Mastering Docker

Rethink what's possible with Docker—become an expert in the
Innovative containerization tool to unlock new opportunities in the
way you use and deploy software

Mastering Docker

Rethink what's possible with Docker—become

an expert in the innovative containerization tool to
unlock new opportunities in the way you use and
deploy software

Scott Gallagher

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015
Production reference: 1111215

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-703-9

www . packtpub.com

www.packtpub.com

Credits

Author
Scott Gallagher

Reviewer
Tommaso Patrizi

Commissioning Editor
Edward Gordon

Acquisition Editor
Reshma Raman

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Ankita Thakur

Copy Editor
Akshata Lobo

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Scott Gallagher has been fascinated with technology since he played Oregon
Trail in elementary school. His love continued through middle school as he worked
on more Apple Ile computers. In high school, he learned how to build computers
and program in BASIC! His college years were all about server technologies such as
Novell, Microsoft, and Red Hat. After college, he continued to work on Novell, all
while maintaining an interest in all the technologies. He then moved into managing
Microsoft environments and eventually into what he was most passionate about —
Linux environments. Now, his focus is around Docker and cloud environments.

I would like to thank my family for their support not only while I
worked on this book, but throughout my life and career. A special
thank you goes to my wife, who is my soul mate, the love of my life,
the most important person in my life, and the reason I push myself
to be the best I can be each day. I would also like to thank my kids,
who are the most amazing thing in this world; I truly am blessed to
be able to watch them grow each day. And lastly, I want to thank my
parents, who helped me become the person I am today.

About the Reviewer

Tommaso Patrizi is a Docker fan. He has been using the technology since its first
releases, having machines in production with Docker since its version 0.6.0. He
planned and deployed a basic private PaaS with Docker and Open vSwitch. He is
an enthusiastic Ruby and Ruby on Rails coder. He is striving for simplicity as the
perfect synthesis between code effectiveness, maintainability, and beauty. He is
actually learning some functional tricks through Haskell.

Tommaso is a system administrator with broad OS (Microsoft Windows, Linux, and
OS X), database (SQL Server, MySQL, PostgreSQL and PostGIS, and OrientDB), and
virtualization and cloud (vSphere, VirtualBox, and Docker) knowledge.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents

Preface iX
Chapter 1: Docker Review 1
Understanding Docker 2
Difference between Docker and typical VMs 2
Dockerfile 3
Docker networking/linking 5
Docker installers/installation 6
Types of installers 6
Controlling the Docker VM (boot2docker) 7
Docker Machine — the new boot2docker 8
Kitematic 8
The Docker commands 11
The Docker images 13
Searching for the Docker images 14
Manipulating the Docker images 16
Stopping containers 17
Summary 19
Chapter 2: Up and Running 21
Dockerfile 21
A short review of Dockerfile 22
Reviewing Dockerfile in depth 22
LABEL 23

ADD or COPY 23
ENTRYPOINT 23
USER 23
WORKDIR 24
ONBUILD 24

Dockerfile — best practices 24

[il

Table of Contents

Docker build 25
The docker build command 25
.dockerignore 26
Building images using Dockerfile 27
Building a base image using an existing image 28
Building your own containers 29
Using tar 29
Using scratch 30
Docker Hub 30
The Docker Hub location 31
Public repositories 31
Private repositories 32
Docker Hub Enterprise 32
Environmental variables 32
Using environmental variables in your Dockerfile 32
Creating a MySQL username, database, and setting permissions 33
Adding a file to the system 34
Docker volumes 35
Data volumes 36
Data volume containers 38
Docker volume backups 39
Summary 40
Chapter 3: Container Image Storage 41
Docker Hub 41
Dashboard 42
Explore the repositories page 43
Organizations 43
The Create menu 45
Settings 46
The Stars page 48
Docker Hub Enterprise 48
Comparing Docker Hub to Docker Subscription 48
Docker Subscription for server 49
Docker Subscription for cloud 49
Docker Registry 49
An overview of Docker Registry 50
Docker Registry versus Docker Hub 50
Automated builds 50
Setting up your code 51
Setting up Docker Hub 52

Lii]

Table of Contents

Putting all the pieces together 53
Creating your own registry 54
Summary 55
Chapter 4: Managing Containers 57
The Docker commands 57
docker attach 58
docker diff 59
docker exec 60
docker history 60
docker inspect 61
docker logs 64
docker ps 65
docker stats 65
docker top 66
Using your existing management suite 66
Puppet 66
Chef 67
Ansible 68
SaltStack 69
Docker Swarm 69
What is Docker Swarm? 70
What can Docker Swarm do? 70
Summary 71
Chapter 5: Docker Security 73
Containers versus VMs 73
The good 73
The not so bad 74
What to look out for 74
The Docker commands 75
docker run 75
docker diff 76
Docker security — best practices 77
Docker — best practices 77
CIS guide — host configuration 77
CIS guide — Docker daemon configuration 78
CIS guide — Docker daemon configuration files 78
CIS guide — container images/runtime 78
CIS guide — Docker security operations 78

[iii]

Table of Contents

The Docker bench security application 79
Running the tool 79
Understanding the output 83

Summary 87

Chapter 6: Docker Machine 89

Installation 89

Using Docker Machine 90
Local VM 90
Cloud environment 90

Docker Machine commands 91
active 92
config 92
env 92
inspect 92
ip 93
kill 93
Is 94
restart 94
rm 94
scp 95
ssh 95
start 95
stop 95
upgrade 96
url 96
TLS 96

Summary 97

Chapter 7: Docker Compose 99

Installing Docker Compose 99
Installing on Linux 99
Installing on OS X and Windows 100

Docker Compose YAML file 100

The Docker Compose usage 100
The Docker Compose options 101

The Docker Compose commands 103
build 104
kill 104
logs 105
port 106

[iv]

Table of Contents

ps 107
pull 108
restart 109
rm 109
run 110
scale 110
start 11
stop 112
up 113
version 114
Docker Compose — examples 115
image 115
build 120
The last example 120
Summary 122
Chapter 8: Docker Swarm 123
Docker Swarm install 123
Installation 123
Docker Swarm components 124
Swarm 124
Swarm manager 124
Swarm host 124
Docker Swarm usage 125
Creating a cluster 125
Joining nodes 127
Listing nodes 127
Managing a cluster 128
The Docker Swarm commands 130
Options 130
list 131
create 131
manage 131
The Docker Swarm topics 132
Discovery services 132
Advanced scheduling 133
The Swarm API 135
The Swarm cluster example 137
Summary 139

Table of Contents

Chapter 9: Docker in Production 141
Where to start? 141
Setting up hosts 141
Setting up nodes 142
Host management 143
Host monitoring 143
Docker Swarm 143
Swarm manager failover 144
Container management 144
Container image storage 144
Image usage 145
The Docker commands and GUIs 145
Container monitoring 145
Automatic restarts 146
Rolling updates 146
Docker Compose usage 147
Developer environments 147
Scaling environments 147
Extending to external platform(s) 148
Heroku 148
Overall security 149
Security best practices 149
DockerUl 150
ImageLayers 156
Summary 163
Chapter 10: Shipyard 165
Up and running 165
Containers 168
Deploying a container 169
IMAGES 170
Pulling an image 171
NODES 172
REGISTRIES 173
ACCOUNTS 174
EVENTS 175
Back to CONTAINERS 176

Summary 180

[vil

Table of Contents

Chapter 11: Panamax 181
Installing Panamax 181
An example 185

Applications 188
Sources 189
Images 190
Registries 191
Remote Deployment Targets 192
Back to Applications 193
Adding a service 194
Configuring the application 196
Service links 197
Environmental variables 198
Ports 199
Volumes 200
Docker Run Command 201
Summary 201

Chapter 12: Tutum 203
Getting started 203
The tutorial page 204
The Service dashboard 205
The Nodes section 206
Cloud Providers 207
Back to Nodes 211
Back to the Services section 217

Containers 221
Endpoints 222
Logs 223
Monitoring 224
Triggers 225
Timeline 226
Configuration 227
The Repositories tab 228
Stacks 229
Summary 236

Chapter 13: Advanced Docker 237
Scaling Docker 238
Using discovery services 238

Consul 239

[vii]

Table of Contents

etcd
Debugging or troubleshooting Docker

Docker commands
GUI applications
Resources
Common issues and solutions
Docker images
Docker volumes
Using resources
Various Docker APIs
docker.io accounts API
Remote API
Keeping your containers in check
Kubernetes
Chef
Other solutions
Contributing to Docker
Contributing to the code
Contributing to support
Other contributions
Advanced Docker networking
Installation
Creating your own network
Networking plugins
Summary

Index

239
240

240
241
241
241
241
242
243
243
244
244
245
245
245
246
246
246
247
247
248
248
251
252
253

255

[viii]

Preface

So hot off the presses, the latest buzz that has been on the tip of everyone's tongues
and the topic of almost any conversation that includes containers these days is
Docker! With this book, you will go from just being the person in the office who
hears that buzz to the one who is tooting it around every day. Your fellow office
workers will be flocking to you for anything related to Docker and shower you with
gifts —well, maybe not gifts, but definitely tapping your brain for knowledge!

What this book covers

Chapter 1, Docker Review, will just be a review of Docker. If you are new to Docker,
then this chapter will get you going for the future chapters. This chapter will cover
the items you would see in the Docker command line as well as the purpose of
Dockerfile and the contents that are contained inside it.

Chapter 2, Up and Running, will explain how to go from just reading the
documentation and looking at the help contents of files to running some Docker
commands. You will also learn how to create or build your own base containers,
which will be the basis of all your future containers. Learn how to create and manage
Docker volumes and how to pass environmental variables during the build process.

Chapter 3, Container Image Storage, will show the locations to store items such as
Docker Hub and the Docker Hub Enterprise. What are the differences between

the two. When should you use one over the other. It will help you answer these
questions. Also, you'll learn how to set up automated image builds based off the
code you have stored in places such as GitHub. What are the pieces you need to get
all this set up and working.

[ix]

Preface

Chapter 4, Managing Containers, will show how you can manage all the containers you
have created and stored. In this chapter, the focus will be on using the command line.
So, if you do decide to use a GUI application at a later time, you will understand what
is happening in the background and also have a resource to fall back on if needed.

Chapter 5, Docker Security, covers security that has unfortunately become the main
focus of not just systems administrators, but everyone involved in projects these
days. What are the benefits of using containers over using traditional virtual
machines. What is this new Docker security configuration tool that you can use to
help you assist with your setup environments. What should you be looking out for?
Dive in and let's take a look at it together!

Chapter 6, Docker Machine, talks about the future replacement of the boot2docker
instance. Docker Machine is the future of creating your Docker Host environments.
With Docker Machine, you can create the hosts of almost any environment from
your local command line. You can create them to locally test in VMware Fusion or
VirtualBox, or you can create some of them in cloud environments such as AWS,
Azure, DigitalOcean, and many more. Come, learn how you can do this!

Chapter 7, Docker Compose, covers one of the most popular items when it comes to
Docker —Docker Compose. So, what can you do with this magical tool? Docker
Compose helps eliminate the "well it works just fine on my machine." With
Compose, you can have the environments set up with all the resources tied together
as you want them and hand them off to both the Dev side of the team as well as

the Ops side. If it works for one person, it will work for others and vice versa. If
something doesn't work, it will help you troubleshoot by replicating the issue with
defined steps. You will learn how to use Compose to set up these environments as
well as the file structure of the file that Compose references.

Chapter 8, Docker Swarm, is all about how you can cluster your containers together.
With Docker Swarm, you can accomplish this task. You will learn how to install

and set up these environments. By default, Docker Swarm uses HTTP for
communication. You will learn how to set it up to use TLS for secure communication
between all your cluster nodes and Swarm manager.

Chapter 9, Docker in Production, says it's time to deploy Docker in your production
environment now that you have all the tools in your arsenal. But how do we go
about doing this? Let's take a look at the first step on how to do this as well as
monitor everything we have set up and running. You will learn items such as how
to ensure containers restart when and if there was an error. Also, you will learn how
extend to external platforms such as Heroku.

[x]

Preface

Chapter 10, Shipyard, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. We will do a
complete walkthrough, from installation to every piece of the Shipyard Ul You will
be able to see the benefits of using such a GUI to help manage your environment.

Chapter 11, Panamax, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. We will do a
complete walkthrough, from installation to every piece of the Panamax UI. This will
leave you with the ability to evaluate which GUI is right for your needs.

Chapter 12, Tutum, will focus on one of the three GUI applications that you can
utilize to set up and manage your Docker containers and images. Tutum is the latest
acquisition by Docker, so this software will only continue to evolve and become
more baked into the Docker ecosystem. We will do a complete walkthrough, from
installation to every piece of the Tutum UL

Chapter 13, Advanced Docker, will explain some advance items such as:

* Scaling Docker: We'll look at how we can scale our environments.

* Using discovery services: We'll look at using discovery services to help scale
our environments.

* Debugging/Troubleshooting Docker: We'll look at debugging and
troubleshooting Docker issues that crop up.

e Common issues and solutions: We'll look at the common issues that are
faced as well as the solutions to fix them.

e Various Docker APIs: We'll look at the Docker APIs that are out there and
how to tie into them and use them to our advantage.

* Keeping your containers in check: We'll look at how we can keep our
containers in check. If they fall out of check, how we can put them back
in place.

* Contributing to Docker: We'll look at how we can contribute to Docker.
If we can't contribute to the code, how we can help otherwise.

* Advanced Docker networking: We'll look at the future of Docker
networking and what is coming next that will only enhance our environment.

What you need for this book

The book will walk you through the installation of any tool that you need. You will
need a system with Windows, Mac OS, or Linux installed; preferably the latter of the
three, as well as an Internet connection.

[xi]

Preface

Who this book is for

The reader at the start of the book should be an experienced Linux developer

with some understanding of the Linux filesystems as well as the concept of Linux
Container Virtualization. They must have some experience developing services

and applications. They should also have knowledge of the fundamentals of Docker,
though we will re-establish these fundamentals in the first chapter or two for clarity.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "For
example, in an Ubuntu-based system, if you want to install the Apache package, you
would first do an apt-get update followed by an apt-get install -y apache2."

A block of code is set as follows:

master:
image:
scottpgallagher/galeramaster
hostname:
master
ports:

- "3306:3306"
nodel:
image:
scottpgallagher/galeranode
hostname:

nodel
links:

- master
node2:
image:
scottpgallagher/galeranode
hostname:

node2
links:

- master

[xii]

Preface

Any command-line input or output is written as follows:

$ docker pull tutum/ubuntu

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
search for prebuilt images on the Docker Hub and click on the CREATE button once
you have found the one you want to use or test."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xiii]

www.packtpub.com/authors

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiv]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Docker Review

Welcome to the Mastering Docker book! The first chapter will cover the Docker basics
that you should already have a pretty good handle on. But if you don't already have
the required knowledge at this point, this chapter will help give you the basics,

so the future chapters don't feel as heavy. By the end of the book, you should be a
Docker master able to implement Docker in your own environments, building and
supporting applications on top of these environments.

In this chapter, we're going to review the following higher level topics with subtopics
in each section:

* Understanding Docker

o

Docker versus typical VMs

o

The Dockerfile and its function

o

Docker networking/linking

* Docker installers/installation

o

Types of installers and how they operate

o

Controlling your Docker daemon
° The Kitematic GUI

e Docker commands

o

Useful commands for Docker, Docker images, and Docker containers

[11]

Docker Review

Understanding Docker

In this section, we will be covering the structure of Docker and the flow of what
happens behind the scenes in this world. We will also take a look at Dockerfile
and all the magic it can do. Lastly, in this section, we will look at the Docker
networking/linking.

Difference between Docker and typical VMs

First, we must know what exactly Docker is and does. Docker is a container
management system that helps easily manage Linux Containers (LXC) in an easier
and universal fashion. This lets you create images in virtual environments on your
laptop and run commands or operations against them. The actions you do to the
containers that you run in these environments locally on your own machine will
be the same commands or operations you run against them when they are running
in your production environment. This helps in not having to do things differently
when you go from a development environment like that on your local machine to
a production environment on your server. Now, let's take a look at the differences
between Docker containers and the typical virtual machine environments.

In the following illustration, we can see the typical Docker setup on the right-hand
side versus the typical VM setup on the left-hand side:

Traditional VMs Docker

Docker Engine

Hypervisor Host OS

Server Server

[2]

Chapter 1

This illustration gives us a lot of insight into the biggest key benefit of Docker, that
is, there is no need for a complete operating system every time we need to bring up

a new container, which cuts down on the overall size of containers. Docker relies

on using the host OS's Linux kernel (since almost all the versions of Linux use the
standard kernel models) for the OS it was built upon, such as Red Hat, CentOS,
Ubuntu, and so on. For this reason, you can have almost any Linux OS as your host
operating system (Ubuntu in the previous illustration) and be able to layer other
OSes on top of the host. For example, in the earlier illustration, we could have Red
Hat running for one app (the one on the left) and Debian running for the other app
(the one on the right), but there would never be a need to actually install Red Hat or
Debian on the host. Thus, another benefit of Docker is the size of images when they
are born. They are not built with the largest piece: the kernel or the operating system.
This makes them incredibly small, compact, and easy to ship.

Dockerfile

Next, let's take a look at the most important file pertaining to Docker: Dockerfile.
Dockerfile is the core file that contains instructions to be performed when an image
is built. For example, in an Ubuntu-based system, if you want to install the Apache
package, you would first do an apt -get update followed by an apt-get install
-y apache2. These would be the type of instructions you would find inside a typical
Dockerfile. Items such as commands, calls to other scripts, setting environmental
variables, adding files, and setting permissions can all be done via Dockerfile.
Dockerfile is also where you specify what image is to be used as your base image for
the build. Let's take a look at a very basic Dockerfile and then go over the individual
pieces that make one up and what they all do:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

[31]

Docker Review

These are the typical items you would find in a basic Dockerfile. The first line states
the image we want to start off with when we build the container. In this example,
we will be using Ubuntu; the item after the colon can be called if you want a specific
version of it. In this case, I am just going to say use the latest version of Ubuntu;

but you will also specify trusty, precise, raring, and so on. The second line is
the line that is relevant to the maintainer of Dockerfile. In this case, I just have my
information in there; well, at least, my name is there. This is for people to contact
you if they have any questions or find any errors in your file. Typically, most people
just include their name and e-mail address. The next line is a typical line you will
see while pulling updates and packages in an Ubuntu environment. You might
think they should be separate and wonder why they should be put on the same line
separated by &&. Well, in the Dockerfile, it helps by only having to run one process
to encompass the entire line. If you were to split it into separate lines, it would

have to run one process, finish the process, then start the next process, and finish

it. With this, it helps speed up the process by pairing the processes together. They
still run one after another, but with more efficiency. The next two lines complement
each other. The first adds your custom configurations to the path you specified and
changes the owner and group owner to the root user. The ExPOSE line will expose
the ports to anything external to the container and to the host it is running on. (This
will, by default, expose the container externally beyond the host, unless the firewall
is enabled and protecting it.) The last line is the command that is run when the
container is launched. This particular command in a Dockerfile should only be used
once. If it is used more than once, the last CMD in the Dockerfile will be launched
upon the container that is running. This also helps emphasize the one process per
container rule. The idea is to spread out the processes so that each process runs in its
own container, thus the value of the containers will become more understandable.
Essentially, something that runs in the foreground, such as the earlier command

to keep the Apache running in the foreground. If we were to use CMD ["service
apache2 start"], the container would start and then immediately stop. There is
nothing to keep the container running. You can also have other instructions, such as
ENV to specify the environmental variables that users can pass upon runtime. These
are typically used and are useful while using shell scripts to perform actions such as
specifying a database to be created in MySQL or setting permission databases. We
will be covering these types of items in a later chapter, so don't worry about looking
them up right now.

[4]

Chapter 1

Docker networking/linking

Another important aspect that needs to be understood is how Docker containers

are networked or linked together. The way they are networked or linked together
highlights another important and large benefit of Docker. When a container is
created, it creates a bridge network adapter for which it is assigns an address; it

is through these network adapters that the communication flows when you link
containers together. Docker doesn't have the need to expose ports to link containers.
Let's take a look at it with the help of the following illustration:

Docker Typical VM
Ubuntu (Host OS) Ubuntu (Host OS)
Linux Docker Linux Hyper
Kernel Engine Kernel visor

|

Bin/ Bin/
Bin/ Libs Libs
Libs Guest Guest

(0] 0S

In the preceding illustration, we can see that the typical VM has to expose ports for
others to be able to communicate with each other. This can be dangerous if you don't
set up your firewalls or, in this case with MySQL, your MySQL permissions correctly.
This can also cause unwanted traffic to the open ports. In the case of Docker, you

can link your containers together, so there is no need to expose the ports. This adds
security to your setup, as there is now a secure connection between your containers.

Bin/
Libs

App A ffl App B |AppA | |AppB |

&l

We've looked at the differences between Docker and typical VMs, as well as the
Dockerfile structure and the components that make up the file. We also looked at how

Docker containers are linked together for security purposes as opposed to typical VMs.
Now, let's review the installers for Docker and the structure behind the installation

once they are installed, manipulating them to ensure they are operating correctly.

[51]

Docker Review

Docker installers/installation

Installers are one of the first pieces you need to get up and running with Docker on
both your local machine as well as your server environments. Let's first take a look at
what environments you can install Docker in:

* Apple OS X (Mac)

* Windows

* Linux (various Linux flavors)

* Cloud (AWS, DigitalOcean, Microsoft Azure, and so on)

Types of installers

With the various types of installers listed earlier, there are different ways Docker
actually operates on the operating system. Docker natively runs on Linux; so if you
are using Linux, then it's pretty straightforward how Docker runs right on your
system. However, if you are using Windows or Mac OS X, then it operates a little
differently, since it relies on using Linux. With these operating systems, they need
Linux in some sort of way, thus enters the virtual machine needed to run the Linux
part that Docker operates on, which is called boot2docker. The installers for both
Windows and Mac OS X are bundled with the boot2docker package alongside the
virtual machine software that, by default, is the Oracle VirtualBox.

Now, it is worthwhile to note that Docker recently moved away from offering
boot2docker. But, I feel, it is important to understand the boot2docker terms and
commands in case you run across anyone running the previous version of the Docker
installer. This will help you understand what is going on and move forward to the
new installer(s). Currently, they are offering up Docker Toolbox that, like the name
implies, includes a lot of items that the installer will install for you. The installers for
each OS contain different applications with regards to Docker such as:

Docker Toolbox piece Mac OS X Windows
Docker Client X X

Docker Machine X X

Docker Compose X

Docker Kitematic X X
VirtualBox X X

First, let's take a look at the older style commands of boot2docker. Then, we will
take a look at the new commands or application that you can use to achieve these
outcomes.

[6]

Chapter 1

Controlling the Docker VM (boot2docker)

Now, there are ways to run boot2docker on different VM software. But to start off,
VirtualBox is the best and easiest way to operate boot2docker:

$ boot2docker

Usage: boot2docker [<options>] {help|init|up|ssh|save|down|poweroff |reset
|restart|config|status|info|ip|shellinit|delete|download|upgrade|version}
[<args>]

Now, after we have installed Docker on Linux, OS X, or Windows, how do we
go about controlling this virtual machine in the events when we need to start it
up, restart it, or even shut it down? This is where the boot2docker command-line
parameters come into play.

As you can see in the earlier illustration, there are a lot of options you can use for

your boot2docker instance. The options you will use mostly are up, down, poweroff,
restart, status, ip, upgrade, and version. Some of these commands you will use
mostly to troubleshoot items when you are trying to see why the Docker commands
might hang, or when you run into any other issues with your boot2docker virtual
machine. You can see what each command does by executing the following command:

$ boot2docker help

The most useful command that I have found while troubleshooting is the
boot2docker status command:

$ boot2docker status

Another useful boot2docker command is:

$ boot2docker version

This command will help see what version of boot2docker you are currently running,.
This is helpful in knowing when to use the boot2docker upgrade command. The
last command we will look at with respect to boot2docker is the boot2docker ip
command. This command is very useful when you need to know what IP address is
to be used to access the machines you have been running on a particular host:

$ boot2docker ip
192.168.59.103

As you can see, the earlier command gives us the IP address of the boot2docker
client running on my OS X machine inside VirtualBox. By using this IP, I can now
access the containers I might have been running using the IP address alongside any
of the open ports I have exposed.

[71

Docker Review

Docker Machine — the new boot2docker

So, with boot2docker on its way out, there needs to be a new way to do what
boot2docker does. This being said, enter Docker Machine. With Docker Machine,
you can do the same things you did with boot2docker, but now in Machine. The
following table shows the commands you used in boot2docker and what they are
now in Machine:

Command boot2docker Docker Machine

command boot2docker docker-machine

help boot2docker help docker-machine help

status boot2docker status docker-machine status

version boot2docker wversion docker-machine version

ip boot2docker ip docker-machine ip
Kitematic

Now that we have covered all the basics of controlling your boot2docker VM, let's
take a look at another way you can run Docker containers on your local machine.
Let's take a look at Kitematic. Kitematic is a recent addition to the Docker portfolio.
Up until now, everything we have done has been command line-based. With
Kitematic, you can manage your Docker containers through a GUI. Kitematic can
be used either on Windows or OS X, just not on Linux; besides who needs a GUI
on Linux anyways! Kitematic, just like boot2docker, operates on a VM defaulting
to VirtualBox. Pictures are worth a thousand words, so let's take a look at some
screenshots of Kitematic:

Contminers All Rucommended My Repos

postgres

Chapter 1

The previous screenshot depicts what you will see when you launch Kitematic for
the first time.

After you start running the containers, they will show up on the left-hand side
column. You can manipulate and get information about them through the GUI You
can search for prebuilt images on the Docker Hub and click on the CREATE button
once you have found the one you want to use or test.

eoe (f) scottpgalieg... ~ hello-world-nginx [runninG|
- -~ ~~ o
Containers NEW ([]) (O) ()_)
. N~ N NS Home Settings
sSTOP RESTART EXEC
_ s
hello-world-nginx:iatest i

CONTAINER LOGS WEE PREVIEW

_files/index.html not found.
Copying default index.html...
nginx: [alert] could not open error log file: open()

"/var/log/nginx/error.log" failed (2: No such file or
directory)
2015/06/22 15:42:44 [notice] 7#0: using the “epoll”

event method

2015/06/22 15:42:44 [notice] 7#8: nginx/1.4.7 Voila! Your nginx container is
2015/06/22 15:42:44 [noticel 7#8: built by gcc 4.8.3 running!
(OpenWrt/Linaro GCC 4.8-2014.84 r45973)

2015/06/22 15:42:44 [notice] 7#8: 0S: Linux 4.0.5-
boot2docker

2015/06/22 15:42:44 [notice] 7#0:
getrlimit(RLIMIT_NOFILE): 1048576:10848576

2015/06/22 15:42:44 [notice]l 7#8: start worker

processes

2015/06/22 15:42:44 [notice]l 7#8: start worker VOLUMES
process B

/website_files

In the preceding screenshot, we have created and are running the hello-world-nginx
image inside Kitematic. We can now use the STOP, RESTART, and EXEC commands
against the container as well as view the settings of the running container.

[o]

Docker Review

In the following screenshot, we can go to settings and view what ports are exposed

from the container to the outside:

eoe (£) scottpgaliag... v hello-world-nginx
Containers - NEW @ @ @

) STOP RESTART EXEC
hello-world-nginx
hello-world-nginx:latest

Configure Ports

80

=
;5 DOCKER CLI

[hvs

General

Ports

192.168.99.100:32768

Home

Volumes

Settings

Advanced

[10]

Chapter 1

In the following screenshot, you can see that you can use your login credentials
to log in to the Docker Hub and view the repositories you have created and
pushed there:

[BN] @ scoftpgallag... v

Containers All Recommended My Repos

My Repositories

o scottpgallagher (%) scottpgallagher
w rhel7 saltmaster

Mo description. Mo description,

20 000 | CREATE oo ©00 | GREATE
&

‘!l.

scottpgallagher
mysql

No description.

scottpgallagher
docker-mysql-automated

No description.

©0o | CREATE

o 900 | CREATE

scottpgallagher scottpgallagher
% php5-mysql php5-mysql-apache2
No description. No description.
20 Qoo CREATE 0 bl CREATE

el ¢

. scottpgallagher ool scottpgallagher
= W galeramaster a’ galeranode
i = G
-] DOCKER CLI r-;»-' {;: No description. Mo description.

The Docker commands

We have covered the types of installers and what they can be run on. We have
also seen how to control the Docker VM that gets created for you and how to use
Kitematic. Let's look at some Docker commands that you should be familiar with
already. We will start with some common commands and then take a peek at the
commands that are used for the Docker images. We will then take a dive into the
commands that are used for the containers.

[11]

Docker Review

The first command we will be taking a look at will be one of the most useful
commands not only in Docker but in any command-line utility you use —the help
command. It is run simply by executing the command as follows:

$ docker help

The earlier command will give you a full list of all the Docker commands at your
disposal and a brief description of what each command does. For further help with a
particular command, you can run the following;:

$ docker <COMMAND> --help

You will then receive additional information on using the command, such as the
switches, arguments, and descriptions of the arguments. Similar to the boot2docker
version command we ran earlier, there is also a version command for the Docker
daemon:

$ docker version

Now, this command will give us a little bit more information than the boot2docker
command output, as follows:
Client version: 1.7.0

Client API version: 1.19

Go version (client): gol.4.2
Git commit (client): Obaf609
0S/Arch (client): darwin/amdé64
Server version: 1.7.0

Server API version: 1.19

Go version (server): gol.4.2
Git commit (server): Obaf609

0S/Arch (server): linux/amdé64

This is helpful when you want to see the version of the Docker daemon you may be
running to see if you need/want to upgrade.

[12]

Chapter 1

The Docker images

Next, let's take a dive into the Docker images. You will learn how to view the images
you currently have that you can run, search for images on the Docker Hub, and

pull them down to your environment, so you can run them. Let's first take a look at
the docker images command. Upon running the command, we will get an output
similar to the following output:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f£ 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f£ 11 days
ago 188.3 MB

Your output will differ based on whether you have any images at all in your Docker
environment or upon what images you do have. There are a few important pieces
you need to understand from the output you see. Let's go over the columns and what
is contained in each. The first column you see is the REPOSITORY column; this column
contains the name of the repository as it exists in the Docker Hub. If you were to
have a repository that was from someone's user account, it may show up as follows:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

scottpgallagher/mysql latest 57d£f9c7989al 9 weeks
ago 321.7 MB

The next column, the TAG column, will show you different versions of a repository.
As you can see in the preceding example with the Ubuntu repository, there are tag
names for the different versions. So, if you want to specify a particular version of a
repository in your Dockerfile (as we saw earlier), you are able to. This is useful, so
you're not always reliant on having to use the latest version of an operating system
and can use the one your application supports the best. It can also help you do
backward compatibility testing for your application.

The next column is labeled IMAGE ID and it is based on a unique 64 hexadecimal
digit string of characters. The image ID simplifies this down to the first 12 digits
for easier viewing. Imagine if you had to view all 64 bits on one line! You will
learn when to use this unique image ID for later tasks.

[13]

Docker Review

The last two columns are pretty straightforward; the first being the creation date for
the repository, followed by the virtual size of the image. The size is very important as
you want to keep or use images that are very small in size if you plan to be moving
them around a lot. The smaller the image, the faster is the load time; and who doesn't
like it faster?

Searching for the Docker images

Okay, so let's look at how we can search for the images that are in the Docker Hub
using the Docker commands. The command we will be looking at is docker search.
With the docker search command, you can search based on the different criteria
you are looking for. For example, we can search for all the images with the term
ubuntu in them and see what all is available. Here is what we would get back in our
results; it would go as follows:

$ docker search ubuntu

We would get back our results:

NAME DESCRIPTION

STARS OFFICIAL AUTOMATED

ubuntu Ubuntu is a Debian-based Linux operating

S... 1835 [OK]

ubuntu-upstart Upstart is an event-based replacement for
26 [OK]

tutum/ubuntu Ubuntu image with SSH access. For the

root... 25 [OK]

torusware/speedus-ubuntu Always updated official Ubuntu docker imag...

25 [OK]

ubuntu-debootstrap debootstrap --variant=minbase

- -components... 10 [OK]

rastasheep/ubuntu-sshd Dockerized SSH service, built on top of of...

4 [OK]

maxexcloo/ubuntu Docker base image built on Ubuntu with

Sup... 2 [OK]

nuagebec/ubuntu Simple always updated Ubuntu docker

images... 2 [OK]

nimmis/ubuntu This is a docker images different LTS

vers... 1 [OK]

alsanium/ubuntu Ubuntu Core image for Docker

1 [OK]

[14]

Chapter 1

Based on these results, we can now decipher some information. We can see the name
of the repository, a reduced description, how many people have starred and think

it is a good repository, whether it's an official repository; which means it's been
approved by the Docker team, as well as if it's an automated build. An automated
build is typically a Docker image that is built automatically when a Git repository

it is linked to is updated. The code gets updated, the web hook is called, and a new
Docker image is built in the Docker Hub. If we find an image we want to use, we can
simply pull it using its repository name with the docker pull command, as follows:

$ docker pull tutum/ubuntu

The image will be downloaded and show up in our list when we perform the docker
images command we ran earlier.

We now know how to search for Docker images and pull them down to our machine.
What if we want to get rid of them? That's where the docker rmi command comes
into play. With the docker rmi command, you can remove unwanted images from
your machine(s). So, let's take look at the images we currently have on our machine
with the docker images command. We will get the following:

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days
ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days
ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days
ago 188.3 MB

We can see that we have duplicate images here taking up space. We can see this by
looking at the image ID and seeing the exact image ID for both ubuntu: trusty and
ubuntu:latest. We now know that ubuntu:trusty is the latest Ubuntu image, so
there is no need to keep them both around. Let's free up some space by removing
ubuntu:trusty and just keeping ubuntu:latest. We do this by using the docker
rmi command, as follows:

$ docker rmi ubuntu:trusty

If you issue the docker images command now, you will see that ubuntu:trusty
no longer shows up in your images list and has been removed. Now, you can
remove machines based on their image ID as well. But be careful while you do so;
in this scenario, not only will you remove ubuntu: trusty, but you will also remove
ubuntu:latest as they have the same image ID.

[15]

Docker Review

Manipulating the Docker images

We have gone over the images and know how to obtain and manipulate them in
some ways. Next, we are going to take a look at what it takes to fire them up and
manipulate them. This is the part where the images become containers! Let's first
go over the basics of the docker run command and how to run containers. We will
cover some basic docker run items in this section and more advanced docker run
items in the later chapters. So, let's just look at how to get images up, running, and
turned into containers. The most basic way to run a container is as follows:

$ docker run -i -t <image name>:<tag> /bin/bash

Upon closer inspection of the earlier command, we start off with the docker run
command, followed by two switches: -1 and -t. The -i gives us an interactive

shell into the running container, the -t will allocate a pseudo-tty that, while using
interactive processes, must be used together with the -1 switch. You can also use
switches together; for example, -it is commonly used for these two switches. This
will help you test the container to see how it operates before running it as a daemon.
Once you are comfortable with your container, you can test how it operates in the
daemon mode:

$ docker run -d <image name>:<tag>

If the container is set up correctly and has an entry point setup, you should be able
to see the running container by issuing the docker ps command. You will see
something similar to the following:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

cclfefcfal98 ubuntu:14.10 "/bin/bash" 3 seconds ago
Up 3 seconds boring mccarthy

Based on the earlier command, we get a lot of other important information indicating
that the container is running. We can see the container ID, the image name that is
running, the command that is running to keep the image alive, when the container
started, its current status, if any ports were exposed they would be listed here, as
well as the name given to the container. Now, these names are random, unless it is
specified otherwise by the - -name= switch. You can also the expose the ports on
your containers by using the -p switch as follows:

$ docker run -d -p <host port>:<container port> <image>:<tag>

$ docker run -d -p 8080:80 ubuntu:14.10

[16]

Chapter 1

This will run the ubuntu 14.10 container in the demonized mode, exposing port
8080 on the Docker host to port 80 on the running container:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

55cfdcb6beb6 ubuntu:14.10 "/bin/bash" 2 seconds ago
Up 2 seconds 0.0.0.0:8080->80/tcp babbage

Now, there will come a time when containers don't want to behave. For this, you
can see the issues you have by using the docker logs command. The command is
very straightforward. You specify the container you want to see the logs off. For this
command, you need to use the container ID or the name of the container from the
docker ps output:

$ docker logs 55cfdcbé6beb6

Or:

$ docker logs babbage

You can also get this ID when you first initiate the docker run command:

$ docker run -d ubuntu:14.10 /bin/bash
da92261485db98c7463fffadb43e3£684ea9£f47949£287£92408£d0£3e4£2bad

Stopping containers

Now, let's take a look at how we can stop these containers. For various reasons, we
would want to do this. There are a few commands we could use; they are docker
kill, docker stop, docker pause, and docker unpause. Let's cover them briefly
as they are fairly straightforward. First, let's look at the difference between docker
kill and docker stop. The docker kill command will do just that—Kkill the
container immediately. For a graceful shutdown of the container, you would want
to use the docker stop command. Mostly, when you are testing, you will be using
docker kill. When you're in your production environments, you will want to use
docker stop to ensure you don't corrupt any data you might have in the Docker
volumes. The commands are used exactly like the docker logs command, where
you can use the container ID, the random name given to the container, or the one
you might specify with the - -name= switch.

[17]

Docker Review

Now, let's take a dive into how we can execute some commands, view information
on our running containers, and manipulate them in a small sense. We will cover
more about container manipulation in the later chapters as well. The first thing we
want to take a look at, which will make things a little easier with the upcoming
commands, is the docker rename command. With the docker rename command,
we can change the name that has been randomly generated for the container. When
we performed the docker run command, a random name was assigned to our
container; most times, these names are fine. But if you are looking for an easy way to
manage the containers, a name can be sometimes easier to remember. For this, you
can use the docker rename command as follows:

$ docker rename <current container name> <new container name>

Now that we have an easily recognizable and rememberable name, let's take a peek
inside our containers with the docker stats and docker top commands, taking
them in order:

$ docker stats <container name>

CONTAINER CPU % MEM USAGE/LIMIT MEM %

NET I/O

webl 0.00% 1.016 MB/2.099 GB 0.05%
0 B/O B

The other command docker top provides a list of all running processes inside the
container. Again, we can use the name of the container to pull the information:

$ docker top <container name>

We will receive an output similar to the following one based on what processes are
running inside the container:

UID PID PPID (o]

STIME TTY TIME CMD

root 8057 1380 0

13:02 pts/0 00:00:00 /bin/bash

We can see who is running the process (in this case, the root user), the command
being run (in this case, /bin/bash), as well as the other information that might
be useful.

[18]

Chapter 1

Lastly, let's cover how we can remove the containers. The same way we looked at
removing images earlier with the docker rmi command, we can use the docker rm
command to remove unwanted containers. This is useful if you want to reuse a name
you provided to a container:

$ docker rm <container name>

Summary

In this chapter, we have covered what basic information you should already know
or now know for the chapters ahead. We have gone over the basics of what Docker
is and how it is compared to typical virtual machines. We looked at the Dockerfile
structure and the networking and linking of containers. We went over the installers,
how they operate on different operating systems, and how to control them through
the command line. We briefly looked at the latest Docker addition Kitematic for
those interested in a GUI version for Windows or OS X. Then, we took a small but
deep dive into the basic Docker commands to get you started.

In the next chapter, we will be taking a look at how to build base containers. We will
also look in depth at Dockerfile and places to store your images, as well as using
environmental variables and Docker volumes.

[19]

Up and Running

I am very glad you decided to flip the page and come to Chapter 2, Up and Running!
In this chapter, we will get you up and running with your own base images, storing
those images, using custom environmental variables and scripts, and using Docker
volumes. Here is a short review of what all we will be covering in this chapter:

Dockerfile
Docker build
Build base image using the Dockerfile

Docker Hub (basic overviews; more in depth will be covered in the
next chapter)

Environmental variables

Docker volumes

Dockerfile

In this section, we will cover the Dockerfile from a more in-depth perspective than
the previous chapter along with the best practices to use. By the end of the section,
you will be structuring your Dockerfile in the most practical and efficient method.
You will also be able to read and troubleshoot both yours and others' Dockerfile.

[21]

Up and Running

A short review of Dockerfile

In the previous chapter, we did a review of the Dockerfile and its content. We looked
at something like this:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

We saw earlier and in this example as well the basic items that are inside a
Dockerfile. The FROM and MAINTAINER fields have information on what image is to
be used and who is the maintainer of that image. The RUN instruction can be used to
fetch and install packages along with other various commands. The ADD instruction
allows you to add files or folders to the Docker image. The EXPOSE instruction allows
you to expose ports from the image to the outside world. Lastly, the cMD instruction
executes the said command and keeps the container alive. Now that we did a really
short review, let's take a more in-depth look at Dockerfile.

Reviewing Dockerfile in depth
Let's take a look at the following commands in depth:
* LABEL

¢ ADD or COPY
® ENTRYPOINT
® ENTRYPOINT with CMD

® USER
¢ WORKDIR
¢* ONBUILD

[22]

Chapter 2

LABEL

The LABEL command can be used to add additional information to the image. This
information can be anything from a version number to a description. You will want
to combine labels into a single line whenever possible. It's also recommended that
you limit the number of labels you use. Every time you use a label, it will add a layer
to the image, thus increasing the size of the image. Using too many labels can cause
the image to become inefficient as well. You can view the containers' labels with the
docker inspect command:

$ docker inspect <IMAGE ID>

ADD or COPY

Now, in the previous chapter and in the preceding Dockerfile example, we used the
ADD instruction to add a file to a folder location. There is also another instruction
you can use in your Dockerfile and that is the copY instruction. You can use the

ADD instruction and specify a URL straight to a file; it will be downloaded when

the container is built. The ADD instruction will also unpack or untar a file when
added. The copy instruction is the same as the ADD instruction, but without the URL
handling or the unpacking/untarring of files.

ENTRYPOINT

In the Dockerfile example, we used the cMD instruction to make the container
executable and to ensure that it stays alive and running. You can also use the
ENTRYPOINT instruction instead. The benefit of using ENTRYPOINT over CMD is
that you can use them in conjunction with each other.

For example, if you want to have a default command that you want to execute inside
a container, you could do something similar to the following example, but be sure to
use a command that keeps the container alive:

FROM ubuntu:latest
ENTRYPOINT ["ps", "-au"l
CMD ["-x"]

USER

The USER instruction lets you specify the username to be used when a command is
run. The USER instruction can be used on the RUN instruction, the cMD instruction, or
the ENTRYPOINT instruction in the Dockerfile.

[23]

Up and Running

WORKDIR

The woRKDIR command sets the working directory for the same set of instructions
that the USER instruction can use (RUN, cMD, and ENTRYPOINT). It will allow you to use
the cMD and ADD instructions as well.

ONBUILD

The oNBUILD instruction lets you stash a set of commands that will be used when the
image is used again as a base image for a container. For example, if you want to give
an image to developers and they all have a different code they want to test, you can
use the ONBUILD instruction to lay the groundwork ahead of the fact of needing the
actual code. Then, the developer will simply add their code in the directory you tell
them and, when they run a new docker build command, it will add their code to
the running image. The ONBUILD instruction can be used in conjunction with the ApD
and RUN instructions:

ONBUILD ADD
ONBUILD RUN

Dockerfile — best practices

Now that we have covered the Dockerfile instructions in depth, let's take a look at
the best practices of writing these Dockerfile:

* You should try to get in the habit of using a . dockerignore file. We will
cover the .dockerignore file in the next section; it will seem very familiar if
you are used to using a .gitignore file. It will essentially ignore the items
you have specified in the file during the build process.

* Minimize the number of packages you need per image. One of the biggest
goals you want to achieve while building your images is to keep them as
small as possible. Not installing the packages that aren't necessary will
greatly help in achieving this goal.

* Execute only one application process per container. Every time you need
a new application, it is a best practice to use a new container to run that
application in. While you can couple commands into a single container, it's
best to separate them out.

e Sort commands as follows:

[e]

Sort them based upon the actual command itself, that is, run the
following command:

apt-get update && apt-get install -y

[24]

Chapter 2

° Sort them alphabetically, so it's easier to change them later, that is,
run the following command:

apt-get update && apt-get install -y \
apache2 \

git \
memcached \

mysql

Docker build

In this section, we will cover the docker build command. This is where the rubber
meets the road, as they say. It's time for us to build the base that we will start
building our future images on. We will be looking at different ways to accomplish
this goal. Consider this as a template that you may have created earlier with virtual
machines. This will help save time by completing the hard work; you will just have
to create the application that needs to be added to the new images.

The docker build command

Now that you have learned how to create and properly write a Dockerfile, it's time to
learn how to take it from just a file to an actual image. There are a lot of switches that
you can use while using the docker build command. So, let's use the always handy
--help switch on the docker build command to view what all we can do:

$ docker build --help
Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

-c, --cpu-shares=0 CPU shares (relative weight)

--cgroup-parent= Optional parent cgroup for the container

--cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler)
period

--cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler)
quota

--cpuset-cpus= CPUs in which to allow execution (0-3, 0,1)

--cpuset-mems= MEMs in which to allow execution (0-3, 0,1)

-f, --file= Name of the Dockerfile (Default is 'PATH/

Dockerfile!')

[25]

Up and Running

--force-rm=false Always remove intermediate containers

--help=false Print usage

-m, --memory= Memory limit

- -memory-swap= Total memory (memory + swap), '-1' to disable
swap

--no-cache=false Do not use cache when building the image

--pull=false Always attempt to pull a newer version of the
image

-g, --quiet=false Suppress the verbose output generated by the
containers

--rm=true Remove intermediate containers after a successful
build

-t, --tag= Repository name (and optionally a tag) for the
image

Now, it may seem like a lot to digest, but the most important ones will be the - £ and
the -t switches. You can use the other switches to limit how much CPU and memory
the build process will use. In some cases, you may not want the build command to
take as much CPU or memory as it can have. The process may run a little slower,

but if you are running it on your local machine or a production server and it's a long
build process, you may want to set a limit. Typically, you don't use the - £ switch as
you run the docker build command from the same folder that the Dockerfile is in.
Keeping the Dockerfile in separate folders helps sort the files and keeps the naming
convention of the files the same.

.dockerignore

The .dockerignore file, as we discussed earlier, is used to exclude those files or
folders we don't want include in the docker build. We also discussed placing the
Dockerfile in a separate folder and the same applies for . dockerignore. It should
go in the folder where the Dockerfile was placed. Keeping all the items you want
to use in an image in the same folder will help you keep the items, if any, in the
.dockerignore file to a minimum.

[26]

Chapter 2

Building images using Dockerfile

The first way we are going to look at to build your base Docker images is by creating
a Dockerfile, populating the Dockerfile with some instructions, and then executing a
docker build command against them to get ourselves a base container. So, let's first
start off by looking at a typical Dockerfile:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In the preceding Dockerfile, the code is pretty straightforward. We are going to use
the latest Ubuntu image and then run an apt-get update as well as an apt -get
install of the Apache web server. We will set the container to expose port 80 when
it is run and then start Apache in the foreground of the container.

So, there are two ways we can go about building this image. The first way would be
by specifying the - f switch when we use the docker build command. We will also
utilize the -t switch to give the new image a unique name:

$ docker build -f <path to Dockerfile> -t <REPOSITORY>:<TAG>

Now, <REPOSITORY> is typically the username you signed up for on Docker Hub and
the <TAG> is a unique container name you want to provide:

$ docker build -f <path to Dockerfile> -t scottpgallagher:ubuntu apache

Typically, the - £ switch isn't used and it can be a little tricky when you have other
files that need to be included with the new image. An easier way to do the build is
to place the Dockerfile in a separate folder by itself along with any other file that you
will be placing in the image with the ADD or copy instructions:

$ docker build -t scottpgallagher:ubuntu apache

The most important thing to remember is the . —the dot (or period) at the very end.
This is to tell the docker build command to build in the current folder.

If you are using your own registry to push your images, then you can use any
naming convention that you would like to use. But try to keep it simple and easy
to identify by looking at the name.

[27]

Up and Running

Building a base image using an existing
image

The easiest way to build a base image is to start off by using one of the official builds
from the Docker Hub. Docker also keeps the Dockerfile for these official builds

on their GitHub repositories. So, there are at least two choices you have for using
existing images that others have already created. By using the Dockerfile, you can see
exactly what is included in the build and add what you need. You can then version
control that Dockerfile for it if you want to change it at a later time.

The other way of doing it is to use an already existing image that requires a little bit
more work, but is essentially the same method. We would first need to get the base
image we want:

$ docker pull ubuntu:latest

Then, we would run the container in the foreground, so we could add packages to it:

$ docker run -it ubuntu:latest /bin/bash

Once the container runs, you can add the packages as necessary by using the apt -
get command in this case, or whatever the package manager commands are for your
Linux flavor. After you have installed the packages you require, you need to save
the container. To do so, you first need to get the container ID. You can do this in the
following manner:

$ docker ps

Once you have the container ID, you can save (or commit) the container. So, to save
this container, you need to do something similar to the following:

$ docker commit <container ID> <REPOSITORY>:<TAG>

Now, if you are planning on using the Docker Hub (that we will be discussing here
shortly in the next section of this chapter), you will want to structure your image
names as follows:

$ docker commit <container ID> <Docker Hub Username>:<Unique Name>

$ docker commit <container ID> scottpgallagher:ubuntu apache2

Now, there will be some downfall to doing it this way. If you do it this way, you
would need to create a Dockerfile in the FrROM part and use the image you just created
in this section. This is because you can't change what CMD or ENTRYPOINT is being
used on an already built container. So, you would want to create a new Dockerfile
and add in what cMD or ENTRYPOINT you might want to use.

[28]

Chapter 2

Building your own containers

There are two ways to go about building your own containers. They are as follows:

* Using tar

* Using a scratch image

Using tar

So, you have a machine already running as a virtual machine or on a bare metal box
and you want to convert that to a Docker image. How do you go about doing this?
The first thing you will need to do is to install something like debootstrap:

$ sudo apt-get install -y debootstrap

Next, you will need to get the release name of the distribution of Linux you are
running. To do this, we can look at the contents of the /etc/1sb-release file:

$ cat /etc/lsb-release

DISTRIB ID=Ubuntu

DISTRIB RELEASE=14.04

DISTRIB CODENAME=trusty

DISTRIB DESCRIPTION="Ubuntu 14.04.2 LTS"

We can tell from the preceding output that we are running the trusty release
of Ubuntu. Now, we can execute the next command using the newly installed
debootstrap command:

$ sudo debootstrap trusty <unique name> > /dev/null
We can execute the next command after the previous one is completed:
$ sudo tar -C <unique name> -c . | sudo docker import - <unique name>

The preceding command will switch to the directory you specify after -c, create

a new archive from that directory based off the -c switch, and specify . (for the
current directory). It will then import the image into a Docker image with the docker
import command.

You can see this image by issuing the docker images command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

ubuntu_ trusty latest 376bfebd75chb 17 minutes
ago 228.3 MB

[29]

Up and Running

You can then use the image for base images and share them on the Docker Hub or on
your own Docker Registry. We will be covering how to push these images to various
locations in the next section. First, though, we need to look at the other method to
create images and that is to build from scratch.

If you wish to use something other than Ubuntu (or Debian), Docker has created
scripts that you can utilize to create images from as well. You can check them out at
https://github.com/docker/docker/tree/master/contrib.

You will want to look at the mkimage- files based on what distribution you are using.

Using scratch

You also have the option to build from scratch. Now, when you usually hear the
term scratch, it literally means that you start from nothing. That's what we have

here —you get absolutely nothing and have to build upon it. Now this can be a
benefit because it will keep the image size very small; but it can also not be beneficial
if you are fairly new to the Docker game, as it may be a little complicated.

Docker has done the hard work for us already and created an empty tar file that
is on the Docker Hub named scratch; you can use it in the FROM section of your
Dockerfile. You can base your entire Docker build on this then and add parts as
needed. So, your Dockerfile might look something like this:

FROM scratch
ADD <script to_add> /<path to add to on container>

CMD ["/<path to add to on container>"]

Docker Hub

In this section, we will cover the locations you can store the images you will be
creating. There are several different areas to store these, ranging from a location in
the cloud that can be set to public, where anyone can access and use them, to private,
again a place in the cloud that can only be accessed by those you give permission

to. You can also host your own repository, where you can store your own images.
You can also purchase a Docker subscription (Docker Hub Enterprise) that provides
you with what you need to deploy to the cloud or locally, and also comes along with
commercial support from Docker.

[30]

https://github.com/docker/docker/tree/master/contrib

Chapter 2

The Docker Hub location

The Docker Hub is a location on the cloud, where you can store and share images
that you have created. You can also link your images to the GitHub or Bitbucket
repositories that can be built automatically based on web hooks. We will be
discussing web hooks in the next chapter and will go over all the pieces required for
that setup. There are two types of repositories on the Docker Hub: the public and
private repositories. You can also roll your own repository that we will cover more in
depth in the next chapter.

Pushing to a repository is very straightforward. Once you have the image built on
your machine, there are two commands you need to run. One you will only have to
run once and the other command you will use every time:

$ docker login

This will prompt you for your Docker Hub credentials and the e-mail address you
are using on Docker Hub:

$ docker push <REPOSITORY>:<TAG>

This will show the progress of your push, kicking back to the command prompt
when completed. You will then be able to see the image in either the command-line
search or the web-based GUI search. By default, repositories are pushed as public. If
you want to set them to private, you need to log in to the Docker Hub website and
set the repository to Make Private. You can also mark images as unlisted, so they
don't show up in the Docker searches. You can also mark them as listed at a later
date as well.

Public repositories

Public repositories are those on the Docker Hub that are open to anyone. Anyone
can use the docker pull command to download an image to their local system and
run or build further images from it. You can also add collaborators to your public
repositories and users can then push to that repository or update it. There are two
ways you can search for images on Docker Hub:

* § docker search <TERM>: You can search for terms such as ubuntu or a
particular package you are looking to deploy such as salt or mysqgl

* The Docker Hub website (https://registry.hub.docker.com/): A simple
web-based search with terms of your choosing

[31]

https://registry.hub.docker.com/

Up and Running

Private repositories

Private repositories are just that private. You can set permissions for different users
from which the users can push, as we saw with public repositories and collaborators,
but they can also pull all the images in that repository and don't have administrative
rights. Once you are logged in to Docker Hub, you will be able to see all the private
repositories that you have permission to, both in the web GUI and the command line.

Docker Hub Enterprise

There is also an option for Docker Hub Enterprise that allows you to deploy a
Docker repository to your local system or cloud environment. Now, there is an
option to run your own Docker repository based on a Docker image that is managed
by Docker. What Docker Enterprise offers you is access to the software, access to
updates/patches/security fixes, and support relating to issues with the software. The
open source Docker repository image doesn't offer these services at this level; you
are at the mercy of when that image will be updated on Docker Hub. Docker does
offer various service levels for the said services that you can purchase through them.
They currently are recommending you contact their sales department for any and all
the pricing.

Environmental variables

In this section, we will cover the very powerful environmental variables or ENVs,
as you will be seeing a lot of them. You can use environmental variables for a

lot of things from your Dockerfile. If you are familiar with coding, these will
probably come as secondhand to you. For others like myself, at first, they may seem
intimidating; but don't get discouraged. They will be your best resource once you
get the hang of them. They can be used from creating MySQL users, passwords, and
databases to setting application items such as memory limits. We will cover some
examples that you can use for future reference.

Using environmental variables in your
Dockerfile

To use environmental variables in your Dockerfile, you can use the ENV instruction.
The structure of the ENV instruction is:

ENV <key> <value>

ENV username admin

[32]

Chapter 2

Else, you can always use an equals sign between the two:

ENV <key>=<value>

ENV username=admin

Now, the question is why do they have two and what are the differences? With the
first example, you can only set one ENV per line. With the second ENV example, you
can set multiple environmental variables on the same line:

ENV username=admin database=dbl tableprefix=pr2

You can view what environmental variables are set on an image by using the docker
inspect command:

$ docker inspect <IMAGE ID>

You can change their values when you initialize the docker run command by using
the -e or - -env switch:
$ docker run -e username=superuser

$ docker run --env username=superuser

Now that we know how they need to be set in our Dockerfile, let's take a look

at them in action. We will go over two examples in the next section showing the
Dockerfile. We then set the corresponding scripts that will be used in the RuN
instructions to execute and perform an action based off the docker run command
that we will use after the image is built.

Don't get too confused; we will list out all the steps in the upcoming sections.

Creating a MySQL username, database, and
setting permissions

First, we need a Dockerfile that specifies the MySQL username and database we
want to use:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>

RUN apt-get update && apt-get install -y mysqgl mysqgl-server

ENV username mysgluser

ENV password pass

ENV database db2

ADD databasesetup.sh /

[33]

Up and Running

RUN chmod 644 /databasesetup.sh
RUN "/usr/bin/sh databasesetup.sh"
EXPOSE 3306

CMD ["/usr/bin/mysqld safe"]

Now, we need to create the databasesetup. sh file that will be added and then
called from the RUN instruction:

#!/bin/bash
/usr/bin/mysqld safe

mysqgl -uroot -e "CREATE USER '${username}'@'$%' IDENTIFIED BY
'${password}'"

mysqgl -uroot -e "GRANT ALL PRIVILEGES ON '${database}'.* TO
'${username}'@'%' WITH GRANT OPTION"

mysqgladmin -uroot shutdown

Okay, what all have we done so far? We created our Dockerfile and databasesetup.
sh file in a folder together. We can then run Docker build against the Dockerfile and
it will create the image we want to use. Now, the last part is to start the container
and insert the values we want to use. Note that the values you put in your Dockerfile
are simply meant to be placeholders. You can execute your container with the values
that are in there; but this is not recommended for production environments:

$ docker run -d -e username <value> -e password <value> -e database
<value> <REPOSITORY>:<TAG>

<REPOSITORY> and <TAG> will be the names you specified when you used the
docker build command.

This should be a good boiler plate to use when you want to set something in a
database. Next, let's take a look at an example where we want to set memory limits
on a file that might already exist (that we add to the image).

Adding a file to the system

For this example, we are going to add our memcached configuration file to the
system and, instead of specifying an actual value in the configuration file, we

are going to set it to a variable. This will allow us to utilize that variable in our
Dockerfile. After we have built the image, we will be able to give that variable a
value with the -e switch. When the container starts up and starts up the memcached
service, it will set the value for that memory limit to the stated value.

[34]

Chapter 2

First, we need our Dockerfile:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <someone@email.com>
RUN apt-get update && apt-get install -y memcached
ADD memcached /etc/default/

ENV MEMCACHESIZE 2048

EXPOSE 11211

CMD ["/usr/bin/memcached -u root"]

This is the memcached configuration file (named memcached) that will be added to
the system:

Set this to no to disable memcached.
ENABLE MEMCACHED=yes
CACHESIZE=$MEMCACHESIZE

After the build is completed, we can run our image as follows:

$ docker run -d -e MEMCACHESIZE 1024 <REPOSITORY>:<TAG>

Again, set <REPOSITORY> and <TAG> to the values used while running the docker
build command.

Now, we have seen how to build our own images from various methods. We took a
look at where we can store our images once we are done building them. And we just
took a look at environmental variables and two different ways of using them. Lastly,
for this chapter, we will be looking at Docker volumes.

Docker volumes

In the last section of this chapter, we will cover container storage or Docker volumes
as they are referred to. We will take a look at data volumes and data volume
containers, the differences between the two, and when to use which one. Lastly, we
will also look at the best practices for Docker volumes. This is the data that we want
to be persistent or shared between containers. We need to remember that, by default,
when you exit a running container, the data isn't saved. When you start the container
backup, it will start in its initial state, so Docker volumes become incredibly
important in areas like databases or filesystems.

[35]

Up and Running

Another switch that we will be covering is the -v or --volume= switch. This switch
allows you to provide a volume to the Docker container that you wish contained
persistent data. Remember that, when you start a Docker container, the data inside
doesn't remain persistent unless you save it (or commit in Docker terms). The
volumes switch allows you to have persistent data inside your Docker container such
that even if the container is stopped or deleted, the data remains intact. Let's take a
look at the two ways we can provide persistent volumes to containers:

e Data volumes

e Data volume containers

Data volumes

The first volume storage we will look at is data volumes. Data volumes are mounted
inside the container when you run the container. However, as stated before, the
volume is not tied to the container in events when it stops, is killed, or is deleted. Let's
see how we first mount a volume inside a container; then we can dive a little deeper:

$ docker run -it -v /tmp ubuntu /bin/bash

We are simply running an ubuntu container shelled into /bin/bash, so we can see
the /tmp volume mounted. This will create a new volume inside the container at the
specified path. Essentially, it overwrites or hides the folder inside the container if it
does exist; and in our case, /tmp already exists, so any data the container might have
had inside it is no longer there and /tmp will now be an empty folder or volume.

You can also use multiple -v volume switches on a single docker run line:

$ docker run -it -v /tmp -v /data ubuntu /bin/bash

It is nice to use the -it switch sometimes, so you can actually see how this works. In
later times, you will want to be running your containers with the -d switch, so they
are not running the foreground.

Now, you can also mount the directory from the local machine the Docker containers
are running on into the Docker container. To do so, you can use the -v switch again,
but you need to add : /<paths> to the path:

$ docker run -it -v /tmp:/data ubuntu /bin/bash

This will mount the contents of /tmp (on the Docker host) to the /data directory
inside the now running Docker container. If you were to look at the contents of /tmp
on the Docker host and the contents of /data on the running Docker container, you
will see that they match. Any changes you make inside the Docker containers /data
folder will be reflected in the Docker host's /tmp folder.

[36]

Chapter 2

By default, when you mount a directory from a Docker host to a Docker container, it
will mount in the read/write mode. There is a way you can mount it in the read-only
mode as well. Again, using the -v switch, we will just append : ro to our volume
instruction:

$ docker run -it -v /tmp:/data:ro ubuntu /bin/bash

You can locate one or several volumes on a Docker container by using the docker
inspect container:

$ docker inspect <CONTAINER ID>

The line(s) you will be looking for will resemble the following:

"Volumes": {

"/tmp": "/mnt/sdal/var/lib/docker/volumes/5c4elbffl167eal479dd9£33
f74aeaf5d7£9£f4d252d096e95e87befdb9be23eal/ data™"

Remember, you can get the container ID by running;:

$ docker ps

The preceding output shows how the docker inspect command actually works.

It is mounting /tmp inside the container; but where does the data actually live? The
data actually lives in the machine your container runs on in the path specified. If you
were to populate data inside the container in the /tmp folder and then navigate from
the machine running the Docker container to the /mnt/sdal/var/lib/docker/vo
lumes/5c4elbffl167eal1479dd9f33f74aeaf5d7£9f4d252d096e95e87befdbobe23
ea0/_data directory, the data would be there. Now, we will go into the details of
how to manage data and move it around between Docker hosts in the next chapter.

On a side note, you can also use the VOLUME instruction inside the Dockerfile to
specify volumes for a container. It would look similar to this:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <someone@email.com>

VOLUME ["/datastore"]

You can also use the -v flag to mount a single file into a container. So, the discussion
isn't just about directories, it's about files as well. Now, we have seen how we can
use Volumes to create persistent data that is stored inside containers; but what

other options do we have with regards to using volumes? We can use data volume
containers too.

[37]

Up and Running

Data volume containers

Data volume containers come in handy when you have data that you want to
share between containers. There is another flag we can utilize on the docker run
command. Let's take a look at the - -volumes-from switch.

What we will be doing is using the -v switch on one of our Docker containers. Then,
our other containers will be using the - -volumes-from switch to mount the data to
the containers that they run.

First step, let's fire up a container that has a data volume we can add to other containers.

For this example, we will be using the busybox image since it's very small in size.
We are also going to use the - -name switch to give the container a name that can
be used later:

$ docker run -it -v /data --name datavolume busybox /bin/sh

We are going to create a volume and mount it in /data inside our container.
We have also named our container datavolume so that we can leverage in our
--volumes-from switch. While we're still inside the shell, let's add some data
to the /data directory. So, when we mount it on the other systems, we know
it's the right one:

$ touch /data/correctvolume

This will create the correctvolune file inside the /data directory in the busybox
container we are running.

Now, we need to connect some containers to this /data directory in the container.
This is where the name we gave it will come in handy:

$ docker run -it --volumes-from datavolume busybox /bin/sh

If we now perform 1s /data, we should see the correctvolume file that we
created earlier.

Something to note here is that when you use the - -volumes-£from
M . . . -
~ switch, the directory will be mounted in the same place on both
the containers. You can also specify multiple - -volumes-from
switches on a single command line.

[38]

Chapter 2

There will come a time when you run into the following error:

$ docker run -it -v /data --name datavolume busybox /bin/bash

Error response from daemon: Conflict. The name "data" is already in use
by container 82af96592008. You have to delete (or rename) that container
to be able to reuse that name.

You can remove the volume if you want, but USE IT CAUTIOUSLY, as once you
remove the volume, the data inside that volume will go away with it:

$ docker rm -v data

You can also use this to clean up the volumes that you no longer want on the system.
But again, use extreme caution as stated before that once a volume is gone, the data
will go with it.

Docker volume backups

It is important to remember that while your containers are immutable, the data
inside your volumes is mutable. It changes, while the items inside your Docker
containers do not. For this reason, you need to make sure that you are backing up
your volumes in some manner.

Volumes are stored on the system at /var/1ib/docker/volumes/.

The key to remember here is that the volumes are not named the way you named
them in this directory. They are given unique hash values, so understanding what
content is in them can be confusing if you are just looking at their name. If you are
looking at managing volumes at this point, I would highly recommend this image
from the Docker Hub: https://hub.docker.com/r/cpuguy83/docker-volumes/.

This container (once built) will allow you to list volumes as well as export them into
a tarred up file.

[39]

https://hub.docker.com/r/cpuguy83/docker-volumes/

Up and Running

Summary

In this chapter, we have looked at an in-depth view of the Dockerfile and the best
practices to write them, the docker build command and the various ways we can
build the said containers, and the various Docker Hubs to store the containers you
have built. We also learned about the environmental variables that you can use to
pass from your Dockerfile to the various items inside your containers and Docker
volumes to store persistent or shared data.

Let's do a quick review of all the commands we have learned in this chapter.

* docker inspect: To inspect a running container

* docker build: To build a new image from a Dockerfile

* docker login: To login to the Docker Hub

* docker commit: To commit changes to a running container

* docker search: To search the Docker Hub from the command line

* docker push: To push a new image or changes to existing changes to the
Docker Hub

* docker run -e:Torunanew container and specify an environmental
variable value

* docker run -v:Toruna Docker container and mount a persistent volume
inside it

* docker run --volumes-from: To mounta volume from an already running
container inside this new container

In the next chapter, we will be taking a more in-depth look at the various Docker
Hubs and a good look at web hooks that you can use to do automated builds. We
will cover all the pieces required for these web hooks as well, and go through the
process step by step. We will also look at the Docker Registry that is open sourced, so
you can roll your own place to store images without the fees of Docker Enterprise.

[40]

Container Image Storage

In the third chapter of the book, we will cover the places you store your containers,
such as Docker Hub and Docker Hub Enterprises. We will also cover Docker
Registry that you can use to run your own local storage for the Docker containers.
We will review the differences between them all and when and how to use each of
them. It will also cover how to set up automated builds using web hooks as well

as the pieces that are all required to set them up. Lastly, we will run through an
example of how to set up your own Docker Registry. Let's take a quick look at the
topics we will be covering in this chapter:

* Docker Hub
* Docker Hub Enterprise

* Docker Registry
* Automated builds

Docker Hub

We will be covering Docker Hub in a little more detail than what we looked at in
the previous chapter. In Chapter 2, Up and Running, we just glazed over Docker Hub
as a storage location to push our images to. In this section, we will focus on that
Docker Hub, which is a free public option, but also has a private option that you can
use to secure your images. We will focus on the web aspect of Docker Hub and the
management you can do there.

[41]

Container Image Storage

The login page is like the one shown in the following screenshot:

Dashboard

After logging into the Docker Hub, you will be taken to the following landing page.

This page is known as the Dashboard of Docker Hub.

% Dashboard Explors Organizations

scattpgal. = | @ Pcpositores Sia

Repositories

S0 scottpgallaghar/thel? o
“l private STARS
H B scottpgaliagher/saltmaste o
M9 public
) STARS

PULLS

PULLS

PULLS

PULLS

PULLS

Croate m seottpgoltagher

Dacker Trusted
Registry

> Need an on-premise registry?

From here, you can get to all the other subpages of Docker Hub. In the upcoming

sections, we will go through everything you see on the dashboard, starting with the

dark blue bar you have on the top.

[42]

Chapter 3

Explore the repositories page

The following is the screenshot of the Explore link you see next to Dashboard at the

top of the screen:

=i
w Dashboard Explors Organizations

Explore Official Repositories

318
STARS

STARS

112

STARS

268M

PULLS

2231 K

PULLS

236.0 K

PULLS

T1M
PULLS

As you can see in the screenshot, this is a link to show you all the official repositories
that Docker has to offer. Official repositories are those that come directly from
Docker or from the company responsible for the product. They are regularly updated

and patched as needed.

Organizations

Organizations are those that you have either created or have been added to.
Organizations allow you to layer on control, for say, a project that multiple

people are collaborating on.

[43]

Container Image Storage

The organization gets its own setting such as whether to store repositories as public
or private by default, changing plans that will allow for different amounts of private
repositories, and separate repositories all together from the ones you or others have.

Organizations & Teams Crnatn Orgarication +

You can also access or switch between accounts or organizations from the
Dashboard just below the Docker log, where you will typically see your username
when you log in.

aiip Dashbosrd Explors Organizations Create :‘, scottpgalagher
coltpgs & Repostones * oritniuted Privats Ranoans w Uaing 1ef1 G
scottorg
Repositories

Docker Trusted

Registry

. I | scom er/rhely 0 2 > Nead an on-premise regisiry?

P STARS PULLS DETALS Gt a 30-day free tr
- I 8¢ t t o >

public STARS PULLS AETA
- l; B0 ysql V| 1 >

STARS PULLS DETALS

- i s8¢ o 1

puse STARS PULLS DETALS
¥ i | s r 0 a >

public STARS PULLS PETALE

This is a drop-down list, where you can switch between all the organizations you
belong to.

[44]

Chapter 3

The Create menu

The Create menu is the new item along the top bar of the Dashboard. From this
drop-down menu, you can perform three actions:

* Create repository
e (Create automated build

* Create organization
A pictorial representation is shown in the following screenshot:

% Dashboard Explore Organizations Croate m:.:ulr_‘;.""u"nl-.:r

scoltpgol.. + @ Fepositodes o Star 8 Craate Repository

©f Greate Automated Build

Repositories ate Repository +

& Creats Organization

Docker Trusted
Registry
cebn: o 2 > Need an on-premise registry?
STARS PULLS DETALS et & 30-day free tria
I ; ‘oo
- otipga saltmastor [:- . >
\ biic
= STARS PULLS DETALS
o 1 >
STARS PULLS oETALS
o 11 >
STARS PULLS DETALS

- I agher/php! sql
public STARS PULLS CETALS

[45]

Container Image Storage

Settings
Probably, the first section everyone jumps to once they have created an account on
the Docker Hub —the Settings page. I know, that's what I did at least.

;'w Dashboard Expiore Organizations Cronte z‘ scattpgaltngher

Account Settings.
Account Settings

Default Repository Visibility

O public privinte
Update the default visibility for your repositories.
Email Addresses

This ernail address will be used for all notifications and New Emall

comespondence from Docker. n

If you wish to designate a different email address as
primary, first add a new address to your account and sgallag@gmail.com verified primary
then click “make primary”

Change Password
Please choose a password which is longer than 4 Oid password
characters.

New password

Canfirm now passwond

[46]

Chapter 3

The Account Settings page can be found under the drop-down menu that is accessed
in the upper-right corner of the dashboard on selecting Settings.

sl
w Dmshboard Explore Organizations

scottpgal... = | & Repositories *

Repositories

STARS PULLS

5 scottpgallagher/saltmaster 0 10 >
public STARS PULLS oETALS

¥ scottpgaliagher/mysql 0 1 >
public STARS PULLS DETAILS

0 1 >
STARS PULLS DETAILS
0 9 >

TARS PULLS DETAILS

The page allows you to set up your public profile; change your password; see what
organization you belong to, the subscriptions for e-mail updates you belong to, what
specific notifications you would like to receive, what authorized services have access
to your information, linked accounts (such as your GitHub or Bitbucket accounts); as
well as your enterprise licenses, billing, and global settings. The only global setting
as of now is the choice between having your repositories default to public or private
upon creation. The default is to create them as public repositories.

[47]

Container Image Storage

The Stars page

Below the dark blue bar at the top of the Dashboard page are two more areas that
are yet to be covered. The first, the Stars page, allows you to see what repositories
you yourself have starred.

@- Dashboard Explore Organizations

This is very useful if you come across some repositories that you prefer to use and
want to access them to see whether they have been updated recently or whether any
other changes have occurred on these repositories.

The second is a new setting in the new version of Docker Hub called Contributed. In
this section, there will be a list of repositories you have contributed to outside of the
ones within your Repositories list.

Docker Hub Enterprise

Docker Hub Enterprise, as it is currently known, will eventually be called Docker
Subscription. We will focus on Docker Subscription, as it's the new and shiny piece.
We will view the differences between Docker Hub and Docker Subscription (as we
will call it moving forward) and view the options to deploy Docker Subscription.

Comparing Docker Hub to Docker
Subscription

Let's first start off by comparing Docker Hub to Docker Subscription and see why
each is unique and what purpose each serves:

[48]

Chapter 3

Docker Hub

* Shareable image, but it can be private
* No hassle of self-hosting

* Free (except for a certain number of private images)
Docker Subscription

* Integrated into your authentication services (that is, AD/LDAP)
* Deployed on your own infrastructure (or cloud)

* Commercial support

Docker Subscription for server

Docker Subscription for server allows you to deploy both Docker Trusted Registry
as well as Docker Engine on the infrastructure that you manage. Docker Trusted
Registry is the location where you store the Docker images that you have created.
You can set these up to be internal only or share them out publicly as well. Docker
Subscription gives you all the benefits of running your own dedicated Docker hosted
registry with the added benefits of getting support in case you need it.

Docker Subscription for cloud

As we saw in the previous section, we can also deploy Docker Subscription
to a cloud provider if we wish. This allows us to leverage our existing cloud
environments without having to roll our own server infrastructure up to host
our Docker images.

The setup is the same as we reviewed in the previous section; but this time, we will
be targeting our existing cloud environment instead.

Docker Registry

In this section, we will be looking at Docker Registry. Docker Registry is an open
source application that you can run anywhere you please and store your Docker
image in. We will look at the comparison between Docker Registry and Docker Hub
and how to choose among the two. By the end of the section, you will learn how to
run your own Docker Registry and see whether it's a true fit for you.

[49]

Container Image Storage

An overview of Docker Registry

Docker Registry, as stated earlier, is an open source application that you can utilize
to store your Docker images on a platform of your choice. This allows you to keep
them 100% private if you wish or share them as needed. The registry can be found at
https://docs.docker.com/registry/.

This will run you through the setup and the steps to follow while pushing images to
Docker Registry compared to Docker Hub. Docker Registry makes a lot of sense if
you want to roll your own registry without having to pay for all the private features
of Docker Hub. Next, let's take a look at some comparisons between Docker Hub
and Docker Registry, so you can make an educated decision as to which platform to
choose to store your images.

Docker Registry versus Docker Hub
Docker Registry will allow you to do the following:

* Host and manage your own registry from which you can serve all the
repositories as private, public, or a mix between the two

* Scale the registry as needed based on how many images you host or how
many pull requests you are serving out

e All are command-line-based for those that live on the command line
Docker Hub will allow you to:

* Get a GUI-based interface that you can use to manage your images

* Alocation already set up on the cloud that is ready to handle public and/or
private images

* Peace of mind of not having to manage a server that is hosting all your images

Automated builds

In this section, we will look at automated builds. Automated builds are those that
you can link to your GitHub or Bitbucket account(s) and, as you update the code in
your code repository, you can have the image automatically built on Docker Hub.
We will look at all the pieces required to do so and, by the end, you'll be automating
all your builds.

[50]

Chapter 3

Setting up your code

The first step to create automated builds is to set up your GitHub or Bitbucket
code. These are the two options you have while selecting where to store your code.
For our example, I will be using GitHub; but the setup will be the same for GitHub
and Bitbucket.

scottpgallagher / masteringdocker @ Unwatch~ 1

Automated build testing — Edit

2 commits 1 branch 0 releases 1 contributor

0] | branch: master ~ masteringdocker / +

Create Dockerfile

:* scottpgallagher authored 14 seconds ago latest commit 91628359fc &
B Dockerfile Create Dockerfile 14 seconds ago
[E] README.md Initial commit 17 minutes ago

README.md

masteringdocker

Automated build testing

First, we set up our GitHub code that contains just a simple README file that we will
edit for our purpose. This file could be anything as far as a script or even multiple
files that you want to manipulate for your automated builds. One key thing is that
we can't just leave the README file alone. One key piece is that a Dockerfile is required
to do the builds when you want it to for them to be automated. Next, we need to set
up the link between our code and Docker Hub.

[51]

Container Image Storage

Setting up Docker Hub

On Docker Hub, we are going to use the Create drop-down menu and select Create
Automated Build. After selecting it, we will be taken to a screen that will show

you the accounts you have linked to either GitHub or Bitbucket. You then need to
search and select the repository from either of the locations you want to create the
automated build from. This will essentially create a web hook that when a commit is
done on a selected code repository, then a new build will be created on Docker Hub.

@- Dashboard Explore Organizations Croate mﬂcc-np-aallnplwr

) GitHub [scatipgakagher)

Users/Crganizations masteringdocker

% scottpgailagher >

After you select the repository you would like to use, you will be taken to a screen
similar to the following one:

w Dashboard Explore Organizations Create

Setup an Automated Build

1. Choose a namespace (Hequined)
2. Choose a name (Required)
3. Add a short description (Required) scottpgaliagher - masteringdacker
4, The Readme.md of your source repository will be
used for the full description
5. Setup autobuild tags Mastering Dockes Automated Bulle|
6 Set it to be a private or public repository

Type Nama Dockerfile Location Tag
public

EWhen Active, new pushes will trigger automatic bulics

[52]

Chapter 3

For the most part, the defaults will be used by most. You can select a different branch
if you want to use one, say a testing branch if you use one before the code may go

to the master branch. The one thing that will not be filled out, but is required, is the
description field. You must enter something here or you will not be able to continue
past this page.

Upon clicking Create, you will be taken to a screen similar to the next screenshot:

P
w Dashboard Explore Organizations Search Create munl!pgnllwanm

PUBLIC | AUTOMATED BUILD

igher/masteringdocker vy

Short Description rd Dacker Pull Command | &l
Mastering Docker Automated Bulid docker pull scottpgallagher/mastering
Full Description rd Owner

Full description is empty for this repao, “'I : scottpgallagher

Source Repository

On this screen, you can see a lot of information on the automated build you

have set up. Information such as tags, the Dockerfile in the code repository,

build details, build settings, collaborators on the code, web hooks, and settings that
include making the repository public or private and deleting the automated build
repository as well.

Putting all the pieces together

So, let's take a run at doing a Docker automated build and see what happens when
we have all the pieces in place and exactly what we have to do to kick off this
automated build and be able to create our own magic:

1. Update the code or any file inside your GitHub or Bitbucket repository.

2. Upon committing the update, the automated build will be kicked off and
logged in Docker Hub for that automated repository.

[53]

Container Image Storage

Creating your own registry

To create a registry of your own, use the following command:

$ docker-machine create --driver vmwarefusion registry

Creating SSH key...
Creating VM...
Starting registry...

Waiting for VM to come online...

To see how to connect Docker to this machine, run the following command:

$ docker-machine env registry
export DOCKER TLS VERIFY="1"
export DOCKER HOST="tcp://172.16.9.142:2376"

export DOCKER CERT PATH="/Users/scottpgallagher/.docker/machine/machines/
registry"

export DOCKER MACHINE NAME="registry"
Run this command to configure your shell:

eval "$(docker-machine env registry)"
$ eval "$(docker-machine env registry)"

$ docker pull registry
$ docker run -p 5000:5000 -v <HOST DIR>:/tmp/registry-dev registry:2

This will specify to use version 2 of the registry.

For AWS (as shown in example from https://hub.docker.com/ /registry/):

$ docker run \
-e SETTINGS FLAVOR=s3 \
-e AWS BUCKET=acme-docker \
-e STORAGE PATH=/registry \
-e AWS KEY=AKIAHSHB43HS3J92MXZ \
-e AWS SECRET=xdDowwlK7TJajV1Y7EoOZrmuPEJ1HYcNP2k4j49T \
-e SEARCH BACKEND=sqlalchemy \
-p 5000:5000 \
registry:2

[54]

Chapter 3

Again, this will use version 2 of the self-hosted registry.

Then, you need to modify your Docker startups to point to the newly set up registry.
Add the following line to the Docker startup in the /etc/init.d/docker file:

-H tcp://127.0.0.1:2375 -H unix:///var/run/docker.sock --insecure-
registry <REGISTRY HOSTNAME>:5000

Most of these settings might already be there and you might only need to add
--insecure-registry <REGISTRY HOSTNAME>:5000:

To access this file, you will need to use docker-machine:

$ docker-machine ssh <docker-host_name>

Now, you can pull a registry from the public Docker Hub as follows:

$ docker pull debian

Tag it, so when we do a push, it will go to the registry we set up:

$ docker tag debian <REGISTRY URL>:5000/debian

Then, we can push it to our registry:

$ docker push <REGISTRY URL>:5000/debian

We can also pull it for any future clients (or after any updates we have pushed for it):

$ docker pull <REGISTRY URL>:5000/debian

Summary

In this chapter, we dove deep into Docker Hub and also reviewed the new shiny
Docker Subscription as well as the self-hosted Docker Registry. We have gone
through the extensive review of each of them. You learned of the differences between
them all and how to utilize each one. In this chapter, we also looked deep into

setting up automated builds. We took a look at how to set up your own Docker Hub
Registry. We have encompassed a lot in this chapter and I hope you have learned a
lot and will like to put it all into good use.

In the next chapter, we will take a look at container management and how to manage
all the containers that we create locally on our servers and in the cloud as well. We
will also take a look at managing the images that keep piling up.

[55]

Managing Containers

In this chapter, you will learn how to manage your containers and the different ways
you can go about doing so. This chapter will focus on the command line (as other
chapters will cover other tools) to help lay the groundwork for understanding what
the GUI-based apps are doing in the background. Sometimes, the command line

is the best tool to help troubleshoot containers as well! Troubleshooting containers
will be covered more in depth in Chapter 10, Shipyard. Apart from managing the
containers, we will also cover topics on how to manage your images.

To be specific, the following topics will be covered:

* Docker commands: We will cover the Docker commands you can use to
manage your containers

* Using existing suite: We will cover it using your existing management suites
such as Chef or Puppet, plus some others to manage your containers

e Docker Swarm: You will have a brief overview of Docker Swarm, which we
will be covering more in depth in a later chapter

The Docker commands

In this section, we will cover some Docker commands that you can use to manage
your containers. These commands will range from looking at the status of containers
and viewing what is going on inside the containers that are running to executing
commands against the running containers. This will lay the groundwork for the
GUI apps that we will be looking at in the later chapters. I believe it is important to
understand what is going on behind the curtains when you run the GUI pieces.

[57]

Managing Containers

docker attach

We will first take a look at the docker attach command. With this command, you
can connect to the standard input (STDIN) of the container. We have a running
container named reposado. Let's see how do we attach to it to see the STDIN:

$ docker attach reposado

192.
192.
192.

192.
css

192.

168.59.
168.59.
168.59.

168.59.
HTTP/1.

168.59.

3

w RPRWwWw Ww ww
1

- [29/Jul/2015
- [29/Jul/2015
- [29/Jul/2015

- [29/Jul/2015
04 -

13:40

- [29/Jul/2015 13:40:

responsive.min.css HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -

- [29/Jul/2015 13:40:

- [29/Jul/2015 13:40:

paginator.min.css HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -

- [29/Jul/2015

- [29/Jul/2015

- [29/Jul/2015

- [29/Jul/2015

- [29/Jul/2015 13:40

min.js HTTP/1.1" 304 -

192.168.59.3 -
babysitter.min.

192.168.59.3 -
marionette.min.

192.168.59.3 -

- [29/Jul/2015 13:40:

js HTTP/1.1" 304 -

- [29/Jul/2015 13:40:

js HTTP/1.1" 304 -

- [29/Jul/2015 13:40:

pageable.min.js HTTP/1.1" 304 -

192.168.59.3 -
HTTP/1.1" 304 -

192.168.59.3 -
paginator.min.j

- [29/Jul/2015 13:40:

- [29/Jul/2015 13:40:

s HTTP/1.1" 304 -

13:40:
:15]
13:40:
13:40:

13:40:

13:40:

13:40:

13:40:

15]

171
171

171

171

171

171

171

171

171

:171]

171

171

171

171

171

"GET
"GET
"GET
"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

"GET

/ HTTP/1.1" 200 -
/products HTTP/1.1" 200 -
/ HTTP/1.1" 200 -

/static/css/bootstrap.min.

/static/css/bootstrap-

/static/css/backgrid.min.css

/static/css/backgrid-

/static/js/json2.js

/static/js/jquery.min.js

/static/js/underscore-min.js

/static/js/backbone-min.js

/static/js/backbone.wreqr.

/static/js/backbone.

/static/js/backbone.

/static/js/backbone-

/static/js/backgrid.min.js

/static/js/backgrid-

[58]

Chapter 4

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/margarita.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /static/js/bootstrap.min.js
HTTP/1.1" 304 -

192.168.59.3 - - [29/Jul/2015 13:40:17] "GET /products HTTP/1.1" 200 -
192.168.59.3 - - [29/Jul/2015 13:40:18] "GET /static/img/glyphicons-

halflings-white.png HTTP/1.1" 304 -

In the previous example, we used the docker attach command to attach to the
container named reposado. We can see the output as it happens in the container.
You will stay attached to the container until you close your terminal window. This
can help you troubleshoot error messages that might display when someone is trying
to access the application that the container is serving up. It can also help track where
the traffic might be coming from based on the output displayed.

docker diff

The next command is the docker diff command. With this command, we can view
the changes that were made to a given container. We will again use the reposado
container and take a look at the changes that were made to it:

docker diff reposado
/Volumes
/Volumes/reposado
/Volumes/reposado/data

/Volumes/reposado/data/html

$

C

A

A

A

C /opt
C /opt/reposado

C /opt/reposado/code

C /opt/reposado/code/reposadolib

A /opt/reposado/code/reposadolib/ init .pyc
A

/opt/reposado/code/reposadolib/reposadocommon.pyc

We can see that the command output is sorted into two columns. The first column
will show us whether things changed (c), were added (), or were deleted (D). In
the earlier example, we don't have anything that was deleted, so we don't see any
Ds in the first column. However, we do see that some items were changed as well
as added. This can be helpful when you want to see what items might have been
manipulated on the image that you are using.

[59]

Managing Containers

docker exec

Next, let's take a look at one of the more recent commands that was introduced in
Docker. This is one of the more powerful and more commonly used commands

in the Docker command set. With the docker exec command, you can execute
commands against your containers without the need to connect through something
like SSH, like we would typically do.

There are two switches that are used:

® docker exec -d

® docker exec -i

What is the difference between the two? The difference is one will allow you to view
the output of the command you are executing against the container (docker exec
-1i). The other will run it as a daemon in the background and not display any output
(docker exec -d). After you execute this command, you can view the items that
have changed by using the docker diff command we went over previously.

docker history

The docker history command will give you a full-blown history of everything that
occurred on the image such as when and what created it as well as its size. As we can
see in the following example, we ran the docker history command on the reposado
image we created. We can see all the activity that went on for this image. We can see
the activity that started 6 weeks ago, 21 hours ago, and then 4 hours ago. We can see
the Git cloning, pip commands to install Python-related items, and symbolic links
being created. We can see the size increase on running certain commands:

$ docker history scottpgallagher/reposado

IMAGE CREATED CREATED BY

SIZE COMMENT

b6lala023244 4 hours ago /bin/sh -c #(nop) CMD ["/bin/sh"

"-c" "python 0B

29dc8c2be431 4 hours ago /bin/sh -c #(nop) EXPOSE 8089/tcp
0B

a02115b630cb 4 hours ago /bin/sh -c 1ln -s /opt/reposado/

code/preferenc 36 B

6b568cd34339 4 hours ago /bin/sh -c 1ln -s /opt/reposado/

code/reposadol 30 B

[60]

Chapter 4

377509£f5£585 4 hours ago /bin/sh -c pip install simplejson
485.7 kB

8b0312£24189 4 hours ago /bin/sh -c pip install flask

4.071 MB

b1a301d9d39b 4 hours ago /bin/sh -c git clone https://

github.com/jesse 791.9 kB

ea9b2533e044 4 hours ago /bin/sh -c #(nop) ADD

file:ef8667£1286185255¢c 3.019 kB

1£f875d£3199b 21 hours ago /bin/sh -c #(nop) ADD

file:58d34bd01478346abl 393 B

2¢283310dddd 21 hours ago /bin/sh -c git clone https://

github.com/wdas/ 326.8 kB

7e7e52de77bc 21 hours ago /bin/sh -c #(nop) VOLUME [/

Volumes/data/repos 0 B

6£63b83840ff 21 hours ago /bin/sh -c #(nop) VOLUME [/

Volumes/data/repos 0B

136cc09dacld 21 hours ago /bin/sh -c apt-get update && apt-

get install 252.9 MB

2df9£f745fbbc 21 hours ago /bin/sh -c #(nop) MAINTAINER

Scott P. Gallagh 0B

64494699944 f 6 weeks ago /bin/sh -c #(nop) CMD ["/bin/

bash"] 0B

9fd3c8c9af32 6 weeks ago /bin/sh -c sed -i 's/"#\s*\

(deb. *universe\) $/ 1.895 kB

435050075b3f 6 weeks ago /bin/sh -c echo '#!/bin/sh' > /

usr/sbin/polic 194.5 kB

428b411c28f0 6 weeks ago /bin/sh -c #(nop) ADD

file:b3447£4503091bb6bb 188.1 MB

docker inspect

The next command we are looking at is docker inspect. We will take a look at the
busybox image due to its size:

$ docker inspect busybox

IIIdII :
"8c2e06607696bd4afb3d03b687e361lcc43cf8ecla4a725bc96e39£05ba97dd55",

[61]

Managing Containers

"Parent":
"6ce2e90b0bc7224de3dbl£f0d646£fe8e2c4dd37£1793928287£6074bc451a57ea",

"Comment": "",
"Created": "2015-04-17T22:01:13.0622086052",

"Container":
"811003e0012ef6e6db039bcef852098d45c£9£f84e995efb93al76alle9acabbo",

"ContainerConfig": {
"Hostname": "19bbb9ebab4d",
"Domainname": "",

"User": "v,
"Attachstdin": false,
"AttachStdout": false,
"AttachStderr": false,
"PortSpecs": null,
"ExposedPorts": null,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": null,
"Cmd": [

"/bin/sh",

n_gn,

"# (nop) CMD [\"/bin/sh\"]"
1,

"Image":
"6ce2e90b0bc7224de3dbl£f0d646£fe8e2c4dd37£1793928287£6074bc451a57ea",

"Volumes": null,
"VolumeDriver": "",
"WorkingDir": "",
"Entrypoint": null,
"NetworkDisabled": false,
"MacAddress": "",
"OnBuild": null,
"Labels": {}

[62]

Chapter 4

"DockerVersion": "1.6.0",

"Author":

"Config": {

"6ce2e90b0bc7224de3dbl£f0d646£fe8e2c4dd37£1793928287£6074bc451a57ea",

I

"Hostname": "19bbb9ebab4d",
"Domainname": "",
"User": "v,
"Attachstdin": false,
"AttachStdout": false,
"AttachStderr": false,
"PortSpecs": null,
"ExposedPorts": null,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,
"Env": null,
"Cmd": [

"/bin/sh"
1,

"Image":

"Volumes": null,
"VolumeDriver": "",
"WorkingDir": "",
"Entrypoint": null,
"NetworkDisabled": false,
"MacAddress": "",
"OnBuild": null,
"Labels": {}

"Architecture": "amdé64",

llosll . lllinuxll ,

"Size": O,

"VirtualSize": 2433303

"Jérdme Petazzoni \uOO3cjerome@docker.com\u003e",

[63]

Managing Containers

We can see things such as:

* When the image was created

* Whether the container is using any volumes

* The particular network settings being established
* What architecture is being used

e The OS for the container

We can also see its size, plus a plethora of other items that are related to the
running container.

docker logs

The docker logs command will allow you to look at what has been happening
on your running container. There is a switch that you can use to get a running
output from your container as well, which we will cover shortly. This is similar to
the docker attach command that we went over earlier, but this will allow you to
gather history from when the container started until the time you ran the docker
logs command:

$ docker logs reposado

Running on http://0.0.0.0:8089/ (Press CTRL+C to quit)

192.168.59.3 - - [29/Jul/2015 15:56:23] "GET / HTTP/1.1" 200 -
192.168.59.3 - [29/Jul/2015 15:56:23] "GET /products HTTP/1.1" 200 -
192.168.59.3 - [29/Jul/2015 15:56:23] "GET /favicon.ico HTTP/1.1" 404 -

192.168.59.3 - [29/Jul/2015 15:56:29] "POST /new branch/test HTTP/1.1"
200 -

192.168.59.3 -

[29/Jul/2015 15:56:29] "GET /products HTTP/1.1" 200 -

Now, docker logs -f will give you a running output of what is actively happening
on the container. This is helpful when you are troubleshooting your containers.

It will allow you to actively monitor your container while you execute, and the
application it is running.

[64]

Chapter 4

docker ps

We covered the docker ps command earlier, but we will now take a look at the
switches we can add to the command.

Here are the switches we will be taking a look at:

* docker ps -a:This will give you a list of all the containers. By default,
when you run the docker ps command, it will only show the ones that
are running. It will also provide the status of the containers that were
stopped and how long ago they were stopped. It will also give you the
names of the containers as well as the respective commands that were
running on these containers.

* docker ps -1:This will give you the latest created containers, including
the ones that are not running. It again will give you the same information
that the docker ps -a command provides to you. With the docker ps -1
command, you can see what containers were running and then launch them
again with the docker start <container name> command. This will bring
the image back to the state it was when it was stopped/halted.

* docker ps -n=: This will give you the power to slim down the previous
command of docker ps -1. This is useful if the list becomes too long. The
docker ps -n=command allows you to specify a number of how many of
the previous containers you want to view. For example, $ docker ps -n=5
will return the last five containers, whether they are running or not. There
are also other switches you can use with the docker ps command. Don't
forget that on every command, you can use the - -help switch that will
provide more information on each command, including all the switches you
can utilize.

docker stats

The docker stats command will give you live running information on your
container. It will provide information such as the container name, CPU activity,
memory usage / memory limit, memory percentage being used, as well as the
network input/output:

$ docker stats reposado

CONTAINER CPU % MEM USAGE/LIMIT MEM %
NET I/O
reposado 0.06% 13.31 MB/2.099 GB 0.63%

5.549 kB/12.9 kB

[65]

Managing Containers

This can be helpful if you have a container using up a lot of memory and want to put
restrictions on it. You can exit this command by using the Ctrl + C key combination
on your keyboard.

docker top

The docker top command will allow you to view what commands are currently
running on your container. It will allow you to see what command is running as well
as how long it has been running;:

$ docker top reposado

UID PID PPID C

STIME TTY TIME CMD

root 21094 825 0

15:49 ? 00:00:00 /bin/sh -c
python /opt/margarita/margarita.py

root 21098 21094 0

15:49 ? 00:00:00 python /opt/

margarita/margarita.py

Using your existing management suite

In this section, we will look at what you can do with your already existing
management suite(s) and how you can use them to target actions against your
containers. We will cover most of the major ones: Puppet, Chef, Ansible, and
SaltStack. There are surely more out there and more coming out daily! This will help
you leverage your already existing management environment as well as understand
other options that are available.

Puppet

Puppet (as of version 3.8) allows you to manage your Docker containers with your pre-
existing Puppet environment. You simply need to include Docker to your manifests.

You can then use Puppet to install Docker on the hosts as well as run containers
on these Docker hosts. For example, let's deploy the nginx container using the
Puppet code:

docker::run { 'website':

image => 'nginx',

[66]

Chapter 4

command => '/usr/sbin/nginx -g "daemon off;"',

}
We can also execute the code against our already existing containers using Puppet:

docker: :exec { 'update-nginx':
detach => true,
container => 'nginx',
command => 'apt-get update -y nginx',
tty => true,

}

This will update the nginx package in the container named nginx and display the
output on your screen, since tty is set to true.

You can also use other Docker commands in place of the previous exec statement.
Simply refer to the Puppet documentation for more information on it.

Chef

Chef also allows you to manage your Docker infrastructure using your existing Chef
infrastructure. Chef is a little different than Puppet, as it uses recipes to do its tasks.
An example we can use to pull an image from Docker Hub to our Docker host is:

docker image '<image name>' do
tag 'latest!'

action :pull

end

We can then run that pulled image and turn it into a container:

docker container '<image name>' do
tag 'latest'
action :run

end

With the Chef recipes, the possibilities are endless as to what you could do. The
communities in Chef (as well as these other management suites) are very large and
recipes are being shared all the time.

The easiest way to find a Chef recipe is to use ever-handy search engines such as
Google or Yahoo to find an already written recipe that we can just drop in place or
modify as needed.

[67]

Managing Containers

To learn more about how to use Chef along with Docker to manage your
environment, use the following link:

https://supermarket.chef.io/cookbooks/docker

Ansible

Like the others, we have explored Ansible that can do the many and same things as
the others. If you already have Ansible in place, you have a leg up; you don't need to
get a management suite in place.

If we want to use Ansible to manage Docker, we can use Ansible to spin up the
containers:
- name: nginx-host
docker:
name: nginx-host
image: nginx

state: started

This will launch a Docker container named nginx-host using the nginx image on
the Docker Hub, ensuring it starts. The catch is that, if there is already a container
named nginx-host, it won't start a container.

We can also stop a running container:

- name: Stop a container
docker:
name: nginx-host

state: stopped

We can also start containers:

- name: Start a container
docker:
name: test-container-stopped

state: started

[68]

Chapter 4

SaltStack

Lastly, we will take a look at SaltStack that, as you can guess, can manage Docker
containers as well. Let's see how we can start a container using SaltStack:

nginx:
docker.running:
- container: nginx
- image: nginx
- port bindings: "80/tcp":
HostIp: ""
HostPort: "80"

The previous example using SaltStack will start a container and name it nginx based
off the container: section, then pull the nginx image from the Docker Hub from the
image: section. It will set up the port bindings as well. It will set up TCP port 80 on
the Docker container from the port bindings: section and tie it to the host port of
80 based off of the HostPort : entry.

We can also stop these containers with SaltStack:

salt '*' docker.stop <container id>

This will fire off the salt command and use the docker.stop module. It will look
for the container ID that you specify and stop it when it finds it. You can start a
container in the same way as well:

salt '*' docker.start <image_name:tag>

There are many other SaltStack commands that you too can utilize. These can be
found on the SaltStack website:

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.
dockerio.html#salt.modules.dockerio.stop

Docker Swarm

In this section, we will do a brief overview of Docker Swarm. We will take a look
at what it is, what you can do with it to manage your containers, and what to look
forward to in the later chapters with regards to Docker Swarm.

[69]

Managing Containers

What is Docker Swarm?

The idea behind Docker Swarm is to have native clustering available inside Docker.
This will allow you to both easily scale your environments as well as manage them
from a central location. The best part is that, since it's tied so tightly with the Docker
API, any command you use with Docker can be used in conjunction with managing
the nodes in your Swarm cluster. The setup is very simple as follows:

1. You install the Swarm component through a docker pull command.
2. You then set up and configure the Swarm manager.

3. Lastly, you add the nodes to Docker Swarm.

This setup uses the TCP communication between all the Swarm nodes through an
open TCP port. It also requires that you have Docker installed on each node (as

if we'd not want it installed). Lastly, it requires that you create and manage TLS
certificates that will allow secure communication between all the hosts.

What can Docker Swarm do?

Docker Swarm, as you previously learned, allows for clustering through secure TLS
communication. It allows for discovery services to be set up as well. This will allow
you to set up services such that, when new nodes are added to the Swarm, they can
be automatically added to the correct corresponding service and allowed to join the
service to help scale for its needs.

Swarm also allows advanced scheduling of jobs. This allows you to choose a strategy
to rank all the nodes in your cluster. The three options to rank your nodes are:

® spread
® binpack
* random
The first two allocate jobs based on the machine's available CPU and RAM. The

last one — random—does exactly as it says. It randomly chooses a node to run the
requested job on.

You can review more in-depth examples of these on the Docker Docs website:

https://docs.docker.com/swarm/scheduler/strategy/

[70]

Chapter 4

Summary

In this chapter, you looked at the Docker commands that can be used to manage
your containers, viewing their status and looking inside them to see what they
are doing.

To perform tasks, we looked at how we can execute commands against our running
containers. This will lay the groundwork, so you understand what is going on
behind the scenes if you use a GUI application to manage containers.

We also took a look at utilizing your existing management suite and using it to
cover more ground, including your Docker containers. We took a look at four major
management suites that you can use to manage your Docker containers.

We lastly took a look at Docker Swarm that hopefully got you excited for the later
chapter on Docker Swarm. With Docker Swarm, we can cluster our containers, view
where all our containers are running across multiple Docker hosts, and use it for
discovery services to help scale our environments.

In the next chapter, we will be looking at Docker security — the topic that is always at
the forefront of everyone's mind when it comes to any or all of technology. We will
go over all the aspects of Docker security — the good, the not so bad, and what to look
forward to.

[71]

Docker Security

In this chapter, we will be taking a look at Docker security — the topic on the forefront
of everyone's minds these days. We will be splitting up the chapter into four sections:

¢ Containers versus VMs
e The Docker commands
* Docker security - best practices

* The Docker bench security application

Now, let's take a look at each of these sections one after the other.

Containers versus VMs

In this section, we will be looking at the differences in Docker containers and typical
virtual machines. We will focus on the benefits that Docker containers have over
typical virtual machines. We'll take a look at the good; the not so bad: those items
that aren't bad but you will want keep an eye on them; and the items you want to
look out for: those are the items that you will ultimately want to consider while using
Docker containers over typical virtual machines.

The good

When you start a Docker container, there is a lot of work going on behind the scenes
and two of those items are setting up namespaces and control groups. What does
that mean? By setting up namespaces, Docker keeps the processes isolated in each
container; not only from other containers, but also from the host system. The control
groups ensure that each container gets its own share of items such as CPU, memory,
and disk I/O. More importantly, they ensure that one container doesn't exhaust all
the resources on a given Docker host.

[73]

Docker Security

Each container also gets its own network stack that again contributes to the idea of
isolation. With each container getting its own network stack, other containers don't
get access to each other, unless otherwise specified by Docker linking. Also, with
this, you can accordingly set up access through items such as iptables.

Lastly, what I consider one of the biggest advantages of Docker over typical virtual
machines is that you can finally turn off SSH in your containers. There is no need
to enable SSH in your containers anymore to manage them or to issue commands
against them. Docker has the tools to execute items against the containers and pull
information that is needed to help troubleshoot containers as well. With commands
such as docker execute, docker top, docker logs, docker events, and docker
stats, you can do everything you need to do without exposing any more security
holes than you need to.

The not so bad

Not so bad, as we will be calling this section, is just to keep you informed about the
items that are in the technology.

What you need to realize is that, when you are dealing with virtual machines,

you can control the required permissions, that is, who has access to what virtual
machines. With Docker, you have a little disadvantage because whoever has access
to the Docker daemon on your server has access to every Docker container that you
are running. They can run new containers; they can stop existing containers and can
delete images as well. Be careful who you grant permission to access the Docker
daemon on your hosts. They essentially hold the keys to the kingdom with respect
to all your containers. Knowing this, it is recommended to use Docker hosts only for
Docker; keep other services separate from Docker.

Hopefully, you trust your organization and all those who do have access to
these systems.

What to look out for

You will most likely be setting up virtual machines from scratch. It is probably
impossible to get the virtual machine from someone else, due to its sheer size. So,
you will be aware of what is inside the virtual machine and what isn't. This being
said, with Docker containers, you will not be aware of what could be there inside the
image you might be using for your container(s).

[74]

Chapter 5

The Docker commands

Let's take a look at the Docker commands that can be used to help tighten up security
as well as view information in the images you might be using. There
are two commands that we are going to be focusing on.

The first will be the docker run command, so you can see some of the items you can
use to your advantage with this command. Second, we will take a look at the docker
diff command (that we went over in the previous chapter) that you can use to view
what has been done with the image that you are planning to use.

docker run

With respect to the docker run command, we will mainly focus on the option
that allows you to set everything inside the container as read-only instead of a
specified directory or volume. Let's take a look at an example and break down
what it exactly does:

$ docker run --name mysql --read-only -v /var/lib/mysql -v /tmp:/tmp:rw
-e MYSQL ROOT PASSWORD=password -d mysql

Here, we are running a mysqgl container and setting the entire container as read-only,
except for the /var/lib/mysql directory. What this means is that the only location
the data can be written inside the container is the /var/1ib/mysql directory. Any
other location inside the container won't allow you to write anything in it. If you try
to run the following, it would fail:

$ docker exec mysqgl touch /opt/filename

This can be extremely helpful if you want to control where the containers can
write to or not write to. Be sure to use this wisely. Test thoroughly, as it could
have consequences when the applications can't write to certain locations.

Remember the Docker volumes we looked at in the previous chapters, where we
were able to set the volumes to be read-only. Similar to the previous command with
docker run, where we set everything to read-only except for a specified volume, we
can now do the opposite and set just a single volume (or more if you use more -v
switches) to read only. The thing to remember about volumes is that when you use a
volume and mount it into a container, it will mount as an empty volume over the top
of that directory inside the container, unless you use the - -volumes-fromswitch or
add data to the container in some other way after the fact:

$ docker run -d -v /opt/uploads:/opt/uploads:ro nginx

[75]

Docker Security

This will mount a volume in /opt/uploads and set it to read-only. This can be
useful if you don't want a running container to write to a volume to keep the
data or configuration files intact.

The last option we want to look at with regards to the docker run command is the
- -device= switch. This switch allows us to mount a device from the Docker host
into a specified location inside the container. By doing so, there are some security
risks we need to be aware of. By default, when you do this, the container will get
full access: read, write, and the mknod access to the device's location. Now, you can
control these permissions by manipulating rwm at the end of the switch command.
Let's take a look at some of these and see how they work:

$ docker run --device=/dev/sdbl:/dev/sdc2 -it ubuntu:latest /bin/bash

The previous command will run the latest Ubuntu image and mount the /dev/sdb1
device inside the container in the /dev/sdc2 location:

$ docker run --device=/dev/sdbl:/dev/sdc2:r -it ubuntu:latest /bin/bash

This command will run the latest Ubuntu image and mount the /dev/sdb1 device
inside the container in the /dev/sdc2 location. But this one has the :r tag at the end
of it that specifies it's read-only and can't be written to.

docker diff

Let's take another look at the docker diff command since it relates to the security
aspects of the containers you may want to use from the images that are hosted on
Docker Hub or other related repositories.

Remember that whoever has access to your Docker host and the Docker daemon has
access to all of your running Docker containers. This being said, if you don't have
monitoring in place, someone could be executing commands against your containers
and doing malicious things:

$ docker diff <running container name>

[76]

Chapter 5

Docker security — best practices

In this section, we will look at the best practices when it comes to Docker as well

as the Center for Internet Security guide to properly secure all the aspects of your
Docker environment. You will be referring to this guide when you actually run the
scan (in the next section of this chapter) and get results back of what needs or should
be fixed. The guide is broken down into the following sections:

* The host configuration

* The Docker daemon configuration

* The Docker daemon configuration files
* Container images/runtime

* Docker security operations

Docker — best practices

Before we dive into the Center for Internet Security guide, let's go over some of the
best practices to use Docker:

* One application per container: Spread out your applications to one per
container. Docker was built for this and it makes everything easier at the end
of the day. That isolation we talked about earlier is where this is the key.

* Review who has access to your Docker hosts: Remember that whoever has
access to your Docker hosts has access to manipulate all your images and
containers on the host.

* Use the latest version: Always use the latest version of Docker. This will
ensure that all security holes have been patched and you have the latest
features as well.

* Use the resources: Use the resources available if you need help. The

community within Docker is huge and immensely helpful. Use their website,
documentation, and the IRC chat rooms to your advantage.

CIS guide — host configuration

This part of the guide is about the configuration of your Docker hosts. This is that
part of the Docker environment where all your containers run. Thus, keeping it
secure is of the utmost importance. This is the first line of defense against attackers.

[77]

Docker Security

CIS guide — Docker daemon configuration

This part of the guide has the recommendations that secure the running Docker
daemon. Everything you do to the Docker daemon configuration affects each and
every container. These are the switches you can attach to the Docker daemon we saw
previously, and to the items you will see in the next section when we run through
the tool.

CIS guide — Docker daemon configuration
files

This part of the guide deals with the files and directories that the Docker daemon
uses. This ranges from permissions to ownerships. Sometimes, these areas may
contain information you don't want others to know about that could be in a plain
text format.

CIS guide — container images/runtime

This part of the guide contains both the information for securing the container
images as well as the container runtime.

The first part contains images, cover base images, and the build files that were used.
As we covered previously, you need to be sure about the images you are using

not only for your base images, but for any aspect of your Docker experience. This
section of the guide covers the items you should follow while creating your own base
images to ensure they are secure.

The second part, the container runtime, covers a lot of security-related items. You
have to take care with the runtime variables you are providing. In some cases,
attackers can use them to their advantage, while you think you are using them to
your own advantage. Exposing too much in your container can compromise the
security of not only that container, but the Docker host and the other containers
running on that host.

CIS guide — Docker security operations

This part of the guide covers the security areas that involve deployment. These items
are more closely tied to the best practices and the recommendations of items that are
recommended to be followed.

[78]

Chapter 5

The Docker bench security application

In this section, we will cover the Docker benchmark security application that you can
install and run. The tool will inspect:

* The host configuration

* The Docker daemon configuration

* The Docker daemon configuration files

* Container images and build files

* Container runtime

* The Docker security operations
Looks familiar? It should, as these are the same items that we reviewed in the
previous section only built into an application that will do a lot of heavy lifting for

you. It will show you what warnings arise with your configurations and provide
information on other configuration items and even the items that have passed the test.

We will look at how to run the tool, a live example, and what the output of the
process will mean.

Running the tool

Running the tool is simple. It's already been packaged up for us inside a Docker
container. While you can get the source code and customize the output or
manipulate it in some way (say, e-mail the output), the default may be all you need.

The code is found here:
https://github.com/docker/docker-bench-security

To run the tool, we will simply copy and paste the following into our Docker host:

$ docker run -it --net host --pid host --cap-add audit control \
-v /var/lib:/var/lib \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /usr/lib/systemd:/usr/lib/systemd \
-v /etc:/etc --label docker bench security \

diogomonica/docker-bench-security

If you don't already have the image, it will first download the image and then start
the process for you. Now that we've seen how easy it is to install and run it, let's take
a look at an example on a Docker host to see what it actually does. We will then take
a look at the output and take a dive into dissecting it.

[79]

https://github.com/docker/docker-bench-security

Docker Security

There is also an option to clone the Git repository, enter the directory from the git
clone command, and run the provided shell script. So, we have multiple options!

Let's take a look at an example and break down each section:

* The host configuration:

[80]

Chapter 5

* The Docker daemon configuration:

* The Docker daemon configuration files:

[81]

Docker Security

* Container images and build files:

e Container runtime:

* The Docker security operations:

Wow! A lot of output and tons to digest; but what does it all mean? Let's take a look

and break down each section.

[82]

Chapter 5

Understanding the output

There are three types of output that we will see:

* [pAsS]: These items are solid and good to go. They don't need any attention,
but are good to read to make you feel warm inside. The more of these, the
better!

* [INFO]: These are items that you should review and fix if you feel they are
pertinent to your setup and security needs.

e [WARN]: These are items that need to be fixed. These are the items we don't
want to be seeing.

Remember, we had the six main topics that were covered in the scan:

* The host configuration

e The Docker daemon configuration

* The Docker daemon configuration files

* Container images and build files

* Container runtime

* The Docker security operations
Let's take a look at what we are seeing in each section of the scan. These scan results
are from a default Ubuntu Docker host with no tweaks made to the system at this
point. We want to focus again on the [WARN] items in each section. Other warnings

may come up when you run yours, but these will be the ones that come up most if
not for everyone at first.

* Host configuration:

[WARN] 1.1 - Create a separate partition for containers

For this one, you will want to map /var/lib/docker to a separate partition.

[WARN] 1.8 - Failed to inspect: auditctl command not found.
[WARN] 1.9 - Failed to inspect: auditctl command not found.
[WARN] 1.10 - Failed to inspect: auditctl command not found.
[WARN] 1.13 - Failed to inspect: auditctl command not found.
[WARN] 1.18 - Failed to inspect: auditctl command not found.

[83]

Docker Security

The Docker daemon configuration:

[WARN] 2.2 - Restrict network traffic between containers

By default, all the containers running on the same Docker host have access
to each other's network traffic. To prevent this, you would need to add the
--icc=false flag to the Docker daemon's start up process.

[WARN] 2.7 - Do not use the aufs storage driver

Again, you can add a flag to your Docker deamon start up process that will
prevent Docker from using the aufs storage driver. By using -s <storage_
drivers on your Docker daemon startup, you can tell Docker not to use
aufs for storage. It is recommended that you use the best storage driver for
the OS on the Docker host you are using.

The Docker daemon configuration files:

If you are using the stock Docker daemon, you should not see any warnings.
If you have customized the code in some way, you may get warnings here.
This is one area you hope to never see warnings.

Container images and build files:
[WARN] 4.1 - Create a user for the container

[WARN] * Running as root: suspicious mccarthy

This is stating that the container named suspicious_mccarthy is running
as the root user and it is recommended to create another user to run your
containers.

Container Runtime:
[WARN] 5.1: - Verify AppArmor Profile, if applicable

[WARN] * No AppArmorProfile Found: suspicious mccarthy

This states that the container named suspicious mccarthy does not have
AppArmorProfile, which is the additional security provided in Ubuntu in
this case.

[WARN] 5.3 - Verify that containers are running only a single
main process

[WARN] * Too many processes running: suspicious mccarthy

[84]

Chapter 5

This error is pretty straightforward. You will want to make sure you are
only running one process per container. If you are running more than
one, you will want to spread them out across multiple containers and use
container linking.

[WARN] 5.4 - Restrict Linux Kernel Capabilities within containers

[WARN] * Capabilities added: CapAdd=[audit control] to
suspicious mccarthy

This is stating that the audit_control capability has been added to this
running container. You can use --cap-drop={} from your docker run
command to remove additional capabilities on a container.

[WARN] 5.6 - Do not mount sensitive host system directories on
containers

[WARN] * Sensitive directory /etc mounted in: suspicious_
mccarthy

This again goes back to looking at mounting the items inside the containers
as read-only. The - -read-only flag would come in handy in this scenario,
when you issue your docker run command.

[WARN] * Sensitive directory /lib mounted in: suspicious_
mccarthy

This too goes back to looking at mounting the items inside the containers
as read-only. The - -read-only flag would come in handy in this scenario,
when you issue your docker run command.

[WARN] 5.7 - Do not run ssh within containers

[WARN] * Container running sshd: suspicious mccarthy

It is straight to the point. No need to run SSH inside your containers. You can
do everything you want to with your containers using the tools provided by
Docker. Ensure that SSH is not running in any container.

[WARN] 5.10 - Do not use host network mode on container

[WARN] * Container running with networking mode 'host':
suspicious_mccarthy

The issue with this one is that, when the container was running, the

- -net=host switch was passed along. It is not recommended to use this, as it
allows the container to open low port numbers as well as access networking
services on the Docker host.

[WARN] 5.11 - Limit memory usage for the container

[WARN] * Container running without memory restrictions:
suspicious_mccarthy

[85]

Docker Security

By default, the containers don't have memory restrictions. This can be
dangerous if you are running multiple containers per Docker host. You can
use the -m switch while issuing your docker run commands to limit the
containers to a certain amount of memory. Values are set in megabytes (that
is, 512 MB or 1024 MB).

[WARN] 5.12 - Set container CPU priority appropriately

[WARN] * The container running without CPU restrictions:
suspicious mccarthy

Like the memory option, you can also set the CPU priority on a per container
basis. This can be done using the - c switch while issuing your docker run
command. The CPU share is based off of the number 1024. So, half would

be 512 and 25% would be 256. Use 1024 as the base number to determine the
CPU share.

[WARN] 5.13 - Mount container's root filesystem as readonly

[WARN] * Container running with root FS mounted R/W:
suspicious_mccarthy

You really want to be using your containers as mutable environments;
meaning they don't write any data inside them. Data should be written out
to volumes. Again, you can use the - -read-only switch, followed by the
-v / switch to specify that the root directory is read-only for the running
container.

[WARN] 5.16 - Do not share the host's process namespace

[WARN] * Host PID namespace being shared with: suspicious
mccarthy

This error arises when you use the - -pid=host switch. It is not recommended
to use this switch, as it breaks the isolation of processes between the container
and Docker host.

* The Docker security operations:

Again, another section you hope to or never should see warnings if you are
using stock Docker. Mostly here you will see information and should review
them to make sure it's all kosher.

[86]

Chapter 5

Summary

In this chapter, we covered some aspects of Docker security. First, we took a look at
containers versus typical virtual machines with regards to security. We looked at the
good, the not so bad, and what to look out for.

We then took a look at what Docker commands we can use for security purposes.
We first took a look at read-only containers, so we can minimize what we are
exposing to other containers. We then viewed what is done to the images that you
have running. It is important to know what is done on these containers, so you have
a trail of activity.

Next, we took a look at the Center for Internet Security guidelines for Docker. This
guide will assist you in setting up multiple aspects of your Docker environment.
Lastly, we took a look at the Docker bench for security. We looked at how to get it
up and running and ran through an example of what the output would look like
once it has been run. We then took a look at the said output to see what all it meant.
Remember the six items that the application covered: the host configuration, Docker
daemon configuration, Docker daemon configuration files, container images and
build files, container runtime, and Docker security operations.

In the next chapter, we will be taking a look at Docker Machine. Docker Machine
allows you to create Docker hosts locally on items such as VirtualBox or VMWare
Fusion or to cloud providers such as Amazon AWS, Microsoft Azure, DigitalOcean,
as well as others. Saving time is the key here. Instead of having to go to a host, spin
up a virtual machine, and get Docker installed on it, Docker Machine will do it all for
you and give you more time to do what you should be doing.

[87]

Docker Machine

In this chapter, we will take a look at Docker Machine. Docker Machine is a tool that
supersedes boot2docker. It can be used to create Docker hosts on various platforms,
including locally or in a cloud environment. You can control your Docker hosts with
it as well. Let's take a look at what we will be covering in this chapter:

* Installing Docker Machine

* Using Docker Machine to set up the Docker hosts

e Various Docker commands

Installation

Installing Docker Machine is very straightforward. There is a simple curl command
to run and install it. It is recommended to install Docker Machine in /usr/local/
bin, as this will allow you to issue the Docker Machine commands from any
directory on your machine:

$ curl -L https://github.com/docker/machine/releases/download/v0.4.0/
docker-machine linux-amd64 > /usr/local/bin/docker-machine

After issuing the curl command, you need to set the permissions in the docker-
machine file that was just created in /usr/local/bin/:

$ chmod +x /usr/local/bin/docker-machine

You can then verify that Docker Machine is installed by issuing a simple docker-
machine command:

$ docker-machine --help

You should get back all the commands and switches you can use while operating the
docker-machine command.

[89]

Docker Machine

Now these instructions are great if you are on Linux. But what if you are using

Mac or even Windows? Then, you would want to use the Docker Toolbox to do

your installation. This will not only install Docker Machine, but other pieces of the
Docker ecosystem as well. To view a list of what all comes in the Docker Toolbox per
platform, visit https://www.docker.com/docker-toolbox.

Using Docker Machine

Let's take a look at how we can use Docker Machine to deploy Docker hosts on your
local infrastructure, on your own machine, as well as on various cloud providers.

Local VM

Docker Machine uses the - -driver switch to specify the location you want to set up
and install the Docker host. So, we can set up a Docker host in VirtualBox:

$ docker-machine create --driver virtualbox <name>

Or, we can set it up on VMware Fusion:

$ docker-machine create --driver vmwarefusion <name>

The previous command is structured as the docker-machine command, followed by
what we want to do: create. We will use the - -driver switch next. Then, we need
to specify where we are going to place the Docker host. In our case, we specified
virtualbox and vmwarefusion. Lastly, we need to give the Docker host a name.
This name is to be unique; so when you issue other Docker Machine commands, they
are distinguishable.

There are various other switches we can use to tell how much memory the Docker
host to use and also how much disk space to use as well. You can see all the available
switches by issuing our trustworthy and helpful docker-machine create --help
command. Remember that everything has a - -help switch that can be utilized to
gain more information to get the help you need. It should be the first thing you turn
to when you are looking for assistance.

Cloud environment

Now, let's take a look at how we deploy to a cloud environment of our choosing.
When you start deploying to cloud environments, it can get tricky, as it requires
some form of authentication to ensure you are who you say you are. For example,
DigitalOcean requires an access token to launch a Docker host in its system. We will
be taking a look at how we can deploy a Docker host in AWS.

[90]

https://www.docker.com/docker-toolbox

Chapter 6

For AWS, we need a couple of switches. We would need to get the information from
AWS before we can deploy to this cloud provider:

® --amazonec2-access-key
® --amazonec2-secret-key
® --amazonec2--vpc-id

® --amazonec2-zone

® --amazonec2-region

We can create these drivers by executing the following command:

$ docker-machine create \
--driver amazonec2 \
--amazonec2-access-key <aws_access_key> \
--amazonec2-secret-key <aws_secret_key> \
--amazonec2-vpc-id <vpc_id> \
--amazonec2-subnet-id <subnet_id> \
--amazonec2-zone <zone> \

<name>

Docker Machine commands

Now that we can deploy Docker hosts locally and to the cloud environments, we
need to know how we can manage and manipulate these Docker hosts. Let's take a
look at all the commands Docker Machine has to offer.

Note that as we previously created these hosts we were given
s output on how to target them for use with Docker Machine.

On running the docker-machine create command, you should receive an output
similar to this:

INFO[0041] To point your Docker client at it, run this in your shell:
$ (docker-machine env dev2)

This is how you can set the default to target Docker hosts with Docker Machine.
Keep this in mind, when we are looking at the following commands.

[91]

Docker Machine

active

You can use the active subcommand to see which Docker host is currently active
and commands that you execute will be executed on that Docker host:

$ docker-machine active

dev2

config

You can use the config subcommand to view what the current configuration is for
the Docker Machine setup on the currently active host:
$ docker-machine config

--tls --tlscacert=/Users/scott/.docker/machine/machines/dev2/
ca.pem --tlscert=/Users/scott/.docker/machine/machines/dev2/cert.
pem --tlskey=/Users/scott/.docker/machine/machines/dev2/key.pem
-H=tcp://192.168.50.158:2376

env

You can view the environmental variables on each Docker host with the env
subcommand:

$ docker-machine env

export DOCKER TLS VERIFY=1

export DOCKER CERT PATH=/Users/spgl4/.docker/machine/machines/dev2
export DOCKER HOST=tcp://192.168.50.158:2376

inspect
You can inspect each Docker host using the Docker Machine inspect subcommand.

This subcommand will give you a lot of information on the Docker host, such as the
certificate paths, Swarm host, disk size, memory, CPUs, and much more:

$ docker-machine inspect

"DriverName": "vmwarefusion",
"Driver": {
"MachineName": "dev2",

"ITPAddress": "192.168.50.158™",
"Memory": 1024,

[92]

Chapter 6

"DiskSize": 20000,

"CPUs": 8,
"ISO": "/Users/scott/.docker/machine/machines/dev2/boot2docker-
1.5.0-GH747.iso",
"Boot2DockerURL": "",
"CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",
"PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.
pem",
"SwarmMaster": false,
"SwarmHost": "tcp://0.0.0.0:3376",
"SwarmDiscovery": "",
"CPUS": 8
3
"CaCertPath": "/Users/scott/.docker/machine/certs/ca.pem",
"ServerCertPath": ",
"ServerKeyPath": "",
"PrivateKeyPath": "/Users/scott/.docker/machine/certs/ca-key.pem",
"ClientCertPath": ",
"SwarmMaster": false,
"SwarmHost": "tcp://0.0.0.0:3376",
"SwarmDiscovery": ""
}

ip

The ip subcommand will give you the IP address of the active host you are pointing
to with Docker Machine:

$ docker-machine ip <name>

192.168.50.158

kill

If a host is acting up, you can kill the Docker hosts with the ki11 subcommand of
Docker Machine:

$ docker-machine kill

INFO[0000] Forcibly halting dev2...

[93]

Docker Machine

Is
You can use the 1s subcommand to view all the running Docker hosts you have used
to create with Docker Machine. The information will include:

* The name of the host

* Whether the machine is active

* The driver that is being used

* The state of the host

* The URL that is being used for communication

* If the host is a part of the Docker Swarm cluster, then that information will be

shown as well

Let's take a look at a sample command output when you use docker-machine 1s:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL

SWARM

dev virtualbox Stopped

dev2 * vmwarefusion Running tcp://192.168.50.158:2376

As you can see, you get the list of Docker hosts you can control. As well as the driver,
its state, URL, and its part of a Swarm cluster.

restart

You can restart the hosts as well using the restart subcommand:

$ docker-machine restart <name>

INFO[0000] Gracefully restarting dev2...

rm

You can remove the hosts you no longer need by using the rm subcommand of
Docker Machine:

$ docker-machine rm <name>

[94]

Chapter 6

scp

There are multiple ways to use the Docker Machine scp command. You can copy
files or folders from the local host to a Docker host:

$ docker-machine scp <file name> <name>:/<path>/<to>/<folder>/

It can be copied from one machine to another:

$ docker-machine scp <hostl>:/<path>/<to>/<file>
<host2>:/<path>/<to>/<folder>/

It can also be copied from the machine back to the host:

$ docker-machine scp <name>:/<path>/<to>/<file> .

ssh

You can SSH into your Docker hosts as well by using the ssh subcommand. This
can be useful if you need to troubleshoot why the commands you push against your
hosts might not be working;:

$ docker-machine ssh <name>

start

The start subcommand can be used to start the Docker hosts that have been
stopped:

$ docker-machine start <name>

INFO[0000] Starting dev2...

stop

You can stop the hosts as well by using the stop subcommand:

$ docker-machine stop <name>

INFO[0000] Gracefully shutting down dev2...

[95]

Docker Machine

upgrade

If you have a Docker host that is running Docker version 1.7 (let's say) and you
want to upgrade it to the latest version, you could use the upgrade subcommand
of Docker Machine:

$ docker-machine upgrade <name>

This will upgrade the version of Docker that is running on the Docker hostname
you provide.

url

The url subcommand will give you the URL that is being used for communication
for the Docker host:

$ docker-machine url <name>

tcp://192.168.50.158:2376

TLS

Docker Machine also has the option to run everything over TLS. This is the most
secure way of using Docker Machine to manage your Docker hosts. This setup can
be tricky if you start using your own certificates. By default, Docker Machine stores
your certificates that it uses in /Users/<user_id>/.docker/machine/certs/. You
can view these items simply by running;:

$ docker-machine --help

This will give you a global Options section at the bottom of the listing that lists this
information. These are the locations of the intermediate certificate, intermediate key,
and the certificate that Docker Machine uses as well as its corresponding key. You
would need to update these files with your own certificates if you don't want to be
using the self-signed certificates that Docker Machine creates.

[96]

Chapter 6

Summary

In this chapter, we looked at Docker Machine. We first looked at how to use Docker
Machine to create the Docker hosts locally on virtualization software such as
VirtualBox or VMware Fusion. We also looked at how to use Docker Machine to
deploy Docker hosts to your cloud environments.

We then took a look at all the commands that are in the Docker Machine Toolbox.
With all these commands, you can manage your entire fleet of Docker hosts. You can
manipulate them from creating new Docker hosts to managing all the configuration
aspects of the Docker hosts. We really dove deep into all the Docker Machine
commands, so you should have a good understanding of this Docker component.

In the next chapter, we will be looking at Docker Compose. Docker Compose is
very complex and has a lot of pieces that you can leverage to your advantage. We
will be focusing very heavily on Docker Compose and it's a core piece of the Docker
ecosystem that you will find yourself using almost daily. Docker Compose is very
powerful and very useful with all the aspects of managing Docker.

[97]

Docker Compose

In this chapter, we will be taking a look at Docker Compose. We will break the
chapter down into the following sections:

* Installing Docker Compose

* Docker Compose YAML file

* Docker Compose usage

* The Docker Compose commands

* The Docker Compose examples

Installing Docker Compose

Let's take a look at how we can get Docker Compose installed on to our machine, so
we can start utilizing its full feature set and power.

Installing on Linux

Let's take a look at how easy it is to install on Linux:

$ curl -L https://github.com/docker/compose/releases/download/VERSION
NUM/docker-compose- "uname -8 -"uname -m~ > /usr/local/bin/docker-compose

The reason we install this in the /usr/local/bin/ folder is that this folder is where
global commands are stored in Linux. For example, when you type a command and
hit Enter, Linux does a search in a few common areas to see if the command you
typed exists. If it does, execution starts, else you will get an error stating that the
command can't be found. This makes it easier, so you don't have to use full paths to
the docker-compose binary or be in a certain directory each time to run it:

$ chmod +x /usr/local/bin/docker-compose

This will set the downloaded binary to executable.

[99]

Docker Compose

Installing on OS X and Windows

The installation for OS X and Windows is different than it originally was. For OS
X in particular, the installation was done using the curl command. Now, Docker
has created what they call Docker Toolbox that is used to install not only Docker
Compose but multiple components of the service for you to use.

To install Docker Compose on these platforms, we need the Docker Toolbox installer.
This can be found on the Docker website. Simply download the installer for your
platform and follow the installer instructions to get up and running.

Docker Compose YAML file

For building your YAML files, I definitely recommend looking at the Docker
documentation for this. There are a plethora of items that can be added to your
docker-compose.ynl file and it's always changing.

The key thing to note about a basic YAML file is that it has to contain either a name
for each service, an image:, or a build: section. There are many other options to do
inside the compose file, such as:

* Container linking

* Exposing ports

* Specifying the volumes to be used

* Specifying the environmental variables

* Setting the DNS servers to be used

* Setting the log driver to be used and much more

The Docker Compose usage

We can start by using the ever-so-helpful - -help switch on the docker-compose
command. We will see a lot of output and will sift through it after the following output:

$ docker-compose --help
Define and run multi-container applications with Docker.

Usage:

docker-compose [options] [COMMAND] [ARGS...]

[100]

Chapter 7

docker-compose —h|——he1p

Options:

-f, --file FILE Specify an alternate compose file (default:
docker-compose.yml)

-p, --project-name NAME Specify an alternate project name (default:
directory name)

--verbose Show more output

-v, --version Print version and exit
Commands:

build Build or rebuild services

help Get help on a command

kill Kill containers

logs View output from containers

port Print the public port for a port binding

ps List containers

pull Pulls service images

restart Restart services

rm Remove stopped containers

run Run a one-off command

scale Set number of containers for a service

start Start services

stop Stop services

up Create and start containers

migrate-to-labels Recreate containers to add labels

version Show the Docker-Compose version information

The Docker Compose options

Looking at the help output, we can see that the list is categorized as Usage, Options,
and commands. The Usage section is how you will need to structure your commands
to run them successfully. Next is the Options section that we will look at now:

Options:

-f, --file FILE Specify an alternate compose file (default:
docker-compose.yml)

[101]

Docker Compose

-p, --project-name NAME Specify an alternate project name (default:
directory name)

--verbose Show more output

-v, --version Print version and exit

So, as we can see from the previous output of the docker-compose --help command,
there are two sections: an Options section as well as a Commands section. We will first
look at the items in the options section and next look at the Commands section.

There are four items in the Options section:

e -f:If you are using Docker Compose outside the folder where the docker-
compose . yml file exists or if you are not naming it docker-compose.yml,
then you will need to specify the - £ flag. By default, when you initiate the
Docker Compose commands, they are meant to be done in the directory
where your docker-compose. ynl file is located. This helps in keeping things
consistent, organized, as well as less convoluted.

* -p, --project-name: The -p option will allow you to give a name to your
project. By default, Docker Compose uses the name of the folder you are
currently running the Docker Compose commands from. This allows you to
override it.

* --verbose: The - -verbose switch allows you to run Docker Compose in
a way that you can see the output of items about the image(s) being used,
such as:

° The command used to start the containers

° The CPU shares being used in the container
° The domain name being used

° Whether an entry point was used and if so, what it is

* -v, --version: This will simply print the version number of the Docker
Compose client being used.

[102]

Chapter 7

The Docker Compose commands

We can tell by running the previous docker-compose --help command that there
are many subcommands that can be used with the main docker-compose command.
Let's break them down individually and provide examples of each subcommand,
starting at the top and working our way down the list. Remember that there are

also switches for each subcommand that can be found using the - -help option. For
example, docker-compose <subcommand> --help. These commands will also seem
very similar as the commands we saw in the Docker commands section in Chapter 4,
Managing Containers. Also, note that some of these commands need to be run in the
folder where docker-compose and/or the Dockerfile for that service are located.

For the command examples, we will be using the following as the contents of our
docker-compose.yml file called example 1:

master:
image:
scottpgallagher/galeramaster
hostname:
master
ports:
- "3306:3306"
nodel:
image:
scottpgallagher/galeranode
hostname:
nodel
links:
- master
node2:
image:
scottpgallagher/galeranode
hostname:
node2
links:
- master

We will also be creating this file (example 2):

web:
build:
command: php -S 0.0.0.0:8000 -t /code
ports:
- "8000:8000"
links:

[103]

Docker Compose

- db
volumes:
- .:/code
db:
image: orchardup/mysql
environment :
MYSQL DATABASE: wordpress

We will create our Dockerfile for this docker-compose . yml file:

FROM orchardup/php5
ADD . /code

build

The build command of Docker Compose is used when you have changed the
contents of a Dockerfile that you are using and need to rebuild one of the systems in
the docker-compose.yml file.

For example, if you review our example 2 code, in the previous section, we have a
web container that we are specifying in our docker-compose . yml file. Now, if were to
update the contents of the Dockerfile, we would need to rebuild the container named
web, so it knows about the change. We may want to change the image we are using or,
if the image has been updated, we would want to do a rebuild of the web container:

$ docker-compose build web

It will look for the name web in the docker-compose. yml file, then jump to the
Dockerfile, and rebuild the web container based on the contents of the Dockerfile.
This also can be useful; if the container in question has disappeared, you can rebuild
just that image. There is just one switch that can be used with this subcommand and
that is - -no-cache, which allows you to build the image without using local cache.

kill

The ki1l subcommand does exactly what its name suggests. It will kill a running
container without gracefully stopping it. This can have unattended consequences
with the data that is being written, such as MySQL database tables, to at the time

of issuing this command. Remember that containers are made to be immutable
environments; but if you start diving into the volumes, then you are referring to data
that is mutable and might change. In an event where you do have a volume and data
is being written to it, the best practice would be to use the stop subcommand.

[104]

Chapter 7

Using the example 2 code in the The Docker Compose commands section, let's say that
both the web and db containers are running and we want to stop the web container.
In this case, we could use the ki11 subcommand:

$ docker-compose kill web

logs

Next up is logs! This subcommand will print the output from the specified service.
Let's take a look at example 1. We have three running containers in this case: master,
nodel, and node2. We can tell that node2 is doing something strange with its MySQL
replication and we need to see whether we can find out why. Our first stop is to
check its logs:

$ docker-compose logs node2

You will receive an output similar to the following (but not exactly the same):

node2 1 | at gcomm/src/gmcast.cpp:connect precheck() :282

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs core.cpp:long int
gcs core open(gcs core t*, const char*, const char*, bool) () :206: Failed
to open backend connection: -131 (State not recoverable)

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int gecs
open(gcs conn t*, const char*, const char*, bool) ():1379: Failed to
open channel 'my wsrep cluster' at 'gcomm://master': -131 (State not
recoverable)

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2 1 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7
node2 1 150904 16:47:56 [ERROR] Aborting
node2 1

|
|
|
node2 1 | 150904 16:47:56 [Note] WSREP: Service disconnected.
|
|
|

node2 1 150904 16:47:57 [Note] WSREP: Some threads may fail to exit.
node2 1 150904 16:47:57 [Note]l] mysqgld: Shutdown complete
node2 1

We can see that this node has an issue talking to master and shuts down its MySQL.
Now that sure helps us!

[105]

Docker Compose

You will notice that the output is colored as well. This is something you will see
while using Docker Compose, as it separates running containers using different
colors. You can get the output of the logs without color as well by appending the
- -no-color switch to the command:

$ docker-compose logs --no-color node2

node2 1 | at gcomm/src/gmcast.cpp:connect precheck() :282

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs core.cpp:long int
gcs _core open(gcs core t*, const char*, const char*, bool) () :206: Failed
to open backend connection: -131 (State not recoverable)

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs/src/gcs.cpp:long int gcs
open(gcs conn t*, const char*, const char*, bool) ():1379: Failed to
open channel 'my wsrep cluster' at 'gcomm://master': -131 (State not
recoverable)

node2 1 | 150904 16:47:56 [ERROR] WSREP: gcs connect failed: State not
recoverable

node2_ 1 150904 16:47:56 [ERROR] WSREP: wsrep::connect() failed: 7
node2_1 150904 16:47:56 [ERROR] Aborting
node2_ 1

node2_ 1
node2_ 1
node2_ 1

150904 16:47:57 [Note] WSREP: Some threads may fail to exit.

|
|
|
node2 1 | 150904 16:47:56 [Note] WSREP: Service disconnected.
|
| 150904 16:47:57 [Notel mysgld: Shutdown complete
|

port

The port subcommand allows you to use Docker Compose to get you the
public-facing port from the private port the server is displaying. This can be useful if
you either forget what port privately maps or what port publicly maps. If you have
used autoassigned ports, then you might want to be looking that information up as
well. The command is very straightforward. Again, looking at example 1, we will
this time look at master. The thing to note with this command is that the container
must be running in order to get this information. The structure of this command is:

$ docker-compose <name-from-compose> <port-to-lookup>

$ docker-compose port master 3306

[106]

Chapter 7

There are also two switches to utilize with this subcommand:

* --protocol: This is used to display either the TCP or UDP port to look up
the port that you specify on the command line. This will default to display
TCP. The reason for this switch would be if you are looking for the UDP port:

$ docker-compose --port udp master 3306

* --index: This is used if you have scaled containers and you want to look up
what a certain image in the list is using. For example, if we were specifying
two masters, we could do:

° $ docker-compose --index 1 master 3306: This would display
the public-facing port for the master container in index position 1.

° $ docker-compose --index 2 master 3306: This would display
the information for the master container in index spot two.

We know for this example that port 3306 is being used for the MySQL service.
However, if you don't know what ports it was running on the private or public side,
you can use the ps subcommand that we will be looking at next.

ps
The Docker Compose ps subcommand can be used to display information on

the containers running within a particular Docker Compose folder. For instance,
in our last subcommand, we talked about not knowing the private port. This
command will help us get that information. We will now take a look at the output
of the docker-compose ps subcommand using example 2 code in the The Docker
Compose commands section:

$ docker-compose ps

Name Command State

galeracompose master 1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,

4568/tcp, 53/tcp,

[107]

Docker Compose

53/udp, 8300/tcp,
8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp
galeracompose nodel 1 /entrypoint.sh Exit 1

galeracompose node2 1 /entrypoint.sh Exit 137

We can get a lot of information from this output. We can get the name of the
containers running. These names are assigned based upon folder_name +
_name_used_in yml file + <number of_ each_name_runnings. For example,
galeracompose master 1, where:

* galeracompose is our folder name

* master is the name being used in the docker-compose.yml file

* 1is how many times this container is being run
We also see the command that is running inside the container as well as the state of
each container. In our earlier example, we see that one container is up and two are in
an Exit status, which means they are off. From the one that is up, we see all the ports

that are being utilized on the backend, including the protocol. Then, we see the ports
that are exposed to the outside and also the backend port they are connected to.

When you use various commands with Docker Compose, you can specify either the
name given from the output using the ps subcommand or by the name given in the
docker-compose . yml file.

pull

The pull subcommand can be used in two ways. One you could run:
$ docker-compose pull
Or you could run:

$ docker-compose pull <service name>

What's the difference? The difference in the first one is that it will pull all the images
that are referenced in the docker-compose. yml file. In the second one, it will pull
just the image that is specified for the service asked to be pulled.

[108]

Chapter 7

If we look back at example 1 in the Docker Compose commands section, we have
master, nodel, and node2 in our docker-compose .yml file. If we wanted to retrieve
all the images, we would use the first example. If we just wanted the image being
used by master, we would use the second one:

$ docker-compose pull master

Remember that these commands need to be run in the folder where the docker-
compose . yml file is located.

restart

Restart does exactly what it says it does. As with the pull subcommand, it can be
used in two ways. You can run:

$ docker-compose restart

It will restart all the containers that are being used in the docker-compose . yml file.
You can also specify which container to restart:

$ docker-compose restart <service>

Again, using example 1 in the The Docker Compose commands section, we only want to
restart one of the node services:

$ docker-compose restart nodel

The restart command will only restart the containers that are currently running. If
a container is in an exit state, then it won't start that container up to a running state.

rm

The rm subcommand can be used to remove containers for specific Docker Compose
instances. By default, it will ask you to confirm whether you really want to remove
the container in question. It is a good practice to use the subcommand in this way.
However, if you are comfortable enough, you can also use the - £ switch with the
subcommand to force removal and you won't be prompted to for yes as an answer:

$ docker-compose rm <service>

$ docker-compose rm node2

Going to remove galeracompose node2 1
Are you sure? [yN] y

Removing galeracompose node2 1... done

[109]

Docker Compose

You can use this command, as we have seen with the previous commands, without
specifying a service name. If you do so, it will prompt you to remove each of

the stopped containers. It will not try to remove the containers that are running
however. Again, you could use the - £ switch to specify the removal of all the
stopped containers without asking for approval.

run

The run subcommand is used to run a one-time command against a service, not
against an already running container. When you use the run subcommand, you are
actually starting up a new container and executing the specified command. This is
one command that you do need to pay attention to, including the switches that are
available for the subcommand.

Specifically, there are two to remember:

* --no-deps: This will not start up containers that may be linked to the
container being used with the run subcommand. By default, when you use
the run subcommand, any linked containers will start up as well.

* --service-ports: By default, ports that are being specified in the docker-
compose . yml file are not exposed during the execution of the run subcommand.
This is to avoid issues with the ports that are already in use. However, this
switch will allow you to expose the ports that are being specified. This can be
helpful if the ports in question aren't already being exposed.

The structure of the subcommand is as follows:

$ docker-compose run <service> <command>

scale

The scale subcommand allows you just to do that: scale. With the scale
subcommand, you can specify how many instances you want to start up. Using
example 1, if we want to load up a bunch of nodes, we could do that using the
scale subcommand:

$ docker-compose scale nodel=3

This would fire up three nodes and link them back to the master container. You can
also specify multiple containers to scale per line as well. If we had a difference in
nodel and node2, we could scale them accordingly on the same line.

$ docker-compose scale nodel=3 node2=3

[110]

Chapter 7

start

We will use this for our example with the start subcommand:

$ docker-compose ps

Name Command State
Ports
galeracompose master 1 /entrypoint.sh Exit 137
galeracompose node2 run 1 /entrypoint.sh Up

3306/tcp, 4444/tcp,
4567/tcp, 4568/tcp,
53/tecp, 53/udp, 8300/tcp,
8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

From the preceding ps subcommand, we can see that the master node is stopped.
That's not good! We need to get it started as soon as possible:

$ docker-compose start master

$ docker-compose ps

Name Command State

galeracompose master 1 /entrypoint.sh Up
0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,
4568/tcp, 53/tcp, 53/udp,

8300/tcp, 8301/tcp,

[111]

Docker Compose

8301/udp, 8302/tcp,

8302/udp, 8400/tcp,

8500/tcp

galeracompose node2 run 1 /entrypoint.sh
3306/tcp, 4444/tcp,

4567/tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,

8301/tcp, 8301/udp,

8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

Up

Phew, it is much better now! Let's take a look at what we need to do if we need to

stop a running container.

stop

The stop subcommand stops running containers gracefully. Using our example from

the last subcommand, let's stop the master container:

$ docker-stop master

docker-compose ps

Name Command
Ports
galeracompose master 1 /entrypoint.sh
galeracompose node2 run 1 /entrypoint.sh

3306/tcp, 4444/tcp,

4567 /tcp, 4568/tcp,

53/tcp, 53/udp, 8300/tcp,

State

Exit 137
Up

[112]

Chapter 7

8301/tcp, 8301/udp,
8302/tcp, 8302/udp,

8400/tcp, 8500/tcp

up
The up subcommand is used to start all the containers specified in a docker-

compose . yml file. It can also be used to start up a single container as well from a
compose file. By default, when you issue the up subcommand, it will keep everything
in the foreground. However, you can use the -d switch to push all that information
into a daemon and just get information on the container names on the screen:

Let's use example 2 in this test case. We will take a look at docker-compose up -d
and docker-compose up:

$ docker-compose up -d

Starting wordpresstest db 1...

Starting wordpresstest web 1...

$ docker-compose up

Starting wordpresstest db 1...

Starting wordpresstest web 1...

Attaching to wordpresstest db 1, wordpresstest web 1

db 1 | 150905 14:39:02 [Warning] Using unique option prefix key buffer
instead of key buffer size is deprecated and will be removed in a future
release. Please use the full name instead.

db 1 | 150905 14:39:02 [Warning] Using unique option prefix key buffer
instead of key buffer size is deprecated and will be removed in a future
release. Please use the full name instead.

db 1 | 150905 14:39:03 [Warning] Using unique option prefix key buffer
instead of key buffer size is deprecated and will be removed in a future
release. Please use the full name instead.

db 1 | 150905 14:39:03 [Warning] Using unique option prefix myisam-
recover instead of myisam-recover-options is deprecated and will be
removed in a future release. Please use the full name instead.

db_1 | 150905 14:41:36 [Note] Plugin 'FEDERATED' is disabled.
db 1 | 150905 14:41:36 InnoDB: The InnoDB memory heap is disabled

[113]

Docker Compose

db 1 | 150905 14:41:36 InnoDB: Mutexes and rw locks use GCC atomic
builtins

db 1 | 150905 14:41:36 InnoDB: Compressed tables use zlib 1.2.3.4

db 1 | 150905 14:41:36 InnoDB: Initializing buffer pool, size = 128.0M
db 1 | 150905 14:41:36 InnoDB: Completed initialization of buffer pool
db 1 | 150905 14:41:36 InnoDB: highest supported file format is
Barracuda.

db 1 | 150905 14:41:36 InnoDB: Waiting for the background threads to
start

db 1 | 150905 14:41:37 InnoDB: 5.5.38 started; log sequence number
1595675

db 1 | 150905 14:41:37 [Note] Server hostname (bind-address): '0.0.0.0';
port: 3306

db 1 | 150905 14:41:37 [Notel - '0.0.0.0' resolves to '0.0.0.0';

db 1 | 150905 14:41:37 [Note] Server socket created on IP: '0.0.0.0'.
db 1 | 150905 14:41:37 [Note] Event Scheduler: Loaded 0 events

db 1 | 150905 14:41:37 [Note] /usr/sbin/mysqld: ready for connections.
db 1 | Version: '5.5.38-0ubuntu0.12.04.1-log' socket: '/var/run/mysqld/

mysqld.sock' port: 3306 (Ubuntu)

You can see a huge difference. Remember that, if you don't use the -d switch and hit
Ctrl + C in the terminal window, it will start shutting down the running containers.
While it's good for testing purposes, if you are going into a production environment,
it is recommended to use the -d switch.

version

The version subcommand will give you the version of Docker Compose that you
are running. It's very straightforward and can also be utilized with the -v switch:

$ docker-compose version

$ docker-compose -v

The difference is that the subcommand version will show you a little more
information such as the docker-py version, Python version, and OpenSSL version,
while the -v switch will just show you the version of Docker Compose.

[114]

Chapter 7

Docker Compose — examples

In this section, we will take a look at some examples and break them to understand
what we can do within the docker-compose . yml file. Remember, earlier we discussed
that in the YAML file, there needs to be either an image section or a build section. Let's
take a look at an example using each. Then, we will look at an example using as many
of the options available for the Docker Compose YAML file as possible.

Here is a breakdown of an example docker-compose . yml file. We will break the
contents into sections to help you understand each entry.

image
The image section tells Docker Compose that you are going to define the
configuration of your containers and what settings each will have:

haproxy:#container name
image: tutum/haproxy #image to use from the Docker Hub
ports: #defining our port setup
- "80:80" #port to map from Docker Host: to container
links: #what containers to link to/with
- varnishl
- varnish2
varnishl:
image: jacksoncage/varnish
ports:
- "82:80"
links:
- webl
- web2
- web3
- web4

environment: # you use environment to specify variable to pass to the
container with values

VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: webl
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web2

[115]

Docker Compose

VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web3
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web4
VARNISH PORT: 80

varnish2:

image: jacksoncage/varnish

ports:
- "g8l:80"

links:
- webl
- web2
- web3
- web4

environment:
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: webl
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web2
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web3
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web4
VARNISH PORT: 80

webl:
image: scottpgallagher/php5-mysql-apache2

volumes: # you can specify volumes for the container to use. This will
allow for multiple containers to share a volume

- .:/var/www/html/ # specify the location of the volume
links:

- master

- nodel

- node2

- nfsl

[116]

Chapter 7

- mcrouterl

- mcrouter2

web2:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsl
- mcrouterl
- mcrouter2
web3:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsl
- mcrouterl
- mcrouter2
web4:
image: scottpgallagher/php5-mysql-apache2
volumes:
- .:/var/www/html/
links:
- master
- nodel
- node2
- nfsl
- mcrouterl

- mcrouter2

[117]

Docker Compose

master:
image:

scottpgallagher/galeramaster

hostname: # you can specify a hostname to

master #hostname to use
environment:
MARIADB DATABASE: wordpressmu
MARIADB USER: replica
MARIADB PASSWORD: replica
nodel:
image:
scottpgallagher/galeranode
hostname:
nodel
environment:
MARIADB DATABASE: wordpressmu
MARIADB USER: replica
MARIADB PASSWORD: replica
links:
- master
node2:
image:
scottpgallagher/galeranode
hostname:
node2
environment:
MARIADB DATABASE: wordpressmu
MARIADB USER: replica
MARIADB PASSWORD: replica
links:
- master
nfsl:
image: cpuguy83/nfs-server
volumes:
- /var/www/wp-content/uploads

mcrouterl:

assign to the container

[118]

Chapter 7

image: jmck/mcrouter-docker

command: mcrouter --config-str='{"pools":{"A":{"servers":["memcach
ed1:11211", "memcached2:11211"]}}, "route":"PoolRoute|A"}' -p 5000 # here
you can specify a command to run on the container when it's started

links:
- memcachedl
- memcached2
mcrouter2:
image: jmck/mcrouter-docker

command: mcrouter --config-str='{"pools":{"A":{"servers":["memcach
edl:11211", "memcached2:11211"]}}, "route":"PoolRoute|A"}' -p 5000

links:
- memcachedl
- memcached2
memcachedl:
image: memcached
links:
- dbo
memcachedl:
image: memcached
links:
- dbo
memcached2:
image: memcached
links:

- dbo0

In this very long example, you can see that we are specifying a name for each service
as well as the image that is going to be used from the Docker Hub Registry. You can
also see a lot of container linking being done in it. Remember that container linking
removes the exposition off ports and keeps the communication secure between

the said linked containers. We are specifying volumes as well as running some
commands in the containers as well.

[119]

Docker Compose

build

The easiest example of something that uses build is a wordpress instance:

web:
build:
command: php -S 0.0.0.0:8080 -t /wordpress
ports:
- "80:8080"
links:
- database
volumes:
- .:/wordpress
database:
image: mysql
environment:
MYSQL DATABASE: wordpress
MYSQL ROOT_ PASSWORD: password

Now, there are other files that are required for this setup; but we are just focusing on
the docker-compose.yml file right now. In the earlier example, we are specifying
two services: a web service and a database service. In the database service, we see
that we are using the image option; but in the web service, we are doing something
different. We are building based off the contents of the folder and then placing the
files in the /wordpress directory inside the container.

The last example

Following is an example just for the sake of it. It's probably something that would
not actually run, but you could use it for reference for the different options that you
can set within your docker-compose.yml file

node2:

image:
scottpgallagher/galeranode

hostname:
database

environment:
MARIADB DATABASE: wordpressmu
MARIADB USER: replica

[120]

Chapter 7

MARIADB PASSWORD: replica
nfsl:
image: scottpgallagher/php5-mysqgl-apache2
ports:
- "2049"
volumes:
- .:/var/www/html/
webl:
image: apache
links:
- node2
- nfsl
volumes from:
- nfsl
expose:
- IIBOII
log driver: "syslog"
dns: 8.8.8.8
restart: always
hostname: webserver

read only: true
In the previous example, we specified a lot of things:

* image: This specifies what image to use from Docker Hub

* volumes: This specifies what paths to use for the volumes that live outside
the container

* volumes-from: This specifies what volume from another container to mount
into the container

* 1links: This links containers together, so the need to expose ports isn't there
* log_driver: This selects what logging driver to use

* dns: This specifies the ability to add additional DNS servers per container

* restart: This states that the container needs to restart when or if it fails

* hostname: This sets a hostname for the container

* read_only: This allows you to specify that a container is read-only

[121]

Docker Compose

* ports: This specifies what ports can be attached to (from the Docker host to
the Docker container)

* expose: This specifies what ports are actually exposed externally

* environment: This sets the values to the specified variables

Summary

In this chapter, we have looked at how to install Docker Compose on various
platforms. We also looked at the file that Docker Compose uses, YAML file, for its
operation. We took a dive into the Docker Compose usage and commands, and
some examples for what you can use Compose.

In the next chapter, we will be looking at Docker Swarm. Docker Swarm is another
piece of the Docker ecosystem that can be used to do multiple things; but at its core, it
is used for Docker container clustering. It can also use discovery services and advanced
scheduling methods. The chapter will also cover the Docker Swarm API, creating a
Swarm environment and some Swarm strategies while setting up the environments.

[122]

Docker Swarm

In this chapter, we will be taking a look at Docker Swarm. With Docker Swarm, you
can create and manage Docker clusters. Swarm can be used to disperse containers
across multiple hosts. It also has the ability to know how to scale containers as well.
In this chapter, we will be covering the following topics:

* Installing Docker Swarm

* The Docker Swarm components

* Docker Swarm usage

* The Docker Swarm commands

* The Docker Swarm topics

Docker Swarm install

Let's get things started by the typical way of installing Docker Swarm. Docker
Swarm is only available for Linux and Mac OS X. The installation process for
both is the same. Let's take a look at how we install Docker Swarm.

Installation

Ensure that you already have Docker installed, either through the curl command on
Linux or through Docker Toolbox on Mac OS X. Once you have the Docker daemon
installed, installing Docker Swarm will be simple:

$ docker pull swarm

One command and you are up and running. That's it!

[123]

Docker Swarm

Docker Swarm components

What components are involved with Docker Swarm? Let's take a look at the three
components of Docker Swarm:

* Swarm
* Swarm manager

* Swarm host

Swarm

Docker Swarm is the container that runs on each Swarm host. Swarm uses a unique
token for each cluster to be able to join the cluster. The Swarm container itself is the
one that communicates on behalf of that Docker host to the other Docker hosts that
are running Docker Swarm as well as the Docker Swarm manager.

Swarm manager

The Swarm manager is the host that is the central management point for all the
Swarm hosts. The Swarm manager is where you issue all your commands to control
nodes. You can switch between the nodes, join nodes, remove nodes, and manipulate
the hosts.

Swarm host

Swarm hosts, which we saw earlier as the Docker hosts, are those that run the
Docker containers. The Swarm host is managed from the Swarm manager.

Container Container

Container Container Container
Container Container Container

N[

Swarm Manager

[124]

Chapter 8

The preceding figure is an illustration of all the Docker Swarm components.
We see that the Docker Swarm manager talks to each Swarm host that is running
the Swarm container.

Docker Swarm usage

Let's now take look at Swarm usage and how we can do the following tasks:

* Creating a cluster
* Joining nodes
* Removing nodes

* Managing nodes

Creating a cluster

Let's start by creating the cluster, which starts with a Swarm manager. We first need
a token that can be used to join all the nodes to the cluster:

$ docker run --rm swarm create

85b335f95e9a37b679e2ea%e6ad8d6361
We can now use that token to create our Swarm manager:

$ docker-machine create \
-d virtualbox \
--swarm \
--swarm-master \
--swarm-discovery token://85b335f95e9a37b679e2ea9%e6ad8d6361 \
swarm-master
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...
Starting VM...

To see how to connect Docker to this machine, run docker-machine env swarm-
master.

[125]

Docker Swarm

The swarm-master node is now in VirtualBox. We can see this machine by doing
as follows:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master virtualbox Running tcp://192.168.99.101:2376

swarm-master (master)

Now, let's point Docker Machine at the new Swarm master. The earlier output we
saw when we created the Swarm master tells us how to point to the node:

$ docker-machine env swarm-master

export DOCKER TLS VERIFY="1"
export DOCKER_HOST=“tcp://192.168.99.102:2376“

export DOCKER CERT PATH="/Users/spgl4/.docker/machine/machines/swarm-
master"

export DOCKER_MACHINE NAME="swarm-master"
Run this command to configure your shell:

eval "$(docker-machine env swarm-master)"

Upon running the previous command, we are told to run the following command to
point to the Swarm master:

$ eval "$ (docker-machine env swarm-master)"

Now, if we look at what machines are on our host, we can see that we have the
swarm-master host as well. It is set to ACTIVE, which means that we can now run
commands against this host:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master * virtualbox Running tcp://192.168.99.101:2376

swarm-master (master

[126]

Chapter 8

Joining nodes

Again using the token, which we got from the earlier commands, used to create the
Swarm manager, we need that same token to join nodes to that cluster:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f£95e9a37b679e2ea%e6ad8d6361 \

swarm-nodel

Now, if we look at the machines on our system, we can see that they are both part of
the same Swarm:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master * virtualbox Running tcp://192.168.99.102:2376

swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376
swarm-master

Listing nodes

First, ensure you are pointing at the Swarm master:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master * virtualbox Running tecp://192.168.99.102:2376

swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376
swarm-master

[127]

Docker Swarm

Now, we can see what machines are joined to this cluster based off the token used to
join them all together:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea%e¢6ad8d6361

192.168.99.102:2376
192.168.99.103:2376

Managing a cluster

Let's see how we can do some management of all of the cluster nodes we are creating.

So, there are two ways you can go about managing these Swarm hosts and the
containers on each host that you are creating. But first, you need to know some
information about them, so we will turn to our Docker Machine command again:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
swarm-master * virtualbox Running tcp://192.168.99.102:2376

swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376
swarm-master

You can switch to each Swarm host like we have seen earlier by doing something
similar to the following —changing the values —and by following the instructions
from the output of the command:

$ docker-machine env <Node Name>

But this is a lot of tedious work. There is another way we can manage these hosts

and see what is going on inside them. Let's take a look at how we can do it. From the
previous docker-machine 1ls command, we see that we are currently pointing at the
swarm-master node. So, any Docker commands we issue would go against this host.

But, if we run the following, we can get information on the swarm-node1 node:

$ docker -H tecp://192.168.99.103:2376 info

Containers: 1
Images: 8

Storage Driver: aufs

[128]

Chapter 8

Root Dir: /mnt/sdal/var/lib/docker/aufs
Backing Filesystem: tmpfs

Dirs: 10

Dirperml Supported: true

Execution Driver: native-0.2

Logging Driver: json-file

Kernel Version: 4.0.9-boot2docker

Operating System: Boot2Docker 1.8.2 (TCL 6.4); master : aba6l92 - Thu Sep
10 20:58:17 UTC 2015

CPUs: 1

Total Memory: 996.2 MiB

Name: swarm-nodel

ID: SDEC:4RXZ:03VL:PEPC:FYWM:IGIK:CFM5:UXPS:U4S5:PNQD:5ULK:TSCE
Debug mode (server): true

File Descriptors: 18

Goroutines: 29

System Time: 2015-09-16T09:32:27.67035212Z
EventsListeners: 1

Init SHAl:

Init Path: /usr/local/bin/docker

Docker Root Dir: /mnt/sdal/var/lib/docker
Labels:

provider=virtualbox

So, we can see the information on this host such as the number of containers, the
numbers of images on the host, as well as information about the CPU, memory,
and so on.

We can see from the earlier information that one container is running. Let's take a
look at what is running on the swarm-node1 host:

$ docker -H tcp://192.168.99.103:2376 ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

122400424c87 swarm:latest "/swarm join --advert" 17 hours
ago Up 17 hours 2375/tcp swarm-agent

Now, you can use any of the Docker commands using this method against any
Swarm host that is listed in the output of your docker-machine 1s output.

[129]

Docker Swarm

The Docker Swarm commands

Now, let's take a look at some Docker Swarm-specific commands that we can use.
Let's revert to the ever-so-helpful —the help switch on the Docker Swarm command:

$ docker run --rm swarm --help

Usage: swarm [OPTIONS] COMMAND [arg...]
A Docker-native clustering system
Version: 0.4.0 (d647d82)

Options:

- -debug debug mode [$DEBUG]

--log-level, -1 "info" Log level (options: debug, info, warn, error,
fatal, panic)

--help, -h show help
--version, -v print the version
Commands :

create, c¢ Create a cluster

list, 1 List nodes in a cluster

manage, m Manage a docker cluster

join, j Jjoin a docker cluster

help, h Shows a list of commands or help for one command

Using TLS

Let's take a look at the options you can use for Docker Swarm as well as the
commands that are associated with it.

Options

Looking over the options from the preceding output, we can see the - -debug and
--log level switches. The other two are straightforward, as one will just print out
the help information and the other one will print out the version number that we
can see in the previous output. The options are used after each of the following
subcommands of Docker Swarm.

[130]

Chapter 8

For example:

$ docker run --rm swarm list --debug
$ docker run --rm swarm manage --debug

$ docker run --rm swarm create --debug

list
We looked at the Swarm 1ist command before:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea%e¢6ad8d6361

192.168.99.102:2376
192.168.99.103:2376

But there is also a switch that we can tack onto the 1ist command and that is the
- -timeout switch:

$ docker run --rm swarm list --timeout 20s token://85b335f95e9a37b679e2ea
9e6ad8d6361

This will allow more time to find the nodes that are a part of Swarm. It could take
time for the hosts to check, depending upon things such as network latency or if
they are running in different parts of the globe.

create

We have seen how we can create a Swarm cluster as well. What this command
actually does is it gives us the token that we need to create the cluster and join all the
nodes to it. There are no other switches that can be used with this command as we
have seen with other commands:

$ docker run --rm swarm create

85b335f95e9a37b679e2ea%e6ad8d6361

manage

We can manage a cluster with the manage subcommand in Docker Swarm. An
example of this command would look like the following, replacing the information
to align with your IP address and Swarm token:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376 token://85b33
5f95e9a37b679e2ea%e6ad8d6361

[131]

Docker Swarm

The Docker Swarm topics

There are three advanced topics we will take a look at in this section:

* Discovery services
* Advanced scheduling
e The Docker Swarm API

Discovery services

You can also use services such as etcd, ZooKeeper, consul, and many others to
automatically add nodes to your Swarm cluster as well as do other things such as
list the nodes or manage them. Let's take a look at consul and how you can use it.
This will be the same for each discovery service that you might use. It just involves
switching out the word consul with the discovery service you are using.

On each node, you will need to do something different in how you join the machines.
Earlier, we did something like this:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9%e6ad8d6361 \

swarm-nodel

Now, we would do something similar to the following (based upon the discovery
service you are using):

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-nodel ip:2376> \

consul://<consul_ip> \

swarm-nodel

You can now start manage on your laptop or the system that you will be using as the
Swarm manager. Before, we would run something like this:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376 token://85b33
5f95e9a37b679e2ea%e6ad8d6361

[132]

Chapter 8

Now, we run this with regards to discovery services:

$ docker run --rm swarm manage -H tcp://192.168.99.104:2376
consul://<consul ip>

We can also list the nodes in this cluster as well as the discovery service:

$ docker run --rm swarm list -H tcp://192.168.99.104:2376
consul://<consul_ip>

You can easily switch out consul for another discovery service such as etcd or
ZooKeeper; the format will still be the same:

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-nodel ip:2376> \
etcd://<etcd ip> \

swarm-nodel

$ docker-machine create \

-d virtualbox \

--swarm \

join --advertise=<swarm-nodel ip:2376> \
zk://<zookeeper ip> \

swarm-nodel

Advanced scheduling

What is advanced scheduling with regards to Docker Swarm? Docker Swarm allows
you to rank nodes within your cluster. It provides three different strategies to do this.
These can be used by specifying them with the - - strategy switch with the swarm
manage command:

® spread
® Dbinpack
® random
spread and binpack use the same strategy to rank your nodes. They are ranked

based off of the node's available RAM and CPU as well as the number of containers
that it has running on it.

[133]

Docker Swarm

spread will rank the host with less containers higher than a container with more
containers (assuming that the memory and CPU values are the same). spread does
what the name implies; it will spread the nodes across multiple hosts. By default,
spread is used with regards to scheduling.

binpack will try to pack as many containers on as few hosts as possible to keep the
number of Swarm hosts to a minimal.

random will do just that—it will randomly pick a Swarm host to place a node on.

The Swarm scheduler comes with a few filters that can be used as well. These can be
assigned with the --filter switch with the swarm manage command. These filters
can be used to assign nodes to hosts. There are five filters that are associated with it:

* constraint: There are three types of constraints that can be assigned to nodes:

storage=: This is used if you want to specify a node that is put on a
host and has SSD drives in it

° region=: This is used if you want to set a region; mostly used for
cloud computing such as AWS or Microsoft Azure

° environment=: This can set a node to be put into production,
development, or other created environments

* affinity: This filter is used to create attractions between containers. This
means that you can specify a filter name and then have all those containers
run on the same node.

* port: The port filter finds a host that has the open port needed for the node
to run; it then assigns the node to that host. So, if you have a MySQL instance
and need port 3306 open, it will find a host that has port 3306 open and
assign the node to that host for operation.

* dependency: The dependency filter schedules nodes to run on the same host
based off of three dependencies:

° --volumes-from=dependency

°® --link=dependency:<alias>

°® --net=container:dependency
* health: The health filter is pretty straightforward. It will prevent the
scheduling of nodes to run on unhealthy hosts.

[134]

Chapter 8

The Swarm API

Before we dive into the Swarm AP, let's first make sure you understand what an
APl is. An APl is defined as an application programming interface. An API consists
of routines, protocols, and tools to build applications. Think of an API as the bricks
used to build a wall. This allows you to put the wall together using those bricks.
What APIs allow you to do is code in the environment you are comfortable in and
reach into other environments to do the work you need. So, if you are used to coding
in Python, you can still use Python to do all your work while using the Swarm API to
do the work in Swarm that you would like done.

For example, if you wanted to create a container, you would use the following in
your code:

POST /containers/create HTTP/1.1
Content-Type: application/json

"Hostname": "",
"Domainname": "",
IlUserll : nn ,
"AttachStdin": false,
"AttachStdout": true,
"AttachStderr": true,
"Tty": false,
"OpenStdin": false,
"StdinOnce": false,

"Env": null,

ucmdu: [
Ildatell
] I
"Entrypoint": "",
"Image": "ubuntu",
"Labels": {
"com.example.vendor": "Acme",
"com.example.license": "GPL",
"com.example.version": "1.0"
"Mounts": [
"Source": "/data",
"Destination": "/data",
"Mode" : "ro, Zn ,

"RW": false

[135]

Docker Swarm

1,

"WorkingDir": "",
"NetworkDisabled": false,
"MacAddress": "12:34:56:78:9a:bc",
"ExposedPorts": {
"22/tcp": {}

}
"HostConfig": {

"Binds": ["/tmp:/tmp"],

"Links": ["redis3:redis"],

"LxcConf": {"lxc.utsname":"docker"},

"Memory": O,
"MemorySwap": O,
"CpuShares": 512,
"CpuPeriod": 100000,

"CpusetCpus": "O0,1",

"CpusetMems": "O,1",

"BlkioWeight": 300,

"MemorySwappiness": 60,

"OomKillDisable": false,

"PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },

"PublishAllPorts": false,
"Privileged": false,
"ReadonlyRootfs": false,
"Dns": ["8.8.8.8"],
"DnsSearch": [""],

"ExtraHosts": null,

"VolumesFrom": ["parent", "other:ro"],

"CapAdd": ["NET_ ADMIN"],

"CapDrop": ["MKNOD"],

"RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
"NetworkMode": "bridge",

"Devices": [],

"Ulimits": [{}],

"LogConfig": { "Type": "json-file", "Config": {} },
"SecurityOpt": [""],

"CgroupParent": ""

[136]

Chapter 8

You would use the preceding example to create a container; but there are also other
things you can do such as inspect containers, get the logs from a container, attach to
a container, and much more. Simply put, if you can do it through the command line,
there is more than likely something in the API that can be used to tie into to do it
through the programming language you are using.

The Docker documentation states that the Swarm API is mostly compatible with the
Docker Remote API. Now we could list them out in this section. But seeing that the
list could change as things could be added into the Docker Swarm API or removed, I
believe, it's best to refer to the link to the Swarm API documentation here instead of
listing them out, so the information is not outdated:

https://docs.docker.com/swarm/api/swarm-api/

The Swarm cluster example

We will now go through an example of how to set up a Docker Swarm cluster:

Create a new Docker host with Docker Machine

$ docker-machine create --driver virtualbox swarm

Point to the new Docker host

$ eval "$ (docker-machine env swarm)"

Generate a Docker Swarm Discovery Token

$ docker run swarm create

Launch the Swarm Manager
$ docker-machine create \
--driver virtualbox \
--swarm \
--swarm-master \
--swarm-discovery token://<DISCOVERY TOKEN> \

swarm-master

Launch a Swarm node
$ docker-machine create \
--driver virtualbox \

--swarm \

[137]

https://docs.docker.com/swarm/api/swarm-api/

Docker Swarm

--swarm-discovery token://<DISCOVERY TOKEN> \

swarm node-01

Launch another Swarm node
$ docker-machine create \
--driver wvirtualbox \
--swarm \
--swarm-discovery token://<DISCOVERY TOKEN> \

swarm node-02

Point to our Swarm Manager

eval "$ (docker-machine env swarm-master)"

Execute 'docker info' command to view information about your
environment

$ docker info

Execute 'docker ps -a'; will show you all the containers running as
well as how they are joined to the same Swarm cluster

$ docker ps -a

Run simple test

$ docker run hello-world

You can then execute the 'docker ps -a' command again to see what node
it ran on

$ docker ps -a

You will want to look at the column labeled 'NAMES'. If you continue
to re-run the 'docker run hello-world' command/container you will see it
will run on a different Swarm node

[138]

Chapter 8

Summary

In this chapter, we took a dive into Docker Swarm. We took a look at how to install
Docker Swarm and the Docker Swarm components; these are what make up Docker
Swarm. We took a look at how to use Docker Swarm; joining, listing, and managing
Swarm nodes. We reviewed the Swarm commands and how to use them. We also
covered some advanced Docker Swarm topics such as advanced scheduling for your
jobs, discovery services to discover new containers to add to Docker Swarm, and

the Docker Swarm API that you can use to tie your own code to perform the

Swarm commands.

In the next chapter, we will take a look at running Docker in production. We will
take everything you have learned in all of the previous chapters and put them into
production. We will look at how to monitor your containers and the safeguards you
can put into place to help with container recovery. We will also look at how you can
extend into external platforms such as Heroku.

[139]

Docker in Production

In this chapter, we will be looking at Docker in production, pulling all the pieces
together so you can start using Docker in your production environments and feel
comfortable doing so. Let's take a peek at what we will be covering in this chapter:

Setting up hosts and nodes
Managing hosts and containers
Using Docker Compose
Extending to external platforms

Security

Where to start?

When we start thinking about putting Docker into our production environment,
we first need to know where to start. This sometimes can be the hardest part of any
project. We first need to start by setting up our Docker hosts and then start running
containers on them. So, let's start here!

Setting up hosts

Remember, as it was mentioned in the earlier chapter, that setting up hosts will
require us to tap into our Docker Machine knowledge. We can deploy these hosts to
different environments, including cloud hosting. To take a walk down memory lane,
let's look at how we go about doing this:

$ docker-machine create --driver <driver name> <host name>

[141]

Docker in Production

Now, there are two values that we can manipulate: <driver name> and <host_names.
The host name can be whatever you want it to be. But I recommend that it should

be something that would help you understand its purpose. The driver name on the
other hand has to be the location where you want to create the host. If you are looking
at doing something locally, then you can use VirtualBox or VMware Fusion. If you

are looking at deploying your application to a cloud service, you can use something
like Amazon EC2, Azure, or DigitalOcean. Most of these cloud services will require
additional details to authenticate who you are and where to place the host:

For example, for AWS, you would use:

$ docker-machine create --driver amazonec2 --amazonec2-access-key <AWS
ACCESS KEY> --amazonec2-secret-key <AWS SECRET KEY> --amazonec2-subnet-id
east-1b amazonhost

You can see that you will need the following;:

* Amazon access key
* Amazon secret key

e Amazon subnet ID

Setting up nodes

Next, we want to set up the nodes or containers to run on the hosts that we have
recently created. Again, using a combination of Docker Machine with the Docker
daemon, we can do this. We first must use Docker Machine to point to the Docker
host that we want to deploy some containers on:

$ docker-machine env <host name>

$ eval "$(docker-machine env <host name>)"

Now we can run our normal Docker commands against this Docker host. To do this,
we will simply use the Docker command-line tools. To deploy the containers, we can
pull the following images:

$ docker pull <image name>
Or, we can run a container on a host:

$ docker run -d -p 80:80 nginx

[142]

Chapter 9

Host management

In this section, we will focus on host management, that is, the ways we can manage
our hosts, what we should use to manage our hosts, how we can monitor our hosts,
and container failover, which is very important when something happens to the host
that is running critical containers.

Host monitoring

With host monitoring you can do so via the command line using Docker Machine
as also there are some GUI applications out there that can be useful as well. For
Machine, you can use the 1s subcommand:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL

SWARM

amazonhost amazonec2 Error

swarm-master * virtualbox Running tcp://192.168.99.102:2376

swarm-master (master)

swarm-nodel virtualbox Running tcp://192.168.99.103:2376
swarm-master

You can use some GUI applications out there as well, such as:

* Shipyard: https://shipyard-project.com/
e DockerUI https://github.com/crosbymichael/dockerui

* Panamax: http://panamax.io/

Docker Swarm

Another tool that you can use for node management is that of Docker Swarm. We
saw previously how helpful Swarm can be. Remember that you can use Docker
Swarm to manage your hosts as well as to create and list them. The most useful
command to remember for Swarm is the 1ist subcommand. With the 1ist
subcommand, you can get a view of all the nodes and their statuses:

Remember that you will need either the discovery service IP or the token number
that is used for Swarm:

$ docker run swarm list token://<swarm token>

[143]

Docker in Production

Swarm manager failover

With Docker Swarm, you can set up your manager node to be highly available.
That is, if the managing host dies, you can have it failover to another host. If you
don't have it set up, there will be a service interruption, as you won't be able to
communicate to your hosts anymore and will need to reset them up to point to the
new Docker Swarm manager. You can set up as many replicas as you want.

To set this up, you will need to use the --replication and --advertise flags. This
tells Swarm that there will be other managers for failover. It will also tell Swarm
what address to advertise on, so the other managers know on what IP address to
connect for other Swarm managers.

Container management

Now, let's look at container management. This includes questions such as where
to store the images that we will be creating, how to use these images, and what
commands and GUI applications we can use. It also covers how we can easily
monitor our running containers, automatically restart containers upon a failure,
and how to roll the updates of our containers.

Container image storage

In Chapter 3, Container Image Storage, we looked at the various locations to
store the images you are creating. Remember that there are three major locations
to store them:

* Docker Hub: A location that is run by Docker and can contain public and
private repositories

* Docker Trusted Registry: A location that is again run by Docker, but
provides the ability to get support from Docker

* The locally run Docker registry: Locally run by yourself to storage images

You will want to consider where you want your images to be stored. If you are
running containers that might contain data that you do not want anybody to be
able to access, such as private code, you may want to run your own Docker registry
to keep the data locked. If you are testing, then you may only want to use Docker
Hub. If you are in an enterprise environment where uptime is necessary, then the
second option of having Docker there for support would be immensely beneficial.
Again, it all depends on your setup and needs. The best thing is that no matter what
you choose at first, you can easily change and push your images to these locations
without having to jump through a lot of extra hoops or other configurations.

[144]

Chapter 9

Image usage

The most important thing to remember about Docker images is the four Ws:

* Who: Who made the image?
* What: What is contained in the image?
* Why: Why are these things created?

¢ Where: Where are the items such as the Dockerfile or the other code
for the image?

The Docker commands and GUIs

Remember that there are many commands that you can use to control your
containers. With tools such as the Docker daemon, Docker Machine, Docker
Compose, and Docker Swarm, there is almost nothing that can stop you from
achieving the goal you want. Remember, however, that some of these tools are not
available on all the platforms yet. I stress yet as I assume that Docker will eventually
have their tools available for all the environments. Be sure to use the --help flag on
all the commands to see the additional switches that might be available. I myself am
always finding new switches to use every day on various commands.

There are also many GUI applications out there; they can be beneficial to your
container's management needs. One that has been at the forefront of this since the
beginning is Panamax. Panamax provides the ability to set up your environments in
a GUI-based application for you to deploy, monitor, and manipulate your container
environments. With the popularity of Docker growing each day, there will be many,
many, many others that you can use to help set up and tune your environment.

Container monitoring

We can also monitor our containers using methods similar to monitoring hosts: using
Docker commands as well as GUIs that are built by others.

First, the Docker commands that you can use:

® docker stats

® docker port

® docker logs

® docker inspect

® docker events

[145]

Docker in Production

In the Host monitoring section, you can see that the same GUI applications can
monitor both your Docker hosts and your containers. It is a double bonus as you
don't need separate applications to monitor each service.

Automatic restarts

Another great thing you can do with your Docker images is you can set them to
automatically restart upon a failure or a reboot of a Docker host. There is a flag that
can be set at runtime: the - -restart flag. There are three options you can set, one of
which is set by default by not setting the flag.

These three options are:

* no: The default by not using the flag.

* on-failure:max_ retires: Sets the container to restart, but not indefinitely
if there is a major problem. It will try to restart the container a number of
times based on the value set for max_retires. After it has passed that value,
it will not try to restart anymore.

* always: Will always restart the container. It could cause a looping issue if the
container continues to just restart.

Rolling updates

One of the benefits I have learned to love about Docker is the ability to control it the
same way I control the code that I write. Just like Git, remember that your Docker
images are version-controlled as well. This being said, you can do things such as
rolling updates to them. There are two ways you can go about doing it. You can keep
your images as a hosted code on something like GitHub. You can then update your
code, build your image, and deploy your containers. If something goes wrong, you
can simply use another version of that image to redeploy. There is also another way
you can do this. You can get the new image up and running; when you are ready,
stop the old container from running and then start up the new one. If you use items
such as discovery services, it becomes even easier; you can roll your newly updated
images into the discovery service while rolling out the old images. This makes for
seamless upgrades and a great peace of mind for zero downtime.

[146]

Chapter 9

Docker Compose usage

One of the more useful tools, and one I find myself using a lot, is Docker Compose.
Compose has a lot of powerful usage, which in turn is great for you. In this section,
we will look at two of its usages:

* Developer environments

* Scaling environments

Developer environments

You can use Docker Compose to set up your developer environments. How is this
any different from setting up a virtual machine for them to use or letting them use
their own setup? With Docker Compose, you control the setup, you control what
is linked to what, and you know how the environment is set up. So, there is no
more "well it works on my system" or need to troubleshoot error messages that are
appearing on one system setup but not another.

Scaling environments

Docker Compose also allows you to scale containers that are located in the
docker-compose . yml file. For example, let's say our Compose file looks as follows:

varnish:
image: jacksoncage/varnish
ports:
- "82:80"
links:
- web
environment :
VARNISH BACKEND PORT: 80
VARNISH BACKEND IP: web
VARNISH PORT: 80
web:
image: scottpgallagher/php5-mysqgl-apache2
volumes:
- .:/var/www/html/

[147]

Docker in Production

With the Compose setup, you can easily scale the containers from your docker-
compose . yml file. For instance, if you need more web containers to help with the
backend load, you can do so with Docker Compose. Be sure that you are in the folder
where your docker-compose. ynml file is located:

$ docker-compose scale web=3

This will add three extra web containers and do all the linking as well as the traffic
forwarding from the varnish server that is necessary. This can be immensely helpful
if you are looking at figuring out how many instances you might need to help scale
for load or service usage.

Extending to external platform(s)

We looked at how we can extend to some other external platforms such as cloud
services like AWS, Microsoft Azure, and DigitalOcean before. In this section, we will
focus on extending Docker to the Heroku platform. Heroku is more a little different
than those cloud services; it is considered a Platform as a Service (PaaS). Instead of
deploying containers to it, you can link your containers to the Heroku platform from
which it is running a service, such as PHP, Java, Node.js, Python, or many others. So,
you can run your rails application on Heroku and then attach your Docker container
to that platform.

Heroku

The way you can use Docker and Heroku together is by creating your application
on the Heroku platform. Then, in your code, you will have something similar to the
following:

{

"name": "Application Name",

"description": "Application to run code in a Docker container",
"image": "<docker image>:<tag>",

"addons": ["heroku-postgresqgl"]

}

To take a step back, we first need to install a plugin to be able to get this functionality
working. To install it, we will simply run:

$ heroku plugins:install heroku-docker

[148]

Chapter 9

Now, if you are wondering what image you can or should be using from Docker
Hub, Heroku maintains a lot of images you can use in the preceding code. They are
as follows:

heroku/nodejs
heroku/ruby
heroku/jruby
heroku/python
heroku/scala
heroku/clojure
heroku/gradle
heroku/java
heroku/go
heroku/go-gb

Overall security

Lastly, let's take a look at the security aspect of putting Docker into production.
This is probably one of the most talked about aspects of not only Docker, but any
technology out there. What security risks exist? What security advantages exist? We
will take a look at both of these aspects as well as cover the best practices for your
overall Docker setup.

Security best practices

These are the things to keep in mind when you are setting up your production
environment:

* Whoever has access to your Docker host has access to every single Docker
container that is running on that host and has the ability to stop them, delete
them, or even start up new containers.

* Remember that you can run Docker containers or attach containers to Docker
volumes using the read-only modes. This can be done by adding the :ro
option to the volume:

$ docker run -d -v /opt/uploads:ro nginx

$ docker run -d --volumes-from data:ro nginx

[149]

Docker in Production

* Remember to utilize the Docker security benchmark application to help tune
your environments (see Chapter 5, Docker Security, for more information).

» Utilize the Docker command-line tools to your capability to see what has
changed in a particular image:
$ docker diff
$ docker inspect

$ docker history

DockerUI

DockerUl is a tool written by Michael Crosby, who at the time of writing this book

worked for Docker. DockerUl is a simple way to view what is going on inside your
Docker host.

oo e a o ;
DockerUl
karll
Certarery
Containers:
" mage commana onens tuna

BT Bn'sh < A ocal e/ seniy —config‘senay.cond @y mant
o S 100 TV «C ARy TeckE-Bere (EIC/Te0RTedks Cconl

Dockerll is a web interface for the Docker Remate APL. The goal is to provide a pure client side
implemantation 5o it is effartiess to connect and manage docker. This project is not complete and is
still under heavy devalopment.

C 172631

06-0BT10.49:43 968758899.09.00

I

n

pe " Hfussiocalitindsentry ~canfige/sentry.cond oy start’]
Sysinipath Aurfocalbin/docker
Image: 8 s o

Goals

* Minimal dependencies - | really want to keep this project a pure htmiljs app.
= Consistency - The web Ll should be consistent with the commands found on the docker LI

Container Quickstart

1. Run: docker run -d -p G008:9000 —privileged -v
fvar/run/docker. sock: /var/run/docker. sock dockerui/dockerui

[150]

Chapter 9

This is a screenshot of the GitHub repository, where the code for DockerUI
is kept. You can view the content yourself by visiting https://github.com/
crosbymichael/dockerui.

This page will include screenshots of DockerUI in action as well as the current
features of DockerUI that are available. You can create pull requests against the code
if you have ideas you would like to see in DockerUI and would like to help contribute
to the code. You can also submit issues that you might find with DockerUI.

The installation of DockerUl is very straightforward with you just running a simple
Docker run command to get started:

$ docker run -d -p 9000:9000 --privileged -v /var/run/docker.sock:/var/
run/docker.sock dockerui/dockerui

LR a 172168136 ' o

DockerUl

DockerUIl

The Linux container engine

Running Containers

Docker APY Verson: w117 Ul Varson: wi.7.0

[151]

Docker in Production

After you have run the previous command, you will be able to navigate to the
DockerUI web interface. You should be able to easily break down the run command
and see what it is doing and where you need to go to get to the dashboard. However,
in case you are stumped, here is what the command is doing;: it is running the
DockerUI container on your Docker host and exposing port 9000 from the host to the
container. So, simply launching a web browser and pointing to the IP address of the
Docker host and then port 9000 will give you to a screen similar to the previous one.
This is the DockerUI web dashboard.

LR 1 172168336 = o

DockerUl

Status

Containers created

Images created

Dischonr AP Version: v1.AT Ul Version: v0.7.0

[152]

Chapter 9

This is another view of the dashboard shortly after you have launched the container
and visited the web interface. You can see information such as what containers are
currently running on your Docker host and what their statuses are; some could be
stopped as well. It will also show you the containers that are created and a timeline
for when the images were created.

aad < I 7260136 - o I
DockerUl
Dashboard Containars images Info
Containers:
Display All
Action Name Image Command Created Status

fdockan| WedOct 282015 [EETETET
fgwanm | g 172.16.9.136:2375 con... W Oct 28 2015 [U 51 e |
fsweanm m -mplication «-addr 172.16.... Vind Oct 28 2015 [g 57 s |
fussflocakbin/run Véed Oct 28 2015 [Up 61 mirwass
sh Wied Oct 28 2015 [U 52 mirtes

Docker APY Version: vi.17 Ul Versior: vD.7.0

[153]

Docker in Production

At the top of the web interface, you will see a navigation bar. When you click on the
Containers item, you will be brought to a page that provides you information on all
the containers running on your host. You will see their name, the images used to run
the containers, what command is being executed inside each container, when they
were created, and their statuses. You can take actions against these containers from
here as well. These actions are start, stop, restart, kill, pause, unpause, and remove.

LN) 172185136 » o
DockerUl
Dashboard Contalnsrs Images Info
Images:
Action id Repesitory VirtualSize Croated

swamiatest 10 M8 Tue Oct 132015
dockenulidockanui:intest smMmE Tue Sep 15 2018
wpina:iatest 5MB Mon Sep 14 2015
ehazlett/dockar-proxylatest Tme Sat Sep 05 2015

Docker AP Varsion: w117 Ll Varsion: va.7.0

[154]

Chapter 9

Next up in the navigation bar is Images. Again, like Containers, you can get all the
information on all the images being used on your Docker host here. Information such
as their IDs, what repositories they are from, their virtual sizes, and when they were
created will be displayed here. Again, you can take some actions on your images. But
for images, the only option you have is to remove them from your Docker host.

LR VLGB Y o

DockerUl

Dashnoasd Containers images Info

Docker Information
Endpoint: dockerapi

Api Version: v1.17

Version: 1.68.2

Git Commit: CaBic2ed

Go Version: go1.4.2

Containas:

Images:]

Dabug: true

CPUs:

Total Mamony: 908 MB

Operating System: Boat2Dacker 1.8.2 (TCL 6.4%; master ; abafi182 - Thu Sep 10 20:5817 UTG 2018

Kemel Versior: 4.0.8-boot2gocker

o VHEY.YDNHEVLEMEGP: QaFHUJBW ZAKS HICL:OLEM: TAL4: BLOG: S B

Labais: [provider=wrmwarsfusion’]

Fie Descriptors: 81

Boroutines: 64

Storagn Driver: aufs

Storage Driver Status: [[*Roct D, */mnt/sda vasfibidocker/auts ™) " Backing Filesystern”,“extfs"L{" Dirs*,*24°]|" Dirperm1
Suppantad” “trua’]]

Exncution Driver: native-0.2

P4 Forwarding true.

Index Server Address: hitpsziinces.decker ol

The last item in the navigation menu is Info. The Info section gives you a general

overview of your Docker host, such as what Docker version it is running and how
many containers and images are there. It also provides system information on the
hardware that is available.

[155]

Docker in Production

ImageLayers

ImageLayers is a great tool, when you are looking at shipping your containers or
images around. It will take into account everything that is going on in every single
layer of a particular Docker image and give you an output of how much weight it
has in terms of actual size or the amount of disk space it will take up.

a0 d < & imagelayers i 2 (4]

At .
* IMAGE LAYERS Aboul + %+ Centurylink CenturyLink Gloud

Gt un Emnnd Aadgs
Imagelayersio 95 MB [21 Layers

(1] 0 0 0

Docker Images [Manage images Share URL Copy URL

Welcome to ImagelLayers

Visualize Docker imn?us and the layers that compose them.
See how sach in the Dackerfil b 1o the final
image, and discover which layers are shared by multiple images.

This screenshot is what you will be presented with while navigating to the
ImageLayers website: https://imagelayers.io.

[156]

Chapter 9

You can search for images that are on Docker Hub to have ImageLayers provide
information on the image back to you. Or, you can load up a sample image set if you
are looking at providing some sample sets or seeing some more complex setups.

sne ¢ i} rr— _ FEVET

Manage Images

latest

[157]

Docker in Production

In this example, we are going to search for the wordpress image and select the latest
tag. Now, you can search for any image and it will do auto-complete. Then, you can
select the appropriate tag you wish to use. This could be useful if you have, say, a
staging tag and are thinking of pushing a new image to your latest tag, but you want
to see what impact it has on the size of the image.

Manage Images

[158]

Chapter 9

So, let's walk through an example. In this example, we are going to select a mysqgl
image and the latest tag. We will use this since it is a common image that most
people will use at some point in their Docker experience.

LN)

'"‘amu: LAYERS

360

Docker Images

myzalistest
360 mb

CMD “/binvbash”

g
H

LN groupadd -+ mysal 88
320 kb

RN mikair foockes-aning..

16

£ Manage Images

 imagelayers.io

202

‘-3:::: CenturyLink Contu

Gut an Embed Badge:
Imagelayers.io 95 MEJ 21 Lavers

Share URL Copy URL

[159]

Docker in Production

Once we click on Save Changes from the previous item, we will be shown something
similar to the preceding screenshot (now, this will vary depending upon the image
you have selected in your search). This displays some information at the top, such as
the total image size, unique layers, the average layer size, and the largest layer size.
This will help you hone in on a particular layer that might have grown wildly.

[N] i + imagalayers o 5 L]
‘ IMAGE LAYERS About £ ConturyLink i i Clod
Get an Embed tadge
512 32 16 177 Imegetayers o 55 MB f 21 Layers

= Share URL GCopy URL
Docker Images (. Manage Images

wordpresiatest
512 mb

AUN apt-get update A8 ap....

FRLIN agn-gat Lpclann AR

3
3
i

BN PHP_ B DiftsAsseos.

] |

RLIN e <p $PHP_INGDL.

UM eot-get akap..

i

LN rin o1 v/ wwrmibml

i

[160]

Chapter 9

The layers are broken down on the left-hand side of the previous screenshot. We can
see what action is being done at each level as the size that it adds to the overall image
per layer.

e0e & imageayers. 0 v] i
‘ IMAGE LAYERS Aol » 5::::-‘- CenturyLink Ceniu
Gat an Embed Badge:
51 2 32 1 5 1 77 Imagelayers.io 95 MBJ/ 21 Liayens
Shara URL - Copy URL

Docker Images (. Manage Images

wondpeess iatest
512 mb

CMD */ivbash
Obyles

19mb

[161]

Docker in Production

Upon hovering on a particular layer, you will be given information on it at the
bottom of the screen in a black box. This will show how each action is layered one
after the other so as to help see the command structure of the image.

aoe < = imageiayers.io v O ¢ =

s ; sl
‘ IMAGE LAYERS Asout v £,# CenturyLink CenturyLink Cioud

(at an Embed Radge

magelayaraio OF 31 Layars
Shara LIRL () Copy URL
Docker Images (2 Manage Images
rubdates! evihondatest nodeciatus galingiatos v ot phoiatuat
mb

718 mb 689 mb 642 mb 709 mb 817 mb

MO “finash®

0 bytes

HUN apt-0ot upcatis A& apt-0ot st -y —o-Nstall-eoommends oa-GonMeatss curl woet SR m -1 Aasibiplista” FIM a0 Lot 88 00,
44 mb 18 mb
HUN apt-pot upcate A% ant-got instal -y --no-instal-recommends by g merurial operssh-olent sutversion &K rm -rf e/l istsr M apt-get upxiato S8 0p...
122 mb 177 mib
AUN mpt-et upcats A& mt-et instal -y —o-Inmall-eCOMmANds SUSocont aUtmaks Bzing 198 g+ ... FUN m0t-get upcats AL ag... FUN m-get updats &4 5., ENV PHP_N_DiRaseioc..
15 mb 134 mb 79 kb 0 bytes
ENV RLIEY_MASOR=S 3 RLIN Apt=gat purge < pyth... RN mat < A fior oy i . ENY GOLANG_VERSION=.. RLIN ncho ‘st hetpoifpe, . FAUIN iy «py $PHP_INLDL..
0 bytes 9TT kb kb 0 bytes 1 bytes 0 bytes
ENV AUBY_VERSIONS2.2.3 ENY LANG=GUTF-8 EN NN CONFIGLDGL BNV GOUANG_DOWNLDA. ENY LANG=U.UTF-8 ENV GPG_HEYS=0B8078H..,
0 bytes. O bytes O bytes 0 bytes 0 bytes: O bytes
ENY FLIY_DOWNLOAD UM gig ~heyserver hap.. NV HODE_VERSIONS 2.1 NV GOLANG_DOWNLOA . N JAVAVEHSICN S B88
0 bytes. 13k 0 bytes 0 bytes 0 bytes

The preceding screenshot is an example of what you might see if you were to click on
the sample image set from the main screen. As you can see, this one is quite complex;
not only does it have a lot of layers, but it also has a lot of images that are being used.
This could be something you would see while adding multiple images to see your
desired output.

[162]

Chapter 9

Summary

In this chapter, you have learned how to use Docker in a production environment
as well as the key considerations to keep an eye on during the times of and before
implementation.

In the next three chapters, we are going to be taking a look at some GUI applications
that you can utilize to manage your Docker hosts, containers, and images. They are
some very powerful tools and choosing one can be difficult, so let's cover all three!

[163]

10

Shipyard

In this chapter, we will take a look at Shipyard. Shipyard is a tool that allows you to
manage Docker resources from a web Ul or a GUI interface.

The topics that will be covered are:

* Starting Shipyard
* The components of Shipyard

Up and running

You will see a screen similar to the following screenshot while navigating your
browser to the Shipyard website at https://shipyard-project.com:

Shipyard
Composable Docker Management

Built on Docker Swarm, Shipyard gives you the ability to manage Docker resources including
containers, images, private registries and more.

Shipyard differs and

15 100% e

shipyard e e

Home
Docs
Deploy

Walkthrough
APl
GitHub

[165]

https://shipyard-project.com

Shipyard

First, we need to get Shipyard up and running. To do this, we will execute the
following commands:

$ docker-machine create --driver vmwarefusion shipl

$ docker-machine env shipl

$ eval "$(docker-machine env shipl)"

$ curl -sSL https://raw.githubusercontent.com/scottpgallagher/shipyard/
master/deploy | bash -s

$ docker-machine create --driver vmwarefusion ship2
$ docker-machine env ship2

$ eval "$(docker-machine env ship2)"

$ curl -sSL https://raw.githubusercontent.com/scottpgallagher/shipyard/
master/deploy | ACTION=node DISCOVERY=consul://<IP ADDRESS of SHIP1>:8500
bash -s

You will see the following login screen when you first navigate to the shipyard
web instance:

eoe < 172188135

shipyard

[166]

Chapter 10

The URL is always the IP address of your Docker host. It runs on port 8080 (that is,
172.16.9.135:8080).

eoe < 172188135

shipyard

The default username is admin. The default password is shipyard. Enter these
details and click on Login.

[167]

Shipyard

Containers

After logging in, you will be taken to the main dashboard or the CONTAINERS
section as follows:

L] < n] 17218.8.135 =

ADMIN

- id Node Name Image Status Created Actions

@ 2015824d73%b ship? shipyard-swarm-agant swanm:latest Up 15 seconds 2015-10-28 12:54:20 -0400 a ok
@ 091e29%ecad?5 ship? shipyard-swarm-manager swanm:latest Up 16 seconds P01510-28 12:54:20 0400 a F
® dcBAB3R4661 ship2 shipyard-proxy sharlett/dockerproxy:latest Up 19 seconds 2015-10-28 12:54:16 -D400 a *
@ faditeibfcdb ship? shipyard-certs alpine Up 23 seconds 2015-10-28 12:54:13 0400 a | F
® adfibeBi6O2c shipl shipyard-controlier shipyard/shipyardlatest Up & minutes 201510-28 12:48:174 0400 Q F
L] c2535bd5d31f ship1 shipyard-swarm-agent swarmiatest Up & minutes 2015-10-28 12:48:09 -0400 a *
@ ddeaf3f41a3h shipl shipyard-controller swanmlatast Up & minutes 2015-10-28 12:48:09 -0400 aQ||lm
@ dacd535bedc3 shipl shipyard-prewy ehazhett/docker proxy:latest Up & minutes 201510-26 12:48:05 0400 a F
L] Bacdd780aB4a shipl shipyard-certs alpine Up & minutes 2015-10-28 12:48:02 -0400 a *
® 2baXdeleBed shipt shipyard-discovery progrium/consul:lmas Up & minutas 2015-10-28 12:48:02 -0400 ajlle
L] aclalldaad?0 shipl shipyard-controller rethinkdb Up & minutes B01510-26 12:47:55 -0400 a F

There is a lot you can do in this section. We will cover all of it step by step in the
following and the Back to CONTAINERS section.

[168]

Chapter 10

Deploying a container
The first thing we will tackle on this page is the Deploy Container button.

ece < T 172069135 .) ¥

shipyard Hl CONTAINERS & IMAGES ola NODES ¥ REGISTRIES & ACCOUNTS = EVENTS ADMIN = L]

Contalner Deployment

Image Configuration Container Name
image Name & ‘Command
»
Hostname Domaln i
CPUs Mamery (MB)

Swarm Constraint

Name Yalue
Constraint Rule Value
Volumes
Host Path Container Path Restart Policy
i ﬂ D nit aiamatically rastart -
Container Links
. Part Configuration
Contais Aliwy
sl ﬂ Automatically expose all pors @

Container Port Protocol Host Listen Address Mot Part

Advanced

Allew cantainer 16 fun in privileged made

There is a lot of information to digest here. But at the same time, this is the
information you are used to providing either in your Dockerfile or your docker-
compose . yml file. Once you type in all your information, you're ready to deploy.
So, go ahead and click on the Deploy button.

[169]

Shipyard

IMAGES

At the top of the screen, we can see a blue navigation bar. Moving on from the
CONTAINERS section (for now), we will now cover the IMAGES section. In the
IMAGES section, we can see all the images that are being used across our hosts.

L] . < 172.18.8.135

INTAINERS B IMAGES & RODES ¥ REGISTRIES 1S s ADMIN ~ (7]

(o nevos | & pulinese | -
Names B Craated Nods Virtual Size
rethinidi:iatest E85ad 5d TS 2015-10-23 19:21:38 0400 shipl 1TLTT MB n
wwarmistest 556c60fB7ERE 2015-10-13 23:27:36 -0400 shipl R.72MB u
ahigyard/shépyand atea ba1dcdagancs 2015-09-24 09:45:16 0400 ship1 56.01 MB u
uipine:iatest fafddcaT1ec2 20150914 14:01:14 0400 shipl S0 mB u
eharlett/docker-proxy.latest bba2f7546aTf 2015-09-05 19:02:35 -0400 shipl 748 MB n
shatiettcur tstee: fa465a510875 20150905 17:20040 0400 shipl B3SMB n
progrium/consul labest e66fbeTETE2E 20150630 15:59:41 0400 ship1 66.21 MB n
wwarmlotest S56cH0fBTEAR 201510-13 23:27:36 -0400 ship2? .72 MB n
Blping:latest fafddeaT1ec2 2015-08-14 16:01:14 -0400 ship2 501 M8 n
abaciatydashar-prtitrietaet bbazi7S4BATH 20150905 19:02:35 0400 ship2 7.48 MB u

We can see information such as the name of the image, its ID, when it was created,
what node or Docker host it's running on, and its virtual size. We also have the
option to delete the images by using the red trash can icon.

[170]

Chapter 10

Pulling an image
Now, one thing that we didn't cover was the Pull Image button. By clicking on this,
you will be presented with the following screen:

L] L] 172.18.8.135

Pull Image

Name

On this screen, you can enter an image name as well as its tag and have it pulled.
You could then go back to the CONTAINERS page and deploy that image. Now,
this will work not only with Docker Hub, but with any other repository you add

later to Shipyard.

[171]

Shipyard

NODES

Next up is the NODES section. This section shows information on what nodes or
Docker hosts you have connected to Shipyard.

s0® < 2168135 ' th +

@ EVENTS ADMIN ~

INTAINERS 5 &b NODES: ¥ REGISTRIES

Name Address Containers Reserved CPUs Reserved Memory Labels
. . § ative-0.2, kemet 4094 2 g5y 1.8.2 (TCL 6.4)
hipt WIRABRAISZNIS | T o e master : sbab192 - Thu Sep 10 20:58:17 UTC 2015, providersvmwarefusion, storagedriversaufs
5 Py 4 o native-0.2, 4.0.9-boat2dacker, i ker 1.8.2 (TCL6.4);
i HEAT NI |4 s Sl /14 master : sbat192 - Thu Sep 10 2005817 UTC 2015, providersvmwarefusion, storagedriver=aufs

It will give you information such as the name of the node, its IP address, the number
of reserved CPUs and memory, as well as the labels that provide information such as
what version of the Linux kernel or Docker is being used.

[172]

Chapter 10

REGISTRIES

Next up is the REGISTRIES tab. This is where you can add registries beyond
Docker Hub.

L] . < 17218.8.135
S IMAGES & RODES ¥ REGISTRIES & ACCOUNTS ADMIN ~

B CONTAINERS M EVENTS

= Registries

Therst arg ne registries

On clicking the Add Registry button, you will be taken to the following screen:

eoe < 172.18.8.135
P REGISTRIES & ACCOUNTS [EVENTS ADMIN ~

B CONTAINERS S IMAGES o NODES

Registry Address

This will allow you to enter information about the registry such as its name and
registry address, which would include the IP address or the DNS name and the port

it is running on.

[173]

Shipyard

ACCOUNTS

Next up is the ACCOUNTS tab where —you guessed it—you can add or remove
accounts.

L] {4 1 17218.8.135

2 IMAGES i NODES F REGISTRIES M ACCOUNTS [EVENTS

Username First Name Last Name Roles

admin Shipyard Admin Adenin a n

In the following screenshot, you can see what information is needed when you add a
new account:

L] . < 1 17218.8.135

B CONTAINERS 3 IMAGES dh NODES V REGISTRIES & ACCOUNTS @ EVENTS ADMIN ~ (1]

Account Details

Usemame

First Nane

Last Name

Password

Roles

Information such as the username you want to use, your first and last names, the
password you want to assign to it, and lastly your assigned role.

[174]

Chapter 10

EVENTS

Okay, last up is the EVENTS tab that will display the following screen:

s0® 72168135 > th > |
[EVENTS ADMIN

Time User Type Meszage Container Node Tags

201510-28T16:54:47 8352 adrmin apl fapiroles &pd, apd, get
2015-10-28T16:54:47 8327 admin apl fapifaccounts api, api, get
2015 710-28T1 6584448162 admin apl fapliregistries o, apl, get
2015-10-28T16:54:42 62 admin apl fapifnodes api, api, get
2015-10-28T16:54:33 6752 admin api /aplfnodes api, api, get
201510-28T16:54:30.7712 drmin apl fapifnodes D, api, get
2015-10-28T16:52:14.0962 admin apl /api/nodes i, api, get
201510-287T16:52:1 2.935Z admin api fapifnodes g, apl, get
2015-10-28T16:52:12. 7752 admin apl fapifnodes api, api, get
201F10-20TESZN 10T admin apl faplinodes i, apl, get
201510-28T16:52:13.4482 adrmin apl fapifnodes &p4, apd, get
2015-10-28T16:52:13. 2782 admiin spi /apifnades a0, api, get
2015 10-28T16:5212. 5347 admin apl fapifnodes apd, apl, get
201510-28T16:5212 3312 admin apl {apifnodes api, api, get
201510-28T1&521 21432 dmin apl fapiinades i, apl, get
201510-28T16:52:11.9262 adrmin apl fapiinodes P4, apd, get
201510-28T165211.711Z admiin spi /apifnades a0, api, get

This tab will show you all the events that have occurred and what user accounts they
were initiated from. Information such as the message, container, node, and tags are
also displayed.

[175]

Shipyard

Back to CONTAINERS

We jump back to the CONTAINERS section where we saw all our containers. We
can also click on the magnifying glass on the right-hand side of each container to get
pulled to the following screen:

ece < 172169135 v u T

il CONTANERS & IMAGES s NODES P REG 8 @ EVENTS ADMIN = (]

Started today at 12:54 pm
Consabe
Container Configuration Swarm Node [Environment
Container I Cammand Hame Host SWARU_HOS T 2875
201582407300 § --addr 172.16.9.136:2375 ship2 172.16.9.136:2375
consul://172.16.9,135:8500
cPUs Memory

Hostname Domain Narmne 1 596 MB
201562467350 N/A
Port Configuration

Intemal Z37S/%cp
Processes

PiD USER COMMAND

238 roat fawim | -adde 17L16.9.136:2378 consul17216.9.1 358500

We can then get information on that running container and manipulate it. We can
stop, restart, or destroy (or remove) it. We can also see information on it such as the
command that it's running, its port, its IP address, and its node name.

[176]

Chapter 10

Clicking on the Stats button, we can see information pertaining to the running
container such as the CPU, memory, and network information.

172168135

Container. 2015824d73%h

CPU

ADMIN * a

Stream

12:58:24 125827

APELETY 128828 2828

Network

125828

(FETE

nzseEr

125828

RFETE

125829

RPELE]

AFETE

125829

128829

125830

12887

12:58:30

0.00
1zeaa0 12583 12:88:30

@ Network (rx) etk (tx)

125824 eI 1682

e

1e6aEr

124827

RFEE]

(EEE

VRS

1Esa

002
0.02

002
002

558

125830 12:58:30

[177]

Shipyard

Clicking on the Logs button will show you everything that is going on with the
container. In this case, the container is polling consult for new information ever
so often.

L T 172169135

Container: 201562847390

2015-10-28T16: 54120, 6672634042 [34nINFO[ON[0000] Registering on the discovery service every 20s... [34maddr[0m=172,16
140, 6837865952 [JmINFO[ON[0020] Registering on the discovery servi amaddr (Da=172,15
JB89B44271Z [34mINFO[ON[0040] Registering on the discovery servi 4naddr [Dm=172
520, 8540743847 [34nINFO[OM[0040] Registering on the discovery servi anggdr [Qe=172,
(B9B021642E [34mINFO[ON[00S0] Registering on the discovery servi [34maar [Dm=172, 16,
.TO26419507 [34mINFO[ON[0100] Registering on the discovery servi amaddr [Dm=172, 16,
120, 701192952 [S4aINFO[ON[0T20) Registering on the discovery servi [Mmacdr [Da=172.18.
140, 7146548532 [MaINFO[On[0140) Registering the discovery servi [3dnaddr [Om=172.16.
LT207IIBST [4aINFO[On[0160) Registering the discovery servi dnaddr [De=172.16.
:20,7255507552 [MalNFO[On[0180) Registering the discovery servi [3maddr [Ca=172.16.
140.7306939171 [34mINFO[On[0200) Registering the discovery servi g [3maddr[0m=172,16.9.136:2375 [I4mdiscovery[Ow=consul
100, 7362004632 [I4nINFO[ON[0220) Registering the discovery service every 10s. [3maddr[0==172,16.9.136:2375 [Indiscovery[Ds=consul
015-10-2RT16:58: 30, 7417035642 [I4nINFO[ON[0240] Registering on the discovery service svery 105... [J4maddr(0me172.16.9.136:2375 [Mmdizcovery[Omeconsul:/ /1

[38ndi scovery|On=consul
[3andiscovery[Onmconsul :
[38ndi scovery[Om=consul
[34ndiscovery[Oemconsul
[3amdiscovery[Omeonsul
[3amdiscovery[Ommconsul: /iy
5 [Jamdiscovery[Ommconsul s/t
[Madiscovery[Omeconsul - /77
[Jdndiscovery[dmmconsul - /{1
[Indiscovery[Ommconsul:/ /1

é

25

Z

bhbbbbibbbont

3538333388

Now, the Console button is interesting. It will allow you to actually run a command
against the container and provide the output from that command.

L T 172169135

There are other ways to manipulate these containers as well. We will go back to the
CONTAINERS page, where we can see a list of all our containers and their status.
We have some controls here to restart, stop, and destroy the container.

[178]

Chapter 10

® ® < 172169135 '

M CONTAMERS & IMAGES s NODES ¥ REGISTRIES & ACCOUNTS = EVENTS

T Node Name Image Sutus. Created Actions
201582447390 shipyard-swarm-agant swarmdatest LUip Abaut a minute 2015-10-28 12:54:20 -040C

-] 08Te29ecdd?S ship? shipyard-swarm-manager swarmn-atest Up About a minute 201510-28 12:54:20 -040C

@ dcBEE3dZASET shipd shigyard-groxy whazle/docker-proxy:latest Ug About a minute 20151028 12:5416 -040C

& fadi0sfbfedd ship2 shipyard-cernts alpne Up About a minute 201510-28 12:5413 -040C

® adfibe81602c shipl shipyard-coniroller shipyard/shipyardiatest Up 7 minutes 20151028 12:48:14 0400

L ©2535bd 5 shipyard-swanm- swarmcdates! Ugp 7 minudes 10-28 12:48:0% -040C
ddeaf3f41a3b ship shipyard-controflar swarm-latest Ua 7 minutes 201510-28 12:48:09 -0400 Q &
dacdedSheled shipl shipyard-proxy ehazlett/docker proxylatest Up 7 minutes 20151026 12:48:05 -0400 Q +
Bacdd7B0a8da | shipl shipyard-cens alpine Up 7 minutes 20151028 12:48:02 -0400 L=

® 3bE224 ship1 shipyard-discovery progrium/consullatest LUip 7 minutes 2015-10-28 12:48:02 -0400 Q ~
4clalldead?d shipl shipyard-controller rethinkdb Up B minutes 20151028 12:47:55 -0400 o F

We can also scale or rename the container and get to the other areas we saw earlier
such as Stats, Console, or Logs.

Scale Container: 2015824d739b

Mumber of Instances

1

[179]

Shipyard

You will be taken to this section if you click on the Scale option. This will allow you
to enter a numerical value and scale the instance up as far as you like.

You can also click on the Rename option to rename the container to anything
you wish.

® ® 172.16.8.135

Do be careful; use a name that helps you identify the container.

Summary

As you can see, Shipyard is very powerful and will only continue to grow and
integrate more of the Docker ecosystem. With Shipyard, you can do a lot of
manipulation with not only your hosts, but also the containers running on the hosts.

In the next chapter, we will take look at another GUI tool to manage your Docker
hosts, containers, and images, and that is Panamax.

[180]

11

Panamax

Panamax is another open source project that helps with deploying Docker environments
by using a GUI interface to allow you to control just about everything that you can with
the CLIL.

In this chapter, we will cover:

* Installing Panamax
* What after installing?

Installing Panamax

You will see the following page while navigating to the Panamax website at
http://panamax.io/:

£ Centurylink

[181]

http://panamax.io/

Panamax

Next, you will see the instructions to install Panamax on both Mac OS X and Ubuntu:

Mac 0S X 10.9.0 or higher

To

amax on Mac, use Homebrew. Here ana the steps:

On your terminal window, run

er/brov/panama.

Install and run Panamax!

After the installation, Panamax will cpen a browser window automatically.

For a manu of all commands available to you, simply run:

§ panesax

List of all available aliases and for the Panamanx Installer.

Ubuntu Linux 12.04 or higher

Ubuntu Deskiop Users: Download and run script as shown,

§ curl hitpi//downlosd. panamax. io/installer/ubunta.ah | bash

After the installation, Panamax will opon a browser window automatically. For a menu of all commands available to you, simply

un

5 panamax

[182]

Chapter 11

After running the panamax init command and then the panamax command, you
will see the following options:

Upon selecting the first selection init, all the magic starts to happen.

[183]

Panamax

Once all the magic is complete, you will be taken to the Panamax dashboard.

The following screenshot shows you what you will see once the installation has been
completed and the browser page has been loaded for you:

ece < T 10.0.0.200 v L]

tost Performance; oo m =% CenturyLink:

()

Search Panamax Templates & Docker Repositories

Onb these lable tamplates: :

publio (16} postgresgifd) mysql {4} nginx (@) gitlab (M oA drupsl (A rodis @ openssh(Z wordpress (I grofuna (1)
piwi (1) wetty (1) openstack (1) olcd(1) rads(1) haproxy(l) elasticssarch(l) Influsdd (1) snalytics (1) stackedit (1)

markdown (1) pegedown (f) tres (1) Gy (1) postgren (1) res (¥} twitter(f] | githeb{7) git(l) bulldpeck (1) | heroku (1}

From the CenturyLink Labs Blog

Introducing Flatear: Tool for

Creating Docker-ready Rails p = n = m = K

Projects

Developing Rails Apps In-
Container with Docker Compose

Docker Compose YAML
& Panamax

Watchtower: Automatic Updates
for Docker Containers

What to Inspect When You're
Inspecting

Docker Hub Top 10

On this page, you can search for images that are on Docker Hub or browse the
available templates that Panamax has to offer. You can also see the performance of
the host that is running Panamax at the top with information such as the CPU and
memory usage.

[184]

Chapter 11

An example

For this example, we select public from its available templates and use the awS CLI
- wetty image to run.

FAMNEAMAX | Q seascH

Core0S Host Performance: g mm

£ manaGe DOCUMENTATION

Search Panamax Templates & Docker Repositories

publics

Exampisa: Wrinmas

Templates

s I [jOLir_ RIS o

AWS CLI - wetty
Amaron Wob Services - GLI ersion 1.0.04 - using wetty Tarminal in Gheome
Browser hiore Detedy

Birdwatch - Tweet stream analysis and visualization

BedWalch @ an open-source reactive web spplication that consumes the
Twitter Streaming AP1 for & seloction of... Mo Dotals

buildpack-runner
Ataemplats for running your GitHub mpo coda via Hersky bulkdpacks! Mar

Drupal 7.38 with MySQL 5.5
Drupad 7.38 with mysgl 5.5 More Detaily

Drupal 7.38 with PostgreSQL 8.3
Drupal 7:38 with PosigroS0L 8.3 Morm Dotails

i—-l.

5::? CenturyLink-

[185]

Panamax

You can see information such as the image name, the description, how many images
it will contain, and the option to run the template.

BINEMaX Q seascu £+ MANAGE Bl pocumentaTiON

CormDS Host Performance: muy we 5:::? CenturyLink:

Search Panamax Templates & Docker Repositories

Exampina: Worpmas, | S — 00, Finis, s, NGINY, you pat §
Templates

AWS CLI - wetty
Amaron Wob Services - GLI ersion 1.0.04 - using wetty Tarminal in Gheome
Browser hiore Detedy

Birdwatch - Tweet stream analysis and visualization
BirdWalch is an reactive web applica : the 2
e =
buildpack-runner
Fun Template »
A taempiate for running your GitHub mpo coda via Harcd buikipacks! Mare 1

Drupal 7.38 with MySQL 5.5
el i 2

Drupal 7.38 with PostgreSQL 9.3
Drupal 7:58 with Posigeo501L 8.3 Mo Dotalls

[186]

Chapter 11

Upon clicking the Run Template button, you will get two options. You can run it
locally or deploy it to a target, such as the cloud. For this example, we will choose to
run it locally.

ece < T 10.0.0.200 ’ o

Core0S Host Performancs: wo. mm =‘._: CenturyLink:

5'_3 CenturyLink

After you choose to run it locally, you will want to navigate to the Manage section.
In this section, there are multiple subsections that you can then navigate to such as
Applications, Sources, Images, Registry, and Remote Deployment Targets. It will
show you how many of these each subsection has in it. We will take a look at each of
these next.

[187]

Panamax

Applications
First up is the Applications section. Upon entering this one, we can see the
application we launched earlier is now in here.

BINamax | & =eidcH £ MaNAGE [E] DOGUMENTATION ¥ ABOUT

ComOS Host Perormance: w me 5:::5 CenturyLink-

The application was successfully created
Chok hera o read the additional instructions provided by the author of the template used to create Ihis application.

Tha following services have armionment varkables with NULL vales. Riview ha documantation for assistance in fillng these out
= AWECLiwatty

Manage ' Dashboard / Applications

AWS CLI - wetty

Deployad to: Core0S Lacal £
Dacumantation
Access your application | g View AWS CLI - wetty on imagaisyars.ia

Application Services =

AWS CLI Add a Category

Core0S Journal - Application Activity Log Show Full Activity Log

Oct 28 13:14:35 docker 3Sbad888da3d2: Pulling fs layer

We can see information about this running instance such as where it is deployed to
(in this case, locally), the application services that it is running, and the application

activity log.

[188]

Chapter 11

Sources

The Sources section shows you what resources are currently loaded into the system.

BPANEMAX Q seancH £ manaGe DOCUMENTATION v

CormDS Host Performance: muy mm -f\::? CenturyLink:

Manage / Dashboard
Sources

h Haithub, 1} bl

: : x
Ternplates: 17 Last Rofmshed, 10020/2015 af 5:1¢ LITE

+ Add a New Source

Panamax is an open-source product from CanturyLink Labs. Sign Up for Our Newsletter

Get all the latest news, tips & tricks for Panamax, Docker, eto.
Canturylink Labs Blog (%) (%) | Legal & Prvacy Policy m

L%
= "4 CenturyLink- © 2015 ConturyLink ~ The Panaman promot s provided wnder the Apache 2.0 icense. Al Rignts Resonved.

In our case, we can see that the public templates for the Panamax public sources are
available. On this screen, you can add additional resources as needed.

[189]

Panamax

Images

In the next section, the Images section, you can see all the images that are currently
being used.

BPANEMAX Q seancH £ manaGe DOCUMENTATION

CormDS Host Performance: muy mm 5:::? CenturyLink:
Manage / Dashboard
Images

* Armaove Sskected

ImageID: o1 B3duse bletEs0c
Image Size: B0.8ME

@ centurylink/panama; x

Image10: Si0000d 1dft2 tefa
Image Size: B2 MB

& google/cadvisor:0.13.0

Image I0:
Image Size: 19.1 MB

@ <nones:<nona:s

Image 1D 37 388aabchl
Image Size: 504 MB

@ <none=<none>

Image I0: $ecd
Image Stze: 59.2 MBS

| centurylink/redis:latest

Your options on this screen are to remove whatever images you would like to by
selecting the checkbox next to them and then selecting the Remove Selected button.

[190]

Chapter 11

Registries

The next section deals with the registries that you can search for templates and
images. By default, it searches Docker Hub and includes insecure registries along
with secure registries.

ene < i} 10.00.200 & th || & |

Banamax Q seance £ manaGe DOCUMENTATION w ABOUT

ComOS Host Perormance: w s 5::.? CenturyLink:

Manage /' Dashboard

Registries
oocker Hub Endpaint: hitpa/indax. docker o +| Enabled

Allow Ingecure Aecisiries: NO

Panamax i an open-soures product fram Canturylink Labs. Sign Up for Our Newslettar

Gt ll tha lateat newe, tips & tricks for Paramax, Docker, ato.

I A (s |

s
£, ConturyLink: ©2019 GenmuryLink The Panaman project s provided under the Apsche 2.0 icense. A% Hights Heserved

You can change that to only search the secure registries if you desire so. You can also
add additional registries such as the registries that you may have deployed in your
own environment.

[191]

Panamax

Remote Deployment Targets

The last section is Remote Deployment Targets.

ece < m 10.0.0.200 &

Banamax Q seance £ manaGe DOCUMENTATION w ABOUT

Com3 Host Performance: ... -

Manage

Remote Deployment Targets

A Remote Deployment Target allows you to use Panamax to deploy templates and images to your infrastructure. You
can setup your target manually and register it with Panamax via a token, or via Dray, leveraging popular cloud providers
and orchestrators.

keam more about Remote Deployment Targets.

Leamn more about Dray.

Add a Remote Deployment Target

ically set up your 1t target on one of these providers using Dray. rvely hiave s daploymient st oot

up'
Entet your token bare.
A

. amazon £ ConturyLink: € DigitalOcean

Don't sae your favartts provider istod?

St & depioymant target up manualy, Laarm mans.

Panamax is &n open-source product from CenturyLink Labs. Sign Up for Our Newslatter

Get nll the latest news, tips & tricks for Panamax, Docker, tc.

CenfuryLink Labs Blog (%) {5 | Legal & Privacy Poloy sl Acr

€
L] ConturyLink: ©2015 Conturylink — Tha Panami project s provided under the Anschs .0 lcents. AllFights Fssanved

5::5 CenturyLink-

These are items such as cloud hosts that may include AWS, CenturyLink, and

DigitalOcean.

Now that we have covered all the sections, let's go back to the application that we

deployed and see what all we can do with it.

[192]

Chapter 11

Back to Applications

Back in our Applications section under the application that we deployed earlier, the
AWS CLI - wettyimage, we can click on the gear icon on the right-hand side of the
screen. Given some options such as saving as a PMX template that will allow you

to share it with others that are using Panamax, you can also save it as a Compose
YAML file that can be used in Docker Compose. Other options include deploying to
a target and rebuilding and deleting the app.

e < i 10.0.0.209 v O | & 5 |

. Al :
Com(s Host Perdormance: . = 7 CenturyLink

cation | ¥ Viow AWS CL - watty on

Application Services * Bave As Composs YAML

AWS_CLI Add a Category
dh, AWSCLhwetty n
Core0S Journal - Application Activity Log Show Full Acthvity Log

Iwe
Dct 28 13:15:88 docker http on port BB

Panamax s &n opan-sourca product from CanturyLink Labs Sign Up for Our Newsletter

Gat ol

s, Tips & tricks for Panamas, Dockar, aic

[193]

Panamax

Adding a service

Next, we are going to add a service to our application. To do so, we will click on the
+ button and then give it a name.

In our case, we are going to add a database, so we will name this section Database.

L]

3‘_5 CenturyLink-

Application Services =
AWS_CLI Databasge Add a Category
Core0OS Journal - Application Activity Log Show Full Acthity Log

Oct 18 13:15:88 docker hitp on port 3888

PRAMMAK i8 4N opan-Sourcs product from CanturyLink Laba

Sign Up for Our Newslatter

Gat all tha latast naws, tips & tricks for Panama, Docker, ate.

[194]

Chapter 11

ace I 1000300 s (]

Images

After this, we will click on + Add a Service to the database's application services and
will need to search for an image that we want to use.

ace < i3 W8 300 % o 1

& mysql

W mysql/mysqgl-server

[195]

Panamax

Since this is a database application and MySQL is known by almost everyone, we
will search for it and add it to the app.

Configuring the application

After we have added it to the app, Panamax will start to configure it for our usage, so
we can tie the application services we are running together.

10.0.0.200 v L]

3‘_:‘ CenturyLink-

Application Services

AWS _CLI Database Add a Category

Core0S Journal - Application Activity Log Show Full Activity Log

[196]

Chapter 11

Service links

If you want to configure each application service, you can click on it and you will be
taken into a submenu.

ece < [is WO0.200 [o

PaMamax @ Q sescs £ wanaGe [E] DOCUMENTATION v ABOUT

Com0S Host Parormance: sy o 5‘..3 CenturyLink:
Manage ' Dashboard ' Applications ' AWS CU - wetty

AWSCLIwetty

Base Image: conturylink/aws-cli-wetty Tag: latest e Dotals @ A
Documentation Fing on Docker Hup | 3 View cenfunvlinkaws-cli-watty on Imageiayers io

= e ots Servica Links 1 Dacker Aun

G Servicn Links AWSCLIwetty docker rup --nane
AWSCLIwelly -p SOBB:3066 -
expose 3868 -¢

i e + Ada Linked Servica ANS_ACCESS_KEY_ID=" -
*AWS_SECRET_ACCESS_KEY="
P centurylink/aWs=-cli-wetty
Perta
T wime

D Docker Fun Command

Core0S Journal - Service Activity Log Shaw Full Activity Log

For this example, we will look at what items we can configure in the AWSCLIwetty
application. The first item we can configure is the service links. We can also see

the docker run command that will be used once we populate our environmental
variables.

[197]

Panamax

Environmental variables

Next are the environmental variables. For this image, it would ask us to supply our
AWS access key ID and our AWS secret access key.

0200 v o

aprs ‘
ComS Host Performance: ney = % CenturyLink-

Ma Dz

AWSCLIwetty

Docier inspect

Base Image: canturylink/
Dopumentation Fing o

AWS_ACCESS KEY_ID

) Ervirermant Variasies

AWS_SECRET ACCESS KEY

B ror
+ Add an Environment Variable
% Bosker fax Commend
Core0S Journal - Service Activity Log Shaw Full Activity Log

These are two items that are required to be able to use the AWS CLI to execute
commands against your AWS environment. You can add additional environmental
variables too.

[198]

Chapter 11

Ports

Next, you can view or configure the port configuration that each service uses.

ene < i} 10.00.200 & 0. & a

PANamax | Q seanch £3 maNAgE [El ococuMenTATION v ABOUT

ComOS Host Performance; mi o ﬁ::d CenturyLink:

Manage ' Dashboard / Applications / AWS CLI - wetty

AWSCLIwetty

Base Image: centurylink/aws-cli-wetty Tag: latest U Datsds | D Dk Inagt
NEn |
Documentation Fingon Docker Hub | 88 View confundink/aws-ci-wedty on imagedayen. i

G Sardce Links Mapped Endpoints docker run - -name
ANSCLIWELLY -p 20%8:3698 --
expase JE08 -e

[Erviceenacs Varacins AWS_ACCESS_KEY_1D=" -e
5088 : 3000/ TCP 10.0.0 2005085 "AWS_SECRET_ACCESS_KEY="
centurylink/aws-cli-metty
0 rors + Bind a Port

F voume Expased Ports

D DodwrPunCommend | a0 irep
3000/ TEP

+ ExposeaFort

Core08 Journal - Service Activity Log Bhow Full Asthvity Log

For this service, we can see that it is exposing port 8088 on the host to port 3000 on the
container using the TCP protocol. We can see the exposed ports at the bottom and, for
this service, it is just port 3000. We can also add additional ports for each service.

[199]

Panamax

Volumes

Next, we can see the volume configuration for each service.

L m W.0.0.200 & ol t a

PINIMaX Q search L3 MANAGE Bl cocumentaTion v ABOUT

Cors0S Host Parformance: myy o 5‘:? CenturyLink:

Manage / Dashboard / Applications AWS CLI - wetty

AWSCLIwetty

Base Image: centurylink/aws-cli-wetty Teg: latest oFU Dofndts @ Funning Dogker Inspect
Documentation Find on Docker Huk | S View centurvink/aws-cll-wetty on imagelavers.io "

G Sordce Links Data Volumes docker run --name
AWSCLIWELLY -p BOBEI3I0E6 --
expose JB6B -¢

B envemnmenn variacios "AWS_ACCESS KEY ID=" -&
+ Adda Volume " AWS_SECRET_ACCESS_KEY="
centurylink/aWs=-cli-wetty
& ren

Data Volume Cantainers

= volumes

+ Mount a new Data Volume Container

> Docker Fun Command

Save all changes

Core0S Journal - Service Activity Log Shaw Full Activity Log

This service doesn't utilize any; but if we want to add one, we can do it from this
screen. We can remove one if there was one.

[200]

Chapter 11

Docker Run Command

Last is the Docker Run Command section. In this section, you can execute
commands against the container that is running the service.

0200 v o

5% CenturyLink

m Port
> Doo mand
Core0S Journal - Service Activity Log Shaw Pull Activity Log

This would be similar to using the docker exec command.

Summary

We have now taken a look at two very powerful GUISs that can be used to control
your hosts, containers, and images, and they both do very well. If you only had more
choices! Well, let's dive into the next chapter and introduce another!

In the next chapter, we will take a look at another GUI tool to manage your Docker
hosts, containers, and images, and that is Tutum, which was recently purchased
by Docker.

[201]

12

Tutum

Tutum is a company that was just recently purchased by Docker and has joined its
ranks. The goal of Tutum is to help you run your containers on the cloud. Tutum is
another feature that makes Docker easy to use.

In this chapter, we will cover how to:

e Start with Tutum
* Add your node

¢ Create a stack

Getting started

You will see a screen similar to the following screenshot when you access the Tutum
website at https: //www.tutum. co.

Prtutum

The Docker Platform for Dev and Ops

Build, deploy, and manage your apps across any cloud

W' (nefbed b0 announce thut Tatam has joined the Docker eam!

Tutum

Upon clicking Get started for free! or the Login link, you will be presented with the
following screen:

a0e < T = OAENDAMNC LM L0 v o

Now, given that Docker has recently scooped them up, this could change in the
future. But you will be presented with a login screen to use your Docker Hub,
current Tutum, or GitHub credentials.

The tutorial page

You will be presented with the tutorial page that will provide a tour of Tutum if
you wish.

Frvmre @nais fbieves Whede M Repaene A Tute b i EETA []

Welcome to Tutum! The quickest and easiest way to get started with Docker.

Let's get you started with a basic tutorial of Tutum!

[204]

Chapter 12

You can also skip the tour by clicking on the button in the bottom-right corner of the
screen, which we will do to get you started.

The Service dashboard

You will be taken to Service dashboard, where you can create your first service. But
before we do that, we need to do some other work. So, let's get our nodes added first.

ece < in] & cashooard.itum.co ‘ O|l&j|c .

@ siacks Sblevices ENodes @ Repositories A Tutum is in BETA stans: i

& Service dashboard

ind share the same

B Aservice Is a colle

[205]

Tutum

The Nodes section

If you click on the Nodes section in the navigation bar, you can start adding your
cloud provider or you can bring your own node.

ece < [in] i CAShBOB. UM 0 ’ Ot || & |5

| Understand

mmmm Al B Docs » B Communiy (5 @)

4 Tutum Is in BETA ratus:

®sacks &services Wiodes @ Repositories

&2 Node dashboard

0 You can fink your chowd provider aCoount o deploy a node

Gio to'cloud provider settings 3

an bring your own rode to Tutum

or 'y

+ Bring your own node

Q

If you wish to bring your own node, you will need to install a client that Tutum uses
to communicate with your node. For this example, we are going to stick with using a
cloud provider: AWS in this case.

[206]

Chapter 12

Cloud Providers

In the Cloud Providers section, you will get a list of cloud services that you can
link to. Again, we are going to use AWS. But you could use DigitalOcean, Microsoft
Azure, SoftLayer, or Packet. We will click on the + Add credentials button for AWS:

ece < m i CAShBOB. UM 0 Ot | o |5

mtulum Y DOCKER & Do = % community 51 @

Bk Sfervices ENodes @ Reposnories A Tutum is in BETA stanss: @)

Thia is the kst ol providers you can
directly integrate with Tutum,

Account info
et |

0 Link a provider o ploying nodes.

Provider not listed? That's okay! U: YOUT ©WT e

Provider Account Status Free credit!
8 Ct F

R——— : ° T
=
e Digital Ocean o 830 Tumem tode
B Noclficatic Mcrosoft Azure o | wreene |
I Nevslens Packet =} £ $100 Tunum tede

[207]

Tutum

Here we would provide our AWS Access Key ID as well as our Secret Access Key:

eoe < m i CashDOB.IUmM.Ca & il +

Amazon Web Services credentials

@ Don't know where or how to ger this? Click here to learn more G°

Access Key ID

Secret AcCess Key

AWS uses your access key ID as well as your secret access key to authenticate against
AWS. You can enter these details and then click on the Save credentials button.

[208]

Chapter 12

You will then see that you have linked your AWS account, can modify the
credentials if they ever change, or unlink the account all together if you need to.

ece < m i CAShBOB. UM 0 & LR

®otacks ®oenvices WiNodes @ Aspostories A Tutum Is in BETA status:

Account info

@ Your Amazon AWS account has been successtully linked!

il Provider Account Statis Free credit!

A4 Change password Amazon Web Services ARIMQFATAFFESGURUIA L] T Moddy redennah m

=o
*h =

Microsoft Azare o PO ——
an

° s
L i

° e
=

[209]

Tutum

Now that we have a cloud provider to run our service on, we can launch our first
node on the cloud now by clicking on the Launch your first node button:

in] cashoard.naum.ca &

& Docs = Sk Commanity (1 m

Ak Tutum is in BETA suanus: i

D tutum e cocren

® sk dblervices ENodes B Reposnories

& Node dashboard

@ A node 15 an Indiidual Linus host used to dephay and run your applications. A

node chuster {5 a collection of nodes in the same provider and region and of the
same Ty

Click hare to s

o Launchyour firstiode |+ Bring your own node

We will navigate back to the Nodes screen.

[210]

Chapter 12

Back to Nodes

After clicking on Launch your first node, we will need to provide some additional
information such as what region we want to deploy our node to, if we have a custom
VPC we have created that we want to deploy our node to, what size we want the
node to be, any IAM roles we want to assign to the node, the number of nodes we
want, and the disk size of each node.

ece < in] & cashooard.itum.co ‘ O|l&j|c .

| Understand

: .
@tutu‘m Y DOCKER & Docs:> 3 Comaminicy () ﬂ scotipgallagher ™

®stacks WServices Enodes @ Reposnories A Tutum is in BETA suatus: i

& Create a node cluster

Deploy tags

Provider

Region
vPC | Auto
Subnet
Security group
Typessize | 12micro [1 CPUS, 1.GB RAM]
1AM roles | None

Number of nodes 1

Disk size 10 GB

[211]

Tutum

For our example, we mainly kept the default, only lowering the disk size to the
minimum size of 10 GB.

ece < [in] i CAShBOB. UM 0 ’ Ot || & |5
Drutum e sooen 8 0o > % Commniy (G a) !
®stacks @bservices Whodes @ Repositories £ Tutum s in BETA status:
=
= scott

% Deploying m
&l Manit

HMumber of nodes 1 E g ";]

@ Amarzon Web Services

@ US West (Dregon
»

o t2micra
Memony: 1024 ME Hostname State
Disk space: 10 GB
& Deploying

@

Once you have clicked on the Launch node cluster button, you will see the status of
the node; in this case, it's Deploying. We also have some other items we can check
out while it's deploying.

[212]

Chapter 12

We can view the Monitoring tab and see information pertaining to the node such as
CPU, Memory, Disk, and Bandwidth Out.

ece < m i CAShBOB. UM 0 o

0 | Understand

D tutum e oocren 8 pocs > S Communay (18 @

®sucks Sbsevees Enodes @ Repositones A& Tutum is in BETA status:)

2 scott

it o (.

)

CPU
@ Amazon Web Sendces 104

@ Us West (Oregan)

o t2micro

Memary: 1004 MB

sk 1
Disk space: 10 GB — 3355 d84-tcortpgaltagher. node futum.io

Memaory

= 33553084 -scanpgalligher.node.utum.io

Disk

15:00 1800 2100 28 0t

== 33353d84-scotipgallagher.node.tutum.io

Bandwidth Out o

[213]

Tutum

We can also view the timeline of our node. Now, at first, this will be very short as it's
just showing us that we created the node and are deploying it.

ece < m & cashooard.itum.co & Ot || & |5
mtutum Y DOCKER B Docs = 8 Community (5 ﬂ
®stacks SServices Enodes @ Reposnories A Tutum is in BETA suatus: i
=
= scott
@ Deplaying)
© | rose cuser e = .
@B pmazan Web Services
B Q | v e e 1235 10mES |
« tmico

Memory: 1024 MB
Disk space: 10GB

Over time, this timeline will grow and show you the progress of your node.

[214]

Chapter 12

Our node should be deployed by now. So, we can click back on the Nodes link and
see that it has in fact been deployed and is running.

S8 <UD & eashooard UM £a . ° -
DD tutum e cocen Do - wconmnn i (@)
®sacks dblervices EWiodes @ Reposnories A Tutum is in BETA status:)
==
= scott

» Deployed m
Gl 1 £ Timetin

Mumber of nodes ® TR
@B pmazan Web Services

@ us west (Oregon)

Hostname State

- - L]

Q

We can get some information on the left-hand side, such as it is running on AWS

in the US West (Oregon) region, and is a t2.micro instance with 1 GB of memory
and 10 GB of disk space. We can also see that it currently has no containers running
on this particular node, what IP address has been assigned, and what version of
Docker it is running. We can terminate our node as well when we no longer need

it or scale the number of nodes with the slider at the top if we want to increase the
number of nodes.

[215]

Tutum

If we drill down into the node itself by clicking on its hostname, we can see some
more information provided to us.

ece < [in] i CAShBOB. UM 0 ’ Ot || & |5

mmtum Y DOCKER & Dos = S Commanity (§E @

®saces Sblervices Whodes B Reposnories 4 Tutum is in BETA

R o -
[T t ol Mor 1= Tirmefine

@ afewseconds ago

Actions -

®
£ scoll / 33553d84-scottpgallagher.node tutum.io

W g Name Status Deplayed

@ Armazon Web Servces
@ US West [Oregon). us-west-2a
" tlmicra

Memory: 1024 MB
Disk space: 10 GB

Docker Info
Version: & 188
Gragh driver; aufs
Erec driver: native-0.2

Q

It includes what, if any, containers are running on this node, what endpoints or ports
are exposed, the monitoring of the node (as we saw earlier), as well as the timeline
that we saw before. Now, all of this pertains to the node itself, not the containers that
will be running on the node.

[216]

Chapter 12

Back to the Services section

Now, it's time for us to launch a service and get some containers running on

this node.

& cashboard.num.eo

e < o ¥

& Do » % community (51 ﬂ

Ak Tutum is in BETA suanus: i

mtutum Y DOCKER

®sucks Mblervices ENodes @ Reposnories

&% Service dashboard

Image and share the same

B A service s a cotlectio

config iniks, etc)

Q

By clicking on the Services tab, we will be taken to the previous screen, where we

can deploy a service.

[217]

Tutum

Now, Tutum offers up three areas to search for the images you might want to use:
jumpstarts or collections that they have categorized for you; public repositories on
Docker Hub; or private repositories that you have set as private on your Docker Hub
account. For our example, we are going to select the tutum/hello-world example

due to its small size.

ece < m i CAShBOB. UM 0 Ot | o |5

mmlum Y DOCKER & Docs = % Community (T3 Q

A Tutum is in BETA suanus: i

®oacks Relervices ENodes @ Reposnories

07 ’ : v ;

Image selection

O S

tutum/hello-world

m Imayge to bist dacker deployrmnits. His Apathe with & 'Hells World® page listening in
port 80,

>

tutum/authorizedkeys

% Adds a user public S5H key to the host's " ~/sshiauthorized_keys” via docker container
s

tutum/syslogger

% mage based an glidertabsogspout optimized for syslag and Tutum
P ,

[218]

Chapter 12

After clicking the Select button for it, we are taken to a screen similar to the
following one; yours will vary depending upon what image you have selected.

ece < is i EashDOBN.BAUM.C0 . 0 || & 5 |
v cordance with our Pry, _| Understand
- Wetzeme,
-ﬁmtum v DOCKER & Docs > W Commwinity () Q scotipgallagher ™
B Stacks W services ENodes @ Beposnories Ak Tutum is in BETA swats: i
Image selectian service configuration

Image tag | latest

Stack

DEployment Srategy node
Number of containers — 1
Deploy tags
Ports
Click to override ports defined in image
Autarestart | Off . Autodestroy | O
Privileged
[e enonment arivies » | R R

Now, you can give the service a name or use the generated one for you. You can

also select what tag to use for the image, what your deployment strategy is (if you
are using multiple nodes), how many containers to deploy, any tags you wish

to add to the containers that will be deployed, custom port settings (if any), and
whether it should autorestart in the event of a failure. This should seem familiar

as some of these items, such as deployment strategy, were covered in the book,
mainly in Chapter 8, Docker Swarm, with regards to Docker Swarm. So, once you have
everything kosher, go ahead and click on the Create and deploy button and prepare
for a blast off!

[219]

Tutum

After we click on the button, we are taken to a screen similar to the one we saw when

we were deploying our host node.

mmtum Y DOCKER

i CAShBOB. UM 0 . o

& Docs = S Commanity (33 m

® stk Mtervices ENodes @ Repostories

& hello-world-a325afa2

£ Starting

% tutum/helio-world latest

B -o “php-fpa -d variab

Name

Ak Tutum is in BETA suanus: i

W & L = L]
Number of containers 1 ‘Jl-.;.nmg'.:l
Status
& Starting BN E

Q

We can see information on the left-hand side, such as what command the container
is running, what ports are exposed, and other settings as well pertaining to the
container. We can see that it's in the Starting state and should be running shortly.

[220]

Chapter 12

Containers

Once it has finished starting and is now in the running state, we can manipulate
the container and do things such as stop, terminate, redeploy, or even edit the
configuration of the container, and expand the number of containers that are running.

e0e < m i cashDoand.hum.co 2 o

mmtum Y DOCKER & Docs = S Community (53 @

@ siacks Sbsevices ENodes M Reposories A Tutum is in BETA stans: i

& hello-world-a325afa2

» Running

@ afew seconds ago m @ Endpaint o | O Moniecrin X Trigger

% tutum/helio-world latest

n
&

Name Status

[I W Running Im]c]z]

Now, let's take a look at the navigation menu for containers.

[221]

Tutum

Endpoints

Again, the Endpoints screenshot will show us any port information pertaining to the

running container.

Drutum e oo

st &sServices WNodes

& hello-world-a325afa2

> Running

@ few seconds ago

& mtumhalic-worldlatest

3_ /binfsh =c “phpefps =d variab
.

LA

1o

BB enpriost node

@ Aepaztories

 cashoard.naum.ca]

133 @

& Tutum Is in BETA

i Docs = B Community

0 Mo endpoints. if you are expecting an endpoint make sure the appropeiate port has been published. Learn mone G

[222]

Chapter 12

Logs
The Logs section will show us a running log of the screen output the container
would have.

L SashDoard. UM 20 L

Tutum uses cookies 10 IMprove user experience. By using our website you consent to all cookies in accordance with our Pryvacy Poticy, [[iELEEGE]

W Stacks M tervices ENodes @ Heposiories Al Tutum s in BETA

hello-world-a325afa2 B Terminate

o I

o

Since this container just started, we don't have anything yet; but this section can be
helpful in the event you need to troubleshoot a running container.

[223]

Tutum

Monitoring

Next, we have the monitoring section that can show us the information we saw
before in the Nodes section.

ece < [in] i CAShBOB. UM 0 & Ot || & |5

O | Understand

mtutum BY DOCKER

@ Sacks S senaces WNodes @ Repositonies A Tutum is in BETA stus

& hello-world-a325afa2

» Running

@ afew seconds ago & Containg Qs =T} = e
& utumdhalla-waridlatest
3. /binish - “php-fpm -4 varish.. cru
o gD
a, of "Il Tue Ocrober 27, 1559
el hello-world-a325ala2-1. 0.00 %
I£ on . 1500 1850 T 8.0t T =
= hello-world-a325ala2-1
B espriest node ciscizha i e
Z o Memary
- wr
w off
18 M
* Mone o—
= Bridge T o
= hella-world-ai2safal-1
Bandwidth Out
2 M

— hallg-world-a335afaz-1 o

Items such as CPU, Memory, and Bandwidth Out can tell how much our container
is being used for the service that it is running.

[224]

Chapter 12

Triggers

Next up is the Triggers section. Now, this section can come in handy if you are
looking at scaling something based on the CPU usage that a container has.

ece < m i CashDoBr.IUm.Ca ’]

mmtum Y DOCKER & Docs = S Community (53 @

@ siacks Sblevices ENodes @ Repositories A Tutum is in BETA stans: i

& hello-world-a325afa2 B Terminate

» Running

@ afew seconds ago & Container @ Endpaint

% tutum/helio-world latest

3= foin/ab o “php-Cpn ~4 warish Triggers are API endpoints 1o redeploy oF scale a service whenever a POST HTTP request is sent to them,
" e

Add trigger Redeploy - 1' A hdd I:

MName Type URL

W eaptiost node
© o triggers defmed

Q

For example, you could set a trigger that if the CPU usage goes above 60%, launch
another container to help with the load (assuming you are running your service in a
load balancer).

[225]

Tutum

Timeline

Again, we have the Timeline section that we saw with regards to the nodes. We can
see the lifespan of a container as well.

ece < m i CAShBOB. UM 0 o

mtulum Y DOCKER & Docs » W Commanity 53

@ sacks Sservices ENodes M Reposnories. A Tutum is in BETA status:)

& hello-world-a325afa2

» Running

@ atew sezonds ago & Container B Endpaint

% tutum/helio-world latest

3= /binlah ~c "php-fpa -4 varisb ° o1 15 w
-

23 ° - :
a, off
& o

[226]

Chapter 12

Configuration

Lastly, we have the Configuration section that shows an overview of the container as

a whole.

mtutum BY DOCKER

®stacks dbserices W Nodes

& hello-world-a325afa2

» Running

@ afew seconds ago

m rummalio-warld:latest

*_ /binish =c “phpe=fpm =d variab..
o gD

A o

I£ on

B espriest node

< of

" of

* None

= Bridge

& Repositories

Image tag
Deployment strategy
Deploy lags

Ports

Run command

Entrypoint
Autarestart
Autodestroy
PD

Ntwork

& cashboard.num.eo

O | Understand

) tutumihelio-warld:latest

Empiest node

e,

foinsh ¢ “php-fpm -d varkables_order="EGRCS® L& exet nginx - daeman off.~

off
on

None

(o)

Bridge

This section is also broken down into subsections that include general information,
environmental variables, container links, and attached volumes for the container.

[227]

Tutum

The Repositories tab

Let's take a look back at the navigation bar at the top and click on the Repositories tab.

ece < [in] i CAShBOB. UM 0 ’ Ot || & |5

Drutum e sooen B 0o % Commniny 88 @ ,;

®osacks @Services WNodes @ Aepastories A Tutum Is in BETA status:

& Repository dashboard

@ 4 repository is @ collection of tagged images, An image ks a template used 1o
CTEATE CONTaMNETs, Images are defined In services

+ Craateywrﬁrstmpusﬂwry . iﬂﬂdfrwnaﬁﬁrdwﬁ!my |

Q

In this tab, you can add custom repositories beyond Docker Hub; for example, if you
were running your own private repositories, where your company would be storing
images that you would want to use, you would add that in this section.

[228]

Chapter 12

Stacks

There is also the Stacks section. Stacks are a collection of services similar to what you
would think of when you are using Docker Compose.

& cashboard.num.eo

e < o ¥

& Docs = S Commanity (33 m

Ak Tutum is in BETA suanus: i

mmtum Y DOCKER

® s dblervices EiNodes @ Reposnories

€ Stack dashboard

way (o automate the

1o each other.

of services. I
muftiple sen,

o Create your first stack

Q

Let's take a look at this section, because it can be very useful while using development

environments or for testing.

[229]

Tutum

After we click on Create your first stack, we are taken to a page that is similar to the
following screenshot:

in] cashoard.naum.ca &

D tutum e cocren

®stacks dbtervices ENodes @ Reposiories A Tutum is in BETA stats: @

€ Create a stack

Stack name

Stackfile

& Drag and drop a Stackfile ar Click 1 upload a file

In this screenshot, we can see that we need pieces of information.

[230]

Chapter 12

We need a name for our stack and we need the stackfile contents. In our case, we are
going to use our trustworthy MySQL example and call our stack mysql.

ece < [in] i CAShBOB. UM 0 ’ Ot || & |5

: g Wetceme.
mtutum Y DOCKER & Docs: > Comaminicy (59 G} scatipgallagher

®stacks dbtervices ENodes @ Reposiories A Tutum is in BETA stats: @

€ Create a stack

Stackfile

& Drag and drop a Stackfile or Click o Upinad a file

For our stackfile, we are going to use one of the resources that Tutum encourages us
to explore. In the bottom section under the Stackfile field, there is an option to get a
Stackfile from the Stackfile registry, which is located at https://Stackfiles.io.

[231]

https://Stackfiles.io

Tutum

Upon entering stackfiles.io, we are presented with an easy search box.

STACKFILES

Find the perfect Stack for your next project

Getting a jJumpstart using Docker is earch away

Q. mysal

Again, for our test, we want to find the mysql stackfile, so we enter mysgl in the box
and click on Browse.

[232]

Chapter 12

Now, for our example, we want a mysqgl one and we can see it right on the top.

ece < m & stackiiienia & .0 th || & Ll't.

o Stackfiles.io
Stacks a e

mysql
Deploy to Tutum r

Blue Green
Deploy to Tutum <3

Docker Monitering Stack
Deploy 1o Tutum (4]

Quickstart Go
Depley to Tutum 4

Rsyne Store
Deplay to Tutum 4]

BitTorrent Sync
Deploy to Tutum 3

Wordpress

Deploy to Tutum 5]

Mew Relic
Deploy to Tutum 3

Website Snapshots using Rendercat

RRRR NN

Deploy to Tutum L]

However, you could use a different one or search for one as well to see if there is one
already done for you. Again, always work smarter, not harder!

[233]

Tutum

So, if you drill into the mysqgl stackfile, you can see what all it is doing.

ece < [in] & ameieni & Ot jc &
9 Stackfiles.io
Stacks / mysql

A comprehensive MySQL stack

=

tutum-cront
image: sillelien/tutum-cron
autorestart: always
cpu_shares: 128
men_Limit: 64
roles:
- glebal
environnent:
RACKUP_HOURLY_CRON_SCHEDLE: ' = « + «
BACKUP_DATLY_CRON_SCHEDULE: ‘0 3 + » *
Tinks:
Backup_hourly
backup_datly

In our case, we are just going to copy this, go back to our Tutum stack deployment
page, and paste it among the contents of the stackfile.

[234]

Chapter 12

After we paste its contents in our Stackfile field and click on the Launch stack
button, we will see our stack come to life.

ece < [in] i CAShBOB. UM 0 & Ot || & |5

| Understand

mtutum Y DOCKER & Docs = S Commanity (33 ﬂ

®stacks dbtervices ENodes @ Reposiories A\ Tutum is in BETA stats: @

® mysql e
W Not running

o]

Name Status Image
] M Notrunning e ubuntudatest [> | a E
5
Tiysg M Not running stum/mysgllatest = u B
N

B Mot running e sileliendockor-myskbacku u ﬂ E
=

M Notrunning e sillelien/docker-mysqb backu [> | B E
5

B Mot running ttum/rmysgllatest [> | ﬂ g
S

Wrotrunning e sielianiusamecronatest E2EEa

Q

After a few minutes, it will fire up for us and we will have created and be running our
first stack. We can then manipulate the various pieces of the stack by starting/stopping
them, terminating them, redeploying them, or even editing their configurations.

[235]

Tutum

We can also look at the stackfile being used and edit it if needed to our likings or
download it to share it with others as well.

ece < I i EashDOBN.BAUM.C0 . 0 || & 5 |

= [re—
-ﬁtutum Y DOCKER & pocs > % community (55 @ scottpgallagher ™

& Stacks & Services Eodes @ Beposiories Ak Tutum is in BETA

® mio o
W Not running : m
o e L]

o]

Summary

We have now looked at three very powerful GUI tools that you can add to your
Docker arsenal. With these tools, you can manipulate everything from your host
environments, the images that live on those hosts, as well as the containers running on
those hosts. You can scale them, manipulate them, and even remove them as needed.

In the next and the final chapter, we will be looking at some advanced Docker topics
such as how to scale your containers, and debugging and troubleshooting them. We
will also look at the common issues that can arise as well as common solutions to
these issues. We will also cover various APIs that pertain to Docker as well as how to
contribute to Docker. We will dive into configuration management tools, advanced
networking, as well as Docker volume management.

[236]

15

Advanced Docker

We've made it to the last chapter, and you've stuck with it until the end! In this
chapter, we will be taking a look at some advanced Docker topics. Let's take a peek
into what we will be covering in this chapter:

* Scaling Docker

* Using the discovery services

* Debugging or troubleshooting Docker

e Common issues and solutions

* Various Docker APIs

* Keeping your containers in check

* Contributing to Docker

* Advanced Docker networking

[237]

Advanced Docker

Scaling Docker

In this section, we will learn how to scale Docker. Earlier, in Chapter 7, Docker
Compose, we looked at using Docker Compose to do our scaling. In this section, we
will look at other technologies that we can utilize to do the scaling for us. We will
take a look at two such technologies — one that you can use through the command
line and the other two that can be used through a web interface.

* Kubernetes: We have looked at another command line earlier to scale
Docker —Docker Compose. There are other tools out there that you can use
to scale your Docker environments from the command line. One such tool
is Kubernetes:

$ kubectl scale [--resource-version=version] [--current-
replicas=count] --replicas=COUNT RESOURCE NAME

$ kubectl scale --current-replicas=1 --replicas=2 Host Node

You can find out more about it at http://kubernetes.io/v1.0/docs/
user-guide/kubectl/kubectl scale.html.

* Mist.io: With Mist.io, you can perform all your Docker actions in this
software, everything from adding your cloud environments to locally run
Docker installations. You can then see all the machines or nodes that are on
that host and check whether they are running or have been stopped. You can
also view information about them such as any alerts that they may have as
well as their usage. You can also scale environments within the web console
as well. While Mist.io is free to use, there is a fee if you want to use their
monitoring service. It does come with a free trial for 15 days though. Scaling
is done just by selecting the node that you want to scale and entering a value
to scale to, the rest is all done automatically for you.

* Shipyard: When it comes to being able to scale easily, I am not sure there is
an easier way than using Shipyard. Like Mist.io, you can easily scale nodes
by using Shipyard. In Chapter 10, Shipyard, we saw how easy it was to do
tasks such as scale running containers using Shipyard.

Using discovery services

In this section, we will learn how to scale Docker, but in a different way. Previously,
we looked at using Docker Compose to do our scaling. In this section, we will look
at other technologies that we can utilize to do the scaling for us automatically. There
are some discovery services that we can tap into for this usage. We will focus on two
of them in this section as they are the more popular ones.

[238]

http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html
http://kubernetes.io/v1.0/docs/user-guide/kubectl/kubectl_scale.html

Chapter 13

Consul

One of the more popular options for discovery services with regards to Docker is
Consul. Consul is an extremely easy-to-use discovery service that offers a lot of
options that we can tie this into automatically updating the items in Consul by using
a program called Registrator or by automatically taking those items that are updated
in Consul and then turning around and updating a configuration file to show those
updated items by using the consul-template program. Information about Consul
can be found at https://consul.io/. For more information on Registrator, visit
http://gliderlabs.com/registrator/latest/. And, to know more about
consul -template, refer to https://github.com/hashicorp/consul -template.

Adding these three pieces to your technology arsenal can greatly increase the level
of performance and uptime that you can provide. You can add new nodes to a
service on the fly, and have the configuration on a particular container be updated
on the fly. You can also move the updated nodes into a service and then remove the
other ones that aren't updated so that you can provide a method for zero downtime
with rolling updates as well. You can also go the other way if you notice something
you updated isn't functioning properly. You can roll an older version of something
into a discovery service while rolling out the newer version if a bug or security
vulnerability is discovered. The possibilities of what you can do with these three
pieces can be endless.

etcd

If you are going extremely lightweight with your host environments and using
CoreOS, then you are very familiar with etcd. It uses a dynamic configuration
registry to do discovery. When etcd is configured on each CoreOS host, they can do
key-value distribution and replication, which allows them to discover each other as
well as new etcd hosts.

etcd focuses on being:

* Simple
* Secure

¢ Fast

* Reliable

[239]

https://consul.io/
http://gliderlabs.com/registrator/latest/
https://github.com/hashicorp/consul-template

Advanced Docker

To find out more about etcd, refer to https://en.wikipedia.org/wiki/
CoreOS#ETCD. You can also visit https://github.com/coreos/etcd, which
contains information not just about what etcd can do, but also the ways you can
get support for it, roadmap, mailing list, and reported bugs. You can also refer to
https://coreos.com/etcd/ and https://github.com/coreos/etcd.

Two of the more well-known projects that are using etcd are:

¢ Kubernetes
* Cloud Foundry

To view other projects that also use etcd, visit https://github.com/
search?utf8=%E2%9C%93&g=etcd.

Debugging or troubleshooting Docker

Now that we have our Docker containers running in our production level service,
we need to know how we can troubleshoot them —how do we fix common problems
with containers, what should we be looking out for, and how can we quickly debug
issues that do arise in our environments to avoid any serious downtime? Let's take a
look at some of the topics that we can cover.

Docker commands

There are quite a few built-in Docker commands that you can use to help debug and
troubleshoot Docker. With focus on running the containers themselves, here are the
ones that can help you:

* Docker history: This lets you view the history of Docker image

* Docker events: This lets you view the live stream of the container events

* Docker logs: This lets you view output from a container

* Docker diff: This lets you view the changes of a container's filesystem

* Docker stats: This helps you view the live stream of a container's
resource usage

[240]

https://en.wikipedia.org/wiki/CoreOS#ETCD
https://en.wikipedia.org/wiki/CoreOS#ETCD
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd
https://github.com/search?utf8=%E2%9C%93&q=etcd

Chapter 13

GUI applications

The best way to be able to debug or troubleshoot your containers is to have a visual
overview of all your containers. There are a few options for you out there that we
can use:

* Shipyard (https://shipyard-project.com)

* Mistio (http://mist.io)

* DockerUl (https://github.com/crosbymichael/dockerui)
Now only these options will allow you to get an overview of the status on all your
running containers. You can also manipulate these containers, that is, you can restart
them or view the logs for a particular container. While some of the options will do

more than others, it is important to review them all to see what is the best fit for what
you would like to see and be able to perform.

Resources

While there are a lot of resources out there for Docker, you would want to make sure
you are focusing on the following two at all times, as they are the official means by
which you can get information or obtain help:

* Docker documentation: This is an official documentation straight from Docker

* Docker IRC room: This is the official communication for the Docker
community and a place where you can not only get help from others in the
Docker community, but also assistance from those who work at Docker

Common issues and solutions

What are some common issues that others have run into putting their environments
into production while using various Docker products? What are the solutions to
those common issues? How can we mitigate against these issues so that no further
instances occur? Let's take a look at what we can do!

Docker images

When you are using images, remember two things:

* Eachimage you pull takes up space

* Each time you run an image, that particular run is stored using disk space

[241]

https://shipyard-project.com
http://mist.io
https://github.com/crosbymichael/dockerui

Advanced Docker

If you are running low on space, this might be something to keep an eye on before it
becomes a problem. If the space fills up, the containers might stop working, and this
might lead to loss of data. Now you can view the images that you currently have by
running a simple command:

$ docker images
To remove a particular image, we can run another command:
$ docker rmi <image name>

But what about those images whose run is stored using disk space? How do we view
them? There is a switch that can be added onto the images subcommand to view them:

$ docker images -a
You can remove these, by using their image ID:

$ docker rmi <image ID>

Docker volumes

As of Docker v1.9, you can manage volumes through the Docker CLIL. Let's take a
look at what all can we do and how:

$ docker volume --help
Usage: docker volume [OPTIONS] [COMMAND]

Manage Docker volumes

Commands :
create Create a volume
inspect Return low-level information on a volume
1s List volumes
rm Remove a volume

Run 'docker volume COMMAND --help' for more information on a command

--help=false Print usage

[242]

Chapter 13

So we can do quite a lot; we can create volumes, inspect the volumes, list volumes,
and remove volumes. Let's take a look at each, going through the lifecycle of a
volume, that is, from creation to deletion:

$ docker volume create --name test
test

$ docker volume 1ls

local test

Now you will notice this one was created locally. You can use the - -driver flag and
specify which volume driver to use:

$ docker volume inspect test

[

{

"Name": "test",

"Driver": "local",

"Mountpoint": "/var/lib/docker/volumes/test/ data"
}

1

With this, we can see the name of the volume, which driver was used to create it, and
where it's located on our system:

$ docker volume rm test

test

Using resources

Be sure to use all the resources that are out there. Those resources could include:

e Docker IRC room
e Docker documentation

e Docker commands

Various Docker APIs

Some of the various Docker APIs can immensely help you when you are writing up a
script in the coding language of your choice. You can tie that into pulling the strings
on Docker and have it to do the work for you without having to break out into
another program or scripting language.

[243]

Advanced Docker

docker.io accounts API

This API is used just for account management. With it, you can:

* Get a single user

* Update various parameters for a particular user
* List e-mail addresses for a user

* Add an e-mail address for a user

e Delete an e-mail address for a user

There is not a lot that you can do with this API as it is mainly focused around what
you can do with one's user account. In reality, there isn't a lot of information baked
into one's user account, and as you can see, the e-mail address is the main focal point
of one's account.

For more information, please visit https://docs.docker.com/reference/api/
docker io accounts api/.

Remote API

Let's just start off by saying that the Remote API is very intense, and that's not a bad
thing. When it comes to APIs, you want them to be able to do just anything you want
so that you never have to leave your code to perform these actions. Here is the high-
level overview of what you can do with this API:

* Endpoints
e Containers

* Images

So you heard me say it was very intense, but based on what you can do with it, it
doesn't look very intense until you take a peek into it yourself. Think of all the things
that you can normally do with a container or an image and then you will understand
why I state that it is intense. Things such as creating containers or images, listing
them out, and getting information about containers or images might include getting
information about the files and folders inside a container, copying files or folders
from a container, and removing a container or image. There are also ways to
manipulate or "hijack", as the documentation puts it such as using the docker run
command. You can retrieve the various codes from the run command and determine
what the command is doing.

[244]

https://docs.docker.com/reference/api/docker_io_accounts_api/
https://docs.docker.com/reference/api/docker_io_accounts_api/

Chapter 13

For more information on the Remote API, refer to https://docs.docker.com/
engine/reference/api/docker remote api/ and to know more about the latest
Remote API, visit https://docs.docker.com/reference/api/docker remote
api v1.20/.

Keeping your containers in check

What are some of the tools that we can use to keep our containers the way we have
set them up? How do we ensure that they stay the way we want them to? How do
we ensure that if they do drift off or things change on them, we are able to put them
back in place to where we want them to be? Let's see how we can achieve that.

Kubernetes

Kubernetes is an open source project that was developed by Google to help with
the automating deployment of your containers as well as scaling and the operations
of your containers, not only on one host, but across multiple hosts. Kubernetes has
been set to work on almost every environment that can be imagined, from locally
in a Vagrant or VMware environment to cloud solutions such as AWS or Microsoft
Azure. There will be some terminology that will need to be learned beyond the
Docker terms, but if you understand how Docker operates, learning the Kubernetes
terminology will come naturally. For example, instead of hosts, Kubernetes calls
them pods. Kubernetes uses a single master node to control all its pods. The
documentation can provide a lot more information including examples on how to
administer your pods, set up pod clusters, and much more.

More information on Kubernetes can be found at http://kubernetes.io.

Chef

The reason we are focusing on Chef in this section is that AWS uses it as part of
one of the solutions that they offer —in the form of OpsWorks. OpsWorks allows
you to set up and use Chef to automate not only your Docker containers, but also
other aspects of your AWS environment. I have personally set up and used Chef
to do a lot of system automation throughout my personal environments. With
that being said, Chef can be a little tricky at first to learn how to set up the server
and client environments. There is a steep learning curve at first as with almost
any configuration management system, but Chef does seem to have a little bit of a
larger one with respect to all the moving pieces that are involved with the server
environment and setup.

[245]

https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/
https://docs.docker.com/reference/api/docker_remote_api_v1.20/
http://kubernetes.io

Advanced Docker

I wanted to draw focus to Chef though because if you are going to be viewing your
environment within AWS, it might be a good idea to use Chef since it does offer it

as a service within AWS. OpsWorks allows you to easily set up and control your
environments as well as use their built-in Chef cookbooks. You can learn more about
Chef at http://chef.io.

Other solutions

Some other solutions that are worth checking out or even use, if you already have the
setup, to manage your Docker environment are:

* Puppet (http://puppetlabs.com)
* Ansible (http://www.ansible.com/)
* SaltStack (http://saltstack.com/)

Contributing to Docker

So you want to contribute to Docker? Do you have a great idea that you would like
to see in Docker or one of its components? Let's get you the information and tools
that you need to have. If you aren't a programmer-type person, there are other ways
you can help contribute as well. Docker has a massive audience and you can help
with supporting other users of their services. Let's learn how you can do that!

Contributing to the code

One of the biggest ways you can contribute to Docker is helping with the Docker code.
Since Docker is all open source, you can download the code to your local machine and
work on new features and present them as pull requests back to Docker. Those will
then get reviewed on a regular basis and if they feel what you have contributed should
be in the service, they will approve the pull request. This can be very interesting when
you get to know something you have written has been accepted.

You first need to know how you can get the setup to contribute. Everything is

pretty much available at https://github.com/docker, which is open for you to
help contribute to. But how do we go about getting the setup to help contribute?

The best place to start is by following the guide at https://docs.docker. com/
project/who-written-for/. The software you will need to contribute can be found
by following another guide at https://docs.docker.com/project/software-
required/.

[246]

http://chef.io
http://puppetlabs.com
http://www.ansible.com/
http://saltstack.com/
https://github.com/docker
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/who-written-for/
https://docs.docker.com/project/software-required/
https://docs.docker.com/project/software-required/

Chapter 13

These guides will help you get all the setup with the knowledge you will need, as
well as the software. The last link that you will need to review is https://github.
com/docker/docker/blob/master/CONTRIBUTING.md. This page will provide
information on how to report issues, contribution tips and guidelines, community
guidelines, and other important information about how to successfully contribute.

Contributing to support

You can also contribute to Docker by other means beyond contributing to the Docker
code or feature sets. You can help by using the knowledge you have obtained to help
others in their support channels. Currently, Docker uses IRC rooms where users can
gather online and either provide support to other users or ask questions about the
various services that they offer. The community is very open and someone is always
willing to help. I have found it of great help when I run into something that I come
across and scratch my head. It's also nice to get help and to help others back (a nice
give and take). It also is a great place that harvests ideas for you to use. You can see
what questions others are asking, based on their setups, and it could spur ideas that
you may want to think about using in your environment.

You can also follow the GitHub issues that are brought up about the services. These
could be feature requests and how Docker may implement them or the issues that
have cropped up through the usage of services. You can help test out the issues that
others are experiencing to see whether you can replicate it or find a possible solution
to it.

Other contributions

There are other ways to contribute to Docker as well. You can do things such as
presenting at conferences about Docker. You can also promote the service and
gather interest at your institution. You can start the communication through

your organization's means of communications such as e-mail distribution lists,
group discussions, IT roundtables, or regularly scheduled meetings. You can also
schedule your own meetings within your organization to get people talking or
you can do Docker meetups. These meetups are designed to not only include your
organization, but also the city or town members that your organization is in to get
more widespread communication and promotion of the services. You can search
whether there are already meetups in your area by visiting https://www.docker.
com/community/meetup-groups.

[247]

https://github.com/docker/docker/blob/master/CONTRIBUTING.md
https://github.com/docker/docker/blob/master/CONTRIBUTING.md
https://www.docker.com/community/meetup-groups
https://www.docker.com/community/meetup-groups

Advanced Docker

Advanced Docker networking

Lastly, one of the up and coming features of Docker that we will be taking a look
at will be that of the Docker networking. Now at its current form, this is a solution
that has not yet been implemented, but is a feature set that will be coming soon. So,
it's good to get ahead of the curve on this one and learn it so that you are ready to
implement it or architect your future environments around it.

Installation

Since this feature is not part of the current Docker release, you need to install the
experimental release to get this completed. To install Docker experimental releases,
simply use the curl command that you have seen previously. Now this will only
work on Linux and Mac currently. In future, experimental builds might be installed
on Windows systems. So to install, use the following command:

$ curl -sSL https://experimental.docker.com/ | sh

On Mag, run:

$ curl -L https://experimental.docker.com/builds/Darwin/x86 64/docker-
latest > /usr/local/bin/docker

$ chmod +x /usr/local/bin/docker

Now you will get a warning message if you already have Docker installed:

Warning: the "docker" command appears to already exist on this system.

If you already have Docker installed, this script can cause trouble,
which is

why we're displaying this warning and provide the opportunity to cancel
the

installation.

If you installed the current Docker package using this script and are
using it

again to update Docker, you can safely ignore this message.

You may press Ctrl+C now to abort this script.

sleep 20

[248]

Chapter 13

You want to make sure you are installing experimental builds to a machine

that is not a production-related one. For example, you probably don't want to

install an experimental release to your laptop if you are using it to develop and

test Docker-related items on. Best practice would be to install it on a virtual machine
that you can throw away if it gets broken.

After running the curl command, you will be able to see the networking option
from the list of Docker commands now:

$ docker
Usage: docker [OPTIONS] COMMAND [arg...]
docker daemon [--help | ...]

docker [--help | -v | --version]

A self-sufficient runtime for containers.

Options:
--config=~/.docker Location of client config files
-D, --debug=false Enable debug mode
-H, --host=][] Daemon socket(s) to connect to
-h, --help=false Print usage
-1, --log-level=info Set the logging level
--no-legacy-registry=£false Do not contact legacy registries
--tls=false Use TLS; implied by --tlsverify
--tlscacert=~/.docker/ca.pem Trust certs signed only by this CA
--tlscert=~/.docker/cert.pem Path to TLS certificate file
--tlskey=~/.docker/key.pem Path to TLS key file
--tlsverify=false Use TLS and verify the remote
-v, --version=false Print version information and quit
Commands :
attach Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy files/folders between a container and the local
filesystem

[249]

Advanced Docker

create
diff
events
exec
export
history
images

import
image

info
inspect
kill
load
login
logout
logs

network
pause
port

ps

pull
push
rename
restart
rm

rmi

run
save
search
start

stats
statistics

stop
tag
top

unpause

Create a new container

Inspect changes on a container's filesystem

Get real time events from the server

Run a command in a running container

Export a container's filesystem as a tar archive

Show
List

the history of an image

images

Import the contents from a tarball to create a filesystem

Display system-wide information

Return low-level information on a container or image

Kill
Load

a running container

an image from a tar archive or STDIN

Register or log in to a Docker registry

Log out from a Docker registry

Fetch the logs of a container

Network management

Pause all processes within a container

List
List
Pull
Push

port mappings or a specific mapping for the CONTAINER
containers
an image or a repository from a registry

an image or a repository to a registry

Rename a container

Restart a container

Remove one or more containers

Remove one or more images

Run a command in a new container

Save

an image(s) to a tar archive

Search the Docker Hub for images

Start one or more stopped containers

Display a live stream of container(s) resource usage

Stop

a running container

Tag an image into a repository

Display the running processes of a container

Unpause all processes within a container

[250]

Chapter 13

version Show the Docker version information
volume Manage Docker volumes

wait Block until a container stops, then print its exit code

Run 'docker COMMAND --help' for more information on a command.

Creating your own network

In the preceding command output, I have highlighted the section that we will be
focusing on —the network subcommand in Docker. There is also another command
you may want to take a look at, and that is the volume subcommand, but we will be
focusing on the network subcommand.

Let's create ourselves a network that our Docker containers can use to communicate
on. From the output of the docker network command, we can see our options:

$ docker network

docker: "network" requires a minimum of 1 argument.

See 'docker network --help'.

Usage: docker network [OPTIONS] COMMAND [OPTIONS] [arg...]

Commands:
create Create a network
rm Remove a network
1s List all networks
info Display information of a network

Run 'docker network COMMAND --help' for more information on a command.

Doing a docker 1s will give us a view of what our current network setup is:

$ docker network 1ls

NETWORK ID NAME TYPE
02£3d3834733 none null
b22££5151bcb host host
£4b7c38b83bl bridge bridge

[251]

Advanced Docker

Now let's get to creating ourselves a network. Using the network subcommand as
well as the create option, we can create ourselves a network:

$ docker network create <name>

$ docker network create docker-net
21625dd96ac08el1713621d951cfal40cebee96c9fae9£f8££44748£86a4c731d7

$ docker network 1ls

NETWORK ID NAME TYPE
02£3d3834733 none null
b22f£f5151bcb host host
£f4b7c38b83bl bridge bridge
21625dd96ac0 docker-net bridge

Now that we have our network, how do we tell our containers about it? That comes
with a --publish-service= switch when you use your docker run command:

$ docker run -it --publish-service=<name>.<network name> ubuntu:latest /
bin/bash

$ docker run -it --publish-service=web.docker-net ubuntu:latest /bin/bash

We can also create networks and provide drivers for those networks so that they can
span across multiple hosts. By default, there is a driver named overlay that will allow
you to do this. Now this is the first of many drivers that will be coming on board,
either when this network feature is baked into Docker or at a later time, for sure.
When you create the network is when you will specify the overlay driver. However,
there is one thing that this driver does need. It will need access for not only itself, but
also the other Docker hosts that you want to network together:

$ docker network create -d overlay docker-overlay

Networking plugins

Going back to our previous example of using the overlay driver, this is also
considered a Docker network plugin. While networking has the use for plugins, keep
in mind that volumes also have the option to do plugins or drivers as well. With
regards to networking plugins though, there is quite a list of plugins that are already
available, and I can only assume that others will be added quickly. Currently that list
of networking plugins consists of:

e Weave

[252]

Chapter 13

* Project Calico

* Nuage Networks

* (isco

* VMware

* Microsoft
* Midokura

To use these plugins, we simply change what we are using in the --publish-
service= option, for example:

$ docker run -it --publish-service=service.network.cisco ubuntu:latest /
bin/bash

$ docker run -it --publish-service=service.network.vmware ubuntu:latest /
bin/bash

$ docker run -it --publish-service=service.network.microsoft
ubuntu:latest /bin/bash

Note that some of the names may change before they actually
K= come to production level.

Summary

In this chapter, we looked at a lot of items in depth. We covered various aspects

of Docker such as how we can scale our environments and use Docker services.

Later, you came to know about the various techniques that can be used to debug or
troubleshoot the issues that crop up while using Docker along with the solutions. You
then learned how contribution of codes can be done to Docker and its networking,.

I hope you have enjoyed this book and will continue to refine your skill set

when it comes to Docker. It really is a technology that is on the tip of everyone's
tongue these days, so knowing it will not only benefit you at your current position,
but also any future positions you may be looking at. Throughout the chapters, you
should be able to pick up on some ways to get in touch with me if you do have any
questions or want to provide any feedback. I am frequently on the IRC rooms that
Docker has, so hit me up sometime to chat. Good luck and use the resources out
there to your advantage!

[253]

Index

A restart 94
m 94
advanced Docker networking scp 95
about 248 ssh 95
custom network, creating 251, 252 start 95
installation 248, 249 stop 95
networking plugins 252 TLS 96
Ansible upgrade 96
about 68 url 96
URL 246 common issues
automated builds about 241
abgut 52[. 5 Docllzer imlages 24212 043
code, setting up Docker volumes , 24
custom registry, creating 54, 55 resources, using 243
Docker Hub, setting up 52, 53 components, Docker Swarm
implementing 53 about 124
Swarm 124
B Swarm host 124,125
Swarm manager 124
boot2doc}<er constraint filter
controlling 7 about 134
environment= 134
C region= 134
Chef storage= 134
about 67, 245 Consul 239
reference 68 container management
Cloud Providers 207-210 about 144
commands, Docker Machine autorr.1at1c.restarts 146
about 91 con’;a%ner 1mag;:‘ st.orag1e45144
. container monitoring
?f)ﬁ}lieg 9;22 Docker commands, and GUIs 145
env 92 image usage 145
inspect 92 upd.a tes 146
ip 93 containers
Kill 93 about 245
Is 94 Chef 245, 246

[255]

Kubernetes 245

stopping 17-19
containers, versus VMs

about 73

good section 73, 74

not so bad section 74

what to look out for section 74
custom containers

scratch, used 30

tar, used 29, 30

D

discovery services
Consul 239
etcd 239
using 238

Docker
about 2
contributing to 246
contributing to, code 246, 247
contributing to, support 247
debugging 240
hosts, setting up 141, 142
installation 6
installers 6
linking 5
networking 5
nodes, setting up 142
other contributions 247
scaling 238
troubleshooting 240
using in production environments 141
versus typical VMs 2, 3

Docker APIs
about 243
docker.io account API 244
Remote API 244, 245

Docker bench security application
about 79
container images and build files 82
container runtime 82
Docker daemon configuration 81
Docker daemon configuration files 81
Docker security operations 82
host configuration 80
output 83-86

running 79
docker build command
.dockerignore file 26
about 25, 26
Docker commands
about 11,12,57,75
docker attach 58, 59
docker diff 59, 76
docker exec 60
docker history 60
docker inspect 61, 64
docker logs 64
docker ps 65
docker run 75, 76
docker stats 65
docker top 66
Docker Compose
examples 115
installing 99
installing, on Linux 99
installing, on OS5 X 100
installing, on Windows 100
options 101
usage 100
YAML file 100
Docker Compose commands
about 103, 104
build 104
kill 104
logs 105, 106
port 106
ps 107,108
pull 108, 109
restart 109
rm 109, 110
run 110
scale 110
start 111,112
stop 112
up 113,114
version 114
Docker Compose usage
about 147
developer environments 147
environments, scaling 147
Docker documentation 241

[256]

Dockerfile
about 3, 4,21
ADD instruction 23
best practices 24, 25
COPY instruction 23
ENTRYPOINT 23
LABEL command 23
ONBUILD instruction 24
reviewing 22
WORKDIR command 24
Docker Hub
about 30, 41, 144
Create menu 45
dashboard 42
location 31
Organizations 43, 44
private repositories 32
public repositories 31
repositories page 43
settings 46, 47
Stars page 48
Docker Hub Enterprise
about 32, 48
Docker Hub, versus
Docker Subscription 48, 49
Docker Subscription for cloud 49
Docker Subscription for server 49
Docker images
about 13, 14
base image, building with existing
image 28
building, Dockerfile used 27
manipulating 16, 17
searching for 14, 15
docker.io account API
about 244
reference 244
Docker IRC room 241
Docker Machine
about 89
cloud environment 90, 91
commands 91
installing 89, 90
local VM 90
using 90
docker ps -a switch 65
docker ps -1 switch 65

docker ps -n= switch 65
Docker Registry
about 49, 144
overview 50
versus Docker Hub 50
Docker security
best practices 77
container images/runtime 78
daemon configuration 78
daemon configuration files 78
host configuration 77
operations 78
Docker Subscription 48
Docker Swarm
about 70, 123
cluster, creating 125, 126
cluster, managing 128, 129
components 124
filters 134
functionalities 70
installation 123
nodes, joining 127
nodes, listing 127, 128
strategies 133
usage 125
Docker Swarm commands
about 130
create 131
list 131
manage 131
options 130
Docker Swarm topics
about 132
advanced scheduling 133
discovery service 132
Docker Toolbox
URL 90
Docker Trusted Registry 144
DockerUl
about 150-155
URL 143, 241
Docker VM
controlling 7
Docker volumes
about 35-37
backups 39
containers 38, 39

[257]

E

environmental variables
about 32
file, adding to system 34, 35
MySQL database, creating 33, 34
MySQL username, creating 33
permissions, setting 34
using, in Dockerfile 32, 33
etcd
about 239
reference 240
example, Panamax
about 185-187
application, configuring 196
Applications section 188, 193
Docker Run Command section 201
environmental variables 198
Images section 190
ports 199
Registries section 191
Remote deployment targets section 192
service, adding 194-196
service links 197
Sources section 189
volumes 200
examples, Docker Compose
about 115,120, 121
build 120
image section 115,119
existing management suite
about 66
Ansible 68
Chef 67
Docker Swarm 69
Puppet 66, 67
SaltStack 69
external platforms
extending to 148
Heroku 148

F

filters, Docker Swarm
affinity 134
constraint 134
dependency 134

health 134
port 134

H

Heroku 148
host management
about 143
Docker Swarm 143
host monitoring 143
Swarm manager failover 144

ImageLayers 156-162
installation
Docker Machine 89, 90

K

Kitematic 8-11

Kubernetes
about 238, 245
URL 245

L

Linux Containers (LXC) 2

Mist.io
about 238
URL 241

N

nodes 211-216

(0

Options section, Docker Compose
-f 102
-p 102
--project-name 102
--v 102
--verbose 102
--version 102

[258]

P

Panamax
example 185
installing 181-184
URL 143
Platform as a Service (PaaS) 148
pods 245
Puppet
about 66, 67
URL 246

R

Registrator 239
Remote API 244
Repositories tab 228

S

SaltStack
about 69
reference 69
security
about 149
best practices 149
Service dashboard 205
Services section, Tutum
about 217-220
Configuration 227
Containers 221
Endpoints 222
Logs 223
Monitoring 224
Timeline 226
Triggers 225
Shipyard
about 165, 238
ACCOUNTS tab 174

CONTAINERS section 168, 176-180

Deploy Container button 169
EVENTS tab 175

IMAGES section 170
NODES section 172

Pull Image button 171
REGISTRIES tab 173
starting 165-167

URL 143

Stacks section, Tutum 229-235
standard input (STDIN) 58
strategies, Docker Swarm
binpack 133
random 134
spread 133
Swarm API
about 135, 137
URL 137
Swarm cluster example 137

T

troubleshooting, Docker
Docker commands 240
GUI applications 241
resources 241

Tutum
about 203
accessing 204
Cloud Providers section 207-210
Nodes section 206
Service dashboard 205
tutorial page 204, 205
URL 203

types of installers, Docker 6

[259]

open source

community experience distilled

Thank you for buying
Mastering Docker

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Learning Docker
ISBN: 978-1-78439-793-7 Paperback: 240 pages

Optimize the power of Docker to run your
applications quickly and easily

1. Learn to compose, use, and publish the
Docker containers.

2. Leverage the features of Docker to deploy your
existing applications.

Learning Docker

3. Explore real-world examples of securing and
managing Docker containers.

Docker Cookbook
ISBN: 978-1-78398-486-2 Paperback: 248 pages

80 hands-on recipes to efficiently work with the
Docker 1.6 environment on Linux

1. Provides practical techniques and knowledge
of various emerging and developing APIs to
help you create scalable services.

2. Create, manage, and automate production-
quality services while dealing with inherent
issues.

3. Each recipe is carefully organized with
instructions to complete the task efficiently.

Please check www.PacktPub.com for information on our titles

community experience distilled

[open source

Orchestrating Docker
ISBN: 978-1-78398-478-7 Paperback: 154 pages

Manage and deploy Docker services to containerize
applications efficiently

1. Setup your own Heroku-like PaaS by getting
accustomed to the Docker ecosystem.

2. Run your applications on development
machines, private servers, or the cloud, with
minimal cost of a virtual machine.

3. A comprehensive guide to the smooth
management and development of Docker
containers and its services.

Build Your Own Paa$S with Docker
ISBN: 978-1-78439-394-6 Paperback: 138 pages

Create, modify, and run your own PaaS with
modularized containers using Docker

1. Build your own PaaS using the
much-appreciated software Docker.

2. Isolate services in containers to have a fully
modularized and portable system.

Build Your Own PaaS

with Docker 3. Step-by-step tutorials that take you through the
process of creating your own PaaS.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Docker Review
	Understanding Docker
	Difference between Docker and typical VMs
	Dockerfile
	Docker networking/linking

	Docker installers/installation
	Types of installers
	Controlling the Docker VM (boot2docker)
	Docker Machine – the new boot2docker
	Kitematic

	The Docker commands
	The Docker images
	Searching for the Docker images
	Manipulating the Docker images

	Stopping containers
	Summary

	Chapter 2: Up and Running
	Dockerfile
	A short review of Dockerfile
	Reviewing Dockerfile in depth
	LABEL
	ADD or COPY
	ENTRYPOINT
	USER
	WORKDIR
	ONBUILD

	Dockerfile – best practices

	Docker build
	The docker build command
	.dockerignore

	Building images using Dockerfile
	Building a base image using an existing image
	Building your own containers
	Using tar
	Using scratch

	Docker Hub
	The Docker Hub location
	Public repositories
	Private repositories
	Docker Hub Enterprise

	Environmental variables
	Using environmental variables in your Dockerfile
	Creating a MySQL username, database, and setting permissions
	Adding a file to the system

	Docker volumes
	Data volumes
	Data volume containers
	Docker volume backups

	Summary

	Chapter 3: Container Image Storage
	Docker Hub
	Dashboard
	Explore the repositories page
	Organizations
	The Create menu
	Settings
	The Stars page

	Docker Hub Enterprise
	Comparing Docker Hub to Docker Subscription
	Docker Subscription for server
	Docker Subscription for cloud

	Docker Registry
	An overview of Docker Registry
	Docker Registry versus Docker Hub

	Automated builds
	Setting up your code
	Setting up Docker Hub
	Putting all the pieces together
	Creating your own registry

	Summary

	Chapter 4: Managing Containers
	The Docker commands
	docker attach
	docker diff
	docker exec
	docker history
	docker inspect
	docker logs
	docker ps
	docker stats
	docker top

	Using your existing management suite
	Puppet
	Chef
	Ansible
	SaltStack

	Docker Swarm
	What is Docker Swarm?
	What can Docker Swarm do?

	Summary

	Chapter 5: Docker Security
	Containers versus VMs
	The good
	The not so bad
	What to look out for

	The Docker commands
	docker run
	docker diff

	Docker security – best practices
	Docker – best practices
	CIS guide – host configuration
	CIS guide – Docker daemon configuration
	CIS guide – Docker daemon configuration files
	CIS guide – container images/runtime
	CIS guide – Docker security operations

	The Docker bench security application
	Running the tool
	Understanding the output

	Summary

	Chapter 6: Docker Machine
	Installation
	Using Docker Machine
	Local VM
	Cloud environment

	Docker Machine commands
	active
	config
	env
	inspect
	ip
	kill
	ls
	restart
	rm
	scp
	ssh
	start
	stop
	upgrade
	url
	TLS

	Summary

	Chapter 7: Docker Compose
	Installing Docker Compose
	Installing on Linux
	Installing on OS X and Windows

	Docker Compose YAML file
	The Docker Compose usage
	The Docker Compose options

	The Docker Compose commands
	build
	kill
	logs
	port
	ps
	pull
	restart
	rm
	run
	scale
	start
	stop
	up
	version

	Docker Compose – examples
	image
	build
	The last example

	Summary

	Chapter 8: Docker Swarm
	Docker Swarm install
	Installation

	Docker Swarm components
	Swarm
	Swarm manager
	Swarm host

	Docker Swarm usage
	Creating a cluster
	Joining nodes
	Listing nodes
	Managing a cluster

	The Docker Swarm commands
	Options
	list
	create
	manage

	The Docker Swarm topics
	Discovery services
	Advanced scheduling
	The Swarm API

	The Swarm cluster example
	Summary

	Chapter 9: Docker in Production
	Where to start?
	Setting up hosts
	Setting up nodes

	Host management
	Host monitoring
	Docker Swarm
	Swarm manager failover

	Container management
	Container image storage
	Image usage
	The Docker commands and GUIs
	Container monitoring
	Automatic restarts
	Rolling updates

	Docker Compose usage
	Developer environments
	Scaling environments

	Extending to external platform(s)
	Heroku

	Overall security
	Security best practices

	DockerUI
	ImageLayers
	Summary

	Chapter 10: Shipyard
	Up and running
	Containers
	Deploying a container

	IMAGES
	Pulling an image

	NODES
	REGISTRIES
	ACCOUNTS
	EVENTS
	Back to CONTAINERS
	Summary

	Chapter 11: Panamax
	Installing Panamax
	An example
	Applications
	Sources
	Images
	Registries
	Remote Deployment Targets
	Back to Applications
	Adding a service
	Configuring the application
	Service links
	Environmental variables
	Ports
	Volumes
	Docker Run Command

	Summary

	Chapter 12: Tutum
	Getting started
	The tutorial page
	The Service dashboard
	The Nodes section
	Cloud Providers
	Back to Nodes
	Back to the Services section
	Containers
	Endpoints
	Logs
	Monitoring
	Triggers
	Timeline
	Configuration

	The Repositories tab
	Stacks
	Summary

	Chapter 13: Advanced Docker
	Scaling Docker
	Using discovery services
	Consul
	etcd
	Debugging or troubleshooting Docker

	Docker commands
	GUI applications
	Resources

	Common issues and solutions
	Docker images
	Docker volumes
	Using resources

	Various Docker APIs
	docker.io accounts API
	Remote API

	Keeping your containers in check
	Kubernetes
	Chef
	Other solutions

	Contributing to Docker
	Contributing to the code
	Contributing to support
	Other contributions

	Advanced Docker networking
	Installation
	Creating your own network
	Networking plugins

	Summary

	Index

