualBox1:~$ sudo gluster peer status
Number of Peers: 1

Hostname: gluster2
Uuid: dee83671-cc9d-4037-9ddd-f71e5e4161a0
State: Peer in Cluster (Connected)

Now, let's look at Node2:

smakam14@junglel: /var/nfs$ sudo gluster peer status
Number of Peers: 1

Hostname: glusterl
Uuid: f3e3141f-5265-4f1e-ba73-7f01b97a633d
State: Peer in Cluster (Connected)

Let's look at the volume detail. As we can see, volumel is set up as the replicated
volume type with two bricks on glusterl and gluster2:

smakam14@sreeubuntul4-VirtualBox1:~$ sudo gluster volume info

Volume Name: volumel

Type: Replicate

Volume ID: e9b66f0e-1d48-4e0d-8bd-c10e229164e4
Status: Started

Number of Bricks: 1 x 2 = 2
Transport-type: tcp

Bricks:

Brickl: glusteri:/gluster-storage
Brick2: gluster2:/gluster-storage
Options Reconfigured:
nfs.disable: off

The following output shows the client mount point in the df -k output:

glusterl:/volumel 11962496 10353664 978176 92% /storage-pool

At this point, we can write and read contents from the client mount point,
/storage-pool.

Setting up GlusterFS for a CoreOS cluster

By setting up CoreOS nodes to use the GlusterFS filesystem, Container volumes can
use GlusterFS to store volume-related data. This allows Containers to move across
nodes and keep the volume persistent. CoreOS does not support a local GlusterFS
client at this point. One way to use GlusterFS in CoreOS is to export the GlusterFS
volume through NFS and do NFS mounting from the CoreOS node.

[186]

Chapter 6

Continuing to use the GlusterFS cluster created in the previous section, we can
enable NFS in the GlusterFS cluster as follows:

sudo gluster volume set volumel nfs.disable off

The cloud-config for CoreOS that was used in the Mounting NFS Storage section
can be used here as well. The following is the mount-specific section where we have
mounted the GlusterFS volume, 172.17.8.111: /volumel, in /mnt /data of the
CoreOS node:

- name: mnt-data.mount

command: start

content: |
[Mount]
What=172.17.8.111:/volumel
Where=/mnt/data
Type=nfs
Options=vers=3, sec=sys,noauto

I created a bunch of files in the GlusterFS volume, /volumel, and I was able to read
and write from the CoreOS node. The following output shows you the /mnt /data
content in the CoreOS node:

Accessing GlusterFS using the Docker Volume plugin

Using the GlusterFS volume plugin (https://github.com/calavera/docker-
volume-glusterfs) for Docker, we can create and manage volumes using a regular
Docker volume CLI.

In the following example, we will install the GlusterFS Docker volume plugin and
create a persistent hellocounter application. I used the same Ubuntu 14.04 VM that
is running GlusterFS volumes to run Docker as well.

The following are the steps needed to set up the Docker volume plugin:
* The Docker experimental release supports the GlusterFS volume plugin,
so the experimental Docker release needs to be downloaded.

* The GlusterFS Docker volume plugin needs to be downloaded and started.
GO (https://golang.org/doc/install) needs to be installed to get the
volume plugin.

* Use Docker with the GlusterFS Docker volume plugin. For this, the Docker
service needs to be stopped and restarted.

[187]

https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://golang.org/doc/install

CoreOS Storage Management

The following is the Docker experimental release version running in both the nodes:

smakaml4@sreeubuntul4-VirtualBox1:~$ docker --version

Docker version 1.9.0-dev, build ccf5b6@, experimental

Download and start the GlusterFS volume plugin:

go get github.com/calavera/docker-volume-glusterfs

sudo docker-volume-glusterfs -servers glusterl:gluster2 &

Start the redis container with the GlusterFS volume driver as follows:

docker run -d -v volumel:/data --volume-driver=glusterfs --name=redis
redis:latest

Start the hellocounter container and link it to the redis container:

docker run -d -e USE REDIS HOST=redis --link redis:redis -p 80:5000
--name=hellocounter smakam/hellocounter

Update the counter by accessing it a few times, as shown in the following screenshot:

smakam14@junglel: /gluster-storage$ cu
Hello World! I have been seen 2 times

Now, stop the containers in node1 and start them in node2. Let's see the running
containers in node2:

smakam14@sreeubuntul4-VirtualBox1:~$ docker ps
IMAGE COMMAND CREATED STATUS PORTS

smakam/hellocounter "/bin/sh -c 'python a" 5 hours ago Up 5 hours 0.0.0.0:5000->50
hellocounter
redis:latest "/entrypoint.sh redis" 5 hours ago Up 5 hours 6379/tcp

If we access the hellocounter container now, we can see that the counter starts from
3 as the previous count is persisted:

smakam14@sreeubuntul4-VirtualBox1:~$
Hello World! I have been seen 3 times

[188]

Chapter 6

Ceph

Ceph provides you with distributed storage like GlusterFS and is an open source
project. Ceph was originally developed by Inktank and later acquired by Red Hat.
The following are some properties of Ceph:

* Ceph uses Reliable Autonomic Distributed Object Store (RADOS) as the
storage mechanism. Other storage access mechanisms such as file and block
are implemented on top of RADOS.

* Both Ceph and GlusterFS seem to have similar properties. According to Red
Hat, Ceph is positioned more for OpenStack integration and GlusterFS is for
Big data analytics, and there will be some overlap.

* There are two key components in Ceph. They are Monitor and OSD.
Monitor stores the cluster map and Object Storage Daemons (OSD) are the
individual storage nodes that form the storage cluster. Both storage clients
and OSDs use the CRUSH algorithm to distribute the data across the cluster.

Compared to GlusterFS, setting up Ceph seemed a little complex and there is active
work going on to run Ceph components as Docker containers as well as integrate
Ceph with CoreOS. There is also work going on for the Ceph Docker volume plugin.

NFS

NFS is a distributed filesystem that allows client computers to access network storage
as if the storage is attached locally. We can achieve Container data persistence using
shared NFS storage.

Container data persistence using NFS

In this section, we will cover a web application example that uses NFS for data
persistence. The following are some details of the application:

* The hellocounter.service unit starts a container that keeps track of the
number of web accesses to the application

* Hellocounter.service uses the redis.service container to keep track of
the access count

* The Redis container uses NFS storage to store the data

¢ When the database container dies for some reason, Fleet restarts the
container in another node in the cluster, and as the service uses NFS storage,
the count is persisted

[189]

CoreOS Storage Management

The following figure shows you the example used in this section:

Node 1 Node 2 Node 3
hello hello hello
counter counter counter

NFS Store

The following are the prerequisites and the required steps:

1. Start the NFS server and a three-node CoreOS cluster mounting the NFS data
as specified in the Mounting NFS storage section.

2. Starthellocounter.service and redis.service using fleet with the X-fleet
property to control the scheduling of the Containers. The hellocounter.
service is started on all the nodes; redis.service is started on one of the
nodes.

The code for Hellocounter@.service is as follows:

[Unit]
Description=hello counter with redis backend

[Service]

Restart=always

RestartSec=15

ExecStartPre=-/usr/bin/docker kill $p%i
ExecStartPre=-/usr/bin/docker rm %p%i
ExecStartPre=/usr/bin/docker pull smakam/hellocounter

ExecStart=/usr/bin/docker run --name %p%i -e SERVICE NAME=redis -p
5000:5000 smakam/hellocounter python

app.py

)

ExecStop=/usr/bin/docker stop %$p%i

[X-Fleet]
X-Conflicts=%p@*.service

[190]

Chapter 6

The code for Redis.service is as follows:

[Unit]
Description=app-redis

[Service]

Restart=always

RestartSec=5
ExecStartPre=-/usr/bin/docker kill $%p
ExecStartPre=-/usr/bin/docker rm %p
ExecStartPre=/usr/bin/docker pull redis

ExecStart=/usr/bin/docker run --name redis -v /mnt/data/hellodata:/
data redis

ExecStop=/usr/bin/docker stop %p

[X-Fleet]
Conflicts=redis.service

Let's start three instances of hellocountere. service and one instance of redis.
service. The following screenshot shows three instances of hellocounter service
and 1 instance of redis service running in the CoreOS cluster.

As we can see in the preceding screenshot, hellocountere2.service and
redis.service are in the same node node3.

Let's try accessing the web service from node3 a few times to check the count:

The counter value is currently at 6 and stored in NFS.

Now, let's reboot node3. As shown in the following output, we can see only
two machines:

CoreOS Storage Management

Let's look at the services running. As can be seen from the following output, redis.
service has moved from node3 to node2:

Now, let's check the web access count in node2. As we can see from the following
output, the count started at 7 as the previous count was set to 6 on node3. This
proves that container data is persisted:

. Note: This example is not practical as there are multiple instances
% of a web server operating independently. In a more practical
" example, a load balancer would be the frontend. This example's
purpose is just to illustrate container data persistence using NFS.

The Docker 1.9 update

Docker 1.9 added named volumes, and this makes volumes as a first-class citizen in
Docker. Docker volumes can be managed using docker volume.

The following screenshot shows you the options in docker volume:

" smakam14@jungle1:~$ docker volume --help

Usage: docker volume [OPTIONS] [COMMAND]
Manage Docker volumes

Commands:
create Create a volume
inspect Return low-level information on a volume
s List volumes
rm Remove a volume

A named volume deprecates a data-only container that was used earlier to share
volumes across Containers.

[192]

Chapter 6

The following set of commands shows the same example used earlier with a named
volume instead of a data-only container:

docker volume create --name redisvolume

docker run -d --name redisl -v redisvolume:/data redis

docker run -d --name hellol --link redisl:redis -p 5000:5000 smakam/

hellocounter python app.py

In the preceding example, we create a named volume, redisvolume, which is
used in the redis1 container. The hellocounter application links to the redis1
container.

The following screenshot shows you information about the redis1 volume:

smakam14@junglel:~$ docker volume inspect redisvolume

[

{

"Name": "redisvolume",
"Driver": "local",
"Mountpoint": "/var/lib/docker/volumes/redisvolume/_data"

Another advantage with named volumes is that we don't need to worry about the
dangling volume problem that was present before.

Summary

In this chapter, we covered different storage options available for the storing of
Container images and Container data in a CoreOS system. Technologies such as
Flocker, GlusterFS, NFS, and Docker volumes and their integration with Containers
and CoreOS were illustrated with practical examples. Container storage technologies
are still evolving and will take some time to mature. There is a general industry
trend to move away from expensive SAN technologies toward local and distributed
storage. In the next chapter, we will discuss Container runtime Docker and Rkt and
how they integrate with CoreOS.

References
e GlusterFS: http://gluster.readthedocs.org/

* The GlusterFS Docker volume plugin: https://github.com/calavera/
docker-volume-glusterfs

e Flocker: https://docs.clusterhq.com

[193]

http://gluster.readthedocs.org/
https://github.com/calavera/docker-volume-glusterfs
https://github.com/calavera/docker-volume-glusterfs
https://docs.clusterhq.com

CoreOS Storage Management

Docker volume plugins: https://github.com/docker/docker/blob/
master/docs/extend/plugins volume.md

The Docker Storage driver: https://docs.docker.com/engine/
userguide/storagedriver/imagesandcontainers/

Docker volumes: https://docs.docker.com/userguide/dockervolumes/

Mounting storage on CoreOS: https://coreos.com/os/docs/latest/
mounting-storage.html

The Container filesystem: http://jpetazzo.github.io/assets/2015-03-
03-not-so-deep-dive-into-docker-storage-drivers.html#l

Ceph: http://docs.ceph.com/
Ceph Docker: https://github.com/ceph/ceph-docker

Further reading and tutorials

Persistent data storage in the CoreOS cluster: https://gist.github.com/
Luzifer/c184b6b04d83e6d6fbel

Creating a GlusterFS cluster: https://www.digitalocean.com/community/
tutorials/how-to-create-a-redundant-storage-pool-using-
glusterfs-on-ubuntu-servers

GlusterFS Overview: https://www.youtube.com/watch?v=kvrep9gS0X0

Stateful Containers using Flocker on CoreOS: http://www.slideshare.
net/ClusterHQ/stateful-containers-flocker-on-coreos-54492047

Docker Storage webinar: https://blog.docker.com/2015/12/
persistent-storage-docker/

The Contiv volume plugin: https://github.com/contiv/volplugin
Ceph RADOS: http://ceph.com/papers/weil-rados-pdsw07.pdf

[194]

https://github.com/docker/docker/blob/master/docs/extend/plugins_volume.md
https://github.com/docker/docker/blob/master/docs/extend/plugins_volume.md
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/userguide/dockervolumes/
https://coreos.com/os/docs/latest/mounting-storage.html
https://coreos.com/os/docs/latest/mounting-storage.html
http://jpetazzo.github.io/assets/2015-03-03-not-so-deep-dive-into-docker-storage-drivers.html#1
http://jpetazzo.github.io/assets/2015-03-03-not-so-deep-dive-into-docker-storage-drivers.html#1
http://docs.ceph.com/
https://github.com/ceph/ceph-docker
https://gist.github.com/Luzifer/c184b6b04d83e6d6fbe1
https://gist.github.com/Luzifer/c184b6b04d83e6d6fbe1
https://www.digitalocean.com/community/tutorials/how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers
https://www.digitalocean.com/community/tutorials/how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers
https://www.digitalocean.com/community/tutorials/how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers
https://www.youtube.com/watch?v=kvr6p9gSOX0
http://www.slideshare.net/ClusterHQ/stateful-containers-flocker-on-coreos-54492047
http://www.slideshare.net/ClusterHQ/stateful-containers-flocker-on-coreos-54492047
https://blog.docker.com/2015/12/persistent-storage-docker/
https://blog.docker.com/2015/12/persistent-storage-docker/
https://github.com/contiv/volplugin
http://ceph.com/papers/weil-rados-pdsw07.pdf

Container Integration with
CoreOS — Docker and Rkt

Containers have drastically changed application development and deployment,

and are the biggest trend in the computer industry currently. We have talked about
Containers in almost all the chapters of this book. In this chapter, we will focus on
the Container standards, advanced Docker topics, and basics of the Rkt Container
runtime and how all these topics integrate with CoreOS. As Docker is pretty mature,
we have covered only advanced Docker topics in this chapter. As the Rkt container
runtime is still evolving, we have covered the basics of Rkt in this chapter. Even
though Docker started as a Container runtime, Docker has evolved into a Container
platform providing orchestration, networking, storage, and security solutions
around containers.

The following topics will be covered in this chapter:

e Container standards— App Container (appc) specification , Open Container
Initiative (OCI), Libnetwork, Container Network Interface (CNI), and
Cloud Native Computing Foundation (CNCF)

* The Docker daemon configuration, Docker registry, Docker image signing,
and basic Docker debugging

* Rkt basics and how to use Rkt with image signing, systemd, and Flannel

[195]

Container Integration with CoreOS — Docker and Rkt

Container standards

Standards are an important part of any technology. Standards and specifications
allow products and technologies from different vendors to interoperate with each
other. As developments in the Container space happened very fast in the last 1-2
years, there was limited attention paid to standards and specifications. In the recent
past, the industry has been working toward standards for Container runtime,
Container networking, and Container orchestration. In majority of these cases, there
are runtime implementations that get released along with the specification and this
encourages faster adoption. The following are the standards' categories covered in
this section:

* Container image and runtime: APPC and OCI
* Container Networking: Libnetwork and CNI

e Container orchestration: CNCF

App container specification

The APPC specification provides you with a standard to describe the container
image format, Container image discovery, Container grouping or Pods, and
Container execution environment. Different Container runtimes implementing the
APPC specification will be interoperable with each other. The APPC specification
is primarily driven by CoreOS along with a few other community members. Rkt,
Kurma, and Jetpack are examples of Container runtime implementing APPC. The
following are some important components of APPC.

The Container image format

This describes the container image layout, manifest file with image details, and
image signing.

Application Container Image (ACI) is a Container image created according to the
APPC specification. For example, the nginx.aci image is an ACI for the nginx
Container. To understand Container image format, let's look at what is contained
within nginx.aci APPC image. The following command extracts the contents of the
nginx.aci image to the nginx directory: (We got the nginx.aci image from the
docker2aci tool that will be covered later in the chapter.)

tar -xvf nginx.aci -C nginx

[196]

Chapter 7

The following set of screenshots shows you the base layout and rootfs layout for the
nginx.aci image:

smakam14@junglel:~/nginx$ 1s
manifest rootfs

smakam14@junglel:~/nginx$ cd rootfs/;ls

bin dev home 1ib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr

The following are some important sections in the nginx.aci manifest. The first
screenshot shows the container name and version. The second screenshot describes
the exposed ports, mountpoints, environment variables, and so on:

"acKind":

"app": {
"ports": [

"socketActivated": false,
"count": 1,

"port": 80,

"protocol™:

"name":

"socketActivated": false,
g i,

"port": 443,

"protocol™:

"name":

"mountPoints": [

"path":
"name" :

}

,
nvironment": [

]

"value":
"name":

3

From the preceding screenshot, we can see that nginx ACI image is exposing ports
80 and 443 and it has mount point /var/cache/nginx. Container image signing
is done using GPG (https://www.gnupg.org/). GPG is a public key cryptography
implementation that can be used for the encryption of messages as well as image
signing using a public and private key pair.

[197]

https://www.gnupg.org/

Container Integration with CoreOS — Docker and Rkt

Container image discovery

Container image discovery describes ways to find the location of Container images
from image name. Container images use the URL format. Container image discovery
describes ways to find the location of Container images from image name. The
following is the image format used:

https://{name}-{version}-{os}-{arch}.{ext}

Simple discovery

Here, the complete URL is mentioned to retrieve the ACI image. An example is
as follows:

https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-
linux-amdé4.aci

Meta discovery

Here, the image URL and public key is discovered automatically by using the
meta tag embedded in the HTTP location. The following example shows you how
to retrieve the meta tag and the ACI image from meta tags for the CoreOS etcd
container image.

The first step is to retrieve the meta tags. The https://coreos.com/etcd location
contains the ac-discovery meta tag that contains the image location and the
ac-discovery-pubkeys meta tag that contains the public key.

The link, https://coreos.com/etcd/, contains the following meta tags that can be
retrieved as an HTTP request:

<meta name="ac-discovery" content="coreos.com/etcd https://github.com/
coreos/etcd/releases/download/{version}/etcd-{version}-{os}-{arch}.
{ext}">

<meta name="ac-discovery-pubkeys" content="coreos.com/etcd https://
coreos.com/dist/pubkeys/aci-pubkeys.gpg">

Using the preceding meta tag content, the Container image can be retrieved from
the following:

https://github.com/coreos/etcd/releases/download/{version}/etcd-
{version}-{os}-{arch}.{ext}

The public key can be retrieved from the following:

https://coreos.com/dist/pubkeys/aci-pubkeys.gpg

[198]

https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
https://github.com/coreos/etcd/releases/download/v2.0.0/etcd-v2.0.0-linux-amd64.aci
https://coreos.com/etcd/

Chapter 7

The app container executor
The app container executor takes care of the following to set up runtime for the
Container:

* UUID setup: This is a Unique ID for the Pod that contains multiple
containers. UUID is registered with the metadata service that allows other
containers to find each other.

* Filesystem setup: A filesystem is created in its own namespace.
* Volume setup: These are files to be mounted to the container.

* Networking: This specifies Container networking to the host and other
Containers.

* Isolators: This controls the CPU and memory limit for the Container.

App container pods

The concept of pods comes from Kubernetes where related containers are packed
together in a Pod. Containers within a pod share the process PID, network, and
IPC namespace. A manifest can be created for the Pod in addition to individual
containers in order to describe properties for the Pod.

The app container metadata service

The app container metadata service is a service that runs externally, and container
pods can register information about pods and applications. This metadata service
can be used by pods to find information about other pods as well as by containers
within a pod to find information about other containers.

APPC tools

APPC provides you with tools to create, validate, and convert ACI images.

Actool
Using Actool for ACI validation:

The following output shows you that the generated ACI image, busybox-latest.
aci, is a valid APPC image:

smakam14@junglel:~$ actool --debug validate busybox-latest.aci

busybox-latest.aci: valid app container image

[199]

Container Integration with CoreOS — Docker and Rkt

Using Actool for ACI discovery:

The following output shows you the discovery URL and public key from the
ACl image:

smakam14@junglel:~$ actool discover coreos.com/etcd
ACT: https://github.com/coreos/etcd/releases/download/latest /etcd-latest-linux-and64.aci, ASC: https://github.con/coreos/etcd/releases/download/latest/etcd-latest-1inux-and64.

aci.asc
Keys: https://coreos.com/dist/pubkeys/aci-pubkeys.gpg

Using Actool for checking manifest:
The following output shows you how to see the manifest from the ACI image:

smakam14@junglel:~$ actool cat-manifest busybox-latest.aci | jq .

"annotations": [

{

"value":
"name":

Acbuild

The Acbuild tool is used to build ACI images. The concept is similar to the Dockerfile
approach to build Docker Container images, but Acbuild provides more flexibility

to build Container images by having better integration with Linux tools such as
makefile, environment variables, and others.

The following is an example of building a container image from a GO executable
hello. Before running the following commands, we need to link the hello
executable in the current directory statically:

acbuild begin

acbuild set-name example.com/hello

acbuild copy hello /bin/hello

acbuild set-exec /bin/hello

acbuild port add www tcp 5000

acbuild label add version 0.0.1

acbuild annotation add authors "Sreenivas Makam<sxxxm@yahoo.com>"
acbuild write hello-0.0.1-linux-amd64.aci

acbuild end

If we run the preceding commands, it will create an APPC image, hello-0.0.1-
linux-amdé4.aci, which we can run with the Rkt Container runtime.

[200]

Chapter 7

The following is another example that is similar to the Dockerfile approach to build
an ACI image. In this example, we take a base Ubuntu image, install Apache, and
start Apache in a container to create the ubuntu-nginx.aci image:

acbuild begin
acbuild dependency add quay.io/fermayo/ubuntu

acbuild run -- apt-get update
acbuild run -- apt-get -y install nginx
acbuild set-exec -- /usr/sbin/nginx -g "daemon=off;"

acbuild set-name example.com/ubuntu-nginx
acbuild write ubuntu-nginx.aci

acbuild end

To run acbuild, it's necessary to have systemd-nspawn in the system. This is present
by default in CoreOS nodes. The following is the APPC image that was created from
the preceding script:

[201]

Container Integration with CoreOS — Docker and Rkt

Docker2aci

The Docker2aci utility is used to convert Docker Containers to the ACI format.
The following is an example that takes a docker busybox container and converts
it to a busybox.aci image:

smakam14@junglel:~$ docker2aci 2
Downloading d1592a710ac3: =] 674 KB/674 KB
Downloading 17583c7dd@da: ===] 32 B/32 B

Generated ACI(s):
busybox-latest.aci

Open Container Initiative

OCl is the Open Container Initiative open source project started in April 2015 by
Docker and has members from all major companies including Docker and CoreOS.
OCI defines the following:

* The Container image format: This describes the filesystem bundle along with
config.json that describes the host-independent property of a container
and runtime.json that describes the host-dependent property of a container.

* Runtime: This describes how a container can be started and stopped using
namespaces and cgroups.

Docker's goal is to follow the OCI specification for its Container runtime.

Runc

Runc is an implementation of the OCI specification. Docker engine uses runc to
implement Container runtime in Docker. Runc can be installed using the procedure
described at https://github.com/opencontainers/runc.

The following procedure can be used to start a Ubuntu container using runc:

Docker pull Ubuntu

docker export $(docker create ubuntu) > ubuntu.tar
mkdir rootfs

tar -C rootfs -xf ubuntu.tar

runc spec

The first step pulls the Ubuntu Docker Container. The second step exports the
Ubuntu Container to a filesystem. The third and fourth steps put the Ubuntu
filesystem content in the root £s directory. The last step generates config.json
and runtime.json.

[202]

https://github.com/opencontainers/runc

Chapter 7

The following output shows you the Ubuntu container started using runc:

smakam14@junglel:~/runc$ sudo runc start
pwd

s
bin boot dev etc home 1ib 1ib64 media mnt opt proc root run sbin srv sys tmp usr var

The relationship of OCI with APPC

CoreOS, along with a few other community members, created the APPC specification
to standardize the Container image format that makes Containers interoperable
between different implementations.

The original APPC container specification proposed by CoreOS covers four different
elements of container management: packaging, signing, naming (sharing the container
with others), and runtime. Docker felt the same need for interoperability and created
OCI along with other community members including CoreOS. OCI focuses only on
packaging and runtime currently, though this might change in the future. The goals

of APPC and OCI are common even though specifics slightly differ. It is possible that
these two standards will converge into one standard at some later point.

OCI and APPC latest updates

As per the latest CoreOS blog update (https://coreos.com/blog/making-sense-
of-standards.html), APPC and OCI will intersect only in runtime and APPC will
continue to focus on image format, signing, and distribution.

Libnetwork
Libnetwork was covered briefly in Chapter 5, CoreOS Networking and Flannel Internals.
Libnetwork is an open source project started by Docker and a few other community
members with the following objectives:

* Keep networking as a library separate from the Container runtime.

* Provide Container connectivity in the same host as well as across hosts.

* Networking implementation will be done as a plugin implemented
by drivers. The plugin mechanism is provided to add new third-party
drivers easily.

* Control IP address assignment for the Containers using local IPAM drivers
and plugins.

Docker uses Libnetwork to provide Container networking.

[203]

https://coreos.com/blog/making-sense-of-standards.html
https://coreos.com/blog/making-sense-of-standards.html

Container Integration with CoreOS — Docker and Rkt

There are three primary components in Libnetwork:
* Sandbox: All networking functionality is encapsulated in a sandbox.
This can be implemented using networking namespace or a similar function.
* Endpoint: This attaches sandbox to the network.
* Network: Multiple endpoints in the same network can talk to each other.

The following diagram shows Sandbox, Endpoint, and Network and how two
containers can talk to each other using these constructs:

Container 1 Container 2
Network Sandbox Network Sandbox
End point 1 ‘ End point 2 ‘ End point 3 ‘ End point 4 ‘

_\

S
Network 1 ‘2
| —
Network 2

Libnetwork supports local drivers such as null, bridge, and overlay. The bridge
driver can be used for Container connectivity in a single host, and the overlay driver
can be used for Container connectivity across hosts. Remote drivers such as Weave
and Calico are also supported.

CNI

CNI was covered briefly in Chapter 5, CoreOS Networking and Flannel Internals.

CNI is the Container networking interface open source project developed by CoreOS
along with a few other community members to provide networking facility for
Containers as a pluggable and extensible mechanism. CoreOS's Container runtime,
Rkt, uses CNI to establish Container networking. The objectives of Libnetwork and
CNI are pretty much the same.

The following are some notes on CNI:

* The CNI interface calls the API of the CNI plugin to set up Container
networking.

* The CNI plugin is responsible for creating the network interface to the
container.

[204]

Chapter 7

* The CNI plugin calls the IPAM plugin to set up the IP address for the
container.

* The CNI plugin needs to implement an API for container network creation
and deletion.

* The plugin type and parameters are specified as a JSON file that the
Container runtime reads and sets up.

* Available CNI plugins are Bridge, macvlan, ipvlan, and ptp. Available IPAM
plugins are host-local and DHCP. CNI plugins and the IPAM plugin can be
used in any combination.

* External CNI plugins such as Flannel and Weave are also supported. External
plugins reuse the bridge plugin to set up the final networking,.

* The following is a sample JSON configuration with the bridge CNI plugin
and host-local IPAM plugin along with the IP allocation range:

{

"name": "mynet",
"type": "bridge",
"bridge": "mynetO",

"isGateway": true,
"ipMasqg": true,

"ipam": {
"type": "host-local",
"subnet": "10.10.0.0/16"

}

* The following is a sample JSON configuration that uses the Flannel CNI type:
{
"name": "containernet",

"type": "flannel"

}

The following figure shows you the relationship between Rkt, CNI, the CNI plugin,
and IPAM plugin:

RKT

o]

Plugin like IPAM
Flannel Plugin

[205]

Container Integration with CoreOS — Docker and Rkt

The relationship between Libnetwork and CNI

Libnetwork and CNI have similar objectives. Docker uses Libnetwork and CoreOS,
with Rkt, uses CNI. Libnetwork's overlay driver does something that is similar to
CNI's flannel driver. The goal of external plugins such as Weave and Calico is to
work with both Libnetwork and CNI.

Cloud Native Computing Foundation

The goal of CNCF is to make it easier to build Cloud native applications using
Containers. CNCF will create reference architectures using best open source
technologies around Containers for microservice based distributed application.
The initial goal of CNCF is Container orchestration and the integration work is
focused on Kubernetes with Mesos. CNCF will create the reference architecture
for microservice development that can help enterprises to build on the reference
architecture rather than integrating components by themselves. As per the latest
CoreOS blog (https://coreos.com/blog/making-sense-of -standards.html),
CoreOS will be donating etcd, flannel, and appc to CNCEF.

Docker

Even though Container technology has been available for a long time, Docker has
revolutionized the Container technology by making the creation and transportation

of Containers very user-friendly. Other than providing Container runtime, Docker
provides you with networking, storage, and orchestration solutions for containers.

For the majority of these solutions, Docker provides a pluggable model where the
Docker native solution is provided, which can be swapped with any other third-party
solution. This gives flexibility to the customer to use technologies that they are already
comfortable with.

In Chapter 1, CoreOS Overview, we covered the Docker architecture. As Docker
technology is pretty mature, we will cover only the advanced Docker concepts
in this chapter.

The Docker daemon and an external
connection

Docker runs as a daemon and by default listens on the Unix socket, unix: ///var/
run/docker . sock. Docker start options are specified in /etc/default/docker.

[206]

https://coreos.com/blog/making-sense-of-standards.html

Chapter 7

To allow external Docker clients to talk to the Docker daemon, the following
procedure is to be performed in the Ubuntu node:

1. Add the TCP server with the local address and port number:
DOCKER _OPTS="-D -H unix:///var/run/docker.sock -H
tcp://192.168.56.101:2376"

2. Restart the docker daemon:

Sudo service docker restart

3. Now, we can see that the Docker daemon is exposing external connectivity
on the IP address 192.168.56.101 and TCP port number 237¢:

;root 7676 1 0 14:16 ? 00:00:00 /usr/bin/ daemon -D -H unix:///var/run/

.sock -H tcp://192.168.56.101:2376

We can connect from external Docker clients as follows:

docker -H tcp://192.168.56.101:2376 ps

The following image shows that apache container is running;:

Dockerfile

Dockerfile is used to create Docker Container images using specified instructions
in Dockerfile. Typically, Dockerfile starts with a base container image, installs the
necessary applications, and starts the process associated with the container.

For Dockerfile best practices, you can refer to the following link:
https://docs.docker.com/engine/articles/dockerfile best-practices/

The following is an example Dockerfile for creating an Apache container from the
Ubuntu base image. This Dockerfile installs the Apache package and exposes port 80
to the outside world from the Container:

FROM ubuntu:14.04

MAINTAINER Sreenivas Makam <sxxxm@yahoo.com>
Update

RUN apt-get update

Install apache2

RUN apt-get install -y apache?2

Expose necessary ports

EXPOSE 80

[207]

https://docs.docker.com/engine/articles/dockerfile_best-practices/

Container Integration with CoreOS — Docker and Rkt

Start application
ENTRYPOINT ["/usr/sbin/apache2ctl"]
CMD ["-D", "FOREGROUND"]

To create a Docker image, execute the following command in the directory where
the preceding Dockerfile is present. In the example below, smakam/apachel is the
name of the Container image. The default convention for Container image name is
username/imagename:tag.

docker build -t smakam/apachel .
The following screenshot shows you the created Apache container image:

smakam14@junglel:~/docker/apache$ docker images | grep apachel

smakam/ _ latest 24f£3115d037 14 minutes ago 202.8 MB

The Docker Image repository

The Docker image repository is used to save and restore Docker Container images
from a common server location. There are three possible solutions that Docker
provides for storing Container images:

* Docker hub: This is the Docker image repository service that's hosted by
Docker itself at https: //hub.docker. com/. This is a free service provided
by Docker.

* Docker registry: This is an open source project (https://github.com/
docker/distribution) that allows customers to host the Docker registry in
their own premises. The latest Docker registry is version 2.0. Docker registry
2.0 overcomes some of the shortcomings of Docker registry 1.x for better
security and performance.

* Docker Trusted registry: This is Docker's commercial implementation
(https://www.docker.com/docker-trusted-registry) of the Docker
registry and adds features such as role-based user authentication, integration
with an external directory service such as LDAP, GUI-based administrative
management, support, and so on. Both the Docker registry and Docker
Trusted registry support integration with external storage drivers such as
AWS, Azure, and Swift to store Docker images.

[208]

https://hub.docker.com/
https://github.com/docker/distribution
https://github.com/docker/distribution
https://www.docker.com/docker-trusted-registry

Chapter 7

The following diagram captures the three Docker image repository types:

DOCKER IMAGE REPOSITORY

DOCKER TRUSTED
(Hgg%g RDQgSER DOCKER REGISTRY REGISTRY
REGISTRY) (OPEN SOURCE) (LOCAL OR HOSTED
PAID SERVICE)

Docker images have this format:

[REGISTRYHOST/] [USERNAME/]NAME [: TAG]

* REGISTRYHOST: The registry server address
e USERNAME: The username that created the image
* NaME: The Container image name
* TAG: The version of the Container image
* Except NAME, the other arguments are optional
For example, the following command will pull a standard Ubuntu container image

from the Docker hub; registry-1.docker.io/library is the registry host, the
name is Ubuntu, and the tag is latest:

docker pull registry-l.docker.io/library/Ubuntu:latest

Similar to the Docker registry, CoreOS has the Quay registry (https://quay.io/)
to store Docker and Rkt images, and they have a public and enterprise version
available.

Creating your own Docker registry

It is useful to create a local registry to share images in a particular company or group.
This is important from a security perspective since there is no need to access Internet
to access registry. The Docker registry provides you with options for authentication,
backend storage drivers (for example, S3, Azure, and Swift), logging, and so on.

To start a local registry, use the following command:

docker run -d -p 5000:5000 --restart=always --name registry registry:2

[209]

https://quay.io/

Container Integration with CoreOS — Docker and Rkt

The following screenshot shows you the registry running as container. The registry
service is exposed on port 5000 in the localhost:

ismakam14@junglel:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

10fd98a3c885 registry:2 "/bin/registry fetc/d" 43 hours ago Up About a minu
te 0.0.0.0:5000->5000/tcp registry

The registry configuration is specified either as an environment variable as part
of starting the registry container or using a YAML file with the configuration and
mounting this YAML file to /etc/config/registry/config.yaml in the container.

The following set of commands pulls a busybox container from the Docker hub,
pushes the busybox container in the local registry, and then pulls it out from the
local registry:

docker pull busybox

docker tag busybox localhost:5000/mybusybox

docker push localhost:5000/mybusybox

docker pull localhost:5000/mybusybox

The following screenshot shows you the mybusybox container that has been pulled
from the local registry:

smakam14@junglel:~$ docker images | grep mybusybox | grep localhost

:5000 /mybusybox latest c9edal0ebdbd 6 days ago

113 MB

The following screenshot shows you the instantiation of the mybusybox container
from the local registry:

smakam14@junglel:~$ docker run localhost:5000/mybusybox echo "hello"
hello B

Continuous integration

When we push Docker images to the Docker Hub, Dockerfile does not get pushed.
To push the Dockerfile and use it for automated Container builds, we need to link it
with a repository management tool such as GitHub or Bitbucket. The steps are
as follows:

1. Getan account in GitHub or Bitbucket.

2. From Docker Hub, we can link either to GitHub or Bitbucket.

3. Push the Dockerfile to GitHub.

[210]

Chapter 7

4. From DockerHub, when we create a repository, select automated build, and
select the location from GitHub where Dockerfile is present. This will build
the image automatically. Additionally, when there are changes to Dockerfile
committed to GitHub, automatic builds are triggered.

The following diagram shows you the CI sequence using Dockerfile, from staging to
production:

The following screenshot shows the automated build creation in Docker Hub after
creating Dockerfile in GitHub. In the following example, Dockerfile is present in
https://github.com/smakam/docker.git under the Apache directory:

A
DOCKERFILE BUILD REGISTRY o, STAGING Q PRODUCTION

smakam - apacheauto

Apache container that uses Dockerfile from github for automated building of Container images|

Type Name Dockerfile Location Tag
Branch ~ master /apache/ latest -
public A

¥/When Active, new pushes will trigger automatic builds

[211]

https://github.com/smakam/docker.git

Container Integration with CoreOS — Docker and Rkt

When any changes are made, an automatic container image is built. The following
screenshot shows the successful container image build log for smakam/apacheauto:

Build Details
Build Code Build Status Created, Last Updated
done 3 minutes ago a minute ago

The following screenshot shows a successful pull of the smakam/apacheauto
container image:

smakam14@junglel:~$ docker run -d -p 8080:80 smakam/apacheauto
ab5b1e7b7d563c0891a59460b3ddca74bobf8a564e1cfcadOb6abbed7baab749
smakam14@junglel:~$ docker ps

IMAGE COMMAND CREATED STATUS

NAMES
smakam/apacheauto "/usr/sbin/apache2ctl" 4 seconds ago Up 3 seconds
0.0.0.0:8080->80/tcp jovial_hypatia

The Docker content trust

The Docker content trust provides you with a mechanism to sign and publish Docker

images so that the client who pulls the image can be guaranteed that the image is
from a trusted source and has not been modified by any man-in-the-middle attack.
The following are some features of the Docker content trust:

* The Docker content trust is an implementation of the Notary open source
project (https://github.com/docker/notary). The Notary open source
project is based on The Update Framework (TUF) project (https://
theupdateframework.github.io/). TUF provides a mechanism to secure
software updates.

* Compared to the GPG approach of signing keys, TUF has some unique
differentiators. TUF takes care of the freshness of keys so that the client
always knows that they are getting the latest content. Key compromise can
be handled better with TUF using the key rotation scheme, which clients
need not be aware of. TUF also provides you with the capability of signing
collections rather than individual software.

* There are four keys with Notary — the Timestamp key to maintain the freshness

of the image, the Snapshot key to sign image collections, the Target key for the
regular signing of images, and the Offline key for key rotation.

[212]

https://github.com/docker/notary
https://theupdateframework.github.io/
https://theupdateframework.github.io/

Chapter 7

The Docker content trust has been released with Docker version 1.8.
The default option is trust-disabled and can be enabled using the
DOCKER_CONTENT TRUST environment variable. At some later point,
the default option would be to keep the trust enabled.

The following figure shows you the relationship between TUF, Notary, and the
Docker content trust:

The update framework
(TUF)

Notary

A

Docker content trust

The following is the workflow with the Docker content trust:

The Docker registry needs to support the Docker content trust. The Docker
Hub supports the content trust. The Docker trusted registry and private
registry do not yet support the content trust; this will be added soon.

The usual Docker commands can be used for push and pull, and care has
been taken not to change Docker commands. For advanced key management,
the Notary CLI can be used.

When the publisher pushes the image for the first time using docker push,
there is a need to enter a passphrase for the root key and tagging key. All
other keys are generated automatically. These keys need to be stored safely.

For any further image publishing, only the tagging key is necessary.

The client has the option to pull signed or unsigned images. With the Docker
trust enabled, the client will get an error if they try to pull unsigned images.

[213]

Container Integration with CoreOS — Docker and Rkt

Pushing secure image

First, we enable the Docker content trust using the DOCKER_CONTENT TRUST
environment variable. The following is the output when the Docker content trust is
enabled and we are publishing the image for the first time. Here, we are pushing the
signed smakam/mybusybox:v1 container:

smakam14@junglel:~$ export DOCKER_CONTENT_TRUST=1

smakam14@junglel:~$ docker push smakam/mybusybox:vi

The push refers to a repository [docker.io/smakam/mybusybox] (len: 1)

defba46cb616: Pushed

8c2e06607696: Pushed

6ce2e90bobc7: Pushed

cf2616975b4a: Pushed

vl: digest: sha256:a9ec29301095ac255¢c44a302c795e27c79e31ad2bc71d68cdcbdba74ebb79f73 size: 5580

Signing and pushing trust metadata

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_OFFLINE_PASSPHRASE has been deprecated a

d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_TAGGING_PASSPHRASE has been deprecated a
will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE

You are about to create a new root signing key passphrase. This passphrase

will be used to protect the most sensitive key in your signing system. Please

choose a long, complex passphrase and be careful to keep the password and the

key file itself secure and backed up. It is highly recommended that you use a

password manager to generate the passphrase and keep it safe. There will be no

way to recover this key. You can find the key in your config directory.

Enter passphrase for new root key with id 4c12027:

Repeat passphrase for new root key with id 4c12027:

Enter passphrase for new repository key with id docker.io/smakam/mybusybox (601986b):

Repeat passphrase for new repository key with id docker.ilo/smakam/mybusybox (001986b):

Finished initializing "docker.io/smakam/mybusybox"

Pulling secure image

The following is the output when we are pulling the same secure image, smakam/
mybusybox:v1, from the Docker hub:

smakam14@sreeubuntul4-VirtualBox1:~$ export DOCKER _CONTENT_TRUST=1
smakam14@sreeubuntul4-VirtualBox1:~$ docker pull smakam/mybusybox

Using default tag: latest

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_OFFLINE_PASSPHRASE has been deprecated an
d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_TAGGING_PASSPHRASE has been deprecated an
d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE

No trust data for latest

smakam14@sreeubuntul4-VirtualBox1:~$ docker pull smakam/mybusybox:vi

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_OFFLINE_PASSPHRASE has been deprecated an
d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_TAGGING_PASSPHRASE has been deprecated an
d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE

Pull (1 of 1): smakam/mybusybox:v1@sha256:a9ec29301095ac255c44a302c795e27c79e31ad2bc71d68cdcbdba74eb
b79f73

sha256:a9ec29301095ac255c44a302c795e27c79e31ad2bc71d68cdcbdba74ebb79f73: Pulling from smakam/mybusyb
ox

dd07788819d1: Pull complete

ad74b8b5fc11: Pull complete

f361d8111a5b: Pull complete

3e6f8ae5ca93: Pull complete

Digest: sha256:a9ec29301095ac255c44a302c795e27c79e31ad2bc71d68cdcbdba74ebb79f73

Status: Downloaded newer image for smakam/mybusybox@sha256:a9ec29301095ac255c44a302c795e27c79e31ad2b
c71d68cdcbdba74ebb79f73

Tagging smakam/mybusybox@sha256:a9ec29301095ac255c44a302c795e27c79e31ad2bc71d68cdcbdba74ebb79f73 as
smakam/mvbusvbox: vl

[214]

Chapter 7

Pulling same image with no security

The following is the output when we try to pull the same image, smakam/
mybusybox : v1, with no Docker content trust. In this case, image verification
is not done:

smakam14@sreeubuntul4-VirtualBox1:~5 docker pull smakam/mybusybox:v1
v1l: Pulling from smakam/mybusybox

Digest: sha256:a9ec29301095ac255c44a302c795e27c79e31ad2bc71d68cdcbdba74ebb79f73
Status: Downloaded newer image for smakam/mybusybox:vi

The following is the error message that we will get if we enable the trust and try to
pull Docker images that are not signed. As smakam/hellocounter is not signed and
we have DOCKER_CONTENT_ TRUST enabled, we get an error:

smakam14@sreeubuntul4-VirtualBox1:~$ docker pull smakam/hellocounter

Using default tag: latest
[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_OFFLINE_PASSPHRASE has been deprecated an|

d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_ROOT_PASSPHRASE

[DEPRECATED] The environment variable DOCKER_CONTENT_TRUST_TAGGING_PASSPHRASE has been deprecated an
d will be removed in v1.10. Please use DOCKER_CONTENT_TRUST_REPOSITORY_PASSPHRASE

no trust data available

Recently, Docker has enabled the content trust using hardware keys (https://blog.
docker.com/2015/11/docker-content-trust-yubikey/). This is currently in the
experimental mode.

Container debugging

The following are some basic Container debugging approaches.

Logs
The following command will show container logs. This can be a useful debugging

tool. In Chapter 10, CoreOS and Containers - Troubleshooting and Debugging, you will
learn how to aggregate and analyze Container logs from a central location.

docker logs <containername or id>

Login inside Container

The docker exec command can be used to log in to the container. The following is
an example:

smikam14@jungle1:~/docker/apache$ docker exec -ti apache sh
#

Common Linux commands can be executed from the Container shell.

[215]

https://blog.docker.com/2015/11/docker-content-trust-yubikey/
https://blog.docker.com/2015/11/docker-content-trust-yubikey/

Container Integration with CoreOS — Docker and Rkt

Container properties

The following command will show container properties such as mount points,
resource limits, and so on:

docker inspect <containername or id>

Container processes

The following command will show processes running in the container sorted by the
process CPU usage:

docker top <containername or id>

The following is a sample output for a redis container:

core@core-01 ~ $ docker top redis
PID

TIME CMD
999 1688 2 00:00:09 redis-server *:6379

The Container's CPU and memory usage

The following command will show the resource usage of a Container:
docker stats <containername or id>
The following is a sample output for the Apache container:

CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/0
apache 0.12% 6.795 MB / 6.382 GB 0.11% 4.292 kB / 648 B 0B /0B

Rkt

Rkt is the Container runtime from CoreOS based on the APPC specification.
The following are some differences in Rkt compared to Docker:

* Rkt is daemonless. The problem of Containers going away if the Docker
daemon restarts does not exist with Rkt.

* Rkt integrates well with systemd so that container resource limits can be set
easily for the Containers.

There are three stages in the Rkt execution:

* stage0: This does the image discovery and retrieval and sets up a filesystem
for stages 1 and 2.

[216]

Chapter 7

* stagel: This sets up the execution environment for the container execution
using the filesystem set up by stageo. Rkt uses systemd-nspawn to set up
cgroups, networking, and so on in this stage. The goal here is to keep stagel
swappable by other implementations.

* stage2: This is the actual execution of the Container pod and application
itself using the execution environment set up by stagel and filesystem set
up by stageo.

The following example illustrates the stages. Let's start the hello ACI image
using Rkt:

sudo rkt --insecure-skip-verify run hello-0.0.l1-linux-amd64.aci

smakami4@junglel:~/rkt$ sudo rkt run --insecure-skip-verify hello-0.0.1-1linux-amd64.aci
rkt: using image from file /home/smakami4/rkt-v0.10.0/stagel-coreos.aci

rkt: using image from file /home/smakami4/rkt/hello-0.0.1-1linux-amd64.aci
Lun: group "rkt" not found, will use default gid when rendering images

The following shows the stage1l filesystem setup by stageo:

root@junglel: /var/lib/rkt/pods/run/df40b3d4-e807-4127-add8-08e32adeaadd/stagel# 1s
manifest rootfs

The manifest here shows the Rkt stage1 ACI that sets up the container environment:

"name":
"acVersion":

The following shows the stagez2 filesystem:

root@junglel: /var/lib/rkt/pods/run/df40b3d4-e807-4127-add8-08e32a4eaadd/stagel/rootfs/opt/stage2/hello# 1s

manifest rootfs

The manifest here shows the hello Rkt container image:

"name": g
"acVersion": -

The following shows the filesystem for the hello application:

root@junglel: /var/1lib/rkt/pods/run/df40b3d4-e807-4127-add8-08e32adeaa9d/stagel/rootfs/opt/stage2/hello/rootfs# ls

bin dev etc proc sys

[217]

Container Integration with CoreOS — Docker and Rkt

Rkt application is available in the CoreOS base image. Rkt can also be installed in
any Linux system using the procedure described at https://github.com/coreos/
rkt. The following is the Rkt version running in the Ubuntu 14.04 system:

smakam14@junglel:~$ rkt version

rkt version 0.10.0
appc version 0.7.1

The following is the Rkt and APPC version used in the CoreOS alpha image 815.0.0:

Basic commands

The following are some basic commands to manipulate Rkt Containers.

Fetch image

The following command fetches a Container image from the repository in the
ACI format:

sudo rkt --insecure-skip-verify fetch docker://busybox

List images

The following command lists Rkt Container images:

sudo rkt image list

Run image

The following command runs the Rkt Container image:

sudo rkt run --insecure-skip-verify --interactive docker://busybox

[218]

https://github.com/coreos/rkt
https://github.com/coreos/rkt

Chapter 7

By default, signature verification is turned on; we disable signature verification using
the skip-verify option:

List pods

The following command lists the running pods:

sudo rkt list pods

Garbage collection

The following screenshot shows two pods that have exited:

The exited Containers will be garbage collected periodically. To force garbage
collection, we can perform the following command:

rkt gc --grace-period=0

[219]

Container Integration with CoreOS — Docker and Rkt

Now, we can see that there are no active pods:

Delete image

The following command deletes the local Container image:

sudo rkt image rm sha512-cf74c26d8d35555066dce70bd94£513b90cbef6e7e9cllea
0c971f4£6d4689848

The following screenshot shows the deletion of the busybox image using UUID:

Export image
The following command converts a Docker image to the ACI format:

sudo rkt image export nginx nginx.aci

The nginx container with volume mounting and port
forwarding

The following command starts the nginx container forwarding the container port 80
to the host port 8080 and setting up the host volume. The volume directory and port
name are as specified in the manifest file:

sudo rkt run --insecure-skip-verify --private-net --port=80-tcp:8080
--volume volume-var-cache-nginx, kind=host, source=/home/core docker://
nginx

[220]

Chapter 7

The following screenshot shows successful web page access using the nginx
container and host port 80so:

Pod status

The following command lists the status of a particular Pod using UUID:

sudo rkt status 2b1l65196

Rkt image signing

Container image signing allows us to verify that the image is coming from a trusted
location and has not been tampered with. I used the procedure at https://github.
com/coreos/rkt/blob/master/Documentation/signing-and-verification-
guide.md to sign the ACI image and use Rkt to run the signed image.

The following is a sample nginx. service systemd unit file:

1. Generate keys:
gpg --batch --gen-key gpg-batch

In case you get this error message, Not enough random bytes
available. Please do some other work to give the 0S
a chance to collect more entropy!, it can be solved by the
2~ following rngd tool that can be run in parallel:

apt-get install rng-tools
sudo rngd -r /dev/urandom

2. Trust the keys:

gpg --no-default-keyring --secret-keyring ./rkt.sec --keyring ./
rkt.pub --edit-key 1FEEFOED trust

[221]

https://github.com/coreos/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/coreos/rkt/blob/master/Documentation/signing-and-verification-guide.md
https://github.com/coreos/rkt/blob/master/Documentation/signing-and-verification-guide.md

Container Integration with CoreOS — Docker and Rkt

3. Export the public key:
gpg --no-default-keyring --armor \
--secret-keyring ./rkt.sec --keyring ./rkt.pub \
--export <email> > pubkeys.gpg

4. Sign the image using the public key:
gpg --no-default-keyring --armor \
--secret-keyring ./rkt.sec --keyring ./rkt.pub \
--output hello-0.0.l1-linux-amd64.aci.asc \

--detach-sig hello-0.0.1-linux-amd64.aci

5. Host the web server with the ACI image, public key, and signature.
The following are the contents in my web server location:

Ismakam14@junglel:~/rkt/www-data$ 1s

thello-0.0.1-linux-amd64.act hello-0.0.1-linux-amd64.aci.asc index.html pubkeys.gpg

6. The following is the index.html content:

<head>

<meta name="ac-discovery" content="example.com/hello http://
example.com/hello-0.0.1-1linux-amdé4.aci">

<meta name="ac-discovery-pubkeys" content="example.com/hello
http://example.com/pubkeys.gpg" >

</head>

7. Trust the web server location and key:

sudo rkt trust --prefix=-example.com/hello http://example.com/
pubkeys.gpg --insecure-allow-http

Modify /etc/hosts to point example.com to localhost.

Start a simple web server:
sudo python -m SimpleHTTPServer 80
Now, we can run the Rkt image with signature verification:

sudo rkt run --debug http://example.com/hello-0.0.1-linux-amd64.aci

[222]

Chapter 7

The following screenshot shows the signature being verified. The signature location
and public key are provided by the hosted web server at example. com:

smakam14@junglel:~/rkt$ sudo rkt run --debug http://example.com/hello-0.0.1-1inux-amd64.aci
rkt: using image from file /home/smakam14/rkt-v0.10.0/stagel-coreos.aci

rkt: remote fetching from url http://example.com/hello-0.0.1-1inux-amd64.aci

rkt: fetching image from http://example.com/hello-0.0.1-1inux-amd64.aci

Downloading signature from htt example.com/hello-0.0.1-1inux-amd64.aci.asc
Downloading signature: [==== === ===] 473 B/473 B
Downloading ACI: [= =] 1.67 MB/1.67 MB
rkt: signature verified

Sreenivas Makam (ACI signing key) <smakam@yahoo.com>

Rkt with systemd

Systemd provides you with a lot of control over how processes are managed.
Rkt pods can be managed by systemd. With systemd, we can control the process
execution order, restartability, resource limit, and so on.

The following is a sample nginx.service systemd unit file:

[Unit]
Description=nginx

[Service]

Resource limits

CPUShares=512

MemoryLimit=1G

Prefetch the image

ExecStartPre=/usr/bin/rkt fetch --insecure-skip-verify docker://nginx
ExecStart=/usr/bin/rkt run --insecure-skip-verify --private-net
--port=80-tcp:8080 --volume volume-var-cache-nginx,kind=host, source=/
home/co

re docker://nginx

KillMode=mixed

Restart=always

In the preceding service file, we started the nginx container and also limited the CPU
and memory usage for this nginx. service using the systemd construct.

To start the service, it's necessary to place nginx.service in /etc/systemd/system.
The service can be started as follows:

Sudo systemctl start nginx.service

[223]

Container Integration with CoreOS — Docker and Rkt

The following screenshot shows you the status of nginx.service:

To show the power of integration with systemd, let's kill the Rkt nginx process and
demonstrate restartability:

Systemd will restart the nginx container because restart is turned on in nginx.
service.

From the following journalctl logs on nginx.service, we can see that the service
has been restarted:

nginx.service: Control process exited, code=exited status=2

nginx.service: Unit entered failed state.

In the following screenshot, we can see that the Rkt nginx process is running with a
different PID:

Rkt with Flannel

Rkt uses the CNI interface to talk to the Flannel plugin to establish container

networking across hosts.

[224]

Chapter 7

The following example sets up a three-node CoreOS cluster using Rkt and Flannel
for Container networking. The following is the necessary cloud-config:

#cloud-config

coreos:
etcd2:

#generate a new token for each unique cluster from https://
discovery.etcd.io/new

discovery: <your tokens

multi-region and multi-cloud deployments need to use $public_
ipv4

advertise-client-urls: http://spublic ipv4:2379

initial-advertise-peer-urls: http://$private ipv4:2380

listen on both the official ports and the legacy ports

legacy ports can be omitted if your application doesn't depend
on them

listen-client-urls: http://0.0.0.0:2379,http://0.0.0.0:4001
listen-peer-urls: http://Sprivate ipv4:2380,http://S$private_
ipv4:7001
fleet:
public-ip: $public ipv4
flannel:
interface: $public ipv4
units:
- name: etcd2.service
command: start
- name: fleet.service
command: start
- name: flanneld.service
drop-ins:
- name: 50-network-config.conf
content: |
[Servicel]

ExecStartPre=/usr/bin/etcdctl set /coreos.com/network/
config '{ "network": "10.1.0.0/16" }'

command: start
- name: docker-tcp.socket
command: start
enable: true
content: |
[Unit]
Description=Docker Socket for the API

[225]

Container Integration with CoreOS — Docker and Rkt

[Socket]
ListenStream=2375
Service=docker.service
BindIPv60Only=both

[Installl]
WantedBy=sockets.target
write files:
- path: "/etc/rkt/net.d/10-containernet.conf"
permissions: "0644"
owner: "root"
content: |
{
"name": "containernet",
"type": "flannel"

}

The /etc/rkt/net.d/10-containernet.conf file sets up the CNI plugin type
as Flannel.

Flannel gets an individual subnet for each host using the IP range specified in the
flannel configuration 10.1.0.0/16.

The following output shows you the subnet allocated in node1 and node2:

[226]

Chapter 7

The following output shows you that the busybox container in core-01 got the IP,
10.1.74.4, whichisinthe 10.1.74.1/24 range allocated for core-01:

The following output shows you that the busybox container in core-03 got the IP,
10.1.3.2, whichisin the 10.1.3.1/24 range allocated for core-03:

The following output shows you a successful ping from container 1 on core-01 to
container 2 on core-03:

Summary

In this chapter, we covered different Container standards for Container runtime,
networking, and orchestration. Having these standards is important from the
industry perspective for interoperability reasons. Container runtime systems like
Docker and Rkt were covered in detail. For Docker, the focus was on advanced
concepts, and for Rkt, we covered the basics as Rkt is still in the early stages. Even
though CoreOS is actively developing Rkt, CoreOS is committed to supporting
Docker in its OS. It will be interesting to see how Docker and Rkt run together in
CoreOS and how customers adopt the two Container runtime technologies. In the
next chapter, we will cover Container orchestration.

[227]

Container Integration with CoreOS — Docker and Rkt

References

Notary GitHub: https://github.com/docker/notary
. [)Ockerregnﬁry:https://glthub.com/docker/dlstrlbution

* Docker content trust documentation: https://docs.docker.com/
security/trust/content trust/

* Docker content trust blog: https://blog.docker.com/2015/08/content-
trust-docker-1-8/

* The Update framework: http://theupdateframework.com/

* (Cloud native compute foundation: https://cncf.io

* Open container initiative: https://github.com/opencontainers

* APPC specification: https://github.com/appc

e Libnetwork: https://github.com/docker/libnetwork

e Docker2aci: https://github.com/appc/docker2aci

e CoreOS Rkt documentation: https://coreos.com/rkt/docs/latest/
e Acbuild: https://github.com/appc/acbuild

Further reading and tutorials

The CNI presentation: https://www.youtube.com/watch?v=_-9kItVUUCw

¢ Docker reglstry presentations: https://www.youtube.com/
watch?v=Rn09JnEO8tY and https://www.youtube.com/
watch?v=cVsUhoJFPvQ

* The Docker Notary presentation: https://www.youtube.com/
watch?v=JvjdfQC8jxM

* The Container standards presentation: http://containersummit.io/
events/sf-2015/videos/container-ecosystem-standards-needs-and-
progress

* The Rkt and APPC presentation: https://www.youtube.com/
watch?v=C8QpdrpmleY

[228]

https://github.com/docker/notary
https://github.com/docker/distribution
https://docs.docker.com/security/trust/content_trust/
https://docs.docker.com/security/trust/content_trust/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
http://theupdateframework.com/
https://cncf.io
https://github.com/opencontainers
https://github.com/appc
https://github.com/docker/libnetwork
https://github.com/appc/docker2aci
https://coreos.com/rkt/docs/latest/
https://github.com/appc/acbuild
https://www.youtube.com/watch?v=_-9kItVUUCw
https://www.youtube.com/watch?v=RnO9JnEO8tY
https://www.youtube.com/watch?v=RnO9JnEO8tY
https://www.youtube.com/watch?v=cVsUhoJFPvQ
https://www.youtube.com/watch?v=cVsUhoJFPvQ
https://www.youtube.com/watch?v=JvjdfQC8jxM
https://www.youtube.com/watch?v=JvjdfQC8jxM
http://containersummit.io/events/sf-2015/videos/container-ecosystem-standards-needs-and-progress
http://containersummit.io/events/sf-2015/videos/container-ecosystem-standards-needs-and-progress
http://containersummit.io/events/sf-2015/videos/container-ecosystem-standards-needs-and-progress
https://www.youtube.com/watch?v=C8Qpdrpm16Y
https://www.youtube.com/watch?v=C8Qpdrpm16Y

Container Orchestration

As Containers became the basis of modern application development and deployment,
it is necessary to deploy hundreds or thousands of Containers to a single data center
cluster or data center clusters. The cluster could be an on-premises cluster or in a cloud.
It is necessary to have a good Container orchestration system to deploy and manage
Containers at scale.

The following topics will be covered in this chapter:

* The basics of modern application deployment

¢ Container orchestration with Kubernetes, Docker Swarm, and Mesos
and their core concepts, installation, and deployment

* Comparison of popular orchestration solutions
* Application definition with Docker Compose

* Packaged Container Orchestration solutions —the AWS container service,
Google container engine, and CoreOS Tectonic

Modern application deployment

We covered the basics of Microservices in Chapter 1, CoreOS Overview. In cloud-based
application development, infrastructure is treated as cattle rather than pet (http://
www.slideshare. net/randybias/pets-vs-cattle—the-elastic—cloud-story).
What this means is that the infrastructure is commonly a commodity hardware that
can easily go bad and high availability needs to be handled at either the application
layer or application Orchestration layer. High availability can be taken care of by
having a combination of the load balancer and Orchestration system that monitors the
health of services taking necessary actions such as respawning the service if it dies.
Containers have the nice property of isolation and packaging that allows independent
teams to develop individual components as Containers.

[229]

http://www.slideshare.net/randybias/pets-vs-cattle-the-elastic-cloud-story
http://www.slideshare.net/randybias/pets-vs-cattle-the-elastic-cloud-story

Container Orchestration

Companies can adopt a pay-as-you-grow model where they can scale their Containers
as they grow. It is necessary to manage hundreds or thousands of Containers at scale.
To do this efficiently, we need a Container Orchestration system. The following are
some characteristics of a Container Orchestration system:

* It treats disparate infrastructure hardware as a collection and represents it as
one single resource to the application

¢ [t schedules Containers based on user constraints and uses the infrastructure
in the most efficient manner

* It scales out containers dynamically

* It maintains high availability of services

There is a close relation between the application definition and Container
Orchestration. The application definition is typically a manifest file describing

the Containers that are part of the application and the services that the Container
exposes. Container Orchestration is done based on the application definition. The
Container Orchestrator operates on resources that could be a VM or bare metal.
Typically, the nodes where Containers run are installed with Container-optimized
OSes, such as CoreOS, DCOS, and Atomic. The following image shows you the
relationship between the application definition, Container Orchestration, and
Container-optimized nodes along with some examples of solutions in each category:

Application Definition
Docker Compose, AWS Task Definition
GCE Container Manifest

Container Orchestration
Kuberneter, Mesos, Swarm

N\

Container Optimized node
(VM, Baremetal)
Core0S, DCOS, Atomic

[230]

Chapter 8

Container Orchestration

A basic requirement of Container orchestration is to efficiently deploy M containers
into N compute resources.

The following are some problems that a Container Orchestration system
should solve:

* It should schedule containers efficiently, giving enough control to the user
to tweak scheduling parameters based on their need

* It should provide Container networking across the cluster
* Services should be able to discover each other dynamically

* Orchestration system should be able to handle service failures

We will cover Kubernetes, Docker Swarm, and Mesos in the following sections.
Fleet is used internally by CoreOS for Container orchestration. Fleet has very
minimal capabilities and works well for the deployment of critical system services
in CoreOS. For very small deployments, Fleet can be used for Container
orchestration, if necessary.

Kubernetes

Kubernetes is an open source platform for Container Orchestration. This was initially
started by Google and now multiple vendors are working together in this open
source project. Google has used Containers to develop and deploy applications in
their internal data center and they had a system called Borg (http://research.
google.com/pubs/pub43438.html) for cluster management. Kubernetes uses a

lot of the concepts from Borg combined with modern technologies available now.
Kubernetes is lightweight, works across almost all environments, and has a lot of
industry traction currently.

Concepts of Kubernetes

Kubernetes has some unique concepts, and it will be good to understand them before
diving deep into the architecture of Kubernetes.

Pods

Pods are a set of Containers that are scheduled together in a single node and need
to work closely with each other. All containers in a Pod share the IPC namespace,
network namespace, UTS namespace, and PID namespace. By sharing the IPC
namespace, Containers can use IPC mechanisms to talk to each other.

[231]

http://research.google.com/pubs/pub43438.html
http://research.google.com/pubs/pub43438.html

Container Orchestration

By sharing the network namespace, Containers can use sockets to talk to each other,
and all Containers in a Pod share a single IP address. By sharing the UTS namespace,
volumes can be mounted to a Pod and all Containers can see these volumes. The
following are some common application deployment patterns with Pods:

* Sidecar pattern: An example is an application container and logging
container or application synchronizer container such as a Git synchronizer.

* Ambassador pattern: In this pattern, the application container and proxy
container work together. When the application container changes, external
services can still talk to the proxy container as before. An example is a redis
application container with the redis proxy.

* Adapter pattern: In this pattern, there is an application container and
adapter container that adapts to different environments. An example is a
logging container that works as an adapter and changes with different cloud
providers but the interface to the adapter container remains the same.

The smallest unit in Kubernetes is a Pod and Kubernetes takes care of scheduling
the Pods.

The following is a Pod definition example with the NGINX Container and Git
helper container:

apiVersion: vl
kind: Pod
metadata:
name: www
spec:
containers:
- name: nginx
image: nginx
- name: git-monitor
image: kubernetes/git-monitor
env:
- name: GIT_REPO
value: http://github.com/some/repo.git

Networking

Kubernetes has the one IP per Pod approach. This approach was taken to avoid the
pains associated with NAT to access Container services when Containers shared

the host IP address. All Containers in a pod share the same IP address. Pods across
nodes can talk to each other using different techniques such as cloud-based routing
from cloud providers, Flannel, Weave, Calico, and others. The end goal is to have
Networking as a plugin within Kubernetes and the user can choose the plugin based
on their needs.

[232]

Chapter 8

Services

Services are an abstraction that Kubernetes provides to logically combine Pods that
provide similar functionality. Typically, Labels are used as selectors to create services
from Pods. As Pods are ephemeral, Kubernetes creates a service object with its own
IP address that always remains permanent. Kubernetes takes care of load balancing
for multiple pods.

The following is an example service:

{

"kind": "Service",
"apiVersion": "v1",
"metadata": {
"name": "my-service"
b
"spec": |
"selector": {
"app": "MyApp"
b
"ports": [
{
"protocol": "TCP",
"port": 80,
"targetPort": 9376

}

In the preceding example, we created a my-service service that groups all pods with
a Myapp label. Any request to the my-service service's IP address and port number
80 will be load balanced to all the pods with the Myapp label and redirected to port
number 9376.

Services need to be discovered internally or externally based on the type of service.
An example of internal discovery is a web service needing to talk to a database
service. An example of external discovery is a web service that gets exposed to the
outside world.

For internal service discovery, Kubernetes provides two options:

¢ Environment variable: When a new Pod is created, environment variables
from older services can be imported. This allows services to talk to each
other. This approach enforces ordering in service creation.

[233]

Container Orchestration

* DNS: Every service registers to the DNS service; using this, new services
can find and talk to other services. Kubernetes provides the kube-dns service

for this.

For external service discovery, Kubernetes provides two options:

* NodePort: In this method, Kubernetes exposes the service through special

ports (30000-32767) of the node IP address.

* Loadbalancer: In this method, Kubernetes interacts with the cloud provider
to create a load balancer that redirects the traffic to the Pods. This approach is
currently available with GCE.

Kubernetes architecture

The following diagram shows you the different software components of the

Kubernetes architecture and how they interact with each other:

Kubectl

Master

Scheduler

Replication Controller

API Server

N

N

eted,
l/ Node 1

kubelet

kube-proxy

\

\l\\lode 2

kubelet

kube-proxy

External world

[234]

Chapter 8

The following are some notes on the Kubernetes architecture:

The master node hosts the Kubernetes control services. Slave nodes run the
pods and are managed by master nodes. There can be multiple master nodes
for redundancy purposes and to scale master services.

Master nodes run the critical services such as the Scheduler, Replication
controller, and API server. Slave nodes run the critical services such as
Kubelet and Kube-proxy.

User interaction with Kubernetes is through Kubectl, which uses standard
Kubernetes-exposed APlIs.

The Kubernetes scheduler takes care of scheduling the pods in the nodes
based on the constraints specified in the Pod manifest.

The replication controller is necessary to maintain high availability of Pods
and create multiple instances of pods as specified in the replication controller
manifest.

The API server in the master node talks to Kubelet of each slave node to
provision the pods.

Kube-proxy takes care of service redirection and load balancing the traffic to
the Pods.

Etcd is used as a shared data repository for all nodes to communicate with
each other.

DNS is used for service discovery.

Kubernetes installation

Kubernetes can be installed on baremetal, VM, or in cloud providers such as AWS,
GCE, and Azure. We can decide on the choice of the host OS on any of these systems.
In this chapter, all the examples will use CoreOS as the host OS. As Kubernetes
consists of multiple components such as the API server, scheduler, replication
controller, kubectl, and kubeproxy spread between master and slave nodes, the
manual installation of the individual components would be complicated. There are
scripts provided by Kubernetes and its users that automate some of the node setup
and software installation. The latest stable version of Kubernetes as of October 2015
is 1.0.7 and all examples in this chapter are based on the 1.0.7 version.

[235]

Container Orchestration

Non-Coreos Kubernetes installation
For non-Coreos-based Kubernetes installation, the procedure is straightforward:
1. Find the Kubernetes release necessary from https://github.com/
kubernetes/kubernetes/releases.
Download kubernetes.tar.gz for the appropriate version and unzip them.
Set KUBERNETES_PROVIDER as one of these (AWS, GCE, Vagrant, and so on)

Change the cluster size and any other configuration parameter in the
cluster directory.

5. Run cluster/kube-up.sh.

Kubectl installation

Kubectl is the CLI client to interact with Kubernetes. Kubectl is not installed by
default. Kubectl can be installed in either the client machine or the kubernetes
master node.

The following command can be used to install kubectl. It is needed to match kubectl
version with Kubernetes version:

ARCH=linux; wget https://storage.googleapis.com/kubernetes-release/
release/v1.0.7/bin/$ARCH/amd64/kubectl

If Kubectl is installed in the client machine, we can use the following command to
proxy the request to the Kubernetes master node:

ssh -f -nNT -L 8080:127.0.0.1:8080 core@<control-external-ip>

Vagrant installation

I used the procedure at https://github.com/pires/kubernetes-vagrant-
coreos-cluster to create a Kubernetes cluster running on the Vagrant environment
with CoreOS. I initially tried this in Windows. As I faced the issue mentioned in
https://github.com/pires/kubernetes-vagrant-coreos-cluster/issues/158,
I moved to the Vagrant environment running on Ubuntu Linux.

The following are the commands:

Git clone https://github.com/pires/kubernetes-vagrant-coreos-cluster.git
Cd coreos-container-platform-as-a-service/vagrant

Vagrant up

[236]

https://github.com/kubernetes/kubernetes/releases
https://github.com/kubernetes/kubernetes/releases
https://github.com/pires/kubernetes-vagrant-coreos-cluster
https://github.com/pires/kubernetes-vagrant-coreos-cluster
https://github.com/pires/kubernetes-vagrant-coreos-cluster/issues/158

Chapter 8

The following output shows the two running Kubernetes nodes:

sreeni@ubuntu:~/coreos-container-platform-as-a-service/vagrant$ kubectl get nodes
NAME LABELS STATUS

172.17.8.102 kubernetes.io/hostname=172.17.8.102 Ready
172.17.8.103 kubernetes.io/hostname=172.17.8.103 Ready

GCE installation

I used the procedure at https://github.com/rimusz/coreos-multi-node-k8s-
gce to create a Kubernetes cluster running in GCE with CoreOS.

The following are the commands:

git clone https://github.com/rimusz/coreos-multi-node-k8s-gce

cd coreos-multi-node-k8s-gce

In the settings file, change project, zone, node count, and any other necessary
changes.

Run the following three scripts in the same order:

l-bootstrap cluster.sh
2-get _k8s fleet etcd.sh
3-install _k8s_fleet_units.sh

The following output shows the cluster composed of three nodes:

smakam14@junglel:~$ kubectl get nodes
E

NAM| LABELS STATUS AGE

k8s-node-1.c.stunning-chain-108807.internal kubernetes.io/hostname=k8s-node-1.c.stunning-chain-108807.1internal Ready 23h

k8s-node-2.c.stunning-chain-108807.internal kubernetes.io/hostname=k8s-node-2.c.stunning-chain-108807.internal Ready 23h
k8s-node-3.c.stunning-chain-108807.1internal kubernetes.io/hostname=k8s-node-3.c.stunning-chain-108807.1internal Ready 23h

The following output shows the Kubernetes client and server versions:

smakam14@junglel:~$ kubectl version
Client Version: version.Info{Major:"1", Minor:"1", GitVersion:"v1.1.1", GitCommit:"92635e23dfafb2ddc828c8ac6c03c7a7205a84d8", GitTreeStq

te:"clean"}

Server Version: version.Info{Major:"1", Minor:"1", GitVersion:"v1.1.1", GitCommit:"92635e23dfafb2ddc828c8ac6c03c7a7205a84d8", GitTreeSta
te:"clean"}

[237]

https://github.com/rimusz/coreos-multi-node-k8s-gce
https://github.com/rimusz/coreos-multi-node-k8s-gce

Container Orchestration

The following output shows the Kubernetes services running in master and
slave nodes:

core@k8s-master ~ $ fleetctl list-units

UNIT MACHINE ACTIVE SUB
kube-apiserver.service a0902c39. .. active running
kube-controller-manager.service a®902c39... active running
kube-kubelet.service 1dcef688. .. active running
kube-kubelet.service dee9c694. . . active running
kube-kubelet.service ef45a03b. .. active running
kube-proxy.service 1dcef688. .. active running
kube-proxy.service dee9c694. . . active running
kube-proxy.service ef45a03b... active running
kube-scheduler.service a0902c39. .. active running

.0.2
.0.2
.0.5
.0.3
.0.4
.0.5
.0.3
.0.4
.0.2

The script used in this example uses Fleet to orchestrate Kubernetes services. As we
can see in the preceding image, the API server, controller, and scheduler run in the
master node and kubelet and proxy run in the slave nodes. There are three copies of
kubelet and kube-proxy, one each for every slave node.

AWS installation

I used the procedure at https://coreos.com/kubernetes/docs/latest/
kubernetes-on-aws.html to create the Kubernetes CoreOS cluster running
on AWS.

The first step is to install the kube-aws tool:

Git clone https://github.com/coreos/coreos-kubernetes/releases/download/
v0.1.0/kube-aws-linux-amdé64.tar.gz

Unzip and copy kube-aws to an executable path. Make sure that ~/ . aws/
credentials is updated with your credentials.

Create a default cluster.yaml file:

curl --silent --location https://raw.githubusercontent.com/coreos/coreos-
kubernetes/master/multi-node/aws/cluster.yaml.example > cluster.yaml

Modify cluster.yaml with your keyname, region, and externaldnsname;
externaldnsname matters for external access only.

To deploy the cluster, we can perform the following:

Kube-aws up

[238]

https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html
https://coreos.com/kubernetes/docs/latest/kubernetes-on-aws.html

Chapter 8

The following output shows the two nodes that are part of the Kubernetes cluster:

smakam14@junglel:~/aws1$ kubectl get nodes
ME

NA LABELS STATUS AGE

ip-10-0-0-101.us-west-2.compute.internal kubernetes.io/hostname=1p-10-0-0-101.us-west-2.compute.internal Ready Sh
ip-10-0-0-102.us-west-2.compute.internal kubernetes.io/hostname=ip-10-0-0-102.us-west-2.compute.internal Ready Sh

An example of a Kubernetes application

The following diagram illustrates the guestbook example that we will use to illustrate
the different Kubernetes concepts discussed in the previous sections. This example

is based on the reference at http://kubernetes.io/v1l.1/examples/guestbook/
README . html:

User

Front-end-service

Redis l\—/I_ZMy\ @SIave

Redis Master RC Front-end-RC Redis Slave RC

The following are some notes on this guestbook application:

* This application uses the php frontend with the redis master and slave
backend to store the guestbook database

e Frontend RC creates three instances of the kubernetes/example-
guestbook-php-redis container

¢ Redis-master RC creates one instance of the redis container

¢ Redis-slave RC creates two instances of the kubernetes/redis-slave
container

[239]

http://kubernetes.io/v1.1/examples/guestbook/README.html
http://kubernetes.io/v1.1/examples/guestbook/README.html

Container Orchestration

For this example, I used the cluster created in the previous section with Kubernetes
running on AWS with CoreOS. There is one master node and two slave nodes.

Let's look at the nodes:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl get nodes

NAME LABELS STATUS AGE
1p-10-0-0-101.us-west-2.compute.internal kubernetes.io/hostname=ip-10-0-0-101.us-west-2.compute.internal Ready 1d
ip-10-0-0-102.us-west-2.compute.internal kubernetes.io/hostname=ip-10-0-0-102.us-west-2.compute.internal Ready 1d

In this example, the Kubernetes cluster uses flannel to communicate across pods.
The following output shows the flannel subnet allocated to each node in the cluster:

core@ip-10-0-0-50 ~ $ etcdctl 1s / --recursive | grep subnet
Jcoreos.com/network/

Jcoreos.com/network/
Jcoreos.com/network/
/coreos.com/network/

The following are the commands necessary to start the application:

kubectl create -f redis-master-controller.yaml

kubectl create --validate=false -f redis-master-service.yaml
kubectl create -f redis-slave-controller.yaml

kubectl create --validate=false -f redis-slave-service.yaml
kubectl create -f frontend-controller.yaml

kubectl create --validate=false -f frontend-service.yaml
Let's look at the list of pods:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl get pods
NAME READY STATUS RESTARTS AGE
frontend-8mwjm 1/1 Running 13m
frontend-8riby 1/1 Running 13m

frontend-bko06 1/1 Running 13m
redis-master-dxjqi 1/1 Running 14m
redis-slave-2rvtm 1/1 Running 14m
redis-slave-ry90e 1/1 Running 14m

The preceding output shows three instances of the php frontend, one instance of the
redis master, and two instances of the redis slave.

[240]

Chapter 8

Let's look at the list of RC:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl get rc
CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE
frontend php-redis kubernetes/example-guestbook-php-redis:v2 name=frontend 3 18m

redis-master master redis name=redis-master 1 18m
redis-slave worker kubernetes/redis-slave:v2 name=redis-slave 2 18m

The preceding output shows the replication count per pod. Frontend has three
replicas, redis-master has one replica, and redis-slave has two replicas,
as we requested.

Let's look at the list of services:

:smakam14@junglel:~/kubernetes107/kubernetes/examples/questbook$ kubectl get services
NAME CLUSTER_IP EXTERNAL_IP PORT(S) SELECTOR AGE
frontend 10.3.0.221 nodes 80/TCP name=frontend 17m
kubernetes 10.3.0.1 <none> 443 /TCP <none> 1d
redis-master 10.3.0.218 <none> 6379/TCP name=redis-master 18m
redis-slave 10.3.0.141 <none> 6379/TCP name=redis-slave 18m

In the preceding output, we can see the three services comprising the guestbook
application.

For internal service discovery, this example uses kube-dns. The following output
shows the kube -dns RC running;:

smakam14@junglel:~/aws1$ kubectl --namespace=kube-system get rc
(CONTROLLER CONTAINER(S) IMAGE(S) SELECTOR REPLICAS AGE
kube-dns-v9 etcd gcr.ilo/google_containers/etcd:2.0.9 k8s-app=kube-dns,version=v9 1 1d

kube2sky gcr.ilo/google_containers/kube2sky:1.11
skydns gcr.io/google_containers/skydns:2015-03-11-001
healthz gcr.io/google containers/exechealthz:1.0

For external service discovery, I modified the example to use the NodePort
mechanism, where one of the internal ports gets exposed. The following is
the new frontend-service.yaml file:

apiVersion: vl
kind: Service
metadata:
name: frontend
labels:
name: frontend
spec:
if your cluster supports it, uncomment the following to
automatically create
an external load-balanced IP for the frontend service.
type: NodePort

[241]

Container Orchestration

ports:

the port that this service should serve on
- port: 80
selector:

name: frontend

The following is the output when we start the frontend service with the NodepPort
type. The output shows that the service is exposed using port 30193:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl create --validate=false -f f
rontend-servicel.yaml

You have exposed your service on an external port on all nodes in your
cluster. If you want to expose this service to the external internet, you may
need to set up firewall rules for the service port(s) (tcp:30193) to serve traffic.

Once we expose port 30193 using the AWS firewall, we can access the guestbook
application as follows:

€« (e 52.27.197.173:30193

Guestbook

hello!

Let's look at the application containers in Node1:

core@ip-10-0-0-101 ~ $ docker ps | grep guestbook
14a76c5aaec kubernetes/example- -php-redis:v2 "/bin/sh -c /run.sh" 32 minutes ago Up 31 minutes
k8s_php-redis.81fd265b_frontend-8mwjm_default_b2212ae7-887a-11e5-969e-02dd3d0731eb_4aaffd69

core@ip-10-0-0-101 ~ $ docker ps | grep redis
14a76c5aa%ec kubernetes/example-guestbook-php- \7 "/bin/sh -c /run.sh" 32 minutes ago Up 32 minutes
k8s_php- .81fd265b_frontend-8mwjm_ default b2212ae7-887a-11e5-969¢-02dd3d0731eb_4a4ffde69

Let's look at the application containers in Node2:

core@ip-10-0-0-102 ~ $ docker ps | grep guest

750ead6cb141 kubernetes/example- book-php-redis:v2 "/bin/sh -c /run.sh" 35 minutes ago Up 35 minutes
k8s_php-redis.81fd265b_frontend-8riby_default_b224cecd-887a-11e5-969e-02dd3d0731eb_5626cb55

b@1a7cd58fc7 kubernetes/example- book-php-redis:v2 "/bin/sh -c /run.sh" 35 minutes ago Up 35 minutes
k8s_php-redis.81fd265b_frontend-bkod6_default_b2211265-887a-11e5-969e-02dd3d0731eb_ea36f77b

core@ip-10-0-0-102 ~ $ docker ps | grep kubernetes.redis

7175506b84a5 -slave:v2 "/bin/sh -c /run.sh" 35 minutes ago Up 35 minutes
k8s_worker.c5431f94_redis-slave-2rvtm_default_bObeac98-887a-11e5-969e-02dd3d0731eb_0c7ef947

80170819849 -slave:v2 "/bin/sh -c /run.sh" 35 minutes ago Up 35 minutes
k8s_worker.c5431f94_redis-slave-ry90e_default_b@bde51b-887a-11e5-969e-02dd3d0731eb_b51486a9

The preceding output accounts for three instances of frontend, one instance of redis
master, and two instances of redis slave.

[242]

Chapter 8

To illustrate how the replication controller maintains the pod replication count, I
went and stopped the guestbook frontend Docker Container in one of the nodes, as
shown in the following image:

core@ip-10-0-0-101 ~ $ docker stop 14a76c5aa%ec
14a76c5aa%ec

Kubernetes RC detects that the Pod is not running and restarts the Pod. This can be
seen in the restart count for one of the guestbook pods, as shown in the following
image:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl get pods
NAME READY STATUS RESTARTS AGE

frontend-8mwjm 1/1 Running 1 38m
frontend-8riby 1/1 Running © 38m
frontend-bko06 1/1 Running 0 38m

To do some basic debugging, we can log in to the pods or containers themselves.
The following example shows you how we can get inside the Pod:

smakam14@junglel:~/kubernetes107 /kubernetes/examples/guestbook$ kubectl exec frontend-8mwjm -i -t -- bash -1l
root@frontend-8mwijm: /# ifconfig
etho Link encap:Ethernet HWaddr 02:42:0a3:02:37:04

inet addr:10.2.55.4 Bcast:0.0.0.0 Mask:255.255.255.0

inet6 addr: fe80::42:aff:fe02:3704/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:8973 Metric:1

RX packets:33 errors:0@ dropped:0 overruns:0 frame:0

TX packets:30 errors:@ dropped:0 overruns:0 carrier:0

collisions:0® txqueuelen:0

RX bytes:3234 (3.2 KB) TX bytes:2547 (2.5 KB)

The preceding output shows the IP address in the guestbook pod, which agrees
with the flannel subnet allocated to that node, as shown in the Flannel output in the
beginning of this example.

Another command that's useful for the debugging is kubectl logs as follows:

smakam14@junglel:~/kubernetes107/kubernetes/examples/guestbook$ kubectl logs frontend-8mwjm

2015-11-11 14:25:09,026 CRIT Supervisor running as root (no user in config file)
2015-11-11 14:25:09,026 WARN Included extra file "/etc/supervisor/conf.d/supervisord-apache2.conf" during parsing

Kubernetes with Rkt

By default, Kubernetes works with Container runtime Docker. The architecture of
Kubernetes allows other Container runtime such as Rkt to work with Kubernetes.
There is active work going on (https://github.com/kubernetes/kubernetes/
tree/master/docs/getting-started-guides/rkt) to integrate Kubernetes with
Rkt and CoreOS.

[243]

https://github.com/kubernetes/kubernetes/tree/master/docs/getting-started-guides/rkt
https://github.com/kubernetes/kubernetes/tree/master/docs/getting-started-guides/rkt

Container Orchestration

Kubernetes 1.1 update

Kubernetes released 1.1 version (http://blog.kubernetes.io/2015/11/
Kubernetes-1-1-Performance-upgrades-improved-tooling-and-a-growing-
community.html) in November 2015. Significant additions in 1.1 are increased
performance, auto-scaling, and job objects for the batching tasks.

Docker Swarm

Swarm is Docker's native Orchestration solution. The following are some properties
of Docker Swarm:

Rather than managing individual Docker nodes, the cluster can be managed
as a single entity.

Swarm has a built-in scheduler that decides the placement of Containers in
the cluster. Swarm uses user-specific constraints and affinities (https://
docs.docker.com/swarm/scheduler/filter/) to decide the Container
placement. Constraints could be CPU and memory, and affinity are
parameters to group related Containers together. Swarm also has the
provision to take its scheduler out and work with other schedulers such as
Kubernetes.

The following image shows the Docker Swarm architecture:

Docker CLI

y

Swarm Master -

Discovery
(Docker hub
etcd
consul)

Swarm Agent Swarm Agent Swarm Agent

The following are some notes on the Docker Swarm architecture:

The Swarm Master takes care of scheduling Docker Containers based on

the scheduling algorithm, constraints, and affinities. Supported algorithms
are spread, binpack, and random. The default algorithm is spread. Multiple
Swarm masters can be run in parallel to provide high availability. The Spread
scheduling is used to distribute workloads evenly. The binpack scheduling is
used to utilize each node fully before scheduling on another node.

[244]

http://blog.kubernetes.io/2015/11/Kubernetes-1-1-Performance-upgrades-improved-tooling-and-a-growing-community.html
http://blog.kubernetes.io/2015/11/Kubernetes-1-1-Performance-upgrades-improved-tooling-and-a-growing-community.html
http://blog.kubernetes.io/2015/11/Kubernetes-1-1-Performance-upgrades-improved-tooling-and-a-growing-community.html
https://docs.docker.com/swarm/scheduler/filter/
https://docs.docker.com/swarm/scheduler/filter/

Chapter 8

* The Swarm Agent runs in each node and communicates to the
Swarm Master.

* There are different approaches available for Swarm worker nodes to discover
the Swarm Master. Discovery is necessary because the Swarm Master and
agents run on different nodes and Swarm agents are not started by the
Swarm Master. It is necessary for Swarm agents and the Swarm Master to
discover each other in order to understand that they are part of the same
cluster. Available discovery mechanisms are Docker hub, Etcd, Consul,
and others.

* Docker Swarm integrates with the Docker machine to ease the creation
of Docker nodes. Docker Swarm integrates with Docker compose for
multicontainer application orchestration.

* With the Docker 1.9 release, Docker Swarm integrates with multi-host
Docker networking that allows Containers scheduled across hosts to talk to
each other.

The Docker Swarm installation
A prerequisite for this example is to install Docker 1.8.1 and Docker-machine 0.5.0.
I used the procedure at https://docs.docker.com/swarm/install-w-machine/
to create a single Docker Swarm master with two Docker Swarm agent nodes. The
following are the steps:

1. Create a discovery token.

2. Create a Swarm master node with the created discovery token.

3. Create two Swarm agent nodes with the created discovery token.

By setting the environment variable to swarm-master, as shown in the following
command we can control the Docker swarm cluster using regular Docker commands:

eval $(docker-machine env --swarm swarm-master)

[245]

https://docs.docker.com/swarm/install-w-machine/

Container Orchestration

Let's look at the docker info output on the Swarm cluster:

Containers: 4
Images: 5
Role: primary
Strategy: spread
Filters: health, port, dependency, affinity, constraint
Nodes: 3
swarm-agent-00: 192.168.99.103:2376
L containers: 1
L Reserved CPUs: 0 / 1
L Reserved Memo| B / 1.021 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
swarm-agent-01: 192.168.99.104:2376
L Containers: 1
L Reserved CPUs: 0 / 1
L Reserved Memo| B / 1.021 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
swarm-master: 192.168.99.102:2376
L Containers: 2
L Reserved CPUs: 0 / 1
L Reserved Memo| B / 1.021 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
CPUs: 3
[Total Memory: 3.064 GiB
Name: 27a599a19a65

The preceding output shows that three nodes (one master and two agents) are in
the cluster and that four containers are running in the cluster. The swarm-master
node has two containers and the swarm-agent node has one container each. These
containers are used to manage the Swarm service. Application containers are
scheduled only in Swarm agent nodes.

Let's look at the individual containers in the master node. This shows the master
and agent services running;:

docker@swarm-master:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES
swarm:latest "/swarm join --advert" 31 seconds ago Up 30 seconds
swarm-agent
swarm: latest "/swarm manage --tlsv" 31 seconds ago Up 31 seconds
375/tcp, 0.0.0.0:3376->3376/tcp swarm-agent-master

Let's look at the container running in the agent node. This shows the swarm agent
running:

docker@swarm-agent-00:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

965043240c96 swarm: latest "/swarm join --advert" 17 seconds ago Up 17 seconds 2375/tcp
t

[246]

Chapter 8

An example of Docker Swarm

To illustrate the Docker Swarm Container orchestration, let's start four nginx
containers:

docker run -d --name nginxl nginx
docker run -d --name nginx2 nginx
docker run -d --name nginx3 nginx

docker run -d --name nginx4 nginx

From the following output, we can see that the four containers are spread equally
between swarm-agent-00 and swarm-agent-01. The default spread scheduling
strategy has been used here:

sreeni@ubuntu:~$ docker ps

IMAGE COMMAND CREATED STATUS PORTS NAMES
nginx i 'daemon off" 39 minutes ago Up 39 minutes 80/tcp, 443/tcp swarm-agen

nginx i 'daemon off" 39 minutes ago Up 39 minutes 80/tcp, 443/tcp swarm-agen

'daemon off" 39 minutes ago Up 39 minutes 80/tcp, 443/tcp swarm-agen|

'daemon off" 40 minutes ago Up 40 minutes 80/tcp, 443/tcp swarm-agen|

The following output shows the overall Container count across the cluster that
includes the master and two agent nodes. The container count eight includes Swarm
service containers as well as nginx application containers:

sreeni@ubuntu:~$ docker info
Containers: 8
Images: 6
Role: primary
Strategy: spread
Filters: health, port, dependency, affinity, constraint
Nodes: 3
swarm-agent-00: 192.168.99.103:2376
L containers: 3
L Reserved CPUs: 0 / 1
L Reserved Memory: 6 B / 1.621 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
sYarm»agent-O 92.168.99.104:2376

Containers: 3
L Reserved CPUs: 0 / 1
L Reserved Memory: © B / 1.021 GiB
L Labels: execut river=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
swarm-master: .168.99.102:2376

/
L Reserved Memory: © B / 1.621 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.4); master :
- Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
CPUs: 3
[Total Memory: 3.064 GiB
Name: 27a599a19a65

[247]

Container Orchestration

Mesos

Apache Mesos is an open source clustering software. Mesosphere's DCOS is the
commercial version of Apache Mesos. Mesos combines the Clustering OS and
Cluster manager. Clustering OS is responsible for representing resources from
multiple disparate computers in one single resource over which applications can

be scheduled. The cluster manager is responsible for scheduling the jobs in the
cluster. The same cluster can be used for different workloads such as Hadoop and
Spark. There is a two-level scheduling within Mesos. The first-level scheduling does
resource allocation among frameworks and the framework takes care of scheduling
the jobs within that particular framework. Each framework is an application category
such as Hadoop, Spark, and others. For general purpose applications, the best
framework available is Marathon. Marathon is a distributed INIT and HA system to
schedule containers. The Chronos framework is like a Cron job and this framework
is suitable to run shorter workloads that need to be run periodically. The Aurora
framework provides you with a much more fine-grained control for complex jobs.

The following image shows you the different layers in the Mesos architecture:

Applications
(Rails, DJango, Java, Python)

N\

Framework
(Marathon, Chronos, Kubernetes, Hadoop)

Mesos DCOS
(First level scheduler, Distributed file system)

Cluster

o o O O O O

Comparing Kubernetes, Docker Swarm, and
Mesos

Even though all these solutions (Kubernetes, Docker Swarm, and Mesos) do
application Orchestration, there are many differences in their approach and use
cases. I have tried to summarize the differences based on their latest available
release. All these Orchestration solutions are under active development, so the
feature set can vary going forward. This table is updated as of October 2015:

[248]

Chapter 8

Feature Kubernetes Docker Swarm Mesos

Deployment unit | Pods Container Process or Container

Container Docker and Rkt. Docker. Docker; there is some

runtime discussion ongoing

on Mesos with Rkt.

Networking Each container has | Initially, this did Port | Initially, this did
an IP address, and | forwarding with a Port forwarding
can use external common agent IP with a common
network plugins. | address. With Docker | agent IP address.

1.9, it uses Overlay Currently, it works
networking and per | on per Container
container IP address. | IP. integration with
It can use external Calico.

network plugins.

Workloads Homogenous Homogenous Multiple frameworks
workload. With workload. such as Marathon,
namespaces, Aurora, and Hadoop
multiple virtual can be run in parallel.
clusters can be
created.

Service discovery | This can use either | Static with DNS-based approach
environment modification of / to discover services
variable-based etc/hosts. ADNS | dynamically.

discovery or

approach is planned

Kube-dns in the future.
for dynamic
discovery.

High availability | With a replication | Service high Frameworks take
controller, availability is not yet | care of service high
services are highly | implemented. availability. For
available. Service example, Marathon
scaling can be has the Init.d
done easily. system to run

containers.

Maturity Relatively Relatively new. The | Pretty stable
new. The first first production and used in
production release | release was done a big production
was done a few few months before. environments.

months before.

[249]

Container Orchestration

Feature Kubernetes Docker Swarm Mesos
Complexity Easy. Easy. This is a little difficult
to set up.
Use case This is more Presenting Docker Suitable for
suitable for frontend makes heterogeneous
homogenous it attractive for workloads.
workloads. Docker users not
needing to learn any
new management
interface.

Kubernetes can be run as a framework on top of Mesos. In this case, Mesos does
the first-level scheduling for Kubernetes and Kubernetes schedules and manages
applications scheduled. This project (https://github.com/mesosphere/
kubernetes-mesos) is dedicated to running Kubernetes on top of Mesos.

There is work ongoing to integrate Docker Swarm with Kubernetes so that
Kubernetes can be used as a scheduler and process manager for the cluster while
users can still use the Docker interface to manage containers using Docker Swarm.

Application definition

When an application is composed of multiple Containers, it is useful to represent
each Container property along with its dependencies in a single JSON or YAML
file so that the application can be instantiated as a whole rather than instantiating
each Container of the application separately. The application definition file takes
care of defining the multicontainer application. Docker-compose defines both the
application file and runtime to instantiate containers based on the application file.

Docker-compose

Docker-compose provides you with an application definition format, and when we
run the tool, Docker-compose takes care of parsing the application definition file and
instantiating the Containers taking care of all the dependencies.

Docker-compose has the following advantages and use cases:
* It gives a simple approach to specify an application's manifest that contains
multiple containers along with their constraints and affinities
* Itintegrates well with Dockerfile, Docker Swarm, and multihost networking

* The same compose file can be adapted to different environments using
environment variables

[250]

https://github.com/mesosphere/kubernetes-mesos
https://github.com/mesosphere/kubernetes-mesos

Chapter 8

A single-node application

The following example shows you how to build a multicontainer WordPress
application with a WordPress and MySQL container.

The following is the docker-compose. yml file defining the Containers and their
properties:

wordpress:
image: wordpress
ports:
- "8080:80"
environment:
WORDPRESS DB HOST: "composeword mysqgl 1:3306"
WORDPRESS DB PASSWORD: mysqgl
mysql:
image: mysqgl
environment:
MYSQL ROOT PASSWORD: mysqgl

The following command shows you how to start the application using
docker-compose

docker-compose -p composeword -f docker-compose.yml up -d

The following is the output of the preceding command:

smakam14@junglel:~/composewordS docker-compose -p composeword -f docker-compose.yml up -d
Creating composeword_wordpress_1...

Creating composeword_mysql 1... _

Containers are prefixed with a keyword specified in the -p option. In the preceding
example, we have used composeword_mysqgl_1 as the hostname, and the IP address
is derived dynamically from the container using this and updated in /etc/hosts.

The following output shows the running containers of the wordpress application:

smakam14@junglel:~/composeword$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
f31d3e91f3e8 mysql "/entrypoint.sh mysql" 5 seconds ago Up 4 seconds 3306/tcp

eword_mysql_1
2f727dfeed66 wordpress "/entrypoint.sh apach" 6 seconds ago Up 5 seconds 0.0.0.0:8080->80/tcp
eword_wordpress_1

[251]

Container Orchestration

The following output is the /etc/hosts output in the wordpress container; the one
which shows that the IP address of the MySQL container is dynamically updated:

root@2f727dfeed66: /var /fwww/html#t cat [etc/hosts | grep mysql

172.18.0.3 composeword mysql 1

A multinode application

I used the example at https://docs.docker.com/engine/userguide/
networking/get-started-overlay/ to create a web application spanning multiple
nodes using docker-compose. In this case, docker-compose is integrated with
Docker Swarm and Docker multihost networking.

The prerequisite for this example is to have a working Docker Swarm cluster and
Docker version 1.9+.

The following command creates the multihost counter application. This application
has a web container as the frontend and a mongo container as the backend. These
commands have to be executed against the Swarm cluster:

docker-compose -p counter -x-networking up -d

The following is the output of the preceding command:

sreeni@ubuntu:~/compose$ docker-compose -p counter --x-networking up -d
Creating network "counter" with driver "None"

Creating counter_web_1
Creating counter_mongo_1

The following output shows the overlay network counter created as part of
this application:

docker@mhs-demo0:~$ docker network 1s

NETWORK ID NAME DRIVER
Oe5fcad2f541 counter overlay
b79a7294a131 my-net overlay
b1097320a489 bridge bridge
3f5cb7139b49 none null
425bbde2136e host host
0f0cf3367062 docker_gwbridge bridge

The following output shows the running Containers in the Swarm cluster:

sreeni@ubuntu:~/compose$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES

mongo "/entrypoint.sh mongo" 29 minutes ago Up 29 minutes
mhs-demol/counter_mongo_1
bfirsh/compose-mongodb-demo "/bin/sh -c 'python a" 29 minutes ago Up 29 minutes
192.168.99.101:80->5000/tcp mhs-demo@/counter web 1

[252]

https://docs.docker.com/engine/userguide/networking/get-started-overlay/
https://docs.docker.com/engine/userguide/networking/get-started-overlay/

Chapter 8

The following output shows the Swarm cluster information. There are in total five
containers — three of them are Swarm service containers and two of them are the
preceding application containers:

sreeni@ubuntu:~/compose$ docker info
Containers: 5
Images: 6
Role: primary
Strategy: spread
Filters: health, port, dependency, affinity, constraint
Nodes: 2
mhs-demo®: 192.168.99.101:2376
L Containers: 3
L Reserved CPUs: @ /1
L Reserved Memory: @ B / 1.021 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.
4); master : 16eda2a - Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
mhs-demol: 192.168.99.102:2376
L containers: 2
L Reserved CPUs: 0 / 1
L Reserved Memory: @ B / 1.021 GiB
L Labels: executiondriver=native-0.2, kernelversion=4.1.12-boot2docker, operatingsystem=Boot2Docker 1.9.0 (TCL 6.
4); master : 16ed4a2a - Tue Nov 3 19:49:22 UTC 2015, provider=virtualbox, storagedriver=aufs
CPUs: 2
Total Memory: 2.043 GiB

The following output shows the working web application:

curl localhost

been visited 2 times!<

Packaged Container Orchestration
solutions

There are many components necessary for the deployment of a distributed
microservice application at scale. The following are some of the important components:
* Aninfrastructure cluster
* A Container-optimized OS

* A Container orchestrator with a built-in scheduler, service discovery,
and networking

* Storage integration
* Multitenant capability with authentication

* An APl at all layers to ease management

[253]

Container Orchestration

Cloud providers such as Amazon and Google already have an ecosystem to
manage VMs, and their approach has been to integrate Containers and Container
orchestration into their IaaS offering so that Containers play well with their other
tools. The AWS Container service and Google Container engine fall in this category.
The focus of CoreOS has been to develop a secure Container-optimized OS and
open source tools for distributed application development. CoreOS realized that
integrating their offering with Kubernetes would give their customers an integrated
solution, and Tectonic provides this integrated solution.

There are a few other projects such as OpenStack Magnum (https://github.com/
openstack/magnum) and Cisco's Mantl (https://mantl.io/) that falls under this
category of managed Container Orchestration. We have not covered these in this
chapter.

The AWS Container service

The AWS EC2 Container Service (ECS) is a Container Orchestration service from
AWS. The following are some of the key characteristics of this service:

* ECS creates and manages the node cluster where containers are launched.
The user needs to specify only the cluster size.

* Container health is monitored by container agents running on the node.
The Container agent communicates to the master node that makes all
service-related decisions. This allows for high availability of Containers.

* ECS takes care of scheduling the containers across the cluster. A scheduler
APl is implemented as a plugin and this allows integration with other
schedulers such as Marathon and Kubernetes.

* ECS integrates well with other AWS services such as Cloudformation, ELB,
logging, Volume management, and others.

Installing ECS and an example

ECS can be controlled from the AWS console or using the AWS CLI or ECS CLIL
For the following example, I have used the ECS CLI, which can be installed using
the procedure in this link (http://docs.aws.amazon.com/AmazonECS/latest/
developerguide/ECS_CLI_installation.html).

I used the following example (http://docs.aws.amazon.com/AmazonECS/latest/
developerguide/ECS_CLI_tutorial.html) to create a WordPress application with
two containers (WordPress and MySQL) using the compose YML file.

[254]

https://github.com/ openstack/magnum
https://github.com/ openstack/magnum
https://mantl.io/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_installation.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_installation.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_tutorial.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_tutorial.html

Chapter 8

The following are the steps:

1. Create an ECS cluster.
2. Deploy the application as a service over the cluster.

3. The cluster size or service size can be dynamically changed later based
on the requirements.

The following command shows the running containers of the WordPress application:
ecs-cli ps

The following is the output of the preceding command:

‘smakam14@junglel:~/aws1$ ecs-cli ps
‘Name State Ports TaskDefinition

dff@a3al-6ed1-4a62-94d6-50452cc16abd/mysql RUNNING ecscompose-aws1:1
dff@a3al-6ed1-4a62-94d6-50452cc16abd /wordpress RUNNING 52.25.124.26:80->80/tcp ecscompose-awsl:1

We can scale the application using the ecs-c1i command. The following command
scales each container to two:

ecs-cli compose --file hello-world.yaml scale 2

The following output shows the running containers at this point. As we can see,
containers have scaled to two:

smakam14@junglel:~/aws1$ ecs-cli ps
Name State Ports TaskDefinition
9f24df1b-bcb7-4666-a024-1e79e3e60566 /wordpress RUNNING 52.33.182.69:80->80/tcp ecscompose-awsl:1

9f24df1b-bcb7-4666-a024-1e79e3e60566 /mysql RUNNING ecscompose-aws1l:1
dff0a3al-6ed1-4a62-94d6-50452cc16abd/mysql RUNNING ecscompose-awsl:1
dff@a3al-6edl-4a62-94d6-50452cc16abd/wordpress RUNNING 52.25.124.26:80->80/tcp ecscompose-awsl:1

Note: The MySQL container is scaled typically using a single master
s and multiple slaves.

We can also log in to each AWS node and look at the running containers. The
following output shows three containers in one of the AWS nodes. Two of them
are application containers, and the third one is the ECS agent container that does
container monitoring and talks to the master node:

[ec2-user@ip-10-0-0-208 ~]$ docker ps
IMAGE COMMAND CREATED STATUS PORTS

wordpress "/entrypoint.sh apac About an hour ago Up About an hour 0.0.0.0:80->80/tcp

ecs-ecscompose-aws1-1-wordpress-d8c5a6e585d2e681f201
©8d81995684f mysql "/entrypoint.sh mysq About an hour ago Up About an hour 3306/tcp
ecs-ecscompose-aws1-1-mysql-8cd89cfcfeb6b7cadool
7b19fda216f3 amazon/amazon-ecs-agent:latest "/agent" 2 hours ago Up 2 hours 127.0.0.1:51678->51
678/tcp ecs-agent

[255]

Container Orchestration

Note: To log in to each node, we need to use ec2-user as the
= username along with the private key used while creating the cluster.

To demonstrate HA, I tried stopping containers or nodes. Containers got rescheduled
because the Container agent monitors containers in each node.

Google Container Engine

Google Container Engine is the cluster manager and container orchestration solution
from Google that is built on top of Kubernetes. The following are the differences

or benefits that we get from GCE compared to running a container cluster using
Kubernetes as specified in the Kubernetes installation section:

* A node cluster is created automatically by Google Container engine. The user
needs to specify only the cluster size and the CPU and memory requirement.

* Kubernetes is composed of multiple individual services such as an API
server, scheduler, and agents that need to be installed for the Kubernetes
system to work. Google Container engine takes care of creating the
Kubernetes master with appropriate services and installing other Kubernetes
services in agent nodes.

* Google Container engine integrates well with other Google services such as
VPC networking, Logging, autoscaling, load balancing, and so on.

* The Docker hub, Google container registry, or on-premise registry can be
used to store Container images.

Installing GCE and an example

The procedure at https://cloud.google.com/container-engine/docs/before-
you-begin can be used to install the gcloud container components and kubectl.
Containers can also be managed using the GCE dashboard.

I used the procedure at https://cloud.google.com/container-engine/docs/
tutorials/guestbook to create a guestbook application containing three services.
This application is the same as the one used in the An example of Kubernetes application
section specified earlier.

The following are the steps:

1. Create a node cluster with the required cluster size. This will automatically
create a Kubernetes master and appropriate agent services will be installed in
the nodes.

[256]

https://cloud.google.com/container-engine/docs/before-you-begin
https://cloud.google.com/container-engine/docs/before-you-begin
https://cloud.google.com/container-engine/docs/tutorials/guestbook
https://cloud.google.com/container-engine/docs/tutorials/guestbook

Chapter 8

2. Deploy the application using a replication controller and service files.

3. The cluster can be dynamically resized later based on the need.

The following is the cluster that I created. There are four nodes in the cluster as
specified by NUM_NODES:

smakam14@junglel:~$ gcloud container clusters list
NAME ZONE MASTER_VERSION MASTER_IP MACHINE_TYPE NUM_NODES STATUS

guestbook us-centrall-a 1.0.7 104.197.5.61 nl-standard-1 4 RUNNING

The following command shows the running services that consist of frontend, redis-
master, and redis-slave. The Kubernetes service is also running in the master node:

Kubectl get services

The following is the output of the preceding command:

smakam14@junglel:~$ kubectl get services
NAME LABELS SELECTOR IO)) PORT(S)
frontend app=guestbook, tier=frontend app=guestbook, tier=frontend 10.127.252.184 80/TCP

104.197.176.2
kubernetes component=apiserver,provider=kubernetes <none> 10.127.2460.1 443/TCP
redis-master app=redis,role=master,tier=backend app=redis,role=master,tier=backend 10.127.244.163 6379/TCP
redis-slave app=redis,role=slave, tier=backend app=redis,role=slave,tier=backend 10.127.2560.117 6379/TCP

As the frontend service is integrated with the GCE load balancer, there is also an
external IP address. Using the external IP address, guestbook service can be accessed.
The following command shows the list of endpoints associated with the load balancer:

Kubectl describe services frontend
The following is the output of the preceding command:

smakam14@junglel:~$ kubectl describe services frontend
frontend
default
app=questbook, tier=frontend
app=guestbook, tier=frontend
LoadBalancer

10.127.252.184

104.197.176.2
<unnamed> 80/TCP
<unnamed> 30578/TCP
10.124.1.4:80,10.124.1.5:80,10.124.2.5:80
Session Affinity: None
No events.

[257]

Container Orchestration

To resize the cluster, we need to first find the instance group associated with the
cluster and resize it. The following command shows the instance group associated
with the guestbook:

smakam14@junglel:~$ gcloud container clusters describe guestbook --format yaml | grep -A 1 instanceG
roupUrls

- https://www.googleapis.com/replicapool/vibeta2/projects/stunning-chain-108807/zones/us-centrall-a/
instanceGroupManagers/gke-guestbook-€915700c-group

Using the instance group, we can resize the cluster as follows:

smakam14@junglel:~$ gcloud compute instance-groups managed resize gke-guestbook-e915700c-group --zon
e us-centrall-a --size 4

Updated [https://www.googleapis.com/compute/vl/projects/stunning-chain-108807/zones/us-centrall-a/in
stanceGroupManagers/gke-guestbook-e915700c-group].

The initial set of outputs that show the cluster size as four were done after the
resizing of the cluster.

We can log in to the individual nodes and see the containers launched in the node
using regular Docker commands. In the following output, we see one instance of
redis-slave and one instance of front end running in this node. Other Containers
are Kubernetes infrastructure containers:

smakam14@gke - guestbook-e915700c-node-u5xw:~$ sudo docker ps

[CONTAINER ID IMAGE COMMAND CREATED STATUS
JAMES

a4353f82d1d2 gcr.io/google_samples/gb-redisslave:vl "/entrypoint.sh /bin 13 hours Up 13 hours
8s_slave.b2cdceda_redis-slave-vbke8_default_3d41e543-8: Za 11e5-93d1-42010af00191_63af61e8

13e08690b9fbo gcr.io/google_containers/pause " /pause" 13 hours Up 13 hours
8s_POD.49eee8c2_redis-slave-vbke8_default_3d41e543 11e5 93d1 42010af00191_01518172

f9093a19elaa gcr.io/google_samples/gb-frontend:v3 "apache2-foreground” 13 hours Up 13 hours
Ss_php—redis.6997cfea_frontend—tﬂlov_default_14e39e84—Saza—11e5—93d1—420103f00191_4637f646

ed45376c8d9e redis:latest "/entrypoint.sh redi 13 hours Up 13 hours
8s_master.3716a71d_redis-master-qvcuk_default_119c6d0f-8a2a-11e5-93d1-42010af00191_f1d4as89c

675a5aa7110d gcr.io/google_containers/pause:0.8.0 " [pause" 13 hours Up 13 hours
8s_POD.ef28e851_frontend-t0lov_default 14e39e84-8a2a-11e5-93d1-42010af00191_eaacae99

fo7c8e744d41 gcr.io/google_containers/pause:0.8.0 " [pause" 13 hours Up 13 hours
8s_POD.49eee8c2_redis-master-qvcuk_default_119c6dof-8a2a-11e5- 93d1 426103f00191 82979913

e1286266d39d ger.io/google_ contalners/kube ui:vi.l " [kube-ui" 14 hours Up 14 hours
8s_kube-ut.bbb5835d_kub -v1-wb11ln_kube-system_892d5262-8a26- 11e5 93d1-42010af00191_db2acff4

369bfade1837 gcr.io/google_containers/pause:0.8.0 " /pause” 14 hours Up 14 hours
8s_POD. 3b46e8b9_kube-ui-vi-wb1ln_kube-system_892d5262-8a26-11e5- 93d1 42010af00191_9c94cbob

562b468841c3 gcr.io/google_containers/fluentd-gcp:1.11 "\"/bin/sh -c '/usr/ 14 hours ago Up 14 hours
8s_fluentd-cloud-logging.44219385_fluentd-cloud-logging-gke-: guestbook e915700c node-u5xw_kube-system b845047be3634f41e2061ca65fbaadd2_1a6e3d18
9da347cdads2 gcr.io/google_containers/pause:0.8.0 " [pause" 14 hours ago Up 14 hours
8s_POD. edcc795_fluentd-cloud-logging-gke-guestbook-e915700c-node-u5xw_kube-systen | b845047be3634f4192061ca65fbaa9d2 _e7fdbade

CoreOS Tectonic

Tectonic is the commercial offering from CoreOS where they have integrated CoreOS
and the open source components of CoreOS (Etcd, Fleet, Flannel, Rkt, and Dex) along
with Kubernetes. With Tectonic, CoreOS is integrating their other commercial offerings
such as CoreUpdate, Quay repository, and Enterprise CoreOS into Tectonic.

[258]

Chapter 8

The plan is to expose the Kubernetes API as it is in Tectonic. Development in CoreOS
open source projects will continue as it is, and the latest software will be updated
to Tectonic.

The following diagram illustrates the different components of Tectonic:

Commercial
(Dashboard, GUI Mgmt, Support, Quay Repository
Core update)

Orchestration
(Kubernetes)

Container Runtime
(Rkt, Docker)

Open Source Infra
(etcd, Fleet, Flannel, Systemd, Dex)

0S
(Core0S)

Tectonic provides you with Distributed Trusted Computing (DTM), where security
is provided at all layers including hardware and software. The following are some
unique differentiators:

* At the firmware level, the customer key can be embedded, and this allows
customers to verify all the software running in the system.

* Secure keys embedded in the firmware can verify the bootloader as well
as CoreOS.

* Containers such as Rkt can be verified with their image signature.

* Logs can be made tamper-proof using the TPM hardware module embedded
in the CPU motherboard.

[259]

Container Orchestration

Summary

In this chapter, we covered the importance of Container Orchestration along with
the internals of popular container orchestration solutions, such as Kubernetes,
Docker Swarm, and Mesos. There are many companies offering integrated Container
orchestration solutions, and we covered a few popular ones such as the AWS
Container service, Google Container Engine, and CoreOS Tectonic. For all the
technologies covered in this chapter, installation and examples have been provided
so that you can try them out. Customers have a choice of picking between integrated
Container Orchestration solutions and manually integrating the Orchestration
solution in their infrastructure. The factors affecting the choice would be flexibility,
integration with in-house solutions, and cost. In the next chapter, we will cover
OpenStack integration with Containers and CoreOS.

References
* The Kubernetes page: http://kubernetes.io/
* Mesos: http://mesos.apache.org/ and https://mesosphere.com/
e Docker Swarm: https://docs.docker.com/swarm/
e Kubernetes on CoreOS: https://coreos.com/kubernetes/docs/latest/

* Google Container Engine: https://cloud.google.com/container-
engine/

e AWSECS: https://aws.amazon.com/ecs/

* Docker Compose: https://docs.docker.com/compose
e Docker machine: https://docs.docker.com/machine/
e Tectonic: https://tectonic.com

* Tectonic Distributed Trusted Computing: https://tectonic.com/blog/
announcing-distributed-trusted-computing/

[260]

http://kubernetes.io/
http://mesos.apache.org/
https://mesosphere.com/
https://docs.docker.com/swarm/
https://coreos.com/kubernetes/docs/latest/
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
https://aws.amazon.com/ecs/
https://docs.docker.com/compose
https://docs.docker.com/machine/
https://tectonic.com
https://tectonic.com/blog/announcing-distributed-trusted-computing/
https://tectonic.com/blog/announcing-distributed-trusted-computing/

Chapter 8

Further reading and tutorials

Container Orchestration with Kubernetes and CoreOS: https://www.
youtube.com/watch?v=tA8XNVPZM2w

* Comparing Orchestration solutions: http://radar.oreilly.com/2015/10/
swarm-v-fleet-v-kubernetes-v-mesos.html, http://www.slideshare.
net/giganati/orchestration-tool-roundup-kubernetes-vs-docker-
vs-heat-vs-terra-form-vs-tosca-1,and https://www.openstack.org/
summit/vancouver-2015/summit-videos/presentation/orchestration-
tool-roundup-kubernetes-vs-heat-vs-fleet-vs-maestrong-vs-tosca

* Mesosphere introduction: https://www.digitalocean.com/community/
tutorials/an-introduction-to-mesosphere

e Docker and AWS ECS: Ohttps://medium.com/aws-activate-startup-
blog/cluster-based-architectures-using-docker-and-amazon-ec2 -
container-service-£74fa86254bf#.afp7kixga

[261]

https://www.youtube.com/watch?v=tA8XNVPZM2w
https://www.youtube.com/watch?v=tA8XNVPZM2w
http://radar.oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.html
http://radar.oreilly.com/2015/10/swarm-v-fleet-v-kubernetes-v-mesos.html
http://www.slideshare.net/giganati/orchestration-tool-roundup-kubernetes-vs-docker-vs-heat-vs-terra-form-vs-tosca-1
http://www.slideshare.net/giganati/orchestration-tool-roundup-kubernetes-vs-docker-vs-heat-vs-terra-form-vs-tosca-1
http://www.slideshare.net/giganati/orchestration-tool-roundup-kubernetes-vs-docker-vs-heat-vs-terra-form-vs-tosca-1
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/orchestration-tool-roundup-kubernetes-vs-heat-vs-fleet-vs-maestrong-vs-tosca
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/orchestration-tool-roundup-kubernetes-vs-heat-vs-fleet-vs-maestrong-vs-tosca
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/orchestration-tool-roundup-kubernetes-vs-heat-vs-fleet-vs-maestrong-vs-tosca
https://www.digitalocean.com/community/tutorials/an-introduction-to-mesosphere
https://www.digitalocean.com/community/tutorials/an-introduction-to-mesosphere
https://medium.com/aws-activate-startup-blog/cluster-based-architectures-using-docker-and-amazon-ec2-container-service-f74fa86254bf#.afp7kixga
https://medium.com/aws-activate-startup-blog/cluster-based-architectures-using-docker-and-amazon-ec2-container-service-f74fa86254bf#.afp7kixga
https://medium.com/aws-activate-startup-blog/cluster-based-architectures-using-docker-and-amazon-ec2-container-service-f74fa86254bf#.afp7kixga

OpenStack Integration with
Containers and CoreOS

OpenStack is an open source cloud operating system for managing public and private
clouds. It is a pretty mature technology that is supported by the majority of the
vendors and is used in a wide variety of production deployments. Running CoreOS in
the OpenStack environment will give OpenStack users a Container-based Micro OS to
deploy their distributed applications. Having Container orchestration integrated with
OpenStack gives OpenStack users a single management solution to manage VMs and
Containers. There are multiple projects ongoing in OpenStack currently to integrate
Container management and Container networking with OpenStack.

The following topics will be covered in this chapter:

* An overview of OpenStack
* Running CoreOS in OpenStack

* Options to run Containers in OpenStack — the Nova Docker driver,
Heat Docker plugin, and Magnum

* Container networking using OpenStack Kuryr and Neutron

An overview of OpenStack

Just like an OS for a desktop or server manages the resources associated with it, a
cloud OS manages the resources associated with the cloud. Major cloud resources
are compute, storage, and network. Compute includes servers and hypervisors
associated with the servers that allows VM creation. Storage includes the local
storage, Storage Area Network (SAN), and object storage.

[263]

OpenStack Integration with Containers and CoreOS

Network includes vlans, firewalls, load balancers, and routers. A cloud OS is also
responsible for other infrastructure-related items such as image management,
authentication, security, billing, and so on. A cloud OS also provides some
automated characteristics such as elasticity, a self service provisioning model,
and others. Currently, the most popular open source cloud OS in the market is
OpenStack. OpenStack has a lot of momentum going for it along with a great
industry backing.

The following are some key OpenStack services:

* Nova: Compute

* Swift: Object storage

* Cinder: Block storage

* Neutron: Networking

* Glance: Image management

* Keystone: Authentication

* Heat: Orchestration

* Ceilometer: Metering

* Horizon: Web interface
OpenStack can be downloaded from https://wiki.openstack.org/wiki/
Get_OpenStack. It is pretty complex to install OpenStack as there are multiple
components involved. Similar to Linux distributions provided by Linux vendors,
there are multiple vendors offering OpenStack distributions. The best way to try out
OpenStack is using Devstack (http://devstack.org/). Devstack offers a scripted

approach to install and can be installed on a laptop or VM. Devstack can be used to
create a single-node cluster or multi-node cluster.

CoreOS on OpenStack

CoreOS can be run as a VM on OpenStack. CoreOS OpenStack images are available
for alpha, beta, and stable versions.

Here, I have described the procedure to install CoreOS on OpenStack running

in the Devstack environment. The procedure is based on the CoreOS OpenStack
documentation (https ://coreos.com/os/docs/latest /booting-on-openstack.
html).

[264]

https://wiki.openstack.org/wiki/Get_OpenStack
https://wiki.openstack.org/wiki/Get_OpenStack
http://devstack.org/
https://coreos.com/os/docs/latest/booting-on-openstack.html
https://coreos.com/os/docs/latest/booting-on-openstack.html

Chapter 9

The following is a summary of the steps:

1. Get OpenStack Kilo running in Devstack. In my case, I installed Devstack
in the Ubuntu 14.04 VM.

Set up the keys for authentication and a security group for SSH access.

Set up external network access and DNS for the VM. This is necessary as
the CoreOS nodes need to discover each other using the token service.

4. Download the appropriate CoreOS image and upload to OpenStack using
the Glance service.

Get a discovery token and update it in the user data configuration file.

Start CoreOS instances using custom user data specifying necessary services
to be started and the number of instances to be started.

Get OpenStack Kilo running in Devstack

The following blog covers the procedure in detail:

https://sreeninet.wordpress.com/2015/02/21/openstack-juno-install-
using-devstack/

This is the 1ocal . conf file that I used:

[[local|localre]]
DEST=/opt/stack

Logging
LOGFILE=$DEST/logs/stack.sh.log
VERBOSE=True
SCREEN_LOGDIR=$DEST/logs/screen
OFFLINE=True

HOST
#EDITME
HOST IP=<EDITME>

Networking

FIXED RANGE=10.0.0.0/24
disable service n-net
enable service g-svc
enable service g-agt
enable service g-dhcp

[265]

https://sreeninet.wordpress.com/2015/02/21/openstack-juno-install-using-devstack/
https://sreeninet.wordpress.com/2015/02/21/openstack-juno-install-using-devstack/

OpenStack Integration with Containers and CoreOS

enable service g-meta

enable service g-13

#ml2

Q PLUGIN=ml2

Q AGENT=openvswitch

vxlan

Q ML2_ TENANT NETWORK TYPE=vxlan

Credentials

ADMIN PASSWORD=openstack
MYSQL_PASSWORD=openstack
RABBIT PASSWORD=openstack
SERVICE PASSWORD=openstack
SERVICE TOKEN=tokentoken

#scheduler
enable service n-sch
SCHEDULER=nova.scheduler.chance.ChanceScheduler

#vnc
enable service n-novnc
enable service n-cauth

Setting up keys and a security group

The following are the commands that I used to create a keypair and to expose port
SSH and ICMP port of the VM:

nova keypair-add heattest > ~/Downloads/heattest.pem

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

nova secgroup-add-rule default tcp 1 65535 0.0.0.0/0

Setting up external network access

The first command sets up the NAT rule for VM external access and the second
command sets up a DNS server:

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

neutron subnet-update <subnet> --dns-nameservers list=true <dns address>

(Find <subnet> using nova subnet-1list and <dns address> from the running
host machine).

[266]

Chapter 9

Download the CoreOS image and upload
to Glance

The following command is used to download the latest alpha image and upload to
OpenStack glance:

wget http://alpha.release.core-os.net/amd64-usr/current/coreos
production openstack image.img.bz2
bunzip2 coreos production openstack image.img.bz2
glance image-create --name CoreOS \
--container-format bare \
--disk-format gcow2 \
--file coreos production openstack image.img \

--is-public True

The following is the glance image-1list outputand we can see the CoreOS image
uploaded to Glance:

smakam14@sreeubuntul4-VirtualBox:~/devstack$ glance image-list
+ B

.
| Se _ |

e06ee893-fdbf-4d7e-b850-abcddbbeab94	cirros-0.3.4-x86_64-uec-kernel	aki	aki	4979632	active
14d06279-352a-41c4-8aca-04b3927056b8	cirros-0.3.4-x86_64-uec-ramdisk	ari	ari	3740163	active
8ae5223c-1742-47bf-9bb3-873374e61a64	Core0S	qcow2	bare	670105600	active
oo oo oo dommmmmeeomaoooe oo oo +

Updating the user data to be used for CoreOS

I had some issues using the default user data to start CoreOS because there were
issues with CoreOS determining the system IP. I raised a case (https://groups.
google.com/forum/#!topic/coreos-user/STmEU6FGRB4) and the CoreOS team
provided a sample user data where IP addresses are determined using a script inside
the user data.

The following is the user data that I used:

#cloud-config

write files:

- path: /tmp/ip.sh
permissions: 0755
content: |

#!/bin/sh
get_ipva () {

[267]

https://groups.google.com/forum/#!topic/coreos-user/STmEU6FGRB4
https://groups.google.com/forum/#!topic/coreos-user/STmEU6FGRB4

OpenStack Integration with Containers and CoreOS

IFACE="${1}"

local ip
while [-z "${ip}" 1; do
ip=$(ip -4 -o addr show dev "${IFACE}" scope global |
gawk '{split ($4, out, "/"); print out[1]}"')
sleep .1
done

echo "s${ip}"
1
echo "IPV4 PUBLIC=$ (get_ ipv4 ethO0)" > /run/metadata
echo "IPV4 PRIVATE=$S (get ipv4 ethO0)" >> /run/metadata

coreos:
units:
- name: populate-ips.service
command: start
runtime: true
content: |
[Servicel
Type=oneshot
ExecStart=/tmp/ip.sh
- name: etcd2.service
command: start
runtime: true
drop-ins:
- name: custom.conf
content: |
[Unit]
Requires=populate-ips.service
After=populate-ips.service

[Servicel]

EnvironmentFile=/run/metadata

ExecStart=

ExecStart=/usr/bin/etcd2 --initial-advertise-peer-
urls=http://${IPV4 PRIVATE}:2380 --listen-peer-urls=http://${IPV4_
PRIVATE}:2380 --listen-client-urls=http://0.0.0.0:2379 --advertise-
client-urls=http://${IPV4 PUBLIC}:2379 --discovery=https://discovery.
etcd.io/0cbf57cedlc56ac028af8ce7e32264ba

- name: fleet.service
command: start

[268]

Chapter 9

The preceding user data does the following:

* The populate-ips.service unit file is used to update the IP address.
It reads the IP manually and updates /run/metadata with the IP address.

* The discovery token is updated so that nodes can discover each other.
* Etcd2 service is started using the IP address set in /run/metadata.

* Fleet service is started using fleet unit file.

The following command is used to start two CoreOS instances using the preceding
user data:

nova boot \

--user-data ./user-datal.yaml \

--image 8ae5223c-1742-47bf-9bb3-873374e6lab4 \
--key-name heattest \

--flavor ml.coreos \

--num-instances 2 \

--security-groups default coreos

Note: For the CoreOS instance, I have used a custom flavor
ml . coreos with 1 vepu, 2 GB memory, and 10 GB hard disk. If these
’ resource requirements are not met, instance creation will fail.

Let's look at the list of VMs. We can see the two CoreOS instances in the
following image:

smakam14@sreeubuntul4-VirtualBox:~/devstack$ nova list
e e Fo-mmmmeo- R e e R e T +
| Name | Status | Task State | Power State | Networks |

B e e Fo-mmmmo- R Fommmmemoo e R e T +
| c67e2b39-abfb-4429-a747-adbfbelcf41ld | coreos-1 | ACTIVE | - | Running | private=10.0.0.14
| 37793c82-b864-4cab-9d91-549d061cc62d | coreos-2 | ACTIVE | - | Running | private=10.0.0.15
o - m - - m - mm—m——————-————-—----- - oo +o------- o ---------- o --------- - fo---------—-------- +

The following command shows the CoreOS version running in OpenStack:

core@coreos-1 ~ $ cat [etc/os-release
NAME=Core0S

ID=coreos
VERSION=845.0.0
VERSION_ID=845.0.0

[269]

OpenStack Integration with Containers and CoreOS

The following command shows the etcd member list:

core@coreos-1 ~ $ etcdctl member list

887cae5451d131ec: name=20bca274e32f4ffda2247deed691baz2a peerURLs=http://10.0.0.14:2380 clientURLs=http://10.0.0.14:2379
9e9f9ae8de23bd31: name=c3e843ae3c5d4e5d9ef32367c67f291d peerURLs=http://16.0.0.15:2380 clientURLs=http://10.6.0.15:2379

The following command shows the fleet machines showing the two CoreOS nodes:

core@coreos-1 ~ $§ fleetctl list-machines
MACHINE IP METADATA

20bcaz74... 10.0.0.14
c3eB843ae... 10.0.0.15

OpenStack and Containers

Even though OpenStack has supported VMs and baremetal for quite some time,
Containers are pretty new to OpenStack. The initial focus in OpenStack was to
extend VM Orchestration to also manage Containers. The Nova Docker driver and
Heat Docker plugin are examples of this. This was not widely adopted as some of
the Container functionality was missing in this approach. The OpenStack Magnum
project addresses some of the limitations and manages Containers as a first-class
citizen like a VM.

The Nova Docker driver

Nova typically manages VMs. In this approach, the Nova driver is extended to
spawn Docker Containers.

The following diagram describes the architecture:

NOVA

l

NOVA DOCKER

DRIVER
J,REST \
DOCKER GLANCE

[270]

Chapter 9

The following are some notes on the architecture:

* Nova is configured to use the Nova Docker driver for Containers

* The Nova Docker driver talks to the Docker daemon using the REST API

* Docker images are imported to Glance and the Nova Docker driver uses
these images to spawn Containers

The Nova Docker driver is not present in the mainstream OpenStack installation
and has to be installed separately.

Installing the Nova Driver

In the following example, we will cover the installation and usage of the Nova
Docker driver to create Containers.

The following is a summary of the steps:

1. You need to have a Ubuntu 14.04 VM.
Install Docker.

Install the Nova docker plugin.

Do the stacking of Devstack.

Install nova-docker rootwrap filters.

Create Docker images and export to Glance.

NS e »PDN

Spawn Docker containers from Nova.

Installing Docker

The following is the Docker version running in my system after the Docker
installation:

smakam14@sreeubuntul4-VirtualBox:~/devstack$ docker --version

Docker version 1.9.1, build a34aid5

Install the Nova Docker plugin

Use the following command to install the plugin:

git clone -b stable/kilo https://github.com/stackforge/nova-docker.git
cd nova-docker

sudo pip install .

[271]

OpenStack Integration with Containers and CoreOS

The following is the Docker driver version after installation:

smakami4@sreeubuntul4-VirtualBox:~/devstack$ sudo pip list | grep nova-docker

(0.0.1.dev189)

The Devstack installation

I have used a stable Kilo release with the following local.cont. This sets up Nova
to use the Docker driver:

[[local|localre]]
HOST
HOST IP=<EDITME>

ADMIN PASSWORD=openstack

DATABASE PASSWORD=$ADMIN PASSWORD

RABBIT PASSWORD=$ADMIN PASSWORD

SERVICE PASSWORD=$ADMIN PASSWORD

SERVICE TOKEN=super-secret-admin-token

VIRT DRIVER=novadocker.virt.docker.DockerDriver

Logging

VERBOSE=True

DEST=$HOME/stack
SCREEN_LOGDIR=$DEST/logs/screen
SERVICE_DIR=$DEST/Status
DATA_DIR=$DEST/data
LOGFILE=SDEST/logs/stack.sh.log
LOGDIR=$DEST/logs

OFFLINE=false

Networking
FIXED RANGE=10.0.0.0/24

This enables Neutron
disable service n-net
enable service g-svc
enable service g-agt
enable service g-dhcp
enable service g-13
enable service g-meta

[272]

Chapter 9

Introduce glance to docker images

[[post-config|$GLANCE API CONF]]

[DEFAULT]

container formats=ami,ari,aki,bare,ovf,ova,docker

Configure nova to use the nova-docker driver

[[post-config|$NOVA CONF]]

[DEFAULT]

compute driver=novadocker.virt.docker.DockerDriver

For installing the nova-docker rootwrap filters run the following command:

sudo cp nova-docker/etc/nova/rootwrap.d/docker.filters \

/etc/nova/rootwrap.d/
For uploading the Docker image to Glance run the following command:

docker save nginx | glance image-create --is-public=True --container-
format=docker --disk-format=raw --name nginx

Let's look at the Glance image list; we can see the nginx container image:

smakam14@sreeubuntul4-VirtualBox:~/devstack$ glance image-list | grep nginx

| d9d59e4c-fo1c-46a5-9132-1a0295e2ddb9 | | raw | docker | 139277824 | active |

Now, let's create the nginx container:

nova boot --flavor ml.small --image nginx nginxtest
Let's look at the Nova instances:

smakaml4@sreeubuntul4-virtualBox:~/devstack$ nova list

We can also see the running Container using the Docker native command:

smakam14@sreeubuntul4-VirtualBox:~/devstack$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

f51778a38d9%e nginx "nginx -g 'daemon off" About an hour ago Up About an hour
81f120-b5c7-44c1-a8el-c1f4e2132d1d

[273]

OpenStack Integration with Containers and CoreOS

The Heat Docker plugin

The following are some of the items that the Nova Docker driver cannot do currently:

* Passing environment variables

* Linking containers

* Specifying volumes

* Orchestrating and scheduling the containers

These missing functionalities are important and unique for Containers. The Heat
Docker plugin solves these problems partially, except for the orchestration part.

The following diagram shows the Heat Docker orchestration architecture:

HEAT
DOCKER
PLUGIN
REST
DOCKER
DOCKER REGISTRY

The following are some notes on the architecture:

* Heat uses the Heat Docker plugin to talk to Docker. The Docker plugin uses
the REST API to talk to the Docker engine.

* There is no direct interaction of Heat with the Docker registry.

* Using the Heat orchestration script, we can use all the features of the
Docker engine. The disadvantage of this approach is that there is no direct
integration of Docker with other OpenStack modules.

Installing the Heat plugin

I used the procedure at https://sreeninet.wordpress.com/2015/06/14/
openstack-and-docker-part-2/ and https://github.com/MarouenMechtri/
Docker-containers-deployment-with-OpenStack-Heat to do the OpenStack
Heat Docker plugin integration with OpenStack Icehouse.

[274]

https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-2/
https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-2/
https://github.com/MarouenMechtri/Docker-containers-deployment-with-OpenStack-Heat
https://github.com/MarouenMechtri/Docker-containers-deployment-with-OpenStack-Heat

Chapter 9

Using the Heat plugin, we can spawn Docker containers either in the localhost or
VM created by OpenStack.

I have used a Ubuntu 14.04 VM with Icehouse installed using Devstack. I used the
procedure in the preceding links to install the Heat Docker plugin.

The following command output shows that the Heat plugin is successfully installed
in the localhost:

$ heat resource-type-list | grep Docker

| DockerInc::Docker::Container

The following is a heat template file to spawn the nginx container in the localhost:

heat template version: 2013-05-23
description: >
Heat template to deploy Docker containers to an existing host
resources:
nginx-01:
type: DockerInc: :Docker: :Container
properties:
image: nginx
docker endpoint: 'tcp://192.168.56.102:2376"'

We have specified the endpoint as the localhost IP address and Docker engine
port number.

The following command is used to create the Container using the preceding
heat template:

heat stack-create -f ~/heat/docker temp.yml nginxheatl

The following output shows that the heat stack installation is complete:

$ heat stack-list

| id | stack name | stack status

| d878d8cl-cel7-4£29-9203-febd37bd8b7d | nginxheatl | CREATE COMPLETE
| 2015-06-14T13:27:542 |

[275]

OpenStack Integration with Containers and CoreOS

The following output shows the successful running container in the localhost:

$ docker -H :2376 ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

624ff5de9240 nginx:latest "nginx -g 'daemon of 2 minutes
ago Up 2 minutes 80/tcp, 443/tcp trusting pasteur

We can use the Heat plugin approach to run Containers on OpenStack VMs by
changing the endpoint IP address from the localhost to the VM's IP address.

Magnum

With Nova Driver and Heat Orchestration, Containers were not a first-class

citizen in OpenStack and Container specifics were not easy to manage with these
approaches. Magnum is a generic Container management solution being developed
in OpenStack to manage Docker as well as other Container technologies. Magnum
supports Kubernetes, Docker Swarm, and Mesos for Orchestration currently. Other
orchestration solutions will be added in the future. Magnum supports Docker
Containers currently. The architecture allows it to support other Container runtime
such as Rkt in the future. Magnum is still in the early stages and is available as a beta
feature in the OpenStack Liberty release.

The Magnum architecture

The following diagram shows the different layers in Magnum:

MAGNUM CLIENT

MAGNUM API SERVER

|

MAGNUM CONDUCTOR

|

KUBERNETES DOCKER SWARM HEAT

NOVA, NEUTRON,
KEYSTONE, GLANCE

[276]

Chapter 9

The following are some notes on the Magnum architecture:

The Magnum client talks to the Magnum API server, which in turn talks
to the Magnum conductor. The Magnum conductor is responsible for
interacting with Kubernetes, Docker Swarm, and Heat.

Heat takes care of interacting with other OpenStack modules such as Nova,
Neutron, Keystone, and Glance.

Nova is used to create nodes in the Bay and they can run different Micro
OSes such as CoreOS and Atomic.

OpenStack Magnum uses the following constructs:

Bay model: This is a cluster definition that describes properties of the cluster,
such as the node flavor, node OS, and orchestration engine to be used. The
following is an example bay model template that uses the node flavor as
ml.small, fedora atomic as the base OS for the node, and Kubernetes as the
orchestration engine:

magnum baymodel-create --name k8sbaymodel \
--image-id fedora-2l-atomic-5 \
--keypair-id testkey \
--external-network-id public \
--dns-nameserver 8.8.8.8 \
--flavor-id ml.small \
--docker-volume-size 5 \
--network-driver flannel \

--coe kubernetes

Bay: Bays are instantiated based on the bay model with the number of nodes
necessary in Bay.

Nodes, Pods, and Containers: Nodes are the individual VM instances.
Pods are a collection of containers that share common properties and are
scheduled together. Containers run within a Pod.

[277]

OpenStack Integration with Containers and CoreOS

The following diagram shows the relationship between the Bay model, Bay, Node,
Pod, and Container:

BAY MODEL
BAY
NODE NODE
POD POD
© ©
© ©
© PoD POD
©
© © ©

The following are the advantages of using OpenStack Magnum versus a native
orchestration solution such as Kubernetes:

For customers who are already using OpenStack, this provides an
integrated solution.

OpenStack provides multitenancy at all layers. This can be extended for
Containers as well.

OpenStack Magnum allows interaction with other OpenStack modules such
as Neutron, Keystone, Glance, Swift, and Cinder. Some of these integrations
are planned for the future.

VMs and Containers have different purposes and most likely, they will
coexist. OpenStack with the Magnum project provides you with an
orchestration solution covering both VMs and Containers and this makes
it very attractive.

Installing Magnum

Magnum can be installed using the procedure at https://github.com/openstack/
magnum/blob/master/doc/source/dev/quickstart.rst. The following is a
summary of the steps:

1.

Create the OpenStack development environment with Devstack enabling the
Magnum service.

[278]

https://github.com/openstack/magnum/blob/master/doc/source/dev/quickstart.rst
https://github.com/openstack/magnum/blob/master/doc/source/dev/quickstart.rst

Chapter 9

By default, the Fedora Atomic image gets downloaded to Glance as part
of the Devstack installation. If the CoreOS image is necessary, we need to
download it manually to Glance.

Create a Bay model. A Bay model is like a template with a specific set of
parameters using which multiple bays can be created. In the Bay model,
we can specify the Bay type (currently supported Bay types are Kubernetes
and Swarm), base image type (currently supported base images are Fedora
Atomic and CoreOS), networking model (Flannel), instance size, and so on.

Create a Bay using the Bay model as a template. While creating a Bay, we can
specify the number of nodes that need to be created. Node is a VM on top of
which the base image is installed.

Deploy Containers using either Kubernetes or Swarm on top of the created
Bay. Kubernetes or Swarm will take care of scheduling the Containers among
the different nodes in the Bay.

Note: It is recommended that you avoid running Magnum in a VM.
%@‘ It is necessary to have a beefy machine as each Fedora instance
' requires at least 1 or 2 GB of RAM and 8 GB of hard disk space.

Container networking using OpenStack
Kuryr

In this section, we will cover how Container networking can be done with OpenStack
Neutron using the OpenStack Kuryr project.

OpenStack Neutron

OpenStack Neutron provides the networking functionality for OpenStack clusters.
The following are some properties of OpenStack Neutron:

Neutron provides networking as an API service with backends or plugins
doing the implementation

Neutron can be used for baremetal networking as well as VM networking
Basic Neutron constructs are Neutron network, Port, Subnet, and Router
Common Neutron backends are OVS, OVN, and Linux bridge

Neutron also provides advanced networking services such as load balancing
as a service, Firewall as a service, Routing as a service, and VPN as a service

[279]

OpenStack Integration with Containers and CoreOS

Containers and networking

We covered the details of Container networking in the earlier chapters. Some of
the common technologies used were Flannel, Docker Libnetwork, Weave, and
Calico. Most of these technologies use the Overlay network to provide Container
networking,.

OpenStack Kuryr

The goal of OpenStack Kuryr is to use Neutron to provide Container networking.
Considering that Neutron is a mature technology, Kuryr aims to leverage the
Neutron effort and make it easy for OpenStack users to adopt the Container
technology. Kuryr is not a networking technology by itself; it aims to act as a bridge
between Container networking and VM networking and enhancing Neutron to
provide missing Container networking pieces.

The following diagram shows you how Docker can be used with Neutron and where
Kuryr fits in:

DOCKER

LIBNETWORK

PLUGIN

KURYR

N
NEUTRON

PLUGIN

OVN, MIDONET, OVS
DRAGONFLOW, LINUX BRIDGE

The following are some notes on the Kuryr architecture:
* Kuryr is implemented as the Docker libnetwork plugin. Container
networking calls are mapped by Kuryr to appropriate Neutron API calls.

* Neutron uses OVN, Midonet, and Dragonflow as backends to implement
the Neutron calls.

[280]

Chapter 9

The following are some advantages of OpenStack Kuryr:

It provides a common networking solution for both VMs and Containers.

With Magnum and Kuryr together, Containers and VMs can have a common
Orchestration.

Considering that the Neutron technology is already mature, Containers can
leverage all the Neutron functionalities.

With default Container networking, there is a double encapsulation problem
when Containers are deployed over a VM. Container networking does

the first level of encapsulation and VM networking does the next level of
encapsulation. This can cause performance overhead. With Kuryr, the double
encapsulation problem can be avoided because Containers and VMs share
the same network.

Kuryr can integrate well with other OpenStack components to provide a
complete Container solution with built-in multitenant support.

The following table shows the mapping between the Neutron and Libnetwork
abstraction:

Neutron Libnetwork

Neutron network Network

Port Endpoint

Subnet IPAM

Plugin API (plug/unplug) Plugin API (Join/leave)

The following diagram shows you how Kuryr can provide a common networking
solution for Containers, VMs, and bare metal:

VM CONTAINER BARE METAL

KURYR

NEUTRON

[281]

OpenStack Integration with Containers and CoreOS

The following image shows you where Kuryr fits in with Magnum and Container
orchestration projects:

MAGNUM

l

ORCHESTRATION
(KUBERNETES, DOCKER SWARM,
MESOS

l

DOCKER

l

KURYR

l

NEUTRON

The current state and roadmap of Kuryr

The Kuryr project is pretty new, and the Mitaka release will be the first OpenStack
release with Kuryr support. The following are the ongoing and future work items
with Kuryr:

* Adding missing Container features to Neutron, such as Port forwarding,
resource tagging, and service discovery.

* Handling the nested container issue by integrating VM and
Container networking.

* Better integration with OpenStack Magnum and Kolla projects.

* Current integration is focused on Docker. There are integration plans with
the Kubernetes networking model.

[282]

Chapter 9

Summary

In this chapter, we covered how Containers and CoreOS integrate with OpenStack.
As CoreOS allows only applications running as Containers inside it, the OpenStack
integration with CoreOS becomes more useful if OpenStack supports Container
Orchestration. Even though the Nova driver and Heat plugin add Container support
in OpenStack, the Magnum project seems like the correct solution treating Containers
as a first-class citizen in OpenStack. We also covered how OpenStack Neutron can be
used to provide Container networking using the Kuryr project. OpenStack Container
integration is relatively new and there is still a lot of work ongoing to complete this
integration. Managing VMs and Containers using single orchestration software gives
tighter integration and eases the management and debugging capabilities. In the next
chapter, we will cover CoreOS troubleshooting and debugging.

References

Magnum: https://wiki.openstack.org/wiki/Magnum

* Magnum developer quick start: https://github.com/openstack/magnum/
blob/master/doc/source/dev/dev-quickstart.rst

* CoreOS on OpenStack: https://coreos.com/os/docs/latest /booting-
on-openstack.html

* The OpenStack Docker driver: https://wiki.openstack.org/wiki/Docker

* Installing Nova-docker with OpenStack: http://blog.oddbit.
com/2015/02/11/installing-novadocker-with-devstack/

* OpenStack and Docker driver: https://sreeninet .wordpress.
com/2015/06/14/openstack-and-docker-part-1/

* OpenStack and Docker with Heat and Magnum: https://sreeninet.
wordpress.com/2015/06/14 /openstack-and-docker-part-2/

* The OpenStack Heat plugin for Docker: https://github.com/
MarouenMechtri/Docker-containers-deployment-with-OpenStack-Heat

* OpenStack Kuryr: https://github.com/openstack/kuryr

* OpenStack Kuryr background: https://galsagie.github.io/sdn/
openstack/docker/kuryr/neutron/2015/08/24 /kuryr-partl/

[283]

https://wiki.openstack.org/wiki/Magnum
https://github.com/openstack/magnum/blob/master/doc/source/dev/dev-quickstart.rst
https://github.com/openstack/magnum/blob/master/doc/source/dev/dev-quickstart.rst
https://coreos.com/os/docs/latest/booting-on-openstack.html
https://coreos.com/os/docs/latest/booting-on-openstack.html
https://wiki.openstack.org/wiki/Docker
http://blog.oddbit.com/2015/02/11/installing-novadocker-with-devstack/
http://blog.oddbit.com/2015/02/11/installing-novadocker-with-devstack/
https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-1/
https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-1/
https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-2/
https://sreeninet.wordpress.com/2015/06/14/openstack-and-docker-part-2/
https://github.com/MarouenMechtri/Docker-containers-deployment-with-OpenStack-Heat
https://github.com/MarouenMechtri/Docker-containers-deployment-with-OpenStack-Heat
https://galsagie.github.io/sdn/openstack/docker/kuryr/neutron/2015/08/24/kuryr-part1/
https://galsagie.github.io/sdn/openstack/docker/kuryr/neutron/2015/08/24/kuryr-part1/

OpenStack Integration with Containers and CoreOS

Further reading and tutorials

Private Cloud Dream Stack - OpenStack + CoreOS + Kubernetes:
https://www.openstack.org/summit/vancouver-2015/summit-videos/
presentation/private-cloud-dream-stack-openstack-coreos-
kubernetes

* Magnum OpenStack presentations: https://www.youtube.com/
watch?v=BM6nFH7G8Vc and https://www.youtube. com/watch?v=_
ZbebTIaS7M

* Kuryr OpenStack presentations: https://www.openstack.org/summit/
tokyo-2015/videos/presentation/connecting-the-dots-with-
neutron-unifying-network-virtualization-between-containers-and-
vms and https://www.youtube.com/watch?v=crVi30bgOt0

[284]

https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/private-cloud-dream-stack-openstack-coreos-kubernetes
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/private-cloud-dream-stack-openstack-coreos-kubernetes
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/private-cloud-dream-stack-openstack-coreos-kubernetes
https://www.youtube.com/watch?v=BM6nFH7G8Vc
https://www.youtube.com/watch?v=BM6nFH7G8Vc
https://www.youtube.com/watch?v=_ZbebTIaS7M
https://www.youtube.com/watch?v=_ZbebTIaS7M
https://www.openstack.org/summit/tokyo-2015/videos/presentation/connecting-the-dots-with-neutron-unifying-network-virtualization-between-containers-and-vms
https://www.openstack.org/summit/tokyo-2015/videos/presentation/connecting-the-dots-with-neutron-unifying-network-virtualization-between-containers-and-vms
https://www.openstack.org/summit/tokyo-2015/videos/presentation/connecting-the-dots-with-neutron-unifying-network-virtualization-between-containers-and-vms
https://www.openstack.org/summit/tokyo-2015/videos/presentation/connecting-the-dots-with-neutron-unifying-network-virtualization-between-containers-and-vms
https://www.youtube.com/watch?v=crVi30bgOt0

10

CoreOS and Containers
— Troubleshooting and
Debugging

Both CoreOS and Containers pose some special challenges in troubleshooting and
there are ways to overcome this problem. CoreOS, being a Container-optimized OS,
does not support a package manager, and this prevents the installation of some of
the Linux debugging tools. This can be overcome by running the Linux tools in a
Container with a tool called Toolbox provided by CoreOS. Containers run in their
own namespaces, and the regular Linux tools do not give enough information to
debug Containers. This problem is solved by tools such as cadvisor and sysdig.
Logging is another important tool to debug system-level issues, and there are a few
vendors such as LogEntries trying to solve this problem for Containers.

In this chapter, we will cover the following topics:
* Using CoreOS Toolbox and other CoreOS utilities to debug the
CoreOS system
* Monitoring a Container using sysdig and cadvisor
* Docker remote API support
* Docker logging drivers

* Using LogEntries to do central Container log monitoring

[285]

CoreOS and Containers — Troubleshooting and Debugging

CoreOS Toolbox

As CoreOS does not support a package manager, it is difficult to install custom tools
for debugging problems, such as tcpdump, strace, and others. CoreOS provides you
with a toolbox script that can start a Ubuntu or Fedora container with system-level
privileges on top of which we can run Linux system tools, such as tcpdump to monitor
and debug the CoreOS host.

To start Toolbox, run /usr/bin/toolbox from the CoreOS shell.

The following process output in the CoreOS host system shows that Toolbox has
started with system-level privileges:

Toolbox by default uses the Fedora image. The following output shows you Fedora
inside the Toolbox container:

Tcpdump is not present in the default Fedora image. I was able to install tcpdump
using yum and monitor the etho interface from inside the Toolbox container. This
shows one example of how Toolbox can be used.

To change the default Linux image that CoreOS Toolbox uses, we can specify a
custom image in ~/ . toolboxrc.

The following is an example . toolboxrc, where we are asking Toolbox to use a
Ubuntu image:

TOOLBOX_DOCKER_IMAGE=ubuntu
TOOLBOX DOCKER_TAG=14.04

If we start Toolbox after the preceding change, Toolbox will start a Ubuntu image
with system-level privileges. The following is the Ubuntu image running as part of
starting Toolbox:

[286]

Chapter 10

We can specify the image selection in the cloud-config so that . toolboxrc is
automatically written as part of the Container startup. The following is a sample
cloud-config section where we specified . toolboxrc with Ubuntu as the default
Toolbox Container image:

-write files:
- path: /home/core/.toolboxrc
owner: core
content: |
TOOLBOX_DOCKER_IMAGE=ubuntu
TOOLBOX DOCKER_TAG=14.04

Other CoreOS debugging tools

We covered basic CoreOS debugging in Chapter 2, Setting Up the CoreOS Lab in the
Basic debugging section. The following are a few utilities that can be used:
* The journalctl utility can be used to check the logs of all systemd services
* The systemctl utility can be used to check the status of all the services

* The cloud-config validator tool can be used to validate the cloud-config
before using it with CoreOS

e Utilities such as Etcd, Fleet, Flannel, and Locksmith have their own
debugging capabilities that can be turned on if necessary

Container monitoring

As Containers run in their own namespaces, traditional Linux monitoring tools such
as top, ps, tcpdump, and Isof from the host system do not help monitor the activity
happening within a Container or between Containers. This makes it complex to
troubleshoot Containers. Before we discuss tools available for Container monitoring,
let's see the major items that we need to monitor:

* The CPU usage by a Container and processes running inside a Container

* The memory usage by a Container and processes running inside a Container

* Network access for both incoming and outgoing connections

* File /O performed by Containers

[287]

CoreOS and Containers — Troubleshooting and Debugging

The following are some approaches to monitor Containers:

* Install monitoring software in the Container: This defeats the Container
model where a Container runs a single microservice and is also not scalable.

* Install monitoring software in the host machine where the Container runs:
This approach makes it difficult to install specialized software on a cluster
OS like CoreOS as they allow only applications to run as Containers and not
allow installing software in the base OS.

* Install monitoring software as a Container with system-level privileges:
This is the most preferred approach.

Docker provides you with the docker stats command that provides basic CPU,
memory, and I/O usage on a per Container basis. We covered docker statsin
Chapter 7, Container Integration with CoreOS — Docker and Rkt. The data provided

by Docker commands is very basic. There are many open source and commercial
Container monitoring tools, such as cadvisor, sysdig, Data dog, newrelic, Prometheus,
and Scout that provide more visibility in Containers. In this chapter, we will cover
cadvisor and sysdig.

Sysdig

Sysdig is an open source project that provides Linux system-level visibility with
built-in native support for Containers. Sysdig can be used for host monitoring as
well as Container monitoring.

The following diagram shows the Sysdig architecture:

SYSDIG CLOUD

SYSDIG
Container

Host
Process

SYSDIG Probe

KERNEL

[288]

Chapter 10

The following are some notes on the Sysdig architecture:

Sysdig can monitor the host system, VM, and Containers.
Sysdig can monitor different Container runtime like Docker, Rkt and LXC.

The Sysdig documentation calls sysdig as strace + tcpdump + htop +
iftop + lsof + awesome sauce.

The Sysdig probe is a kernel module that needs to be installed in the host
machine to do the monitoring. Sysdig has made the installation of this
module very simple, and it works in regular Linux systems as well as in
Container-based OSes, such as CoreOS and Rancher.

Since sysdig directly monitors all Kernel system calls, sysdig provides more
detailed monitoring data compared to other monitoring tools.

A Sysdig container can be run on the host system and monitors the host
processes as well as Containers running in the host system.

Sysdig can monitor CPU, memory, network IO, and file IO. Sysdig provides
various options to fine-tune the monitor query to provide relevant data.

The Sysdig open source version has the sysdig CLI and csysdig, which has
an ncurses-based interface. Csysdig is similar to htop, where we get an
interactive text-based interface.

The Sysdig cloud is the commercial version of Sysdig where data from
multiple hosts and Containers are aggregated in a single location in the cloud
and can be accessed as a SaaS application. The Sysdig cloud can be accessed
from the cloud or installed on-premise.

Sysdig can be started as a Container. The following command shows you how to
start the sysdig container:

docker run -i -t --name sysdig --privileged -v /var/run/docker.sock:/
host/var/run/docker.sock -v /dev:/host/dev -v /proc:/host/proc:ro sysdig/

sysdig

For more details on Sysdig installation, please refer http://www.sysdig.org/
install/. The following command shows you a running sysdig container in a
CoreOS system:

;o;;é;ore-el ~ § docker ps | grep sysdig

ed3a44678ced

"/docker-entrypoint. 40 minutes ago Up 40 minutes

[289]

http://www.sysdig.org/install/
http://www.sysdig.org/install/

CoreOS and Containers — Troubleshooting and Debugging

Examples of Sysdig

The following output shows you a list of Containers running in a CoreOS system on
which we will try out some simple sysdig commands:
core@core-01 ~ $ docker ps

[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bd2479c0c1c9 wordpress "/entrypoint.sh apac 11 minutes Up 11 minutes 0.0.0.0:8080->80/tcp wordpress

10e2c560b0ec mysql "/entrypoint.sh mysq 11 minutes Up 11 minutes 3306/tcp mysql

f957e6e598c3 nginx "nginx -g 'daemon of 11 minutes Up 11 minutes 80/tcp, 443/tcp nginx
c0f9c757ccf7 smakam/hellocounter "python app.py" 11 minutes Up 11 minutes 0.0.0.0:5000->5000/tcp romantic_cray

led3a44678ced sysdig/sysdig "/docker-entrypoint. 11 minutes Up 11 minutes sysdig

2e959ebeaf85 redis "/entrypoint.sh redi 13 minutes Up 13 minutes 6379/tcp redis

The following command shows the top processes consuming the CPU. The output
lists the PID in the host machine as well as the container. The topprocs_cpu utility is
a chisel. In sysdig terms, each chisel is a script with some predefined task:

sysdig -pc -c topprocs_cpu
The following screenshot is the output of the preceding command:

Process Host_pid Container_pid container.name

romantic_cray
sysdig
systemd- journal host
systemd-udevd host
systemd-resolve host
mysqld mysql
docker host
python romantic_cray
systemd host
sysdig sysdig

[cNcNoNoNoNoNoNoNoN oY

The following command lists the top containers using network IO:
sysdig -pc -c topcontainers net

The following screenshot is the output of the preceding command:

container.name

romantic_cray
redis

[290]

Chapter 10

The following command lists the top containers using file 10:
sysdig -c topcontainers file

The following screenshot is the output of the preceding command:

container.name

The Sysdig spy command is useful to monitor all the external interactions to the
host or Container. The following output shows the command executed in an nginx
container when we used the exec command and performed ps in the container:

sysdig -pc -c spy users

The following screenshot is the output of the preceding command:

root@ed3ad44678ce0: /# sysdig -pc -c spy_users

The preceding output shows that the docker exec and ps commands were executed.

Csysdig

Csysdig is a text based Ul for Sysdig. Csysdig is implemented as a customizable
Curses UL All operations that can be done through sysdig can also be done with
csysdig. The csysdig user interface can be customized to show different views and
the output can be filtered based on different user inputs.

Csysdig can be started using the following command:

Cssysdig -pc (pc option gives container details)

[291]

CoreOS and Containers — Troubleshooting and Debugging

The following output shows different views possible in csysdig:

Viewing: Processes F
Source: Live System

Connections
Containers
Containers Errors
Directories
Errors

Controllers
Namespaces
Pods
Services
Connections

Socket Queues
Spy Syslog
Spy Users
System Calls
Threads

The following output lists the containers running in the host. This is available in the
Container view:

Viewing: Containers For: whole machine
Source: Live System Filter: container.name != host

86K 21K 0 sysdig/sysdig ed3a44678ced sysdig
264K 37K 0 smakam/hellocounter c0f9c757ccf7 romantic_cray
36K 7K 6K .00 redis 2e959ebeaf85 redis
31K 5K 0 .00 nginx f957e6e598c3 nginx

609K 48K 0 .00 wordpress bd2479c0c1c9 wordpress

CTRL+F

Once we select a specific container, the following output shows the processes
running in the container:

Viewing: Processes For: container.id="c@f9c757ccf7"
Source: Live System Filter: ((container.name != host) and container.id="c0f9c757ccf7") and (evt.type!=switch)

1510 0.00 root 95K 18K 0.00 romantic_cray python app.py

CTRL+F|

[292]

Chapter 10

The Sysdig cloud

The sysdig cloud is a commercial solution from Sysdig where the sysdig data from
the host machine is sent to a central server where the container and host monitoring
data are collated from different hosts. The sysdig cloud can either be run on Sysdig's
servers or as an on-premise solution.

The sysdig cloud is available on a 15-day trial period. I tried out the Sysdig cloud
trial version and installed Sysdig in a CoreOS cluster running in AWS.

The following are the steps to install the Sysdig cloud and how to use it:

1. Register and create on online account in the Sysdig cloud. As part of
registration, Sysdig will provide an access key.

2. The access key provided by Sysdig needs to be used in the host machine.
Sysdig will use the access key to associate the hosts that are part of the
same account.

3. When sysdig is started on the host machine, the sysdig agent will talk to the
Sysdig server in the cloud and export the monitoring data.

4. The Sysdig cloud can also integrate with AWS. If we provide the AWS access
key, Sysdig can automatically pull in AWS VM monitoring data as well.

The following is the CoreOS service unit file to start the sysdig-agent service in the
host machine, which talks to the Sysdig cloud. The access key needs to be filled in
appropriately. This unit starts the sysdig cloud agent in all the nodes of the CoreOS
cluster as the Global option is set in X-Fleet:

[Unit]

Description=Sysdig Cloud Agent
After=docker.service
Requires=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill sysdig-agent
ExecStartPre=-/usr/bin/docker rm sysdig-agent
ExecStartPre=/usr/bin/docker pull sysdig/agent

ExecStart=/usr/bin/docker run --name sysdig-agent --privileged --net
host --pid host -e ACCESS KEY=<access key> -e TAGS=[role:web, location:
bangalore] -v /var/run/docker.sock:/host/var/run/docker.sock -v /dev:/
host/dev -v /proc:/host/proc:ro -v /boot:/host/boot:ro sysdig/agent
ExecStop=/usr/bin/docker stop sysdig-agent

[X-Fleet]
Global=true

[293]

CoreOS and Containers — Troubleshooting and Debugging

The following is my three-node CoreOS cluster:

core@ip-172-31-30-52 /etc/systemd/system $ fleetctl list-machines
MACHINE IP METADATA
48ae5abs. . . 172.31.30.51 -

62d3e36f. .. 172.31.30.52 =
ccd33655. . . 172.31.30.50 =

The following command can be used to start the sysdig agent on the CoreOS
machine:

fleetctl start docker-sysdig.service

The following output shows the running sysdig-agent container in one of the CoreOS
nodes:

core@ip-172-31-30-52 ~ $ docker ps
CONTAINER ID MAGE

COMMAND CREATED STATUS NAMES
08bdd4d987f5 sysdig/agent " /docker-entrypoint. 55 minutes ago Up 55 minutes sysdig-agent

The following output in the Sysdig cloud shows the registered hosts along with the
running containers. Here, we can see the three hosts and the Containers running in
each host along with their CPU, memory, network IO, and file IO:

< Overview Show £ hostmac~ X containerid v X + 5 minutes Q §

Name « Instance Type & CPU & Memory U. 2 Network B £ Reqs In £ FS Disk U. % File Byte.
MiB,

MiB/s eq/s

1 t2.micro 57 20. <0.1 0.2 12.8 <0.1

0.1 0.1 0.1

The following output shows the summary view:

Groups Hosts Containers Container Images Busiest Hour Notifications

° 3_ ’IQ 6 10 om =M O 0 O

[294]

Chapter 10

The following output shows the dashboard output for a single Container with its
associated processes. We have picked the sysdig container for the following output:

2 Ao amT O

Kubernetes integration

Sysdig recently added a feature to integrate with Kubernetes, where Sysdig is

aware of Kubernetes logical constructs, such as the master node, minion node, Pods,
replication controllers, labels, and so on. Sysdig gets this awareness by querying

the Kubernetes API server. By combining the data collected from Containers and
the Kubernetes API server, Sysdig and the Sysdig cloud can group information at
Kubernetes' level. For example, we can view the CPU and memory usage either on
the Kubernetes pod or replication controller basis. Sysdig has plans to integrate with
other orchestration engines such as Mesos and Swarm in the future. Sysdig also has
plans to integrate with other Container runtime such as Rkt.

Cadvisor

Cadvisor is an open source tool from Google to monitor Containers as well as the
host system on which the Container is running. Google developed cadvisor for its
own Container system and later extended its support to Docker containers.

[295]

CoreOS and Containers — Troubleshooting and Debugging

The following are some notes on cadvisor:

* It monitors CPU, memory, network, and file I/O for both the host system as
well as Containers.

e It can work with Docker and other Container runtimes.

* It can be started as a Container in the host system with no special changes
necessary in the host system.

* The cadvisor container starts a simple web server, using which we can access
the dashboards using a simple GUI.

* It provides REST API for programmatic access.

* Cadvisor stores the history for only a small duration. It is necessary to use
cadvisor with backends such as InfluxDB (https://influxdata.com/) and
Prometheus (https://prometheus.io/) to maintain the history.

The following command can be used to start the Docker cadvisor Container:

docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--publish=8080:8080 \
--detach=true \
--name=cadvisor \

google/cadvisor:latest

The following output shows a running cadvisor container in the CoreOS system:

core@core-01 ~ $ docker ps | grep cadv
1d723314bdf94 google/ isor:latest "/usr/bin/ isor" 35 minutes ago Up 35 minutes 0.0.0.0:8080->8080/tcp

isor

[296]

https://influxdata.com/
https://prometheus.io/

Chapter 10

The following screenshot is a GUI snapshot showing processes and the CPU usage

for a container:

971 30.73

CPU % MEM % RSS Status Runn
.00 0.40 4.97 Mil 0

) 1 4 88

P
s
m smom st s i
1 e " -
— e
Usage per Core
"
P oaw
IPE 7/ i s
au M u a
Usage Breakdown
P
s
» satis asmen it szm s sen
B B] o Eh
—an —kem
Total Usage
£
, s
£
§ m
s
iz 4 s aze o «
B IA m B =
Usage Breakdown
1.34 MiB /997 47
MiB (0%)
Interface: eth0 -
Throughput
i
E «
e e o ez
- P w
Errors
=

[297]

CoreOS and Containers — Troubleshooting and Debugging

The following output shows the REST API subtypes supported by cadvisor:

smakam14@junglel:~$ curl -X GET http://172.17.8.102:8080/api/v1.3/

Supported request types: "containers,docker,events,machine,subcontainers"

The following are some examples of a REST API provided by cadvisor with the
details that they provide. This link, https://github.com/google/cadvisor/blob/
master/docs/api.md, gives the details of all the supported REST APIs. All the
following commands return output in the JSON format.

The following command gives the host detail:

curl -X GET http://172.17.8.102:8080/api/v1.3/machine | jq .

The following command gives the Container performance detail:
curl -X GET http://172.17.8.102:8080/api/vl.3/containers/ | jq .

The following command gives the Docker container nginx performance detail:

curl -X GET http://172.17.8.102:8080/api/v1l.3/docker/nginx | jq .

Cadvisor provides you with limited information compared to sysdig as cadvisor
relies mainly on Docker-provided statistics. Additionally, cadvisor provides only
limited history on statistics, and so it is necessary to integrate cadvisor with other
tools such as Influxdb to maintain a longer history.

The Docker remote API

The Docker remote API can be used to access the Docker engine with the REST API.
This can be used for programmatic access to Docker.

The following section of CoreOS cloud-config can be used to enable the Docker
remote API listening on TCP port 2375:

- name: docker-tcp.socket

command: start

enable: true

content: |
[Unit]
Description=Docker Socket for the API
[Socket]
ListenStream=2375
Service=docker.service
BindIPv60Only=both
[Install]
WantedBy=sockets.target

[298]

https://github.com/google/cadvisor/blob/master/docs/api.md
https://github.com/google/cadvisor/blob/master/docs/api.md

Chapter 10

The following are some examples of accessing the Docker remote API:

List the running Containers:
docker -H tcp://172.17.8.102:2375 ps

The following screenshot is the output of the preceding command:

core@core-01 ~ $ docker -H tcp://172.17.8.102:2375 ps
[CONTAINER ID IMAGE

COMMAND CREATED STATUS PORTS NAMES
€e3995120990 smakam/hellocounter "python app.py" 7 minutes ago Up 7 minutes 0.0.0.0:5000->5000/tcp prickly_brown
78711011923 redis " Jentrypoint.sh redi 7 minutes ago Up 7 minutes 6379/tcp redis

List the Container images:

The following command can be used to list Container images in the JSON format:
curl -X GET http://172.17.8.101:2375/images/json | jq .

The following screenshot is the output of the preceding command:

'smakam14@junglel:~$ curl -X GET http://172.17.8.102:2375/images/json | jq .

% Total % Received % Xferd Average Speed Time Time Time Current
: Dload Upload Total Spent Left Speed
100 3174 0 3174 (0] 0 44008 (€ ==g==3s= ==f==3== ==9==3== 4400H

[

- {
"Labels": ,
"VirtualSize": 702646592,
"Size": 0,
"Created": 1448471644,
"RepoDigests": [],
"RepoTags": [

"ParentId":
nId"

List Docker engine details:

The following command is equivalent to docker info:
curl -X GET http://172.17.8.101:2375/info | ja .

List particular Container statistics:
curl -X GET http://172.17.8.101:2375/containers/26b225ec6a8e/stats | jq .

List the Docker version:
curl -X GET http://172.17.8.102:2375/version | jq .

List the Docker events:
curl -X GET http://172.17.8.102:2375/events

[299]

CoreOS and Containers — Troubleshooting and Debugging

The following command deletes the specific busybox container:
curl -X DELETE http://172.17.8.102:2375/images/busybox
The following screenshot is the output of the preceding command:

core@core-02 /etc/systemd/system $ curl -X DELETE http://172.17.8.102:2375/images/busybox
[{"Untagged": "busybox:latest"},{"Deleted" : "17583c7dd0dae6244203b8029733bdb7d17fccbb2b5d93e2b24cf48b8bfdo6e2" }, {"Deleted" : "d1592a710ac323612bd786fa8ac20727c58d8a67¢

47€5a65177c594f43919498"}]

List specific Container logs sent to stdout:

The Container ID is specified as an argument for the following command:

curl -X GET http://172.17.8.101:2375/containers/5ab9abb4787e/
logs?stdout=1

If we need secure access to the Docker remote API, we can do it using TLS, and the
Docker daemon supports this.

Container logging

When Containers send the output to stdout or stderr, it needs to be logged. This is
useful to monitor errors and events and also to maintain the history of the Container
application. With Containers, there are some special challenges with respect to logging:

* Typically, Containers run a microservice, and we don't want the logging
process running inside a container as this defeats the Container model.

* With microservices, a single application can be split into multiple containers
running across different hosts. It is necessary to collate logs from multiple
containers to make meaningful conclusions. This enforces the need to have
a central logging server rather than doing container monitoring on the host
where the container is running.

We covered Container monitoring in the previous section. When Container logs are
correlated with the Container monitoring data, we can get a better understanding of
the system and easily narrow down any system wide issues.

I found the following two approaches widely used for centralized Container logging:

* ELK stack (Elastic search, Logstash, and Kibana): Elastic search is used as a
central log repository, Logstash is used as an agent to export Container data,
and Kibana is used as a logging GUI frontend. I have not covered the ELK
stack in this chapter. The links in the references section provide details on
setting up the ELK stack for Container logging.

[300]

Chapter 10

* LogEntries: LogEntries combines the Container agent, frontend, and central
logging server for a single integrated solution.

There are also other tools such as AWS Cloudwatch (https://aws.amazon.com/
cloudwatch/), Loggly (https://www.loggly.com), Elastic (http://www.elastic.
io/), and Sematext Logsene (https://sematext.com/logsene/) that provide
logging capability for Containers. When using AWS cloudwatch for Container
monitoring, we get custom hooks based on the AWS environment, and it also
integrates well with their other cloud monitoring options.

Docker logging drivers

Docker supports the following log drivers as of Docker 1.7:

* None: No logging.

* Json-file: Logs are stored as a file in the JSON format. This is the default
logging option.

* syslog: Logs are sent to the syslog server.

* Journald: Logs are sent to the journald daemon. Journald is integrated with
systemd.

* Gelf: This writes log messages to the GELF endpoint, such as Graylog or
Logstash.

* Fluentd: This writes log messages to fluentd.

* Awslogs: This is the Amazon cloudwatch logging driver.

The JSON-file driver

The following command starts a Docker container with the json-file log driver with
the maximum number of files limited to 100, each file not exceeding 1 MB:

docker run --name busyboxjsonlogger --log-driver=json-file --log-opt max-
size=1lm --log-opt max-file=100 -d busybox /bin/sh -c "while true; do echo
hello world ; sleep 5 ; done"

In the preceding busyboxjsonlogger Container, we are continuously sending
hello world output to stdout. The following output shows the docker logs
output for busyboxjsonlogger, where we can see the hello world output:

core@core-01 ~ $ docker logs busyboxjsonlogger
hello world
hello world

[301]

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://www.loggly.com
http://www.elastic.io/
http://www.elastic.io/
https://sematext.com/logsene/

CoreOS and Containers — Troubleshooting and Debugging

The following command can be executed to find out the location of the json log file:

core@core-01 ~ $ docker inspect busyboxjsonlogger | grep LogPath

/var /lib/docker /containers/998bfcc3b78333d031be674f815f12fdf23161557dde0fef9d963b898f75327a/998bfcc3b78333d031be674f815f12fdf23161557dd06f]
ef9d963b898f75327a-json.log",

Using the preceding path, we can directly dump the json logs, which gives additional
information such as timestamp, stream type, and so on:

core@core-01 ~ $ sudo tail -f /var/lib/docker/containers/998bfcc3b78333d031be674f815f12fdf23161557ddeefef9d963b898f75327a/998bfcc3b78333d031be674f815f12fd
£23161557ddo0fef9d963b898f75327a- json. log

hello world\n 15-12-01T15:58:35.6654721072"}
hello world\n"," i '2015-12-01T15:58:40.6658888442"}

The Syslog driver

The Syslog driver is useful to collate messages from multiple containers into a single
server running the syslog daemon.

The following command can be used to start the syslog server as a container. This
command exposes the syslog server to port 5514 in the host machine:

docker run -d -v /tmp:/var/log/syslog -p 5514:514/udp --name rsyslog
voxxit/rsyslog

The following command can be used to start a container with the syslog driver
option that sends the logs to the syslog server specified earlier:

docker run --log-driver=syslog --log-opt syslog-
address=udp://127.0.0.1:5514 --log-opt syslog-facility=daemon --log-opt
tag="mylog" --name busyboxsysloglogger -d busybox /bin/sh -c "while true;
do echo hello world ; sleep 5 ; done"

The following output shows the syslog from the syslog server:

docker exec rsyslog tail -f /var/log/messages

The following screenshot is the output of the preceding command:

core@core-01 ~ $ docker exec rsyslog tail -f /var/log/messages
2015-12-01T16:10:59.378065+00:00 6f43dcc36804 rsyslogd: [origin software="rsyslogd" swVersion="8.9.0" x-pid="1" x-info="http://www.rsyslog.com"] start

2015-12-01T16:11:12Z core-01 docker/eacfe661f076[824]: hello world
2015-12-01T16:11:18Z core-01 docker/eacfe661f076[824]: hello world

The journald driver

The journald logging driver sends container logs to the systemd journal. Log entries
can be retrieved using the journalctl command. This works well in a CoreOS
environment where journald is used for all the other logging.

[302]

Chapter 10

The following command starts a container with the journal driver:

docker run --name busyboxjournallogger --log-driver=journald -d busybox /
bin/sh -c "while true; do echo hello world ; sleep 5 ; done"

The following command shows the logs from journalct]l with CONTAINER NAME used
as a filter:

journalctl CONTAINER NAME=busyboxjournallogger

The following screenshot is the output of the preceding command:

core@core-01 ~ $ journalctl CONTAINER_NAME=busyboxjournallogger

- Logs begin at Sun 2015-11-29 16:25:52 UTC, end at Tue 2015-12-01 16:41:19 UTC. --
Dec 01 16:40:40 core-01 docker[824]: hello world
Dec 01 16:40:45 core-01 docker[824]: hello world

The following command shows the journalctl logs in the JSON format:

journalctl -o json CONTAINER NAME=busyboxjournallogger --no-pager

The following screenshot is the output of the preceding command:

core@core-01 ~ $ journalctl -o json CONTAINER_NAME=busyboxjournallogger --no-pager
"__CURSOR" : "s=469balde85fe4817a1a0112544130064;1=15d7;b=e3fd093f625146d7a544b8abbo7b2df4;m=30fc8a020; t=525d8d1705ad1;x=5ca1587b24b42514", "_REALTIME_|
TIMESTAMP" : "1448988040518353", "_ MONOTONIC_TIMESTAMP" : "13149708320", " _BOOT_ID" : "e3fd093f625146d7a544b8abbO7b2df4", "PRIORITY" : "6", "_UID" : "@",
" 1 "0", "_SYSTEMD_SLICE" : "system.slice", "_CAP_EFFECTIVE" : "3fffffffff", "_TRANSPORT" : "journal", "_MACHINE_ID" : "c8676a0252dc4053aec8ff0do878|
", "_HOSTNAME" : "core-01", "_COMM" : "docker", "_EXE" : "/usr/bin/docker", "_CMDLINE" : "docker --daemon --host=fd:// --bip=10.1.51.1/24 --mtu=1472 -

-ip-masq=false", "7SVSTEr‘ID7CCROUPF : "/system.slice/docker.service", "_SYSTEMD_UNIT" : "docker.service", "_PID" : "82 "MESSAGE" : "hello world", "CONTA|
INER_ID" : "3515da606a49", "CONTAINER_ID_FULL" : "3515da606a49bc5eaeb7d87bf73cd57ed31f70fccf7e62f671bcf20690049d8d", "CONTAINER_NAME" : "busyboxjournallog|
aer". " SOURCE REALTIME TIMESTAMP" : "1448988040518092" 1}

Logentries

LogEntries can be used to collect logs from the host system running containers,
export them to the central logging server, and analyze logs from a central server.
The following diagram describes the components of the LogEntries Container
architecture:

O

Log Entries
Container

LOG
ENTRIES
SERVER

Docker

Host

[303]

CoreOS and Containers — Troubleshooting and Debugging

The following are some notes on the LogEntries Container architecture:

The LogEntries container runs in the host system. It uses the Docker API
to collect Container statistics, logs, and events, and transports them to a
central server.

The token-based system can be used to aggregate Container logs from
multiple hosts. For a Container dataset belonging to a single domain, we can
create a token from LogEntries and use this token in every individual host of
the domain. The LogEntries agent in each host talks to the LogEntries server
with this token. LogEntries aggregates log sets based on the token.

As LogEntries collects Container statistics, it also displays some Container
monitoring data in addition to logs.

LogEntries provides extensions using Community packs. Community packs
provide a way to share Search Queries, Tags, Alerts, and Widgets easily.
Community packs follow a JSON structure and can be easily imported in the
Logentries account via the LogEntries UL

LogEntries has both free and paid subscriptions. A paid subscription gives
additional storage and enterprise-level features.

Exporting CoreOS journal logs

CoreOS uses journalctl to store logs from all services. The following Container
(https://github.com/kelseyhightower/journal-2-logentries) can be used to
send journal entries to the LogEntries server using SSL.

The following are the steps necessary to export journalctl logs from CoreOS nodes:

1.
2.

Create a token from logentries.

Use the token either in a service file or inside a cloud-config as an option
while starting the journal-2-logentries container. An alternate option is
to update the token in etcd, which all the nodes in a CoreOS cluster can use.

Update the token in etcd (for example, etcdctl set /logentries.com/
token <tokens).

The following service file can be used to start the journal-2-logentries container
in all the CoreOS nodes of the cluster:

[Unit]
Description=Forward Systemd Journal to logentries.com

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill journal-2-logentries

[304]

https://github.com/kelseyhightower/journal-2-logentries

Chapter 10

ExecStartPre=-/usr/bin/docker rm journal-2-logentries

ExecStartPre=/usr/bin/docker pull quay.io/kelseyhightower/journal-2-
logentries

ExecStart=/usr/bin/bash -c \

"/usr/bin/docker run --name journal-2-logentries \

-v /run/journald.sock:/run/journald.sock \

-e LOGENTRIES TOKEN=S (etcdctl get /logentries.com/token) \
quay.io/kelseyhightower/journal-2-logentries"

[X-Fleet]
Global=true

As the logentries container uses journald. sock, it is necessary to export that socket
using the following unit in the cloud-config:

- name: systemd-journal-gatewayd.socket

command: start

enable: yes

content: |
[Unit]
Description=Journal Gateway Service Socket
[Socket]
ListenStream=/var/run/journald.sock
Service=systemd-journal-gatewayd.service
[Installl]
WantedBy=sockets.target

The following output shows the journal-2-logentries service running in all the
CoreOS nodes of the cluster:

The following output shows the journal-2-logentries Container running in one
of the nodes:

[305]

CoreOS and Containers — Troubleshooting and Debugging

The following screenshot shows the LogEntries server frontend with journal logs
from CoreOS nodes:

Log Sets + Add New e
8

20 coreos

Container logs

LogEntries can be used to export Container logs, events, and statistics. Container
events could be container start, create, stop, and die events. Container logs are the
stdout and stderr logs. Container statistics are CPU, memory, file, and network 10
related details.

The following are the steps necessary to export Container statistics and logs from
CoreOS nodes:

1. Create a token from Logentries.

2. Use the token either in a service file or as an option while starting the
docker-logentries container. An alternate option is to update the token
in etcd, which all the nodes in the CoreOS cluster can use.

3. Update the token in etcd (for example, etcdctl set /logentries.com/
token <tokens).

4. To view Docker container statistics, it is necessary to use the Docker
community pack. This is a JSON file and can be downloaded from
https://community.logentries.com/packs/. The following instructions
(https://logentries.com/doc/community-packs/) can be used to import
the Docker community pack in logentries.

The following command can be used to start the docker-logentries container:

docker run -v /var/run/docker.sock:/var/run/docker.sock logentries/
docker-logentries -t <token>

[306]

https://community.logentries.com/packs/
https://logentries.com/doc/community-packs/

Chapter 10

The following service file can be used to start the docker-logentries container in
all CoreOS nodes:

[Unit]
Description=Forward Forward Container logs/stats to logentries.com

[Servicel]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill docker-logentries
ExecStartPre=-/usr/bin/docker rm docker-logentries
ExecStartPre=/usr/bin/docker pull logentries/docker-logentries
ExecStart=/usr/bin/bash -c¢ \

"/usr/bin/docker run --name docker-logentries \

-v /var/run/docker.sock:/var/run/docker.sock \

-e LOGENTRIES TOKEN=$S (etcdctl get /logentries.com/token) \
logentries/docker-logentries™

[X-Fleet]
Global=true

The following output shows the docker-logentries service running on all
CoreOS nodes:

The following output shows the docker-logentries container running on one of
the nodes:

I created a bunch of Containers, and stopped and deleted a few to generate different
Container events and logs.

[307]

CoreOS and Containers — Troubleshooting and Debugging

The following output shows the Dashboard output that's received from the Docker
community pack. The dashboard shows a summary of Container events along with

Container monitoring data:

4 2 1
I--_Il-_I--_II-_

The following output shows the log set view, which also shows the specific
containers created with each Container create event. In the following picture,
we can see the create events for the Redis, WordPress, and MySQL containers:

Log Sets /coreos /coreos

Entries Graphs Tags & Alerts. Settings

Options #

W, miypen: "create”, Mimage":

All]794 Container created |4 Container died |3 Container started | 2
D "id": "c08ld8dccbOffbl0lfecdde29p3£f8c419!

70496eabdc”, "execute": "/entrypoint.sh redis-server" }

Container Created JRES17S1

1:41:24.876 { "id":
"££377775ebba22062£435¢3356d47337%0287ea66

"3£35ca6c179720e70952662048d52£0672044add59ed42ba7182001d8E£C2813", "type”: "create”, "image":
7£6ch3df42a5b172cddb", "name": "elated bohr", "host": "c470496eabSc”, "execute: "python app.py" | (ke

Context
"type": "create", "image":

15 21:45:22.229 { "id": "151£7014f2c5ffc8fblaBa3721e60c2e8b599d1e002cd3de5£5c41%a99e6935¢", H
04aacladich2la3eca4c37ac21e78d7chT066345711e26907d8 1dcEa310", "nane®: “mysql®, "host": "95c2454ebfff", "execute": "/entrypoint.sh mysald®) (e

i

Context
7£0£95", “type": "create", "image":

6213ae39a44b03ecéf41633cchidcc3140aTd!

68 { "id":

ost": "95c2454ebfEE", "execute": "/entrypoint.sh apache2-foreground” }

bb365510e39b: 9b4g6ecs3e0d29eais877e2528c2c", "n

B context

To show the logging capability of LogEntries, I started the following container,
which keeps sending hello world to stdout periodically:

docker run -d busybox /bin/sh -c¢ "while true; do echo hello world; sleep

5; done"

[308]

Chapter 10

The following output shows logs filtered by the busybox container name where we
can see the stdout:

Find
busyboy| » GroupBy | b Calculate > 1Y e

d
Last 20 Mins

Log Sets /coreos/coreos

Entries Graphs Tags &Alerts Settings

20 -
10 o =
5)

21:40 21:42 21:44 21:46 21:48 21:50 21:52 21:54 21:56 21:58

All|734 Container created |5 Col

[= = =

Summary

In this chapter, we covered ways to monitor and debug CoreOS systems as well as
Docker Containers. Rather than approaching Containers and the host system as two
separate entities, monitoring tools need to approach Containers and the host system
as one entity and be able to provide both Container view as well as system view and
correlate between the data. As Containers get deployed in hundreds and thousands
across hosts, monitoring solutions need to be very scalable. There are a lot of
developments happening with debugging and troubleshooting CoreOS systems and
Docker Containers; multiple companies are trying to solve this problem. Companies
such as Sysdig and Logentries have nice solutions to solve monitoring and logging
problems. In the next chapter, we will cover production considerations for CoreOS,
Docker Containers, and microservices.

References

CoreOS Toolbox: https://github.com/coreos/toolbox and http://
thepracticalsysadmin.com/change-coreos-default-toolbox/

e (Cadvisor: https://github.com/google/cadvisor

* Comparing Container monitoring options: http://rancher.com/
comparing-monitoring-options-for-docker-deployments/

* Sysdig: https://sysdig.com/coreos-sysdig-part-1-digging-into-
coreos-environments/, https://sysdig.com/sysdig-coreos-part-2-

troubleshooting-flannel-networking-confd/, http://www.sysdig.
org/,and https://github.com/draios/sysdig

[309]

https://github.com/coreos/toolbox
http://thepracticalsysadmin.com/change-coreos-default-toolbox/
http://thepracticalsysadmin.com/change-coreos-default-toolbox/
https://github.com/google/cadvisor
http://rancher.com/comparing-monitoring-options-for-docker-deployments/
http://rancher.com/comparing-monitoring-options-for-docker-deployments/
https://sysdig.com/coreos-sysdig-part-1-digging-into-coreos-environments/
https://sysdig.com/coreos-sysdig-part-1-digging-into-coreos-environments/
https://sysdig.com/sysdig-coreos-part-2-troubleshooting-flannel-networking-confd/
https://sysdig.com/sysdig-coreos-part-2-troubleshooting-flannel-networking-confd/
http://www.sysdig.org/
http://www.sysdig.org/
https://github.com/draios/sysdig

CoreOS and Containers — Troubleshooting and Debugging

Sysdig and Kubernetes integration: https://sysdig.com/monitoring-
kubernetes-with-sysdig-cloud/ and https://sysdig.com/digging-
into-kubernetes-with-sysdig/

Customizing the Docker remote API: https://coreos.com/os/docs/
latest/customizing-docker.html

The Docker logging driver: http://docs.docker.com/engine/reference/
logging/overview/

LogEntries: https://logentries.com

Docker logging with ELK: http://technologyconversations.
com/2015/05/18/centralized-system-and-docker-logging-with-elk-

stack/ and http://evanhazlett.com/2014/11/Logging-with-ELK-and-
Docker/

Docker logging with JSON and Syslog: https://medium.com/@yoanis_gil/
logging-with-docker-part-1-b23efl443aac#.ehjyv77n7

Further reading and tutorials

Centralizing logs from a CoreOS cluster: https://blog.logentries.
com/2015/03/how-to-centralize-logs-from-coreos-clusters/

Docker logging enhancements with 1.7: https://blog.logentries.
com/2015/06/the-state-of-logging-on-docker-whats-new-with-1-7/

Logging on Docker webinar: https://vimeo.com/123341629

The dark arts of Container monitoring: https://www.youtube.com/
watch?v=exna5ntTCpY

Sysdig and Logentries webinar: https://www.youtube.com/
watch?v=wNxteOCv5eE

Docker stats API: https://blog.logentries.com/2015/02/what-
is-the-docker-stats-api/ and http://blog.scoutapp.com/
articles/2015/06/22/monitoring-docker-containers-from-scratch
Sysdig Container visibility: https://sysdig.com/let-1light-sysdig-
adds-container-visibility/

The Docker remote APIL: http://blog.flux7.com/blogs/docker/docker-
tutorial-series-part-8-docker-remote-api and http://blog.flux7.
com/blogs/docker/docker-tutorial-series-part-9-10-docker-
remote-api-commands-for-images

Protecting the Docker daemon: https://docs.docker.com/engine/
articles/https/

[310]

https://sysdig.com/monitoring-kubernetes-with-sysdig-cloud/
https://sysdig.com/monitoring-kubernetes-with-sysdig-cloud/
https://sysdig.com/digging-into-kubernetes-with-sysdig/
https://sysdig.com/digging-into-kubernetes-with-sysdig/
https://coreos.com/os/docs/latest/customizing-docker.html
https://coreos.com/os/docs/latest/customizing-docker.html
http://docs.docker.com/engine/reference/logging/overview/
http://docs.docker.com/engine/reference/logging/overview/
 https://logentries.com
http://technologyconversations.com/2015/05/18/centralized-system-and-docker-logging-with-elk-stack/
http://technologyconversations.com/2015/05/18/centralized-system-and-docker-logging-with-elk-stack/
http://technologyconversations.com/2015/05/18/centralized-system-and-docker-logging-with-elk-stack/
http://evanhazlett.com/2014/11/Logging-with-ELK-and-Docker/
http://evanhazlett.com/2014/11/Logging-with-ELK-and-Docker/
https://medium.com/@yoanis_gil/logging-with-docker-part-1-b23ef1443aac#.ehjyv77n7
https://medium.com/@yoanis_gil/logging-with-docker-part-1-b23ef1443aac#.ehjyv77n7
https://blog.logentries.com/2015/03/how-to-centralize-logs-from-coreos-clusters/
https://blog.logentries.com/2015/03/how-to-centralize-logs-from-coreos-clusters/
https://blog.logentries.com/2015/06/the-state-of-logging-on-docker-whats-new-with-1-7/
https://blog.logentries.com/2015/06/the-state-of-logging-on-docker-whats-new-with-1-7/
https://vimeo.com/123341629
https://www.youtube.com/watch?v=exna5ntTCpY
https://www.youtube.com/watch?v=exna5ntTCpY
https://www.youtube.com/watch?v=wNxteOCv5eE
https://www.youtube.com/watch?v=wNxteOCv5eE
https://blog.logentries.com/2015/02/what-is-the-docker-stats-api/
https://blog.logentries.com/2015/02/what-is-the-docker-stats-api/
http://blog.scoutapp.com/articles/2015/06/22/monitoring-docker-containers-from-scratch
http://blog.scoutapp.com/articles/2015/06/22/monitoring-docker-containers-from-scratch
https://sysdig.com/let-light-sysdig-adds-container-visibility/
https://sysdig.com/let-light-sysdig-adds-container-visibility/
http://blog.flux7.com/blogs/docker/docker-tutorial-series-part-8-docker-remote-api
http://blog.flux7.com/blogs/docker/docker-tutorial-series-part-8-docker-remote-api
http://blog.flux7.com/blogs/docker/docker-tutorial-series-part-9-10-docker-remote-api-commands-for-images
http://blog.flux7.com/blogs/docker/docker-tutorial-series-part-9-10-docker-remote-api-commands-for-images
http://blog.flux7.com/blogs/docker/docker-tutorial-series-part-9-10-docker-remote-api-commands-for-images
https://docs.docker.com/engine/articles/https/
https://docs.docker.com/engine/articles/https/

11

CoreOS and Containers —
Production Considerations

There is a big difference between running applications and containers in
development versus production environments. Production environments pose a
special set of challenges. The challenges mainly lie in scalability, high availability,
security, and automation. CoreOS and Docker have solved significant challenges in
taking applications from development to production. In this chapter, we will cover
the production considerations for microservice infrastructure, including deployment,
automation, and security.

The following topics will be covered in this chapter:

* CoreOS cluster design considerations

* Distributed infrastructure design consideration - Service discovery,
deployment patterns, PaaS, and stateful and stateless Containers

* Security considerations

* Deployment and automation - CI/CD approaches and using Ansible for
automation

* CoreOS and the Docker roadmap

* Microservice infrastructure - platform choices and solution providers

CoreOS cluster design considerations

The cluster size and update strategy are important design considerations for a
CoreOS cluster.

[311]

CoreOS and Containers — Production Considerations

The update strategy

The CoreOS automatic update feature keeps the nodes in the cluster secure and
up-to-date. CoreOS provides you with various update mechanisms to control
updates, and the user can select an approach based on their needs. We covered
details of update strategies in Chapter 3, CoreOS Autoupdate. Some customers
prefer doing the update only in the maintenance window and CoreOS gives
control to do this.

Cluster considerations

The following are some considerations that need to be taken into account when
choosing the CoreOS cluster. We have covered these individual topics in earlier
chapters.

* C(luster size: A bigger cluster size provides better redundancy but updates
take a little longer.

* C(luster architecture: We need to choose the architecture based on whether
the cluster is used for development or production. For a production cluster,
the preferable scheme is to have a small master cluster to run critical services
such as Etcd and Fleet and have worker nodes point to the master cluster.
Worker nodes should be used only to run application Containers.

* Etcd heartbeat and timeout tuning: These parameter values need to be tuned
depending on whether the cluster is local or geographically distributed.

* Node backup and restore: Nodes can go bad. It is necessary to take periodic
backups.

* Adding and removing nodes in the cluster: CoreOS provides mechanisms
to add and remove nodes in the Etcd cluster dynamically without data loss.
This can be used to grow the cluster size organically.

Distributed infrastructure design
considerations

In this section, we will cover some miscellaneous infrastructure design considerations
that were not covered in earlier chapters.

[312]

Chapter 11

Service discovery

Microservices are dynamic and Service discovery refers to how microservices can
find each other dynamically. Service discovery has three components:

* It discovers services automatically as they come up and accesses a service by
the service name using DNS

* It maintains a shared database of services along with their access details that
can be accessed from multiple hosts

* It accesses services using a load balancer and handles service failures
automatically

Service discovery is automatically taken care of when using a Container orchestration
system such as Kubernetes. For smaller deployments, when there is no Orchestration
system, we can do this manually using standalone tools.

We covered Service discovery in Chapter 4, CoreOS Primary Services — Etcd, Systemd,
and Fleet in the Service discovery section using the Sidekick service and Etcd. This
approach did not provide DNS lookup. The following approach is another way of
doing service discovery with integrated DNS.

Service discovery using Registrator and Consul

Consul (https://consul.io/) and the Gliderlabs registrator (https://github.
com/gliderlabs/docker-consul/tree/consul-0.4) in combination provide
automatic service discovery and a service database.

The following figure shows the model:

REGISTRATOR > CONSUL

DOCKER

[313]

https://consul.io/
https://github.com/gliderlabs/docker-consul/tree/consul-0.4
https://github.com/gliderlabs/docker-consul/tree/consul-0.4

CoreOS and Containers — Production Considerations

The following points show you how this works:
* Consul provides service discovery, shared key-value storage, DNS-based
service lookup and service health monitoring

* Gliderlabs registrator monitors the Docker socket for service creation and
informs Consul about registration

* AsDNSis integrated with Consul, services can be accessed by the
service name

The following are the steps necessary to try this out in a Ubuntu Linux machine:
Set the Docker daemon to use the Docker bridge IP as one of the DNS lookup servers.

Add this line to /etc/default/docker:

DOCKER_OPTS="--dns 172.18.0.1 --dns 8.8.8.8 --dns-search service.
consul"

Restart the Docker daemon:

Sudo service docker restart

Start the Consul server:

docker run -d -p 8400:8400 -p 8500:8500 -p 172.18.0.1:53:8600/udp -h
nodel gliderlabs/consul-server -server -bootstrap

The preceding command exposes port 8400 for rpc, 8500 for Ul, and 8600 for DNS.
We mapped DNS to the Docker bridge IP address (172.18.0.1), and this allows us
to access service names directly from inside Containers.

Start the Gliderlabs registrator:

docker run -4 \
--name=registrator \
--net=host \
--volume=/var/run/docker.sock:/tmp/docker.sock \
gliderlabs/registrator:latest \
consul://localhost:8500

In the preceding command, we also specified the location of Consul so that the
registrator can register services to Consul.

[314]

Chapter 11

Now, let's start a few Containers:

docker run -d -P --name=nginx nginx
docker run --name mysqgl -e MYSQL ROOT PASSWORD=mysql -d mysqgl
docker run --name wordpress --link mysgl:mysql -d -P wordpress

docker run --name wordpressl --link mysqgl:mysql -d -P wordpress

Following output shows the running Containers:

smakam14@junglel:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

77a9919c64f2 wordpress "/entrypoint.sh apach” 25 minutes ago Up 25 minutes 0.0.0.0:32774->80/tcp
wordpress1
he7659b2609F wordpress "/entrypoint.sh apach" 25 minutes ago Up 25 minutes 0.0.0.0:32773->80/tcp
wordpress
19ad22302de3 mysql "/entrypoint.sh mysql" 36 minutes ago Up 36 minutes 3306/tcp
mysql
784003e3a4df nginx "nginx -g 'daemon off" 36 minutes ago Up 36 minutes 0.0.60.0:32771->80/tcp, 0.0.0
.0:32770->443 /tcp nginx
Bc693aa39f2b gliderlabs/registrator:latest "/bin/registrator con" 36 minutes ago Up 36 minutes
registrator
)d1074502e88 gliderlabs/consul-server "/bin/consul agent -s" 45 minutes ago Up 45 minutes 0.0.0.0:8400->8400/tcp, 8300
-8302/tcp, 8600/tcp, 8301-8302/udp, 0.0.0.0:8500->8500/tcp, 172.18.0.1:53->8600/udp sad_thompson

We can look at the Consul Ul to check whether the Services are registered. The
Consul, NGINX, and WordPress Containers are seen in the following output along
with their IP addresses and port numbers:

G‘: SERVICES NODES KEY/VALUE AcL {x

nodel

any status v EXPAND

nodel

consul

nginx-443

nginx-80
consul-server-8400
consul-server-8500
consul-server-8600
wcv.dpress

wordpress

[315]

CoreOS and Containers — Production Considerations

We can check whether the service lookup by the DNS name is working by accessing
the service across Containers. The following output shows that the NGINX container
is able to access the WordPress container by the service name, wordpress:

smakam14@junglel:~$ docker exec -ti nginx sh

ping -cl wordpress

PING wordpress (172.18.0.5): 56 data bytes

64 bytes from 172.18.0.5: icmp_seq=0 ttl=64 time=0.230 ms

- wordpress ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.230/0.230/0.230/0.000 ms

Dynamic load balancing

As part of Service discovery, a load balancer should be able to automatically find out
active services and load balance among the active instances of the service. For example,
when three instances of a web service are started, and if one of the instances dies, the
load balancer should automatically be able to remove the inactive instance from the
load balance list.

I found the following two approaches to be useful to achieve this.

Load balancing with confd and nginx
In the approach at https://www.digitalocean.com/community/tutorials/how-
to-use-confd-and-etcd-to-dynamically-reconfigure-services-in-coreos,
the following is a list of the steps:

1. The Sidekick service registers service details with etcd

2. Confd listens for etcd changes and updates nginx.conf

3. The Nginx load balancer does the load balancing based on entries

in nginx.conf

The following diagram illustrates the load balancing with ETCD, CONFD,
and NGINX:

CONTAINER
WITH REGISTRATOR

NGINX

nginx.conf

HA DISCOVER

CONTAINER
WITH REGISTRATOR

[316]

https://www.digitalocean.com/community/tutorials/how-to-use-confd-and-etcd-to-dynamically-reconfigure-services-in-coreos
https://www.digitalocean.com/community/tutorials/how-to-use-confd-and-etcd-to-dynamically-reconfigure-services-in-coreos

Chapter 11

Load balancing with HAdiscover and HAproxy

In the approach at http://adetante.github.io/articles/service-discovery-
haproxy/, the following is a list of the steps:

* The registrator registers the service details with etcd

* HAdiscover listens for changes to etcd and updates haproxy . conf

* HAproxy does the load balancing based on the HAproxy configuration

The following diagram illustrates the load balancing with ETCD, HA DISCOVER,
and HAProxy.

CONTAINER
WITH SIDEKICK

HAPROXY

haproxy.conf

LOAD
BALANCE

CONTAINER WITH
SIDEKICK

Deployment patterns

We covered the advantages of microservices in the first chapter. Designing a
microservice-based application is similar to object-oriented programming, where
the Container image can be compared to a class and Containers can be compared

to objects. There are many design patterns in object-oriented programming that
specify how to split a monolithic application into classes and how classes can work
together with other classes. Some of the object-oriented design principles also apply
to microservices.

In Chapter 8, Container Orchestration, we covered Kubernetes Pods and how closely
related containers can be grouped together in a single Pod. Design patterns such
as Sidecar, ambassador, and adapter are pretty widely used to create Pods. Even
though these design patterns are mentioned in the context of the Kubernetes pod,
these can also be used in a non-Kubernetes-based system as well.

This link (http://blog.kubernetes.io/2015/06/the-distributed-system-
toolkit-patterns.html) talks about common Kubernetes composite patterns.

[317]

http://adetante.github.io/articles/service-discovery-haproxy/
http://adetante.github.io/articles/service-discovery-haproxy/
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

CoreOS and Containers — Production Considerations

The following are more details on common Kubernetes composite patterns.

The Sidecar pattern

In the Sidecar pattern, there are two dependent Containers accomplishing a single
task.

In the following diagram, the health check container monitors the web container
and updates the results in a shared storage, such as ETCD, which can be used by
the load balancer:

WEB CONTAINER

SHARED
STORAGE
(ETCD)

HEALTH CHECK
CONTAINER

POD

In the following diagram, the Git sync container updates data volume from the Git
server, which is used by the web container to update the web page:

GIT SYNC
CONTAINER
VOLUME

CLIENT+

WEB CONTAINER

GIT
SERVER

POD

In the following diagram, the Web container updates the log volume that is read by
the logging container to update the central log server:

CLIENT

WEB CONTAINER

LOGGING CONTAINER

LOGGING
VOLUME/DRIVER

CENTRAL
LOG
SERVER

POD

The Ambassador pattern

The Ambassador pattern is used when there is a need to access different types of
services from a client container and it is not efficient to modify the client container
for each type of service. A proxy container will take care of accessing different types
of service and the client container needs to talk only to the proxy container. For
example, the redis proxy takes care of talking to a single redis master scenario or a
scenario with a redis master and multiple redis slaves without the redis client being
aware of the type of the redis service.

[318]

Chapter 11

The following diagram shows the redis client with the redis ambassador accessing
the redis service:

REDIS CLIENT J REDIS
CONTAINER —» REDIS AMBASSADOR 1 SERVER

POD

The Adapter pattern

The Adapter pattern is the inverse of the Ambassador pattern. An example of the
Adapter pattern is a service container exposing a common interface independent

of the application residing in the service. For example, a monitoring or logging
application wants a common interface to gather inputs irrespective of the application
type. An adapter container takes care of converting the data to a standard format
expected by the monitoring or logging application.

The following example shows a monitoring/logging application accessing two
different container applications, each with their own adapters:

EXPORTERL || APP1
CONTAINER CONTAINER
POD 1
MONITORING/
LOGGING APP
EXPORTER2 | _| APP2
CONTAINER CONTAINER
POD 2

Rolling updates with the Canary pattern

This is an upgrade approach used when an application runs as a Container across a
cluster of servers behind a load balancer. In this approach, the application upgrade
is done on a few servers, and based on the preliminary feedback from customers,
the upgrade can either be continued or reverted.

[319]

CoreOS and Containers — Production Considerations

Kubernetes supports a rolling upgrade with the Canary pattern. In the following
example, we will demonstrate the Canary pattern with Kubernetes running on a
CoreOS cluster in AWS. Here, we will upgrade hellol-controller with three
replicas of the hello:v1 container to hello2-controller, which also has three
replicas of the hello:v2 container.

For this example, we need a three-node Kubernetes CoreOS cluster. Installation
instructions can be found in Chapter 8, Container Orchestration.

The following is a three-node cluster with one master and two worker nodes:

smakam14@junglel:~/coreos-ops-tutorials kubectl get nodes
NAME LABELS STATUS
170.us-west-2.compute.internal Ready

1p-10-0-0-170.us-west-2.compute.internal kubernetes.io/hostname=ip-10-0-0-
1p-10-0-0-171.us-west-2.compute.internal kubernetes.io/hostname=1p-10-0-0-171.us-west-2.compute.internal Ready

The following is the replication controller, hellol-controller.json, with the
hellol container image and three replicas:

apiVersion: vl
kind: ReplicationController

metadata:
name: hellol
labels:
name: hello
spec:
replicas: 3
selector:

name: hello
version: vl
template:
metadata:
labels:
name: hello
version: vl
spec:
containers:
- name: hello
image: quay.io/kelseyhightower/hello:1.0.0
ports:
- containerPort: 80

[320]

Chapter 11

The following is the hello-s. json service using the hello1l replication controller:

apivVersion: vl
kind: Service
metadata:
name: hello
labels:
name: hello
spec:
1f your cluster supports it, uncomment the following to
automatically create
an external load-balanced IP for the hello service.
type: NodePort

ports:
the port that this service should serve on
- port: 80

selector:

name: hello

Let's start the replication controller and service:

kubectl create -f hellol-controller.json

kubectl create -f hello-s.json

Let's look at the running services and pods:

smakam14@jungiei::/cbreos—ops—tutorials kubectl get rc
CONTROLLER ~ CONTAINER(S) IMAGE(S) SELECTOR REPLICAS
hellol hello quay.io/kelseyhightower/hello:1.0.0 name=hello,version=vli 3

smakam14@junglel:~/coreos-ops-tutorial$ kubectl get services

NAME LABELS SELECTOR IP(S) PORT(S)
hello name=hello name=hello 10.3.0.86 80/TCP
kubernetes component=apiserver,provider=kubernetes <none> 10.3.0.1 443 /TCP

Let's create a new replication controller and perform a Canary pattern rolling
upgrade. The following is the new replication controller, hello2-controller.
json, using the hello:2.0.0 container image:

apiVersion: vl
kind: ReplicationController
metadata:

name: hello2

labels:

name: hello

spec:

replicas: 3

selector:

[321]

CoreOS and Containers — Production Considerations

name: hello
version: v2
template:
metadata:
labels:
name: hello
version: v2
spec:
containers:
- name: hello
image: quay.io/kelseyhightower/hello:2.0.0
ports:
- containerPort: 80

The following command does the rolling upgrade to hello2:

kubectl rolling-update hellol --update-period=10s -f hello2-controller.
json

The update-period parameter specifies the time interval between the upgrade
of each pod.

The following output shows you how each pod gets upgraded from hellol to
hello2. At the end, the hello1 replication controller is deleted:

smakam14@junglel:~/coreos-ops-tutorials kubectl rolling-update hellol --update-period=10s -f hello2-controller.json
Creating hello2

At beginning of loop: hellol replicas: 2, hello2 replicas: 1

Updating hellol replicas: 2, hello2 replicas: 1

At end of loop: hellol replicas: 2, hello2 replicas: 1

At beginning of loop: hellol replicas: 1, hello2 replicas: 2

Updating hellol replicas: 1, hello2 replicas: 2

At end of loop: hellol replicas: 1, hello2 replicas: 2

At beginning of loop: hellol replicas: 0, hello2 replicas: 3
Updating hellol replicas: 0, hello2 replicas: 3

At end of loop: hellol replicas: 0, hello2 replicas: 3
Update succeeded. Deleting hellol

hello2

Let's look at the running replication controllers now. As we can see in the following
output, hello2 RC is running and hellol RC has been deleted:

smakam14@junglel:~/coreos-ops-tutorial$ kubectl get rc
CONTROLLER ~ CONTAINER(S) IMAGE(S) SELECTOR REPLICAS

hel}ozrri_ bello‘ qu;y.io[kg¥seyhightower/he110:2.0.0 name=hello,version=v2 3

Kubernetes also supports the rollback option. In case a problem is detected as part of
a rolling upgrade, the rolling upgrade can be stopped and rollback can be done using
the - -rollback option.

[322]

Chapter 11

Containers and PaaS

Traditionally, the Services architecture has three types:

* IaaS (Infrastructure as a service)
* PaaS (Platform as a service)
* SaaS (Software as a service)
With the advent of Docker, the PaaS layer has become a little difficult to define. PaaS

vendors have used Containers as their underlying technology from the beginning. In
fact, Docker came from the Dotcloud Company, which was providing a PaaS service.

The following figure describes the new PaaS models and how they tie in to the
traditional PaaS models and IaaS:

TRADITIONAL_PaaS
(ELASTIC BEANSTALK, CLOUD FOUNDRY, OPENSHIFT)

MICRO_PaaS
(DEIS, FLYNN, TUTUM)

CONTAINER AS A SERVICE
(Self-built, AWS, GCE Container engine)

laaS
(AWS EC2, Google GCE)

The following are some notes on the preceding diagram as well as how newer PaaS
models are being developed:

* PaaSis typically used to simplify application deployment, which allows
application developers to just develop the application, and PaaS provides
necessary infrastructure services such as HA, scalability, and networking.
PaaS is typically used for web applications.

* PaaSis typically deployed internally as Containers though users of PaaS
need not be aware of this.

* Even though PaaS makes deploying applications faster, flexibility gets lost
with PaaS.

* Examples of traditional PaaS systems are AWS Elastic beanstalk, Google
GAE, Openshift, and Cloudfoundry.

[323]

CoreOS and Containers — Production Considerations

* There is a new class of Micro-PaaS, where every service runs as a Docker
Container, and this gives a little more flexibility than traditional PaaS.
Examples are Deis, Flynn, and Tutum. Tutum was recently acquired by
Docker.

* With Docker containers, Container orchestration systems such as Kubernetes,
and Container OSes such as CoreQOS, it becomes easier for customers to build
a PaaS system by themselves, which gives them maximum flexibility. Both
Amazon and Google have launched Container services where users can run
their Containers. Users have the option to build Container services on top of
their own infrastructure as well.

Stateful and Stateless Containers

Stateless containers are typically web applications such as NGINX, Node.js, and
others. These follow the 12-factor application development (http://12factor.
net/) methodology. These containers can be horizontally scaled. Stateful containers
are used to store data like databases as data volumes in the host machine. Examples
of stateful containers are Redis, MySQL, and MongoDB. We covered options for
Container data persistence in Chapter 6, CoreOS Storage Management. When stateful
containers are migrated, it is necessary to migrate the data associated with the
stateful containers. The following options are available to migrate stateful containers:

* Using tools such as Flocker, which takes care of the volume and data
migration when a Container moves across hosts

* Using a cluster-file system or NFS so that the same data volume can
be seen across multiple hosts

If implementing stateful containers is difficult, the other option for storage is to keep
databases separate from application containers and run them on special systems.

Security

The following are some approaches to secure the CoreOS cluster.

Secure the external daemons

Services such as Etcd, Fleet, and Docker can be reached externally. We can secure the
client and server side using TLS and client and server certificates. We covered some
of these details in earlier chapters when individual services were covered. If we are
using Container orchestration such as Kubernetes, we need to make sure that the
Kubernetes API server is using the TLS mechanism.

[324]

Chapter 11

SELinux

SELinux is a Linux kernel feature that allows Container isolation even in case of a
kernel bug that can cause the hacker to escape the Container namespace. SELinux
integration is available from CoreOS 808.0 release. CoreOS disables SELinux by
default. It can be enabled using the procedure at https://coreos.com/os/docs/
latest/selinux.html. There are some limitations like not being able to run
SELinux with the btrfs filesystem and with Containers sharing volumes.

Container image signing

Docker supports Container signing using the Docker content trust. Rkt supports
image signing using GPG. Using these approaches, we can validate that Containers
running on CoreOS come from reliable sources and the Container image is not
tampered in the middle. Container image signing was covered in detail in Chapter 7,
Container Integration with CoreOS - Docker and Rkt.

Deployment and automation

Containers make it easy to package and ship software and guarantee that the same
Container can work in development as well as production environments. Combining
Containers with good deployment and automation techniques will aid in faster
software deployment.

Continuous Integration and Continuous
Delivery

The traditional approach of releasing software has the following problems:

* Software release cycles were spaced apart, which caused new features
taking a longer time to reach the customers

* Majority of the processes from the development stage to production
were manual

* Considering the different deployment scenarios, it was difficult to guarantee
that software worked in all environments and configurations

Containers have tried to mitigate some of these problems. Using microservices and
the Container approach, it is guaranteed that the application will behave similarly in
the development and production stages. Process automation and appropriate testing
are still necessary for a Container-based environment.

[325]

CoreOS and Containers — Production Considerations

Continuous Integration (CI) refers to the process of making an executable or
Container image automatically after a developer has done the Unit testing and
code commit.

Continuous Delivery (CD) refers to the process of taking the developer's built
image, setting up the staging environment to test the image, and deploying it
successfully for production.

The following figure illustrates the steps for CI/CD:

COMMIT AUTO SUCCESS IMAGE
DEVELOPER ——» REPOSITORY > > L
TRIGGER BUILD ut REPOSITORY
SUCCESS QA P TRIGGER STAGING
CUSTOMER <«— DEPLOY < TESTS < ENVIRONMENT

The following are some notes on the preceding diagram:

The first row in the preceding diagram captures the steps for CI and the
second row is the steps for CD.

The CI process starts when developers commit the code after their basic UT.
Typically, GitHub or Bitbucket is used as an image repository.

There are hooks provided from the image repository to build system to
automatically trigger the build after committing. The build system could
be something such as Jenkins, which integrates with different code
repositories. For Container images, Dockerfile and docker build will be
used to build the Container image.

Automatic UT suites can be kicked in if necessary before the image is
committed to the image repository.

The build itself needs to be done inside Containers in order to eliminate
dependency on the host system.

An image repository could be something such as the Docker hub or Docker
trusted registry for Containers. CoreOS support the Quay repository for
Container images.

Once the image is pushed to a repository, the start of CD is automatically
triggered.

The staging environment needs to be set up with different Containers,
storage, and other non-container software if necessary.

[326]

Chapter 11

QA tests are done in the staging environment. It is necessary that the staging
environment be as close as possible to production.

Once the QA tests are successful, images are deployed in production, such as
AWS or GCE. If it's a PaaS application, it can be deployed to Cloudfoundry,
among others.

There are companies that provide integrated CI/CD solutions, such as
Codeship, CircleCl, Shippable, and others. Docker has released an enterprise
product called Universal Control Plane (UCP), which targets the CD part.
Jenkins has Docker plugins to build images in Containers and also provides
integration with the Docker hub.

There are different deployment patterns to do the upgrade. We covered the
Canary deployment pattern in an earlier section.

Ansible integration with CoreOS and Docker

Ansible is a configuration management and automation tool. Ansible is a very
popular DevOps tool and serves similar purposes as Puppet or Chef. Ansible has
a unique feature that there is no need to install an agent on the device side and
this makes it very popular. There is active work ongoing to integrate Ansible with
CoreOS and Docker. The following are some integration possibilities:

Manage the CoreOS system with Ansible. As CoreOS does not come with
Python installed and the fact that packages cannot be installed directly, there
are some workarounds necessary to get Ansible to manage a CoreOS system.

Ansible has a Docker module that simplifies Container management such as
starting and stopping containers and controlling Container properties.

The Docker installation can be automated with Ansible. Other than
automating the Docker installation, Ansible can also manage other host
infrastructure such as logging, storage, and networking.

Ansible can be used to build Docker images instead of using Dockerfile. There
is a docker_image module (http://docs.ansible.com/ansible/docker
image module.html), but it is advised not to use it as its idempotent nature
causes the Docker image to not be built in certain cases, which is a problem.

[327]

CoreOS and Containers — Production Considerations

Using Ansible to manage CoreOS

I followed the procedure at https://coreos.com/blog/managing-coreos-with-
ansible/ to manage CoreOS with Ansible. As there is no package manager in
CoreOS, Python cannot be installed directly. An approach at https://github.
com/defunctzombie/ansible-coreos-bootstrap that is being used is to install
PyPy, which is a minimal Python interpreter in CoreOS in the user directory and get
Ansible to use this. The following example prepares the CoreOS node to be managed
by Ansible and starts Etcd and Fleet service in the node using Ansible.

The following are the steps:
1. Install Ansible in the host machine. In my case, I am running Ansible 1.9
version in my Ubuntu 14.04 machine.
Create a CoreOS cluster.

Run the CoreOS bootstrap role to install the Python interpreter in CoreOS
and update the system PATH to use it. Ansible roles create an abstraction
over playbooks for specific tasks.

4. Run Ansible playbooks to start CoreOS services. Playbook is an Ansible
task list.

Set up a CoreOS cluster:

The following commands set up the CoreOS cluster. In this case, a single-node
cluster is created:

git clone https://github.com/defunctzombie/coreos-ansible-example.git
cd coreos-ansible-example

vagrant up
Set up passwordless SSH access:

Use the following command to set up passwordless SSH access. Ansible needs
passwordless SSH access.

./bin/generate ssh config

[328]

Chapter 11

Run the CoreOS bootstrap role:

The following command sets up a CoreOS node with Python using the Ansible role,
defunctzombie.coreos-bootstrap:

ansible-galaxy install defunctzombie.coreos-bootstrap -p ./roles

ansible-playbook -i inventory/vagrant bootstrap.yml

I created the following playbook to start CoreOS services, Etcd2, and Fleet:

//Coreos_services.yml:
- name: CoreOS services
hosts: web
tasks:
- name: Start etcd2
service: name=etcd2.service state=started
sudo: true
sudo_user: root

- name: Start fleet
service: name=fleet.service state=started
sudo: true
sudo_user: root

In the preceding playbook, we have used the Ansible service module. Ansible
modules are functions to do specific tasks. Ansible ships with a number of default
modules and users can extend or write their own modules.

The following is the output when I started the playbook for the first time.
The inventory file contains details of the single CoreOS node:

ansible-playbook -i inventory/vagrant coreos-services.yml

sreeni@ubuntu:~/coreos-ansible-example$ ansible-playbook -i inventory/vagrant coreos_services.yml

PLAY [COre0S Services] *** ks ks kdkk kXXX XXXXXXXXXXXXXXXX XXX KK KKK KK I KIH* >

GATHERING FACTS %% s 3% e ek s s s e e e e s ke e e ke o s ok e s e ok e o e o e ke oo ek ok e e ok o o e e e e e

TASK: [Start etcd2] ik dolololododokoe s

changed: [core-01]

TASK: [Start fleet] ****xxxxkksskkkdddddddddhhhhhhbddhbbbdiddiddtttattssstrssss

changed: [core-01]

PLAY RECAP AR AR T A AR A AR AR AR R AR R R AR R I I AR AR AR AR AR R AR AR ARSI A A A AR AR AR A A A AR v v hdh s
core-01 : changed=2 unreachable=0 failed=0

[329]

CoreOS and Containers — Production Considerations

The following is the output when I ran the same playbook one more time:

sreeni@ubuntu:~/coreos-ansible-example$ ansible-playbook -i inventory/vagrant coreos_services.yml

PLAY [Core0S services] **###sddikkadhhihddhhhhasdhhhkddhkabdshhhhdddkhhhddhhhhrs

(GATHERING FACTS % % e s s de e s st s e e de e s ke e s e e e e ke e e e sk e o e e e ke e o ke e o e o s ok o e oo e e e e e e

TASK: [Start etcd2] ###diddmskhiddddiibsddddoddddhhobbadoddkdoddbdohododdoddddokobotok ok kodeoded

TASK: [Start fleet] ###ssstrstirissiiimiddttttttihhhrhiiiiddolretthhkkrdhhids

PLAY RECAP ##®kkkkkkkkkkhhkkhdkkhhhhhhhhhhhrrhhhkhhhhhhrrhhhhhhrrhbrrdhhhhbrrhirrs

changed=0 unreachable=0 failed=0

As we can see, services don't get restarted as they have already started and the
changed variable is not set.

The following output shows the running Etcd2 and Fleet services in the
CoreOS node:

core@core-01 ~ $ systemctl list-units | grep "fleet\|etcd2"
.service loaded active running
.service loaded active running daemon

.socket s loaded active running Fleet API Socket

Using Ansible to manage Docker Containers

Ansible provides you with a Docker module (http://docs.ansible.com/ansible/
docker_module.html) to manage Docker Containers. The Docker module can manage
the Container life cycle, which includes the starting and stopping of Containers. As
Ansible modules are idempotent, we can use this functionality to pull Docker images
only if necessary and restart Containers only if the base image has changed.

The following is a playbook that is executed on the same CoreOS node where we had
run the CoreOS services playbook in the previous section. This will install the Docker
module in the remote host and start the NGINX Container and a WordPress service
having the WordPress and MySQL Containers:

//Coreos_containers.yml:
- name: CoreOS Container
hosts: web
tasks:
- name: Install docker-py
pip: name=docker-py version=1.1.0

- name: pull container
raw: docker pull nginx

[330]

Chapter 11

- name: launch nginx container
docker:
image: "nginx"
name: "example-nginx"
ports: "8080:80"
net: bridge
state: reloaded

- name: launch mysgl container
docker:
image: mysqgl
name: mysqgl
pull: always
net: bridge
state: reloaded
env:
MYSQL ROOT PASSWORD: mysqgl

- name: launch wordpress container
docker:
image: wordpress
name: wordpress
pull: always
ports: 8000:80
net: bridge
state: reloaded
links:
- "mysqgl:mysqgl"

The following shows the output when the playbook is started for the first time:

sreeni@ubuntu:~/coreos-ansible-example$ ansible-playbook -i inventory/vagrant coreos_containers.yml

PLAY [COre0S Container] ##skskkkkssk ik sk ksshkookdh otk kohsok bk dehsdok kodok ok

GATHERING FACTS *#* %k k& kk sk kkk kA kA A * R A IR FHAIIARIAERAERAERAEFAEIAARALR AR XA AR

TASK: [Install docker-py] ###skkkstkkkkkkhtihshhohkiohkhkthkk ki kiths thkkx

TASK: [PULL CoNtainer] #k kit kkkkiohhibhhtihhhkiohkhtthkkhihkitths khkkx

TASK: [launch nginx container] s kskkkskskstihkhhkkhhkhtthkk ki khhths khkkx

changed: [core-01]

TASK: [launch mysql container] ks ks kkskskstihshhkkiohkhkthkk ki kitths thkkx

changed: [core-01]

TASK : ['Launch wordpress container] R o e T
changed: [core-01]

PLAY RECAP L o T
core-01 3 changed=3 unreachable=0 failed=0

[331]

CoreOS and Containers — Production Considerations

The following screenshot shows the output when the same playbook is run again.
As we can see, the changed flag is not set as all the Containers are running and there
is no configuration change necessary:

sreeni@ubuntu:~/coreos-ansible-example$ ansible-playbook -i inventory/vagrant coreos_containers.yml

PLAY [COre0S CONtAiner] *#i itk ko ok kkkkk ks ook dohk ook ko khkk ko

GATHERING FACTS e e ke e e e e ek e e ok ke oo ke ook oo ok ok ok ko o ok o o ke o e koo e

TASK: [INStall docker-py] ##k okt kot ok ko ok ook ook bk kA

TASK: [PULL CONtALN@r] #% ¥k ik kkskkkkdhkkh ks ko h kdohokdokdedhokdekdedok ok ok

TASK: [launch Nginx CONtainer] *##**##xxkkxxh kA A FXXHFRRNHERIIARIKARKKRRRFHARHIH

TASK: [launch mysql container] *##**##x sk s sk ks hkaahFRRIIERIIKRIKIRRKKERIHAXHFK

TASK: [launch wordpress container] *##%xkdxxk st xkdaahdahdkhdh R akdx ko xhdnxs*

PLAY RECAP ¥*¥¥¥xxxk* Xk Xk kXXX XXX KX KXXXXX XX AKX KX XXX XXX IX KK XXX XK XKXKKRKK AKX A XK KKK X

changed=0 unreachable=0 failed=0

The following output shows the running Containers in the CoreOS node:

core@core-01 ~ $ docker ps
IMAGE COMMAND CREATED STATUS PORTS

wordpress "/entrypoint.sh apach" 5 minutes ago Up 5 minutes 0.0.0.0:8000->80/tcp
wordpress
mysql " /entrypoint.sh mysql" 5 minutes ago Up 5 minutes 3306/tcp

nginx "nginx -g 'daemon off" 6 minutes ago Up 6 minutes 443 /tcp, 0.0
example-nginx

Note: The reloaded flag in the Ansible Docker module should restart
containers only if the base image is changed or configuration flags have
% changed. I hit a bug where Containers were restarted always. The link
s here (https://github.com/ansible/ansible-modules-core/
issues/1251) describes this bug. Its workaround is to specify the net
parameter as I have done in the preceding playbook.

The reloaded and pull flags are available from Ansible 1.9.

[332]

https://github.com/ansible/ansible-modules-core/issues/1251
https://github.com/ansible/ansible-modules-core/issues/1251

Chapter 11

Ansible as a Container

Public Container images with Ansible preinstalled are available. This link,
https://hub.docker.com/r/ansible/ubuntu14.04—ansib1e/,an1exanqﬂe
Container image with Ansible preinstalled. The following output shows the Ansible
version in the running Container:

sreeni@ubuntu:~$ docker run -ti ansible/ubuntuil4.04-ansible bash
-root@4el6dda3dcdO: /opt/ansible/ansible# ansible --version

ansible 2.0.0 (devel 1e50d31cdc) last updated 2015/10/22 18:29:22 (GMT +000)

Using Ansible to install Docker

Ansible has this concept of Roles that gives a good abstraction to share a list of
playbooks that accomplish a single task. Ansible Roles are available to install Docker
on the Linux host. Ansible Roles are maintained in a central repository called Ansible
Galaxy, which can be shared across users. Ansible Galaxy is similar to the Docker
hub for Ansible roles.

The following are the steps necessary:

1. [Install the Ansible role locally from Ansible Galaxy.
2. Create a playbook with this role and run it.

I used this Galaxy role (https://github.com/jamesdbloom/ansible-install-
docker) to install Docker on my Ubuntu node. There are a few other roles in Galaxy
accomplishing the same task.

Use the following command to install the role:

ansible-galaxy install jamesdbloom.install-docker -p ./roles

Create the install_dockerl.yml playbook with the role:

- name: install docker
hosts: ubuntu
gather facts: True
sudo: true
roles:
- jamesdbloom.install-docker

Run the playbook as follows:

ansible-playbook -i inventory/vagrant install dockerl.yml

[333]

https://hub.docker.com/r/ansible/ubuntu14.04-ansible/
https://github.com/jamesdbloom/ansible-install-docker
https://github.com/jamesdbloom/ansible-install-docker

CoreOS and Containers — Production Considerations

The following is my inventory file:

inventory file for vagrant machines

ubuntu-01 ansible ssh host=172.13.8.101

[ubuntu]

ubuntu-01

[ubuntu:vars]

ansible ssh user=vagrant

The following output shows the playbook output:

Ansible-playbook -i inventory/vagrant install dockerl.yml

sreeni@ubuntu:~/vagrant_ubuntu$ ansible-playbook -i inventory/vagrant install_dockerl.yml

PLAY [install dOCkEF] e e e e o e ke o e ok e ok e e ok ok e e ok o ok e ok o ok e ok o ok e ok ok e ok e ok o e ok e ok ol ok ok e ok ok ok e ok e e ke

GATHERING FACTS F*¥¥kdddddtsskdtrdhikiddhdddh bk d sk bddh i d bbbk bk dh ko d b rhhr kst

TASK: [jamesdbloom.install-docker | Install (or update) docker.ilo] *¥*#**xxxssx
TASK: [jamesdbloom.install-docker | Link docker binaries] ***x¥xkxkkxkkkkkkxkx*
TASK: [jamesdbloom.install-docker | Check if docker installed] ***#*kskkdkkkkixk

changed: [ubuntu-01]

TASK: [jamesdbloom.install-docker | Enable bash completion] *#skkskkikdkkdkkkkkkrk
changed: [ubuntu-01]

TASK: [jamesdbloom.install-docker | Expose docker host] #**##kkkdkkkkkdkkdkhkhhrk
changed: [ubuntu-01]

NOTIFIED: [jamesdbloom.install-docker | restart docker] #**##kkkkskkkkidkkbkkkiirk
changed: [ubuntu-01]

PLAY RECAP #**kkkkkkkkkhhhdhhkdh kR LR AR A AR ARRERIIAFRARRRRRL AR LR ERRRR IR IR R IR R R R hdk

ubuntu-01 3 changed=4 unreachable=0 failed=0

The following output shows Docker installed on my Ubuntu host using the
preceding playbook:

vagrant@ubuntu-01:~$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
NAMES

vagrant@ubuntu-01:~% docker --version
Docker version 1.6.2, build 7c8fca2

[334]

Chapter 11

Note: I faced an issue with restarting the Docker service. I was able to
* solve it using the procedure at https://github.com/ansible/

ansible-modules-core/issues/1170, where the init file has to be
’ removed. I faced this issue with Ansible 1.9.1; however, this is fixed in
later Ansible versions.

The CoreOS roadmap

Ignition

The Ignition (https://github.com/coreos/ignition) project is being developed
to setup initial CoreoS filesystem and it overcomes some of the issues with
coreos-cloudinit. The coreos-cloudinit program is used to set up an initial
CoreOS system configuration. The following are some known issues with
coreos-cloudinit:

* Itis difficult to feed in dynamic environment variables. This makes it difficult
to run CoreOS in OpenStack environments and other environments where it
is difficult to determine the IP address. This link, https://groups.google.
com/forum/#!topic/coreos-user/STmEU6FGRB4, describes the case where
IP addresses don't get set because of which cloud-config services fail in
OpenStack.

* The cloud-config service is processed serially and we cannot specify
dependencies.

Ignition is run once on initial system bring-up and it writes the necessary files like
service files and configuration data. On the first boot, Ignition reads the configuration
from a specific location that's specified in the bootloader.

Systemd, as part of a running provider metadata service file, will create coreos-
metadata.target, which will contain necessary environment variables that service
files can use. Service files will specify this target file as a dependency and systemd
will take care of this dependency.

The following is a sample etcd2. service file, which specifies coreos-metadata.
service as a dependency. The /run/metadata/coreos environment file will contain
COREOS_IPV4_PUBLIC, and this will be generated by coreos-metadata.service:

[Unit]
Requires=coreos-metadata.service

After=coreos-metadata.service

[335]

https://github.com/ansible/ansible-modules-core/issues/1170
https://github.com/ansible/ansible-modules-core/issues/1170
https://github.com/coreos/ignition
https://groups.google.com/forum/#!topic/coreos-user/STmEU6FGRB4
https://groups.google.com/forum/#!topic/coreos-user/STmEU6FGRB4

CoreOS and Containers — Production Considerations

[Servicel

EnvironmentFile=/run/metadata/coreos

ExecStart=

ExecStart=/usr/bin/etcd2 \
--advertise-client-urls=http://${COREOS IPV4 PUBLIC}:2379 \
--initial-advertise-peer-urls=http://${COREOS IPV4 LOCAL}:2380 \
--listen-client-urls=http://0.0.0.0:2379 \
--listen-peer-urls=http://${COREOS_IPV4 LOCAL}:2380 \
--initial-cluster=${ETCD NAME}=http://${COREOS IPV4 LOCAL}:2380

Ignition will be backward-compatible with cloudinit. Ignition has not yet been
officially released.

DEX

DEX is an open source project started by CoreOS for identity management, including
authentication and authorization. The following are some properties of DEX:

* DEX uses the OpenID connect (OIDC) (http://openid.net/connect/)
standard, which is built on OAuth 2.0. OAuth 2.0 is used by Google to sign in
to their services such as Gmail.

* DEX supports multiple identity providers using the Connectors module.
Currently, DEX supports the local connector using local servers and a OIDC
connector such as Google.

* There is a plan to add authorization, user management, and multiple other
connectors such as LDAP and GitHub.

* DEXis used as an identity provider in the Tectonic project.

DEX is still in its early stages and under active development.

Clair

Clair is an open source project started by CoreOS to detect Container vulnerabilities.
The following are some properties of Clair:

* Clair scans Container images stored in the Quay Container repository
for vulnerabilities

* Each Container layer contains information about packages installed in that
layer and this is provided by the corresponding Linux package manager

[336]

http://openid.net/connect/

Chapter 11

* (lair analyzes each Container layer by querying the package manager-related
files and compares them against the vulnerability database available in the
particular Linux distribution to check whether the particular Container layer

is vulnerable

* Clair makes an index-directed graph of each Container layer, and this speeds

up the analysis of a lot of Container images sharing layers

* Clair currently supports CentOS, Ubuntu, and Debian Linux distributions

Clair is still in its early stages and under active development.

The Docker roadmap

Docker has transitioned from providing Container runtime to a Container platform.
Docker provides both open source solutions as well as commercial products around

Containers.

The following diagram shows different Docker products around Core Docker,

Security, Orchestration, Registry, and Deployment as of November 2015:

Core(Docker
engine,
Network,
Storage)

Deployment(T
utum, UCP)

Registry(Dock
er hub, Docker
trusted
registry)

QOrchestration(
Machine,
Compose,
Swarm)

Security(Dock
er content
trust)

Getting
started(Toolbo

The following are some new projects announced recently by Docker.

[337]

CoreOS and Containers — Production Considerations

Tutum

Tutum makes it easy to build, deploy, and manage Containerized applications and
is available as a SaaS application. An application can be a single- or multi-container
application. Tutum integrates well with the Docker hub.

UCP

UCP is Docker's commercial offering to provide on-premise Container deployment
solutions. UCP integrates with the Docker trusted registry as well as with enterprise
services such as LDAP and Role-based access control (RBAC). UCP also integrates
with all other Docker services such as Networking, Compose, and Swarm. UCP is in
the beta phase currently.

Nautilus

This project is targeted towards Container vulnerability detection. This is similar to
the Clair project from CoreOS. Nautilus is still in the very early stages.

Microservices infrastructure

In this section, we will cover an overview of microservice infrastructure components
and examples of a few solution providers.

Platform choices

The following are some design decisions/ platform choices that customers who are
developing and deploying microservices need to make. The following examples are
just a sample set and do not cover all the providers.

IaaS vs PaaS: This choice applies for local data centers as well as for Cloud providers.
In the earlier section, we covered the comparison between Container and PaaS models.
Here, the trade-offs are flexibility versus time-to-market.

Local data center versus cloud providers: This is mostly a cost versus time trade-off.

Base OS: The choice here is either going with Container-optimized OSes such as
CoreOS, Rancher, or Atomic or traditional OSes such as Ubuntu or Fedora. For pure
microservice architecture, Container-optimized OSes are definitely worth pursuing.

[338]

Chapter 11

VM Orchestration: VMs and Containers have different use cases and will continue to
live together. There will be scenarios where VMs will be used standalone or Containers
will run on top of VMs. There are open source solutions such as OpenStack and
commercial solutions from VMWare for VM Orchestration.

Container runtime: Choices here are Docker, Rkt, or LXC.

Networking: Container orchestration systems such as Kubernetes typically integrate
networking. As networking support is provided as plugins, it can be swapped with a
different implementation if necessary. Some examples of networking plugins include
Weave, Calico, and Contiv.

Storage: We need to evaluate between dedicated storage versus stateful Containers.
Choices for stateful Containers are GlusterFS, Ceph, or Flocker.

Container Orchestration: Choices here are Kubernetes, Docker Swarm, Mesos,
and so on.

Service discovery and DNS: This can be built manually using building blocks
mentioned in previous sections, or if we choose a container orchestration system
such as Kubernetes, it's already integrated with this.

CI and CD: This can be manually built or we can use packaged solutions from
Codeship, CircleCl, or Shippable.

Monitoring and logging system: Examples are Sysdig or Logentries. We covered
more details on Monitoring and logging in Chapter 10, CoreOS and Containers —
Troubleshooting and Debugging.

Solution providers

As we have seen throughout this book, there are many hardware and software
components that comprise the infrastructure to create and deploy microservices.
We can think of each component as a LEGO block and there are numerous ways of
bringing these LEGO blocks together. Customers have the following three choices:

* Integrating all the infrastructure components by themselves

* Going with solution providers who integrate these components and give an
opinionated architecture

* Choosing a hybrid solution between the previous two options, where we
can choose reference architecture and replace a few components based on
specific needs

[339]

CoreOS and Containers — Production Considerations

The following are some commercial and open source integrated solutions
available. The list is not extensive and some of these solutions do not integrate
all the components:

* Tectonic Enterprise from CoreOS.
* Google Container service

* AWS Container service

* Cisco's Mantl project

* OpenStack Magnum

Summary

In this chapter, we covered some of the production considerations in deploying
microservice-based distributed infrastructure, and this includes CoreOS, Docker, and
the associated ecosystem. Cloud companies such as Google, Amazon, and Facebook
have used microservices and Container-based technologies for quite a long time and
they have learned the best practices and pitfalls based on their experience.

The issue till now has been the replication of approaches and not having a common
standard/approach. The trend in the last few years has been that these companies

as well as many start-ups such as CoreOS and Docker are willing to develop
technologies and work together in an open manner that helps the entire industry.

A big contributor to this is open source software development, and many big
companies are willing to develop software in the open now. Obviously, commercial
solutions around open source technologies will continue to thrive as the industry still
needs to make money to survive.

Container technology and microservices are the biggest trends in the software
industry currently. Customers have many options and this includes both open
source and commercial solutions. At this point, there is a need to put together
different technologies/products to create a complete solution for microservices
infrastructure. As these technologies mature, integrated open solutions with a
pluggable architecture will win over the long term.

[340]

Chapter 11

References

Registrator: http://gliderlabs.com/registrator/latest/user/
quickstart/

* Ansible reference: https://docs.ansible.com/

* Managing CoreOS with Ansible: https://coreos.com/blog/managing-
coreos-with-ansible/ and https://github.com/defunctzombie/
ansible-coreos-bootstrap

* Ansible Docker module: http://docs.ansible.com/ansible/docker
module.html

e CoreOS and Docker: https://developer.rackspace.com/blog/ansible-
and-docker/ and http://opensolitude.com/2015/05/26/building-
docker-images-with-ansible.html

* (I pipeline with Docker: https://www.docker.com/sites/default/
files/UseCase/RA CI%20with%20Docker 08.25.2015.pdf

e Containers and PaaS: http://cloudtweaks.com/2014/12/paas-vs-
docker-heated-debate/ and http://thenewstack.io/docker-is-
driving-a-new-breed-of-paas/

* Container security with SELinux and CoreOS: https://coreos.com/blog/
container-security-selinux-coreos/

* CoreOS Ignition: https://github.com/coreos/ignition and https://
coreos.com/ignition/docs/latest/examples.html

e CoreOS DEX: https://github.com/coreos/dex, https://coreos.
com/blog/announcing-dex/, and https://www.youtube.com/
watch?v=QzgkJQiI gE

* (lair for Container vulnerability analysis: https://coreos.com/blog/
vulnerability-analysis-for-containers/ and https://github.com/
coreos/clair

e Docker Tutum and UCP: https://blog.docker.com/2015/11/dockercon-
eu-2015-docker-universal-control-plane/, https://www.docker.com/
tutum, and https://www.docker.com/universal-control-plane

e Mantl project: https://github.com/CiscoCloud/microservices-
infrastructure and http://mantl.io/

[341]

http://gliderlabs.com/registrator/latest/user/quickstart/
http://gliderlabs.com/registrator/latest/user/quickstart/
https://docs.ansible.com/
https://coreos.com/blog/managing-coreos-with-ansible/
https://coreos.com/blog/managing-coreos-with-ansible/
https://github.com/defunctzombie/ansible-coreos-bootstrap
https://github.com/defunctzombie/ansible-coreos-bootstrap
http://docs.ansible.com/ansible/docker_module.html
http://docs.ansible.com/ansible/docker_module.html
https://developer.rackspace.com/blog/ansible-and-docker/
https://developer.rackspace.com/blog/ansible-and-docker/
http://opensolitude.com/2015/05/26/building-docker-images-with-ansible.html
http://opensolitude.com/2015/05/26/building-docker-images-with-ansible.html
https://www.docker.com/sites/default/files/UseCase/RA_CI%20with%20Docker_08.25.2015.pdf
https://www.docker.com/sites/default/files/UseCase/RA_CI%20with%20Docker_08.25.2015.pdf
http://cloudtweaks.com/2014/12/paas-vs-docker-heated-debate/
http://cloudtweaks.com/2014/12/paas-vs-docker-heated-debate/
http://thenewstack.io/docker-is-driving-a-new-breed-of-paas/
http://thenewstack.io/docker-is-driving-a-new-breed-of-paas/
https://coreos.com/blog/container-security-selinux-coreos/
https://coreos.com/blog/container-security-selinux-coreos/
https://github.com/coreos/ignition
https://coreos.com/ignition/docs/latest/examples.html
https://coreos.com/ignition/docs/latest/examples.html
https://github.com/coreos/dex
https://coreos.com/blog/announcing-dex/
https://coreos.com/blog/announcing-dex/
https://www.youtube.com/watch?v=QZgkJQiI_gE
https://www.youtube.com/watch?v=QZgkJQiI_gE
https://coreos.com/blog/vulnerability-analysis-for-containers/
https://coreos.com/blog/vulnerability-analysis-for-containers/
https://github.com/coreos/clair
https://github.com/coreos/clair
https://blog.docker.com/2015/11/dockercon-eu-2015-docker-universal-control-plane/
https://blog.docker.com/2015/11/dockercon-eu-2015-docker-universal-control-plane/
https://www.docker.com/tutum
https://www.docker.com/tutum
https://www.docker.com/universal-control-plane
https://github.com/CiscoCloud/microservices-infrastructure
https://github.com/CiscoCloud/microservices-infrastructure
http://mantl.io/

CoreOS and Containers — Production Considerations

Further reading and tutorials

Service dlscovery http://progrium.com/blog/2014/07/29/
understanding-modern-service-discovery-with-docker/

e Ansible with Docker on Rancher: http://rancher.com/using-ansible-
with-docker-to-deploy-a-wordpress-service-on-rancher/

e Stateful Containers: http://techcrunch.com/2015/11/21/i-want-to-
run-stateful-containers-too/

* Codeship, Shippable, and CircleCI: https://scotch.io/tutorials/
speed-up-your-deployment-workflow-with-codeship-and-parallelci,
https://circleci.com/docs/docker, https://blog.codeship.com/
continuous-integration-and-delivery-with-docker/, and http://
docs.shippable.com/

* Comparing CI/CD solutions: https://www.quora.com/What-is-the-
difference-between-Bamboo-CircleCI-CIsimple-Ship-io-Codeship-
Jenkins-Hudson-Semaphoreapp-Shippable-Solano-CI-TravisCI-and-
Wercker

e Containers and PaaS: https://labs.ctl.io/flynn-vs-deis-the-tale-
of -two-docker-micro-paas-technologies/ and https://www.youtube.
com/watch?v=YydhEEgOoDg

* Ignition presentation: https://www.youtube.com/watch?v=1y3uwn0HzBI

* Jenkins Docker plugin: https://wiki.jenkins-ci.org/display/JENKINS/
Docker+Plugin

* Continuous delivery with Docker and Jenkins: https://www.docker. com/
sites/default/files/UseCase/RA CI%20with%20Docker 08.25.2015.
pdf and https://pages.cloudbees.com/rs/083-PKZ-512/images/
Docker-Jenkins-Continuous-Delivery.pdf

[342]

http://progrium.com/blog/2014/07/29/understanding-modern-service-discovery-with-docker/
http://progrium.com/blog/2014/07/29/understanding-modern-service-discovery-with-docker/
http://rancher.com/using-ansible-with-docker-to-deploy-a-wordpress-service-on-rancher/
http://rancher.com/using-ansible-with-docker-to-deploy-a-wordpress-service-on-rancher/
http://techcrunch.com/2015/11/21/i-want-to-run-stateful-containers-too/
http://techcrunch.com/2015/11/21/i-want-to-run-stateful-containers-too/
https://scotch.io/tutorials/speed-up-your-deployment-workflow-with-codeship-and-parallelci
https://scotch.io/tutorials/speed-up-your-deployment-workflow-with-codeship-and-parallelci
https://circleci.com/docs/docker
https://blog.codeship.com/continuous-integration-and-delivery-with-docker/
https://blog.codeship.com/continuous-integration-and-delivery-with-docker/
http://docs.shippable.com/
http://docs.shippable.com/
https://www.quora.com/What-is-the-difference-between-Bamboo-CircleCI-CIsimple-Ship-io-Codeship-Jenkins-Hudson-Semaphoreapp-Shippable-Solano-CI-TravisCI-and-Wercker
https://www.quora.com/What-is-the-difference-between-Bamboo-CircleCI-CIsimple-Ship-io-Codeship-Jenkins-Hudson-Semaphoreapp-Shippable-Solano-CI-TravisCI-and-Wercker
https://www.quora.com/What-is-the-difference-between-Bamboo-CircleCI-CIsimple-Ship-io-Codeship-Jenkins-Hudson-Semaphoreapp-Shippable-Solano-CI-TravisCI-and-Wercker
https://www.quora.com/What-is-the-difference-between-Bamboo-CircleCI-CIsimple-Ship-io-Codeship-Jenkins-Hudson-Semaphoreapp-Shippable-Solano-CI-TravisCI-and-Wercker
https://labs.ctl.io/flynn-vs-deis-the-tale-of-two-docker-micro-paas-technologies/
https://labs.ctl.io/flynn-vs-deis-the-tale-of-two-docker-micro-paas-technologies/
https://www.youtube.com/watch?v=YydhEEgOoDg
https://www.youtube.com/watch?v=YydhEEgOoDg
https://www.youtube.com/watch?v=ly3uwn0HzBI
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
https://www.docker.com/sites/default/files/UseCase/RA_CI%20with%20Docker_08.25.2015.pdf
https://www.docker.com/sites/default/files/UseCase/RA_CI%20with%20Docker_08.25.2015.pdf
https://www.docker.com/sites/default/files/UseCase/RA_CI%20with%20Docker_08.25.2015.pdf
https://pages.cloudbees.com/rs/083-PKZ-512/images/Docker-Jenkins-Continuous-Delivery.pdf
https://pages.cloudbees.com/rs/083-PKZ-512/images/Docker-Jenkins-Continuous-Delivery.pdf

A

accessing approaches, Fleet
about 107
etcd security, using 109
local fleetctl 107
remote fleetctl, with SSH tunnel 108
remote HTTP 108, 109
Adapter pattern 319
Amazon Elastic Block Store (EBS) volume
mounting 161-163
Ambassador pattern 318
AMI image ID
reference link 49, 134
Ansible
integrating, with CoreOS 327
integrating, with Docker 327
URL 328, 333
used, as Container 333
used, for installing Docker 333-335
used, for managing CoreOS 328-330
used, for managing Docker
Containers 330-332
ansible-coreos-bootstrap
URL 328
Ansible Docker module
URL 341
ansible-modules-core
URL 332, 335
APPC
container management, elements 29
specification 28
specification, URL 26, 32
URL 28

Index

app container specification
about 196
APPC tools 199
CNI 204
container image format 196
Libnetwork 203
Open Container Initiative (OCI) 202
relationship, between Libnetwork
and CNI 206
APPC tools
about 199
Acbuild 200, 201
Actool 199, 200
Application Container Image (ACI) 196
application definition
about 250
Docker-compose 250
application deployment patterns, Pods
adapter pattern 232
ambassador pattern 232
single pattern 232
authentication, etcd
about 92-94
roles 92
users 92
automatic update 63
automation 325
AWS CLI
reference link 48
AWS cluster
creating, AWS-VPC used 134-137
creating, Flannel used 133
creating, VXLAN networking used 134
AWS EBS backend
URL 180

[343]

AWS EC2 Container Service (ECS)
about 254
ECS, installing 254, 255
example 254, 255
AWS installation
reference link 58
AWS-VPC

used, for creating AWS cluster 134-137

B

Bare Metal
CoreOS, installing on 52-54
basic commands, Rkt
about 218
garbage collection 219
image, deleting 220
image, exporting 220
image, fetching 218
image, listing 218
image, running 218
nginx container, with port
forwarding 220, 221
nginx container, with
volume mounting 220, 221
pods, listing 219
Bay model 277
Bays 277
block storage 160
Borg
reference 231

C

cadvisor

about 295-298

URL 309
Calico

networking 154

setting up, with CoreOS 154, 155
Canary pattern

used, for rolling updates 320-322
Ceph

about 189

properties 189

URL 194
Ceph Docker

URL 194

Ceph RADOS
URL 194
certificate authorities (CA) 88
CFSSL
URL 88
CI/CD solutions
comparing, URL 342
CI pipeline with Docker
URL 341
CircleCI
URL 342

Clair

about 336
properties 336
client certificate
used, for performing etcd secure

client-to-server communication 90

client-server Flannel networking
setting up 142, 143
cloud-config validator
about 34, 37, 55
executing 40
hosted validator 38
sections 34
using 68
Cloudformation 48
cloudinit validator 39
cloud storage 160
cluster
nodes, adding 85
nodes, removing 85, 86
cluster design considerations
about 311, 312
architecture 312
etcd heartbeat 312
node, adding 312
node backup and restore 312
node, removing 312
size 311, 312
timeout tuning 312
update strategy 312
CNI Plugin
about 204
Flannel, using as 129
notes 204, 205
codeship
URL 342

[344]

confd
URL 316
Consul
URL 313
used, for service discovery 313-316
Container
about 277
advantages 5
CPU and memory usage 216
debugging 215
characteristics 5
Docker architecture 6, 7
Linux kernel technologies 5
logging 300
logs 215
monitoring 287
processes 216
properties 216
URL 341
Container data
about 169
Ceph 189
Docker volume plugin 173
Docker volumes 169
NFS 189
container filesystem
about 166
Docker 168, 169
storage drivers 166-168
Union filesystem 168, 169
URL 194
container image discovery
meta discovery 198
simple discovery 198
container image format
about 196, 197
app container executor 199
app container metadata service 199
app container pods 199
container image discovery 198
Container logging
about 300, 301
Docker logging drivers 301
ELK stack 300
LogEntries 301, 303

Container monitoring
about 287
approaches 288
cadvisor 295
URL 310
Container networking
about 280
need for 123,124
with OpenStack Kuryr 279
Container networking technologies
Calico networking 154
Kubernetes networking 156
Weave networking 152, 153

Container Network Interface plugin. See

CNI plugin
Container orchestration
about 229-231
characteristics 230
Docker Swarm 244
Kubernetes 231
Mesos 248

modern application deployment 229, 230

problems 231
Container security
with SELinux and CoreOS, URL 341
Container vulnerability analysis
URL 341
Continuous Delivery (CD) 325, 326
Continuous Integration (CI) 325, 326
Contiv volume plugin
URL 194
control path, Flannel 126, 127
Copy-on-write (CoW)
about 159
characteristics 166
CoreOS
about 1, 8
advantages 9
Ansible, integrating with 327
automatic update mechanism 63
Calico, setting up with 154, 155
cluster architecture 26
cluster design considerations 311
components 10
debugging tools 287
installing, on Bare Metal 52, 54

[345]

managing, with Ansible 328, 330
on OpenStack 264-270
partition table 61, 62
presentation, URL 32
properties 8
release cycle 59-61
releases, URL 73
storage mounting, URL 194
supported platforms 9
Toolbox 286
update anatomy, URL 73
update options, setting 67
update philosophy, URL 73
update strategies, URL 73
URL 29, 68, 341
CoreOS bare-metal installation
reference link 58
CoreOS cloud-config
reference link 34
CoreOS cloud-config file format
about 34
CoreOS CloudInit
reference link 58
CoreOS cluster
centralizing logs, URL 310
GlusterFS, setting up 186, 187
persistent data storage , URL 194
CoreOS cluster architecture
about 26
development cluster 27
production cluster 27
CoreOS cluster security
about 324
Container image signing 325
external daemons, securing 324
SELinux 325
CoreOS cluster, with AWS
about 48
three node cluster, with AWS CLI 49, 50
three node cluster, with
Cloudformation 48, 49
CoreOS cluster, with GCE
about 51
three node cluster, with GCE CLI 51
CoreOS cluster, with Vagrant
about 40
modifications, in files 41

production cluster, with three master nodes
and three worker nodes 46, 47
three-node cluster, with
dynamic discovery 42
three-node cluster, with
static discovery 44-46
CoreOS components
about 10
etcd 16
Flannel 23
Fleet 19
kernel 10
Rkt 26
systemd 10, 11
CoreOS filesystem
about 160, 161
AWS EBS volume, mounting 161-163
NFS storage, mounting 163-166
CoreOS journal logs
exporting 304, 305
CoreOS roadmap
Clair 336, 337
DEX 336
Ignition 335, 336
CoreOS Tectonic
about 258, 259
components 259
CoreOS with Ansible
URL 341
CoreOS, with AWS Cloudformation
reference link 58
CoreUpdate
about 72
features 72
URL 73

D

data path, Flannel 127-129
debugging tools
about 54, 287
important files and directories 56
journalctl 54
logging from one CoreOS node, to
another 56
systemctl 54, 55

[346]

deployment patterns
about 317
Adapter pattern 319
Ambassador pattern 318
Canary pattern 319-322
Sidecar pattern 318
design decisions/platform choices,
microservices infrastructure
base OS 338
Cland CD 339
Container Orchestration 339
Container runtime 339
laaS versus PaaS 338
local data center versus cloud
providers 338
monitoring and logging system 339
networking 339
Service discovery and DNS 339
storage 339
VM Orchestration 339
Devstack
installation 272, 273
reference 264
DEX
about 336
properties 336
URL 341
DigitalOcean CoreOS
URL 32
distributed application development
about 2
advantages 3
components 2,3
distributed application development
workflow
CoreOS, using 31
Docker, using 31
distributed infrastructure design
considerations
about 312
Containers 323, 324
deployment patterns 317
PaaS 323, 324
service discovery 313
stateful containers 324
stateless containers 324

Distributed Trusted Computing (DTM) 259
Docker
about 168, 169, 206
advantages 7
and Rkt, differentiating between 30
Ansible, integrating with 327
architecture 6,7
daemon 206
daemon issue, URL 32
Dockerfile 207
external connection 207
image repository 208
installing 271
installing, with Ansible 333-335
logging drivers 301
logging enhancements, URL 310
three-node Vagrant CoreOS cluster, setting
up with 130, 131
URL 15, 32, 341
used, for developing distributed application
development workflow 31
versus Rkt 28
Docker 1.9
options 144
update 192,193
Docker and Jenkins
continuous delivery, URL 342
Docker components
Docker CLI 6
Docker engine 6
Docker hub 6
Docker REST 6
Docker-compose
about 250
advantages 250
multinode application 252, 253
single-node application 251, 252
use cases 250
Docker Containers
managing, with Ansible 330-332
Docker content trust
about 212
features 212
secure image, pulling 214, 215
secure image, pushing 214
workflow 213

[347]

Docker daemon
protecting, URL 310
Docker experimental networking
about 145
concepts 145
multinetwork use case 146
Dockerfile
about 207
reference 207
Docker hub
about 208
URL 208
Docker image repository
about 208
Continuous Integration 210, 212

custom Docker registry, creating 209, 210

Docker hub 208
Docker registry 208
Docker Trusted registry 208
types 209
Docker libnetwork solution 145
Docker logging
with ELK, URL 310
with JSON and Syslog, URL 310
Docker networking
about 144
reference link 144
Docker overlay driver 147,148
Docker registry
about 208
URL 208
Docker remote API
about 298-300
customizing, URL 310
URL 310
Docker roadmap
about 337
Nautilus 338
Tutum 338
UCP 338
Docker Swarm
about 244
architecture 244
example 247
installation 245, 246
properties 244
Swarm Agent 245

Swarm Master 244

Docker Trusted registry

about 208
URL 208

Docker volume plugin

about 173

Flocker 174

GlusterFS 183

URL 193, 194

used, for accessing GlusterFS 187

Docker volumes

about 169

Container volume 170
data-only container 171, 172
removing 172

URL 194

with host mount directory 170

Docker webinar

URL 310

drop-in units, etcd

creating 101

runtime drop-in unit, full service 104

runtime drop-in unit, specific
parameters 102, 103

dynamic load balancing

about 316

confd, using 316
HAdiscover, using 317
HAproxy, using 317
nginx, using 316

E

eted

about 16, 23,75

accessing 78

accessing, through etcdctl 79
accessing, through REST 78
administration, URL 121
authentication 92-94
backup 86, 87

cluster details 18

cluster size 17

configuration 79, 80
configuration parameters, URL 80
configuration sharing 17
debugging 94, 95

[348]

discovery token approach 17
docs, URL 120
node migration 86, 87
nodes, adding from cluster 85, 86
nodes, removing from cluster 85, 86
operations, performing 80, 81
parameters, tuning 82
proxy 83, 84
secure cloud-config 91
security 88
security and authentication, URL 121
security, URL 120
service discovery 17
standalone installation 77
used, for performing get operation 18
used, for performing set operation 18
versions 76
ETCD 318
etcd-ca
about 88
installing 88, 89
URL 88,120
etcd parameters, tuning
cluster size 82
election timeout 83
heartbeat interval 82
eted security
about 88
etcd-ca (certificate authorities) 88
experimental client-server networking 141
experimental multitenant networking
about 140, 141
reference link 141
external daemons
securing 324

F

file modifications, CoreOS cluster with
Vagrant
about 41
config.rb file 42
user-data file 41
Vagrantfile 41
Flannel
about 23,124
control path 126, 127

data path 127-129

installing, flanneld.service used 125, 126

internals 24

manual installation 124

service unit 25

three-node CoreOS cluster, setting up
with 131-133

three-node Vagrant CoreOS cluster, setting
up with 130, 131

used, for creating AWS cluster 133

used, for creating GCE cluster 137

using, as CNI plugin 129

flanneld.service

used, for installing Flannel 125,126

Fleet

about 19, 107
accessing 107
architecture 19
debugging 113

docs, URL 120

HA 22,110-112
installation 107
scheduling 110-112
scheduling example 20
service discovery 113
service discovery, URL 120
templates 110-112
URL 107

Fleet scheduling example

about 20
based on metadata 21, 22
global unit example 20

Flocker

1.3.0 version of tools, URL 181

about 174

container migration, URL 178

dvol, URL 182

implementation, internals 174

integration with CoreOS, AWS EBS
backend used 180-182

on CoreOS, URL 180

recent additions 182

URL 193

volume hub, URL 182

volume migration, using AWS EBS as
backend 175-178

[349]

volume migration, using ZFS
backend 178-180
web page, URL 175

G

Galaxy role
URL 333
GCE cluster
creating, Flannel used 137
creating, GCE networking used 138, 139

creating, vxlan networking used 137, 138

GCE networking
used, for creating GCE cluster 138, 139
Gliderlabs registrator
URL 313
GlusterFS
about 183
accessing, with Docker volume
plugin 187,188
cluster, setting up 184-186
properties 183
setting up, for CoreOS cluster 186, 187
URL 193
GlusterFS cluster
creating, URL 194
Stateful Containers, URL 194
URL 194
GlusterFS volume
URL 187
GO
URL 187
Google Container Engine (GCE)
about 256
installing 256-258
Group ID (GID) 164

H

HAproxy
URL 317

Heat Docker plugin
about 274
architecture 274
installing 274, 275

hosted validator
about 38
invalid cloud-config 38
valid cloud-config 38

Ignition

about 335

URL 341
init systems

comparing, URL 121
installation, Kubernetes

about 235

AWS installation 238

GCE installation 237, 238

Kubectl installation 236

non-Coreos-based Kubernetes

installation 236

Vagrant installation 236
installing

CoreQOS, on Bare Metal 52, 54

Flannel, flanneld.service used 125, 126
IPAM Plugin 130

J

Jenkins Docker plugin
URL 342
journal-2-logentries
URL 304
journalctl
about 54
reference link 58
JSON configuration file specifications,
Flannel
AWS-VPC 128
UDP 128
VXLAN 128

K

Kubernetes
about 231
architecture 234, 235
comparing, with Docker Swarm and
Mesos 248-250

[350]

concepts 231
DNS 234
environment variable 233
installation 235
Loadbalancer 234
networking 232
NodePort 234
Pods 231, 232
services 233
Sysdig, integrating with 295
update 244
with Rkt 243

Kubernetes composite patterns
URL 317

L

Libnetwork
about 203, 204
components 204
endpoint 204
network 204
sandbox 204
Linux kernel technologies, Containers
cgroups 5
namespaces 5
local storage 160
locksmithd.service
about 64, 65
strategy 65
Locksmith GitHub
URL 73
Locksmith strategy
about 65
best-effort scheme 66
debugging 67
etcd-lock scheme 65
groups scheme 66, 67
locksmithctl 67
off scheme 66
reboot scheme 66
LogEntries
about 303
architecture 304
Container logs, exporting 306-308

CoreOS journal logs, exporting 304, 305

URL 310

logging drivers, Docker
about 301
journald driver 302
JSON-file driver 301, 302
Syslog driver 302

Magnum
about 276
advantages 278
architecture 276, 277
constructs 277
installing 278
Mantl project
URL 341
manual installation, of Flannel 124
Mesos
about 248
architecture 248
URL 32
microservice infrastructure
about 338
platform choices 338, 339
solution providers 339, 340
minimalist Container optimized OS
about 4
characteristics 4
minimalist operating system
URL 32

N

Nautilus 338
network storage 160
NFS
about 160, 189
storage, mounting 163-166
used, for Container data
persistence 189-192
Nodes 277
Nova Docker driver
about 270
architecture 270, 271
installing 271

[351]

(0

object storage 160
Object Storage Daemons (OSD) 189
Omaha update protocol
URL 73
Open Container Initiative (OCI)
about 202
latest updates 203
relationship, with APPC 203
runc 202
Open Container Specification 29
OpenlD connect (OIDC) 336
OpenStack
about 263
overview 263, 264
reference 264
services 264
working with Containers 270
OpenStack Kuryr
about 280
advantages 281, 282
architecture 280
current state 282
roadmap 282
OpenStack Neutron
properties 279

P

PaaS
comparing, URL 342
URL 341, 342

packaged Container orchestration solutions

about 253, 254
AWS EC2 Container Service (ECS) 254
components 253
partition table 61, 62
Plugin like Flannel 130
Pods
about 231, 277
application deployment patterns 232

R

Raft consensus algorithm
URL 16
Rancher
Ansible with Docker, URL 342
Registrator
URL 341
used, for service discovery 313, 314
release cycle
about 59-61
URL 60
Reliable Autonomic Distributed Object
Store (RADOS) 189
REST APIs
URL 298
Rkt
about 216
advantages 28
and Docker, differentiating between 30
basic commands 218
image signing 221, 222
stages 216,217
with Flannel 224-227
with systemd 223, 224
Role-based access control (RBAC) 338

S

sample cloud-config file 35, 36
SELinux

about 325

URL 325
server certificate

used, for performing etcd secure

client-to-server communication 89

Service architecture

Infrastructure as a Service (laaS) 323

Software as a Service (SaaS) 323
service discovery

Consul, using 313-316

dynamic load balancing 316

Registrator, using 313-316

URL 342

[352]

service discovery, Fleet
about 113
ELB service discovery 118-120
etcd-based discovery 113,114
sidekick discovery 115-117
URL 121
Sidecar pattern 318
Side kick container 115,117
SSH agent forwarding
reference link 56
standards
about 196
app container specification 196
stateful Containers
URL 342
storage
concepts 160
Storage Area Network (SAN) 263
storage drivers
about 166
AUFS 167
BTRTS 167
device mapper 167
OverlayFS 167
ZFS 167
Sysdig
about 288, 289
architecture 289
cloud 293-295
csysdig 292
example 290, 291
integration, with Kubernetes 295
URL 310
sysdig cloud
about 293
installing, steps 293, 294
systemctl 54, 55
systemd
about 10, 95
drop-in units 101
init systems 10

init systems, common functionality 11

network units 105
service, starting procedure 14, 15
specifics 11

systemd HA, demonstrating 15, 16
units 11
unit specifiers 96, 97
unit templates 98-100
unit types 95, 96
URL 121

Systemd creator
URL 121

systemd units
Docker.service 13, 14
Etcd2.service 11,12
Fleet.service 12

T

template file, CoreOS cluster
reference link 48
The Update Framework (TUF) project 212
three-node cluster, with dynamic discovery
about 42
discovery token, generating 42
steps, for cluster creation 42, 43
three-node CoreOS cluster
setting up, with Flannel 131-133
setting up, with Rkt 131-133
three-node Vagrant CoreOS cluster
setting up, with Docker 130, 131
setting up, with Flannel 130, 131
Toolbox
about 285-287

URL 309
Tutum
about 338
URL 341
U
ucrp
about 338
URL 341

Union filesystem 168, 169
unit specifiers, etcd

about 96-98

URL 96
unit templates, etcd 98-100

[353]

unit types, etcd
mount unit 96
service unit 95
socket unit 95
target unit 95
timer unit 96
Universal Control Plane (UCP) 327
update-engine.service
about 64
debugging 65
update examples
about 69
release channels, switching 71
within same release channel 69, 70
update options
cloud-config, using 68
manual configuration 68, 69
setting 67
UserID (UID) 164

\'

Vagrant 1.7.2
reference link 40
Vagrant CoreOS update 72,73
Vagrant installation
reference link 58
Vagrant Ubuntu Flocker cluster
URL 178
valid cloud-config
about 38
reference link 38
versions, etcd
about 76
updates 76
Virtualbox 4.3.28
reference link 40
vxlan networking

used, for creating GCE cluster 137, 138

VXLAN networking
used, for creating AWS cluster 134

w

Weave networking 152, 153
worker 46

[354]

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: CoreOS Overview
	Distributed application development
	Components of distributed application development
	Advantages and disadvantages

	A minimalist Container-optimized OS
	Containers
	Technology
	Advantages
	An overview of Docker architecture
	Advantages of Docker

	CoreOS
	Properties
	Advantages
	Supported platforms
	CoreOS components
	Kernel
	Systemd
	Etcd
	Fleet
	Flannel
	Rkt

	The CoreOS cluster architecture
	The development cluster
	The production cluster

	Docker versus Rkt
	History
	APPC versus OCI
	The current status
	Differences between Docker and Rkt

	A workflow for distributed application development with Docker and CoreOS
	Summary
	References
	Further reading and tutorials

	Chapter 2: Setting up the CoreOS Lab
	Cloud-config
	The CoreOS cloud-config file format
	The main sections of cloud-config
	A sample CoreOS cloud-config

	The cloud-config validator
	A hosted validator
	The cloudinit validator

	Executing cloud-config

	The CoreOS cluster with Vagrant
	Steps to start the Vagrant environment
	Important files to be modified
	Vagrantfile
	User-data
	Config.rb

	Vagrant – a three-node cluster with dynamic discovery
	Generating a discovery token
	Steps for cluster creation

	Vagrant – a three-node cluster with static discovery
	Vagrant – a production cluster with three master nodes and three worker nodes

	A CoreOS cluster with AWS
	AWS – a three-node cluster using Cloudformation
	AWS – a three-node cluster using AWS CLI

	A CoreOS cluster with GCE
	GCE – a three-node cluster using GCE CLI

	CoreOS installation on Bare Metal
	Basic debugging
	journalctl
	systemctl
	Cloud-config
	Logging from one CoreOS node to another
	Important files and directories
	Common mistakes and possible solutions

	Summary
	References
	Further reading and tutorials

	Chapter 3: CoreOS Autoupdate
	The CoreOS release cycle
	The partition table on CoreOS
	CoreOS automatic update
	Update and reboot services
	Update-engine.service
	Debugging update-engine.service

	Locksmithd.service
	Locksmith strategy
	Groups
	Locksmithctl
	Debugging locksmithd.service

	Setting update options
	Using cloud-config
	Manual configuration

	Update examples
	Updating within the same release channel
	Updating from one release channel to another

	CoreUpdate
	Vagrant CoreOS update
	Summary
	References
	Further reading and tutorials

	Chapter 4: CoreOS Primary Services – Etcd, Systemd, and Fleet
	Etcd
	Versions
	Installation
	Standalone installation

	Accessing etcd
	REST
	Etcdctl

	Etcd configuration
	Etcd operations
	Etcd tuning
	Etcd proxy
	Adding and removing nodes from a cluster
	Node migration and backup
	Etcd security
	Certificate authority – etcd-ca
	Installing etcd-ca
	Etcd secure client-to-server communication using
a server certificate
	Etcd secure client-to-server communication using server certificate and client certificate
	A secure cloud-config

	Authentication
	Etcd debugging

	Systemd
	Unit types
	Unit specifiers
	Unit templates
	Drop-in units
	Default cloud-config drop-in units
	Cloud-config custom drop-in units
	Runtime drop-in unit – specific parameters
	Runtime drop-in unit – full service

	Network units

	Fleet
	Installation
	Accessing Fleet
	Local fleetctl
	Remote fleetctl
	Remote fleetctl with an SSH tunnel
	Remote HTTP
	Using etcd security

	Templates, scheduling, and HA
	Debugging
	Service discovery
	Simple etcd-based discovery
	Sidekick discovery
	ELB service discovery

	Summary
	References
	Further reading and tutorials

	Chapter 5: CoreOS Networking and Flannel Internals
	Container networking basics
	Flannel
	Manual installation
	Installation using flanneld.service
	Control path
	Data path
	Flannel as a CNI plugin
	Setting up a three-node Vagrant CoreOS cluster with Flannel and Docker
	Setting up a three-node CoreOS cluster with Flannel and RKT
	An AWS cluster using Flannel
	An AWS cluster using VXLAN networking
	An AWS cluster using AWS-VPC

	A GCE cluster using Flannel
	GCE cluster using VXLAN networking
	A GCE cluster using GCE networking

	Experimental multitenant networking
	Experimental client-server networking
	Setting up client-server Flannel networking

	Docker networking
	Docker experimental networking
	A multinetwork use case
	The Docker overlay driver
	The external networking calico plugin

	The Docker 1.9 update

	Other Container networking technologies
	Weave networking
	Calico networking
	Setting up Calico with CoreOS
	Kubernetes networking

	Summary
	References
	Further reading and tutorials

	Chapter 6: CoreOS Storage Management
	Storage concepts
	The CoreOS filesystem
	Mounting the AWS EBS volume
	Mounting NFS storage
	Setting up NFS server
	Setting up the CoreOS node as a client for the NFS

	The container filesystem
	Storage drivers
	Docker and the Union filesystem

	Container data
	Docker volumes
	Container volume
	Volumes with the host mount directory
	A data-only container
	Removing volumes

	The Docker Volume plugin
	Flocker
	GlusterFS

	Ceph
	NFS
	Container data persistence using NFS

	The Docker 1.9 update
	Summary
	References
	Further reading and tutorials

	Chapter 7: Container Integration with CoreOS – Docker and Rkt
	Container standards
	App container specification
	The Container image format
	APPC tools
	Open Container Initiative
	Libnetwork
	CNI
	The relationship between Libnetwork and CNI
	Cloud Native Computing Foundation

	Docker
	The Docker daemon and an external connection
	Dockerfile
	The Docker Image repository
	Creating your own Docker registry
	Continuous integration

	The Docker content trust
	Pushing secure image
	Pulling secure image
	Pulling same image with no security

	Container debugging
	Logs
	Login inside Container
	Container properties
	Container processes
	The Container's CPU and memory usage

	Rkt
	Basic commands
	Fetch image
	List images
	Run image
	List pods
	Garbage collection
	Delete image
	Export image
	The nginx container with volume mounting and port forwarding
	Pod status

	Rkt image signing
	Rkt with systemd
	Rkt with Flannel

	Summary
	References
	Further reading and tutorials

	Chapter 8: Container Orchestration
	Modern application deployment
	Container Orchestration
	Kubernetes
	Concepts of Kubernetes
	Kubernetes architecture
	Kubernetes installation
	An example of a Kubernetes application
	Kubernetes with Rkt
	Kubernetes 1.1 update

	Docker Swarm
	The Docker Swarm installation
	An example of Docker Swarm

	Mesos
	Comparing Kubernetes, Docker Swarm, and Mesos

	Application definition
	Docker-compose
	A single-node application
	A multinode application

	Packaged Container Orchestration solutions
	The AWS Container service
	Installing ECS and an example

	Google Container Engine
	Installing GCE and an example

	CoreOS Tectonic

	Summary
	References
	Further reading and tutorials

	Chapter 9: OpenStack Integration with Containers and CoreOS
	An overview of OpenStack
	CoreOS on OpenStack
	Get OpenStack Kilo running in Devstack
	Setting up keys and a security group
	Setting up external network access
	Download the CoreOS image and upload
to Glance
	Updating the user data to be used for CoreOS

	OpenStack and Containers
	The Nova Docker driver
	Installing the Nova Driver

	Installing Docker
	Install the Nova Docker plugin

	The Devstack installation
	The Heat Docker plugin
	Installing the Heat plugin

	Magnum
	The Magnum architecture
	Installing Magnum

	Container networking using OpenStack Kuryr
	OpenStack Neutron
	Containers and networking
	OpenStack Kuryr
	The current state and roadmap of Kuryr

	Summary
	References
	Further reading and tutorials

	Chapter 10: CoreOS and Containers – Troubleshooting and Debugging
	CoreOS Toolbox
	Other CoreOS debugging tools
	Container monitoring
	Sysdig
	Examples of Sysdig
	Csysdig
	The Sysdig cloud
	Kubernetes integration

	Cadvisor

	The Docker remote API
	Container logging
	Docker logging drivers
	The JSON-file driver
	The Syslog driver
	The journald driver

	Logentries
	Exporting CoreOS journal logs
	Container logs

	Summary
	References
	Further reading and tutorials

	Chapter 11: CoreOS and Containers – Production Considerations
	CoreOS cluster design considerations
	The update strategy
	Cluster considerations

	Distributed infrastructure design considerations
	Service discovery
	Service discovery using Registrator and Consul
	Dynamic load balancing

	Deployment patterns
	The Sidecar pattern
	The Ambassador pattern
	The Adapter pattern
	Rolling updates with the Canary pattern

	Containers and PaaS
	Stateful and Stateless Containers

	Security
	Secure the external daemons
	SELinux
	Container image signing

	Deployment and automation
	Continuous Integration and Continuous Delivery
	Ansible integration with CoreOS and Docker
	Using Ansible to manage CoreOS
	Using Ansible to manage Docker Containers
	Ansible as a Container
	Using Ansible to install Docker

	The CoreOS roadmap
	Ignition
	DEX
	Clair

	The Docker roadmap
	Tutum
	UCP
	Nautilus

	Microservices infrastructure
	Platform choices
	Solution providers

	Summary
	References
	Further reading and tutorials

	Index

