
[1]

Mastering Docker

Rethink what's possible with Docker—become
an expert in the innovative containerization tool to
unlock new opportunities in the way you use and
deploy software

Scott Gallagher

BIRMINGHAM - MUMBAI

Mastering Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1111215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-703-9

www.packtpub.com

www.packtpub.com

Credits

Author
Scott Gallagher

Reviewer
Tommaso Patrizi

Commissioning Editor
Edward Gordon

Acquisition Editor
Reshma Raman

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Ankita Thakur

Copy Editor
Akshata Lobo

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Scott Gallagher has been fascinated with technology since he played Oregon
Trail in elementary school. His love continued through middle school as he worked
on more Apple IIe computers. In high school, he learned how to build computers
and program in BASIC! His college years were all about server technologies such as
Novell, Microsoft, and Red Hat. After college, he continued to work on Novell, all
while maintaining an interest in all the technologies. He then moved into managing
Microsoft environments and eventually into what he was most passionate about—
Linux environments. Now, his focus is around Docker and cloud environments.

I would like to thank my family for their support not only while I
worked on this book, but throughout my life and career. A special
thank you goes to my wife, who is my soul mate, the love of my life,
the most important person in my life, and the reason I push myself
to be the best I can be each day. I would also like to thank my kids,
who are the most amazing thing in this world; I truly am blessed to
be able to watch them grow each day. And lastly, I want to thank my
parents, who helped me become the person I am today.

About the Reviewer

Tommaso Patrizi is a Docker fan. He has been using the technology since its first
releases, having machines in production with Docker since its version 0.6.0. He
planned and deployed a basic private PaaS with Docker and Open vSwitch. He is
an enthusiastic Ruby and Ruby on Rails coder. He is striving for simplicity as the
perfect synthesis between code effectiveness, maintainability, and beauty. He is
actually learning some functional tricks through Haskell.

Tommaso is a system administrator with broad OS (Microsoft Windows, Linux, and
OS X), database (SQL Server, MySQL, PostgreSQL and PostGIS, and OrientDB), and
virtualization and cloud (vSphere, VirtualBox, and Docker) knowledge.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 ix
Chapter 1: Docker Review	 1

Understanding Docker	 2
Difference between Docker and typical VMs	 2
Dockerfile	 3
Docker networking/linking	 5

Docker installers/installation	 6
Types of installers	 6
Controlling the Docker VM (boot2docker)	 7
Docker Machine – the new boot2docker	 8
Kitematic	 8

The Docker commands	 11
The Docker images	 13
Searching for the Docker images	 14
Manipulating the Docker images	 16

Stopping containers	 17
Summary	 19

Chapter 2: Up and Running	 21
Dockerfile	 21

A short review of Dockerfile	 22
Reviewing Dockerfile in depth	 22
LABEL	 23
ADD or COPY	 23
ENTRYPOINT	 23
USER	 23
WORKDIR	 24
ONBUILD	 24

Dockerfile – best practices	 24

Table of Contents

[ii]

Docker build	 25
The docker build command	 25

.dockerignore	 26
Building images using Dockerfile	 27
Building a base image using an existing image	 28
Building your own containers	 29

Using tar	 29
Using scratch	 30

Docker Hub	 30
The Docker Hub location	 31
Public repositories	 31
Private repositories	 32
Docker Hub Enterprise	 32

Environmental variables	 32
Using environmental variables in your Dockerfile	 32
Creating a MySQL username, database, and setting permissions	 33
Adding a file to the system	 34

Docker volumes	 35
Data volumes	 36
Data volume containers	 38

Docker volume backups	 39
Summary	 40

Chapter 3: Container Image Storage	 41
Docker Hub	 41

Dashboard	 42
Explore the repositories page	 43
Organizations	 43
The Create menu	 45
Settings	 46
The Stars page	 48

Docker Hub Enterprise	 48
Comparing Docker Hub to Docker Subscription	 48
Docker Subscription for server	 49
Docker Subscription for cloud	 49

Docker Registry	 49
An overview of Docker Registry	 50
Docker Registry versus Docker Hub	 50

Automated builds	 50
Setting up your code	 51
Setting up Docker Hub	 52

Table of Contents

[iii]

Putting all the pieces together	 53
Creating your own registry	 54

Summary	 55
Chapter 4: Managing Containers	 57

The Docker commands	 57
docker attach	 58
docker diff	 59
docker exec	 60
docker history	 60
docker inspect	 61
docker logs	 64
docker ps	 65
docker stats	 65
docker top	 66

Using your existing management suite	 66
Puppet	 66
Chef	 67
Ansible	 68
SaltStack	 69

Docker Swarm	 69
What is Docker Swarm?	 70
What can Docker Swarm do?	 70

Summary	 71
Chapter 5: Docker Security	 73

Containers versus VMs	 73
The good	 73
The not so bad	 74
What to look out for	 74

The Docker commands	 75
docker run	 75
docker diff	 76

Docker security – best practices	 77
Docker – best practices	 77
CIS guide – host configuration	 77
CIS guide – Docker daemon configuration	 78
CIS guide – Docker daemon configuration files	 78
CIS guide – container images/runtime	 78
CIS guide – Docker security operations	 78

Table of Contents

[iv]

The Docker bench security application	 79
Running the tool	 79
Understanding the output	 83

Summary	 87
Chapter 6: Docker Machine	 89

Installation	 89
Using Docker Machine	 90

Local VM	 90
Cloud environment	 90

Docker Machine commands	 91
active	 92
config	 92
env	 92
inspect	 92
ip	 93
kill	 93
ls	 94
restart	 94
rm	 94
scp	 95
ssh	 95
start	 95
stop	 95
upgrade	 96
url	 96
TLS	 96

Summary	 97
Chapter 7: Docker Compose	 99

Installing Docker Compose	 99
Installing on Linux	 99
Installing on OS X and Windows	 100

Docker Compose YAML file	 100
The Docker Compose usage	 100

The Docker Compose options	 101
The Docker Compose commands	 103

build	 104
kill	 104
logs	 105
port	 106

Table of Contents

[v]

ps	 107
pull	 108
restart	 109
rm	 109
run	 110
scale	 110
start	 111
stop	 112
up	 113
version	 114

Docker Compose – examples	 115
image	 115
build	 120
The last example	 120

Summary	 122
Chapter 8: Docker Swarm	 123

Docker Swarm install	 123
Installation	 123

Docker Swarm components	 124
Swarm	 124
Swarm manager	 124
Swarm host	 124

Docker Swarm usage	 125
Creating a cluster	 125
Joining nodes	 127
Listing nodes	 127
Managing a cluster	 128

The Docker Swarm commands	 130
Options	 130
list	 131
create	 131
manage	 131

The Docker Swarm topics	 132
Discovery services	 132
Advanced scheduling	 133
The Swarm API	 135

The Swarm cluster example	 137
Summary	 139

Table of Contents

[vi]

Chapter 9: Docker in Production	 141
Where to start?	 141

Setting up hosts	 141
Setting up nodes	 142

Host management	 143
Host monitoring	 143
Docker Swarm	 143
Swarm manager failover	 144

Container management	 144
Container image storage	 144
Image usage	 145
The Docker commands and GUIs	 145
Container monitoring	 145
Automatic restarts	 146
Rolling updates	 146

Docker Compose usage	 147
Developer environments	 147
Scaling environments	 147

Extending to external platform(s)	 148
Heroku	 148

Overall security	 149
Security best practices	 149

DockerUI	 150
ImageLayers	 156
Summary	 163

Chapter 10: Shipyard	 165
Up and running	 165
Containers	 168

Deploying a container	 169
IMAGES	 170

Pulling an image	 171
NODES	 172
REGISTRIES	 173
ACCOUNTS	 174
EVENTS	 175
Back to CONTAINERS	 176
Summary	 180

Table of Contents

[vii]

Chapter 11: Panamax	 181
Installing Panamax	 181
An example	 185

Applications	 188
Sources	 189
Images	 190
Registries	 191
Remote Deployment Targets	 192
Back to Applications	 193
Adding a service	 194
Configuring the application	 196

Service links	 197
Environmental variables	 198
Ports	 199
Volumes	 200
Docker Run Command	 201

Summary	 201
Chapter 12: Tutum	 203

Getting started	 203
The tutorial page	 204
The Service dashboard	 205
The Nodes section	 206
Cloud Providers	 207
Back to Nodes	 211
Back to the Services section	 217

Containers	 221
Endpoints	 222
Logs	 223
Monitoring	 224
Triggers	 225
Timeline	 226
Configuration	 227

The Repositories tab	 228
Stacks	 229
Summary	 236

Chapter 13: Advanced Docker	 237
Scaling Docker	 238
Using discovery services	 238

Consul	 239

Table of Contents

[viii]

etcd	 239
Debugging or troubleshooting Docker	 240

Docker commands	 240
GUI applications	 241
Resources	 241

Common issues and solutions	 241
Docker images	 241
Docker volumes	 242
Using resources	 243

Various Docker APIs	 243
docker.io accounts API	 244
Remote API	 244

Keeping your containers in check	 245
Kubernetes	 245
Chef	 245
Other solutions	 246

Contributing to Docker	 246
Contributing to the code	 246
Contributing to support	 247
Other contributions	 247

Advanced Docker networking	 248
Installation	 248
Creating your own network	 251
Networking plugins	 252

Summary	 253
Index	 255

[ix]

Preface
So hot off the presses, the latest buzz that has been on the tip of everyone's tongues
and the topic of almost any conversation that includes containers these days is
Docker! With this book, you will go from just being the person in the office who
hears that buzz to the one who is tooting it around every day. Your fellow office
workers will be flocking to you for anything related to Docker and shower you with
gifts—well, maybe not gifts, but definitely tapping your brain for knowledge!

What this book covers
Chapter 1, Docker Review, will just be a review of Docker. If you are new to Docker,
then this chapter will get you going for the future chapters. This chapter will cover
the items you would see in the Docker command line as well as the purpose of
Dockerfile and the contents that are contained inside it.

Chapter 2, Up and Running, will explain how to go from just reading the
documentation and looking at the help contents of files to running some Docker
commands. You will also learn how to create or build your own base containers,
which will be the basis of all your future containers. Learn how to create and manage
Docker volumes and how to pass environmental variables during the build process.

Chapter 3, Container Image Storage, will show the locations to store items such as
Docker Hub and the Docker Hub Enterprise. What are the differences between
the two. When should you use one over the other. It will help you answer these
questions. Also, you'll learn how to set up automated image builds based off the
code you have stored in places such as GitHub. What are the pieces you need to get
all this set up and working.

Preface

[x]

Chapter 4, Managing Containers, will show how you can manage all the containers you
have created and stored. In this chapter, the focus will be on using the command line.
So, if you do decide to use a GUI application at a later time, you will understand what
is happening in the background and also have a resource to fall back on if needed.

Chapter 5, Docker Security, covers security that has unfortunately become the main
focus of not just systems administrators, but everyone involved in projects these
days. What are the benefits of using containers over using traditional virtual
machines. What is this new Docker security configuration tool that you can use to
help you assist with your setup environments. What should you be looking out for?
Dive in and let's take a look at it together!

Chapter 6, Docker Machine, talks about the future replacement of the boot2docker
instance. Docker Machine is the future of creating your Docker Host environments.
With Docker Machine, you can create the hosts of almost any environment from
your local command line. You can create them to locally test in VMware Fusion or
VirtualBox, or you can create some of them in cloud environments such as AWS,
Azure, DigitalOcean, and many more. Come, learn how you can do this!

Chapter 7, Docker Compose, covers one of the most popular items when it comes to
Docker—Docker Compose. So, what can you do with this magical tool? Docker
Compose helps eliminate the "well it works just fine on my machine." With
Compose, you can have the environments set up with all the resources tied together
as you want them and hand them off to both the Dev side of the team as well as
the Ops side. If it works for one person, it will work for others and vice versa. If
something doesn't work, it will help you troubleshoot by replicating the issue with
defined steps. You will learn how to use Compose to set up these environments as
well as the file structure of the file that Compose references.

Chapter 8, Docker Swarm, is all about how you can cluster your containers together.
With Docker Swarm, you can accomplish this task. You will learn how to install
and set up these environments. By default, Docker Swarm uses HTTP for
communication. You will learn how to set it up to use TLS for secure communication
between all your cluster nodes and Swarm manager.

Chapter 9, Docker in Production, says it's time to deploy Docker in your production
environment now that you have all the tools in your arsenal. But how do we go
about doing this? Let's take a look at the first step on how to do this as well as
monitor everything we have set up and running. You will learn items such as how
to ensure containers restart when and if there was an error. Also, you will learn how
extend to external platforms such as Heroku.

Preface

[xi]

Chapter 10, Shipyard, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. We will do a
complete walkthrough, from installation to every piece of the Shipyard UI. You will
be able to see the benefits of using such a GUI to help manage your environment.

Chapter 11, Panamax, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. We will do a
complete walkthrough, from installation to every piece of the Panamax UI. This will
leave you with the ability to evaluate which GUI is right for your needs.

Chapter 12, Tutum, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. Tutum is the latest
acquisition by Docker, so this software will only continue to evolve and become
more baked into the Docker ecosystem. We will do a complete walkthrough, from
installation to every piece of the Tutum UI.

Chapter 13, Advanced Docker, will explain some advance items such as:

•	 Scaling Docker: We'll look at how we can scale our environments.
•	 Using discovery services: We'll look at using discovery services to help scale

our environments.
•	 Debugging/Troubleshooting Docker: We'll look at debugging and

troubleshooting Docker issues that crop up.
•	 Common issues and solutions: We'll look at the common issues that are

faced as well as the solutions to fix them.
•	 Various Docker APIs: We'll look at the Docker APIs that are out there and

how to tie into them and use them to our advantage.
•	 Keeping your containers in check: We'll look at how we can keep our

containers in check. If they fall out of check, how we can put them back
in place.

•	 Contributing to Docker: We'll look at how we can contribute to Docker.
If we can't contribute to the code, how we can help otherwise.

•	 Advanced Docker networking: We'll look at the future of Docker
networking and what is coming next that will only enhance our environment.

What you need for this book
The book will walk you through the installation of any tool that you need. You will
need a system with Windows, Mac OS, or Linux installed; preferably the latter of the
three, as well as an Internet connection.

Preface

[xii]

Who this book is for
The reader at the start of the book should be an experienced Linux developer
with some understanding of the Linux filesystems as well as the concept of Linux
Container Virtualization. They must have some experience developing services
and applications. They should also have knowledge of the fundamentals of Docker,
though we will re-establish these fundamentals in the first chapter or two for clarity.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For
example, in an Ubuntu-based system, if you want to install the Apache package, you
would first do an apt-get update followed by an apt-get install -y apache2."

A block of code is set as follows:

master:
image:
scottpgallagher/galeramaster
hostname:
master
ports:
 - "3306:3306"
node1:
image:
scottpgallagher/galeranode
hostname:
 node1
links:
 - master
node2:
image:
scottpgallagher/galeranode
hostname:
 node2
links:
 - master

Preface

[xiii]

Any command-line input or output is written as follows:

$ docker pull tutum/ubuntu

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
search for prebuilt images on the Docker Hub and click on the CREATE button once
you have found the one you want to use or test."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

[1]

Docker Review
Welcome to the Mastering Docker book! The first chapter will cover the Docker basics
that you should already have a pretty good handle on. But if you don't already have
the required knowledge at this point, this chapter will help give you the basics,
so the future chapters don't feel as heavy. By the end of the book, you should be a
Docker master able to implement Docker in your own environments, building and
supporting applications on top of these environments.

In this chapter, we're going to review the following higher level topics with subtopics
in each section:

•	 Understanding Docker
°° Docker versus typical VMs
°° The Dockerfile and its function
°° Docker networking/linking

•	 Docker installers/installation
°° Types of installers and how they operate
°° Controlling your Docker daemon
°° The Kitematic GUI

•	 Docker commands
°° Useful commands for Docker, Docker images, and Docker containers

Docker Review

[2]

Understanding Docker
In this section, we will be covering the structure of Docker and the flow of what
happens behind the scenes in this world. We will also take a look at Dockerfile
and all the magic it can do. Lastly, in this section, we will look at the Docker
networking/linking.

Difference between Docker and typical VMs
First, we must know what exactly Docker is and does. Docker is a container
management system that helps easily manage Linux Containers (LXC) in an easier
and universal fashion. This lets you create images in virtual environments on your
laptop and run commands or operations against them. The actions you do to the
containers that you run in these environments locally on your own machine will
be the same commands or operations you run against them when they are running
in your production environment. This helps in not having to do things differently
when you go from a development environment like that on your local machine to
a production environment on your server. Now, let's take a look at the differences
between Docker containers and the typical virtual machine environments.

In the following illustration, we can see the typical Docker setup on the right-hand
side versus the typical VM setup on the left-hand side:

Chapter 1

[3]

This illustration gives us a lot of insight into the biggest key benefit of Docker, that
is, there is no need for a complete operating system every time we need to bring up
a new container, which cuts down on the overall size of containers. Docker relies
on using the host OS's Linux kernel (since almost all the versions of Linux use the
standard kernel models) for the OS it was built upon, such as Red Hat, CentOS,
Ubuntu, and so on. For this reason, you can have almost any Linux OS as your host
operating system (Ubuntu in the previous illustration) and be able to layer other
OSes on top of the host. For example, in the earlier illustration, we could have Red
Hat running for one app (the one on the left) and Debian running for the other app
(the one on the right), but there would never be a need to actually install Red Hat or
Debian on the host. Thus, another benefit of Docker is the size of images when they
are born. They are not built with the largest piece: the kernel or the operating system.
This makes them incredibly small, compact, and easy to ship.

Dockerfile
Next, let's take a look at the most important file pertaining to Docker: Dockerfile.
Dockerfile is the core file that contains instructions to be performed when an image
is built. For example, in an Ubuntu-based system, if you want to install the Apache
package, you would first do an apt-get update followed by an apt-get install
-y apache2. These would be the type of instructions you would find inside a typical
Dockerfile. Items such as commands, calls to other scripts, setting environmental
variables, adding files, and setting permissions can all be done via Dockerfile.
Dockerfile is also where you specify what image is to be used as your base image for
the build. Let's take a look at a very basic Dockerfile and then go over the individual
pieces that make one up and what they all do:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

Docker Review

[4]

These are the typical items you would find in a basic Dockerfile. The first line states
the image we want to start off with when we build the container. In this example,
we will be using Ubuntu; the item after the colon can be called if you want a specific
version of it. In this case, I am just going to say use the latest version of Ubuntu;
but you will also specify trusty, precise, raring, and so on. The second line is
the line that is relevant to the maintainer of Dockerfile. In this case, I just have my
information in there; well, at least, my name is there. This is for people to contact
you if they have any questions or find any errors in your file. Typically, most people
just include their name and e-mail address. The next line is a typical line you will
see while pulling updates and packages in an Ubuntu environment. You might
think they should be separate and wonder why they should be put on the same line
separated by &&. Well, in the Dockerfile, it helps by only having to run one process
to encompass the entire line. If you were to split it into separate lines, it would
have to run one process, finish the process, then start the next process, and finish
it. With this, it helps speed up the process by pairing the processes together. They
still run one after another, but with more efficiency. The next two lines complement
each other. The first adds your custom configurations to the path you specified and
changes the owner and group owner to the root user. The EXPOSE line will expose
the ports to anything external to the container and to the host it is running on. (This
will, by default, expose the container externally beyond the host, unless the firewall
is enabled and protecting it.) The last line is the command that is run when the
container is launched. This particular command in a Dockerfile should only be used
once. If it is used more than once, the last CMD in the Dockerfile will be launched
upon the container that is running. This also helps emphasize the one process per
container rule. The idea is to spread out the processes so that each process runs in its
own container, thus the value of the containers will become more understandable.
Essentially, something that runs in the foreground, such as the earlier command
to keep the Apache running in the foreground. If we were to use CMD ["service
apache2 start"], the container would start and then immediately stop. There is
nothing to keep the container running. You can also have other instructions, such as
ENV to specify the environmental variables that users can pass upon runtime. These
are typically used and are useful while using shell scripts to perform actions such as
specifying a database to be created in MySQL or setting permission databases. We
will be covering these types of items in a later chapter, so don't worry about looking
them up right now.

Chapter 1

[5]

Docker networking/linking
Another important aspect that needs to be understood is how Docker containers
are networked or linked together. The way they are networked or linked together
highlights another important and large benefit of Docker. When a container is
created, it creates a bridge network adapter for which it is assigns an address; it
is through these network adapters that the communication flows when you link
containers together. Docker doesn't have the need to expose ports to link containers.
Let's take a look at it with the help of the following illustration:

In the preceding illustration, we can see that the typical VM has to expose ports for
others to be able to communicate with each other. This can be dangerous if you don't
set up your firewalls or, in this case with MySQL, your MySQL permissions correctly.
This can also cause unwanted traffic to the open ports. In the case of Docker, you
can link your containers together, so there is no need to expose the ports. This adds
security to your setup, as there is now a secure connection between your containers.

We've looked at the differences between Docker and typical VMs, as well as the
Dockerfile structure and the components that make up the file. We also looked at how
Docker containers are linked together for security purposes as opposed to typical VMs.
Now, let's review the installers for Docker and the structure behind the installation
once they are installed, manipulating them to ensure they are operating correctly.

Docker Review

[6]

Docker installers/installation
Installers are one of the first pieces you need to get up and running with Docker on
both your local machine as well as your server environments. Let's first take a look at
what environments you can install Docker in:

•	 Apple OS X (Mac)
•	 Windows
•	 Linux (various Linux flavors)
•	 Cloud (AWS, DigitalOcean, Microsoft Azure, and so on)

Types of installers
With the various types of installers listed earlier, there are different ways Docker
actually operates on the operating system. Docker natively runs on Linux; so if you
are using Linux, then it's pretty straightforward how Docker runs right on your
system. However, if you are using Windows or Mac OS X, then it operates a little
differently, since it relies on using Linux. With these operating systems, they need
Linux in some sort of way, thus enters the virtual machine needed to run the Linux
part that Docker operates on, which is called boot2docker. The installers for both
Windows and Mac OS X are bundled with the boot2docker package alongside the
virtual machine software that, by default, is the Oracle VirtualBox.

Now, it is worthwhile to note that Docker recently moved away from offering
boot2docker. But, I feel, it is important to understand the boot2docker terms and
commands in case you run across anyone running the previous version of the Docker
installer. This will help you understand what is going on and move forward to the
new installer(s). Currently, they are offering up Docker Toolbox that, like the name
implies, includes a lot of items that the installer will install for you. The installers for
each OS contain different applications with regards to Docker such as:

Docker Toolbox piece Mac OS X Windows
Docker Client X X
Docker Machine X X
Docker Compose X
Docker Kitematic X X
VirtualBox X X

First, let's take a look at the older style commands of boot2docker. Then, we will
take a look at the new commands or application that you can use to achieve these
outcomes.

Chapter 1

[7]

Controlling the Docker VM (boot2docker)
Now, there are ways to run boot2docker on different VM software. But to start off,
VirtualBox is the best and easiest way to operate boot2docker:

$ boot2docker

Usage: boot2docker [<options>] {help|init|up|ssh|save|down|poweroff|reset
|restart|config|status|info|ip|shellinit|delete|download|upgrade|version}
[<args>]

Now, after we have installed Docker on Linux, OS X, or Windows, how do we
go about controlling this virtual machine in the events when we need to start it
up, restart it, or even shut it down? This is where the boot2docker command-line
parameters come into play.

As you can see in the earlier illustration, there are a lot of options you can use for
your boot2docker instance. The options you will use mostly are up, down, poweroff,
restart, status, ip, upgrade, and version. Some of these commands you will use
mostly to troubleshoot items when you are trying to see why the Docker commands
might hang, or when you run into any other issues with your boot2docker virtual
machine. You can see what each command does by executing the following command:

$ boot2docker help

The most useful command that I have found while troubleshooting is the
boot2docker status command:

$ boot2docker status

Another useful boot2docker command is:

$ boot2docker version

This command will help see what version of boot2docker you are currently running.
This is helpful in knowing when to use the boot2docker upgrade command. The
last command we will look at with respect to boot2docker is the boot2docker ip
command. This command is very useful when you need to know what IP address is
to be used to access the machines you have been running on a particular host:

$ boot2docker ip

192.168.59.103

As you can see, the earlier command gives us the IP address of the boot2docker
client running on my OS X machine inside VirtualBox. By using this IP, I can now
access the containers I might have been running using the IP address alongside any
of the open ports I have exposed.

Docker Review

[8]

Docker Machine – the new boot2docker
So, with boot2docker on its way out, there needs to be a new way to do what
boot2docker does. This being said, enter Docker Machine. With Docker Machine,
you can do the same things you did with boot2docker, but now in Machine. The
following table shows the commands you used in boot2docker and what they are
now in Machine:

Command boot2docker Docker Machine
command boot2docker docker-machine

help boot2docker help docker-machine help

status boot2docker status docker-machine status

version boot2docker version docker-machine version

ip boot2docker ip docker-machine ip

Kitematic
Now that we have covered all the basics of controlling your boot2docker VM, let's
take a look at another way you can run Docker containers on your local machine.
Let's take a look at Kitematic. Kitematic is a recent addition to the Docker portfolio.
Up until now, everything we have done has been command line-based. With
Kitematic, you can manage your Docker containers through a GUI. Kitematic can
be used either on Windows or OS X, just not on Linux; besides who needs a GUI
on Linux anyways! Kitematic, just like boot2docker, operates on a VM defaulting
to VirtualBox. Pictures are worth a thousand words, so let's take a look at some
screenshots of Kitematic:

Chapter 1

[9]

The previous screenshot depicts what you will see when you launch Kitematic for
the first time.

After you start running the containers, they will show up on the left-hand side
column. You can manipulate and get information about them through the GUI. You
can search for prebuilt images on the Docker Hub and click on the CREATE button
once you have found the one you want to use or test.

In the preceding screenshot, we have created and are running the hello-world-nginx
image inside Kitematic. We can now use the STOP, RESTART, and EXEC commands
against the container as well as view the settings of the running container.

Docker Review

[10]

In the following screenshot, we can go to settings and view what ports are exposed
from the container to the outside:

Chapter 1

[11]

In the following screenshot, you can see that you can use your login credentials
to log in to the Docker Hub and view the repositories you have created and
pushed there:

The Docker commands
We have covered the types of installers and what they can be run on. We have
also seen how to control the Docker VM that gets created for you and how to use
Kitematic. Let's look at some Docker commands that you should be familiar with
already. We will start with some common commands and then take a peek at the
commands that are used for the Docker images. We will then take a dive into the
commands that are used for the containers.

Docker Review

[12]

The first command we will be taking a look at will be one of the most useful
commands not only in Docker but in any command-line utility you use—the help
command. It is run simply by executing the command as follows:

$ docker help

The earlier command will give you a full list of all the Docker commands at your
disposal and a brief description of what each command does. For further help with a
particular command, you can run the following:

$ docker <COMMAND> --help

You will then receive additional information on using the command, such as the
switches, arguments, and descriptions of the arguments. Similar to the boot2docker
version command we ran earlier, there is also a version command for the Docker
daemon:

$ docker version

Now, this command will give us a little bit more information than the boot2docker
command output, as follows:

Client version: 1.7.0

Client API version: 1.19

Go version (client): go1.4.2

Git commit (client): 0baf609

OS/Arch (client): darwin/amd64

Server version: 1.7.0

Server API version: 1.19

Go version (server): go1.4.2

Git commit (server): 0baf609

OS/Arch (server): linux/amd64

This is helpful when you want to see the version of the Docker daemon you may be
running to see if you need/want to upgrade.

Chapter 1

[13]

The Docker images
Next, let's take a dive into the Docker images. You will learn how to view the images
you currently have that you can run, search for images on the Docker Hub, and
pull them down to your environment, so you can run them. Let's first take a look at
the docker images command. Upon running the command, we will get an output
similar to the following output:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days
ago 188.3 MB

Your output will differ based on whether you have any images at all in your Docker
environment or upon what images you do have. There are a few important pieces
you need to understand from the output you see. Let's go over the columns and what
is contained in each. The first column you see is the REPOSITORY column; this column
contains the name of the repository as it exists in the Docker Hub. If you were to
have a repository that was from someone's user account, it may show up as follows:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

scottpgallagher/mysql latest 57df9c7989a1 9 weeks
ago 321.7 MB

The next column, the TAG column, will show you different versions of a repository.
As you can see in the preceding example with the Ubuntu repository, there are tag
names for the different versions. So, if you want to specify a particular version of a
repository in your Dockerfile (as we saw earlier), you are able to. This is useful, so
you're not always reliant on having to use the latest version of an operating system
and can use the one your application supports the best. It can also help you do
backward compatibility testing for your application.

The next column is labeled IMAGE ID and it is based on a unique 64 hexadecimal
digit string of characters. The image ID simplifies this down to the first 12 digits
for easier viewing. Imagine if you had to view all 64 bits on one line! You will
learn when to use this unique image ID for later tasks.

Docker Review

[14]

The last two columns are pretty straightforward; the first being the creation date for
the repository, followed by the virtual size of the image. The size is very important as
you want to keep or use images that are very small in size if you plan to be moving
them around a lot. The smaller the image, the faster is the load time; and who doesn't
like it faster?

Searching for the Docker images
Okay, so let's look at how we can search for the images that are in the Docker Hub
using the Docker commands. The command we will be looking at is docker search.
With the docker search command, you can search based on the different criteria
you are looking for. For example, we can search for all the images with the term
ubuntu in them and see what all is available. Here is what we would get back in our
results; it would go as follows:

$ docker search ubuntu

We would get back our results:

NAME DESCRIPTION
STARS OFFICIAL AUTOMATED

ubuntu Ubuntu is a Debian-based Linux operating
s... 1835 [OK]

ubuntu-upstart Upstart is an event-based replacement for
... 26 [OK]

tutum/ubuntu Ubuntu image with SSH access. For the
root... 25 [OK]

torusware/speedus-ubuntu Always updated official Ubuntu docker imag...
25 [OK]

ubuntu-debootstrap debootstrap --variant=minbase
--components... 10 [OK]

rastasheep/ubuntu-sshd Dockerized SSH service, built on top of of...
4 [OK]

maxexcloo/ubuntu Docker base image built on Ubuntu with
Sup... 2 [OK]

nuagebec/ubuntu Simple always updated Ubuntu docker
images... 2 [OK]

nimmis/ubuntu This is a docker images different LTS
vers... 1 [OK]

alsanium/ubuntu Ubuntu Core image for Docker
1 [OK]

Chapter 1

[15]

Based on these results, we can now decipher some information. We can see the name
of the repository, a reduced description, how many people have starred and think
it is a good repository, whether it's an official repository; which means it's been
approved by the Docker team, as well as if it's an automated build. An automated
build is typically a Docker image that is built automatically when a Git repository
it is linked to is updated. The code gets updated, the web hook is called, and a new
Docker image is built in the Docker Hub. If we find an image we want to use, we can
simply pull it using its repository name with the docker pull command, as follows:

$ docker pull tutum/ubuntu

The image will be downloaded and show up in our list when we perform the docker
images command we ran earlier.

We now know how to search for Docker images and pull them down to our machine.
What if we want to get rid of them? That's where the docker rmi command comes
into play. With the docker rmi command, you can remove unwanted images from
your machine(s). So, let's take look at the images we currently have on our machine
with the docker images command. We will get the following:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days
ago 188.3 MB

We can see that we have duplicate images here taking up space. We can see this by
looking at the image ID and seeing the exact image ID for both ubuntu:trusty and
ubuntu:latest. We now know that ubuntu:trusty is the latest Ubuntu image, so
there is no need to keep them both around. Let's free up some space by removing
ubuntu:trusty and just keeping ubuntu:latest. We do this by using the docker
rmi command, as follows:

$ docker rmi ubuntu:trusty

If you issue the docker images command now, you will see that ubuntu:trusty
no longer shows up in your images list and has been removed. Now, you can
remove machines based on their image ID as well. But be careful while you do so;
in this scenario, not only will you remove ubuntu:trusty, but you will also remove
ubuntu:latest as they have the same image ID.

Docker Review

[16]

Manipulating the Docker images
We have gone over the images and know how to obtain and manipulate them in
some ways. Next, we are going to take a look at what it takes to fire them up and
manipulate them. This is the part where the images become containers! Let's first
go over the basics of the docker run command and how to run containers. We will
cover some basic docker run items in this section and more advanced docker run
items in the later chapters. So, let's just look at how to get images up, running, and
turned into containers. The most basic way to run a container is as follows:

$ docker run -i -t <image_name>:<tag> /bin/bash

Upon closer inspection of the earlier command, we start off with the docker run
command, followed by two switches: -i and -t. The -i gives us an interactive
shell into the running container, the -t will allocate a pseudo-tty that, while using
interactive processes, must be used together with the -i switch. You can also use
switches together; for example, -it is commonly used for these two switches. This
will help you test the container to see how it operates before running it as a daemon.
Once you are comfortable with your container, you can test how it operates in the
daemon mode:

$ docker run -d <image_name>:<tag>

If the container is set up correctly and has an entry point setup, you should be able
to see the running container by issuing the docker ps command. You will see
something similar to the following:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

cc1fefcfa098 ubuntu:14.10 "/bin/bash" 3 seconds ago
Up 3 seconds boring_mccarthy

Based on the earlier command, we get a lot of other important information indicating
that the container is running. We can see the container ID, the image name that is
running, the command that is running to keep the image alive, when the container
started, its current status, if any ports were exposed they would be listed here, as
well as the name given to the container. Now, these names are random, unless it is
specified otherwise by the --name= switch. You can also the expose the ports on
your containers by using the -p switch as follows:

$ docker run -d -p <host_port>:<container_port> <image>:<tag>

$ docker run -d -p 8080:80 ubuntu:14.10

Chapter 1

[17]

This will run the ubuntu 14.10 container in the demonized mode, exposing port
8080 on the Docker host to port 80 on the running container:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

55cfdcb6beb6 ubuntu:14.10 "/bin/bash" 2 seconds ago
Up 2 seconds 0.0.0.0:8080->80/tcp babbage

Now, there will come a time when containers don't want to behave. For this, you
can see the issues you have by using the docker logs command. The command is
very straightforward. You specify the container you want to see the logs off. For this
command, you need to use the container ID or the name of the container from the
docker ps output:

$ docker logs 55cfdcb6beb6

Or:

$ docker logs babbage

You can also get this ID when you first initiate the docker run command:

$ docker run -d ubuntu:14.10 /bin/bash

da92261485db98c7463fffadb43e3f684ea9f47949f287f92408fd0f3e4f2bad

Stopping containers
Now, let's take a look at how we can stop these containers. For various reasons, we
would want to do this. There are a few commands we could use; they are docker
kill, docker stop, docker pause, and docker unpause. Let's cover them briefly
as they are fairly straightforward. First, let's look at the difference between docker
kill and docker stop. The docker kill command will do just that—kill the
container immediately. For a graceful shutdown of the container, you would want
to use the docker stop command. Mostly, when you are testing, you will be using
docker kill. When you're in your production environments, you will want to use
docker stop to ensure you don't corrupt any data you might have in the Docker
volumes. The commands are used exactly like the docker logs command, where
you can use the container ID, the random name given to the container, or the one
you might specify with the --name= switch.

Docker Review

[18]

Now, let's take a dive into how we can execute some commands, view information
on our running containers, and manipulate them in a small sense. We will cover
more about container manipulation in the later chapters as well. The first thing we
want to take a look at, which will make things a little easier with the upcoming
commands, is the docker rename command. With the docker rename command,
we can change the name that has been randomly generated for the container. When
we performed the docker run command, a random name was assigned to our
container; most times, these names are fine. But if you are looking for an easy way to
manage the containers, a name can be sometimes easier to remember. For this, you
can use the docker rename command as follows:

$ docker rename <current_container_name> <new_container_name>

Now that we have an easily recognizable and rememberable name, let's take a peek
inside our containers with the docker stats and docker top commands, taking
them in order:

$ docker stats <container_name>

CONTAINER CPU % MEM USAGE/LIMIT MEM %
NET I/O

web1 0.00% 1.016 MB/2.099 GB 0.05%
0 B/0 B

The other command docker top provides a list of all running processes inside the
container. Again, we can use the name of the container to pull the information:

$ docker top <container_name>

We will receive an output similar to the following one based on what processes are
running inside the container:

UID PID PPID C
STIME TTY TIME CMD

root 8057 1380 0
13:02 pts/0 00:00:00 /bin/bash

We can see who is running the process (in this case, the root user), the command
being run (in this case, /bin/bash), as well as the other information that might
be useful.

Chapter 1

[19]

Lastly, let's cover how we can remove the containers. The same way we looked at
removing images earlier with the docker rmi command, we can use the docker rm
command to remove unwanted containers. This is useful if you want to reuse a name
you provided to a container:

$ docker rm <container_name>

Summary
In this chapter, we have covered what basic information you should already know
or now know for the chapters ahead. We have gone over the basics of what Docker
is and how it is compared to typical virtual machines. We looked at the Dockerfile
structure and the networking and linking of containers. We went over the installers,
how they operate on different operating systems, and how to control them through
the command line. We briefly looked at the latest Docker addition Kitematic for
those interested in a GUI version for Windows or OS X. Then, we took a small but
deep dive into the basic Docker commands to get you started.

In the next chapter, we will be taking a look at how to build base containers. We will
also look in depth at Dockerfile and places to store your images, as well as using
environmental variables and Docker volumes.

[21]

Up and Running
I am very glad you decided to flip the page and come to Chapter 2, Up and Running!
In this chapter, we will get you up and running with your own base images, storing
those images, using custom environmental variables and scripts, and using Docker
volumes. Here is a short review of what all we will be covering in this chapter:

•	 Dockerfile
•	 Docker build
•	 Build base image using the Dockerfile
•	 Docker Hub (basic overviews; more in depth will be covered in the

next chapter)
•	 Environmental variables
•	 Docker volumes

Dockerfile
In this section, we will cover the Dockerfile from a more in-depth perspective than
the previous chapter along with the best practices to use. By the end of the section,
you will be structuring your Dockerfile in the most practical and efficient method.
You will also be able to read and troubleshoot both yours and others' Dockerfile.

Up and Running

[22]

A short review of Dockerfile
In the previous chapter, we did a review of the Dockerfile and its content. We looked
at something like this:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

We saw earlier and in this example as well the basic items that are inside a
Dockerfile. The FROM and MAINTAINER fields have information on what image is to
be used and who is the maintainer of that image. The RUN instruction can be used to
fetch and install packages along with other various commands. The ADD instruction
allows you to add files or folders to the Docker image. The EXPOSE instruction allows
you to expose ports from the image to the outside world. Lastly, the CMD instruction
executes the said command and keeps the container alive. Now that we did a really
short review, let's take a more in-depth look at Dockerfile.

Reviewing Dockerfile in depth
Let's take a look at the following commands in depth:

•	 LABEL

•	 ADD or COPY
•	 ENTRYPOINT

•	 ENTRYPOINT with CMD

•	 USER

•	 WORKDIR

•	 ONBUILD

Chapter 2

[23]

LABEL
The LABEL command can be used to add additional information to the image. This
information can be anything from a version number to a description. You will want
to combine labels into a single line whenever possible. It's also recommended that
you limit the number of labels you use. Every time you use a label, it will add a layer
to the image, thus increasing the size of the image. Using too many labels can cause
the image to become inefficient as well. You can view the containers' labels with the
docker inspect command:

$ docker inspect <IMAGE_ID>

ADD or COPY
Now, in the previous chapter and in the preceding Dockerfile example, we used the
ADD instruction to add a file to a folder location. There is also another instruction
you can use in your Dockerfile and that is the COPY instruction. You can use the
ADD instruction and specify a URL straight to a file; it will be downloaded when
the container is built. The ADD instruction will also unpack or untar a file when
added. The COPY instruction is the same as the ADD instruction, but without the URL
handling or the unpacking/untarring of files.

ENTRYPOINT
In the Dockerfile example, we used the CMD instruction to make the container
executable and to ensure that it stays alive and running. You can also use the
ENTRYPOINT instruction instead. The benefit of using ENTRYPOINT over CMD is
that you can use them in conjunction with each other.

For example, if you want to have a default command that you want to execute inside
a container, you could do something similar to the following example, but be sure to
use a command that keeps the container alive:

FROM ubuntu:latest
ENTRYPOINT ["ps", "-au"]
CMD ["-x"]

USER
The USER instruction lets you specify the username to be used when a command is
run. The USER instruction can be used on the RUN instruction, the CMD instruction, or
the ENTRYPOINT instruction in the Dockerfile.

Up and Running

[24]

WORKDIR
The WORKDIR command sets the working directory for the same set of instructions
that the USER instruction can use (RUN, CMD, and ENTRYPOINT). It will allow you to use
the CMD and ADD instructions as well.

ONBUILD
The ONBUILD instruction lets you stash a set of commands that will be used when the
image is used again as a base image for a container. For example, if you want to give
an image to developers and they all have a different code they want to test, you can
use the ONBUILD instruction to lay the groundwork ahead of the fact of needing the
actual code. Then, the developer will simply add their code in the directory you tell
them and, when they run a new docker build command, it will add their code to
the running image. The ONBUILD instruction can be used in conjunction with the ADD
and RUN instructions:

ONBUILD ADD

ONBUILD RUN

Dockerfile – best practices
Now that we have covered the Dockerfile instructions in depth, let's take a look at
the best practices of writing these Dockerfile:

•	 You should try to get in the habit of using a .dockerignore file. We will
cover the .dockerignore file in the next section; it will seem very familiar if
you are used to using a .gitignore file. It will essentially ignore the items
you have specified in the file during the build process.

•	 Minimize the number of packages you need per image. One of the biggest
goals you want to achieve while building your images is to keep them as
small as possible. Not installing the packages that aren't necessary will
greatly help in achieving this goal.

•	 Execute only one application process per container. Every time you need
a new application, it is a best practice to use a new container to run that
application in. While you can couple commands into a single container, it's
best to separate them out.

•	 Sort commands as follows:
°° Sort them based upon the actual command itself, that is, run the

following command:
apt-get update && apt-get install -y

Chapter 2

[25]

°° Sort them alphabetically, so it's easier to change them later, that is,
run the following command:
apt-get update && apt-get install -y \
 apache2 \

 git \

 memcached \

 mysql

Docker build
In this section, we will cover the docker build command. This is where the rubber
meets the road, as they say. It's time for us to build the base that we will start
building our future images on. We will be looking at different ways to accomplish
this goal. Consider this as a template that you may have created earlier with virtual
machines. This will help save time by completing the hard work; you will just have
to create the application that needs to be added to the new images.

The docker build command
Now that you have learned how to create and properly write a Dockerfile, it's time to
learn how to take it from just a file to an actual image. There are a lot of switches that
you can use while using the docker build command. So, let's use the always handy
--help switch on the docker build command to view what all we can do:

 $ docker build --help

Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

 -c, --cpu-shares=0 CPU shares (relative weight)

 --cgroup-parent= Optional parent cgroup for the container

 --cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler)
period

 --cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler)
quota

 --cpuset-cpus= CPUs in which to allow execution (0-3, 0,1)

 --cpuset-mems= MEMs in which to allow execution (0-3, 0,1)

 -f, --file= Name of the Dockerfile (Default is 'PATH/
Dockerfile')

Up and Running

[26]

 --force-rm=false Always remove intermediate containers

 --help=false Print usage

 -m, --memory= Memory limit

 --memory-swap= Total memory (memory + swap), '-1' to disable
swap

 --no-cache=false Do not use cache when building the image

 --pull=false Always attempt to pull a newer version of the
image

 -q, --quiet=false Suppress the verbose output generated by the
containers

 --rm=true Remove intermediate containers after a successful
build

 -t, --tag= Repository name (and optionally a tag) for the
image

Now, it may seem like a lot to digest, but the most important ones will be the -f and
the -t switches. You can use the other switches to limit how much CPU and memory
the build process will use. In some cases, you may not want the build command to
take as much CPU or memory as it can have. The process may run a little slower,
but if you are running it on your local machine or a production server and it's a long
build process, you may want to set a limit. Typically, you don't use the -f switch as
you run the docker build command from the same folder that the Dockerfile is in.
Keeping the Dockerfile in separate folders helps sort the files and keeps the naming
convention of the files the same.

.dockerignore
The .dockerignore file, as we discussed earlier, is used to exclude those files or
folders we don't want include in the docker build. We also discussed placing the
Dockerfile in a separate folder and the same applies for .dockerignore. It should
go in the folder where the Dockerfile was placed. Keeping all the items you want
to use in an image in the same folder will help you keep the items, if any, in the
.dockerignore file to a minimum.

Chapter 2

[27]

Building images using Dockerfile
The first way we are going to look at to build your base Docker images is by creating
a Dockerfile, populating the Dockerfile with some instructions, and then executing a
docker build command against them to get ourselves a base container. So, let's first
start off by looking at a typical Dockerfile:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

EXPOSE 80

CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In the preceding Dockerfile, the code is pretty straightforward. We are going to use
the latest Ubuntu image and then run an apt-get update as well as an apt-get
install of the Apache web server. We will set the container to expose port 80 when
it is run and then start Apache in the foreground of the container.

So, there are two ways we can go about building this image. The first way would be
by specifying the -f switch when we use the docker build command. We will also
utilize the -t switch to give the new image a unique name:

$ docker build -f <path_to_Dockerfile> -t <REPOSITORY>:<TAG>

Now, <REPOSITORY> is typically the username you signed up for on Docker Hub and
the <TAG> is a unique container name you want to provide:

$ docker build -f <path_to_Dockerfile> -t scottpgallagher:ubuntu_apache

Typically, the -f switch isn't used and it can be a little tricky when you have other
files that need to be included with the new image. An easier way to do the build is
to place the Dockerfile in a separate folder by itself along with any other file that you
will be placing in the image with the ADD or COPY instructions:

$ docker build -t scottpgallagher:ubuntu_apache

The most important thing to remember is the .—the dot (or period) at the very end.
This is to tell the docker build command to build in the current folder.

If you are using your own registry to push your images, then you can use any
naming convention that you would like to use. But try to keep it simple and easy
to identify by looking at the name.

Up and Running

[28]

Building a base image using an existing
image
The easiest way to build a base image is to start off by using one of the official builds
from the Docker Hub. Docker also keeps the Dockerfile for these official builds
on their GitHub repositories. So, there are at least two choices you have for using
existing images that others have already created. By using the Dockerfile, you can see
exactly what is included in the build and add what you need. You can then version
control that Dockerfile for it if you want to change it at a later time.

The other way of doing it is to use an already existing image that requires a little bit
more work, but is essentially the same method. We would first need to get the base
image we want:

$ docker pull ubuntu:latest

Then, we would run the container in the foreground, so we could add packages to it:

$ docker run -it ubuntu:latest /bin/bash

Once the container runs, you can add the packages as necessary by using the apt-
get command in this case, or whatever the package manager commands are for your
Linux flavor. After you have installed the packages you require, you need to save
the container. To do so, you first need to get the container ID. You can do this in the
following manner:

$ docker ps

Once you have the container ID, you can save (or commit) the container. So, to save
this container, you need to do something similar to the following:

$ docker commit <container_ID> <REPOSITORY>:<TAG>

Now, if you are planning on using the Docker Hub (that we will be discussing here
shortly in the next section of this chapter), you will want to structure your image
names as follows:

$ docker commit <container_ID> <Docker_Hub_Username>:<Unique_Name>

$ docker commit <container_ID> scottpgallagher:ubuntu_apache2

Now, there will be some downfall to doing it this way. If you do it this way, you
would need to create a Dockerfile in the FROM part and use the image you just created
in this section. This is because you can't change what CMD or ENTRYPOINT is being
used on an already built container. So, you would want to create a new Dockerfile
and add in what CMD or ENTRYPOINT you might want to use.

Chapter 2

[29]

Building your own containers
There are two ways to go about building your own containers. They are as follows:

•	 Using tar
•	 Using a scratch image

Using tar
So, you have a machine already running as a virtual machine or on a bare metal box
and you want to convert that to a Docker image. How do you go about doing this?
The first thing you will need to do is to install something like debootstrap:

$ sudo apt-get install -y debootstrap

Next, you will need to get the release name of the distribution of Linux you are
running. To do this, we can look at the contents of the /etc/lsb-release file:

$ cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.2 LTS"

We can tell from the preceding output that we are running the trusty release
of Ubuntu. Now, we can execute the next command using the newly installed
debootstrap command:

$ sudo debootstrap trusty <unique_name> > /dev/null

We can execute the next command after the previous one is completed:

$ sudo tar -C <unique_name> -c . | sudo docker import - <unique_name>

The preceding command will switch to the directory you specify after -C, create
a new archive from that directory based off the -c switch, and specify . (for the
current directory). It will then import the image into a Docker image with the docker
import command.

You can see this image by issuing the docker images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu_trusty latest 376bfebd75cb 17 minutes
ago 228.3 MB

Up and Running

[30]

You can then use the image for base images and share them on the Docker Hub or on
your own Docker Registry. We will be covering how to push these images to various
locations in the next section. First, though, we need to look at the other method to
create images and that is to build from scratch.

If you wish to use something other than Ubuntu (or Debian), Docker has created
scripts that you can utilize to create images from as well. You can check them out at
https://github.com/docker/docker/tree/master/contrib.

You will want to look at the mkimage- files based on what distribution you are using.

Using scratch
You also have the option to build from scratch. Now, when you usually hear the
term scratch, it literally means that you start from nothing. That's what we have
here—you get absolutely nothing and have to build upon it. Now this can be a
benefit because it will keep the image size very small; but it can also not be beneficial
if you are fairly new to the Docker game, as it may be a little complicated.

Docker has done the hard work for us already and created an empty tar file that
is on the Docker Hub named scratch; you can use it in the FROM section of your
Dockerfile. You can base your entire Docker build on this then and add parts as
needed. So, your Dockerfile might look something like this:

FROM scratch

ADD <script_to_add> /<path_to_add_to_on_container>

CMD ["/<path_to_add_to_on_container>"]

Docker Hub
In this section, we will cover the locations you can store the images you will be
creating. There are several different areas to store these, ranging from a location in
the cloud that can be set to public, where anyone can access and use them, to private,
again a place in the cloud that can only be accessed by those you give permission
to. You can also host your own repository, where you can store your own images.
You can also purchase a Docker subscription (Docker Hub Enterprise) that provides
you with what you need to deploy to the cloud or locally, and also comes along with
commercial support from Docker.

https://github.com/docker/docker/tree/master/contrib

Chapter 2

[31]

The Docker Hub location
The Docker Hub is a location on the cloud, where you can store and share images
that you have created. You can also link your images to the GitHub or Bitbucket
repositories that can be built automatically based on web hooks. We will be
discussing web hooks in the next chapter and will go over all the pieces required for
that setup. There are two types of repositories on the Docker Hub: the public and
private repositories. You can also roll your own repository that we will cover more in
depth in the next chapter.

Pushing to a repository is very straightforward. Once you have the image built on
your machine, there are two commands you need to run. One you will only have to
run once and the other command you will use every time:

$ docker login

This will prompt you for your Docker Hub credentials and the e-mail address you
are using on Docker Hub:

$ docker push <REPOSITORY>:<TAG>

This will show the progress of your push, kicking back to the command prompt
when completed. You will then be able to see the image in either the command-line
search or the web-based GUI search. By default, repositories are pushed as public. If
you want to set them to private, you need to log in to the Docker Hub website and
set the repository to Make Private. You can also mark images as unlisted, so they
don't show up in the Docker searches. You can also mark them as listed at a later
date as well.

Public repositories
Public repositories are those on the Docker Hub that are open to anyone. Anyone
can use the docker pull command to download an image to their local system and
run or build further images from it. You can also add collaborators to your public
repositories and users can then push to that repository or update it. There are two
ways you can search for images on Docker Hub:

•	 $ docker search <TERM>: You can search for terms such as ubuntu or a
particular package you are looking to deploy such as salt or mysql

•	 The Docker Hub website (https://registry.hub.docker.com/): A simple
web-based search with terms of your choosing

https://registry.hub.docker.com/

Up and Running

[32]

Private repositories
Private repositories are just that private. You can set permissions for different users
from which the users can push, as we saw with public repositories and collaborators,
but they can also pull all the images in that repository and don't have administrative
rights. Once you are logged in to Docker Hub, you will be able to see all the private
repositories that you have permission to, both in the web GUI and the command line.

Docker Hub Enterprise
There is also an option for Docker Hub Enterprise that allows you to deploy a
Docker repository to your local system or cloud environment. Now, there is an
option to run your own Docker repository based on a Docker image that is managed
by Docker. What Docker Enterprise offers you is access to the software, access to
updates/patches/security fixes, and support relating to issues with the software. The
open source Docker repository image doesn't offer these services at this level; you
are at the mercy of when that image will be updated on Docker Hub. Docker does
offer various service levels for the said services that you can purchase through them.
They currently are recommending you contact their sales department for any and all
the pricing.

Environmental variables
In this section, we will cover the very powerful environmental variables or ENVs,
as you will be seeing a lot of them. You can use environmental variables for a
lot of things from your Dockerfile. If you are familiar with coding, these will
probably come as secondhand to you. For others like myself, at first, they may seem
intimidating; but don't get discouraged. They will be your best resource once you
get the hang of them. They can be used from creating MySQL users, passwords, and
databases to setting application items such as memory limits. We will cover some
examples that you can use for future reference.

Using environmental variables in your
Dockerfile
To use environmental variables in your Dockerfile, you can use the ENV instruction.
The structure of the ENV instruction is:

ENV <key> <value>

ENV username admin

Chapter 2

[33]

Else, you can always use an equals sign between the two:

ENV <key>=<value>

ENV username=admin

Now, the question is why do they have two and what are the differences? With the
first example, you can only set one ENV per line. With the second ENV example, you
can set multiple environmental variables on the same line:

ENV username=admin database=db1 tableprefix=pr2_

You can view what environmental variables are set on an image by using the docker
inspect command:

$ docker inspect <IMAGE_ID>

You can change their values when you initialize the docker run command by using
the -e or --env switch:

$ docker run -e username=superuser

$ docker run --env username=superuser

Now that we know how they need to be set in our Dockerfile, let's take a look
at them in action. We will go over two examples in the next section showing the
Dockerfile. We then set the corresponding scripts that will be used in the RUN
instructions to execute and perform an action based off the docker run command
that we will use after the image is built.

Don't get too confused; we will list out all the steps in the upcoming sections.

Creating a MySQL username, database, and
setting permissions
First, we need a Dockerfile that specifies the MySQL username and database we
want to use:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>

RUN apt-get update && apt-get install -y mysql mysql-server

ENV username mysqluser

ENV password pass

ENV database db2

ADD databasesetup.sh /

Up and Running

[34]

RUN chmod 644 /databasesetup.sh

RUN "/usr/bin/sh databasesetup.sh"

EXPOSE 3306

CMD ["/usr/bin/mysqld_safe"]

Now, we need to create the databasesetup.sh file that will be added and then
called from the RUN instruction:

#!/bin/bash

/usr/bin/mysqld_safe

 mysql -uroot -e "CREATE USER '${username}'@'%' IDENTIFIED BY
'${password}'"

 mysql -uroot -e "GRANT ALL PRIVILEGES ON '${database}'.* TO
'${username}'@'%' WITH GRANT OPTION"

mysqladmin -uroot shutdown

Okay, what all have we done so far? We created our Dockerfile and databasesetup.
sh file in a folder together. We can then run Docker build against the Dockerfile and
it will create the image we want to use. Now, the last part is to start the container
and insert the values we want to use. Note that the values you put in your Dockerfile
are simply meant to be placeholders. You can execute your container with the values
that are in there; but this is not recommended for production environments:

$ docker run -d -e username <value> -e password <value> -e database
<value> <REPOSITORY>:<TAG>

<REPOSITORY> and <TAG> will be the names you specified when you used the
docker build command.

This should be a good boiler plate to use when you want to set something in a
database. Next, let's take a look at an example where we want to set memory limits
on a file that might already exist (that we add to the image).

Adding a file to the system
For this example, we are going to add our memcached configuration file to the
system and, instead of specifying an actual value in the configuration file, we
are going to set it to a variable. This will allow us to utilize that variable in our
Dockerfile. After we have built the image, we will be able to give that variable a
value with the -e switch. When the container starts up and starts up the memcached
service, it will set the value for that memory limit to the stated value.

Chapter 2

[35]

First, we need our Dockerfile:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>

RUN apt-get update && apt-get install -y memcached

ADD memcached /etc/default/

ENV MEMCACHESIZE 2048

EXPOSE 11211

CMD ["/usr/bin/memcached -u root"]

This is the memcached configuration file (named memcached) that will be added to
the system:

Set this to no to disable memcached.

ENABLE_MEMCACHED=yes

CACHESIZE=$MEMCACHESIZE

After the build is completed, we can run our image as follows:

$ docker run -d -e MEMCACHESIZE 1024 <REPOSITORY>:<TAG>

Again, set <REPOSITORY> and <TAG> to the values used while running the docker
build command.

Now, we have seen how to build our own images from various methods. We took a
look at where we can store our images once we are done building them. And we just
took a look at environmental variables and two different ways of using them. Lastly,
for this chapter, we will be looking at Docker volumes.

Docker volumes
In the last section of this chapter, we will cover container storage or Docker volumes
as they are referred to. We will take a look at data volumes and data volume
containers, the differences between the two, and when to use which one. Lastly, we
will also look at the best practices for Docker volumes. This is the data that we want
to be persistent or shared between containers. We need to remember that, by default,
when you exit a running container, the data isn't saved. When you start the container
backup, it will start in its initial state, so Docker volumes become incredibly
important in areas like databases or filesystems.

Up and Running

[36]

Another switch that we will be covering is the -v or --volume= switch. This switch
allows you to provide a volume to the Docker container that you wish contained
persistent data. Remember that, when you start a Docker container, the data inside
doesn't remain persistent unless you save it (or commit in Docker terms). The
volumes switch allows you to have persistent data inside your Docker container such
that even if the container is stopped or deleted, the data remains intact. Let's take a
look at the two ways we can provide persistent volumes to containers:

•	 Data volumes
•	 Data volume containers

Data volumes
The first volume storage we will look at is data volumes. Data volumes are mounted
inside the container when you run the container. However, as stated before, the
volume is not tied to the container in events when it stops, is killed, or is deleted. Let's
see how we first mount a volume inside a container; then we can dive a little deeper:

$ docker run -it -v /tmp ubuntu /bin/bash

We are simply running an ubuntu container shelled into /bin/bash, so we can see
the /tmp volume mounted. This will create a new volume inside the container at the
specified path. Essentially, it overwrites or hides the folder inside the container if it
does exist; and in our case, /tmp already exists, so any data the container might have
had inside it is no longer there and /tmp will now be an empty folder or volume.

You can also use multiple -v volume switches on a single docker run line:

$ docker run -it -v /tmp -v /data ubuntu /bin/bash

It is nice to use the -it switch sometimes, so you can actually see how this works. In
later times, you will want to be running your containers with the -d switch, so they
are not running the foreground.

Now, you can also mount the directory from the local machine the Docker containers
are running on into the Docker container. To do so, you can use the -v switch again,
but you need to add :/<path> to the path:

$ docker run -it -v /tmp:/data ubuntu /bin/bash

This will mount the contents of /tmp (on the Docker host) to the /data directory
inside the now running Docker container. If you were to look at the contents of /tmp
on the Docker host and the contents of /data on the running Docker container, you
will see that they match. Any changes you make inside the Docker containers /data
folder will be reflected in the Docker host's /tmp folder.

Chapter 2

[37]

By default, when you mount a directory from a Docker host to a Docker container, it
will mount in the read/write mode. There is a way you can mount it in the read-only
mode as well. Again, using the -v switch, we will just append :ro to our volume
instruction:

$ docker run -it -v /tmp:/data:ro ubuntu /bin/bash

You can locate one or several volumes on a Docker container by using the docker
inspect container:

$ docker inspect <CONTAINER_ID>

The line(s) you will be looking for will resemble the following:

 "Volumes": {

 "/tmp": "/mnt/sda1/var/lib/docker/volumes/5c4e1bff167ea1479dd9f33
f74aeaf5d7f9f4d252d096e95e87befdb9be23ea0/_data"

Remember, you can get the container ID by running:

$ docker ps

The preceding output shows how the docker inspect command actually works.
It is mounting /tmp inside the container; but where does the data actually live? The
data actually lives in the machine your container runs on in the path specified. If you
were to populate data inside the container in the /tmp folder and then navigate from
the machine running the Docker container to the /mnt/sda1/var/lib/docker/vo
lumes/5c4e1bff167ea1479dd9f33f74aeaf5d7f9f4d252d096e95e87befdb9be23
ea0/_data directory, the data would be there. Now, we will go into the details of
how to manage data and move it around between Docker hosts in the next chapter.

On a side note, you can also use the VOLUME instruction inside the Dockerfile to
specify volumes for a container. It would look similar to this:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>

VOLUME ["/datastore"]

You can also use the -v flag to mount a single file into a container. So, the discussion
isn't just about directories, it's about files as well. Now, we have seen how we can
use Volumes to create persistent data that is stored inside containers; but what
other options do we have with regards to using Volumes? We can use data volume
containers too.

Up and Running

[38]

Data volume containers
Data volume containers come in handy when you have data that you want to
share between containers. There is another flag we can utilize on the docker run
command. Let's take a look at the --volumes-from switch.

What we will be doing is using the -v switch on one of our Docker containers. Then,
our other containers will be using the --volumes-from switch to mount the data to
the containers that they run.

First step, let's fire up a container that has a data volume we can add to other containers.

For this example, we will be using the busybox image since it's very small in size.
We are also going to use the --name switch to give the container a name that can
be used later:

$ docker run -it -v /data --name datavolume busybox /bin/sh

We are going to create a volume and mount it in /data inside our container.
We have also named our container datavolume so that we can leverage in our
--volumes-from switch. While we're still inside the shell, let's add some data
to the /data directory. So, when we mount it on the other systems, we know
it's the right one:

$ touch /data/correctvolume

This will create the correctvolume file inside the /data directory in the busybox
container we are running.

Now, we need to connect some containers to this /data directory in the container.
This is where the name we gave it will come in handy:

$ docker run -it --volumes-from datavolume busybox /bin/sh

If we now perform ls /data, we should see the correctvolume file that we
created earlier.

Something to note here is that when you use the --volumes-from
switch, the directory will be mounted in the same place on both
the containers. You can also specify multiple --volumes-from
switches on a single command line.

Chapter 2

[39]

There will come a time when you run into the following error:

$ docker run -it -v /data --name datavolume busybox /bin/bash

Error response from daemon: Conflict. The name "data" is already in use
by container 82af96592008. You have to delete (or rename) that container
to be able to reuse that name.

You can remove the volume if you want, but USE IT CAUTIOUSLY, as once you
remove the volume, the data inside that volume will go away with it:

$ docker rm -v data

You can also use this to clean up the volumes that you no longer want on the system.
But again, use extreme caution as stated before that once a volume is gone, the data
will go with it.

Docker volume backups
It is important to remember that while your containers are immutable, the data
inside your volumes is mutable. It changes, while the items inside your Docker
containers do not. For this reason, you need to make sure that you are backing up
your volumes in some manner.

Volumes are stored on the system at /var/lib/docker/volumes/.

The key to remember here is that the volumes are not named the way you named
them in this directory. They are given unique hash values, so understanding what
content is in them can be confusing if you are just looking at their name. If you are
looking at managing volumes at this point, I would highly recommend this image
from the Docker Hub: https://hub.docker.com/r/cpuguy83/docker-volumes/.

This container (once built) will allow you to list volumes as well as export them into
a tarred up file.

https://hub.docker.com/r/cpuguy83/docker-volumes/

Up and Running

[40]

Summary
In this chapter, we have looked at an in-depth view of the Dockerfile and the best
practices to write them, the docker build command and the various ways we can
build the said containers, and the various Docker Hubs to store the containers you
have built. We also learned about the environmental variables that you can use to
pass from your Dockerfile to the various items inside your containers and Docker
volumes to store persistent or shared data.

Let's do a quick review of all the commands we have learned in this chapter.

•	 docker inspect: To inspect a running container
•	 docker build: To build a new image from a Dockerfile
•	 docker login: To login to the Docker Hub
•	 docker commit: To commit changes to a running container
•	 docker search: To search the Docker Hub from the command line
•	 docker push: To push a new image or changes to existing changes to the

Docker Hub
•	 docker run -e: To run a new container and specify an environmental

variable value
•	 docker run -v: To run a Docker container and mount a persistent volume

inside it
•	 docker run --volumes-from: To mount a volume from an already running

container inside this new container

In the next chapter, we will be taking a more in-depth look at the various Docker
Hubs and a good look at web hooks that you can use to do automated builds. We
will cover all the pieces required for these web hooks as well, and go through the
process step by step. We will also look at the Docker Registry that is open sourced, so
you can roll your own place to store images without the fees of Docker Enterprise.

[41]

Container Image Storage
In the third chapter of the book, we will cover the places you store your containers,
such as Docker Hub and Docker Hub Enterprises. We will also cover Docker
Registry that you can use to run your own local storage for the Docker containers.
We will review the differences between them all and when and how to use each of
them. It will also cover how to set up automated builds using web hooks as well
as the pieces that are all required to set them up. Lastly, we will run through an
example of how to set up your own Docker Registry. Let's take a quick look at the
topics we will be covering in this chapter:

•	 Docker Hub
•	 Docker Hub Enterprise
•	 Docker Registry
•	 Automated builds

Docker Hub
We will be covering Docker Hub in a little more detail than what we looked at in
the previous chapter. In Chapter 2, Up and Running, we just glazed over Docker Hub
as a storage location to push our images to. In this section, we will focus on that
Docker Hub, which is a free public option, but also has a private option that you can
use to secure your images. We will focus on the web aspect of Docker Hub and the
management you can do there.

Container Image Storage

[42]

The login page is like the one shown in the following screenshot:

Dashboard
After logging into the Docker Hub, you will be taken to the following landing page.
This page is known as the Dashboard of Docker Hub.

From here, you can get to all the other subpages of Docker Hub. In the upcoming
sections, we will go through everything you see on the dashboard, starting with the
dark blue bar you have on the top.

Chapter 3

[43]

Explore the repositories page
The following is the screenshot of the Explore link you see next to Dashboard at the
top of the screen:

As you can see in the screenshot, this is a link to show you all the official repositories
that Docker has to offer. Official repositories are those that come directly from
Docker or from the company responsible for the product. They are regularly updated
and patched as needed.

Organizations
Organizations are those that you have either created or have been added to.
Organizations allow you to layer on control, for say, a project that multiple
people are collaborating on.

Container Image Storage

[44]

The organization gets its own setting such as whether to store repositories as public
or private by default, changing plans that will allow for different amounts of private
repositories, and separate repositories all together from the ones you or others have.

You can also access or switch between accounts or organizations from the
Dashboard just below the Docker log, where you will typically see your username
when you log in.

This is a drop-down list, where you can switch between all the organizations you
belong to.

Chapter 3

[45]

The Create menu
The Create menu is the new item along the top bar of the Dashboard. From this
drop-down menu, you can perform three actions:

•	 Create repository
•	 Create automated build
•	 Create organization

A pictorial representation is shown in the following screenshot:

Container Image Storage

[46]

Settings
Probably, the first section everyone jumps to once they have created an account on
the Docker Hub—the Settings page. I know, that's what I did at least.

Chapter 3

[47]

The Account Settings page can be found under the drop-down menu that is accessed
in the upper-right corner of the dashboard on selecting Settings.

The page allows you to set up your public profile; change your password; see what
organization you belong to, the subscriptions for e-mail updates you belong to, what
specific notifications you would like to receive, what authorized services have access
to your information, linked accounts (such as your GitHub or Bitbucket accounts); as
well as your enterprise licenses, billing, and global settings. The only global setting
as of now is the choice between having your repositories default to public or private
upon creation. The default is to create them as public repositories.

Container Image Storage

[48]

The Stars page
Below the dark blue bar at the top of the Dashboard page are two more areas that
are yet to be covered. The first, the Stars page, allows you to see what repositories
you yourself have starred.

This is very useful if you come across some repositories that you prefer to use and
want to access them to see whether they have been updated recently or whether any
other changes have occurred on these repositories.

The second is a new setting in the new version of Docker Hub called Contributed. In
this section, there will be a list of repositories you have contributed to outside of the
ones within your Repositories list.

Docker Hub Enterprise
Docker Hub Enterprise, as it is currently known, will eventually be called Docker
Subscription. We will focus on Docker Subscription, as it's the new and shiny piece.
We will view the differences between Docker Hub and Docker Subscription (as we
will call it moving forward) and view the options to deploy Docker Subscription.

Comparing Docker Hub to Docker
Subscription
Let's first start off by comparing Docker Hub to Docker Subscription and see why
each is unique and what purpose each serves:

Chapter 3

[49]

Docker Hub

•	 Shareable image, but it can be private
•	 No hassle of self-hosting
•	 Free (except for a certain number of private images)

Docker Subscription

•	 Integrated into your authentication services (that is, AD/LDAP)
•	 Deployed on your own infrastructure (or cloud)
•	 Commercial support

Docker Subscription for server
Docker Subscription for server allows you to deploy both Docker Trusted Registry
as well as Docker Engine on the infrastructure that you manage. Docker Trusted
Registry is the location where you store the Docker images that you have created.
You can set these up to be internal only or share them out publicly as well. Docker
Subscription gives you all the benefits of running your own dedicated Docker hosted
registry with the added benefits of getting support in case you need it.

Docker Subscription for cloud
As we saw in the previous section, we can also deploy Docker Subscription
to a cloud provider if we wish. This allows us to leverage our existing cloud
environments without having to roll our own server infrastructure up to host
our Docker images.

The setup is the same as we reviewed in the previous section; but this time, we will
be targeting our existing cloud environment instead.

Docker Registry
In this section, we will be looking at Docker Registry. Docker Registry is an open
source application that you can run anywhere you please and store your Docker
image in. We will look at the comparison between Docker Registry and Docker Hub
and how to choose among the two. By the end of the section, you will learn how to
run your own Docker Registry and see whether it's a true fit for you.

Container Image Storage

[50]

An overview of Docker Registry
Docker Registry, as stated earlier, is an open source application that you can utilize
to store your Docker images on a platform of your choice. This allows you to keep
them 100% private if you wish or share them as needed. The registry can be found at
https://docs.docker.com/registry/.

This will run you through the setup and the steps to follow while pushing images to
Docker Registry compared to Docker Hub. Docker Registry makes a lot of sense if
you want to roll your own registry without having to pay for all the private features
of Docker Hub. Next, let's take a look at some comparisons between Docker Hub
and Docker Registry, so you can make an educated decision as to which platform to
choose to store your images.

Docker Registry versus Docker Hub
Docker Registry will allow you to do the following:

•	 Host and manage your own registry from which you can serve all the
repositories as private, public, or a mix between the two

•	 Scale the registry as needed based on how many images you host or how
many pull requests you are serving out

•	 All are command-line-based for those that live on the command line

Docker Hub will allow you to:

•	 Get a GUI-based interface that you can use to manage your images
•	 A location already set up on the cloud that is ready to handle public and/or

private images
•	 Peace of mind of not having to manage a server that is hosting all your images

Automated builds
In this section, we will look at automated builds. Automated builds are those that
you can link to your GitHub or Bitbucket account(s) and, as you update the code in
your code repository, you can have the image automatically built on Docker Hub.
We will look at all the pieces required to do so and, by the end, you'll be automating
all your builds.

Chapter 3

[51]

Setting up your code
The first step to create automated builds is to set up your GitHub or Bitbucket
code. These are the two options you have while selecting where to store your code.
For our example, I will be using GitHub; but the setup will be the same for GitHub
and Bitbucket.

First, we set up our GitHub code that contains just a simple README file that we will
edit for our purpose. This file could be anything as far as a script or even multiple
files that you want to manipulate for your automated builds. One key thing is that
we can't just leave the README file alone. One key piece is that a Dockerfile is required
to do the builds when you want it to for them to be automated. Next, we need to set
up the link between our code and Docker Hub.

Container Image Storage

[52]

Setting up Docker Hub
On Docker Hub, we are going to use the Create drop-down menu and select Create
Automated Build. After selecting it, we will be taken to a screen that will show
you the accounts you have linked to either GitHub or Bitbucket. You then need to
search and select the repository from either of the locations you want to create the
automated build from. This will essentially create a web hook that when a commit is
done on a selected code repository, then a new build will be created on Docker Hub.

After you select the repository you would like to use, you will be taken to a screen
similar to the following one:

Chapter 3

[53]

For the most part, the defaults will be used by most. You can select a different branch
if you want to use one, say a testing branch if you use one before the code may go
to the master branch. The one thing that will not be filled out, but is required, is the
description field. You must enter something here or you will not be able to continue
past this page.

Upon clicking Create, you will be taken to a screen similar to the next screenshot:

On this screen, you can see a lot of information on the automated build you
have set up. Information such as tags, the Dockerfile in the code repository,
build details, build settings, collaborators on the code, web hooks, and settings that
include making the repository public or private and deleting the automated build
repository as well.

Putting all the pieces together
So, let's take a run at doing a Docker automated build and see what happens when
we have all the pieces in place and exactly what we have to do to kick off this
automated build and be able to create our own magic:

1.	 Update the code or any file inside your GitHub or Bitbucket repository.
2.	 Upon committing the update, the automated build will be kicked off and

logged in Docker Hub for that automated repository.

Container Image Storage

[54]

Creating your own registry
To create a registry of your own, use the following command:

$ docker-machine create --driver vmwarefusion registry

Creating SSH key...

Creating VM...

Starting registry...

Waiting for VM to come online...

To see how to connect Docker to this machine, run the following command:

$ docker-machine env registry

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://172.16.9.142:2376"

export DOCKER_CERT_PATH="/Users/scottpgallagher/.docker/machine/machines/
registry"

export DOCKER_MACHINE_NAME="registry"

Run this command to configure your shell:

eval "$(docker-machine env registry)"

$ eval "$(docker-machine env registry)"

$ docker pull registry

$ docker run -p 5000:5000 -v <HOST_DIR>:/tmp/registry-dev registry:2

This will specify to use version 2 of the registry.

For AWS (as shown in example from https://hub.docker.com/_/registry/):

$ docker run \

 -e SETTINGS_FLAVOR=s3 \

 -e AWS_BUCKET=acme-docker \

 -e STORAGE_PATH=/registry \

 -e AWS_KEY=AKIAHSHB43HS3J92MXZ \

 -e AWS_SECRET=xdDowwlK7TJajV1Y7EoOZrmuPEJlHYcNP2k4j49T \

 -e SEARCH_BACKEND=sqlalchemy \

 -p 5000:5000 \

 registry:2

Chapter 3

[55]

Again, this will use version 2 of the self-hosted registry.

Then, you need to modify your Docker startups to point to the newly set up registry.
Add the following line to the Docker startup in the /etc/init.d/docker file:

-H tcp://127.0.0.1:2375 -H unix:///var/run/docker.sock --insecure-
registry <REGISTRY_HOSTNAME>:5000

Most of these settings might already be there and you might only need to add
--insecure-registry <REGISTRY_HOSTNAME>:5000:

To access this file, you will need to use docker-machine:

$ docker-machine ssh <docker-host_name>

Now, you can pull a registry from the public Docker Hub as follows:

$ docker pull debian

Tag it, so when we do a push, it will go to the registry we set up:

$ docker tag debian <REGISTRY_URL>:5000/debian

Then, we can push it to our registry:

$ docker push <REGISTRY_URL>:5000/debian

We can also pull it for any future clients (or after any updates we have pushed for it):

$ docker pull <REGISTRY_URL>:5000/debian

Summary
In this chapter, we dove deep into Docker Hub and also reviewed the new shiny
Docker Subscription as well as the self-hosted Docker Registry. We have gone
through the extensive review of each of them. You learned of the differences between
them all and how to utilize each one. In this chapter, we also looked deep into
setting up automated builds. We took a look at how to set up your own Docker Hub
Registry. We have encompassed a lot in this chapter and I hope you have learned a
lot and will like to put it all into good use.

In the next chapter, we will take a look at container management and how to manage
all the containers that we create locally on our servers and in the cloud as well. We
will also take a look at managing the images that keep piling up.

[57]

Managing Containers
In this chapter, you will learn how to manage your containers and the different ways
you can go about doing so. This chapter will focus on the command line (as other
chapters will cover other tools) to help lay the groundwork for understanding what
the GUI-based apps are doing in the background. Sometimes, the command line
is the best tool to help troubleshoot containers as well! Troubleshooting containers
will be covered more in depth in Chapter 10, Shipyard. Apart from managing the
containers, we will also cover topics on how to manage your images.

To be specific, the following topics will be covered:

•	 Docker commands: We will cover the Docker commands you can use to
manage your containers

•	 Using existing suite: We will cover it using your existing management suites
such as Chef or Puppet, plus some others to manage your containers

•	 Docker Swarm: You will have a brief overview of Docker Swarm, which we
will be covering more in depth in a later chapter

The Docker commands
In this section, we will cover some Docker commands that you can use to manage
your containers. These commands will range from looking at the status of containers
and viewing what is going on inside the containers that are running to executing
commands against the running containers. This will lay the groundwork for the
GUI apps that we will be looking at in the later chapters. I believe it is important to
understand what is going on behind the curtains when you run the GUI pieces.

Managing Containers

[58]

docker attach
We will first take a look at the docker attach command. With this command, you
can connect to the standard input (STDIN) of the container. We have a running
container named reposado. Let's see how do we attach to it to see the STDIN:

$ docker attach reposado

192.168.59.3 - - [29/Jul/2015 13:40:15] "GET / HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 13:40:15] "GET /products HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET / HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/bootstrap.min.
css HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/bootstrap-
responsive.min.css HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/backgrid.min.css
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/css/backgrid-
paginator.min.css HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/json2.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/jquery.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/underscore-min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone-min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone.wreqr.
min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone.
babysitter.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone.
marionette.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backbone-
pageable.min.js HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backgrid.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/backgrid-
paginator.min.js HTTP/1.1" 304 -

Chapter 4

[59]

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/margarita.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/bootstrap.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /products HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 13:40:18] "GET /static/img/glyphicons-
halflings-white.png HTTP/1.1" 304 -

In the previous example, we used the docker attach command to attach to the
container named reposado. We can see the output as it happens in the container.
You will stay attached to the container until you close your terminal window. This
can help you troubleshoot error messages that might display when someone is trying
to access the application that the container is serving up. It can also help track where
the traffic might be coming from based on the output displayed.

docker diff
The next command is the docker diff command. With this command, we can view
the changes that were made to a given container. We will again use the reposado
container and take a look at the changes that were made to it:

$ docker diff reposado

C /Volumes

A /Volumes/reposado

A /Volumes/reposado/data

A /Volumes/reposado/data/html

C /opt

C /opt/reposado

C /opt/reposado/code

C /opt/reposado/code/reposadolib

A /opt/reposado/code/reposadolib/__init__.pyc

A /opt/reposado/code/reposadolib/reposadocommon.pyc

We can see that the command output is sorted into two columns. The first column
will show us whether things changed (C), were added (A), or were deleted (D). In
the earlier example, we don't have anything that was deleted, so we don't see any
Ds in the first column. However, we do see that some items were changed as well
as added. This can be helpful when you want to see what items might have been
manipulated on the image that you are using.

Managing Containers

[60]

docker exec
Next, let's take a look at one of the more recent commands that was introduced in
Docker. This is one of the more powerful and more commonly used commands
in the Docker command set. With the docker exec command, you can execute
commands against your containers without the need to connect through something
like SSH, like we would typically do.

There are two switches that are used:

•	 docker exec -d

•	 docker exec -i

What is the difference between the two? The difference is one will allow you to view
the output of the command you are executing against the container (docker exec
-i). The other will run it as a daemon in the background and not display any output
(docker exec -d). After you execute this command, you can view the items that
have changed by using the docker diff command we went over previously.

docker history
The docker history command will give you a full-blown history of everything that
occurred on the image such as when and what created it as well as its size. As we can
see in the following example, we ran the docker history command on the reposado
image we created. We can see all the activity that went on for this image. We can see
the activity that started 6 weeks ago, 21 hours ago, and then 4 hours ago. We can see
the Git cloning, pip commands to install Python-related items, and symbolic links
being created. We can see the size increase on running certain commands:

$ docker history scottpgallagher/reposado

IMAGE CREATED CREATED BY
SIZE COMMENT

b61a1a023244 4 hours ago /bin/sh -c #(nop) CMD ["/bin/sh"
"-c" "python 	 0 B

29dc8c2be431 4 hours ago /bin/sh -c #(nop) EXPOSE 8089/tcp 	
 0 B

a02115b630cb 4 hours ago /bin/sh -c ln -s /opt/reposado/
code/preferenc 36 B

6b568cd34339 4 hours ago /bin/sh -c ln -s /opt/reposado/
code/reposadol 	 30 B

Chapter 4

[61]

377509f5f585 4 hours ago /bin/sh -c pip install simplejson 	
 	 485.7 kB

8b0312f24189 4 hours ago /bin/sh -c pip install flask
 4.071 MB

b1a301d9d39b 4 hours ago /bin/sh -c git clone https://
github.com/jesse 791.9 kB

ea9b2533e044 4 hours ago /bin/sh -c #(nop) ADD
file:ef8667f1286185255c 3.019 kB

1f875df3199b 21 hours ago /bin/sh -c #(nop) ADD
file:58d34bd01478346ab1 393 B

2c283310dddd 21 hours ago /bin/sh -c git clone https://
github.com/wdas/ 326.8 kB

7e7e52de77bc 21 hours ago /bin/sh -c #(nop) VOLUME [/
Volumes/data/repos 0 B

6f63b83840ff 21 hours ago /bin/sh -c #(nop) VOLUME [/
Volumes/data/repos 0 B

136cc09dac1d 21 hours ago /bin/sh -c apt-get update && apt-
get install 252.9 MB

2df9f745fbbc 21 hours ago /bin/sh -c #(nop) MAINTAINER
Scott P. Gallagh 0 B

6d4946999d4f 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/
bash"] 0 B

9fd3c8c9af32 6 weeks ago /bin/sh -c sed -i 's/^#\s*\
(deb.*universe\)$/ 1.895 kB

435050075b3f 6 weeks ago /bin/sh -c echo '#!/bin/sh' > /
usr/sbin/polic 194.5 kB

428b411c28f0 6 weeks ago /bin/sh -c #(nop) ADD
file:b3447f4503091bb6bb 188.1 MB

docker inspect
The next command we are looking at is docker inspect. We will take a look at the
busybox image due to its size:

$ docker inspect busybox

[

{

 "Id":
"8c2e06607696bd4afb3d03b687e361cc43cf8ec1a4a725bc96e39f05ba97dd55",

Managing Containers

[62]

 "Parent":
"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

 "Comment": "",

 "Created": "2015-04-17T22:01:13.062208605Z",

 "Container":
"811003e0012ef6e6db039bcef852098d45cf9f84e995efb93a176a11e9aca6b9",

 "ContainerConfig": {

 "Hostname": "19bbb9ebab4d",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "PortSpecs": null,

 "ExposedPorts": null,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": null,

 "Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) CMD [\"/bin/sh\"]"

],

 "Image":
"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

 "Volumes": null,

 "VolumeDriver": "",

 "WorkingDir": "",

 "Entrypoint": null,

 "NetworkDisabled": false,

 "MacAddress": "",

 "OnBuild": null,

 "Labels": {}

 },

Chapter 4

[63]

 "DockerVersion": "1.6.0",

 "Author": "Jérôme Petazzoni \u003cjerome@docker.com\u003e",

 "Config": {

 "Hostname": "19bbb9ebab4d",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "PortSpecs": null,

 "ExposedPorts": null,

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": null,

 "Cmd": [

 "/bin/sh"

],

 "Image":
"6ce2e90b0bc7224de3db1f0d646fe8e2c4dd37f1793928287f6074bc451a57ea",

 "Volumes": null,

 "VolumeDriver": "",

 "WorkingDir": "",

 "Entrypoint": null,

 "NetworkDisabled": false,

 "MacAddress": "",

 "OnBuild": null,

 "Labels": {}

 },

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 0,

 "VirtualSize": 2433303

}

]

Managing Containers

[64]

We can see things such as:

•	 When the image was created
•	 Whether the container is using any volumes
•	 The particular network settings being established
•	 What architecture is being used
•	 The OS for the container

We can also see its size, plus a plethora of other items that are related to the
running container.

docker logs
The docker logs command will allow you to look at what has been happening
on your running container. There is a switch that you can use to get a running
output from your container as well, which we will cover shortly. This is similar to
the docker attach command that we went over earlier, but this will allow you to
gather history from when the container started until the time you ran the docker
logs command:

$ docker logs reposado

 Running on http://0.0.0.0:8089/ (Press CTRL+C to quit)

192.168.59.3 - - [29/Jul/2015 15:56:23] "GET / HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 15:56:23] "GET /products HTTP/1.1" 200 -

192.168.59.3 - - [29/Jul/2015 15:56:23] "GET /favicon.ico HTTP/1.1" 404 -

192.168.59.3 - - [29/Jul/2015 15:56:29] "POST /new_branch/test HTTP/1.1"
200 -

192.168.59.3 - - [29/Jul/2015 15:56:29] "GET /products HTTP/1.1" 200 -

Now, docker logs -f will give you a running output of what is actively happening
on the container. This is helpful when you are troubleshooting your containers.
It will allow you to actively monitor your container while you execute, and the
application it is running.

Chapter 4

[65]

docker ps
We covered the docker ps command earlier, but we will now take a look at the
switches we can add to the command.

Here are the switches we will be taking a look at:

•	 docker ps -a: This will give you a list of all the containers. By default,
when you run the docker ps command, it will only show the ones that
are running. It will also provide the status of the containers that were
stopped and how long ago they were stopped. It will also give you the
names of the containers as well as the respective commands that were
running on these containers.

•	 docker ps -l: This will give you the latest created containers, including
the ones that are not running. It again will give you the same information
that the docker ps -a command provides to you. With the docker ps -l
command, you can see what containers were running and then launch them
again with the docker start <container_name> command. This will bring
the image back to the state it was when it was stopped/halted.

•	 docker ps -n=: This will give you the power to slim down the previous
command of docker ps -l. This is useful if the list becomes too long. The
docker ps -n= command allows you to specify a number of how many of
the previous containers you want to view. For example, $ docker ps -n=5
will return the last five containers, whether they are running or not. There
are also other switches you can use with the docker ps command. Don't
forget that on every command, you can use the --help switch that will
provide more information on each command, including all the switches you
can utilize.

docker stats
The docker stats command will give you live running information on your
container. It will provide information such as the container name, CPU activity,
memory usage / memory limit, memory percentage being used, as well as the
network input/output:

$ docker stats reposado

CONTAINER CPU % MEM USAGE/LIMIT MEM %
NET I/O

reposado 0.06% 13.31 MB/2.099 GB 0.63%
5.549 kB/12.9 kB

Managing Containers

[66]

This can be helpful if you have a container using up a lot of memory and want to put
restrictions on it. You can exit this command by using the Ctrl + C key combination
on your keyboard.

docker top
The docker top command will allow you to view what commands are currently
running on your container. It will allow you to see what command is running as well
as how long it has been running:

$ docker top reposado

UID PID PPID C
STIME TTY TIME CMD

root 21094 825 0
15:49 ? 00:00:00 /bin/sh -c
python /opt/margarita/margarita.py

root 21098 21094 0
15:49 ? 00:00:00 python /opt/
margarita/margarita.py

Using your existing management suite
In this section, we will look at what you can do with your already existing
management suite(s) and how you can use them to target actions against your
containers. We will cover most of the major ones: Puppet, Chef, Ansible, and
SaltStack. There are surely more out there and more coming out daily! This will help
you leverage your already existing management environment as well as understand
other options that are available.

Puppet
Puppet (as of version 3.8) allows you to manage your Docker containers with your pre-
existing Puppet environment. You simply need to include Docker to your manifests.

You can then use Puppet to install Docker on the hosts as well as run containers
on these Docker hosts. For example, let's deploy the nginx container using the
Puppet code:

docker::run { 'website':

 image => 'nginx',

Chapter 4

[67]

 command => '/usr/sbin/nginx -g "daemon off;"',

}

We can also execute the code against our already existing containers using Puppet:

docker::exec { 'update-nginx':

 detach => true,

 container => 'nginx',

 command => 'apt-get update -y nginx',

 tty => true,

}

This will update the nginx package in the container named nginx and display the
output on your screen, since tty is set to true.

You can also use other Docker commands in place of the previous exec statement.
Simply refer to the Puppet documentation for more information on it.

Chef
Chef also allows you to manage your Docker infrastructure using your existing Chef
infrastructure. Chef is a little different than Puppet, as it uses recipes to do its tasks.
An example we can use to pull an image from Docker Hub to our Docker host is:

docker_image '<image_name>' do

 tag 'latest'

 action :pull

end

We can then run that pulled image and turn it into a container:

docker_container '<image_name>' do

 tag 'latest'

 action :run

end

With the Chef recipes, the possibilities are endless as to what you could do. The
communities in Chef (as well as these other management suites) are very large and
recipes are being shared all the time.

The easiest way to find a Chef recipe is to use ever-handy search engines such as
Google or Yahoo to find an already written recipe that we can just drop in place or
modify as needed.

Managing Containers

[68]

To learn more about how to use Chef along with Docker to manage your
environment, use the following link:

https://supermarket.chef.io/cookbooks/docker

Ansible
Like the others, we have explored Ansible that can do the many and same things as
the others. If you already have Ansible in place, you have a leg up; you don't need to
get a management suite in place.

If we want to use Ansible to manage Docker, we can use Ansible to spin up the
containers:

- name: nginx-host

 docker:

 name: nginx-host

 image: nginx

 state: started

This will launch a Docker container named nginx-host using the nginx image on
the Docker Hub, ensuring it starts. The catch is that, if there is already a container
named nginx-host, it won't start a container.

We can also stop a running container:

- name: Stop a container

 docker:

 name: nginx-host

 state: stopped

We can also start containers:

- name: Start a container

 docker:

 name: test-container-stopped

 state: started

Chapter 4

[69]

SaltStack
Lastly, we will take a look at SaltStack that, as you can guess, can manage Docker
containers as well. Let's see how we can start a container using SaltStack:

nginx:

 docker.running:

 - container: nginx

 - image: nginx

 - port_bindings: "80/tcp":

 HostIp: ""

 HostPort: "80"

The previous example using SaltStack will start a container and name it nginx based
off the container: section, then pull the nginx image from the Docker Hub from the
image: section. It will set up the port bindings as well. It will set up TCP port 80 on
the Docker container from the port_bindings: section and tie it to the host port of
80 based off of the HostPort: entry.

We can also stop these containers with SaltStack:

salt '*' docker.stop <container id>

This will fire off the salt command and use the docker.stop module. It will look
for the container ID that you specify and stop it when it finds it. You can start a
container in the same way as well:

salt '*' docker.start <image_name:tag>

There are many other SaltStack commands that you too can utilize. These can be
found on the SaltStack website:

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.
dockerio.html#salt.modules.dockerio.stop

Docker Swarm
In this section, we will do a brief overview of Docker Swarm. We will take a look
at what it is, what you can do with it to manage your containers, and what to look
forward to in the later chapters with regards to Docker Swarm.

Managing Containers

[70]

What is Docker Swarm?
The idea behind Docker Swarm is to have native clustering available inside Docker.
This will allow you to both easily scale your environments as well as manage them
from a central location. The best part is that, since it's tied so tightly with the Docker
API, any command you use with Docker can be used in conjunction with managing
the nodes in your Swarm cluster. The setup is very simple as follows:

1.	 You install the Swarm component through a docker pull command.
2.	 You then set up and configure the Swarm manager.
3.	 Lastly, you add the nodes to Docker Swarm.

This setup uses the TCP communication between all the Swarm nodes through an
open TCP port. It also requires that you have Docker installed on each node (as
if we'd not want it installed). Lastly, it requires that you create and manage TLS
certificates that will allow secure communication between all the hosts.

What can Docker Swarm do?
Docker Swarm, as you previously learned, allows for clustering through secure TLS
communication. It allows for discovery services to be set up as well. This will allow
you to set up services such that, when new nodes are added to the Swarm, they can
be automatically added to the correct corresponding service and allowed to join the
service to help scale for its needs.

Swarm also allows advanced scheduling of jobs. This allows you to choose a strategy
to rank all the nodes in your cluster. The three options to rank your nodes are:

•	 spread

•	 binpack

•	 random

The first two allocate jobs based on the machine's available CPU and RAM. The
last one—random—does exactly as it says. It randomly chooses a node to run the
requested job on.

You can review more in-depth examples of these on the Docker Docs website:

https://docs.docker.com/swarm/scheduler/strategy/

Chapter 4

[71]

Summary
In this chapter, you looked at the Docker commands that can be used to manage
your containers, viewing their status and looking inside them to see what they
are doing.

To perform tasks, we looked at how we can execute commands against our running
containers. This will lay the groundwork, so you understand what is going on
behind the scenes if you use a GUI application to manage containers.

We also took a look at utilizing your existing management suite and using it to
cover more ground, including your Docker containers. We took a look at four major
management suites that you can use to manage your Docker containers.

We lastly took a look at Docker Swarm that hopefully got you excited for the later
chapter on Docker Swarm. With Docker Swarm, we can cluster our containers, view
where all our containers are running across multiple Docker hosts, and use it for
discovery services to help scale our environments.

In the next chapter, we will be looking at Docker security—the topic that is always at
the forefront of everyone's mind when it comes to any or all of technology. We will
go over all the aspects of Docker security—the good, the not so bad, and what to look
forward to.

[73]

Docker Security
In this chapter, we will be taking a look at Docker security—the topic on the forefront
of everyone's minds these days. We will be splitting up the chapter into four sections:

•	 Containers versus VMs
•	 The Docker commands
•	 Docker security – best practices
•	 The Docker bench security application

Now, let's take a look at each of these sections one after the other.

Containers versus VMs
In this section, we will be looking at the differences in Docker containers and typical
virtual machines. We will focus on the benefits that Docker containers have over
typical virtual machines. We'll take a look at the good; the not so bad: those items
that aren't bad but you will want keep an eye on them; and the items you want to
look out for: those are the items that you will ultimately want to consider while using
Docker containers over typical virtual machines.

The good
When you start a Docker container, there is a lot of work going on behind the scenes
and two of those items are setting up namespaces and control groups. What does
that mean? By setting up namespaces, Docker keeps the processes isolated in each
container; not only from other containers, but also from the host system. The control
groups ensure that each container gets its own share of items such as CPU, memory,
and disk I/O. More importantly, they ensure that one container doesn't exhaust all
the resources on a given Docker host.

Docker Security

[74]

Each container also gets its own network stack that again contributes to the idea of
isolation. With each container getting its own network stack, other containers don't
get access to each other, unless otherwise specified by Docker linking. Also, with
this, you can accordingly set up access through items such as iptables.

Lastly, what I consider one of the biggest advantages of Docker over typical virtual
machines is that you can finally turn off SSH in your containers. There is no need
to enable SSH in your containers anymore to manage them or to issue commands
against them. Docker has the tools to execute items against the containers and pull
information that is needed to help troubleshoot containers as well. With commands
such as docker execute, docker top, docker logs, docker events, and docker
stats, you can do everything you need to do without exposing any more security
holes than you need to.

The not so bad
Not so bad, as we will be calling this section, is just to keep you informed about the
items that are in the technology.

What you need to realize is that, when you are dealing with virtual machines,
you can control the required permissions, that is, who has access to what virtual
machines. With Docker, you have a little disadvantage because whoever has access
to the Docker daemon on your server has access to every Docker container that you
are running. They can run new containers; they can stop existing containers and can
delete images as well. Be careful who you grant permission to access the Docker
daemon on your hosts. They essentially hold the keys to the kingdom with respect
to all your containers. Knowing this, it is recommended to use Docker hosts only for
Docker; keep other services separate from Docker.

Hopefully, you trust your organization and all those who do have access to
these systems.

What to look out for
You will most likely be setting up virtual machines from scratch. It is probably
impossible to get the virtual machine from someone else, due to its sheer size. So,
you will be aware of what is inside the virtual machine and what isn't. This being
said, with Docker containers, you will not be aware of what could be there inside the
image you might be using for your container(s).

Chapter 5

[75]

The Docker commands
Let's take a look at the Docker commands that can be used to help tighten up security
as well as view information in the images you might be using. There
are two commands that we are going to be focusing on.

The first will be the docker run command, so you can see some of the items you can
use to your advantage with this command. Second, we will take a look at the docker
diff command (that we went over in the previous chapter) that you can use to view
what has been done with the image that you are planning to use.

docker run
With respect to the docker run command, we will mainly focus on the option
that allows you to set everything inside the container as read-only instead of a
specified directory or volume. Let's take a look at an example and break down
what it exactly does:

$ docker run --name mysql --read-only -v /var/lib/mysql -v /tmp:/tmp:rw
-e MYSQL_ROOT_PASSWORD=password -d mysql

Here, we are running a mysql container and setting the entire container as read-only,
except for the /var/lib/mysql directory. What this means is that the only location
the data can be written inside the container is the /var/lib/mysql directory. Any
other location inside the container won't allow you to write anything in it. If you try
to run the following, it would fail:

$ docker exec mysql touch /opt/filename

This can be extremely helpful if you want to control where the containers can
write to or not write to. Be sure to use this wisely. Test thoroughly, as it could
have consequences when the applications can't write to certain locations.

Remember the Docker volumes we looked at in the previous chapters, where we
were able to set the volumes to be read-only. Similar to the previous command with
docker run, where we set everything to read-only except for a specified volume, we
can now do the opposite and set just a single volume (or more if you use more -v
switches) to read only. The thing to remember about volumes is that when you use a
volume and mount it into a container, it will mount as an empty volume over the top
of that directory inside the container, unless you use the --volumes-from switch or
add data to the container in some other way after the fact:

$ docker run -d -v /opt/uploads:/opt/uploads:ro nginx

Docker Security

[76]

This will mount a volume in /opt/uploads and set it to read-only. This can be
useful if you don't want a running container to write to a volume to keep the
data or configuration files intact.

The last option we want to look at with regards to the docker run command is the
--device= switch. This switch allows us to mount a device from the Docker host
into a specified location inside the container. By doing so, there are some security
risks we need to be aware of. By default, when you do this, the container will get
full access: read, write, and the mknod access to the device's location. Now, you can
control these permissions by manipulating rwm at the end of the switch command.
Let's take a look at some of these and see how they work:

$ docker run --device=/dev/sdb1:/dev/sdc2 -it ubuntu:latest /bin/bash

The previous command will run the latest Ubuntu image and mount the /dev/sdb1
device inside the container in the /dev/sdc2 location:

$ docker run --device=/dev/sdb1:/dev/sdc2:r -it ubuntu:latest /bin/bash

This command will run the latest Ubuntu image and mount the /dev/sdb1 device
inside the container in the /dev/sdc2 location. But this one has the :r tag at the end
of it that specifies it's read-only and can't be written to.

docker diff
Let's take another look at the docker diff command since it relates to the security
aspects of the containers you may want to use from the images that are hosted on
Docker Hub or other related repositories.

Remember that whoever has access to your Docker host and the Docker daemon has
access to all of your running Docker containers. This being said, if you don't have
monitoring in place, someone could be executing commands against your containers
and doing malicious things:

$ docker diff <running_container_name>

Chapter 5

[77]

Docker security – best practices
In this section, we will look at the best practices when it comes to Docker as well
as the Center for Internet Security guide to properly secure all the aspects of your
Docker environment. You will be referring to this guide when you actually run the
scan (in the next section of this chapter) and get results back of what needs or should
be fixed. The guide is broken down into the following sections:

•	 The host configuration
•	 The Docker daemon configuration
•	 The Docker daemon configuration files
•	 Container images/runtime
•	 Docker security operations

Docker – best practices
Before we dive into the Center for Internet Security guide, let's go over some of the
best practices to use Docker:

•	 One application per container: Spread out your applications to one per
container. Docker was built for this and it makes everything easier at the end
of the day. That isolation we talked about earlier is where this is the key.

•	 Review who has access to your Docker hosts: Remember that whoever has
access to your Docker hosts has access to manipulate all your images and
containers on the host.

•	 Use the latest version: Always use the latest version of Docker. This will
ensure that all security holes have been patched and you have the latest
features as well.

•	 Use the resources: Use the resources available if you need help. The
community within Docker is huge and immensely helpful. Use their website,
documentation, and the IRC chat rooms to your advantage.

CIS guide – host configuration
This part of the guide is about the configuration of your Docker hosts. This is that
part of the Docker environment where all your containers run. Thus, keeping it
secure is of the utmost importance. This is the first line of defense against attackers.

Docker Security

[78]

CIS guide – Docker daemon configuration
This part of the guide has the recommendations that secure the running Docker
daemon. Everything you do to the Docker daemon configuration affects each and
every container. These are the switches you can attach to the Docker daemon we saw
previously, and to the items you will see in the next section when we run through
the tool.

CIS guide – Docker daemon configuration
files
This part of the guide deals with the files and directories that the Docker daemon
uses. This ranges from permissions to ownerships. Sometimes, these areas may
contain information you don't want others to know about that could be in a plain
text format.

CIS guide – container images/runtime
This part of the guide contains both the information for securing the container
images as well as the container runtime.

The first part contains images, cover base images, and the build files that were used.
As we covered previously, you need to be sure about the images you are using
not only for your base images, but for any aspect of your Docker experience. This
section of the guide covers the items you should follow while creating your own base
images to ensure they are secure.

The second part, the container runtime, covers a lot of security-related items. You
have to take care with the runtime variables you are providing. In some cases,
attackers can use them to their advantage, while you think you are using them to
your own advantage. Exposing too much in your container can compromise the
security of not only that container, but the Docker host and the other containers
running on that host.

CIS guide – Docker security operations
This part of the guide covers the security areas that involve deployment. These items
are more closely tied to the best practices and the recommendations of items that are
recommended to be followed.

Chapter 5

[79]

The Docker bench security application
In this section, we will cover the Docker benchmark security application that you can
install and run. The tool will inspect:

•	 The host configuration
•	 The Docker daemon configuration
•	 The Docker daemon configuration files
•	 Container images and build files
•	 Container runtime
•	 The Docker security operations

Looks familiar? It should, as these are the same items that we reviewed in the
previous section only built into an application that will do a lot of heavy lifting for
you. It will show you what warnings arise with your configurations and provide
information on other configuration items and even the items that have passed the test.

We will look at how to run the tool, a live example, and what the output of the
process will mean.

Running the tool
Running the tool is simple. It's already been packaged up for us inside a Docker
container. While you can get the source code and customize the output or
manipulate it in some way (say, e-mail the output), the default may be all you need.

The code is found here:

https://github.com/docker/docker-bench-security

To run the tool, we will simply copy and paste the following into our Docker host:

$ docker run -it --net host --pid host --cap-add audit_control \

 -v /var/lib:/var/lib \

 -v /var/run/docker.sock:/var/run/docker.sock \

 -v /usr/lib/systemd:/usr/lib/systemd \

 -v /etc:/etc --label docker_bench_security \

 diogomonica/docker-bench-security

If you don't already have the image, it will first download the image and then start
the process for you. Now that we've seen how easy it is to install and run it, let's take
a look at an example on a Docker host to see what it actually does. We will then take
a look at the output and take a dive into dissecting it.

https://github.com/docker/docker-bench-security

Docker Security

[80]

There is also an option to clone the Git repository, enter the directory from the git
clone command, and run the provided shell script. So, we have multiple options!

Let's take a look at an example and break down each section:

•	 The host configuration:

Chapter 5

[81]

•	 The Docker daemon configuration:

•	 The Docker daemon configuration files:

Docker Security

[82]

•	 Container images and build files:

•	 Container runtime:

•	 The Docker security operations:

Wow! A lot of output and tons to digest; but what does it all mean? Let's take a look
and break down each section.

Chapter 5

[83]

Understanding the output
There are three types of output that we will see:

•	 [PASS]: These items are solid and good to go. They don't need any attention,
but are good to read to make you feel warm inside. The more of these, the
better!

•	 [INFO]: These are items that you should review and fix if you feel they are
pertinent to your setup and security needs.

•	 [WARN]: These are items that need to be fixed. These are the items we don't
want to be seeing.

Remember, we had the six main topics that were covered in the scan:

•	 The host configuration
•	 The Docker daemon configuration
•	 The Docker daemon configuration files
•	 Container images and build files
•	 Container runtime
•	 The Docker security operations

Let's take a look at what we are seeing in each section of the scan. These scan results
are from a default Ubuntu Docker host with no tweaks made to the system at this
point. We want to focus again on the [WARN] items in each section. Other warnings
may come up when you run yours, but these will be the ones that come up most if
not for everyone at first.

•	 Host configuration:
[WARN] 1.1 - Create a separate partition for containers

For this one, you will want to map /var/lib/docker to a separate partition.
[WARN] 1.8 - Failed to inspect: auditctl command not found.

[WARN] 1.9 - Failed to inspect: auditctl command not found.

[WARN] 1.10 - Failed to inspect: auditctl command not found.

[WARN] 1.13 - Failed to inspect: auditctl command not found.

[WARN] 1.18 - Failed to inspect: auditctl command not found.

Docker Security

[84]

•	 The Docker daemon configuration:
[WARN] 2.2 - Restrict network traffic between containers

By default, all the containers running on the same Docker host have access
to each other's network traffic. To prevent this, you would need to add the
--icc=false flag to the Docker daemon's start up process.
[WARN] 2.7 - Do not use the aufs storage driver

Again, you can add a flag to your Docker deamon start up process that will
prevent Docker from using the aufs storage driver. By using -s <storage_
driver> on your Docker daemon startup, you can tell Docker not to use
aufs for storage. It is recommended that you use the best storage driver for
the OS on the Docker host you are using.

•	 The Docker daemon configuration files:
If you are using the stock Docker daemon, you should not see any warnings.
If you have customized the code in some way, you may get warnings here.
This is one area you hope to never see warnings.

•	 Container images and build files:
[WARN] 4.1 - Create a user for the container

[WARN] * Running as root: suspicious_mccarthy

This is stating that the container named suspicious_mccarthy is running
as the root user and it is recommended to create another user to run your
containers.

•	 Container Runtime:
[WARN] 5.1: - Verify AppArmor Profile, if applicable

[WARN] * No AppArmorProfile Found: suspicious_mccarthy

This states that the container named suspicious_mccarthy does not have
AppArmorProfile, which is the additional security provided in Ubuntu in
this case.
[WARN] 5.3 - Verify that containers are running only a single
main process

[WARN] * Too many processes running: suspicious_mccarthy

Chapter 5

[85]

This error is pretty straightforward. You will want to make sure you are
only running one process per container. If you are running more than
one, you will want to spread them out across multiple containers and use
container linking.
[WARN] 5.4 - Restrict Linux Kernel Capabilities within containers

[WARN] * Capabilities added: CapAdd=[audit_control] to
suspicious_mccarthy

This is stating that the audit_control capability has been added to this
running container. You can use --cap-drop={} from your docker run
command to remove additional capabilities on a container.
[WARN] 5.6 - Do not mount sensitive host system directories on
containers

[WARN] * Sensitive directory /etc mounted in: suspicious_
mccarthy

This again goes back to looking at mounting the items inside the containers
as read-only. The --read-only flag would come in handy in this scenario,
when you issue your docker run command.
[WARN] * Sensitive directory /lib mounted in: suspicious_
mccarthy

This too goes back to looking at mounting the items inside the containers
as read-only. The --read-only flag would come in handy in this scenario,
when you issue your docker run command.
[WARN] 5.7 - Do not run ssh within containers

[WARN] * Container running sshd: suspicious_mccarthy

It is straight to the point. No need to run SSH inside your containers. You can
do everything you want to with your containers using the tools provided by
Docker. Ensure that SSH is not running in any container.
[WARN] 5.10 - Do not use host network mode on container

[WARN] * Container running with networking mode 'host':
suspicious_mccarthy

The issue with this one is that, when the container was running, the
--net=host switch was passed along. It is not recommended to use this, as it
allows the container to open low port numbers as well as access networking
services on the Docker host.
[WARN] 5.11 - Limit memory usage for the container

[WARN] * Container running without memory restrictions:
suspicious_mccarthy

Docker Security

[86]

By default, the containers don't have memory restrictions. This can be
dangerous if you are running multiple containers per Docker host. You can
use the -m switch while issuing your docker run commands to limit the
containers to a certain amount of memory. Values are set in megabytes (that
is, 512 MB or 1024 MB).
[WARN] 5.12 - Set container CPU priority appropriately

[WARN] * The container running without CPU restrictions:
suspicious_mccarthy

Like the memory option, you can also set the CPU priority on a per container
basis. This can be done using the -c switch while issuing your docker run
command. The CPU share is based off of the number 1024. So, half would
be 512 and 25% would be 256. Use 1024 as the base number to determine the
CPU share.
[WARN] 5.13 - Mount container's root filesystem as readonly

[WARN] * Container running with root FS mounted R/W:
suspicious_mccarthy

You really want to be using your containers as mutable environments;
meaning they don't write any data inside them. Data should be written out
to volumes. Again, you can use the --read-only switch, followed by the
-v / switch to specify that the root directory is read-only for the running
container.
[WARN] 5.16 - Do not share the host's process namespace

[WARN] * Host PID namespace being shared with: suspicious_
mccarthy

This error arises when you use the --pid=host switch. It is not recommended
to use this switch, as it breaks the isolation of processes between the container
and Docker host.

•	 The Docker security operations:
Again, another section you hope to or never should see warnings if you are
using stock Docker. Mostly here you will see information and should review
them to make sure it's all kosher.

Chapter 5

[87]

Summary
In this chapter, we covered some aspects of Docker security. First, we took a look at
containers versus typical virtual machines with regards to security. We looked at the
good, the not so bad, and what to look out for.

We then took a look at what Docker commands we can use for security purposes.
We first took a look at read-only containers, so we can minimize what we are
exposing to other containers. We then viewed what is done to the images that you
have running. It is important to know what is done on these containers, so you have
a trail of activity.

Next, we took a look at the Center for Internet Security guidelines for Docker. This
guide will assist you in setting up multiple aspects of your Docker environment.
Lastly, we took a look at the Docker bench for security. We looked at how to get it
up and running and ran through an example of what the output would look like
once it has been run. We then took a look at the said output to see what all it meant.
Remember the six items that the application covered: the host configuration, Docker
daemon configuration, Docker daemon configuration files, container images and
build files, container runtime, and Docker security operations.

In the next chapter, we will be taking a look at Docker Machine. Docker Machine
allows you to create Docker hosts locally on items such as VirtualBox or VMWare
Fusion or to cloud providers such as Amazon AWS, Microsoft Azure, DigitalOcean,
as well as others. Saving time is the key here. Instead of having to go to a host, spin
up a virtual machine, and get Docker installed on it, Docker Machine will do it all for
you and give you more time to do what you should be doing.

[89]

Docker Machine
In this chapter, we will take a look at Docker Machine. Docker Machine is a tool that
supersedes boot2docker. It can be used to create Docker hosts on various platforms,
including locally or in a cloud environment. You can control your Docker hosts with
it as well. Let's take a look at what we will be covering in this chapter:

•	 Installing Docker Machine
•	 Using Docker Machine to set up the Docker hosts
•	 Various Docker commands

Installation
Installing Docker Machine is very straightforward. There is a simple curl command
to run and install it. It is recommended to install Docker Machine in /usr/local/
bin, as this will allow you to issue the Docker Machine commands from any
directory on your machine:

$ curl -L https://github.com/docker/machine/releases/download/v0.4.0/
docker-machine_linux-amd64 > /usr/local/bin/docker-machine

After issuing the curl command, you need to set the permissions in the docker-
machine file that was just created in /usr/local/bin/:

$ chmod +x /usr/local/bin/docker-machine

You can then verify that Docker Machine is installed by issuing a simple docker-
machine command:

$ docker-machine --help

You should get back all the commands and switches you can use while operating the
docker-machine command.

Docker Machine

[90]

Now these instructions are great if you are on Linux. But what if you are using
Mac or even Windows? Then, you would want to use the Docker Toolbox to do
your installation. This will not only install Docker Machine, but other pieces of the
Docker ecosystem as well. To view a list of what all comes in the Docker Toolbox per
platform, visit https://www.docker.com/docker-toolbox.

Using Docker Machine
Let's take a look at how we can use Docker Machine to deploy Docker hosts on your
local infrastructure, on your own machine, as well as on various cloud providers.

Local VM
Docker Machine uses the --driver switch to specify the location you want to set up
and install the Docker host. So, we can set up a Docker host in VirtualBox:

$ docker-machine create --driver virtualbox <name>

Or, we can set it up on VMware Fusion:

$ docker-machine create --driver vmwarefusion <name>

The previous command is structured as the docker-machine command, followed by
what we want to do: create. We will use the --driver switch next. Then, we need
to specify where we are going to place the Docker host. In our case, we specified
virtualbox and vmwarefusion. Lastly, we need to give the Docker host a name.
This name is to be unique; so when you issue other Docker Machine commands, they
are distinguishable.

There are various other switches we can use to tell how much memory the Docker
host to use and also how much disk space to use as well. You can see all the available
switches by issuing our trustworthy and helpful docker-machine create --help
command. Remember that everything has a --help switch that can be utilized to
gain more information to get the help you need. It should be the first thing you turn
to when you are looking for assistance.

Cloud environment
Now, let's take a look at how we deploy to a cloud environment of our choosing.
When you start deploying to cloud environments, it can get tricky, as it requires
some form of authentication to ensure you are who you say you are. For example,
DigitalOcean requires an access token to launch a Docker host in its system. We will
be taking a look at how we can deploy a Docker host in AWS.

https://www.docker.com/docker-toolbox

Chapter 6

[91]

For AWS, we need a couple of switches. We would need to get the information from
AWS before we can deploy to this cloud provider:

•	 --amazonec2-access-key

•	 --amazonec2-secret-key

•	 --amazonec2--vpc-id

•	 --amazonec2-zone

•	 --amazonec2-region

We can create these drivers by executing the following command:

$ docker-machine create \

 --driver amazonec2 \

 --amazonec2-access-key <aws_access_key> \

 --amazonec2-secret-key <aws_secret_key> \

 --amazonec2-vpc-id <vpc_id> \

 --amazonec2-subnet-id <subnet_id> \

 --amazonec2-zone <zone> \

 <name>

Docker Machine commands
Now that we can deploy Docker hosts locally and to the cloud environments, we
need to know how we can manage and manipulate these Docker hosts. Let's take a
look at all the commands Docker Machine has to offer.

Note that as we previously created these hosts we were given
output on how to target them for use with Docker Machine.

On running the docker-machine create command, you should receive an output
similar to this:

INFO[0041] To point your Docker client at it, run this in your shell:
$(docker-machine env dev2)

This is how you can set the default to target Docker hosts with Docker Machine.
Keep this in mind, when we are looking at the following commands.

Docker Machine

[92]

active
You can use the active subcommand to see which Docker host is currently active
and commands that you execute will be executed on that Docker host:

$ docker-machine active

dev2

config
You can use the config subcommand to view what the current configuration is for
the Docker Machine setup on the currently active host:

$ docker-machine config

--tls --tlscacert=/Users/scott/.docker/machine/machines/dev2/
ca.pem --tlscert=/Users/scott/.docker/machine/machines/dev2/cert.
pem --tlskey=/Users/scott/.docker/machine/machines/dev2/key.pem
-H=tcp://192.168.50.158:2376

env
You can view the environmental variables on each Docker host with the env
subcommand:

$ docker-machine env

export DOCKER_TLS_VERIFY=1

export DOCKER_CERT_PATH=/Users/spg14/.docker/machine/machines/dev2

export DOCKER_HOST=tcp://192.168.50.158:2376

inspect
You can inspect each Docker host using the Docker Machine inspect subcommand.
This subcommand will give you a lot of information on the Docker host, such as the
certificate paths, Swarm host, disk size, memory, CPUs, and much more:

$ docker-machine inspect

{

 "DriverName": "vmwarefusion",

 "Driver": {

 "MachineName": "dev2",

 "IPAddress": "192.168.50.158",

 "Memory": 1024,

Chapter 6

[93]

 "DiskSize": 20000,

 "CPUs": 8,

 "ISO": "/Users/scott/.docker/machine/machines/dev2/boot2docker-
1.5.0-GH747.iso",

 "Boot2DockerURL": "",

 "CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",

 "PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.
pem",

 "SwarmMaster": false,

 "SwarmHost": "tcp://0.0.0.0:3376",

 "SwarmDiscovery": "",

 "CPUS": 8

 },

 "CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",

 "ServerCertPath": "",

 "ServerKeyPath": "",

 "PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.pem",

 "ClientCertPath": "",

 "SwarmMaster": false,

 "SwarmHost": "tcp://0.0.0.0:3376",

 "SwarmDiscovery": ""

}

ip
The ip subcommand will give you the IP address of the active host you are pointing
to with Docker Machine:

$ docker-machine ip <name>

192.168.50.158

kill
If a host is acting up, you can kill the Docker hosts with the kill subcommand of
Docker Machine:

$ docker-machine kill

INFO[0000] Forcibly halting dev2...

Docker Machine

[94]

ls
You can use the ls subcommand to view all the running Docker hosts you have used
to create with Docker Machine. The information will include:

•	 The name of the host
•	 Whether the machine is active
•	 The driver that is being used
•	 The state of the host
•	 The URL that is being used for communication
•	 If the host is a part of the Docker Swarm cluster, then that information will be

shown as well

Let's take a look at a sample command output when you use docker-machine ls:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

dev virtualbox Stopped

dev2 * vmwarefusion Running tcp://192.168.50.158:2376

As you can see, you get the list of Docker hosts you can control. As well as the driver,
its state, URL, and its part of a Swarm cluster.

restart
You can restart the hosts as well using the restart subcommand:

$ docker-machine restart <name>

INFO[0000] Gracefully restarting dev2...

rm
You can remove the hosts you no longer need by using the rm subcommand of
Docker Machine:

$ docker-machine rm <name>

Chapter 6

[95]

scp
There are multiple ways to use the Docker Machine scp command. You can copy
files or folders from the local host to a Docker host:

$ docker-machine scp <file_name> <name>:/<path>/<to>/<folder>/

It can be copied from one machine to another:

$ docker-machine scp <host1>:/<path>/<to>/<file>
<host2>:/<path>/<to>/<folder>/

It can also be copied from the machine back to the host:

$ docker-machine scp <name>:/<path>/<to>/<file> .

ssh
You can SSH into your Docker hosts as well by using the ssh subcommand. This
can be useful if you need to troubleshoot why the commands you push against your
hosts might not be working:

$ docker-machine ssh <name>

start
The start subcommand can be used to start the Docker hosts that have been
stopped:

$ docker-machine start <name>

INFO[0000] Starting dev2...

stop
You can stop the hosts as well by using the stop subcommand:

$ docker-machine stop <name>

INFO[0000] Gracefully shutting down dev2...

Docker Machine

[96]

upgrade
If you have a Docker host that is running Docker version 1.7 (let's say) and you
want to upgrade it to the latest version, you could use the upgrade subcommand
of Docker Machine:

$ docker-machine upgrade <name>

This will upgrade the version of Docker that is running on the Docker hostname
you provide.

url
The url subcommand will give you the URL that is being used for communication
for the Docker host:

$ docker-machine url <name>

tcp://192.168.50.158:2376

TLS
Docker Machine also has the option to run everything over TLS. This is the most
secure way of using Docker Machine to manage your Docker hosts. This setup can
be tricky if you start using your own certificates. By default, Docker Machine stores
your certificates that it uses in /Users/<user_id>/.docker/machine/certs/. You
can view these items simply by running:

$ docker-machine --help

This will give you a global Options section at the bottom of the listing that lists this
information. These are the locations of the intermediate certificate, intermediate key,
and the certificate that Docker Machine uses as well as its corresponding key. You
would need to update these files with your own certificates if you don't want to be
using the self-signed certificates that Docker Machine creates.

Chapter 6

[97]

Summary
In this chapter, we looked at Docker Machine. We first looked at how to use Docker
Machine to create the Docker hosts locally on virtualization software such as
VirtualBox or VMware Fusion. We also looked at how to use Docker Machine to
deploy Docker hosts to your cloud environments.

We then took a look at all the commands that are in the Docker Machine Toolbox.
With all these commands, you can manage your entire fleet of Docker hosts. You can
manipulate them from creating new Docker hosts to managing all the configuration
aspects of the Docker hosts. We really dove deep into all the Docker Machine
commands, so you should have a good understanding of this Docker component.

In the next chapter, we will be looking at Docker Compose. Docker Compose is
very complex and has a lot of pieces that you can leverage to your advantage. We
will be focusing very heavily on Docker Compose and it's a core piece of the Docker
ecosystem that you will find yourself using almost daily. Docker Compose is very
powerful and very useful with all the aspects of managing Docker.

[99]

Docker Compose
In this chapter, we will be taking a look at Docker Compose. We will break the
chapter down into the following sections:

•	 Installing Docker Compose
•	 Docker Compose YAML file
•	 Docker Compose usage
•	 The Docker Compose commands
•	 The Docker Compose examples

Installing Docker Compose
Let's take a look at how we can get Docker Compose installed on to our machine, so
we can start utilizing its full feature set and power.

Installing on Linux
Let's take a look at how easy it is to install on Linux:

$ curl -L https://github.com/docker/compose/releases/download/VERSION_
NUM/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

The reason we install this in the /usr/local/bin/ folder is that this folder is where
global commands are stored in Linux. For example, when you type a command and
hit Enter, Linux does a search in a few common areas to see if the command you
typed exists. If it does, execution starts, else you will get an error stating that the
command can't be found. This makes it easier, so you don't have to use full paths to
the docker-compose binary or be in a certain directory each time to run it:

$ chmod +x /usr/local/bin/docker-compose

This will set the downloaded binary to executable.

Docker Compose

[100]

Installing on OS X and Windows
The installation for OS X and Windows is different than it originally was. For OS
X in particular, the installation was done using the curl command. Now, Docker
has created what they call Docker Toolbox that is used to install not only Docker
Compose but multiple components of the service for you to use.

To install Docker Compose on these platforms, we need the Docker Toolbox installer.
This can be found on the Docker website. Simply download the installer for your
platform and follow the installer instructions to get up and running.

Docker Compose YAML file
For building your YAML files, I definitely recommend looking at the Docker
documentation for this. There are a plethora of items that can be added to your
docker-compose.yml file and it's always changing.

The key thing to note about a basic YAML file is that it has to contain either a name
for each service, an image:, or a build: section. There are many other options to do
inside the compose file, such as:

•	 Container linking
•	 Exposing ports
•	 Specifying the volumes to be used
•	 Specifying the environmental variables
•	 Setting the DNS servers to be used
•	 Setting the log driver to be used and much more

The Docker Compose usage
We can start by using the ever-so-helpful --help switch on the docker-compose
command. We will see a lot of output and will sift through it after the following output:

$ docker-compose --help

Define and run multi-container applications with Docker.

Usage:

 docker-compose [options] [COMMAND] [ARGS...]

Chapter 7

[101]

 docker-compose -h|--help

Options:

 -f, --file FILE Specify an alternate compose file (default:
docker-compose.yml)

 -p, --project-name NAME Specify an alternate project name (default:
directory name)

 --verbose Show more output

 -v, --version Print version and exit

Commands:

 build Build or rebuild services

 help Get help on a command

 kill Kill containers

 logs View output from containers

 port Print the public port for a port binding

 ps List containers

 pull Pulls service images

 restart Restart services

 rm Remove stopped containers

 run Run a one-off command

 scale Set number of containers for a service

 start Start services

 stop Stop services

 up Create and start containers

 migrate-to-labels Recreate containers to add labels

 version Show the Docker-Compose version information

The Docker Compose options
Looking at the help output, we can see that the list is categorized as Usage, Options,
and Commands. The Usage section is how you will need to structure your commands
to run them successfully. Next is the Options section that we will look at now:

Options:

 -f, --file FILE Specify an alternate compose file (default:
docker-compose.yml)

Docker Compose

[102]

 -p, --project-name NAME Specify an alternate project name (default:
directory name)

 --verbose Show more output

 -v, --version Print version and exit

So, as we can see from the previous output of the docker-compose --help command,
there are two sections: an Options section as well as a Commands section. We will first
look at the items in the Options section and next look at the Commands section.

There are four items in the Options section:

•	 -f: If you are using Docker Compose outside the folder where the docker-
compose.yml file exists or if you are not naming it docker-compose.yml,
then you will need to specify the -f flag. By default, when you initiate the
Docker Compose commands, they are meant to be done in the directory
where your docker-compose.yml file is located. This helps in keeping things
consistent, organized, as well as less convoluted.

•	 -p, --project-name: The -p option will allow you to give a name to your
project. By default, Docker Compose uses the name of the folder you are
currently running the Docker Compose commands from. This allows you to
override it.

•	 --verbose: The --verbose switch allows you to run Docker Compose in
a way that you can see the output of items about the image(s) being used,
such as:

°° The command used to start the containers
°° The CPU shares being used in the container
°° The domain name being used
°° Whether an entry point was used and if so, what it is

•	 -v, --version: This will simply print the version number of the Docker
Compose client being used.

Chapter 7

[103]

The Docker Compose commands
We can tell by running the previous docker-compose --help command that there
are many subcommands that can be used with the main docker-compose command.
Let's break them down individually and provide examples of each subcommand,
starting at the top and working our way down the list. Remember that there are
also switches for each subcommand that can be found using the --help option. For
example, docker-compose <subcommand> --help. These commands will also seem
very similar as the commands we saw in the Docker commands section in Chapter 4,
Managing Containers. Also, note that some of these commands need to be run in the
folder where docker-compose and/or the Dockerfile for that service are located.

For the command examples, we will be using the following as the contents of our
docker-compose.yml file called example 1:

master:
 image:
 scottpgallagher/galeramaster
 hostname:
 master
 ports:
 - "3306:3306"
node1:
 image:
 scottpgallagher/galeranode
 hostname:
 node1
 links:
 - master
node2:
 image:
 scottpgallagher/galeranode
 hostname:
 node2
 links:
 - master

We will also be creating this file (example 2):

web:
 build: .
 command: php -S 0.0.0.0:8000 -t /code
 ports:
 - "8000:8000"
 links:

Docker Compose

[104]

 - db
 volumes:
 - .:/code
db:
 image: orchardup/mysql
 environment:
 MYSQL_DATABASE: wordpress

We will create our Dockerfile for this docker-compose.yml file:

FROM orchardup/php5

ADD . /code

build
The build command of Docker Compose is used when you have changed the
contents of a Dockerfile that you are using and need to rebuild one of the systems in
the docker-compose.yml file.

For example, if you review our example 2 code, in the previous section, we have a
web container that we are specifying in our docker-compose.yml file. Now, if were to
update the contents of the Dockerfile, we would need to rebuild the container named
web, so it knows about the change. We may want to change the image we are using or,
if the image has been updated, we would want to do a rebuild of the web container:

$ docker-compose build web

It will look for the name web in the docker-compose.yml file, then jump to the
Dockerfile, and rebuild the web container based on the contents of the Dockerfile.
This also can be useful; if the container in question has disappeared, you can rebuild
just that image. There is just one switch that can be used with this subcommand and
that is --no-cache, which allows you to build the image without using local cache.

kill
The kill subcommand does exactly what its name suggests. It will kill a running
container without gracefully stopping it. This can have unattended consequences
with the data that is being written, such as MySQL database tables, to at the time
of issuing this command. Remember that containers are made to be immutable
environments; but if you start diving into the volumes, then you are referring to data
that is mutable and might change. In an event where you do have a volume and data
is being written to it, the best practice would be to use the stop subcommand.

Chapter 7

[105]

Using the example 2 code in the The Docker Compose commands section, let's say that
both the web and db containers are running and we want to stop the web container.
In this case, we could use the kill subcommand:

$ docker-compose kill web

logs
Next up is logs! This subcommand will print the output from the specified service.
Let's take a look at example 1. We have three running containers in this case: master,
node1, and node2. We can tell that node2 is doing something strange with its MySQL
replication and we need to see whether we can find out why. Our first stop is to
check its logs:

$ docker-compose logs node2

You will receive an output similar to the following (but not exactly the same):

node2_1 | at gcomm/src/gmcast.cpp:connect_precheck():282

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs_core.cpp:long int
gcs_core_open(gcs_core_t*, const char*, const char*, bool)():206: Failed
to open backend connection: -131 (State not recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int gcs_
open(gcs_conn_t*, const char*, const char*, bool)():1379: Failed to
open channel 'my_wsrep_cluster' at 'gcomm://master': -131 (State not
recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2_1 | 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7

node2_1 | 150904 16:47:56 [ERROR] Aborting

node2_1 |

node2_1 | 150904 16:47:56 [Note] WSREP: Service disconnected.

node2_1 | 150904 16:47:57 [Note] WSREP: Some threads may fail to exit.

node2_1 | 150904 16:47:57 [Note] mysqld: Shutdown complete

node2_1 |

We can see that this node has an issue talking to master and shuts down its MySQL.
Now that sure helps us!

Docker Compose

[106]

You will notice that the output is colored as well. This is something you will see
while using Docker Compose, as it separates running containers using different
colors. You can get the output of the logs without color as well by appending the
--no-color switch to the command:

$ docker-compose logs --no-color node2

node2_1 | at gcomm/src/gmcast.cpp:connect_precheck():282

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs_core.cpp:long int
gcs_core_open(gcs_core_t*, const char*, const char*, bool)():206: Failed
to open backend connection: -131 (State not recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int gcs_
open(gcs_conn_t*, const char*, const char*, bool)():1379: Failed to
open channel 'my_wsrep_cluster' at 'gcomm://master': -131 (State not
recoverable)

node2_1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2_1 | 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7

node2_1 | 150904 16:47:56 [ERROR] Aborting

node2_1 |

node2_1 | 150904 16:47:56 [Note] WSREP: Service disconnected.

node2_1 | 150904 16:47:57 [Note] WSREP: Some threads may fail to exit.

node2_1 | 150904 16:47:57 [Note] mysqld: Shutdown complete

node2_1 |

port
The port subcommand allows you to use Docker Compose to get you the
public-facing port from the private port the server is displaying. This can be useful if
you either forget what port privately maps or what port publicly maps. If you have
used autoassigned ports, then you might want to be looking that information up as
well. The command is very straightforward. Again, looking at example 1, we will
this time look at master. The thing to note with this command is that the container
must be running in order to get this information. The structure of this command is:

$ docker-compose <name-from-compose> <port-to-lookup>

$ docker-compose port master 3306

Chapter 7

[107]

There are also two switches to utilize with this subcommand:

•	 --protocol: This is used to display either the TCP or UDP port to look up
the port that you specify on the command line. This will default to display
TCP. The reason for this switch would be if you are looking for the UDP port:
$ docker-compose --port udp master 3306

•	 --index: This is used if you have scaled containers and you want to look up
what a certain image in the list is using. For example, if we were specifying
two masters, we could do:

°° $ docker-compose --index 1 master 3306: This would display
the public-facing port for the master container in index position 1.

°° $ docker-compose --index 2 master 3306: This would display
the information for the master container in index spot two.

We know for this example that port 3306 is being used for the MySQL service.
However, if you don't know what ports it was running on the private or public side,
you can use the ps subcommand that we will be looking at next.

ps
The Docker Compose ps subcommand can be used to display information on
the containers running within a particular Docker Compose folder. For instance,
in our last subcommand, we talked about not knowing the private port. This
command will help us get that information. We will now take a look at the output
of the docker-compose ps subcommand using example 2 code in the The Docker
Compose commands section:

$ docker-compose ps

 Name Command State
Ports

galeracompose_master_1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,

4568/tcp, 53/tcp,

Docker Compose

[108]

53/udp, 8300/tcp,

8301/tcp, 8301/udp,

8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

galeracompose_node1_1 /entrypoint.sh Exit 1

galeracompose_node2_1 /entrypoint.sh Exit 137

We can get a lot of information from this output. We can get the name of the
containers running. These names are assigned based upon folder_name +
_name_used_in_yml_file + _<number_of_each_name_running>. For example,
galeracompose_master_1, where:

•	 galeracompose is our folder name
•	 master is the name being used in the docker-compose.yml file
•	 1 is how many times this container is being run

We also see the command that is running inside the container as well as the state of
each container. In our earlier example, we see that one container is up and two are in
an Exit status, which means they are off. From the one that is up, we see all the ports
that are being utilized on the backend, including the protocol. Then, we see the ports
that are exposed to the outside and also the backend port they are connected to.

When you use various commands with Docker Compose, you can specify either the
name given from the output using the ps subcommand or by the name given in the
docker-compose.yml file.

pull
The pull subcommand can be used in two ways. One you could run:

$ docker-compose pull

Or you could run:

$ docker-compose pull <service_name>

What's the difference? The difference in the first one is that it will pull all the images
that are referenced in the docker-compose.yml file. In the second one, it will pull
just the image that is specified for the service asked to be pulled.

Chapter 7

[109]

If we look back at example 1 in the Docker Compose commands section, we have
master, node1, and node2 in our docker-compose.yml file. If we wanted to retrieve
all the images, we would use the first example. If we just wanted the image being
used by master, we would use the second one:

$ docker-compose pull master

Remember that these commands need to be run in the folder where the docker-
compose.yml file is located.

restart
Restart does exactly what it says it does. As with the pull subcommand, it can be
used in two ways. You can run:

$ docker-compose restart

It will restart all the containers that are being used in the docker-compose.yml file.
You can also specify which container to restart:

$ docker-compose restart <service>

Again, using example 1 in the The Docker Compose commands section, we only want to
restart one of the node services:

$ docker-compose restart node1

The restart command will only restart the containers that are currently running. If
a container is in an exit state, then it won't start that container up to a running state.

rm
The rm subcommand can be used to remove containers for specific Docker Compose
instances. By default, it will ask you to confirm whether you really want to remove
the container in question. It is a good practice to use the subcommand in this way.
However, if you are comfortable enough, you can also use the -f switch with the
subcommand to force removal and you won't be prompted to for yes as an answer:

$ docker-compose rm <service>

$ docker-compose rm node2

Going to remove galeracompose_node2_1

Are you sure? [yN] y

Removing galeracompose_node2_1... done

Docker Compose

[110]

You can use this command, as we have seen with the previous commands, without
specifying a service name. If you do so, it will prompt you to remove each of
the stopped containers. It will not try to remove the containers that are running
however. Again, you could use the -f switch to specify the removal of all the
stopped containers without asking for approval.

run
The run subcommand is used to run a one-time command against a service, not
against an already running container. When you use the run subcommand, you are
actually starting up a new container and executing the specified command. This is
one command that you do need to pay attention to, including the switches that are
available for the subcommand.

Specifically, there are two to remember:

•	 --no-deps: This will not start up containers that may be linked to the
container being used with the run subcommand. By default, when you use
the run subcommand, any linked containers will start up as well.

•	 --service-ports: By default, ports that are being specified in the docker-
compose.yml file are not exposed during the execution of the run subcommand.
This is to avoid issues with the ports that are already in use. However, this
switch will allow you to expose the ports that are being specified. This can be
helpful if the ports in question aren't already being exposed.

The structure of the subcommand is as follows:

$ docker-compose run <service> <command>

scale
The scale subcommand allows you just to do that: scale. With the scale
subcommand, you can specify how many instances you want to start up. Using
example 1, if we want to load up a bunch of nodes, we could do that using the
scale subcommand:

$ docker-compose scale node1=3

This would fire up three nodes and link them back to the master container. You can
also specify multiple containers to scale per line as well. If we had a difference in
node1 and node2, we could scale them accordingly on the same line.

$ docker-compose scale node1=3 node2=3

Chapter 7

[111]

start
We will use this for our example with the start subcommand:

$ docker-compose ps

 Name Command State
Ports

galeracompose_master_1 /entrypoint.sh Exit 137

galeracompose_node2_run_1 /entrypoint.sh Up
3306/tcp, 4444/tcp,

4567/tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,

8301/tcp, 8301/udp,

8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

From the preceding ps subcommand, we can see that the master node is stopped.
That's not good! We need to get it started as soon as possible:

$ docker-compose start master

$ docker-compose ps

 Name Command State
Ports

galeracompose_master_1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,

4568/tcp, 53/tcp, 53/udp,

8300/tcp, 8301/tcp,

Docker Compose

[112]

8301/udp, 8302/tcp,

8302/udp, 8400/tcp,

8500/tcp

galeracompose_node2_run_1 /entrypoint.sh Up
3306/tcp, 4444/tcp,

4567/tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,

8301/tcp, 8301/udp,

8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

Phew, it is much better now! Let's take a look at what we need to do if we need to
stop a running container.

stop
The stop subcommand stops running containers gracefully. Using our example from
the last subcommand, let's stop the master container:

$ docker-stop master

docker-compose ps

 Name Command State
Ports

galeracompose_master_1 /entrypoint.sh Exit 137

galeracompose_node2_run_1 /entrypoint.sh Up
3306/tcp, 4444/tcp,

4567/tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,

Chapter 7

[113]

8301/tcp, 8301/udp,

8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

up
The up subcommand is used to start all the containers specified in a docker-
compose.yml file. It can also be used to start up a single container as well from a
compose file. By default, when you issue the up subcommand, it will keep everything
in the foreground. However, you can use the -d switch to push all that information
into a daemon and just get information on the container names on the screen:

Let's use example 2 in this test case. We will take a look at docker-compose up -d
and docker-compose up:

$ docker-compose up -d

Starting wordpresstest_db_1...

Starting wordpresstest_web_1...

$ docker-compose up

Starting wordpresstest_db_1...

Starting wordpresstest_web_1...

Attaching to wordpresstest_db_1, wordpresstest_web_1

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_buffer
instead of key_buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_buffer
instead of key_buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix key_buffer
instead of key_buffer_size is deprecated and will be removed in a future
release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix myisam-
recover instead of myisam-recover-options is deprecated and will be
removed in a future release. Please use the full name instead.

........

db_1 | 150905 14:41:36 [Note] Plugin 'FEDERATED' is disabled.

db_1 | 150905 14:41:36 InnoDB: The InnoDB memory heap is disabled

Docker Compose

[114]

db_1 | 150905 14:41:36 InnoDB: Mutexes and rw_locks use GCC atomic
builtins

db_1 | 150905 14:41:36 InnoDB: Compressed tables use zlib 1.2.3.4

db_1 | 150905 14:41:36 InnoDB: Initializing buffer pool, size = 128.0M

db_1 | 150905 14:41:36 InnoDB: Completed initialization of buffer pool

db_1 | 150905 14:41:36 InnoDB: highest supported file format is
Barracuda.

db_1 | 150905 14:41:36 InnoDB: Waiting for the background threads to
start

db_1 | 150905 14:41:37 InnoDB: 5.5.38 started; log sequence number
1595675

db_1 | 150905 14:41:37 [Note] Server hostname (bind-address): '0.0.0.0';
port: 3306

db_1 | 150905 14:41:37 [Note] - '0.0.0.0' resolves to '0.0.0.0';

db_1 | 150905 14:41:37 [Note] Server socket created on IP: '0.0.0.0'.

db_1 | 150905 14:41:37 [Note] Event Scheduler: Loaded 0 events

db_1 | 150905 14:41:37 [Note] /usr/sbin/mysqld: ready for connections.

db_1 | Version: '5.5.38-0ubuntu0.12.04.1-log' socket: '/var/run/mysqld/
mysqld.sock' port: 3306 (Ubuntu)

You can see a huge difference. Remember that, if you don't use the -d switch and hit
Ctrl + C in the terminal window, it will start shutting down the running containers.
While it's good for testing purposes, if you are going into a production environment,
it is recommended to use the -d switch.

version
The version subcommand will give you the version of Docker Compose that you
are running. It's very straightforward and can also be utilized with the -v switch:

$ docker-compose version

$ docker-compose -v

The difference is that the subcommand version will show you a little more
information such as the docker-py version, Python version, and OpenSSL version,
while the -v switch will just show you the version of Docker Compose.

Chapter 7

[115]

Docker Compose – examples
In this section, we will take a look at some examples and break them to understand
what we can do within the docker-compose.yml file. Remember, earlier we discussed
that in the YAML file, there needs to be either an image section or a build section. Let's
take a look at an example using each. Then, we will look at an example using as many
of the options available for the Docker Compose YAML file as possible.

Here is a breakdown of an example docker-compose.yml file. We will break the
contents into sections to help you understand each entry.

image
The image section tells Docker Compose that you are going to define the
configuration of your containers and what settings each will have:

haproxy:#container name

 image: tutum/haproxy #image to use from the Docker Hub

 ports: #defining our port setup

 - "80:80" #port to map from Docker Host: to container

 links: #what containers to link to/with

 - varnish1

 - varnish2

varnish1:

 image: jacksoncage/varnish

 ports:

 - "82:80"

 links:

 - web1

 - web2

 - web3

 - web4

 environment: # you use environment to specify variable to pass to the
container with values

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web1

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web2

Docker Compose

[116]

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web3

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web4

 VARNISH_PORT: 80

varnish2:

 image: jacksoncage/varnish

 ports:

 - "81:80"

 links:

 - web1

 - web2

 - web3

 - web4

 environment:

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web1

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web2

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web3

 VARNISH_BACKEND_PORT: 80

 VARNISH_BACKEND_IP: web4

 VARNISH_PORT: 80

web1:

 image: scottpgallagher/php5-mysql-apache2

 volumes: # you can specify volumes for the container to use. This will
allow for multiple containers to share a volume

 - .:/var/www/html/ # specify the location of the volume

 links:

 - master

 - node1

 - node2

 - nfs1

Chapter 7

[117]

 - mcrouter1

 - mcrouter2

web2:

 image: scottpgallagher/php5-mysql-apache2

 volumes:

 - .:/var/www/html/

 links:

 - master

 - node1

 - node2

 - nfs1

 - mcrouter1

 - mcrouter2

web3:

 image: scottpgallagher/php5-mysql-apache2

 volumes:

 - .:/var/www/html/

 links:

 - master

 - node1

 - node2

 - nfs1

 - mcrouter1

 - mcrouter2

web4:

 image: scottpgallagher/php5-mysql-apache2

 volumes:

 - .:/var/www/html/

 links:

 - master

 - node1

 - node2

 - nfs1

 - mcrouter1

 - mcrouter2

Docker Compose

[118]

master:

 image:

 scottpgallagher/galeramaster

 hostname: # you can specify a hostname to assign to the container

 master #hostname to use

 environment:

 MARIADB_DATABASE: wordpressmu

 MARIADB_USER: replica

 MARIADB_PASSWORD: replica

node1:

 image:

 scottpgallagher/galeranode

 hostname:

 node1

 environment:

 MARIADB_DATABASE: wordpressmu

 MARIADB_USER: replica

 MARIADB_PASSWORD: replica

 links:

 - master

node2:

 image:

 scottpgallagher/galeranode

 hostname:

 node2

 environment:

 MARIADB_DATABASE: wordpressmu

 MARIADB_USER: replica

 MARIADB_PASSWORD: replica

 links:

 - master

nfs1:

 image: cpuguy83/nfs-server

 volumes:

 - /var/www/wp-content/uploads

mcrouter1:

Chapter 7

[119]

 image: jmck/mcrouter-docker

 command: mcrouter --config-str='{"pools":{"A":{"servers":["memcach
ed1:11211", "memcached2:11211"]}},"route":"PoolRoute|A"}' -p 5000 # here
you can specify a command to run on the container when it's started

 links:

 - memcached1

 - memcached2

mcrouter2:

 image: jmck/mcrouter-docker

 command: mcrouter --config-str='{"pools":{"A":{"servers":["memcach
ed1:11211", "memcached2:11211"]}},"route":"PoolRoute|A"}' -p 5000

 links:

 - memcached1

 - memcached2

memcached1:

 image: memcached

 links:

 - db0

memcached1:

 image: memcached

 links:

 - db0

memcached2:

 image: memcached

 links:

 - db0

In this very long example, you can see that we are specifying a name for each service
as well as the image that is going to be used from the Docker Hub Registry. You can
also see a lot of container linking being done in it. Remember that container linking
removes the exposition off ports and keeps the communication secure between
the said linked containers. We are specifying volumes as well as running some
commands in the containers as well.

Docker Compose

[120]

build
The easiest example of something that uses build is a wordpress instance:

web:

 build: .

 command: php -S 0.0.0.0:8080 -t /wordpress

 ports:

 - "80:8080"

 links:

 - database

 volumes:

 - .:/wordpress

database:

 image: mysql

 environment:

 MYSQL_DATABASE: wordpress

 MYSQL_ROOT_PASSWORD: password

Now, there are other files that are required for this setup; but we are just focusing on
the docker-compose.yml file right now. In the earlier example, we are specifying
two services: a web service and a database service. In the database service, we see
that we are using the image option; but in the web service, we are doing something
different. We are building based off the contents of the folder and then placing the
files in the /wordpress directory inside the container.

The last example
Following is an example just for the sake of it. It's probably something that would
not actually run, but you could use it for reference for the different options that you
can set within your docker-compose.yml file:

node2:

 image:

 scottpgallagher/galeranode

 hostname:

 database

 environment:

 MARIADB_DATABASE: wordpressmu

 MARIADB_USER: replica

Chapter 7

[121]

 MARIADB_PASSWORD: replica

nfs1:

 image: scottpgallagher/php5-mysql-apache2

 ports:

 - "2049"

 volumes:

 - .:/var/www/html/

web1:

 image: apache

 links:

 - node2

 - nfs1

 volumes_from:

 - nfs1

 expose:

 - "80"

 log_driver: "syslog"

 dns: 8.8.8.8

 restart: always

 hostname: webserver

 read_only: true

In the previous example, we specified a lot of things:

•	 image: This specifies what image to use from Docker Hub
•	 volumes: This specifies what paths to use for the volumes that live outside

the container
•	 volumes-from: This specifies what volume from another container to mount

into the container
•	 links: This links containers together, so the need to expose ports isn't there
•	 log_driver: This selects what logging driver to use
•	 dns: This specifies the ability to add additional DNS servers per container
•	 restart: This states that the container needs to restart when or if it fails
•	 hostname: This sets a hostname for the container
•	 read_only: This allows you to specify that a container is read-only

Docker Compose

[122]

•	 ports: This specifies what ports can be attached to (from the Docker host to
the Docker container)

•	 expose: This specifies what ports are actually exposed externally
•	 environment: This sets the values to the specified variables

Summary
In this chapter, we have looked at how to install Docker Compose on various
platforms. We also looked at the file that Docker Compose uses, YAML file, for its
operation. We took a dive into the Docker Compose usage and commands, and
some examples for what you can use Compose.

In the next chapter, we will be looking at Docker Swarm. Docker Swarm is another
piece of the Docker ecosystem that can be used to do multiple things; but at its core, it
is used for Docker container clustering. It can also use discovery services and advanced
scheduling methods. The chapter will also cover the Docker Swarm API, creating a
Swarm environment and some Swarm strategies while setting up the environments.

[123]

Docker Swarm
In this chapter, we will be taking a look at Docker Swarm. With Docker Swarm, you
can create and manage Docker clusters. Swarm can be used to disperse containers
across multiple hosts. It also has the ability to know how to scale containers as well.
In this chapter, we will be covering the following topics:

•	 Installing Docker Swarm
•	 The Docker Swarm components
•	 Docker Swarm usage
•	 The Docker Swarm commands
•	 The Docker Swarm topics

Docker Swarm install
Let's get things started by the typical way of installing Docker Swarm. Docker
Swarm is only available for Linux and Mac OS X. The installation process for
both is the same. Let's take a look at how we install Docker Swarm.

Installation
Ensure that you already have Docker installed, either through the curl command on
Linux or through Docker Toolbox on Mac OS X. Once you have the Docker daemon
installed, installing Docker Swarm will be simple:

$ docker pull swarm

One command and you are up and running. That's it!

Docker Swarm

[124]

Docker Swarm components
What components are involved with Docker Swarm? Let's take a look at the three
components of Docker Swarm:

•	 Swarm
•	 Swarm manager
•	 Swarm host

Swarm
Docker Swarm is the container that runs on each Swarm host. Swarm uses a unique
token for each cluster to be able to join the cluster. The Swarm container itself is the
one that communicates on behalf of that Docker host to the other Docker hosts that
are running Docker Swarm as well as the Docker Swarm manager.

Swarm manager
The Swarm manager is the host that is the central management point for all the
Swarm hosts. The Swarm manager is where you issue all your commands to control
nodes. You can switch between the nodes, join nodes, remove nodes, and manipulate
the hosts.

Swarm host
Swarm hosts, which we saw earlier as the Docker hosts, are those that run the
Docker containers. The Swarm host is managed from the Swarm manager.

Swarm Host

Container

Container

Container

Swarm Host

Container

Container

Container

Swarm Host

Container

Container

Container

Swarm Manager

Chapter 8

[125]

The preceding figure is an illustration of all the Docker Swarm components.
We see that the Docker Swarm manager talks to each Swarm host that is running
the Swarm container.

Docker Swarm usage
Let's now take look at Swarm usage and how we can do the following tasks:

•	 Creating a cluster
•	 Joining nodes
•	 Removing nodes
•	 Managing nodes

Creating a cluster
Let's start by creating the cluster, which starts with a Swarm manager. We first need
a token that can be used to join all the nodes to the cluster:

$ docker run --rm swarm create

85b335f95e9a37b679e2ea9e6ad8d6361

We can now use that token to create our Swarm manager:

$ docker-machine create \

 -d virtualbox \

 --swarm \

 --swarm-master \

 --swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \

 swarm-master

Creating VirtualBox VM...

Creating SSH key...

Starting VirtualBox VM...

Starting VM...

To see how to connect Docker to this machine, run docker-machine env swarm-
master.

Docker Swarm

[126]

The swarm-master node is now in VirtualBox. We can see this machine by doing
as follows:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

swarm-master virtualbox Running tcp://192.168.99.101:2376
swarm-master (master)

Now, let's point Docker Machine at the new Swarm master. The earlier output we
saw when we created the Swarm master tells us how to point to the node:

$ docker-machine env swarm-master

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://192.168.99.102:2376"

export DOCKER_CERT_PATH="/Users/spg14/.docker/machine/machines/swarm-
master"

export DOCKER_MACHINE_NAME="swarm-master"

Run this command to configure your shell:

eval "$(docker-machine env swarm-master)"

Upon running the previous command, we are told to run the following command to
point to the Swarm master:

$ eval "$(docker-machine env swarm-master)"

Now, if we look at what machines are on our host, we can see that we have the
swarm-master host as well. It is set to ACTIVE, which means that we can now run
commands against this host:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

swarm-master * virtualbox Running tcp://192.168.99.101:2376
swarm-master (master

Chapter 8

[127]

Joining nodes
Again using the token, which we got from the earlier commands, used to create the
Swarm manager, we need that same token to join nodes to that cluster:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \

swarm-node1

Now, if we look at the machines on our system, we can see that they are both part of
the same Swarm:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master(master)

swarm-node1 virtualbox Running tcp://192.168.99.103:2376
swarm-master

Listing nodes
First, ensure you are pointing at the Swarm master:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master(master)

swarm-node1 virtualbox Running tcp://192.168.99.103:2376
swarm-master

Docker Swarm

[128]

Now, we can see what machines are joined to this cluster based off the token used to
join them all together:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea9e6ad8d6361

192.168.99.102:2376

192.168.99.103:2376

Managing a cluster
Let's see how we can do some management of all of the cluster nodes we are creating.

So, there are two ways you can go about managing these Swarm hosts and the
containers on each host that you are creating. But first, you need to know some
information about them, so we will turn to our Docker Machine command again:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master(master)

swarm-node1 virtualbox Running tcp://192.168.99.103:2376
swarm-master

You can switch to each Swarm host like we have seen earlier by doing something
similar to the following—changing the values—and by following the instructions
from the output of the command:

$ docker-machine env <Node_Name>

But this is a lot of tedious work. There is another way we can manage these hosts
and see what is going on inside them. Let's take a look at how we can do it. From the
previous docker-machine ls command, we see that we are currently pointing at the
swarm-master node. So, any Docker commands we issue would go against this host.

But, if we run the following, we can get information on the swarm-node1 node:

$ docker -H tcp://192.168.99.103:2376 info

Containers: 1

Images: 8

Storage Driver: aufs

Chapter 8

[129]

 Root Dir: /mnt/sda1/var/lib/docker/aufs

 Backing Filesystem: tmpfs

 Dirs: 10

 Dirperm1 Supported: true

Execution Driver: native-0.2

Logging Driver: json-file

Kernel Version: 4.0.9-boot2docker

Operating System: Boot2Docker 1.8.2 (TCL 6.4); master : aba6192 - Thu Sep
10 20:58:17 UTC 2015

CPUs: 1

Total Memory: 996.2 MiB

Name: swarm-node1

ID: SDEC:4RXZ:O3VL:PEPC:FYWM:IGIK:CFM5:UXPS:U4S5:PNQD:5ULK:TSCE

Debug mode (server): true

File Descriptors: 18

Goroutines: 29

System Time: 2015-09-16T09:32:27.67035212Z

EventsListeners: 1

Init SHA1:

Init Path: /usr/local/bin/docker

Docker Root Dir: /mnt/sda1/var/lib/docker

Labels:

 provider=virtualbox

So, we can see the information on this host such as the number of containers, the
numbers of images on the host, as well as information about the CPU, memory,
and so on.

We can see from the earlier information that one container is running. Let's take a
look at what is running on the swarm-node1 host:

$ docker -H tcp://192.168.99.103:2376 ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

12a400424c87 swarm:latest "/swarm join --advert" 17 hours
ago Up 17 hours 2375/tcp swarm-agent

Now, you can use any of the Docker commands using this method against any
Swarm host that is listed in the output of your docker-machine ls output.

Docker Swarm

[130]

The Docker Swarm commands
Now, let's take a look at some Docker Swarm-specific commands that we can use.
Let's revert to the ever-so-helpful—the help switch on the Docker Swarm command:

$ docker run --rm swarm --help

Usage: swarm [OPTIONS] COMMAND [arg...]

A Docker-native clustering system

Version: 0.4.0 (d647d82)

Options:

 --debug debug mode [$DEBUG]

 --log-level, -l "info" Log level (options: debug, info, warn, error,
fatal, panic)

 --help, -h show help

 --version, -v print the version

Commands:

 create, c Create a cluster

 list, l	 List nodes in a cluster

 manage, m Manage a docker cluster

 join, j join a docker cluster

 help, h Shows a list of commands or help for one command

Using TLS

Let's take a look at the options you can use for Docker Swarm as well as the
commands that are associated with it.

Options
Looking over the options from the preceding output, we can see the --debug and
--log level switches. The other two are straightforward, as one will just print out
the help information and the other one will print out the version number that we
can see in the previous output. The options are used after each of the following
subcommands of Docker Swarm.

Chapter 8

[131]

For example:

$ docker run --rm swarm list --debug

$ docker run --rm swarm manage --debug

$ docker run --rm swarm create --debug

list
We looked at the Swarm list command before:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea9e6ad8d6361

192.168.99.102:2376

192.168.99.103:2376

But there is also a switch that we can tack onto the list command and that is the
--timeout switch:

$ docker run --rm swarm list --timeout 20s token://85b335f95e9a37b679e2ea
9e6ad8d6361

This will allow more time to find the nodes that are a part of Swarm. It could take
time for the hosts to check, depending upon things such as network latency or if
they are running in different parts of the globe.

create
We have seen how we can create a Swarm cluster as well. What this command
actually does is it gives us the token that we need to create the cluster and join all the
nodes to it. There are no other switches that can be used with this command as we
have seen with other commands:

$ docker run --rm swarm create

85b335f95e9a37b679e2ea9e6ad8d6361

manage
We can manage a cluster with the manage subcommand in Docker Swarm. An
example of this command would look like the following, replacing the information
to align with your IP address and Swarm token:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376 token://85b33
5f95e9a37b679e2ea9e6ad8d6361

Docker Swarm

[132]

The Docker Swarm topics
There are three advanced topics we will take a look at in this section:

•	 Discovery services
•	 Advanced scheduling
•	 The Docker Swarm API

Discovery services
You can also use services such as etcd, ZooKeeper, consul, and many others to
automatically add nodes to your Swarm cluster as well as do other things such as
list the nodes or manage them. Let's take a look at consul and how you can use it.
This will be the same for each discovery service that you might use. It just involves
switching out the word consul with the discovery service you are using.

On each node, you will need to do something different in how you join the machines.
Earlier, we did something like this:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \

swarm-node1

Now, we would do something similar to the following (based upon the discovery
service you are using):

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-node1_ip:2376> \

consul://<consul_ip> \

swarm-node1

You can now start manage on your laptop or the system that you will be using as the
Swarm manager. Before, we would run something like this:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376 token://85b33
5f95e9a37b679e2ea9e6ad8d6361

Chapter 8

[133]

Now, we run this with regards to discovery services:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376
consul://<consul_ip>

We can also list the nodes in this cluster as well as the discovery service:

$ docker run --rm swarm list -H tcp://192.168.99.104:2376
consul://<consul_ip>

You can easily switch out consul for another discovery service such as etcd or
ZooKeeper; the format will still be the same:

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-node1_ip:2376> \

etcd://<etcd_ip> \

swarm-node1

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-node1_ip:2376> \

zk://<zookeeper_ip> \

swarm-node1

Advanced scheduling
What is advanced scheduling with regards to Docker Swarm? Docker Swarm allows
you to rank nodes within your cluster. It provides three different strategies to do this.
These can be used by specifying them with the --strategy switch with the swarm
manage command:

•	 spread

•	 binpack

•	 random

spread and binpack use the same strategy to rank your nodes. They are ranked
based off of the node's available RAM and CPU as well as the number of containers
that it has running on it.

Docker Swarm

[134]

spread will rank the host with less containers higher than a container with more
containers (assuming that the memory and CPU values are the same). spread does
what the name implies; it will spread the nodes across multiple hosts. By default,
spread is used with regards to scheduling.

binpack will try to pack as many containers on as few hosts as possible to keep the
number of Swarm hosts to a minimal.

random will do just that—it will randomly pick a Swarm host to place a node on.

The Swarm scheduler comes with a few filters that can be used as well. These can be
assigned with the --filter switch with the swarm manage command. These filters
can be used to assign nodes to hosts. There are five filters that are associated with it:

•	 constraint: There are three types of constraints that can be assigned to nodes:
°° storage=: This is used if you want to specify a node that is put on a

host and has SSD drives in it
°° region=: This is used if you want to set a region; mostly used for

cloud computing such as AWS or Microsoft Azure
°° environment=: This can set a node to be put into production,

development, or other created environments

•	 affinity: This filter is used to create attractions between containers. This
means that you can specify a filter name and then have all those containers
run on the same node.

•	 port: The port filter finds a host that has the open port needed for the node
to run; it then assigns the node to that host. So, if you have a MySQL instance
and need port 3306 open, it will find a host that has port 3306 open and
assign the node to that host for operation.

•	 dependency: The dependency filter schedules nodes to run on the same host
based off of three dependencies:

°° --volumes-from=dependency

°° --link=dependency:<alias>

°° --net=container:dependency

•	 health: The health filter is pretty straightforward. It will prevent the
scheduling of nodes to run on unhealthy hosts.

Chapter 8

[135]

The Swarm API
Before we dive into the Swarm API, let's first make sure you understand what an
API is. An API is defined as an application programming interface. An API consists
of routines, protocols, and tools to build applications. Think of an API as the bricks
used to build a wall. This allows you to put the wall together using those bricks.
What APIs allow you to do is code in the environment you are comfortable in and
reach into other environments to do the work you need. So, if you are used to coding
in Python, you can still use Python to do all your work while using the Swarm API to
do the work in Swarm that you would like done.

For example, if you wanted to create a container, you would use the following in
your code:

POST /containers/create HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }

Docker Swarm

[136]

],
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "CpuPeriod": 100000,
 "CpusetCpus": "0,1",
 "CpusetMems": "0,1",
 "BlkioWeight": 300,
 "MemorySwappiness": 60,
 "OomKillDisable": false,
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "Ulimits": [{}],
 "LogConfig": { "Type": "json-file", "Config": {} },
 "SecurityOpt": [""],
 "CgroupParent": ""
 }
 }

Chapter 8

[137]

You would use the preceding example to create a container; but there are also other
things you can do such as inspect containers, get the logs from a container, attach to
a container, and much more. Simply put, if you can do it through the command line,
there is more than likely something in the API that can be used to tie into to do it
through the programming language you are using.

The Docker documentation states that the Swarm API is mostly compatible with the
Docker Remote API. Now we could list them out in this section. But seeing that the
list could change as things could be added into the Docker Swarm API or removed, I
believe, it's best to refer to the link to the Swarm API documentation here instead of
listing them out, so the information is not outdated:

https://docs.docker.com/swarm/api/swarm-api/

The Swarm cluster example
We will now go through an example of how to set up a Docker Swarm cluster:

Create a new Docker host with Docker Machine

$ docker-machine create --driver virtualbox swarm

Point to the new Docker host

$ eval "$(docker-machine env swarm)"

Generate a Docker Swarm Discovery Token

$ docker run swarm create

Launch the Swarm Manager

$ docker-machine create \

 --driver virtualbox \

 --swarm \

 --swarm-master \

 --swarm-discovery token://<DISCOVERY_TOKEN> \

 swarm-master

Launch a Swarm node

$ docker-machine create \

 --driver virtualbox \

 --swarm \

https://docs.docker.com/swarm/api/swarm-api/

Docker Swarm

[138]

 --swarm-discovery token://<DISCOVERY_TOKEN> \

 swarm_node-01

Launch another Swarm node

$ docker-machine create \

 --driver virtualbox \

 --swarm \

 --swarm-discovery token://<DISCOVERY_TOKEN> \

 swarm_node-02

Point to our Swarm Manager

$ eval "$(docker-machine env swarm-master)"

Execute 'docker info' command to view information about your
environment

$ docker info

Execute 'docker ps -a'; will show you all the containers running as
well as how they are joined to the same Swarm cluster

$ docker ps -a

Run simple test

$ docker run hello-world

You can then execute the 'docker ps -a' command again to see what node
it ran on

$ docker ps -a

You will want to look at the column labeled 'NAMES'. If you continue
to re-run the 'docker run hello-world' command/container you will see it
will run on a different Swarm node

Chapter 8

[139]

Summary
In this chapter, we took a dive into Docker Swarm. We took a look at how to install
Docker Swarm and the Docker Swarm components; these are what make up Docker
Swarm. We took a look at how to use Docker Swarm; joining, listing, and managing
Swarm nodes. We reviewed the Swarm commands and how to use them. We also
covered some advanced Docker Swarm topics such as advanced scheduling for your
jobs, discovery services to discover new containers to add to Docker Swarm, and
the Docker Swarm API that you can use to tie your own code to perform the
Swarm commands.

In the next chapter, we will take a look at running Docker in production. We will
take everything you have learned in all of the previous chapters and put them into
production. We will look at how to monitor your containers and the safeguards you
can put into place to help with container recovery. We will also look at how you can
extend into external platforms such as Heroku.

[141]

Docker in Production
In this chapter, we will be looking at Docker in production, pulling all the pieces
together so you can start using Docker in your production environments and feel
comfortable doing so. Let's take a peek at what we will be covering in this chapter:

•	 Setting up hosts and nodes
•	 Managing hosts and containers
•	 Using Docker Compose
•	 Extending to external platforms
•	 Security

Where to start?
When we start thinking about putting Docker into our production environment,
we first need to know where to start. This sometimes can be the hardest part of any
project. We first need to start by setting up our Docker hosts and then start running
containers on them. So, let's start here!

Setting up hosts
Remember, as it was mentioned in the earlier chapter, that setting up hosts will
require us to tap into our Docker Machine knowledge. We can deploy these hosts to
different environments, including cloud hosting. To take a walk down memory lane,
let's look at how we go about doing this:

$ docker-machine create --driver <driver_name> <host_name>

Docker in Production

[142]

Now, there are two values that we can manipulate: <driver_name> and <host_name>.
The host name can be whatever you want it to be. But I recommend that it should
be something that would help you understand its purpose. The driver name on the
other hand has to be the location where you want to create the host. If you are looking
at doing something locally, then you can use VirtualBox or VMware Fusion. If you
are looking at deploying your application to a cloud service, you can use something
like Amazon EC2, Azure, or DigitalOcean. Most of these cloud services will require
additional details to authenticate who you are and where to place the host:

For example, for AWS, you would use:

$ docker-machine create --driver amazonec2 --amazonec2-access-key <AWS_
ACCESS_KEY> --amazonec2-secret-key <AWS_SECRET_KEY> --amazonec2-subnet-id
east-1b amazonhost

You can see that you will need the following:

•	 Amazon access key
•	 Amazon secret key
•	 Amazon subnet ID

Setting up nodes
Next, we want to set up the nodes or containers to run on the hosts that we have
recently created. Again, using a combination of Docker Machine with the Docker
daemon, we can do this. We first must use Docker Machine to point to the Docker
host that we want to deploy some containers on:

$ docker-machine env <host_name>

$ eval "$(docker-machine env <host_name>)"

Now we can run our normal Docker commands against this Docker host. To do this,
we will simply use the Docker command-line tools. To deploy the containers, we can
pull the following images:

$ docker pull <image_name>

Or, we can run a container on a host:

$ docker run -d -p 80:80 nginx

Chapter 9

[143]

Host management
In this section, we will focus on host management, that is, the ways we can manage
our hosts, what we should use to manage our hosts, how we can monitor our hosts,
and container failover, which is very important when something happens to the host
that is running critical containers.

Host monitoring
With host monitoring you can do so via the command line using Docker Machine
as also there are some GUI applications out there that can be useful as well. For
Machine, you can use the ls subcommand:

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL
SWARM

amazonhost amazonec2 Error

swarm-master * virtualbox Running tcp://192.168.99.102:2376
swarm-master(master)

swarm-node1 virtualbox Running tcp://192.168.99.103:2376
swarm-master

You can use some GUI applications out there as well, such as:

•	 Shipyard: https://shipyard-project.com/
•	 DockerUI: https://github.com/crosbymichael/dockerui
•	 Panamax: http://panamax.io/

Docker Swarm
Another tool that you can use for node management is that of Docker Swarm. We
saw previously how helpful Swarm can be. Remember that you can use Docker
Swarm to manage your hosts as well as to create and list them. The most useful
command to remember for Swarm is the list subcommand. With the list
subcommand, you can get a view of all the nodes and their statuses:

Remember that you will need either the discovery service IP or the token number
that is used for Swarm:

$ docker run swarm list token://<swarm_token>

Docker in Production

[144]

Swarm manager failover
With Docker Swarm, you can set up your manager node to be highly available.
That is, if the managing host dies, you can have it failover to another host. If you
don't have it set up, there will be a service interruption, as you won't be able to
communicate to your hosts anymore and will need to reset them up to point to the
new Docker Swarm manager. You can set up as many replicas as you want.

To set this up, you will need to use the --replication and --advertise flags. This
tells Swarm that there will be other managers for failover. It will also tell Swarm
what address to advertise on, so the other managers know on what IP address to
connect for other Swarm managers.

Container management
Now, let's look at container management. This includes questions such as where
to store the images that we will be creating, how to use these images, and what
commands and GUI applications we can use. It also covers how we can easily
monitor our running containers, automatically restart containers upon a failure,
and how to roll the updates of our containers.

Container image storage
In Chapter 3, Container Image Storage, we looked at the various locations to
store the images you are creating. Remember that there are three major locations
to store them:

•	 Docker Hub: A location that is run by Docker and can contain public and
private repositories

•	 Docker Trusted Registry: A location that is again run by Docker, but
provides the ability to get support from Docker

•	 The locally run Docker registry: Locally run by yourself to storage images

You will want to consider where you want your images to be stored. If you are
running containers that might contain data that you do not want anybody to be
able to access, such as private code, you may want to run your own Docker registry
to keep the data locked. If you are testing, then you may only want to use Docker
Hub. If you are in an enterprise environment where uptime is necessary, then the
second option of having Docker there for support would be immensely beneficial.
Again, it all depends on your setup and needs. The best thing is that no matter what
you choose at first, you can easily change and push your images to these locations
without having to jump through a lot of extra hoops or other configurations.

Chapter 9

[145]

Image usage
The most important thing to remember about Docker images is the four Ws:

•	 Who: Who made the image?
•	 What: What is contained in the image?
•	 Why: Why are these things created?
•	 Where: Where are the items such as the Dockerfile or the other code

for the image?

The Docker commands and GUIs
Remember that there are many commands that you can use to control your
containers. With tools such as the Docker daemon, Docker Machine, Docker
Compose, and Docker Swarm, there is almost nothing that can stop you from
achieving the goal you want. Remember, however, that some of these tools are not
available on all the platforms yet. I stress yet as I assume that Docker will eventually
have their tools available for all the environments. Be sure to use the --help flag on
all the commands to see the additional switches that might be available. I myself am
always finding new switches to use every day on various commands.

There are also many GUI applications out there; they can be beneficial to your
container's management needs. One that has been at the forefront of this since the
beginning is Panamax. Panamax provides the ability to set up your environments in
a GUI-based application for you to deploy, monitor, and manipulate your container
environments. With the popularity of Docker growing each day, there will be many,
many, many others that you can use to help set up and tune your environment.

Container monitoring
We can also monitor our containers using methods similar to monitoring hosts: using
Docker commands as well as GUIs that are built by others.

First, the Docker commands that you can use:

•	 docker stats

•	 docker port

•	 docker logs

•	 docker inspect

•	 docker events

Docker in Production

[146]

In the Host monitoring section, you can see that the same GUI applications can
monitor both your Docker hosts and your containers. It is a double bonus as you
don't need separate applications to monitor each service.

Automatic restarts
Another great thing you can do with your Docker images is you can set them to
automatically restart upon a failure or a reboot of a Docker host. There is a flag that
can be set at runtime: the --restart flag. There are three options you can set, one of
which is set by default by not setting the flag.

These three options are:

•	 no: The default by not using the flag.
•	 on-failure:max_retires: Sets the container to restart, but not indefinitely

if there is a major problem. It will try to restart the container a number of
times based on the value set for max_retires. After it has passed that value,
it will not try to restart anymore.

•	 always: Will always restart the container. It could cause a looping issue if the
container continues to just restart.

Rolling updates
One of the benefits I have learned to love about Docker is the ability to control it the
same way I control the code that I write. Just like Git, remember that your Docker
images are version-controlled as well. This being said, you can do things such as
rolling updates to them. There are two ways you can go about doing it. You can keep
your images as a hosted code on something like GitHub. You can then update your
code, build your image, and deploy your containers. If something goes wrong, you
can simply use another version of that image to redeploy. There is also another way
you can do this. You can get the new image up and running; when you are ready,
stop the old container from running and then start up the new one. If you use items
such as discovery services, it becomes even easier; you can roll your newly updated
images into the discovery service while rolling out the old images. This makes for
seamless upgrades and a great peace of mind for zero downtime.

Chapter 9

[147]

Docker Compose usage
One of the more useful tools, and one I find myself using a lot, is Docker Compose.
Compose has a lot of powerful usage, which in turn is great for you. In this section,
we will look at two of its usages:

•	 Developer environments
•	 Scaling environments

Developer environments
You can use Docker Compose to set up your developer environments. How is this
any different from setting up a virtual machine for them to use or letting them use
their own setup? With Docker Compose, you control the setup, you control what
is linked to what, and you know how the environment is set up. So, there is no
more "well it works on my system" or need to troubleshoot error messages that are
appearing on one system setup but not another.

Scaling environments
Docker Compose also allows you to scale containers that are located in the
docker-compose.yml file. For example, let's say our Compose file looks as follows:

varnish:
 image: jacksoncage/varnish
 ports:
 - "82:80"
 links:
 - web
environment:
 VARNISH_BACKEND_PORT: 80
 VARNISH_BACKEND_IP: web
 VARNISH_PORT: 80
web:
 image: scottpgallagher/php5-mysql-apache2
 volumes:
 - .:/var/www/html/

Docker in Production

[148]

With the Compose setup, you can easily scale the containers from your docker-
compose.yml file. For instance, if you need more web containers to help with the
backend load, you can do so with Docker Compose. Be sure that you are in the folder
where your docker-compose.yml file is located:

$ docker-compose scale web=3

This will add three extra web containers and do all the linking as well as the traffic
forwarding from the varnish server that is necessary. This can be immensely helpful
if you are looking at figuring out how many instances you might need to help scale
for load or service usage.

Extending to external platform(s)
We looked at how we can extend to some other external platforms such as cloud
services like AWS, Microsoft Azure, and DigitalOcean before. In this section, we will
focus on extending Docker to the Heroku platform. Heroku is more a little different
than those cloud services; it is considered a Platform as a Service (PaaS). Instead of
deploying containers to it, you can link your containers to the Heroku platform from
which it is running a service, such as PHP, Java, Node.js, Python, or many others. So,
you can run your rails application on Heroku and then attach your Docker container
to that platform.

Heroku
The way you can use Docker and Heroku together is by creating your application
on the Heroku platform. Then, in your code, you will have something similar to the
following:

{
 "name": "Application Name",
 "description": "Application to run code in a Docker container",
 "image": "<docker_image>:<tag>",
 "addons": ["heroku-postgresql"]
}

To take a step back, we first need to install a plugin to be able to get this functionality
working. To install it, we will simply run:

$ heroku plugins:install heroku-docker

Chapter 9

[149]

Now, if you are wondering what image you can or should be using from Docker
Hub, Heroku maintains a lot of images you can use in the preceding code. They are
as follows:

heroku/nodejs

heroku/ruby

heroku/jruby

heroku/python

heroku/scala

heroku/clojure

heroku/gradle

heroku/java

heroku/go

heroku/go-gb

Overall security
Lastly, let's take a look at the security aspect of putting Docker into production.
This is probably one of the most talked about aspects of not only Docker, but any
technology out there. What security risks exist? What security advantages exist? We
will take a look at both of these aspects as well as cover the best practices for your
overall Docker setup.

Security best practices
These are the things to keep in mind when you are setting up your production
environment:

•	 Whoever has access to your Docker host has access to every single Docker
container that is running on that host and has the ability to stop them, delete
them, or even start up new containers.

•	 Remember that you can run Docker containers or attach containers to Docker
volumes using the read-only modes. This can be done by adding the :ro
option to the volume:
$ docker run -d -v /opt/uploads:ro nginx

$ docker run -d --volumes-from data:ro nginx

Docker in Production

[150]

•	 Remember to utilize the Docker security benchmark application to help tune
your environments (see Chapter 5, Docker Security, for more information).

•	 Utilize the Docker command-line tools to your capability to see what has
changed in a particular image:

$ docker diff

$ docker inspect

$ docker history

DockerUI
DockerUI is a tool written by Michael Crosby, who at the time of writing this book
worked for Docker. DockerUI is a simple way to view what is going on inside your
Docker host.

Chapter 9

[151]

This is a screenshot of the GitHub repository, where the code for DockerUI
is kept. You can view the content yourself by visiting https://github.com/
crosbymichael/dockerui.

This page will include screenshots of DockerUI in action as well as the current
features of DockerUI that are available. You can create pull requests against the code
if you have ideas you would like to see in DockerUI and would like to help contribute
to the code. You can also submit issues that you might find with DockerUI.

The installation of DockerUI is very straightforward with you just running a simple
Docker run command to get started:

$ docker run -d -p 9000:9000 --privileged -v /var/run/docker.sock:/var/
run/docker.sock dockerui/dockerui

Docker in Production

[152]

After you have run the previous command, you will be able to navigate to the
DockerUI web interface. You should be able to easily break down the run command
and see what it is doing and where you need to go to get to the dashboard. However,
in case you are stumped, here is what the command is doing: it is running the
DockerUI container on your Docker host and exposing port 9000 from the host to the
container. So, simply launching a web browser and pointing to the IP address of the
Docker host and then port 9000 will give you to a screen similar to the previous one.
This is the DockerUI web dashboard.

Chapter 9

[153]

This is another view of the dashboard shortly after you have launched the container
and visited the web interface. You can see information such as what containers are
currently running on your Docker host and what their statuses are; some could be
stopped as well. It will also show you the containers that are created and a timeline
for when the images were created.

Docker in Production

[154]

At the top of the web interface, you will see a navigation bar. When you click on the
Containers item, you will be brought to a page that provides you information on all
the containers running on your host. You will see their name, the images used to run
the containers, what command is being executed inside each container, when they
were created, and their statuses. You can take actions against these containers from
here as well. These actions are start, stop, restart, kill, pause, unpause, and remove.

Chapter 9

[155]

Next up in the navigation bar is Images. Again, like Containers, you can get all the
information on all the images being used on your Docker host here. Information such
as their IDs, what repositories they are from, their virtual sizes, and when they were
created will be displayed here. Again, you can take some actions on your images. But
for images, the only option you have is to remove them from your Docker host.

The last item in the navigation menu is Info. The Info section gives you a general
overview of your Docker host, such as what Docker version it is running and how
many containers and images are there. It also provides system information on the
hardware that is available.

Docker in Production

[156]

ImageLayers
ImageLayers is a great tool, when you are looking at shipping your containers or
images around. It will take into account everything that is going on in every single
layer of a particular Docker image and give you an output of how much weight it
has in terms of actual size or the amount of disk space it will take up.

This screenshot is what you will be presented with while navigating to the
ImageLayers website: https://imagelayers.io.

Chapter 9

[157]

You can search for images that are on Docker Hub to have ImageLayers provide
information on the image back to you. Or, you can load up a sample image set if you
are looking at providing some sample sets or seeing some more complex setups.

Docker in Production

[158]

In this example, we are going to search for the wordpress image and select the latest
tag. Now, you can search for any image and it will do auto-complete. Then, you can
select the appropriate tag you wish to use. This could be useful if you have, say, a
staging tag and are thinking of pushing a new image to your latest tag, but you want
to see what impact it has on the size of the image.

Chapter 9

[159]

So, let's walk through an example. In this example, we are going to select a mysql
image and the latest tag. We will use this since it is a common image that most
people will use at some point in their Docker experience.

Docker in Production

[160]

Once we click on Save Changes from the previous item, we will be shown something
similar to the preceding screenshot (now, this will vary depending upon the image
you have selected in your search). This displays some information at the top, such as
the total image size, unique layers, the average layer size, and the largest layer size.
This will help you hone in on a particular layer that might have grown wildly.

Chapter 9

[161]

The layers are broken down on the left-hand side of the previous screenshot. We can
see what action is being done at each level as the size that it adds to the overall image
per layer.

Docker in Production

[162]

Upon hovering on a particular layer, you will be given information on it at the
bottom of the screen in a black box. This will show how each action is layered one
after the other so as to help see the command structure of the image.

The preceding screenshot is an example of what you might see if you were to click on
the sample image set from the main screen. As you can see, this one is quite complex;
not only does it have a lot of layers, but it also has a lot of images that are being used.
This could be something you would see while adding multiple images to see your
desired output.

Chapter 9

[163]

Summary
In this chapter, you have learned how to use Docker in a production environment
as well as the key considerations to keep an eye on during the times of and before
implementation.

In the next three chapters, we are going to be taking a look at some GUI applications
that you can utilize to manage your Docker hosts, containers, and images. They are
some very powerful tools and choosing one can be difficult, so let's cover all three!

[165]

Shipyard
In this chapter, we will take a look at Shipyard. Shipyard is a tool that allows you to
manage Docker resources from a web UI or a GUI interface.

The topics that will be covered are:

•	 Starting Shipyard
•	 The components of Shipyard

Up and running
You will see a screen similar to the following screenshot while navigating your
browser to the Shipyard website at https://shipyard-project.com:

https://shipyard-project.com

Shipyard

[166]

First, we need to get Shipyard up and running. To do this, we will execute the
following commands:

$ docker-machine create --driver vmwarefusion ship1

$ docker-machine env ship1

$ eval "$(docker-machine env ship1)"

$ curl -sSL https://raw.githubusercontent.com/scottpgallagher/shipyard/
master/deploy | bash -s

$ docker-machine create --driver vmwarefusion ship2

$ docker-machine env ship2

$ eval "$(docker-machine env ship2)"

$ curl -sSL https://raw.githubusercontent.com/scottpgallagher/shipyard/
master/deploy | ACTION=node DISCOVERY=consul://<IP_ADDRESS_of_SHIP1>:8500
bash -s

You will see the following login screen when you first navigate to the shipyard
web instance:

Chapter 10

[167]

The URL is always the IP address of your Docker host. It runs on port 8080 (that is,
172.16.9.135:8080).

The default username is admin. The default password is shipyard. Enter these
details and click on Login.

Shipyard

[168]

Containers
After logging in, you will be taken to the main dashboard or the CONTAINERS
section as follows:

There is a lot you can do in this section. We will cover all of it step by step in the
following and the Back to CONTAINERS section.

Chapter 10

[169]

Deploying a container
The first thing we will tackle on this page is the Deploy Container button.

There is a lot of information to digest here. But at the same time, this is the
information you are used to providing either in your Dockerfile or your docker-
compose.yml file. Once you type in all your information, you're ready to deploy.
So, go ahead and click on the Deploy button.

Shipyard

[170]

IMAGES
At the top of the screen, we can see a blue navigation bar. Moving on from the
CONTAINERS section (for now), we will now cover the IMAGES section. In the
IMAGES section, we can see all the images that are being used across our hosts.

We can see information such as the name of the image, its ID, when it was created,
what node or Docker host it's running on, and its virtual size. We also have the
option to delete the images by using the red trash can icon.

Chapter 10

[171]

Pulling an image
Now, one thing that we didn't cover was the Pull Image button. By clicking on this,
you will be presented with the following screen:

On this screen, you can enter an image name as well as its tag and have it pulled.
You could then go back to the CONTAINERS page and deploy that image. Now,
this will work not only with Docker Hub, but with any other repository you add
later to Shipyard.

Shipyard

[172]

NODES
Next up is the NODES section. This section shows information on what nodes or
Docker hosts you have connected to Shipyard.

It will give you information such as the name of the node, its IP address, the number
of reserved CPUs and memory, as well as the labels that provide information such as
what version of the Linux kernel or Docker is being used.

Chapter 10

[173]

REGISTRIES
Next up is the REGISTRIES tab. This is where you can add registries beyond
Docker Hub.

On clicking the Add Registry button, you will be taken to the following screen:

This will allow you to enter information about the registry such as its name and
registry address, which would include the IP address or the DNS name and the port
it is running on.

Shipyard

[174]

ACCOUNTS
Next up is the ACCOUNTS tab where—you guessed it—you can add or remove
accounts.

In the following screenshot, you can see what information is needed when you add a
new account:

Information such as the username you want to use, your first and last names, the
password you want to assign to it, and lastly your assigned role.

Chapter 10

[175]

EVENTS
Okay, last up is the EVENTS tab that will display the following screen:

This tab will show you all the events that have occurred and what user accounts they
were initiated from. Information such as the message, container, node, and tags are
also displayed.

Shipyard

[176]

Back to CONTAINERS
We jump back to the CONTAINERS section where we saw all our containers. We
can also click on the magnifying glass on the right-hand side of each container to get
pulled to the following screen:

We can then get information on that running container and manipulate it. We can
stop, restart, or destroy (or remove) it. We can also see information on it such as the
command that it's running, its port, its IP address, and its node name.

Chapter 10

[177]

Clicking on the Stats button, we can see information pertaining to the running
container such as the CPU, memory, and network information.

Shipyard

[178]

Clicking on the Logs button will show you everything that is going on with the
container. In this case, the container is polling consult for new information ever
so often.

Now, the Console button is interesting. It will allow you to actually run a command
against the container and provide the output from that command.

There are other ways to manipulate these containers as well. We will go back to the
CONTAINERS page, where we can see a list of all our containers and their status.
We have some controls here to restart, stop, and destroy the container.

Chapter 10

[179]

We can also scale or rename the container and get to the other areas we saw earlier
such as Stats, Console, or Logs.

Shipyard

[180]

You will be taken to this section if you click on the Scale option. This will allow you
to enter a numerical value and scale the instance up as far as you like.

You can also click on the Rename option to rename the container to anything
you wish.

Do be careful; use a name that helps you identify the container.

Summary
As you can see, Shipyard is very powerful and will only continue to grow and
integrate more of the Docker ecosystem. With Shipyard, you can do a lot of
manipulation with not only your hosts, but also the containers running on the hosts.

In the next chapter, we will take look at another GUI tool to manage your Docker
hosts, containers, and images, and that is Panamax.

[181]

Panamax
Panamax is another open source project that helps with deploying Docker environments
by using a GUI interface to allow you to control just about everything that you can with
the CLI.

In this chapter, we will cover:

•	 Installing Panamax
•	 What after installing?

Installing Panamax
You will see the following page while navigating to the Panamax website at
http://panamax.io/:

http://panamax.io/

Panamax

[182]

Next, you will see the instructions to install Panamax on both Mac OS X and Ubuntu:

Chapter 11

[183]

After running the panamax init command and then the panamax command, you
will see the following options:

Upon selecting the first selection init, all the magic starts to happen.

Panamax

[184]

Once all the magic is complete, you will be taken to the Panamax dashboard.

The following screenshot shows you what you will see once the installation has been
completed and the browser page has been loaded for you:

On this page, you can search for images that are on Docker Hub or browse the
available templates that Panamax has to offer. You can also see the performance of
the host that is running Panamax at the top with information such as the CPU and
memory usage.

Chapter 11

[185]

An example
For this example, we select public from its available templates and use the AWS CLI
- wetty image to run.

Panamax

[186]

You can see information such as the image name, the description, how many images
it will contain, and the option to run the template.

Chapter 11

[187]

Upon clicking the Run Template button, you will get two options. You can run it
locally or deploy it to a target, such as the cloud. For this example, we will choose to
run it locally.

After you choose to run it locally, you will want to navigate to the Manage section.
In this section, there are multiple subsections that you can then navigate to such as
Applications, Sources, Images, Registry, and Remote Deployment Targets. It will
show you how many of these each subsection has in it. We will take a look at each of
these next.

Panamax

[188]

Applications
First up is the Applications section. Upon entering this one, we can see the
application we launched earlier is now in here.

We can see information about this running instance such as where it is deployed to
(in this case, locally), the application services that it is running, and the application
activity log.

Chapter 11

[189]

Sources
The Sources section shows you what resources are currently loaded into the system.

In our case, we can see that the public templates for the Panamax public sources are
available. On this screen, you can add additional resources as needed.

Panamax

[190]

Images
In the next section, the Images section, you can see all the images that are currently
being used.

Your options on this screen are to remove whatever images you would like to by
selecting the checkbox next to them and then selecting the Remove Selected button.

Chapter 11

[191]

Registries
The next section deals with the registries that you can search for templates and
images. By default, it searches Docker Hub and includes insecure registries along
with secure registries.

You can change that to only search the secure registries if you desire so. You can also
add additional registries such as the registries that you may have deployed in your
own environment.

Panamax

[192]

Remote Deployment Targets
The last section is Remote Deployment Targets.

These are items such as cloud hosts that may include AWS, CenturyLink, and
DigitalOcean.

Now that we have covered all the sections, let's go back to the application that we
deployed and see what all we can do with it.

Chapter 11

[193]

Back to Applications
Back in our Applications section under the application that we deployed earlier, the
AWS CLI – wetty image, we can click on the gear icon on the right-hand side of the
screen. Given some options such as saving as a PMX template that will allow you
to share it with others that are using Panamax, you can also save it as a Compose
YAML file that can be used in Docker Compose. Other options include deploying to
a target and rebuilding and deleting the app.

Panamax

[194]

Adding a service
Next, we are going to add a service to our application. To do so, we will click on the
+ button and then give it a name.

In our case, we are going to add a database, so we will name this section Database.

Chapter 11

[195]

After this, we will click on + Add a Service to the database's application services and
will need to search for an image that we want to use.

Panamax

[196]

Since this is a database application and MySQL is known by almost everyone, we
will search for it and add it to the app.

Configuring the application
After we have added it to the app, Panamax will start to configure it for our usage, so
we can tie the application services we are running together.

Chapter 11

[197]

Service links
If you want to configure each application service, you can click on it and you will be
taken into a submenu.

For this example, we will look at what items we can configure in the AWSCLIwetty
application. The first item we can configure is the service links. We can also see
the docker run command that will be used once we populate our environmental
variables.

Panamax

[198]

Environmental variables
Next are the environmental variables. For this image, it would ask us to supply our
AWS access key ID and our AWS secret access key.

These are two items that are required to be able to use the AWS CLI to execute
commands against your AWS environment. You can add additional environmental
variables too.

Chapter 11

[199]

Ports
Next, you can view or configure the port configuration that each service uses.

For this service, we can see that it is exposing port 8088 on the host to port 3000 on the
container using the TCP protocol. We can see the exposed ports at the bottom and, for
this service, it is just port 3000. We can also add additional ports for each service.

Panamax

[200]

Volumes
Next, we can see the volume configuration for each service.

This service doesn't utilize any; but if we want to add one, we can do it from this
screen. We can remove one if there was one.

Chapter 11

[201]

Docker Run Command
Last is the Docker Run Command section. In this section, you can execute
commands against the container that is running the service.

This would be similar to using the docker exec command.

Summary
We have now taken a look at two very powerful GUIs that can be used to control
your hosts, containers, and images, and they both do very well. If you only had more
choices! Well, let's dive into the next chapter and introduce another!

In the next chapter, we will take a look at another GUI tool to manage your Docker
hosts, containers, and images, and that is Tutum, which was recently purchased
by Docker.

[203]

Tutum
Tutum is a company that was just recently purchased by Docker and has joined its
ranks. The goal of Tutum is to help you run your containers on the cloud. Tutum is
another feature that makes Docker easy to use.

In this chapter, we will cover how to:

•	 Start with Tutum
•	 Add your node
•	 Create a stack

Getting started
You will see a screen similar to the following screenshot when you access the Tutum
website at https://www.tutum.co.

Tutum

[204]

Upon clicking Get started for free! or the Login link, you will be presented with the
following screen:

Now, given that Docker has recently scooped them up, this could change in the
future. But you will be presented with a login screen to use your Docker Hub,
current Tutum, or GitHub credentials.

The tutorial page
You will be presented with the tutorial page that will provide a tour of Tutum if
you wish.

Chapter 12

[205]

You can also skip the tour by clicking on the button in the bottom-right corner of the
screen, which we will do to get you started.

The Service dashboard
You will be taken to Service dashboard, where you can create your first service. But
before we do that, we need to do some other work. So, let's get our nodes added first.

Tutum

[206]

The Nodes section
If you click on the Nodes section in the navigation bar, you can start adding your
cloud provider or you can bring your own node.

If you wish to bring your own node, you will need to install a client that Tutum uses
to communicate with your node. For this example, we are going to stick with using a
cloud provider: AWS in this case.

Chapter 12

[207]

Cloud Providers
In the Cloud Providers section, you will get a list of cloud services that you can
link to. Again, we are going to use AWS. But you could use DigitalOcean, Microsoft
Azure, SoftLayer, or Packet. We will click on the + Add credentials button for AWS:

Tutum

[208]

Here we would provide our AWS Access Key ID as well as our Secret Access Key:

AWS uses your access key ID as well as your secret access key to authenticate against
AWS. You can enter these details and then click on the Save credentials button.

Chapter 12

[209]

You will then see that you have linked your AWS account, can modify the
credentials if they ever change, or unlink the account all together if you need to.

Tutum

[210]

Now that we have a cloud provider to run our service on, we can launch our first
node on the cloud now by clicking on the Launch your first node button:

We will navigate back to the Nodes screen.

Chapter 12

[211]

Back to Nodes
After clicking on Launch your first node, we will need to provide some additional
information such as what region we want to deploy our node to, if we have a custom
VPC we have created that we want to deploy our node to, what size we want the
node to be, any IAM roles we want to assign to the node, the number of nodes we
want, and the disk size of each node.

Tutum

[212]

For our example, we mainly kept the default, only lowering the disk size to the
minimum size of 10 GB.

Once you have clicked on the Launch node cluster button, you will see the status of
the node; in this case, it's Deploying. We also have some other items we can check
out while it's deploying.

Chapter 12

[213]

We can view the Monitoring tab and see information pertaining to the node such as
CPU, Memory, Disk, and Bandwidth Out.

Tutum

[214]

We can also view the timeline of our node. Now, at first, this will be very short as it's
just showing us that we created the node and are deploying it.

Over time, this timeline will grow and show you the progress of your node.

Chapter 12

[215]

Our node should be deployed by now. So, we can click back on the Nodes link and
see that it has in fact been deployed and is running.

We can get some information on the left-hand side, such as it is running on AWS
in the US West (Oregon) region, and is a t2.micro instance with 1 GB of memory
and 10 GB of disk space. We can also see that it currently has no containers running
on this particular node, what IP address has been assigned, and what version of
Docker it is running. We can terminate our node as well when we no longer need
it or scale the number of nodes with the slider at the top if we want to increase the
number of nodes.

Tutum

[216]

If we drill down into the node itself by clicking on its hostname, we can see some
more information provided to us.

It includes what, if any, containers are running on this node, what endpoints or ports
are exposed, the monitoring of the node (as we saw earlier), as well as the timeline
that we saw before. Now, all of this pertains to the node itself, not the containers that
will be running on the node.

Chapter 12

[217]

Back to the Services section
Now, it's time for us to launch a service and get some containers running on
this node.

By clicking on the Services tab, we will be taken to the previous screen, where we
can deploy a service.

Tutum

[218]

Now, Tutum offers up three areas to search for the images you might want to use:
jumpstarts or collections that they have categorized for you; public repositories on
Docker Hub; or private repositories that you have set as private on your Docker Hub
account. For our example, we are going to select the tutum/hello-world example
due to its small size.

Chapter 12

[219]

After clicking the Select button for it, we are taken to a screen similar to the
following one; yours will vary depending upon what image you have selected.

Now, you can give the service a name or use the generated one for you. You can
also select what tag to use for the image, what your deployment strategy is (if you
are using multiple nodes), how many containers to deploy, any tags you wish
to add to the containers that will be deployed, custom port settings (if any), and
whether it should autorestart in the event of a failure. This should seem familiar
as some of these items, such as deployment strategy, were covered in the book,
mainly in Chapter 8, Docker Swarm, with regards to Docker Swarm. So, once you have
everything kosher, go ahead and click on the Create and deploy button and prepare
for a blast off!

Tutum

[220]

After we click on the button, we are taken to a screen similar to the one we saw when
we were deploying our host node.

We can see information on the left-hand side, such as what command the container
is running, what ports are exposed, and other settings as well pertaining to the
container. We can see that it's in the Starting state and should be running shortly.

Chapter 12

[221]

Containers
Once it has finished starting and is now in the running state, we can manipulate
the container and do things such as stop, terminate, redeploy, or even edit the
configuration of the container, and expand the number of containers that are running.

Now, let's take a look at the navigation menu for containers.

Tutum

[222]

Endpoints
Again, the Endpoints screenshot will show us any port information pertaining to the
running container.

Chapter 12

[223]

Logs
The Logs section will show us a running log of the screen output the container
would have.

Since this container just started, we don't have anything yet; but this section can be
helpful in the event you need to troubleshoot a running container.

Tutum

[224]

Monitoring
Next, we have the monitoring section that can show us the information we saw
before in the Nodes section.

Items such as CPU, Memory, and Bandwidth Out can tell how much our container
is being used for the service that it is running.

Chapter 12

[225]

Triggers
Next up is the Triggers section. Now, this section can come in handy if you are
looking at scaling something based on the CPU usage that a container has.

For example, you could set a trigger that if the CPU usage goes above 60%, launch
another container to help with the load (assuming you are running your service in a
load balancer).

Tutum

[226]

Timeline
Again, we have the Timeline section that we saw with regards to the nodes. We can
see the lifespan of a container as well.

Chapter 12

[227]

Configuration
Lastly, we have the Configuration section that shows an overview of the container as
a whole.

This section is also broken down into subsections that include general information,
environmental variables, container links, and attached volumes for the container.

Tutum

[228]

The Repositories tab
Let's take a look back at the navigation bar at the top and click on the Repositories tab.

In this tab, you can add custom repositories beyond Docker Hub; for example, if you
were running your own private repositories, where your company would be storing
images that you would want to use, you would add that in this section.

Chapter 12

[229]

Stacks
There is also the Stacks section. Stacks are a collection of services similar to what you
would think of when you are using Docker Compose.

Let's take a look at this section, because it can be very useful while using development
environments or for testing.

Tutum

[230]

After we click on Create your first stack, we are taken to a page that is similar to the
following screenshot:

In this screenshot, we can see that we need pieces of information.

Chapter 12

[231]

We need a name for our stack and we need the stackfile contents. In our case, we are
going to use our trustworthy MySQL example and call our stack mysql.

For our stackfile, we are going to use one of the resources that Tutum encourages us
to explore. In the bottom section under the Stackfile field, there is an option to get a
Stackfile from the Stackfile registry, which is located at https://Stackfiles.io.

https://Stackfiles.io

Tutum

[232]

Upon entering stackfiles.io, we are presented with an easy search box.

Again, for our test, we want to find the mysql stackfile, so we enter mysql in the box
and click on Browse.

Chapter 12

[233]

Now, for our example, we want a mysql one and we can see it right on the top.

However, you could use a different one or search for one as well to see if there is one
already done for you. Again, always work smarter, not harder!

Tutum

[234]

So, if you drill into the mysql stackfile, you can see what all it is doing.

In our case, we are just going to copy this, go back to our Tutum stack deployment
page, and paste it among the contents of the stackfile.

Chapter 12

[235]

After we paste its contents in our Stackfile field and click on the Launch stack
button, we will see our stack come to life.

After a few minutes, it will fire up for us and we will have created and be running our
first stack. We can then manipulate the various pieces of the stack by starting/stopping
them, terminating them, redeploying them, or even editing their configurations.

Tutum

[236]

We can also look at the stackfile being used and edit it if needed to our likings or
download it to share it with others as well.

Summary
We have now looked at three very powerful GUI tools that you can add to your
Docker arsenal. With these tools, you can manipulate everything from your host
environments, the images that live on those hosts, as well as the containers running on
those hosts. You can scale them, manipulate them, and even remove them as needed.

In the next and the final chapter, we will be looking at some advanced Docker topics
such as how to scale your containers, and debugging and troubleshooting them. We
will also look at the common issues that can arise as well as common solutions to
these issues. We will also cover various APIs that pertain to Docker as well as how to
contribute to Docker. We will dive into configuration management tools, advanced
networking, as well as Docker volume management.

[237]

Advanced Docker
We've made it to the last chapter, and you've stuck with it until the end! In this
chapter, we will be taking a look at some advanced Docker topics. Let's take a peek
into what we will be covering in this chapter:

•	 Scaling Docker
•	 Using the discovery services
•	 Debugging or troubleshooting Docker
•	 Common issues and solutions
•	 Various Docker APIs
•	 Keeping your containers in check
•	 Contributing to Docker
•	 Advanced Docker networking

Advanced Docker

[238]

Scaling Docker
In this section, we will learn how to scale Docker. Earlier, in Chapter 7, Docker
Compose, we looked at using Docker Compose to do our scaling. In this section, we
will look at other technologies that we can utilize to do the scaling for us. We will
take a look at two such technologies—one that you can use through the command
line and the other two that can be used through a web interface.

•	 Kubernetes: We have looked at another command line earlier to scale
Docker—Docker Compose. There are other tools out there that you can use
to scale your Docker environments from the command line. One such tool
is Kubernetes:
$ kubectl scale [--resource-version=version] [--current-
replicas=count] --replicas=COUNT RESOURCE NAME

$ kubectl scale --current-replicas=1 --replicas=2 Host Node

You can find out more about it at http://kubernetes.io/v1.0/docs/
user-guide/kubectl/kubectl_scale.html.

•	 Mist.io: With Mist.io, you can perform all your Docker actions in this
software, everything from adding your cloud environments to locally run
Docker installations. You can then see all the machines or nodes that are on
that host and check whether they are running or have been stopped. You can
also view information about them such as any alerts that they may have as
well as their usage. You can also scale environments within the web console
as well. While Mist.io is free to use, there is a fee if you want to use their
monitoring service. It does come with a free trial for 15 days though. Scaling
is done just by selecting the node that you want to scale and entering a value
to scale to, the rest is all done automatically for you.

•	 Shipyard: When it comes to being able to scale easily, I am not sure there is
an easier way than using Shipyard. Like Mist.io, you can easily scale nodes
by using Shipyard. In Chapter 10, Shipyard, we saw how easy it was to do
tasks such as scale running containers using Shipyard.

Using discovery services
In this section, we will learn how to scale Docker, but in a different way. Previously,
we looked at using Docker Compose to do our scaling. In this section, we will look
at other technologies that we can utilize to do the scaling for us automatically. There
are some discovery services that we can tap into for this usage. We will focus on two
of them in this section as they are the more popular ones.

http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html
http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html

Chapter 13

[239]

Consul
One of the more popular options for discovery services with regards to Docker is
Consul. Consul is an extremely easy-to-use discovery service that offers a lot of
options that we can tie this into automatically updating the items in Consul by using
a program called Registrator or by automatically taking those items that are updated
in Consul and then turning around and updating a configuration file to show those
updated items by using the consul-template program. Information about Consul
can be found at https://consul.io/. For more information on Registrator, visit
http://gliderlabs.com/registrator/latest/. And, to know more about
consul-template, refer to https://github.com/hashicorp/consul-template.

Adding these three pieces to your technology arsenal can greatly increase the level
of performance and uptime that you can provide. You can add new nodes to a
service on the fly, and have the configuration on a particular container be updated
on the fly. You can also move the updated nodes into a service and then remove the
other ones that aren't updated so that you can provide a method for zero downtime
with rolling updates as well. You can also go the other way if you notice something
you updated isn't functioning properly. You can roll an older version of something
into a discovery service while rolling out the newer version if a bug or security
vulnerability is discovered. The possibilities of what you can do with these three
pieces can be endless.

etcd
If you are going extremely lightweight with your host environments and using
CoreOS, then you are very familiar with etcd. It uses a dynamic configuration
registry to do discovery. When etcd is configured on each CoreOS host, they can do
key-value distribution and replication, which allows them to discover each other as
well as new etcd hosts.

etcd focuses on being:

•	 Simple
•	 Secure
•	 Fast
•	 Reliable

https://consul.io/
http://gliderlabs.com/registrator/latest/
https://github.com/hashicorp/consul-template

Advanced Docker

[240]

To find out more about etcd, refer to https://en.wikipedia.org/wiki/
CoreOS#ETCD. You can also visit https://github.com/coreos/etcd, which
contains information not just about what etcd can do, but also the ways you can
get support for it, roadmap, mailing list, and reported bugs. You can also refer to
https://coreos.com/etcd/ and https://github.com/coreos/etcd.

Two of the more well-known projects that are using etcd are:

•	 Kubernetes
•	 Cloud Foundry

To view other projects that also use etcd, visit https://github.com/
search?utf8=%E2%9C%93&q=etcd.

Debugging or troubleshooting Docker
Now that we have our Docker containers running in our production level service,
we need to know how we can troubleshoot them—how do we fix common problems
with containers, what should we be looking out for, and how can we quickly debug
issues that do arise in our environments to avoid any serious downtime? Let's take a
look at some of the topics that we can cover.

Docker commands
There are quite a few built-in Docker commands that you can use to help debug and
troubleshoot Docker. With focus on running the containers themselves, here are the
ones that can help you:

•	 Docker history: This lets you view the history of Docker image
•	 Docker events: This lets you view the live stream of the container events
•	 Docker logs: This lets you view output from a container
•	 Docker diff: This lets you view the changes of a container's filesystem
•	 Docker stats: This helps you view the live stream of a container's

resource usage

https://en.wikipedia.org/wiki/CoreOS#ETCD
https://en.wikipedia.org/wiki/CoreOS#ETCD
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd

Chapter 13

[241]

GUI applications
The best way to be able to debug or troubleshoot your containers is to have a visual
overview of all your containers. There are a few options for you out there that we
can use:

•	 Shipyard (https://shipyard-project.com)
•	 Mist.io (http://mist.io)
•	 DockerUI (https://github.com/crosbymichael/dockerui)

Now only these options will allow you to get an overview of the status on all your
running containers. You can also manipulate these containers, that is, you can restart
them or view the logs for a particular container. While some of the options will do
more than others, it is important to review them all to see what is the best fit for what
you would like to see and be able to perform.

Resources
While there are a lot of resources out there for Docker, you would want to make sure
you are focusing on the following two at all times, as they are the official means by
which you can get information or obtain help:

•	 Docker documentation: This is an official documentation straight from Docker
•	 Docker IRC room: This is the official communication for the Docker

community and a place where you can not only get help from others in the
Docker community, but also assistance from those who work at Docker

Common issues and solutions
What are some common issues that others have run into putting their environments
into production while using various Docker products? What are the solutions to
those common issues? How can we mitigate against these issues so that no further
instances occur? Let's take a look at what we can do!

Docker images
When you are using images, remember two things:

•	 Each image you pull takes up space
•	 Each time you run an image, that particular run is stored using disk space

https://shipyard-project.com
http://mist.io
https://github.com/crosbymichael/dockerui

Advanced Docker

[242]

If you are running low on space, this might be something to keep an eye on before it
becomes a problem. If the space fills up, the containers might stop working, and this
might lead to loss of data. Now you can view the images that you currently have by
running a simple command:

$ docker images

To remove a particular image, we can run another command:

$ docker rmi <image_name>

But what about those images whose run is stored using disk space? How do we view
them? There is a switch that can be added onto the images subcommand to view them:

$ docker images -a

You can remove these, by using their image ID:

$ docker rmi <image_ID>

Docker volumes
As of Docker v1.9, you can manage volumes through the Docker CLI. Let's take a
look at what all can we do and how:

$ docker volume --help

Usage: docker volume [OPTIONS] [COMMAND]

Manage Docker volumes

Commands:

 create Create a volume

 inspect Return low-level information on a volume

 ls List volumes

 rm Remove a volume

Run 'docker volume COMMAND --help' for more information on a command

 --help=false Print usage

Chapter 13

[243]

So we can do quite a lot; we can create volumes, inspect the volumes, list volumes,
and remove volumes. Let's take a look at each, going through the lifecycle of a
volume, that is, from creation to deletion:

$ docker volume create --name test

test

$ docker volume ls

local test

Now you will notice this one was created locally. You can use the --driver flag and
specify which volume driver to use:

$ docker volume inspect test

[

 {

 "Name": "test",

 "Driver": "local",

 "Mountpoint": "/var/lib/docker/volumes/test/_data"

 }

]

With this, we can see the name of the volume, which driver was used to create it, and
where it's located on our system:

$ docker volume rm test

test

Using resources
Be sure to use all the resources that are out there. Those resources could include:

•	 Docker IRC room
•	 Docker documentation
•	 Docker commands

Various Docker APIs
Some of the various Docker APIs can immensely help you when you are writing up a
script in the coding language of your choice. You can tie that into pulling the strings
on Docker and have it to do the work for you without having to break out into
another program or scripting language.

Advanced Docker

[244]

docker.io accounts API
This API is used just for account management. With it, you can:

•	 Get a single user
•	 Update various parameters for a particular user
•	 List e-mail addresses for a user
•	 Add an e-mail address for a user
•	 Delete an e-mail address for a user

There is not a lot that you can do with this API as it is mainly focused around what
you can do with one's user account. In reality, there isn't a lot of information baked
into one's user account, and as you can see, the e-mail address is the main focal point
of one's account.

For more information, please visit https://docs.docker.com/reference/api/
docker_io_accounts_api/.

Remote API
Let's just start off by saying that the Remote API is very intense, and that's not a bad
thing. When it comes to APIs, you want them to be able to do just anything you want
so that you never have to leave your code to perform these actions. Here is the high-
level overview of what you can do with this API:

•	 Endpoints
•	 Containers
•	 Images

So you heard me say it was very intense, but based on what you can do with it, it
doesn't look very intense until you take a peek into it yourself. Think of all the things
that you can normally do with a container or an image and then you will understand
why I state that it is intense. Things such as creating containers or images, listing
them out, and getting information about containers or images might include getting
information about the files and folders inside a container, copying files or folders
from a container, and removing a container or image. There are also ways to
manipulate or "hijack", as the documentation puts it such as using the docker run
command. You can retrieve the various codes from the run command and determine
what the command is doing.

https://docs.docker.com/reference/api/docker_io_accounts_api/
https://docs.docker.com/reference/api/docker_io_accounts_api/

Chapter 13

[245]

For more information on the Remote API, refer to https://docs.docker.com/
engine/reference/api/docker_remote_api/ and to know more about the latest
Remote API, visit https://docs.docker.com/reference/api/docker_remote_
api_v1.20/.

Keeping your containers in check
What are some of the tools that we can use to keep our containers the way we have
set them up? How do we ensure that they stay the way we want them to? How do
we ensure that if they do drift off or things change on them, we are able to put them
back in place to where we want them to be? Let's see how we can achieve that.

Kubernetes
Kubernetes is an open source project that was developed by Google to help with
the automating deployment of your containers as well as scaling and the operations
of your containers, not only on one host, but across multiple hosts. Kubernetes has
been set to work on almost every environment that can be imagined, from locally
in a Vagrant or VMware environment to cloud solutions such as AWS or Microsoft
Azure. There will be some terminology that will need to be learned beyond the
Docker terms, but if you understand how Docker operates, learning the Kubernetes
terminology will come naturally. For example, instead of hosts, Kubernetes calls
them pods. Kubernetes uses a single master node to control all its pods. The
documentation can provide a lot more information including examples on how to
administer your pods, set up pod clusters, and much more.

More information on Kubernetes can be found at http://kubernetes.io.

Chef
The reason we are focusing on Chef in this section is that AWS uses it as part of
one of the solutions that they offer—in the form of OpsWorks. OpsWorks allows
you to set up and use Chef to automate not only your Docker containers, but also
other aspects of your AWS environment. I have personally set up and used Chef
to do a lot of system automation throughout my personal environments. With
that being said, Chef can be a little tricky at first to learn how to set up the server
and client environments. There is a steep learning curve at first as with almost
any configuration management system, but Chef does seem to have a little bit of a
larger one with respect to all the moving pieces that are involved with the server
environment and setup.

https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/
http://kubernetes.io

Advanced Docker

[246]

I wanted to draw focus to Chef though because if you are going to be viewing your
environment within AWS, it might be a good idea to use Chef since it does offer it
as a service within AWS. OpsWorks allows you to easily set up and control your
environments as well as use their built-in Chef cookbooks. You can learn more about
Chef at http://chef.io.

Other solutions
Some other solutions that are worth checking out or even use, if you already have the
setup, to manage your Docker environment are:

•	 Puppet (http://puppetlabs.com)
•	 Ansible (http://www.ansible.com/)
•	 SaltStack (http://saltstack.com/)

Contributing to Docker
So you want to contribute to Docker? Do you have a great idea that you would like
to see in Docker or one of its components? Let's get you the information and tools
that you need to have. If you aren't a programmer-type person, there are other ways
you can help contribute as well. Docker has a massive audience and you can help
with supporting other users of their services. Let's learn how you can do that!

Contributing to the code
One of the biggest ways you can contribute to Docker is helping with the Docker code.
Since Docker is all open source, you can download the code to your local machine and
work on new features and present them as pull requests back to Docker. Those will
then get reviewed on a regular basis and if they feel what you have contributed should
be in the service, they will approve the pull request. This can be very interesting when
you get to know something you have written has been accepted.

You first need to know how you can get the setup to contribute. Everything is
pretty much available at https://github.com/docker, which is open for you to
help contribute to. But how do we go about getting the setup to help contribute?
The best place to start is by following the guide at https://docs.docker.com/
project/who-written-for/. The software you will need to contribute can be found
by following another guide at https://docs.docker.com/project/software-
required/.

http://chef.io
http://puppetlabs.com
http://www.ansible.com/
http://saltstack.com/
https://github.com/docker
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/software-required/
https://docs.docker.com/project/software-required/

Chapter 13

[247]

These guides will help you get all the setup with the knowledge you will need, as
well as the software. The last link that you will need to review is https://github.
com/docker/docker/blob/master/CONTRIBUTING.md. This page will provide
information on how to report issues, contribution tips and guidelines, community
guidelines, and other important information about how to successfully contribute.

Contributing to support
You can also contribute to Docker by other means beyond contributing to the Docker
code or feature sets. You can help by using the knowledge you have obtained to help
others in their support channels. Currently, Docker uses IRC rooms where users can
gather online and either provide support to other users or ask questions about the
various services that they offer. The community is very open and someone is always
willing to help. I have found it of great help when I run into something that I come
across and scratch my head. It's also nice to get help and to help others back (a nice
give and take). It also is a great place that harvests ideas for you to use. You can see
what questions others are asking, based on their setups, and it could spur ideas that
you may want to think about using in your environment.

You can also follow the GitHub issues that are brought up about the services. These
could be feature requests and how Docker may implement them or the issues that
have cropped up through the usage of services. You can help test out the issues that
others are experiencing to see whether you can replicate it or find a possible solution
to it.

Other contributions
There are other ways to contribute to Docker as well. You can do things such as
presenting at conferences about Docker. You can also promote the service and
gather interest at your institution. You can start the communication through
your organization's means of communications such as e-mail distribution lists,
group discussions, IT roundtables, or regularly scheduled meetings. You can also
schedule your own meetings within your organization to get people talking or
you can do Docker meetups. These meetups are designed to not only include your
organization, but also the city or town members that your organization is in to get
more widespread communication and promotion of the services. You can search
whether there are already meetups in your area by visiting https://www.docker.
com/community/meetup-groups.

https://github.com/docker/docker/blob/master/CONTRIBUTING.md
https://github.com/docker/docker/blob/master/CONTRIBUTING.md
https://www.docker.com/community/meetup-groups
https://www.docker.com/community/meetup-groups

Advanced Docker

[248]

Advanced Docker networking
Lastly, one of the up and coming features of Docker that we will be taking a look
at will be that of the Docker networking. Now at its current form, this is a solution
that has not yet been implemented, but is a feature set that will be coming soon. So,
it's good to get ahead of the curve on this one and learn it so that you are ready to
implement it or architect your future environments around it.

Installation
Since this feature is not part of the current Docker release, you need to install the
experimental release to get this completed. To install Docker experimental releases,
simply use the curl command that you have seen previously. Now this will only
work on Linux and Mac currently. In future, experimental builds might be installed
on Windows systems. So to install, use the following command:

$ curl -sSL https://experimental.docker.com/ | sh

On Mac, run:

$ curl -L https://experimental.docker.com/builds/Darwin/x86_64/docker-
latest > /usr/local/bin/docker

$ chmod +x /usr/local/bin/docker

Now you will get a warning message if you already have Docker installed:

Warning: the "docker" command appears to already exist on this system.

If you already have Docker installed, this script can cause trouble,
which is

why we're displaying this warning and provide the opportunity to cancel
the

installation.

If you installed the current Docker package using this script and are
using it

again to update Docker, you can safely ignore this message.

You may press Ctrl+C now to abort this script.

sleep 20

Chapter 13

[249]

You want to make sure you are installing experimental builds to a machine
that is not a production-related one. For example, you probably don't want to
install an experimental release to your laptop if you are using it to develop and
test Docker-related items on. Best practice would be to install it on a virtual machine
that you can throw away if it gets broken.

After running the curl command, you will be able to see the networking option
from the list of Docker commands now:

$ docker

Usage: docker [OPTIONS] COMMAND [arg...]

 docker daemon [--help | ...]

 docker [--help | -v | --version]

A self-sufficient runtime for containers.

Options:

 --config=~/.docker Location of client config files

 -D, --debug=false Enable debug mode

 -H, --host=[] Daemon socket(s) to connect to

 -h, --help=false Print usage

 -l, --log-level=info Set the logging level

 --no-legacy-registry=false Do not contact legacy registries

 --tls=false Use TLS; implied by --tlsverify

 --tlscacert=~/.docker/ca.pem Trust certs signed only by this CA

 --tlscert=~/.docker/cert.pem Path to TLS certificate file

 --tlskey=~/.docker/key.pem Path to TLS key file

 --tlsverify=false Use TLS and verify the remote

 -v, --version=false Print version information and quit

Commands:

 attach Attach to a running container

 build Build an image from a Dockerfile

 commit Create a new image from a container's changes

 cp Copy files/folders between a container and the local
filesystem

Advanced Docker

[250]

 create Create a new container

 diff Inspect changes on a container's filesystem

 events Get real time events from the server

 exec Run a command in a running container

 export Export a container's filesystem as a tar archive

 history Show the history of an image

 images List images

 import Import the contents from a tarball to create a filesystem
image

 info Display system-wide information

 inspect Return low-level information on a container or image

 kill Kill a running container

 load Load an image from a tar archive or STDIN

 login Register or log in to a Docker registry

 logout Log out from a Docker registry

 logs Fetch the logs of a container

 network Network management

 pause Pause all processes within a container

 port List port mappings or a specific mapping for the CONTAINER

 ps List containers

 pull Pull an image or a repository from a registry

 push Push an image or a repository to a registry

 rename Rename a container

 restart Restart a container

 rm Remove one or more containers

 rmi Remove one or more images

 run Run a command in a new container

 save Save an image(s) to a tar archive

 search Search the Docker Hub for images

 start Start one or more stopped containers

 stats Display a live stream of container(s) resource usage
statistics

 stop Stop a running container

 tag Tag an image into a repository

 top Display the running processes of a container

 unpause Unpause all processes within a container

Chapter 13

[251]

 version Show the Docker version information

 volume Manage Docker volumes

 wait Block until a container stops, then print its exit code

Run 'docker COMMAND --help' for more information on a command.

Creating your own network
In the preceding command output, I have highlighted the section that we will be
focusing on—the network subcommand in Docker. There is also another command
you may want to take a look at, and that is the volume subcommand, but we will be
focusing on the network subcommand.

Let's create ourselves a network that our Docker containers can use to communicate
on. From the output of the docker network command, we can see our options:

$ docker network

docker: "network" requires a minimum of 1 argument.

See 'docker network --help'.

Usage: docker network [OPTIONS] COMMAND [OPTIONS] [arg...]

Commands:

 create Create a network

 rm Remove a network

 ls List all networks

 info Display information of a network

Run 'docker network COMMAND --help' for more information on a command.

Doing a docker ls will give us a view of what our current network setup is:

$ docker network ls

NETWORK ID NAME TYPE

02f3d3834733 none null

b22ff5151bcb host host

f4b7c38b83b1 bridge bridge

Advanced Docker

[252]

Now let's get to creating ourselves a network. Using the network subcommand as
well as the create option, we can create ourselves a network:

$ docker network create <name>

$ docker network create docker-net

21625dd96ac08e1713621d951cfa140cebee96c9fae9f8ff44748f86a4c731d7

$ docker network ls

NETWORK ID NAME TYPE

02f3d3834733 none null

b22ff5151bcb host host

f4b7c38b83b1 bridge bridge

21625dd96ac0 docker-net bridge

Now that we have our network, how do we tell our containers about it? That comes
with a --publish-service= switch when you use your docker run command:

$ docker run -it --publish-service=<name>.<network_name> ubuntu:latest /
bin/bash

$ docker run -it --publish-service=web.docker-net ubuntu:latest /bin/bash

We can also create networks and provide drivers for those networks so that they can
span across multiple hosts. By default, there is a driver named overlay that will allow
you to do this. Now this is the first of many drivers that will be coming on board,
either when this network feature is baked into Docker or at a later time, for sure.
When you create the network is when you will specify the overlay driver. However,
there is one thing that this driver does need. It will need access for not only itself, but
also the other Docker hosts that you want to network together:

$ docker network create -d overlay docker-overlay

Networking plugins
Going back to our previous example of using the overlay driver, this is also
considered a Docker network plugin. While networking has the use for plugins, keep
in mind that volumes also have the option to do plugins or drivers as well. With
regards to networking plugins though, there is quite a list of plugins that are already
available, and I can only assume that others will be added quickly. Currently that list
of networking plugins consists of:

•	 Weave

Chapter 13

[253]

•	 Project Calico
•	 Nuage Networks
•	 Cisco
•	 VMware
•	 Microsoft
•	 Midokura

To use these plugins, we simply change what we are using in the --publish-
service= option, for example:

$ docker run -it --publish-service=service.network.cisco ubuntu:latest /
bin/bash

$ docker run -it --publish-service=service.network.vmware ubuntu:latest /
bin/bash

$ docker run -it --publish-service=service.network.microsoft
ubuntu:latest /bin/bash

Note that some of the names may change before they actually
come to production level.

Summary
In this chapter, we looked at a lot of items in depth. We covered various aspects
of Docker such as how we can scale our environments and use Docker services.
Later, you came to know about the various techniques that can be used to debug or
troubleshoot the issues that crop up while using Docker along with the solutions. You
then learned how contribution of codes can be done to Docker and its networking.

I hope you have enjoyed this book and will continue to refine your skill set
when it comes to Docker. It really is a technology that is on the tip of everyone's
tongue these days, so knowing it will not only benefit you at your current position,
but also any future positions you may be looking at. Throughout the chapters, you
should be able to pick up on some ways to get in touch with me if you do have any
questions or want to provide any feedback. I am frequently on the IRC rooms that
Docker has, so hit me up sometime to chat. Good luck and use the resources out
there to your advantage!

[255]

Index
A
advanced Docker networking

about 248
custom network, creating 251, 252
installation 248, 249
networking plugins 252

Ansible
about 68
URL 246

automated builds
about 50
code, setting up 51
custom registry, creating 54, 55
Docker Hub, setting up 52, 53
implementing 53

B
boot2docker

controlling 7

C
Chef

about 67, 245
reference 68

Cloud Providers 207-210
commands, Docker Machine

about 91
active 92
config 92
env 92
inspect 92
ip 93
kill 93
ls 94

restart 94
rm 94
scp 95
ssh 95
start 95
stop 95
TLS 96
upgrade 96
url 96

common issues
about 241
Docker images 241
Docker volumes 242, 243
resources, using 243

components, Docker Swarm
about 124
Swarm 124
Swarm host 124, 125
Swarm manager 124

constraint filter
about 134
environment= 134
region= 134
storage= 134

Consul 239
container management

about 144
automatic restarts 146
container image storage 144
container monitoring 145
Docker commands, and GUIs 145
image usage 145
updates 146

containers
about 245
Chef 245, 246

[256]

Kubernetes 245
stopping 17-19

containers, versus VMs
about 73
good section 73, 74
not so bad section 74
what to look out for section 74

custom containers
scratch, used 30
tar, used 29, 30

D
discovery services

Consul 239
etcd 239
using 238

Docker
about 2
contributing to 246
contributing to, code 246, 247
contributing to, support 247
debugging 240
hosts, setting up 141, 142
installation 6
installers 6
linking 5
networking 5
nodes, setting up 142
other contributions 247
scaling 238
troubleshooting 240
using in production environments 141
versus typical VMs 2, 3

Docker APIs
about 243
docker.io account API 244
Remote API 244, 245

Docker bench security application
about 79
container images and build files 82
container runtime 82
Docker daemon configuration 81
Docker daemon configuration files 81
Docker security operations 82
host configuration 80
output 83-86

running 79
docker build command

.dockerignore file 26
about 25, 26

Docker commands
about 11, 12, 57, 75
docker attach 58, 59
docker diff 59, 76
docker exec 60
docker history 60
docker inspect 61, 64
docker logs 64
docker ps 65
docker run 75, 76
docker stats 65
docker top 66

Docker Compose
examples 115
installing 99
installing, on Linux 99
installing, on OS X 100
installing, on Windows 100
options 101
usage 100
YAML file 100

Docker Compose commands
about 103, 104
build 104
kill 104
logs 105, 106
port 106
ps 107, 108
pull 108, 109
restart 109
rm 109, 110
run 110
scale 110
start 111, 112
stop 112
up 113, 114
version 114

Docker Compose usage
about 147
developer environments 147
environments, scaling 147

Docker documentation 241

[257]

Dockerfile
about 3, 4, 21
ADD instruction 23
best practices 24, 25
COPY instruction 23
ENTRYPOINT 23
LABEL command 23
ONBUILD instruction 24
reviewing 22
WORKDIR command 24

Docker Hub
about 30, 41, 144
Create menu 45
dashboard 42
location 31
Organizations 43, 44
private repositories 32
public repositories 31
repositories page 43
settings 46, 47
Stars page 48

Docker Hub Enterprise
about 32, 48
Docker Hub, versus

Docker Subscription 48, 49
Docker Subscription for cloud 49
Docker Subscription for server 49

Docker images
about 13, 14
base image, building with existing

image 28
building, Dockerfile used 27
manipulating 16, 17
searching for 14, 15

docker.io account API
about 244
reference 244

Docker IRC room 241
Docker Machine

about 89
cloud environment 90, 91
commands 91
installing 89, 90
local VM 90
using 90

docker ps -a switch 65
docker ps -l switch 65

docker ps -n= switch 65
Docker Registry

about 49, 144
overview 50
versus Docker Hub 50

Docker security
best practices 77
container images/runtime 78
daemon configuration 78
daemon configuration files 78
host configuration 77
operations 78

Docker Subscription 48
Docker Swarm

about 70, 123
cluster, creating 125, 126
cluster, managing 128, 129
components 124
filters 134
functionalities 70
installation 123
nodes, joining 127
nodes, listing 127, 128
strategies 133
usage 125

Docker Swarm commands
about 130
create 131
list 131
manage 131
options 130

Docker Swarm topics
about 132
advanced scheduling 133
discovery service 132

Docker Toolbox
URL 90

Docker Trusted Registry 144
DockerUI

about 150-155
URL 143, 241

Docker VM
controlling 7

Docker volumes
about 35-37
backups 39
containers 38, 39

[258]

E
environmental variables

about 32
file, adding to system 34, 35
MySQL database, creating 33, 34
MySQL username, creating 33
permissions, setting 34
using, in Dockerfile 32, 33

etcd
about 239
reference 240

example, Panamax
about 185-187
application, configuring 196
Applications section 188, 193
Docker Run Command section 201
environmental variables 198
Images section 190
ports 199
Registries section 191
Remote deployment targets section 192
service, adding 194-196
service links 197
Sources section 189
volumes 200

examples, Docker Compose
about 115, 120, 121
build 120
image section 115, 119

existing management suite
about 66
Ansible 68
Chef 67
Docker Swarm 69
Puppet 66, 67
SaltStack 69

external platforms
extending to 148
Heroku 148

F
filters, Docker Swarm

affinity 134
constraint 134
dependency 134

health 134
port 134

H
Heroku 148
host management

about 143
Docker Swarm 143
host monitoring 143
Swarm manager failover 144

I
ImageLayers 156-162
installation

Docker Machine 89, 90

K
Kitematic 8-11
Kubernetes

about 238, 245
URL 245

L
Linux Containers (LXC) 2

M
Mist.io

about 238
URL 241

N
nodes 211-216

O
Options section, Docker Compose

-f 102
-p 102
--project-name 102
--v 102
--verbose 102
--version 102

[259]

P
Panamax

example 185
installing 181-184
URL 143

Platform as a Service (PaaS) 148
pods 245
Puppet

about 66, 67
URL 246

R
Registrator 239
Remote API 244
Repositories tab 228

S
SaltStack

about 69
reference 69

security
about 149
best practices 149

Service dashboard 205
Services section, Tutum

about 217-220
Configuration 227
Containers 221
Endpoints 222
Logs 223
Monitoring 224
Timeline 226
Triggers 225

Shipyard
about 165, 238
ACCOUNTS tab 174
CONTAINERS section 168, 176-180
Deploy Container button 169
EVENTS tab 175
IMAGES section 170
NODES section 172
Pull Image button 171
REGISTRIES tab 173
starting 165-167
URL 143

Stacks section, Tutum 229-235
standard input (STDIN) 58
strategies, Docker Swarm

binpack 133
random 134
spread 133

Swarm API
about 135, 137
URL 137

Swarm cluster example 137

T
troubleshooting, Docker

Docker commands 240
GUI applications 241
resources 241

Tutum
about 203
accessing 204
Cloud Providers section 207-210
Nodes section 206
Service dashboard 205
tutorial page 204, 205
URL 203

types of installers, Docker 6

Thank you for buying
Mastering Docker

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Docker
ISBN: 978-1-78439-793-7 Paperback: 240 pages

Optimize the power of Docker to run your
applications quickly and easily

1.	 Learn to compose, use, and publish the
Docker containers.

2.	 Leverage the features of Docker to deploy your
existing applications.

3.	 Explore real-world examples of securing and
managing Docker containers.

Docker Cookbook
ISBN: 978-1-78398-486-2 Paperback: 248 pages

80 hands-on recipes to efficiently work with the
Docker 1.6 environment on Linux

1.	 Provides practical techniques and knowledge
of various emerging and developing APIs to
help you create scalable services.

2.	 Create, manage, and automate production-
quality services while dealing with inherent
issues.

3.	 Each recipe is carefully organized with
instructions to complete the task efficiently.

Please check www.PacktPub.com for information on our titles

Orchestrating Docker
ISBN: 978-1-78398-478-7 Paperback: 154 pages

Manage and deploy Docker services to containerize
applications efficiently

1.	 Set up your own Heroku-like PaaS by getting
accustomed to the Docker ecosystem.

2.	 Run your applications on development
machines, private servers, or the cloud, with
minimal cost of a virtual machine.

3.	 A comprehensive guide to the smooth
management and development of Docker
containers and its services.

Build Your Own PaaS with Docker
ISBN: 978-1-78439-394-6 Paperback: 138 pages

Create, modify, and run your own PaaS with
modularized containers using Docker

1.	 Build your own PaaS using the
much-appreciated software Docker.

2.	 Isolate services in containers to have a fully
modularized and portable system.

3.	 Step-by-step tutorials that take you through the
process of creating your own PaaS.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Docker Review
	Understanding Docker
	Difference between Docker and typical VMs
	Dockerfile
	Docker networking/linking

	Docker installers/installation
	Types of installers
	Controlling the Docker VM (boot2docker)
	Docker Machine – the new boot2docker
	Kitematic

	The Docker commands
	The Docker images
	Searching for the Docker images
	Manipulating the Docker images

	Stopping containers
	Summary

	Chapter 2: Up and Running
	Dockerfile
	A short review of Dockerfile
	Reviewing Dockerfile in depth
	LABEL
	ADD or COPY
	ENTRYPOINT
	USER
	WORKDIR
	ONBUILD

	Dockerfile – best practices

	Docker build
	The docker build command
	.dockerignore

	Building images using Dockerfile
	Building a base image using an existing image
	Building your own containers
	Using tar
	Using scratch

	Docker Hub
	The Docker Hub location
	Public repositories
	Private repositories
	Docker Hub Enterprise

	Environmental variables
	Using environmental variables in your Dockerfile
	Creating a MySQL username, database, and setting permissions
	Adding a file to the system

	Docker volumes
	Data volumes
	Data volume containers
	Docker volume backups

	Summary

	Chapter 3: Container Image Storage
	Docker Hub
	Dashboard
	Explore the repositories page
	Organizations
	The Create menu
	Settings
	The Stars page

	Docker Hub Enterprise
	Comparing Docker Hub to Docker Subscription
	Docker Subscription for server
	Docker Subscription for cloud

	Docker Registry
	An overview of Docker Registry
	Docker Registry versus Docker Hub

	Automated builds
	Setting up your code
	Setting up Docker Hub
	Putting all the pieces together
	Creating your own registry

	Summary

	Chapter 4: Managing Containers
	The Docker commands
	docker attach
	docker diff
	docker exec
	docker history
	docker inspect
	docker logs
	docker ps
	docker stats
	docker top

	Using your existing management suite
	Puppet
	Chef
	Ansible
	SaltStack

	Docker Swarm
	What is Docker Swarm?
	What can Docker Swarm do?

	Summary

	Chapter 5: Docker Security
	Containers versus VMs
	The good
	The not so bad
	What to look out for

	The Docker commands
	docker run
	docker diff

	Docker security – best practices
	Docker – best practices
	CIS guide – host configuration
	CIS guide – Docker daemon configuration
	CIS guide – Docker daemon configuration files
	CIS guide – container images/runtime
	CIS guide – Docker security operations

	The Docker bench security application
	Running the tool
	Understanding the output

	Summary

	Chapter 6: Docker Machine
	Installation
	Using Docker Machine
	Local VM
	Cloud environment

	Docker Machine commands
	active
	config
	env
	inspect
	ip
	kill
	ls
	restart
	rm
	scp
	ssh
	start
	stop
	upgrade
	url
	TLS

	Summary

	Chapter 7: Docker Compose
	Installing Docker Compose
	Installing on Linux
	Installing on OS X and Windows

	Docker Compose YAML file
	The Docker Compose usage
	The Docker Compose options

	The Docker Compose commands
	build
	kill
	logs
	port
	ps
	pull
	restart
	rm
	run
	scale
	start
	stop
	up
	version

	Docker Compose – examples
	image
	build
	The last example

	Summary

	Chapter 8: Docker Swarm
	Docker Swarm install
	Installation

	Docker Swarm components
	Swarm
	Swarm manager
	Swarm host

	Docker Swarm usage
	Creating a cluster
	Joining nodes
	Listing nodes
	Managing a cluster

	The Docker Swarm commands
	Options
	list
	create
	manage

	The Docker Swarm topics
	Discovery services
	Advanced scheduling
	The Swarm API

	The Swarm cluster example
	Summary

	Chapter 9: Docker in Production
	Where to start?
	Setting up hosts
	Setting up nodes

	Host management
	Host monitoring
	Docker Swarm
	Swarm manager failover

	Container management
	Container image storage
	Image usage
	The Docker commands and GUIs
	Container monitoring
	Automatic restarts
	Rolling updates

	Docker Compose usage
	Developer environments
	Scaling environments

	Extending to external platform(s)
	Heroku

	Overall security
	Security best practices

	DockerUI
	ImageLayers
	Summary

	Chapter 10: Shipyard
	Up and running
	Containers
	Deploying a container

	IMAGES
	Pulling an image

	NODES
	REGISTRIES
	ACCOUNTS
	EVENTS
	Back to CONTAINERS
	Summary

	Chapter 11: Panamax
	Installing Panamax
	An example
	Applications
	Sources
	Images
	Registries
	Remote Deployment Targets
	Back to Applications
	Adding a service
	Configuring the application
	Service links
	Environmental variables
	Ports
	Volumes
	Docker Run Command

	Summary

	Chapter 12: Tutum
	Getting started
	The tutorial page
	The Service dashboard
	The Nodes section
	Cloud Providers
	Back to Nodes
	Back to the Services section
	Containers
	Endpoints
	Logs
	Monitoring
	Triggers
	Timeline
	Configuration

	The Repositories tab
	Stacks
	Summary

	Chapter 13: Advanced Docker
	Scaling Docker
	Using discovery services
	Consul
	etcd
	Debugging or troubleshooting Docker

	Docker commands
	GUI applications
	Resources

	Common issues and solutions
	Docker images
	Docker volumes
	Using resources

	Various Docker APIs
	docker.io accounts API
	Remote API

	Keeping your containers in check
	Kubernetes
	Chef
	Other solutions

	Contributing to Docker
	Contributing to the code
	Contributing to support
	Other contributions

	Advanced Docker networking
	Installation
	Creating your own network
	Networking plugins

	Summary

	Index

